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SUMMARY 

Lytag is a synthetic lightweight aggregate which has been in commercial 

production for many years. Its production process involves sintering pulverised 

fuel ash at approximately 1200-1300°C to produce spherical, chemically inert 

pellets with a porous structure, which is graded into coarse, medium and fine 

grades. 

Concrete, produced with Lytag coarse and fine material, has been 

extensively studied to assess its basic material and structural properties. 

Few data, however, are available on concrete made with Lytag coarse material 

and natural sand fines. The aims of this investigation were basically two-fold. 

Firstly the material properties of Lytag-sand concrete were investigated and an 

extensive study of various properties such as strength, moduli of elasticity, 

Poisson's ratio, stress-strain characteristics, shrinkage, moisture movement 

and creep are reported. Secondly, the structural behaviour of reinforced 

Lytag-sand concrete T-beams failing in shear and flexure was also investigated. 

As with all concretes, these properties are affected by the constituents 

which make up the concrete, in particular the aggregate. With this in mind 

microscopic examination of several Lytag pellets was carried out using a scanning 

electron microscope (S. E. M. ) in order to observe some of the physical 

characteristics of Lytag aggregates in general. An attempt was then made to 

relate these characteristics to the water absorption of Lytag aggregates. 

The test results show that concrete strengths of 60 N/mm2 are easily 

obtainable using Lytag and sand, and that in general a lower cement content is 

required for Lytag-sand, than for other sand replaced lightweight concretes, in 

order to achieve a given compressive strength. Shrinkage and creep are 

comparable with the range of values obtained for concretes made with various 

dense aggregates but when compared to concretes made with good quality dense 

aggregates values of the order of 1.5 times the dense concrete values are to be 

expected. 
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The nominal ultimate shear stresses at failure, for the beams tested were 

significantly greater than the allowable shear stresses quoted in the British 

design code. The instantaneous deflection and crack widths at design service 

moment are within the maximum recommended values for serviceability and tests 

showed that Lytag-sand concrete has a high strain capacity in excess of 4000 

microstrain. 

Various empirical formulae and design equations are presented and 

conclusions are drawn at the end of each chapter concerned with test data. 

Limitations of the present investigation and proposals for future work are also 

. discussed. 
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NOTATION 

Symbols which are used constantly throughout the thesis are defined below4 

1`: 

0 -1 

0- 

Symbols which occur less frequently are defined as they appear. 

Ast - area of tension reinforcement 
a- distance between load point and support; shear span 
b- section width 
bf - flange width 
bw - web width 
C- concrete- cover 
d- effective depth of section 
Ec - elastic modulus of concrete 
ED - dynamic modulus of elasticity 
ES - static modulus of elasticity 
fC - cylinder crushing strength 
fct - tensile strength of concrete 
f- cube crushing strength 
fMR - tensile strength by modulus of rupture test 
fsP - tensile strength by split cylinder test 
fy - yield stress of tensile reinforcement 
h- overall depth of section 
IC - moment of inertia of cracked transformed section 
Ie - effective moment of inertia 
19 - moment of inertia of gross concrete section about the centroidal axis, 

neglecting reinforcement 
L- effective span between supports 
M- applied bending moments 
Mc - moment due to tensile strength of concrete 
Mcr - moment at first flexural crack 
Meg - experimental ultimate moment 
Mf - calculate ultimate flexural moment 
M- ultimate moment for shear beams 
Sv - link spacing 

"t - time after loading or initial readings 
Uw - concrete crushing strength 
V- shear strength 
Vcr - shear cracking strength 
Vu - ultimate shear strength 
VC - maximum allowable concrete shear stress (CP110 (54)) 
4cr - shear cracking stress 
Vu - ultimate shear stress 
x- neutral axis depth 
Z- internal lever arm 
p- longitudinal steel percentage 
Pb - balanced steel ratio 
Pf - longitudinal steel percentage based on flange width 
pw - longitudinal steel percentage based on web width 
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A. C. I. - American Concrete Institute 

B. R. S. - Building Research Station now known as Building Research 
Establishment (B. R. E. ) 
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CHAPTER 1 

INTRODUCTION 

1.1 General Introduction 

Concrete, either reinforced or prestressed, is perhaps the most widely 

used structural material; it is economical and the raw materials needed for the 

manufacture of its constituents are available in most countries throughout the 

world. 

When compared to other building materials such as steel, however, the 

density of a crushed rock or gravel concrete is high in relation to its strength. 

Thus the availability of a structural concrete with reduced density has obvious 

advantages. 

Structural lightweight concrete is not a new building material, on the 

contrary it has been in existence for a considerable number of years. Despite 

this, and the fact that many investigators have turned their attentions towards 

the properties and behaviour of lightweight concretes, both at home and abroad, 

it is still regarded with great caution by the majority of practicing engineers 

in this country. 

To most engineers the word concrete describes a material consisting of 

V, cement, sand and crushed rock or gravel, with a certain water cement ratio, 

having an air dry density of approximately 2300-2400 kg/m3 and able to achieve 

a wide range of strengths, 15 - 100 + N/mm2, depending on the relative proportions 

of its constituents. Their only contact with lightweight concrete is in the 

form of concrete blockwork or floor and roof screeds. Thus an association is 

formed between lightweight and low strength. 

It is true that not all lightweight concretes are suitable for reinforced 

or prestressed concrete work; however most lightweight aggregates are capable 

of producing concretes suitable for reinforced concrete members and several types 

I 
of aggregate are capable of producing high strength concrete, 60 + N/mm2, suitable 

for prestressing. 

Several classifications exist for lightweight concrete and probably the 

most comprehensive is that put forward by Rilem (1). 
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The classification covers the following: 

(a) type of lightweight concrete 

(b) type of binder 

(c) type of aggregate 

(d) type of curing 

(e) function. 

For the purpose of this thesis, only lightweight aggregate concrete will 

be under consideration, unless otherwise specified. It shall be referred to 

simply as lightweight concrete while crushed rock or gravel concrete shall be 

referred to as dense concrete. 

The first organised attempt to promote the use of lightweight concrete, 

in the UK, was undertaken by the British Reinforced Concrete Association who 

held a one-day symposium on 'Structural lightweight concrete' in June 1962. 

This was attended by over four hundred engineers from both the consulting and 

the contracting sections of the civil engineering industry. Over the next ten 

to fifteen years, numerous articles appeared in the various construction 

journals (2-9), heralding the advent of structural lightweight concrete. There 

have been two international congresses on lightweight concrete both held in 

London. The first was in 1968 and the second, C180, in 1980. In addition to 

this researchers in the UK have been investigating the physical properties and 

characteristics of the various lightweight aggregates manufactured in this 

country (10-15), since the late fifties, but despite these attempts to educate 

the construction industry in the virtues of lightweight concrete, its use is 

still relatively limited in comparison to that of dense concrete. 

Its early use as a structural material stemmed mainly from a need to 

solve specific problems such as a need to reduce a structures dead weight 
M- 

V because of span or poor ground conditions, for example the prestressed cantilever I 

roofs on the grandstands at Doncaster, Leopardstown and Goodwood racecourses, or 

F the floor slabs of the new National Westminster bank tower in London. Present 

day design and construction knowledge, for lightweight concrete, stems mainly 

from the south east of England where the scarcity of good quality natural 
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aggregates has forced the construction industry to look at alternative sources 

of aggregates. It is now fair to say that several consultants, contractors and 

ready mix concrete companies are well experienced in the design and construction 

of lightweight concrete structures. 

The use of lightweight concrete in the USA and Europe has shown that it 

has many advantages. Its lower density means that a structure's dead weight 

can be reduced with a consequent reduction in the size of foundations. Altern- 

atively the dimensions of elements can be considerably enlarged without having 

to alter erection systems or craneage capacity; or the geometric shape of an 

element can be greatly simplified without increasing its overall weight. The 

density of lightweight concrete in air ranges between about 75-85% of that of 

dense concrete. When submerged under water, however, the density of lightweight 

concrete may be as low as 55% of that for dense concrete (15). This increased 

bouyancy has obvious advantages for use in marine structures such as offshore 

production platforms and floating docks. Further advantages include the fact 

that lightweight concrete is easier to handle enabling larger pours, free from 

construction joints to be undertaken. Lightweight aggregates tend to be less 

abrasive than dense aggregates thus reducing formwork and plant maintenance 

costs. Lightweight concrete shows better insulating and fire resistance 

properties and experience (16) has indicated that for a given fire endurance, 

the thickness of lightweight concrete required is approximately 20% less than 

traditional gravel concrete. Heat losses through solid lightweight concrete 

walls are reduced by between 20 and 50%, depending upon the density of the 

material. Also drilling, cutting and chasing of lightweight concrete is 

easier and therefore cheaper. 

As with all materials, there are of course disadvantages, not least of 

which is the fact that per cubic metre lightweight concrete is generally more 

expensive than dense concrete. 

This higher cost is made up, basically, of two components, namely: 

(a) The higher haulage costs generally associated with lightweight aggregate 

delivery to site or ready mix plants. The relatively small number of plants 
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producing lightweight aggregates means that, generally, longer haulage 

distances are involved with delivery. 

(b) The higher cement contents generally required to reach a given cube 

strength, in relation to the cement contents of a dense concrete of 

similar strength. 

Investigations (17,18) have shown that if a direct substitution of 

lightweight for dense concrete is made then costings will invariably favour 

dense concrete. It is only when the project as a whole is designed specifically 

with lightweight concrete in mind that the savings in foundations, steel and 

concrete quantities and handling and erection costs can be appreciated. In some 

cases savings are considerable. For example the One Shell Plaza in Houston, 

Texas was originally designed as a 35-storey building in dense concrete on a 

floating foundation. The design was changed to a 52-storey, 217 m high building 

in lightweight concrete, with no increase in the 18 m deep foundation despite 

the fact that it rests on a 600 m thick layer of clay. 

Other disadvantages include lower sound absorption, higher creep and 

therefore prestress losses and greater deflections due to the lower modulus of 

elasticity. 

Although individual brands of lightweight aggregates are very consistent 

in physical properties and characteristics substantial differences may occur 

between different brands. This has often been quoted as a measure of their 

potential unreliability, while the variation in quality, durability and long 

term behaviour of concretes made with dense aggregates from various sources, 

fl- which is considerable, has been neglected. It is important however, that data 

be available for all lightweight aggregates and the concretes they produce. 

For this reason research projects to investigate the various commercially 

available lightweight aggregates in the UK have been undertaken. 

1.2 Aims of this Investigation and Outline of Thesis 

The purpose of this project was to investigate the properties and 

behaviour of concrete made with coarse sintered-pulverised fuel ash, Lytag, 

aggregate and natural sand fines. Chapter 2 is a literature review of available 

-4- 



information relevant to this project. Chapters 3-8 cover the various properties 

and characteristics investigated and Chapter 9 summarises the limitations of 

the present work, the overall conclusions and recommendations for future work. 

Each of Chapters 3-8 covers a series of tests carried out to investigate 

a particular set of related properties and characteristics and the aims of each 

series of tests are described below. 

Although Lytag has been commercially available since the early sixties no 

work has been reported on investigations of the microstructure of Lytag pellets. 

As a part of this project a study of the microstructure of Lytag pellets was made 

using a scanning electron microscope (S. E. M. ) and this work is reported in 

. Chapter 3 along with an attempt to relate, qualitatively, the water absorption 

characteristics of the pellets to their microstructure. 

Chapter 4 covers mix design and strength characteristics of Lytag-sand 

concrete. A mix design chart is derived for compressive strengths ranging from 

20 N/mm2 up to 60 N/mm2. Long term compressive strength characteristics and 

short term tensile strength characteristics are also reported. 

Chapter 5 covers the short term deformation properties of Lytag-sand 

concretes for strengths ranging from 20 N/mm2 up to 60 N/mm2. The properties 

investigated included the static and dynamic moduli of elasticity and Poisson's 

ratio. A series of tests was also carried out to obtain the complete stress- 

strain curves for concretes of different compressive strength. 

The results of a series of tests to investigate the long term deformation 

properties of Lytag-sand concrete are presented in Chapter 6. The shrinkage, 

creep and moisture movement properties were studied for three different concrete 

strengths. Shrinkage specimens were curved under four different conditions 

while creep specimens were cured under constant temperature and humidity only. 

For each cube strength studied, two specimens were loaded per creep rig with two 

rigs at different stress-strength ratio's being used. Moisture movement 

specimens were subjected to cyclic drying and wetting in order to determine its 

effect on the volume and density stability of the concrete. 

Chapter 7 covers tests carried out to investigate the shear behaviour of 
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Lytag-sand concrete T-beams. Three of the more important parameters which 

effect the shear behaviour of reinforced concrete beams were varied, namely the 

shear span-effective depth ratio, the longitudinal steel percentage and the 

concrete strength. Four shear span-effective depth ratio's, six longitudinal 

steel percentages and three concrete strengths were investigated and a total of 

thirty three beams were tested. 

The last chapter dealing with test data, Chapter 8, covers tests carried 

out to determine some of the flexural characteristics of Lytag-sand reinforced 

concrete T-beams. Two concrete strengths and six longitudinal steel percentages 

were used with a total of six beams being tested. 

Conclusions are drawn at the end of each chapter with a summary of 

limitations of the present work, conclusions and recommendations for future 

work being presented in Chapter 9. 
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Ch APTER 2 

. i. 

LICIITWEIGILT AGGREGATE CONCRETE :A LITERATURE REVIEW 

2.1 Introduction 

In this chapter, an up to date review of the literature available on 

structural lightweight concrete is presented. It begins with an account of the 

history and development of lightweight aggregate concrete which is followed by 

a review of past research in both the USA and the UK. The main conclusions 

concerning the general properties of lighweight concrete are summarised. This 

is followed by a review of past research concerned with investigating the effects 

of sand replacement on the properties and behaviour of lightweight concrete and 

again a summary of the main conclusions is presented. Finally a review of the 

various design procedures and guidelines for lightweight concrete, given in the 

American and European design codes, is presented. 

2.2 History and Development 

Lightweight concrete is by no means a new material. Probably its earliest 

use, in a structural form, was as far back as Roman times. In the second century 

AD the Romans constructed the Pantheon in Rome. The outstanding feature of this 

building is its 43 m diameter domed roof, composed almost entirely of cast-in-situ 

lightweight concrete made with pumice aggregate. A similar type of concrete was 

used in the construction of the Colosseum, also in Rome. 

The first large scale use of lightweight aggregates, for concrete, occurred 

during the First World War when a number of lightweight concrete ships and barges 

were built in both the UK and USA. With the war over, however, and the shortage 

of steel no longer a problem, the use of lightweight concrete was all but aban- 

doned. 

Possibly the most important development in the history of lightweight 

concrete occurred in America. In 1918, Mr. S. J. Hayde patented a process for 

manufacturing lightweight aggregates by expanding clay in a rotary kiln. The 

market did not develop significantly until after 1945 when there was a rapid 

expansion in the use of lightweight concrete throughout the USA. In 1957 

Shideler (19), reported that most of the 41 plants producing lightweight 
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aggregates from shales and clays, at that time, had only been built in the post- 

war years. There were also 18 plants producing lightweight aggregates from slag. 

Despite the fact that at the turn of the century, clinker from the then 

new solid-fuel-fired power stations was being used on a commercial scale in the 

UK, it was not until 1944 that the first British Standard specification for 

clinker aggregate, BS 1165 (20), was published. 

The first processed lightweight aggregate in Great Britain, foamed blast 

furnace slag, came into commercial production in 1935 and a covering British 

Standard, BS 877 (21), was published in 1939. However, it was not until the 

1957 edition of CP114 (22), 'The Structural use of Reinforced Concrete in 

Buildings', that mention was made of foamed slag, to BS 877 (21), and natural 

pumice as allowable aggregates for use in structural lightweight concrete. 

Pumice had been imported in small quantities before 1939 when imports ceased. 

They did not restart until 1966. 

In 1954 commercial production of an expanded clay aggregate, 'Leca'. 

began in Britain. This was followed in 1957 by 'Aglite' a sintered colliery 

shale and clay mix; in 1961 by 'Lytag' a sintered pulverised-fuel ash and in 

1966 by 'Solite' an expanded slate. 

The revised edition of CP114,1965 (22), stated that foamed slag to 

BS 877 (21), expanded clay, slate shale or slag, sintered pulverised-fuel ash 

and other types of suitable aggregate were now permissible materials for use as 

lightweight aggregates. 

Thus, it can be seen that suitable standards covering quality control and 

design were slow in coming. This was probably due to the comparative abundance 

of natural gravels, sands and crushed rock was well as the lack of understanding 

of the potential of lightweight aggregates for use in structural concrete. 

By the late fifties, early sixties, therefore, the UK was producing 

several lightweight aggregates but their use was restricted mainly to the 

production of lightweight concrete building blocks. Production has increased 

since then to some 1.5-2.0 million tonnes, annually. 
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2.2.1 Lightweight Aggregate Production in the UK 

One of the advantages of lightweight aggregates is that they can be 

manufactured from a variety of waste materials which are produced in this 

country. 

Table 2.1 lists the quantities, disposal and use of common waste materials 

produced in Great Britain in 1978 (23). Table 2.2 shows the estimated aggregate 

production (dense and lightweight) in Great Britain in 1978 (23). It can be 

seen that recycled waste materials only contribute a very small proportion of 

the sum total. 

Table 2.3 and Figure 2.1 show the locations and annual productions of 

[ý 

Britain's lightweight aggregate manufacturers (23). There are a total of 15 

aggregate production plants in Great Britain grouped mainly in the North of 

England and the Midlands. This in itself may explain why the use of lightweight 

concrete is not more widespread. The cost of lightweight aggregates delivered 

to ready mix plant or to site is generally greater than for dense aggregate. 

This is accounted for mainly by the longer haulage distances associated with 

lightweight aggregate distribution. Coupled with this is the fact that many 

areas of the North of England and the Midlands, such as the Trent valley region, 

still have plentiful supplies of easily accessible sands and gravels. 

However at a time when conservation of the landscape is such a prominent 

issue, it seems unthinkable that we should not utilise the vast spoils of 

[- potentially recyclable materials available in this country. 

2.3 General Properties of Lightweight Aggregate Concrete 

The state of the art in terms of the use of lightweight aggregate concretes 

is well advanced, and it is probably fair to say that more is known about 

individual lightweight aggregates than any single type of natural aggregate. 

This has been brought about by the detailed investigations of many different 

types of lightweight aggregates, reported by researchers in the USA and the UK. 

The realisation that different brands of lightweight aggregate exhibit their own 

individual characteristics has led to the production of data on each aggregate 

type. 
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,m 

F_ 

Is 

Type 
Production 
M. Tonnes 

per Year 

Stockpile 
M. Tonnes 

Amount 
Used 

M. Tonnes 
per Year 

Use 
Disposal 
M. Tonnes 
per Year 

Colliery LWA, 42 

spoil 
50 3250 7-8 bricks, on land 

fill and sea 

Pulverised LWA, fill, 5-6 
lagoons fuel ash 11 250 4-5 cement and old (pfa) replacement workings 

Furnace concrete, 
bottom 5.5 not known most used blocks, lagoons 
ash fill 

China brick 
tipping, 

clay 22 300 1.5 manufacture lagoons 
waste 

Blast LWA, filter 
furnace 10 not known 9 media, - 
slag etc. 

TABLE 2.1 APPROXIMATE QUANTITIES, DISPOSAL 

AND USE OF THE MAJOR WASTE MATERIALS 

IN GREAT BRITAIN (23) 1978 

Million Tonnes 

Sand and gravel 110.0 

Marine dredged aggregate 12.0 

Crushed rock 100.0 

Furnace bottom ash 5.5 

Furnace clinker 0.5 

Manufactured lightweight aggregates 1.5 

F, 

229.5 

TABLE 2.2 ESTIMATE OF AGGREGATE PRODUCTION 

IN GREAT BRITAIN (23) 1978 

-10- 



Aggregate No. of 
Plants 

Location 
(Fig. 2.1) 

Production 
(m3 x 1000) 

Aglite 1 1 200 

Foamed slag 4 2,3,4,5 300 

Foamed slag 
(pelletised) 4 8,9 300 
Lycrete, Pellite 

Leca 1 6 250 

Lytag 3 7 550 

Sintag 1 10 200 

Taclite 1 11 150 

TOTAL 15 - 1950 

TABLE 2.3 LOCATIONS AND ANNUAL PRODUCTION OF BRITAINS 

LIGHTWEIGHT AGGREGATE MANUFACTURERS (23) 1979 

FIGURE 2.1 
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In this section a review of past research is presented. The following 

chapters each contain a comprehensive review of research relevant to the topic 

under discussion. 

2.3.1 Previous Research in the United States 

Probably the earliest investigators to concern themselves with the 

properties of lightweight concrete were Richart and Jensen (24), who carried out 

a series of tests on concrete made with Haydite aggregate. The investigation 

was divided into two groups of tests concerned with the properties of the 

aggregates themselves and the properties of concrete made with them. Their main 

conclusions include the following: 

1. While concrete made with Haydite aggregate generally required greater water- 

cement ratios for similar mixes and equal slumps, the relation between 

compressive strength and water-cement ratio of Hayditeconcrete does not 

differ greatly from that for gravel-concrete. 

2. For beams without web reinforcement, which failed by diagonal tension, the 

ratio of the shearing unit stress to the compressive strength of control 

cylinders was practically the same for corresponding mixtures of gravel and 

Haydite concrete. 

3. The ultimate strength of reinforced concrete columns made with Haydite 

concrete varied between 84 and 108% of the values for corresponding gravel 

concretes for tied and spiral reinforcement cages respectively. 

4. The modulus of elasticity of Haydite concrete is approximately 55% of that 

for corresponding gravel concrete for the considerable range of mixtures and 

consistencies tested. 

Washa, Kluge, Carlson and Valore (25) presented a condensed early history 

of the use of lightweight aggregates in 1956. Washa and Kluge (25) investigated 

the structural properties of lightweight concretes as part of the work of A. C. I. 

1 committee 213 after 1948. Washa (25) concluded that: 

1. The modulus of elasticity of structural lightweight concrete varies between 

about 50 and 67% of that for comparable gravel concrete. 
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2. Drying shrinkage is variable, for lightweight concrete, usually ranging 

between 0.01 and 0.50%. 

3. The coefficient of thermal expansion of lightweight concrete is usually 

about equal to that of gravel concrete. 

Kluge (25) attempted to correlate all the available test data, published 

and unpublished and presented this as a guide in the use of lightweight aggregate 

for structural concrete, in 1956. The main conclusions are as follows: 

1. The unit weight of the concretes increased with increase in strength. At 

high strengths the rate of increase was relatively small. 

2. The modulus of elasticity data for the various concretes considered showed 

similar values to those reported by Richart and Jensen (24). 

3. The bond strengths reported vary widely, mainly because of a lack of 

standard test procedure. Calculated values of bond stress from pull out 

tests were 50% or more than required by ACI-318-51 (26). 

4. There were very few data available on the shearing resistance of lightweight 

concrete. Shear strengths were 60 to 300% above those required by the 1951 

ACI Building Code (26). 

For a number of years tests were carried out on various lightweight 

aggregates at the Portland Cement Association. Early tests were reported by 

Shideler (19). An extensive series of tests were carried out on concretes made 

with eight different lightweight aggregates and one gravel aggregate. Concrete 

mixes were designed to produce compressive strengths of 21 N/mm2 and 31 N/mm2 

for all aggregates and 48 N/mm2 and 69 N/mm2 for three selected aggregates. 

Data reported include mix properties, compressive and flexural strengths, 

modulus of elasticity, bond, creep and drying shrinkage. The main conclusions 

are as follows: 

1. The various lightweight aggregates produced concretes with unit weights 

II ranging from 1440 to 1760 kg/m3. Expanded shale aggregates from rotary 

kilns produced the lower weight concretes whereas expanded slag and sintered 

shale aggregates produced the heavier lightweight concretes. 
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2. For 21 and 31 N/mm2 concretes, the modulus of elasticity varied between 53 

and 822 of that for comparable gravel concretes. 

3. The flexural strengths of the lightweight and sand and gravel concretes were 

approximately equal at early ages, but after 28 days the sand and gravel 

concrete showed greater strength gain with continuous moist curing than did 

the lightweight concrete. 

4. Bond strengths of some of the lightweight concretes were approximately equal 

to those of the sand and gravel concretes. The position of the bar was an 

important factor in the development of bond. In the 21 and 31 N/mm2 series, 

all specimens, with a single exception reached bond stresses in excess of 

6 N/mm2. For the high strength series all specimens failed at bond stresses 

in excess of 10 N/mm2. 

5. The creep of lightweight aggregate concrete of 21 N/mm2 was between 84-145% 

of that of comparable gravel concrete. For the 31 N/mm2 concrete the range 

was between 100-175%, and for the 48.5 N/mm2 concrete the range was between 

95-110X. 

6. In the lower strength series, 21 N/mm2, at age 6 months the drying shrinkage 

of the lightweight concretes stored at 50% relative humidity was between 

95 and 138% of that of the sand and gravel concrete. 

In a follow up to Schidelers work at the P. C. A., Hanson (27,28) reported 

on the shear capacity of lightweight concrete beams. The test data showed a 

good correlation between the nominal unit shear strength of the beams and their 

associated split cylinder tensile strengths. Nominal unit shear strengths for 

the lightweight beams varied between 60 and 100% of the values for comparable 

gravel concrete beams. 

Greib and Werner (29), reported results from an investigation into the 

effect of curing conditions on the tensile and compressive strength properties 

of various concretes. Tests were carried out on ten different types of light- 

weight aggregate concrete and comparable crushed rock and gravel concretes. 

Specimens were cured under two different environments, namely moist curing 

until testing at 28 days or moist curing for 7 days followed by air curing at 
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23°C and 50% relative humidity until testing at 28 days. The main conclusions 

are as follows: 

1. The ratio between the average tensile splitting strength and the average 

flexural strength for specimens cured in moist conditions and tested between 

7 days and 1 year was 67%, 62% and 76% for crushed stone, gravel concrete 

and lightweight concrete respectively. The ratio of the tensile splitting 

strength to compressive strength was 10.7%, 10.8% and 8.0% respectively. 

2. For specimens cured in air after 7 days the 28 day tensile splitting, flexural 

and compressive strengths were 69%, 38% and 96% respectively of those for 

continuously moist cured specimens. One year values were 90%, 57% and 82% 

respectively. 

In 1979, Committee 213 of A. C. I. published a report (30) giving guidelines 

for the use of structural lightweight aggregate concrete. The aim of the guide 

was to summarise the knowledge on lightweight concrete then available. The 

physical and mechanical properties of structural lightweight aggregate concretes, 

described in this report, can be summarised as follows: 

1. Depending upon the source of material, structural grade lightweight concrete 

can be obtained with unit weights in the range 1440-1840 kg/m2. 

2. Generally the modulus of elasticity for structural lightweight concrete is 

considered to vary between 50% and 75% that of sand and gravel concrete of 

the same strength. 

3. A wide band of creep values can be obtained for various lightweight concretes 

some higher, some lower than comparable gravel concretes. The spread of 

results reduces markedly as the 28 day compressive strength of the concrete 

increases. 

4. Low strength lightweight concretes generally show higher shrinkage than 

comparable gravel concretes. At higher strengths, however, some lightweight 

concretes exhibit lower shrinkage. 

5. Lightweight concretes show lower thermal conductivities and coefficients of 

thermal expansion. Heat losses through solid walls range between 50-80% of 

values for comparable gravel concretes, depending on density. 
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6. Structural lightweight concretes are more fire resistant than normal weight 

concretes because of their lower thermal conductivity, lower coefficient of 

thermal expansion and the inherent fire stability of an aggregate already 

burned to over 11000C. 

2.3.2 Previous Research in the United Kingdom 

There are, today, a number of different brands of lightweight aggregates 

commercially available in the United Kingdom and these are listed in Table 2.4, 

along with some of their basic properties. 

Lydon (13), published a review of research, in progress or planned, in 

1976 along with a bibliography of selected publications dealing with lightweight 

concrete in the UK. 

The Building Research Station were probably the first organisation to 

actively study a variety of commercially available lightweight aggregates, 

I- including foamed slag, Aglite, Leca and Lytag, back in the late 1950's. Work 

on mix design, lightweight aggregate production processes and the behaviour of 

j, concrete block walls have been reported as recently as the mid 1970's (13). 

The bulk of the remaining work, either reported or in progress is being 

carried out by various research and educational establishments, mainly the 

Universities. Of these there are three which have reported work relevant to 

this project, namely Leeds, Sheffield and University of Wales Institute of 

Science and Technology, (UWIST). 

 \ 2.3.2.1 Research at the Building Research Station (B. R. S. ) 

Early work at the B. R. S. was concerned with investigating a wide range 

of concretes made with various aggregates, as mentioned above, and the first 
1 ýý 

0, results were reported by Short (31) in 1959. This was followed by reports from 

Teychennd (11,32), Grimer (10) and Taylor and Brewer (33). 

" Their conclusions can be summarised as follows: 

1. The workability characteristics of lightweight aggregate concretes differ 

somewhat from those of sand and gravel concretes, but there is no difficulty 

in producing lightweight concrete suitable for full compaction under site 

conditions. 

11 -16- 



a) 00 

"t7 c, 4 0 in 0 0 0 ell 
Co H %D rl-4 '. o 61 ýl 0 0 

41 4 

N 
y1 
00 

H 
41 
N 

>lb 
IJ 

", a 

O O O 
p 0 0 O 

Aq t-4 
N O rn Co 

M 
. ýG vl O O in 

Ii 
as 

.,. 4 

is N 

4.4 E Ei m m m m c Co 0 q A 1i 
41 

F 

to 

F .2 

8 

Fi "M 

bo 

1 
2i 

0 ÖD 
2 F7 iii m r4 Gý O O . 

l " a 
LM CVI ý m m g 

AN . p4 
O 

V e-I 
N 
%0 V '-4 V On 

O 
V O% 

in 
V 01 

in 
V 01 "-4 

. SG cn 

r-1 tr) 

° 10 ö0 
lw (L) en 

0. m a) Co 
9) P-4 

" i 

to 
N 

M 
Ei 

Cr) 
0 Ei 

M M M M M 

r 
tu 0 

9 
b0 CO 

9 
Oii Q OA GO CD to U 

'2 ºýd 
0 yi 

-54 Qý di 
1-4 Ln 

7 1O 1O 1O 1O 
?0 

1O 1O 
0 CD Lri IT (D clq O OO cli CD C, 4 CD 

'--1 Co C, 4 M . --+ Co .4 . -1 cc r-a 00 

c) 4J 

"t7 
cý u 

ä t a) 

a w Co 0u cd 4w ý-1 >% .. I "a ao " 0 t-4 a u v . -+ Co vn a u ei dv P-4 41 b b gnä 0 b' bd b Co 4) . -% d r4 a Cl 0 4) 41 d o0 
co s+ ÖD "r, .. ai . -, v 1 41 ". 4 1 tu ` ü -4 'i. + c '° I 4. ) 1 CO oo E i: 4411u am . ÖD 
ÖD 

92 
4 

a P. . l - ý 
".. . ". iE i " d cn "-0 W ".. ' p., Uo k., cn cn M rn . -# 

H Ü 
". 1 ' C00 
41 
34 O :1 
Co 0 
a a N 

d 

c9 

d 

H 

H 

H 
a 
a 

H 
U 

x 
N 
H 

od 
pq 

W 
O 

N 

W 
Pa 
C 

Pa 

U 

!2 

N 

H 

-17- 



2. With a given lightweight aggregate, the main factor influencing the crushing 

strength is the water cement ratio. 

3. Concrete made with Leca has a crushing ceiling of 30 N/mm2. Any of the 

other lightweight aggregates can produce concrete with a 28-day crushing 

strength at least equal to that obtained with sand and gravel, but in some 

cases a higher cement content is required. 

4. The concrete strength development up to 28 days is similar to that of gravel 

concrete, but there is generally a greater increase in strength at 1 year, 

particularly with Lytag. 

5. In many cases the 28 day strength of air cured lightweight concrete is 

greater than that of water cured concrete. The increase in strength owing 

to the initial period of moist-air curing is less than with sand and gravel 

concrete. 

6. The tensile strength, by the modulus of rupture test, of lightweight concretes 

may be greater than, or as low as 50% of, the values for comparable gravel 

concretes. 

7. Modulus of elasticity varies between about 30% and 70% of that for comparable 

gravel concretes. The figure for Lytag concrete is about 60%. 

1,8. The air dry density of lightweight concrete varies between about 1120-2080 

kg/m3, depending on the aggregate type and the cement content. The density 

range for Lytag concretes was 1600-1760 kg/m3. 

9. Deflections of lightweight-concrete beams vary between 10-50% greater than 

those for comparable gravel concrete beams. 

10. Bond strengths, "by pull-out tests, vary between 50-75% of the values for 

comparable gravel concretes. 

11. Shrinkage and moisture movement depend upon aggregate type and increase with 

increases in cement content and water/cement ratio. For a given cement 

content the lowest shrinkage values were obtained with Lytag concrete, the 

values being equal to the gravel concrete values. 

12. The effect of the type of aggregate on the rate of penetration of a carbon- 

ation front is small by comparison with the effect of mix properties. For 

I 
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Lytag concrete the rate is the same as for gravel concrete. 

13. Steel embedded in lightweight concretes, with low cement contents and there- 

fore low strengths, may be more prone to corrosion than with gravel concretes 

of similar strengths. 

14. The shear strengths of rectangular beams made with Aglite varies between 

78-88% of the values for comparable gravel concrete beams. For Lytag the 

variation is 83-93%. 

2.3.2.2 Research at the University of Leeds 

Work at Leeds University has been concentrated on two lightweight aggre- 

gates, namely Aglite and Lytag. Early results were published by Evans et al (34- 

38). Further results were published by Neville and Liszka (39) and by Brooks 

and Neville (40,41). 

The main conclusions resulting from their work can be summarised as 

follows: 

1. A cube crushing strength of approximately 50 N/mm2 is obtainable with Aglite 

concrete and sufficiently high strengths for prestressing can be obtained 

with Lytag concrete. 

2. The strength increase between 28 days and 6 months is greater for Lytag 

concrete than for comparable gravel concrete. 

3. The tensile strength of Aglite concrete was 25-50% less than that for gravel 

concretes of comparable compressive strength. The tensile strength of Lytag 

concrete, by the modulus of rupture test decreased appreciably on drying. 

4. The modulus of elasticity of Aglite concrete is approximately 60% of the 

value of comparable strength gravel concrete. The modulus of elasticity of 

Lytag concrete increases with an increase in crushing strength and the 

increase in modulus of elasticity, between 28 days and 6 months is greater 

for Lytag concrete than for gravel concrete. 

5. The ultimate moments of reinforced concrete beams made with Aglite, Lytag 

and gravel concretes are satisfactorily predicted by Whitney's theory. 

6. The compressive stress block of a Lytag concrete beam differed from that of 

a gravel concrete beam in the following respects: 
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(a) Maximum stress was not developed until a strain of 0.3% was reached 

(0.2% in gravel concrete). 

(b) Maximum stress is developed nearer the compression face. 

7. For Aglite concrete, the immediate deflections of beams reinforced with up 

to 4% steel are 10-25% greater than for comparable gravel beams. At working 

loads deflection may be as much as 40-50% greater. 

For Lytag concrete beams, the ratio of the total deflection at 750 days to 

the instantaneous deflection is less than for gravel concrete beams. Initial 

deformation of Lytag concrete was 1.5 to 2.0 times that of gravel concrete, 

while at 500 days the deformation of Lytag concrete was 1.0 to 1.5 times 

that of gravel concrete. 

8. For similar crushing strengths, crack widths in Aglite concrete beams are 

approximately 50% wider and crack spacings approximately 60% closer than for 

gravel concrete beams. 

9. Creep and shrinkage in Aglite and Lytag concrete is generally greater than 

in gravel concrete of similar strength. 

10. The absorption of Aglite concrete was 30-40% higher than that of comparable 

gravel concrete, but permeability was much the same. 

11. In 152 mm long pull-out test specimens, containing a single 12.5 mm diameter 

bar, for a maximum bond stress of 5.2 N/mm2, the average stress with Aglite 

concrete was approximately 25% higher than with gravel concrete. 

12. The shear cracking load of Aglite concrete beams was about 75% that of 

gravel beams of similar strength. 

2.3.2.3 Research at the University of Sheffield 

Work at Sheffield University was concentrated on investigating the 

properties of Solite lightweight aggregate concrete in the early seventies, 

while more recently, attention has focused on Lytag concrete. Swamy et al (42- 

47) published results of tests carried out by Ibrahim (48) and Bandyopadhyay (49) 

on Solite and Lytag concrete. More recent research, carried out by Ajibade (50), 

Jojagha (51), Sittampalam (52) and Winata (53), has been concerned only with 

Lytag concrete as Solite is no longer manufactured. The results of the various 
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investigators can be summarised as follows: 

1. Both Lytag and Solite are capable of producing concrete with a cube strength 

in excess of 60 N/mm2. 

2. The use of high early strength cement can result in up to 50-60% of the 28 

day cube strength being obtained within 24 hours. 

3. Solite concrete requires approximately 25% less cement than Lytag and 

approximately 30-35% less than other lightweight aggregate concretes to 

achieve the same compressive strength at 28 days. 

4. The air dry density of Solite and Lytag concrete varies between about 1600- 

1840 kg/m3. 

5. There is a reduction in both the tensile splitting and the flexural strength 

of concretes cured in air as opposed to those continuously moist cured. 

6. The tensile splitting strength is approximately 76% of the flexural strength 

for Solite concrete. 

7. The static modulus of elasticity of Lytag and Solite concrete is approximately 

60-65% of that of comparable gravel concretes. The use of high early 

strength cement may further reduce the modulus of elasticity by up to 10%. 

8. For Solite concrete, the compressive strength, flexural strength and dynamic 

modulus of*elasticity were all reduced when pre-wetted as opposed to dry 

aggregates were used. 

9. Solite concrete is more crack resistant than comparable gravel concrete. 

This is probably due to its lower modulus of elasticity and higher relaxation 

of stress due to higher creep. 

10. Pull-out tests indicate that bond strengths for $ olite concrete are approxi- 

mately 96% of the values for gravel concrete. 

11. When considering the durability of steel, the effect of the type of aggregate 

on the rate of penetration of the carbonation front was small by comparison 

I. with the effect of mix proportions. 

I 12. With Solite concrete, no instance of damage due to corrosion was found in 

embedded steel bars after two years exposure to a severe industrial 

atmosphere. 
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13. The strain at maximum stress which Solite concrete specimens sustained under 

constant strain loading was between 0.3 and 0.337 while for gravel concrete 

the value was 0.25%. 

14. The instantaneous deflection of Solite concrete beams at design load was 

20-30% greater than that of comparable gravel concrete beams. Deflections 

can be satisfactorily estimated by methods employed in the design codes (26, 

54) based on a cracked section. 

15. The ultimate moment of resistance of Solite concrete beams can be satis- 

factorily calculated by using Whitney's theory. 

16. Crack widths at working loads, for reinforced Solite concrete beams, were 

within the limits set by CP110 (54). 

17. The shear cracking strength of Solite concrete T-beams was found to be 

identical to that of comparable gravel concrete beams. 

18. It was found that the diagonal tension strength of Solite concrete T-beams 

is affected by the same variables as those effecting the resistance of 

gravel concrete beams. There is no fundamental difference in behaviour and 

modes of failure. The difference lies only in the type of aggregate used 

and its capacity to resist the shear failure. 

19. The ultimate shear resistance of Solite concrete T-beams varies between 71 

and 95% of that of comparable gravel concrete T-beams. 

20. The main difference in shear failure between Solite and gravel concrete lies 

in the fact that diagonal cracks in lightweight concrete traverse the 

aggregate particles as well as the matrix, whereas for gravel concrete the 

crack results from a bond failure between the aggregate and the matrix 

which in turn results in the adjacent surfaces being irregular, interlocked 

and still capable of withstanding further load. 

21. The shear cracking load is independent of the presence of vertical stirrups. 

The magnitude of the load causing the formation of initial cracks depends 

primarily on the strength of the concrete and to a lesser extent on the 

longitudinal steel ratio and the shear span - effective depth ratio. 

22. Even the provision of a small amount of web steel effectively increases the 
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shearing strength of Solite concrete T-beams, and also prevents the sudden 

failures associated with shear. 

2.3.2.4 Research at UWIST 

Investigations at UWIST have covered a wide range of lightweight aggregates, 

namely, Aglite, foamed slag, Leca, Lytag, Solite and Taclite. Early work was 

reported by Lydon '(12,55-60) and was concerned mainly with the water absorption 

of various lightweight aggregates and its effect on the mix design process for 

lightweight aggregate concrete. Work has been continued by Balendran (61) who 

conducted an extensive series of tests to investigate the properties of high 

strength lightweight aggregate concretes made with Lytag and Taclite. They also 

contained natural sand fines and for this reason are discussed in Section 2.3.3. 

The results of the earlier work and the conclusions drawn from it, can be 

summarised as follows: 

1. Different lightweight aggregates absorb water at different rates and in 

different amounts tending towards saturation values after quite long periods 

of time. 

2. Without evacuation of entrapped air, immersed aggregates probably never become 

saturated at low pressure. 

3. Lightweight aggregates absorb water rapidly and over a period of time. Rapid 

absorption is useful in that only a short contact time is required between 

aggregate and water before quasi-equilibrium is reached, so that most of the 

potential loss of concrete workability takes place during mixing. 

4. The presence of internal water from lightweight aggregates may benefit 

concrete in full scale structures or structural elements, insofar as con- 

tinued hydration of cement is concerned. But the behaviour of small elements 

can be apparently erratic and complex and test specimen results may need to 

be interpreted with caution. 

5. Considerable loss of water can occur from lightweight concrete before 

measurable drying shrinkage occurs. 

2.3.2.5 Research at John Laing Research & Development 

Tests have been carried out at Laing R&D, since the early sixties into 
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the properties and behaviour of Lytag concrete and comparable strength gravel 

concrete. The results have been published in a series of internal reports (62). 

The main conclusions of this work can be summarised as follows: 

1. The initial moisture content of Lytag fines has little effect on the strength 

and workability of concretes with the same total water/cement ratio. 

2. For Lytag medium, the workability decreases slightly and the strength 

increases, when aggregates of increasing initial moisture content are used, 

until a critical value is reached after which strength and workability remain 

constant. 

3. Creep tests on 76 x 76 x 406 mm prisms in axial compression and 102 x 102 x 

762 mm beams, reinforced with 2-9.5 mm 4 mild steel bars, in bending, 

revealed that the ratio of total to instantaneous deflection at approximately 

18 months, is lower for Lytag concrete than for gravel concrete, despite 

Lytag concretes higher initial deflection. 

4. For wet cured cubes, the rate of gain of strength after 28 days is greater 

for Lytag concrete than for comparable strength gravel concrete. 

2.3.3 The Effect of Natural Sand Replacement of Lightweight Fines 

The effect of sand replacement was first studied, to a limited extent, by 

Richart and Jensen (24), as a part of their series of tests of lightweight 

concrete made with Haydite aggregate. The most comprehensive investigation of 

the effect of sand replacement on the properties of lightweight concrete, made 

with various American aggregates, was undertaken by Hanson and Pfeifer (63-68), 

and their results were reported in a series of articles published over several 

years. Eleven lightweight aggregates were used and for each aggregate concretes 

F` 
with 33,66 and 1002 sand replacement were tested. The compressive strength 

range for 6x 12 inch cylinders was approximately 20-45 N/mm2. The conclusions 

of their work can be summarised as follows: 

1. Most mix characteristics and concrete properties were improved by sand 

II, replacement with the exception of unit weight. 

2. Sand replacement had a negligible effect on the gain of compressive strength 

between 7 and 28 days. 
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3. With 1007. sand replacement: 

(a) The unit weight increased by 10-20%. 

(b) Total water requirement decreased by 12-25%. 

(c) For a given strength, cement contents are reduced. 

(d) Compressive strength increased by 12-64%. 

(e) The drying shrinkage decreased by 25-402 of the corresponding values 

for all-lightweight aggregate concretes, depending on aggregate type 

and cement content. 

(f) The modulus of elasticity increased by up to 50% depending on aggregate 

type. 

4. With most concretes, rates of early age creep and shrinkage were generally 

reduced when the natural sand contents were increased. 

5. With complete sand replacement creep values were reduced by 0-40% depending 

on aggregate type and concrete strength. 

6. Partial or complete sand replacement can significantly improve the freezing 

and thawing resistance of lower strength concretes (21 N/mm2). At higher 

strengths (42 N/mm2) sand replacement produces only minor improvements. 

7. The freeze-thaw durability of lightweight concretes, generally, is similar 

to that of gravel aggregate concrete over comparable strength ranges. 

In the UK, many of the investigators, concerned with the properties and 
a, 

I' 

behaviour of lightweight concretes, carried out limited tests on lightweight 

concrete containing natural sand fines (11,31,40,41,48,49,60,62). The most 

comprehensive investigation to date was that made by Balendran (61). The main 

conclusions of the work carried out in the UK are summarised below: 

1. Sand replacement increases density and reduces cement content for comparable 

compressive strengths. 

2. Maximum strengths of 60-70 N/mm2 are possible with several UK lightweight 

aggregates. 

3. Sand replacement increases workability, tensile strength and modulus of 

elasticity. 

4. The creep and shrinkage of concretes made with natural sand fines is reduced 
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in comparison to all lightweight concrete, and is more compatible with the 

range of values associated with the various types of dense aggregate concrete 

available. 

5. Basic creep values for Lytag and Taclite concretes are 20-30% greater than 

comparable strength limestone concrete for the same coarse aggregate volume. 

6. The freeze-thaw durability of lightweight concrete with natural sand fines 

is comparable with and in some cases superior to that of dense aggregate 

concrete. 

7. Sand replacement reduces the penetration of a carbonation front into the 

concrete thus affording a greater degree of protection to the reinforcing 

steel. 

2.4 Code Requirements 

As with any building material, the results of research into the properties 

and behaviour of lightweight concretes, and the structural elements produced 

with such concretes, had to be condensed into easily managable guidelines to 

assist in the design process. The wide range of properties and characteristics, 

which are common between different brands of aggregate, have greatly complicated 

this task. 

In Europe the job was undertaken by the F4deration Internationale de la 

Pr4contrainte (F. I. P. ) in 1962. Subsequently, in 1966 a report of the F. I. P. 

Commission (69) was presented at their fifth congress in France. This was 

followed in 1972 by the European Concrete Committee (C. E. B. ) Manual of light- 

weight concrete (70), revised in 1973 (70), and in 1974 by the European Cement 

Associations 'Lightweight aggregate concrete: Technology and World Applications' 

(71). Finally a combined C. E. B. /F. I. P. manual was published in 1977 (72). 

In the USA the task of collating the available data on lightweight 

aggregate concrete is the responsibility of the A. C. I. Committee - 213. Their 

most recent report was published in 1979 (30). 

Both the British (54) and American (26) codes, as well as the recently 

introduced C"E"B. F. I. P. 'Model code for concrete structures' (73) give limited 

recommendations 
for lightweight aggregate concrete leaving design to be based 
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on more specific data to be obtained, were possible from individual manufacturers. 

Basic strength properties of various lightweight aggregates are well 

established, but continued investigation into the structural properties of 

elements made with lightweight concretes is required. 
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Ct1APTER 3 

THE MICROSTRUCTURE OF LYTAG AGGREGATE AND ITS RELATION TO WATER ABSORPTION 

3.1 Introduction 

Design using any material requires a fundamental understanding of the 

behaviour of that material so that it may be safely exploited to the full. In 

order to try and obtain a better understanding of the behaviour of concrete made 

with Lytag aggregate, an examination was made of the microstructure of Lytag 

pellets and the results are reported in this chapter. A literature search failed 

to reveal any reports of similar examinations of Lytag or of any of the other UK 

manufactured lightweight aggregates. Richart and Jensen (24) reported micro- 

scopic studies of Haydite aggregate but the maximum magnification used was only 

x 250 and this was only used to give an overall view of material passing a No. 200 

sieve. 

The description of the tests carried out to examine the microstructure is 

preceeded by a description of the raw materials and the manufacturing process of 

Lytag aggregate. The microstructure examination, using a scanning microscope, 

is then reported, followed by a series of tests to determine'the water absorption 

characteristics of Lytag. The water absorption characteristics are then related 

to the observed microstructure. 

3.2 Raw Materials and the Manufacture of Lytag 

The manufacturing process of Lytag aggregate is outlined diagramatically 

in Figure 3.1. 

The basic raw material used in the manufacture of Lytag is pulverised- 

fuel ash, pfa, and this is supplied directly, by means of a pipeline, from a 

C. E. G. B. power station to the nearby Lytag plant. The pfa inevitably contains 

some unburnt fuel but it is unlikely to be as high as 8% which is the approximate 

amount required for sintering to take place (74). This fuel deficiency is 

corrected by the addition of coal dust in the form of a slurry. The pfa and 

coal slurry are blended in screw mixers before being fed onto the pelletizers. 

The pelletizers consist of a tilted, rotating pan into which water sprays are 

directed. The ash mixture, which is fed continuously into the pelletizer, 
.. 
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travels in a spiral path during which it forms into pellets which collect at 

the lower part of the pan and eventually spill over onto a belt conveyor. The 

blending of the raw materials is critical and it is only by careful control of 

the water and carbon contents of the ash mixture that it is possible to produce 

the strong spherical pellets which are subsequently sintered to produce maximum 

strength with minimum density and cost (75). 

When conditions have been carefully adjusted, the pelletizers will 

produce pellets of remarkably constant size and will operate with little super- 

vision. Adjustments of pan tilt, peripheral speed and pan depth can be used to 

produce pellets of different sizes. 

The 'green' pellets are transferred by means of a belt conveyor to a 

storage hopper where they are fed onto the sinter strand. The pellet bed thicknes! 

is kept constant at approximately 300 mm. As the sinter strand progresses slowly 

forwards the pellet bed is ignited on its top surface as it passes under an oil 

fired ignition hood which is maintained at a temperature of 1200-1300°C. 

Ignition time, which varies with the carbon content of the material, usually is 

about one minute. The pellets emerge from under the ignition hood in a partially 

sintered state and the 'flame front' is then forced to progress down through the 

pellet bed by drawing air down through it. By the time the material reaches the 

end of the sinter strand it is fully sintered. 

The material falling off the strand is red-brown in colour and has the 

I- 

L --- 

appearance of popcorn, i. e. a number of spherical globules stuck together at 

their points of contact. When dropping through grizzly bars the material easily 

shatters into separate spherical particles which are then transferred to a series 

of screens which grade the material into coarse, medium and fine grades, with 

any oversize material being returned to the screens via a crusher. 

The process is continuous and it is possible for a factory to produce 

aggregate twenty four hours per day. 

Pfa consists generally of spherical particles, some of which ulay be like 

glass and hollow and of irregularly shaped particles of unburnt 
fuel or carbon. 

It may vary in colour from light grey to dark grey or even brown. Its principal 
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constituents are, normally: silicon dioxide SiO2 (about 30 to 602), aluminium 

oxide A1203 (about 15 to 30%), carbon in the form of unburnt fuel (varies widely 

possibly up to as high as 30%), calcium oxide CaO (about 1 to 7%) and small 

quantities of magnesium oxide MgO and sulphur trioxide S03 (76). 

Although sintered pfa is a coal residue and has the same basic mineral 

composition as furnace clinker, it differs from the latter in important respects 

(77) : 

(a) The fuel content of sintered pfa is negligible, whatever it might have been 

in the raw ash, whereas the fuel remaining in clinker may be very high, and 

sometimes of a chemically unstable nature. 

(b) Becuase of the fineness of pfa, minerals such as pyrites and lime, which 

are potentially injurious substances, cannot, as in clinker, be present in 

high local concentrations but are uniformly distributed and thus harmless. 

Moreover, because of the fineness, any unstable minerals, if they were 

present, would be very reactive, and by quickly reaching their ultimate 

state would obviate such troubles as 'lime popping'. and rust staining which 

could otherwise arise from delayed reaction. 

The sintering process, therefore, produces a material which, like brick, 

is inert in the presence of most substances encountered in building and civil 

engineering, its chemical constituents being mainly. silica and alumina. 

A problem which has come to light over recent years, concerning the 

durability of concrete in general, is that of alkali aggregate reaction (78). 

With chemically inert materials such as Lytag, however, this problem should not 

arise. 

3.3 The Microstructure of Lytag Aggregate 

3.3.1 Aims of Tests 

The aims of this series of tests were basically twofold; firstly to 

examine in detail the internal microstructure of Lytag pellets and secondly to 

relate the microstructure to the behavioural characteristics of the aggregate. 
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3.3.2 Details of Tests 

3.3.2.1 Specimen Selection 

Pellet specimens were selected at random from various parts of the stock- 

pile of a single batch of aggregate. Approximately one dozen specimens were 

selected initially. In order to observe the bond between the pellets and a 

sand cement mortar, several pieces of concrete from crushed cubes were also 

selected. 

3.3.2.2 Specimen Preparation 

From one pellet a thin section, approximately 30 um thick was prepared 

and mounted on a glass slide. The remaining specimens were either sawn in half 

using a rotary diamond saw or fractured by means of a sharp blow with a hammer. 

The bond specimens were looked at in order to find areas where the aggregate- 

matrix boundary was clearly visible. A small area enclosing the required section 

was then cut from the concrete piece using a rotary diamond saw. 

The various specimens for viewing under the scanning electron microscope 

(S. E. M. ) were then cleaned using an ultrasonic cleaner and individually mounted 

on special holders which hold the specimen in place within the electron micro- 

scope. In order that the specimens may be viewed using the S. E. M. they must 

receive a conductive coating of a heavy metal. In this case gold was used. 

3.3.2.3 S. E. M. Type 

The machine used in this series of tests was a Philips PSEM 500X scanning 

electron microscope with a magnification range of x20 - x180,000. 

3.3.3 Results of Investigation 

A selection of the details seen under the S. E. M. are shown in Plates 3.1(b) 

3.8(d). Each plate is accompanied by a figure which indicates the magnification, ' 

e. g. x640 and by a scale, e. g. scale: 10 pm. The scale refers to the relative 

length of each of the individual segments of the dotted white line which is 

visible on each plate. 

Plate 3.1(a) was produced by using a thin section of Lytag aggregate as a 

negative and printing the plate directly from it. The plate gives an overall view 

of the cross-section of a Lytag pellet and it can be seen that there is a thin 
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(approx) 

(h) x 640 Scale : 10 um. (c) x 640 Scale : 10 pm 

PLATE 3.1 OVERALL VIEW OF LYTAG PELLET AND SURFACE PREPARATIO. ' 



outer shell of variable thickness, ranging between approximately 0.15 and 0.5 mm, 

surrounding the bulk of the pellet. In reality this outer shell is an earthy red- 

brown in colour whilst the bulk of the pellet is blackish. The large voids 

towards the top left of the plate and the absence of the outer shell towards the 

bottom right are probably due to the cutting process. As was described in 

section 3.2 the raw ash and coal dust mixture is ignited under a firing hood and 

the combustion process is prolonged by drawing air down through the pellet bed as 

it passes along on the sintering grate. Thus the outer layer is probably the 

product of rapid heating to 1200-1300°C followed by rapid cooling by the air 

flow. The remainder of the pellet bums and cools at a slower rate. 

In order to examine the internal microstructure two types of surface were 

prepared as described in section 3.3.2. Plates 3.1(b) and 3.1(c) show the sawn 

and fractured surfaces respectively. Despite the ultrasonic cleaning of the 

specimens, it can be seen that the surface of the sawn specimen is littered with 

debris and that a great deal of detail has been obscured. The fractured surface 

on the other hand is much cleaner and the detail far easier to see. For this 

reason it was decided that the remainder of the tests would be carried out on 

fractured surfaces only. 

In order to try and define a definite boundary between the two layers 

previously described all the prepared specimens, sawn and fractured were examined 

both at low and at high magnifications. No such visible boundary was found. 

Plates 3.2(a, b) and 3.2(c, d) show the edge region and central region of a 

fractured surface and a sawn surface respectively. Plate 3.2(a) shows the edge 

region to be made up of a honeycomb type structure with unreacted pfa cenospheres 

fused into it. Plate 3.2(b) shows an area of honeycombing photographed in the 

central area of a pellet. It should not be assumed from this plate that there 

were no unreacted pfa cenospheres towards the centre of the pellet, unreacted 

pfa was found but in general, the fused honeycombed areas were more evident than 

in the edge region. 

Since the thin section, Plate 3.1(a) clearly showed a distinct boundary 

between the outer shell and inner area of the pellet, it was hoped that a sawn 
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surface may reveal similar detail on a larger scale when viewed using the S. E. M. 

Plate 3.2(c) and (d) show the edge and central regions respectively of a sawn 

surface. They do, however, only serve as further evidence of the unsuitability 

of a sawn surface for detailed study as there is a great deal of debris present. 

Of all the specimens examined only one small area of one particular pellet 

revealed a distinct boundary and this is shown in Plate 3.3(a). The bottom left 

hand corner of the plate indicates the outer edge of the pellet, moving inwards 

towards the top right hand corner. The outer layer appears to be a fused mass 

with little sign of voids and this may have been produced by momentary exposure 

to intense heat at that point. The total circumferencial length of this fused 

area was approximately 3-4 mm. 

Plates 3.3(b), (c) and (d) show unreacted pfa cenospheres of various 

sizes and these were found throughout the cross-section of all the specimens 

viewed. It can be seen that the diameter of the cenospheres varies from 

approximately 75-100 um in Plate 3.3(b) down to 3-4 pm in Plate 3.3(d). The 

overall structure of the pellets appears to be composed of the honeycomb type 

material, which is formed by the virtual melting of the various raw materials, 

with the unreacted pfa cenospheres fused into it. The honeycombing effect is 

certainly due to the presence of voids between the constituent materials in the 

'green' pellet as well as the formation and expansion of gases and the vapouris- 

ation of the contained water, during the sintering process. 

Plates 3.4(a)-(d) show the fractured surfaces at various magnifications 

and are included to show the void distribution and size range. Magnifications 

have purposely been kept low so as to give a general overall view rather than a 

view of a small area which would be the case at high magnification. 

Plate 3.4(a) is a low magnification view and shows the very irregular 

surface of the fractured specimen. Only the larger voids are clearly visible 

on this plate but it can be seen that they are distributed fairly evenly through- 

out the cross-section. The largest voids appear to be of the order of 100-150 pm. 

Plates 3.4(b) and (c) are at a higher magnification and show several of the 

larger voids as well as the whole range of void sizes right down to those less 
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than 10 }, m. Again the distribution of the voids appears to be fairly even with 

the larger and smaller voids evenly mixed. Several spherical hollows are clearly 

visible and these appear to be either impressions left where cenospheres have 

been dislodged or the shells of broken cenospheres which are hollow, or both. 

Plate 3.4(d) is at a higher magnification again and shows again a large void, 

approximately 200 pm across, surrounded by smaller voids ranging in size from 

75-100 pm down to less than 10 pm. 

Plates 3.5(a)-(d) show in greäter detail the structure of several large 

voids approximately 150-200 pm across. The four plates show that the voids are 

interconnected and that the overall structure of the pellet is a highly porous 

one. Plates 3.5(a) and (b) show voids which appear to have formed by gases 

escaping through a molten material. The honeycombing is visible both within the 

void itself and around the void on the fracture surface, and the internal surfaces 

are smooth and curved. 

Plates 3.5(c) and (d) show voids which appear to have been formed by 

particles of the raw materials already forming the voids and then being fused 

into position during the sintering process. 

Plates 3.6(a)-(d) concentrate on the structure of unreacted cenospheres. 

All four plates show that the cenospheres are hollow and of variable shell 

thickness. Within the shell itself smaller voids are also present. Plate 3.6(a) 

shows a cenosphere which has split cleanly, probably when the aggregate was 

fractured. X-ray spectrography showed a high silica content in the cenosphere 

which accounts for the clean fracture surface. A high silica content was found 

throughout the pellets generally and this also accounts for the smooth clean 

fracture surfaces visible on many of the plates. 

Plate 3.6(b) shows more voids within the shell wall of a cenosphere. 

The largest of these voids is approximately 10 um across whereas the smallest is 

less than 1 um. 

Plates 3.7(c) and (d) show almost whole cenospheres which have fused 

into the surrounding material. They show the cenospheres to be hollow with a 

relatively thin shell containing some voids. These internal voids range in 
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size from 3-4 pm down to 1 pm. 

Plates 3.7(a)-(d) show some unusual features which were observed during 

the investigation. Plate 3.7(a) shows a piece of material peppered with small 

holes approximately 2-3 pm across. X-ray spectrography revealed that the major 

elements making up the material were silica and aluminium, with small amounts of 

magnesium, iron, potassium and calcium. This feature along with features shown 

in Plates 3.7(b)-(d) has probably resulted from a local 'hot spot' which occurred 

during sintering. The minerals became molten and escaping gases formed the holes 

which were preserved as the material cooled and solidified. 

Plate 3.7(b) shows another mass of material which appears to have solidi- 

fied to form a flaky type of structure. The chemical composition of this material 

was similar to that of the previous material but a higher silica content is 

reflected in the smooth clean fracture surface. 

Plates 3.7(c) and (d) both show crystal type structures. The former were 

found as part of the general matrix of the pellet whereas the latter were found 

on the surface of an unreacted cenosphere. X-ray spectrography showed the 

mineral content to be similar to that of the material shown in Plate 3.7(a). 

Finally Plates 3.8(a)-(d) show the interface between a Lytag pellet and 

sand cement matrix. The interface is easily visible and it can be seen that 

there is excellent bonding all along the surface line of the pellet. Low 

magnifications were only used to observe this feature since the very irregular 

fracture surface in the interface region meant that at high magnifications it 

was not possible to focus on both materials on either side of the interface. 

3.4 Absorption Characteristics of Lytag 

3.4.1 Experimental Details 

The aim of this part of the investigation was to study the absorption 

characteristics of Lytag aggregate up to a period of twenty four hours. 

Samples from four different batches of aggregates, delivered during the 

course of this project, were tested with the percentage absorption by weight 

being calculated for each batch after 30 seconds, 30 minutes and 24 hours 

immersion in water. The test method used was based on that described in BS 812: 
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Part 2: 1975 (79), for aggregates between 40 mm and 5 mm. 

Each batch sample of aggregate was individually washed on a5 mm sieve to 

remove the finer particles, particularly the dust which would otherwise be lost 

during the test, thereby affecting the result. The sample was then drained and 

dried in an oven at 1050 ± 5°C for 24 hours. The sample was than removed from 

the oven and allowed to cool in the laboratory for approximately 1 hour. From 

each batch sample, three smaller samples of approximately 0.5 kg were obtained 

by using a sample divider. 30 s, 30 min and 24 hr absorption figures were each 

obtained from one of the three samples. 

A dried sample was weighed and then placed in a gas jar. The sample was 

covered with water and timing started. The sample was aggitated to remove air 

bubbles by rapid clockwise and anti-clockwise rotation of the gas jar. At the 

end of the absorption period the sample was drained and then placed onto an 

absorbent cloth to remove the bulk of the surface water. The aggregate was then 

spread out on a second absorbent cloth to a depth of one pellet and exposed to 

the atmosphere until all visible films of water had disappeared. The sample was 

then weighed. 

For the samples tested at 24 hrs, the procedure outlined in BS 812 (79) 

for measuring relative density was also carried out. 

3.4.2 Discussion of Results 

The results of the absorption test series are shown in Table 3.1 along 

with the results from other investigators (32,61). The results for the four 

batches of aggregate tested by the author are consistent, with the maximum 

difference in absorption values of 1% occurring between batches B, D and A at 

24 hours. The average values for the different periods of immersion compare 

favourably with the results of the other investigators. The differences which 

do occur are probably due to the subjective nature of absorption tests in 

general (12). Teychennd (32) and Balendran (61) do not give a description of 

the test method used to obtain absorption rates. 

From this series of tests it can be seen that approximately 69% of the 

24 hour absorption occurs within the first 30 s. Similar results have been 
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reported by several investigators for various UK lightweight aggregates (32,49, 

61). Balendran continued his absorption tests up to 6 months and from his 

results was able to calculate the porosity of the aggregate based on a formula 

presented by Hosking (80). This formula depends on all the voids within an 

aggregate particle being saturated to be strictly accurate. This is obviously 

not the case with aggregates which contain completely sealed discrete voids and it 

has been suggested (60) that even an interconnected void structure is unlikely 

to become fully saturated at low pressure. Thus the calculated porosity value 

is likely to be slightly lower than the true porosity. 

3.5 Relationship Between the Microstructure and Water Absorption 

of Lytag Aggregate 

In common with other lightweight aggregates, the water absorption 

characteristics of Lytag follow two distinct phases, namely: 

(a) the initial rapid absorption of water when dry aggregate is immersed, 

followed by; 

(b) a much slower, prolonged period of absorption, tending towards a finite 

value after six to twelve months. 

In terms of the microstructure of Lytag aggregate, this two phase pheno- 

menon can be explained by the size range, structure and distribution of the 

voids within a Lytag pellet. The voids range in size from approximately 200 pm 

down to less than 1 pm. The larger voids are highly interconnected and very few 

voids are discrete and completely sealed. The only ones which do tend to fit 

these criteria are those within the unreacted pfa cenospheres. Also the voids 

are evenly distributed throughout the entire pellet with large, medium and small 

voids being thoroughly mixed. 

Even the larger voids are so small that they will only become saturated 

by capilliary action but on immersion in water the saturation of these larger 

voids will be rapid. Therefore within a few seconds of immersion the entire 

pellet will have water distributed throughout it by means of the larger and 

medium sized voids. Capilliary action over a period of time will saturate the 

smaller voids until eventually a state of equilibrium is reached. With some of 
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the very small voids, however, it is probable that they will never become 

saturated under low pressure. 

The above theory also applies, in reverse, to the drying out of a 

hardened lightweight concrete over a period of time. Water will tend to migrate 

relatively rapidly at first from the larger voids within the pellet into the 

cement matrix as the hydration process continues, followed by the slower more 

prolonged dissipation of water from the smaller voids within the aggregate. 

This gradual loss of water over a period of time is believed to enable the con- 

crete to 'self repair' internal microcracking possibly caused by the application 

of loads to a member during construction, as the hydration process continues. 

The observed high porosity of the aggregate is reflected in the calculated 

value for porosity, obtained by Balendran (61), of approximately 40% by volume. 

3.6 Conclusions 

The following conclusions can be derived from this part of the investi- 

gation: 

1. In order to examine the microstructure of Lytag aggregates fractured surfaces 

rather than sawn surfaces should be used. 

2. Although there is a distinct colour boundary between the thin outer layer of 

the pellet and its internal 'bulk', no such boundary occurs within the 

microstructure of the pellet. 

3. The overall structure of a Lytag pellet is basically made up of unreacted 

cenospheres which are fused together at their points of contact and/or 

surrounded by a solidified honeycomb type structure probably formed when 

some of the raw materials became semi-molten and gases escaped through them. 

4. The unreacted cenospheres range in diameter from approximately 75-100 pm 

down to less than 1 pm. 

5. Voids range in size from approximately 200 um down to less than 1 pm with 

all sizes being evenly distributed throughout the pellet. 

6. The majority of the voids are interconnected although discrete voids do 

exist, mainly within the unreacted cenospheres. 

7. X-ray spectrography revealed that the major chemical elements from which 
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Lytag pellets are composed are silica and alumina with smaller amounts of 

calcium, iron, magnesium and potassium. 

8. An excellent bond forms between the pellets and a sand-cement matrix. 

9. The 24, hr water absorption of Lytag aggregate is approximately 13% by weight. 

10. Approximately 70% of the 24 hr water absorption occurs within 30 seconds for 

initially dry aggregates. 

-49- 



CHAPTER 4 

MIX DESIGN AND STRENGTRR CHARACTERISTICS OF LYTAG-SAND CONCRETE 

4.1 Introduction 

The mix design process and the strength characteristics of lightweight 

concrete are affected by the same parameters as those which affect dense concrete 

The lower modulus of elasticity of lightweight aggregates means that their role 

is not quite the same as for dense aggregates since there is a greater com- 

patability, with respect to deformation behaviour, between lightweight aggregates 

and mortar than between dense aggregates and mortar. It is possible to produce 

structural lightweight concretes which are comparable with dense concretes, on a 

strength basis, but whose densities are 25-40% lower. Both density and strength 

are affected primarily by cement content, and thus by paste strength, and by 

water/cement ratio. 

Although Lytag is not a new material, most of the research carried out on 

Lytag concrete has involved the use of Lytag fines as well as Lytag coarse 

material. Very little data are available for concretes made with Lytag coarse 

material and natural sand fines. The aim of this part of the investigation was 

to produce a mix design chart for concrete made with Lytag coarse material and 

natural sand fines using ordinary portland cement and having 28 day, air cured, 

cube strengths ranging from 20 N/mm2 to 60 N/mm2. The strength characteristics 

of these concretes were also investigated and results are reported of tests 

carried out to determine the crushing strength, flexural strength and tensile 

splitting strength at various ages and under different curing conditions. 

4.2 Mix Design 

The aim of mix design is to produce the most economical concrete mix 

which will give a required cube strength at a specified age and which is 

sufficiently workable to allow it to be easily placed and fully compacted. In 

certain cases other criteria such as the type of surface finish required, or the 

maximum shrinkage that can be allowed may govern the mix design process but in 

general the former criteria provide the basis for choosing the mix proportions 

for a particular grade of concrete. 
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In this respect, the mix design process for lightweight concrete is 

similar to that of dense concrete. There is however one major difference between 

the two, namely that all lightweight aggregates absorb considerably more water 

than conventional gravel or crushed rock aggregates. Typical 24 hour absorption 

figures for gravel or granite aggregates are 1.9 - 3.7% and 0.4 - 0.7% respectively 

depending on the maximum particle size (76). Typical figures for British light- 

weight aggregates vary between 13 - 247. depending on aggregate type (32). Thus 

an allowance must be made for water absorption by the aggregate and where aggre- 

gate is taken from a stock pile a measure of its moisture content must be 

obtained. 

Dense concrete mix design was for a number of years based on Road Note 4 

(81), but more recently this has been replaced by the D. O. E. mix design method 

(82). In formulating both of these mix design procedures, a considerable wealth 

of information on the mix proportions and the fresh and hardened concrete 

characteristics, of dense concretes, was drawn upon. The information available 

for lightweight concretes in general, although quite extensive, does not justify 

a similar national standard mix design procedure. Although concrete made with 

a given brand of lightweight aggregate generally shows a greater uniformity of 

physical and mechanical properties than for dense concretes, the variation 

between different brands, for say a given cement content, water/cement ratio and 

aggregate-cement content, can be quite considerable. Thus it seems more desirable 

to produce a simple mix design method for each brand of lightweight aggregate, 

in this case Lytag coarse and natural sand fines. 

4.2.1 Experimental Programme 

" 4.2.1.1 Materials 

Ordinary portland cement, Lytag coarse aggregate and natural sand fines 

were used throughout this investigation. Several batches of all three materials 

were used during the course of the investigation but the source of each material 

was constant throughout. Details of all the materials are given in Table 4.1. 

A grading analysis of all batches of coarse and fine aggregate was carried out 

and typical grading curves are shown in Figure 4.1. All sand was dried using an 
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FINES 

o -o Sample grading 

o- -o 
Grading limits for Zone 2 
sand to BS 882 (83) 

COARSE 

oD Sample grading 

o_ _0 
Grading limits for 14 mm 
nominal graded aggregate to 
BS 3797 (85) 

NOTES 

(1) Sand sampled and tested in accordance with BS 812 (79) and BS 882 (83). 

(2) Coarse aggregate sampled and tested in accordance with BS 3681 (84) and 
BS 3797 (85). 
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FIGURE 4.1 TYPICAL GRADING CURVES FOR LYTAG COARSE 

AGGREGATE AND NATURAL SAND FINES 

-53- 



electric sand drier and left to cool prior to use so that its moisture content 

could always be regarded as zero. The grading curve in Figure 4.1 is for sand 

dried in this way and then sieved in accordance with BS 882 (83). Coarse 

aggregate was stockpiled in the open air and the moisture content of several 

samples of the aggregate was measured immediately prior to use by means of a 

'Speedy Moisture Tester'. 

4.2.1.2 Mixing Procedure and Manufacture of Test Specimens 

All concrete was mixed in a horizontal pan-type mixer. Several different 

methods of combining the constituents were tried but the following method was 

found to produce the most homogeneous mix. Firstly the Lytag was placed in the 

mixer and approximately one third of the mixing water added. The aggregate and 

water were mixed for approximately one minute to ensure that the absorbed 

moisture content of the aggregate was high (see Section 3.4). The cement and 

sand were then added and mixed for approximately 30 seconds. The remaining water 

was added and mixing continued for a further 90 seconds. 

All specimens were cast in steel moulds which had been lightly oiled. 

Concrete was placed and compacted in two roughly equal layers. Two methods of 

compaction were used during initial mix design namely a high frequency vibrating 

table and a 25 mm diameter vibrating poker. As would be expected the method of 

compaction had little effect on the compressive strength of specimens provided 

that compaction was thorough. This is demonstrated in Figure 4.2 where specimens 

from the same mix but compacted by different methods are compared. After casting 

the specimens were left for approximately 2 hours before the surfaces were 

trowelled smooth. All the moulds were then covered with polythene sheet and 

left in the laboratory for approximately 24 hours before demoulding. All 

specimens were tested in accordance with BS 1881 (86) and at each age, three 

specimens were tested unless otherwise stated. The plotted and tabulated results 

are thus the average of three results. 

4.2.1.3 Curing Conditions 

In order to investigate the effect of curing conditions on the strength 

characteristics of Lytag-sand concrete, three curing regimes were used, namely: 

-54- 
. de 



50 

Ný 40 

z 

H 30 

ºý o0 

aý 

"r4 .n 20 
yv 
H 
a 
91 
0 
U 

10 

Compressive Strength (N/mm2) 
(Vibrating Poker) 

FIGURE 4.2 EFFECT OF COMPACTION METHOD ON THE 7 AND 28 DAY 

COMPRESSIVE STRENGTH OF AIR CURED CUBES 

-55- 

0 10 20 30 40 50 



(i) Water at 22°C ± 3°C. 

(ii) Uncontrolled laboratory condition. 

(iii) Constant temperature and humidity room (C. T. H. R. ) at a temperature of 

16°C ± 0.5°C and 50 ± 2% relative humidity. 

4.2.2 Test Results and Discussion 

4.2.2.1 Trial Mixes 

The initial trial mixes were designed with the aid of information supplied 

by Lytag Ltd. (62) (See Appendix A). The mixes given in this information are for 

commercial use and thus under laboratory conditions characteristic strengths were 

close to or in excess of the target strengths. The first series of trial mixes 

were aimed at producing 28 day cube strengths of 30,40 and 60 N/mm2 in order 

that some of the other testing programmes could be initiated. 

The high effective water contents of early mixes, 180 kg/m3, meant that 

slumps were very high and it was noted that the lower cement content mixes were 

prone to bleeding. The problem was discussed with Lytag Ltd. and it was pointed 

out that on site, for a given cube strength mixes have higher cement contents 

and generally there is a longer period of time between mixing and placing 

allowing more of the free water to be absorbed by the aggregate. Since this 

project as a whole was aimed at producing design data for concretes similar to 

those used commercially, it was decided to only reduce the effective water 

content to 175 kg/m3. Also high workability mixes would be required for casting 

the beam specimens discussed in later chapters. Bleeding still occurred with 

the low strength mixes but was not excessive. 

An allowance of 12% by weight, of dry Lytag, was made for water absorption 

by the aggregates. This was based on the 30 min absorption figure of 10% 

(Section 3.4) plus an allowance for the sand. A similar method is used commer- 

cially by Lytag (Appendix A). 

It was also noted that the mixes were underyielding by approximately 

2-32. The mix proportions were adjusted accordingly. 

Trial mixes for the 20 N/mm2 concrete were cast at a later date. 
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4.2.2.2 Consistency of Results 

The 30,40 and 60 N/mm2 trial mixes were all cast using the same batch of 

Lytag, batch 1 and a single batch of cement, as were several of the beam specimens 

for the shear series (see Chapter 7). When specimens were cast using the second 

and subsequent batches of aggregate and cement, it was found that consistent 

strength increases occurred. These were approximately 3 N/mm2 for the 30 N/mm2 

mix and 5-6 N/mm2 for the 40 N/mm2 mix. The increase in strength for the 60 N/mm2 

mix was negligible since the ceiling strength of the aggregate was being approached 

for that cement content. 

Since this strength increase was not discovered until after the second 

batches of aggregate and cement had been delivered, samples of the first batch 

of aggregate and cement were not available for test. The only means of comparing 

all five batches of aggregate was by their grading analysis and this is shown 

in Table 4.2. It can be seen that all five gradings are very similar. Table 4.. 3 

shows the average compressive strength for the three mixes cast using different 

batches of aggregate and it can be seen that batches 2-5 produce reasonably 

consistent results and that it is batch 1 that is the odd one out. Since no 

samples of this batch of aggregate or the cement used were available for test it 

would be unwise to speculate as to the reasons why this should have occurred 

but this fact should be bo*rne in mind when consulting the following chapters. 

All five batches of aggregate have been used to produce concrete with 

28 day cube strengths of 30 N/mm2 and 40-45 N/mm2 and the range of strength at 

various ages is shown in Figures 4.3 and 4.4 as a percentage of the 28 day 

strength. The effect of the initial moisture content of the aggregate on the 

compressive strength of various mixes is shown in Figure 4.5. There is no 

apparent variation in compressive strength as a result of the initial moisture 

content. 

The mix proportions for the various strengths are shown in Table 4.4. 

4.2.2.3 Effect of Coarse Aggregate on the Crushing Strength 

The properties of lightweight aggregates which affect the compressive 

strength of the concretes produced with them can be listed as follows: 
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TABLE 4.2 LYTAG GRADINGS FOR BATCHES 1-5 

Percentage Passing (by Weight) 
e Si ev 

Size 14 mm Nominal 
(mm) Graded Aggregate 

Batch Batch Batch Batch Batch 

BS 3797 (85) 1 2 3 4 5 

20 100 100 100 100 100 100 
14 95-100 99 99 99 99 99 
10 50-90 85 83 76 82 88 
5 0-15 9 8 9 8 3 

Fineness 
Modulus 

- 5.93 5.97 6.05 5.97 5.99 (See Note 
Table 4.1) 

TABLE 4.3 AVERAGE COMPRESSIVE STRENGTH OF AIR CURED CONCRETE 

MADE WITH THE VARIOUS BATCHES OF AGGREGATE 

mix 
28 Day 
T 

Average Compressive Strength (N/mm2) 

Proportions 
by Weight 

arget 
Strength Batch Batch Batch Batch Batch 

(N/mm) 1 2 3 4 5 

1: 2.85: 2.84 30 30.5 32.5 32.1 31.9 33.0 

1: 1.94: 2.14 40-45 39.6 46.2 45.4 46.2 47.0 

1: 1.06: 1.47 60 58.0 - 59.0 - 60.0 
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TABLE 4.4 MIX PROPORTIONS FOR VARIOUS STRENGTHS 

28 Day 
Target 

Strencth 

Dry Weights per 
Cubic Metre 

(kg) 

Free 
Water 

Content 

Free 
Water/ 
Cement 

(N/ý ) (kg) Ratio O. P. C. Sand Lytag 

30 250 715 715 175 0.70 

45 335 645 715 175 0.53 

60 485 515 715 175 0.36 
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(a) Particle strength. 

(b) Modulus of deformation. 

(c) Surface texture. 

(d) Particle shape. 

(e) Maximum dimensions and grading. 

For dense aggregate the shape and surface texture of the aggregate affect 

compressive strength directly. The bond between the aggregate and the mortar 

matrix is stronger if the aggregate is angular in shape and/or rougher in surface 

texture. Failure occurs due to a breakdown of bond between aggregate and matrix. 

In the case of lightweight concrete the aggregate-matrix bond strength does not 

govern the concrete strength when taking an overall view. For example the 

strength of concretes made with different brands of aggregate is mainly a 

function of the particle strength of the various aggregates. Similarly the 

compressive strength ceiling is principally affected by aggregate particle 

strength. Within the strength range for a given brand of aggregate, however, 

the aggregate-matrix bond also influences compressive strength. 

Plate 4.1 shows wet and dry cured cubes of various strength tested at 

28 days. The cube strengths shown are based on 28 day wet cured cubes. It can 

be seen that as the cement content, and therefore the cube strength, increases, 

so does the proportion of fractured to unfractured aggregate particles. 

It has been suggested that the aggregate-matrix bond in lightweight 

concrete is not a critical factor when considering compressive strength (70) and 

that aggregates having rounded spherical particles and a closed, smooth surface 

are desirable, since such material requires a lower effective water cement ratio 

than with angular, flat or elongated particles, in order to attain the same 

workability and compressive strength. With the higher strength concretes where 

particle fracture is high this may well be so, however, at lower strengths when 

aggregate-matrix bond failure is equal to or greater than particle fracture this 

will not be so. 

4.2.2.4 Workability, Cement Content and Density 

As with dense concrete, lightweight concrete must be sufficiently workable 

-61- 



r 
ý" ' 

" 
it 

'^ s.! ý.. ter. ... 
'+. ." 

..., 
' it 

r fýi 

4010 

64 

.. r _a 

; 

.... .. 

P-o : '4 . 4l a >" 

a 

f .A6. 

-"ý ý'+a 

-" a 

E 

z" 

4 ý, 10 * 

'f 
" 

IF, 
A4 

04 
or 

jr ýr 

a ý:. 

A 

A 
y 

d 

A 
: +7 
F 
(Ti 

F 

(/) 
W 
GO 

U 

z 

F 
U 

Ga. 

H 

Cý 
U 

a 

w 

a 

-62- 



to allow it to be easily placed and compacted. The only test used to measure 

the workability of the various mixes was the slump test. 

For the range of mixes tested, slumps were high and the test was not found 

to give consistent results. For a particular strength mix, slump could vary by 

+ 25 mm, from the desired range of 75-100 mm and yet the average compressive 

strength would remain consistent. These variations are probably due to several 

variables the most important being the time between mixing and testing, and the 

initial moisture content of the aggregate. 

Other investigators (11,49) have suggested that the compacting factor 

and Vebe tests give more consistent results for lightweight concretes, however 

with high workability mixes, on site, it is doubtful whether these tests would 

provide adequate quality control. 

The relationship between compressive strength and cement content varies 

according to the type of aggregate used. This is shown in Figure 4.6. It can 

be seen that of all of the coarse lightweight aggregate-natural sand fines mixes 

shows in Figure 4.6 Lytag requires less cement content to reach a given strength 

and for the high workability mixes used by the author the cement contents up to 

a cube strength of approximately 45 N/mm2 are comparable with sand and gravel 

mixes (32). The Lytag-sand mixes of Balendran (61) are shown to require higher 

cement contents than those tested by the author up to a cube strength of 

approximately 50 N/mm2. However, the mixes tested by Balendran (61) only had a 

maximum coarse aggregate volume concentration of 50%. 

Figure 4.7 shows the relationship between compressive strength and total 

water cement ratio for sand and gravel (32), All-Lytag (62) and Lytag-sand 

concrete. For a given workability the total water/cement ratio should decrease 

when lightweight fines are replaced by sand. In Figure 4.7 the workability of 

the All-Lytag mixes shown was approximately 40-50 mm as opposed to the Lytag- 

sand mixes which had slumps of 75-100 mm. 

Figure 4.8 shows the relationship between compressive strength and density 

for All-Lytag concrete and Lytag-sand concrete. It can be seen that sand replace- 

meat leads to an average increase in density of approximately 14%. 
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The grading of the aggregates, more particularly the fines, governs the 

workability of the concrete. Lytag is a spherical aggregate and thus the 

particle shape increases the workability of the concrete, for a given water 

cement ratio, as opposed to an angular shaped aggregate. This can, however, also 

result in the concrete having a 'harsh' under-fined appearance. The sand used 

was a coarse zone 2 sand to BS 882 (83) and this also helped to increase the 

'harsh' appearance. 

4.2.3 Mix Design Chart 

As a result of the trial mixes prepared and tested during the early part 

of this research project it was possible to produce a mix design chart to aid 

with mix design during the remainder of the work. As more specimens were cast 

and tested for the different test series so their results were used to modify 

the mix design chart where need be. The design chart given in Figure 4.9 is 

thus the result of all the relevant data collected during this project. 

The chart is a simple graphical and tabular approach based on a method 

suggested by Owens (88). Owens' method is based on the fact that for a given 

degree of workability over a range of cement contents, two factors remain fairly 

constant; water demand and the amount of coarse aggregate. The resultant chart 

provides a simple adequate technique for initial mix design. As was pointed out 

in the introduction to mix design, the variability between the various brands of 

lightweight aggregate means that it is unlikely that a suitably economical mix 

design procedure, covering all lightweight aggregates, could be derived. It 

seems more logical to produce a mix design chart for each brand of lightweight 

aggregate in order that it may be used most efficiently. Similar mix design 

charts have been produced by several investigators (49,61) and thus the overall 

knowledge of lightweight concrete mix design is increasing. 

4.3 Strength Characteristics 

This section covers work carried out to investigate the compressive and 

tensile strength characteristics of Lytag-sand concrete. Long term compressive 

strength and short term flexural and tensile splitting strengths are reported 

and related to curing conditions. 
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4.3.1 Experimental Programme 

The materials used, mixing procedure and manufacture of the specimens 

were the same as those described in Section 4.2. Mix design was carried out in 

accordance with the mix design chart in Figure 4.9. Curing conditions were the 

same as those described in 4.2.1.3. Specimen sizes were as follows and all 

specimens were tested in accordance with BS 1881 (86): 

(a) 100 x 100 x 100 mm Cubes: Compressive strength. 

(b) 100 x 100 x 500 mm Prisms loaded at 1/3 points: Flexural strength. 

(c) 100 mm dia. x 200 mm Cylinders: Tensile splitting strength. 

4.3.2 Compressive Strength: Results and Discussion 

Various investigators (11,31,34-38,49,61) have established that the 

compressive strength of lightweight concrete is affected by the same parameters 

as dense concrete and this was discussed in Section 4.2. In this section the 

effects of age and curing conditions on the compressive strength of Lytag-sand 

concrete are discussed. - 

4.3.2.1 Effect of Age and Curing Conditions on Compressive Strength 

In order to study the effect of curing conditions on the compressive 

strength of Lytag-sand concrete three different curing regimes were used as 

described in Section 4.2.1.3. The effects of age and curing conditions on the 

compressive strength of Lytag-sand concrete are shown in Table 4.5 and 

Figures 4.10-4.13. 

Figures 4.10-4.13 indicate that the higher the cement content and there- 

fore the strength of the concrete, the greater the increase in strength up to 

28 days. Similar effects were reported by Balendran (61) and Bandyopadhyay (49). 

After 28 days the water cured cubes continue to gain strength up to about one 

year after which the strength remains roughly constant. The maximum increase in 

strength expressed as a percentage of the 28 day strength varied between 111- 

138%. Balendran (61) reported similar strength increases for Taclite-sand 

concrete with strengths ranging from 110-140% of the 28 day strength at 18 months. 

Cubes stored in the constant temperature and humidity room showed a strength 

range between 101-112X, as a percentage of the 28 day strength, after 2 years. 
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TABLE 4.5 COMPRESSIVE STRENGTH DEVELOPMENT OF LYTAG-SAND CONCRETE 

Total Compressive Strength (N/mm2) 
A / T t ge o al 

(Days) Lytag Ratio 
(by Weight) Cement Water Laboratory C. T. H. R. 

Ratio 

1: 3.85: 3.58 1.30 11.1 11.4 11.0 
1: 2.77: 2.78* 1.04 14.0 13.3 - 

3 1: 2.60: 2.68 1.00 14.5 13.5 12.6 
1: 1.94: 2.14 0.78 22.0 20.5 19.5 
1: 1.07: 1.48 0.54 29.0 31.0 29.0 

1: 3.85: 3.58 1.30 14.8 15.7 14.8 
1: 2.77: 2.78 1.04 20.0 22.2 - 

7 1: 2.60: 2.68 1.00 24.0 22.0 19.6 
1: 1.94: 2.14 0.78 30.5 29.5 28.2 
1: 1.07: 1.48 0.54 46.5 46.5 45.0 

1: 3.85: 3.58 1.30 17.7 19.3 18.5 
1: 2.77: 2.78 1.04 27.5 28.0 - 

14 1: 2.60: 2.68 1.00 28.5 26.0 26.6 
1: 1.94: 2.14 0.78 38.5 36.5 35.0 
1: 1.07: 1.48 0.54 51.5 54.5 55.7 

1: 3.85: 3.58 1.30 19.5 22.5 22.0 
1: 2.77: 2.78 1.04 32.0 33.1 - 

28 1: 2.60: 2.68 1.00 32.5 31.0 29.9 
1: 1.94: 2.14 0.78 44.0 40.0 38.2 
1: 1.07: 1.48 0.54 56.0 58.0 57.4 

1: 2.77: 2.78 1.04 38.6 40.0 - 
91 1: 2.60: 2.68 1.00 35.5 36.5 - 

1: 1.94: 2.14 0.78 45.0 39.5 - 
1: 1.07: 1.48 0.54 60.0 56.5 - 

1: 2.77: 2.78 1.04 42.6 35.6 - 
182 1: 2.60: 2.68 1.00 39.0 41.0 - 

1: 1.94: 2.14 0.78 48.5 38.0 - 
1: 1.07: 1.48 0.54 61.5 56.5 - 

1: 2.77: 2.78 1.04 44.3 36.3 - 
365 1: 2.60: 2.68 1.00 40.0 29.5 - 

1: 1.94: 2.14 0.78 50.5 38.5 - 
1: 1.07: 1.48 0.54 62.0 56.0 - 

1: 2.77: 2.78 1.04 44.0** 37.0** - 
766 1: 2.60: 2.68 1.00 40.5 31.0 33.4 

1: 1.94: 2.14 0.78 50.0 39.0 38.5 
1: 1.07: 1.48 0.54 61.0 54.0 58.2 

* Batch 2 aggregate and cement. 
** Tested at 635 days. 
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Teychennd (11) reported an increase in strength up to 1 year for All-Lytag and 

Lytag-sand concretes stored at 18°C and 65% relative humidity. The 1 year 

strength expressed as a percentage of the 28 day strength varied between 130- 

156% for All-Lytag concrete and between 105-121% for Lytag-sand concrete. 

Balendran (61) reported similar characteristics for Taclite-sand concrete up to 

18 months. The strength at 540 days expressed as a percentage of the 28 day 

strength varied between 109-115%. During the present work, however, the constant 

temperature and humidity room broke down on several occasions, generally for 

2-3 days but in one case for 3 weeks, after the first 7-8 months of testing and 

this may have had an adverse effect on the specimens. 

Figure 4.12 shows the strength with age of specimens stored in the 

uncontrolled laboratory environment. It can be seen that up to a period of two 

years there is a loss in compressive strength after a maximum value which occurs 

between 28 days and 6 months. Initially three sets of cubes were cast with 

batch 1 aggregates and cement. When the variation in strength was noticed 

between the first and second batches, Section 4.2.2.2, a second batch with a 

target strength of 30 N/mm2 was cast. The 22.5 N/mm2 mix was cast using batch 5 

aggregate and results were only obtained up to a period of 28 days. 

For the 60 N/mm2 and 40 N/mm2 mixes the maximum strength occurred between 

1 and 3 months. With the 60 N/mm2 mix the loss of strength is progressive with 

the two year strength being 93% of the 28 day strength. For the 40 N/mm2 mix the 

maximum loss of strength occurs at 6 months when the strength is 95% of the 

28 day strength. The 2 year strength is 98% of the 28 day strength and it is 

possible that the lower strength at 6 months was caused by the random selection 

of three weak cubes. 

For the 30 N/mm2 mix cast using batch 1 aggregate the strength increased 

up to a maximum 132% of the 28-day strength at 6 months after which there was a 

rapid fall off in strength, with the strength at 2 years being equal to the 

28 day strength. The 30 N/mm2 mix cast using batch 2 aggregate showed similar 

behaviour but in this case a maximum strength of 121% of the 28 day strength 

occurred at 90 days. The loss of strength after this period was less dramatic 
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than with the other 30 N/mm2 mix and the strength never fell below the 28 day 

strength. The 2 year strength was 112% of the 28 day strength. 

The variation in strength between aggregate and cement batches was again 

demonstrated by the two 30 N/mm2 mixes, with the mix cast using batch 2 aggregate 

and cement having a slightly higher 28 day strength despite a slightly lower 

cement content. 

In order to study further the effect of dry curing in an uncontrolled 

environment on the gain of compressive strength with age, further sets of cubes 

were cast using batch 2 and 3 aggregates and the results of these tests are shown 

in Figure 4.13. The strengths, at various ages, as a percentage of the 28 day 

strengths are shown in brackets. The results follow a similar pattern to those 

in Figure 4.12 except that for the 45 N/mm2 concrete the strength gain continued 

up to 240 days. 

Similar effects have been reported by other investigators (61,89,90) 

and it is suggested that the slow retrogression of strength may be associated 

with shrinkage-induced microcracks. 

4.3.3 Tensile Strength: Results and Discussion 

One of the basic properties of any concrete is its tensile strength which 

is an important criterion in designing for the serviceability limit state of 

cracking. The tensile strength of concrete is affected by three basic factors, 

namely: 

(a) the tensile strength of the aggregate 

(b) the tensile strength of the cement paste 

(c) the aggregate matrix bond. 

For lightweight concrete the tensile strength of the cement paste is 

generally higher than for dense concrete due to higher cement contents for a 

given compressive strength. The aggregate matrix bond strengths are generally 

higher for lightweight concrete as opposed to dense concrete (42) and hence the 

tensile strength of the concrete is therefore greatly influenced by the tensile 

strength of the aggregate. 

This series of tests was aimed at studying the effect of curing conditions 
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on the tensile strength of Lytag-sand concrete up to 28 days. Relationships 

have been established between the tensile and compressive strengths and between 

the tensile splitting and flexural strengths and these are compared with pub- 

lished data. 

4.3.3.1 Effect of Age and Curing Conditions on Tensile Strength 

The effect'of age and curing conditions on tensile strength is shown in 

Figures 4.14-4.15 and Tables 4.6-4.7. Figure 4.14 shows that the tensile 

splitting strength, fsp increases up to an age of 28 days for water cured 

specimens. For dry cured specimens a similar increase up to 28 days is apparent 

for the lower strength concrete, 22.5 and 33.5 N/mm2, but for higher strengths 

the behaviour is more erratic. 

Table 4.6 indicates that the ratio of dry cured strength to wet cured 

strength, columns 6 and 7, initially increases up to a period of 3 days but then 

decreases to less than 100% at 28 days. An exception to this rule was the 

22.5 N/mm2 which showed a general increase up to 28 days. The rate of gain of 

strength is more rapid for the dry cured rather than the wet cured specimens, 

at early ages, up to 7 days, columns 8 and 9. The situation is then reversed 

as the higher strength dry cured concretes decrease in tensile strength, and the 

lower strengths decrease their rate of gain of strength. Columns 10,11 and 12 

show the ratio of the tensile splitting strength to the compressive strength 

for the various curing conditions up to 28 days. For the water cured specimens 

the ratio remains sensibly constant up to 28 days whereas for the dry cured 

specimens there is a marked decrease with increase in age. The exception again 

is the 22.5 N/mm2 mix. 

Figure 4.15 shows that the flexural strength by the modulus of rupture 

test, fMR, behaves in a similar way to the tensile splitting strength, fsp, for 

wet and dry cured specimens. The loss of flexural strength with the 64.0 N/mm2 

concrete is more marked than for tensile splitting strength but the strength is 

regained by 28 days. 

Again Table 4.7 shows that the ratio of the dry cured strength to the 

wet cured strength, columns 6 and 7, is initially greater than 100% but decreases 
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with age to be less than 100% at 28 days. The exception this time is the 

64.0 N/mm2 mix which shows a dry cured to wet cured ratio to be less than 100% 

from 3 days on. Columns 8 and 9 show that the strength gain of wet cured 

specimens is fairly uniform up to 14 days with the exception of the 64.0 N/mm2 

mix whereas the strength gain of dry cured specimens is rapid up to 3 days 

followed by a very much slower rate of gain of strength. The ratio of the 

flexural strength to compressive strength at various ages is shown in columns 10, 

11 and 12. As with the tensile splitting strength, the values for wet cured 

specimens decrease only slightly with age whereas the dry cured specimens show 

a much greater decrease with age especially with the higher strength concretes. 

Similar results to these have been reported by several investigators (11, 

28,29,49,61). 

The reduction in tensile strength, and subsequent recovery can be 

explained as follows. As the concrete dries out, differential moisture dis- 

tribution occurs throughout the test specimen. This differential moisture 

distribution leads to differential shrinkage which in turn causes internal 

stress conditions and subsequent microcracking. When external load is applied 

a lower tensile strength is obtained because the specimen is already in a state 

of stress without a load. As the specimen becomes uniformly dry, the self- 

induced stress is relieved and the flexural strength regained. 

Non-uniform moisture distribution affects the tensile strength in general 

although it appears to have a lesser effect on the tensile splitting strength 

than on the flexural strength. 

Typical wet and dry cured specimens, tested at 28 days are shown in 

Plate 4.2. 

4.3.3.2 Relationship Between Tensile and Compressive Strength 

The relationship between tensile strength and compressive strength is 

generally expressed in the form 

fct a fcu b 
.... (4.1) 

Where fct is the tensile strength in N/mm2 
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fcu is the cube strength in N/mm2 

a and b are constants. 

Equation 4.1 is sometimes further simplified by setting b-O. S. The 

variation of flexural strength and tensile splitting strength against compressive 

strength, for Lytag-sand concrete, is shown in Figures 4.16 and 4.17 respectively. 

Figure 4.16 shows that there is a distinct difference between the flexural 

strength of wet cured specimens and that of dry cured specimens. Regression 

analysis produced the following equations: 

fMR = 0.90 feu 0.43 (wet) (r Q 0.99) .... (4.2) 

fM = 1.20 f 
cu 

0.26 (dry) (r a 0.65) .... (4.3) 

where r is the correlation factor. 

Combining the wet and dry cured specimen results gave the following 

equation: 

fM = 1.07 fcu0.32 (r = 0.52) .... (4.4) 

In view of the difference between the wet and dry cured specimen results 

it would seem advisable to use separate equations for each condition. 

Figure 4.17 indicates that the difference in tensile splitting strength 

between wet and dry cured specimens is not so great. Regression analysis of the 

data produced the following equations: 

fSp = 0.30 fc 0.64 (wet) (r = 0.95) .... (4.5) 

fSp = 0.54 fcu0.45 (dry) (r = 0.90) .... (4.6) 

fSP = 0.46 fcu0.51 (wet & dry) (r = 0.86) .... (4.7) 

It would seem that the relationship between tensile splitting strength 

and compressive strength can be adequately described by a single equation (4.7) 

covering wet and dry cured specimens. 

4.3.3.3 Relationship Between Flexural Strength and Tensile Splitting 

Strength 

The relationship between flexural strength and tensile splitting strength 
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is shown in Figure 4.18. The ratio of fsP to fMR for the range of mixes tested 

varied between 68-96%. Balendran (61) reported a range of 76-91% for Lytag-sand 

concrete. Regression analysis of the data shown in Figure 4.18 produced the 

following equations: 

fM = 2.05 fSP0.64 (wet) (r = 0.95) .... (4.8) 

fM = 1.84 fSP "52 

fm = 1.52 fSP0.76 

(dry) (r - 0.59) 

(wet & dry) (r - 0.72) 

.... (4.9) 

.... (4.10) 

Again the unpredictability of dry cured specimens is reflected in the low 

. correlation factor, and it is suggested that two separate equations be used to 

describe the effects of wet-curing and dry curing. 

4.3.3.4 Comparison With Published Results 

The results of the present investigation are compared with those of other 

investigators in Table 4.8. The majority of the investigators simplified the 

expressions describing the various relationships to parabolic forms although 

several investigators have used power functions. 

Orangua (91) plotted the line given by the CP 114 (22) equation and showed 

that it fitted the results which he had obtained from tests. Teychenn6 (11) 

tested dense and lightweight concretes and produced several equations. By 

re-analysing his results for lightweight concrete with sand replacement, using 

a power equation, a set of equations has been produced which can be compared 

directly with the results obtained by the author. These equations along with 

those of other investigators generally indicate that sensibly accurate equations 

can be obtained for fS, against fcu with wet and dry cured specimens and for 

fMR against fcu and fSP for wet cured specimens. For the dry cured specimens, 

however, correlation factors tend to be low and predictions using any of these 

equations should be assessed with caution. 

4.4 Conclusions 

The following conclusions can be drawn from this work: 

1. Lytag-sand concrete developed 44-64% and 68-84% of 28 days' strengths at 

3 and 7 days respectively. In general stronger concretes develop higher 

-85- 



6 

5 

. -. N 

. 
zi 4 

w 

00 
0 
14 
U) 

a, 
w 

1 

0 
Tensile Splitting Strength-fSP (N/mm2) 

FIGURE 4.18 RELATIONSHIP BETWEEN FLEXURAL STRENGTH AND TENSILE SPLITTING 

STRENGTH FOR LYTAG-SAND CONCRETE, AT 28 DAYS 

-86- 

12345 



ci 
P 
G 
E 
C 
I- 
E 
V 

2 
º- 

N z 
aý3 H 

ra 

N 
zW 
H 
W 
O 

z O 
H 

O 
V 

co 
s 

H 

Ei 0 

0 u 11, -I q a 

ý N ä 3 
C) 
4 

U 
w 

+ ' 0 
"-1 ""-1 

cu U 
O ý U 

0 

v P. 
0 
. -a 

-I r . 1 OO 

eo ro u 0 Qy , "j 0 9 

tu 14 14 
ß4 

14 Ici 9) 
0) ÖD 0 

0 41 10 a) ß N d 
92. ti 
9 2. v 

r. 
Co p' 

a i 
° 0 

14 
0 gy a c a 

, 
. 4 4J r*- 0 U) -1 M. TýO 

1 11 
M 00 0 

00. 11 I 
0 O'0' 

0O 
ý41 00000 I 

000 
1111 

O 
cc O 

Ur4 

N ýN 
O 00 NO cn. o. o V1 

a ýn in in " .0 %0 o- O.... in in ýn in 1+ r-+ 
" 

in in in n .ý 
Cl, O O o : 10 or40 00 00 

++ . -4 CSI ... . 
Ooo o 

ri cU uu asa 
Uto U v) U Z) C 

uu a u u ua 
o 

.94 
w 44 44 wwwww 44 4-4 u 4- 44 4 4-1 4-4 o w uuuu 

wwwww 
43 N. 

ýo 
"0 . --I co in 

i--I -MMO, % 0 N. - -77 
-7' N. 
v1 M .oN 

0 
ý7 M ýC N in -7 . ýD e . -1 0 .7 .7-N. in N. 

O 00 rnýOr-+O 00 00 OON 00000 
II V II 11 II II 11 II II Q II II M 11 II Il nppn 

w w 
4-4 44 

w4-4 
4-4 

W WW 
4-4 4N 41 

W41 
4-4 

W 
4-4 

WW 

u 
to 
c: 
ei 0N 

0 (D 
-. t 

CD -e 
%0 %0 

n M 
ce -zt %0 %0 

AN ý\ I 1 1I I II 1 
Z Nd 0 CV cM '-1 r-1 N N '4 N 

U 

o 

b 

' ;b °ý 11 $4 
OV09.1 +ý ý' 

Ä 
ý' aý aý Ä N 

t Ä33 Ä 

cd C) a1 
(ý '-I 

> Ri 00 Cd w U O 
44 41 o U . r~ cd 00 

ý 
U w 4-1 10 bo N. 4 

I a a ro ' + 
ý'; ý 0 00 Co + JJ °) °) 11 w bQ 3 

Ci 41 C) 
HU (0 10 ., 4 

-4 cd P 
to tu ý 02 a b 

4) 
''4 0) 4) pp gi "4 

o-% >% 
.a cu rn 
v r. >lb 

1 to rý. 
r I i N. 4 Ici 

G 1 I i ýo 
n 

cu 
GO 

. C] r-. 4 Mß r-1 
0 

rß-1 
Q ' OM 0 .. bi ''a O 9+ , 

Oý 4) v 0 
Z. 4 N. 

a 
14 9 v d c 

A 

-87- 



A 

z 

0 U 

N 
CG 
0 
d 
0 

N 

H 

H 

d 
d 

A 

C02 

H 
U, 
z 

w 0 

U) 

O 
U 

co 

H 

41 
to 

41 
" 
r--4 41 

U 

tu r, ce 
< `" 0 .4 ä 

1 Ü O aý 
r- . 
ei eo ýs 7 R1 ý--1 TJ b 

ý ä ý n 
1 C 9 i C to 

oH 
... I 
41 I .r%, o rI in o% va u1 0 

o. ci a in a Ilý c9 ý+ 11111 11 
WO 000 00000 

41 

O R1 
UW 

v1 1- un c4 O r- r- c"1 .7 c7 ýO NM.? 9-4 
p, r. - 00 Ln .D 00 %D %D 00 t- N u1 t %o in 

oý ä oä öö öco o äo äo ß a ý ß u u2 C) C/) U UU UUN U C/) U Cl) C) 
O 4-1 4-4 4-4 4-4 44 44 W 4-1 4-4 W W 4-4 4H 4-4 W 

., 4 
11 MN'7i--Ir'1 "OCfl o" cn 4 OST O V) %D 
to N N. 'O I.. -1 zt N c'''1 . -4 00 N CO Oý O -7 

o -+ONO 00 OOr-+ ONO 

II 11 Il p II II II 11 II 11 p 11 11 q II 
5 a X 5 55550-4 

c n cnn U) vi 
W 44 4-I 4-1 W 4-4 W WWW 4-4 W 44 WW 

e 

00 
.% 0 .t 0 

ß+ ÖN Co ^ . c g 0H 
A 41 pq I 1 1 
Co p4 Z 0 0 0 
NO N 

U 

+ 0 0 s+ 
4 ý 9 

. - r4 ea 

v v Ä3 3'b A33 

W 4j 

" " 
d Gi ýd C) 0 

w) 

HÜ 
U) 

.C d Cý . R1 
GO GO E 1. ý U 4- 

y ". a "1 "rl D, a) ý+ 
A r-+ r7 i-7 i-] H ý-7 

o 
dl N. N. cd Co 

i ON -4 (A H 1.4 r 
a r rr. 4 . m .4 r -1 'Or }a 

0 
4 

O >01 AN C r4 1- 41 00 
w a) 00 w td %0 C cy% 

PQ Z ---* Uý CQ%-, # 94 

-88- 



strengths at faster rates. 

2. Lytag-sand concrete with a cement content of 485 kg/m3 and a free water/ 

cement ratio of 0.36 can achieve strengths up to 60 N/mm2 at 28 days. 

3. The initial moisture content of the coarse aggregate has little effect on 

compressive strength provided it is taken into account when computing the 

water to be allowed for aggregate absorption. 

4. In general Lytag-sand concrete requires less cement than other sand replaced 

lightweight concretes in order to achieve a given compressive strength. 

S. On average the increase in density of Lytag concrete by the addition of 

natural sand fines is approximately 14-15%. 

6. The 28 day air-dry density of Lytag-sand concrete varies between 1810-1935 

kg/m3 for compressive strengths of 20-60 N/mm2. 

7. For water cured specimens compressive strength increases up to an age of 

18 months after which it remains fairly constant. The strength at approxi- 

mately 18 months expressed as a percentage of the 28 day strength varies 

between 111-138%. 

8. For specimens stored under constant temperature and humidity conditions the 

strength at 2 years varies between 101-112% of the 28 day strength. 

9. For specimens drying out under uncontrolled conditions a reduction in 

strength may be expected between 28 days and 2 years. After 2 years however 

the strength is approximately equal to that at 28 days. The maximum observed 

reduction in compressive strength was 7%. 

10. The tensile strength of Lytag-sand concrete is affected by curing conditions 

at early ages. 

11. For wet cured specimens the gain in tensile strength is progressive up to 

28 days. For dry cured specimens initial strength gain is very rapid often 

followed by a loss in tensile strength after 2-3 days. The tensile strength 

is however generally regained as the specimen becomes uniformly dried out. 

12. For the concretes investigated, a power law type of curve was able, in 

general, to sensibly describe the relationships between the various strengths, 

namely flexural, tensile splitting and compressive. While good correlation 
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was observed for wet cured specimens, dry cured specimens showed a greater 

variability. 
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CHAPTER 5 

SHORT TERM DEFORMATION' PROPERTIES OF LYTAG-SAND'CONCRETE 

5.1 Introduction 

The series of tests described in this chapter were designed to provide 

information about some of the short term deformation properties of Lytag-sand 

concrete. The properties investigated were the elastic moduli, static and 

dynamic, Poisson's ratio and the complete stress-strain curve. 

The static modulus of elasticity and Poisson's ratio were determined 

up to a stress equal to one-third of the cube strength. The dynamic modulus 

of elasticity was determined by an electrodynamic method. The complete stress- 

strain curve was determined by a technique developed by Wang et al (93) which 

involves modifying a constant loading rate test machine, by means of a case 

hardened, steel tube, in order that it becomes a constant strain rate test 

machine. 

It is generally stated that the modulus of elasticity of lightweight 

concrete varies between 50-75% of that for dense concrete when compared on 

a compressive strength basis. The modulus of elasticity is an important 

characteristic which is used in the determination of the deflection of 

reinforced and prestressed concrete under short-term and long-term loading. 

In prestressed concrete the loss of prestress due to elastic deformation of 

concrete also depends on the elastic modulus. 

The value of Poisson's ratio is generally not critical in engineering 

design although in some cases a knowledge of its value is required. In two 

dimensional stress analysis of a slab or shell, the distribution of moments 

is modified due to the Poisson's ratio effect. It may also be used to assess 

spalling effects due to thermal movement (94) and in the study of the formation 

and propagation of microcracks in concrete, by fracture mechanics (95,96). 

The accurate knowledge of the ascending and descending portions of the 

stress-strain curve for concrete is necessary since part of the concrete 

compression zone is usually in this range of strains near to failure. 
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5.2 Experimental Programme 

5.2.1 Outline of Tests 

Static and dynamic modulus of elasticity tests were carried out in 

accordance with BS 1881 (86). Four concrete strengths of 20,30,45 and 

60 N/mm2 were chosen based on the 28 day strength of wet cured cubes. For 

each cube strength two static modulus and three dynamic modulus specimens 

were tested. Static modulus tests were carried out at 3,7,14 and 28 days 

while dynamic modulus tests were carried out at 1,3,7,14 and 28 days. 

Poisson's ratio was calculated from lateral and longitudinal strain 

measurements taken on the static modulus specimens. 

Determination of the complete stress-strain curves for the various 

concrete strengths mentioned was carried out at 28 days. For each strength 

three specimens, which had been stored in water up to 28 days, were tested. 

The plotted results are thus the average of three specimens. 

5.2.2 Dimensions'of Test Specimens 

The sizes of the various test specimens were as follows: 

(a) 100 x 100 x 300 mm prisms : static modulus of elasticity and Poisson's 

ratio. 

(b) 100 x 100 x 500 mm prisms : dynamic modulus of elasticity. 

(c) 75 x 75 x 300 mm prisms : complete stress-strain curve. 

5.2.3 Curing'Conditions 

For the static and dynamic modulus of elasticity tests three specimens, 

at each strength, were placed in the following environments, along with their 

companion 100 mm cubes: 

(a) Water at 22°C ± 3°C. 

(b) Uncontrolled laboratory. 

(c) Constant temperature and humidity room (CTHR) at a temperature of 

16°C ± 0.5°C and 50 ± 2% relative humidity. 

The complete stress-strain curve specimens were stored in condition 

(a) until capping and testing at 28 days. 
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5.2.4 Manufacture of Test Specimens 

For each concrete strength, all the test specimens for the various tests 

were cast at the same time. All specimens were cast in steel moulds which had 

been lightly oiled. 

Mixing was carried out in accordance with the method described in 

4.2.1.2 and concrete was placed in two roughly equal layers and compacted by 

means of a high frequency vibrating table. The surfaces of the specimens were 

trowelled smooth approximately two hours after casting. The moulds were then 

covered with polythene sheet and left in the laboratory for 24 hours before the 

specimens were demoulded and placed in their respective curing environments. 

5.2.5 Instrdmentatign'and Test'Procedure 

5.2.5.1 Static'and'Dynamid Moduli'of Elasticity and' Poisson's'Ratio 

The static modulus of elasticity was measured by means of a demec 

extensometer with a gauge length of 100 mm. Demec discs were fixed about the 

centre of the specimen, along the longitudinal axis and on two opposite faces. 

The demec gauge had a sensitivity of 16.2 x 10-6 m/m per division. To determine 

Poisson's ratio, two additional demec discs were placed at 50 mm apart in the 

lateral direction, at the centre of the specimen and on the same two faces as 

the longitudinal demec discs. The 50 mm demec gauge had a sensitivity of 

19.8 x 10-6 m/m per division. 

The dynamic modulus of elasticity was determined by an electrodynamic 

method. The apparatus used consisted of an electro-magnetic exciter unit, 

an electro-magnetic pick up unit, a digital counter unit, a variable frequency 

oscillator and a cathode ray oscilloscope. The exciter unit was driven by the 

variable frequency oscillator and connected in parallel with the digital 

counter unit. This measured the frequency of oscillation of the exciter unit 

to an accuracy of 1 Hz. The specimen under test was supported at its centre 

and the exciter unit was placed in contact'with one end and the pick up unit 

with the other. A good contact between the units and the specimen was 

ensured by means of a small dab of grease. The signal generated by the exciter 
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unit propagated within the specimen and was received by the pick up which 

was in turn connected to the oscilloscope to give a visual display. The 

frequency of excitation was varied until resonance was obtained at the 

fundamental, i. e. the lowest, frequency of the specimen. Resonance was 

indicated by the maximum height of the trace on the oscilloscope. 

5.2.5.2 Complete Stress-Strain Curves 

Details of the equipment used in this series of tests are given in 

Figure 5.1. The technique was developed by Wang et al (93) and involves 

modifying a machine designed to give a constant rate loading in order that it 

can provide a constant rate of straining. Several investigators have developed 

techniques to obtain the complete strest-strain curve for concrete (97-100). 

Some of these techniques are costly, require testing machines which may not be 

available in a normal quality control laboratory or require expensive modifi- 

cations to a standard testing machine. 

The technique developed by Wang et al (93) was fairly simple and involved 

loading a concrete cylinder in parallel with a steel tube which had been case 

hardened so that its stress-strain curve was linearly elastic up to a strain 

of 0.006. During loading the vertical strains in the steel tube were measured 

by two foil-type electrical resistance strain gauges. These strains gave not 

only the amount of load taken by the steel tube, but were also used to obtain 

nominal strains in the concrete. Thus knowing the total load and the correspond- 

ing steel strain, the stress-strain relationship, for the concrete under test, 

was obtained. 

The Authors did however point out that although the method was simple 

it did have certain limitations: 

(a) the testing machine must apply load to both the steel tube and the concrete; 

thus the size of the specimen is limited by the capacity of the machine. 

(b) the limit of 0.006 for final strain may be too small when concrete is 

confined with lateral reinforcement. 

(c) the definition of strain is such that the deformations of the thin capping 

material anS those of the end zones of the concrete specimen, where a purely; 
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uniaxial state of stress does not exist, are included. 

(d) the presence of the steel tube precludes any observation of the failure 

modes of the test specimen during testing. 

The steel tubes used in this investigation had nominal wall thickness of 

approximately 2.5 mm and 4.00 mm, an internal diameter of 100 mm and a length 

of 300.5 mm. Four epoxy backed foil-type electrical resistance strain gauges 

were attatched to the outside of each steel tube and connected to form a full 

Wheatstone bridge as shown in Figure 5.1. This is a very sensitive arrangement 

since it is temperature compensating as all the gauges are applied to the same 

material and subject to the same environment. Two gauges were arranged in the 

vertical direction and two in the horizontal direction and this configuration 

results in a strain reading on the strain indicator equivalent to 

2x vertical strain x (1+ Poisson's ratio for steel) 

The tubes were calibrated with the aid of a demec extensometer with a gauge 

length of 100 mm and a sensitivity of 16.2 x 10-6 m/m per division. The 

Vheatstone bridge circuit was connected to a Peekel T200 strain indicator. 

The tube in use was calibrated before and after each series of tests 

on the different strength concretes. In order to test a specimen it would be 

placed inside the steel tube and capped with plastic padding which was in turn 

covered with aluminium foil. The top plate was positioned and the rig loaded 

in the test machine until a strain of 20 x 10-6 registered on the strain 

indicator. The rig was kept loaded for approximately 15 minutes to allow the 

capping material to harden. It was then removed from the machine, still intact, 

and left for a further 60 minutes before testing. The rate of straining used 

during testing was approximately 10 microstrain per second. 

5.3 Test Results and Discussion 

5.3.1 Static and Dynamic Modulus of Elasticity 

The development of the static and dynamic moduli of elasticity, up to 

28 days and under different curing conditions is shown in Table 5.1 and 

Figures 5.2 - 5.3. The results of other investigators (11,61) are also 

shown in Figures 5.2 - 5.3. The results show a general increase in elastic 
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moduli with increasing strength. 

Table 5.1 indicates that the static modulus of elasticity of wet cured 

specimens is consistently higher than that for dry cured specimens by 

approximately 5% on average. This is reflected in Figure 5.2, but there is 

a distinct difference between Lytag-sand concrete and Taclite-sand concrete. 

The dynamic modulus of elasticity of wet cured specimens is also 

consistently higher than that of dry cured specimens, by approximately 157. 

on average. This is reflected in Figure 5.3 and is consistent with Balendrans 

results for Taclite-sand concrete. The average ratio of the static modulus to 

the dynamic modulus of elasticity for all the 28 day results given in 

Table 5.1 is 79%. 

5.3.1.1 Relationship between Moduli of Elasticity and Compressive 

Strength 

The modulus of elasticity is primarily dependent on the compressive 

strength of the concrete and the modulus of elasticity of the aggregate. To a 

lesser extent, the conditions of curing, age of concrete, mix proportions and 

type of cement are also factors which affect the elastic modulus. 

For the purposes of design it is convenient to be able to estimate the 

elastic modulus of a particular type of concrete with only a knowledge of its 

compressive strength. Two basic forms of equation are generally accepted to 

adequately describe the relationship between elastic modulus Ec and compressive 

strength fcu: 

Ec = afcub .... (5.1) 

or Ec =6+d fcu .... (5.2) 

where a, b, c and d are constants. 

Equation (5.2) possibly over-simplifies the relationship since it implies that 

a concrete with zero compressive strength has an elastic modulus c, which is 

obviously incorrect. Equation (5.1) is sometimes simplified by setting b=0.5. 

Regression analyses, of the 28 day results shown in Table 5.1, based on 

equation (5.1) produced the following: 
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Static modulus: ES a 5.82 fcu 0.32 (wet + dry) (r - 0.95) (5.3) 

where r- correlation factor. 

Dynamic modulus ED = 12.34 fcu 0.2 (wet) (r a 0.99) .... (5.4) 

ED 0 6.57 fcu 0.33 (dry) (r a 0.99) .... (5.5) 

ED = 8.81 fcu 0.27 (wet + dry) (r 0.81) .... 
(5.6) 

If the results of other investigators (11,61) on Lytag-sand concrete, 

shown in Figure 5.2, are included, equation (5.3) becomes: 

ES = 6.16 fcu 0.30 (r - 0.91) .... (5.7) 

If the results for Taclite-sand concrete (61) are also included, the 

equation becomes: 

ES = 6.84 fcu 0.28 (r - 0.79) .... (5.8) 

It is, therefore, apparent that the static modulus of elasticity can be 

accurately predicted from the compressive strength, for either wet or dry cured 

specimens, by means of a single equation (5.8). 

By a similar analysis of all the results shown in Figure 5.3 equation 

(5.4) becomes: 

ED = 13.82 fcu 0.17 (r - 0.82) 

and equation (5.6) becomes: 

ED = 9.92 fcu 0'24 (r = 0.77) 

.... (5.9) 

.... (5.10) 

Again sufficiently accurate prediction can be achieved by the use of a 

single equation (5.10). 

5.3.1.2 Relationship between Dynamic and Static Moduli of Elasticity 

It has been suggested that it may be more convenient to estimate the 

static modulus of elasticity from the more easily measured dynamic modulus of 

elasticity by means of a linear equation. CP110 (54) suggests that for normal 

concrete the equation is: 

ES = 1.25 ED - 19 
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Regression analysis of the data shown in Figure 5.4 produced the 

following equation: 

ES = 0.93 ED - 2.56 (r - 0.93) .... (5.12 

Similar equations have been presented by other investigators (49,61). 

It is suggested that equation (5.12) could be used for sand replaced lightweight 

concrete in general in the absence of more accurate information. 

5.3.1.3 Comparison of the Static Modulus of Elasticity with Published 

Results 

Figure 5.5 shows the relationship between static modulus of elasticity 

and cube strength obtained by several investigators (II, 61) and compared with 

the relationship predicted'by CP110 (54) assuming a lightweight concrete density 

of 1875 kg/m3. In general the CP110 (54) values over-estimate the elastic 

modulus of sand replaced lightweight concrete by some 10% on average. 

The effect of sand replacement on the elastic modulus of Lytag concrete 

is to increase its value by 20-25% on average. Similar results have been 

reported by Balendran with increase in elastic modulus of 10-30% for sand 

replacement. 

The values predicted by equation (5.3) suggest that the elastic modulus 

of Lytag-sand concrete is approximately 60% of that of dense concrete, given in 

cr110 (54). 

5.3.2 Static Poisson's Ratio 

Poisson's ratio is extremely complex and variable in nature and is 

probably the most difficult of the elastic constants to measure. Since the 

value for concrete generally lies between 0.1 and 0.2 difficulty is usually 

experienced in accurately measuring the lateral strains. A typical strain 

curve for the determination of Poisson's ratio is shown in Figure 5.6 and the 

results of this investigation are shown in Table 5.2. 

Figure 5.7 shows the relationship between static Poisson's ratio and 

cube strength. The results appear to be random, and the only conclusion that 

can be drawn from this set of results is that the value of Poisson's ratio for 
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TABLE, 5.2 DEVELOPMENT OF' STATIC'POISSON'S RATIO (AT 1/g rd CUBE STRENGTH) 

28 Day Compressive Static Poisson's Ratio 
Age Strength (N/mm2) 

(Days) 
Water Laboratory Water Laboratory CTHR 

19.5 22.5 0.101 0.116 0.109 
29.5 33.5 0.074 0.111 0.117 

3 45.5 " 47.5 0.119 0.122 0.116 
59.0 64.0 0.145 0.161 0.169 

19.5 22.5 0.117 0.152 0.142 
29.5 33.5 0.100 0.133 0.147 

7 45.5 47.5 0.109 0.152 0.139 
59.0 64.0 0.142 0.196 0.193 

19.5 22.5 0.146 0.157 0.152 
29.5 33.5 0.140 0.162 0.197 

14 45.5 47.5 0.142 0.157 0.190 
59.0 64.0 0.148 0.207 0.200 

19.5 22.5 0.210 0.181 0.212 
29.5 33.5 0.159 0.168 0.199 

28 45.5 47.5 0.157 0.161 0.192 
59.0 64.0 0.181 0.180 0.202 
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Lytag-sand concrete lies between 0.16 and 0.21 i. e. 0.185 ± 0.025. 

5.3.2.1 Comparison with Published Results 

Balendran (61) reported results of an extensive series of tests to 

determine the static Poisson's ratio of Lytag-sand, Taclite-sand and limestone- 

sand concretes, in tension and compression. Values reported for Lytag-sand 

concrete in compression varied between 0.17 and 0.19 and are comparable with the 

average results given in 5.3.2. Swamy and Bandyopadhyay (44) reported values 

of static Poisson's ratio for Solite concrete at 28 days varying between 0.19 

and 0.22. Shideler (19) reported values of 0.16 to 0.21 for different 

American lightweight concretes. European and American codes of practice 

(26,54,73) recommend a value of 0.2. For sand replaced lightweight concretes 

a value of 0.19 would seem to be appropriate. 

5.3.3 The Complete Stress-Strain Curve 

The load-strain calibration curves for the two tubes are shown in 

Figure 5.8 and the Peekel meter calibration curves in Figure 5.9. From these 

two figures it can be seen that the elastic limit of both tubes was approximately 

4000 microstrain. It was not possible to obtain a sensibly linear relationship 

above this strain and any attempt to do so resulted in high residual strains of 

the order of 50-100 microsctrain on unloading. 

The 2.5 mm tube was used to test the 20,30 and 45 N/mm2 specimens, with 

the 4.0 tin tube being used to test the 60 N/mm2 specimens. The results of the 

investigation are shown in Figure 5.10. Each curve is the average of three 

specimens, and the maximum stress as a percentage of the cube strength is shown. 

This figure remains sensibly constant at 83 ± 2% for the four concrete strengths 

tested. 

The ascending portions of the curves behaved in a manner similar to those 

for the static modulus of elasticity tests and elastic moduli calculated from 

the curves compared favourably with the values given in Table 5.1, ranging 

between 14.0 kN/=2 and 22.0 kN/um2 for concrete strengths of 20-60 NImm2 

respectively. 
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With the exception of the 20 and 30 N/mm2 specimens, the descending 

portion of the stress-strain curve was more difficult to control. After the 

peak stress had been reached the stress would begin to decrease gradually with 

increasing strain. The strain would then suddenly increase for no corresponding 

increase in total load. In some cases the total load indicated on the machine 

slightly decreased. This sudden energy release has obviously affected the shape 

of the descending portion of the curve. The lightweight concretes tested by 

Wang et al (93) showed that the rate of decrease in stress, after the peak 

stress, increases with increasing concrete strength, and this is also shown 

iii Figure 5.10. However, the decrease in stress is more rapid for the higher 

strength concretes in Figure 5.10 than for equivalent strength concretes tested 

by Wang et al (93). 

The machine used for testing the specimens has a listed capacity of 

2500 kN. During testing it was found that at loads above 1100 kN, the machine 

lacked fine control and was subject to surges. This only affected the tests on 

the 60 N/mm2 concrete and is therefore the reason for the lack of control 

during the descending portion of the stress-strain curve. 

The results shown in Figure 5.10 show that for wet cured. cube strengths 

from 20-60 N/mm2 the strain at maximum stress for Lytag-sand concrete varies 

between 2250 and 3250 microstrain. Tests on all Lytag concrete (62) produced 

strains of between 2500 - 3500 microstrain for maximum concrete stresses of 

25-30 N/mm2. The results of the tests by Wang et al (93) indicate that the 

strain for American lightweight concretes varies between 2750 - 3750 micro- 

strain for maximum stresses between 20-55 N/mm2. 

The lower strain capacity of the specimens tested during this series of 

tests can be explained by the fact that the nominal concrete strains measured 

include the strains in the end regions of the specimen and the capping material. 

It has been shown (101) that the measured strains in a specimen near to failure 

are very much dependent on the location of the strain measuring device. A 

suggested improvement to the method used in the present investigation would 

be to attatch electrical resistance strain gauges to the surface of the concrete 
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specimen and bring the wires out through a hole and groove in the base plate. 

The gauges could be attafched to the central region of the specimen thus 

ensuring that only uniaxial compressive strains are obtained. 

It has been suggested (93) that the above method is a relatively cheap 

Way of accurately obtaining the stress-strain curves for concrete by modifying 

a constant loading rate test machine. In this series of tests, several 

problems were encountered: 

(a) A tube which was linear elastic up to 6000 microstrain could not be 

produced. 

- (b) For the higher strength concretes, 45 and 60 N/mm2, difficulty was 

experienced in controlling the rate of straining after the peak stress 

had been reached. 

The test method can provide a means of modifying a constant load rate 

test machine to a constant strain rate test machine but in order to obtain 

stress-strain curves for concretes with strengths in excess of 30 NImm2 using 

75 x 75 x 300 mm specimens, the steel tube should have a wall thickness of at 

least 4.0 mm and the test machine a minimum capacity of 2500 M. The quality 

of the test machine and the workmanship on the steel tube and end platens is 

very important. 

The failure modes of the specimens tested during this series of tests 

are shown in Plate 5.1. 

5.4. Conclusions 

The following conclusions can be drawn from the series of tests 

described in this chapter: 

1. The static modulus of elasticity of wet cured Lytag-sand concrete is 

approximately 5% greater than for dry cured concrete. 

2. The dynamic modulus of elasticity of wet cured Lytag-sand concrete is 

approximately 15% greater than for dry cured concrete. 

3. The relationship between static modulus of elasticity and cube strength, 

0.28 
for sand replaced lightweight concrete, is Es - 6.84 fcu 9 

-112- 



L 

41 
4 

bý 

i 
J 

'o º'` iii ii 
,! 

0 °! ", 

i 

1 

ILOV 
aý iý 4s 

r4 

avý 
1ý. 

1 

:1 

PLATZ 5.1 COMPLETE STRESS-STRAIN CURVE SPECIMENS 

-113- 



4. The relationship between the dynamic modulus of elasticity and cube 

strength, for sand replaced lightweight concrete, is ED " 9.92 fcu 0.24" 

5. The static modulus of elasticity can be estimated from the dynamic 

modulus of elasticity by the equation Es a 0.93 ED - 2.56. 

6. The effect of replacing Lytag fines with natural sand, on the elastic 

modulus of Lytag concrete is to increase its value by 20-25%. 

7. The elastic modulus of Lytag-sand concrete is approximately 602 of that of 

dense concrete as given in CP110 (54). 

8. Static Poisson's ratio for Lytag-sand concrete varies between 0.16 and 0.21 

and for design purposes, the value of Poisson's ratio for sand replaced 

lightweight concrete, in general, can be taken as 0.19. 

9. For specimens with a length to width ratio of 4.0, tested in compression, 

the ratio of the maximum stress to that of 100 mm cubes is approximately 83% 

10. The strain at maximum stress for Lytag-sand concrete in compression, varies 

between 2250-3250 microstrain for cube strengths of 20 to 60 N/mm2 

respectively. 
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CHAPTER 6 

SHRINKAGE, MOISTURE MOVEMENT AND CREEP CHARACTERISTICS 

6.1 Introduction 

This chapter is concerned with the time dependent deformation properties 

of loaded and unloaded specimens. Drying shrinkage is a feature of all cement 

composites and is a direct result of moisture loss as the material dries out and 

matures. For concrete elements subjected to periodic wetting and drying, 

corresponding expansions and shrinkages occur and this is generally known as 

moisture movement. Whereas shrinkage and moisture movement are characteristics 

not dependent on the specimen being externally stressed, creep is the time 

dependent deformation resulting directly from an applied stress. Time dependent 

deformations are important since they affect the behaviour of an element during 

its life. They are directly linked with cement paste, with the coarse and fine 

aggregate fractions in a concrete mix merely serving to modify these deformations. 

Neat cement paste has a high drying shrinkage and creep but the addition 

of a semi-rigid aggregate has a restraining effect on the shrinkage and creep 

of the paste. Since lightweight aggregates are generally weaker than dense 

aggregates and exhibit lower elastic moduli, it could be expected that shrinkage 

and creep in lightweight concretes will be greater than that of equivalent dense 

concrete mixes. Many investigators (38,40,41,46,102-106) have, however, 

shown that in general shrinkage and creep in lightweight concrete may be greater 

than or less than that of dense concrete. Concretes produced with various 

brands of lightweight aggregates may show widely varying shrinkage and creep 

properties. Similar variations may also occur between dense aggregates from 

different sources (40,41,106). 

In this chapter the shrinkage, moisture movement and creep characteristics 

of Lytag-sand concrete are investigated, the main parameters being concrete 

strength, curing conditions and for the creep specimens, stress-strength ratio. 

6.2 Review of Previous Research 

Many investigators have turned their attentions towards time dependent 

deformations in concrete and a considerable amount of published literature is 
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available (107-109). This work has led to a better understanding of these 

phenomena but has also highlighted their complex interdependant nature and 

their complex relationship to the physical and mechanical characteristics of 

concrete in general. The results of many of these investigators have been 

collated to indicate the effects of the various parameters on the time dependent 

deformation properties of concrete (105) and these are discussed below. 

6.2.1 Type of Cement 

Cement type and its fineness have an important influence on the shrinkage 

and creep properties of concrete due to the different rates of hydration. Tests 

(110) have shown that the shrinkage of concrete made with very fine cement with 

a specific surface area of 7420 cm2/kg is approximately 20% greater than that of 

ordinary cement concrete, 2770 cm2/kg, for the same water-cement ratio and low 

workability. For high workability mixes, however, the increase in shrinkage was 

approximately 42%. It is generally agreed (105) that an increase in the rate of 

shrinkage produces a corresponding increase in the rate of creep. For the same 

water-cement ratio the creep of the concrete made with the very fine cement was 

higher at early ages, but after 1000 days it was less than that of the ordinary 

cement concrete. 

6.2.2 Cement-Aggregate Ratio 

Tests (19,110-112) show that an increase in the aggregate concentration 

produces a decrease in the shrinkage and creep of concrete with age. 

6.2.3 Water-Cement Ratio 

For a constant cement content and cement-aggregate ratio, an increase in 

the water cement ratio produces a corresponding increase in shrinkage and creep. 

Bennet and Loat (110) showed that for O. P. C. concrete an increase in water- 

cement ratio from 0.3 to 0.375 resulted in increases in shrinkage and creep of 

20% and 35% respectively. For very fine cement concrete these increases will be 

of the order of 40% and 66% for an increase in water-cement ratio from 0.375 to 

0.52.5. Similar results were obtained by Evans and Kong (113). 

6.2.4 Aggregate Properties 

Aggregate properties have a significant effect on the shrinkage and creep 
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of concrete. Tests (114) have shown that various dense aggregates show a wide 

range of shrinkage and creep values for similar strength mixes. Aggregate 

quality is of prime importance, the shrinkage and creep of a limestone or quartz 

aggregate concrete could be of the order of half that of a sandstone aggregate 

concrete (114). Tests on various American lightweight aggregates (115) showed 

a considerable scatter of shrinkage and creep results whereas the results of 

tests on British lightweight aggregates (48,91,116) show comparatively less 

scatter. The lower modulus of elasticity of lightweight aggregates has led in 

the past to a general assumption that the shrinkage and creep of lightweight 

concrete will in general be greater than that of dense concrete. However the 

test results show that the range of values of shrinkage and creep obtainable 

with lightweight concretes is similar to that for various dense concretes (41, 

91,114-116). 

6.2.5 Curing Conditions 

Temperature and relative humidity effect the shrinkage and creep of dense 

and lightweight concrete. Troxell et al (114) showed that the shrinkage and 

creep of dense concrete increased with decrease in humidity. Also for dense 

concrete, Nasser and Neville (117-118) showed that creep is a function of 

temperature for new as well as old concrete. Mullen and Dolch (119) and Ross 

(120) showed that when concrete has completed its shrinkage (i. e. dried in an 

oven at 110 0 C) creep under load was negligible. Tests (46,49,61) have also 

shown that the shrinkage of concrete stored in an uncontrolled environment is 

less than for constant temperature and humidity conditions. 

Water curing increases the volume of cement gel formed and can lead to 

increased shrinkage of cement paste and concrete (121). This increase can be 

explained by a reduction in the restraint offered by the cement clinker as its 

volume diminishes with age. It has been suggested that this effect can be 

reversed with prolonged curing since the cement gel undergoes a slow change in 

structure (121). 

The effect of relative humidity on shrinkage and creep has been studied 

by A. C. I. Committee 209 (122). 
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6.2.6 Specimen Geometry 

It has been recognised for many years that specimen size, or more 

specifically the exposed surface area to volume ratio, has a considerable effect 

on the shrinkage characteristics of concrete (104,123-125). Ultimate shrinkage 

is thought, by some (123,125), to decrease with increasing size, whereas others 

(126-129), maintain that it is independent of size. Creep is affected to a 

lesser extent and it has been suggested that in mass concrete size effects are 

negligible (105). 

6.2.7 Age at Loading 

Age at loading is important when considering prestress losses which occur 

at transfer. The age at loading indirectly determines the specimen's strength 

and, therefore, the stress-strength ratio. Tests (124) on dense concrete loaded 

to the same sustained stress at different ages showed an increase in creep as 

the age at loading decreased. This is to be expected since the stress-strength 

ratio increases with decreasing age. The greater increase in strength which 

occurred between 7 and 28 days as opposed to 28 and 90 days resulted in a 

greater difference between the creep of specimens loaded at 7 and 28 days than 

those loaded at 28 and 90 days. 

The influence of age at loading for ages greater than 28 days has been 

found to be negligible (105,130). 

Balendran (61) showed that for specimens loaded at 7 days and 28 days to 

the same stress-strength ratio, of 0.25, the basic creep of sealed specimens of 

the former was approximately 12% less than that of the latter. The author 

explained this by the fact that for the specimens loaded at 7 days there was a 

higher gain in strength under load and, therefore, the average gain of strength 

over the loading period was greater and the basic creep lower. However, the 

specific basic creep of the 7 day specimens was approximately 15% greater than 

that for the 28 day specimens. 

6.2.8 Stress-Strength Ratio 

The majority of the early work carried out on creep of concrete involved 

loading specimens to a stress of less than one-third of the cube strength since 
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the applied stresses in the majority of structural members used in practice are 

of this order of magnitude. 

Tests (61,105,110,116) have shown that in general the relationship 

between stress-strength ratio and creep is linear for values of stress-strength 

ratio between 0.25 and 0.5. 

6.3 Experimental Programme 

6.3.1 Outline of Tests 

The aim of this series of tests was to provide design data on the time- 

dependent deformations of Lytag-sand concrete. For shrinkage specimens the 

effects of concrete strength (i. e. cement content) and curing conditions were 

investigated. For moisture movement specimens subjected to periodic wetting and 

drying, concrete strength was the only variable. With the creep specimens, the 

limitations of facilities and resources meant that a single curing regime, namely 

constant temperature and humidity, only was used with the variables being 

concrete strength and stress-strength ratio. 

6.3.2 Mix Design and Specimen Size and Manufacture 

Mixes were designed, with the aid of the information given in Chapter 4, 

to produce concrete strengths of 30,45 and 60 N/mm2 for specimens stored in the 

C. T. H. R. 

The specimens consisted of 500 x 100 x 100 mm prisms for the time- 

dependent deformation tests and 100 mm cubes for compressive strength. 

Shrinkage and moisture movement specimens, for each strength, were cast 

together along with companion cubes. The creep specimens along with their 

companion shrinkage specimens and cubes were cast at later dates. All specimens 

were cast in lightly oiled steel moulds, in two roughly equal layers, and were 

compacted by means of the high frequency vibrating table. The specimen surfaces 

were trowelled smooth approximately 2 hours after casting, the moulds were 

covered with polythene sheeting and left in the laboratory for 24 hours before 

demoulding. 
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6.3.3 

6.3.3.1 

Curing Conditions 

Shrinkage Specimens 

Shrinkage specimens were cured under the following curing conditions: 

(a) Water at 22°C ± 3°C. 

(b) Uncontrolled laboratory. 

(c) Constant temperature, 16°C ± 0.5°C, and humidity, 50% ± 2%, room, C. T. H. R. 

(d) Outside under a lean-to roof, sheltered from the rain and sun but subject 

to temperature and relative humidity variations. 

6.3.3.2 Moisture Movement Specimens 

Moisture movement specimens were alternately cured in conditions (a) 

and (b) . 

6.3.3.3 Creep Specimens 

Creep specimens were cured under condition (c), both prior to and after 

loading. 

6.3.4 Loading Conditions for Creep Specimens 

A typical creep rig is shown in Figure 6.1. For each concrete strength, 

the specimens were loaded as near to 28 days as was practically possible. Prior 

to loading the concrete strength was obtained by crushing three cubes which had 

been stored with the specimens. Two stress strength ratio's of 0.3 and 0.5 

were chosen for each concrete strength and thus the stress to be applied could 

be calculated. These stress-strength ratio's were chosen since they cover the 

limits used in design recommendations, from one-half the cube strength at 

transfer to one-third the strength in bending at working load, according to 

CP 110 (54) and stress of the order of 0.6 x the cylinder strength at transfer 

and 0.45 x cylinder strength at working load, according to A. C. I. (26). 

6.3.5 Instrumentation and Test Procedure 

6.3.5.1 Shrinkage and Moisture Movement Specimens 

The shrinkage and moisture movement specimens were demoulded approxi- 

aately 24 hours after casting. Demec discs were attached to the four faces of 

each specimen over a gauge length of-305 mm. Initial strain readings were taken 

within one hour of demoulding and thus the plotted and tabulated strains are 
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those which occurred after this time. For each curing condition two specimens 

were prepared, the plotted and tabulated results are thus the average of eight 

Zeadings. 

For the shrinkage specimens readings were taken at close intervals at 

early ages but the period between readings was gradually increased as the 

specimens matured. The maximum interval between readings was three months. 

The moisture movement specimens were initially stored in the uncontrolled 

laboratory condition after demoulding. They were left there until the decrease 

in density as a percentage of the density at demoulding was approximately 0.01% 

per day on average. They were then transferred to the water tank and left until 

the increase in density as a percentage of the density at demoulding was approxi- 

Gately 0.01% per day on average. This resulted in a period of approximately 

60 days drying and 45 days wetting for the first cycle, and these periods were 

aaintained during subsequent cycles. 

All strain measurements were made using a Demec Extensometer with a gauge 

length of 305 mm, and a sensitivity of 6.55 x 10-6 m/m per division. 

6.3.5.2 Creep Specimens 

As with the shrinkage specimens, demec discs were fixed to all four faces 

of each specimen over a 305 mm gauge length and initial strain readings taken 

within one hour of demoulding. Demec discs were also attached to the Macalloy 

bars on each creep rig. At approximately 28 days after casting two specimens 

were arranged in their respective rigs as shown in Figure 6.1. With the rig 

unloaded, strain readings were taken in the specimens and the Macalloy bars. 

The rig was then loaded in three stages by means of a calibrated jack, with the 

variation in strain readings on each being checked at each stage. When the 

required stress had been applied to the specimens and the concrete strains 

measured, the strains in the Macalloy bars were read. Plate (2) was then 

tightened down and the jack released. The strains in the Macalloy bars were 

checked to ensure that they were sensibly the same as those under the jack load. 

The required stress was maintained on the rig by periodically reloading, 

frequently at first but less frequently as the age since loading increased. The 
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maximum period between reloading was three months. 

6.4 Test Results and Discussion 

6.4.1 Shrinkage 

Shrinkage test details are shown in Table 6.1. The shrinkage-time curves 

are shown in Figures 6.2-6.4 and shrinkage data at different ages is shown in 

Table 6.2. 

The results show that the cement content and water-cement ratio have a 

significant effect on the shrinkage of Lytag-sand concrete. Shrinkage, and 

expansion for water stored specimens, increases with increasing cement content 

and decreasing water-cement ratio. Similar findings have been reported for all- 

Solite concrete (49) and for Taclite, Lytag and limestone concretes with natural 

sand fines (61). 

The effect of curing conditions is less pronounced at lower cement contents 

but does become more marked with increasing cement content, and therefore, strength, 

For the 30 N/mm2 concrete, the shrinkage at last reading, for the specimens stored 

outside was about 83% of the shrinkage for the specimens stored under constant 

temperature and humidity conditions. For the 60 N/mm2 concrete the corresponding 

value was 74%. Other investigators (49,61) have reported a lower shrinkage for 

externally stored specimens with the values, as a percentage of the constant 

temperature and humidity stored specimens being 40%, or less. However, these 

specimens were stored on a roof, subject to rain and direct sunlight. The aim of 

the work reported here is to simulate the conditions under which external elements 

such as bridge beams, will be expected to perform. While it is true that, for 

example in a bridge, the edge beams will be subjected to rain and direct sun- 

light the remainder of the structure will only be subjected to air temperature 

and humidity variations. Thus the expected shrinkage of such elements will be 

greater than shown by the above mentioned investigators (49,61). 

For the specimens stored in the C. T. H. R. and the laboratory there is 

little difference in the shrinkage at last reading although the seasonal 

temperature and humidity fluctuations are reflected in the laboratory stored 

specimens. 
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Specimens continuously moist cured showed expansive strains due to the 

absorption of moisture by the cement gel. At last reading the expansion varied 

between 16-21% of the shrinkage under constant temperature and humidity con- 

ditions. 

Table 6.2 shows the shrinkage at various ages as a percentage of the 500 

day shrinkage. For each curing condition this ratio remains remarkably constant 

regardless of the compressive strength of the concrete. 

6.4.2 Moisture Movement 

For exposed elements subjected to periodic drying and wetting there will 

be corresponding shrinkage and expansion. This reversal in strain, due to varying 

moisture content in the element, is known as moisture movement. The aim of this 

series of tests was to estimate the maximum probable moisture movement which 

could occur in Lytag-sand concrete exposed to the weather. The periods of 

wetting and drying were chosen as described in 6.3.5.1 and were approximately 

45 and 60 days respectively. Although in this country it is rare to see pro- 

longed periods of sunshine it is not unusual during the summer months to have 

two consecutive months during which very little rain falls. Similarly it is not 

unusual to have two consecutive months during which rain persistently falls and 

the relative humidity is high. 

Figure 6.5 shows the effect of continuous drying or wetting on the 

volume-density relationship. In the case of drying specimens it can be seen 

that an appreciable reduction in density, due to water loss, can occur before 

any appreciable shrinkage takes place. This can be accounted for by the fact 

that the absorbed water contained within the aggregate particles migrates into 

the mortar as the specimen dries thus reducing the early shrinkage. Similar 

observations have been made by other investigators (60,61). Balendran (61) 

suggested that the moisture contribution from the aggregate is a function of its 

particle shape and surface texture. The author based this statement on results 

for Taclite and Lytag concretes. Despite the fact that the rate of and capacity 

for water absorption is similar for both aggregates, greater moisture loss 

occurred from the rounded fine pored Lytag aggregate than from the more irregular 
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Taclite aggregate, with its larger surface pores which could be blocked by 

mortar. 

Figures 6.6-6.8 show the shrinkage and expansion of continuously dry 

cured and wet cured specimens and the moisture movement associated with cyclic 

wetting and drying. For the 30 and 45 N/mm2 concrete specimens five drying and 

wetting cycles were completed but unfortunately the 60 N/mm2 specimens were 

accidentally destroyed after only two cycles had been completed. The figures 

show that after two or three cycles, the moisture movement occurring between 

extremes of wetting and drying remains sensibly constant and reflects the 

seasonal variations associated with the continuously dry cured specimens in the 

uncontrolled laboratory environment. The moisture movement appears to be of the 

order of 300-350 x 10-6 m/m for the various concrete strengths. 

Figures 6.9-6.11 show the variation in density associated with the 

moisture movement indicated in Figures 6.6-6.8 respectively. Again it can be 

seen that after the second or third cycle, the density variation between extremes 

of wetting and drying remains sensibly constant. The variation in density is, 

however, dependent on the concrete strength with approximately 6.5% density 

variation for the 30 N/mm2 concrete as opposed to approximately 3.5% for the 

60 N/mm2 concrete. 

6.4.3 Creep 

Details of the creep tests are given in Table 6.3. Test results are 

shown in Figures 6.12-6.13 with the creep at various ages shown in Table 6.4. 

one year creep coefficients are shown in Table 6.5 and the elastic strains at 

loading and unloading along with creep recovery are shown in Table 6.6. 

The results show the effect of some factors on creep and these are 

discussed below. 

6.4.3.1 Water-Cement Ratio 

Figures 6.12 and 6.13 show that the effect of increasing the water-cement 

ratio is to increase the creep. An increase in the total water-cement ratio 

from 0.54 to 1.02 produced increases of 32% and 23% in the one year creep values 

for stress-strength ratio's of 0.3 and 0.5 respectively. Similar effects have 
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TABLE 6.3 DETAILS OF LOADING CONDITIONS FOR CREEP TESTS 

Creep Rig 
No. 

Age at 
Loading 
(Days) 

Cube Strength 
at Loading 

(N/mm) 

Loading 
Stress 
(N/mm2) 

Stress 
Strength 

CR 30-1 30 31.5 8.8 0.28 

CR 30-2 32 31.5 16.0 0.51 

CR 45-1 27 43.0 12.2 0.28 

CR 45-2 27 43.0 20.6 0.48 

CR 60-1 30 59.0 16.2 0.27 

CR 60-2 29 59.0 27.7 0.47 

Notes 

1. Mix proportions are the same as those given in 

Table 6.1. 

2. All creep rigs were kept in the constant temperature 

and humidity room at 16 ± 0.50C and 50 ± 2% relative 
humidity. 
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TABLE 6.4 CREEP STRAIN OF LYTAG-SAND CONCRETE AT DIFFERENT AGES 

i 

r 
1 

Creep Creep Creep Creep Creep Creep 

C Strain at Strain at Col. 3 Strain at Col. 5 Strain at Col. 7 Strain at Col. 9 Strain at Col. 11 
reep 

Rig No. 365 Days 1 Day Col. 2 7 Days Col. 2 30 Days Col. 2 90 Days Col. 2 180 Days Col. 2 
(m/m x (m/m x (70) (m/m x (7. ) (m/m x (%) (m/m x (70) (m/m x (%) 

10 6) 10-6) 10-6) 10-6) 10 6) 10_6) 

1 2 3 4 5 6 7 8ý 9 10 11 12 

CR 30-1 1780 235 13 446 25 844 47 1340 75 1606 90 

CR 45-1 1500 196 13 455 30 690 46 1085 72 1345 90 

CR 60-1 1340 230 17 403 30 654 49 990 74 1200 90 

CR 30-2 3290 568 17 1210 37 1845 56 2600 79 3040 92 

CR 45-2 2850 313 11 860 30 1430 50 2145 75 2645 93 

CR 60-2 2660 404 15 880 33 1390 52 2070 78 2400 90 
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been reported by other investigators (110,113). 

6.4.3.2 Stress-Strength Ratio 

The effect of stress-strength ratio on creep is shown in Figures 6.12 

and 6.13 and Table 6.5. For a given concrete strength the absolute values of 

creep increase with increasing stress-strength ratio but the one year values 

of specific creep and creep coefficient remain sensibly constant. A similar 

effect is apparent in Balendrans results (61) on Taclite concrete, for stress- 

strength ratio's of 0.25 and 0.33. The results in Table 6.5 would tend to 

suggest that the assumption of a linear relationship between creep and stress- 

strength ratio for values of stress-strength ratio between 0.25 and 0.5 is valid. 

Bennet and Loat (110) in their tests on dense concrete have shown that a linear 

relationship exists between values of stress-strength ratio of 0.33 and 0.5. 

Jones and Hirsch (104) have shown that with expanded clay concrete the limit of 

proportionality is 0.57 whereas Hardwick (116) in his tests on Aglite concrete 

showed the limit of proportionality to be 0.42. 

6.4.3.3 Elastic Strains and Creep Recovery 

Table 6.6 shows the instantaneous elastic strain at loading and the 

instantaneous recovery at unloading along with the creep recovery after 28 days. 

One interesting point to arise from this series of tests is that in all but 

one case, the elastic strain at unloading, is greater than the elastic strain 

at loading. This is contradictory to the results of Balendrans tests (61) 

which showed that for sand replaced Taclite, Lytag and limestone concretes the 

opposite was true. For the Lytag-sand specimens tested by Balendran (61), with 

a cube strength of 60 N/mm2 and loaded to a stress-strength ratio of 0.25 at 

28 days and allowed to dry under constant temperature and humidity conditions, 

the ratio of recovery strain to loading strain was 0.97. For the specimens 

tested by the author, the equivalent ratio is of the order of 1.20. The reason 

for this could possibly be explained by the mix proportions. Balendrans mix 

proportions for a cube strength of 60 N/mm2 were 1: 1.56: 1.29 by weight of 

cement, sand and Lytag coarse with a total water-cement ratio 0.55. The mix 

proportions used by the author were 1: 1.06: 1.47 and 0.54 respectively, Table 6.1. 
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Thus it can be seen that the mix used by the author contained a higher volume 

of Lytag coarse material and a lower volume of sand fines. The lower modulus 

of elasticity of Lytag as opposed to sand may be the reason for the above 

phenomenon. 

Balendrans results (61) indicated that the majority of creep recovery 

occurs within 28 days of unloading. Table 6.6 shows that the creep recovery 

after 28 days as a percentage of the creep at unloading varies from 6-10X. In 

general the higher the concrete strength the higher the percentage creep 

recovery. 

6.4.4 Comparisons of Shrinkage and Creep with Published Data 

Shrinkage and creep data from this and other investigations are listed 

in Table 6.7 . 

6.4.4.1 Shrinkage 

Table 6.7 indicates that a wide range of shrinkage values exists for 

both lightweight and dense aggregate concretes. In general the range of values 

for lightweight concretes is 153-1200 x 10-6 m/m and for dense concrete 200- 

1420 x 10-6 m/m. Thus it can be seen that in both dense and lightweight 

concrete it is not possible to come to any general conclusions valid for all 

types of concrete and that for both dense and lightweight concrete, shrinkage 

is a function of many variables including mix proportions, aggregate type and 

quality, cement type and curing conditions. 

In general, Lytag-sand concrete compares favourably with dense concretes 

on a shrinkage basis. The results obtained by the author are similar to those 

of Brooks and Neville (40,41), for Lytag-sand concrete, using rapid hardening 

cement and with those of Orangun (91) for all-Lytag concrete. Balendrans 

results (61) are, however, approximately 35% lower than the results of the 

present investigation for a concrete strength of 60 N/mm2. The reason for this 

difference is probably due to the mix proportions. The cement contents for 

Balendrans (61) tests and the authors tests on 60 N/mm2 concrete are 450 and 

485 kg/m3 respectively. The total water-cement ratio's are 0.55 and 0.54 

respectively and, therefore, the total water content of the authors mixes is 
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higher. As was explained in 6.4.3.3 the Lytag volume was higher and the sand 

volume lower for the authors mixes. 

The mixes used in this project were similar to those used commercially by 

Lytag Limited. Thus it can be seen that when research is being carried out with 

the aim of providing design data for practical application, the materials used 

and mix proportions should simulate as closely as possible those that will be 

used on site. 

The present design codes (26,54) do not specify shrinkage values for 

lightweight concretes, but suggest that in general the shrinkage of lightweight 

concrete will be greater than that of dense concrete and that specific design 

data should be obtained from aggregate manufacturers where possible. CEB-FIP 

(73) states that the shrink. 1ge of lightweight concrete may vary between 1.0 and 

1.5 times that of dense concrete. In view of the data shown in Table 6.7, these 

values would seem reasonable. 

6.4.4.2 Creep 

Values of total specific creep obtained during this investigation compare 

favourably with those obtained by Brooks and Neville (40,41) but are again 

greater than those of Balendran (61) for a cube strength of 60 N/mm2. The 

reasons for this are the same as those given in 6.4.4.1. The values obtained 

are also similar to those obtained by Orangun (91) for all-Lytag concrete but 

here again the mixes used had lower water-cement ratios. 

The test results of Brooks and Neville (40,41) are interesting in that 

they show a wide variation in specific creep values for dense concretes. The 

two dense aggregates used were North Notts gravel, considered to be a good 

aggregate and Stourton, a rather poor quality rounded aggregate. The specific 

creep was, however, higher in the North Notts aggregate concrete than the Stourton 

aggregate concrete. This is further evidence that even with dense concretes 

creep is not consistent and is difficult to predict without test data relating 

to the type of concrete in question. 

CP 110 (54) states that creep will, in general, be greater than that for 

dense aggregate concrete and that reference should be made to specialist 
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information to ascertain values. Balendran's results (61) showed that the creep 

of Lytag concrete was approximately 40% greater than that of a good quality 

limestone aggregate concrete. In view of this a value of 1.5 times the values 

for dense concrete given in CP 110 would seem appropriate. 

6.5 Prediction of Shrinkage and Creep 

Creep prediction methods generally take two forms, namely: 

(a) a creep time relationship in the form of an equation which usually requires 

the determination of one or more constants experimentally; 

(b) a standard creep curve which can be modified by a series of correction 

factors to allow for mix proportions, storage conditions etc. 

Method (b) does not require experimental data, but is generally less 

accurate than the empirical equation, method (a). 

In the analysis of the shrinkage and creep results obtained during this 

investigation a hyperbolic type equation was found to suitably describe the data. 

The form of the equation, as suggested by Ross (131), is 

Ct 
a+ bt 

where C- creep or shrinkage (m/m x 10-6) 

t- time after loading for creep or after initial readings for 

shrinkage (days) 

a and b are constants. 

If equation (6.1) is rearranged into the following, 

=bt+a 

.... (6.1) 

.... (6.2) 

it can be seen that a plot of t/C against t will result in a straight line of 

slope b and intercept a. It can also be seen from equation (6.1) that as t tends 

to infinity the limiting value of C= l/b. 

Typical curves for determining the constants a and b are shown in 

Figures 6.14 and 6.15. The constants predicted by this method along with the 

measured and predicted values of shrinkage and creep at different ages are given 

in Table 6.8. 
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Predicted values compare well with measured values, especially at ages 

greater than 90 days. 

Table 6.9 shows the predicted ultimate creep, specific creep and creep 

coefficient for the specimens tested during this investigation. 

6.6 Design Recommendations for Shrinkage of Lytag-Sand Concrete 

The basic shrinkage coefficients for Lytag-sand concrete may be taken 

from Table 6.8 when time equals infinity. To use these values in design, 

appropriate correction factors should be applied. The final shrinkage 

coefficient, S, may be determined by the relationship: 

S=Sc -(hKdKsKc .... (6.3) 

where S- final value of shrinkage 

Sc = basic shrinkage coefficient for non-reinforced concrete (Table 6.8) 

Kh = influence of environmental humidity 

Kd - influence of the smallest dimension of the element 

Ks- influence of the longitudinal steel percentage 

Kc- influence of the composition of concrete. 

6.6.1 Basic Shrinkage (Se) 

During construction most concrete elements are exposed to the weather 

which decreases the effect of unrestrained shrinkage in general. After completion 

however most elements are protected from the weather and are often subject to 

warm dry atmospheres associated with central heating. Hence the estimated ulti- 

mate shrinkage given in Table 6.8 may be taken as the basic shrinkage coeffic- 

Tent Sc. 

6.6.2 Relative Humidity Coefficient (K_) 

A study of the variation of shrinkage for different relative humidities 

has been made by A. C. I. Committee 209 (122). For relative humidities within the 

range H- 50 to 80% this variation may be expressed as follows: 

Kh-1.50 - o. 01 H .... (6.4) 
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TABLE 6.9 PREDICTED ULTIMATE VALUES OF CREEP, SPECIFIC 

CREEP AND CREEP COEFFICIENT 

Creep Rig 
Constants for 
Equation (6.1) 

Predicted 
Ultimate 

Cree 

Predicted 
Ultimate 

S ecific Cree 

Predicted 
Ultimate 

Cree No. 
ax 102 b 

p- 
(m/m x 10 6) 

p 
(10-6 per N/mm) 

p 
Coefficient 

CR 30-1 215 500 2000 227 4.02 

CR 30-2 81 285 3510 219 3.41 

CR 45-1 285 600 1665 136 2.66 

CR 45-2 125 320 3125 152 2.75 

CR 60-1 295 670 1495 92 2.11 

CR 60-2 130 340 2940 106 2.24 
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For 11 - 80 to 100% 

Kh = 3.50 - 0.035 H .... (6.5) 

6.6.3 Smallest Dimension Coefficient (K, ) 

Shrinkage is influenced by the shape and minimum dimensions of the 

element. A. C. I. (122) suggest that for elements with a minimum thickness of 

200-225 mm this effect can be neglected. Branson and Christiason (132) 

suggested the following equation for Kd: 

Kd = 1.17 - 0.029 T .... (6.6) 

where T is the thickness in inches. 

If this equation (6.6) is modified to take account of the test specimen 

dimension of 100 mm it becomes 

Kd = 1.17 - 0.0017 T .... (6.7) 

where T is the thickness in mm. 

6.6.4 Longitudinal Steel Percentage Coefficient (K 

C. E. B. -F. I. P. (133) recommends the following equation for determining Ks: 

100 
Ks 100 + mp .... (6.8) 

where ma the plastic modular ratio with regard to the effect of creep 

p the longitudinal steel percentage. 

In calculating the plastic modular ratio the effective or reduced modulus 

for concrete Ec' is taken. The effective modulus Ec' is given by: 

ta Ec Ec ( 
1- 

1+ Ct) .... (6.9) 

where Ec a elastic modulus of concrete at time of application of load 

Ct = creep coefficient (see Table 6.9). 

6.6.5 Composition of Concrete (K_) 

Mix proportions greatly effect the shrinkage of concrete. Higher cement 

contents and water cement ratio's increase shrinkage. Martin (134) suggested 
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the following equation: 

K1+0.055 
(fc' - 3000) 

c 1000 """" (6.10) 

Where fc' a cylinder crushing strength in imperial units. 

Modifying the equation to take account of the cube strength fcu in S. I. 

units equation (6.10) becomes: 

K=1+0.055 (fcu - 25.86) 
c 8.62 

6.7 Conclusions 

.... (6.11) 

6.7.1 Shrinkage 

1. Regardless of curing condition the shrinkage of Lytag-sand concrete increases 

with increasing cement content. 

2. Shrinkage specimens cured outside, protected from direct rain and sunlight, 

show a lower ultimate shrinkage than for internally cured specimens. The 

shrinkage varied between 74 and 83% of the values for specimens stored 

under constant temperature and humidity conditions. 

3. Specimens cured continuously under water expand with age. At an age of 

approximately 500 days the expansion as a percentage of the shrinkage of 

specimens under constant temperature and humidity conditions was 16-212. 

4. The shrinkage of Lytag-sand concrete may be greater than or less than that 

of dense concrete, depending on the dense aggregate type, for similar mix 

proportions. In the absence of more accurate information values of 1.0 to 

1.5 times the value for an equivalent strength dense concrete may be used. 

$, Regardless of concrete strength and curing condition the ratio of the 

shrinkage at various ages to the shrinkage at 500 days remains sensibly 

constant particularly at ages of 90 days or more. 

The shrinkage-age relationship for Lytag-sand concrete is adequately 

predicted by means of a hyperbolic type equation. 

6.7.2 Moisture Movement 

1. In lightweight concrete, a considerable moisture loss can occur before any 

appreciable shrinkage takes place, due to the migration of water absorbed 
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in the aggregate, into the cement-sand mortar. 

2. For a 60 day drying and 45 day wetting cycle, the moisture movement in 

Lytag-sand concrete is of the order of 300-350 m/m x 10-6, for concrete 

strengths of 30 to 60 N/mm2 respectively. 

6.7.3 Creep 

1. Creep in Lytag-sand concrete increases with increasing water-cement ratio. 

An increase in the total water-cement ratio from 0.54 to 1.02 produced 

increases of 32% and 23% respectively in the one year creep values for 

stress-strength ratio's of 0.3 and 0.5 respectively. 

2. The creep of Lytag-sand concrete is directly proportional to stress-strength 

ratio for values of stress-strength ratio between 0.3 and 0.5. 

3. For high volume concentrations of aggregate, the elastic recovery of Lytag- 

sand concrete, at unloading, will generally exceed the elastic strain at 

loading. 

4. The creep recovery after 28 days as a percentage of the creep at unloading 

varied from 6-10% depending on concrete strength. 

5, As with shrinkage, the creep of Lytag-sand concrete may be greater than or 

less than that of comparable strength gravel concrete. In the absence of 

more accurate information values of 1.0 to 1.5 times the value for an 

equivalent strength dense concrete may be used. 

6, The creep-age relationship for Lytag-sand concrete is adequately predicted 

by means of a hyperbolic equation. 

7. As with shrinkage the creep at various ages expressed as a percentage of 

the creep at 1 year remains sensibly constant especially at ages of 90 days 

or more. 
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CHAPTER 7 

SHEAR STRENGTH OF LYTAC-SAND R. C. 'T-BEAMS WITHOUT WEB REINFORCEMENT 

7.1 Introduction 

When the design of a reinforced concrete structure is undertaken an 

inherent part of the design procedure is the provision of an adequate factor of 

safety against any mode of failure which may occur, under the forces acting 

upon the structure, during its lifetime. One such mode of failure is the so 

called "shear failure". In reality this is a failure under combined shearing 

force and bending moment, plus, occasionally, axial load, or torsion, or both. 

Shear failures reduce the flexural capacity of members, and considerably reduce 

their ductility. They are, therefore, undesirable, especially since a reduction 

in ductility may lead to a sudden, brittle type, of failure. 

Whilst the principle characteristics of the failure mechanism have been 

generally recognised for many years now (135,136), the complexity of the problem 

is so great that as yet, no general analytical method for the determination of 

the various forces causing failure has been formulated. Most of the special 

methods rely on numerous simplifying assumptions. 

From a designers viewpoint the following questions are raised: 

(a) For a beam with a specific type of loading, geometry and material 

properties, what is the minimum amount of web reinforcement necessary to 

increase the shearing strength of that beam to a particular value V, 

greater than its cracking strength Vcr? 

(b) For the above beam, what is the minimum amount of web reinforcement 

necessary to develop its full flexural strength? 

Although no general analytical method has been developed which enables 

the magnitudes of the various forces, acting on a beam section at shear failure, 

to be calculated, adequately safe design procedures have been developed over the 

years. The large number of independent parameters influencing the shear failure 

mechanism has led investigators to derive empirical or semi-empirical equations 

based on the parameters investigated during their research. 

The parameters effecting the shear failure mechanism in normal weight 
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concrete have been sufficiently well summarised in several publications (137- 

139), and comparisons of shear failures and their influencing factors, between 

dense aggregate and lightweight aggregate concrete beams of similar design, 

indicate that the general behaviour of lightweight concrete is similar to that 

of its denser counterpart. 

The differences which have been observed relate mainly to the magnitude 

of diagonal tension resistance. So far as the mechanism of shear failure is 

concerned, there appears to be no significant difference between dense and 

lightweight aggregate concretes, except for the shear contribution through 

aggregate interlock. 

In a gravel concrete beam a diagonal crack tends to result from a break- 

down in the bond between the aggregate and the matrix. Relative slippage causes 

the irregular faces of the crack to separate slightly. Tensile stresses created 

in the steel bars by the crack opening induce clamping forces between the crack 

faces that in turn develop shear resistance, 'aggregate interlock'. The 

tensile and compressive strengths of lightweight aggregates are, however, 

generally less than those of crushed rock and gravel aggregates. Thus, a 

diagonal crack forming in a lightweight concrete beam will fracture a much 

higher percentage of the aggregate particles with the result that the crack 

faces are much smoother. Consequently there is a reduction in the shear 

resistance through aggregate interlock. 

Although much research has been carried out on both rectangular and 

T-sections for dense aggregate concretes (138-142) investigators concerned with 

shear in lightweight concrete have concerned themselves mainly with rectangular 

sections and few data are available on the shear resistance of lightweight 

concrete T-beams (45,49). 

Rectangular sections offer an opportunity to study the basic phenomena 

of shear resistance and shear failure in relatively clear and simple circum- 

stances. In practice, however, the use of T-sections as part of a composite 

beam slab construction is far more common. 

The aim of this investigation is to observe the effect of varying some 
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of the more important parameters, which affect shear failure, on Lytag-sand 

concrete T-beams, in order to obtain much needed design data for lightweight 

concrete T-sections. The results are then compared with existing U. S. and 

European codes of practice. The results obtained by Bandyopadhyay (49) for 

Solite lightweight aggregate concrete T-beams and their gravel comparison 

specimens are also compared with the data obtained for the Lytag-sand beams. 

7.2 Shear in Lightweight Concrete: Review of Past Research 

Richart and Jensen (24) in 1930, were probably the first investigators 

to study the shear resistance of beams made with lightweight aggregate concrete. 

Test specimen details are given in Table 7.1. The authors reported that for 

beams without web reinforcement, which failed by diagonal tension, the ratio 

of the shearing unit stress to the compressive strength of control cylinders 

was practically the same for corresponding mixtures of gravel and Haydite 

concrete. 

For beams with weh steel, the authors argued that the unexpectedly high 

strength of the web steel meant that its full strength was not developed in any 

beam of this group and that, therefore, the recorded shearing stresses did not 

represent the full web resistance of these beams. 

In 1958, Hanson (27), reported results from shear tests on beams made 

with seven different types of U. S. lightweight aggregates and a single type of 

gravel aggregate, Table 7.1. None of the beams contained web reinforcement. 

A comparison of ultimate loads with diagonal cracking loads showed that the 

spread of nominal unit shear would be nearly doubled if computed on the former 

rather than the latter. The author felt that this had contributed to the wide 

range of shear values reported in the literature for beams without web reinforce- 

ment. It was also observed that the longer span beams generally failed completely 

at the formation of the initial diagonal crack. The ability of the shorter spans 

to achieve stress redistribution after diagonal cracking was materially effected 

by the chance location of the crack. Thus he argued that the load at diagonal 

cracking should be considered as the ultimate load for beams without web 

reinforcement. 
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A comparison of nominal unit shear strength as a function of concrete 

strength for all the different types of concrete showed that six of the light- 

weight aggregates produced concretes with shear strengths of approximately 75% 

of that of the comparable gravel concrete. The seventh lightweight aggregate 

produced a concrete with a shear strength equal to that of the gravel concrete. 

The shear strengths of Richart and Jensens (24) lightweight beams for comparable 

cylinder strengths are approximately 65% greater than Hansons (27), however, the 

moment shear ratio of the latter series of beams is greater than for the 

former; (Table 7.1). 

Hanson's test beams were characterised by comparatively high steel 

percentages and a low moment-shear, a/d, ratio. In their discussion of this 

paper, Ferguson and Thompson (143) presented test data on the ultimate shear 

strength of twelve lightweight concrete beams made with a single type of aggre- 

gate, but with lower steel percentages and higher a/d ratio's; Table 7.1. The 

indicated shear strengths of these beams were lower than those reported by 

Hanson (27), and the authors suggested that the effects of steel percentage and 

moment-shear ratio may be more pronounced in lightweight than in dense aggregate 

concrete. At a later date, Ferguson furnished unpublished results (28) of 

fifteen additional beams using the same lightweight aggregate. These later 

findings corroborated the indicated low diagonal tension resistance of long span, 

low steel percentage lightweight beams, for the particular aggregate used. 

In an attempt to clarify the situation, Hanson initiated a further series 

of tests which were reported in 1961 (28). As well as confirming some of his 

earlier findings the author also reported that a good correlation was found 

between the nominal unit shear strength of the beams and the accompanying split- 

cylinder tensile strengths of dry concretes, and that the split-cylinder and 

beam tests showed that the nominal unit shear strength of concrete containing 

a particular lightweight aggregate is determined by the characteristic level of 

tensile strength associated with the aggregate. The unit shear strengths of 

lightweight concrete beams varied from approximately 60-100% of the values for 

comparable gravel concrete beams depending on the lightweight aggregate considered 
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and on the beam characteristics. 

Brewer in his discussion of this paper presented data from tests being 

carried out on concretes, made with two U. K. lightweight aggregates, and 

comparable sand-gravel concretes. The results were later published by Taylor 

and Brewer (33) in 1963. Details of the specimens are given in Table 7.1. The 

authors' main conclusions are summarised below: 

1. The diagonal-cracking loads for the lightweight concrete beams ranged from 

78-93% of the average values determined for the comparable gravel concrete 

beams. 

2. The diagonal-cracking loads of beams reinforced with cold worked deformed 

bars were approximately 10% lower than for beams reinforced with plain mild 01 

steel bars. 

3. The diagonal-cracking load for a particular type of beam increased with 

increasing concrete strength. The rate of increase was similar for all 

types of concrete. 

4. The recommendations of CP 114 (22) regarding shear in beams without shear 

reinforcement did not give an adequate safety margin against failure for 

either gravel or lightweight concrete beams. 

Evans and Dongre (35) also published shear test data, for lightweight 

concrete beams, in 1963; Table 7.1. It was shown that the relationship between 

diagonal cracking stress vor and cylinder crushing strength fc' for gravel beams 

could be represented by the equation 

vcr = 0.04 fc'+ 100 .... (7.1) 

Since the split cylinder strength of Aglite concrete was about 75% of that for 

the comparable gravel concrete, the equation for Aglite concrete was modified to 

vcr ° 0.03 fc'+ 75 .... (7.2) 

The authors argued that this equation was proved accurate by the test 

results for rectangular beams without web reinforcement and recommended that the 

allowable shear stress for Aglite concrete should be 0.41 N/mm2 (60 psi) provided 
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that the works cube strength was 21 N/mm2 (3000 psi) or more. Shear reinforce- 

went was to be provided if the unit shear stress exceeded 0.41 N/mm2. 

For beams with 0.26% of mild steel stirrups as web reinforcement the 

results obtained showed an improvement of approximately 33% in the diagonal 

cracking load. Thus it was suggested that the relationship between diagonal 

cracking stress and the cylinder strength may be represented by the equation 

Vu 0.04 fý' + 100 .... (7.3) 

It has since been established (139) that there is little correlation between cube 

strength and the nominal shear stress at which diagonal tension cracks occur. 

The permissible shear stress is related in terms of W. In view of this fact 

it appears that the above equations, both for beams with and without web rein- 

forcement, are no longer valid. 

Ivey and Buth (144), reported tests carried out on twenty six lightweight 

concrete beams, in 1967; Table 7.1. The main variables were a/d ratio, steel 

percentage, three different types of aggregates and the beam cross-section. 

Their primary consideration was not in reiterating the previously proven effects 

of concrete strength, a/d ratio and steel percentage on the shear capacity, but 

the comparison of the test data collected during their test programme with the 

then existing ACI 318-63 design requirements (26) and its proposed amendments. 

The previously shown effects of tensile strength, a/d ratio and steel 

percentage were again demonstrated. The tests meant to show the effect of beam 

size on shear resistance proved inconclusive and the authors suggested that if 

such an effect was present it was probably small. 

Bandyopadhyay (49), published results, in 1974, of tests on lightweight 

concrete and gravel concrete T-beams, as detailed in Table 7.1. For beams 

without web reinforcement, he showed the effect of a/d ratio and steel percentage 

on the shear resistance of lightweight and dense aggregate concrete beams. The 

author also made the following conclusions: 

1. The shear cracking strength of Solite concrete beams was equal to that of 

comparable gravel concrete beams. 
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2. Shear cracking strength of both Solite and gravel concrete beams is 

independent of the provision of vertical stirrups but depends on the 

concrete strength, a/d ratio and longitudinal steel percentage. 

3. The diagonal tension strength of Solite concrete is effected by the same 

variables as those effecting the resistance of dense aggregate concrete. 

There is no fundamental difference in behaviour and modes of failure. The 

difference lies only in the types of aggregate used and its ability to 

resist the shear failure. 

4. The ultimate shear resistance of Solite concrete T-beams varied between 71 

and 95% of comparable gravel concrete T-beams. 

For beams with web. reinforcement, the authors most important conclusion 

was that such beams did not exhibit the sudden collapse mode associated with 

beams without web steel. This fact warrants the provision of nominal web 

reinforcement in all beams regardless of the value of the nominal shearing stresse 

7.3 Shear in Lightweight Concrete: U. S. and European Design Recommendations 

Excellent reviews of shear theories and their historical development, 

from the turn of the century until the early seventies, are given in several 

publications (136,138,139). The large number of differing theories which 

have been put forward indicate the complexity of the problem. 

7.3.1 U. S. Design Code Recommendations 

The first clauses relating to the shear strength of lightweight concrete 

beams were included in the 1963 revision of the ACI building code, ACI 318-63 

(26). The ultimate strength design equation, for the nominal shear stress at 

shear cracking, in dense aggregate concrete was: 

Vcr = (1.9 /+ 2500 p Vý) .... (7.4) 
M 

Following the studies of Hanson (28) and Ferguson and Thompson (143) it 

was suggested that equation (7.4) could be modified by the use of a correction 

factor for lightweight concrete. It would thus become: 

vcr = 0.75 4 (1.9 "+ 2500 p Vd) .... 
(7.5) 

M 
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for all lightweight concrete or: 

vcr = 0.85 4 (1.9 /+ 2500 p Vom) 
M 

for partially sand replaced lightweight concrete. 

.... (7.6) 

Ivey and Buth (144) proposed an alternative to this method. They 

advocated the recognition of the splitting tensile strength, fSp, as the concrete 

strength parameter rather than disguising it with FSP (where FSp fSP/ )' 

ACI 318-63 (26) ultimate strength design equation for lightweight concrete 

was: 

vor -+ (0.28 Fs + 2500 p Vd) .... (7.7) 
c M 

The authors suggested that fS, might be substituted for FSp / in equation (7.7) 

to give; 

vcr = (0.28 fs, + 2500 p a) 
M 

.... 
(7.8) 

With a value of FSP = 6.7, equation (7.7) becomes identical to the normal weight 

concrete equation (7.4). 

A comparison of equations (7.5), (7.6), (7.7) and (7.8) revealed that the 

0.75,0.85 procedure, 'equations (7.5) and (7.6) were the most conservative (36% 

or 60% including 4). Next came the existing code equations (7.7), (21% or 422 

including »). Equation (7.8) -was the least conservative (7% or 26% including ¢). 

The revised code ACI 318-71 (26) suggested that from investigations (27, 

28) one of the following modifications should apply when lightweight concrete is 

used: 

(a) The provision for vor shall be modified by substituting fSP/6.7 for 

but the values of fsP/6.7 should not exceed /. 

(b) When fSP is not specified the term shall be multiplied by 0.75 for all 

lightweight concrete and 0.85 for sand-lightweight concrete. Linear inter- 

polation may be used when partial sand replacement is used. It should be 

noted that the factors 0.75 and 0.85 apply only to the terms containing I 

in the equation. 
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The above method was retained when A. C. I. revised their building code 

in 1977 (26). 

7.3.2 U. K. Design Code Recommendations 

The first British design code which contained clauses relating to light- 

weight concrete was the 1957 revised edition of CP 114 (22). For dense concrete, 

the permissible shear stress was based on the cube strength. If the shear stress 

acting on the section exceeded this value then the whole shearing force was to 

be provided for by the tensile resistance of the shear reinforcement acting in 

proper combination with the compression in the concrete. Even with the whole 

shearing force provided for in this way, the calculated shear stress was not to 

exceed four times the permissible shear stress for the concrete alone. 

For lightweight concrete beams shear reinforcement was to be provided to 

resist the total shear force at any cross-section but again the calculated shear 

stress on the section was not to exceed four times the permissible shear stress 

for concrete alone. 

The procedure recommended in CP 110 (54) is based on calculating the 

shear stress acting on a section and comparing this value with a maximum 

permissible value of nominal ultimate shear stress vu given in the code. The 

values given in the code are based on the formula vu - 0.75 vff- with a limiting 
CU. 

value of 4.75 N/mm2. If the calculated shear stress is greater than the value 

of vu given then the section must be revised. If not it is compared with a 

table of ultimate shear stress which increase with increasing concrete strength 

and/or longitudinal steel percentage up to a maximum value of 1.00 N/mm2. If 

the calculated shear stress is greater than the corresponding ultimate shear 

stress vc then shear reinforcement must be provided to carry the excess shear 

force above that which can be carried by the concrete. If the calculated shear 

stress exceeds half the value of vc but does not exceed vc then nominal links 

should be provided. 

7.3.3 CEB-FIP Design Recommendations 

In the 1978 CEB-FIP Model Code, (73), for the designing of web reinforce- 

ment for dense concrete elements two methods are proposed. The Standard Method 
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is a semi-empirical method based essentially on test results. The 'Refined 

Method' is theoretically based on the plastic analysis of a truss model (145) 

Which has been checked and calibrated using a series of test results. It is 

applied to more specialised cases such as main girders in buildings and bridges 

and in particular to cases involving combined bending, torsion and shear. 

For lightweight concrete, however, only the 'Standard Method' applies 

with various modifications to the dense concrete design equations. Design 

according to the 'Standard Method' is based on the following procedure, for 

dense concrete. 

Firstly the resistance to shear, VRd, of an element, is considered to 

comprise the resistance wd carried by truss action (inclined concrete struts 

and shear reinforcement) and the resistance Vcd attributed to the shear 

resistance of the concrete compression zone and secondary effects. The design 

shear force VSd is thus given by: 

VSd ' VRd a wd + Vcd 

Vwd is given by: 

V 
Jd 

= Asw . 0.9 d fywd (1 + cot a) sin a 

s 

where Asw - cross-sectional area of web reinforcement 

s- spacing of web reinforcement 

d- effective depth of beam 

fywd - design stress of web reinforcement 

a- angle of inclination of web reinforcement. 

Vcd is given by: 

Vcd = 2.5 . zRd . bw . 'd where TRd a 0.25 fctd 

and fctd is the design concrete tensile strength 

b is the width of the web. 
w 

.... (7.9) 

.... (7.10) 

As with CP 110 (54), the shear resistance reaches an upper limit 

, .1 
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controlled by crushing of the concrete compression diagonals given by: 

VRd a 0.30 fcd . bW .d 

Where fcd is the design concrete stress in compression. 

For lightweight concrete equation (7.11) is altered to 

VRd ° 0.20 fcd . bW .d 

7.4 Details of Experimental Test Programme 

7.4.1 Aim of Tests 

.... (7.11) 

.... (7.12) 

The aim of this series of tests was to investigate the effects of varying 

three of the more important parameters known to effect the mechanism of shear 

failure, in beams without web reinforcement, and to compare the results with 

present U. S. and European design codes. The parameters studied are as follows: 

7.4.1.1 The Concrete Strength 

Two concrete strengths were originally chosen to represent both an average 

and a higher value likely to be found in reinforced concrete structures 

generally. The strengths chosen were 30 N/mm2, series LS4-LS6, and 40 N/mm2, 

series LS1-LS3. Despite, the fact that strengths lower than 30 N/mm2 were 

unobtainable is the cement contents listed in CP 110 wert adhered to, two beams 

with cube strengths of 20 N/mm2, S5 and S6 were later added to the test series. 

7.4.1.2 The Percentage of Longitudinal Reinforcement 

For the two concrete strengths of 30 and 40 N/mm2 steel percentages of 

0.292 (LS6), 1.14% (LS5), 1.872 (LS4) and 1.14% (LS3), 1.87% (LS2), 3.01% (LS1) 

respectively were decided on initially. However, when the results from the 

initial series of tests, LS1-LS6, were analysed, it was decided to cast further 

specimens with steel percentages of 0.57% for the 30 N/mm2 concrete, Sl and S2, 

and 0.7% for the 40 N/mm2 concrete, S3 and S4. For the 20 N/mm2 concrete, SS 

and S6, a steel percentage of 0.29% was used. All steel percentages are based 

on the flange width times the effective depth, bf d. 

7.4.1.3 The Shear Span-Effective Depth (a/d) Ratio 

For series LS1-LS6, four a/d ratio's were chosen, namely 1.5,3.0,4.5 
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and 6.0, making a total of 24 beams in all. For the additional six beams 

tested, S1-S6, a/d ratio's of 3.0 and 4.5 were used. 

Details of all beams are given in Table 7.2 and Figures 7.1 and 7.2. 

7.4.2 Design of Beams 

In order that a useful comparison between Lytag concrete T-beams and 

those of Solite and gravel, tested by Bandyopadhyay (49), could be made the 

beams for this series of tests were designed to have roughly similar dimensional 

properties to those of the previous tests (49). 

In all the test specimens the web width bw, flange width bf, flange thick- 

ness t, and the effective depth d, were kept constant. For series LS1-LS6 the 

overall depth h was also kept constant. Thus the following ratio's remained 

constant: 

(a) Flange width/web width ratio (bf/bw = 3.0) (= 3.0 for Bandyopadhyay (49)). 

(b) Effective depth/flange thickness ratio (d/t - 2.37) (- 2.50 for (49)). 

(c) Flange thickness/overall depth ratio (t/h a 0.32) (a 0.31 for (18)). 

N. B. (c) only applies to series LS1-LS6 and not to Sl-S6. 

The value of bf/bw = 3.0 was chosen since previous research (142) has 

shown that significant increases in shear resistance are not always obtained 

with corresponding increases of bf/bw greater than 3.0. The web width bw was 

chosen to allow the largest bar size used, " 20 mm, to be accommodated in 

accordance with the spacing and cover requirements of CP 110 (54). 

With the overall depth kept constant in series LS1-LS6, this meant that 

the cover to the main steel in series LS2-LS6, Figure 7.1, was in excess of that 

required by CP 110 (54). This was commented upon during the investigation (146) 

and it was decided to repeat the tests on two beams which had excessive cover 

in order to try and discover whether or not this resulted in any significant 

increase in the shear resistance of these beams. The repeat tests (with the 

correct cover to all longitudinal steel) were carried out on specimens similar 

to LS5-2 and LS6-2 and these specimens were labelled LS5-2R and LS6-2R respect- 

ively. Specimens Sl-S6 had the correct cover to all reinforcement as defined 

in CP 110 (54). 
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TABLE 7.2 DETAILS OF LYTAG-SAND CONCRETE T-BEAMS 

Beam No. 

28 Day 
Cube 

Streu th 
(N/mm2) 

Pb* 
(2) 

p (7. ) 
Based on 

Flange 
Width 

p 
Pb 

a/d 
Ratio 

Number and 
Diameter of 
Main Steel 

(mm) 

h 
(mm) (fig) 

(mm) 

LS1-1 40.0 3.10 3.01 97 1.5 4-20 & 2-16 241 20 
2 38.0 3.10 3.01 97 3.0 4-20 & 2-16 241 20 
3 37.5 3.10 3.01 97 4.5 4-20 & 2-16 241 20 
4 42.0 3.10 3.01 97 6.0 4-20 & 2-16 241 20 

LS2-1 39.5 3.10 1.87 60 1.5 2-20 & 2-16 241 38 
2 48.0 3.10 1.87 60 3.0 2-20 & 2-16 241 38 
3 47.0 3.10 1.87 60 4.5 2-20 & 2-16 241 38 
4 41.5 3.10 1.87 60 6.0 2-20 & 2-16 241 38 

LS3-1 46.0 3.10 1.14 37 1.5 2-20 241 51 
2 46.0 3.10 1.14 37 3.0 2-20 241 51 
3 48.0 3.10 1.14 37 4.5 2-20 241 51 
4 45.5 3.10 1.14 37 6.0 2-20 241 51 

2-20 
LS1-2R 46.0 3.10 3.01 97 3.0 4-20 & 2-16 241 20 
LS2-2R 47.0 3.10 1.87 60 3.0 2-20 & 2-16 241 38 

S3 47.5 3.10 0.70 23 3.0 2-12 & 2-10 215 15 
S4 47.0 3.10 0.70 23. 4.5 2-12 & 2-10 215 15 

LS4-1 30.0 2.40 1.87 77 1.5 2-20 & 2-16 241 38 
2 31.0 2.40 1.87 77 3.0 2-20 & 2-16 241 38 
3 30.4 2.40 1.87 77 4.5 2-20 & 2-16 241 38 
4 29.0 2.40 1.87 77 6.0 2-20 & 2-16 241 38 

LS5-1 27.5 2.40 1.14 47 1.5 2-20 241 51 
2 25.5 2.40 1.14 47 3.0 2-20 241 51 
3 29.5 2.40 1.14 47 4.5 2-20 241 51 
4 32.5 2.40 1.14 47 6.0 2-20 241 51 

LS6-1 31.5 2.40 0.29 12 1.5 2-10 241 56 
2 32.0 2.40 0.29 12 3.0 2-10 241 56 
3** 33.5 2.40 0.29 12 4.5 2-10 241 56 
4 - 2.40 0.29 12 6.0 2-10 241 - 

LS5-2R 34.0 2.40 1.14 47 3.0 2-20 210 20 

LS6-2R 33.5 2.40 0.29 12 3.0 2-10 200 15 

S1 30.5 2.40 0.57 24 3.0 4-10 215 15 

32 31.5 2.40 0.57 24 4.5 4-10 215 15 

S5 23.5 1.64 0.29 18 3.0 2-10 200 15 

S6** 23.5 1.64 0.29 18 4.5 2-10 200 15 

* Based on CP 110 (54) parabolic stress block, see Appendix B. 

** Flexural failure. 
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The length of all the beams was kept constant at 2.5 m between supports. 

The beams projected beyond the supports by 0.25 m to allow adequate anchorage 

of the longitudinal steel. 

For the beams in series LS2-LS6 all the longitudinal steel had effective 

anchorage lengths in accordance with CP 110 (54), i. e. not less than 12 times 

the bar diameter, 4, beyond the support. For series LS1, the top layer of 20 mm 

" bars were shorter than required by CP 110 (54) by some 2 ¢. It was suggested 

(147) that this may have led to premature anchorage failure of these specimens 

despite the fact that in none of the tests was there any signs of distress in 

the anchorage zone prior to failure. In order to investigate this a beam similar 

to LS1-2, labelled LS1-2R was cast and tested, the only difference being that 

all three layers of steel ended with L-type bends in the anchorage zone. A 

second beam similar to LS2-2 labelled LS2-2R was also cast and tested; in this 

case both layers of steel again ended with L-type bends in the anchorage zone 

(see Figure 7.2). Despite the fact that LS2-2 had adequate anchorage, LS2-2R 

was cast to see if the addition of a further L-type bend had any significant 

effect on the ultimate capacity of the beam. 

The size of the beams used in the test programme represented one half 

scale models of normal laboratory prototypes, which have been shown to simulate 

well the deformation and strength characteristics of laboratory prototypes in 

every respect (141,148). None of the beams contained web reinforcement. 

7.4.3 Materials 

The longitudinal reinforcement in all beams consisted of hot-rolled 

deformed high tensile steel with a characteristic yield stress of approximately 

465 N/mm2. A typical stress/strain curve for the steel is shown in Figure 7.3. 

Concrete mixes were designed to achieve 28 day cube strengths of approximately 

20,30 and 40 N/mm2. As was explained in Chapter 4 problems of consistency 

occurred with the 40 N/mm2 mixes with the average of all the test beams being 

slightly greater than 45 NImm2. The mix proportions by weight of OPC : natural - 

sand : Lytag 12 mm, were as follows: 

(a) 20 N/mm2; 1: 3.73 : 3.48. 
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(b) 30 N/mm2; 1: 2.86 : 2.86. 

(c) 40 N/mm2; 1: 1.93 : 2.13. 

The effective water/cement ratio-s were 1.26,1.04 and 0.78 respectively. 

7.4.4 Manufacture of Beams 

All beams were cast using the same steel mould which was fabricated using 

standard plate, channel and angle sections. All joints were sealed with tape 

and the mould was lightly oiled before each beam was cast. All reinforcing 

steel was allowed to rust slightly. 

Each beam required two batches of concrete. These were mixed in a 

horizontal, pan-type mixer. The mould was placed on a high frequency vibrating 

table and concrete from the first batch was placed until it just covered the 

reinforcement. This was then vibrated by means of the table whilst at the same 

time a 10 mm ¢ steel rod was used to ensure that the concrete was sufficiently 

well compacted around the main steel. Aggregate distribution and the degree 

of compaction obtained are indicated by Plate 7.1. The remainder of the first 

batch was then placed and compacted. The second batch was placed in two layers 

and compacted by means of the vibrating table and a hand held poker vibrator. 

100 mm cubes from each batch were also cast with each beam. The beam and control 

specimens were left for approximately 2-3 hours after casting before the surfaces 

were trowelled smooth. They were then covered with polythene sheeting. Speci- 

mens were demoulded at 2 days and left to dry in the laboratory. All beams and 

their companion cubes were tested at 28 days ±1 day. 

7.4.5 Loading Arrangement 

Details of the test rig and loading arrangement are given in Figure 7.4. 

Load was applied at two symmetrical load points by means of a steel spreader 

beam. At each load point, load was transferred to the beam over the web by 

means of a 110 x 50 mm wide bearing plate. The jack load was measured directly 

from a load indicator dial. 

7.4.6 Instrumentation and Measurements 

For beams LS1-LS6, steel strains were measured in both shear spans and 

in the constant moment region by means of electrical resistance strain gauges. 
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All gauges were placed on the same bar, and where more than one layer of 

reinforcement was involved, the bar was always positioned on the bottom layer 

in order that the probable maximum steel strains which occurred could be 

measured. Gauge locations varied depending on the a/d ratio of the test speci- 

mens. 

Concrete strains were measured in both shear spans, near to the load 

point, and in the constant moment region by means of a Demec extensometer with 

a gauge length of 100 =. The centre lines of the three locations used for each 

a/d ratio are shown in Figure 7.2. For each location four strain readings were 

taken across the top of the flange, at 60 mm centres, four on the side of the 

flange, at 20 mm centres, and three on the side of the web. Mid-span deflection 

was measured by means of a dial gauge accurate to 0.01 mm. For beams Sl-S6, 

concrete and steel strains in the constant moment region and mid-span deflection 

only were recorded. To aid the observation and recording of cracks the entire 

beam was whitewashed prior to testing. 

The beams were loaded in increments of V-2.5 KN, Figure 7.4, and load 

at first diagonal crack and failure wxs-. noted. Strain and deflection measure- 

ments were taken at various intervals depending on the expected diagonal cracking 

and failure loads. Measurements were taken as near to failure as was practically 

possible and safe. 

On the formation of a diagonal crack, the load indicated on the machine 

console would drop. The load would then be gradually brought back up to the 

diagonal cracking load and the incremental loading continued until failure. 

For the beams with longer a/d ratio's failure generally occurred before a return 

to the diagonal cracking load was achieved. Thus the diagonal cracking load 

and the failure load were the same. 
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7.5 Test Results and Discussion 

7.5.1 Effect of Anchorage and Cover 

It was mentioned in section 7.4 that the beams in series LS1 did not 

exactly meet the anchorage requirements according to CP 110 (54). It was 

suggested (147) that this may have led to premature anchorage failure in these 

beams. In order to investigate this, a beam similar to LS1-2 was tested with 

full anchorage to all steel. For comparison purposes a beam similar to LS2-2 

was also tested with additional L-type bends in the anchorage zone despite the 

fact that the steel in LS2-2 was anchored according to CP 110 (54), (see 

Figure 7.2). 

For the beams in series LS1-LS6, the overall depth of the beam, h, was 

kept constant and therefore beams LS2-1 to LS6-3 had excessive cover to the 

longitudinal reinforcement. It was suggested (146) that these beams may show a 

higher resistance to shearing, than similar beams with cover according to 

CP 110 (54), due to increased dowel action. In order to investigate this, beams 

similar to LS5-2 and LS6-2 were tested with the correct cover to all main steel 

(see Figure 7.1 and Table 7.2). All repeat beams were given the same beam numbers, 

as their counterparts with the addition of the letter 'R'. The beams chosen for 
f 

repeat tests were those with an a/d ratio of 3.0 since these specimens showed the 

highest shear capacity of the beams which behave as true 'beams' rather than 

'short beams' or 'corbels', i. e. a/d 4 1.5. The results of the repeat tests are 

shown in Table 7.3. 

For the anchorage tests, LS1-2 and LS2-2, it is apparent that the provision; 

of L-type bends to all main steel, Figure 7.2, increases the load at diagonal 

cracking by 6-7% and the ultimate load by 8-12%. Despite the fact that for beam 

LS2-2 the minimum anchorage length was 12 times the bar diameter for all steel, 

in accordance with CP 110 (54), the addition of two L-type bends to the 16 mm 

diameter bars, Figure 7.2, increased the ultimate load capacity by 8%. It should 

be noted that none of the beams in series LS1 or LS2 showed any signs of distress 

in the anchorage zone prior to failure and this variation in shear capacity is 

probably due to the variation between two test specimens which can be expected 
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TABLE 7.3 EFFECT OF ANCHORAGE AND COVER ON ULTIMATE SHEAR STRENGTH 

Beam 
No. 

Compressive 
Strength 

(N/mm2) 

Load at 1st 
Diagonal 

Crack 

" (kN) 

Percentage 
Increase 

(z) 

Ultimate 
Load 
(kN) 

Percentage 
Increase 

(x) 

LS1-2 38.0 85.0 - 130 - 
LS1-2R 47.0 90.0 6 145 12 

LS2-2 48.0 70.0 - ill - 
LS2-2R 47.0 75.0 7 120 8 

LS5-2 25.5 50.0 - 72.5 - 
LS5-2R 34.0 55.0 10 79.0 9 

LS6-2 32.0 58.2 - 58.5 - 
LS6-2R 33.5 48.0 -18 48.0 -18 
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when dealing with a variable material. Hanson (28) noted that for beams without 

web steel, the longer span beams generally failed completely at the formation 

of the initial diagonal crack and suggested that the ability of the shorter 

span beams to achieve stress redistribution after diagonal cracking was materially 

affected by the chance location of the diagonal crack. Although the cracking 

patterns and modes of failure, for both the above mentioned sets of beams, were 

similar, this may be an explanation for the increase of approximately 10% in the 

ultimate shear strength. 

The effect of'cover to the main steel is also shown in Table 7.3. The 

results of the two repeat beams appear to be contradictory, with LS5-2R showing 

a greater ultimate shear strength than LS5-2, despite less cover to the main 

steel, whereas LS6-2R shows a decrease in ultimate shear strength for a decrease 

in cover, as compared with LS6-2. 

For LS5-2 and LS5-2R there is a large difference in concrete cube strength 

but as is shown in section 7.5.3.6.3 the effect of concrete strength on ultimate 

shear strength is generally small. The increased strength due to decreased 

cover may be due to flexural cracking in the shear span. For the beam with 

smaller cover, a higher shear force is required to initiate tensile cracking in 

the concrete since the distance from the centroid of the tensile steel to the 

extreme tensile concrete fibre is less. Thus for a given shear force the crack 

height should be less and this was borne out to some extent by an examination 

of the cracking patterns in the two beams. For smaller crack heights, the area 

of concrete resisting the shear force will be greater and thus the ultimate 

capacity will be increased. When the small increase due to concrete strength is 

taken into account, however, the variation in ultimate load capacity between the 

two beams will be very small. 

For beams LS6-2 and LS6-2R a difference in the cracking patterns at 

failure was observed. The failure mode of LS6-2 was similar to those of the 

other beams tested at an a/d ratio of 3.0, (see Figure 7.15 (b)), with the 

failure plane reaching the web-flange junction near to the load point. For LS6- 

2R, however, the failure plane reached the web-flange junction near the centre 
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of the shear span. Thus it can be seen that for the low steel percentage used 

in these beams the chance location of the diagonal crack has significantly 

affected the ultimate shear strength. 

The results of the tests to observe the effect of anchorage and cover on 

the ultimate shear strength were very limited and thus only limited conclusions 

can be drawn from 'them. 

The fact that there were no signs of distress in the anchorage zones of 

the beams in series LS1 and LS2, prior to failure, tends to suggest that the 

increased capacity of approximately 10% for LS1-2R and LS2-2R is due to material 

variations typically associated with such tests. 

Series LS6 suggests that for very low steel percentages the failure strength, 
0 

of an unreinforced web may be unpredictable. 

7.5.2 Deformation Characteristics 

7.5.2.1 Mid-Span Deflection 

A selection of the mid-span deflection measurements taken during this 

series of tests is shown in Figures 7.5-7.7. Figure 7.5 shows the effect of a/d 

ratio on mid-span deflection for series LS3. The results are typical of all the 

beam series tested and indicate that for a given longitudinal steel percentage 

and concrete strength the deflection at any given load decreased with decreasing 

a/d ratio with a large decrease from a/d of 3.0 to 1.5. Similar results were 

reported by Bandyopadhyay (49) for Solite and gravel concrete T-beams. 

Figures 7.6 (a) and (b) show the effects of longitudinal steel percentage 

on mid-span deflection for beams with an a/d ratio of 4.5 and concrete strengths 

of 30 or 45 N/mm2. The variation in mid-span deflection between beams with 

different steel percentages is more marked for the higher a/d ratio's of 4.5 and 

6.0, but the relationship between the beams shown in Figures 7.6 (a) and (b) is 

typical of all a/d ratio's. As would be expected, for a given load, the mid-span 

deflection decreases with increasing steel percentage and therefore beam stiff- 

ness. Similar results were again reported by Bandyopadhyay (49) for Solite and 

gravel concrete T-beams. 

Figure 7.7 shows the effect of concrete strength on mid-span deflection 
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7.5.2.3 Concrete Strain Near Load Points 

Several investigators (49,142,149-151) have reported the presence of 

tensile strain and of vertical cracks extending from the compression face in the 

shear span, near to the load points, for dense concrete beams. This is due to a 

stress redistribution in the shear span after the formation of a diagonal crack 

but is generally only associated with the shorter shear spans. In order to 

investigate the effects of diagonal crack formation on the concrete near to the 

load point, strain measurements were taken using a Demec extensometer with a 

gauge length of 100 mm. The locations of the demec points for the various a/d 

ratio's are shown in Figure 7.2. A typical set of strain measurements from the 

top face of the beam near to the load point, for series LS2 is shown in Figure 7.11 

It can be seen that for a/dratio's of 1.5 and 3.0, the formation of the diagonal 

crack leads to a reversal of strain which progressively increases with increasing 

load. For a/d ratio's of 4.5 and 6.0 the formation of the diagonal crack 

resulted in failure and thus any strain reversal which may have occurred is 

irrelevant. These results are generally in agreement with the findings of other 

investigators (49,149-151). 

The formation of vertical cracks extending from the top face of the 

compression flange was observed in many of the beams after failure. These cracks 

generally formed towards the middle of the shear span and can be explained by the 

fact that at the instant of failure the shear plane passes from close to the 

support to close to the load point with contact being maintained only over a small 

zone of the concrete flange, immediately next to the load and by the tensile 

steel. As the section of beam below the diagonal crack moves downwards, the 

tensile steel pulls the anchorage zone towards the centre of the beam and the 

section of beam above the diagonal crack is forced to bend upwards and thus crack. 

The structure becomes a mechanism and collapse occurs. For very short shear 

spans, a/d = 1.5, the tensile cracks form prior to failure and thus high tensile 

strains are recorded particularly if a crack lies within the zone over which 

strains are being measured. 
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7.5.2.4 Strain Distribution over the Depth of Section 

'tin the Failed Shear Span 

The strain distributions across the depth of the section at various load 

increments are shown in Figures 7.12 and 7.13 for a/d ratio's of 1.5 and 6.0 

respectively. These results are typical of the results obtained for all beams 

tested in the shear beam series. 

For the a/d ratio of 1.5, Figure 7.12, it can be seen that the strain 

variation is complex. Strain redistribution is not apparent immediately after 

formation of the diagonal crack but near to failure it can be seen that the 

maximum compressive strain occurs within the web of the beam and that only small 

strains occur near the top face of the compression flange. 

For the a/d ratio of 6.0, Figure 7.13, it can be seen that the section is 

behaving according to standard beam theory with concrete strains increasing 

towards the extreme compression fibre and plane sections remaining sensibly 

plane. The neutral axis position is constant and, along with the low maximum 

compressive strains recorded, is an indication of the low percentage of the 

flexural capacity of the beam at which failure occurred. 

7.5.2.5 Steel Strains 

Graphs of steel strain against load are not shown since they only reflect 

the previously shown trends of a/d ratio, longitudinal steel percentage and 

concrete strength. Instead the maximum recorded values of steel strain are 

shown in Table 7.4 along with other data. An examination of the strains 

occurring in the constant moment region indicates that in general steel strains 

were of the order of 50-75% of the 0.2% proof strain and that it was only in 

beams in series LS6 and S6 that the steel yielded. 

For steel strains within the primary (failed) and secondary (unfailed) 

shear spans, the maximum recorded strain generally occurred adjacent to the load 

point but, for any particular beam the maximum recorded strain did not necessaril, 

occur in the primary span. In many cases the strains recorded in the shear spans 

exceeded those in the constant moment region, but with the exception of beam 

LS3-1 and series LS6 no recorded strain was greater than 0.22. 
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The data shown in Table 7.4 along with the previously discussed figures 

all combine to indicate the brittle failure mode associated with shear failures. 

In general, such failures are sudden and catastrophic. 

7.5.3 Strength Characteristics 

7.5.3.1 Introduction 

The beam strength results are shown in Tables 7.4-7.6 and the failure 

modes of the test specimens are shown in Plates 7.2-7.3. The loads at first 

diagonal crack, Vcr, and at failure, Vu, in the Tables are the observed experi- 

mental values. The ultimate moment Mu is based on the failure load Vu and the 

flexural moment Mf was calculated from the CP 110 parabolic stress block, 

ignoring the material safety factors, (see Appendix B). The aim of this section 

on strength characteristics is to compare the ultimate shear stress with those 

of the various design codes (26,54,73) and to develop an empirical formula to 

predict the ultimate shear stress of a section without any web reinforcement. 

7.5.3.2 Flexural Cracking 

Only minor attention was paid to flexural cracking in the constant moment 

region since beams without web reinforcement are never designed in practice and, 

therefore, crack width, spacing and height data from these tests would be of 

little use. Flexural cracks were marked at each load increment throughout the 

length of the beam with attention being paid to crack formation and propagation 

within the shear spans. 

Initial flexural cracks formed in the constant moment region and as the 

load increased, these cracks propagated towards the web flange junction and new 

cracks formed, both in the constant moment region and in the shear spans. With 

the exception of series LS6, flexural cracks did not propagate up to the web 

flange junction in the constant moment region. With the shorter shear spans 

(a/d < 3.0), however, it was not unusual to find flexural cracks which had 

formed directly under the loading point propagating into the flange. In general, 

flexural crack propagation was rapid at first but slowed down and in many cases 

ceased at medium to high loads, for beams which did not fail at the formation 

of the initial diagonal crack. 
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7.5.3.3 Diagonal Cracking 

For the purposes of this thesis a diagonal crack is defined as an 

inclined crack which extends up towards the loading point and down towards the 

support. For the shorter shear spans (a/d , 3.0) the diagonal cracks tended to 

form in the web, in the shear span, independent of any flexural cracks. For a/d 

ratio's greater than 3.0, the diagonal cracks tended to form as an extension of 

a flexural crack. 

It is worth noting that the span in which the first diagonal crack formed, 

the primary span, was not necessarily the span in which failure occurred. Also, 

in general the head of the critical crack immediately prior to failure was at a 

distance of approximately 1.0 to 1.5 times d from the load point. 

7.5.3.4 Diagonal Cracking and Ultimate Load 

Values of diagonal cracking load Vcr and ultimate load Vu are presented 

in Table 7.5. In converting the diagonal cracking and ultimate loads to stresses', 

a problem is encountered with flanged sections. Design recommendations (26,54, 

73) are based. on nominal shear stress which is calculated on the section width, 

for a rectangular section, or the rib width for a flanged section times the 

effective depth. This method has, not surprisingly, produced a wide range of 

safety margins when compared with actual test results. An added complication is 

introduced with flanged sections, such as T-beams, since the above method does 

not take account of the shear resistance of the concrete in the compression 

flange outstands. For design purposes this results in a conservative design 

since the actual nominal shear stress in the concrete will be less than the 

assumed value. For analysis purposes, however, neglecting the compression 

flange concrete will result in higher calculated values of nominal concrete 

shear stress at failure for test specimens, than actually exist. 

Figure 7.14 shows the calculated nominal ultimate shear stresses for the 

beams in series LS3, based on the rib width times the effective depth and on the 

actual cross-sectional area of the beam down to the centroid of the tension steel, 

For the reasons already given the former calculation is incorrect but the latter 

calculation is also incorrect since it assumes that the cracked concrete in the 
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TABLE 7.5 STRENGTH CHARACTERISTICS OF T-BEAMS 

Beam 
No. 

a/d 
Ratio 

Cube 
Streu th 
(N/mmf) 

vu 
(kN) 

v cr (kN) 
V- 

Vu 
ubd 

(N/mm2) 
vv cr 
(N/mn2) 

HU 
Measured 

(kNm) 

Mf 
Calculated 

(kNm) 

M E 
Mf 

LS1-1 1.5 40.0 150.0 45.0 8.17 2.45 40.50 102.03 0.40 
2 3.0 38.0 65.0 42.5 3.54 2.31 35.10 100.12 0.35 
3 4.5 37.5 37.5 37.5 2.04 2.04 30.38 99.61 0.30 
4 6.0 42.0 37.0 37.0 2.02 2.02 39.96 103.75 0.39 

LS2-1 1.5 39.5 140.5 37.5 7.65 2.04 37.94 71.84 0.53 
2 3.0 48.0 55.5 32.5 3.02 1.77 29.97 74.34 0.40 
3 4.5 47.0 32.5 32.5 1.77 1.77 26.33 74.09 0.36 
4 6.0 41.5 29.9 29.9 1.63 1.63 32.29 72.52 0.45 

LS3-1 1.5 46.0 125.0. 37.5" 6.81 2.04 33.75 47.96 0.70 
2 3.0 46.0 45.0 25.0 2.45 1.36 24.30 47.96 0.51 
3 4.5 48.0 27.5 25.0 1.50 1.36 22.28 48.15 0.46 
4 6.0 45.5 26.4 26.4 1.44 1.44 28.51 47.91 0.60 

S3 3.0 47.5 32.5 25.0 1.77 1.36 17.55 30.40 0.58 
S4 4.5 47.0 26.9 25.0 1.46 1.36 21.79 30.38 0.72 

LS4-1 1.5 30.0 97.5 40.0 5.41 2.18 26.33 67.36 0.39 
2 3.0 31.0 52.5 30.0 2.86 1.63 28.35 67.96 0.42 
3 4.5 30.5 31.0 26.5 1.69 1.44 25.11 67.61 0.37 
4 6.0 29.0 26.5 22.5 1.44 1.23 28.62 66.72 0.43 

LS5-1 1.5 27.5 110.8 35.0 6.03 1.91 29.92 44.93 0.67 
2 3.0 25.5 36.3 25.0 1.98 1.36 19.60 44.33 0.44 
3 4.5 29.5 26.5 25.0 1.44 1.36 21.47 45.44 0.47 
4 6.0 32.5 24.0 22.5 1.31 1.23 25.92 46.09 0.56 

LS6-1 1.5 31.5 61.8 25.0 3.37 1.36 16.69 12.72 1.31 
2 3.0 32.0 29.3 22.5 1.60 1.23 15.82 12.73 1.24 
3 4.5 33.5 20.5+ - 1.12 - 16.61 12.75 1.30 
4 6.0 - - - - - - - 

S1 3.0 30.5 28.0 20.0 1.53 1.09 15.12 24.56 0.62 
S2 4.5 31.5 25.0 25.0 1.36 1.36 20.25 24.61 0.82 

S5 3.0 23.5 19.7 17.5 1.07 0.95 10.64 12.58 0.85 
S6 4.5 23.5 19.0+ - 1.03 - 15.39 12.58 1.22 

* Based on CP 110 parabolic stress block (See Appendix B) 
+ Flexural failure 
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tensile zone is capable of carrying its full share of the shear, as does the 

method for rectangular sections. Thus the true shear stress, in the concrete, 

at failure must lie somewhere between these two extremes. 

For comparison purposes with the various design codes (26,54,73), the 

shear stresses at diagonal cracking and at failure have been calculated based on 

the rib width times the effective depth. 

7.5.3.5 Modes of Failure 

In any multi-phase system under combined bending and shear cracking, in 

particular diagonal cracking is a complex phenomenom. It is not uncommon for 

several secondary modes of failure to occur simultaneously at the failure stage. 

The difficulty in identifying and establishing the correct mode of failure in 

all cases along with the subjective nature of such identifications has resulted 

in the generalised use of the term 'diagonal tension failure' to cover all 

failures which occur as a result of combined bending and shear stresses and, 

which do not exhibit the ductile characteristics associated with flexural failure. 

Diagonal cracking data, along with the influence of a/d ratio and steel per- 

centage, on the failure mode of Lytag-sand concrete T-beams, are shown in 

Table 7.6. The influence of a/d ratio on the diagonal crack formation and 

failure mode is shown in Figures 7.15 (a)-(d). 

For a/d ratio's of 1.5 and 3.0, Figures 7.15 (a) and (b), the initial 

diagonal crack formed independently of any flexural cracks. With increasing 

load the crack, or cracks, propagated upwards towards the web-flange junction 

and downwards towards the support. With the short shear span, a/d - 1.5, the 

crack generally reached the web-flange junction and then proceeded to travel 

horizontally along the junction before propagating up into the flange just 

behind the load point. At failure a shear plane formed in the flange which 

extended down to meet the main diagonal crack near to where it reached the web- 

flange junction. Concrete spalling along the flange and at the support generally 

occurred and in general severe crushing of the concrete web was apparent. With 

a/d - 3.0, more than one diagonal crack generally formed. The critical crack, 

at failure, extended from near the support up through the web and the flange and 
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TABLE 7.6 INFLUENCE OF a/d AND p ON FAILURE MODE 

Beam 
No. 

p 
(%) 

a/d 
Ratio 

Cube 
SN/en th 

Vcr 
(kN) 

Vcr * 
Vcr(L) 

Vu 
(kN) 

* 
Vu(L) 

Failure 
Mode 

LS6-1 0.29 1.5 31.5 25.0 1.00 61.8 1.00 W. C. 
LS5-1 1.14 1.5 27.5 35.0 1.40 110.8 1.79 to 
LS3-1 1.14 1.5 46.0 37.5 1.50 125.0 2.02 
LS4-1 1.87 1.5 30.0 40.0 1.60 97.5 1.58 to 
LS2-1 1.87 1.5 39.5 37.5 1.50 140.5 2.27 
LS1-1 3.01 1.5 40.0 45.0 1.80 150.0 2.43 to 

S5 0.29 3.0 23.5 17.5 1.00 19.7 1.00 D. T. 
LS6-2 0.29 3.0 32.0 22.5 1.29 29.3 1.49 of 

S1 0.57 3.0 30.5 20.0 1.14 28.0 1.42 to 
S3 0.70 3.0 47.5 25.0 1.43 32.5 1.65 it 

LS5-2 1.14 3.0 25.5 25.0 1.43 36.3 1.84 to 
LS3-2 1.14 3.0 46.0 25.0 1.43 45.0 2.28 
LS4-2 1.87 3.0 31.0 30.0 1.71 52.5 2.66 
LS2-2 1.87 3.0 48.0 32.5 1.86 55.5 2.82 of 
LS1-2 3.01 3.0 38.0 42.5 2.43 65.0 3.30 " 

S6 0.29 4.5 23.5 - - 19.0 1.00 Flexural 
LS6-3 0.29 4.5 33.5 - - 20.5 1.08 It 

S2 0.57 4.5 31.5 25.0 1.00 25.0 1.32 D. T. 
S4 0.70 4.5 47.0 25.0 1.00 26.9 1.42 to 

LS5-3 1.14 4.5 29.5 25.0 1.00 26.5 1.39 of 
LS3-3 1.14 4.5 48.0 25.0 1.00 27.5 1.45 of 
LS4-3 1.87 4.5 30.4 26.5 1.06 31.0 1.63 It 
LS2-3 1.87 4.5 47.0 32.5 1.30 32.5 1.71 
LS1-3 3.01 4.5 37.5 37.5 1.50 37.5 1.97 

LS6-4 0.29 6.0 - - - - - - 
LS5-4 1.14 6.0 32.5 22.5 1.00 24.0 1.00 DT. 
LS3-4 1.14 6.0 45.5 26.4 1.18 26.4 1.10 
LS4-4 1.87 6.0 29.0 22.5 1.00 26.5 1.10 11 

LS2-4 1.87 6.0 41.5 29.9 1.33 29.9 1.25 it 
LS1-4 3.01 6.0 42.0 37.0 1.64 37.0 1.54 

D. T. = Diagonal Tension W. C. = Web Crushing 

* Strengths compared with lowest steel ratio in group 
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First flexural cracks appear 
in the shear span. 

X1 

Va (30-40%) Vu: 

Diagonal tension crack appears 
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FIGURE 7.15 (a) DIAGONAL CRACKING PATTERN AND FAILURE MODE 
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a/d= 3.0 

.. 

V= (50-70%) Vu: Diagonal tension cracks form, Ist crack generally 
independent of flexural cracks. 

17 

V= (70-95%) Vu: Fatal crack extends up into flange under load 
point. Tensile crack appears on upper face of flange, approximately 
at mid-span. 

Vu 

FIGURE 7.15(b) DIAGONAL CRACKING PATTERN AND FAILURE MODE 
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under the load point. Concrete spalling generally occurred on the top of the 

flange and close to the support where the base of the diagonal crack emerged. 

For the longer shear spans with a/d ratio's of 4.5 and 6.0, the diagonal 

cracks formed as extensions of flexural cracks. A flexural crack would begin to 

curve towards the load point. Suddenly an increase in load would cause the crack 

to develop right up to the load point and back towards the support. Failure 

occurred either along a single shear plane as indicated in Figure 7.15 (c) or 

along two shear planes, as shown in Figure 7.15 (d) for both a/d ratio's. 

For beams with a/d ratio's of 1.5 and 3.0, the formation of the initial 

diagonal crack was followed by the formation of a second diagonal crack or 

cracks in the other shear span. With further increase in load, both cracks 

extended towards the load point and immediately prior to failure, the head of 

the crack reached to within 15-30 mm (approximately) of the top of the flange. 

Failure at the compression face always involved destruction of the concrete 

close to the upper end of the diagonal tension crack, in particular, around the 

loading block. A side view of the beams shows the diagonal cracks reaching the 

top surface of the flange behind the load point, in general. This is due to the 

fact that the loading block only extended over the width of the rib and not the 

flange. 

Similar failure modes have been observed by several investigators (49,141, 

152) for both lightweight and dense concrete T-beams in shear. Thus it can be 

concluded that the failure mode of Lytag-sand concrete T-beams and their diagonal 

tension strength are affected by the same variables as those which affect dense 

concrete T-beams. The difference lies only in the type of aggregate used and 

its ability to resist shear failure. 

7.5.3.6 Ultimate Shear Resistance 

7.5.3.6.1 Influence of Shear Span - Effective Depth (a/d) Ratio 

The influence of the a/d ratio on the load at first diagonal crack and at 

failure, for the beams tested in this investigation, is shown in Figures 7.16 

(a)-(c). Also plotted on these figures are the permissible concrete shear 

stresses according to the various design codes (26,54,73). In all cases, the 
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CP 110 (54) values are the most conservative. C. E. B. -F. I. P. (73) values are 

independent of longitudinal steel percentage and thus for a given concrete 

strength the gap between the C. E. B-F. I. P. (73) value and the test value decreases 

with decreasing steel percentage. 

For a/d ratio's of 1.5 and 3.0, the ultimate load always exceeds the 

diagonal cracking load whereas for a/d ratio's of 4.5 and 6.0 failure occurs at 

or shortly after the diagonal cracking load. The effect of a/d ratio on ultimate 

shear strength is marked with true beam-type failures occurring at a/d ratio's 

of 4.5 and greater and arch action or strut-type failures (151) occurring at a/d 

ratio's of 3.0 and less; with a transition zone somewhere between these two 

values. Similar results have been reported by other investigators (49,141-143, 

151). 

7.5.3.6.2 Influence of Longitudinal Steel Percentage 

The effect of longitudinal steel percentage on the ultimate shear capacity 

is shown in Figures 7.17 (a) and (b). The effect becomes more pronounced as the 

a/d ratio and the area of longitudinal steel decrease but is less dramatic than 

that due to a/d ratio alone. 

7.5.3.6.3 Influence of Concrete Strength 

The influence of concrete strength on the ultimate shear capacity, for 

different steel percentages and a/d ratio's, is shown in Figure 7.18. Overall 

it appears that the effect of concrete strength on ultimate shear capacity is 

negligible. 

The marked differences which occur between specimens LS2-1 and LS4-1 as 

indicated by the line marked a -b in Figure 7.18 are due to the uncharacteristic- 

ally weak behaviour of beam LS4-1 which failed at an unexpectedly low load. 

This is clearly shown in Figure 7.19 (b) where the value of Mu/Mf for LS4-1 is 

lower than would be expected. No explanation can be offered for this lower 

strength. 

The large difference in ultimate shear stress for beams LS6-2 and S5, as 

indicated by line c-d in Figure 7.18 can possibly be explained by the composition 

of the concrete for beam S5. The concrete strength for this beam at testing was 
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2 3.5 N/mm2 and in order to achieve this low strength a very low cement content 

was used. At an a/d ratio of 3.0, the combined shearing and compressive stresses 

in -the web region can produce high concrete stresses which for this low cement 

content and therefore quality concrete could have resulted in the lower failure 

load. 

Neglecting these two sets of results, the maximum variation, from the 

mean, 'in ultimate shear strength for a cube strength range of 25.5-46 N/mm2, 

LS 3-2 and LS5-2, is 21%. The average variation is approximately 107.. 

7.5.3.6.4 Influence of Ultimate Moment of Resistance 

The ultimate moments at failure (M 
U) of all the beams are shown in 

Table 7.5 along with the theoretical flexural moments on the CP 110 stress 

block (see Appendix B). The ratio's of u to Mf are plotted against a/d ratio 

in Figures 7.19 (a) and (b) . 

Figures 7.19 (a) and (b) show that the ratio of Mu/Mf decreases as a/d 

ratio increases from 1.5. At a value of a/d between 3.0 and 4.5, approximately, 

a : Lower bound value of Mu/Mf is reached after which for increasing a/d ratio a 

corresponding 
increase in ü/Mf is observed. The significance of this feature 

is that for a/d ratio's of approximately 6.0 or greater, depending on the steel 

percentage, 
the theoretical flexural strength of the beam is attained despite 

the fact that no shear reinforcement is present. The significance of the 

longitudinal steel percentage on Mu/Mf for beams without web reinforcement is 

also apparent from Figures 7.19 (a) and (b) . 

For series LS6 where the recorded steel strains shown in Table 7.4 exceed 

0.2Z, the theoretical flexural capacity is exceeded before shear failure occurs. 

7,6 Comparisons with Published Data 

7.6.1 Comparison Between Lytag-Sand, All-Solite and Gravel-Sand T-Beams 

In order to assess the shear capacity of Lytag-sand concrete in terms of 

all lightweight concrete and dense concrete, some of the results from the 

present 
investigation were compared with results from the investigation carried 

out by Bandyopadhyay (49). In their tests to assess the influence of flange 

Width on the shear behaviour of reinforced concrete T-beams, Swamy et al (142) 
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suggested that in order to make meaningful comparisons between beams failing in 

shear, of different cross-sections, the ratio of the tensile steel to that 

required for a balanced section should be used as a basis for the comparison. 

This approach has been used to compare two sets of test results from this project 

with two sets of results from investigation (49). The results are shown in 

Figure 7.20. For both sets of results the concrete cube strength is approxi- 

mately 40 N/mm2. The ratio of the tensile steel to the balanced steel is slightly) 

greater for the Lytag-sand beams than for the Solite and gravel beams. 

The results indicate that the shear strength of Lytag-sand concrete is 

generally lower than that of Solite or gravel concrete. At an a/d ratio of 6.0 

the shear strength of the. Lytag-sand concrete is approximately 75-85% of that for 

the gravel concrete. For lower a/d ratio's the corresponding range of values 

increases. Tests reported by Swamy and Bandyopadhyay (45) for All-Lytag concrete 

T-beams which were compared with equivalent gravel concrete and Solite concrete 

beams showed that for a/d ratio's of 4.5 and 6.0, the shear strength of Lytag- 

sand concrete lay between that for Solite and gravel. This tends to suggest 

that, because of the complexity of the shear type of failure and the inter- 

relationship between the various parameters effecting shear, the only reliable 

way to compare the performance of concretes made with different types of 

aggregate is by testing identical beams; that is beams of the same cross-sections' 

properties and having the same longitudinal reinforcement ratio and concrete 

strength. 

7.6.2 Comparison Between Various U. K. and U. S. Lightweight Concretes 

In order to try and draw some conclusions for lightweight concretes in 

general, the results of several U. K. (33,49,62) and U. S. (28,144) investigators 

are plotted in Figures 7.21-23. Figure 7.21 shows the shear stress at ultimate 

load against longitudinal steel percentage. The wide scatter of points obtained 

reflects the various a/d ratio's (not less than 2.5), concrete strengths, beam 

cross-sectional characteristics and aggregate properties all of which influence 

shear capacity. Two things are, however, apparent from this figure; firstly there 

is a general reduction in shear capacity with reducing steel percentage and 
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secondly the shear capacity of a flanged section is greater than of a rect- 

angular section, a fact ignored by the various design codes (26,54,73). 

Similar effects are apparent in Figures 7.22 and 7.23 which show the 

influence of concrete strengths and a/d ratio respectively. The influence of 

concrete strength, if any, is difficult to ascertain and if Hanson's (28) results 

for the-shear stress at diagonal cracking are discarded, there is a general 

trend of increasing shear strength for increasing concrete strength. However, 

it is generally agreed that at higher a/d ratio's, the diagonal cracking load 

and the failure load are similar. Many of Hanson's (28) results are for beams 

with an a/d ratio of 5.0 and their inclusion is therefore valid. One inter- 

pretation of the results shown in Figure 7.22 is that the wide range of shear 

stresses for various concrete strengths indicates that the influence of a/d ratio 

and steel percentage on shear strength is more important. This would agree with 

the results of the present investigation. Whereas, it is generally acknowledged 

that the diagonal cracking stress is a function of the tensile strength of the 

concrete, which is in turn a function of compressive strength, such effects may 

well be limited when ultimate loads are considered. 

Finally the influence of a/d ratio on shear stress is shown in Figure 7.23. 

The established relationship of increasing shear strength with decreasing a/d 

ratio is reiterated here. Again the increased shear strength of a flanged 

section 
is apparent. 

From Figures 7.20-7.23 it is obvious that a complex relationship exists 

between the various parameters which affect shear in reinforced concrete beams. 

while each individual set of results may show the influence of the various 

parameters studied, on shear strength a comparison between the results of 

various 
investigators is extremely difficult and such comparisons should be 

viewed with caution. One of the main problems in comparing results is the 

accurate calculation of the shear carried by the concrete at failure. The 

assumption of a nominal unit shear stress is probably the main cause for the 

vide scatter of results obtained. 

For Lytag-sand concrete the implication of Figure 7.20 is that the shear 
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strength is in some cases considerably lower than that of gravel concrete. 

However, as was mentioned in 7.6.1 direct comparisons between beams which are 

not identical in cross-sectional properties, appears to be unreliable. A limited 

series of tests between directly comparable gravel concrete and Lytag-sand 

concrete T-beams would help to alleviate any uncertainty. 

7.7 Development of Design Equations 

7.7.1 Introduction 

Only a minimal amount of research has been carried out on the shear 

behaviour of lightweight concrete T-beams made with U. K. aggregates and, there- 

fore, only a limited amount of data is available. The primary consideration of 

this investigation was to produce design data for Lytag-sand concrete T-beams 

and for lightweight concrete in general. 

7.7.2 Design Criteria 

It is now well established that for beams without web reinforcement and 

for a/d ratio's less than or equal to 6.0, the primary mode of failure is by 

diagonal tension cracking. 

The data plotted in Figures 7.21 to 7.23 show that there is little 

correlation between any of the individual parameters, known to affect shear 

strength, and the shear capacity of sections without web reinforcement. Tests 

(28), however, have shown that there is an extremely good correlation between 

the shear capacity of an unreinforced web and the tensile splitting strength of 

concrete cylinders, which in turn is a function of the cube strength. 

7.7.2.1 Design Equation for Beams Without Web Reinforcement 

and Shear Span - Effective Depth Ratio's : 3.0 

In an attempt to try and allow for the effects of a/d ratio. longitudinal 

steel percentage and concrete strength on the shear capacity of beams, Bower and 

Viest (153) suggested the following equation for dense concrete: 

°cr Vcr 
cbdfc 

1.9 + 2500 Pd 3.5 

V 

.... (7.13) 

where the units are imperial, 
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and M max -d3 Mmax -a 
VVV2 .... (7.14) 

In applying this form of equation to lightweight concrete Hanson (28), 

found that the constants in equation (7.13) varied widely due to the various 

characteristics of each lightweight aggregate used. Hence if a single pair of 

constants were chosen to provide a design equation which safely covered all 

lightweight aggregates, then such an equation would be extremely conservative 

for some aggregates. This is due to the variable diagonal tension resistance 

of concretes made with different lightweight aggregates. 

7.7.2.2 Design Equation for Lytag-Sand Concrete T-Beams 

By using the value of tensile splitting strength in equation (7.13) as 

opposed to design equations were derived for Lytag-sand concrete and also 

other British lightweight aggregates. The equations take the form of: 

vu = Cl + C2 p Vd 
fSP M fSP 

.... (7.15) 

where cl and c2 are constants. The data from investigations (28,33,49,62, 

144) are plotted along with the data from this investigation in Figure 7.24. 

Values of fS, for Lytag-sand concrete were obtained using equation 4.6. The 

ultimate shear stress, vu, was used instead of the diagonal cracking stress, 

vcr, since beams with long spans generally fail at the formation of the diagonal 

cracks but for short shear spans vcr grossly underestimates the shear capacity 

of the section. Although it is generally stated that this excess shear capacity 

is unpredictable and therefore unsafe, some excess strength will always be 

available and the equations derived here aim to take this into account. For 

Lytag-sand concrete the equation is 

vu = 0.365 fsP + 39.80 p Vd 
M 

9.99 
(7.16) 

Using a single overall partial safety factor of 1.25, the design equation becomes: 

vu 0.292 fs, + 31.83 p Vd . ".. (7.17) 
M I 
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Equations (7.16) and (7.17) also provide a lower bound for the All-Solite 

concrete T-beams tested by Bandyopadhyay (49). 

7.7.2.3 Design Equation for All Lightweight Concretes 

For all British and American lightweight concretes (28,33,49,62,144) 

rectangular and T-sections, the lower bound equation is 

vu 0.275 fsP + 26.85 p Vd 
M * 

below which only 11 out of 107 points fall. If a partial safety factor of 1.25 

is applied the equation becomes: 

vu = 0.22 fs, + 21.48 p Vd .... 
(7.19) 

M 

below which only 2 points fall. 

Also shown in Figure 7.24 is the line given by the equation suggested by 

Ivey and Buth (144) and Bandyopadhyay for diagonal cracking stress: 

v=0.28 + 17.24 p Vd .... 
(7.20) 

cr m 

which with a partial safety factor becomes: 

vcr = 0.22 fsP + 13.80 p Vd .... (7.21) 
M 

7.8 Comparison Between Experimental and Theoretical Results 

Table 7.7 shows the relationship between experimental results and 

predicted values using equations 7.16,7.18 and 7.20. Considering first of all 

the diagonal cracking stress it can be seen that the values predicted by 

equation 7.20 are greater than the experimental values in all but two cases, 

with safety factors ranging from 1.19 to 1.80. The two cases where the safety 

factor was less than 1.00 are characterised by high steel percentages and low 

a/d ratio (a/d - 1.5) and were able to sustain loads of 3.3 and 3.75 times the 

diagonal cracking load. 

Using equation 7.18 to predict the ultimate shear stress at failure it 

can be seen that all beams had a safety factor greater than 1.00 with the range 

being 1.35 to 3.34. This equation is far too conservative for beams with short 
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TABLE 7.7 COMPARISON BETWEEN EXPERIMENTAL AND THEORETICAL 

RESULTS FOR BEAMS WITHOUT WEB REINFORCEMENT 

Beam 
No. 

vcr 
(N/mm2) 

vu 
(N/mm2) 

Eqn. 
(7'20) 

(N/mm ) 

Col. 2 
Col. 4 

Eqn. 
(7'18) 

(N/ý ) 

Co 1.3 
Col 6 

Eqn. 
(7'12) 

(N/ý ) 

Col. 3 
Col 8 

1 2 3 4 5 6 7 8 9 

LS1-1 2.45 8.17 2.87 0.85 4.01 2.04 5.83 1.40 
2 2.31 3.54 1.56 1.48 1.98 1.79 2.81 1.26 
3 2.04 2.04 1.22 1.67 1.45 1.41 2.03 1.00 
4 2.02 2.02 1.12 1.80 1.28 1.58 1.78 1.13 

LS2-1 2.04 7.65 2.08 0.98 2.78 2.75 4.01 1.91 
2 1.77 3.02 1.35 1.31 1.60 1.89 2.24 1.35 
3 1.77 1.77 1.13 1.57 1.27 1.39 1.75 1.01 
4 1.63 1.63 1.00 1.63 1.10 1.48 1.50 1.09 

LS3-1 2.04 6.81 1.63 1.25 2.05 3.32 2.92 2.33 
2 1.36 2.45 1.14 1.19 1.29 1.90 1.78 1.38 
3 1.36 1.50 1.03 1.32 1.11 1.35 1.51 0.99 
4 1.44 1.44 0.96 1.50 1.01 1.43 1.37 1.05 

S3 1.36 1.77 1.04 1.31 1.13 1.57 1.54 1.15 
S4 1.36 1.46 0.96 1.42 1.00 1.46 1.35 1.08 

LS4-1 2.18 5.31 1.49 1.46 1.91 2.78 2.73 1.95 
2 1.63 2.86 1.00 1.63 1.15 2.49 1.60 1.79 
3 1.44 1.69 0.98 1.47 1.12 1.51 1.55 1.09 
4 1.23 1.44 0.88 1.40 0.98 1.47 1.34 1.07 

LS5-1 1.91 6.03 1.46 1.31 1.88 3.21 2.69 2.24 
2 1.36 1.98 0.94 1.45 1.10 1.80 1.53 1.29 
3 1.36 1.44 0.86 1.58 0.94 1.53 1.29 1.12 
4 1.23 1.31 0.84 1.46 0.90 1.46 1.22 1.07 

LS6-1 1.36 3.37 0.91 1.49 1.01 3.34 1.39 2.42 
2 1.23 1.60 0.79 1.56 0.82 1.95 1.11 1.78 
3 - 1.12 - - - Flexural Failure 
4 

Si 1.09 1.53 0.91 1.20 0.97 1.58 1.33 1.15 

S2 1.36 1.36 0.80 1.70 0.83 1.64 1.12 1.21 

S5 0.95 1.07 0.70 1.36 0.73 1.47 0.99 1.08 
S6 - 1.03 - - - Flexural Failure 
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a/d ratio's since it is based on rectangular sections rather than T-sections. 

One method of allowing for this may be to use the approach adopted by CP 110 (54) 

for a/d ratio's less than 2.0 where the shear stress is multiplied by a factor 

equal to two times d/a. 

Using equation 7.16, the predicted values approximate much more closely 

to the experimental values but again the factor of safety for a/d - 1.5 is high, 

ranging between 1.40 and 2.42. Again this could be allowed for by using the 

factor 2d/a. For a/d ratio's of 3.0 to 6.0, only one result has a safety factor 

less than 1.00, but many have safety factors less than 1.25. If a partial 

safety factor of 1.25 is applied to equation (7.16) to get equation (7.17) then 

the values predicted by this equation would be adequately safe for all the beams 

tested. 

7.9 Comparison Between CP 110 (54) Ultimate Shear Stresses and Equation (7.17) 

An attempt has been made to predict the ultimate shear strength of Lytag- 

sand concrete T-beams using equation (7.17) and to compare these values with 

those given in CP 110 (54). The results are shown in Table 7.8. In this 

comparison the lowest concrete strength of 15 N/mm2 is disregarded. For 

equation (7.17), values of fs, were calculated from equation (4.6) and the value 

of M/Vd was taken as 5, i. e. 

Minax -d°a-d-6-1-5.0 (See equation (7.14)) 
V 

The present code does not allow any increase in the shear stress for 

members where the concrete strength and steel percentage, based on the web width 

exceed 40 N/mm2 and 3% respectively. While the results of this investigation 

suggest that increasing the concrete strength above 40 N/mm2 will have little 

effect on the shear stress, this and another investigation (49), indicate that 

an upper limit of 3% of longitudinal steel, based on the web width, is totally 

inadequate for T-sections. In practice steel percentages greater than 3% are 

often used in T-sections and thus the present code (54) requirements will tend 

to produce very conservative sections. In Table 7.8 predicted shear stresses 

for steel percentages up to 5%, based on the web width, are shown. The values I 
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TABLE 7.8 ULTIMATE SHEAR STRESSES FOR LYTAG-SAND 

CONCRETE T-BEAMS 

100 Ast 
d b 

Concrete Characteristic Compressive 
Strength (N/mm2) 

w 
20 25 30 40 

0.25 0.62 0.69 0.75 0.85 
(0.28)* (0.28) (0.28) (0.28) 

0.50 0.64 0.70 0.76 0.86 
(0.36) (0.40) (0.44) (0.44) 

1.00 0.67 0.74 0.79 0.89 
(0.48) (0.52) (0.56) (0.60) 

2.00 0.73 0.80 0.86 0.96 
(0.64) (0.68) (0.72) (0.76) 

3.00 0.80 0.86 0.92 1.02 
(0.68) (0.72) (0.76) (0.80) 

4.00 0.86 0.93 0.98 1.08 

5.00 0.93 0.99 1.05 1.15 

* Numbers in brackets are values given in CP 110 (54) 
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shown in Table 7.8 apply to members subjected to shear and moment only. It 

should also be noted that these values are based on a typical T-section and 

that for sections with thin webs or for rectangular sections, these values will 

not apply. 

7.10 Conclusions 

In this chapter work carried out to investigate the shear behaviour of 

Lytag-sand reinforced concrete T-beams, without web steel, is reported. From 

the work reported the following conclusions are drawn: 

1. From an analysis of the deformation characteristics, it is evident that for 

beams failing in shear the failure mode is brittle and very sudden. None of 

the characteristic ductility associated with a flexural failure is shown. 

2. In general, the head of. the critical diagonal tension crack, immediately 

prior to failure is situated at a distance approximately equal to 1.0 to 

1.5 times d, from the load point. 

3. The mode of failure of a beam without web reinforcement is primarily 

dependent on the a/d ratio and the longitudinal steel percentage. At short 

a/d ratio's (a/d = 1.5) the failure mode is a result of diagonal tension 

cracking and crushing of the concrete compression struts. At a/d ratio's 

greater than 1.5 diagonal tensile cracking is the predominant mode of 

failure. 

4. For beams with an a/d ratio < 3.0, the ultimate load was, in all cases, 

greater than the diagonal cracking load. For beams with an a/d ratio 

greater than 3.0, failure occurred at or shortly after the diagonal cracking 

load had been reached. 

5. The ultimate shear resistance of reinforced lightweight concrete T-beams 

is dependent on two main parameters; namely the a/d ratio and the longi- 

tudinal steel percentage. The influence of concrete strength is generally 

minimal. 

6. For all the beams tested in this investigation, the ultimate shear stress 

at failure was significantly greater than the allowable shear stresses 

quoted in CP 110 (54). 
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7. The ultimate shear stress of a Lytag-sand reinforced concrete T-section can 

be predicted from the equation 

vu = 0.292 fSP + 31.83 p Vd .... (7.17) 
M 

8. For T-sections, the ultimate shear stresses permitted in CP 110 (54) are 

too conservative and shear stresses for values of longitudinal steel 

percentage, based on the web width, greater than 3% should be included. 

I 
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CHAPTER 8 

SHORT-TERM FLEXURAL' BEHAVIOUR OF LYTAG-SAND CONCRETE T-BEAMS 

8.1 Introduction 

The last chapter described tests to evaluate the shear capacity of Lytag- 

sand concrete. In this chapter a limited series of tests designed to examine 

the flexural capacity of Lytag-sand reinforced concrete T-beams is described and 

the results reported. 

Present day design in the U. K., based on the ultimate limit state 

principle, involves designing for the ultimate load case; then checking the 

serviceability limit states of cracking and deflection under working load. The 

lower modulus of elasticity. of lightweight concrete, as opposed to dense concrete, 

generally results in larger deflections under load. 

Richart and Jensen (24) were probably the first investigators to study 

the flexural characteristics of reinforced lightweight concrete beams but many 

investigators have since followed (25,31,34-38,48). The various conclusions 

drawn by each of the investigators are summarised in Chapter 2. 

The aims of this limited series of tests were to compare the flexural 

characteristics of Lytag-sand concrete T-beams to the values given in the various 

design codes (26,54,73). 

8.2 Experimental Programme 

8.2.1 Details of Tests 

Six reinforced concrete T-beams were tested in all; three with a concrete 

cube strength of approximately 30 N/mm2 and three of approximately 45 N/mm2. 

For each concrete strength three longitudinal steel percentages of approximately 

12,25 and 45% of the balanced steel ratio were chosen. Details of the beams 

are shown in Figures 8.1 and 8.2 and Table 8.1. All beams contained shear 

reinforcement designed in accordance with CP 110 (54) and some typical reinforce- 

ment cages are shown in Plate 8.1. 

8.2.2 Materials 

8.2.2.1 Concrete 

Concrete mixes were designed according to the information given in 
I 
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PLATE 8.1 TYPICAL REINFORCING CAGES FOR FLEXURAL T-BEAMS 
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Chapter 4. The mixes were designed to have dry cured cube strengths of 30 or 

45 N/mm2 at 28 days. O. P. C. was used throughout and the mix proportions were 

as follows: 

fcu = 30 N/mm2 1: 2.78 : 2.80 (cement : sand : Lytag) 

fcu = 45 N /mm2 :1: 1.93 : 2.13 

with total water-cement ratio's of 1.02 and 0.78 respectively. 

8.2.2.2 Steel 

The tensile reinforcement used in all the beams consisted of hot-rolled, 

cold worked, high tensile steel with a characteristic yield stress of 465 N/mm2. 

A typical stress-strain curve for the steel is shown in Figure 7.3. Web 

reinforcement consisted of 6 mm diameter mild steel stirrups, as shown in 

Figure 8.1, and was provided in all beams in the region of the shear span. 

Stirrups were not provided in the flexural region of the beams. 

8.2.3 Beam Design 

Design of the test specimens was based on the CP 110 (54) parabolic 

stress block (see Appendix B) with the concrete materials factor of 1.5 removed, 

i. e. the maximum compressive stress = 0.67 fcu. For each concrete strength the 

balanced steel ratio was calculated from which three areas of tensile steel, 

approximately equal to 12,25 and 45% of the balanced steel ratio, were cal- 

culated. From this information the ultimate flexural moment Mf and the ultimate 

shear force Vu were calculated, from which shear reinforcement was designed in 

accordance with CP 110 (54). 

8.2.4 Manufacture of Beams 

All beams were cast using the same mould that was used for the beams in 

the shear series, described in Chapter 7. Two batches of concrete were required 

for each beam. Concrete was placed so that it just covered the tensile steel 

and was vibrated using a high frequency vibrating table. A 10 mm diameter rod 

was used to ensure that good compaction was obtained around the tensile steel. 

The remainder of the first batch of concrete was then placed and vibrated, 

followed by the second batch which was placed and vibrated in two roughly 

equal layers using the vibrating table and a 25 mm diameter vibrating poker. 
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With each beam, three 100 mm cubes were also cast for compressive 

strength tests. After casting the beam and cubes were left for approximately 

two hours before the surfaces were trowelled smooth. The specimens were then 

covered with polythene sheeting and left in the laboratory for two days before 

demoulding. After demoulding the specimens were stored in the laboratory until 

testing at approximately 28 days. 

8.2.5 Instrumentation 

Prior to casting electrical resistance strain gauges, with a gauge 

length of 7 mm, were fixed to the tensile bars in the pure bending region of the 

beams. The gauges were staggered to avoid loss of bond at one section. A 

BrUel and Kjaer, type 1516 strain gauge recorder with a maximum sensitivity of 

5 microstrain and capacity of 30,000 microstrain was used to monitor the strain 

gauges. 

In order to measure concrete strains a Demec extensometer with a gauge 

length of 100 mm and a sensitivity of 16.2 x 10-6 m/m was used. Demec discs 

were fixed as shown in Figure 8.1 about the centre line of the beam. 

A dial gauge with a sensitivity of 0.01 mm per division and a total 

travel of 25 mm was used to measure central deflection. An inclinometer with 

a range of -2 to +30 was used to measure end rotations and a hand microscope 

with an illuminated scale, marked in 0.02 mm divisions, was used to measure 

crack widths. 

8.2.6 Testing and Measurements 

The test rig used for testing the flexural beams was the same as that 

shown in Figure 7.4. Prior to testing the beams were whitewashed to aid crack 

detection. All the beams were tested at the same shear span - effective depth 

ratio (a/d = 5.0). Load was applied in increments of 2.5 kN and crack develop- 

ment was marked at each load stage. Deflection, strains, crack widths and 

rotations were measured at various loads depending on the calculated flexural 

capacity and design load. 
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8.3 Calculation of Design Moment, 'Central'Deflection and Ultimate Moment 

8.3.1 Design Moments 

For the reinforced T-sections tested during this part of the investigation. 

the design moments, for the serviceability limit states, were based on the 

ultimate design moments calculated from the CP 110 (54) simplified stress block. 

By using these equations, the ultimate design moment Mf was taken as the lesser 

of 

Mf - 0.87 fy Ast z .... (8.1) 

or Mf = 0.15 fcu bd2 9 ... (8.2) 

where z rl - 1.1 fy As\d .... (8.3) 
feub. d ) 

The calculated ultimate design moment is equivalent to the moment caused 

by 1.4 times dead load, plus 1.6 times the imposed load. Since for the beams 

tested, the dead load is the beam weight, then the serviceability design moment 

is given by Mf/1.6. 

8.3.2 Central Deflection 

Two methods were used to calculate the central deflection, as described 

in the American and U. K. design codes (26,54). 

8.3.2.1 CP 110 (54) Method 

The instantaneous deflection at the centre of a simply supported beam, 

according to CP 110 (54) can be calculated from the equation 

D KL2 1 
rb 

where A= central deflection 

L= effective span of beam 

.... (8.4) 

1_ = curvature at mid span 
rb 
K=a constant dependent on the shape of the bending moment diagram. 

Under this loading condition Ka0.10648. 

I 
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For the partially cracked section considered in this case, the curvature 

at mid-span is given by 

1 Mnet .... 
(8.5) 

rb Ec Ic 

where Ec = modulus of elasticity of concrete (Table 5.1) 

Ic = second moment of area of the transformed concrete section 

Mnet -M- Mc .... (8.6) 

where M- applied moment at section considered 

Mc ° moment due to tensile strength of concrete; assumed to be 1 N/mm2 

at the centroid of the tension steel. 

8.3.2.2 A. C. I. Standard Method (26) 

The A. C. I. method of calculating deflection is based on the effective 

moment of inertia of the section, Ie, as follows, with a limiting value equal 

to Ig: 

Ie /Mý13 Ig + rl - rMcr\ 31 IC .... (8.7) 

where Ig = moment of inertia of gross concrete section about the centroidal axis, 

neglecting reinforcement 

Ic = moment of inertia of the cracked transformed section 

M= maximum applied moment at stage for which deflection is being calculate 

P1cr fr Ig 
Yt 

fr = 7.5 fSP/6.7 : 7.5 x 0.083 rfc' 

0 ... (8.8) 

for lightweight concrete. 

yt = distance from controidal axis of gross cross section, neglecting 

reinforcement to extreme fibre in tension. 

Having calculated the value of Ie then the central deflection is 

calculated from 

A-KM L2 .... 
(8.9) 

Ec Ie 
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8.3.3 Ultimate Moments 

The ultimate moment of the test beams was calculated by two methods using 

the CP 110 (54) parabolic stress block, without the safety factors (see 

Appendix B), or Whitney's theory (154) which has been adopted by A. C. I. (26). 

8.3.3.1 CP 110 (54) Method 

When using the CP 110 (54) parabolic stress block, without the safety 

factors, the ultimate moment of resistance Mf of a beam is given by 

M 
,f= 

fy Ast [1 - k2 fy pl d 

L kl fcu J 

where kl a 0.67 (1 - x/43.1) 

k2 2-2+2 [ 
14.4] 

4 (ý3 - }1 L 14.4J 

8.3.3.2 Whitney's Method (154) 

.... (8.10) 

.... (8.11) 

.... (8.12) 

For a section where the depth to the neutral axis, x, calculated from 

X= Ast fY 

0.85 fc' b 
.... (8.13) 

lies within the flange, then the ultimate moment of resistance Mf is given by 

Mf = Ast. fy. d 1-0.59 Ast"fy .... (8.14) [f 

c' bd 

where fc' is the cylinder compressive stress taken as 0.85 fcu for this 

investigation. 

8.4 Test Results and Discussion 

The main test results from this investigation are summarised in Tables 8.2 

to 8.5. The failure modes and cracking patterns, of the six beams tested, are 

shown in Plate 8.2. The test results are discussed in the following sections 

and were appropriate are compared with design codes (26,54). 

8.4.1 Deflection 

The load deflection curves for the beams are shown in Figures 8.3(a) and (b) 
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For each beam the points on the curve corresponding to the design service load 

and the ultimate design load, calculated in accordance with 8.3.1, are shown. 

Results for measured and calculated deflections at design service load are 

shown in Table 8.2. For the concrete strengths and steel percentages used 

during this investigation, the central deflection under the design service load 

varies between 6.3 and 9.25 mm. The span deflection ratio's at the permissible 

working load vary between 270 and 396. 

8.4.1.1 Comparison Between Measured and Predicted Deflections 

at Design Load 

The deflections predicted using the design equations described in 

section 8.3.2 are compared with the test values, in Table 8.2. Both the CP 110 

and A. C. I. (26,54) equations underestimate the deflection at mid-span but for 

low steel percentages the CP 110 (54) equation grossly underestimates deflection. 

The A. C. I. equation gives closer values for the range of steel percentages and 

concrete strengths tested though they are still below the measured values. 

If the CP 110 (54) equation is used without the allowance for moment due 

to the tensile strength of the concrete then the predicted values lie much 

closer to the actual measured values. From Plate 8.2 it can be seen that the 

crack specings are very close, even at the working load and thus the assumption 

that the concrete in tension is unable to resist moment is valid. 

Several investigators have reported that the deflection of lightweight 

concrete beams is, in general, greater than that of comparable gravel concrete 

(35,49). This is generally agreed to be due to the lower elastic modulus of 

lightweight concrete. From a designers point of view, however, a direct 

comparison between lightweight and dense concretes is not appropriate since 

lightweight concrete is a material in its own right and therefore should be 

designed with its own specific properties in mind. 

8.4.2 Cracking Properties 

During this investigation the crack widths at various load increments, 

along with the moment at first flexural crack and the number of cracks between 

the load points, at the design service moment M, were measured. The results 
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are shown in Table 8.3 

The moment at first crack is based on the load at which the first 

flexural crack was observed in the pure bending region. It is a very subjective 

measurement since it relies on the ability of the observer to spot the first 

crack. It should be noted, however, that the observed values of the flexural 

cracking moment, from tests, vary between 63 and 83% of the values calculated 

from equation (8.8). 

With regard to crack widths and spacings, it should be recognised that 

such data aj notoriously subject to inherent experimental scatter. The 

duplication of tests is essential if valid conclusions are to be drawn. Most 

investigators who report cracking data, emphasize that maximum and minimum 

values of crack width and spacing may vary considerably from the mean. 

From Table 8.3 it can be seen that the range of maximum crack widths 

under working load is from 0.10 to 0.18 mm and is well within the durability 

requirements given in CP 110 (54). 

Average crack spacings vary between the approximate limits of 45-70 mm. 

Evans and Orangun (36) reported tests on twenty All-Lytag, rectangular, rein- 

forced concrete beams in which maximum crack widths varied between 0.088 and 

0.254 mm with average crack spacings of 62.5-157 mm for beams reinforced with 

square twisted bars. The smaller crack spacings of the present investigation 

have resulted in the smaller crack widths at working load, when compared to 

investigation (36), but may result in a slight increase in deflection due to a 

slight decrease in the stiffness of the beams. 

8.4.3 End Rotations 

The average values of end rotation for all beams tested in this series 

are shown in Figures 8.4 (a) and (b) against load. They show that in general 

the end rotation and therefore the curvature of the beams is directly propor- 

tional to the applied load up to working loads, after which the ductile 

behaviour of the beams leads to large increases in curvature for small increases 

in load. 
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8.4.4 Design and Ultimate Moments 

Table 8.4 shows the design moment at working load calculated from the 

CP 110 (54) simplified stress block, along with the experimental and calculated 

ultimate flexural moments. 

The beams tested in this series show load factors ranging from 2.29 to 

2.40. The ratio's of the experimental ultimate moment to the calculated ultimate 

moment based on CP 110 (54) and A. C. I. (26), without the safety factors, range 

from 1.18-1.28 and 1.17-1.28 respectively. With the inclusion of the safety 

factors in the design ultimate moment equations, these ratio's increase and 

therefore the design equations become more conservative. 

The results of Table, 8.4 show that the design of Lytag-sand concrete 

T-beams in flexure, according to design codes (26,54) will provide an adequate 

load factor against failure. 

8.4.5 Strain Distribution Over Depth of Section at Mid-Span 

The strain distributions are shown in Figures 8.5(a)-(f), for the beams 

tested during this investigation, both at working load and shortly before failure. 

The high tensile strains at ultimate load result from the formation of cracks 

within the gauge length. For this reason web strains are not recorded for the 

load case shortly before failure. 

From the strain distributions shown it can be seen that the assumption 

that plane sections remain plane is a valid one certainly within the compression 

flange. 

Referring to Plate 8.2 it can be seen that for beams Fl, F2 and F4 

which failed by fracture of the reinforcing steel that the yield strain of the 

concrete, in the compression zone, was not reached. For beams F3. F5 and F6, 

however, it is apparent that high concrete strains, greater than 4000 us, were 

reached in the compression flange, prior to failure by concrete crushing. This 

indicates that Lytag-sand concrete has a high strain capacity which adequately 

exceeds the value generally taken as the failure strain in design (54). 

8.4.6 ' Compressive Concrete Strain at Mid-Span 

The variation of mid-span concrete strain with load is shown in 
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FIGURE 8.5(e) FLEXURAL STRAIN DISTRIBUTION FOR BEAM F5 

75 35 0 Load-kN 

0 

Flange 

Web 

O 

\ 

Compression \ Tension 

Centroid of steel 

4000 3000 2000 1000 0 1000 2000 3000 4000 

Strain (x 10-6 m/m) 
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Figures 8.6(a) and (b). The values shown are the averages of four readings 

taken across the top face of the compression flange. 

The strains at working load range from approximately 425-925 microstrain. 

Again for the beams which failed by crushing of the concrete compression zone 

it can be seen that concrete strains in excess of 4000 microstrain were recorded 

prior to failure., The maximum recorded concrete strains prior to failure are 

listed in Table 8.5. 

8.4.7 Tensile Steel Strain 

The measured steel strains for each beam, in the pure bending region of 

the beam, are plotted against load in Figures 8.7(a) and (b). The measured 

steel strains at working load vary from 800-1400 microstrain. For the beams 

which failed by fracture of the steel, it can be seen that where the strain 
" 

gauges remained operational, extremely high strains were recorded prior to 

failure. 

The results of the rotation, strain distribution, compressive concrete 

strain and steel strain measurements discussed in sections 8.4.3 to 8.4.7 all 

indicate the ductile nature of the beams tested. It is obvious that Lytag-sand 

reinforced concrete T-beams can be adequately designed for safety according to 

the U. K. and American design codes (26,54). 

Values of maximum measured deflection, rotation, concrete strain and steel 

strain along with the design moment at service load and the ultimate moment, for 

each beam are shown in Table 8.5. 

8.4.8 Modes of Failure 

The general mode of failure for each of the beams tested is shown in 

Plate 8.2. For the beams which failed by crushing of the compression zone 

concrete, details of the failure zones are shown in Plate 8.3. Typical, fractum d 

reinforcement bars removed from beams Fl, F2 and F4 are shown in Plate 8.4. 

The compression zone failures are typical of any T-section, without 

compression reinforcement, and show the large zone of the compression flange 

which is destroyed by concrete crushing at failure. The tensile steel specimens 

shown in Plate 8.4 show typical ductile characteristics for steel with a 
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reduction in cross-sectional area "necking" prior to fracture. 

For all the beams tested, the primary mode of failure was yielding of the 

tensile steel which for beams F3. F5 and F6 led to concrete cushing as the 

neutral axis rose and the compressive stress on the concrete exceeded the 

crushing stress. For the remaining beams, Fl, F2 and F4, the low area of 

tensile steel meant that sufficiently high concrete stresses, to cause failure, 

were not developed before the steel fractured. 

8.4.9 Compliance With the Limit States of Deflection and Cracking 

Under normal working loads, the deflection of a reinforced concrete beam 

should be such that it does not cause distress to adjacent members, fixings, 

partitions or finishes. Crack widths should be small enough to reduce the 

possibility of corrosion of the steel reinforcement due to the ingress of water 

and air. 

CP 110 (54) suggests an upper limit on deflection of span/250 for the 

total deflection (including the effects of creep and shrinkage). In the present 

investigation the span/deflection ratio's varied from 270-396 at working load. 

This suggests that in the long term some of these beams may not satisfy the 

span-effective depth ratio limits given in CP 110 (54). These values are based 

on instantaneous deflection and do not allow for the time-dependent effects of 

creep and shrinkage which may amount to some 100-200 percent of the instantane- 

ous deflection. Investigations at Laing R. & D. (62), on All-Lytag concrete 

beams, and. comparable gravel concrete beams showed that the ratio of the total 

to instantaneous deflection at approximately 18 months is lower for Lytag 

concrete than for gravel concrete. 

For crack widths, CP 110 (54) recommends a maximum value at the surface 

of the member of 0.3 mm in general. For aggressive environments values should 

not exceed 0.004 times the minimum cover to the main reinforcement. 

From Tables 8.2 and 8.3 it can be seen that Lytag-sand concrete T-beams 

designed for the serviceability limit states of deflection and cracking, in 

accordance with CP 110 (54) will behave satisfactorily under working load in 

practice. 
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8.4.10 Conclusions 

From the limited series of tests carried out on the flexural behaviour 

of Lytag-sand concrete T-beams, the following conclusions can be drawn: 

1. The deflection prediction equations given in design codes (26,54) under- 

estimate the measured deflections. The standard A. C. I. equation predicts 

the values to within 8-18% whereas the standard CP 110 equation predicts the 

values to within 25-53%. If however the moment capacity of the concrete in 

the tension zone is neglected the CP 110 equation predicts the measured values 

to within 2-18%. 

2. Crack widths at design service load vary between 0.10 and 0.18 mm and are 

within the durability requirements given in CP 110 (54). 

3. The ultimate moments of Lytag-sand concrete T-beams are safely predicted by 

the present U. K. and American design codes (26,54). 

4. The load factor against failure, at design service load varied between 2.29 

and 2.40 and is therefore fairly constant. 

5. The assumption in the elastic analysis of sections, that plane sections 

remain plane, is generally a valid one especially within the concrete 

compression zone. 
f 

6. For beams which failed by crushing of the concrete compression zone, high 

strain capacities in excess of 4000 microstrain were recorded. 

7. Crack spacings in Lytag-sand concrete beams appear to be smaller when 

compared to those of other concrete types tested by various investigators. 
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LIMITATIONS OF THE PRESENT WORK, OVERALL CONCLUSIONS 

AND RECOMMENDATIONS FOR FUTURE WORK 

9.1 Limitations of the Present Work 

Lytag has been commercially available since the early sixties. Although 

concretes made with Lytag coarse and fine material have been the subject of 

several investigators, only a very limited amount of work has been carried out 

into the effects of sand replacement in Lytag concrete. The work reported in 

this thesis constitutes the most comprehensive study to date on Lytag-sand 

concrete. The range of work covered and the extent to which individual 

-characteristics and behavioural properties were investigated was, however, 

limited by the time available. The main aim of this work was to produce useful 

design data for Lytag-sand concrete. The limitations within which this work was 

carried out were as follows: 

1. Microstructure and Water Absorption 

(a) For the microstructure examination, only the internal structure of Lytag 

pellets was investigated. No observations were made of the external 

surface of the pellet. 

(b) The water absorption of Lytag aggregate was only measured up to a period 

of 24 hours. 

2. Properties 

(a) Only one type of cement, O. P. C., was used throughout the investigation. 

-(b) The tensile strength, elastic moduli and Poisson's ratio were only deter- 

mined up to an age of 28 days. 

(c) The complete-stress strain curves for Lytag-sand concrete were only deter- 

mined for wet-cured specimens, and concrete strains were measured indirectly. 

3. Unrestrained Shrinkage 

(a) only one specimen size was used throughout the tests. 

(b) The shrinkage of plain concrete, only, was investigated. 

4. Creep 

(a) Only one curing regime was used. 
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(b) Creep of plain specimens under axial load, only, was investigated. 

5. Shear 

(a) The shear resistance of beams containing web reinforcement or compression 

reinforcement was not investigated. 

(b) Only one beam cross-section was used. 

6. Flexure 

(a) Only one beam cross-section was used. 

(b) The maximum steel percentage used was 45% of the balanced steel ratio. 

9.2 Overall Conclusions 

The conclusions drawn from this investigation are listed at the end of 

each chapter, but the main conclusions are summarised below: 

9.2.1 Microstructure and Water Absorption 

1. Lytag pellets are composed of unreacted p. f. a. cenospheres which are fused 

together at their points of contact and/or surrounded by a solidified 

honeycomb type material mass. 

2. The unreacted cenospheres range in diameter from approximately 75-100 um 

down to less than 1 um. 

Voids range in size from approximately 200 um down to less than 1 pm and 

are predominantly interconnected, although discrete voids do exist. 

9.2.2 Strength Characteristics 

1.28 day compressive strengths of 60 N/mm2 can be obtained with Lytag-sand 

concrete. 

2. In general, Lytag-sand concrete requires less cement than other sand 

replaced lightweight concretes in order to achieve a given compressive 

strength. 

3. on average the increase in density of Lytag concrete by the addition of 

natural sand fines is approximately 15%. 

i 

. 4. The compressive strength of water stored specimens increases up to an age 

of 18 months. 

5, The compressive strength of dry cured specimens may decrease after 28 days 

by as much as 7% but the strength is generally regained by 2 years. 
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6. The tensile strength of Lytag-sand concrete is affected by curing con- 

ditions at early ages. 

7. A power law type of equation is able to sensibly describe the various 

relationships between tensile and compressive strengths. 

9.2.3 Short Term Deformation Properties 

1. The relationship between static modulus of elasticity and cube strength, 

for sand replaced lightweight concrete is, ES - 6.84 fcu0"28. 

2. The relationship between dynamic modulus of elasticity and cube strength, 

for sand replaced lightweight concrete is, ED ' 9.92 fcuo. 
24 

3. The static modulus of elasticity can be estimated from the dynamic modulus 

of elasticity by the equation ES = 0.93 ED - 2.56. 

4. Sand replacement increases the elastic modulus of Lytag concrete by 20-25%. 

5. The elastic modulus of Lytag-sand concrete is approximately 60% of that of 

dense concrete as given in CP 110 (54). 

6. The value of static Poisson's ratio for sand replaced lightweight concrete 

in general should be taken as 0.19. 

9.2.4 Shrinkage, Moisture Movement and Creep 

1. Shrinkage specimens cured outside, protected from direct rain and sunlight, 

show a lower ultimate shrinkage than for internally cured specimens. 

2. The shrinkage and creep of Lytag-sand concrete may be greater than or less 

than that of dense concrete, depending on the dense aggregate type, for 

similar mix proportions. 

3. Regardless of concrete strength and curing condition the ratio of the 

shrinkage, at various ages, to the shrinkage- at 500 days remains sensibly 

constant particularly at ages of 90 days or more. 

4. For a 60 day drying and 45 day wetting cycle, the moisture movement in 

Lytag-sand concrete is of the order of 300-350 m/m x 10-6, for concrete 

strengths of. 30 to 60 N/mm2 respectively. 

5. Creep in Lytag-sand concrete increases with increasing water-cement ratio. 

6, The creep of Lytag-sand concrete is directly proportional to the stress- 

strength ratio for values of stress-strength ratio between 0.3 and 0.5. 

e; 
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3. The ultimate moments of Lytag-sand concrete T-beams are safely predicted 

by the present British and American design codes (26,54). 

4. The load factor against failure at design service load varied between 2.29 

and 2.40 and was, therefore, sensibly constant. 

5. For beams which failed by crushing of the concrete compression zone, high 

strain capacities in excess of 4000 microstrain were recorded. 

9.3 Recommendations for Future Work 

During this study several interesting questions have been raised which 

have not been investigated because of the limited time and resources available. 

Further investigation in the following fields is therefore suggested: 

1. Basic properties of Lytag-sand concrete using rapid hardening Portland 

cement for both the short and the long term. 

2. The restrained shrinkage behaviour of Lytag-sand concrete and the effect of 

restraint on cracking. Bandyopadhyay (49) carried out a series of tests 

on Solite concrete rings, which were restrained by an internal steel ring. 

in order to assess the incidence of cracking due to restraint. A similar 

series of tests is suggested for Lytag-sand concrete. 
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3. Creep tests under different curing conditions and for reinforced concrete 

specimens in bending. 

4. It has been shown (155) that the shear resistance of a beam is dependent 

on the depth of section. In the shear test series carried out during this 

study the effective depth of the section remained constant. It is 

suggested that the work carried out in this study on the shear resistance 

of Lytag-sand concrete T-beams be extended to cover the effect of. varying 

the effective depth with particular reference to deep beams. 

5. For several of the flexural beams tested during this study the instantane- 

ous deflections at design service load suggest that in the long-term the 

span-depth ratio's, generally accepted as producing an adequate service- 

ability state, may be exceeded, and this requires further investigation. 
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APPENDIX A 

STANDARD LYTAG-SAND MIXES (62) 

I: 

x 

ýi 

Quantities per ßn3 of Compacted 
Grade Concrete 

8 timum O 2 Day p 
Target Sand Zone 2-3 

Effective 
Slump 

Characteristic 
Streu th to BS 882 (83) (Free) Range 

( ) 
Strength at 

(N/ffi) Cement 
O. P. C. Sand Water MM 

28 Das (kg) Dry Lytag Content 
(N/um ) Weight 

12 mm 
(m3) 

(kg) 
(1) 

(kg) 

15 22.5 260 685 0.87 180 75-100 

20 27.5 290 660 0.87 180 75-100 

25 32.5 330 625 0.87 180 75-100 

30 37.5 370 590 0.87 180 75-100 

35 42.5 410 560 0.87 180 75-100 

40 47.5 460 505 0.87 185 50-75 

45 52.5 520 440 0.87 190 50-75 

50 57.5 600 345 0.87 200 50-75 

Note: When conversion from volume to weight is required, the oven- 
dry, loose bulk density of the Lytag 12 mm aggregate should 
be taken as 800 kg/m3. The bulk density may vary slightly 
and should be checked with the supplier. 

I 
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APPENDIX B 

CP 110 PARABOLIC STRESS BLOCK 

0.67f 
cu 

f'- Ecu -+q 
0.0035 ki fcu 

k2 x 

"+7 
Centroid 

eo rf-/4100 

iT. 
x cu 

Paraboli x= 
ý- 

x o Ecu 

L 
---------- ------ 

v 

Stress Block Strain Distribution 

The above figures show the idealised stress block, adopted in CP 110 for 

ultimate strength calculations in design, without the concrete safety factor 

Ym - 1.5, and the idealised strain distribution corresponding to the stress 

block. 

Area of parabolic section of stress block 2x. 0.67 " fcu 
3 Ecu 

:. Total area of equivalent stress block: kl. fcu. x - 0.67 fcu x (1-C 
o/3c 

)s 
cu 

kl a 0.67 (1 - /f- 
cu/43.1) 

Taking moments about the top of the stress block we have: 

kl k2 fcu x2 = 0.67 fcu (x - x0)2 + 0.67 f. 2 xo (x -5) 
2 cu 38 

which reduces to: 
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k2 2-YIýu2+2 
14.4 

r3-1 4 fcu 
L 14.4J 

For a tensile steel area Ast at a stress fs balancing the compressive 

force in the concrete ki. fcu. b. x, the depth to the neutral axis, x, is given by: 

x Ast . fs where ba section width. 
ki . feil .b 

For a balanced section in which the failure strain of the concrete 

(C 
cu = 0.0035) and the failure strain of the steel (cs = 0.002) are reached 

simultaneously, the balanced steel ratio Pb is given by: 

Pb 'm kl fcu " Ecu 
fy ecu + Cy 

where fy = the characteristic yield stress of the tensile steel - 465 N/nmm2. " 

For a value of Ast less than the balanced steel area, the beam fails by 

yielding of the steel and, therefore, the ultimate flexural moment of the 

'section, Mfg is given by: 

Mf Ast' fy 1-pk2 fy d 
Lkf 1 cu 
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