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Abstract 

Aim of the Thesis 

The area of health-related quality of life has received increasing attention particularly in 

gerontology. As this area grows in importance, issues such as the design and analysis of 
instruments that measure this multi-dimensional outcome need to be addressed. Ordinal 

regression models are statistical methods that can be used to analyse ordered health-related 

quality of life measures. However, their use is limited in the literature. The aims of this thesis 

are (i) to compute all ordinal regression models and compare these models with other 

statistical methods (such as linear regression and binary logistic regression models) and (ii) 

assess the use of the stereotype ordinal regression model. 

Procedure 

The data used to implement the regression models was from the Medical Research Council 

Cognitive and Function Ageing Study (MRC CFAS). In particular, two measures were 

chosen: the Townsend Disability Scale and the Health Status question. 

Results 

Linear regression models were found to summarise the ordinal data inadequately given both 

ordinal measures. Binary logistic regression models were only adequate for analysing ordinal 

quality of life scales, if one could assume that the odds ratios were the same over all the 

binary groupings of the ordinal scale. However, one may still encounter other problems 

related to multiple testing or different effects in different models. Ordinal regression models 

provide a more sensitive and comprehensive analysis. These methods are easily adapted to 

different types of ordinal quality of life data. The 'best-fit' ordinal regression model for the 

health status ordinal categories was the partially constrained adjacent category model. The 

'best-fit' model for the Townsend Disability Scale was the fully constrained continuation 

ratio model. 

Conclusions 

This study has provided a method (based on first principles) of implementing all ordinal 

regression models. The comprehensive results from this thesis, suggest that ordinal regression 

models are indeed superior compared to other methods for analysing ordinal quality of life 

data. Evidence suggested that the stereotype model was of little use. 
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CHAPTER 1- INTRODUCTION AND AIMS 

1.1 Introduction 

The main purpose of this thesis is to analyse health-related quality of life data measured on 

elderly respondents, using Ordinal Regression Models. Comparison of the results from these 

methods is made with results from other statistical methods (linear regression and logistic 

regression models). This aim covers two broad areas: 

health-related quality of life instruments in elderly respondents (in particular two 

measures); 

ordinal regression models. 

In the literature health-related quality of life in gerontology is a relatively new area and the 

application of Ordinal Regression Models is under-utilised when analysing ordered scales. 
This thesis attempts to bring together these two relatively new areas of research. 

1.1.1 QualitV of life in elderly people 

Recent years have seen a remarkable explosion of research into quality of life in health care 
(often termed health-related quality of life). This has been particularly true in areas like 

gerontology, where as a result of ageing populations, elderly people have become a group of 

growing importance in terms of health provision and research. 111-health and morbidity quite 

often dominate the health of many elderly people, and as a result it has been increasingly 

recognised that for most elderly people, health-related quality of life, after 75 or so years of 

age is more important then length of life (Cassel, 1994). This has led to a somewhat different 

set of priorities for medical research and health care for these people, compared to the rest of 

the population. In the most recent publication by the Department of Health (DOH, 2001), 

priorities have been outlined which aim to enhance the well being of elderly people. The 

immediate research priority involves exploring issues related to the dynamics of ageing and 

quality of life of older people. In many studies in gerontology that are being designed or are 

already underway to assess these issues, the different stages namely - the design of the study, 

choice and implementation of the quality of life instruments, the collecting, analysing and 

presenting of results of the quality of life data - present some challenging and relatively new 
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aspects. This is primarily because little exists in terms of a pool of information or wealth of 
experience that address many aspects of health-related quality of life in elderly people. 

1.1.2 Measuring health-related quality of life 

(a ) Singlelmultýple items 

Generally, data on health-related quality of life are often captured on instruments or 

questionnaires that are either single-item or multi-item. Each question on a health-related 

quality of life questionnaire is an expression of words in a forrn of an item. The items on an 
instrument are often scaled using integers that correspond to severity. A Global or single-item 

question describes the quality of life of the patient, by considering all aspects of his/her 

health. 

Many authors favour the use of multiple-item questionnaires as opposed to a single-item 

question for describing quality of life. The items can be used to either: (a) produce an 

average/total score, where all questions are considered to have equal weights; (b) produce an 

average/total score, where some questions have greater weighting depending on subjects 

opinion, or (c) be subdivided into groups which correspond to the different aspects or 
dimensions of quality of life. In the latter case, it is meaningless to produce an overall score, 

as quality of life is considered as a multi-dimensional concept and each group reflects the 

dimensions. In such circumstance, each dimension may be summarised using its own score. 

Such summaries are of course based on the notion that there is an underlying factor 

contributing to each measured item. 

(ý) NominallOrdinal Scales 

In multi-item questionnaires, each item is often measured using a categorical scale, which is 

either nominal or ordinal in nature. Examples of a nominal scale include the items found on 

the Geriatric Depression Scale (Yesavage et al., 1983), where all the items in this instrument 

are scored nominally as 'yes'Pno'. Items on the Hospital Anxiety Depression Scale (HADS - 
Zigmond et al., 1983) are scored on an ordinal scale of I -'Not very much', 2- 'Only a little' 

and 3 -Wardly at all'. The aggregated score on a multi-item instrument or the assessment 

made on a single-item instrument is usually captured on an interval or ordinal scale. For 

instance, in the Hospital Anxiety and Depression Scale the seven items are scored and then 
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summed and the final score ranges from 0 to 21 on an interval scale. This score is then 
divided into a three-category ordinal scale: 'Normal (<7)', 'Borderline (8-10)' and 'Clinical 
depression (11 +)1. 

The single-item question on health-status found on the SF-36 Health Survey (Ware et al., 
1998) is rated using an ordinal scale. This question asks 'In general would you say your 
health is: - 'Excellent', 'Very good', 'Good', 'Fair' or 'Poor'T 

In nominal scales, the order of the list of the categories is unimportant. Ordinal scales usually 

consist of a collection of naturally ordered categories and the quantitative difference between 

the categories is not necessarily known. An interval scale is one that has all the characteristics 

of an ordinal scale and in addition the distance or difference between any two numbers on a 

scale have meaning. 

In this thesis, attention is focused on ordinal scales used to assess the overall outcome (as 

opposed to item-specific outcome) using a quality of life instrument. In the case, where the 

ordinal outcome is based on a single-item, this outcome is termed as an assessed variable 
(Anderson, 1984). However, given that there is a continuous score derived from several items 

(such as in the multi-item scales) and this score has been grouped into ordinal categories, then 

this ordered scale is known as a group continuous variable. 

1.1.3 Statistical methods for analysinll ordinal response data 

The methods used to analyse ordinal quality of life scales are rarely cited in the literature. 

However, in epidemiological research, the statistical methods used to analyse ordinal 

response data, whether assessed or grouped continuous, are frequently inappropriate (Scott et 

al., 1997). In general, the analysis of ordinal data is carried out by: - 

a. treating the ordinal scale as cqtegýoricql: In treating the ordinal response data as 

categorical, the ordinal nature of the y-response categories is completely ignored, 

which results in loss of information and considerable loss of statistical power 

potentially leading to incorrect inference. In addition, it is not amenable to statistical 

adjustment (Ananth et al., 1997; Scott et al., 1997). In testing the association of the y- 

response and the covariates, the Pearson's chi-squared test of independence or the 

Mantel-Haenzel test can be utilised. The Pearson's chi-squared test statistic depends 
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on the row and the column marginal totals, but not on the order in which the rows and 

columns are listed. In testing independence, the X2 -test statistic refers to the most 

general alternative hypothesis possible whereby cell probabilities exhibit any type of 

statistical independence. The X2 -test statistic is designed to detect any type of pattern 
for additional parameters. In achieving this generality it sacrifices sensitivity for 

detecting particular patterns. Thus, the expected frequencies and the X2 -test statistic 
do not change with arbitrary reordering of the columns and/or rows. 

b. Collqpsing the ordinal scale into binary categories: An ordinal outcome may be 

analysed using binary logistic regression. For this the response categories are treated 

as binary, either by collapsing the ordinal outcome into two response categories or by 

creating several binary categories. In either case there is loss of information in terms 

of the ordering of the y-response. Also, amalgamating the response categories can 

mask the true outcome, especially if there is considerable 'noise' in the data. For 

example, there may be 'floor' and 'ceiling' effects where subjects with very poor 
health who obtain the minimum scores may have no scope to register any further 

deterioration or improvement on the scale, and as a result, a large proportion of 

subjects may occur on one of the two extremes of the scale. In amalgamating the 

categories, these effects are either removed or accentuated. In either case, the decision 

to dichotomise remains arbitrary and this has to be borne in mind when the results are 

presented. Scott et al. (1997) showed that in the use of binary logistic regression, in 

which an arbitrary cut-point is selected to dichotomise the ordinal outcome, the 

results can lead to an estimate of the effect that is applicable only for that particular 

cut-point: inference outside the boundaries of that cut-point may be incorrect. Thus, 

binary logistic regression, according to Scott et al. (1997) does not provide an 

adequate summary of the data, especially if there is statistical variability in the cut- 

point-specific estimates of the odds ratios as well as a loss of information when the 

multinomial nature of the data is not accounted for. A similar conclusion was drawn 

by Str6mberg (1996), who showed using a simulation exercise, that when changing 

the outcome categories on an ordinal scale (e. g. collapsing them) the effect estimate 

as well as the inference being drawn raised some concern. 

c. Treating the scale as interval: The levels of the ordinal scale can be quantified and 

the response categories treated as coming from a continuous distribution. This, 

however,, can cause misinterpretation of the data, in that the difference in category 6, 

say, and category 5 is assumed to be equivalent to the difference between category 2 
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and 1, given a 6-point ordinal scale (Stucki, 1996). If the intervals between 

consecutive points on the scale can be considered equidistant, then the use of 
numerical scales may be a valid analysis (Armstrong et al., 1989). For a scale such as 
the Hospital Anxiety and Depression Scale (HADS), however, the values of the 

categories correspond to different states of depression and anxiety and treating the 
intervals between the categories as equivalent would not be valid. Also, in many self- 
rating scales the data are imbalanced, e. g. one may have 'floor' or 'ceiling' effects or 
there may be large amounts of missing data in some categories and not others. In such 

cases, the choice of ordinal categories is crucial, as results will vary depending on the 

categories chosen (Hastie, 1989). In terms of analysing the data, statistical methods 

such as linear regression models (detailed by McCullagh and Nelder, 1989) or non- 

parametric methods such as the chi-squared test of trend, Mann-Whitney test or the 
Kruskall-Wallis test (Seigel, 1988) can be used to assess whether there is a trend 

across the levels of the response variable in relation to the covariates. Using linear 

regression models or the chi-squared test for trend, the degrees of freedom are 

reduced as a particular type of association is being examined. Thus, the methods that 

assess particular associations have greater power than a test like the chi-squared test, 

which examine a general type of association. McKelvey et al. (1975) illustrates the 

problem of the use of the linear regression models in the context of ordinal data. 

Essentially in applying linear regression models, given Y is continuous and x is a 

covariate, the data are expected to be normally distributed about some linear equation 

Y= a+fix, with an error structure of zero mean and constant variance. When Y is 

ordinal categorical, these assumptions are generally not met. When a least squares 
line is fitted through the data, the error term and its variance vary for different values 

of x and Y. To account for these data one must assume either a non-linear model or a 
different error structure. Hastie (1989) states that in applying ordinary least squares 

regression one may produce an unbiased parameter estimate, but the corresponding 

estimate of variance will be biased and inconsistent. Also, Snell (1964) quite 

appropriately stated that for ordered categorical data, where 'floor' and 'ceiling' 

effects are apparent, a continuous probability model may cause problems. In the case 

of non-parametric methods, although non-distributional form is assumed about the 

data, adjustment of covariates is somewhat limited. Tests such as Cochran-Mantel- 

Haenszel test (Seigel, 1988) does allow for the adjustment of one covariate given 

another, but does not control for several covariates. 
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It is evident that methods used for binary or interval data cannot fully take account of the 

properties of ordered outcome. Statistically powerful methods, referred to as 'Ordinal 
Regression Models' (Ananth et al., 1997) are the most appropriate methods for analysing 

ordinal data, as they take full advantage of the ordering of the y-response. Ordinal regression 

models offer some interesting analytical options: (i) these methods provide a more sensitive 

analysis than would be possible by arbitrarily dichotornising the outcome variable and do so 

without imposing unverifiable assumptions regarding the structure of the data; (ii) by 

modelling the dependence of an ordinal variable on a number of explanatory variables with an 

adjusted estimate of the effect in the form of a summary odds ratio; (iii) confounding and 
interaction can be assessed for all types of independent covariates: discrete categorical and 

continuous. Despite this, these methods have been under-utilised in biomedical and 

epidemiological research (Scott et al., 1997; Ananth et al., 1997; Agresti, 1999; Bender et al., 
2000). As statistical software has advanced, the use of these models has also become 

widespread, although it is still continuously reported in the literature that some of these 

models are unable to be fitted using existing statistical software. However, there still remains 

the problem of fully understanding the models and misinterpreting the results (Bender et al., 

2000). Additionally it is frequently unclear how some routine available software programs 

can be used to perform the calculations for these models. 

There are in general seven types of Ordinal Regression Models and these have been listed in 

Table 1.1 together with their founders or researchers who cite the model in some depth in 

their literature. 
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Table 1.1 Ordinal Regression Models 

Ordinal Regression Models Fou nde rs/Researc hers associated with 
Models 

Polytomous 

Proportional Odds (Cumulative Odds) 

Unconstrained Partial Proportional Odds 

Constrained Partial Proportional Odds 

Adjacent Category 

Continuation Ratio 

Stereotype 

Ananth et a] (1997); Lu (1999) 

McCullagh (1980) 

Peterson and Harrell (1988,1990) 

Peterson and Harrell (1988,1990) 

Agresti (1989) 

Feinberg (1980) 

Anderson (1984) 

1.1.4 The ideal method for analysing ordinal response data - varied opinions 

) Ordinal Regression Models v. Logistic Regression Models (a 

Despite the drawbacks of binary logistic regression and the linear regression models in 

analysing ordinal responses, comparison of ordinal regression models to these other statistical 

methods has often been cited in the literature. For instance, Scott et al. (1997) when 

comparing the results of the proportional odds model with the results from a series of binary 

logistic regressions performed at each cut-point found that the proportional odds model 

produced a more stable estimate of the odds ratio and the increased use of information 

contained in the ordinal scale resulted in an estimate with more narrow confidence limits. On 

the other hand, Armstrong and Sloan (1989) carried out a simulation exercise comparing 

conventional binary logistic models with the proportional odds using asymptotic relative 

efficiency (ARE). The ARE is the limit, as the sample size increases, of the ratio of the 

sample sizes required for the two methods in order that each achieves the same power (or 

equivalently the same precision) when close to the null hypothesis. This exercise showed that 

if the dichotomy for simple logistic regression is close to its optimal point (creating equal 

numbers of 'positive' and 'negative' responders), then the power gain using the proportional 
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odds model was modest, since the relative efficiency of the simple logistic regression was 
between 75% and 80% depending on the number of categories used. Manor (2000) also found 

similarity in results when using the logistic regression model and ordinal regression models 
(polytomous, proportional odds, continuation ratio and the adjacent category). 

. 
6h Ordinal 

-Regression 
Models v. Linear Regz: ession Model 

The study by Lu (1999) is the only study cited in the literature that compares the ordinal 
regression models with the linear regression model. He found a significant difference in 

results when comparing the ordered logit model (polytomous model) and the linear regression 
model. He states that linear regression techniques fail to model the true relationship in the 
data and are therefore likely to underestimate the relative impact of certain explanatory 

variables in the response. He found that the effect of the covariates on the y-response differed 

for both types of analyses. For some covariates, opposite effect was shown for the regression 

analysis compared to that on the polytomous model. For other covariates using the linear 

regression the effect was found to be highly unlikely whereas the effect provided by the 

polytomous model seemed to be more what would be expected. Lu (1999) concluded that the 
different conclusions drawn from both sets of analyses cast some doubt on regression 
techniques in the context of ordinal variables. On the other hand, Walters et al. (2001) report 
that given a scale has more than seven categories and the distribution of the data are well 

spread over those categories (and there is no sparse data), then it is useful to assume that the 

data were generated from a continuous distribution, especially if there is reason to believe that 

the underlying scale is linear. In this case the usual parametric procedures such as multiple 
linear regression or non-parametric tests such as the Mann-Whitney can be used. 

From the above there are two points to emphasis: 

The assessment of health-related quality of life within elderly people is a 

relatively new and important area of research. As a result it brings with it new 

challenges in terrns of design and analysis of quality of life instruments. 

Within epidemiological research some prefer Ordinal Regression Models when 

analysing ordered categories, whereas others feel alternative statistical methods 

are sufficient to serve their purpose. Ordinal regression models have been used in 

biometrical applications (e. g. Greenland 1994; Laara and Matthews, 1985) and 

for biomedical purposes (e. g. Armstrong and Sloan, 1989) and even in areas like 

ecology (Guisan et al., 2000). However, the application of Ordinal Regression 

Models in the context of health-related quality of life data collected in elderly 
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people is very limited. In an extensive search in Medline (from 1966 to 2003) 117 

citations were displayed which related to Ordinal Regression Models and only 3 

of these were relevant to the assessment of health-related quality of life in elderly 
people. Similarly in the Science and Social Science Citation Indexes (from 1981 

to 2002) of the 192 citations, 5 related to assessing ordinal quality of life 

outcomes in elderly people. Of the small number of relevant citations available in 

the literature, the use of ordinal regression models was either very vague, in that 
it was not clear whether the assumptions of the models have been checked, or an 
inappropriate regression model had been used. 

With these two main points in mind, there has risen a need to examine the use of ordinal 

regression models using scales that measure health-related quality of life on elderly 

respondents. 

1.2 Aims 

For this thesis data were obtained from the Medical Research Council Cognitive and Function 

Ageing Study (MRC CFAS) and two sets of data were analysed: one with an assessed ordinal 

outcome and the other with a group continuous outcome. One of these datasets have been 

previously analysed using multivariate methods (NIRC CFASI, 1998). The following 

hypotheses were apparent. The aim of this thesis was to prove/disprove these hypotheses. 

(a) Hvpothesis 1: Ordinal Regression Models are the most appropriate methods for 

analysing ordinal scales that measure health-related quality of life in elderly subjects. 

This hypothesis has emerged as there are conflicting conclusions found in the literature 

when one compares Ordinal Regression Models with other methods. In this thesis, the 

comparison is made with the former methods and linear regression and binary logistic 

regression models. This hypothesis has also resulted because ordinal regression models in 

the area of quality of life within gerontology are not often used. 
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(b) Hvpothesis 2: The Stereotype model is an attractive model for analysing many health- 

related quality of life scales where the categories are ordered. 

In the literature the use of the Stereotype model is indeed very limited - in the databases 

searched only ten articles referred to the Stereotype model and of these, only four articles 

actually looked at the Stereotype model in any detail and attempted to fit it to the data in 

question. This model remains to be explored further. Its properties indicate that it may be 

an ideal model for analysing outcomes (Greenland, 1994) similar to those presented on 

quality of life scales. 

In addressing these aims, the following issues that were considered particularly relevant to 

data collected on elderly subjects were also assessed: 

sparse data - Data on many elderly people, particularly the very frail can often 
be sparse. The issues that arise in this case are those of missing data and/or 
imbalance data resulting in skew distributions. This issue has been briefly 

addressed in the context of ordinal regression models: the analysis of data where 

there are large numbers of missing observations is beyond the scope of this thesis. 

First order interaction term - Only one paper (DeMaris, 199 1) in the literature 

cites interaction terms in the context of ordinal regression models (i. e. 

polytomous model). Pragmatically, interaction terms are expected to exist and 

therefore it is important that one addresses the modelling aspects together with 

the interpretation of them. 

More than one covariate - Many researchers cite results from ordinal regression 

models that have been fitted using one covariate. Again, in practice, there is a 

need to assess how ordinal regression models behave given more than one 

covariate. 

1.3 Format of the thesis 

The thesis starts with a background on how health-related quality of life has become an 

important assessment when managing the health of elderly people (Chapter 2). Chapter 3 

details a review of Ordinal Regression Models. The study design is outlined together with the 

quality of life scales and covariates used to fit the regression models in Chapter 4. The 

following chapters (Chapter 5 and 6) give extensive coverage of the way the models were 
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fitted and checked for goodness-of-fit. Chapter 7 presents the results from the regression 

models fitted and gives a comparison of the results from the models. Chapter 8 details the 

discussion and conclusion of this thesis, by bringing together the statistical results and 
findings with emphasis on health-related quality of life instruments used in elderly people. In 

the latter chapter, the hypotheses stated in section 1.2 of this chapter are proved/d is proved in 

the light of the results and the thesis is concluded with its contribution to the literature, its 

limitations and areas of further research. 
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CHAPTER 2- BACKGROUND 

2.1 Aims of this Chapter 

This chapter provides the background to health-related quality of life in elderly people and 
how it has grown in importance. The issues addressed include: - 

(i) the growth in population of elderly people and its impact; 

(ii) how and why health related quality of life has become an important outcome 

measure in assessing the health of elderly people 

Section 2.2 provides a summary of demographic changes that have led to an ageing 

population. This has consequently resulted in an increasing numbers and proportion of 

elderly people. The incidence and prevalence of morbidity and disability inevitably increases 

with age, and therefore today a substantial demand placed on the National Health Service has 

come from the elderly sub-population. 

Section 2.3 illustrates how factors such as health related quality of life have become 

important outcomes in elderly respondents, particularly in deciding the benefits of new and 

existing healthcare services and interventions. This sections also details what health-related 

quality of life means to elderly people. Finally a brief outline is given of the types of health- 

related quality of life instruments available and the ones used in this thesis. 

2.2 DemoeraDhv chanees and its implications 

2.2.1 Generalvopulation 

In the twentieth century substantial variations in the structure of populations have occurred 

particularly in the developed countries. Changes in the pattern of events have produced 

changes in age structure, and the twentieth century era has been characterised primarily by a 

decrease in the proportion of children in the population and increase in both the proportion of 

elderly people and the median age of the population. This change has been largely due to 

variations in number of births (fertility), increase in life expectancy and in net migration 

(Grundy, 1998). With regards to the elderly population it is mainly the variations in fertility 
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and life expectancy rates that have led to relatively large proportion of elderly people (known 
as 'population ageing'). 

2.2.2 Elderlvvovulation 

In England and Wales, the number of people aged over 64 years of age has increased by 

nearly 80% during the past 45 years, and is projected to rise by another 33% over the next 
twenty years. By 2021 there will be 12.5 million people in this age group that will comprise 
20% of the total population (Pettinger, 1998). Over the period 1991 to 203 1, while the total 

population is expected to increase by 8%, the number of people aged 60-74 will rise by 43%, 

those aged 75-84 by 48% and those aged 85 and over by 138% (Department of Health, 1999). 

The world's elderly population (65 years of age and over) is currently growing at a rate of 
2.4% per year, considerably faster than the global total population. In the developed countries 

as a whole, the present elderly population numbers 165 million, and is projected to expand to 

257 million by the year 2025. Sweden, with 17.5% of its population aged 65 and over in 

1997, has the highest proportion of elderly people of the major countries in the world. Other 

notably high proportions (in excess of 16%) are found in Italy, Belgium, Greece and the 

United Kingdom. While the proportion of elderly people in less developed countries is 

currently low, in many cases fertility rates are now falling. This means that in the future these 

countries will see increases in the relative size of the older population (Grundy, 1992). 

The relative growth of the elderly population has become a global issue, and its implications 

have been felt particularly in areas related to healthcare. 

2.2.3 Morb iditv and disab ili 

The incidence and prevalence of chronic disease and disability inevitably increase with age, 

and as a result has substantial impact on the health of the elderly people. For instance, Tallis 

(1992) reports that the incidence of major neurological and musculo-skeletal causes of 

disability such as stroke, Alzheimer's disease, Parkinson's disease and osteoarthritis almost 

exponentially increase with age. Even epileptic seizures occur more commonly in old age. 

Khaw (1999) showed the projected number of people in the United Kingdom aged over 65 

(for years 1996-2066) unable\unlikely to perform the activities of daily living independently. 

Based on 1976 prevalence estimates, the number of people unable to perform activities of 
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daily living will rise from 1.7 million in 1996 to nearly 3.5 million in 205 1. A similar pattern 
was seen for dementia, with the number of cases projected to double from one million in 
1996 to two million in 205 1. Khaw (1999) concludes in this paper, that the number of various 
chronic diseases and disabilities are projected to increase two to threefold over the next 30 

years for the over sixty-fives. If the prevalence of disability in later life continues at the 
present level, by the year 203 1, we shall have two million more people in Great Britain with 
degree of disability sufficient enough to require daily personal help (Department of Health, 
1999). 

2.2.4 Use of the health and the weýfare services 

The implications of chronic disease and disability of older age people has been most felt by 

the healthcare services as elderly people are the largest users of health and social services. 
For instance, Grundy (1996) in a survey concluded that the use of personal social services 

was particularly high among very old people aged 85 years and over. Also, elderly people, 

particularly those aged 75 years and over, have greater contact with GPs/physicians than 

those in other age groups and are more likely to have been in hospital as in-patients/out- 

patients. Very high proportions of elderly people take prescribed drugs, particularly in the 

USA. Studies by the National Centre of Health Statistics estimate that the number of older 

people residing in nursing homes will increase by 58% from 1978 to 2003 if mortality ratio 

remains constant (Cohn et al., 199 1). Along with the increased utilisation of nursing homes, 

the characteristics of the population are expected to change, resulting in facilities with older 

and more disabled residents. NHS hospital admissions have more than tripled since the war, 

from 3.5 million to more than 12 million each year. A large part of the increase is attributed 

to elderly people (Pettinger, 1998). Length of stay in hospital also increases with age and as a 

consequence of both higher admission rates and longer stay. The hospital beds per person per 

annum were found to be six times greater among the old people in their eighties than for 

those in their fifties in both England and Wales (Grundy, 1983). According to Pettinger 

(1998), 80% of people's lifetime healthcare costs are consumed during their first six years 

and last three. The burden they place on health services only occurs during their last three 

years. 

The Department of Health (DOH) and providers of health care and social support have 

become increasingly concerned about the implications of the changes in the elderly 

population and the demands placed on cost and limited healthcare resources. As a result in 
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the last ten years or so, the DOH have focused much research on looking at issues of ageism. 
In the DOH National Service Framework Report (2001), published on Ageing and Age- 

associated disease and disability, several priorities were set and one of them included 

enhancing the well-being and quality of life of older people. 

2.3 Health-related aualitv of life 

An increasing important aspect of gerontological research is the development and evaluation 

of interventions designed to improve the health and social status of elderly people. An 

important mechanism by which the goals of clinicians can be targeted, and their efforts 

evaluated, is through the assessment of quality of life of a population. Since clinicians are 
increasingly being asked to justify the benefit of additional services, the measurement of 

quality of life is becoming increasingly important. Following this, as manpower and medical 

resources are not infinite, it is important that investment in healthcare delivers not only 

longer life, but also delivers an improved or maintained quality of life. 

2.3.1 Whv health-related quality of life is a useful measure in elderly people 

Health-related quality of life is an important outcome in assessing the health of elderly 

people for the following reasons: - 

assessment of overall health: Measuring the outcome of care is essential to providing 

quality services at the lowest unit cost (Ebrahim et al., 1993) yet current models of 

outcome measurement present considerable difficulties when applied to frail older 

people (Lundh and Nolan, 1996). As noted in the literature, the traditional medical 

outcome in which cure is the desired outcome is often inappropriate for many older 

people and this has resulted in the use of the functional model of health as an 

alternative framework (Wilkin and Hughes, 1986). In this approach success is 

primarily based in achieving maximum levels of functioning within the activities of 

daily living (ADL). However, as age and health are interrelated, it has become 

increasingly recognised that chronic illnesses affect many aspects of the lives of older 

people. In addition to functional and health status, measuring other aspects such as 

psychological, social and economic functioning need to receive equal importance. 

These collectively encompass the multi-dimensional outcome measure of health- 
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related quality of life and measuring this allows one to focus on the whole individual 

as opposed to only some of the aspect of the individual's health. Thus, coupled with 
clinical and economic outcomes, research incorporating quality of life assessments 
aims to provide a complete picture as regards health. 

(ii) Evaluation of the efficiencyleffectiveness of interventions: It is important that medical 
interventions do not simply prolong life of an elderly individual, without improving 
the quality of his/her life. For this reason, quality of life assessments are often chosen 
as an outcome measure in palliative studies, where a disease may not be cured, but 
the length of time of no disease and symptom relief can be prolonged. In such a case, 
a comprehensive evaluation of quality of life is often as important as assessing the 

relief of symptoms. 

(iii) Estimating the needs of the elderly population: Measuring quality of life of an elderly 

person can provide information about service needs which may require some type of 

program intervention. For example, funding deficits in social activities may point to 
development program s/activ ities that would increase social interaction. 

(iv) Aidingpolicy-making decisions: Quality of life assessments determine utilities such 

as life expectancy, which help in deciding on trends in health care. 

2.3.2 Defining health-related quality of life in elderly people 

Despite the enormous increase in research activity, there is no uniformity in the definition of 

health-related quality of life. In a study carried out by Cohn et al. (1991), residents (older 

individuals), family members and staff in nursing homes were asked to define quality of life 

using the following domains - care, social-emotional environment, physical environment, 

abilities, autonomies and morale. In general individuals differed from one another in their 

perceptions of health-related quality of life. For instance, residents defined quality of life in 

terms of care given. However, staff and family members rated physical health as more 

important to residents' quality of life then did the residents themselves. This study 

emphasised the differences in the definitions of health-related quality of life perceived by 

older people and by others. 

There are similarities/differences in many definitions of health-related quality of life (by 

Fletcher et al. (1992); the U. S. Institute of Medicine (1996)), most notably in the emphasis on 
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the multi-dimensional aspects. The most common dimensions of quality of life in elderly 
subjects have been detailed by Arnold (1991) and include: 

(i) physicalfunctioning and symptoms - mobility, self-care, fatigue, nausea, disease-specific 

symptoms; 

(ii) emotionalfunctioning and behavioural dysfunctioning - depression, anxiety and life 

satisfaction; 
(iii) intellectual and cognitive functioning - memory and alertness; 
(iv) socialfunctioning and the existence of a support network - well-being, carer strain, 

social support; 

(v) role performance - ability to do the housework, pursue interests, recreation; 
(vi) life satisfaction; 

(vii) health perception/status; 

(viii) economic status; 
(ix) pain, - 

(x) the ability to pursue interests and recreations (e. g. job, hobbies); 

(xi) sexualfunctioning; 

(xii) energy and vitality. 

2.3.3 Some aspects of health-related quality of life 

Choice of Instrument: Clearly given the range of definitions of health-related quality of life 

and reasons for measuring it, no one measure will be useful for all purposes. The choice and 

practicality of an instrument are particularly important in the elderly as such aspects as 

burden placed on the respondent, the choice of respondent, the method of administration are 

important issues to address. Even when the correct instrument is chosen, other aspects, such 

as likely refusal rates and rates of missing data can be problematic. O'Mahoney et al. (1998) 

highlight the concerns of lack of compliance and missing/sparse data in research studies 

where quality of life is measured on elderly subjects. 

Type ofInstrument: Generally quality of life instruments used in elderly people fall into five 

broad areas: clinical and observer-based scales, generic questionnaires, disease-specific and 

site-specific questionnaires, dimension specific questionnaires and individualised measures 

(Fitzpatrick and Davey, 2000). In this thesis, focus has been placed on two generic 
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instruments: one that measures health status of elderly subjects and the other that assesses the 
disability of elderly respondents 

(a) Health Status measure 

Health status is a complex and multi-dimensional construct, and essentially the construct of 
health has been defined by four factors: avoiding illness, being healthy, healthy lifestyle and 
disease prevention (Worsley, 1990). However, there is no widespread consensus, 

conceptually or operationally for a definition of health. Self-rated health is usually the 
individual's perception and evaluation of his or her overall health. Frequently, it is a single 

rating measure with responses reported along a 4- or 5-point scale from 'excellent' to 'poor'. 

As most research studies use such a global indicator of self-rated health, sceptics argue that it 

is risky to base a body of research on responses to a single question. Despite this, self-rated 
health that is measured using a single-item questionnaire has been shown to be an 
independent predictor of mortality in older people (Idler and Benyamini, 1997). This is 

consistently shown in much of the literature where self-rated health is not just a single and 

most important predictor of mortality, but also a predictor of future health among older adults 

(Mossey and Shapiro, 1982; Jagger et al., 1988; Kaplan 1988; Idler and Angel, 1990). It is 

also the best predictor of the use of health services (Fylkesnes, 1991; Wolinsky and Arnold, 

1988). Self-rated health also corresponds closely with general hospital care and old people's 

home care (Branch et al., 198 1; Cohen et al., 1986). There are some predictors of self-rated 

health cited in the literature and these are listed in Table 2.1. 

Although self-rated health is measured as a categorical response, it has often been collapsed 

into a dichotomous variable of greater than and equal to 'good' versus less than 'good' health 

(Power et al., 1998; Mackenbach et al., 1997). The justification of this practice has not been 

established. It may be that the categories of self-rated health represent an arbitrary 

classification of underlying continuous phenomena. Certainly some investigators have 

established that the border separating 'bad' from 'good' health is vague and implies 

continuity (Manderbacka, 1998; Mackenbach, 1994; Manor 2000). 

Alternatively, other researchers suggest that the categories may represent intrinsically distinct 

health states, which are predicted by different factors. Some studies have suggested that there 

are different predictors for good and less than good health (Smith et al. 1994). Such 

investigators argue that health status is composed of two different types of models. There is 

the 'medical' model that tends to explain self-rated health in terms of hypochondriasis. 

18 



somatisation and disability (Barsky et al., 1992), and there is a 'socio-cultural' model that 
identifies the power of labelling, the nature of the 'sick role' and the importance of social 
behaviour factors over diagnosis of chronic disease (Fylkesnes et al., 1992). A critical 
difference between the two types of models is the recognition that health status has as much 
as social role as a medical definition. Worse health status is almost entirely related to the 

physical experience of adverse health - current symptoms, the use of medication and past 
medical history. In contrast, better health status is only to a limited extent concerned with 
absence of illness, but is overlain with socio-demographic factors such as age, martial status 
and employment status. In all it is a more complex and holistic construct that involves socio- 
economic advantage and self-image: it is much more that the simple absence of diseases 

status which mark worse health. Thus, health status is made up of parameters which progress 

continuously (medical model) as well as parameters which characterise deviations from the 

norm (socio-cultural model), and thus health status as argued by Smith et al (1994) cannot 

solely be considered on a continuum. 

(b) Physical disability 

The other aspect of quality of life assessed closely in this thesis is that of physical 

disability. The intertwining of physical, psychological and social well-being in elderly 

subjects makes independent measurement of physical functioning difficult. Yet such 

measurements are crucial to geriatric practice. Generally the measures of physical 

health can be separated into three categories: those that tap the construct of general 

physical health or absence of illness; those that measure the ability to perform basic 

self-care activities, sometimes called Activities of Daily Living (ADL); and those that 

measure, in addition, the ability to perform some of the more-complex activities that 

are associated with independent life sometimes called Instrumental Activities of Daily 

Living (IADL). Particular attention is focused here on the ADL. General-health 

measures have limited value in indicating the degree of independence an individual 

can attain despite disease or impairments. Gerontologists have therefore had 

considerable interest in developing measures that tap practical dimensions. Some of 

these measures deal solely with basic self-care or ADL activities; some deal solely 

with mobility; and other measures combine both elements into a physical -functioning 

measure. There is some consensus, however, regarding the items that indicate ADL 

activities: almost all scales include some combination of dressing, bathing, toileting, 
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transfer and feeding. Data on ADL scales are most commonly collected by direct 

observations and the scores on these scales are usually based on the degree of 

independence attained for each function. These scores are often totalled to give some 

indication of physical impairment. 
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Table 2.1: Published studies with Health Status as the response outcome and the 
corresponding relevant risk factors 

Authors Rating of self-rated health Risk factors 

Mossey and Shapiro, 1982 5-point rating: excellent, good, Age, sex, education, marital 
fair, poor and bad status, income, life satisfaction, 

urban/rural residence 
5-point rating: excellent, very Age, sex, race, education, 

Idler and Angel, 1990 good, good, fair and poor income, medical diagnosis, 

smoking status, alcohol 

consumption, inactivity 

measure, obesity index 

PUls, Feskens and Kromhout, 4-point rating scale: healthy, Age, education, marital status, 
1993 rather healthy, moderately family history of chronic 

healthy and not healthy diseases, blood pressure, serum 

cholesterol, electo-cardiographic 
diagnoses, medication use, 

smoking history, alcohol 

consumption, physical activity 

Mackenbach et al., 1994 5-point rating scale: very good, Age, sex, level of education, 

good, fair, sometimes good/bad, employment status, marital 

bad status, alcohol consumption, 

smoking, exercise 

Hays et al., 1996 4-point rating scale: excellent, Age, sex, race, income, 

good, fair, poor education, marital status, 

smoking, alcohol consumption, 

presence of chronic conditions 

(diabetes, heart attacks, blood 

pressure etc. ) 

Manderbacka et al., 1998 5-point rating scale: excellent, Age, sex, region of residence, 

good, average, poor, very poor BMI, frequency of exercise, 

drinking frequency, long- 

standing illness/disability 
I 

Kivinen et al., 1998 3-point rating scale: not health, Age, sex, education, marital 

moderately healthy, very healthy status, depression, coronary 

heart disease 
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Summary 

In surnmarising the background to the thesis, the following points are highlighted. These 
include the following: 

(i) Historically, over the last hundred years or so, there has been a substantial degree 

of change in the total population throughout the developed countries. In 

particular, the change has resulted in ageing populations and the relative growth 

of the elderly people. This in turn has been accompanied by a growth in health 

care demands. 

(i i) As healthcare provisions and costs are limited, policy makers and providers have 

become increasingly concerned about the implications of the changes in 

population trends and the demands placed on healthcare resources. 

(iii) Health-related quality of life has been seen as an important measure that provides 

an overall assessment of health and is also an important factor in deciding the 

benefits and needs of new and existing healthcare services and interventions. 

(iv) As a result of this, the Department of Health have actively been promoting 

research in gerontology that focuses on assessing health-related quality of life. 

(v) Instruments that assess health-related quality of life fall into two main categories: 

single item scales and multi-item scales. In this thesis, attention is focused on: 

(a) a single item -a Health Status question, and 

(b) a multi-item measure -a physical disability scale. 
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CHAPTER 3-A RIEVIEW OF ORDINAL REGRESSION MODELS 

As health-related quality of life measures become increasingly important in gerontology, the 

need to assess the statistical methods used to analyse such measures also grows in importance. 

As already mentioned (in Chapter 1: Introduction and Aims), the use of health-related quality 

of life measures is relatively new in gerontology. Therefore there does not exist the pool of 
information within this area to extensively assess the statistical methods, in particular ordinal 

regression models that can be used to analyse these instruments. Instead the application of 

ordinal regression models is more concentrated in other areas of epidemiology and social 

sciences. 

3.1 Aims of this Chapter 

Lar) Ordinal Regression Models 

The Ordinal Regression Models reviewed in this chapter are: 

Polytomous Model; 

Proportional Odds Model; 

Unconstrained Partial Proportional Odds Model; 

Constrained Partial Proportional Odds Model; 

Adjacent Category Model; 

Continuation Ratio Model; 

Stereotype Model. 

(ýh) Issues that arise when analysing ordinal quality of life data in elderly peQple 

This chapter is devoted to reviewing the literature related to the use of ordinal regression 

models primarily within non-geronto logical studies. However, from this review issues that 

relate to analysing ordinal scales, particularly the ones that arise when dealing with the elderly 

population are broadly outlined. 
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The issues that are particularly relevant when applying ordinal regression models to the data 
in this thesis include: 

(i) Statistical based 

The model form for each ordinal regression model and its properties. 
How are the data summarised (i. e. summary statistics) using these models? 
How are ordinal regression models fitted in software packages (particularly SAS 
as this software package will be used)? 

0 What methods are used to check goodness-of-fit of ordinal regression models? 
0A pragmatic view of the data has been taken in this thesis. Therefore there is a 

possibility that interaction terms will arise, given several covariates and this 
issues needs to be investigated in the context of ordinal regression models. 

0 Does the literature adequately cover the case of two or more covariates in relation 
to these models? 

0 As the population of study is elderly people, there is a possibility of sparse data 
(as already outlined in section 2.3.3). What issues arise when applying ordinal 
regression models in the presence of sparse data? 

(ii) Medical based 

0 Are certain models more applicable than others under certain medical conditions? 

0 Similarities and differences of ordinal regression models in terms of the 

interpretation of the summary statistics. 

Prior to considering the ordinal regression models, a brief note regarding the origin of these 

model is given (section 3.2). Then an outline of how the data are presented in a contingency 

table is illustrated (section 3.3). Following this, the statistical modelling components of an 

ordinal regression model and the type of models used for multinomial categories are 

considered in depth in sections 3.4 and 3.5 respectively. The methods used to assess 

goodness-of-fit are also outlined (section 3.6) and modelling aspects such as the use of several 

covariates and interaction terms are examined (section 3.7 and 3.8 respectively). Ordinal 

models in the context of sparse data are also summarised (Section 3.9). The last sections 

(3.10,311 and 3.12) illustrate the use of these models given different types of data and give a 

comparison and the interpretation of these models as presented in the literature. Finally this 
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chapter ends with a summary that reflects on the findings in the literature and draws out the 
points that are particularly relevant to the issues stated above. 

3.2 A brief note regarding the origin of ordinal rej! ression models 

The use of statistical methods for ordered data can be traced back to the late 1950s (e. g. 
Ashford, 1959). The first attempts to assess asymmetrical problems, where an ordered 
categorical variable was considered as the dependent variable using multiple regression 
techniques were published in the later 1960s (Walker and Duncan, 1967). However, reviews 
on this matter did not appear until the early 1980s (McCullagh, 1980; Anderson, 1984). In a 
series of papers, Goodman (1979,1985) developed log-linear models that were proposed for 

symmetrical problems where the association between several variables, some of which were 
ordinal, were studied. Since then regression models that fit ordinal data have been included in 
the broader category of Generalised Linear Models (McCullagh and Nelder, 1989). 

Generally there are two main classes of models that analyse ordinal categorical data - Log- 
linear and Logit (binary and ordinal regression) models (Agresti, 1989). Log-linear models, 

which allow for the ordering of the categories, for one or more variables, are termed 

association models and they describe association patterns among the variables. With this 
latter approach, the cell counts are modelled in a contingency table in terms of associations 

among the variables, and the distinction between the response and the explanatory variables 
is not made. In the case of the logit models, one variable is explicitly treated as the response 

and the others are the covariates. 

In medical research studies, it is more usual to examine the relationship of the outcome with 

respect to other measures, as opposed to analyse the relationships among several variables. As 

a result, the logit models are more appropriate for our purpose. 

All the ordinal regression models reduce to the binary logistic model when the categories are 

collapsed into two or when only two categories are assessed. One advantage of an ordered 

analysis over the corresponding nominal analysis is that generally fewer parameters are 

needed to describe a model for the response (Greenwood and Farewell, 1988). As a result the 

ordinal regression models are more powerful. Also, modelling ordered categorical data is 

intrinsically more difficult than modelling continuous data due to the constraints on the 

underlying probabilities and the reduced amount of information that discrete outcomes 

contain. 
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3.3 Structure of the continaencv table 

For a given ordinal scale, the number of observations falling in any particular category is 

called aftequency. When summarising the results in a medical study, there is often a need to 

assess how these frequencies are 'behaving' with respect to another variable. These data are 

often presented in a form of a frequency or contingency table, which cross-tabulates the 

response with the combination of the explanatory variables. Taking the most general case, let 

x and Y denote two categorical variables with x having r categories, (xb X2, .... qXr) and Y 

having c categories (YI, Y2ý ...., yj. These categories are often called levels and the 

combination of any given x and Y category is known as a cell (see Table 3.1). Let ; T, denote 

the true (but unknown) probability that (x, 1) fall in the cell in row i and columnj. Then the 

probabilities 7ru form ajoint distribution of x and Y and Z. 7, / == 1. 

In many experimental designs, such as clinical trials and observational studies (such as case- 

control, cohort and cross-sectional studies), subjects are usually entered into each 

experimental group, the sizes of which are decided apriori and therefore fixed. In this fixed 

sampling scheme, each level of the covariate x or the combination of the levels of the 

different covariates are known as sub-populations and the total of each sub-population, is the 

row marginal total is (ni, - see Table 3.1, the number of patients on each sub-population). The 

data are then assumed to come from a multinomial distribution. 

Given there are r sub-populations and c levels of Y then 

CCC 
7rl jI 7r2j ............. 

I 
Jr 

ri 
j=1 j=J 

/n 21 n r+- where 7r,, = n, 1,; 7r2j =n 1'-2+; 
.......... .; 7 rj =n rjln (3.1) 

The ideal methods to assess the association of x and Y, where Y may be ordinal, are based on 

modelling techniques. 
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y-response (Y) 

x-covariate (Y d (Y 2) (Y 3) (Yd 
Row 

Marginal 
Total 

X1 nil n12 n13 
... ni, nl+ 

X2 n2l n22 n23 
... n2c n2+ 

Xi 

... ni, ni+ 

Xr nrl nr2 nrj nrc nr+ 

Column Marginal 
Total n+l n+2 n+j ... n+c N 

Table 3. L- Illustration of the way the columns and rows are formed in a contingency (rxc) 
table. 

3.4 Components of an ordinal regression model 

Generalised Linear Models 

Consider the most general case of linear models, as described by McCullagh and Nelder 

(1989). All generalised linear models are specified by three components: a random 

component, which identifies the probability distribution of the response variable; a systematic 

component, which specifies a linear function of explanatory variables that are used as 

predictors; and a link describing the functional relationship between the systematic 

component and the expected value of the random component. 

The random component consists of independent observations Y= (YI, ... YN)' from a 

distribution in the natural exponential family. This family includes several important 

distributions as special cases, including the binomial and multinomial. The systematic 

component relates a vector 77: --: (7111 11 2ý - -... TIN)' to a set of explanatory variables (p of them) 

through a linear model 
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p 
'7j== 

L 
Xtk (3.2) 

k=l 

The vectors of covariates (x,, 
, X, 2 --xp) consist of values of the explanatory variables for i= 

],... N individuals. The j, 8kj are the model parameters and the f qjj are called the linear 

predictors. 

In defining the link, let A= E(Y, ), i=1, ... N. Then A is linked to i7i by q= F(A), where F is 

any monotonic (i. e. as Y increases Xik increase or as Y decreases Xik decreases) differentiable 
function. The model links expected values of observations to explanatory variables through 
the formula 

p 
F(A) L Xik)6k 

k=l 
(3.3) 

The function in (3.3) gives the identity linkr7j =A specifying a linear model for the mean 

response. However our interest is focused on link functions that are associated with ordinal 

regression models. 

(ý) Binary Logistic Regression Model 

The logistic regression model is used as a starting point in describing the components of the 

ordinal regression models. 

For data that have been grouped as presented in Table 3.1, it will be convenient to introduce 

auxiliary random variables representing counts of responses in the various categories. Let n, 

denote the number of subjects in the ihgroup. Then consider the case where one has a 

categorical response variable with two categories (the simplest case of multinomial 

categories). The observations may be classified as a 'success' (1) or 'failure' (0). Here the 

distribution is Bernoulli for the binary random variables specifying probabilities Pr(Yý=I) =7c 

and Pr(Yi=O)=1- 7ri for the two outcomes. Taking model (3.2) one can write the linear model 

p 
F(ITi) ln{; T, /(I a, + LXiki8k 

k=l 
(3.4) 
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and this is known as a linear probability model (Agresti, 1989). Here the appropriate link is 
the log odds transformation, known as the logit. 

Lc) Ordinal Regression Models 

The models designed for categorical response variables having more than two categories are 
generalisations of logit model (3.4) and are collectively known as ordinal regression models. 

For these models, since the underlying response is categorical, a member in group i can have 

response which falls into one of c possible categories c). We let the indicator random 

variable Yy equal I if a member in group i has responsej and equal 0 otherwise, 

C 
with Y=1. We can accumulate the Yýs together to form the response vector Y, =(Y,,,... 

C 
Y, c)'. The probability of responsej is 7ru = E(YU), with 1 7ru =I. The random vector Y, has a 

j=1 

multinomial distribution with probability vector /T, = E(Y, ) = We assume that 

each individual has covariates Xik. For ordinal regression models there are many choices of 
link functions relating the elements of 7ri to the covariates. Various choices of link functions 

include 'cumulative' logits, the 'continuation ratio' logits, the 'adjacent category' logits and 
'generalised' logits. All these link functions can be generalised to the model (3.2) by 

p 
aj + Xik)6jk 

k=l 

3.5 Types of Ordinal Rearession Models 

(3.5) 

The seven different types of ordinal regression models listed in section 3.1 are now discussed 

in depth. Let )T, = Pr(Yj = yj) denote the probability that the response of a member in 

group i with characteristicsXik(k--I,... p) falls into the yjcategory. Using this together with 

(3.5), the logits of the various ordinal regression models are specified below. 
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3.5.1 Generalised LoEitlPolvtomous Model 

The Generalised Logit or Polytomous model is often used to model nominal response data 
(Agresti, 1989), although some researchers consider this model as an ordinal regression model 
(Lu, 1999; Ananth et al., 1997). This model is a straightforward extension of the logistic 

regression model for binary response and accommodates for multinomial responses. 

Laý The 
-form 

of the Polytomous Model 

If Y is a categorical response with c categories, there are 2 pairs of response for which one 
C 

can construct logits. Given a certain choice of c- I of these, the rest are redundant. In the case 

of the Generalised Logit model, each response category is paired with a baseline or referent 

category, the choice of which is arbitrary. For this reason Cox and Chuang (1984) referred to 

this model as the 'baseline comparison' logit model. When the last category (c) is referent, the 

log odds in the contingency table can be represented as: 

In 
Pr(Y, = yj) 

j= 11 .... C-1 (3.6) 
Pr(Yj = y, ) 

Given a set of predictors, Ananth et al. (1997) described a model using (3.6) as: 

In 
Pr(Yj = yj) 

a+p Xik J6jk 

[ 

Pr(Yj = y, ) 

Ii 

k=l 

(3.7) 

As this latter model stands it is not identifiable, since adding a fixed constant to every 8 will 

give exactly the same predicted probabilities. To identify the model, constraints need to be 

placed on the parameters. Thus, a, =O and)6ck=O are fixed to allow the parameters to be 

identified. 

What are the underlying assumptions of the Polytomous Model? 

There are no assumptions required for the polytomous model. However, this model does not 

take account of the ordering of the categories. 
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0 summarv statistics - odds ratio 

The polytomous model consists of c- I logit equations or functions for a given covariate. It 

assumes that different pairs of levels of the outcome variable are required to assess the 

relationship of the response and the covariates. In this model, a covariate may influence the 

link function strongly in one category yl, but has little influence in category Y2- 

For a given covariate xil, the parameters 6j, corresponds to the regression coefficients for the 

log-odds of (Yj = y, ), relative to the referent category (Yi =y, ) and there are (c- I) intercept 

parameters ap Exponentiating the regression coefficients 8j,, the covariate x,, will result in 

the cut-point specific odds ratios comparing (Y, = yj) versus ( Y, = y, ) for unit increase in the 

levels of xi, having adjusted for all the other covariates in the model. 

ýD Computation of the Polytomous Model 

When fitting the polytomous model, for optimal efficiency, one should use software that fits 

the c-I logits simultaneously (Agresti, 1984). Estimates of the model parameters have smaller 

standard errors than when binary logistic regression software fits each component equation 

separately because the estimators in the separate-fit approach are less efficient. 

More recently the computation of the polytomous model has become quite straight forward, 

and most statistical software packages accommodate the fit of this model (Cox and Chuang, 

1984; Greenland, 1994). Ananth et a]. (1997) fit the polytomous model using SAS and the 

procedure CA TMOD with the logit link function. Hendrickx (2000) fits the polytomous model 

using SAS and STATA and uses this as a basis for fitting the stereotype model. 

3.5.2 Proportional Odds Model 

The prime feature of the proportional odds model is that a single summary measure (in terms 

of an odds ratio) is used to summarise the relationship of the ordinal response and the 

covariates. 

The reason for using a common odds ratio is that the most optimal model can be fitted, at the 

same time allowing for model parsimony (i. e. estimating fewer parameters) and the 
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simplification of the interpretation of the regression parameters. The proportional odds model 

allows for the ordering of the response categories through the use of cumulative probabilities. 

The proportional odds model is the most commonly used ordinal regression model because it 

provides estimates that are easily interpretable. The bulk of the literature on ordinal regression 

models is based on the proportional odds model. It has potentially greater power than ordinary 

multi-category logit models. It can be viewed as a natural model for response variables of 

continuous form that have been made discrete during data collection. 

(a) The form of the Proportional Odds Model 

The origins of the proportional odds model root from a model that was first introduced by 

Walker and Duncan (1967). Their model was based on cumulative probabilities and was of 

the form: 

Pr(Y, :! -ý yj) In -= In 
Pr(Y, > yj) 

'Til + 17i 2+--- -Zu 
1 

)Ty+l + 7TU+2 + 
""7ric 

] (3.8) 

where the response is treated as binary by combining the firstj categories and by combining 

the remaining (c-j) categories. The Pr(Yi:! ýyj) denotes the probability of a response in category 

yj or below for the member in group i and is known as the cumulative probability. The L. H. S. 

of (3.8) represents the log of the cumulative odds or the logit. There are (c- I) of these logits, 

one for each possible cut point when the response is collapsed. Equation (3.8) can be 

expressed in model terms as: 

Pr(Y,:! ý yj 
ap (3.9) In -i+ 

2ý Xik)qjk j=l 
-C-1 

Pr(Y, > yj k=l 

where the f ajj are the unknown intercept parameters and the j, 6jkj are the unknown 

regression coefficients correspondingtO Xik. Models for cumulative probabilities do not use the 

final one, i. e. Pr(Yj:! ý yj since it necessarily equals 1. 

McCullagh (1980) considered model (3.9) in great detail, and derived from the model the 

'Proportional Odds Model'. For this model, it is assumed that one can combine the c- I 

versions of the model (3.9), corresponding to the c- I possible cut points of the response, into 
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a single model in which the same slope parameter, 8 is used for each logit. This means that the 
effect of covariates is assumed to be the same for each cumulative probability; it does not 
depend on the cut point for forming the logit. As the cut-point-specific estimates are not 
statistically independent, the proportional odds ratio is not a simple weighted average of these 

values, but rather is based on maximisation of a specific likelihood function. If a na*fve 
attempt was made to treat the strata of the proportional odds model as independent and 

combine them using the Mantel-Haenszel technique, the variance of the, 8 estimate would be 

underestimated, producing tight confidence limits (Scott et al, 1997). Under the assumption 

that 81k --": 82k -"ý:: ........ 
fic-1ki model (3.9) simplifies to 

In 
Pr(Y, :! ý yj) 

a+px -= iL ik Pr(Y, > yj) k=l 
j1.... c-1. (3.10) 

Lb) What are the underlying assumptions of the Proportional Odds Model? 

There are two assumptions of the proportional odds model: 

(i) the existence of an underlying continuous variable; 
(ii) homogeneity in the cut-point specific regression parameters (or known as the 

proportional odds assum tion). 

The existence of an underlying continuous variable 

One advantage of the cumulative links models is that the parameter estimates refer to the 

cumulative distribution of the manifest response (or the distribution of the underlying 

variable) and are therefore not heavily dependent on the actual categories used. The single 

latent variable underlies all the items in the scale and is sufficient to explain all but the 

random variability that is obtained in the data. The relatively stringent proportional odds 

assumption may be valid in cases where the ordinal response Yj is related to an underlying 

continuous variable. In fact the primary motivation of the proportional odds model was 

provided by the existence of an underlying continuous and unobservable variable, denoted by 

Z, The ordered categories for the response variable Y, are related monotonically to Z, Y, is the 

grouped continuous ordinal variable, and originates from the continuous and interval scaled 
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underlying variable Z,, which has been made discrete during data collection. It is sensible to 
make use of this assumption when constructing models for ordinal response. Then the main 
interest is not in the ad hoc response categories; it is in the variable Zj and its distribution and 
information about Zi is obtained via the categorical response. 

Following McCullagh's (1980) notation, the proportional odds model gives the conditional 
probability of Yj given Xik as 

Pr(Yj:! ý yj )= F(aj + xA, 8k) c 

where F( .) is any convenient cumulative distribution function. In model (3.11) F( .) is the 
logistic function. 

Although Zj is not observable, a closely related grouped version of Zi, Y, is observable, where 

yj if aj-,:! ý Z, <qj (3.12) 

The parameters {aj sl are thus the division points of the latent scale, Zi. It is difficult to 

interpret I qjj parameters unless the observed response variable is directly related to a latent 

variable. The proportional odds assumption then implies that all observations have a common 

variance (scale) on the underlying continuum, and tests of theXik-Yj association are seen as 

tests of location on this continuum. The distribution of Yj is linkedtO Xikby postulating that 

the conditional function of Zi givenXikis F(Zj + 8xik) and model (3.11) follows immediately. 

However, despite this, it is not necessary to suppose the existence of an underlying continuous 

variable in order to use the group continuous model. The main reason for its use is that 

interpretation is easier and clearer. 

Proportional Odds assumption 

Testing the assumption of proportional odds is often overlooked in the literature and results 

using the proportional odds model have often been cited without checking the assumption 

(Bender et al., 1997). 

Owing to the stringent model assumption of constant odds over the cut-points, the 

proportional odds model is the wrong method to start a valid data analysis. Only if the 

separate binary models are validated, should one proceed and assess the adequacy of the 
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proportional odds model. A natural way to assessing proportionality is to examine and 
compare the conventional logistic fits for the dichotomised responses (Brant, 1990). 
According to Bender et al. (1998), the first step in the model building procedure should be a 
graphical check of whether the logits of each dichotomised response against the covariates 
appear to be similar. The assumption of constant odds over the cut-points can then be more 
formally checked using one of the following methods. 

Functional Asymptotic Regression Methodology (FARM): In the literature, 

several strategies have been cited which examine the constant slope assumption. 
One of these includes the Functional Asymptotic Regression Methodology 
(FARM). This method makes no reference to an underlying continuous variable. 
Koch et al. (1985) developed a two-stage method of estimation, which uses the 
Wald tests and weighted least squares. In the first stage of the procedure separate 
maximum likelihood analyses are used to estimate each of the cumulative logits, 

as functions of the same set of p explanatory variables; thus each analysis is a 
logistic regression using a binary response variable. If the proportional odds 
assumption is found to hold for any explanatory variable, then in the second stage 
of the FARM analysis new regression coefficients that take the proportionality 
into account are estimated using weighted least squares. This method has one 

major disadvantage in that it does not allow the assumption of proportional odds 
to be tested for a set of variables, while constraining another set to have 

proportional odds. Also, it does not have as much power as a method that uses 

maximum likelihood. For these reasons, the use of this method has been limited 

in the literature. 

Likelihood Ratio Test: The likelihood ratio test statistic can be used to test the 

global proportional odds assumption by comparing the log-likelihood from the 

proportional odds model in the previous section, with the log-likelihood from 

those models where the assumption may not hold (e. g. the unconstrained or 

constrained partial proportional odds models- see below). The likelihood ratio test 

has the most desirable statistical properties compared to its competitors, but it 

requires two maximizations of the likelihood functions. Also, there is sometimes 

the problem of numerical difficulties (divergence) in obtaining maximum 

likelihood estimates for the full set of parameters. 

Score Test: Peterson and Harrell use Rao's efficient score statistic (Rao, 1947; 

1973) to develop a test of proportional odds. Essentially, this statistic constrains 
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some variables to have proportional odds, whilst testing others for 

proportionality. It was developed in the context of partial proportional odds 

models (see below). However, unfortunately this test has several limitations. 

First, zero cells for a regressor variable at an inner value (i. e. within the middle of 
the scale) of the outcome may produce spuriously high chi-squared values 
(Peterson and Harrell, 1988; 1990). A similar problem may result when data are 

generally sparse or when one of the values of the outcome represents only a small 
fraction of the total sample size. Second, this is a global test of non- 

proportionality and it cannot distinguish heterogeneity associated with the 

adjusted variable from that associated with other covariates. To minimise both 

these difficulties, this test might be better performed with a crude rather than an 

adjusted model, as long as confounding varies little over the cut-points. Thirdly, 

the score test is sensitive to sample size, such that large samples may produce 

statistically significant p-values, when in fact there is little practical difference 

between the cut-point specific estimates. Bender et al. (1998) also states that the 

p-values produced using this test are far too small in some cases, and that the use 

of other techniques to investigate the proportional odds assumption are required. 

(iv) Smooth residual plots: Harrell (1998) and Bender and Benner (2000) have 

recently proposed the use of smooth residual plots to assess the adequacy of the 

equal slopes assumption and the linearity assumption of the explanatory variable. 

These plots are obtained using S-PL US and other statistical software packages 

have yet to provide the facilities to produce these graphical aids. Also, these plots 

can only be produced when the covariates are continuous or ordinal categorical. 

LV) Wald Tests: In any model fitted with maximum likelihood Wald tests can be 

calculated by dividing the estimated regression coefficients by their respective 

standard errors obtained from the information matrix. 

Brant's Method: Brant (1990) described yet another method for assessing the (vi 

proportional odds assumption and according to Peterson and Harrell (1992) this 

was essentially the same as the FARM analysis, which is detailed above. 

Lc) Other Features of the Proportional Odds Model 

An appealing requirement for ordinal data is that the model should in some sense be invariant 

under a reversal of category order, such that the restrictions imposed by the model are 

36 



unchanged if yj is recoded as y, y2is recoded as y, -,, etc., (these ideas underlie the concept of 
palindromic invariance - see McCullagh 1980). This implies that the magnitude of the 
summary estimates does not depend on the direction employed in modelling the outcome, i. e. 
whether the cut-points are formed using increasing or decreasing levels of severity. However, 

the sign of the 8kparameter is changed and the ( qjj reverse sign and order. The cumulative 
proportional odds model is the only ordinal regression model with this property, and the other 
ordinal regression models lack this property of invariance. 

The proportional odds model (with the logistic link function) is also invariant under the 
collapsability of the Yi categories. Hence if two adjacent response categories are pooled 
together and the cut-point removed, or Y, is changed by moving the cut-points, the estimates 
of 8kshould remain essentially unchanged, although the f qjJ are affected. Furthermore, if 

more cut-points are added, the model remains identical to that when less cut-points are used. 
This invariance to the choice of response categories is a nice feature of the model, as two 

researchers who use different response categories in studying an association should reach 
similar conclusions. 

) Summary statistic (d - odds ratio 

From model (3.10) the parameters 81 ......... 0 
,, are unknown regression coefficients and the 

parameters {aj) are also unknown (i = 1,2, c- 1). Asj increases, the I aj) parameters 

increase, reflecting an increase in the logits, as additional probabilities are added into the 

numerator (i. e. aI!! ý a2 ... !! 
ý ac-1). These represent the baseline logits of cumulative response 

probabilities. The regression parameters Ifiks) describe how the log odds are related to the 

covariates. The Ifiks) can take a minus sign for the predictor term and this usually occurs if 

the response categories have been reversed when forming the logits or the covariate levels 

have been reversed in the analysis. All models of the form (3.10) describe strict stochastic 

ordering. Thus, taking a covariate, say xj, and if one takes two levels xjj(, "", 2) and Xij(rowI)5 it 

follows from (3.10) that 

In 
Pr(Y, :! ý Yj / Xil(row2) ) 

In - 
Pr(Y, :! ý yj Xil(rowl) 

(Xil 
(row2)-Xi I (rowl)) 

81. 

Pr(Yj > Yj / Xil(row2) ) Pr(Y, > Yj Xj I (rowl) 

(3.13) 
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The L. H. S. of (3.13) is the difference of the two log odds based on the two levels of a 
covariate and forms the cumulative log odds ratio. Essentially it computes the log odds that a 
subject in group i. falls in the response categories < yj as oppose to > yj, given that he/she has 
xl(, o,,, ) characteristic as opposed to x1(ro,, 2). 

If model (3.9) holds, and xi, is a continuous or an ordinal categorical covariate, then assuming 
there is integer spacing between the level of x,,, such that = 1, there are (c- 1) 

cumulative log odds ratio since the cumulative odds ratio for all pairs of adjacent rows are 
equal. In the case of xi, being a categorical covariate, this does not hold, and there are then (r- 
1) rows and (c-1) ways of splitting the response into two parts, giving (r-1)(c-1) cumulative 
odds ratios. 

On a similar note, for model (3.10), given xi, is continuous or ordinal, there is only one 
common cumulative odds ratio and model (3.10) implies uniform association. In the case of 

xjj being a categorical covariate, there are (r-1) cumulative log odds ratios. Thus the 

regression parameter, 81 can be interpreted as the cumulative log odds ratio for the Y and xi, 

association, controlling for the remaining explanatory variables, and e81 is the adjusted 

cumulative odds ratio. 

(e) Computation of the Proportional Odds Model 

Generally the proportional odds model has always been well accommodated in statistical 

software packages. The LOGISTIC and CA TMOD procedures in SAS appear to be the ones 

that are employed most frequently for fitting this model (Bender and Benner, 2000; Scott et 
A, 1997; Lee et al., 1992; Peterson and Harrell, 1990; Agresti, 1989; Armstrong and Sloan, 

1989; Engel, 1988). The LOGISTIC procedure provides the estimates of the regression 

coefficient and its standard error, Walds chi-squared statistic and a p-value. Bender and 

Benner (2000) mention the use of S-PL US to fit the proportional odds model. Cox and 

Chuang (1984) used BMDP3R to fit this model. 

TestiLig the assumption of a constant slope 

The procedure PROC LOGISTIC in SAS provides a global score test of heterogeneity given 

the regression coefficients (Ananth et al., 1997). 
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3.5.3 Partial Proportional Odds Models 

The proportional odds model and the partial proportional odds models are collectively termed 
cumulative logit models. 

In practice, it is often difficult to find data for which a proportional odds model is a plausible 
description (Ananth et al., 1997). There is therefore a need for a model that allows for this 

assumption to be relaxed, with some explanatory variables that satisfy the assumptions of 
proportional odds, and others not. Thus, the primary reason for the formulation of the 'partial 

proportional odds models' was to relax the stringent assumption of constant odds ratio over 

all the cut-points for a given covariate. The assumption that a constant slope model holds, 

when in fact, for a given variable a constant log-odds ratio is not representative of all the log- 

odds ratios over the cut-points, can lead to the formulation of an incorrect model. 

The partial proportional odds models were initiated by the work of Peterson and Harrell 

(1988,1990) and in general there are two types of partial proportional odds models: the 

Unconstrained Partial Proportional odds model - allows some variables to have constant 

slope and others to vary by cut-points, and the Constrained Partial Proportional odds model - 
for those variables allowed to vary by cut-point, if a certain relationship appears to exist (e. g. 

there may be a linear trend in the odds ratios), constraints are placed on the parameters such 

that this relationship is taken into account. 

) The form of the Unconstrained Partial Proportional Odds Model (a 

An unconstrained partial proportional odds model takes the form: 

In 
Pr(Y, :! ý yj) 
Pr(Y, > yj) 

pq 
aj +I Xikflk + LT 

ik7jk 
k=l k=l 

(3.14) 

Here the Xik are the values of an individual in group i with the full set ofp explanatory 

variables, fik are the regression coefficients associated with the p variables in Xk. Tk are the q 

covariates, such that q <p and contains the values of an individual in group i on that subset of 

the p explanatory variables for which the proportional odds assumption is either not assumed 
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or is to be tested and yjkare the regression coefficients associated with the q variables in Tk, SO 
that TikYjk is an increment associated only with thej th cumulative logit and y1k=0. If yjk=O for all 
j, then this model reduces to the proportional odds model. Thus a simultaneous test of the 

proportional odds model assumption for the q variables in Tjk is a test of the null hypothesis 

that yjk=O for all j=2,... c- 1. Since ylk=O the model uses only a, + xik, 8k to estimate the odds 

ratio associated with the dichotomisation of the y-response categories into the first category 

versus the rest of the categories, where the estimation of the odds ratios associated with the 

remaining cumulative probabilities involve incrementing aj + xk, 8k by TkYjk (i = 2, 
.., c- I). 

(ý) The form of the Constrained Partial Proportional Odds Model 

Given the relationship of a covariate and the response is represented with non-proportional 

odds, then for the individual cut-point specific odds ratios, often a certain type of trend may 
be anticipated, e. g. a linear trend may be expected. In such a case, a constraint can be placed 

on the parameters in the model, so that the trend is taken into account. When the constraints 

are incorporated into the unconstrained partial proportional odds model, this model takes on 

the form: - 

In 
Pr(Yj :! ý yj) 

aj 
Pr(Y, > yj ) 

pq 
I 

Xik)6k +L Tik 
lVkFj 

k=l k=l 
j=l C- 1. (3.15) 

Here the Fj are fixed pre-specified scalars and F, =0. The new parameters Yk are not 

subscripted byj and there are q of these. Although ykare not dependent onj, it is multiplied 

by the fixed constant scalar Fj in the calculation of thej th cumulative logit. 

ý What are the underlying assumptions of the Partial Proportional Odds Models? (c 

The assumptions of the partial proportional odds model are as for the proportional odds 

model, where proportional odds exist. 

Proportional Odds assumption 

The likelihood ratio and score tests, as mentioned above in section 3.5.2 (b) can be used to 

test for the proportional odds assumption in these models. The method used is based on 

partitioning the parameter space 0 into (V/, A), then the score statistic tests hypothesis about V/ 
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while letting A contain the nuisance parameters for which maximum likelihood estimates are 

obtained. In model (3.14) the global proportional odds assumption that yjk =0 (i=2,... c- I since 

Ylk =0 and k-- I ... p) is tested with ap((c-l)-l)=p(c-2) degrees of freedom score statistic by 

letting V contain the yjk parameters and A contain the aj and fik parameters. The proportional 

odds assumption for the xj covariate is tested with a (c-2)-df score statistic by letting A 

contain the aj and, 8k as before, but V= (Y219 Y31 ..... y (c-, ), ). In model (3.15) a global test of 

proportional odds for q covariates against constrained non-proportional odds is a test of yj = Y2 

= Y3 =... yp =0 and thus has p-df. Tests of proportional odds for each variable separately 

against these same alternatives have one degree of freedom. 

Several Wald tests related to proportional odds are available from the fit of the partial 

proportional odds models. If a variable xi, is fitted for unconstrained non-proportional odds, 

then a Wald test of association of this variable with the response variable has (c-l)-df, since 

the null hypothesis is Ho: fl, =0; yjl = 0. Likewise if a variable has constrained non- 

proportional odds, the comparable 2-df null hypothesis of no association is HO: fl, =0; YJ = 0. 

Furthermore, (c-2)-df Wald test of proportional odds can be calculated for all variables fitted 

for unconstrained non-proportional odds (Ho: Y21 = Y31 = ... y(c-, ), =0). Likewise for variables 

fitted with a constraint, one-df Wald test of proportional odds can be computed (Ho: yj =0). 

Goodness-of-fit tests ofconstraint 

Given covariate xil, the test of whether a single yj parameter fits the data as well as (c-2) y,, 

parameters can be obtained by using the likelihood ratio test. Here we compare the log- 

likelihood of unconstrained and constrained models. This gives an approximate chi-square 

test with (c-2)-l df 

A score test of the goodness-of-fit of the constrained partial proportional odds model for 

variable xil, say, can be obtained as follows. Let A contain the parameters aj, fil and yjI or yj in 

a model for which a maximum likelihood fit is desired. The yj parameter for variable xj is 

included among these parameters. Let V contain the c-2 parameters for variable x,,. Since both 

yj and the (c-2) yjjs are in (V, A), the parameter space is over-specified, i. e. the c-2 possible 

departures from proportional odds for variable xi, are represented by c- I parameters. The 

score test of the adequacy of the constraints is a test of yj, =O, j=2,... c-I and has (c-2)-l df, 

since one-df is taken up by the yj associated with the constraint in the model. 
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(d) Other Features of the Partial Proportional Odds Models 

The choice of rj scalars for the constrained model is determined by examining the odds ratios 
obtained from the unconstrained model (Ananth et al, 1997). The crucial point is that the 
same set of scalars be assigned to each covariate. However, Peterson and Harrell (1990) do 
discuss the option of having different constraints for different covariates and how model 
(3.15) can be adapted to allow for this. 

(e) Computation of the Partial Proportional Odds Models 

Peterson and Harrell (1988) detailed the computation of the partial proportional odds model 
using SAS (PROC LOGIST; version 5,1986). The computation of these models even in this 

version of SAS (which has now become obsolete) was still limited, since all predictor 

variables had either proportional odds (one parameter to each covariate), unconstrained non- 

proportional odds or constrained non-proportional odds (odds in a pre-specified trend in log 

odds ratios). A mixture of variables with non-proportional odds and constrained non- 

proportional odds in the same model was not permissible. 

The detail given by Peterson and Harrell (1990), regarding the test of proportional odds using 

a score test is also no longer available in SAS. In their paper, an unconstrained partial 

proportional odds model was implemented in SAS, and separate score tests were set up to 

assess the proportionality of different parameters. 

Ananth et al. (1997) used an updated version of SAS with the LOGISTIC procedure, SAS 

supplemental library (version 5.18) to compute the constrained and unconstrained partial 

proportional odds models. The dataset in this paper had limitations in that only one covariate 

was used in the analysis, and therefore partial proportional odds models were fitted only to a 

single covariate and the application of a model with a mixture of variables did not arise. 

However, since then all the updated versions of SAS no longer support the supplement library 

and therefore the partial proportional odds models are not easily computed. Bender and 

Grouven (1998) computed the unconstrained partial proportional odds model using SAS, but 

there is no mention of how this was done. They do mention in the discussion section of the 

paper, that unfortunately, no standard software is currently available for the computation of 

this model. They recommend the use of separate binary logistic regressions to analyse ordinal 

data with non-proportional odds, at least as long as some comfortable standard software for 

the partial proportional odds models becomes available. 
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3.5.4 Adjacent Catecorv Mode 

The adjacent-category model utilizes single category probabilities rather than cumulative 

probabilities. Agresti (1984,1999) states that when the response categories have a natural 

ordering, logit models should utilise that ordering. One can incorporate the ordering directly 

in the construction of the logits. 

La) The form of the Ad ode jacent Categoty M 

Ct) Constant slope model 

Ananth et al. (1997) and Agresti (1989) describe the adjacent category logistic model as 

modelling the ratio of the two probabilities Pr(Yi=yj) and Pr(Yi=yj,, ) where j= 1,.... C- 1. 

The model has the following representation: 

In 
Pr(Y, yj ) 

=aj +p Xik)6k j= 11 
............ C-1 

-Pr(Y, 
yj+, )- k=l 

Agresti (1984) states that like the cumulative logit, the constant slope adjacent-categories 

logit model implies stochastic orderings of the response distributions for different predictor 

values. 

CH) Different slopes mode 

Manor et al. (2000) described the adjacent-category model in a slightly different way. His 

version of the model was: 

In 
Pr(Y, yj) 

ai +p Xik 18jk 
j= 11 

............ C-1 (3.17) 
Pr(Y, yj+, ) k=l 
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0) What are the underlying assumptions of the Adyacent Categoty Model? 

Different versions of the adjacent category model have different assumptions. For instance 

model (3.16) assumes parallel slopes for the regression parameters over the cut-points, where 
as model (3.17) assumes that each cut-point is represented by a different slope parameter. 
However, when a constant slope adjacent category model has been applied, no mention is 

given of a test carried out to assess whether the slopes can be assumed to be parallel. 

(c) Other Features of the Adyacent Category Model 

Agresti (1989,1984) describes the useful characteristic of logit models for adjacent 

categories, whereby these models can be equivalent to log linear models. Thus, some 

statistical software packages for log linear models can be used to fit an adjacent category 

model. Also, these models are equivalent to other models that form logits using pairs of 

categories (rather than groups of categories as does the cumulative logit model). For instance, 

the baseline category logit models contrast each response category with the final category. 

The ad . acent cate ory logit model having linear effect that is equivalent to the baseline- J9 

category logit model is of the form: 

In 
Pr(Y, J 

=a. + 
p 

Xik (C 
- 

j))t3jk 

Pr(Y, cj k=l 
............ C-1 (3.18) 

The effect parameter, 8 in the adjacent category logit model can be estimated by fitting the 

base I ine-category logit model and replacingXikwithXik(C-i) in the design matrix. 

(dj Summary statistics - odds ratio 

Agresti (1989) states that given a cross-classification of an ordinal response and an ordinal 

explanatory variableXik, having assigned scoresXik(rowl)`: ý Xik(row2)"'ý.... Xik(rowr)5model (3.16) 

assumes a linear effectgkthat is the same for each adjacent pair of response categories. 

Ananth et al. (1997) states that the parameter, 8kcorrespond to the log-odds of (Y, = yl) relative 

to (Yi --= YA (Yi = Y2) relative to (Yi = Y3) and so on, and there are (c- I) intercept parameters a,. 

Exponentiating the regression coefficient, 8k, for the k 1h 
covariateXikwill result in the odds 

ratio comparing (Y= yj) versus (Y= yj, 1) for one unit increase in the levelsOf X, k. 
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(e) Computation of the Adiacent Categoa Model 

Agesti (1989) fits the constant slope adjacent category model using SAS (1986) with the 
PROC CA TMOD procedure. He suggests that SPSS and GLIM can also be used to fit this 
model. Ananth et al. (1997), states that whilst in version 5.18 of SAS the cumulative logit 

models can be fitted using the procedure of maximum likelihood estimation, the adjacent 
category model is fitted using weighted least squares procedure. Manor et al. (2000) fits the 
adjacent category model but does not detail the procedure used to compute this model. 

TestiLig the assumption of a constant slope 

Although various researchers fit the constant slope adjacent category model, no indication is 

given as to how the assumption of a constant slope was checked. 

3.5.5 Continuation Ratio Model 

Given an ordinal scale, where one is particularly interested in assessing the relative chance of 

a given rating, against all more favourable ones, then one would normally consider employing 

the continuation ratio logits. The continuation ratio model is best suited to circumstances 

where the individual categories are of particular interest. It is well-suited for failure-time data 

and outcomes which measure threshold points (Scott et al., 1997). Cole and Ananth (2001) 

used this model to analysis an ordinal scale that measured the degree of perinatal laceration. 

This response was measured on a five-point ordinal scale and the classification was based on 

the amount of tissue damage involved - an outcome that is irreversible in the sense that upon 

attaining levelj a subject's response cannot revert to a lower level. Due to the nature of this 

type of outcome and that often presented in failure-time and threshold data, where individuals 

at a given level of an outcome must have passed through all previous levels of an outcome, 

the continuation ratio model would appear to be a reasonable starting point. 
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Lar) The form of the Continuation Ratio Model 

(i) Constant slQpe model 

The form of the continuation ratio model was initially formulated by Feinberg (1980) and 
originated from survival time data. Various forms of the model exist, and the most common is 
the forward formulation model (Bender and Benner, 2000) and is written as: 

Pr(Y, = yj) p 
In = aj + Lxkflý wherej = 1,2 ....... C-1 (3.19) 

Pr(Y, > yj ) k=l 

Model (3.19) is described by Cole and Ananth (200 1) as afully constrained continuation ratio 

model. This model represents the probability of being in categoryj; as opposed to being in 

category greater thanj. The intercept parameters denoted by aj, j =1,2 ....... c-1, are the same 

as the cumulative logit model, but are not necessary ordered. In this model, it is assumed that 

the underlying odds ratios are the same and equal to 8kand the inference is based on 

maximum likelihood estimation. Essentially this model can be viewed as the ratio of the two 

conditional probabilities, Pr(Yj =yjlYi ý: yj) and Pr(Yj >yj1Yj-: ý! yj), i. e. one models the odds of 

failing in categoryj as opposed to higher than categoryj, given that one has been in categoryj 

or higher. 

By viewing the outcome as going from more severe to less severe, this model can be applied 

in reverse and forms the backward continuation ratios 
Pr(Y, = yj) 
Pr(Y, < yj) 

Because of the 

conditioning on adjacent cut-points, the continuation ratios, unlike the proportional odds is 

affected by the direction chosen for the response variable and the forward and backward ratios 

are not equivalent and yield different results. Thus, the continuation ratio model is not 

invariant under reversal of categories, unless Y is binary and one has to be careful which 

continuation ratio model one uses (Engel, 1988). 

Cn) Different slopes model 

Another form of this model is the different slopes continuation ratio model and for this the 

regression parameters are allowed to vary by the cut-point. This model is written as: 
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In 
Pr(Y, = yj) 

- 
Pr(Y, > yj) 

p 
Xik 

igjk where j=1,2 ....... c- 1 (3.20) 
k=l 

The multinomial likelihood of this model factors into a product of the binomial likelihoods for 

the separate logits. The continuation ratio model has the advantage that the c- I logits 

produced are asymptotically independent of one another. Thus, the estimation of the 

parameters for each of the c-1 logits can be carried out separately, using the method of 

maximum likelihood, and the summation of the individual chi-square statistics gives the 

overall goodness of fit statistic for the set of the logit models. In practice, the continuation 

ratio model can be fitted in any statistical package that includes binary logistic regression, 

after suitable restructuring of the data (see below -Computation of the Continuation ratio 

model). As the fully constrained model is nested within the different slopes continuation ratio 

model, the difference in -2log-likelihood (deviance) provides a test of the validity of the 

assumption that the threshold-specific continuation ratios are equal, distributed as a ý-variate 

under the null with degrees of freedom equal to the difference in the number of parameters 

between the nested models. 

Cole and Ananth (200 1) describe mode (3.20) as the unconstrained continuation ratio model, 

and rather than use separate binary logistic regressions to fit the different slopes model, they 

attempt to fit it as a single model (see section 3.5.5. (ii)d). They also describe the partially 

constrained continuation ratio model. If homogeneity exists in some of the cut-point specific 

regression coefficients of the unconstrained model, then these regression coefficients can be 

assumed to have equal constrains. 

Harrell et al. (1998) describe the extended continuation ratio model, for which the equal 

slopes assumption is released for some of the covariates. This resembles the unconstrained 

partial proportional odds model described above. 

What are the underlying assumptions of the Continuation Ratio Model? 

Different forms of the continuation ratio model have different assumptions. For instance, 

model (3.19) assumes constant cut-point specific parameters for a covariate, whereas (3.20) 

allows the parameters to vary over the cut-points (imposing no assumptions). 
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Bender and Benner (2000) found through a simulation exercise that the bias of the regression 
coefficient was large if the standard constant slope continuation ratio model was applied, but 
the true model had unequal slopes. 

(c) Summarv statistics -odds ratio 

In the case of the forward formulation, the odds is Pr(Y, =yj)1Pr(Yj >y, ) and this is the odds of 
Yi =yj versus Yj > yj conditional on Y, ý! y j. For a given covariate, x,,, the 

corresponding odds ratio is defined as 

In 
Pr(Y, = yj / Xil(,,,,, 2)) 

In 
Pr(Y, = Yj Xil(rowl) 

(Xi I (row2)-Xil (rowl)) )61 Pr(Yj > Yj / Xil(row2) ) Pr(Y, > Yj Xil(rowl)) 

(3.21) 

d) Comnutation of the Continuation Ratio Model 

The first description of a method to fit the continuation ratio model was given by Armstrong 

and Sloan (1989) and they showed that as a result of the independence of the c- I logits, the 

continuation ratio model could be fitted using ordinary logistic regression techniques, 

provided the data have been re-arranged in a suitable form. In their paper SAS supplement 

library program PROC LOGIST (version 5; 1986) was used. However in this version of SAS 

neither the residual deviance nor a test of parallelism was provided, and as a result the authors 

carried out these tests by modest additional ad hoc calculations. 

Scott et al. (1997) took the idea of restructuring the dataset and detailed it using examples 

from epidemiology. In brief, the new dataset is created by repeatedly including subsets of all 

observations contributing to each cut-point. Two new variables must be added to the dataset: 

one indicating the cut-point from which the particular subset arose and the second, a binary 

variable indicating a dichotomous status of the outcome at that cut-point. The continuation 

ratios are the obtained by performing binary logistic regressions on the restructured dataset 

with the new dichotomous outcome as the dependent variable, and the newly created cut-point 

levels as the independent categorical variable. 

Cole and Ananth (2001) have recently computed the individual cut-point specific continuation 

ratio logits using 'patient-threshold' data. This method is slightly different to that presented 

by Scott et al. (1997) and Armstrong et al. (1989), in that each of the cut-point specific 
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datasets which are based on a binary outcome, are incorporated into one dataset and this 
permits the individual cut-point specific continuation ratio logits to be computed, in one 
programming step. The advantage of the method demonstrated by Cole and Ananth (2001) is 
that a test of the beta parameters can be carried out, and some (or all) of the parameters can be 
constrained to be equal. 

Testing the assumption of a constant SlODe 

Scott et al. ( 1997) suggest that the assumption of a constant slope can be tested (without 

restructuring the data) and using PROC LOGISTIC in SAS (version 6- using the 

complementary log-log link function). However, testing the assumption of homogeneity of 
effect over strata is limited with this method: the test perfon-ned is global, simultaneously 
testing all the parameter estimates for homogeneity over the cut-points. 

3.5.6 Stereotvpe Ordinal Regression Model 

The stereotype ordinal regression model was introduced by the late John Anderson (1984) as 

part of a general model for discrete multivariate outcomes and also arises naturally in the 

context of truly discrete outcomes. According to some researchers (Greenland, 1994), this 

model has been under-utilised and other ordinal regression model, such as the proportional 

odds model have been over-stated in terms of analysing ordinal data. The factors that 

motivate the need for the Stereotype model, as stated by Anderson (1984), include: 

(i) assessed variables: Assessed (truly discrete) variables have a greater degree of 

subjectivity attached to them and they are more prone to observer error than 

grouped continuous variables, although there is less likely to be a uniform error 

structure across all categories for both types of variables. 

(ii) The ordering 0 the response categories: In the regression models discussed so 

far (with the exception of the polytomous model), the regression parameters and 

consequently the logits are based on the ordering of the y-response categories. 

Therefore the proportional odds, continuation ratio and adjacent category models 

assess the association of y-response and the covariates conditional of the order 

that the categories occur. In this case the ordering is 'in-built' and assumed a 

priori. 
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In many cases one cannot be too certain about the relevance of the ordering of the 

response categories. The stereotype model is based on the polytomous model and 
therefore uses generalised logits. The polytomous model does not have the 

mechanism to account for the ordering of the y-response categories. Anderson 

(1984) took the latter model and assessed the relationship of the y-response and a 

given covariate. If the individual cut-point specific regression parameters were 

ordered (leading to the stereotype model), then one could assume that an ordered 

nature existed in the response categories. This is quite different to the 'ordinality' 

aspect of the proportional odds, continuation ratio and adjacent category models. 

For these latter models, the ordering is built into the formation of the logits. 

Therefore they are not necessarily ordered with respect to the covariates and in a 

sense it is not necessary to have any regressor variables. By contrast, in the 

stereotype model, the 'ordinality' only reveals itself through assessing the 

relationship of the y-response andXik- 

(aj The fiorm of the Stereoýype Model 

The stereotype model is a derivative of the polytomous logistic model (3.7). The polytomous 

model provides the best possible fit to the data, at the cost of a large number of parameters. 

The stereotype model aims to reduce the number of parameters by imposing constraints, 

without reducing the adequacy of the model. 

The starting point for the stereotype model is to impose a structure on the 8j, . ...... . Ojp such 

that: 

)6j] --` -0j)61 ' )6j2 : -- -0j)62 ; )qjp = -OJ)3p 
C-1 

Then model (3.7) becomes: 

In 
Pr(Y, = yj) 

aj 
[ 

Pr(Y, = y, ) 

p 
Xik Oj A 

k=l 

(3.22) 

(3.23) 
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As in the polytomous model, constraints are needed to make the model (3.23) identifiable. 
Anderson recommended setting 01 =- 1,0, =-O since 8, = 0. However, other constraints can be 

used. For instance, Greenland (1994) used0l =0,02 =I and estimated subsequent (0j) 

parameters. 

Altematively, Hendrickx (2000) writes model (3.23) as: 

In 
Pr(Y, = yj) (aj - ac) + (oj - OAA xii . ..... ppx" (3.24) 

[ 

Pr(Y, = yc ) 

ac =0 and 0, =I and Oc = 0. 

As stated by Hendrickx (2000), in model (3.24), the regression parameters, 1,8ks; k-- IpI 

no longer vary between the different levels of the outcome. The combination that best 

P 
discriminates between the outcome variable is given by Xik, 8k and the distance between 

k=1 

the outcome levels in terms of this linear predictor is given by the I 0j) parameters. 

What are the underl ying assumptions of the StereotvTe Model? 

There are no underlying assumptions of the Stereotype Model. 

) Other Features of the StereoOpe Model (c 

The stereotype model is invariant under collapsing of the Y categories only for those 

categories assigned or constrained to have equal scores. The model is also invariant under 

coding reversal of Y, although such reversal will change the scores as well as the beta 

parameters. 

There are certain factors that are specifically relevant to the stereotype ordinal regression 

model and these include the dimensionality of the model, distinguishable y-response 

categories and the ordering of the y-response categories with respect to the covariates. 
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Di Dimensionali 

The dimensionality, d, determined by the number of linear functions required to describe the 
relationship of y andXik. If only one linear function, xjkfik, is used, the model (3.23) is a one- 
dimensional stereotype model. One- dimensional relationships are much more common in the 
literature compared to the higher dimensions (Holtsbrugge and Schumacher (199 1); 
Green I and ( 1994) and Ananth et al. (1997)). 

In some instances, a single function of betas may not adequately fit the data, and for such 
cases the dimensionality may need to be increased. Replacing 

Pi=- Oj 8k - (Pjyk ......... C, (3.25) 

into equation (3.23), where 01=1,0, =O, (p, =O and ýo, =I, we obtain a two dimensional model. 
Generally, a model with a lower dimension is always preferable to one of a higher dimension 

because of the smaller number of parameters needed. Ananth et al. (1997) briefly mentions a 
2-dimensional extension, with the possibility of higher dimensions. Greenwood and Farewell 

(1988) pursued in fitting a two-dimensional stereotype model to their data, as they recognised 

that most of the covariates influenced the probability of being in the first response category 
but did little to distinguish between response categories 2 and 3. Some variables discriminated 

between response categories 2 and 3, whereas others did not. Since the response has c- 

categories, there is a choice of up to a maximum of d possible dimensional models, where d 

min(c-1, number of covariates). 

Ch) Indistinguishabili 

Once the dimensionality of the model has been determined, there are questions about ordering 

and model simplification, perhaps using distinguishability as a criterion. The concept of 

indistinguishability is described when a covariate, xil, affects two response categories yj and 

yj,, in an identical manner (thus xi, is not predictive between the two categories). Anderson 

(1984) suggests that the possible causes of indistinguishability are: (a) intrinsic lack of 

distinguishability with respect to the covariates, (b) high observer error for the appropriate 

categories and therefore large standard errors for the Oj estimates. 
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The hypothesis that y=y, is indistinguishable from y, ==y,, with respect to the covariates takes on 
the form HO: 8,, =A. In the one dimension stereotype model, this is equivalent to asking 

whether there are differences among the Ojs (Ho: 0, =O, ). 

Indistinguishability may be tested in higher dimensions. In the two-dimensional model, 
indistinguishability between y=y, and y=y, implies that 0, =O, and ip, =ýq,. 

In the example used by Holtbrugge and Schmacher (1991), the response categories were 
found to be indistinguishable with respect to the covariates and the categories amalgamated. 
However, Anderson (1984) does suggest that given indistinguishability, it is inadvisable to 

combine categories; it is often sufficient to appreciate their similarity. He uses the example 

that in questionnaire designs, the change in the form of words of a question corresponding to 

the amalgamation of two categories may not necessarily result in the amalgamation of 

responses in the two categories. 

The recognition of indistinguishability simplifies the description of complex relationships. 

Ciii) Ordering of the &- 

With the questions about dimensionality and distinguishability settled, we have a regression 

model which is as economical as possible in the number of parameters. If the dimensionality 

is one, there is a further question about ordering. 

Ordering in the one-dimensional stereojype model 

As stated earlier, the ordering in a one-dimensional stereotype model is quite different from 

that of other logit models (with the exception of the polytomous model). If ordering is 

appropriate, the model orders the 8js (in the polytomous model) instead of ordering the odds 

or the link function. For the stereotype model, the 'ordering' is more directly tied to the 

effects of the explanatory variables and becomes a testable statement. If the dimensionality is 

one, ordering of the odds ratios is easily verified. If fik>O and the odds ratios form a 

01,8k 
>e 

02,8k 
>e 

Oc flk >I 
decreasing sequence e- then 

01 :: -- 1 ýý 02, 
*- 

ýý OC =0* (3.26) 
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Note, that (3.26) is not strictly ordinal as adjoining categories may be indistinguishable. If 
(3.26) is satisfied, then the effect of the covariates upon the first odds ratio is greater than the 
effect on the second, and so on. 

Ordering in the two-dimensional (or more) stereojype models 

When the dimensionality is greater than one, an ordering of the Ojs or the VIj s does not 
directly lead to ordering of the odds. Ordering in a two-dimensional model is difficult to 
interpret, since an ordered relationship in one covariate vector may differ from that in another 
or may be hidden by the effect of another. 

Ldý Summary statistics - odds ratio 

Model (3.23) has a standard multinomial intercept with c- I parameters for a response 

variable. It estimates c-2 independent scale values of I Oj) for the response factor and a single 
beta parameter for each independent variable. In the polytomous model, the difference 

between, 811 and, 821 for a covariate xi, illustrates how the log odds of the y-response for 

category I/category 2 is affected by xil. In the stereotype model, the effect of the log odds for 

any two levels of the outcome is proportional for all the independent variables. However, the 

larger the difference between any two Oj values, the more the log odds between the outcomes 

is affected by the independent variables. The 81 parameters show how the independent 

variable, xi, affects the log odds of higher versus lower scores, where 'higher' and 'lower' is 

defined by the Oj scale. This model is most easily interpreted in terms of relative odds of 

different outcome levels. The scores I Ojj are multiplicative on the logit scale and so modest 

score spacing represents large odds-ratio changes. Also one could set all the OJ parameters 

equal to I if one thought the covariate effects would be nearly the same for all levels of the 

response. 

(e) Computation of the Stereooýpe Model 

In the literature the computation of the stereotype model has evolved a great deal over the last 

twenty years or so. Anderson (1984) initially computed the -2log-likelihood of this model 

using the quasi-Newton algorithm (Gill and Murray, 1972) as implemented in the NAG 

library. In this paper, it would appear that the constraints were estimated from the data, as 

Anderson states that the imposition of the ordered constraints may cause some difficulty. 

Greenwood and Farewell (1988) reported in their study that the stereotype model was not 
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available in most computer software packages. Instead they fitted a logistic regression and the 
resulting, 8, s were examined to decide whether the hypothesis, 8j= -0j, 8 would be tenable. 
Greenland (1994) made considerable progress in fitting the stereotype model. He suggested 
using either GAUSS Q UANTAL (1992) or STA TA (1992). Given fixed scores the stereotype 
model is of a generalised linear form and Greenland (1994) suggested fitting this model as a 
multinomial response model using a generalised linear model program or via constrained 
polytomous logistic regression. For estimated scores, the stereotype model is intrinsically 

non-linear. Greenland (1994) fits this model by a series of generalised linear models in which 
A and Oj are alternatively held fixed while the other is estimated. However, the standard error 
estimated for the odds ratio and any inference based on these standard errors is not valid and 
Greenland (1994) suggested using Monte Carlo simulation to obtained the corrected p-values 
and confidence intervals. However, despite this, many authors continue to cite the stereotype 
model, but report that this model was unable to be computed due to the unavailability of 
software (Ananth et al., 1997; Bender et al., 1997; Bender et al., 1998; Guisan et al., 2000). 
The ma or breakthrough in the computation of the stereotype model has come more recently. i 

Hendrickx (2000) worked along the same lines as Greenland and has devised user-friendly 

macros in STATA and SAS, known as mclest, which fit the model by estimating both the f Oj 

and the { 8k I parameters, by hold one parameter fixed and estimating the other, and vice 

versa. However, his macros do not allow for indistinguishable categories or more than one- 
dimensional models. Also the standard errors for the parameters are conditional on the Oj 

being known (and hence underestimated) one has to bear this in mind when basing inference 

on the standard errors or obtaining the odds ratios. Lunt (200 1) has taken Hendrick's macros a 

stage further by implementing dimensionality and distinguishability into the computation of 

the stereotype model and hence devised some macros known as Soreg, which can be fitted in 

SAS and Stata. Lunt (200 1) computed the stereotype model using the Box and Tidwell (1962) 

method that is described by McCullagh and Nelder (1989). Briefly this method treats the 

stereotype model as a non-linear function (since it contains a product of parameters). Using 

this technique a linear model containing a non-linear function, say 77, -a+ 89(Xik / 0) can 

be estimated iteratively by fitting 

77, =a+ flu, + ýv, where 

Ut ý'-- 9(Xik / ot 
A) 

vt = 
ag 
aolo=o, 

-l 

(3.27) 
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and Ot 
-1 

is the value of 0 calculated from the (t-1) iteration. Then 0, = Ot 1,8 and the 

process iterates to convergence. A final iteration with v= 8v gives the variance of 0 and its 

covariance with a and P. The advantage of this method is that the standard errors of f Ojs) 

parameters are provided. The standard errors produced by soreg allow for the uncertainty in 

estimating the I Ojs I parameters. Also care needs to be taken in interpreting the resu Its of 

significance tests on the stereotype model produced by Soreg. Unlike linear models, it cannot 
be shown that the log likelihood follows aZ distribution asymptotically. Hence the likelihood 

ratio Z tests and corresponding p-values should be treated with care. 

3.6 Goodness-of-fit and rellression diagnostics 

For the models fitted in this thesis, it is essential to check the goodness-of-fit to the data and 

also compare the fit of the models with one another. 

A critical step in assessing the appropriateness of any model is to assess how well the model 

describes the observed data and examine its fit in relation to other models. In the case of 

ordinal regression models, the goodness-of-fit is assessed by: (i) examining model 

assumptions; (ii) examining how well the predicted values compare to the observed data and 

whether there are any outliers, and (iii) comparing different models. 

Various tests have already been specified for examining the model assumptions (e. g. the 

cumulative odds - see Section 3.5.2(b)). In addition to these tests, the model assumptions of 

proportional odds and parallel slopes in the proportional odds and the continuation-ratio 

models respectively, can be checked by graphical methods (Ananth et al., 1997). Here the 

individual cut-point specific odds ratios are plotted against the cut-points themselves to 

illustrate how the odds ratios behave for the given model. 

The comparison of the predicted values with the observed data usually entails two stages: 

computing a goodness-of-fit statistic that provides a summary measure of the errors, and 

examining the individual values of the errors. These two aspects are detailed below. 

3.6 1 Goodness-oL-fit statistics 

According to Ashby et al. (1986) the goodness-of-fit for a c-category model is a natural 

extension of a two category one. The observed probabilities can often be compared with the 
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predicted probabilities to assess the goodness-of-fit. For ordinal regression models, the 

estimated expected frequencies are values that provide the closest fit to the observed cell 
counts, subject to the constraints that they satisfy the model and match the observed data in 

certain marginal totals (Agresti, 1989). Ashby et al. (1986) derived the individual cell 

probabilities based on the proportional odds model. Thus, the predicted probabilities (1-^C, ) for 

each category are: 

1- 
/7A y; i=1 

(3.28) 
j=2 ... c 

If there are only categorical covariates and hence a limited number of sub-populations, the 

global goodness-of-fit can be examined by well-known methods such as the Pearson's chi- 

squared statistic or the likelihood ratio test. These tests take on the following form 

respectively: 
2 

A 

2 yu - n. z. 
(Pearson's chi-squared statistic) (3.29) 

j )ýu 

G2 211] n log n, 
(Likelihood ratio test). (3.30) 

Z-. j C-j Y n, + - Jry 

Like the Pearson's chi-squared statistic, the likelihood ratio statistic is non-negative and tends 

to take larger values when the fit is poorer, for a given sample size. An advantage of the 

likelihood ratio statistic is that unlike the Pearson form, it cannot increase as the model is 

made more complex. However, the G' and the y, 2 statistics do not provide valid test of 

goodness-of-fit when the cell counts tend to be small (e. g. less than 5). In such cases 

differences in the G2 values can still be useful in comparing complete and reduced models. 

If the number of sub-populations are large and hence the number of replicated measurement is 

small (or the cell counts are less than 5 in frequency), for instance for sparse data or 

continuous predictors, these latter methods are invalid, because they require large number of 

replicated measurements (Bender et al., 1997). Alternatives include the Hosmer-Lemeshow 

(1980) statistic for binary logistic regression. For ordinal response variables, Lipsitz (1996) 

uses a generalisation of the Hosmer-Lemshow method to produce a goodness-of-fit test 

statistic (see Appendix III: section 1, for details of how this test is computed). However, the 
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use of this test statistic has been somewhat limited, and researchers have often fallen back on 
the original Hosmer and Lemeshow (1980) method that appears to be sufficient for their 
purposes. For instance, in the study by Bender et a]. (1998), the overall goodness-of-fit of the 
final model (proportional odds model) was investigated by means of the test proposed by 
Hosmer and Lemeshow (1980) based on the separate binary regressions of the cut-points 
using cumulative probabilities. 

The goodness-of-fit of a model can also be examined using the residuals of the logit functions 

and applying the Wald statistic (Stokes et al., 1985). 

3.6 2 Regression digoostics 

A class of statistics called 'regression diagnostics' have been proposed to examine the role of 
individual subjects in the model. The purpose of regression diagnostics is to aid in identifying 

subjects who are problematic under the current model. For binary logistic regression models 
two types of diagnostic statistics are often stated: measures of residual and leverage 
(influence). 

Measures of residual include the individual components of the Pearson's chi-squared and 
Deviance statistics. These statistics allow one to identify poorly fitted observations. The 

deviance statistic, D, is given by 

N 
2 

D=Ldi. 

i=l 
(3.31) 

with the individual components di which are used for residual diagnostic purposes and are 

called the 'deviance residuals'. Assuming that the fitted value from the logistic regression 

model are indicated by ^j = pi (p, is the estimated probability that yi=l for subject i), then if Y 

Yi =I 

di = 
ý2 1 In(p, and if yi=O, then d, Iný(l - pjg, The Pearson's ch i-squared 

statistic defined in (3.29) also has individual residual components which can be used for 

regression diagnostics and which are summated to form the Z-test statistic, in 3.29. 

Measures that assess the leverage essentially describe various aspects of influence. Many of 

these relate to the effect on certain characteristics of removing the observation from the 

dataset. These measures are algebraically related to an observation's leverage - its elements 
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are from the diagonal of the so-called hat-matrix. Generally the greater an observation's 
leverage, the greater its potential influence. Influence measures for each observation include 

assessing the change in X2 (3.29) or D (3.3 1) goodness-of-fit statistics when the observation is 
deleted. 

Diagnostic tools for ordinal data are very limited and undeveloped (Lipsitz, 1996; Agresti, 
1999), and as a result much more effort by the user is required to find models describing the 
data adequately. In the literature, there is very little available on regression diagnostics for 

ordinal regression models. In the light of this, researchers continue to use the simpler methods 
of comparing the observed and expected cell probabilities/frequencies to assess any individual 

extreme values or 'outliers' (HoltbrUgge and Schumacher, 1991). These methods are based on 

visual comparison of the observed and fitted values. Lesaffre (1986) has proposed extensions 

of tests for goodness-of-fit and logistic regression diagnostics to the polytomous logistic 

regression model. However, these methods are not easily calculated using available software. 
Begg and Grey (1984) recommend assessing fit and calculating logistic regression diagnostics 

using individual logistic regression models based on the cut-points of the polytomous model. 
One would assess the fit of the separate logistics regression models and then integrate the 

results, in a descriptive manner, to make a statement about the fit of the ordinal regression 

model. Integration of the results requires thoughtful consideration of the effects of influential 

and poorly fitted sub-populations on each model. In particular, the populations that are 
influential for only one logit, should be examined closely with due consideration to biologic 

issues before they are excluded from the analysis. 

3.6 3 Comparison of the ordinal regression models 

Models that are nested within one another, for instance the proportional odds and partial 

proportional odds models, different slopes and fully constrained continuation ratio models, 

the adjacent category (different slopes and constant slope models) and the polytomous and the 

stereotype models (given one covariate)), can be compared by assessing the change in the - 

2log-likelihood (i. e. the deviance function). However little exists to compare the model fit of 

all regression models. In this context, Agresti (1999) mentions two goodness-of-fit statistics: 

the Akaike Information Criteria (AIC) and the Schwartz Criterion (SQ. These are often used 

to compare different models from the same data and they support model parsimony, imposing 

a penalty for increasing the number of parameters in the model. Smaller values represent 

better fit. The AIC takes on the form of -2LogL+2p where p is the number of parameters. 

These statistics are rarely used to compare ordinal regression models, and according to 

Agresti (1999), it would be worthwhile to develop residual analysis that exploits the ordinal 

59 



nature of the response, as well as to develop and evaluate indices such as the AIC to compare 
the fit of distinctly different models. 
As with many statistical endeavours, there is a danger in putting too much emphasis on 
statistical tests, whether of effect or goodness-of-f it. Results are sensitive to sample size and 
test statistics merely help indicate the level of parsimony that can be achieved. Ashby et al. 
(1986) states that in large-scale surveys minor imperfections in a model may yield a highly 

significant goodness-of-fit statistic but the model can still be an informative summary of the 
data. The values of goodness-of-fit procedures are to see whether the model is not fitting, 

rather then to formally reject the model. Agresti (1999) takes this one step further and 
suggests that if an ordinal regression model (i. e. proportional odds or the continuation ratio) 
does not fit,, then possible strategies include: (a) trying a different link function such as the 
log-log for which the response curve is non-symmetric; (b) adding additional terms, such as 
interactions to the linear predictor; (c) or permitting separateflj effects for each logit. 

3.7 Several covariates in an ordinal regression analysis 

For both datasets used in this thesis, a pragmatic view of the data has been taken and several 
covariates will be used to fit the regression models. 

Many studies report results for which only one covariate has been used to fit the ordinal 

regression models. Rarely do researchers take the pragmatic view and assess several 

covariates in a model. Thus issues related to several covariates have not been assessed fully in 

the context of ordinal regression models. One of these issues includes examining the standard 

error of a single and adjusted covariate. 

In classic linear regression models, it is well known that when adjustment of covariates is 

made, very often there is an improvement in the precision of the estimates of the coefficients 

of the adjusting variables. In the logistic regression models, however, this does not hold, as 

was detailed in a paper by Robinson and Jewel (1991). In brief, these researchers found that 

given Yi, xi, andXi2are binary variables, with Yi as the response then when x, 1 was fitted on its 

own, the standard error of the beta estimate was always less compared to when xi, was fitted 

with adjustment forX, 2. The parameter estimates were compared using the Asymptotic 

Relative Precision (ARP), where 
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AA 

ARP(81 to var(, 81)-l var(, 8 
A (3.32) 

var(, 8 var(, 8, 

Here fl*1 is the parameter estimate of fitting xi, on its own and P/ is the parameter estimate of 
fitting xi, adjusting forXi2, It was found that provided one of the following conditions exist, 
that is: 

xi, andXi2are strongly associated with one another or 
there is a strong association between Yj andX, 2given xil, 

then the ARP <I, implying a less precise parameter estimate for xj when allowing forX, 2, 
With regards to (ii) the stronger the association between the variables Yj andXi2, given xi, that 
is the larger the magnitude of P2, the poorer the precision of the estimator, 81. The way the 

parameters behave with respect to one another using the ARP has not been explored in ordinal 
logistic regression models. 

3.8 Interaction terms in ordinal regression models 

For each dataset in this thesis, as there are two or more covariates assessed with respect to the 

response, the issue of interaction terms in ordinal regression models needs to be addressed. 

The examination of the interaction terms (whether first order or otherwise) is an aspect of 

ordinal regression models that has been rarely cited in the literature. Very few researchers 

actually fit or assess the interaction terms in this context. Only one paper (Demaris, 1991) 

gave details of the first order interaction in the polytomous model. Scott et al. (1997) 

mentioned in the introduction of their paper that interaction terms could be assessed in ordinal 

regression models, but no more was stated further. Armstrong and Sloan (1989) also mention 

that fitting an interaction term can proceed in exactly the same way as for logistic regression 

with a dichotornised response. Greenwood and Farewell (1988) fit the proportional odds 

model with a first order interaction term, but no explanation is given in terms of the 

interpretation of the interaction term. Harrell et al. (1998) states that careful fitting of a 

statistical model is essential so that interactions, if present, represent biologic phenomena 

rather than general lack of fit of the model. 
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3.9 Sparse and small frequency data 

The data in this thesis are collected in elderly subjects, some of who may be old and frail. 
Therefore there is a possibility of sparse data (as this can be problematic - see section 2.3.3) 

and this needs to be looked at with respect to fitting ordinal regression models. 

Sparse data can cause severe bias in estimators of odds ratios and poor-chi squared 

approximations for the goodness-of-f it statistics. According to Agresti (1999), this area is 

very much under researched. 

Greenland (1994) in his study showed how the stereotype model is used to approximate the 

proportional odds models, when all but the lowest (reference) outcome level is rare. He also 

showed that when the scores are equal, the stereotype model approximates the reversed 

continuation ratio model. 

3.10 Are certain models more applicable than others under certain medical 

conditions ? 

Two broad groups can be defined in terms of the ordinal nature of the y-response categories: 

(a) group continuous : The ordinal scale has an unobserved underlying continuum for a 

grouped continuous response, e. g. such as that in the HADS (Hospital Anxiety and 

Depression Scale), where each item is measured from 0 to 3. Here there are a total of 

seven questions and the scores on the items are summed to given a final score ranging 

from 0-2 1. This score is divided into a three categorical ordered scale: 'Normal' (<7); 

'Borderline' (8-10) and 'Clinically depressed' (11+). The categories on the scale are 

related to an underlying continuum, which is the final summated score. 

(b) assessed orjudged ordinal outcome categories. The data obtained on the Hospital 

Anxiety and Depression Scale are different to that, for instance, in some dimensions 

of the SF-36 Questionnaire. The latter questionnaire assesses the general health status 

of individuals and there is a question on health status that asks "In general, would you 

say your health is 'Excellent', 'Very good', 'Good', 'Fair', 'Poor"T' Here the rank of 

the categories is known to exist on a single dimension. Although one can assume that 

the categories are ordered, the structure of the ordering with respect to a given 

explanatory variable is unknown. For this reason Anderson (1984) recognised these 
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types of ordered categories as being truly discrete and referred to the outcome 
response as a judged or an assessed variable. 

Greenland (1994) emphasised that the type of ordinal regression model used for analysis 
should depend on the way the data have been processed and generated, and that this is quite 
often overlooked. In the literature the proportional odds model is quite frequently used in the 

context of grouped continuous ordinal data, and the polytomous and stereotype models are 
often referred to when a truly discrete ordinal scale is present. However, the distinction of 
which model should be used, given a certain type of ordered scale is not clear-cut. Other 

ordinal regression models such as the continuation ratio and the adjacent category models are 
often applied to both types of ordinal categorical scales. 

3.11 Similarities and differences of ordinal regression models 

Constant slope models 

The proportional odds model is now the most commonly used ordinal regression model 
because it has the convenient feature that the effect of a covariate on the y-response can be 

quantified by one regression coefficient. McCullagh (1980) and McCullagh and Nelder 

(1989) state that if the order of the categories can be specified with confidence a priori, 

models making this ordering a strong assumption (such as the proportional odds and 

continuation ratio models) are preferable to the more flexible logistic models such as the 

stereotype model, because of their simple interpretation. Once heterogeneity has been ruled 

out, the proportional odds model offers several advantages over binary logistic regression, 

including increased power and measure of effect that applies to all dichotomies of the 

outcome. 

According to Agresti (1999) the constant slope adjacent category and the cumulative odds 

models both imply stochastic ordering of the response distribution for different predictor 

values. Agresti (1989) found that the fit of the uniform association adjacent category model to 

be similar to the proportional odds model. 

Connection between the proportional odds and the continuation ratio models 

Often in the literature, the proportional odds and the continuation ratio models are compared, 

and in some respects this is not surprising as the mathematical formulation for both models 
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are very close. Both the proportional odds and the continuation ratio models are linear and 
additive on the logit scale. The first cut-point specific odds-ratio is identical for both models. 
Lddrd and Matthews (1985) demonstrate the equivalence of these models. When the 
complementary log-log link is used with the group continuous data with known cut-points, the 
model becomes the same as the continuation ratio model. According to Armstrong and Sloan 
(1989) if the strict proportional odds model holds (i. e. cumulative log odds ratio are constant, 
say, 8*), then the conditional log odds ratio (, 8j) of the more general continuation ratio model 
(i. e. with different slopes) will start at, 81=, 8*, but then tend to 0 asj increases. Thus the 

proportional odds model has been proposed as an alternative to the proportional hazards, i. e. 
continuation-ratio model for survival data (Bennett, 1983). Essentially the same argument 
explains why if the proportional odds and continuation ratio models both fitted a set of data,, 

the estimated continuation odds ratio will be less than proportional odds ratio. Greenwood and 
Farewell (1988) found from their data, the continuation ratio model provided the same 
conclusions as McCullagh's proportional odds model. The fit of the proportional odds model 

was to be slightly better than that of the continuation ratio model. According to Manor et al. 
(2000) results on the continuation ratio (single beta estimate) model were similar to those 
from the logistic regression models. However, again, the fit of the continuation ratio model 

was not as good as that for the proportional odds model. Harrell et al. (1998) also found a 

similar conclusion, in that the equal slope continuation ratio model fitted the data poorly 

compared to the constant slope proportional odds model. Armstrong and Sloan (1989). Scott 

et al. (1997), Bender and Benner (2000) and Cox and Chuang (1984) describe in some detail 

the similarities of the proportional odds and the continuation ratio models. Armstrong and 
Sloan (1989) illustrated how for their data, the standard error of the regression parameters 
from the continuation ratio were similar to the proportional odds, but were smaller than the 

cut-point specific binary logistic regressions. 

Although the proportional odds and the continuation ratio models are similar, comparisons 

should be made with caution. With the continuation ratio model cut-point specific estimates 

can be considered independent whilst those from the proportional odds model cannot. The 

continuation ratios are based on conditional probabilities, whilst those from the proportions 

odds are based on cumulative ones. Ananth et al. (1997) states that the choice of the model 

whether the continuation-ratio model or and the proportional odds model, should be based on 

the goals of the statistical analysis. 

64 



Different slopes models 

The polytomous model has often been cited in the literature as an ordinal regression model 
(Ananth et al., 1997; Lu, 1999), when in fact it is a model that fits multinomial categories, and 
does not account for ordinality of the y-response. It has quite often been cited as a model that 
forms a basis for the stereotype model (Hendrickx, 2000; Greenland, 1994; Anderson, 1984). 
In the study by Ananth et a]. (1997) and by Lipsitz (1996), results produced using the 

polytomous model were similar to those provided by the adjacent-category (different slopes) 
model, although the underlying model assumptions were not the same. 

Constant and different slopes models 

The proportional odds model can be viewed as a model 'nested' within the unconstrained 

partial proportional odds model. Bender and Benner (2000) failed to compute the partial 

proportional odds models and used the separate binary logistic analysis instead. These authors 

argue that the separate models based on the binary outcome produce results that are very close 
to the unconstrained partial proportional odds model, and that careful application of these 

models can represent a simple and adequate tool to analyse ordinal data with non-proportional 

odds. Bender and Grouven (1998) found similar conclusions when comparing the polytomous 

regression analysis with the separate binary logistic regressions and the partial proportional 

odds models. In their paper, they concluded that the partial proportional odds models imply 

more efficiency, compared to the other models. There is a need therefore to find a way to fit 

the partial proportional odds model, especially since Ananth et al. (1997) in comparing the 

likelihood ratios between the two partial proportional odds and proportional odds models, 

found that the unconstrained model performed better than the constrained one and the 

proportional odds model. 

Ananth et al. (1997) suggests that the formulation of the different slopes adjacent category 

model was more flexible when compared to the proportional odds or the continuation ratio 

(constant slope) models, in that the regression coefficient corresponding to a covariate is 

allowed to vary by every level of the response categories. 

Cox and Chuang (1984) in comparing the polytomous model with the other models 

(proportional odds and the continuation ratio (constant slope) models) mention that with well- 

defined goals, one can choose a 'best' model to describe the data. In this study, the analyses 

from the three models provided similar results, and they complemented each other and in each 

case some extra information was provided about the data. 
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Manor et al. (2000) found that with respect to the goodness-of-fit the polytomous model was 
generally a better fit than the constant slope adjacent category, constant slope continuation- 
ratio and the proportional odds models. 

Greenwood and Farewell (1988) illustrated how a one-dimensional and possibly a two- 
dimensional stereotype model could be considered given their data. In summary, the two- 
dimensional stereotype model was rated better than the proportional odds, continuation ratio 

and the one-dimensional stereotype model as the effect of the response was found to differ 

between the response categories and covariates. However, it has to be borne in mind that their 
deduction of a two-dimensional stereotype model being a 'better' model was purely based on 
the observation of the parameter estimates and odds ratios. HoltbrUgge and Schmacher (199 1) 

carried out a simulation study and found that the results indicated less bias in the estimates 

produced from the proportional odds model compared to the stereotype model. An 

improvement occurred in the estimates using the latter model, if adjacent categories were 

amalgamated. An explanation for the increase in bias for the parameters of the stereotype 

model was largely attributed to the non-linear relationship and correlation between the 

regression coefficient, 8k(k--l,...., p) and Oj c-1). This study was the first to highlight 

the conditional relationship of the estimated parameters, and this was later picked-up by 

Greenland (1994) and again by Hendrickx (2000). Greenland (1994) gave a sound 

explanation of the use of the stereotype model, and showed its superiority in the context of an 

ordinal scale where the categories were not assumed to have an ordinal structure. This study 

illustrated that the stereotype model was the only model among the proportional odds, 

continuation ratio and the stereotype model itself, to reproduce data patterns that may be 

important on a priori grounds. In this paper, however, only one example was discussed and 

this example consisted of one covariate with a three-point ordinal response. 

The stereotype model compared to other models, is less parsimonious than the proportional 

odds model, since it has extra c-2 parameters for the scaling metric. 

The stereotype model can be considered as a constrained multinomial model. In fact, if there 

is only one predictor, the stereotype model is simply a re-parameterisation of the polytomous 

model: the goodness-of-fit, predicted values and so on are all identical. However, this is not 

true in the case of a stereotype model and a polytomous model with two or more covariates. 

As the covariates increase in the models, the number of parameters estimated in the stereotype 

model does not increase as rapidly as in the polytomous model. 
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Joffe and Greenland (1995) states that the adjacent-category model is a special case of the 

stereotype model in which the scores I Ojs I are fixed a priori. 

3.12 Interpretation of Ordinal Regression Models 

The constant slope models (i. e. proportional odds, constant slope adjacent category and 

constant slope continuation ratio models) are, by far, the easiest to interpret the ordinal scale, 

as there is only one single measure (odds ratio) used to summarise the entire response 

categories. However, the models assumptions are often difficult to satisfy (Ananth et al., 
1997; Bender et al., 1997). At the other extreme, are the different slope models (polytomous, 

different slope adjacent category, different slope continuation ratio and the stereotype models) 

- for which there are as many odds ratios used to interpret the response scale, as there are cut- 

points. Although the goodness-of-fit of these latter models is adequate compared to the 

constant slope models (Ananth et al., 1997), the interpretation of the odds ratios is however 

more difficult due to the large number of odds ratios. The partial proportional odds and the 

partially constrained continuation ratio models are halfway between these two extreme cases. 

If there is evidence of some homogeneity in the cut-point specific regression parameters from 

the different slope models, then these models allow the flexibility of fitting the same odds 

ratios over the latter cut-points (Peterson and Harrell, 1990; Cole and Ananth, 2001), resulting 

in some easy of interpretation of the response scale. The added advantage of these models is 

that the goodness-of-fit can also be retained, whilst looking to constrain regression parameters 

that are homogenous over the cut-points. 
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3.13 Summary 

The following models were reviewed in this chapter: - 

Polytomous Model; 

Proportional Odds Model; 

Unconstrained Partial Proportional Odds Model; 

Constrained Partial Proportional Odds Model; 

Adjacent Category Model; 

Continuation Ratio Model; 

Stereotype Model. 

In relation to the aims of this thesis, the relevant statistical aspect of each model were 

summarised in Table 3.2. 

In addition to the latter the following are also highlighted: 

(a) Model Fittina 

The stereotype model when fitted using Hendrickx (2000) macros becomes a non- 
linear regression model. 

0 No statistical software exists to fit the partial proportional odds models. 

The unconstrained continuation ratio model can be fitted using the method described 

by Cole and Ananth (200 1). However, this method involves manipulation of the data, 

prior to analysis. 

(b) Model checking 

Model Assumptions: The assumption of proportional odds can be checked using the 

likelihood ratio test/ Z-score test/ smooth residual plots/ Wald test/ Brant's Method. 

The assumption of parallel slopes for the continuation ratio model can be checked using 

68 



the Xý-score test. However no test is given to check the assumption of a constant slope 
for the adjacent category model. 

Goodness-oLlfit: The methods used to assess the goodness-of-fit of an ordinal 
regression model are similar to those of the binary logistic regression model. The 

observed and predicted observations can be compared using the Pearson's chi- 
squared/likelihood ratio test. Given cell counts are less than 5 in frequency, the 
generalisation of the Hosmer-Lemeshow goodness-of-fit statistic for ordinal data as 
derived by Lipsitz (1996) can be applied. 

Although the stereotype model can be fitted using specially devised macros, the 

goodness-of-fit cannot be checked easily. In fact, both Henrickx (2000) and Lunt (200 1 

make no mention regarding the goodness-of-fit of the stereotype model. Also, the 

comparison of different forms of the stereotype model (i. e. main effects and saturated 

models) is difficult, as it cannot be shown that the log likelihoods of these models 
follow a Xý distribution asymptotically. 

(iii) Residual Analysis: For ordinal regression models methods used to assess the individual 

residuals and observations are very limited and under-developed. Individual binary 

logistic regression models based on the cut-points can be fitted for the polytomous 

models and the residual analysis can be carried out using the latter models and results 
integrated to give an overall conclusion. For other models simple method such as 

visually comparison of the observed and expected cell frequencies/probabilities are 

used to examine individual extreme values or 'outliers'. The residuals from the logits 

can also be used. 

(iv) Comparison of the model fits: The AIC/SC statistics are applied to compare the 

different ordinal regression models. These statistics are computed using the log- 

likelihood values of the models. In addition to these the partial proportional odds 

models are compared to one another and to the proportional odds model by the use of 

the score test and assessing the log-likelihoods. 

(c) Several Covariates 

The asymptotic relative precision (ARP) can be computed to assess the effect of the standard 

error given a single and adjusted covariate using binary logistic regression models. The ARP 

is an indication of how precise the estimate is when fitted singularly compared to when fitted 
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with other covariates. The ARP of a covariate has not been assessed in the context of ordinal 
regression models. 

Interaction terms 

The interaction terms in the presence of several ordinal response categories has not been 

researched very well in the literature. The interpretation of an interaction term in an ordinal 
regression model would be different to that presented in a binary logistic regression model 
due to the presence of several y-response categories and also for some models there are 
constant regression parameters whereas for others there are different parameters over the cut- 
points. 

The use of interaction terms in a stereotype model has not been explored in the literature. The 

model using Hendrick's (2000) macros is fitted as non-linear and therefore one would need to 
be cautious when comparing main effects model and interaction model, as it cannot be shown 
that the log-likelihoods of these models follow aZ distribution asymptotically. 

(e) Sparse Data 

Small-sample test are still under-developed and computationally not feasible. 

(f) When to use a given ordinal reuession model 

In the literature the proportional odds model is quite frequently used in the context of grouped 

continuous ordinal data, and the polytomous and stereotype models are often referred when a 

truly discrete ordinal scale is present. However, given these types of data, other models are 

also applicable and there are no clear guidelines regarding the use of certain ordinal 

regression models given certain data. 
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CHAPTER 4- STUDY DESIGN AND DATA 

4.1 Aims of this ChalDter 

The main objectives of this chapter are: - 

to describe the aims and design of the Medical Research Council Cognitive and 
Function Ageing Study (MRC CFAS); 

to identify the two health related quality of life measures, one with an underlying 
continuum (group continuous) and one truly discrete (assessed) from the data; 

(iii) to identify a set of covariates for each measure, for the purpose of fitting the 

regression models. 

Section 4.2 details the aims of the study and section 4.3 describes the study design. The 

number of subjects eligible for the study is given in section 4.4. The data that were collected 
in the study in relation to the two different types of health related quality of life instruments 

are outlined in section 4.5. In this section detail is also given of how the covariates were 
determined for fitting the regression models. 

4.2 Aims of the study 

Lar) The stu 

The data used to implement the regression models were obtained from a multi-centre study of 

cognitive function and ageing. This study known as the Medical Research Council Cognitive 

and Function Ageing Study (MRC CFAS) commenced as a longitudinal epidemiological 

study. It was funded by the Medical Research Council and the Department of Health. 

(I ý) Its aims 

The main aim of the study was to examine the natural history of cognitive decline and 

dementia in the elderly population and to evaluate the degree of disability associated with any 

decline. 
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4.3 Study design and the data collected 

(a ) Study DesigLi 

Six centres in United Kingdom were chosen to study the variation throughout the country in 

the prevalence and incidence of dementia and cognitive decline. These included two rural 
areas - Cambridgeshire and Gwynedd and four urban areas - Liverpool, Newcastle, 

Nottingham and Oxford. These areas captured the main natural variation in urban-rural 
differences, the North-South and East-West gradient and variations in socio-economic levels 

and in rates for other chronic diseases, such as stroke, ischaemic heart disease and cancers of 
the lung, stomach and breast (Swerdlow and dos Santos Silva, 1993). The Liverpool 

component, however, was funded and started before planning of the MRC CFAS study was 

completed, and as a result its design differed in some detail, compared to that of other centres. 
For this reason, this centre was excluded from the analysis and the five remaining centres 

were used. 

The cognitive function of a population of individuals aged 65 years and over was examined 

on two occasions, the first at the prevalence visits, for prevalence estimates and the second at 

the incidence visits for incidence estimates. On both occasions there was a screening 

interview, which was followed, some weeks later, by an assessment interview. Subsequently 

other visits followed (annual follow-up visits and the combined screen and assessment 

interviews), but these have not been detailed here, as the analysis in this thesis is based on 

data collected at the initial prevalence screening interview. 

Data collected 

The MRC CFAS prevalence screen interview was designed to define the population studied. 

The full interview consisted of approximately 207 questions that related to orientation, socio- 

demography (including age, sex, marital status, education and social class), social contacts, 

general health, memory, sleeping problems, smoking, drinking and medication. The data on 

the degree of social integration and contacts were also assessed. Questions on the Activities of 

Daily Living were asked in order to establish the level of disability of a respondent. Cognitive 

function was measured using the Mini-Mental State Examination (Folstein et al., 1975) and 

data were collected to ascertain core risk factors as measured in the EURODEM studies of 

Alzheimer's disease, vascular dementia and cognitive decline (Van Duiju and Hofman, 1992). 
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4.4 Number of subjects sampled 

At each centre random samples were selected of sufficient size to yield 2500 interviews from 

individuals aged 65 years and over, with equal numbers in the age groups 65-74 years old and 
75 years old and above. The total sample available at baseline was 20 234 for the five centres 

and there were 17 608 respondents identified as being eligible. Of these 13 006 were 
interviewed at the initial visit and were regarded as the "achieved sample" (MRC CFAS2, 

1998). This sample provided the basis for the analysis. 

4.5 Health-related quality of life measures and the covariates 

Several versions of the data were collected and version 4.1 was used for the analysis in this 

thesis. 

The aim here was to isolate outcomes which examined an aspect of quality of life, or quality 

of life itself, and which were measured on an ordinal categorical scale. 

A search was made to find two measures of health related quality of life, one which was of an 

'assessed' type (i. e. with truly discrete categories) and one which was of a 'group continuous' 

type (i. e. where an underlying continuum variable was present). Appendix I details a list 

(Listing 1) of the ordinal outcomes that were recorded at the prevalence screening and the 

choice of the two measures was made from this list. 

4.5.1 Assessed ordinal outcome -Health Status measure 

From Listing Ia (Appendix 1), the most appropriate 'assessed' outcome in the context of 

health-related quality of life was the Health Status question (which has been adapted from the 

health status question from the SF-36 Health Survey (Ware et al., 1998)): "Would you say 

that for someone of your age, your own health in general is: 'Excellent' (0), 'Good' (1), 'Fair' 

(2), 'Poor' (3), 'No answer% 'Not asked' and 'missing"? " 
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4.5-1.1 Choice of the covariates for the Health Status measure 

(a) In the literature 

Much has been published using the MRC CFAS data, but there are no publications that use 
the Health Status question as a primary or a secondary end-point. Thus, the choice of 

covariates for fitting the regression models had to be based on what was relevant in the 
literature. Table 2.1 . in the Background section lists some studies that are cited in the 
literature where health status was used as an outcome response. From this table, it is evident 
that the most common independent risk factors that related to health status include age, sex, 

education, marital status, smoking and alcohol consumption. Assessments that are less 

common but still relevant include exercise, the BMI index, chronic diseases (such as heart 

disease/ heart attacks, diabetes etc. ) and depression. 

Criteria for the chosen covariates 

The MRC CFAS study did not record all these variables; for instance, exercise, BMI index 

and depression were not directly assessed. The variables that were examined were age, sex, 
level of education, marital status, smoking, alcohol consumption, heart attacks, angina and 
diabetes. The intention was not to use all these variables in the fitting of the regression 

models. The decision of the choice of the covariates was driven by the need to assess the 

effect of two or more covariates, and in particularly to examine the covariate parameter 

estimates with respect to one another. As stated in section 3.7, Robinson and Jewel (199 1) 

have reported that given two covariates xi, andXi2, and the response Yj, then if conditions (i) 

and (ii) are satisfied then the variance of xi, will always be smaller than the variance of xil 

having adjusted forXi2. This has not been assessed using ordinal regression models and 

therefore the choice of the covariates was based on satisfying either criteria (i) or (ii). 

4.5.1.2 Exploratorv analvsis using the Health Status measure and the covariates 

An exploratory analysis of the Health Status outcome with respect to the covariates was 

carried out in order to identify the covariates that satisfied one of the above criteria. 

There were 309 respondents who had missing data on their health status, 61 respondents did 

not know the rating of their health status and 14 subjects were not asked the Health Status 

question. Thus, in total there were 384 observations that were disregarded on the health status 

assessment, as these categories could not be incorporated into the ordinal analysis. A total of 
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12622 observations were used for the analysis. Centre effect, although not considered in the 
above list was also assessed in relation to health status. 

4.5.1.3 Results of the exploratorv analvsis usina the Health Status measure and the 
covariates 

Initially each of the covariates was cross-tabulated with the one another and the response and 
the association examined. The covariates used are listed in Appendix I in Table Ia. 

Lar) Association of the covariates with one another 

Table Ib (in Appendix 1) illustrates the association of each of the covariates with one another 
(including the health status outcome) using p-values as obtained from the Pearson's chi- 
squared test statistic. Missing response data or a response of 'no answer' or 'not asked' were 
disregarded and only complete observations were used for the covariates to assess the 

association. Although the Pearson's chi-squared test statistic does not account for the ordinal 
categories, it does give a crude indication of how well the variables are related to one other. 
From Table lb (in Appendix 1) there is indication many of the covariates were strongly 

associated with one another satisfy criteria (i) above. The choice of the covariates was 
difficult using this criterion. 

(h) Association of the response with the covariates 

The association of two given covariates with respect to the response was assessed using the 

Cochran-Mantel-Haenzel (row mean score) statistic as presented by Mantel (1963) for 

assessing criteria (ii). This statistic examines the association of the response and one given 

covariate, whilst adjusting for the effect of the other covariate by treating it as a stratification 

variable. The ordering of the response variable is taken into account by assigning scores to the 

response categories, forming means and then examining location shifts of the means across 

the sub-populations. A significant association between general health status of the respondent 

and whether he/she has had a heart attack (after controlling for whether he/she smokes or not 

- Qsmll= 190.767 on I d. f.; p =0.00 1) was provided, when examining the association of two 

covariates with respect to the response. Likewise there was evidence of a notable association 

between the health status and whether or not a respondent smoked (after having accounted for 

the fact that a respondent may or may not have had a heart attack -QsmH=4.212 on I d. f.; p 

=0.04). These results indicated that the adjusted heart attack covariate was strongly associated 

with health status, and the association with the smokers/n on- smokers, although evident, was 
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not as strong. These two covariates did not satisfy criteria (i), however they did satisfy the 

above criteria (ii) and were therefore examined further and consequently used for fitting the 

regression models. 

(c) Health Status versus the 'smoke'and 'heart attack' covariate 

The two covariates were individually cross-tabulated against the health status score. There 

was an indication that those who did not smoke were more likely to have 'excellent' or 'good' 

health status, where as smokers were more likely to have 'poor' health (Q, ýmH= 4.607 on I dS, 

p =0.0318). Also, there was a strong association with health status and 'heart attack' 
( QsmH= 126.3 3 on I d. f.; p <0.000 1). Those who had not suffered from a heart attack were 

more likely to have 'excellent' and 'good' health, whilst those who had suffered from a heart 

attack were more likely to have 'fair' or 'poor' health. 

Both the 'smoke' and 'heart attack' were cross-tabulated with the health status score and 

presented in Table 4.1. There were 1253 5 complete observations available on both covariates 

and the response. 

4.5.2 Group continuous ordinal outcome- Townsend DisabilitV Scale 

Two variables were recorded as grouped continuous ordinal outcomes: the Mini-Mental State 

Examination (MMSE) (Folstein, 1985) and the 6-group Townsend Disability Scale 

(Townsend, 1979). The Mini-Mental State Examination is a well-validated scale but no 

corresponding validated ordinal categories exist for this scale. However, studies have been 

published where results are summarised using an ordinal form of the MMSE (score <21,22- 

25,26-30) (MRC CFAS 25 1998). 

The 6-group Townsend Disability Scale is a short index of activities that assess physical 

ability in social terms (see Listing Ib in Appendix 1). The scale consists of nine questions or 

'items', and each item is rated using a level of difficulty: 0-'yes, with no difficulty', I-yes, 

with some difficulty' and 2-'no, needs help'. The scale gives equal weighting to each item 

and a summary of the level of disability is provided by the total score. The total disability 

score can be categorised into six groups: a total score of 0 is regarded as indicating no 

disability; 1-2 'slightly disabled', 3-6 'some disability', 7-10 'appreciable disability', 11-14 

6severe disability' and 15-18 'very severe disability'. Although these ordinal categories have 
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not been validated, they are published (Townsend, 1979). In the context of the MRC CFAS 
data, work has been carried out and published using the disability score, but not these ordinal 
categories (MRC CFAS', 1998). As the ordinal categories based on the Townsend disability 

score are more reliable than those of the MMSE, it was decided that the 6-group ordinal form 

of the Townsend Disability Scale be used in the fitting of the regression models. 

4.5.2.1 Choice of the covariates for the Townsend Disahilitv Scale 

The choice of the covariates using the 6-group Townsend Disability Scale was based on the 

published work using the disability score (MRC CFAS', 1998; MRC CFAS, 2000). 

(a) Adiustin-a covariates 

In the MRC CFAS' (1998) publication, logistic regression models were fitted and it was 
found that the centre effect was small. Also each covariate was adjusted for 'age group' 
(under 70,70-74,75-79,80-84,85+ years) and 'sex'. In the MRC CFAS (2000) publication, 

summary statistics and exploratory plots of the estimated years of disability and prevalence of 
disability were provided for each sex, age group (65-74,75-84,84 + years) and social class (1, 

11,1111, IV5 V). From these two publications, the most common variables, namely 'age group' 
(under 70,70-74,75-79,80-84,85+ years) and 'sex' (male/female) were taken as the 

adjusting covariates when fitting the regression models. Note that the choice of the five age- 

group categories for the analysis in this thesis was analogous to that in the MRC CFAS, 

(1998) publication. The reason for this choice was so as that results from the models 

computed in this thesis could be compared with those in the latter publication. 

Causal covariates 

The causal covariates which were listed in the MRC CFAS' study (1998), included centre; 

marital status (single/with partner, widowed, divorced/separated); social class (I and 11,111 

(non-manual), IV and V, armed forces); full-time education (<9 years, 9 years, 10-12, ý! 13 

years); type of accommodation (house, flat or granny flat, warden-controlled flat, home or 

hospital); deterioration in eyesight (none, some, marked/ blind); and deterioration in speech 

(none, some, marked/dumb). 

The choice of a third covariate came from this group of variables, and it was driven by the 

fact that it had to be binary. The reason for this was that very early on in the analysis, it was 

realised that the fitting of ordinal regression models becomes quite complicated as more and 
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more covariates are added into a model. To allow a covariate to be added into a model 
adequately having adjusted for 'age group' and 'sex', there was a need to have this covariate 
as simple as possible. As a result 'level of education (in years)' was chosen. For the analysis 
in the MRC CFAS' (1998) paper, the latter variable indicated that the odds of disability 

occurring for those with (< 9 years) education was 1.03 (95% C. I.: 0.9,1.1) compared to those 

with 9 years education; the odds of disability occurring for those with 10-12 years education 

was 0.92 (95% C. I.: 0.9,1.0) compared to those with 9 years education and the odds of 
disability occurring for those with 13 or more years of full-time education was 0.76 (95% C. I: 

0.71 0.8) compared to those with 9 years of full-time education. From these results the 95% 

confidence intervals indicated that those with <9 years of full-time education were not 

statistically different than those with 9 years education (since it contains 'I'). Similarly those 

with 10-12 years of full-time education did not statistically differ in terms of their odds 

compared to those with 9 years of full-time education. This provided a justification to 

collapse the three full-time education groups (<9,9,10-12 years) into one group. A new full- 

time education variable was formed which was based on two categories (less than 13 years of 
full-time education and 13 or more years of full-time education). 

4.5.2.2 Exploratorv analvsis usinm the Townsend disabilitv score and the covariates 

Initially the disability score (i. e. continuous score) was tabulated against 'sex' and 'age 

groups'. The summary statistics of this continuous form of the response were compared 

against the summary statistics of the 6- group ordinal categories of the Townsend Disability 

Scale. This clarified that no major differences had occurred in the response data when they 

had been transformed from the continuous rating score to the ordered categories. This was 

verified as there is some indication in the literature that often continuous variables when 

converted into ordered categorical variables by grouping values, can introduce an extreme 

form of measurement error with an associated loss of power (Agresti, 1999). 

For the 6-grouped Townsend disability ordinal score, 572 respondents did not have an 

assessment. This was as a result of missing items or items on the scale that were not answered 

or asked. In total 12434 subjects provided a Townsend disability score. The covariates that 

were assessed in relation to the 6-grouped ordinal categories included 'centre', 'sex', 'age 

groups' and 'level of education'. There were no missing data for these variables. 
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(aj Townsend disability score by centre 

The number and percentage of respondents for each centre and each of the six ordinal 
response categories were tabulated. The distributions across the ordinal disability categories 
for the centres were very similar. Each distribution was right-skewed, with larger proportion 
of subjects with no disability. Although no statistical testing was carried out, it was decided, 

as in the MRC CFAS' (1998) study that there was little centre effect. For this reason this 

variable was not considered further. 

The 6-groyped Townsend Disability Scale collapsed into a 5-groyped Townsend 
Disability Scale 

The 6-grouped ordinal Townsend disability categories were cross-tabulated for 'sex, ' 'age 

group' and 'level of education'. The frequency table indicates that there were some missing 
data, which had been generated as a result of the cross-tabulation. In particular there were no 
respondents for the categories: (a) males, < 70 years old with 13 or more years of full-time 

education for very severe response; (b) females, < 70 years old with 13 or more years of full- 

time education for severe response, and (c) males, 80-84 years old, with 13 or more years of 
full-time education for very severe response. The missing data would lead to computation 
difficulties when fitting the models. If replaced by zero there would still be some problems, as 
the denominator of the log odds would have to take on a zero marginal probability. For this 

reason, the last two categories ('severe' and 'very severe') of the response were grouped into 

one. As of this point onwards, only the 5-grouped ordinal form of the Townsend Disability 

Scale, i. e. 'none', 'slight', 'some', 'appreciable', 'severe + very severe' was considered. The 

combining of the categories was also done in the MRC CFAS' (1998) publication. 

(c) The 5:: groy. ed ordinal Townsend disability categories tabulated g ainst each single p _g 
ps, sex and level of education) ge groy covariate (a 

Each main covariate was tabulated against the five ordinal disability groupings. There was 

significant statistical association between the covariates and level of disability ('sex' v. 

Townsend disability categories: Qsm, 1=577.45 on I d. f.; p <0.000 1; 'age group' v. Townsend 

disability categories: QsmH=2214.18 on I d. f.; p <0.000 1; 'full-time education' v. Townsend 

disability categories: QsmH=51.98 on I d. f.; p <0.000 1). This indicated that each covariate was 

strongly related to Townsend disability score. 
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LdQ The 5-groyped ordinal Townsend disability categories tabulated ggainst two covariates 
(sex and level of education, gge and level of education) 

Two covariates were tabulated against the Townsend disability scores. It was not considered 

relevant to tabulate the adjusting variables 'sex' and 'age group' with the response variable, 

as focus was centred round 'full-time education'. It was evident that when taking each 'age 

group' as a stratum, there was significant association between 'full-time education' and the 

levels of disability (QsmH=66.90 on I d. f.; p <0.000 1). Also, within each 'sex' category there 

was an indication of significant association between the level of 'full-time education' and the 

level of disability (QsmH=51.98 on I d. f.; p <0.000 1). 

(e) The 5-groMed ordinal Townsend disabilioý categories tabulated ggainst the three 

ps and level of education) covariates (sex and yge groy 

Table 4.2 provides the cross-tabulation of 'sex' given each 'age group', each level of 'full- 

time education', for the 5-ordinal response categories. This table summaries the number and 

proportion of respondents within each level of the covariate, allowing for the other covariates. 

From this table, there are some very low frequency counts and proportions. 
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4.6 SummaEj 

(i) Two quality of life measures were chosen: - 

Health Status -a discrete ordinal categorical scale- 
('Excellent' (0), 'Good' (1), 'Fair' (2), 'Poor' (3)); 

Townsend Disability Scale -a scale with an underlying continuum- 
('none' (0), 'slight' (1), 'some' (2), 'appreciable' (3), 

6severe + very severe' (4)). 

(ii) For the purpose of fitting the regression models the covariates for each health 

related quality of life measure were: - 

Quality of life measure Covariates 

Health Status question Heart attack (yes/no); 

Smoke (yes/no) 

Townsend Disability Scale Age group (< 70,70-74,75-79,80-84,85+ years); 

Sex (male/female); 

Full-time education (< 13 or > 13 years) 

The Health Status score has not been analysed in any previous publication. The 

disability scale has been previously analysed in the MRC CFAS' (1998) 

publication. However, the ordinal form of the scale has not been assessed. 

(iv) The data on the health status did not seem to pose any problems - the frequency 

cells were large with no missing data and the distribution of the response with 

respect to the covariates was well spread out. For the 5 grouped Townsend 

disability score categories, the data were skewed with respect to the covariates 

and there were some cell frequencies with very little data. 
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Table 4.1: A fi-equency table displa yjýg the number and percentgge % of respondents withill C jo 
each Health Status score, smoking and heart attack categories 

Have you Do you Health Status categories 
had a heart smoke? 
attack? 

Excellent Good Fair Poor Total 

Yes Yes 27 76 101 39 243 
(11.1%) (31.3%) (41.6%) (16.1%) 

Yes No 83 406 442 114 1045 
(7.9%) (38.9%) (42.3%) (10.9%) 

No Yes 402 1050 522 145 2119 
(19.0%) (49.6%) (24.6%) (6.8%) 

No No 1959 4521 2243 405 9128 
(21.5%) 

-------------- 

(49.5%) (24.6%) 

------- ---- --- 

(4.4%) 

Note: that the parentheses reference the percentages based on the row marginal totals 
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Table 4.2: A freauencv table illustrating the number andvercentage of respondents within the 
Townsend Disability Scale categ ories for g ge groy p , sex and full-time education 

Age Sex Level of 5-grouped Townsend Disability Scale categories 
group education 
(Years) (Years) 

None Slight Some Appreciable Severe+ very severe Total 

<70 Male < 13 803 252 147 41 40 1283 
(62.6%) (19.6%) (11.5%) (3.2%) (3.1%) 

213 96 22 16 52 141 
(68.1%) (15.6%) (11.4%) (3.6%) (1.4%) 

Females < 13 731 385 252 104 80 1552 
(47.1%) (24.8%) (16.2%) (6.7%) (5.2%) 

eýý13 107 42 17 81 175 
(61.1%) (24.0%) (9.7%) (4.6%) (0.6%) 

70-74 Male < 13 677 279 149 59 52 1216 
(55.7%) (22.9%) (12.3%) (4.9%) (4.3%) 

213 92 31 14 4 4 145 
(63.5%) (21.4%) (9.7%) (2.8%) (2.8%) 

Females < 13 580 415 339 155 85 1574 
(36.9%) (26.4%) (21.5%) (9.9%) (5.4%) 

eýý13 
73 50 30 9 6 168 

(43.5%) (29.8%) (17.9%) (5.4%) (3.6%) 

75-79 Male < 13 399 255 193 68 86 1001 

(39.9%) (25.5%) (19.3%) (6.8%) (8.6%) 

iýý] 3 56 35 22 6 5 124 

(45.2%) (28.2%) (17.7%) (4.8%) (4.0%) 

Females < 13 357 376 416 193 178 1520 

(23.5%) (24.7%) (27.4%) (12.7%) (11.7%) 

e-13 
54 43 45 14 10 166 

(32.5%) (25.9%) (27.1%) (8.4%) (6.0%) 

80-84 Male < 13 175 145 170 83 79 652 

(26.8%) (22.2%) (26.1%) (12.7%) (12.1%) 

213 28 26 30 5 6 95 

(29.5%) (27.4%) (31.6%) (5.3%) (6.3%) 

Females < 13 159 206 338 244 294 1241 

(12.8%) (16.6%) (27.2%) (19.7%) (23.7%) 

2ý1 3 18 29 37 14 21 119 

(15.1%) (24.4%) (31.1%) (11.8%) (17.7%) 

85 Male < 13 34 
(10.9%) 

50 
(16.1%) 

66 
(21.3%) 

73 
(23.6%) 

87 
(28.1%) 

310 

213 8 6 11 5 3 33 

(24.2%) (18.2%) (33.3%) (15.2%) (9.1%) 

Females < 13 27 76 174 196 368 841 

(3.2%) (9.0%) (20.7%) (23.3%) (43.8%) 

2ý13 
5 9 21 19 24 78 

(6.4%) (11.5%) (26.9%) (24.4%) (30.8%) 

Note: that the parentheses reference the percentages based on the row marginal totals 
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CHAPTER 5- STATISTICAL ANALYSIS 

5.1 Aims of this Chapter 

The main objective of this chapter is to illustrate the statistical methodology and model fitting 

used for the regression models, using the two quality of life measures (Health Status and 
Townsend Disability Scale) identified in Chapter 4. The following chapters - Chapter 5 and 
Chapter 6 -provide the methods for goodness-of-fit and the results obtained from the model 
fitting respectively. Inevitably, there is some overlap in these three chapters. However, due to 

the large number of models fitted, attempt has been made to separate out the sections of 

methodology, model checking and results as much as possible, so as that it is evident how 

each model was fitted and checked for goodness-of-fit and what the final results were in terms 

of the odds ratios. 

(i) Reaession models fitte 

In this chapter, detail is focused on the ordinal regression models. The models fitted were: - 

0 Linear Regression Models; 

Binary Logistic Regression Models; 

Polytomous Models; 

Proportional Odds Models; 

Unconstrained Partial Proportional Odds Model; 

Constrained Partial Proportional Odds Model; 

Adjacent Category Models (constant slope and different slopes); 

Continuation Ratio Models (different slopes and fully constrained); 

Stereotype Models (linear and non-linear forms). 

Ciij Issues addressed 

There are two main aspects addressed in this chapter. 

(a) Various issues related to fitting ordinal regression models have received little 

attention in the literature and are relevant to the data in this thesis (as identified in 

Chapter 3). In this chapter, these issues are considered in some depth. These include: 
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fitting several variables in ordinal regression models; 
fitting interaction terms and assessing the significance of these in the model; 
fitting the partial proportional odds models (as no standard method exists to 
fit these models); 

iv. fitting the unconstrained continuation ratio model. This can be fitted using 
the method described by Cole and Ananth (2001). However, the method used 
in this chapter is more computationally efficient. 

V. The stereotype model as fitted using Hendrickx's (2000) and Lunt's (2001) 

macros is a non-linear model. In order to check the goodness-of-fit of this 

model, one can take the ordering constraint parameters (Oj ) obtained from 

the macros and incorporate them into the stereotype model (3.23) estimating 

what we shall call a linear stereotype model. This latter model allows one to 

assess the goodness-of-fit of the non-linear form. 

vi. Model comparison of the different forms of the stereotype model can be 

carried out using the bootstrap technique. This method has not been applied 

any way in the literature to compare models, and is similar to the Monte 

Carlo simulation used by Greenland (1994). 

(b) The disability score (continuous form of the Townsend disability score) has already 
been analysed in the MRC CFAS' (1998) publication. In the latter, the disability 

score for each subject was taken as a proportion of the total score and the binary 

logistic model was used to fit the data. The interpretation of the results was not clear, 

so the analysis was replicated here using 'sex', 'age group' and 'full-time education' 

as covariates. Also the results from this analysis were compared to the results from 

the linear regression and ordinal regression models. 

Ciii) Computing the regression models 

The statistical software package SAS (version 8.0 1) and Stata (version 7.0) were used to 

compute the above models. 

(a) Linear Regression Model: PROC GLMwas used to fit the linear regression models 

for both datasets using standard methods (see Appendix 11). 

(b) Binaly Logistic and Ordinal Regression Models: PROC CA TMOD was used to 

compute the binary and ordinal regression models for both datasets. However, the 
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standard procedure in SAS was not applied. Instead a method cited by Stoke et A 
(1995) for fitting models was considered. These investigators pursued to fit the main 
effects proportional odds and polytomous models using a method based on first 

principles and this method can be adapted for all models based on ordinal categories. 
In this chapter this method is considered in depth in relation to the ordinal regression 
analysis. 

Consider the general form of an ordinal regression model, given in equation 3.5. Note 

that in this equation the observed values of the dependent variable are not in the 

equation. They are linked to the model by the multinomial distribution. Thus in cell i 

if we observe n. subjects out of ni+ then we assume that the nu are distributed 

multinornially with probability ; T, . The parameters in the model are estimated by 

either maximum likelihood or weighted least squares. Of course we do not know the 

population values ; Ty and in the modelling process we substitute into the model the 

estimated or fitted values. The observed sample proportions are referenced as py, and 

replace the icy , The )T^, vector is an estimate of ; Tij and estimates the probability of 

an event from the model. These are the predicted or fitted values for ny. A good 

model will give predictions fir, close to the observed proportions nylni,. Thus 

equation 3.5 models the vector of logits F(7^C, ), such that 

il 
( 05 fi2 (0 

-1) 
( ^)I where i= I ... r. We can re-write this complete F(; T^i =If ;T Ir I .... 

fj 
(, Ir 

^2) 
.... 

F( ^, ) ). We refer to the predicted vector of logits as F(IT^) = (F(IT^, ), F(Jr /T 

logits collectively using the latter notation and there are, at the most, r(c-1) of these 

logits or response functions. The observed sample response functions are F(p). Then, 

in brief, the method involves computing the following steps (details are given in 

Appendix 11: section 2): 

i. the observed sample marginal probabilities (py) and their variance covariance 

matrix are obtained. 

ii. The observed sample response functions F(p) are computed together with 

their variance covariance matrix. 
iii. The parameter estimates of an appropriate ordinal regression model are 

obtained using weighted least squares or maximum likelihood estimation, 

given a design matrix and the observed marginal probabilities and response 

functions obtained in (i) and (ii). 
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iv. Once the parameter estimates are obtained F(; T^) = X, 8 and the variance of 

F(11^0 = XV(, 8)-'X are computed, where P denotes the vector of the 

estimated parameters and X is the model specification matrix or design matrix 
(containing 0, -1 and 1). 

In this thesis, using this method, the regression models outlined above are fitted to the Health 

Status data (as in section 5.2) and to the Townsend Disability Scale data (as in section 5.3). 

5.2. Health Status data 

The 'smoke' and 'heart attack' covariates were taken as categorical for all the regression 

models fitted. These covariates were chosen using the criteria specified in 4.5.1.1 (b). 

Therefore the results from the models (with the exception of the linear regression model) 

were used to obtain the Asymptotic Relative Precision (ARP) statistics, which gave an 
indication of the precision of the estimate of the regression parameter when 'smoke' was 
fitted as a single covariate, compared to when it was adjusted for using 'heart attack'. The 

binary and ordinal regression models were therefore fitted with (a) unadjusted 'smoke' 

covariate; (b) adjusting 'smoke' for 'heart attack'. Below only the analysis for (b) is 

illustrated, as this is the more complicated of the two. 

Note that the response categories 'Excellent (0)', 'Good (1)', 'Fair (2)' and 'Poor (3)' were 

recoded as 'Excellent (1)', 'Good (2)', 'Fair (3)' and 'Poor (4)' due to the fact that STATA 

becomes 'disabled' when fitting models where the response categories are coded as V. 

5.2.1 Linear Regression Model 

La) Model assumptions 

Prior to fitting linear regression models, it is usual to check the model assumptions. These 

assumptions are as follows: 

(a) a Normal distribution is assumed for the outcome given the covariates; 

(b) they-observations are assumed to have equal variances and to be independent; 

(c) the relationship of the response and each covariate is assumed to be linear. 
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Due to the limited response categories and also limited covariate subpopulations, assumptions 
(a) and (c) could not be checked visually using a scatter diagram. Also, one has to assume that 
the variability of response observations was constant, although due to the nature of the data, 
this was unlikely. This illustrates some of the problems encountered when one tries to apply 
linear regression method to ordered categorical data. 

(b) Model fittin 

The linear regression models which were fitted included: (i) model with 'smoke' on its own; 
(ii) model with 'smoke' adjusting for 'heart attack' and (iii) model with both covariates and a 
I't order interaction term. The t-test statistic (Ho: parameter = 0) was used to assess the 

significance of each term in the model on I df. The parameter estimates and the fitted mean 
values for the single effects and the two-covariate case models were obtained for each sub- 

population. 

5.2.2 Binary Logistic Rel4ression Models 

The purpose of fitting several binary logistic models to the ordinal quality of life scale was to 

examine the similarities/differences in these models. From this, one could determine whether 
it was necessary to have several binary logistic models to describe the relationship of the 

outcome with the covariates or whether one model, regardless of which one, was ample. As 

these models were treated independently, the need for multiple testing did not arise. 

There were four levels for the response and therefore there were three cut-points that divided 

the health status categories into binary groupings: l' cut-point -'excellent' v. ('good', 'fair', 

'poor'), 2 nd cut-point- ('excellent', 'good') v. (fair', 'poor') and 3 rd cut-point- ('excellent', 

'good', 'fair') v. 'poor'. The data for the response categories were amalgamated to form the 

two binary categories with the first grouping coded as 'I' and the other coded as V. The 

odds were based on grouping '0' compared to grouping 'I' in order to keep in consistent with 

the ordinal regression models. 

Three separate binary analyses were carried out using the maximum likelihood method and 

this is described in Appendix 11 (section 2). Each model was fitted with the unadjusted 

4 smoke' and then 'heart attack' was added into the model to assess the adjusted 'smoke' 
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effect. The I" order interaction term for each model was also included and a test based on the 
change in the -2 log-likelihood of the main effects model and the one including the 
interaction term was carried out (deviance statistic). If the change in the -2 log-likelihood was 
significant, the interaction term was included. The maximum likelihood parameter estimates 
with their standard errors were given and from these the odds ratios and their 95% confidence 
intervals were derived. 

5.2.3 Ordinal Regression Models 

The starting point for fitting ordinal regression models is to compute the observed sample 
marginal probabilities (pu) and the observed sample response functions F(p) together with 
their covariance-variance matrices (see Appendix 11 section 2 for detail). Once these have 
been obtained, the modelling stage can begin using either the method of maximum likelihood 

or weighted least squares. 

(i) Maximum likelihood estimation 

The parameter estimates (and their standard errors), the predicted response functions (and 

their variance covariance matrix) and the -2log-likelihood value of each of the following 

models were obtained using maximum likelihood estimation method. 

0 Polytomous model; 

0 Continuation ratio model (using separate binary logistic regressions); 

0 Stereotype model (with known constraints). 

For these models the logits are of a generalised form and the log-likelihood functions are 

concave and the parameter estimates necessarily exist and are unique and finite if all the 

observed cell counts are positive. The mechanics of the maximum likelihood methods when 

used in the context of the above models are detailed in the Appendix 11 (section 2). In brief, 

the log-likelihood was computed and from this the first derivative with respect to the 

estimated parameters was obtained. This latter function comprised of the probabilities and the 

design matrix. The expected value of the second derivative was also computed and the 

Newton-Raphson method applied to obtain the maximum likelihood estimates of the 

parameters in the model. 
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CH) Weighted least squares estimation 

The parameter estimates (and their standard errors) and the predicted response functions (and 

their variance covariance matrix) of the following models were obtained using weighted least 

squares method. For these models where the ordinality of the categories was accounted for 

through the logits, weighted least squares estimation was more easily adaptable than 

maximum likelihood estimation. This was because the logits are a complex function of the 

cell counts and the likelihood function was not necessarily of a closed-form. This implies that 

the first and second order derivatives of the likelihood function are usually more difficult to 

obtain. Although maximum likelihood can be computed for the constant slope models 

(proportional odds, continuation ratio and the adjacent category), it was not decided to use the 

weighted least square method as the results could then be compared with other similar 

models. Hence, the weighted least squares estimation was used for the following: 

Proportional odds Model; 

Unconstrained Partial Proportional Odds Model; 

Constrained Partial Proportional Odds Model; 

Continuation Ratio (Unconstrained and fully constrained); 

Adjacent Category (constant and different slopes). 

The weighted least squares estimate of the parameters is the vector that minimises the 

quadratic form (A 12) as specified in Appendix 11. 

Once the maximum likelihood/weighted least square parameter estimates had been computed, 

questions about these parameters could be addressed using hypothesis testing (as in (A 16) in 

Appendix 11) and Wald test statistic ((A 17) in Appendix 11). 

Below the observed sample marginal probabilities have been derived and these are common 

to all the ordinal regression models. Also, the observed sample response functions have been 

computed for the polytomous model and the cumulative logit model. The purpose of 

computing these by hand is to illustrate how the method using first principle works (using 

either maximum likelihood or weighted least squares). In practice one would not perform any 

calculations by hand, as the software package provides all the relevant information in the 

output (see Appendix 11: section 3). The required design matrix has to be input by the user for 

modelling purposes and details of how the design matrix is determined are given below. 
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5.2.3.1 
-Polytomous 

Model 

The observed sample response functions for the polytomous model are defined as: 

In 
Pr(Yj 
Pr(Y, 

Y') 
where this is the log odds based on categories 'good' v YI) 

be denoted by fi, p) ; 

In 
Pr(Y, = YO 

Pr(Y, = yl) 

by fi2 (P); 

cexcellent' and can 

is the log odds based on categories 'fair' v. 'excellent' and can be denoted 

In 
Pr(Y, Y4) 
Pr(Y, yl) 

by fi3 (P)' 

is the log odds based on categories 'poor' v. 'excellent' and can be denoted 

For the Health Status data, the polytomous model from (3.7) was of the form: 

2 

F(; T)=aj +>" Xik)6jk 

k=l 
1,3. 

The 'excellent' category was taken as referent. 

(5.1) 

The observed sample marginal probabilities and response functions for the polytomous model 

were computed as follows (see Appendix 11 (section 2) for details of the theory). 

(a) Observed sample marginal probabilities 

Given the Health Status data the observed sample marginal probabilities for each sub- 

population were: 
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pll= 0.1111 

P21":: --0.0797 

P31ý0- 1897 

P]2-: ": 0.3128 

P22--": 0.3885 

P32--ý:: 0.4955 

P13--"ý0.4156 

P23-"': 0.4230 

P33""::::: 0.2463 

p, 4=0.1605 
P24"'ý::::: O- 1091 

P34--": 0-0684 

P4]-':: 0.2146 P42--'ý0.4953 P43:::::::: 0.2457 P44ý--0.0444. 

Here 

pl'= (0.1111,0.3128,0.4156,0.1605); P2'= (0.0797,0.3885,0.4230,0.1091) 
(0.1897,0.4955,0.24633 0.0684); P4ý--"ý (0.2146,0.4953,0.2457,0.0444) 

and pl', P2', P3' and P4' were each of (I A) dimension and p'= (PI", P2', P3'P4') was of 
dimension (I x 16). 

The variance covariance matrix for p, was 

1.8x10-, 

V(PI)= - 1.2x10-' 

0.6x10-' 

-- 
0. ixi o-, 

-1.2xlO-' -0.6xl 
0-5 

2.7xlO-' - . 3xlO-' 

- 1.3x1 0-' 2. OxIO-' 

- 0.2x1 0-' - 
0.1X1 0-5 

- 0. ixi 0-, 
- 0.2x1 0-' 

- 0. ixi 0-, 
4.24x1 0-2 

and in a similar way V(p), V(p3) and V(p4) were obtained and were each 4x4 in dimension. 

Thus V(p) = (V(pd, V(p2), V(p3), V(p4)) and V(p) had a dimension of 16 x 16. 

SAS 

The marginal and observed cell probabilities could be obtained in SAS as detailed in 

Appendix 11 (Section 3). 

(b) Observed response functions 

Then fil(P) --"":: ln (Pi2lPil); f2(P) : --In (Pi3lPil); f3(P) -4n (P14lPil) and we can 

write F(p, ) -= 
f fl 

I 
(P)3 A2 (P)5 A3 (p)) and F(p) =f F(pl), F(P2), F(P3), F(POI 

- 

We compute F(pl) =Kln(A(pi)), such that: 
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1 0 0 0 

0 0 0 1 0.1111 
0 1 0 0 0.3128 

taking ln(Apl)=In 
0 0 0 1 0.4156 
0 0 1 0 

[0.1605 

-0 
0 0 1- 

x 1) (6 x 4) (4 x 1) 

0.3128 -1.1622 
0.1111 -2.1973 
0.4156 -0.8780 An 
0.1111 -2.1973 
0.1605 -1.8295 
0.1111 

_- 
2.1973 

1 -1 
K= 0 0 1 -1 

0 0 0 0 1 -1 

(3 x 6) 

and 

F(p) = KonAp, ) 

(3xl) 

1 -1 
= 0 0 1 -1 

0 0 0 0 1 

-1.1622 

-2.1973 1.0351 
-0.8780 1.3193 
-2.1973 

-1- 
-1.8295 _0.3679_ 

L- 
2.1973_ 

Computing F(P2), F(PA F(P4) in a similar way resulted in 

F(p) =f (1.0351,1.3193,0.3679); (1 . 5875,1.6725,0.3174); 

(0.9601,0.2612, -1.0198); (0.8363,0.1354ý -1.5763)). 
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SAS 

The calculation of the S matrix (see (M) in Appendix II) was somewhat complex and 
laborious by hand, and therefore has not been detailed here. However, the observed response 
functions and the variance-covariance matrix S can be obtained in SAS as detailed in 

Appendix 11 (Section 3). 

The model fitting could now be carried out. 

(c) Model specification 

To determine the parameter estimates, in addition to the probabilities, the design matrix X is 

required. For this, let us assume that an individual in group i takes on the values for 'smoke' 

g=1 (yes) or 2 (no) and 'heart attack' h=1 (yes) or 2 (no). Then for modelling purposes we 

write the response functions as: 

( A) 

fil (; T /T 
0- fghl f2- fgh2 f3 fgh3 

Instead of estimating one set of parameters for one logit function, as in the logistic regression 

model, one is estimating sets of parameters for multiple logit functions. This poses no 

particular problems, since there are multiple response functions being modelled per group, 

there are more degrees of freedom associated with each effect. 

For the Health Status data, model (5.1) is expressed as: 

IT a, + 1811 + P12 1 0 0 0 0 0 0 

A 
12 Or a 2+ J821 

+ 
1822 0 1 0 0 1 0 0 1 0 

A 
13 a 3 +1831 +1832 0 0 1 0 0 0 0 

A21 ()T 0 a, +1611 -A#12 1 0 0 1 0 0 -1 0 0 
f ;T 122 

(ý) a 2+ J821 - J822 
0 1 0 0 1 0 0 -l 0 

IT A 
23 

a3 + Al 
- 

P32 0 0 1 0 0 1 0 0 
- 

(7A 

r 
f2l 

I ") -)311 al +)612 0 0 -1 0 0 0 0 
f 7r 212 

(0 a 2 J821 
+ )622 0 1 0 0 -1 0 0 1 0 

f 7r 213 
(0 a8 3 31 +, 832 0 0 1 0 0 -1 0 0 1 
( A) 

f221 ;T a, gl 2 
1 0 0 

-1 

0 0 
-1 

0 0 

f222 a 2 -1821 -)622 0 1 0 0 -1 0 0 -1 0 

. 

f223 

_a3 - 
Al - 1832 

0 0 1 0 0 -1 
0 0 - 

a, 
a2 

a3 

Al 

Al 

Al 

A2 

)622 

P32 

(5.2) 
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The matrix formulation (5.2) contains the design matrix (also known as the model matrix) that 
consists of 0, -1 and I and the required parameters. Nine parameters were fitted for the main 
effects polytomous model using the Health Status data. Here the I aj) were the average log 

odds (across the four sub-populations) of the health status effect and in terms of model (5.1) 
they were the intercept parameters for each cut-point specific logit function. These were 
nuisance parameters and therefore were of no interest when summarising the data. The 1,8j, I 

were the differential change in the log odds for smoking (yes/no) and WjAwere the 
differential change in the log odds for having/not having suffered from a heart attack. For 

each cut-point f, 8,11 was the added amount for smokers and subtracted amount for non- 

smokers and 1.8j2)was the added amount for having had a heart attack and subtracted amount 
for not having had a heart attack. Table 5.1 displays the log odds predicted by this model. 

Table 5.1: Table of model predicted log odds for the Polytomous Model using the Health 

Status data 

Do you 
smoke? 

(9) 

Have you had 
a heart 
attack? 

(h) 

/T 
fghl 

Ar fgh2 
Ar fgh3 

Yes Yes a] +, flll+ 1812 a2 + 1821+ 1822 a3 +, 03 
1+A2 

Yes No a] +, flll-, 812 a2 + j82 1- t822 a3 + 
1631- 

A2 

No Yes a] -, 
011+)612 a2 92 1+ #22 a3 183 1+ fl32 

No No a, -, 011-, fl]2 a2 1821- 1822 a3 fl3l- fl32 

(d) Estimation - parameter estimates and odds ratios 

Maximum likelihood estimation was used to derive the parameter estimates and their standard 

errors by solving equation (A 11) in Appendix 11. This equation involved functions that 

comprised of the sample probabilities and the specified design matrix (in (5.2)). 
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Consequently, the predicted logits functions F(IT^ )and their variance covariance matrix were 
computed. The log odds ratios and their 95% confidence intervals could be obtained in one of 
two ways: 

the parameter estimates could be substituted into the logit functions as given in 
Table 5.1 and as a by-product the log odds were provided. Alternatively, the logit 
functions as given in the SAS output could be used to compute the log odds. 
Subtracting an appropriate pair of logits, resulted in the log odds ratios and 
consequently the odds ratio (e (In OR) ). For instance, to determine the adjusted log 

odds ratio of those with 'poor' as opposed to 'excellent' health status given 

smokers (as opposed to non-smokers) one would compute (a] +, 811+, 812) - (a] 

, 
811+, 812)= 2,811. This method does not easily provide the standard error of the log 

odds ratios5 and therefore the 95% confidence intervals are more difficult to 

obtain. 

Another method for obtaining the log odds ratios involved the use of the contrast 

matrix that contained the linear combination of the parameter estimates. For 

instance, to obtain the log odds ratio and the standard error for the first cut-point 

for those who smoked as opposed to the non-smokers, the hypothesis Ho: 2,811=0 

was set up and the contrast matrix C= [0 0020000 0] could be used to test 

this hypothesis - see Appendix 11 (A 16) and (A 17)) for details. The by-product of 

this was the log odds ratios and their standard errors. The odds ratios were then 

e (In O. R) and using the standard error of the log odds ratios, the 95% confidence 

interval for the odd ratios were computed as e [in OR ± 1.96 (s. e. InO. R)] 
. 
Note that the 

standard error of In(O. R) is computed using the delta method. 

Method (ii) was used to derive the odds ratios and their 95% confidence intervals for all the 

ordinal regression models fitted. 

(e) Interaction term 

The I" order interaction term was constructed by taking the product of the main effects. This 

term was then incorporated into the main effects design matrix (in (5.2)) and the resulting 

design matrix, as in (5.3), was used to compute the parameter estimates and their variance 

covariance matrix (by the method of maximum likelihood) in very much the same way as 

above. The following matrix formulation provided the predicted logits F(7^C): 
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A a, +, 61, +P12 +)611)612 1 0 0 1 0 0 1 0 0 1 0 0- 

A 
12 

(71-) a2 +, 62, +)622 +)621)622 0 1 0 0 1 0 0 1 0 0 1 0 
a, 

A 
13 

(7C) a3 + )6 
88 

31 +1832 +, 31,32 
0 0 1 0 0 1 0 0 1 0 0 1 

a2 

A 
21(7C) a88 1+, 11 -, 12 - 40612 1 0 0 1 0 0 -1 0 0 -1 0 0 

a3 

Ai A 
22 ag 2+ )621 -, 22 -)629622 0 1 0 0 1 0 0 -1 0 0 1 0 Al 

A23(; 
T) a868 3+ 

831 
-, 32 -) 31,32 0 0 1 0 0 1 0 0 -1 0 0 1 

1831 f2l 
I (Jr) a- 161,6 6 I+ 

A2 
-j IIJ 12 1 0 0 -1 0 0 1 0 0 -1 0 0 A, f212 (Jr) a 2- )6 21 

+ A2 
-A 9622 

0 1 0 0 -1 0 0 1 0 0 1 0 A2 

f213 
a3 - J6 6 31 

+) 
32 -)631)632 0 0 1 0 0 -1 0 0 1 0 0 1 A2 

f221 (; T) a, -Ai _A2 +AIA2 1 0 0 -1 0 0 -1 0 0 1 0 0 AIA2 
f222 00 a2 -)621 -)622 +)621)622 0 1 0 0 1 0 0 -1 0 0 1 0 '820622 

)T) J223 (^- a 
-3 -A, _A2 +AIA2 

-0 

0 1 0 0 
-1 

0 0 
-1 

0 0 1- 
[AIA2- 

(5.3) 

Here the interaction effects werefilIP12, P21P22andflJ32- In this saturated model 12 

parameters were fitted equalling the total of the number of logits in the contingency table. The 

significance of the interaction term was based on assessing the change in the -2log- 
likelihoods of the two models (with and without the interaction term). This deviance statistic 

was distributed using 3-df (degrees of freedom), and this was the difference in the degrees of 

freedom based on the two models. 

5.2.3.2 Cumulative Lo2it Models 

The Health Status response scale does not have an underlying continuum. However, 

according to McCullagh (1980) the cumulative logit models can still be fitted; the only 

problem encountered is that the interpretation is not as easy as when presented with a y- 

response that has an underlying continuum. 

For the proportional odds and the partial proportional odds models, weighted least squares 

method was used to obtain the parameter estimates and provide the statistical inference. The 

general principles of this method are detailed in Appendix 11 - Sections 2 and 3. 

98 



(a) Observed sample marginal probabilities 

These were as specified for the polytomous model (see section 5.2.3.1 (a)). 

(b) Observed sample response functions 

The cumulative logits are expressed as in (3.8). In terms of the health status response 
categories the sample logits can be written as follows: 

In 
Pr(Yj 
Pr(Y, :! ý 

by fil (p); 

In 
Pr(Y, Y2 
Pr(Y, Y2) 

is the log odds for ('good', 'fair', 'poor') v. 'excellent' and can be denoted 

is the log odds for (fair', 'poor') v. ('excellent', 'good') and can be 

denoted by f, (p) ; 

In 
Pr(Y, > YO 

Pr(Yj ýý YO 

by fi3 (P) 
- 

is the log odds for 'poor' v. ('excellent', 'good', 'fair') and can be denoted 

The observed sample response functions together with their standard errors are obtained in a 

similar way to those of the polytomous model. We usually define the cumulative probabilities 
for a cumulative logits model as: 

oil 
-= 7ril; Oi2 = 7ril+7ri2; 03 =: 7rjl+7ri2+7rj3; .... 

Oic-I = 7ril+..... +7ric-1; Oic = 1. 

However, to keep the parameters consistent with those of SAS, the cumulative probabilities 

were defined as: 

Oil = 1; Oj2 =-- 7ri2 ...... +7ric; 03 = 7ri3+ -- 
+7ric; 

---- 
Oic = 711+ ----- 

+7ric; Oic = 7ric * 

Using these latter probabilities, the sample cumulative logit response functions were: - 

YO) 
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A(P) =ln(0210-00); 

h(P) ý-- ln (Oj41(l 
- 00) 

- 

As before, we write F(pl) -= 
ff,, (P)5fl2(P)5A3(p)j and 

F(p) =f F(pl), F(P2), F(P3), F(P4)1. Then we compute F(pl) =K In (A(pl)), such that: 
0 1 1 1 

1 0 0 0 0.1111 
0 0 1 1 0.3128 

ln (A(pl))=ln 
I 1 0 0 0.4156 
0 1 1 1 

[0.1605 

-1 
0 0 0- 

and 

-0.1178 
-2.1972 2.0794 
-0.5514 F(pd= Kon(Api)) 0 01 -1 0.3069 
-0.8583 0 0001 -1 -1.6546 - - -1.8295 
-0.1749 

Computing F(PA F(PA F(P4) in a similar way results in F(p). The variance of F(p) was 

derived using the same method as specified for the polytomous model. 

The design matrix, X, was required in addition to the observed sample marginal probabilities 

and logits, so as that modelling could be carried out. The design matrix varies depending on 

the type of cumulative model fitted. There are three types of cumulative models considered 
here: (i) different slopes cumulative logit model, (ii) proportional odds and (iii) partial 

proportional odds models. 
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i) Different slopes Cumulative Lo2it Model 

Prior to fitting the proportional odds model and the partial proportional odds models, we 
consider the cumulative logit model with cut-point specific parameters. The purpose of this 
model was to give an idea of how the odds ratios over the cut-points were behaving and 
which model, whether it be the proportional odds or the partial proportional odds, was 
appropriate for the data. Assessing the standard errors of the adjusted and unadjusted 'smoke' 

covariate did not arise, as the purpose of this different slopes cumulative model was purely to 

observe visually the individual odds ratios over the cut-points (no testing of the homogeneity 

of the cut-point specific parameters was carried out). 

(a) Model snecification 

The general form of the different slopes cumulative model is given in (3.9). For the Health 

Status data this model for the response functions was specified as: 

2 

F(; T) =a+ j=l, 2,3 (5.4) XikOjk 

k=1 

The main effects different slopes cumulative logit model fitted separate slope parameters for 

each covariate and therefore the number of parameters was the same as for the main effects 

polytomous model. Thus, the design matrix used for the polytomous model (in (5.2)) was 
identical to the design matrix used for the different slopes cumulative model. 

(b) Estimation - parameter estimates and odds ratios 

The observe sample marginal probabilities and logits (as derived above), together with the 

design matrix (in (5.2)) were used to compute the weighted least square equation (A 13) given 

in Appendix 11. The by-product of this was the parameter estimates. The standard errors of 

these estimates were obtained using (A 14) in Appendix 11. 

The predicted response functions, F( IT^ ), were derived by solving equation (5.2) with the 

cumulative logit specification. Consequently, the cut-point specific log odds ratios were 

derived using method 5.2.3.1 (d). 
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(c) Interaction term 

The interaction term for this model was not considered, as attention was primarily centred 
round the main effects and the behaviour of the log odds ratios. 

(ii) Proportional Odds Model 

The general form of the proportional odds model is given in (3.10). For the Health Status 

data, the model for the response functions was expressed as: 

2 

F(; T) = aj +I xi,, O, j=l, 2,3 (5.5) 
k=l 

(a) Model specification 

One effectively constrains all the cut-point specific regression coefficients of a covariate in 

the different slopes cumulative logit model to be the same when fitting the proportional odds 

model. As before if we assume that an individual in group i takes on the values for 'smoke' 

g=1 (yes) or 2 (no) and 'heart attack' h=1 (yes) or 2 (no), then for modelling purposes (5.5) 

can be specified using the following matrix formulation. 

In this model five parameters were fitted. The jajj parameters were as defined for the 

different slopes cumulative model and were the nuisance parameters. The fl, parameter was 

the differential change in the log odds for smoking (yes/no) and 82as the differential change 

in the log odds for suffering/not suffering from a heart attack. 81 was the added amount for 

smoking and subtracted amount for non-smoking and, 82was the added amount for having had 

a heart attack and subtracted amount for not having had a heart attack over all the cut-points. 

The predicted log odds for this model were as given in Table 5.2. 
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fil 
,( 

ý) 
a 1 +A +ß2 1001 

fl 
12 

(27 
a2 +A+ ß2 0101 

fl 
13 

(ik ) a3 +A+ ß2 00111 

fl 
21 

(ik ) al +A -ß2 001- 

f122 (7r a2 +A -ß2 0101- 
al 

f123 (k) a3 +A -ß2 0011-1 
a2 

f211 ÜT 
a 1-A+ 

ß2 100 
-1 

1 a 3 

f212 (7 a2 -A+ 
ß2 01011 ß, 

f213 (27) a3 -A+ 
ß2 001 

-1 
1 

ß2 

- 

f221 (27 cel - 
ßl 

- 
ß2 100 

-1 -1 

f222 (7 a2 A- ß2 010 
-1 -1 

f223 (27 ý)- 
a 3A- 

ß2 001 -1 -1 

(5.6) 

Table 5.2: Table of modelpredicted log odds for the Proportional Odds Model using the 
Health Status data 

Do you 
smoke? 

(9) 

Have you had 
a heart 
attack? 

(h) 

fgh 
I 

(/T 
/T 

fgh2 A) 

;T fgh 
3 

Yes Yes a, +, #]+ A a2+A+)62 aj + 
i8]+, 

fl2 

Yes No a, +, #, -)62 aj +, #, - fl2 a3+A-)62 

No Yes a, - 
A+, 02 a2-A+, 02 a3-A+ A 

No No a, - A-)62 aj - )61- )62 aj - 81- 
J62 

(b) Estimation - parameter estimates and odds ratio 

The design matrix in equation (5.6) together with the observed sample marginal probabilities 

and response functions (derived above) were used to solve equations (A 13) and (A 14) in 

Appendix 11. The by-product of this was the parameter estimates and their standard errors. 
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The predicted logits, F( ^ 7r ), were obtained by solving (5.6) and consequently the resultant was 
the odds ratios together with their 95% confidence intervals (as in 5.2.3.1 (d) (ii)). 

(c) Interaction term 

The I" order interaction term for the proportional odds model was obtained by the cross- 
product of the main effects. This term was included in the model and the following resulted: 

ra, +ßý +ß, +ßýß, 1 rl 001 
fl 

12 (Jr) a8 2 +A+)62 +A, 2 
010 

Ad 
a82 3 +A +, 

2 +A)6 I 00 
A ; T) 121( 

^ 
I a +A-162-A, 82 1001 -1 -1 a I 

A Jr) 22( 
^ 

2 -, 82- A, 82 a +A 0101 -1 -1 a 2 

Jr) 
A123( 

a +A 3-A -AI02 0011 -1 -1 a 3 
A 

I( a6 I -A +)62 -A) 2 
100-II-I 

A 
f212 (; ý) 

a86 2 -A 
+, 

2 -A) 2 
010-II-1 A 

f213 (Jr) a3 
-A +)t3 2 -A)62 II 00--1 

[A)62 

A21 00 

a, -A-, 62 + A, 82 100- 
f222 () 

a88 2- A-, 2 
+A, 

2 
010 

Jr) 
J223( ^- 

a - 3-A-182+A)62 - -0 
01 

(5.7) 

The interaction term corresponded to the regression parameter, 81,82 in (5.7). The parameter 

estimates and their standard errors were obtained as above using the weighted least square 

equations. The Wald test statistic was computed using the parameter estimate and the 

standard error of the interaction term and this test determined whether this term was 

significant or not (as in Appendix II (A 17)). This was set up in a contrast statement and the 

test was based on I -df (since there was one linearly independent row in the contrast matrix). 

(d) Proportional Odds assumption 

Various methods have been cited in section 3.5.2 (b) that permit the assumption of 

proportional odds to be tested. The likelihood ratio test, score test and the Wald test would be 

the most likely ones to be used here, as the other methods are not available in SAS. However, 

as the analysis was based on weighted least squares, the score test and Wald test could only 
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be used. The need to use graphical methods did not arise, as difference in the cut-point 
specific regression parameters given a covariate, was on inspection, easily visible. 

The chi-squared score test statistic produced in PROC LOGISTIC in SAS provided an overall 

assessment of the proportional odds for all the covariates. Where the assumption was violated, 
the non-proportionality was examined further for each individual covariate by using the Wald 

test statistic (as in Appendix 11 (A 16) and (A 17)). 

For instance, in the different slopes cumulative model (5.4), the P vector consisted of 

(a, a2 a3 1811 
P21 Al A2 P22 A2 )* (5.8) 

The hypothesis set up to assess whether the differential effect of 'smoke' was similar over the 

three cut-point categories was Ho. - 81 =, 821=, 831. This hypothesis was set up as Ho: 811-, 821=, 821- 

, 
831 = 81 I-)631= 0. It was tested using a contrast matrix, C in conjunction with Wald test statistic. 

The C matrix in the different slopes cumulative model was specified as: 

0 0 

cl = 
0 0 

-0 

(5.9) 

A similar contrast statement was repeated to test whether differential effect of 'heart attack' 

was similar over the three cut-point categories. The C matrix was specified as: 

0000001 -1 
0 

C2 =00000001 -1 (5.10) 

-0 
0000010 -1- 

The X2 degrees of freedom were the number of linearly independent rows in the contrast 

matrix: thus both tests were based on 2-df 
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(iii) Unconstrained Partial Proportional Odds Model 

There was evidence that the proportional odds assumption was violated and consequently 

alternative models such as the partial proportional odds models had to be considered. 

(a) Model specification 

For the partial proportional odds models (unconstrained and constrained) the systematic 

component of equation (3.14) consisted of some variables where constant odds could be 

assumed and some, where the regression parameters were allowed to vary over the cut-points. 

For the Health Status data, model (3.14) for the response functions took on the form 

F(ir) = aj + xil, 81 + Xi2182 +T where j= 1,2,3. il7j] (5.11) 

This model could be specified using the following matrix formulation (where the i group has 

gh sub-population): 

fi 
ý, 

(k) al + (A + 711) + ß2 

fl 
12 

(/7 a2 + (A + Y21) + ß2 

fl 
13 

(Z a3 + (A + 731) + ß2 0 

fl 
21 

(Z a, +(ßl +, y11)-ß2 

f122 (Z a2 + (A + 721) - 
ß2 

f123 (Z a3 + (A + 
/V31 

ß2 

f211 (/7 al 
(A + 

/711) 
+ ß2 

f212 (Z a2 - 
(A + 

/V21 
)+ ß2 

f213 ('T a3 - 
(A + 

/731 
)+ ß2 

f221 (Z al -(A - 
ß2 +Yll) 

f222 ÜT a2 - 
(A + 

/721 
)- ß2 

_f223 

(Z 
-a3 

- 
(A + Y31 )- ß2 

a, 
a2 

a3 

)61 
Yll 
Y21 

iV 31 

. 5.12 

In this model 7 parameters were fitted (since rl, =O). The interpretation of {aj) and {, Bkl 

parameters was similar to that in the proportional odds model and the {rj) s were the 

differential change in the log odds of smoking (yes/no) associated with eachjth cumulative 

logit. The rl, =O as the first logit was based on fl, and this was incorporated into the design 

matrix. 
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The predicted logits were of the form given in Table 5.3. 

Table 5.3: Table of model predicted log odds for the Unconstrained Partial Proportional 
Odds Model using the Health Status data 

Do you smoke 
p 

Have you had 
a heart 
attack? 

(h) 

;T fghl ( A) 

;T fgh 
2 

A) 

;T fgh 
3 

Yes Yes a] + (81 + 711) +182 a2 + 681 + 721) +A a3 + 681 + 73 1) + P-7 

Yes No a] + (fll + 711) -, 62 a2 +(, 81 + 721) -A a3 + (J61 + 731) -, 82 

No Yes a, - 
(81 + y, 1) +182 a2 4,61 + 721) +A a3 (A + 

jV31) 
+A 

No No a, - (fl, + Yl 1) -A a2 -061 + 721) -A a3 (61 + 731) -, 82 

Estimation - Darameter estimates and odds rati 

The parameter estimates were obtained using weighted least squares equations (A 13) and 

(A 14) in Appendix 11. To solve these equations, the design matrix, as given in (5.12), the 

observed sample marginal probabilities and the sample response functions were used (as 

obtained above). 

The predicted logits F(; T^ ) were obtained by solving equation (5.12) and consequently the log 

odds ratios resulted. The constant log odds ratio for those who had suffered/not suffered a 

heart attack were obtained together with the cut-point specific log odds ratios for those who 

smoked/did not smoke by the linear combination of the different parameters. For instance, for 

the different cut-points, the log odds ratio of obtaining ('good', 'fair', ýpoor) as opposed to 

'excellent' health status for the smokers (against the non-smokers) was [(a, + (fll+ y1j) +, 82) - 

(a, - (, fll+ yj I) +fl2)] = 2(, Bl+ ; vjI)=2,8j (since yll =0). Likewise the log odds ratio of obtaining 

('fair', 'poor') as opposed to ('excellent', 'good') health status for the smokers versus non- 

smokers was 2(fll+ Y21) and ýpoor' as opposed to ('excellent', 'good', 'fair') health status for 

the smokers versus non-smokers was 2(, 81+ y3l). The adjusted log odds ratio for those who 
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suffered from a heart attack, as opposed to not having suffered from a heart attack was the 

same as that obtained for the proportional odds model. These log odds ratios were obtained 

using the contrast statements and the resultant was the odds ratios and their 95% confidence 
intervals. 

c) Interaction term 

The cross products of the main effects were constructed resulting in the effects for the 

interaction term. The interaction term was made up of two components: filfi2+ fi2YjI. These 

effects were incorporated into the design matrix in equation (5.12) and the resulted in: 

A 
A 

12 
Or 

A )T 13 
( ^) 

fl fl2l 

A22 

fl A23 (/ 

f2ll 00 

f212 G 

/T 
f213 ( ^) 

fl f221 

f222 (j 

f223 (Ir 

a, + (181 + 711) + 182 + A182 + J82ri, 
a2 + G81 + r2l )+ 

182 
+ 

181182 
+ 82r2l 

a3 + (Afll + /V31) + 
182 

+JOI182 + 
182Y31 

a, +G81 + r1l) P2 -181 
P2 

182 /Vl I 

a2 +01 + r2l) )62 -)61)82 182721 

a3 + (181 + r3l ) 
A02 - J0062 J62r3l 

a, _G81 + 711) + 182 -181 J02 
P2711 

a2 -01 + r2l) + 182 -A 182 J82 Y21 

a3 - 
(JOI + r3l )+ P2 

-A J02 182Y31 

a, - G81 + Yll) )62 +)61182 + )62ri 

a2 -(181 +7 21 
) 

182 
+A 

j02 
+ 

. 
82 r 21 

a3 - (Afll + Y31 ) P2 +A P2 + 02r3l 

1 0 a, 
a2 

0 0 0 0 1 11 0 0 1 a3 

0 0 0 0 0 
- 0 0 0 '81 

0 1 0 0 1 0 0 -1 0 71, 

0 0 1 0 0 1 0 0 - 
Y21 

1 0 0 0 0 0 0 0 0 Y, ý 

0 1 0 0 
- 

0 0 
- 

0 
182 

0 0 1 
- 

0 0 
- 

I1 0 0 
-1 )61)62 

1 0 0 - 0 0 0 -1 0 0 0 
182 Yy II 

0 1 0 - 0 -1 0 -1 0 1 0 
182 IV 21 

0 0 1 - 
0 0 -I -1 

0 0 1- 

-)32/V31. 

(5.13) 
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The design matrix in (5.13) together with the observed sample marginal probabilities and 
logits were used to solve the weighted least square equations as detailed in Appendix 11 and 
the end-product was the parameter estimates. 

The hypotheses Hol:, 81,82=0 and H02: fi2Y21 = 82Y31 -=O (since yl, =0) were constructed to test the 
significance of the interaction term. The following contrast matrices were used: 

ci -= [0 000o000100 0] (5.14) 

and 
000000000000 

C2 =000000000010 (5.15) 

-0 
0000000000 1- 

Note, that the I st row of matrix C2consisted of all zeros due to yll =0. The Wald test statistic 
was used to assess the significance of the latter effects in the model (see Appendix 11 (A 16) 

and (A 17)). The Hol test was based on I -df and H02was based on 2-df, (i. e. the number of 
linearly independent rows in the contrast matrix). 

Ldý Fittiýg the unadyusted 'smoke' covariate 

The unadjusted 'smoke' covariate could not be fitted, as this was made up of two regression 

components,, 8 and y. Also, the number of parameters required out numbered the number of 
logits (i. e. there was over-parameterisation) in the design matrix. Thus the Asymptotic 

Relative Precision (ARP) could not be computed for this model. 

Ov) Constrained Partial Proportional Odds Model 

(a) Model specification 

The cut-point specific log odds ratios were observed in the unconstrained partial proportional 

odds model. A monotonic trend was apparent in the log odds ratios across the health status 

categories in relation to the smokers/non-smokers. To simplify the interpretation, a constraint 
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was placed on the regression parameters associated with the 'smoke' covariate (leading to the 
formation of the constrained partial proportional odds model). The 'heart attack' covariate 
was assumed to have constant log odds over all the cut-points. The constrained partial 
proportional odds model of the form (3.16) was fitted. For the Health Status data, this 

modelled the predicted response functions using: 

F(; r) = aj + x,, 6, + XiD82 + TilrjYl where j= 1,2,3. (5.16) 

Since yjj=O in the unconstrained model, then F, =0 in model (5.16). Thus the first logit was 
based on the 81. The logits based on the cut-points 2 and 3 were defined as 81+ F2y, and 81+ 
F3 )/, respectively. In the unconstrained partial proportional odds model )121 and )131 have the 

values 0.00411 and 0.1691 respectively, and from these one could derive that Y31= 40'V21 

approximately. The following constraints were chosen: FI= 0; F2= I; F3= 40 and model 

(5.16) was fitted using the matrix formulation (where the i group has gh sub-population) 

given below. 

flll()T a, ++ Or, ) + 100101 
fl 

12 
()ýr a 2 +01 + lrl )+ 

J62 010111 
A 

13 
(7r a+ 40r, 3+ 

(181 )+)62 0011 40 1 
A fl 21 

(/ a, +G61 +Orl)-)62 100101 a, 
fl A 

22 
(/ a _J62 2+ 

G81 + 'rI ) 010111 a 2 

A 
23 

00 a3 +061 +40yl)-J82 0011 40 1 a3 

All 00 a, -()61 + O/Vl + 
J82 

100-101 
'81 

f212 (fl a2 -(181 +1)11)+)62 0101-II r, 

f213 00 a3 -G8, +40r, )+)62 0011 -40 1 
L182 

f221 00 a, -(181 + Orl - 182 
10010-I 

f222 00 a2 -()61 + lrl) J62 
0101-I-I 

')j [a3 
- (181 + 40)/, ) -, 

fl2 1 
-1 -40 -1 f223 Or LO 01 

(5.17) 

The predicted log odds using this specification are as detailed in Table 5.4. 
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Table 5.4: Table of model predicted log odds 
-for 

the Constrained Partial Proportional odds 
Model usiýg the Health Status data 

Do you 
smoke? 

(9) 

Have you had 
a heart 
attack? 

(h) 

fgh2 (; T) fgh3 00 

Yes Yes a, + 071) +J62 aj + ()61 + 171) + aj + (61 + 40yl) +, 82 

Yes No a, + (81 + Oyl) -, 82 aj + (61 +I 
/Vl 

)-A aj + (, 81 + 40yi) -, 82 

No Yes a, - (, #, + Oyl) +J62 q2 - (81 + 171) + 82 aj - (, 81 + 40yl) + #2 

No No a, -(fl, + OYI) -A q2 4A + 171) -A aj - (81 + 40yi) -, 82 

Six parameters were fitted for the constrained partial proportional odds model and fl, and P2 

were the differential change in the log odds over all the cut-points for each covariate 

respectively. The y, was the added differential change in the log odds for the 'smoke' 

covariate, with the F. scalars (r, =O; r2= 1; r3=40) associated with each of the j1h jogitS. 

(b) Estimation - parameter estimates and odds ratio 

The design matrix in equation (5.17) together with the observed sample marginal probabilities 

and response functions were used to solve the weighted least square equations (as detailed in 

Appendix 11). This resulted in the parameter estimates. 

The predicted response functions F(Jir) were obtained from (5.17) and consequently resulted 

in the log odds. The constant log odds ratio of some form of 'worse' health status compared 

to 'better' health for those who had suffered from a heart attack against those who have not 

had a heart attack was 2,82. The log odds ratio ('good', fair', Poor') against 'excellent' health 

status for those who smoked (against those who did not smoke) was [a, + (, 81+ Ovl) +, 82]-[ a, - 

(fil + Ovj) +, 82]= 2,81. The log odds ratio ( ýpoor', fair') against ('excellent', 'good') health 

status for those who smoked (against those who did not smoke) was [a2 + (fl, +I yj ) +, fl2]-[ a2- 

(, 81 +I yl) +, 82]= 2(flj+yj) and the log odds ratio for 'poor' versus ('excellent', 'good', fair') 

health was [a2+ (, 61+ 40, vi) +)62]-[ q2- (, 61+ 40)11) +, 82]= 2(flj+40yj). These log odds ratios and 

the odds ratios with their standard errors were direct product of specifying and solving the 
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hypotheses: Hol: 2,81=0; H02: 2(, 81+rl) =0; H03: 2(, 81+40yl) =0 and H04: 2,82=0. The contrast 
matrix for each hypothesis respectively was: 

C, [0 0020 0]; (5.18) 
C2 [0 0022 0]; (5.19) 
C3 [0 002 80 01; (5.20) 

C4 [0 0000 2]. (5.21) 

Note, that the purpose of these contrasts was purely to obtain the estimates of the odds ratios 

and their confidence intervals as in 5.2.3.1 (d) (ii) (no testing was carried out). 

(c) Interaction term 

The interaction term for this model was constructed in a similar way to that of the 

unconstrained partial proportional odds model. The constrained partial proportional odds 

model with an interaction term took on the form: 

f, II Or 2 +(A)62+0711 2) 49ý1 + (A+ 0/71) + 18 1 0 0 10 11 0 
fl 

12 
00 a2 +(A +171)+)62 +(A)62 + 17062) 0 1 0 11 11 1 

fl 
13 

(') a3 + (A+ 40; vl) +, 82+ (A, 82+40)11,82) 0 0 1 1 40 11 40 
fl 

21 
(r) 

a, +(A + O; vl) -, 
82 

- (A, 82+0)11,82) 1 0 0 10 -I-1 0 
fl 

22 
Oýr 

a866 2 
+(A +171)-, 

2-(A' 2+171,2) 0 1 0 11 -1-1 -1 
A 

23 
Or) a3+ (A+4071)-, 62-(A, 82 +40)11,82) 0 0 1 1 40 -1-1 -40 

f2l 
1 
00 

a, -(A 
+ 071) +, 62 

- (A)62 + 07IP2) 1 0 0 -10 1-1 0 

f212 (7r 
a _0 2+ 

lrlfl2) 
2- (A+ 171) +A 96 

0 1 0 
-1 -I 

1 
-1 -I 

f213 Or 
a+ 40; vl) +, 82-(, 81,62+ 40y,, 62) 3-(161 0 0 1 -1 - 40 1 -1 -40 

f221 Or 
a, - (, 81 + Oyl) -, 82+()61,82+0)11,62) 1 0 0 -1 0 -1 1 0 

A22 Ur a82 +(, 
1,2 

+I 
IVI, 

8 
2) 2 _G 1 

+1)11)-)6 88 0 1 0 
-1 -I -II 

I 

A23(fl- 

_a3-(, 

6, + 40yl) -, 62+()61,82+4021,, 82) 
-0 

0 1 -1 -40 -1 1 40 

a, 
a2 

a3 

A 

A, 82 

(5.22). 

The interaction term comprised of the effects filfi2+Tjfl2Y, and the significance of this term was 

tested using the hypothesis Hol: fllfl2=0 and H02: fi2y, =O. The contrast matrices used to test 

these hypotheses were: 
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ci = [0 000001 0] (5.23) 

C2 = 
10 000000 11 

- (5.24) 

The interaction term was tested for significance using the Wald test statistic (see Appendix 11 
(A 16) and (A 17)). Both tests were based on I -df, since each contrast matrix has one linearly 
independent row. 

(d) Fitting the unad 4 Y, usted smoke'covariate 

The unadjusted 'smoke' covariate could not be fitted, as the constraints were undeterminable. 
Thus the Asymptotic Relative Precision (APR) could not be computed for this model. 

(v) Comparison of the different Cumulative Logit Models 

In the literature tests used to compare different cumulative logit models (e. g. to compare the 

constrained partial proportional odds model with the unconstrained partial proportional odds 

model or to compare the proportional odds model with the unconstrained partial proportional 

odds model) are based on the change in deviance. However, for the cumulative models fitted 

here since weighted least squares were used, an alternative method had to be considered (i. e. 

the Wald test statistic). In the unconstrained partial proportional odds model, for a given 

parameter where different log odds were fitted over the cut-points the null hypothesis HO: y2j 

= y3l =0 (since vil =0) was incorporated into the contrast statement, and this assessed whether 

the proportional odds model was as good a fit as the unconstrained partial proportional odds 

model. The test was based on 2-df and the C matrix took on the form: 

000000000 

000000010 (5.25) 

-0 
0000000 1- 

Likewise, for a covariate where a trend was apparent in the beta parameters and a set of 

constraints were considered, the test of whether a model using the constraints was as good a 

fit as a model using the individually estimated parameters could also be obtained using the 

contrast statements. This test was set up in the unconstrained partial proportional odds model 

and for 'smoke' one assessed the null hypothesis Ho: r2l : -- 1-2r] ; r3l = F3rj. (since r, I= F171 
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=0). As F2=1 and F3=40, then the test was of the form HO: y3l = 40, v2l . The contrast matrix C 
took on the form: 

40 1 0] (5.26) 

and the test was distributed chi-squared using I -df 

5.2.3.3 Adjacent Category Models 

The model fitting procedure for the ad acent category models was similar to that of the j 

cumulative logit models. The first step was to obtain the observed marginal 

probabilities/response functions and their variance covariance matrix. 

(a) Observed sample marginal probabilities 

These were as specified for the polytomous model. 

(b) Observed sample response functions 

The observed sample response functions for the adjacent category model in terms of the 

health status categories were defined as: 

In 
Pr(Y, ::: Y2) 

and this is the log odds based on the 'good' v. 'excellent' categories and 
Pr(Yj = yj) 

can be denoted by fjý (p) 

In 
Pr(Y, --: - Y3 ) is the log odds based on the 'fair' v. 'good' categories and can be denoted 
Pr(Y, = Y2) 

by fi2 (P); 

In 
Pr(Yj -:: - YO is the log odds based on the 'poor' v. 'fair' categories and can be denoted 
Pr(Yj -": YO 

by f3 (P) 
* 
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The observed sample response functions were computed as: 

fil (p) = ln(P, 
2 

1 Pil); fi 
2 

(P) = ln(P, 
3 

/A2); f3 (P) = ln(P, 
4 

1 Pi3); 

and were derived using F(p) =K In(Ap), where A and K were appropriate matrix containing 0, 

-1 and I and having configurations for the adjacent category logits. 

The design matrix, X depended on the type of adjacent category model fitted. There were two 
types of these models: (i) constant and (ii) different slope models. 

(i) Constant slope Adiacent Caterorv Model 

(a) Model specification 

The adjacent category model (3.16) as specified by Ananth et al. (1997) and Agresti (1989) 
has a single constant slope over all the cut-points and this model took on the same form as the 

proportional odds model (5.5). The design matrix used to model the adjacent category logits 

was as provided in (5.6). 

(b) Assumption of constant odds 

Although no test is available to assess whether a constant slopes assumption is appropriate, 

the cut-point specific parameters for each covariate were tested for homogeneity using the 

different slopes adjacent category model and contrast statements. The test was based on 2-df 

for each covariate and the hypotheses were: HoI:, 811=, 821=, 83I and H02: 812= 822=, 832. The 

contrast matrices were given in (5.9) and (5.10) respectively. 

(c) Estimation - parameter estimates and odds ratios 

The observed sample marginal probabilities, observed sample adjacent category logits and the 

design matrix as specified in (5.6), were used to solve the weighted least square equations as 

given in Appendix 11. As a result, the parameter estimates and their standard errors were 

obtained. 

The log odds ratios and their standard errors were computed using the parameter estimates. 

The odds ratios and their 95% confidence intervals followed. 
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d) Interaction term 

The main effects for the adjacent category model were assumed to have constant slopes over 
the cut-points and with this in mind the first-order interaction effects were constructed. As the 
interaction term was also assumed to have a constant slope the form of design matrix for the 
interaction model was as given in (5.7). The interaction effect was tested for significance 
using Flo: 18IP2----":: O. This was done by setting up a contrast matrix, C which took on the form [0 
00001]. The Wald test statistic (as given in (A 17) in Appendix 11) was used to test the 

significance of the interaction effect and this was based on I -df. 

fli) Different slopes Adiacent Cateeorv Model 

(a) Model specification 

For the adjacent category model (3.17) as defined by Manor et a]. (2000), different slope 

parameters were required over the cut-points. For the Health Status data this model took on a 

similar form as the polytomous model (5.1) in that the systematic components of both these 

models were the same. The design matrix for this model was as specified in (5.2). 

(b) Estimation - parameter estimates and odds ratios 

The weighted least square equations (as defined in Appendix 11) were solved using the 

observed sample marginal probabilities, observed sample adjacent category logits and the 

design matrix specified in (5.2). The solution resulted in the parameter estimates and their 

standard errors. 

The log odds ratios were obtained in a similar way to that of the polytomous model. 

Subsequently, the odds ratios and their 95% confidence intervals were computed 

(c) Interaction term 

The design matrix used to obtain the parameter estimates of the interaction model was as 

specified in (5.3). The interaction effects were tested for significance using (A 16) in 

Appendix 11 with Ho: #l Ifil 2 =0; 82 IP22 =0; fl3 lfi32=0. This test was based on 3-df and was set 

up in a contrast matrix. The Wald test as specified in (A 17) in Appendix 11 was used to assess 

the statistical significance. 
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5.2.3.4 Continuation Ratio Models 

From the literature the most effective method that exists to compute the continuation ratio 
model is that cited by Cole and Ananth (2001). This method fits both the fully unconstrained 
and unconstrained continuation ratio models. It permits the individual cut-point specific 

continuation ratio logits to be computed in one programming step and also has the advantage 
that some of the cut-point specific parameters can be constrained to be the same. The 

drawback of this method is that one has to transform the data into person-threshold format. 

Also dummy variables are created in the datafile. 

In this thesis, the method described by Scott et al. (1997), whereby separate logistic 

regression models were computed, was used to fit the different slope continuation ratio 

model. Also in addition to this, the latter was fitted using the method described for the 

polytomous model (as cited by Stokes et al., 1985). However, the response functions had to 

be computed from first principles (as no code in SAS exists for doing this). The model was 
fitted using these and the various design matrices. The resultant was the different versions of 

the continuation ratio model. This has not been cited anywhere in the literature and is similar 

to the method suggested by Cole and Ananth (2001). As different versions of the model could 

be obtained (unconstrained - different slopes, fully constrained - constant slopes and 

partially constrained - where some of the cut-point specific parameters are constrained to be 

the same), with little programming efforts. 

The observed sample marginal probabilities and response functions with their variance 

covariance matrices were derived in the usual way. In terms of the observed response 

categories the continuation ratio logits are: 

In 
Pr(Y, = yj ) is the log odds based on the 'good' v. 'excellent' categories and can be 
Pr(Yj > yj ) 

denoted by fil (p); 

In 
Pr(Yj ý Y2) is the log odds based on the 'fair' v. ('excellent', 'good') categories and 
Pr(Y, > Y2) 

can be denoted by f2 (P); 
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In 
Pr(Y, 
Pr(Y, ýý YO) 

is the log odds based on the 'poor' v. ('excellent', 'good', 'fair') categories 

and can be denoted by fi, (p) 
. 

(i) Fullv constrained Continuation Ratio Model 

Initially the constant slope assumption was checked using the global score test. A significant 

score test statistic indicated lack of homogeneity. Then each covariate was fitted to check 

where the heterogeneity existed using the method described in section 5.2.3.2 (ii) d. 

fli) Different slopes Continuation Ratio Model 

The different slope continuation ratio model was fitted using two different methods: (i) using 

separate binary logistic models and (ii) fitting the unconstrained continuation ratio model 
(similar to that cited by Cole and Ananth (2001)), using the observed probabilities and 

response functions and the specified design matrix. 

(a) Model specification - fitting separate binajy logistic models 

The results from the separate fits were eventually amalgamated and summarised for the 

continuation ratio model and therefore there was a need to allow for multiple testing (against 

the Type I error rate a=0.05/3=0.02; where 3 reflects the three models fitted). In the 

literature, multiple testing does not feature when carrying out the binary analysis, in relation 

to the continuation ratio model. However, it was considered relevant here, as results from 

each model explained some of the overall results for the continuation ratio logits. 

(b) Interaction terms- fitting separate bina! y logistic models 

The first order interaction terms were fitted and tested for each of the binary logistic 

regression models (the test was the Wald statistic based on the Xý -distribution with I -df - 

although the deviance statistic could also have been used). The corrected Type I error rate 

was used when testing for significant interaction terms. 

-": Y3 )) 
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(c) Estimation -parameter estimates and the odds ratios - fitting separate bingy logistic 

models 

The parameter estimates were obtained using the method of maximum likelihood. The results 

using the odds ratios and the 95% confidence intervals were amalgamated from the binary 

analyses to summarise the continuation ratio model. 

(d) Model specification - fitting unconstrained continuation ratio model 

The design matrix for this model was as for polytomous model given in (5.2). 

The specification of the link function usually indicates the type of logits required and in SAS 

there already exist commands that one can use if the logits are based on cumulative odds, 

adjacent category odds or the polytomous odds models. However no SAS code exists for the 

specification of the continuation ratio logits. To specify the latter logits we refer to the 

definition of the response functions, F(ir) =K In(A /T) . For the Health Status score, the 

response is recoded in reverse order (i. e. 'poor' (1), 'fair' (2), 'good' (3) and 'excellent' (4)) 

so as that the logits can be computed correctly. The continuation response functions can be 

expressed as: 

fgh, (7r) = ln (9317r4); 

fgh2 (; T) =ln(7r21(7r3+7r4)); 

fgh3 (10 --`ý 1n (7rj1(7r2+7r3+7r4))- 

Here 7r,, 7r2, z3and7r4are the proportions based on the marginal totals in cells 'poor', 'fair', 

'good' and 'excellent' respectively. 

These expressions can be written as: 

fgh, (ir) = ln(7r3) 
- 

ln(7r4); 

fgh 
2 

(/7) :: - ln(7r2) - 
ln(7r4+7C3); 

'2:::: ln(ri) - 
ln(7r4+ 7r3+r2). fgh3 OTY 

In matrix notation, the logits can be expressed as: 
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In; T, 

0 In ; r2 

ln7r3 

In ; T4 

-r4 In(; T3 +/ 

_ln(7r2 
+ lr3 + /T4 

and can be expressed in the form of F(ir) =K ln(A; T) as: 

1 0 0 0 

0 1 0 0 
0 

0 0 1 0 )T2 
In 

0 0 0 1 
3 'r 

0 0 1 1 7r 

[ 

4 
0 

(5.27) 

These matrices can be specified in the RESPONSE statement in SAS and allow the 

computation of the continuation ratio logits. 

(e) Estimation - parameter estimates and the odds ratios - fitting unconstrained continuation 

ratio model 

The parameter estimates were obtained by the method of weighted least squares. 

The predicted response functions, F(17^ ), were derived and consequently the odds ratios and 

their 95% confidence intervals resulted using the contrast statement given in section 5.2.3.1 

(d). 

(f) Interaction term - fitting the unconstrained continuation ratio model 

The first order interaction model was fitted using the design matrix specification given in 

(5.3) and the response functions as specified in (5.27). The test of the interaction term was 

similar to that described in section 5.2.3.3 (ii) c. 
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(hib Partially constrained Continuation Ratio Model 

The output from the unconstrained continuation ratio model indicated that some of the cut- 
point parameters could be constrained to be the same. In testing for homogeneity, there was 
evidence that for 'smoke' the regression coefficients for cut-points I and 2 could be taken as 
being homogenous. Similarly there was evidence that the regression coefficients for cut- 
points 2 and 3 of 'heart attack' could be assumed to be homogenous. A partially constrained 
continuation model was fitted and the formation of the odds was such thatfl, I= P21 andfi22= 
P32. The design matrix was of the form: 

1 0 0 1 0 1 0 
0 1 0 1 0 0 1 
0 0 1 0 1 0 1 
1 0 0 -1 0 1 0 
0 1 0 -1 0 0 1 
0 0 1 0 -1 0 1 
1 0 0 1 0 -1 0 
0 1 0 1 0 0 -1 
0 0 1 0 1 0 -1 
1 0 0 -1 0 -1 0 
0 1 0 -1 0 0 -1 
0 0 1 0 -1 0 -1 

This matrix was used together with the above (5.27) to allow to fit the partially constrained 

continuation ratio logits. 

5.2.3.5 Non-linear Stereotype Model (with unknown constraints) 

(a) Model specification 

The logits based on the cut-points used for the stereotype model were same as those for the 

polytomous model. The stereotype model was fitted in SAS using Hendrickx's macros (2000) 

and the detail of how this was done using conditional logistic regression are given in the 

Appendix 11 (Section 4). Note that using the macros the {flkoj s) are not the regression 
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coefficients which are used to provide the log odds but they are the log odds ratios 
themselves. 

The predicted logits of the stereotype model (3.23) for the Health Status data took on the 
form: 

2 

aj +L Xik Oj A j= 1,2,3. (5.28) 
k=l 

This model estimated a scaling metric for the response based on the effects of 'smoke' and 
'heart attack'. The model had 3 standard multinornial intercept parameters; it estimated 2 (i. e. 
(c-2) since 01 =0 and 04 = 1) independent 0, scale parameters for the response and a single 

scaled beta parameter for each independent variable (note that the sign of Oj is positive due to 

its parameterisation). 

Dimensionali 

The above stereotype model was one-dimensional, as given the covariates xil andXi2, the same 

combination of variables Oj [A Xil +A Xi2 I could be used to distinguish between all the 

levels of the outcome. If however, one combination could distinguish between 'excellent' and 
'good', but a different one was required to distinguish levels 'good' and 'fair', the 

relationship would be described as two-dimensional. To consider the two-dimensional 

stereotype model, there had to be evidence that one set of predictors were strongly related to 

some of the response categories, whereas another set of predictors were strongly related to a 

different part of the response scale. Cross-tabulating 'health status' with the 'smoke' 

covariate, the chance of having some form of good health status was found to be lower for 

smokers compared to non-smokers and there was greater chance that those who smoked 

would have 'poor' health. Similarly, respondents with heart attack were less likely to have 

'excellent' health and those who had never had a heart attack were less likely to have 'poor' 

health. The both covariates appeared to behave in a similar fashion with regards to all the 

response categories and this was further confirmed by the odds ratios. Therefore the need to 

look at a 2-dimensional model did not arise. 
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Indistinguishability 

Two health status outcome categories were considered indistinguishable with respect to the 
covariates, if these covariates were not predictive between the two categories. There was 
indication that 03based on the cut-point 'fair' v. 'excellent' was similar to 04based on the 

categories 'poor' v. 'excellent' and therefore indistinguishability could be considered. 
However, since the regression parameters for the final cut-point are constrained to be 1, the 

parameter based on the cut-point (fair' v. 'excellent') would also have to be constrained to be 
I in order to consider indistinguishability. Although Hendrickx's macros (2000) fit the 

stereotype model by estimating the scaling and regression parameters, there is no in-built 

mechanism to test whether any adjacent categories are similar and if so, whether these can be 

constrained to take on similar parameter values. However, Lunt (200 1) has devised macros 
(in SAS and Stata) known as Soreg, which allow the fit of more than one-dimension of the 

stereotype model and also consider aspects of indistinguishability (see 3.5.6 (e)). Although 

the latter macro fits the stereotype model allowing for indistinguishability, one cannot 

compare the two models (i. e. with and without indistinguishability). Unlike for generalised 
linear models, it cannot be shown that the log-likelihoods follow a Xý distribution 

asymptotically for the former models. The deviance statistic (i. e. change in the -2log- 
likelihoods of the two models) cannot be used to compare the two stereotype models with the 

different constraints. The comparison of the two models, in theory could be done using, 
bootstrapping technique (see below). However, Lunt's macros were not compatible with the 

bootstrap techniques presented in Stata. Therefore the indistinguishability of the models could 

not be tested. 

(b) Estimation- parameter estimates and odds ratios 

Due to the non-linear nature of the stereotype models and therefore the estimation of the {flkOj 

s) parameters, the standard errors of the parameter estimates {fikl were conditional given the 

scaling metric Oj and therefore these were not valid. Likewise any inference based on the 

standard errors or the likelihood-based tests was also not correct. To obtain valid standard 

errors for the parameters and therefore for the log odds and odds ratios, bootstrapping was 

used. 

The bootstrap technique (Efron and Tibshirani, 1993) involved repeated re-estimation of a 

parameter using random samples with replacement from the original dataset. In the case of the 

Health Status data, 100 bootstrap samples were drawn and each one was used to fit the 
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stereotype model. For each model the parameters fikand Oj were estimated. Five parameter 
(02503504ý1815A )distributions were obtained. Each distribution could be assumed to be 

normal and therefore the mean and standard error were calculated to give the point estimates 
of the fikand Oj together with their standard errors. The log odds ratios Pkoj were also obtained 
from the parameters and again there were 100 values for each log odds flkoj , k--2,3,4; j=1,2 

(since 01 =0). Each log odds took on a distribution form from which the mean and standard 

error were determined. These values provided the point estimate of the log odds ratio and its 

standard error. 

(c) Interaction term 

To assess whether the I't order interaction term was significant or not, the usual change in the 

-2log-likelihood between the main effects and saturated models could not be carried out due 

to the conditional parameters. Bootstrapping was used instead. The saturated and the main 

effect models were fitted using each bootstrap sample and the change in the -2log-likelihoods 

was obtained. As there were a 100 of these samples, there were 100 change values that 

formed a distribution. The observed change value was compared in this distribution. The null 

hypothesis was that there was no difference in the two models (i. e. the interaction term was 

not significant). The ASL (Achieved Significance Level) for the bootstrap test was the 

proportion of the number of change values in the distribution that was greater than or equal to 

the observed change value, i. e. #(change value in distribution > observed change value)/ 100, 

where 100 was the number of bootstrap samples. A small ASL implied that the null 

hypothesis was rejected and that the interaction model was the preferred model. 

(d) The APR of the 'smoke' covariate 

Due to the non-linear nature of the stereotype model, the calculation of the ARP was not 

applicable and therefore this statistic was not obtainable for this model. 

5.2.3.6 The Linear Stereotvpe Model (with known constraintAs 

The constraints 10j) were obtained as estimated parameters using Hendrickx (2000) macros. 

These constraints were taken as constants and the linear form of the stereotype model with 

regression parameters for each covariate were fitted. The purpose of this latter model was 

related to model checking. The goodness-of-fit of the stereotype model which had been fitted 
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using Hendrickx's (2000) or Lunt's (2001) macros could not be easily checked due to the 
non-linear nature of the model. By using the estimated constraints, the stereotype model was 
of a linear form and the usual estimated response functions and probabilities could be 

assessed. 

(a) Observed sample marginal probabilities and response functions 

The observed sample marginal probabilities and response functions were as for the 

polytomous model (specified in section 5.2.3.1). 

(b) Model specification 

The design matrix for the linear version of model (5.28) is as in the matrix formulation: 

A120) 
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a3 
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(5.29) 

In (5.29) the cj are the scalars from the estimated parameters Ojs. The predicted logits can be 

expressed as specified in Table 5.5. 

In this model five parameters were fitted and their definition was similar to that of the 

proportional odds model. 

(c) Estimation -parameter estimates and odds ratios 

The parameter estimates were obtained by maximum likelihood estimation (as detailed in 

Appendix 11 (A 11)). These estimates (and their standard errors) were compared to those 
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obtained from the non-linear stereotype model fitted using Hendrickx's (2000) macros and 
the bootstrap technique. The predicted response functions F( 7^T ) were obtained by solving 
(5.29) and these together with the predicted probabilities were used to assess the goodness-of- 
fit of the stereotype model. 

Table 5.5: Table of model predicted lQg odds 
-for 

the Stereotype Model with known 

constraints using the Health Status data 

Do you 

smoke? 
(9) 

Have you had 

a heart 

attack? 

(h) 

fgh 
I 

(; T 7r fgh2 ;T fgh3 

Yes Yes a, + CJj8l+ C1,82 a2 + C218l+ C2)62 a3 + C3, fll+ C3)02 

Yes No a, + CI)61- CIA q2 + C2)61- C2jfl2 a3 + C318l- C3,02 

No Yes a, - cl, 01+ C1,82 q2 - C2)61+ C2)62 a3 C3)61+ C3A 

No No a, - cl)61- cl, #2 a2 - C2,81- C2)62 a3 C3)61- C3)62 

(d) The Asymptotic Relative Precision of the 'smoke' covariate 

The Asymptotic Relative Precision (ARP) was not computed for the same reasons stated for 

the non-linear stereotype model. 

5.3 Townsend Disab Scale Data 

The covariates 4 sex9 and 'full-time education' were taken to be categorical and 'age group' 

was taken to be ordinal (except in the binary model). Interest was focused on the 'full-time 
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education' covariate and therefore the other covariates were adjusted for this latter one. In the 

models fitted using this dataset, first order interaction terms were considered. Three 
interaction terms were assessed individually -'age group x sex', 'sex x full-time education' 

and 'age group x full-time education'. The model strategy was different using this dataset 

compared to that adopted for the Health Status data. The global X 2_score test statistic was of 
little value as interest was focused on 'full-time education' and it was important that 

proportionality or constant odds be primarily satisfied by this covariate (as opposed to all the 

covariates). Thus this test was not used for testing constant odds. 

5.3.1 Linear Regression Model 

The assumptions stated in section 5.2.1 were considered for this model. The analysis using 
linear regression was based on complete observations for all covariates and response and 
12434 observations were available. Forward selection was used and initially each covariate 

was fitted individually into the model. The I" order interaction terms were tested with the 

main effects using the t-test statistic (Ho: parameter = 0) each of which was t-distributed with 
I df. The parameter estimates for the final model were obtained. 

5.3.2 Binarv LoRistic Regression Model 

McGee et al. (MRC CFAS', 1998) took the total disability score (summed over the 9 items) 

for a given participant and computed it as a proportion of the total score (which was equal to 

18). This proportion was then treated in the logistic regression model as the dependent 

variable. The nature of this response variable indicated over-dispersion, where the data did 

not fit the binomial distribution very well mainly as a result of too much random variation 

(assessed by the goodness-of-fit statistic, i. e. deviance/df). Over-dispersion was corrected for 

by adjusting/scaling the covariance/variance matrix. This involved the estimation of an 

additional parameter, the scaling parameter. By adjusting for over-dispersion, the mean and 

variance of the score were correctly fitted. 

The analyses carried out by McGee et al. (MRC CFAS1,1998) were based on a single 

covariate model and a multivariate model containing nine covariates, each with 'sex" and 'age 

group' (taken as categorical) as adjusting variables. 
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There were three reasons why these analyses were replicated: (i) the data used in the 

publication were an older version (with 12114 observations) of the one used in this thesis and 
therefore more observations were available; (ii) nine covariates were used in the publication. 
For the models fitted here only three covariates were chosen namely 'sex', 'age group' and 
'full-time education' (on two levels as opposed to four as presented in the publication). 
Therefore there was a need to re-examine the results using only three covariates; (iii) the 
interpretation of the results provided in the publication was not very clear. 

The binary logistic model for the Townsend Disability Score data in this thesis was fitted 

using McGee et al. 's (MRC CFAS1,1998) method. Thus the models here were all fitted with 

a scaling parameter to correct for over-dispersion. The main effects model was fitted and then 

each interaction term was added and tested for significance. For this analysis, 'age group' was 

taken as categorical (see Appendix 11: section 1) and had 5 categories. The 'age group x sex 

term was tested using 4-df; 'sex x full-time education' was tested using I -df and the test for 

cage group x full-time education' had 4-df. The maximum likelihood procedure was used with 

'sex' and 'age group' as adjusting covariates and interest was focused around the 'full-time 

education' covariate. The adjusted odds ratios for the 'full-time education' together with the 

95% confidence interval of the odds ratio were obtained. 

5.3.3 Ordinal Rellression Models 

5.3.3.1 Polytomous Model 

As for the Health Status data, the observed marginal probabilities and response functions 

were computed initially. The design matrix required for modelling, depended on the model 

specification. 

(a) Model specification 

If we assume that an individual in group i takes on the values for 'full-time education', F-- 

I (< 13 years) and 2=(> 13 years); 'sex' g= I (males) 2 (females) and 'age-group' h= I (< 70), 2 

(70-75), 3(75-80), 4 (80-85) and 5(> 85), then given the referent category is 'severe + v. 

severe' and i=fgh sub-population, we can write the predicted generalised logits (using (3.6)) 

for the Townsend disability score data as: 

128 



In 
Pr(Y, = y, is the log odds for categories 'none' v. 'severe + v. severe' and can be Pr(Y, = Y5 

denoted by fil (7^T) ; 

In 
Pr(Yj Y2) is the log odds for categories 'slight' v. Pr(Y, YO 

(A); 

denoted byfi 
2 /T 

In 
Pr(Y, 
Pr(Y, 

YO is the log odds for categories 'some' v. 
YO 

csevere + v. severe' and can be 

(severe + v. severe' and can be 

denoted by /T 
fiJ ^); 

In 
Pr(Y, 
Pr(Yj 

Y') is the log odds for categories 'appreciable' v. 
Y, ) 

be denoted byfi4 (0) 
- 

4severe + v. severe' and can 

The polytomous model took on a similar form to (5.1). For this model sixteen parameters 

were fitted: four {aj) parameters were the nuisance parameters; four, 8,1 parameters were the 

differential change in the log odds for 'age group' (with the linear constraint imposed on the 

levels of 'age group') for each of the cut-points; four 8j 2cut-point specific parameters were 

the differential change in the log odds for 'sex' (males/females) and four, 8j3were the cut- 

point specific parameters which were the added amount for less than 13 years of full-time 

education and the subtracted amount for more than 13 years of full-time education. 

The design matrix for this model was obtained in a similar fashion to that of the Health Status 

data, and can be derived from the log odds table (Table Ila) in Appendix 11. 

(b) Estimation - parameter estimates and odds ratios 

The parameter estimates were obtained by the method of maximum likelihood. This method 

involved computing a function of the observed marginal probabilities, response functions and 

the design matrix. The predicted response functions were obtained and consequently the odds 

ratios and their 95% confidence interval. 
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(c) Interaction terms 

The I" order interaction terms were constructed using the product of the main effects. Three 

interaction terms were assessed individually. The effects of each interaction term were 
incorporated into the design matrix of the main effects. The inclusion of each term was 

assessed using the null hypothesis that all the interaction effects were statistically significant 
from zero and using the Wald test statistic (and this test was based on 4-df). The contrast 

statement was used to perform the tests for the interaction terms. (Note: the test based on the 

change in the -2log-likelihood between the main effects model and that with an interaction 

term (i. e. the deviance) could have been used as an alternative as it is an equally efficient way 

of assessing significance of the interaction term). 

5.3.3.2 Cumulative Loait Models 

The observed marginal probabilities and response functions were obtained in a similar way to 

that given in section 5.2.3.2. The observed sample logits were denoted as: 

In 
Pr(Y, > yj) 

was the cumulative logit for the response categories 'none'v. ('slight', 
Pr(Y, :! ý yj) 

(some', 'appreciable', 'severe + v. severe') and was denoted as fjý (p) 

In 
Pr(Yj > Y2) 

was the cumulative logit for the response categories ('none', 'slight') v. 
Pr(Y, ýý Y2) 

4somel, 6appreciable', 'severe + v. severe') and was denoted as f2 (P) 

In 
Pr(Yj > YO 

was the cumulative logit for the response categories ('none', 'slight', 
Pr(Yj !ý YO 

6some') v. ( 'appreciable', 'severe + v. severe') and was denoted asfi 3(p) and 

In 
Pr(Y, > YO 

was the cumulative logit for the response categories ('none', 'slight', 
Pr(Y, !ý YO 

4some9,6appreciable') v. 'severe + v. severe' and was denoted as f, 4 (P)' 

The formulation of the design matrix depended on the type of cumulative logit model fitted. 
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(i) Different slopes Cumulative Logit Model 

The different slopes model fitted for the Townsend Disability Score data was different to that 
fitted using the Health Status data due to the different modelling strategy chosen and due to 
the fact that attention was focused on 'full-time education'. 

(a) Model specification 

The purpose of this model was to assess the behaviour of the parameter estimates over the 
cut-points and also to decide whether proportional odds existed for full-time education. 
Therefore initially each covariate was tested individually for proportional odds by using the 
hypothesis based on the cut-points - Ho: fijk=&, =, 83kýýfl4k (k-- 'sex', 'age group' and 'full-time 

education'). The contrast statement was used to construct and test the hypotheses and each 
test was based on 3 -df (using (A 16) and (A 17) in Appendix 11). The contrast matrix, C, was of 
the form: 

0 0 0 

C= 0 0 0 

-0 

(b) Model assumption 

0 
0 

-1 

(5.30) 

If we fitted the different slopes model as for the Health Status data, then the estimates of full- 

time education would assume different slopes for the adjusting covariates. Thus, to include 

the covariates in the model, forward selection was used. The adjusting covariates 'age group' 

and 'sex' had to be tested for proportional odds prior to fitting in the 'full-time education' 

variable. The covariates that had proportional odds were kept in the model. It was found that 

whilst proportional odds existed for 'age group' and 'sex', non-proportionality was present 

for 'full-time education'. 

(c) Estimation - parameter estimates and odds ratios 

The parameter estimates for this model were obtained using weighted least square equation 

(as in Appendix 11). The odds ratios with their 95% confidence intervals were not obtained for 
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this model (as the purpose here was to assess how the covariates were behaving over the cut- 
points). 

(d) Interaction terms 

The different slopes model was primarily used to assess the behaviour of the main effects and 

therefore the interaction terms were not considered relevant 

(ii) Proportional Odds Model 

Although the proportional odds assumption was not satisfied, the model was fitted, so as that 
the estimates of the parameters could be compared with other models. Each interaction term 

was assumed to have proportional odds and fitted and tested for significance (test based on I 
df). The appropriate design matrix for the final model was formed and used in the weighted 
least square equations to obtain the parameter estimates. 

(iii) Unconstrained Partial Pronortional Odds 

(a) Model specification 

The 'full-time education' covariate demonstrated some evidence of non-proportionality and 

therefore a partial proportional odds model was more feasible, than a proportional odds 

model. The main effects 'sex' and 'age group' were fitted with proportional odds whilst 'full- 

time education' was fitted with non-proportional odds. The model took on the form (given 

group i hasfgh covariate characteristics or falls in that sub-population): 

F(; T) =a j+x,, 
81 + Xi2 A+ Xi3 A+ Ti37j3 

* (5.31) 

Each first-order interaction term was added to this main effects model, such that the models 

fitted were: 

F(; T) =aj+x,, A+ Xi2 A+ Xi3)63 +T (5.32) i3lVj3 
+ Xi4184 

F(; T) =aj+x,, )6, + Xi2182 + Xi3)63 + T37j3 + Xi4)64 + Xi5185 +T (5.33) 157j5 

F(7r) =a j+xi, 
A+ Xi2)62 + Xi3 A +T3'Vj3 + Xi4J84 + Xt6186 +T (5.34) i6/Vj6 
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HereXi4represents the interaction 'age group x sex'; X, 5and Fi5 represents the interaction 'age 

group x full-time education' andXi6and Fj6 represents the interaction 'sex x full-time 

education'. The interaction 'age group x sex' was made up of one effect (84) as the 

proportional odds were assumed for the main effects. The interaction terms of 'sex' and 'full- 

time education' and 'age-group' and 'full-time education' did not assume proportional odds 

over the cut-points and therefore the regression coefficients for these were made up of two 

components: the constant slopes component and the left over component which varied by cut- 

point. 

The hypotheses H01: P4=0(for 'age group x sex') was set up to test the significance of the 

effect. Also H02: fl57--O and H03: Y25=Y35ýY45=0 (since Y15 -"': 0) was constructed for 'age group x 
full-time education' and the hypotheses H04:, 86=0 and H05: Y26ý__Y36=-Y46 =0 (since Y16 =0) were 

set up for 'sex x full-time education'. Note that for the above models Y13 was also set to zero. 
Initially the interaction 'age group x sex' was found to be significant. Then the interaction of 
4sex x full-time education' was found significant, allowing for the terms in model (5.32). The 

final model could be represented as (5.34). 

In model (5.34) 15 parameters were fitted (two were set to zero): f6urjajj parameters, one 

constant slope parameter for 'age group', one constant slope parameter for 'sex', one constant 

slope parameter for 'full-time education' with four cut-point specific parameters which 

accounted for the non-proportionality (with yff"': 0). There was also one interaction parameter 

for 'age group x sex', and five interaction parameters for 'sex x full-time education' (where 

one of these parameters was the constant component of the interaction and the other four were 

the ones that varied by cut-point and y16=0). 

The predicted log odds formation for this model took on the form as specified in Appendix 11 

(Table 11c). From this the design matrix could be derived to fit the model. 

(b) Estimation - parameter estimates and odds ratios 

The parameter estimates were obtained by solving the weighted least squares equations (as in 

Appendix 11). Consequently the odds ratios and their 95% confidence intervals were derived. 
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Ov) Constrained Partial Proportional Odds Model 

The constrained partial proportional odds model was not considered here,, as a simple suitable 
set of constrained that satisfied both the 'full-time education' main effect and the interaction 
term of 'sex x full-time education' could not be found. 

5.3.3.3 Adjacent Category Models 

The observed sample adjacent category logits were expressed as: 

In 
Pr(Y, 
Pr(Yj 

yl) 
and this was the adjacent logit for the response categories 'none'v. 

Y2) 
'slight' 

and was denoted as fil (p) 

-": Y2) In 
Pr(Y, ", this was the adjacent logit for the response categories 'slight'v. 'some' 
Pr(Yi = YO 

and was denoted as f, (p) ; 

In 
Pr(Yj 
Pr(Yj 

Y') 
, this was the adjacent logit for the response categories 'some'v. 

YO 

'appreciable' and was denoted as fj, (p) ; 

In 
Pr(Y, y4) 

, this was the adjacent logit for the response categories 'appreciable'v. 
Pr(Y, YO 

4 severe + v. severe' and was denoted as fi, 

The design matrix depended on the type of adjacent category logits fitted. 

(i) Constant slope Adiacent Cateeorv Mode 

(a) Model specification 

The assumption of a constant slope for each covariate over the cut-points was checked when 

fitting the constant slope adjacent category model. The test of constant slopes was similar to 

that described in section 5.3-3.2 (i) (a) and was based on 3-df for each term (fitting the 

different slope model). There was a requirement for the adjusting covariates 'age group" and 
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6 sex' to have constant slopes, whilst adding in 'full-time education'. This was not found to be 
the case, and it was found that homogeneity for the cut-point specific parameters existed for 
'full-time education', allowing for the different slopes for the adjusting covariates. As a result 
the adjusting covariates were 'forced' to have constant slopes and 'full-time education' 
continued to satisfy the model assumption. Therefore, all the covariates were assumed to have 

constant odds and the required design matrix was used (as for the proportional odds model). 

(b) Estimation - parameter estimates and odds ratios 

The parameter estimates were obtained using weighted least squares method and using these 
the odds ratios and their 95% confidence intervals were derived. 

(c) Interaction terms 

For the main effects model, the first-order interaction terms were constructed and then 
incorporated into the design matrix. The assumption of constant slopes in the main effects 

was carried through into the interaction terms. Each interaction term was tested for 

significance (HO: Interaction =0) using a contrast statement (and the test was based on I -df) 
and the Wald test statistic. 

(ii) Different slopes Adiacent Cateeorv Model 

(a) Model specification 

Different parameter estimates are required over the cut-points for each of the covariates for 

the different slopes adjacent category model. The form of the design matrix was based on the 

logits as specified in Table Ila (appendix 11) and the number of parameters fitted was as for 

the polytomous model. There were no model assumptions to satisfy, and therefore the model 

could be fitted without any prior statistical testing. Initially the main effects were fitted. Then 

each first-order interaction term was added into the model and assessed for significance (HO: 

Interaction =0). The test of each interaction term was based on 4-df, since the term was made 

up of four cut-points. 

(b) Estimation - parameter estimates and odds ratios 

Weighted least square parameters were obtained. The log odds ratios and their standard errors 

were derived using the appropriate contrast matrices in (A 16) and (A 17) in Appendix Il. 
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Interest was focused on the adjusted odds ratios and the 95% confidence intervals for 'full- 
time education' where less than 13 years education was compared with 13 or more years full- 

time education. 

5.3.3.4 Continuation Ratio Models 

The observed and predicted marginal probabilities and response function are derived in a 

similar way to the above. The observed sample continuation ratio logits were derived as: 

In 
Pr(Y, = yl) 

and this was the continuation ratio logit for the response categories 'none' 
Pr(Y, > yj ) 

v. ('slight', 'some', 'appreciable', 'severe+ v. severe') and was denoted as fil (p) ; 

In 
Pr(Y, Y2) 

and this was the continuation ratio logit for the response categories 'slight' 
Pr(Y, Y2) 

v. ('some', 'appreciable', 'severe+ v. severe') and was denoted as f, 2 (P) 

In 
Pr(Yj 
Pr(Y, 

Y, ) 
and this was the continuation ratio logit for the response categories 'some' 

> YO 

v. ('appreciable', 'severe+ v. severe') and was denoted as f3 (P) 

In 
Pr(Y, --": YO 

and this was the continuation ratio logit for the response categories 
Pr(Yj > YO 

'appreciable'v. 'severe+ v. severe' and was denoted as f4 (P) 

(i) Fullv constrained Continuation Ratio Model 

This was fitted in a very similar way to the constant slope adjacent category model. 

fli) Different slope Continuation Ratio Model 

Two different methods were used to fit the different slope continuation ratio model (i) the 

separate binary logistic regression models (ii) the unconstrained continuation ratio model. 
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(a) Model specification - fitting the separate bina! y logistic models 

Again separate binary logistic regression models were fitted to each cut-point based on the 

continuation ratio logits. Overall results from these models were summarised using multiple 
testing. Since four binary logistic regression models were fitted, the Type I error rate was 

a=0.05/4=0.0 1. 

(b) Interaction terms- fitting the separate binajy logistic models 

Each interaction term (for each binary logistic regression model) was fitted and the corrected 
Type I error rate was used for multiple testing when testing the significance of each term 

using the Wald test statistic. Significant interaction terms were included in the binary logistic 

model (test for each term was based on I -df). 

(c) Parameter estimates and odds ratios- fitting the separate binary logistic models 

The parameter estimates from each binary logistic regression model were obtained using the 

method of maximum likelihood. Again, from these parameter estimates the odds ratios and 

their 95% confidence intervals were derived. The results based on the odds ratios and their 

confidence intervals were amalgamated to give an overall result for the continuation ratio 

model. 

(d) Model specification - fitting unconstrained continuation ratio model 

The continuation ratio logits for the Townsend Disability Scale can be expressed as: 

fil (7r) = ln(7c, 1(7r2+7r3+7r4+7r5)); 

f, 
2 

(70 --"ý-ln(X21(7r3+7r4+7r5)); 

fi3 ()T) = ln(X3/(7Z74+7Z75)); 

f ln(9417r5), 
J4 

and these can be rewritten as: 

,, 
(; T) = ln(7ri) - 

ln(7r2+7r3+7r4+7r5); f 
ln(7r3+7r4+7r5); ln(7r2) 
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fi3 (/7) ln(7V3) 
- 

ln(7r4+7r5); 

fi4 (7r) ln(7r4) 
- 

ln(7r5), 

In matrix notation one can write: 

0 0 

0 

In ; T4 

n/ I -T3 

In ; T2 

In /T, 

ln(; T2 + ; T3 +/ 'T4 + ; T5 

In(; T3 + ; T4 + 'r5 

ln(; T4 + 'T5 

n(/ I -T5 

and in the form FOT) =K ln(A; T), the logit functions can be written as: 

0 0 

0 

0 0 1 0 

0 
; Tl 

/72 

; T3 

; T4 

5 

Thus this matrix formulation was expressed in the RESPONSE statement in SAS and 

permitted the computation of the continuation ratio logits. 

(e) Interaction terms - fitting unconstrained continuation ratio model 

Each I" order interaction term was constructed using the product of the main effects (as for 

the polytomous model). The test of each interaction term was based on the 4-df. This 

hypothesis was tested using the Wald test statistic. 
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(f) Estimation - Parameter estimates and the odds ratios - fitting unconstrained continuation 
ratio model 

The parameter estimates and their standard errors were obtained using weighted least squares. 
The odds ratios and their 95% confidence intervals were derived using these. 

fli) Partiallv constrained Continuation Ratio Model 

The need to fit this model did not arise as it was found that the fully constrained model was 
appropriate. 

5.3.3.5 Non-linear Stereotype Model (with unknown constants) 

(a) Model specification 

The Townsend disability ordinal score and the three main effects were used to fit the one- 
dimension stereotype model using mclest (Hendrickx, 2000) in SAS. The cut-points used for 

the stereotype model were as for the polytomous model. The I't order interaction terms were 

created using the cross product of the main effects. There were three I" order interaction 

terms to test: 'age group x sex', 'sex x full-time education' and 'age group x full-time 

education'. The usual method of comparing each Is' order interaction model with the main 

effect model could not be used, due to the fact that the -2log-likelihood did not necessarily 
follow a chi-squared distribution asymptotically. As a result bootstrapping was used. The null 
hypothesis was based on no differences in the compared models (i. e. the interaction term 

model was similar to the main effects model). The observed change in the -2log-likelihoods 
from the main effects model and each interaction tenn model was obtained. Then a 100 

bootstrap samples were used to fit each interaction term and the main effects models. The 100 

change values from the -2log-likelihoods of each interaction model and the main effects 

model formed a distribution. The ASL formed a test of rejecting or accepting the null 

hypothesis. Thus the proportion #(change value in distribution > observed change value)/I 00 

was computed. In the case of a small ASP, the null hypothesis was rejected and the 

interaction model was the preferred model. 
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Dimensionali! y 

The aspect of dimensionality - as for the previous dataset - was examining using the 
individual unadjusted covariate and the response variable. For a two-dimensional stereotype 

model one needed to address the question - do different discriminators vary between the 

response categories (i. e. was there a discriminator for response categories say, I and 2 and 

another discriminator for response categories 2 and 3,3 and 4 and 4 and 5, say)? From the 

data, for the 'sex' covariate the chance of 'none' or 'some' disability was higher for males 

than females. Females were more likely to have 'some', 'appreciable' or 'severe+ v. severe' 
forms of disability. The number of respondents in the 'none' disability group was higher for 

those among the younger age groups and as age increased the chance of having a greater form 

of disability increased too. Respondents with 13 or more years of full-time education were 
likely to have no disability and those with less education (< 13 years) were more likely to 

have a greater form of disability (i. e. have 'some', 'appreciable' or 'severe+ v. severe'). 

There was an indication that all three covariates appeared to behave similarly over the 

response categories. As a result the need to fit a two-dimensional model did not arise. 

Indistinguishability 

There was no indication of indistinguishability when assessing the ordering parameters using 

the one-dimension stereotype model. Therefore this aspect of the stereotype model was not 

considered further. 

(b) Estimation - parameter estimates and the odds ratios 

Bootstrapping was carried out on a hundred samples (drawn with replacement) to obtain the 

corrected standard errors for the parameters and the log odds ratios. Again, bootstrapping 

was used to obtain the point estimate of log odds ratios, OjPktogether with the corresponding 

standard errors. The odds ratio and their 95% confidence intervals were obtained from these 

(c) Comparison of the Stereojype Model with the Polylomous Model for both datasets 

The change in the -2log-likelihoods for the polytomous model and the stereotype model 

provided a way of establishing whether a model with constraints was as good a fit as a model 

with no constraints imposed on a set of covariates. The null hypothesis was based on no 

difference in the two models. The observed change in the -2log-likelihood of the polytomous 

and the stereotype models was computed. Then a 100 bootstrap samples were taken and each 
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sample was used to fit the stereotype and the polytomous model, with the change in the - 
2log-likelihood being derived using the two models. The 100 change values formed a 
distribution. The null hypothesis was rejected if the ASL was small. 

5.3.3.6 Linear Stereotype Model (with known constraints) 

(a) Model specification 

The{0j) parameters were taken as constants cj, from the non-linear version of the stereotype 

model and a linear model was fitted. For this model fl, was the regression coefficient for 

6sex5,82was the regression coefficient for 'age group', 83was the regression coefficient for 

'full-time education' to be estimated. The interaction of 'age group x sex' was found to be 

significant. Thus)64was the regression coefficient for the interaction of 'age group x sex'. 

Using this model specification, the design matrix was derived and the model fitted using the 

method of maximum likelihood. The parameter estimates and the predicted 

logits/probabilities were obtained and subsequently used for assessing the goodness-of-fit of 

the stereotype model. 

5.4 Issues addressed in this chapte 

The issues highlighted at the beginning of this chapter have been addressed. In brief, these 

include: 

fitting several covariates: This is straightforward when fitting ordinal regression 

models with different slopes. Care has to be taken particular for models where the 

assumptions need to be satisfied. 

Fitting interaction terms: For all the ordinal regression models, the interaction 

terms were constructed using the product of the main effects. For the constant 

slope model, the assumptions were carried across to the interaction terms. 

Fitting Partial Proportional Odds Model: The method based on first principles 

described in this chapter for fitting ordinal regression models (i. e. using the 
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observed probabilities, response functions and specified design matrix) was used 
to fit the partial proportional odds model. 

(iv) Unconstrained Continuation Ratio Model: Again, using the method describe in 

this chapter, it was relatively straightforward to fit this model. This method did 

not require re-arranging the data (as for the method given be Cole and Ananth 

(2001)). 

(v) The Linear Stereotype Model: The linear version of the stereotype model could 
be fitted and statistical inference which is not possible on the non-linear version 
be carried out. 

Townsend Disqbili4y Scale: An ordinal analysis using the Townsend disability 

score was carried out. A comparison of the results from this analysis and that 

provided by the binary logistic regression model (similar to the one in the 

publication (MRC CFAS' (1998))) could be carried out. 
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CHAPTER 6- MODEL CHECKING 

6.1 Aims of this ChaiDter 

The objectives of this chapter are to: 

assess the overall goodness-of-fit of the model to the data; 

apply residual analysis (if necessary); 
(iii) compare different ordinal regression models. 

After reviewing the literature, the issues that appear problematic or are not addressed with 
regards to model checking included: 

(a) the residual analysis ofpoorly-fitted observations : This is little explored in 

the context of ordinal regression models. No statistical methods exist to 

examine the individual residuals. However, the cell probabilities/frequencies 

are usually assessed visually (as stated in section 3.6.2). 

(b) The goodness-oLlfit of the stereotEWe model: The non-linear stereotype model 

cannot be checked for goodness-of-fit. 

(c) Model assumptions of the ad a ory model: No method is cited to acent categ- 

check the homogeneity of the different slopes adjacent category model. 

These issues are addressed in this chapter. The format of this chapter is as follows: in section 
6.2 and 6.3 the overall goodness-of-fit and residual analysis (where necessary) of each 

regression model fitted to the Health Status data and the Townsend Disability Scale data 

respectively is illustrated. Section 6.4 illustrates how different models (nested and otherwise) 

are compared. Section 6.5 ends this chapter by highlighting how the above issues have been 

dealt with. 
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6.2 Health Status data 

6.2.1 Linear Retiression Model 

(a) Overall goodness-of-fit to the data 

The techniques to assess the overall fit of the model to the observed data and assess the 
individual observations are well established for the linear regression models. Here, the fit of 
the model, or equivalently, how well the model predicts the dependent variable is examined in 

two ways: - 

by considering the proportion of the total sum of squares that can be explained by 

the regression (R 2) 
. The quantity R is the multiple correlation coefficient and R2 

(sums of squares obtained by regress ion/total sums of squares) is not a measure of 
the goodness-of-fit of the model, but does give a crude assessment of the overall 
fit of the model. This statistic ranges from 0 to I and generally the larger the 

statistic the better the model fit. 

2. By assessing the Normal plot - whereby the residuals against the stanclardised 

normal deviate (normal quantiles) are plotted. 

(b) Residual Analysis of individual observations 

Due to the limited number of response values and sub-populations, the usual residual plots, 

namely plots for each covariate and the response against the residuals were not viable. Instead 

residuals based on the observed and expected response values for the individual observations 

were obtained. Also, the Nonnal plot of the residuals was provided and used to isolate outliers 

and influential observations. 

6.2.2 Binary Logistic Regression Models 

(a) Overall goodness-of-fit to the data 

The individual binary logistic regression models were fitted using the method of maximum 

likelihood estimation. The overall goodness-of-fit of each of the models to the data was based 

on the Likelihood Ratio (L. R. ) chi-squared statistic given in section 3.30. 
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(b) Residual Analysis of the individual observations 

The residuals based on individual observations for each binary model was assessed using the 
regression diagnostics listed in section 3.6.2. The following was examined: - 

(i) the fit of each observation, by calculating the individual components of the 
individual components of the Deviance statistic (given in (3.3 1)); 

(ii) the measure of influence that was based on the change in deviance goodness-of- 
fit statistic when an observation was deleted. 

6.2.3 Ordinal Rellression Models 

(a) Overall goodness-of-fit to the data using the Likelihood Ratio Test statistic 

The overall goodness-of-fit to the data was assessed using the Likelihood Ratio test statistic 
(given in section 3.30) for the following models: 

0 Polytomous Model; 

0 Different slopes Continuation Ratio Model (using separate binary logistic 

models); 

0 Linear Stereotype Model. 

The cut-points of the different slopes continuation ratio model were used to fit separate binary 

logistic regression models. The adjusted Type I error rate (a=0.05/3=0.02) was used when 

assessing the goodness-of-fit of each binary logistic model. 

(b) Overall goodness-of-fit to the data using the Wald goodness-of-fit test statistic 

The overall goodness-of-fit to the data was assessed using the Wald goodness-of-fit test 

statistic (Q,,, ) for the following models: 

Proportional Odds Model; 

Unconstrained Partial Proportional Odds Models; 

Constrained Partial Proportional Odds Models; 
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Adjacent Category Models (different slopes and constant slope); 
Fully constrained and unconstrained Continuation Ratio Model. 

The Wald goodness-of-fit test statistic is based on the observed and fitted logits and is given 
in (A 12) in Appendix 11. It is distributed as chi-squared for moderately large sample sizes (for 
instance when ni, ý! 25), and its degrees of freedom are equal to the difference between the 
number of rows of F(p) (or logits) and the number of parameters. 

(b) Residual Analysis 

The individual residuals were assessed for models where the goodness-of-fit was inadequate. 
For the Health Status data it was found that models that provided statistically significant 

goodness-of-fit statistics (indicating lack-of-fit) were: 

Proportional Odds; 

Constant Odds Continuation Ratio Model; 

Constant Odds Adjacent Category; 

(iv) Linear Stereotype Model. 

Models (i), (ii) and (iii) assumed a constant slope over the cut-points and there was evidence 

of a violation of this model assumption. These models were compared with the different 

slopes models and there was suggestion that the lack-of-fit was due to the constant slope 

assumption. As these models could not be used to summarise the results, the need to assess 

the residuals did not arise. 

The assessment of the residuals was only carried out for the stereotype ordinal regression 

model. 

The assessment of the goodness-of-f it of the stereotype model (where the constraints are not 

known) was not possible. This was because the facility to obtain the predicted cell 

probabilities is not available in the macros that compute this model (as devised by Hendrickx, 

(2000)). Also, no facility is available to obtain the predicted logit functions. However, the 

linear version of the stereotype model (as describe in section 5.2.3.6) provided a means of 

checking the fit of the model. 
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The cut-points of the stereotype model could not be used to fit the separate binary logistic 

regression models for checking poor fit, in the same way as was done for the polytomous 
model (in Begg and Grey (1984)). This was because the logits of the stereotype model are not 
the same as those of binary models due to the conditional parameters. In the light of this, the 
analysis of the residuals was based on the visual assessment of-- 

I. residuals from the individual logits (observed and predicted); 
2. residuals from the individual cell probabilities (observed and predicted). 

The observed and predicted cell probabilities were directly obtained from the SAS output and 
therefore a formulation to compute these was not required. 

6.3 Townsend Disabilitv Scale data 

6.3.1 Linear Reivession Model 

The methods used to assess the model checking and residual analysis were the same as those 

stated for the Health Status data. 

6.3.2 Binary Logistic Regression Model 

(a) Overall goodness-of-fit to the data 

Some of the cell frequencies had sparse data for the Townsend disability score. The overall 

goodness-of-fit was therefore tested using the Hosmer-Lemeshow statistic. 

(b) Residual Analysis of the individual observations 

The usual regression diagnostics for the binary logistic regression models (as detailed for the 

Health Status data) were computed to assess the fit of the individual observations. 
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6.3.3 Ordinal Regression Models 

The overall goodness-of-f it statistics were provided for all models. However, the residual 
analysis was only carried out if the goodness-of-fit statistic indicated a poor-fit model. 
Furthermore, for the constant slope models, provided the model assumptions were satisfied, 
but the goodness-of-fit statistic indicated an inadequate fit, the residuals were assessed. 

6.3.3.1 Polvtomous Regression Models 

(a) The overall goodness-of-fit to the data 

The overall fit of the polytomous model was again assessed using the Likelihood Ratio test 

statistic. 

(b) Residual Analysis of the individual observations 

The cut-points specified for the polytomous model were made, separating the data into three 

binary groups. The reason for this is as given by Begg and Gray (1984), who suggest that the 

fit of the polytomous model can be examined more closely by using regression diagnostics 

devised for binary logistic regression models (see section 3.6.2). For instance, for an outcome 

variable with four categories, the fit of the three binary logistics regression models are 

examined separately and then the results integrated, in a descriptive manner, to make a 

statement about the fit of the polytomous model. 

For our model the following was carried out :- 

I. three individual binary logistic regression models were fitted and the 

parameters from these models compared to those of the polytomous model. 

As stated in section 3.6.2, Begg and Gray (1984) showed that the estimates of 

the logistic regression coefficients are usually close to those obtained using 

the polytomous model and the loss of efficiency is not too great. 

2. Each separate binary logistic model was checked for an overall goodness-of- 

fit using the Hosmer-Lemeshow method (as there was an ordinal covarlate - 

age-group and some of the cell frequencies were < 5). Begg and Gray (1984) 

did not use multiple testing techniques (i. e. a corrected Type I error rate using 
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the Bonferroni correction was 0.01 (a=0.05/4)). However, in order to 
integrate the results of the fit of all three binary logistic regression models to 
the overall polytomous model, it was considered essential to use the corrected 
Type I error rate. 

3. Where the fit of a binary logistic model was inadequate, the residuals from 

the individual observations were assessed to explore for outliers or influential 

observations using the residual diagnostics statistics. 

The need to assess the cell probabilities (and logits) of the polytomous model were not 
considered essential here, as the models based on the binary cut-points provided a reasonable 
way of assessing the fit and the residuals. 

6.3.3.2 Partial Proportional Odds Models 

(a) Overall goodness-of-fit to the data 

The overall fit of the unconstrained partial proportional odds model to the observed data was 

assessed using: 

I. the Q,, ý--goodness-of-fit statistic which was based on the logits (observed and 

expected); 
2. the goodness-of-fit statistic as devised by Lipsitz (1996). The need for the use 

of this statistic arose due to the presence of the low cell frequencies. This 

statistic is a generalisation of the Hosmer-Lemeshow statistic and is 

computed when presented with an ordinal outcome (see Appendix 111, section 

I for details on computing the statistic). 

(b) Residual Analysis of the individual observations 

In order to identify the outliers and influential subjects - 

I. the individual observed and fitted logit functions were computed and the 

residuals assessed visually; 

2. the individual observed and predicted cell probabilities were computed and 

the residuals obtained and examined visually. 
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The expected/predicted cell probabilities (I^r, ) were not available in SAS, so they had to be 
computed using the logit functions. 
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6.3.3.3 Constant slope Adiacent Catcaorv Models 

(a) Overall goodness-of-fit to the data 

Although the statistic proposed by Lipsitz (1996) was the correct method to assess the overall 

goodness-of-fit of the constant slopes adjacent category model, this statistic was difficult to 

compute. Therefore the overall goodness-of-fit was examined using the Q"-statistic that was 
based on the observed and expected logits. 

(b) Residual Analysis of the individual observations 

The separate binary logit models could not be fitted given the constant slopes adjacent 

category model. The residuals based on the following were visually assessed: 

the observed and expected logits; 

2. the observed and expected cell frequencies. 
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The predicted cell probabilities for this model were obtained from the logits functions. Thus 
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6.3.3.4 Different slopes Adjacent Cateaorv Model 

(a) Overall goodness-of-fit to the data 

The overall fit of the different slopes adjacent category model was checked using the Q,, - 
goodness-of-fit statistic. 

(b) Residual Analysis of individual observations 

Separate binary logistic regression models were fitted using the cut-points of the separate 

slopes adjacent category model. Assessing the residuals: 

I. the parameters of the separate binary logistic models were compared to those 

of the different slopes adjacent category model for similarity. 

2. Regression diagnostics were used to identify the poorly fitted or influential 

observations. 
3. The results of the binary analyses were integrated to give an overall result of 

the different slopes adjacent category model. 
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6.3.3.5 Fullv constrained Continuation Ratio Model 

(a) Overall goodness-of-fit to the data 

The overall goodness-of-fit of this model was assessed in the same was as for the constant 
slope adjacent category model. 

(b) Residual Analysis of the individual observations 

The separate binary logit models could not be fitted (as for the constant slopes adjacent 

category model). The individual observations were assessed using: 

1. the observed and expected logits; 

2. the observed and expected cell frequencies. 

The estimated cell probabilities were obtained from thee predicted response functions. 
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6.3.3.6 Different slopes Continuation Ratio Models 

(a) Overall goodness-of-fit to the data 

Separate binary logistic regression models were fitted using the four cut-points based on the 

continuation ratio logits and the results integrated to give an overall conclusion of the fit of 
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the different slopes continuation ratio model. The fit of each model was assessed using the 
Hosmer-Lemeshow test. The adjustment of the Type I error rate (a=0.05/4=0.01) was made 
for multiple testing. 

The fit of unconstrained continuation ratio model was assessed using the Wald residual (Q,,, ) 

test statistic. 

(b) Residual Analysis of the individual observations 

The residual analysis for the different slopes continuation ratio model were examined by 

fitting separate binary models to the cut-points and then applying the usual regression 
diagnostics. Thus for both sets of models (i. e. binary logistics and unconstrained models) the 

same residual analysis was used. 

6.3.3.7 Stereotvpe Model 

(a) Overall goodness-of-fit to the data 

The overall goodness-of-fit was checked using the Likelihood Ratio test statistic. 

(b) Residual Analysis of the individual observations 

The residuals for the individual observations were examined visually using: - 

3. the observed and fitted logit functions; 

4. the individual observed and predicted cell probabilities (as provided by the 

SAS output). 
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6.4 Comparison of Ordinal Regression Models 

Nested Models 

The following models were nested: 

the proportional odds, unconstrained partial proportional odds and the 
constrained partial proportional odds models; 

ii. the fully constrained and different slopes continuation ratio models; 
iii. constant slopes and different slopes adjacent category models 

The comparison of the cumulative models in (i) has already been discussed in section 
5.2.3.2 (v). Testing the homogeneity in the cut-point specific regression parameters (given a 
covariate) provided a test of constant slope in the different slopes adjacent category model. 
This was used to decide whether a constant slopes model was significantly better than a 
different slopes one. The constant slope assumption for the fully constrained continuation 
ratio model was checked using the score test (as for the proportional odds model). However, 

the method used for comparing the adjacent category models could easily be adapted for the 

continuation ratio models. 

Note that although the stereotype model is nested in the polytomous model, given a single 

covariate, this does not remain the case as covariates increase in the model. The dependency 

of the parameters in the non-linear stereotype model does not allow this model to be nested in 

the polytomous given more than one covariate model. 

Different Ordinal Regression Models 

The Akaike Information Criteria (AIC) was used to compare different models from the same 

data and is defined as AIC = -2LogL+2p, where p is the number of parameters. This criterion 

adjusted the -2log-likelihood statistics for the number of parameters in the model. The criteria 

could not be computed for all the models: for the partial proportional odds models, 

continuation ratio and adjacent category models where the weighted least squares estimation 

was used, it was not possible to obtain a value for this statistics (as the log-likelihood is not 

provided). Although the proportional odds model had been fitted using weighted least squares 

method, it is possible to fit this model in PROC LOGISTIC that uses the method of maximum 

likelihood. Thus, the AIC was computed using both dataset for the polytomous, proportional 

odds and the stereotype models. 
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6.5 Issues addressed in this Chapter 

Issues that are under-researched with regards to the model checking/residual analysis of 

ordinal regression models have been listed at the beginning of this chapter. Statistically 

methods used to assess these issues were outlined through the chapter. In particular it should 

be noted: 

(a) the residuals of the logits, in addition to the cell probabilities were used to visually 

assess the individual observations. 
(b) The linear version of the stereotype model was used to examine the goodness-of-fit of 

the non-linear version. In doing this, the estimates of the Oj parameters are taken as 

constants and this imposes a limitation in that we are only assessing a single Oj as 

opposed to a range of them. 

(c) The binary analysis for the different slopes continuation ratio model was adjusted for 

multiple testing to allow an overall conclusion to be drawn for the latter ordinal 

regression model. 

(d) The method for checking the homogeneity in the different slopes adjacent category 

was similar to that used for checking the proportional odds in the different slopes 

cumulative logit model. 
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CHAPTER 7- RESULTS AND FINDINGS 

7.1 Aims of this Chapter 

The primary aim of this chapter is to illustrate the results from the analyses of the two 
datasets. 

The results will be presented in six sections: 

Section 7.2 - Statistical modelling; 
Section 7.3 - Calculation of the Asymptotic Relative Precision; 

Section 7.4 - Interpretation of the results; 
Section 7.5 - Comparison of the models; 
Section 7.6 - 'Best-fit' models for the two datasets; 

Section 7.7 - Summary. 

At the end of each section (7.2,7.3,7.4 and 7.5) the findings are summarised. 

7.2 Statistical modelling 

Here the results of the statistical modelling are given. Two different strategies were chosen to 

include the terms in the models. 

(i) The Health Status data: Both main effect terms were considered equally important, as 

one of the objectives was to assess the effect of 'smoke' when fitting/not fitting 'heart 

attack'. The model assumptions (e. g. the proportional odds, constant slope for the 

adjacent category/continuation ratio) had to be satisfied by both covariates. 

(ii) The Townsend Disability Scale data: Attention was given to 'full-time education', as 

this was the main variable of interest. The model assumptions therefore had to be 

satisfied by this covariate even though this was not necessarily the case for the 

adjusting ones (these were 'forced' to satisfy the assumptions). 
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This section is sub-divided into the following: 

0 the chosen models; 

0 goodness-of-fit; 

a residual analysis. 

7.2.1 Health Status data 

There were 12535 subjects who had non-missing health status response and covariate 

assessments. 

7.2.1.1 The chosen models 

For all the regression models (with the exception of the binary logistic regressions and the 

binary logistic regressions based on the continuation ratio cut-points), the main effects models 

with 'smoke' and 'heart attack' was considered to be the more efficient models, as the 

interaction terms were statistically non-significant (see Appendix III: section 2). In addition to 

this, the following points are highlighted: 

(a) Bingy logistic regression models 

For the binary logistic analysis, three models were fitted (as detailed in section 5.2-2). It was 

found that different models provided a good fit to different cut-points. The main effects model 

was adequate in terms of fit for the 2 nd and 3 rd cut-points: (fair', 'poor') v. ('excellent', 

'good') and 'poor' v. (4 excellent', 'good', 'fair'). However, for the model based on the I` 

cut-point (('good', 'fair', 'poor') versus 'excellent') the I st order interaction term had to be 

fitted (since this term was significant in the model: X12 = 4.72 with p =0.03) and so the model 

was saturated. The main effects model for this cut-point was also fitted to compare the results. 

It was evident from this that, different cut-point specific binary logistic regression models 

summarised the ordinal data in different ways (with some models having significant 

interaction terms and others not). 
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Table 7.1: Assumption of constant SlO_De tested_for each ordinal rezression model 

Model Variable Assumption 

(globallor 

covariate specýflic) 

-j-- -test 

statistic 

Degrees 

Of 
freedom 

p-value 

Proportional Global assumption 16.21 4 0.003 

odds smoke 15.51 2 0.0004 
Heart attack 0.58 2 0.74* 

Adjacent smoke 11.32 2 0.004 
Category Heart attack 11.22 2 0.004 
Continuation Global assumption 70.30 4 <0.0001 

ratio smoke 5.98 2 0.05 

Heart attack 64.46 2 <0.0001 
I-ObUllIPLIUll Ul WIISUtIlL L)UUS UIU nOE nOICI 

(b) Proportional odds model 

Table 7.1 illustrates the results from testing the assumption of constant odds. The global score 
test statistic suggested that the constant slope assumption could not be assumed for both 

covariates (there are 4 df as an overall test was provided with the two parameters across the 

(3 -1) logits). The proportional odds assumption was tested further using (5.9) and (5.10). It 

was found that the assumption did not hold for 'smoke' but there were proportional odds for 

'heart attack'. As a result the unconstrained and constrained partial proportional odds models 

were fitted with the assumption of constant odds for 'heart attack' and non-proportionality for 

4 smoke'. The proportional odds model was not used to summarise the results although the 

parameters estimates and odds ratios were obtained for comparison with the partial 

proportional odds models. 

(c) Adjacent Categoly models 

From Table 7.1 it is evident that the constant slope assumption did not hold for both 

covariates. The method of testing the constant slope assumption is given in section 5.2.3.3 (i) 

(b). This model was not used to summarise the results. However, the parameter estimates and 

odds ratios were obtained so as that comparison could be made with the different slopes 

adjacent category model. 
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(d) Continuation Ratio models 

The score test provided evidence of a violation of the parallel slopes assumption over the cut- 
points for both covariates (see Table 7.1). There was borderline evidence of a constant slope 
over the cut-points when 'smoke' was fitted on its own and there was evidence that a constant 

slope could not be assumed for 'heart attack'. The fully constrained model was not considered 
for summarising the results although the parameters and odds ratios were obtained. Instead 

attention was focused on the continuation ratio model based the different cut-points (as 

detailed in section 5.2.3.4 (ii)). 

The binary logistic regression analysis based on the continuation ratio cut-points were similar 

to the above models in (a), in that models based on cut-points 2 and 3, i. e. 'fair' v. 
('excellent', 'good') and 'poor' v. ('excellent', 'good', 'fair') had non-significant interaction 

terms (adjusting for multiple testing, using the corrected Type I error rate of 0.02) and the 

remaining cut-point specific model was saturated. However, as the results from these three 

binary logistic models had to be amalgamated and used to provide the overall results for the 

continuation ratio model, they all had to be consistent in the number of parameters fitted. 

Therefore these models had to be based either on main effects (with one model providing lack 

of fit but model parsimony present) or they all had to be saturated models (with two of the 

models fitted with redundant parameters resulting in no model parsimony but goodness-of-fit 

achieved). In the end, the decision was to go with the saturated models. 

Following these models, the unconstrained continuation ratio model was fitted (using the 

method described in section 5.2.3.4 (ii) d) and the overall interaction term was not significant 
(X 2 

3=6.72 with p=0.08). This raised questions regarding the fit of continuation ratio model 

using the separate binary logistic models. Although in theory the continuation ratio model can 

be separated into different binary regressions, in practice, there is a chance of spuriously 

significant effects emerging (despite the application of multiple testing). Also there is the 

issue of fitting effects into the binary logistic models that do not really need to be fitted for 

consistency of parameters. This highlights the advantage of fitting the unconstrained 

continuation ratio model and emphasises the need to fit this model using a simpler way 

method as was done in this thesis (rather than using the ad hoc method of Cole and Ananth 

(2001)). 

After observing the odds ratios of the unconstrained continuation ratio model, the partially 

constrained model was considered (details are given in section 5.2.3.4 (iii)). 

163 



(e) Stereotype Model 

The linear stereotype model was compared to the conditional logistic version. As expected, 

the -2log-likelihoods for these models were the same confirming that the same models ývere 

being fitted (see sections 5.2.3.5 and 5.2.3.6 for methods used to fit the models). The(flk) 

regression coefficients were also similar for both models. The parameters 2fil and 2fl2 from 

the linear stereotype model (in Table 7.6) are approximately equal to the parameters A andfi2 

from the non-linear stereotype model (using mclest). The variation in the estimates and their 

standard error is as a result of the different methods used (one uses PROC CATMOD the 

other uses PROC PHREG). This provided one with the evidence that the linear version of the 

stereotype model was an adequate method for testing the goodness-of-fit of the non-linear 

version. 

The following models were used to summarise the results for the Health Status data: 

Linear Regression Model; 

Binary Logistic Regression Models (with main effects/interaction terms); 

Polytomous Model (with main effects); 

Unconstrained Partial Proportional odds Model (with main effects); 

Constrained Partial Proportional Odds Model (with main effects); 

Different slopes Adjacent Category Model (with main effects); 

Binary Logistic regression models based on the continuation ratio cut-points (with 

interaction terms); 

Unconstrained/Partially constrained Continuation Ratio Model (main effects); 

Stereotype Model (with main effects). 

7.2.1.2 Goodness-o -i 

The goodness-of-fit statistics for the regression models fitted to the data are illustrated in 

Table 7.2. 

(a) Binajy Logistic Regression Models 

The main effects binary logistic regression model based on the V cut-point was the only 

model that provided an inadequate fit as the interaction term for this model was significant (as 
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specified above and also see Appendix III: section 2). The statistical significance of this latter 

term were borderline and there is a possibility that this finding may be a spurious, particularly 

since three separate binary models were fitted to the data. 

(b) Linear and Ordinal Regression Models 

In addition to the linear regression model, the models that provided inadequate fit to the data 

were the ones where the cut-point specific regression parameters had certain restrictions 
imposed on them. The model assumptions for the proportional odds, constant slope adjacent 

category and constant slope continuation ratio models were violated. It was expected that the 

goodness-of-fit would be inadequate for these models and this was found to be the case (see 

Table 7.2). Therefore these latter models were not used to summarise the results and there 

was no need to assess the goodness-of-fit further. 

Note that the main effects unconstrained continuation ratio model provided a good fit, further 

emphasizing that the use of binary logistic models to summarise the continuation ratio logits 

should be considered with caution. Also, constraining some parameters to be equal (in the 

partially constrained continuation ratio model) retained the goodness-of-fit. Since the binary 

logistic regression models for the continuation ratio logits were saturated, there was no 

residual variation and the fit was prefect. 
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Table 7.2. - Goodness-oý-fit of the main e ects r! ýg ression models fitted using the Health 
Status data 

Model Goodness- Test d-f. (no. of p-value 
of-fit statistic logits - no. of 
statistic value parameters) 

Linear R 2f 0.03 - - 
Binary Logistic (main effects) 

Modelfor cut-point I L. R. Xý 4.41 1 0.04 
Modelfor cut-point 2 L. R. Xý 0.16 1 0.69 
Modelfor cut-point 3 L. R. 0.00 1 0.96 

Polytomous L. R. 6.38 3 0.09 

Proportional odds Wald-Qw 22.76 7 0.002 

Unconstrained partial Wald-Q, 7.14 5 0.20 

proportional odds 
Constrainedpartial Wald-Q, 7.14 6 0.31 

proportional odds 
Adjacent Category Wald-Q, 29.35 7 0.0001 

(constant slope) 
Adjacent Category Wald-Q, 6.68 3 0.08 

(different slopes) 
Continuation Ratio (fully Wald-Qw 32.42 7 <0.000 I 

constrained) 
Continuation Ratio Wald-Q, 6.72 3 0.08 

(unconstrained) 

Partially constrained Wald-Qw 6.95 5 0.22 

Continuation Ratio 

Linear stereotype model L. R. 20.27 7 0.005 

T-R2 gives a crude assessment of the fit of the model and is not a goodness-of-fit statistic 

models indicate lack-of-fit 

For the binary logistic regression models Model I is based on the cut-point ('good', 'fair', 'poor') v. 'excellent'l Model 2 is 

based on the cut-point (fair', 'poor') v. ('excellent', 'good'); Model 3 is based on the cut-point 'poor' v. ('excellent', 'good, 

'fa i r'). 
The binary models based on the different slopes continuation ratio model were saturated. 
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7.2.1.3 Residual analvsis 

a) Linear Repression model 

On visual inspection of the residuals, no outliers from the observed and predicted response 

values were found although the residuals for the 'poor' category for the non-smokers 

appeared to be relatively large. The Normal plot - Plot 111a (in Appendix 111) of the residuals 
failed to identify any outliers/influential observations. This plot is not reliable as the points 

are in clusters, due to the nature of the data and therefore it is not sensitive enough to 

highlight the observations that have large residuals and may possibly be outliers. 

(b) Ordinal Regression Models 

Residual analysis was only computed for the stereotype model. 

The residuals of the observed and predicted cell probabilities and response functions for the 

stereotype model were visually assessed. Generally the residuals from the cell probabilities 

provided little information regarding outliers or influential observations. Large residuals were 

apparent for all the logits, for those who had suffered from a heart attack, regardless of 

whether they smoked or not. 

For the binary and stereotype models, there was no one group of subjects that provided poor 

fit. However, I must emphasise that the inspection of the residuals from the logits for the 

stereotype model was purely visual. 
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7.2.2 Townsend Disabilitv Scale data 

There were 12434 subjects with complete observations on the Townsend disability score and 
the three covariates. 

7.2.2.1 The chosen models 

The forward selection procedure was used to include terms in the model and details of this are 
given in Appendix III (section 2). 

The main effects ('sex', 'age-group' and 'full-time education') model was the best-fit model 
for the binary analysis (fitted using the method given in the MCR CFAS I (1998) study), the 
constant slope adjacent category model and the constant slope continuation ratio model. For 
the linear regression and remaining ordinal regression models (with the exception of the 
unconstrained partial proportional odds model), the main effects model with the interaction of 
4age group x sex' was the chosen model. The unconstrained partial proportional odds model 
had the interaction of 'sex x full-time education' in addition to the interaction of 'age group x 
sex'. The assumptions for these terms in this model are as stated in 5.3.3.2 (iii). 

In addition to the above, the following were noted 

(a) Different slopes ordinal regression models 

For the different slopes models, each covariate was fitted separately and its significance 

assessed in the model. No assumptions were required to be satisfied. For these models, 'age 

group', 'sex' and 'full-time education' were found to be significant when fitted singularly. As 

a result initially, the two adjusting covariates were included in the model and then 'full-time 

education' was added and its effect examined. 

(b) Binaly Logistic Regression Model 

The unadjusted and adjusted effects fitted were corrected for over-dispersion (details of the 

method used for the model fitting are given in 5.3.2). 
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(c) Proportional Odds Model 

The different slopes cumulative logit model as specified in section 5.3.3.2 (i) was used to 
determine the proportionality of the covariates. For this model there was evidence of 
proportional odds for the adjusting covariates when fitted singularly. Allowing for these in the 

(X 2 model, 'full-time education' had borderline non-proportional odds ý3= 8.46 with p =0.04). 
The worst scenario was taken and it was assumed that the assumption did not hold for the 
covariate of interest. Therefore the results using the proportional odds model were not 
summarised (although the parameter estimates and odds ratios were obtained for comparison 
with the partial proportional odd models). 

(d) Constant slope Adjacent CategoKy Model 

Of the three covariates fitted singularly, only 'full-time education' demonstrated any evidence 

of a constant slope. When the adjusting covariates where fitted together (i. e. 'age group' + 
'sex'), there was still evidence of heterogeneity in the cut-point parameters (Test of 

22 
X homogeneity: 'sex': X3 9.47 with p =0.02 and 'age group': ý3= 32.94 with p <0.00 1). 'Full- 

time education' was added into the model, allowing for the adjusting covariates, and the 

covariate of interest continued to demonstrate homogeneity. Thus, for this model, the 

adjusting covariates were 'forced' to have a constant slope over the cut-points. The 'full-time 

education' covariate continued to have homogeneity in the parameter estimates (test for 

homogeneity for 'full-time education' allowing for constant slopes for the adjusting 

covariates: X. 3 2=4.3 3 with p =0.23). Thus the constant slope adjacent category model was 

considered, with the assumption of homogeneity in the parameter for all of the three 

covariates. 

(e) Fully constrained Continuation Ratio Model 

Each covariate was initially fitted singularly and there was evidence that 'age group' and 

'sex' violated the constant slope assumption ('age group': X3 2= 156.61 withp<0.0001; 'sex: 

X3 
2 
=93.92 with p<0.000 1) whilst 'full-time education' was found to satisfy the assumption 

(X 2 
ý3 =2.88 with p -=0.41). The adjusting covariates were constrained to have constant odds and 

'full-time education' continued to have homogeneity in its cut-point specific parameters 

(X 2 
ý3 ==3.23 with p=: 0.3 8). As a result the fully constrained model was fitted 

In addition to this model the different slopes continuation ratio models were fitted so as to 

compare results for the different methods. 
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(f) Different slopes Continuation Ratio Model 

For the continuation ratio model where separate binary logistic regression models were fitted 
(as detailed in section 5.3.3.4 (ii)), multiple testing was used to correct the Type I error rate 
(corrected a =0.05/4=0.0 1 (since there were four logistic regressions fitted)). As for the binary 
logistic regressions, the unconstrained continuation ratio model was fitted with the main 
effects and the interaction of 'age group x sex'. 

Stereotype Model 

The -2log-likelihood values of the linear version and conditional logistic regression model 

used to fit the non-linear version were found to be the same, confirming that the same model 

was being fitted (details of the method are described in section 5.3.3.5 and 5.3.3.6). 

The following models were used to summarise the Total Disability Scale data: 

0 Linear Regression (with interaction 'age group x sex'); 

0 Binary logistic (main effects); 

e Different slopes ordinal regression models 

- Polytomous (with interaction 'age group x sex'); 

- Adjacent Category (with interaction 'age group x sex'); 

- Unconstrained Continuation Ratio (with interaction 'age group x sex'); 

Binary logistic models based on the continuation ratio (logits with 

interaction 'age group x sex'); 

Linear Stereotype (with interaction 'age group x sex'); 

0 Constant slope ordinal regression models 

Constant slope Adjacent Category model (main effects); 

Fully constrained Continuation Ratio model (main effects); 

Constant1different slopes ordinal regression models 

- Unconstrained Partial Proportional Odds (with interactions 'age group x 

sex' and 'sex x full-time education'). 
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7.2-22-Goodn -of-rlt 

The goodness-of-fit statistics for all the models suggested lack-of-fit (see Table 7.3). 

The following points were noted: 

(i) All the regression models provided a poor fit to the data. The reason for the lack of fit 
was due to the fact that the covariate 'age group' was constrained to take on an 
ordinal structure (except in the binary logistic model). It was discovered that when 
identical models were fitted, with 'age group' as a categorical covariate, a] I the 
models provided adequate fit to the data, with the exception of the constant slope 
adjacent category and the fully constrained continuation ratio models. The lack of fit 
of these latter models was due to the fact that the adjusting covariates had the 
assumption of constant slopes imposed on them. 

(ii) The lack of fit of the constant slope models was due to two factors (a) violation of the 
constant slope assumption for all covariates and (b) taking 'age group' as ordinal. 

(iii) The goodness-of-fit statistic for the unconstrained continuation ratio model should be 
identical to the sum of the chi-squared values obtained from the individual binary 
logistic regression models. However, as the goodness-of-fit statistic for the 

unconstrained continuation ratio model was based on the Wald test statistic it did not 
provide the summed likelihood ratio chi-squared statistics given by the binary 

models. The degrees of freedom were the same for both models (as expected). The 

overall conclusion regarding goodness-of-fit of the different slopes continuation ratio 

model was that the model did not fit well. The separate binary logistic regression and 

the unconstrained continuation ratio models provided the evidence for this. 

The goodness-of-fit of the unconstrained partial proportional odds was also checked using 

the Lipsitz's statistic. For this, the disability response categories were given the scores, sj 

as I -'none', 2-'slight', 3- 'some', 4- 'appreciable' and 5- 'severe + very severe'. Details 

of the computation of this statistic are given in the Appendix III section 1. The observed 

and expected cell probabilities for each subject were used to compute this statistic. There 

were 12434 subjects each with their own observed and expected probabilities. The 

expected and observed mean score, i. e. p, and ý, were obtained by multiplying the 

observed and predicted probabilities by the score (sj) the subject had obtained for their 
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disability. The predicted mean scores were sorted from the smallest to the largest, and 
then ten groups (G) were formed: the first nine groups had 1243 subjects and the I Oth 

group had 1247 subjects. Thus a 'group' variable was created with 10 levels; level I had 

the smallest predicted mean scores and the level 10 had the largest predicted mean scores. 
Then nine dummy or design variables were created using the first group as the referent 

group. These variables were initially added to the unconstrained partial proportional odds 

model to form the alternative model (as indicated by model A23 in the Appendix 111). The 

aim was to obtain the parameter estimates {yi; i= 1,.. G- II based on these group variables 

and then test the hypothesis Ho: y, : -::::: ---- _-: YG-1. The design matrix for this alternative 

model required fitting 12 covariates (i. e. 9 dummy variables +3 main effects). Also 51 

estimated parameters were required (36 parameters based on the cut-points and the 

groups and 15 parameters as fitted in the unconstrained partial proportional odds model). 

This was computationally very intensive, as the design matrix requires sub-populations, 
formed by nesting the covariates into one another. As a result, the goodness-of-fit statistic 

was not computed for the unconstrained partial proportional odds, the constant slope 

adjacent category and the constant slope continuation ratio models. Instead the results 

from the Wald goodness-of-fit statistic based on the logits were used. 
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Table 7-3-- Goodness-oý-fit of the regfession models fitted using the Townsend DisabLlity 
- Scale data 

Model Goodness-of-fit Test d. f. (no. of p-value 
statistic statistic logits - no. of 

value parameters) 
Linear k2t 0.22 - - 
Binary Logistic Hosmer-Lemeshow 22.19 7 0.002 
Polytomous L. R. Z 145.19 60 <0.0001 
Proportional odds Wald- Q, 160.61 72 <0.000 I 
Unconstrained partial Wald-Q, 136.73 65 <0.0001 

proportional odds 
Adjacent Category Wald-Qw 219.43 72 <0.000 I 
(constant slope) 
Adjacent Category Wald-Q, 146.52 60 <0.0001 
(different slopes) 
Fully constrained Wald-Q, 451.52 72 <0.0001 

continuation ratio 
Binary Logistic 

regression models based 

on continuation ratios L. R. 

Modelfor cut-pt. 1 62.85 15 <0.0001 

Modelfor cut-pt. 2 51.80 15 <0.000 I 

Modelfor cut-pt. 3 59.65 15 <0.0001 

Modelfor cut-pt. 4 18.81 15 0.22 

Continuation Ratio Wald-Q, 184.19 60 <0.0001 

(unconstrained) 

Linear stereotype model L. R. Xý 193.31 72 <0.0001 

T-R2 gives a crude assessment of the fit of the model and is not a goodness-of-fit statistic 

For the binary logistic regression models Modell is based on the cut-point 'none' v. 'slight', 'some', 'appreciable', 'severe + 

very severe'); Model 2 is based on the cut-point ('none', 'slight') v. ('some', 'appreciable', 'severe + very severe')- I Model 3 is 

based on cut-point ('none', 'slight', 'some') v. ('appreciable', 'severe + very severe'); Model 4 is based on the cut-point ('none', 

'slight', 'some', 'appreciable') v. 'severe + very severe'. 
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7.2.2.3 Residual analvs'. 

Lar) Linear Regression Model 

The residuals from the observed and fitted values illustrated no extreme outliers, although 
some large residual values were apparent (e. g. males in the 'severe + very severe' category 
given age group under 70 years with level of education 13 or more years and females in the 
6severe + very severe' category given age group under 70 years with 13 or more years full- 

time education). These are not shown up in the Normal plot (Plot 111b (in Appendix 111)) and 
again there was indication that the Normal plots were not sensitive enough to highlight the 

outliers/influential observations. 

('ý) Binaty Logistic Regression model 

The regression diagnostics (as given in section 6.3.2) showed that the fit of the binary logistic 

regression model became less accurate as the scale index increased (i. e. there were large 

residuals towards the latter end of the scale then towards the 'no disability' end). This implied 

that the lack of fit of this model was largely due to the subjects who had a greater degree of 
disability compared to those with little or no disability. 

(c) Different slopes Ordinal Regression Models 

The polytomous model, different slopes adjacent category model and the unconstrained 

continuation ratio model were fitted using separate binary logistic regressions for the purpose 

of residual analysis (see section 6.3.3 for details). 

i. PoI34omous Model: Table 111a in Appendix III illustrates the parameter estimates from 

the fit of the binary analysis based on the cut-points of the polytomous model. These 

parameter estimates were based on the maximum likelihood method. There were some 

similarities (approx. to 2 d. p. ) in the parameter estimates of 'full-time education' in 

Table 111a (Appendix 111) and those of the polytomous model in Table 7.15. The 

Hosmer-Lemeshow statistics for the binary models confirmed that the polytomous 

model provided a poor-fit. The results from the binary analysis were related back to the 

polytomous model. The diagnostic statistics showed the fit was worse for the 'none' v. 

csevere + very severe' cut-point and it improved as the logits increased. The residual 

deviance was relatively large for the observations where the cell frequencies Nvere less 

than or equal to 5. For the first three logits, although no one group of subjects had lack 
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of fit, there was indication that males and females who were < 70 years of age 
regardless of their years of education fitted the model inadequately. 

Different slopes ad 
- 
jacent categoTy model: Table 111b in Appendix III provides the 

estimates of the binary logistic regression models that were fitted using the adjacent 
category logits. These parameter estimates, which were based on maximum likelihood 

estimation, were noticeably different to those provided by the different slopes adjacent 
category model (estimated using weighted least squares (see Table 7.15)). The 
difference in the estimates could be explained by the fact that different estimation 
methods were used. The residual analysis using the regression diagnostics was carried 
out. The Hosmer-Lemeshow test statistics indicated an adequate fit for all binary cut- 

point specific models with the exception of the one based on the cut-point 'some' v. 
gsevere + very severe'. The results from the diagnostic analysis were integrated to given 

overall results of the residual analysis for the different slopes adjacent category model. 
The deviance residual chi-square statistic values for some of the residuals from this 

model were large, particularly for a number of observations where the cell frequency 

was five or less. 

iii. Unconstrained continuation ratio model: There is indication from the binary analyses 

that all the models, with the exception of the one based on the final cut-point, provided 

an inadequate fit (see Table 7.3). The lack of fit for the model based on cut-point I is 

largely contributed by females, aged 85 or more years in the 'none' disability group for 

both 'full-time education' groups. For the model based on cut-point 2, this response 

category is dropped and the fit remains poor. Again the lack of fit is largely contributed 

by the same sub-population in the 'slight' disability grouping. The 'slight' disability 

group is dropped from the model based on cut-point 3 and although the influence of the 

latter group of subjects is reduced there is still enough influence in the data to provide a 

lack of fit for the binary model. Thus, the overall results from the residual analysis of 

the unconstrained model indicated that females aged 85 or over years were an influential 

group leading to an inadequate fitting model. 

The residual analysis of the stereotype model was not computed using binary logistic 

regressions. Instead, the logit functions and cell probabilities were assessed visually. The 

logits functions (predicted and observed) with their residuals illustrated a potential outlier: 

females aged <70 years with 13 or more years full-time education. The individual 

probabilities were also examined and there was no indication of any influential cell 

frequencies or outliers. However, for females aged <70 years with 13 or more years education 

the cell frequency of the referent category 'excellent' was <- 5. 
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Ldý Constant slO e Ordinal Regýession Models 

The residuals of the proportional odds model were not provided, as these models were not 
used to summarise the results. 

The residuals from the cell frequencies and logits for the constant slope adjacent category 
model and the fully constrained continuation ratio model were assessed visually (see section 
6.3.3 for details). 

Constant slope adjacent category model: The logit (predicted and observed) residuals 
were computed for the individual sub-populations. There was a possible outlier - 
females aged <70 years with 13 or more years full-time education in logit 4: 
('appreciable' v. 'severe + very severe'). The predicted cell probabilities were derived 

using the predicted logit values and there was no systematic pattern in the residuals and 
there were no apparent outliers. 

Fully constrained continuation ratio model: The residuals from the logits functions 

(predicted and observed) illustrated some noticeably large values. In particular, females 

aged <70 years with 13 or more years full-time education were identified as one of the 

observations with large residual values. 

Le) ConstantlDifferent slopes Ordinal &gression Model 

For the unconstrained partial proportional odds model, the residuals from the cell probabilities 

were not very informative. The expected and observed logit functions values were examined 

visually and there was a potential outlier, namely females with 13 or more years full-time 

education in the <70 years age group occurring in the ('none', 'slight', 'some', 'appreciable') 

v. 6severe+ very severe' disability group (i. e. logit 4). The cell count for the 'severe+ very 

severe' category for this group of subjects was less than or equal to 5. There were a few 

relatively large residual values for the remaining row population logit functions; for instance 

the log odds for (i) females with less than 13 years full-time education and aged ý! 85 years 

when comparing 'none' v. ('slight', 'some', 'appreciable', 'severe+ very severe') disability 

(i. e. logit 1) and (ii) males with > 13 years full-time education and aged < 70 years when 

comparing ('none', 'slight', 'some') v. ('appreciable', 'severe+ very severe) disability (i. e. 

logit 3). 
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7.2.3 Findinzs of the statistical modellin 

From the above results the following are highlighted. 

Linear models 

The assumptions of the linear regression models cannot be checked (as mentioned in section 
5.2.1) and the residual analysis is also difficult to carry out due to the nature of ordinal data. 

In section 5.2.1,1 showed that the assumptions of the I inear regression models could not be 

checked, due to the limited number of response categories and covariate sub-populations. 
Here it was discovered that the residual plots that are often used when data have been 

analysed using linear regression models were not appropriate for ordinal outcomes. The 

residual analysis based on the Normal plots was not sensitive enough to detect large residuals 

or outliers due to the reduced number of y observations (i. e. the ordinal categories) and sub- 

populations. 

Binary Logistic Regression models 

There is evidence to suggest that the binary logistic regression analysis is not a very reliable 

methodforfitting ordinal data compared to ordinal regression models. (i) Different types of 

effects may be requiredfor the cut-point specific binary models. There is a possibility of 

spuriously significant effects emerging due to multiple number of modelsfitted to the cut- 

points; (ii) extra parameters, which are redundant, may be required to be fitted in order to 

obtain consistency (for all the binary models), so as that an overall conclusion can be drawn 

and related to the ordinal scale. However, this does not result in efficiency or model 

parsimony. 

For the binary logistic regression models and the binary logistic regression models 

based on the continuation ratio cut-points using the Health Status data, there is a 

chance that the interaction terms may be spuriously significant. All the regression 

models (with the exception of the binary analyses) have significant main effects 

(using the Health Status dataset). The data in Table 4.1 suggest that the proportion of 

smokers and non-smokers are quite different within the two 'heart attack' categories 

for 'excellent' health status. There are more smokers than non-smokers in the heart 
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attack group and there are fewer smokers than non-smokers in the no heart attack 
group. This would suggest that any log odds based on this response category is likely 
to demonstrate an interaction effect. For the remaining response categories, however, 
there is consistency in the number of smokers/ non-smokers within the heart attack 
groups indicating similarity in effect across the smokers/non-smokers groups for the 
two 'heart attack' categories. 

0 Also, it was expected that the binary logistic analysis based on the continuation ratio 
cut-points and the unconstrained continuation ratio model would give the same 
number and type of effects. However, this was not the case for the Health Status data. 
The interaction term was found to be significant, when fitting the separate binary 

model based on cut-point 1. The overall interaction of 'heart attack' and 'smoke' was 
non-significant for the unconstrained continuation ratio model. This would imply that 

although a cut-point specific interaction term is significant when fitted in a single 
binary model, its effect is 'diluted' and diminishes when allowing for the entire 

response categories in an ordinal regression model (where other interaction effects are 

present). This then results in an overall non-significant interaction term. 

0 The binary analysis for the different slopes continuation ratio model (given the Health 

Status data) had to allow for the extra parameters for consistency over all the cut- 

points and therefore this model required fitting effects that did not necessarily need to 

be fitted. The similarity that should occur in both types of the different slopes models 

was illustrated by the Townsend Disability Scale data where the number and type of 

parameters for the unconstrained continuation ratio model and the binary logistic 

regression models were identical. 

Ordinal Regression Models 

Ordinal regression models are more efficient infitting ordinal data compared to the linear 

and binary models. 

0 The unconstrained continuation ratio model was much more efficient with regards to 

the parameters fitted compared to the binary logistic regression models (as indicated 

by the models fitted using the Health Status data). The problems of fitting extra 

parameters or multiple testing do not occur for ordinal regression models as they 

occur for binary models. 
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T T- however, constant slope ordinal regression models may be of little use as the model 
assumptions are too stringent. 

0 It was found from the goodness-of-fit statistics (using the Health Status data) that 

sacrificing model parsimony and fitting a large number of parameters (i. e. different 

slopes models) provided good fit. In contrast, fitting constant slope models where the 

model was parsimonious provided a poor fit model and the chances of the model 
assumptions being satisfied were highly unlikely. This suggested that the constant 

slope models (i. e. proportional odds, constant slope continuation ratio, constant slope 

adjacent category) and the linear stereotype model were of little use due to the 

stringent assumptions. Furthermore, there was evidence from the datasets, that if the 

constant slope assumption fails for one model, it may fail for all. 

0 Provided the covariate of interest satisfies the model assumption, then the other 

covariates can be 'forced' to satisfy the model assumptions (as illustrated using the 

Townsend Disability Scale data). If, however, the covariate of interest does not 

satisfy homogeneity in the cut-point specific parameters, then it is of little value in 

knowing how the adjusting covariates are behaving. In these circumstances the global 

x 2_score test of homogeneity is of little use. 

The partially constrained models (partial proportional odds and the partially constrained 

continuation ratio models) are more efficient than the different slopes and the constant slope 

ordinal regression models. 

0 The partially constrained continuation ratio model allowed the possibility of 

constraining some parameters to be equal (increasing model parsimony) without 

sacrificing the goodness-of-fit (for the Health Status data). Similarly, the 

unconstrained partial proportional odds model was a good-fit model and had reduced 

number of parameters compared to the different slopes cumulative model. 

Evidence suggested that the Lipsitzs (1996) procedurefor testing the goodness-of-fit of an 

ordinal regression model given an ordinal covariate was of little value. 

0 The methods based on the maximum likelihood (Likelihood Ratio test) and weighted 

least squares (Wald goodness-of-fit statistic) which use the logit functions are ample 
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for testing the goodness-of-fit of the ordinal regression models. The Lipsitz's (1996) 

procedure was found to be too computationally intensive. 

If at allpossible, the residual analysis should be carried out using separate binary analyses 
for the ordinal regression models (as was done by Begg and Gray, (1984)). Otherwise, the 

residual analysis has to be based on the visual assessment of cell probabilities/logitfunctions 

and this does not provide one with strong statistical evidence to identify outlierslinfluential 

observations. 

The residual analysis was carried out using residual diagnostics, where ordinal 

models could be fitted using binary analysis and this appears to be a satisfactory way 

of analysing the residuals of the observations. However, for some models one cannot 
do this (such as the stereotype model for the Health Status data and the constant slope 

adjacent category, fully constrained continuation ratio models using the Townsend 

Disability Scale data). Here the assessment of the residuals is based on the logit/cell 

probabilities and this is visual and not supported by any statistics. Therefore one has 

to be cautious as regards the conclusions drawn from this analysis. 

The residuals from the cell probabilities appeared to be less sensitive in picking out 

the influential observations and there is evidence to suggest that the residuals from 

the logits need to be used in conjunction with those of the cell probabilities. 

There is some evidence to suggest that if an outlier is very influential then it will affect thefit 

of all the ordinal regression models. 

There were no common outliers for the models fitted using the Health Status data, 

whereas for the Townsend Disability Scale data, there was a common outlier for 

almost all the regression models fitted (with the exception of the binary logistic 

regression model and the unconstrained continuation ratio model): females aged <70 

years with 13 or more years education. This indicates that one may not necessarily be 

able to identify a common influential/outlier for all the models, unless it is very 

influential. 

Given the data are skewed, such that there is sparse information in one of the extreme 

categories of the scale, then these data are problematic if (i) the cells where there are sparse 

data have been used as independent data points, as opposed to being cumulated with other 
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cells, when computing the logitfunctions, and (h) whenforming the logitfunctions, if there is 

a marked difference in the marginal probabilities of the denominator and in the numerator of 
the logitfunction. 

There was only one subject who was a female, with 13 or more years education, aged 
70 years with 'severe + ver severe' disability (see Table 4.2). Lack-of-fit resulted Y 

when this category was used singularly in the formation of the logits. No problems in 

terrns of fitting were encountered when this category was amalgamated with others 
(e. g when forming cumulative probabilities) and logits were formed. From the 

residual analysis (based on diagnostic statistics) of the polytomous and the 

unconstrained continuation ratio models, all the logits provided poor fit, with the 

exception of the final one (where 'severe + very severe' was used an a single category 
in the formation of the log odds). For the latter logit, the marginal probabilities (used 

in the numerator and denominator) of the logits were relatively similar. Also from the 

diagnostic statistics provided using the different slopes adjacent category model, the 

relative difference for the marginal probabilities used to form logit 3 was bigger than 

that of any of the log odds, leading to a poorly predicted log odds. For the models 

where the residual analysis was based on the visual assessment of the logits, (i. e. the 

partial proportional odds models and the stereotype model), similar results were 

found although this could not be based on any statistical evidence. 

Stereoýype Ordinal Regression Model 

The stereotype model was initially devised to maintain the goodness-of-fit of the polytomous 

model, and at the same time allowfOr modelparsimony. There is little evidence that this 

model has done this based on the data presented in this thesis. 

The results of the Health Status data indicate that the goodness-of-fit is more 

adequate when ordering constraints are not imposed (polytomous model) compared to 

when they are (stereotype model). This would suggest that use of the stereotype 

model defeats the aim of achieving model parsimony without sacrificing the 

goodness-of-fit. 

It would appear that the linear version of the stereotype model can be adequately used to 

check the residuals of the non-linear. 
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The linear form of the stereotype model can be used to check for goodness-of-fit of 
the non-linear satisfactorily, since the -2log-likelihoods and the parameter estimates 
(see Table 7.6) for both models were identical. 

Based on thefindings, I believe that the use of the stereotype model is likely to be limited in 
the application of quality of life research. 

0 The indistinguishability aspect of the stereotype model is important as it leads to 

model simplification. However, this involves comparing the -2-log-likelihoods of the 

models where indistinguishability was imposed and where it was not. The macros 
devised by Lunt (200 1) allow these stereotype models to be computed, but his macros 
are not compatible with the bootstrapping techniques of Stata whereby the models 

could be compared and indistinguishability tested. This would suggest further work 

was needed in this area. 

0 The ordering parameters, Oj are estimated parameters from the model and therefore 

one should compute the 95% confidence intervals for these. This was done for both 

datasets. The confidence intervals computed using the Health Status data illustrated 

no overlapping, implying that the Ojs were indeed ordered and therefore the y- 

response was ordinal with respect to the covariates. For the Townsend Disability 

Scale data, the 95% confidence intervals of these parameters overlapped. Also, there 

was an indication that the point estimates of Oj were not monotonic confirming an 

absence of ordinality in the y-response categories (with respect to the covariates). 

Thus the 95% confidence intervals of the ordering parameters provide additional 

information about the precision of the point estimates. 

0 Various authors have highlighted the use of the 2-dimensional stereotype model. 

However, in the context of the quality of life data presented here, its use was limited 

(given both types of response variables). Furthermore, even if its application proved 

to be relevant, the question regarding whether the y-response was ordered with 

respect to the covariates would still hold. 

0 Hendrickx's (2000) macros and Lunt's (2001) macros cope well with several 

covariates and interaction terms; one does not encounter the same problems as 

presented by the other ordinal regression models, where as covariates increase. the fit 

of the model becomes increasing complex (in particular, fitting the design matrix). 
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However, bootstrapping was very computationally intensive and became even more 
so, when interaction terms were fitted. 

7.3 Calculation of the Asymptotic Relative Precision (ARP) 

7.3.1 Health Status data 

The Asymptotic Relative Precision (ARP) could not be computed for the partial proportional 
odds model, as the unad usted model fit was not possible. Also, the ARP could not be 

computed for the linear stereotype model as the ordering constraint parameters differed for 

the unadjusted and adjusted 'smoke' effect, and therefore the two parameter estimates were 
not comparable. Although the model assumptions did not hold for the constant slope models 
(using the Health Status data), the ARPs were still computed for these, for comparison with 
the ARPs of the different slopes models. 

The ARP for each model is displayed in Table 7.4. These statistics were derived from the 

standard errors of the unadjusted and adjusted 'smoke' parameter estimates (as given Tables 

7.5 and 7.6). Note that the adjusted smoke effect was based on the saturated binary logistic 

regression models for the continuation ratio model. These are displayed in Table 7.11. 

For the binary models based on the I" cut-point, the ARP is much smaller when the 

interaction term is fitted compared to the main effects model. This suggests that the standard 

error of 'smoke' is inflated as more covariates are added into the model resulting in a smaller 

ARP. This is also the case for the continuation ratio model, where different binary logistic 

models were used. 

For the different slopes ordinal regression models, namely the polytomous, adjacent category 

and unconstrained continuation ratio models the ARPs are very close to I for all the cut- 

points, implying that the variability for the 'smoke' covariate is little affected when 'heart 

attack' is added into the model. For the constant slope models, namely the proportional odds 

and the adjacent category, again the ARPs are close to 1. There is indication here, that the 

precision of an adjusted covariate is affected by the number of covariates added into the 

model and not by the type of parameters fitted (whether constant or different slopes). 
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7.3.2 Findings of the Asvmptotic Relative Precision 

The ordinal regression models are as efficient as the binary logistic regression model, in 

terms of the ARP. Also the loss ofprecision in the adjusting covariates is not affected by 

model assumptions (whether constant or different slopes), but rather by the number of 

covariates present in the model. 
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7.4 Interpretation of the results 

7.4.1 Health Status data 

7.4-1.1 Linear Rerression Model 

The parameter estimates for the main effects linear regression model are given in Table 7.7. 
From above, it is clear that the linear regression model is inadequate for summarising ordinal 
data. Generally, it is not good statistical practice to interpret parameters where the models are 
found to be inadequate. However, in this thesis this was done to purely illustrate the 
differences and drawbacks of the linear models in relation to the other models. The, 8 

parameter estimate for the adjusted 'smoke' covariate indicates that a decrease of 0.07 in the 
health status score is evident for every unit increase in 'smoke'. Also,, the P parameter 
estimates for the 'heart attack' covariate indicates that for every unit increase, there is a 
decrease of 0.44 in the health status score. Due to the ordinal nature of the quality of life scale 
and discrete covariates presented, these results are a simplification of the truth. The general 
indication is that moving from the 'smokers' to the 'non-smokers', health status gets better 
(i. e. a decrease in the numerical score of the scale indicates an increase in the health status 

category). Also moving from those who have suffered from a heart attack to those subjects 

who have not, there is evidence again that health status gets better. Furthermore, the rate at 

which health status gets better is higher for those who have suffered/not suffered a heart 

attack then those who smoke/not smoke. 

Table 7.7. - Parameter estimates (and standard errors) for the linear regression model usin 

the Health Status data 

Variable Parameter Standard Mest value p-value 
Estimate error 

12 on Smoke -0.0726 0.0182 - 7.7-7 
<0.0001 

Heart attack -0.4400 0.0234 -18.77 <0.0001 

The parameter estimates from the main effects model were used to compute the expected 

mean health status scores and these are given in Table 7.8. The latter is a single summary 

measure over all the response categories and appears to provide the same conclusion for all 

sub-populations when relating the results back to the ordinal response categories. For 
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instance, for respondents who have suffered from a heart attack and smoke, their expected 
Health Status score was 1.62 (i. e. somewhere between health status categories 'good' and 
'fair'). Similarly, for those who have suffered from a heart attack and are non-smokers their 

expected Health Status score was 1.56 (i. e. again somewhere between health status categories 
'good' and 'fair'). The same conclusion can be drawn from the remaining two sub- 
populations, where the mean response falls between categories 'good' and 'fair'. The 

conclusion then is that all subjects have mean health status response of somewhere between 

'good' and 'fair'. 

Table 7.8: The observed and expected ad or each sub-population using the Yusted means f 
rT- 

health Status data 

Heart Smoke Observed Adjusted N 
attack Mean Expected 

Mean 
Yes 1.62 1.63 243 

Yes No 1.56 1.56 1045 
Yes 1.19 1.19 2119 

No No 1.12 1.12 9128 

7.4.1.2 Binarv Loaistic Regression Models 

The adjusted maximum likelihood parameter estimates (and their standard errors) of the 

separate binary logistic regression models are given in Table 7.6. 

The odds ratios and their 95% confidence intervals are given in Tables 7.9 and 7.10. 

Although the main effect model (based on the I't cut-point) provided an inadequate fit, this 

model was used to interpret the results. The reason for this was the results were much simpler 

in interpretation and also, in terms of the parameters fitted, were consistent with the other 

binary logistic models. 

Main effects: The odds ratios based on all three main effect binary logistic models are quite 

similar for the 'heart attack' covariate. Generally there is indication that the adjusted odds of 

having a worse form of health status is approximately three times that of a better form of 

health status for those who had suffered from a heart attack (compare to those who have not). 

The adjusted odds of ('good', 'fair', 'poor') health as opposed to 'excellent' health or (fair' 
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cpoor') as opposed to ('good', 'excellent') health are almost identical for both those who 
smoke compared to those who do not. The adjusted odds of 'poor' as opposed to (fair', 

'good', 'excellent') is approximately 1.6 times for those who smoke compared to the non- 

smokers. 

Interaction term: For the interaction model based on the Is' cut-point, there is indication that 

among the non-smokers, the adjusted odds of ('good', 'fair', 'poor') health was 

approximately three time that of 'excellent' health for those who had suffered from a heart 

attack compared to those who had not. However, for the smokers the odds were much less 

(approximately twice) for those who had had a heart attack compared to those who had not. 

Also, among those who had not had a heart attack, the odds of ('good', 'fair', 'poor') health 

were approximately identical to that of 'excellent' health for those who were smokers 

compared to the non-smokers. Among those who had suffered from a heart attack, the odds 

were 0.7 for the smokers compared to the non-smokers. 

This latter finding is somewhat unexpected, as there is indication those who suffered from a 

heart attack and smoke are more likely to have improved health (i. e. fall in the 'excellent' 

category) compared to those who suffered from a heart attack and are non-smokers. There 

may be some underlying factors (e. g. history of smoking or other factors such as level of 

exercise etc. ) that may contribute to the explanation of this finding, but this is beyond the 

scope of this thesis. For our purpose, it is important to note the finding and assess it relevance 

in the context of the modelling techniques. 

7.4.1.3 Polvtomous Model 

The adjusted maximum likelihood parameter estimates (and their standard errors) for the main 

effects polytomous model are illustrated in Table 7.6. 

The odds ratios and their 95% confidence intervals are given in Tables 7.9 and 7.10. 

For both covariates, the odds ratios were found to increase monotonically over the cut-points. 
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Lar) Smokers versus non-smokers 
For the smokers (versus the non-smokers), the adjusted odds of 'good' or 'fair' health were 
identical to 'excellent' health. However, for this group of subjects the adjusted odds of 'poor' 
health was almost twice that of 'excellent' health. 

Lb) Heart attack versus no heart attack 
The adjusted odds of 'good' health were approximately twice that of 'excellent' health for 

those who suffered from a heart attack (compared to those who had not). The adjusted odds of 
'fair' health were four times that of 'excellent' health for those who had suffered from a heart 

attack (compared to those who had not), and the adjusted odds of 'poor' health were six times 

that of 'excellent' health for the latter group of subjects. 

The implication here is that there if proportional odds holds (as for the 'heart attack' 

covariate), then the polytomous model will provide odds ratios that increase monotonically 
(as for the smoke covariate). However, if the proportional odds assumption is found not to 

hold, then although the polytomous model provides odds ratios that increase monotonically, 

they do not vary substantially over the cut-points. 

The fact that the odds ratios increase monotonically for the polytomous model, given that the 

proportional odds assumption holds has been proved in Appendix IV. 

7.4.1.4 Cumulative Lomit Models 

fl) Different slopes Cumulative Model 

The adjusted weighted least square parameter estimates for the main effects different slopes 

cumulative model are illustrated in Table 7.6. 

The odds ratios and their 95% confidence intervals are given in Tables 7.9 and 7.10. 

The adjusted odds ratios for those who were smokers compared to the non-smokers clearly 

differ between cut-point I (('good', 'fair', 'poor') versus 'excellent') and cut-point 2 ((fair', 

4 poor') as opposed to ('excellent', 'good')) compared to cut-point 3 'poor' versus (4excellent', 

4good', 'fair'). This would suggest non-proportionality. Also there is not much difference in 

the cut-point specific odds ratios of 'heart attack', possibly indicating proportional odds. 
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fli) Unconstrained Partial Proportional Odds Model 

The weighted least square adjusted parameter estimates for the unconstrained partial 
proportional odds model for both covariates are illustrated in Table 7.6. 

The odds ratios and their 95% confidence intervals are given in Tables 7.9 and 7.10. 

(a ) Smokers versus non-smokers 
The odds of ('good', 'fair', 'poor') health are almost identical to 'excellent' health for 

smokers compared to non-smokers. The odds of (fair', 'poor') health are again very similar 
to ('excellent', 'good') health when comparing the smokers with the non-smokers. The odds 

of 'poor' health are 1.6 times that of ('excellent', 'good', 'fair') health for the smokers 

compared to the non-smokers. 

Heart attack versus no heart attack 
For those who have had a heart attack compared to those who have not, the odds of having a 

worse form of health are approximately three times that of a better form of health. 

The odds ratios for 'smoke' based on the first two cut-points are very similar and the 

difference in the cut-point specific odds ratios emerges at the final cut-point (see Table 7.9). It 

is at this cut-point that the proportional odds assumption has been violated. 

(iii) Constrained Partial Proportional Odds Model 

The adjusted weighted least square parameter estimates for the constrained partial 

proportional odds model are illustrated in Table 7.6. 

As the constraints for this model were based on the unconstrained partial proportional odds 

model, the odds ratios were identical to those computed for this latter model (see Table 7.9 

and 7.10). 
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7.4.1.5 Different slopes Adjacent Categorv Model 

The weighted least parameter estimates with their standard errors for the main parameters are 
as given in Tables 7.5. These parameter estimates were used to obtain the odds ratios and their 
95% confidence intervals and the latter are displayed in Tables 7.9 and 7.10. 

La ) Smokers versus non-smokers 
The adjusted odds of 'good' health as opposed to 'excellent' health or 'fair' health as 

opposed to 'good' health were almost identical for the smokers versus the non-smokers. 
However, the adjusted odds of 'poor' health are approximately 1.5 times that of 'fair' health 

for the smokers (versus the non-smokers). 

(a ) Heart attack versus no heart attack 
The adjusted odds of 'good' health as opposed to 'excellent' health or 'fair' health as opposed 

to 'good'health were almost twice for those who had suffered from a heart attack compared 

to those who had not. The odds of 'poor' health is approximately 1.4 times that of 'fair' 

health for those who had suffered from a heart attack compared to those who had not. 

The odds ratios for both covariates fluctuated in different ways over the cut-points, implying 

that the behaviour of these covariates with respect to the categories was very different. 

7.4.1.6 Continuation Ratio Model 

(i) Continuation Ratio Model based on the binarv logistic regression models 

The maximum likelihood parameter estimates and their standard errors for the saturated 

binary logistic regression models based on the continuation ratio logits are presented in Table 

7.11. 
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Table 7.11. - Parameter estimates and their standard errors for the individual binag logistic 

rg&ession models based on the Continuation Ratio model usiLng the Health Status data 

Variable Estimate and 'good' v. 'fair' v. ('good', 'poor' v. ( 'fair', 
s. e. 6excellent' 6excellent') 'good' v. 6excellent') 

Smoke 

Heart attack 

Parameter 
estimate 

-0.1072 0.0298 0.2261 

s. e. 
Parameter 
estimate 
s. e. 

Heart Parameter 
attack. smoke estimate 

0.0656 
0.2056 

0.0656 

-0.1691 

0.0412 
0.4908 

0.0412 
0.0109 

0.0561 
0.4816 

0.0561 

-0.0033 

s. e. 0.0656 0.0412 0.0561 

For each cut-point specific model, the presence of the interaction term signifies that an odds 

ratio exists when comparing smokers with non-smokers for each level of 'heart attack' and 

when comparing heart attack versus no heart attack within each level of the 'smoke' 

covariate. 

The odds ratios and their 95% confidence intervals are detailed in Table 7.9 and 7.10. 

(a ) Smokers versus non-smokers 
Within the no heart attack group: The odds ratios were not markedly different over the cut- 

points, when comparing the smoker and non-smokers groups. 

Within the heart attack gLQup: The difference emerges in the heart attack group. The odds of 

'good' health were 0.5 times that of 'excellent' health for the smokers compared to the non- 

smokers. The scenario here is similar to that of the binary logistic regression models reported 

in section 7.4.1.2. The unexpected finding, that those who had suffered from a heart attack 

and smoke are less likely to have a 'good' health status as opposed to 'excellent', compared to 

those who have suffered from a heart attack and are non-smokers, may be explained using 

similar arguments specified for the binary logistic regression models. 

Heart attack versus no heart attack 

Within the non-smokers group: the odds of a given health status was approximately three 

times that of a 'better' state of health (as represented by grouped categories) for those who 

have had a heart attack as opposed to not having had one. 
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Within the smokers group: the odds of having 'fair' health was approximately three times that 

of ('good', 'excellent') health and the odds of 'poor' health also three times that of (fair', 

'good', 'excellent') health for those who had had a heart attack (compared to those who had 

not). The difference emerges when comparing the odds of 'good' versus 'excellent' health for 

the two heart attack groups. There is indication that within the smokers group, the odds of 
'good' health status is equally likely as 'excellent' health status for those who have had a 
heart attack (compared to those who have not). 

(H) Unconstrained Continuation Ratio Model 

The weighted least squares parameter estimates for the unconstrained continuation ratio 

model are detailed in Table 7.6. 

The adjusted odds ratios and their 95% confidence intervals are given in Tables 7.9 and 7.10. 

LaQ Smokers versus non-smokers 
The adjusted odds of 'good' health are almost identical to 'excellent' health for smokers 
(compared to non-smokers). Likewise, the adjusted odds of 'fair' health are almost identical 

to ('excellent', 'good') health for the same group of people. The adjusted odds of 'poor' 

health are approximately 1.5 times that of ('excellent', 'good', 'fair') health status for the 

smokers (compared to the non-smokers). So there is little discrimination when comparing 

'excellent', 'good' and 'fair' health status categories for the smokers (compared to the non- 

smokers). The difference merges when comparing the 'poor' health status with these 

categories. 

(b) Heart attack versus no heart attack 

Identical odds ratios for the 'heart attack' covariate were provided for cut-points 2 and 3. The 

odds of 'good' health were approximately twice that of 'excellent' health for those who 

suffered from a heart attack (as opposed to suffering from a heart attack). 

flib Partialiv constrained Continuation Ratio Model 

The parameter of the covariates from the unconstrained continuation ratio model, indicate that 

some may be constrained to be the same. The test of homogeneity revealed that for the 

'smoke' covariate, the regression coefficients for cut-points I and 2 could be considered as 

being similar (test of homogeneity in the parameters: X, 2=0 
. 23 with p =0.63). There was 
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evidence that the regression coefficients for cut-points 2 and 3 of 'heart attack' could be 

assumed to be homogenous (test of homogeneity in the parameter estimates: X, 2 =6.27 with p 

=0.01). The partially constrained continuation ratio model was then fitted. 

(a ) Smokers versus non-smokers 
This partially constrained continuation ratio model fitted the data well (see Table 7.2). Also it 

provided parameter estimates (see Table 7.6) and odds ratios (and 95% confidence intervals) 

that were the same for the first two cut-points for the smokers against the non-smokers (see 

Table 7.9). Thus the odds of 'good' health were approximately identical to 'excellent' health 

for the smokers (as opposed to the non-smokers). Also the odds of 'fair' health were 

approximately the same as ('excellent', 'good') health for the smokers. The odds of 'Poor' 

health were just over 1.5 times that of ('excellent', 'good', 'fair') health for the smokers 

compared to the non-smokers. 

0) Heart attack versus no heart attack 

The odds ratios were interpreted in a similar way to the unconstrained continuation ratio 

model. 

7.4.1.7 Stereotvve Model 

Mclest provided the parameter estimates (note that the macros do not provide the standard 

error of the Ojj=1,2,3) as displayed in Table 7.6. The valid parameter estimates were 

obtained using bootstrapping. These are also displayed in Table 7.6 (note that there are no 

standard errors for 01 and 04as there are constrained to 0 and I respectively). The valid Oj (i= 

21,3,4) parameters were ordered, indicating that one can assume there is an ordinal 

relationship of the response categories with respect to the covariates. The effect of the log 

odds for any two levels of the outcome is proportional (as signified by the fikparameters). The 

difference between the Oj (i= 1,2,3) parameters provides an indication of how the log odds are 

affected by the covariates. Thus the difference between any two adjacent Oj parameters was 

approximately the same (see Table 7.6) indicating the log odds between two outcomes were 

influenced equally by the covariates. 

The valid estimate of the log odds ratios as provided by the bootstrapping technique are 

displayed in Table 7.9 and 7.10. The interpretation of the odds ratios (and their 95% 

confidence intervals) was similar to that of the polytornous model. 
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7.4.2 Townsend Disability Scale data 

7.4.2.1 Linear Regression Model 

(a) Interaction tenn 

The significant interaction of 'age group x sex' suggested that the average predicted effect of 
the Townsend disability score was not consistent for males within each age group and for 

females within each age group. Since, results are focused only on the 'full-time education' 

covariate, this interaction does not contribute to the interpretation of the results. 

(b) Intelpreting the parameter estimates 

As for the Health Status data, the linear model fitted here was not adequate and therefore the 

interpretation of the parameters was illustrated purely to further emphasis the drawbacks of 

this model. The adjusted regression coefficient for 'full-time education' from the linear 

regression model was -0.29 (with s. e. = 0.04). This indicates that there is a decrease in the 

Townsend disability score of approximately 0.3 for unit increase in 'full-time education'. A 

significant difference in the two full-time education groups was noted with regards to the 

Townsend Disability categories (Mest statistic = -8.11 on I df.; p< 0.000 1). In other words as 

one moves from the < 13 years to >- 13 years full-time education categories, the Townsend 

disability score is found to fall (i. e. disability gets better). 

Table 7.12 illustrates the expected mean Townsend disability score for each sub-population. 

For all age groups within the male/female categories, the adjusted mean Townsend disability 

score is higher for those with less than 13 years education compared to those with 13 or more 

years full-time education. However, in terms of the ordinal categories, the mean score falls in 

the same category for both those in the < 13 and 13 or more years full-time education 

indicating no change from one category to another (since there is only a change of 

approximately 0.3 between the mean score in both groups of full-time education). 
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Table 7.12: The expected and observed Townsend disability score means-from the a&ste 
linear reg!: ession analysis 

Sex F-T education Age-group Observed Expected 
Mean Mean 

Male <13 < 70 1.65 1.54 
Male <13 70-74 1.79 1.91 
Male <13 75-79 2.19 2.29 
Male <13 80-84 2.61 2.66 
Male <13 >85 3.42 3.03 

Male 
ýý] 3 < 70 1.55 1.25 

Male 4ýý] 3 70-74 1.60 1.62 
Male 4nýl 3 75-79 1.94 1.99 
Male 2-13 80-84 2.32 2.37 
Male zý>-] 3 ý: 85 2.67 2.74 

Female <13 < 70 1.98 1.82 
Female <13 70-74 2.21 2.30 
Female <13 75-79 2.64 2.79 
Female <13 80-84 3.25 3.27 
Female <13 ý: 85 3.95 3.75 

Female ýý13 <70 1.59 1.53 
Female ýý13 70-74 1.96 2.01 
Female 2-13 75-79 2.30 2.49 
Female ýý13 80-84 2.92 2.97 
Female ý:? 13 f-ý! 85 3.62 3.46 

7.4.2.2 Binarv Loaistic Reeression Model 

The regression parameters for the main effects binary logistic regression (similar to the one 

fitted in the MRC CFAS paper (MRC CFAS1,1998)) were obtained and the parameter of 

interest was that of 'full-time education'. The adjusted parameter estimate is as illustrated in 

Table 7.13 and was similar to that provided in the MRC CFAS' study (1998) publication 

where nine adjusting covariates were used. 

The interpretation of this parameter was however unclear in the publication and therefore an 

attempt was made to clarify this. 
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Table 7.13. Parameter estimates_for the bina? y logistic regLession model using the 

Townsend disability score for full-time education (unadyusted and adyusted effec- 
Full-time education 

t C- 
Vbur categories as in the (MRC 
CFAS', 1998)) 

f-t educ. (<9 v. 9 years) 

f-t educ. (10- 12 v. 9 years) 

f-t educ. (>= 13 v. 9 years) 

Unadjusted Effect 

Estimate 

0.5541 

-0.1627 

-0.4064 

s. e 

0.0370 

0.0281 

0.0412 

Adjustedfor sex and age 

Estimate 

0.3023 

-0.0785 

-0.3369 

0.0361 

0.0266 

(two categories - as in the 
binary logistic modelfitted in 
this thesis) 

0.0386 

s. e. 

f-t educ (< 13 v. >= 13 years) 0.2126 0.0271 0.2083 0.0252 

Each subject had a disability score, and this score was calculated as a proportion of the total 

score. One is effectively looking at the chance of a point (where a subject could have up to 18 

points) being allocated when one computes the proportion. This was further clarified by using 

the SAS output as produced in the 'Response Profile Table'. From this output, the table 

illustrated the 'Binary outcome event total frequency =45640' and 'Binary outcome non-event 

total frequency= 178172'. Using the dataset, 4479 subjects scored V for their Townsend 

disability score, 1489 subjects scored '1', 1243 subjects scored 2 and so on. In the analysis, 

the number based on 'event' was taken as (Ox4479)+(lxl489)+(2xl243)... 

(18xl33)=45640. This number reflects the total number of points given out for all subjects, 

where no points given indicate no disability and 18 points indicate severe disability. The 

4non-event' count was obtained by totalling the number of scores that could be possibly 

allocated (I 8xl2434) minus the number that were allocated (45640) given a total of 178172. 

Thus the logit was based on 'event/no event', where 'event' was the total number of points 

given out for all subjects and 'no event' was the total number of points not allocated. The log 

odds were based on the probability of being allocated a single point (1/18) as opposed to not 

being allocated a point. 

In the context of the scale, an allocation of a point implies disability. However, the disability 

scale is a severity scale, where '0' implies no disability and '18' implies very severe 

disability. The concept of the severity of the scale is lost when analysing the data using the 

method in the publication. 
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Bearing in mind that the data are fitted poorly by the model, particularly towards the end of 
the scale, the odds of a point allocated towards the disability score (implying that disability 

gets worse) was 0.7 times for those with 13 or more years full-time education compared to 

those with less than 13 years full-time education (see Table 7.14). 

Table 7.14: The odds ratios and 95% confidence intervals for full-time education using the 

binary logistic reg!: ession model-for the Townsend Disabiliýy Scale data 

Full-time education Unadjusted Effect adjusted for age 
group and sex 

Odds 95% CL of Odds 95% C-I of 
ratios odds ratio ratios odds ratio 

(four categories as in the 
(MRC CFAS', 1998)) 
<9 
9 
10-12 
>=13 

1.71 (1.56,1.89) 1.21 (1.10,1.33) 
11 
0.84 (0.78,0.90) 0.83 (0.77,0.88) 
0.66 (0.59,0.73) 0.64 (0.58,0.71) 

(two categories - as in the 
binary logistic modelfitted in 
this thesis) 
<13 years 
>= 13 years 0.65 (0.59,0.73) 0.66 (0.60,0.73) 

The results as they stand in Table 7.14 are not comparable with those provided by the ordinal 

regression models. The results given by the ordinal regression models assess the odds of 

having some form of less disability compared to a more severe form for those with less than 

13 years full-time compared to 13 or more years full-time education. The reason for 

summarising the results in this way was that it was important to keep the referent category as 

4severe + very severe'. This would then allow one to assess the models in the presence of 

sparse data, as these data were most predominant in this latter response category. 

The same odds ratios (and 95% confidence intervals) as provided in Table 7.14 are obtained 

when one computes the odds of no allocation of a disability score (as opposed to one 

allocated) for those with < 13 years full-time education compared to 13 or more years 

education. The interpretation of the results is such that we are now assessing the odds of the 

disability staying as it is, as opposed to it getting worse for the two groups of 'full-time 

education'. This would allow the comparison of the binary and ordinal regression analysis. 
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7.4.2.3 Polvtomous Re2ression Model 

(a) Interaction term 

The interaction term 'age group x sex' suggests that for each cut-point, the effect of the 

response was different for every level of age group for the male and female categories. As 
'full-time education' was of interest here, the comparison of < 13 and > 13 years was not 
affected by this interaction term. (Note: that an interaction effect at a particular cut-point may 
not be significant but the overall interaction term may be significant due to other highly 

significant effects). 

(b) Intelpreting the parameters 

The maximum likelihood parameter estimates and standard errors for 'full-time education' for 

the polytomous model with the first order interaction term 'age group x sex' are given in 

Table 7.15. 

The adjusted odds ratios and their 95% confidence intervals for 'full-time education' are 
illustrated in Table 7.16. The adjusted odds of 'no' disability was 0.4 times that of 'severe+ 

very severe' disability for those with < 13 years compared to those with > 13 years full-time 

education. The odds was found to increase over the cut-points, with the odds of 'appreciable' 

disability being very close to 'severe + very severe' disability for those with less compared to 

more full-time education. 

7.4.2.4 Unconstrained Partial Proportional odds Model 

a) Interaction terms 

The interaction term of 'age group x sex' was automatically assumed to satisfy the 

proportional odds assumption, as the main effect covariates were assumed to have 

proportional odds. For a given cut-point the relationship of 'sex' and the log odds changed 

across the levels of 'age group'. Furthennore, for any sex/age-group combination, the log 

odds were constant over all the cut-points. 
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The interaction term 'sex x full-time education' did not satisfy the assumption of proportional 
odds. The log odds of < 13 years ftill-time education compared to 13 or more years full-time 

education were different for males and females for any one cut-point. For any sex/full-time 
education combination the log odds were allowed to vary over the cut-points. 

(b) Interpreting the parameter estimates 

The parameter estimates and their standard errors are shown in Table 7.15. 

The odds ratios and their 95% confidence intervals are illustrated in Table 7.16. 

Within the male sex groy p: The adjusted odds ratios were found to decrease over the cut- 

points. The odds of 'none' disability was 0.8 times that of ('slight', 'some', 'appreciable', 

4severe+ very severe') disability for those with less education compared to more education. 
This implied that there was not much difference in the two groups of education when 

comparing no disability with the other grouped disabilities. As the cut-points increase and the 

categories are amalgamated, the numerator of the log odds ratios is represented by disability 

groupings that are 'less severe' and the denominator is represented by disability groupings 

that are comparatively 4more severe'. The difference in terms of effect is large for these 

groupings for the odds ratios based on the cut-point ('none', 'slight', 'some', 'appreciable') 

versus 6severe+ very severe' then for the odds ratio based on the cut-point 'none' versus 

('slight', 'some', 'appreciable', 'severe+ very severe'). As a result, the odds of having some 

form of 'less severe' disability as opposed to 'severe + very severe' disability is much more 

in favour of those with more education than those with < 13 years ftill-time education. 

Within the female sex gr"u : The adjusted odd ratios were found to drop over the cut-points 

and then increased for the final cut-point. Thus, the odds of 'none' disability was 0.7 times 

that of ('slight', 'some', 'appreciable', 'severe+ very severe') disability for females with < 13 

years education compared to those with > 13 years ftill-time education. The odds of ('none', 

4'slight') compared to ('some', 'appreciable', 'severe + very severe') were fractionally smaller 

(0.6) for those with less education compared to those with more education. The odds ratio 

continued to decrease for the next cut-point and then marginally increased for the final cut- 

point. 

Females, compared to males, were marginally less likely to have 'none' disability compared 

to ('slight', 'some', 'appreciable', 'severe + very severe') disability and ('none', 'slight') 

disability compared to (some', 'appreciable', 'severe+ very severe') disability. Females, 
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compared to males, were marginally more likely to have ('none', 'slight', 'some') than 
('appreciable', 'severe + very severe') disability and ('none', 'slight', 'some', 'appreciable') 
than 'severe + very severe' disability. 

7.4. Z5 Adjacent Cateaorv Models 

(i) Constant slope Adjacent Cateoorv Model 

(a) Interaction term 

The interaction of 'age group x sex' for the constant slope adjacent category model implied 

that the effect of the response given males and females was different within each age group 
category, but was the same over all the cut-points. 

(b) Interpretation of the parameters 

The weighted least square parameter estimates for the constant slope adjacent category model 

are given in Table 7.15. 

The adjusted odds of falling in a given disability category as opposed to falling into a 
disability category that is adjacent to it and more severe, was 0.8 for those with less than 13 

years compared to 13 or more years full-time education (see Table 7.16). 

fli) Different slopes Adiacent Catemorv Model 

(a) Interaction term 

The interpretation of the interaction term for this model was exactly the same as that for the 

polytomous model (except that different type of logits were used for the two models). 

(b) Interpreting the parameter estimates 

The parameter estimates obtained from the weighted least squares analysis are displayed in 

Table 7.15. 
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The adjusted odds ratios for 'full-time education' are displayed in Table 7.16. In brief the 
adjusted odds ratios are found to fluctuate over the cut-points. 

The adjusted odds of 'none' disability compared to 'slight' disability were 0.9 and were very 
similar to the ad usted odds of 'slight' disability compared to 'some' disability for those with j 

less than 13 years full-time education compared to 13 or more years. This implied that there 

was not much difference when comparing the 'better' disability categories for the two 'full- 
time education' groups. The adjusted odds of 'some' disability compared to 'appreciable' fell 

to 0.7 and then increased for the final cut-point 'appreciable' compared to 'severe+ very 
severe' to 0.8 for those with less education compared to more education. 

7.4.2.6 Continuation Ratio Models 

(i) Fullv constrained Continuation Ratio Model 

The parameter estimates are given in Table 7.15. The constant odds ratio (as provided in 

Table 7.16) illustrates that subjects with a given form of disability are 0.7 times likely to have 

a form worse than it, if they have less than 13 years education compared to if they have 13 or 

more years education. 

(ii) Model based on the separate binarv loaistic rearession models 

(a) Interaction term 

The presence of the interaction of 'age group x sex' for a given binary logistic regression 

model indicates that the effect of the response within each sex group varied over the levels of 

age. This interaction has no effect on the 'full-time education' covariate. 

(b) Interpretation of the parameters 

The parameter estimates and their standard errors were computed from the weighted least 

squares analysis and are given in Table 7.15. 

The adjusted odds ratios and their 95% confidence intervals were obtained and are listed in 

Table 7.16. The adjusted odds ratios were found to decrease over the cut-points and the odds 

206 



ratio based on the final cut-points was relatively larger. The adjusted odds of 'none' disability 

as opposed to ('slight', 'some', 'appreciable', 'severe+ very severe') were very similar to the 

odds of 'slight' disability as opposed to ('some', 'appreciable', 'severe+ very severe'). This 

implied there was little difference in the 'less severe' forms of disability when compared to 

the 'more severe' forms for the two groups of education. Also, the odds of a 'less severe' 
form of disability, albeit small, were in favour of those with more education. The odds of 
'some' disability are just over half those of ('appreciable', 'severe+ very severe') disability 

for those with less education (compared to those with more education). This would imply that 

'some' disability category is a good discriminator between the 'less severe' and 'more severe' 
forms of disability compared to the 'none' and 'slight' categories. The odds of 'appreciable' 

disability are similar to that of 'severe+ very severe' for the two groups of education. 

iii) Unconstrained Continuation Ratio Model 

(a) Interaction term 

The interpretation of the interaction of 'age group x sex' was similar to that of the polytomous 

model. 

b) The interDretation of the varameter estimates 

The parameter estimates obtained using weighted least squares are detailed in Table 7.15. 

Note that the estimates differ slightly to those from the separate binary logistic regression 

models in (i) above. This is because the estimates from the latter model were obtained using 

maximum likelihood estimation. 

The odds ratios and their 95% confidence intervals were identical to those given by the 

separate binary logistic regression models (displayed in Table 7.16). 
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7.4.2.7 Stereotvpe Model 

(a) Interaction term 

The interpretation of the interaction term is similar to that presented for the polytomous 

model. 

(b) Interpretation of the parameters 

The standard error of the parameter estimates obtained when fitting the conditional logits 

model for the non-linear stereotype model were conditional and therefore could not be used 
for reporting or inference purposes. Bootstrapping was carried out on a 100 samples (with 

replacement) to obtain the corrected standard errors of the log odds ratios. The results from 

the bootstrapping analysis are presented in Table 7.15. Note that the standard errors of the 

conditional model are dependent and therefore under-estimated. The log odds Ojflkwere 

obtained and subsequently the odds ratios and their 95% confidence intervals were derived 

(see Table 7.16). The odds of 'none' disability was approximately 0.5 times that of 'severe+ 

very severe' disability for those with less than 13 years compared to 13 or more years full- 

time education. Although the Oj constraints do not increase monotonically over the cut-points, 

the odds ratios are found to increase in this fashion and the odds of less disability remain in 

favour of those with more than 13 years full-time education. 
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7.4.3 Findings related to the interpretation of the results 

Linear Regression Models 

The linear models do not adequately summarise the complexity of information given by 

ordinal data. 

9 Unlike those findings of Lu (1999) linear regression models provide the same overall 
conclusion as those of the binary logistic and ordinal regression models - non- 
smokers are likely to have better overall health compared to smokers and those who 
have not suffered from a heart attack are likely to have better health than those who 
have. Also, those with <13 years full-time education are more likely to have less 
disability compared to those with > 13 years full-time education. However, when 
relating the predicted mean score back to the ordinal categories, for both datasets all 
subjects fall into the same predicted response category for the different covariate 
levels. This would indicate that the analysis based on linear regression models is not 
sensitive and reliable enough in picking up the complexity of the ordinal data, but 

may give the investigator a general idea of what is going on. 

Bingy Logistic Regression Models 

Different types of binary logistic regression models (main and interaction) are needed to 
describe ordinal data in an adequate manner. This, however, causes problems when 
interpreting the overall results. 

0 The interpretation of the results from the binary regression models fitted to the Health 

Status data suggest that the interaction term based on the l' cut-point was important 

and could not be ignored. This implies that one cannot use binary models with the 

same type of effects. This makes it difficult to relate the results to the overall ordinal 

quality of life scale as different models suggest different relationships of the response 

and the covariates. Also,, one can envisage that this problem would become more 

apparent as the number of response categories increase. 

The analysis as presented by McGee et a]. (MRC CFAS' study (1998)) gives results 

that are based on the disability score (i. e. a continuum) and odds ratios that are based 
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on the allocation of a point, implying unit increase in disability. However, this 

analysis does not show whereabouts the unit increase occurs (whether its at the 
beginning or end of the scale). The Townsend Disability Scale on the other hand, is a 
severity scale and the analysis using ordinal regression models account for the 

severity levels. Despite the differences in the two methods, both statistical techniques 
imply that the odds of an increase in disability is more likely for those with less 

education compared to those with more education. However, the ordinal regression 
models are more sensitive at picking up changes over the range of the severity of 
disability. 

Polytomous Model 

The polytomous model estimates a large number ofparameters andfails to accountfor the 

ordinal nature of the quality of life scale categories. Also the interpretation of the results is 
difficult as different odds ratios are used to summarise different cut-points. 

The odds ratios increase at a much greater rate over the cut-points compared to the 

other models, particularly where proportional odds exists. 

The polytomous model provides cut-point specific odds ratios (and 95% confidence 
intervals) that monotonically increase for the logits (for both datasets). The drawback 

of this model is that a large number of odds ratios (i. e. the same number as the logit 

functions) are used to summarise the data. This makes the interpretation difficult, 

particularly when the covariates increase. Also, the polytomous model does not take 

account of the ordering of the categories and any trends in the odds ratios cannot be 

allowed for. This means that the model is of little use in the context of ordinal data. 

Proportional Odds Model 

The assumption ofproportional odds is stringent and difficult to satisfy. Unless the 

assumption is satisfied, the odds ratios cannot be used to summarise the data, as this will lead 

to misleading interpretations. 
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0 For both datasets, the violation of the assumption of proportional odds was apparent 
when the model was fitted. 

Partial Proportional Odds Models 

The unconstrainedpartial proportional odds model is an efficient ordinal regression model in 
that it allows some covariates to have proportional odds and other covariates to vary by cut- 
point. This simplifies the interpretation of the odds ratios. 

The constrained partial proportional odds model is of little use, as the constraint parameters 
for this model are determined using the odds ratios obtainedftom the unconstrained model 
and therefore there is little difference in the estimates of the odds ratios. 

0 The unconstrained partial proportional odds model is useful in summarising the data 

as it simplifies the interpretation of the odds ratios. The unconstrained partial 

proportional odds model is 'half-way' between the polytomous and the proportional 

odds model in the number of parameters it fits. It achieves model parsimony without 
indication of lack-of-fit. 

0 The unconstrained and constrained models provided very similar estimates of the 

odds ratios and their 95% confidence intervals. Given several covariates in the model 

with more than one covariate where non-proportionality exists, the constraints are 
difficult to determine for the constrained partial proportional odds model (Townsend 

disability score). Furthermore, using the odds ratios from the unconstrained version of 

the model to derive the constraints for the constrained model can be problematic, as 

one is observing the data to obtain the constraints and then a model is fitted using 

these (Health Status data). 

0 The I" order interaction terms of the unconstrained partial proportional odds model 

illustrated that when proportionality exists for the two covariates the interpretation of 

the odds ratios is much simpler than if one of the covariates has non-proportionality. 
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Adjacent CategoKy Model 

La Constant Slope Model 

The assumption of the constant odds model is stringent and is difficult to satisfy. However if 

the assumption holds, then the constant slope adjacent category model provides byJar the 

simplest interpretation, as there is only one common odd ratio. 

There are two factors in favour of this model: (i) this model allows for the ordering of 
the categories; (ii) it provides model parsimony. Whether or not one uses this model 
to summarise the data, is largely dependent on the choice of the modelling strategy. It 

may be that all the covariates are of interest, and the assumption has to be equally 

satisfied equally by them. The chance of this happening is quite remote (as in the 

Health Status data) and therefore it is likely that the adjacent category model will not 
be a chosen model. If one is interested in a single covariate, then the constant slope 

assumption has to be satisfied by this variable and the adjusted covariates would need 

to be 'forced' to satisfy this assumption (if this was not the case). 

((ý) Different Slopes Model 

The different slopes adjacent category modelfits the same number of odds ratios as the 

polytomous model, but allowsfor the ordering of the categories (through theformation of the 

logits). This would imply that the model was more efficient than the polytomous model, but 

not as efficient as the unconstrainedpartial proportional odds model. Also the interpretation 

of the odds ratios is difficult, as there are as many odds ratios as cut-points. 

The odds ratios of the different slopes adjacent category models for both dataset were 

found to fluctuate over the cut-points. This would imply that without estimating the 

odds ratios it is difficult to know how they are likely to behave over the cut-points. 

Continuation Ratio Model 

The assumptions of thefully constrained continuation ratio model are again difficult to 

satisfy. 
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The different slopes model is bestfitted using the unconstrained model as opposed to the 
separate binary logistic regressions. 

The unconstrained continuation ratio model has the same number of odds ratios as the 
different slopes adjacent category model and also allows for the ordering of the response 
categories through the formation of the logits. Therefore in terms of efficiency it is very 
similar to the different slopes adjacent category modeL 

There is a possibility of reducing the odds ratios by constraining them to be equal, and the 

resultant is the partially constrained continuation ratio model. This model is as efficient as 
the unconstrained partial proportional odds model. 

The binary logistic regression models have to be fitted with redundant parameters, so 

as to allow for consistency in the type of parameters used (as in the Health Status 

data). The interaction term of the binary logistic model based on the first cut-point 

cannot be ignored, as it produces results that are quite important. However, it has to 
be borne in mind that the binary logistic regression based on the continuation ratio 
logits do not allow for the ordinal categories in the same way as the unconstrained 

continuation ratio model. The contribution of this interaction effect is negligible in 

the overall interaction term when fitting the unconstrained continuation ratio model, 

where the ordering of the categories is taken into account (in one model). This would 
indicate that although there is some evidence of a difference between the 'heart 

attack' categories in the smokers and non-smokers group, given the 'good' and 

4 excellent' health status categories only, when one takes account of the entire ordinal 

health status scale, this difference is eliminated. On the basis of this5 it would appear 

that the unconstrained continuation ratio model was a more efficient model compared 

to the binary model. 

The binary and unconstrained models provide identical parameters and odds ratios, 

when there are the same number and type of parameters for both models. The 

unconstrained continuation ratio model fitted the same number of odds ratios as the 

polytomous and the different slopes adjacent category model. The odds ratios for the 

unconstrained model suggested some homogeneity. The partially constrained model 

was fitted without sacrificing model fit and at the same time increasing model 

parsimony. 
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Stereotype Model 

The stereotype model is only ordinal if the ordinal parameters (0j) are ordered Furthermore 

the estimates of the odds ratios are not comparable to the other ordinal regression models. 

The stereotype model provided ordering parameters that satisfied the inequality (3.26), 

suggesting that this model was an ordinal regression model. However, these parameters were 

not monotonic for the stereotype model fitted using the Townsend Disability Scale data, 

suggesting that this model did not adequately allow for the ordinality in the y-response with 

respect to the covariates. The odds ratios of the stereotype model (as for the polytomous 

model) increase over the cut-points at a greater rate compared to those of the other models, as 
illustrated by the data from the health status categories. In fact the odds ratios based on the 

final cut-point for the 'no heart attack' and 'heart attack' comparison are almost twice the 

odds ratios for the other models. These odds ratios are only comparable to the polytomous 

model and not to any other ordinal regression model. 

The odds ratios providefurther evidence that a 2-dimensional stereotype model is not 

required to summarise the quality of life data. 

The odds ratios of the stereotype model increase over the response categories for both 

covariates, given the Health Status data. This would suggest that the both predictors behave in 

a similar fashion over the categories and that we do not have a case of different predictors 

explaining different parts of the ordinal scale. 

7.5 Comparison of the models 

7.5.1 Parameter estimates and the odds ratios 

There was a violation of the constant slope assumption for proportional odds, adjacent 

category and the continuation ratio models (Health Status data). However, the adjacent 

category and the continuation ratio models fitted for Townsend Disability Scale data were 

assumed to satisfy the assumption. Although the comparison below has been made with the 

constant and different slopes models, one should be cautious due to these violations. 
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For both datasets, the cut-points used for the cumulative logit models and the binary logistic 

regression models were the same. However, the estimates of the parameters (standard errors) 

and odds ratios (with 95% confidence intervals) differed for these models. For the Health 

Status data, the parameters and odds ratios for the binary logistic regression models were cut- 

point specific (as for the different slopes cumulative model), for the proportional odds they 

were constant over the cut-points and for the partial proportional odds models it was the 

combination of the two. For the Townsend Disability Score dataset, the binary and 

proportional odds models assumed constant odds, whereas the partial proportional odds 

models assumed otherwise. 

The polytomous model, different slopes adjacent category and unconstrained continuation 

ratio models all shared very similar estimates/odds ratios for the first cut-point. Also the 

unconstrained continuation ratio, different slopes cumulative logit and the binary logistic 

regression models all had the same parameter estimates for the final cut-point. 

(a) BinaTy Logistic Regression Models 

Health Status 

The confidence intervals of the main effects binary logistic regression model were wider than 

those of the proportional odds model, where proportionality was present (i. e. the 'heart attack' 

covariate) (also found by Scott et al. (1997)). Also as stated by Armstrong and Sloan (1989), 

at the optimal point (i. e. for cut-point 2) the odds ratios from the main effect binary logistic 

model were quite similar to the main effects proportional odds model provided proportionality 

was present (Table 7.10). However if proportional odds was not found to be satisfied (as in 

the 'smoke' covariate), then these findings did not hold, even when the proportional odds 

model was fitted (with the assumption of proportionality imposed on the covariate on the 

model). 

Manor et al. (2000) found similarity in the results when using the logistic and ordinal 

regression models. Likewise, a similarity in the results was noted when comparing the main 

effects binary logistic regression models with the main effects cumulative ordinal regression 

models. 
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Townsend Disabilitv Scale data 

The ad usted odds ratio (and 95% confidence interval) of the binary model given in Table 
7.14 is very similar to the ones produced by the proportional odds and the fully constrained 
continuation ratio models in Table 7.16. However, the model assumption was violated in the 
proportional odds model and it was only satisfied by 'full-time education' in the fully 

constrained continuation ratio model. Thus the results would suggest that if the cut-point 
specific odds ratios can be assumed to be homogenous, then the binary logistic model as fitted 
by McGee et al. (MRC CFAS' study (1998)) would be a satisfactory way to analyse the data. 
If the assumptions are violated, then the results are misleading, as a single summary measure 
(provided by the binary model) would be used to describe data that may otherwise provide the 
odds ratios which would be varying, at worst, quite substantially over the cut-points. This 
highlights the fact that ordinal regression models are much more sensitive at picking up the 

varying information over the response categories, which is thought to be constant when fitting 

the binary model as presented by McGee et al. (MRC CFAS' study (1998)) 

b) Cumulative Odds Models 

The odds ratios of 'smoke' in Table 7.9 for the different slopes cumulative odds model and 
the two partial proportional odds models are the same for each of the cut-points. The 

unconstrained partial proportional odds model is effectively fitting, 8j (for a given covariate) 

and this parameter has been separated into two components fi and yj. The reason this model is 

fitted in this way is because the assumption of proportional odds is easier to test (see section 

3.5.3). Also the comparison of these models with the proportional odds model provides an 

insight into where the difference lies and how the violation of the proportional odds has come 

about (for the Health Status data the odds ratio for final cut-point of 'smoke' was substantially 

different for the constant and different slopes models). 

For both datasets, the estimates of the unconstrained partial proportional odds model are 

monotonically increasing or decreasing. Bender and Grouven (1998) state (see Chapter 3: 

section 3.11) that the partial proportional odds model is more efficient than the polytomous 

and binary logistic regression models, and this was certainly found to be the case from the 

data used in this thesis. 

The proportional odds model produces estimates with smaller standard errors compared to the 

unconstrained partial proportional odds model and the different cumulative odds models (in 

particular for the 'smoke' covariate). This is because one is providing a single parameter 
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estimate using increased information. However, in the different slopes models, one allows for 
the cut-points and the estimated parameters are based on these cut-points (with a reduced 
number of data which are cut-point specific). 

(c) Adjacent Category Models 

The parameter estimates and odds ratios of the different slopes adjacent category model 
fluctuate over the cut-points for both datasets (see Table 7.6,7.9 and 7.10). The 95 % 

confidence intervals of the constant slope model are narrower than the different slopes model. 
This is due to the same reasons stated in (b). 

Ananth et al. (1997) demonstrated similarity in the odds ratios provided by the different 

slopes adjacent category model and the polytomous model (see Chapter 3: section 3.11). This 

was not found to be the case for both datasets presented in this thesis. It was difficult to 

examine why this was the case, as the data quoted in the paper by Ananth et al. (1997) was 
found to be incorrect (Cole, 1999). 

(d) The Continuation Ratio Models 

The proportional odds model has been much compared to the constant slope continuation 

ratio model in the literature (see Chapter 3: section 3.11). The similarity in the results was 

apparent from Tables 7.9,7.10 and 7.16. The parameter estimates that were the closest to the 

proportional odds model were those provided by the constant slope continuation ratio model. 

The parameter estimates for the different slopes continuation ratio model (based on the binary 

logistic regre ss ion s/uncon strained continuation ratio model) fluctuated over the cut-points. 
For the unconstrained model and the binary logistic models used to fit the continuation ratio 
logits, provided the type of effects fitted are the same in both models then the parameters 

estimates are identical (see Table 7.16). The 95% confidence intervals for the constant slope 

model were narrower than those of the different slopes model. 

(e) The Polylomous and the Stereojype Models 

The odds ratios were found to be monotonically increasing when fitting the polytomous 

models to the two datasets. It can be shown that if proportional odds exist for a given model 

then when the polytomous model is fitted the odds ratios will always be monotonically 

increasing (see Appendix IV). 
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Like Cox and Chaung (1984) and Manor et al. (2000), we found that the polytomous model 

was a better fit than the other ordinal regression models. 

We found that the stereotype model was of little value for the two quality of life measures 

considered. This was unlike the findings of Greenland (1994), who valued the stereotype 

model. However, in his examples only one covariate with an ordinal outcome was used to fit 

the models. Furthermore, the need for a two-dimensional stereotype model did not arise. 

The odds ratio of the polytomous and stereotype model are substantially different to the odds 

ratios of other models (see Tables 7.9,7.10 and 7.16). For both models the odds ratios 

increase monotonically. This would suggest that despite the constraint parameters estimated 

in the stereotype model, there is not much difference in the odds ratios given the two models. 

7.5.2 Comparison of the models using statistical inference 

(a) Comparison of the different cumulative logit models 

The test of whether the proportional odds model was as good a fit as the unconstrained partial 

proportional odds model was constructed using the Health Status data. It was found that the 

unconstrained partial proportional odds model was a better fit than the proportional odds 

model (HO: v2j = y3l =O: X22 =15.62; p =0.0 1). Furthermore, this was a more parsimonious 

model than the one that allowed for separate slopes for the cut-points for each covariate (since 

7 parameters were estimated in the unconstrained partial proportional odds model and 9 

parameters were estimated in the different slopes model). 

We found that the constrained partial proportional odds model was as good a fit as the 

unconstrained partial proportional odds model (HO: y3j= 40, v2l: X, 2=0.00; p=0.997). 

The comparison of the unconstrained partial proportional odds model and the proportional 

odds model was a test of proportional odds for the 'full-time education' covariate, for the 

Townsend Disability Scale data. This is given in section 7.2.2.1 (b). 
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(b) Comparison of the constant slope and different slopes adjacent categoKy models 

The comparison of the constant and different slopes adjacent category models provided a 

means of testing the constant slope assumption and this is discussed above (sections 7.2.1.1 

and 7.2.2.1). 

(c) Comparison of the constant slope and different slopes continuation ratio models 

Again the comparison of these two types of models provided a means to test the assumption 

of constant slope over the cut-points and this is as discussed above (sections 7.2.1.1 and 

7.2.2.1). 

(d) Comparison of the models using the Akaike Information Criteria LAIC) 

The Akaike Information Criteria (AIQ was obtained for the polytomous, proportional odds 

and the stereotype models. It could not be derived for the other models, as the analysis for 

these models did not provide a log-likelihood value (the method of estimation was weighted 

least squares). 

The AIC values are displayed in Table 7.17. This statistic allows one to make a comparison of 

ordinal models having adjusted for the number of parameters they fit. Generally there is 

indication that the polytomous and stereotype models provide similar fit to the two datasets. 

Also for the Health Status data, there was not much difference in the AIC statistic for the 

proportional odds and the stereotype model. 

Table 7.17: Akaike Information Criteria (ALCJ statistics 

Model AIC statistics 

Health Status data Townsend DisahiiityNcaie 

data 

Polytomous 29347.16 34344.19 

Proportional odds 29353.84 30675.55 

Stereotype 29353.73 34470.41 
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7.5.3 Findinzs of the comparison of models 

The following were found when comparing the different regression models. 

The binary logistic models give similar estimates of odds ratios to the cumulative 
logits models, although the 95% confidence intervals are wider. Therefore provided 
the same effects are usedfor the binary and cumulative models then the binary 

analysis allows one to summarise results that could otherwise be obtained using the 

cumulative logits models. Also, the binary modelfitted by McGee et al. ((MRC CFAS' 

study (1998)) provides similar results to the constant slope ordinal regression 
models. 

The odds ratios of the proportional odds andfully constrained continuation ratio 
models are very similar. 

The unconstrainedpartial proportional odds model is identical to the different 

cumulative slopes model. 

Constant slope models provide more precise estimates of odds ratios compared to 

models where cut-point specific odds ratios are given. 

The Akaike Information Criteria (AIC) statistics indicated that thefit of the 

proportional odds and the stereotype models were similar, having adjustedfor the 

number ofparameters fitted This would suggest that the stereotype model is as 

efficient as the proportional odds model. However, the AIC could not be computedfor 

all models. There is therefore scopeforfurther research. 

The odds ratios of the stereotype andpolytomous models are very similar. This 

suggests that the ordering constraints in the stereotype model have done little to 

improve on thepolytomous model. Infact, where thepolytomous modelprovides a 

goodfit model, when the ordering parameters are imposed, the model becomes too 

constrained leading to a lack-of-fit model (as in the Health Status data). Once again, 

unlike evidence provided by some authors, there was little evidence in this thesis to 

suggest that the stereotype model is an ideal modelfor analysing discrete ordinal 

response data. 

222 



7.6 The 'best fit' models 

In the light of all the evidence provided from the results of the analysis, given the Health 
Status ordinal scale, the 'best fit' models were: 

the unconstrained Partial Proportional Odds model; 

the partially constrained Continuation Ratio model. 

These models provide parsimony as well as adequate fit to the data. 

Given the Townsend Disability Scale data, the 'best fit' models were: 

the fully constrained Continuation Ratio model; 

0 the constant slope Adjacent Category model. 

These models provide parsimony. However, although they do not fit the data well, the models 

still provide an informative summary. The value of goodness-of-fit procedure was to assess 

whether the model fits and if this is not the case, where the lack of fit lies. Its purpose was not 

to formally reject the model. 
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7.7 Summgn 

9 Linear Models: Linear models are not adequate for analysing ordinal quality of life 
data. The evidence that supports this statement is provided by both datasets in this 
thesis. In brief (i) the assumptions of the model could not be checked due to the 

nature of the data; (ii) the standard errors of the parameter estimates indicated a 

constant variance over the y-response and this was unlikely due to the nature of the 
data; (iii) despite the lack-of-fit, the Normal plots were unable to highlight the outliers 

or influential observations, again due to the ordinal nature of the data, and (iv) the 

results and their interpretation did not adequately summarise the complexity of the 

ordinal scale. 

* Binarv Lomistic Regression Models: Binary logistic regression models (separate 

models and the model fitted by McGee et al. ((MRC CFAS I study ( 199 8))) are only 

adequate for analysing ordinal data, if one can assume constant odds over the ordinal 

scale. If one cannot assume constant odds, then this method will provide an incorrect 

conclusion, as there is implication then that the odds vary over the range of the scale. 

Fitting separate binary models would allow one to model the varying odds ratios. 

However, this may still present problems as different cut-point specific binary models 

may be used and this would make the interpretation of the overall ordinal scale 

difficult (as was shown using the Health Status data). Also, there is a danger of 

spuriously significant effects emerging due to multiple models fitted over the scale. 

0 Ordinal Rerression Models: All ordinal regression models are as efficient as the 

binary logistic model in terms of the Asymptotic Relative Precision, as this measure 

is not affected by the type of parameters fitted, but rather by the number of covariates 

included. 

Constant Slope Ordinal Regression Models: The constant slope ordinal regression 

models (namely the proportional odds, adjacent category and the continuation ratio 

models) all have the same number of fitted parameters. The constant slope ordinal 

regression models are, in theory, the best models for analysing ordinal data as they 

provide a single summary measure and are therefore parsimonious. If the assumptions 

hold, then these models are by far the simplest to interpret and provide more accurate 

point estimates. However, in practice, the model assumptions that support this single 

measure are too stringent, as was demonstrated by the Health Status data. This will 
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also produce a lack-of-fit model and the model cannot be used to report the results. It 
may be that the model assumption is only satisfied by the covariate of interest. Then 
the other covariates can be 'forced' to satisfy the assumptions (as in the Townsend 
Disability Scale data), resulting in a model that can be used to summarise the results 
but lacks goodness-of-fit. Also if the assumptions hold, the binary logistic models 
may be an adequate method for analysing the ordinal data. 

The global X2 -score test statistic is of use when testing the constant slope assumption 
for all covariates in the model. It is of little use when one is interesting in a covariate 
where the assumption is required to hold, and if this is the case, then the other 
covariates are 'forced' to satisfy the model assumption. 

* Partial1v Constrained Models: Given that the constant slope assumption does not 
hold, in practice, the partially constrained models (the unconstrained partial 
proportional odds and the partially constrained continuation ratio models) are more 
appropriate for fitting ordinal data. These models do not fit as many parameters as the 
different slopes models and the parameters can be constrained to be equal (either all 

or some of them), without sacrificing the goodness-of-f it. The interpretation of the 

odds ratios is simpler than that provided for the different slopes models. 

0 DiYferent Slopes Rezression Models: The different slopes regression models 
(namely the polytomous, different slopes cumulative, different slopes adjacent 

category and unconstrained continuation ratio models) all have the same number of 

estimated parameters. The polytomous model does not account of the ordering of the 

y-response and therefore is not considered as an ordinal regression model, but rather a 

model used to examine multinomial data. These models make no assumptions 

regarding the parameters, and therefore a parameter is fitted for each cut-point and 

covariate in the model. This provides a good fit model, due to the large number of 

odds ratios, However, the interpretation is somewhat difficult and cumbersome. 

9 Best Fit Models: 

From the health status data, the best fit models were: 

Polytomous model; 

unconstrained Partial Proportional Odds model; 
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Partially constrained Continuation Ratio model; 
Different slope Adjacent Category Model; 
Different slope Continuation Ratio Model. 

From the Townsend Disability data, the most appropriate models that could be used to 
describe the data were: 

Polytomous model; 
Unconstrained Partial Proportional odds model; 
Constant slopes Adjacent Category model; 
Constant slopes Continuation Ratio model; 
Different slope Adjacent Category model; 
Different slope Continuation Ratio model; 
Stereotype model. 

* Stereotme Model: Greenland (1994) strongly argues in favour of the stereotype 
model. There was little evidence in this thesis to suggest that the stereotype model 
was of significant use for analysing ordinal data. The main areas identified as 

problematic were: 
(a) The stereotype model was initially devised using the polytomous model. It was 

devised to (i) allow for the ordinality of the y-response (which the polytomous model 
fails to do) and (ii) reduce the number of parameters estimated in the polytomous 

model, in the aim of achieving model parsimony. In practice, it is likely that the 

parameters that are estimated will not necessarily be ordered (as in the Townsend 

Disability Scale data) and the constraints imposed that allow for model parsimony are 

too stringent, leading to a poor fitting model. 
(b) Dimensionali : Only the one dimension stereotype model was found to be of use in 

fitting the ordinal data; the two dimensional model was of limited use. 
(c) Indistinguishqbiliýy: Models with and without the indistinguishability criteria could 

not be compared due to lack of compatibility of statistical software. 

(d) Order : There is a need to compute the 95% confidence intervals of the ordering 

parameters (Oj ), in order to assess the precision of the point estimates. This has not 

been cited in the literature. 
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(e) Bootstrapping: This technique is computationally intensive and required a very 
lengthy computer run-time. 

(f) Odds ratios: The interpretation of the odds ratios is very similar to the polytomous 
model, implying that in terms of the end product, the stereotype model has done little 

to improve on the polytomous model. 
(g) Goodness-ot-ft' : The linear model provides a way of assessing the goodness-of-fit of 

the non-linear model. 

0 Model Comparison: The comparison of the models suggested: 

(a) The unconstrained continuation ratio model was a more efficient method for fitting 

the continuation ratio logits compared to the separate binary models. 

(b) The goodness-of-fit statistics of the unconstrained continuation ratio model should be 

identical to the sum of the chi-squared values obtained from the individual logistic 

regression models. However, it was not possible to check this as different procedures 

were used to compute the models. 

(c) The odds ratios produced by the unconstrained partial proportional odds, polytomous 

and the stereotype models were found to always increase (or decrease) monotonically. 
The odds ratios of the polytomous and the stereotype models increase at a greater rate 

over the cut-points compared to the odds ratios of other models. The odds ratios 

produced by the different slopes adjacent category or the unconstrained continuation 

ratio models were found to fluctuate over the cut-points. 

(d) The linear version of the stereotype model could be used to check the goodness-of-fit 

of the non-linear model. 

0 Sparse data: Presented with a skewed data distribution on a scale and sparse data in a 

category at one of the extreme ends of the scale, then poor fit results when this 

category is used as a single data point in the formation of the logits and the difference 

between the marginal probabilities (one of which is the category where there are 

sparse data) that form these logits is relatively large. 
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9 Interaction terms: The interpretation of an interaction term in an ordinal regression 

model varies depending on whether the constant slope assumption holds for the cut- 

points of the main effects that constitute the interaction term. 

0 Goodness-of- : The Lipsitz's (1996) procedure for testing the goodness-of-fit of the 

models was of little use. Instead the Likelihood Ratio test (in the case of models fitted 

using maximum likelihood estimation) and the Wald goodness-of-fit statistic (for 

models fitted using weighted least squares) were used. 

0 Residual Analvsis: Residual analysis should be carried out using the separate binary 

analyses. However this is not always possible, and therefore one has to rely on 

assessing the observed and fitted logits/probabilities. The residuals of the cell 

probabilities were found to be of little use. The residuals of the logits were more 

sensitive at picking up the outliers/influential observations. However, this can only be 

based on visual assessment. 
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CHAPTER 8- DISCUSSION AND CONCLUSION 

The primary purpose of this chapter is to illustrate the most appropriate ordinal regression 
models given the two instruments used to assess aspects of quality of life in elderly people. In 

order to achieve this aim, I begin the discussion with section 8.1 -this outlines further aspects 
related to ordinal regression models that have emerged from the results. Then drawing the 

results and findings together from both Chapter 7 and section 8.1, the 'best' fit models are 
detailed, given the two quality of life measures used in this thesis. Finally, in section 8.2 this 
thesis is concluded by reflecting on the hypotheses initially outlined in Chapter 1. Also, the 

conclusion highlights the contribution of this study to the literature, its limitations and 

recommendations for further work. 

8.1 Discussion 

8.1.1 Assumptions of constant slope for the models fitted using the Townsend 

Disability Scale data 

The likelihood of all the covariates satisfying the assumption of constant slope is quite small, 

given a large number of covariates. As a result, a pragmatic view has to be taken, and this was 

certainly the case when fitting the covariates in the ordinal regression models using the 

Townsend Disability Scale data. The strategy adopted here for including the covariates in the 

model was similar to that used in survival analysis (Parmar and Machin, 1995). In the latter, 

provided the covariate of interest satisfied the proportional hazard assumption then the 

adjusting covariates are assumed to satisfy the assumption (even though this may not 

necessarily be the case). 

8.1.2 Partiallv constrained Adjacent Categorv Model 

The partially constrained version of the adjacent category model is not quoted in the 

literature. However, using the different slopes adjacent category model for the Health Status 

data, the hypotheses Hol:, 811=P21 and, 821=fl3l (based on Table 5.1 and equation (3.17)) for the 

'smoke' covariate and Hol: fl12=fi22andfi22=fi32f6r the 'heart attack' covariate were 

constructed and tested. This was done in a very similar way to the partially constrained 

continuation ratio model. There was indication that Pll=fl2l ('smoke': X, 
2=0.46 

with ap 
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=0.49) andfi]27PA'heart attack': X2=2.23 with ap =0.14). Also there was not enough I 

evidence to suggest homogeneity for the parametersfi2l andfi3l ('smoke': X, 2= 10.18 with ap 

0.001) and forfl22andfl32 ('heart attack': X, 2= 11.22 with ap =0.001). The partially 

constrained adjacent category model was fitted such that the log odds for the first two cut- 

points (i. e. 'good' v. 'excellent' and 'fair' v. 'good') were constrained to be the same for both 

covariates. The parameter estimates (standard errors) and the odds ratios (and their 95% 

confidence intervals) of this latter model are displayed in Table 8.1. The Wald test suggested 

the goodness-of-fit was adequate (X2=9.3 7 with ap =0.10). The odds of 'good' health were 5 

equal to that of 'excellent' health for those who smoked (compared to the non-smokers). Also 

the odds of having 'fair' health were identical to that of 'good' health for the same group of 

subjects. However, the odds of 'poor' health were 1.5 times that of 'fair' health for the 

smokers compared to the non-smokers. 

From Table 8.1 the odds of 'good' are twice that of 'excellent' health. This is the same as the 

odds of 'fair' health as opposed to 'good' health for those who suffered from a heart attack as 

opposed to not suffering from one. Also, the odds of 'poor' health are 1.45 times that of 'fair' 

health for those who have suffered from a heart attack (compared to those who have not 

suffered from one). 

Table 8.1. - Parameter estimates (with standard errors) and the odds ratios (with 95% 

confidence intervals) from the Partially constrained Adyacent Category model 

covariates 'good' v. 'fair' v. 'good' poor' v. 'fair' 
(excellent' 

Parameter estimates (standard errors) 

Smoke 

Heart attack 

0.03(0.02) 

0.37(0.02) 

0.03 (0.02) 0.21 (0.05) 

Smokers v. non-smokers 

0.37(0.02) 

Odds ratios (95% confidence intervals) 

1.05 (0.98,1.12) 1.05 (0.98,1.12) 

0.19(0.05) 

1.51 (1.24,1.82) 

Heart attack v. no heart 2.11 (1.93,2.32) 2.11 (1.93,2.32) 1.45 (1.19,1.77) 

attack 
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Like the unconstrained partial proportional odds model and the partially constrained 
continuation ratio model, this model proved to be parsimonious as well as providing a good- 
fit. 

These results further emphasise the evidence found in Chapter 7- in pragmatic terms, where 
the chances of constant odds is reduced, the partially constrained models are most appropriate 
for analysing ordinal outcomes. 

8.1.3 The Partial Proportional Odds Models 

The constrained partial proportional odds model is a simplification of the unconstrained 

partial proportional odds model in terms of the parameter estimates. However, it is 

problematic, as already mentioned, in that the constraints are estimated using observed data. 

In theory, one may be able to use the methodology of the stereotype model to estimate the 

constraint parameters. 

Peterson and Harrell (1989,1990) fit the unconstrained partial proportional odds model using 
the equation (3.14). The proportionality assumption is easier to test when the model is 

specified using this format. The model can also be fitted as: 

log 
Pr(Yj 

Pr(Yj 
aj. 

> yj)- 

p 
i 

Xik 

k=q+l 

q 
Tik 

J8 
* 
Jk 

k=l 
C-1 

where there are p-q covariates with proportional odds and q covariates which have non- 

proportionality. For these latter covariates, separate regression parameters are fitted over the 

cut-points. The test of proportionality would be )6*2k : -- )6*3k ...... : --: )6*(c-I)k for each of the q 

covariates. The constrained partial proportional odds model could then be fitted as: - 

Pr(Yj :! ý yj) pq 
log = ai + Lxkgk + >, TikFJ)6*k j= I 

.... C-1 - (8.2) 
Pr(Y, > yj ) k=q+l k=I 

The non-proportional component of the R. H. S of equation (8.2) is similar to the ordering 

constraints/beta component of the R. H. S of equation (3-23). This would suggest that the 
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constraint parameters, Fj in equation (8.2), rather than estimated using the unconstrained 

partial proportional odds model, could be estimated using a non-linear version of the 
constrained partial proportional odds model. However there are some fundamental differences 
between models (8.2) and (3.23). For instance, the constraints in equation (3.23) apply to all 
the covariates, where as in equation (8.2) they only apply to covariates with non- 
proportionality. As a result, Hendrickx's (2000) macros cannot be easily used at present to 

estimate the constraints in equation (8.2) and therefore further research is required to adapt 
these macros for the partial proportional odds models. Also, the purpose of the constraints are 
very different for both equations: for the stereotype model these serve to order the y-response 
with respect to the covariates so as that the relationship can be described as ordinal, and the 

same constraints have to be shared by all the covariates. For the constrained partial 

proportional odds model, the purpose of the constraints is to simplify the interpretation of the 

odds ratios over the cut-points, and it is not necessary that the same constraints be used for all 

covariates. Therefore if the constraints fail to simplify the interpretation, there is little purpose 
in estimating them. 

8.1.4 Different slopes Cumulative Logit Model 

The conclusions from the binary logistic regression models using the Health Status data (in 

particular the model based on the I't cut-point), suggested some unusual results based on the 

interaction term (see section 7.4.1.2). To assess this further, the different slopes cumulative 

logit model was re-fitted. Up to now, the purpose of this model was purely to visually 

examine the cut-point specific odds ratios in the view to fit/not fit a proportional odds model. 

However, the different slopes cumulative model (as fitted using the Health Status data) is 

based on the same logits as the binary models. In theory, both models should provide very 

similar results (if a difference occurs, it is due to the fact that the parameter estimates of the 

binary logistic models are based on maximum likelihood estimation and the parameters of the 

different slopes model are based on the weighted least squares method). This was indeed the 

case when examining the odds ratios given by the main effect models (binary and different 

slopes cumulative) in Tables 7.8 and 7.9. This provided a basis for comparing the results of 

the two models. 

Tile interaction ten-n of 'smoke' and 'heart attack' was fitted in the main effect different 

slopes cumulative model and this term was non-significant (X 2=6.56 on 3-df.; p= 0.09). This 

suggested that the interaction effect of the binary logistic regression model based on the first 
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cut-point although significant on its own had little contribution when the entire ordinal scale 
was taken into account. These results were similar to those produced for the binary models 
(based on the continuation ratio logits) and the unconstrained continuation ratio model (see 

section 7.4.1.6) and further highlighted the concerns of using binary logistic models for 

ordinal data. 

8.1.5 Drawing the results and findings together with emphasis on health-related 
cluality of life instruments used in elderly people 

Data on health-related quality of life are often captured on instruments that are either single- 

or multi-item (section 1.1.2). In this thesis, the Health Status scale is a single global measure 

for overall health, whereas the Townsend disability score is a multi-item measure for 

disability. Also single-item scales often have ordinal categories that are discrete in nature and 

are termed as 'assessed' variables,, whereas multi-item ordinal scales measure some 

underlying continuum and are termed as 'group continuous' variables (section 1.1.2). 

The assumptions (see section 3.5.2 (b)) of the proportional odds (and partial proportional 

odds) models are ideally suited for analysing grouped continuous variables. These models 

allow for the fact that the total score of a group of items is a reflection of the response 

provided by a subject for the dimension of quality of life being assessed. Then when 

modelling using the cumulative odds models, the main interest is not in the response 

categories, but rather in the total score and its distribution and the information about the score 

obtained through the ordinal categories. If the cut-points were removed or more added in, 

then, the results would not change, due to the latent underlying variable. In the literature, no 

mention is made of whether other ordinal regression models have the capacity of 

accommodating for the total score in the same way as the cumulative odds models. However, 

one would expect that the Continuation Ratio model (where the categories are accumulated in 

the denominator of the logits) would have to allow for the assumption of an underlying 

continuum. The polytomous, adjacent category and the stereotype models do not account for 

the total continuous score of the items directly, but the score is used in the formation of the 

ordinal categories (i. e. 1 ='excellent', 2='good', ... ). 
The implication here is that the 

cumulative logit and continuation ratio models are more ideal for analysing grouped 

continuous outcomes, since they incorporate the underlying quality of life score into the 

analysis. 
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The single global item (such as the Health Status score), on the other hand, assumes that the 

ordinal categories are discrete and there is no overall numerical measure (e. g. a total score) 
from this scale that reflects the aspect of quality of life considered. Instead, for a given subject 
individual labelled categories on the scale (e. g. 'excellent', 'good', 'fair' or 'poor') is taken as 
the 'total score'. According to McCullagh (1980), it is not necessary to suppose the existence 

of an underlying continuous variable in order to use the proportional odds/ partial 

proportional odds models (see section 3.5.2(b)). He argues that this model can be adapted for 

'assessed' ordinal data, but the interpretation of the parameters will suffer. In the context of 

quality of life, accumulating the ordinal categories is meaningless, and at worst, the 

accumulated categories take on a changed form. For instance, for the Health Status score, 

accumulating categories (fair', 'poor') versus ('excellent', 'good') implies 'fair or less than 
fair' versus 'better than fair' health status. If the latter were presented on an independent 

binary scale, the rated response would possibly be different to that of the former grouped 

ordered categories. This situation is analogous to that found in questionnaire designs where 
the change in form of words of a question corresponding to the amalgamation of two 

categories will not necessarily result in the amalgamation of responses in the two categories. 

With this in mind, despite McCullagh's (1980) argument, the proportional odds/ partial 

proportional odds models are less attractive for analysing assessed quality of life measures. 

Likewise, the continuation ratio models, where the logits are based on cumulated cell 

probabilities are also less appropriate for the latter situations. The polytomous, adjacent 

category and the stereotype models are based on logits formed using individual discrete 

response categories and therefore are more attractive for assessed ordinal scales. 

From this we deduce: 

for 'group-contin uous 'scales, the proportional odds, unconstrained partial 

proportional odds and the continuation ratio models are more attractive. 

0 For 'assessed' response scales, the adjacent category, stereotype and the polytomous 

models are more appropriate. 
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8.1.6 The most appropriate ordinal reuession models given quality of life 
instruments 

In this thesis, the 'best fit' models given the two health-related quality of life measures are 
stated in section 7.6. In addition to these, it was found that the partially constrained adjacent 
category model was also a 'best fit' model given a discrete ordinal response scale (see section 
8.1.2). 

In the light of the above comments and the findings in the results, the following is stated: 

* Given a single-item assessed quality of life measure, the most appropriate model is 

the partially constrained Adjacent Category model. 

o Given a multi-item quality of life measure, the results andfindings suggest that the 

most appropriate model is thefully constrained Continuation Ratio model. 

The partially constrained Adjacent Category model is not mentioned in the literature. It was 
derived in the light of other partially constrained models. The reasons for the choice of this 

model are (i) it allows for parsimony; (ii) it does not sacrifice the goodness-of-fit and (iii) it 

accommodates for the discrete nature of the ordinal health status categories. It is the only 

model from the partially constrained set (unconstrained partial proportional odds, partially 

constrained continuation ratio and the partially constrained adjacent category) to fulfil these 

necessary requirements of a 'good fit' model, given a discrete response quality of life scale. 

These results can be easily generalised to other discrete ordinal scales. 

The results of the Townsend Disability Scale data are somewhat less generalised. The reason 

of this is that the adjusted covariates were 'forced' to satisfy the constant slope assumption 

and with this in mind, the covariate of interest also had constant slopes. This is not necessarily 

a result that one would expect each and every time, given several covariates. There is a 

possibility that despite the model assumption being 'forced' upon the adjusting covariates, it 

is not satisfied by the covariate of interest. There is therefore some suggestion here that given 

a group continuous quality of life scale, the unconstrained partial proportional odds or 

partially constrained continuation ratio models may be the more likely models used to 

generalise the results. These models take account of the group continuous nature of the 
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ordinal scale and are also likely to offer model parsimony without sacrificing the goodness- 
o f- fi t. 

8.1.7 The clualitv of life instrument and the study population 

The choice of the model is largely dependent on the type of instrument used (whether 

assessed or group continuous). However, many quality of life instruments are generic, such as 
the Health Status index from the SF-36 questionnaire and are used widely on different types 

of subjects. It is possible to choose an ordinal regression model based on the type of 
instrument used and type of study population considered. 

Some ordinal regression models have been devised with specific types of study populations in 

mind. For instance,, the logits of the continuation ratio models would best describe data on 

very old and frail respondents or even elderly people with certain types of cancer. This is 

because the response on these subjects is likely to deteriorate or at the best remain constant 
for some period of time (and this is best captured using continuation ratio logits). 

Alternatively, one may be studying the quality of life on a general group of the elderly 

population and the objective is to assess the response as captured on the scale. The 'best' 

models under these circumstances would be the cumulative logit models. For a group 

continuous quality of life scale, one of the latter two ordinal regression models can be applied 

depending on the study sample. However, if one was to assess the health of very sick and frail 

elderly subjects using, for example, the Health Status index, then although the continuation 

ratio logits may provide the most appropriate odds ratios, one would have to bear in mind the 

difficulties of interpreting the results since a discrete ordinal scale was administered. 

Alternatively, if one is only interested in comparing the 'referent' category response with the 

other response categories and a multi-item instrument scale was administered, then the 

drawbacks of the models that compute the generalised logits, given data based on the total 

score, would have to be taken into account. 

8.1.8 Self-rated health 

As mentioned in Chapter 3, in the literature, self-rated health is a complex phenomenon, 

which is considered by many as a scale where the categories imply continuity. Others view 

self-rated health as intrinsically distinct health states, which are predicted by different factors. 
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The evidence provided in this thesis suggest that depending on how it is viewed, different 

ordinal models can be used to summarise the results. Unlike any other regression model, an 
ordinal analysis has the capacity to determine the type of covariates which predict health 

status as a continuum or otherwise. 

A single odds ratio estimated over the categories, implies that the predictor behaves in a 

similar fashion over the ordinal response categories. Thus, the constant slope adjacent 

category model would be appropriate for summarising the results where health status is 

considered to be on a continuum. The different slopes models (polytomous, adjacent category 

or the stereotype) can be applied with the view that health status is not a continuum and that 

there are certain strong predictors for, say, 'excellent' and 'good' categories and another set of 

strong predictors for 'fair' and 'poor' categories. The partially constrained adjacent category 

model can be used where the covariates demonstrate both types of effects (constant and 
different slopes). 

8.1.9 Sparse data 

Physical disability and cognitive decline in elderly subjects (particularly those with poor 

physical and mental health) often means that this sub-population results in poor compliance in 

research studies (see section 2.3.3). Thus sparse data are more likely to occur in studies where 

the population is elderly people. The data distribution of the Townsend disability score was 

generally positively skewed with sparse data occurring in the upper end of the scale (although 

for the very old respondents, thee distribution was more negatively skewed). One would 

envisage that this would be a typical distribution given the type of study population we are 

presented with. The sparse data are problematic (and result in poor fit models) when a 

category where such data are present is used as a single data point in the formation of the 

logits and the difference between the marginal probabilities of this category and the other (i. e. 

used in the numerator and denominator of the logit formation) is relatively large. 
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8.2 Conclusion 

8.2.1 Addressim! the hypotheses of this thesis 

At the end of Chapter I the aims of this thesis together with related hypotheses were stated. 
Given the results and findings, the following is specified. 

Hypothesis 1: Evidence in this thesis suggested that this hypothesis was true. 

Ordinal regression models compared to linear and binary logistic models are indeed the most 
appropriate methods for analysing ordinal data as measured on quality of life scales in elderly 

people. 

Hypothesis 2: There was enough evidence to refute this hypothesis. 

The evidence in this thesis indicated that the stereotype model was of little use in the context 

of assessed ordinal quality of life scales. 

8.2.2 Contribution to the Literature 

The strengths of this study are as follows: - 

ypeople Health of Elderl 

Results indicate that older people vary in their ratings of their health and that the demographic 

characteristics - occurrence of heart attack and smoking predict these variations. Self-rated 

good health was associated with non-smokers and those who had not had a heart attack. The 

ordinal regression analysis provided further insight into assessing the health of elderly people. 

This analysis showed that having a heart attack affected the health of an elderly person more 

than if he/she was a smoker (see Table 8.1). The effect of 'heart attack' is more pronounced 

for those elderly people with 'good' compared to 'excellent' or 'fair' compared to 'good' 

health than for those with 'poor' compared to 'fair' health. 
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Regardless of sex and age-group, older people who have had more than 13 years full-time 

education are more likely to have a better form of disability than those with less than 13 years 
full-time education. There is implication that although 'full-time education' is a predictor of 
physical disability, it is not a very strong predictor. 

Statistical Contribution 

The statistical contributions were :- 

Highlighting the inadequacy of linear regression models for analysing ordinal quality of 
life data collected in elderly subjects; 

Illustrating the limitation of binary logistic models for analysing ordinal quality of life 
data; 

Offering statistical methodology (based on first principles) that can be used to fit all 
ordinal regression models. These methods can be easily implemented in SAS. It is 

possible that these methods can be implemented in other software packages, if the 
facilities to compute the design matrix and the different type of logits are available. These 

statistical methods allow one to fit any ordinal regression model and constrain the 

parameters in any way possible. 

In the literature, the partial proportional odds models could be fitted with either all the 

covariates having proportional odds or all the covariates having partial proportional odds 
(Peterson and Harrell, 1990). The facility to fit covariates with both proportional odds and 

partial proportional odds has not been available previously. Also, the programs to fit the 

unconstrained/partially constrained continuation ratio models require manipulation of the 

data (Cole and Ananth, 200 1). The methods in this thesis do not require the user to 

change the format of the data and therefore are easily implemented to fit these models. In 

addition, these methods have allowed one to assess the goodness-of-fit and residuals of 

the non-linear version of the stereotype model. 

0 Illustrating the limitations of the constrained partial proportional odds model. 

0 Identifying the particular features of different ordinal regression models (constant, 

different slopes models and partially constrained models); 
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Other modelling aspects such as residual analysis, sparse data and interpretation of 
interaction terms that are particularly relevant when presented with quality of life data on 
elderly subjects have been assessed. 

Medical Contribution 

0 Unlike any previous study given in the literature, this study illustrates that given a 
discrete assessed ordinal quality of life scale, (such as the Health Status index), the most 
appropriate model for analysing the data is the partially constrained Adjacent Category 

Model. This result can be generalised to other assessed ordinal scales. 

0 Given a group continuous scale, the results from the analysis suggest that the fully 

constrained Continuation Ratio model would be the 'best' model to fit the data. However, 

one has to be cautious in generalising these results to other multi-item quality of life 

scales, as the assumption of constant slope may not be satisfied by the covariate of 
interest (although it may be 'forced' upon the adjusting covariates). In the light of this, 

and the other results in this thesis, it is recommended that other possible models which 

may be more likely to fit the data and therefore are adequate include (i) the unconstrained 
Partial Proportional Odds model; (ii) the partially constrained Continuation Ratio models. 

Sparse data are more likely to occur given that our study population are elderly people 

(see section 2.3.3). Also, the data distribution of the Townsend disability score is typical 

of what one might expect given our study population. Ordinal regression models are 

sensitive in detecting categories where sparse data are present and these data are 

highlighted as outliers in the residual analysis. 

Health Status 

Health status has been identified as a complex phenomenon in the literature (see Chapter 3). 

Certain investigators view health status as implying continuity and the border separating 

'good' from 'bad' health is vague. Others have shown that there are different predictors for 

good and poor health. As the research community stands divided over how to define health 

status, there is a need to accommodate the different ways that health status is perceived. 

Ordinal regression models offer the investigator (i) assessing the effect of the predictors over 

the entire health status scale, assuming it implies continuity (using constant slope adjacent 

category model), or alternatively (ii) ways of identifying strong predictors for the different 
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categories of health status (e. g. fitting different slope adjacent category model). The partially 
constrained models offer the option of modelling covariates that may be a mixture of those 

which assume health status as continuous or otherwise. 

Townsend Disabilijy Score data 

In Chapter 7, it was found that if the constant slope assumption was satisfied (as it was for 
'full-time education'), then the binary logistic regression model as fitted by McGee et al. 
(MRC CFAS' study (1998)) was an appropriate method for analysing the data. In this thesis, 

the fully constrained continuation ratio model was recommended as the 'best' models for 
describing the data. This model provided identical odds ratios to the latter binary model. This 

suggested that the binary model as fitted by McGee et al. (MRC CFAS I study (1998)) was a 

satisfactory method. However, in the latter publication, nine covariates were used in the 

model with each covariate providing an adjusted odds ratio. There is a possibility that for 

some of the covariates (where one cannot assume a constant effect over the continuous 
disability scale), the adjusted estimate of the odds ratio may be misleading. 

8.2.3 Limitations of the Study 

The methodological limitations of this study are now provided along with some indication of 

the size of these limitations within the framework of ordinal regression models. 

0 Age group covariate in the Townsend Disability Score data as ordered categorica 

covariate: The age group covariate was fitted as an ordered categorical covariate in the 

analysis (with the exception of the binary model). This meant that the age group 

categories took on a linear structure, and this severely constrained the fit of all the models 

fitted in the analysis. The reasons age group was taken as ordinal were: (i) that this was its 

true form and (ii) computationally it was easier to fit and manage. As a result, the full 

potential of the models (in particular the assessment of the model assumptions and the 

residual analysis) could not be exploited due to the confounding effect of the ordinal 

structure imposed on the age group categories. This considerably limited the 

interpretation of the results. The analysis of this dataset was also carried out using age 

group as a categorical variable and the results of the 'full-time education' covariate were 

not very different to those presented in this thesis. 
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Asymptotic Relative Precision: 
- 

A general conclusion regarding the Asymptotic Relative 
Precision (ARP) values was drawn based on the evidence provided. However, the APRs 
could not be obtained for all the ordinal regression models and therefore these measures 
were computed only where it was possible. Despite this, the results could be extrapolated 
to comfortably accommodate all the ordinal regression models. 

0 Goodness-of-fit of the models. - In theory, the method devised by Lipsitz (1996) for 

examining the goodness-of-fit and assessing the residuals is sound. However, in practice 
its application is difficult, as the design matrix becomes very difficult to implement. This 
did not hinder the residual analysis as the goodness-of-fit of each ordinal regression 
model was then based on a statistic derived from the response functions. 

0 Residual Analvsis. - The residual analysis for some of the ordinal models was carried out 

using binary regression diagnostics. However, there were other ordinal regression models 
(e. g. unconstrained partial proportional odds model, constant slope adjacent category 

model, fully constrained continuation ratio model and the stereotype model) where this 

was not possible and the residual analysis was based on the visual assessment of the 

residuals obtained from the logit values. This led to indefinite conclusions being drawn 

regarding the outliers, as the choice of these observations was not based on any sound 

statistical evidence. This limited the conclusions of the residual analysis. 

* Akaike Information Criteria LALQ: The AIC statistic provides a means of comparing all 

the ordinal regression models. However, this measure was only obtained for a few of the 

models where the -2log-likelihood could be derived. For the other models since weighted 

least squares was the estimation method used, the -2log-likelihood was not available. 

Where the AIC statistics were present the models were compared. However, not definite 

conclusion could be drawn regarding comparison of the fit of all ordinal regression 

models. 

Covariate ad - In the analysis carried out Y, ustment in the Townsend Disability Scale data. 

by McGee et al. (MRC CFAS', 1998) there were nine covariates adjusted for in the 

analysis. All these covariates could not be adjusted for when fitting the ordinal regression 

models. This is because the computation of these models becomes very complex (even 

with only three covariates), particularly when fitting the design matrix. This substantially 

limited the conclusions drawn, as the results from the publication could not be fully 

compared those provided in this thesis. 
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8.2.4 Areas of Further Research 

The results and findings of this study raise further questions regarding the statistical aspects 
of ordinal regression models. Recommendations for future work are now given. 

0 Several covariates in an ordinal regression model. - A researcher often requires several 

covariates in a model (with the possibility that all are strong predictors of the response). 
Presently an ordinal regression analysis is restricted to three and possibly no more than 
four covariates in a model, as the design matrix becomes very complex. Further research 
is required, in terms of computation, so as that it can be possible to fit several covariates 
in an ordinal regression model. 

0 Estimating the constraints for the constrained partial proportional odds model. - This has 

already been identified as an area of further research (see section 8.3). This area could 

possibly be taken further by looking at the continuation ratio model/adjacent category 

model where one could estimate constraints (similar to the ordering constraints used in 

the non-linear stereotype model). If such constraints simplified the different slopes 

models, without sacrificing the goodness-of-fit then these would be ideal to use for 

interpretation of the data. 

Residual Analysis: The limitations of the methods used to assess the residuals of some 

ordinal regression models are discussed above, and there is evidence that this need further 

research. 

0 Indistingyishybilibý in the Stereo4ype model. - More research is required to compare 

models where indistinguishability has been imposed and where there are some or no 

indistinguishable categories. Presently the software to do this is under-developed. 

Computation of the models: Particular attention is drawn here to the bootstrapping 

technique and the computation of the Lipsitz's (1996) statistic. The bootstrapping 

technique was very computationally intensive and time consuming. Also, the Lipsitz's 

(1996) statistics could not be computed due to the complex design matrix. These have left 

gaps for further research. 
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Engel (1988) mentions working towards 'one super model' that would allow one to compute 

any type of ordinal regression within its framework. This thesis has certainly provided some 

steps towards achieving this, with the implementation of the method based on the use of the 
design matrix. Also, this study has provided a deeper understanding of the analysis of ordinal 
data (as collected on elderly subjects) using different regression models. Research on health- 

related quality of life as measured on elderly people is at an early stage of development. 

Further insight into quality of life can be provided by the use of appropriate statistical 

methods, such as ordinal regression models. Such insights can guide attempts to intervene 

most efficiently in encouraging elderly people to alter habits/lifestyles that may be deleterious 

to their health and quality of life. It is hoped that as the results and findings are disseminated 

it will encourage investigators to use these models for analysing their data as opposed to other 

statistical methods (such as the linear or binary regression models as is often done in the 

literature). 
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APPENDIX I- ORDINAL SCALES AND COVARIATES 

ListiLig Iq: Ordinal scale variables-from the Core MRC CFAS Prevalence Screenin-a 
Questionnaire. 

V33. How often see relative to talk to: 
0. Never 1. Daily 2.2-3 times a week 3. At least weekly 4. at least monthly 5. less often 
7. don't know 8. not asked 

V35. How often do you see the relations which you have most contact with : 
1. daily 2.2-3 times a week 3. at least weekly 4. at least monthly 5. less often 7. don't 
know 8. not asked 

V3 7. How often do you see your neighbours? 
0. Never/no neighbours 1. daily 2.2-3 times a week 3. at least weekly 4. at least monthly 
5. less often 7. don't know 8. not asked 

V40. Subject rating of own health? 
0. Excellent 1. Good 2. Fair 3. Poor 7. don't know 9. not asked 

VI08. Memory difficulty - is this a problemfor you? 
0. No 1. Yes, moderate 2. Yes, severe 

VIIO. Memory difficulty -have you tended tojorget things recently? 
O. No 1. Yes, several time a week 3. Yesatleastdaily 

VIII. Memory difficulty -what kind of things doyouforget? Names offamily and close 
friends 
0. No 1. Yes, several times a week 2. Yes, at least daily 

VIIZ Memory difficulty - what about where you put things? 
0. No 1. Yes5 several times a week 2. Yes, at least daily 

V 114. Memory loss - when didyoufirst notice this beginning? 
1. less than I year ago 2. In the last 1-2 years 3. In the last 3 -4 years 4. In the last 5- 10 years 
5. over ten years ago 8. no answer 9. not asked 

VII 7. Ever hadproblems sleeping? 
0. Never 1. Seldom 2. Sometimes 3. Often 4. All the time 8. No answer 9. Not asked 

V120. Do you snore? 
1. No 2. Sometimes 3. All the time 
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Listing Ib: Disabiliýy Scale 6q-om which the ordinal Townsend Disabilily Scale is derived) 

Q 121.1 would like to know ifyou are able, or ýfyou have any difficulty with, thefollowing 
ten activities. So are you able to cut your own toe-nails? 

0. (No) need help 1. (Yes), some difficulty 2. (Yes), no difficulty 
7. Don't know 8. No answer 9. Not asked 

Q122. Are you able to wash all over or bath? 
0. (No) need help 1. (Yes), some difficulty 2. (Yes), no difficulty 
7. Don't know 8. No answer 9. Not asked 

Q123. Are you able to get on the bus? 
0. (No) need help 1. (Yes), some difficulty 2. (Yes), no difficulty 
7. Don't know 8. No answer 9. Not asked 

Q124. Are you able to go up and down stairs? 
0. (No) need help 1. (Yes), some difficulty 2. (Yes), no difficulty 
7. Don't know 8. No answer 9. Not asked 

Q125. Are you able to do the heavy housework? 
0. (No) need help 1. (Yes), some difficulty 2. (Yes), no difficulty 
7. Don't know 8. No answer 9. Not asked 

Q126. Are you able to shop and carry heavy bags? 
0. (No) need help 1. (Yes), some difficulty 2. (Yes), no difficulty 
7. Don't know 8. No answer 9. Not asked 

Q12 7. Are you able to prepare and cook a hot meal? 
0. (No) need help 1. (Yes), some difficulty 2. (Yes), no difficulty 
7. Don't know 8. No answer 9. Not asked 

Q128. Are you able to reach an overhead shetr. 
0. (No) need help 1. (Yes), some difficulty 2. (Yes), no difficulty 

7. Don't know 8. No answer 9. Not asked 

Q129. Are you able to tie a good knot in a piece of string? 
0. (No) need help 1. (Yes), some difficulty 2. (Yes), no difficulty 

7. Don't know 8. No answer 9. Not asked 

Q130. 
0 

Are you able to put on your shoes and socks or stockings? 
(No) need help 1. (Yes), some difficulty 2. (Yes), no difficulty 

. 7. Don't know 8. No answer 9. Not asked 
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APPENDIX 11 - COMPUTATION OF THE REGRESSION 
MODELS 

Section 1: Computation of the regression models 

Linear r! ýgression models: The linear regression models were fitted using PROC GLM in 
SAS, as the response was taken to be on a continuous scale 

Binary logistic regression models: PROC LOGISTIC can be used to fit binary logistic 

regression model as described by McGee et al. (MRC CFAS', 1998). This procedure is unable 
to allow for the ordinal nature of 'age group' and therefore this covariate had to be fitted as 
categorical. All other binary logistic regression models were fitted using PROC CATMOD to 
keep in consistent with the ordinal regression models. 

Polytomous Models: The procedure used to fit the polytomous model was PROC CATMOD 

and maximum likelihood estimates were provided. 

Proportional odds models: PROC LOGISTIC provides maximum likelihood estimates for the 

proportional odds model. It also provides the global X2 -score statistic that tests all the 

covariates for the proportional odds assumption. For this thesis, the proportional odds model 

was fitted in PROC CATMOD, where the estimates were obtained using weighted least 

squares method. This was the preferred procedure as it was consistent with the other models. 

Partial Proportional odds models: The only procedure that could fit the partial proportional 

odds models was PROC CATMOD. This procedure provided weighted least square estimates. 

Adyacent Category Models: The adjacent category models were fitted using PROC 

CATMOD. This procedure provided weighted least square estimates. The different slopes 

model was used to test the assumption of a constant slope and some slopes being constrained 

as equal by the specification of the CONTRAST statement in PROC CATMOD. 

Continuation Ratio Models: The constant slope continuation ratio model was fitted in PROC 

LOGISTIC. This procedure provided a global test of parallel slopes for all the covariates in 

model. PROC LOGISTIC could have been used to fit the separate binary logistic models 

based on the cut-points of the continuation ratio model. PROC CATMOD was used instead, 

to keep in consistent with the other models. Also the unconstrained and partially constrained 
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continuation ratio models were fitted using PROC CATMOD with a specification of the 
response function and design matrix. This method provided weighted least square parameter 
estimates. The unconstrained continuation ratio model provides a means for testing for 

constant slopes. 

Stereojype Model: The stereotype model (non-linear) where the constraints were estimated as 
parameters in the model was fitted using especially devised macros in SAS and STATA by 
Hendrickx (2000) and Lunt (200 1). The stereotype model (linear form) with the estimated 

constraints used as constants was fitted using PROC CATMOD. 

Section 2: Model fitting 

L Observed sample data 

The starting point of the model fitting procedure was to compute the observed sample 

marginal probabilities (py) and the observed sample logits or response functions F(p). 

Lar) Observed sample marginal probabilities 

From Table 3.1 pi (Pil 
Y Pi2 . ....... pjj with pu = 1, (where i r, andj =I.... C) 

denotes the conditional distribution of Y at level i of the sub-populations (obtained from the 

levels of the explanatory variables) and p= (pl % P2 ......... pc'). Then pu corresponds to the 

proportion of subjects in each group response and is written as: 

py = n, / n, + where ny is the number of subjects in the i th group or cell who have the yh 

response. Thus 

(Pill, A21 ..... p,, ) and p, is of dimension (I x c) 

and f P -'ýJP19P29-lp, 

is of dimension (I x rc). 
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The rows of the contingency table are considered to be simple random samples from the 
multinomial distribution; since the rows are independent, the entire table is distributed as 
product multinomial. Then the covariance matrix for the proportions is the sample estimate 
covariance matrix for V(p) (of dimension rc x rc) i. e. 

Pil(l-Pil) -AA2 ...................... 
- Pj2Pil Pil (1 - Pi2) * .................... 

V(pd - Pi3Pil Pi3Pi2 A3 Pi3)* 

n, + 

- pi, pil - PirPi2 

- Pil A, 

- POPir 

- Pi3Ptr (A2) 

Pir 0- Pir 

Then the covariance matrix for the entire table can be written as: 

v00..... 0 1 
0 V2 0-- 0 

V(P) 
00 V3**"* 0 

000 Vr 

Observed sample response functions and their variance-covariance matrix 

(A3) 

Once the proportion vector and covariance matrix have been computed, the observed sample 

response functions are obtained. 

Let F(p) be a vector of u: ý r(c-1) response functions. Then [F(p)]' = [f, (P), f2(P),.... fu(p)] and 

f,, (p) are functions of the elements of pj, that are assumed to have continuous second-order 

partial derivatives. 

ThenletQ(p)= 
'fm(p) 

which is a uxcrmatrix, with mu and forall 

ap u 
combinations (0 . We assume that thef, (p) are linearly independent, so that Q has rank u. 

Logit response functions have the form 
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F(p) =K log(Ap) (A4) 

for certain matrices K and A, where log transforms a vector to the corresponding vector of 
natural logarithms. In this case Q(p) = KD-'A, where D is a diagonal matrix with the 
elements of the vector Ax on the diagonal. 

The asymptotic sample variance of F(p) is 

Q(P)V(P)Q(P), - (A5) 

The above provides us with the observed probabilities and response functions. The idea 
behind model fitting is to use variation on the design matrix X and provide estimates of the 

parameters that lead to predicted probabilities and logits. Thus, the logit models can be 

expressed in the form: 

F(7r) = X, 8 (A6) 

where F(; r) is the vector of the r(c- 1) logits, X is a r(c- 1) xv design matrix and fi is a vector 

of the parameters P, 
........ 

8, to be estimated. 

II. Parameter estimation and Inference 

Two methods are used to estimate the parameters in a model: 

(a) the maximum likelihood method estimates the parameters of the linear model so as to 

maximise the value of the joint multinomial likelihood function of the responses. 

(b) the weighted least squares method minimises the weighted residual sum of squares 

for the model. The weights are contained in the inverse of the covariance matrix (A5) 

of the response functions. Weighted least squares is a generalisation of ordinary least 

squares that give relatively more weights to a sample logit as its variance decrease. 

The following section details these two methods in relation to ordinal regression models. 
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(a ) Maximum likelihood estimation 

When presented with logits that are of a generalised form, as in the case of the separate binarY 
logistic, polytomous, continuation ratio (using separate binary logistic regression models) and 
the linear stereotype models, the analysis is based on maximum likelihood estimation and the 
Newton-Raphson algorithm is used. These multinomial models can be treated as a direct 
extension of the binary logistic regression model, and therefore take the response as being 

nominal. For these models the log-likelihood is concave and parameter estimates necessarily 
exist and are unique and finite if all observed cell counts are positive. The mechanics of the 
maximum likelihood estimation method and model fitting for the latter logit regression 
models is detailed below. 

To use the method of maximum likelihood, we start with the observed sample probabilities 
(po) and obtain the log-likelihood. 

Generally, the contribution from a single multinomial observation fnij,.... nj to the 

likelihood function is p",.... p"c and we can write ii IC 

l(pj; nj)=j]n logpj (A7) 

The observations and the probabilities are subject to the linear constraints that are non- 

negative and add to 1.0. Since the N observations are independent by assumption, the total log 

likelihood is a sum of contributions, one from each of the N observations. 

Thus 1(p; n) ny logpi 
j 

(A8) 

The first derivative of the log-likelihood can be written as: 

c9 log 1(p; n) 
_ 

n. - m, pj (A9) 
c9p u PU 

where mi = n, and is fixed for each i. 

The design matrix determines the number and type of parameters that are fitted. The 

likelihood equations for the parameters are obtained by multiplying (A9), by the derivative of 
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p. with respect to each parameter in turn and summing over i andj. For example, suppose we 
have a generalised ordinal regression model of the form 

a, +I Xik 
jfljk 

k=1 

then 

qr =a 
log 1(7r; n) c9 log 1(; T; n) 

.a7. 
r ij 

aflr a; Tij afir 

The RHS is made up of two components with the 

r=l,.... Iv 

a log 1(7r; n) 

t9zy 

10) 

is obtained from the sample 

data and 
a; ro 

- 
a; r '. 

* 
C9 77'. is obtained partially from the above specified ordinal regression a18,13 77 i M, 

model. The expected value of the second derivative is obtained from (A 10) and is used in a 
series of Newton-Raphson iterations to obtain a sequence of parameter estimate, such that 

=, 6,. (') -(Hr(t))-'qr(t) 11) 

where q, (t) and H, () denote q, --:: 1,2,... v and H, is the expected values of the second derivative 

respectively. These are evaluated at estimated generalised probabilities obtained at the ýh 

iteration. Convergence usually occurs within a few cycles and to estimated maximum 

likelihood parameters and the covariance matrix of the model parameter estimates V(, 8) are 

produced as a by-product of this method. 

The predicted response functions are obtained using the parameter estimates such that 

F(; T^) = X, 8 and the estimated covariance-variance matrix is obtained as Z= XV(, 6)X'. 

('ý) Weighted least squares method 

For the proportional odds, partial proportional odds (constrained and unconstrained), the 

adjacent category and the continuation ratio models the method of maximum likelihood is not 

so easily adapted as the response functions are complex functions of the cell counts. Weighted 
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least squares estimation is much easier than maximum likelihood estimation to compute these 
models. 

The weighted least squares estimates of 8, 
....... . 

8, is the vector that minimises the quadratic 
form: 

Qw = (F(; r) - X, 8)'E-'(F(; T) - Xfl). (A12) 

This estimate equals 

,6= (A13) 

The covariance matrix for b is written as: 

V(fl) = (xs-lx)-l. (A14) 

The design matrix, X, is dependent on the type of logits and parameters fitted. The predicted 

values of the response functions F(fir ) are smoother than the observed response functions and 

are obtained by F(7^r) = X(XS-'X)-'XS-'F(p). The estimated covariance matrix of the 

predicted response functions is 

Z= 

X(xs- x)- X- (A15) 

(c) Statistical Inference 

One can address questions about the parameters with the use of the hypothesis tests. Each 

hypothesis is written in the form: 

Ho. - Q3=0 16) 

and one can investigate whether specified linear combinations of the parameters are equal to 

zero. The test statistic employed is a Wald statistic that is expressed as: 

(Cß) 0 [C(X Z -' x) -' cl -' (Cß) (A17) 
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where Q, is distributed as chi-square with degrees of freedom equal to the number of linearly 
independent rows in C. 

Section 3: Computing the Ordinal Logit Models using SAS 

PROC CATMOD in SAS was predominantly used to fit the binary and ordinal regression 
models. Stokes et al. (1995) detail the computation of the polytomous and proportional odds 
models using methods based on first principles. These methods were adapted to fit the binary, 

partial proportional odds, adjacent category, continuation ratio (constrained and 
unconstrained) and the linear stereotype models. The general SAS code used in PROC 
CATMOD was: 

PROC CATMOD DATA=dataset; 

RESPONSE logit1clogitlalogit; 

POPULATION XI X2; 

DIRECT XI X2; 

MODEL y-response=design matrix/options; 

run; 

The RESPONSE statement specifies functions of the response probabilities. In the case of the 

cumulative logits, CLOGITS was used; for adjacent category logits, ALOGITS was used and if 

the generalised logits were required LOGIT was specified. For the continuation ratio model, 

no statement exists and one has to compute the response functions according to the y-response 

present in the data (see section 5.2.3.4 ii (d) and section 5.3.3.4 ii (d)). 

POPULATION specifies the independent variables that determine the sub-populations that 

are formed on the basis of cross-classification of the specified covariates. DIRECT allows the 

specification of the continuous covariates. 

The MODEL statement is made up of the dependent variable and the potential sources of 

variation. These sources of variation were specified in a form of a design matrix. 

The code changes depending on the type of response function required and the expression of 

the systematic component of the model. In the literature cumulative logit models are often 

modelled using equation (3.8). However, PROC CATMOD specifies the cumulative logits as 
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ln[Pr(Yi--? yj)/Pr(Y, <yj)]. Also the adjacent category logits are often modelled using equation 
(3.16) and in SAS these logits were based on ln[Pr(Y, =yj-IlPr(Yi=y, )]. 

There were three scenarios as regards model fitting: (i) a different slopes model fitted where 
different regression parameters {, 8jl were required (e. g. for the polytomous, different slopes 

cumulative, different slopes adjacent category and unconstrained continuation ratio models); 
(ii) a model with constant slopes over all the response categories (e. g. the proportional odds, 
fully constrained continuation ratio, constant slope adjacent category and the linear stereotype 

models), and (iii) a model with a combination of covariates , some of which have different 

slopes and some of which have constant slopes over the cut-points (e. g. constrained and 

unconstrained partial proportional odds models and the partially constrained continuation 

ratio and adjacent category models). For each scenario, the variation was on the design 

matrix, when fitting the logit models. Details of how the design matrix was constructed are 

given in Section 5: Statistical Analysis. The appropriate design matrix was taken and the SAS 

code, similar to the one below, was computed. 

ytomousldifferent slope CumulativelUnconstrained (a) Scenario 1: Fitting the Pol 

Continuation RatiolAdIjacent Category models 

The general SAS code when fitting the different slopes models given the Health Status data 

was: 

Proc catmod data =temp2a; 
response clogits/logits/alogit; 
population v6l 

- 
SO 

- 
vl50-sO-; 

model v40-sO = (1 00100100, 
01001001 of 
00100100 if 
100 -1 0010 Of 
0100 -1 001 Of 
00100 -1 001 
100100 -1 00 
0100100 -1 of 

00100100 -if 
100 -1 00 -1 00r 

0100 -1 00 -1 Of 

00100 -1 00 -1)/Pred=prob cov; 

contrast 'bll=b2l=b3l' all 
- 

parms 0001 -1 0000, 

all parms 00001 -1 000; 

contrast Ib21=b22=b32' all parms 0000001 -1 0, 

all parms 00000001 -1; 

contrast 'smoke: 2b1l' all_parms 00020000 

O/estimate=both; 
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contrast 'smoke: 
O/estimate=both; 

contrast 'smoke: 
O/estimate=both; 

contrast Ih. a.: 
O/estimate=both; 

contrast 'h. a.: 
O/e3timate=both; 

contrast 'h. a.: 
2/estimate=both; 

run; 

2b2l' all-parM3 00002000 

2b3l' all-parms 00000200 

2bl2' all-parms 00000020 

2b22' all-parms 00000002 

2b32' all-parms 00000000 

Observed marginal 
-probabilities: 

The marginal probabilities were obtained in SAS after the 

specification of the RESPONSE function and the design matrix, using PROB in the 
MODEL/OPTIONS statement. In the SAS output, the observed probabilities were detailed in 

the 'Response Probabilities' Table. 

Response Functions 

In SAS the POPULATION statement had the two class covariates 'heart attack' and 'smoke' 

and no DIRECT statement was specified. Here the 'v6 I-sO-' is the 'heart attack' covariate 

and 'v I 50_sO_' is the 'smoke' covariate. The design matrix was specified in the MODEL 

statement with the health status ('resp') as the response variable. The RESPONSE statement 

used one of the logits specified in the code; it depended on which model was being fitted. 

Given, for example, the polytomous model, where the maximum likelihood estimation 

method was used the SAS output provided the iterations history and the values for the -2 log- 

likelihood (detailed in the 'Maximum Likelihood Analysis' Table). The maximum likelihood 

parameter estimates together with their standard errors were obtained in 'Analysis of 

Maximum Likelihood Estimates' table. The observed and predicted response functions were 

given in the 'Maximum Likelihood Predicted Values for Response Functions' table. For the 

different slopes models where the method of estimation was weighted least squares, one 

required the observed sample response functions and the variance-covariance matrix of the 

observed sample response functions, S. These were displayed in the 'Response Functions and 

Covariance Matrix' table and the 'Predicted values of the Response Function' table. The 

standard errors of these response functions were displayed in the 'Predicted values of the 

Response Functions' table. The predicted response functions and their variance-covariance 

matrix are also displayed in the same tables. 

Contrast Statements : The log odds ratios was obtained by taking the difference in the 

appropriate response functions as detailed in section 5.2.3.1 (d). The linear 

combination of the parameters that make up the difference was specified in a 
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CONTRAST statement and this also provided the estimate of the log odds ratio 
together with the odds ratios and their 95% confidence intervals. With the 
specification of /ESTIMATE=BOTH after the CONTRAST statement, a point 
estimate of 2,81, (i. e. the log odds ratio of smokers versus non-smokers from section 
5.2-3.1 (d)) with its standard error was provided. 

The CONTRAST statement was also used to test hypotheses such as Ho. -, 81=, 82= & 
Hypothesis testing was required for assessing the interaction term (where the effects were 
tested against zero) or the effects used for model assumptions such as the proportional odds or 
parallel slopes (where the effects were tested for homogeneity). One of the by-products of the 
contrast statement was the estimate of the odds ratios and their 95% confidence intervals and 
this provided the relevant summary statistics for many of the models. 

Scenario 2: Fitting the Proportional Oddl constant slope Adjacent Category1constant 

slope Continuation Ratiollinear Stergoope models 

The parameters were constrained to be the same over all the cut-points for the constant slope 
models. The variation in the above code was in the specification of the design matrix for the 

proportional odds model. This design matrix was used for the constant slope adjacent 

category, the constant slope continuation ratio and the linear stereotype models. 

Similar SAS output to (a) was provided for the response functions and the marginal 

probabilities. 

Lc) Scenario J. - Fitting the Partial Proportional Odds models Lconstrained and unconstrained) 
Lacent CaLego? y models models and the partialA constrained Continuation Ratio and Ad 

The design matrix used for the unconstrained partial proportional odds model is detailed in 

the matrix formulation 5.12 and for the constrained partial proportional odds model is detailed 

in the matrix formulation 5.17, given the Health Status data. The design matrix for the 

partially constrained continuation ratio model is detailed in section 5.2.3.4 (iii). Each of these 

design matrices was incorporated into the above SAS code, resulting in weighted least square 

parameter estimates. The odds ratios and their 95% confidence intervals were obtained using 

the CONTRAST statement. 
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Similar SAS output to (a) was provided for the response functions and the marginal 
probabilities. 

Section 4: Fittinz the Stereo(vpe Models usine Hendrickx's (2000) and Lunt's (2001) 
macros 

Macros have been devised in SAS and Stata by Hendrickx (2000) for fitting the stereotype 
model using conditional logistic regression. For this thesis, the macros devised in SAS were 
used. The data were transformed into a form suitable for a conditional logistic regression 
model using the mclgen macro. Once the data had been transformed and the model fitted, the 
same parameter estimates as obtained for multinomial models were estimated. However, in 

using this method there is an additional advantage in that greater flexibility is allowed such 
that different constraints can be imposed on the response for different independent variables. 

There are two main macros that were used and these are as follows: 

(a) mclgen -This transformed the data into a person/choice file. In the person/choice file, 

each respondent had a separate record for each category of the response variable. A 

stratifying variable (_STRATA) indexed respondents, the response variable indexed 

response options (_NEWY) and a dichotomous variable (_DEPVAR_) indicated 

which response option was the respondent's actual choice. The effects of the 

independent variables were included by creating the yj to yc dummy variables. 

Suitable transformation of the response dummies allowed for other response functions 

than the standard logits, in which the highest category was the referent category. 

(b) Mclest - this entered the dichotomous dependent variable and stratifying variable and 

then estimated the multinomial model using the conditional logit procedure PROC 

PHREG. A conditional logit model was characterised by a binary dependent variable, 

independent variables indicated choices as well as characteristics of the respondents, 

and a stratifying variable, within which the likelihood was evaluated. In addition, 

PROC PHREG required a censoring variable (_NOT) in order to estimate conditional 

logit models. This censoring variable had the mirror value of the new binary 

dependent variable and was specified in conjunction with this dependent variable. 

Mclest iteratively estimated the multinornial conditional logit model, by first taking 

the Oj scaling metric as given and estimating the fikparameters, then taking the fik 

parameters and estimating the Oj parameters. This continued until the change in the 

log likelihood between the successive multinornial logistics models was less than 
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some given value (by default this is equal to 0.000 1) or the maximum number of 
iterations was exceeded (default 10). 

This model produced (c-1) standard multinomial intercept parameters, (c-1) independent 01 

and a single P for each covariate. In the case where the constraints were estimated, the fikand 

Oj parameters were conditional on the estimates and the standard errors of the odds ratios were 
invalid. Likewise, any inference based on the standard errors was also not correct and instead 

bootstrap techniques (random sampling with replacement from the original dataset) were 

applied to obtain the correct standard errors and tests. The aspects of indistinguishability and 
dimensionality were also assessed using a macro devised in STATA, known as SOREG (Lunt, 

2001). 
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Table Ila: Log odds predicted_for the polytomous model using the Townsend Disabilioý Scale 
data 

Full-time 
education 

Sex 
(9) 

Age group 
(h) ffgh 

I 
A) 

/T 
ffgh 

2 
A) 

/T 
ffgh 

3 IT 
ýfgh 

4(^) 

<13 years Male <70 Otl+)611+)612+, #13 a2+)621+, 822+fl23 a2+fl3l+, 832+fl33 a4+, 641+)342+fl43 

<13 years Male 70-75 aj+2fljJ+)612+fi13 q2+2fl2I+J822+fl23 q2+2fl31+i832+#33 a4+2,841+)342+#43 

<13 years Male 75-80 al+3,811+, 812+fl]3 a2+3,621+, 822+923 q2+31831+)632+fi33 a4+3, fl4l+)642+fl43 

<13 years Male 80-84 al+4,611+, 812+fll3 a2+4,621+, 622+fl23 a2+4,631+, 832+933 a4+4,841+, 842+943 

< 13 years Male ý: 85 al+5flll+, 612+fll3 a2+5fl2l+fl22+fl23 a2+5fl3l+, 632+fl33 a4+5fl4l+)642+fl43 

<13 years Female <70 al+, 611-)612+913 a 2+)621-, 622+, 823 a 2+, 63 1 -t832+fl3 3 a4 -)64J-i8422+, 843 

<13 years Female 70-75 aj+2,8,1-, 612+flI3 a2+2,821-)622+923 a2+2,831-, 832+fl33 a4+2,841-, 842+fl43 

<13 years Female 75-80 al+3,811-, 012+#13 a2+3,821-)622+fl23 a2+3,031-, 832+933 a4+3,841-, 842+fl43 

<13 years Female 80-84 aj+4,8,1-, 612+flI3 a2+4)62l-fl22+#23 a2+4,831-, 832+#33 a4+4,841-, 642+943 

< 13 years Female ý! 85 al+5flll-)612+fl]3 a2+5fl2l-, 622+fl23 a2+5,831-, 832+933 a4+5,641-, 642+943 

ý13 years Male <70 aI+)611+, 6127fiI3 a2+, fl21+)622-fl23 a 2+, 631+)332-933 a4+)641+, 642-943 

ý13 years Male 70-75 aj+2,8j1+, 8127fiI3 a2+2,821+, 622-fl23 q2+2fi3I+, 632-fl33 a4+2fl4l+, 842-943 

ý13 years Male 75-80 al+3)611+, 812-913 a2+3,821+)622-fi23 q2+3P3 1+, 032-fl33 a4+3,841+)642-943 

ý13 years Male 80-84 al+4)611+)312-fll3 a2+4,821+)622-923 a2+4,831+, 623-933 a4+4,841+)642-#43 

> 13 years Male ý! 85 a, +5,611+j6J2-flI3 a2+5)621+, 822-fl23 a2+5,831+J6237fi33 a4+5,041+, 842-fl43 

ý13 years Female <70 al+)611-, 612-PI3 a 2+, 821-, 622-fl23 a2+, 831-)623-933 a4+1841-)642-fl43 

* 13 years Female 70-75 aj+2,8,1-, 612-flI3 a2+2,021-, 622-fl23 q2+2fl3I-)623-#33 a4+2,841-)6427fl43 

* 13 years Female 75-80 a, +3)6j1-, 6127flI3 a2+3,821-)622-923 a2+3,831-, 823-933 a4+3,641-, 642-fl43 

* 13 years Female 80-84 aj+4fljI-)6127fl13 a2+4,821-J622-P23 a2+4,831-)623-933 a4+4,841-, 842-#43 

* 13 years Female ':: ý85 al+5,811-)612-913 q2+5,821-j6227fl23 a2+5,831-, 823-fl33 a4+5,841-)642-943 
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Table IIb: Log odds_for the cumulative model with yge groM (proportional odds), sex 
(proportional odds) and_full-time education (non-proportional odds) 

Full-time 
education 

Sex 
(9) 

Age group 
(h) ffghl A) 

/T ffgh 
2 

ffgh3 (/ 
fl 

.f Igh 4 
(Ifl 

<13 years Male <70 al+fll+)62+P13 a2+, 81+, 82+923 a2+)6l+fl2+933 a4+fll+fl2+fl43 

<13 years Ma e 70-75 al+2,81+fl2+fll3 a2+2,81+, 62+fl23 a2+2,81+, 82+fl33 a4+2,81+, 82+, 843 

<13 years Male 75-80 al+3,81+)62+PI3 a2+3,81+, 82+fl23 a2+3,81+)62+933 a4+3)61+)62+#43 

<13 years Ma 80-84 al+4,61+, 82+913 a2+4,8l+fl2+fl23 a2+4,81+, 82+fl33 a4+4,61+)62+fl43 

< 13 years Male : 'ý85 aj+5,61+, fl2+fi13 a2+5fll+fl2+fl23 a2+5fll+)32+fl33 a4+5,81+fl2+fl43 

<13 years Female <70 al+, 81-, 62+fl]3 a2+)61-, 82+, 623 a2+, 81-fl2+933 a4+)61-)62+fl43 

<13 years Female 70-75 al+2,81-)62+fll3 a2+2,81-)62+923 q2+2flj-)62+#33 a4+2,81-, 62+fl43 

<13 years Female 75-80 aj+3flI-fl2+fiI3 a2+3)61-, fl2+fl23 q2+3A-fl2+#33 a4+3)61-, 82+fl43 

<13 years Female 80-84 al+4,81-)62+913 a2+4p, -, 62+fl23 a2+4,81-)62+933 a4+4,81-)62+#43 

< 13 years 

ý13years 

Female 

Male 

ý! 85 

<70 

al+5)61-, 82+fll3 

aI+, 81+fi2-fiI3 

a2+5,81-)62+fl23 

a 2+, 01+, 82-fl23 

a2+5,81-, 92+fi33 

a 2+)61+)62-fl33 

a4+5,81-, 92+fl43 

a 4+, 81+)62-fl43 

ý13 years 

ý13 years 

ý13 years 

Male 

Male 

e 

70-75 

75-80 

80-84 

al+2,81+)62-fl]3 

aj+3,81+)62-fiJ3 

al+4,81+)62-P]3 

a2+2)61+, 82-#23 

a2+3)61+, 62-fl23 

a2+4,81+, 82-923 

a2+2,81+, 82-fl33 

a2+3,61+)62-933 

a2+4,8l+fl2-fl33 

a4+2)61+, 62-fl43 

a4+3,61+)62-#43 

a4+4p, +#2-#43 

13 years Male ý! 85 al+5,61+, 82-913 a2+5,61+)62-#23 a2+591+, 62-933 a4+5,61+)62-943 

ý! Byears Female <70 al+fll-#2-fl]3 a2+, flI-fl2-fl23 a 2+, 81-, 82-933 a4+, 81-J82-fl43 

ý13 years Female 70-75 a, +2,8, -, 82-fiI3 q2+2,8j-, 62-fi23 a2+2,81-, 82-fl33 a4+2,81-AA3 

ýJ 3 years Female 75-80 al+3)61-)62-fll3 q2+3,81-)627fi23 q2+3,91-)627fi33 a4+3,91-A-P43 

ý! Byears Female 80-84 al+4,81-, 82-913 q2+4,8j-J62-fl23 a2+4,81-, 82-fl33 a4+4flj-)627fl43 

>13years Female ý! 85 al+5)6l-fl2-fl]3 a2+5,81-, 82-fl23 a2+5fll-)62-933 a4+5,81-, fl27fi43 
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APPENDIX III - LIPSITTS (1996) GOODNESS-OF-FIT 

STATISTICS AND THE RESULTS 

Section 1: Lipsitz's (1996) statistics: The generalisation of the Hosmer-Lemeshow 

moodness-of-fit statistic usine ordinal response data 

Let the general form of an ordinal regression model be specified (as in (3.5)): 

p 
F(7r) =ai+ Xik 

ifljk 
k=i 

18) 

To form the goodness-of-fit statistic, as proposed by Lipsitz (1996), one assigns a score sl to 

response categoryj. The assigned scores may in some instance be the actual numerical 

response or the mid-point of the interval when the response is a crude grouping of an 

underlying continuous variable. Then one can obtain the 'fitted' score or predicted mean 

score. Suppose that sj is the value assigned to categoryj with s= (s, 
... s, )' then the observed 

score for the Ih group is: 

c 
zi 

= Yz.. 
Jsiyy =s'Yi. i=l 

The mean score is 

p, =, u, (, 8) = E(Zj) = j 

Ay 
s ;T 

and the predicted mean sore is 

c 
A 

ýui = I. Eas 
i py (A2 1) 

j=l 

(A 19) 

(A20) 

To form the goodness-of-fit statistic one then groups or partitions subjects into regions based 
A 

on the predicted mean scores pi. Following the approach of Hosmer-Lemeshow (1980) with 

binary data, 10 groups of approximately equal size are formed. The first group contains the 

N/10 subjects with the smallest predicted mean score, and the last group contains the N/10 
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subjects with the largest predicted mean score. Given the partition of the data, the goodness- 
of-fit statistic is forinulated by defining the G- I group indicators, 

I 
Ijg 

0' 
1 ifu, is in region g, and 0 otherwise, (A22) 

g=1,.. G-1. Then to assess the goodness-of-fit of the ordinal model, one considers the 
alternative to model (A 18) namely 

p G-1 
F(; T) = ai + 1] Xik)6jk +I Iig 

iVg 
k=l g=l 

(A23) 

If model (A 18) is correctly specified then y, :- 72 =** *IVG-1 =: 0 in equation (A23), regardless 

of how the regions are chosen and regardless of which scores are used. 

Section 2: Results from the model rittima procedure 

Health Status data 

Linear Regression Model 

The linear regression model was fitted using the methods outlined in section 5.2.1. Both 

covariates were fitted as categorical variables and these were found to be significant in the 

model, when taken individually or added in together. The interaction 'heart attack x 'smoke' 

was found not to be significant (t-test = -0.16; p =0.87 on I df) and therefore only the main 

effects model was considered further. 

(ii) Binarv Lomistic Regression Models 

The methods used to fit the binary logistic regression models are detailed in section 5.2.2. The 

deviance which was based on the change in the -2log-likelihood of the main effects and 

saturated model provided a test for the significance of the interaction term. The I't order 

interaction term for the binary logistic regression model based on the first cut-point was found 

to be significant (deviance =4.41 on I -df), whilst the I" order interaction terms for the binary 

models based on the other cut-points were non-significant (cut-point 2: deviance =0.16 on I- 

df and cut-point 3: deviance =0.004 on I-df). 
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flib Polvtomous Model 

The method used to fit the polytomous model is outlined in section 5.2.3.1. The change in the 

-2log-likelihoods for the saturated and main effects models (as expressed in matrices (5.2) 

and (5.3) respectively) was not significant, implying a non-significant interaction term 
(change in -2log-likelihood=6.37 on 3-df: -2log-likelihood for the saturated model was 
29322.79 on 12-df and the main effects model was 29329.16 on 9-df). Therefore only the 

mains effect model was considered further. 

00 Different slope Cumulative Lozit Model 

The different slopes cumulative logit model (5.4) was fitted using the main effects. The 
interaction term was not considered here, as the purpose of this model was to visually assess 
how the main effects were behaving with respect to the cut-points. 

v) Proportional odds Model 

Both main effects were fitted with the assumption of proportional odds (as given in (5.5)). 

The interaction term was also assumed to have proportional odds (as given in (5.7)). The 

interaction term was not found to be significant (Z, =O. O 1; p =0.94) and therefore only the 

main effect proportional odds model was considered further. 

(vi) Unconstrained Partial Proportional Odds Model 

Initially the model with the main effects and the I't order interaction term was fitted (as in 

(5.13)). This model had 12 parameters to estimate (equal to the number of logits in the 

contingency table). Some of these parameters were constrained to have equal slopes and 

therefore the model was not a saturated one. There was evidence that the effects that made up 

the interaction term were not significant (Hol: PI, 82=0: Xý1=0.02; p =0.90; H02:, 82Y2j=fl2Y3j=0; 

X2 2=4.5 0; p =0. I I). Thus the interaction model was not considered any further and the resu Its 

were based on the main effects model. 

NO Constrained Partial Proportional Odds Model 

The constrained partial proportional odds model with the I" order interaction term was fitted 

(as in (5.22)) and there was no evidence of a significant interaction term (Hol: filfil-"ýO: 
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X2 1=0.09 p =0.76; H02: fl2Y]=O: ZI=O. 19 p =0.66). Again, only the main effects model was 
considered further. 

(viii) Constant slope Adjacent Cateworv Model 

The interaction term of the constant slope adjacent category model (as fitted using methods in 
(X 2=0 section 5.2.3.3 (i)) was found not to be significant 1 . 37; p =0.54). This interaction term 

was also assumed to have constant slopes. 

Cix) Different slopes Adjacent Caterorv Model 

The adjacent category model was fitted with the different parameter estimates over the cut- 
points (as given in section 5.2.3.3 (ii)). The I't order interaction term was found not to be 

significant W2 =6.68; p =0.08) for this model. The main effects model was taken as the final 

model. 

(x ) Ful1v constrained Continuation Ratio Model 

The interaction term was fitted in a similar way to the proportional odds model. This term was 

not significant (XI 2 =0.3 5; p =0.5 6). 

'xi) Continuation Ratio Models 

Binajy Analysis: The I" order interaction terms for the binary logistic regression models 
based on the second and third cut-points were found not to be significant (cut-point 2 model: 

2=0 
7 

2=0 
X1 . 35 withp =0.55 and model based on cut-point 3: 

'1 . 02 with p =0.90). However, the 

first order interaction term was significant for the model based on cut-point I (XI 2 =6.64 with p 

=0.0 1). To provide an overall conclusion for the continuation ratio model there was a need to 

keep all the models consistent with regards to the parameters fitted. Thus the models based on 

cut-points 2 and 3 were each fitted with an interaction term. 

Unconstrained continuation ratio model: The unconstrained continuation ratio model with the 

I" order interaction term was fitted using the specification as detailed in section 5.2.3.4 (d). 

The first order interaction term was not significant (X3 2 =6.72 with p =0.08). Thus the main 

effects model was taken as the final model. 
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(xii) Stereotvpe Model 

The main effects stereotype model was fitted initially (using the methods described in section 
5.22.3.5) and the first order interaction term was subsequently added in. To assess whether this 

latter term was significant or not, bootstrapping was used. The observed change in the -2log- 
likelihood aiven the main and saturated model , N-as 0.037 (main effect model --'IoQ- 
likelihood=2934-33.73 on fitting 5 parameters and model , vith 15t order interaction term -2log- 
likelihood=A. 9-34-3.69 Nvith fittin(2 6 parameters). There Nvere a 100 bootstrap samples and for 

each one a saturated and main effects model -, vas fitted and the change in the -2log-likelihood 

computed. There were 100 change values that formed a distribution. Assessing the 

distribution, 14% of the change values from the bootstrapped data were below the observed 

change value and 86%,, N-ere above. Thus the ASL was 0.86 and this suggested that the null 

hý, pothesis could not be rejected and the interaction term was therefore not significant. The 

main effects model was used to summarise the results. 

Townsend Disability Scale data 

Forward selection procedure Nvas used to include the terms in the models. 

(i) Linear Rerression Model 

The statistical method used to fit the linear regression model is given in section 5.3.1. All 

three covariates when fitted individually Nvere found to be significant. The 'sex' and 'age 

group ý covariates, %vere fitted together in the second stage of modelling and then 'full-time 

education' Nvas added in. All the main effects NNhen fitted together Nvere found to be 

statistically significant. The first order interaction terms were individually added into the main 

effects model and it Nvas found that only 4age group x sexý %Nas significant (t-test 

statistic=39.69: p <0.000 1) with the other two interactions non-significant: 'sex x full-time 

education' (t-test statistic =- 1 . 23: p =0.22 on I df) and ý age group x full-time education' (t- 

test statistic =-1.75. p =0.08 on I df). 

(ii 9 ession Model ) Binan, Logistic Re r 

The binary logistic model (as outlined in section 5.3.2) with all three main effects was 

initialk, taken and each first-order interaction term was added in. 'No interaction terms were 

found sipificant (ýage-groupx se,,,, ': X-4= 5. "O; P=O. '--. "sex x full-time education 
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p =0.93; 'age group x full-time education': Xý4= 2.2 1; p =0.70). Therefore the main effect 

model was considered as the final model. 

(iii) Polvtomous Models 

The polytomous model was fitted as detailed in section 5.3.3.1. Each I't order interaction term 

was added individually to the main effects model and only 'age group x sex' interaction term 

was found to be significant (X 2 4=29.16; p <0.000 1: df =4 since there were four cut-point 

specific effects which made up the interaction term). The other interaction terms were not 

statistically significant ('age group x full-time education': ý4=3.66; p =0.45; 'sex x full-time 

education': Xý4=2.5 3; p =0.64). 

Ov) Proportional oddslDifferent slopes Cumulative Loa Model 

The I` order interaction term was not fitted as interest was only focused on the behaviour of 

the main covariates. However, the proportional odds model was fitted with interaction terms. 

It was found that 'sex x age group' was the only significant interaction term ('sex x age 

group': X2 1=7.34; p =0.007; 'age group x full-time education': Xýj= 0.33; p =0.56; 'sex x full- 

time education': X2 1=0.82; p =0.36). 

v) Unconstrained Partial Proportional Odds Model 

The starting point for the unconstrained partial proportional odds model was model (5.3 1). 

Each interaction term model as detailed in (5.32), (5.33) and (5.34) was fitted individually 

into the model and it was found that the 'age group x sex' term was significant (test based on 

Hol: fl4=: O: Xý1=7.61; p=0.01). The interaction 'age group x full-time education' was not 

significant (test based on H02: P5=0: ZI=0.53; p =0.68 and H03: Y25=Y35==Y45 =O: Z3=5.5 5; p 

A. 14). The interaction 'sex x full-time education' was significant (test based on H04: 96=0: 

ý1=3.10; p =0.0 I and HO_5: Y26=Y36=Y46 =O: Xý3=9.3 1; p =0.02). The 'sex x full-time 

education' term was added into the I" order interaction model (5.32) and both interaction 

terms remained significant. The final model could be represented using model (5.34) where 

both 'age group x sex' and 'sex x full-time education' interaction terms were included in the 

main effects model. 
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(vi) Constant slope Adjacent Catecorv Model 

The I" order interaction terms were tested for the latter model (as described in section 5.3.3.3 
(i)) where all the main effects were assumed to have a constant slope over the cut-points. 
There was evidence that none of these terms were significant and therefore the odds ratios 

were based on the main effect model ('age group x sex': X2 1= 1.33; p =0.29; 'age group x full- 

time education': X2=0.16; p =0.69; 'sex x full-time education': X2 1= 0.28; p =0.60). 

(vii) Different slopes Adiacent Caterorv Model 

The different slopes adjacent category model was fitted using methods specified in section 
5.3.3.3 (ii). Each first-order interaction term was added individually into the main effects 

model. It was found that 'age group x sex' was significant (Z4= 25.73; p<0.000 1) with the 

other two first order interaction terms found to be non-significant ('sex x full-time education': 

X2 4= 2.50; P =0.64, 'age group x full-time education': Xý4= 3.3 2; p =0.5 1). 

(viii) Fullv constrained Continuation Ratio Model 

The first order interaction terms were tested for the constant slope models and it was found 

that none of the interaction terms was significant ('age group x sex': X2 1= 0.60; p =0.44; 'age 

group x full-time education': Zj= 0.33; p =0.56; 'sex x full-time education': Zj= 0.58; p 

=0.45). Therefore the analysis was based on the main effects model. 

Ox) Different slopes Continuation Ratio Models 

(a) Using separate binary logistiC regression models 

Separate binary logistic regression models were fitted (using methods given in section 5.3.3.4 

(ii)) to each cut-point based on the continuation ratio logits. The overall results from these 

models were corrected for multiple testing. Since four binary logistic regression models were 

fitted, the Type I error rate was a=0.05/4=0.01. 

Model for cut-point 1: 'none' v. ('slight', 'some', 'appreciable', 'severe+ v. severe: ) 

For the model based on cut-point I the main effects were fitted and then each first order 

interaction term was added into the model. Of the three first-order interaction terms, only 'age 
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group x sex' was found to be significant (X12 =8.90 with p =0.003) and the other interaction 
terms were non-significant ('age group x full-time education': X12=0.18 with p =0.67; 'sex x 

2 full-time education': X, =0.94 with p =0.33). 

Model for CUt-DOint 2: 'slig,, ht' v. ('some', 'appreciable', 'severe+ v. severeý) 

The main effects were again fitted with each first order interaction term and again only the 
interaction of 'age group x sex' was found significant (XI 2=1 1 . 91 with p =0.0006). The other 
first order interaction terms were non-significant ('age group x full-time education': X1 2=0 

. 03 

with p =0.8 7; 'sex x full-time education': X12=0 . 76 with p =0.3 8). 

Model for cut-voint 3: 'some' v. ('gRpreciable', 'severe+ v. severe_D 

Each first order interaction term was added to the main effect model. After allowing for 

multiple testing, there was indication that 'age group x sex' term was significant but the other 
interaction terms were not ('age group x sex': X, 2 =5.89 with p =0.002; 'age group x full-time 

education': X, 2=1 
. 07 with p =0.30; 'sex x full-time education': X, 2 =0.99 with p =0.32). 

Model 4: 'gppreciable' v. 'severe+ v. severe' 

(X 2= The interaction 'age group x sex' was significant , 13.40 with p =0.0003), and the other 
interaction terms were non-significant ('age group x full-time education': Y', 2=0 

.32 with 

=0.57; 'sex x full-time education': X, 2 =0.02 with p =0.8 8). 

(b) Using the unconstrained continuation ratio model 

The main effects unconstrained continuation ratio model was fitted and each of the three 

interaction terms were added in individually. There was evidence that the 'age group x sex' 
interaction term was significant (X42 =36.14 withp <0.0001). The other two I't order 

interaction terms were non-significant ('sex x full-time education': XA 2 =2.51 with p =0.64; 

cage-group x full-time education': X4 2 =1.56 withp =0.82). 
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Stereotvpe Model 

Each individual I" order interaction term was added to the main effects one-dimensional 
stereotype model. The observed change in the -2log-likelihood of the main effects model and 
the model with the interaction term- 'age group x sex' was 4.98 (where the -2log-likelihood 
for the main effect model was 34459.79 fitting 7 parameters and the -2log-likelihood for the 
interaction model was 34454.806 fitting 8 parameters). In the distribution of change values 
based on the bootstrapped samples, there were 50.4% values less than the observed change 

and 49.5 % that were above. The ASL was 0.495 and thus the null hypothesis was rejected, as 
there was borderline evidence that the two models were different. As a result the interaction 

4age group x sex' was an additional term included in the main effects model. 

The observed change in the -2log-likelihood of the main effects model and the model with 

the interaction of 'sex x full-time education' was 0.31 (where -2log-likelihood for the model 

with interaction of sex x full-time education=34459.48 fitting 8 parameters). The main and 
interaction models were fitted to the 100 bootstrapped samples and the distribution of the 

change in the -2log-likelihoods formed. There was evidence that 32.6% of the change values 

were less than the observed change value and 67.3% were above it. As the ASL was 0.67, the 

null hypothesis could not be rejected and therefore the interaction 'sex x full-time education' 

was found not to be significant. 

The observed change in the -2log-likelihoods of the main effects model and the model with 

the interaction of 'age group x full-time education' was 0.0 1 (where -2log-likelihood for 

model with interaction age group x full-time education =34459.78 fitting 8 parameters). The 

position of this observed change was again assessed in the distribution of the 100 change 

values in the -2log-likelihood values between the two models. There was indication that 8.9% 

of the values were below the observed change values and 9 1.1% were above it (i. e. ASL 

=0.91), indicating that one could not reject the null hypothesis, and therefore the latter 

interaction term was not significant. 
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Table My: Parameter estimates and their standard errors_for the individual binga logistic 
regression models based on the Polvtomous Model-for the Townsend disabilioý score 

Variable Parameters Cut-point I* Cut-point 2* Cut-point 3* Cut-point 4* 

Intercept(a) Parameter estimate 4.5765 3.2721 2.3507 0.6235 

s. e 0.1280 0.1272 0.1253 0.1400 
Age group Parameter estimate -1.0551 -0.7192 -0.4424 -0.1714 

s. e. 0.0333 0.0323 0.0308 0.0334 
Sex Parameter estimate 0.1118 -0.1877 -0.2920 -0.4089 

s. e. 0.1087 0.1089 0.1080 0.1212 
f-t education Parameter estimate -0.4362 -0.3809 -0.3267 -0.1090 

s. e. 0.0727 0.0712 0.0687 0.0801 
Age group x Parameter estimate 0.1318 0.1485 0.1261 0.1225 

sex s. e. 0.0333 0.0322 0.0307 0.0335 
Hosmer- df 7 7 7 7 
Lemeshow Test-statistic 59.2038 49.7424 37.996 9.8199 

statistic P <0.0001 <0.000 I <0.0001 0.1324 
*- Cut-point I refers to 'none'v. 'severe+ v. severe'; Cut-point 2 refers to 'slight'v. 'severe + v. severe'; Cut- 
point 3 refers to 'some'v. 'severe + v. severe'and cut-point 4 refers to 'appreciable'v. 'severe + v. severe'. 

Table IIIb: Parameter estimates and their standard errors for the individual binary logistic 
regression models based on the DiLerent slopes Ad ! ýgory Model for the Townsend Yacent Cat 
disability score 

Variable Parameters Cut-point I Cut-point 2 Cut-point 3 Cut-point 4 

Age group Parameter estimate -0.3565 -0.2836 -0.2540 -0.1714 

s. e. 0.0226 0.0242 0.0302 0.0334 

sex Parameter estimate 0.2726 0.0524 0.1459 -0.4089 

s. e. 0.0572 0.0711 0.1023 0.1212 

f-t education Parameter estimate -0.0782 -0.0713 -0.2104 -0.1090 

s. e. 0.0395 0.0467 0.0653 0.0801 

age group x Parameter estimate -0.00577 0.0391 -0.00353 0.1225 

sex s. e. 0.02665 0.0242 0.0302 0.0335 

Hosmer- df 6 8 8 6 

Lemeshow Test-statistic 1.8574 9.2207 26.8266 9.8199 

statistic P 0.9323 0.3240 0.0004 0.1342 

*- Cut-point I refers to 'none I v. 'slight'; Cut-point 2 refers to 'slight'v. 'some'; Cut-point 3 refers to 'some'v. 
I appreciable'and cut-point 4 refers to 'appreciable'v. 'severe + v, severe'. 
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APPENDIX IV: PROOF OF THE CONSTANT ODDS OF THE 
PROPORTIONAL ODDS MODEL AND THE MONOTONICALLY 
INCREASING ODDS OF THE POLYTOMOUS MODEL 

From the data in this thesis, there was evidence that the polytomous model has monotonicallY 
increasing odds ratios. One can prove that if a constant odds assumption holds for the 

proportional odds model, then the odds for the polytomous model will always be 

monotonically increasing. 

Given ordinal outcomes, and without loss of generality let us assume that there are 3 ordered 

y-response categories and one covariate on two levels. 

Table IVa. - Ordinal response with three categories and one covariate on two levels 

Outcome 
Covariate 

yl Y2 Y3 
X1 ; Tl 71' 2 ; T3 

X2 ý91 (102 (Y03 

From this ir, + ir2 + 'r3 =I and (0, + (P2 + (03 = 1. Also it has to be assumed that ; r, >0ý 

7r2 >01 'r3 >0 and also (, 01 >01 ý02 >0 and (03 >0' 

Assuming that the constant odds ratio as obtained by the cumulative odds model is denoted by 

A then it can be written 

7r] 
=A 

(01 (A24) 
I- 7ri I-VI 

and 

7rl + lr2 (01 + ý02 
(A25) 

- (7rl + /72 - ((PI + (P2) 

Assume that A>0 and also 7r, 9 7r2 and A are given. We wish to prove that the polytomous 

odds ratios are monotonic. Taking the y, as the referent category we wish to prove 

; T2 IgI 
>+ 

; T2 ))17ri 

, 

(02 I(PI + (P2 )) / (PI 
which leads to 
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((P, + ý0, 
> 

(7r] + ; T2 ) 

and this implies 
ýo 2 /T 2 

(P3 )T3 

(P 22 

Using (A26) it follows that 

ýO 2> )T2 

ý91 )TI 

and therefore this is the only condition to prove. 

Now A>I and 0< ; TI <I and we can write 

(A - 1)(I -; Tl) >0 

and 

(I - 7r, + )TI 

Adding (A28) and (A29) we get 

A(l -7r 1) + )TI >I. 

From (A24) 

(A26) 

(A27) 

(A28) 

(A29) 

(A30) 

)rI 
--- 

(101 
and one can derive 

;TI-= 
('01. 

A(I-; Tl) '-ýO, A(I - Irl) + Ir, 

From (A30) it follows that 

(Pi Irl < 1. 
+ 7r, 

From (A25) 

(A3 1) 

ý01 + ()02 < 'rl + )T2 < (A32) 

'T 2< (io 2 (A33) 1-7rl -/ 

I -)T 'T2 ý01 - ý02 

From (A3 1) and (A3 3) We get I -/ < (A34) 
/Irl (PI 

. 
ýý2 

< 
f2 ()02 ()01 

and this implies - 
5-2 

<- -ýI which gives or 
Irl ('01 /Ir I 

ýO I ; T2 ; TI 
Q. E. D. 
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Statistical Methods in Medical Research 2002; 11: 49-67 

A review of ordinal regression models applied on 
health-related quality of life assessments 
R LaR, MJ Campbell Institute of General Practice and Primary Care, University of Sheffield, 
Community Sciences Centre, Northern General Hospital, Sheffield, UK, SJ Walters 
University of Sheffield, Sheffield Health Economics Group, Sheffield, UK, K Morgan 
Department of Human Sciences, Loughborough University, Loughborough, Leicestershire, 
UK and MRC CFAS Co-operative Institute of Public Health, Cambridge, UK 

There has been increasing emphasis in medical research on the design and analysis of quality of life scales. 
Many quality of life scales are ordinal and statistical methods such as ordinal regression models have been 
reviewed on a number of occasions. However, when such models are applied, the way the data have been 
generated is often overlooked. In this paper we illustrate the use of ordinal regression models, in particular 
the proportional odds model, the partial proportional odds model and the stereotype model in the MRC 
Cognitive Function and Ageing Study (MRC CFAS). The partial proportional odds and the stereotype 
models are often under-utilized, pqhaps due to the lack of available software. However, in this paper, 
analysis based on these models has been carried out using the popular statistical software package SAS and 
macros devised in SAS. Furthermore, bootstrapping techniques have been applied to obtain valid estimates 
of the standard errors of the parameters in the stereotype model. Strikingly different results were obtained 
using the different ordinal regression models. We conclude that the way the data have been generated is 
particularly important for the analysis of quality of life assessments. Different methods of generating scores 
yield data with different properties. It is now possible to fit a variety of ordinal regression models and so 
select the appropriate one that correctly models the data. 

1 Introduction 

There has been an increasing recognition that medical outcomes are not necessarily the 
most important results in studies that examine the effect of health interventions. This is 
particularly true for diseases that are presently incurable, such as advanced cancer and 
chronic diseases of the elderly. It is often the case that two interventions will have very 
similar medical outcomes, but have different effects on other aspects of people's lives. 
For this reason there has been increasing emphasis on the use of scales that measure 
quality of life. It is important that investment in healthcare delivers not only a longer 
life, but also an improved and maintained quality of fife. In conjunction with economic 
and clinical measures, quality of life outcomes have provided a broader and more 
accurate assessment of the health status and well-being of patients. In addition, quality 
of life assessments have provided a means of examining the quality of care given and 
also have provided utilities such as quality-adjusted life years (QALYs) that aid in 

policy-making decisions. Quality of life assessments are often measured using ques- 
tionnaires, and the choice is often between, a standard (generic) one, which asks about 

Address for correspondence: R Lall, Institute of General Practice and Primary Care, University of Sheffield, 

Community Sciences Centre, Northern General Hospital, Herries Road, Sheffield SS 7AU, UK. 

(0 Arnold 2002 10.1191/0962280202sin271ra 



50 R Lall et al. 

general health and which normally has a history of successful use, and a disease-specific 
one that has been specifically developed within the therapeutic area in question. The 
quality of life data can be summarized into a categorical scale that is often either 
nominal or ordinal in nature. For the analysis of nominal data, standard methods such 
as the Pearson's chi-squared test, logistic regression models etc, exist which quite 
adequately provide results and summarize the data. For ordinal scales, more complex 
statistical methods such as ordinal regression models' can be employed. When such 
models are applied to the analysis of quality of life data, the way this data have been 
generated is often overlooked. Other authors have also highlighted this point. For 
example, Greenland 6 emphasized that the type of ordinal regression model used for 
analysis should depend on the way the data have been processed and generated. This is 
particularly important in the case of quality of life and health status assessments, as 
different types of data are obtained depending on the biological and sampling processes 
that generated the data. For instance, in the case of the HADS (Hospital Anxiety and 
Depression Scale), a response to a question 'I still enjoy things I used to enjoy' can be 
recorded as: '(0) Definitely as much', '(1) Not as much', '(2) Only a little' or '(3) Hardly 
at all'. There are in total seven questions and the scores are summed and the final score 
ranges from 0 to 21. This score is divided into a three-category ordinal scale: 'Normal 
(<7)'; 'Borderline (8-10)' and 'Clinical depression (or anxiety) (11+)'. The categories 
on this scale are related to an underlying continuum, which is the score ranging from 0 
to 21, and the ordinal variable is termed a 'grouped continuous' variable. 7,8 The 
quality of life data obtained in this way are different to that, for instance, in some of the 
dimensions of the SF-36 quality of life questionnaire. 9 This questionnaire assesses the 
general health of individuals, and there is a question on health status that asks 'In 
general would you say your health is 'Excellent', 'Very good', 'Good', 'Fair', Toor'? '. 
Here the rank of the categories is known to exist on a single dimension. Although we 
can assume the categories are ordered, we do not know the structure of this ordering 
with respect to a given explanatory variable. Also, although an underlying variable 
exists when the categories are ordered, it is not directly related to the ordinal categories 
on the quality of life scale. For this reason Andersonlo recognized these types of ordered 
categories as being discrete and referred to the outcome response as a judged or an 
assessed variable. Another example of an assessed variable is social class of different 

occupations, in which the ordering may depend on covariates such as income or level of 
education. 

In general, assessed variables are likely to have greater observer error, and in most 
cases there is more subjectivity associated with them compared to the grouped 
continuous variables. It is therefore important to distinguish between the different 

ordinal quality of life variables, as this has consequences on the choice of ordinal 
regression models used to analyse the data. 

The purpose of this paper is to illustrate the use of ordinal regression models, in 
particular the proportional odds model, the partial proportional odds models and the 
stereotype model, in the MRC Cognitive Function and Ageing Study (MRC CFAS). 2 

The models are described in Section 2, the data in Section 3 and the fit of the models to 
the data in Section 4. We conclude with a discussion. Analysis has been carried out 
using the statistical software package SAS4 (SAS Institute, Cary, NC; version 6.10 for 
Windows 9S) and macros devised in SAS-5 



Ordinal regression models S1 

2 Ordinal regression models 

Prior to fitting any ordinal regression models, we assessed the general association of the 
response variable with respect to the covariates using the Cochran-Mantel-Haenszel 
(row mean scores) statistic as presented by Mantel. " This statistic examines the 
association between the ordinal response variable and one given covariate, while 
adjusting for the effect of the other covariate by treating it as a stratification variable. 
The ordinality of the response variable is taken into account by assigning scores to the 
response categories, forming means, and then examining location shifts of the means 
across the levels of the rows or sub-populations (which result when the levels of the 
covariates are cross-classified). Furthermore, as it is not clear whether the y-response 
categories are equally spaced, modified ridit scores were assigned to account for the 
ordinality. The formulation of the statistic is complex, and the computational details 
have been omitted as the statistic can be obtained in standard software; in this case 
PROC FREQ in SAS 12 was used. 

2.1 Proportional odds model 
The proportional odds rnodel7 is also known as the cumulative logit model. It is the 

most appropriate method of analysis when one is presented with a grouped continuous 
response variable. Consider the HADS scale mentioned in the introduction. Let Y 
aenote tne response anci yl, Y2 ana Y3 inuic 
'Normal (<7)'; 'Borderline (7-10)' and 'Clini( 
Pr(Y = yj) is the probability that a random 
The points 7 and '10' are the cut-off points 
let the response categories be denoted by yl, 3 
explanatory variables or covariates. Takin 

c) which are based on the marginal 
form cumulative probabilities. Thus for a giv( 
the probability of a response in category yj or I 

then Pr(Y < yj) :ý Pr(Y < Y2)" -- Pr(Y < yj = 
abilities reflect the ordering in the response c, 
is based on such cumulative probabilities, and 

log 
FPr(Y 
I Pr(Y yjlxl ... xp)j 

ai: e Lae caLegurius U1 L11C U-11-11-1a bLUlC; -. 
al depression (or anxiety) (11+)'. Thus 

y selected individual is in category j. 
In generalizing this to a c-point scale, 

2, . .., yc and X1, X2, 
. .., 

X. be a set of 
the proportions Pr(Y = yj) = 7rjU 

totals of a sub-population, one can 
n sub-population, let Pr(Y < yj) denote 

elow, ie Pr(Y :! ý yj) = 7r, + 7C2 +'''+ 7ýj) 
1 exists, and these cumulative prob- 
tegories. The proportional odds model 
this model can be written as: 

= oc i- 
(fliXI 

+ lfl2X2 +'*'+ flpXP) j= 1,2,..., c- 1 

(1) 

Note that the negative sign in the systematic component of (1) makes the sign of each 
component of # have the usual interpretation in terms of whether the effect is Positive or 

negative. In (1) the regression parameters flk (k -= 1, ..., p) and aj are unknown and 
therefore estimated. The ordinal response categories are monotonically related to an 

underlying continuous latent variable Z. The relationship between Y and Z is such that 

the parameters aj are the division points on the continuum Z and a response in category 

:: ý yi/xi --- xp)l 
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Y23 for example, is observed if Z lies between al and OC2- If two adjacent y-response categories are pooled together, or Y is changed by moving a cut-off point, the regression parameters flk in the model remain unchanged. This property, known as invariance, is an attractive feature of the proportional odds model. In practice, however, one uses observed Y values and pooling them will lead to different estimates and inferences of fl. Although the proportional odds model is primarily used in the case where one is presented with a y-response which has an underlying grouped continuous variable, it can also be used in circumstances, for example, when the categories yj are not directly 
related to an underlying continuum. In this case, however, the interpretation of the 
parameters, particularly the fajsý becomes difficult'. 

The proportional odds model is the most commonly used regression model in 
the context of analysing ordinal scales, 3 mainly because it provides a single estimate 
of the log odds ratio over the cut-off points. This estimate is not a weighted average of the cut-off point-specific log odds ratios, but is the optimum estimate obtained using the 
maximum likelihood or weighted least squares methods. It is ideal in terms of the ease 
of interpretation of the data and in terms of model parsimony. The flk (k = 1, ..., p) 
parameters in model (1) represent the constant cumulative log odds across all the cut-off 
points for the covariate Xk, having accounted for all the other covariates in the model. The cumulative log odds ratio, 4) iSobtained by subtracting the log odds (also known 
as the logit) of one row from the log odds of another row. 

In SAS, PROC LOGISTIC and PROC CATMOD can be used to fit the proportional 
odds model. For the analysis presented here, PROC CATMOD was used and the 
proportional odds model was fitted using the clogit link function and an appropriate design matrix. 13 The cumulative logits formed in PROC CATMOD are the reciprocal 
of those in (1). Note that this procedure only provides the estimates of the 
PA = 1, ..., p), and the log odds ratios have to be obtained by subtracting the 
logits of the appropriate rows of interest. The assumption of a constant odds ratio 
across the cut-off points is assumed for each covariate in model (1), and the Iflks) are 
calculated with this in mind. Prior to fitting a proportional odds model, it is important 
to carry out a preliminary check of whether the assumption of proportionality is 
satisfied by each covariate. One way of doing this is to fit a differentflk for each level of 
the outcome. A different slope model is a starting point for the analysis, and for each 
covariate the cut-off point-specificflkparameters together with their standard errors are 
observed. The homogeneity of the proportional odds ratios over all the cut-off points 
can be tested using the X2 -score test statistic. 14 This test is anti-conservative, as it lacks 
power for moderate departures from the proportional odds assumption, but does 
highlight major departures. It is also a global test of non-proportionality and does not 
distinguish heterogeneity associated with individual covariates. In cases where the 
proportional odds model does not hold for some of the covariates, then alternative 
models are considered (see below). 

2.2 Partial proportional odds models 
There is general consensus that the assumptions underlying the proportional odds 

assumption is quite stringent. ' This is exacerbated when one considers more than one 
covariate, and in practice, the chance of all the covariates in the model having 

proportional odds is likely to be quite rare. The partial proportional odds model 
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permits some covariates to be modelled with the assumption of proportional odds, 
whilst allowing others to have odds ratios which vary by cut-off point. In general there 
are two types of partial proportional odds model: the Unconstrained Partial Propor- 
tional Odds model and the Constrained Partial Proportional Odds model. 14,15 For the former model the cut-off point-specific odds ratios are obtained for the variables where 
the odds are thought not to be proportional and a constant odds ratio is obtained for 
variables where the odds are believed to be proportional. For the latter model, for 
covariates where the proportional odds assumption does not hold, one may expect a 
certain 'pattern' in the cut-off point-specific odds ratios, eg a linear trend may be 
expected in the log odds ratios over the cut-off points. In such a case a set of linear 
constraints may be placed on the parameter in the model, such that an adequate fit be 
obtained. 

These models are an extension of the proportional odds model. Invariance exists in 
these models for variables where there are proportional odds and the quality of life scale has an underlying continuum, which is directly related to the y-response categories. 
Again, due to the way the cumulative probabilities are formed, ordering is inherent in 
the model irrespective of the relationship of the y-response and the covariate. 

2.2.1 Unconstrained partial proportional odds model 
Let Y be the response variable that has a similar form to that presented in Section 2.1. 

Then a partial proportional odds model where there are p predictor variables, some of 
which have proportional odds and some of which have non-proportional odds (say q of 
them), takes the form: 

log 
FPr(Y 
ýP-r(y 

yj/Xl ... Xt, )i 'Xi - 
(191 Xl + Yjl Tl I+ W2X2 + Tj2 T21 + I#qXq + Yjq Tql 

+... [#Pxpl) 2,..., c-1 

Here X1, X2, . .. ýp are the complete set of covariates, and q of these are known to have 
non-proportional odds, with the remaining having proportional odds. The fl, --- flp 
parameters are the components of each of the covariate-specific log odds, for which 
proportionality over the cut-off points can be assumed. The T, ... Tq (= Yj ... XQ) 
exist only for the q variables that have non-proportional odds. Thus yi, ... Yjq are non- 
zero for the q-covariates and zero otherwise and are the components of the log odds 
that vary over the cut-off points. 

For model (2), we estimate the c-1 intercept parameters, p beta regression 
parameters that are independent of the cut-off points, and a further (c - 1) xq 
y-parameters which are associated with each covariate and cut-off point. For a variable 
X,,, where non-proportional odds exist in relation to the response, Lxj- -P.. X" is 
incremented by a regression coefficient yj .. 

T,,,, which is the effect associated 
with each jth cumulative logit, having accounted for all the covariates. Note that 
yl,,, = 0, such that the logit associated with the first cut-off point is based on 
al - fl,,, X,,,. 

:: 5 Yi1xi ... xp)l 
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2.2.2 Constrained partial proportional odds model Given the relationship of a covariate and the response is represented with non- proportional odds, then for the individual cut-off point-specific odds ratios, often a certain type of trend may be anticipated, e. g., a linear trend may be expected. In such a case,, a set of constraints can be placed on the parameters in the model, so that the trend is taken into account. When the constraints are incorporated into the unconstrained partial proportional odds model, this model becomes: 

log 
FPr(Y 
[Pr(Y :: ý yj/Xl ... Xp 

Lxi X, + flpxl + Ti[y, T, + Y, T, > yj/Xl ... xp) 

YqTql) i=1,2,..., c-1 

TheTj are fixed scalars that take the form of constraints placed on the parameters. Note 
that for a given covariate X,,,, 7.. does not depend on the cut-off points, but is multiplied by the rj for the jth logit. As T, =0 the first logit is always equal to al - #,,, X,,. 

The choice of constraints can be decided upon in several ways; ideally they should be 
determined using pilot data or one can choose some values which are based on some a priori knowledge of the way the odds ratios are likely to behave. However, this is not 
always possible and some authors' have examined the odds ratios obtained from the 
unconstrained model to determine a set of constraints for the constrained model. This is 
problematic as one is using the data to estimate the constraints, but may be the only 
way to obtain the required constants. Regardless of the way the fTjsl are obtained, the 
crucial point is that the same set of constraints has to be assigned to each covariate. In either model (2) or (3), if we assume that the relationship of the response categories 
and X,,, is represented by non-proportional odds ratios, then the constant component fl,,, of the log odds ratios and the Tj,,, (or 7, ) are obtained by fixing and conditioning on 
all the remaining covariates in the model,. flim = fl? n + yim refers to the log odds for 
the ith cut-off point based on the unconstrained model. Similarly fl! = fl* +Tjym* refers IM M to the log odds based on the constrained partial proportional odds model. The log odds 
ratios are obtained by subtracting the logits for the appropriate levels (or rows) of the 
covariate. In the case where Xn is a continuous or ordinal covariate, and there is unit 
spacing, then for a fixed cut-off point there is a constant log odds ratio when comparing 
all pairs of adjacent rows, and there are in total c-1 log odds ratios. In the case where 
X, is a nominal variable, then, given all the other covariates, the log odds ratios do not 
only vary by cut-off point, but also vary for the two rows compared, resulting in 
(c - 1)(r - 1) log odds ratios. Where a covariate of interest has proportional odds, the 
A sl(k = 1, ..., p) are interpreted in exactly the same way as those in model (1). 

The partial proportional odds models can be fitted in SAS using the PROC 
CATMOD procedure and the clogit link function. The program code differs for each 
model in the way the design matrix is specified. 13 One can assess whether the 
proportional odds model is as good a fit as the unconstrained partial proportional 
odds model by comparing the -2log-likelihoods for the two models. Unfortunately SAS 
uses weighted least, squares estimation for the analysis, and therefore no values for the 
log-likelihoods are readily available. Thus comparison of the models is made using 
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contrast statements. In the unconstrained model, for a given parameter where different 
log odds are fitted over the cut-off points the null hypothesis HO : Ylk ---,: Y2k "': 
*'* Y(c-l)k ': "4 0 is incorporated into the contrast statement, and this assesses 
whether the proportional odds model is as good a fit as the unconstrained partial 
proportional odds model. Likewise, for a covariate where a trend is apparent in the beta 
parameters and a set of constraints are considered, the test of whether a model using the 
constraints is as good a fit as a model using the individually estimated log odds can also 
be obtained using the contrast statements. This test is set up in the unconstrained partial 
proportional odds model and for a given covariate one assesses the null hypothesis 
HO : Ylk 'rlYk; Y2k --: ": 'r2Yk; ... Y(c-l)k T(C-1)Yk- 

2.3 Stereotype model 
Consider a quality of life scale that assesses 'pain' with respect to some treatment, 

and assume that the response is recorded on an ordinal scale as 'none', 'Mild', 
cmoderate' or 'severe'. Although the categories are scaled on a single dimension, they 
are not a discrete version of some continuous variable. A model which assesses the 
ordinality of the response by looking at the ordering of log odds ratios of the categories 
is the stereotype model. 10 One of the features of this model is that ordering of the 
response categories with respect to a set of covariates is no longer an assumption but 
becomes part of a more general model. 1,16 The stereotype model is based on the polytomous regression model. This model is 

an extension of the logistic regression model and is designed to analyse nominal scales 
where there are several categories. The logits; are formed for this model by comparing 
each response category with a baseline one, the choice of which is arbitrary and for the 

analysis presented here, is the first category. Thus the log odds ratio can be represented 
by a linear model of the form: 

log 
FPr(Y 
rp-r(y 

= Y, /Xi ... Xp)] 
= 'Xj fljlXl + flj2X2 +- '' + fljPXP i=2,..., c 

From this model it is clear that the ordinal nature is not accounted for. The ordinality is 
built into this model by imposing a structure on the log odds flik (j=2, C; 
k=1, ..., p) such that 

fljk 
--= 

Ojflk i=2,.. 
-, 

k=1,..., p 

(note: 01 =- 0 since fl1k = 0)- 

This results in the stereotype model that takes the form: 

log 
FPr(Y 
[Pr(Y 

= Yi1xi ... XP)l 

y1 JX, ... Xp) 
ai + Oi(ßiX1 + ß2X2 ++ ßPXP) 

yl /X, ... xp) 

(5) 

j= 2, ..., c 

(6) 
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Thus, it can be seen that the stereotype model determines a set of weights, the joisl for 
the dependent variable and a single parameter flk for each independent variable. The 
weights are decided upon for the response variable and are directly related to the effect 
of the covariates. Thus, when the odds ratios form an increasing trend, the weights can be constrained to be ordered such that - 

01 :5 02 '-< -* -< 
Oc 

Here we can say that the effect of the covariates upon the first odds ratio is less than 
their effect upon the second and so on, and that, provided constraint (7) holds, model (6) is an ordered regression model. The model fitted does not necessarily require the 
JOjsJ to be ordered; whether there is ordering or not is purely determined by the 
empirical evidence provided by the data. 

6 The weights can be determined in a number of ways. Some authors suggest that they 
be decided upon a priori, either estimated from some pilot data or a suitable set of 
values be chosen (fixed scores). With such predetermined set of weights, the stereotype 
model can be fitted in SAS using PROC CATMOD, and the stereotype model remains 
of a generalised linear form. Hendrickx, s however, has designed macros (suitable for 
use in SAS and in Stata), that fit the stereotype model and estimate the fois) as a set of 
parameters in the model (estimated scores). In this case the stereotype model is 
intrinsically non-linear, but is easily fitted by performing a series of generahzed-linear 
model fits in which the flk and Oj parameters are alternatively held fixed while the other 
is estimated. The model produces (c - 1) standard multinornial intercept parameters for 
the y-response, (c - 2) independent 10jsl and a single beta parameter for each 
independent variable. Although the stereotype model is more flexible than the propor- 
tional odds model, it is less parsimonious with the extra weighting parameters. In the 
case where the weights are estimated, theflk and Oj parameters are conditional on the 
estimates, and thus the estimates of the standards errors of these flkparameters5 which 
assume the [0-sl are known, are invalid. Likewise any inference based on the standard 
errors or the 

fikelihood-based tests is also not correct, and instead we used bootstrap 
techniques (random sampling with replacement from the original data) to obtain the 
correct standard errors and tests. Thus using 100 bootstrap samples we refitted the 
stereotype model to each bootstrap sample and estimated the Ifiksl and Jois). Using 

these estimates, six joint distributions for the I&Oil( i =1,2,3; k=1,2) were 
obtained. From each distribution, the mean and standard error were calculated to 
give the estimate of the log odds ratio and its standard error based on each cut-off point 
and covariate. 

The change in the -2log-likehhood for the polytomous model and the stereotype 
model provides a way of establishing whether a model with weights is as good a fit as a 
model where no weights are imposed on a set of covariates. The -2log-likelihoods for 

these models were also obtained using bootstrap techniques. The null hypothesis was 
based on the fact that the polytomous model was a good fit to the data. The observed 
change in the polytomous model and the stereotype model was compared by examining 
its position in the distribution of the 100 changes in the -2log-likelihoods obtained 

using the bootstrap samples. 

q 
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For nominal covariate XI, #21 is the log odds ratio which is based on comparing the 
second category with the referent (first) one. To obtain the subsequent cut-off point- 
specific log odds ratios, fljjU = 3, . .., c) the parameter #I is multiplied by the weights Oiq = 3, ..., c) In the case where X, is a continuous or ordinal and there are r rows with 
unit spacing, then for a fixed cut-off point j, the log odds ratio is constant when 
comparing each consecutive pair of rows. Also for a given pair of rows there are a total 
of (c - 1) log odds ratios. In the case where X, is nominal, the log odds ratio will vary depending on the two rows compared, as well as over the cut-off points. 

3 The data 

3.1 The survey 
Data (version 4.1) were provided by the Medical Research Council Cognitive 

Function and Ageing study (MRC CFAS). 2 MRC CFAS commenced as a longitudinal, 
two-wave (prevalence/incidence), two-stage (screening/assessment) epidemiological 
study of dementia conducted in six centres throughout England and Wales (urban 
Liverpool, Newcastle, Nottingham and Oxford, and rural Gwynedd and Cambridge- 
shire). As the study design was slightly different for the Liverpool centre, 2,17 this centre 
was omitted in the analysis. At the first visit all respondents were screened with a basic 
interview covering socio-demographic details, activities of daily living, physical health 
measures cognitive function and medication. Subsequently further interviews were 
carried out (annual follow-up visits and the incidence screen and assessment visits), 
but these are not detailed here as the analysis only used the first visit data. 

At each centre random samples were selected of sufficient size to yield 2500 
interviews from individuals aged 65 years and over, with equal numbers in the age 
groups 65-74 years old and 75 years old and above. The total sample available at 
baseline was 20 234 for the five centres and there were 17 608 respondents identified as 
being eligible. Of these 13 006 were interviewed at the initial vi 

, 
sit and were regarded as 

the achieved sample. An outcome that measured the health status of an individual using 
an ordinal scale was selected for the purpose of the analysis. This outcome was in a 
form of a question and was asked by an interviewer: 'Would you say that for someone 
of your age, your own health in general is: 'Excellent', 'Good'5 'Fair', 'Poor', 'No 

answer', 'Not asked' and 'missingT. Two categorical covariates 'Have you ever 
suffered from a heart attack? 'Yes', 'No', 'No answer', 'Not asked' and 'missing" 

and 'Do you smoke? 'Yes', 'No', 'No answer', 'Not asked' and 'missing" were chosen 
as the independent variables to be used in the models, as these provided a good example 
of discrimination between the different ordinal regression models outlined. 

3.2 Response rates 
The number of missing observations for the outcome response was 309 (2.4%), the 

number of observations where no answer was provided was 61 (0.5%) and the number 

of respondents who were not asked the health status question was 14 (0.1%). These 

response categories were ignored as they could not be incorporated into the ordinal 

scale and could not be analysed using the ordinal regression models. For the 'heart 

attack' question, the number of subjects who had missing observations was 340 (2.6 %), 
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Table 1 Frequency table for the data from MRC Cognitive and Function Ageing Study (MRC CFAS) 

Do you smoke? Have you had Rating of health status 
a heart attack? 

Excellent Good Fair Poor Total 
Yes Yes 27(0.11) 76(0.31) 101 (0.42) 39(0.16) 243 Yes No 402 (0.19) 1050(0.50) 522(0.25) 145(0.07) 2119 
No Yes 83(0.08) 406(0.39) 442(0.42) 114(0.11) 1045 
No No 1959(0.21) 4521 (0.50) 2243(0.25) 405(0.04) 9128 

Parentheses reference the proportions based on the marginal totals 

six (0.05%) respondents did not provide an answer and a further two (0.02%) subjects did not answer the question. For the 'smoke' covariate, there were 392 (3.0%) 
respondents who had missing data, and four (0.03%) respondents were not asked 
the question. Missing observations were eliminated from the analysis. Similarly the 
number of respondents who had 'no answer' or were 'not asked' the question were few 
and these too were eliminated from the analysis. Thus, although approximately 13 000 
elderly people were presented in the 'achieved' sample, complete observations on the 
response and the covariates were available on 12 535 subjects. The data for the y- 
response (health status) were cross-tabulated with the two covariates of interest to form 
four sub-populations and are shown in Table 1. 

From Table 1, the majority of patients rate their health as 'good' or 'fair' irrespective 
of whether or not they smoke and whether or not they have had a heart attack. 
Regardless of whether a respondent smokes or not, there is a tendency for those who 
have had a heart attack to rate their health lower than those who have not had a heart 
attack. Regardless of whether a respondent has had a heart attack or not, provided 
he/she is a smoker there is a greater chance of rating his/her health as 'poor'. 

Using the Cochran-Mantel-Haenzel (row mean score) statistic a significant associa- 
tion was found between the general health of the respondent and whether he/she has 
had a heart attack (after controlling for whether he/she smokes or not- 
QSMH==190.767 on 1 d. f.; P=0.001). Likewise there was evidence of a notable 
association between the health status and whether or not a respondent smokes (after 
having accounted for the fact that a respondent may or may not have had a heart 

attack-QsmH= 4.212 on 1 d. f.; P=0.04). Furthermore, there was no evidence that 
the two covariates of interest were associated (X1 2=0.001; P=0.982). The main 
drawback of this method, however, is that it is only capable of displaying the general 
association. No estimates for the general or cut-off point-specific odds ratios are readily 
available. Ordinal regression models are a superior way of assessing the relationship 
between the ordered response and a set of covariates. 

Fitting the models 

4.1 Preliminary analysis and the proportional odds model 
Before fitting the proportional odds model, one should check the assumption of 

proportionality, and so the individual cut-off point-specific cumulative odds ratios were 
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Table 2 Different slopes models (single cumulative model and three separate logistic regression models) 
Variable Cut-off points 

(Good, fair, poor) vs (Fair, poor) vs Poorvs 
excellent (excellent, good) (excellent, good, fair) 

In(O. R. ) s. e. In(O. R. ) In(O. R. ) s. e. In (0. R. ) In(O. R. ) s. e. In (0. R. ) 

Suffered from a heart 1.0208 0.1024 1.0374 0.0596 0.9656 0.0966 
attack (yes/no)? (1.0459' 0.1024) (1.0348a 0.0596) (0.9664a 0.0965) 

Do you smoke (yes/no)? 0.1222 0.0590 0.1304 0.0488 0.4592 0.0894 
(0.1246' 0.0591) (0.1242' 0.049) (0.45618 0.0895) 

'Refers to the analysis carried out by the logistic regression model. 

log 
Pr(Y < yjlXl. X2) 

txj - Pjl (heart attack) - flj2(smoke); j=1,2,3. Pr(Y > yjlXl. X2) 

I 

computed. Table 2 illustrates the results where different slopes (based on each cut-off 
point) were fitted using cumulative probabilities in a single model, and the results of 
three separate logistic regression models (based on the three cut-off points). It is 
interesting to note that the results are very similar for the single cumulative model 
and the three logistic regression models. When comparing the results from these models 
it can be seen that the standard errors of the log odds estimates are almost identical and 
there is only a slight variation in the estimates. 

By observing the adjusted log odds ratios from the single cumulative model in Table 
2, we conclude that there is little difference in the probability of lower ratings of health 
as opposed to higher in those who may or may not have had a heart attack. For the 
6smoke' covariate there appears to be much more variation in the odds ratios. This 
would suggest that the constant odds assumption is unlikely to be satisfied for the 
proportional odds model and indeed this was the case as suggested by the X2 -score test 
statistics in Table 3 (X2-score test statistics: overall, X4 2= 16.21925 P=0.0027; 'Heart 
attack', X2 2=0.58045 P=0.7481; 'smoke', X2 2= 16.04825 P=0.0003). Furthermore 
the pro P ortional odds model was found to be a poor fitting model (chi-squared residual 
test5 X7 = 22.76; P-value = 0.0 0 19). 

4.2 Unconstrained partial proportional odds model 
As the proportional odds assumption does not hold for one of the two covariates in 

the model, a partial proportional odds model, initially using no constraints, was fitted 

and the results of this are illustrated in Tables 4 and 5. For the subjects who may have 

had a heart attack (as opposed to not having had one), a constant adjusted log odds 

ratio could be assumed across the health status categories. However, the estimated 

adjusted log odds for those who were/were not smokers varied by cut-off point, and in 

relation to model (2) are denoted by fl2 (corresponding to the first cut-off point), 
#2 + Yý2 (corresponding to the second cut-off point) and fl2 + 732 (corresponding to the 

third cut-off point). Table 4 displays the weighted least-squares estimates and these 

have been used to obtain the estimates of the log odds ratios together with their 

standard errors (Table 5). This model accommodates the proportional odds present in 
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Table 3 Model fitting the proportional odds model 

Variable x2 -score test statistic d. f. P-value In(O. R. ) s. e. In(O. R. ) In(O. R. ) s. e. In(O. R. ) 
Heart attack (yes/no) 0.5804 2 0.7481 1.0241 (0.0553) 
Smoke (yes/no) 16.0482 2 0.0003 0.1460 (0.0426) Heart attack x Smoke 16.2192 4 0.0027 1.0222 (0.0554) 0.1542 (0.0428) 

log 
rPr(Y: s YjlXl-X2) 

= aj - fl, (heart attack) - fl2(SMoke); j=1,2,3. LPr(Y 
ý' 

ýj/xl-XD_ 

Table 4 Unconstrained partial proportional odds model: weighted least squares parameter estimates 

Parameters Esti mate ± s. e. Adjusted heart Adjusted smoke Wald's test statistic 
attack covariate covariate 
Estimate (s. e. ) Estimate (s. e. ) Y1 ý Y2 == Y3 =: 0 Y3 = 40Y2 

OC1 1.8752± 0.0379 
12 -0.3199± 0.0323 
OC3 -2.3404±0.0481 
p 0.5115 (0.0277) 0.0609 (0.0295) 
Yi 0 Xi 2=5.69 
Y2 0.00411 (0.0314) P= 0.02 Xi 2=0.00 

Y3 0.1691 (0.0503) P= 0.9970 

. 
rPr(Y: 5 yjlXl-X2) 

log i5 -- ý"j - flj(heart attack) - IP2(smoke) + Y12(smoke: health status > excellent) LPr(y >' yj1X1 -X2)_ 

Y22(smoke: health status>good) + Y32(smoke: health status > fair)], j=1,2,3. 

Table 5 Log odds ratios for unconstrained partial proportional odds model 

Variable (Good, fair, poor) (Fair, poor) vs Poor vs (excellent, 
vs excellent (excellent, good) good, fair) 

In(O. R. ) s. e. In(O. R. ) In(O. R. ) S*e. In(O. R. ) In(O. R. ) s. e. In(O. R. ) In(O. R. ) s. e. In(O. R. ) 

Constant component Increment at cut-off points 
of log odds ratio 
across cut-off points 

Suffered from a 1.023 0.0554 -- 
heart attack 
(yes/no)? 

Do you smoke 0.1218 0.059 0 0.00822 (0.0628) 0.3362 (0.1006) 

(yes/no)? 
Log odds ratios at cut-off points 

Do you smoke --0.1218 
(0-059) 0.1300 (0.0991) 0.4600 (0.1281) 

(yes/no)? 
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the 'heart attack/no heart attack' covariate, and for the non-proportional odds present in the 'smoke/no smoke' covariate. The log odds ratios obtained for this model are very 
similar to those presented in Table 2. In terms of interpretation, the respondents who have had a heart attack (as opposed to not having had one) are three times as likely to have lower ratings of health as opposed to higher ratings. However, as an underlying 
continuum directly related to the response categories does not exist for this quality of life scale, the invariance property does not apply. Given a respondent is a smoker (as 
opposed to not being a smoker), then after adjusting for the fact that he/she may or 
may not have had a heart attack, the odds of having ('good', 'fair', (poor') health is 1.1 
times that of having ('excellent') health, and this is similar to the odds of having ffair', 
4poor') health versus ('excellent', 'good') health. The adjusted odds of having ('poor') 
health is 1.6 times that of having ('excellent', Cgood', 'fair') health for a smoker (compared to a non-smoker). It is evident that the non-proportionality in the 'smoke' 
tovariate is as a result of the odds ratio obtained at cut-off point 3. The unconstrained 
partial proportional odds model was found to be a good fitting model to the data (chi- 
squared test of residuals, XS 2= 7.14, P-value = 0.2102) and was a better fit than the 
proportional odds model (HO, Ylk = Y2k =* -Y3k = 0; X2 2=1S. 62; P-value = 0.0 1). 
Furthermore, it is a more parsimonious model than the model that allowed for separate 
slopes for the cut-off points for each covariate (since seven parameters are estimated in 
the unconstrained partial proportional odds model and nine parameters are estimated 
in the different slopes model). 

4.3 Constrained partial proportional odds model 
In fitting the constrained partial proportional odds model, the cut-off point-specific 

log odds ratios are observed from the unconstrained partial proportional odds model. A 

monotonic trend is apparent in the log odds ratios across the health status categories in 

relation to the covariate that assesses whether respondents smoke or not smoke. In 

order to simplify the interpretation, a constraint can be placed on the parameters 
(leading to the formation of the constrained partial proportional odds model). Thus 

whilst a proportional odds is apparent in the variable assessing 'heart attack', the 
Csmoke' variable has odds ratios which follow an increasing trend over the cut-off 

points. Based on these, the following constraints were chosen: T12 0; T22 : -_ý 
1; T32 ý-_ 

40. These formed the following log odds: fl2 +0* Y2 T2, #2 +1' Y2 T2 and 92 + 40 * Y2 T2. 

The parameter estimates and the log odds ratios are presented in Tables 6 and 7. The 

interpretation of the parameter estimates for this model is very similar to that for the 

unconstrained partial proportional odds model. The constrained partial proportional 

odds model was found to be a good fit model (test of residuals: X6 2=7.16; P- 

value=0.3036). This model was found not to be significantly different from the 

unconstrained model (HO, Y3 -` 'r3Y2; X1 2=0.00; P-value = 0.970) and therefore in 

terms of model parsimony was the preferred model (as only six parameters were 

estimated, as the constraints are not considered model parameters in this case). 

4.4 Polytomous model 
Before fitting the stereotype model, we examined the log odds ratios (and their 

standard errors) from the polytomous model. In both models the referent category was 

chosen to be 'excellent', and therefore the cut-off point-specific odds ratios are based on 
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Table 6 Constrained partial proportional odds model: weighted least squares parameter estimates 
Parameters Estimates (s. e. ) Adjusted heart Adjusted 

attack covariate Smoke covariate 

Estimates (s. e. ) Estimates (s. e. ) 
LXJ 1.8751 (0.0357) 
OC2 -0.3199 (0.0315) 
063 -2.3404 (0.0479) 
ft 0.5115 (0.0277) 0.0608 (0-0217) 
y (constraint parameter) 0.00423 (0-00107) 

log 
Pr(Y :! S Yj/X1-X2) 

- aj - fl, (heart attack) - L62(smoke) + TlY2(smoke: health status> excellent) 
I 
Pr(Y > yjlXl. X2)j - 

+'r2y2(smoke: health status>good)+r3y2(smoke: health status>fair)]; i=1,2,3. 
Constraints: rl --= 

0; T2 ý-- 1; T3 = 40. 

Table 7 Log odds ratios for constrained partial proportional odds model 

Variable (Good, fair, poor) (Fair, poor) vs (excel- Poor vs (excellent, 
vs excellent lent, good) good, fair) 

Suffered from 
a heart attack 
(yes/no)? 

Do you smoke 
(yes/no)? 

In(O. R. ) s. e. In(O. R. ) In(O. R. ) s. e. In(O. R. ) In(O. R. ) s. e. In(O. R. ) In(O. R. ) s. e. In(O. R. ) 

Constant component 
of log odds ratio 
across cut-off points 
1.023 (0.0554) 

0.1216 (0.0434) 0 

Increment at cut-off points 

0.00846 (0.00214) 0.3384 (0-0856) 

Log odds ratios at cut-off points 
Do you smoke 

(yes/no)? 
0.1216 (0.0434) 0.1300 (0.0435) 0.4600 (0.0455) 

6 good' versus 'excellent' (cut-off point 1), 'fair' versus 'excellent' (cut-off point 2) and 
4poor' versus 'excellent' (cut-off point 3). The weighted least squares estimates and the 
adjusted odds ratios for both covariates using the polytomous model are displayed in 
Tables 8 and 9, respectively. Using the test statistic values, we found that the cut-off 
point-specific adjusted log odds ratios for the 'heart attack' variable are significantly 
different from one another (Wald's test statistics, fll ýý fl25 X1 2= 1SO. 783 P<0.0001; 
fl2 =& X1 2= 11.68, P=0.0006). A constant adjusted log odds ratio can be assumed 
for the 'good' versus 'excellent' and 'fair' versus 'excellent' cut-off points for the 
smokers versus non-smokers (Wald's test statistics, fll = fl25 X1 2 =0.12, P=0.73). 
However, a different odds ratio has to be assumed for the 'poor' versus 'excellent' 

categories (Wald's test statistics, fl2 = #341 2= 19.43, P<0.0001). Note that this is in 

contradiction to the conclusions drawn from the proportional odds model and the 

partial proportional odds models. Thus using the polytomous model, for the respon- 
dent who has suffered from a heart attack, the adjusted odds of having 'good' health is 
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Table 8 Polytornous logistic regression model: weighted least squares parameter estimates 
Parameters Estimate (s. e. ) Adjusted heart attack Adjusted smoke 

covariate covariate 

Estimate (s. e. ) Estimates (s. e. ) 
0(1 1.1957 (0.0580) 
12 0.9110 (0.0587) 
OC3 -0.4108 (0.0724) 
#1 
P 

0.3098 (0.0542) 0.0429 (0.0313) 
2 

# 
0.7197 
0 

(0.0541) 0.0524 (0-0329) 
3 

. 8955 (0.0669) 0.2656 (0.0509) 
Pr(Y = yjlXl. X2) 

log ai + fli, (heart attack)+ flp 
[Pr(Y 

= yIX,. X2)] = (smoke); i 2,3,4. 

Table 9 Polytomous model 

Variable Cut-off points Wald's test statistic 

Good vs Fair vs Poor vs 
excellent excellent excellent 

Suffered from a 
heart attack 
(yes/no)? 

Do you smoke 
(yes/no)? 

In(O. R. ) s. e. In(O. R. ) In(O. R. ) s. e. In(O. R. ) In(O. R. ) s. e. In(O. R. ) ßl : -- ß2 ß2 : -- ß3 

0.6196 (0.1084) 1.4394 (0.1082) 1.791 (0.1338) Xi 2=32.61 X, 2=150.78 
P= 0.0000 P= 0.0000 

0.0858 (0.0626) 0.1048 (0.0698) 0.5312 (0.1018) Xi 2=1.88 X12 =0.12 
P=0.1706 P=0.7323 

approximately twice that of having 'excellent' health. The adjusted odds of having 'fair' 
health is approximately four times that of having 'excellent' health and the adjusted 
odds of having 'poor' health is approximately six times of having 'excellent' health. For 
the smokers the adjusted odds of having 'good' or 'fair' health is approximately 1.1 
times that of having 'excellent' health, and the adjusted odds of having 'poor' health is 
approximately 1.7 times of having 'excellent' health. The polytomous model was found 
to be a good fit model (test of residuals, X3 2= 6.37, P-value = 0.0949), although it lacks 
parsimony. 

The difference in the results produced by the proportional odds models and the 
polytomous model can be explained by assessing the proportions in Table 1. It is 
evident that the smoker vs non-smoker contrast within each of the 'heart attack' sub- 
populations is very similar across the health status categories. Thus for the 'smoke' 

covariate, the difference in the two types of models is due to the way the logits are 
formed. In fact , the log odds ratios are quite similar for this covariate given the two 
cumulative models and polytomous model. When assessing the proportion of those 
who have had a heart attack vs not having had one, within each of the levels of the 
smoke covariate, there is a notable difference. The ratio of those who have had a heart 

attack compared to those who have not had a heart attack increases over the health 

status categories for both levels of the csmoke' covariate and this is manifested in the 
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polytornous model. The effect of accumulating the probabilities over the cut-off points 
removes the increase in the odds ratios to reveal proportional odds. 

4.5 Stereotype model 
As stated earlier, the polytomous model can be simplified to become the stereotype 

model. The weights were estimated as parameters using maximum likelihood estima- 
tion in model (6), together with the ai and flk parameters are presented in Table 10. 
Differences between the Oj scale values indicates how the log odds of one health status 
category versus another is affected by having/not having a heart attack and whether 
respondents smoke or not. The impact of the independent variables on a log odds 
between adjacent categories is largest for 'good' versus 'poor' health status where the 
difference between the scale values is 0.439. The smallest impact is on the 'fair' versus 
cpoor' health status categories, with a difference of only 0.223. The impact of having a 
heart attack on the logit of having 'excellent' versus 'good' health status is 0.6147 
(01#1), resulting in the log odds ratio. Using the remaining weights and the fik values, 
the cut-off point-specific log odds ratios can be obtained in a similar way for both 

covariates. The odds ratios were found not to be much different to those obtained using 
the polytomous model (see Table 11). The interpretation of these log odds is also simi lar 

to that of the polytomous model. As the weights are ordered in a monotone fashion we 
can assume that there is an ordering in the y-response with respect to the covariates. 
the observed -2log-hkelihood for the nine-parameter polytomous model was 
29329.16 compared to a -2log-likelihood of 29 343.73 for the seven-parameter 
stereotype model. The observed change in the -2log-likelihood values of these two 

models was 14.57. Comparing this with its position in the bootstrap distribution of 100 

changes in -2log-likelihoods of the two models, it was evident that the constrained 

model was not as good a fit as the polytomous model. Assessing the distribution of the 

change in the -2log-likelihood values, it was found that 45. S% of the bootstrap sample 

values lay below the observed value and 54.6% lay above. This implied that the P-value 

was approximately O. S, indicating that the null hypothesis (which was based on the fact 

that the polytomous model was a good fit to the data) could not be rejected. Thus the 

stereotype model was found to be a poor fit compared to the polytomous model. 

Table 10 Parameter estimates using the bootstrap techniques: stereotype 

model 

Parameters Adjusted heart attack Adjusted smoke 
covariate covariate 

Estimate (s. e. ) Estimate (s. e. ) 

1.8468 (0.1346) 0.2703 (0.0805) 

0 
0 
0.3407 (0.0426) 0.3407 (0.0426) 

4 2 
03 0.7770 (0.0534) 0.7770 ) (0.53 

04 1 1 

Pr(y = YjlXl A)] 
- ix 61 (heart attack) +0 ( + #2(smoke)); 2,3,4. 

log 
ý 

, , i 
_Pr(y = YJ /xl -x2)J 
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Table 11 Stereotype model 

Variable Cut-off points 

Good vs excellent Fair vs excellent Poor vs excellent 
In(O. R. ) s. e. In(O. R. ) In(O. R. ) s. e. In(O. R. ) In(O. R. ) s. e. In(O. R. ) 

Suffered from 0.6305 (0.0980) 1.4328 (0-1189) 1.8468 (0 1346) a heart attack . 
(yes/no)? 

Do you smoke 0.0920 (0-0295) 0.2082 (0-0575) 0.2703 (0.0805) (yes/no)? 

Discussion 

An alternative ordinal regression model, which was not considered in the analysis is the Fienberg's continuation ratio model. 18 This model is usually relevant when an ordinal 
quality of life scale may be thought of as a progression through various stages, so that 
people start with 'excellent' and deteriorate to 'poor' and are unlikely to reverse this 
trend. Such data usually resemble failure-time data or outcomes measuring threshold 
points. The data in this paper were not of this type and therefore the continuation ratio 
model was considered as being irrelevant. 

Irrespective of the modelling techniques, the response variable in a quality of life scale 
can essentially arise in one of two ways: (a) where there are clearly ordered categories 
for which there is a single underlying latent variable; or (b) where the categories are 
discrete and for which ordering may depend on covariate information. 

Having established how the data are generated, then one is in a position to decide 
which model will be most appropriate in terms of analysing the data. Given the y- 
response is a grouped continuous response variable, the proportional odds and partial 
proportional odds models are often the most applicable due to the assumptions these 
models make. In the case of the data presented, the proportional odds model was found 
to be a poor fitting model and one could have used other forms of strategies. These 
would include using a different link function in the model, eg the log-log function 
would produce a response function that was non-symmetric, or alternatively one could 
include additional terms in the model, such as the interaction term (although in this case 
the interaction was found to be non-significant). Generally, however, as the covariates 
increase in a proportional odds model, the lack of fit increases but is compensated by 
the parsimony of the model. The unconstrained partial proportional odds model is a 
better fitting model than the proportional odds model, although the parameters increase 

at a drastic rate as the number of covariates and number of y-response categories 
increase. The constrained partial proportional odds model would probably be the most 
ideal model, given a set of covariates and a k-ordered group continuous response 
variable. However, obtaining the constraints is somewhat problematic, especially if 

there are a large number of covariates with non-proportional odds. Presently there is no 
method available for estimating the constraints, and one can only use fixed constraints 
that have been determined prior to fitting the model. 
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When the ordered categories in the response variable are of a discrete nature, and there is no directly related underlying continuum, the interpretation of the parameters in the proportional odds and partial proportional odds models becomes difficult. 
Ideally one would fit the polytomous model when presented with such response data. 
However, although this produces a good fitting model, it is at the cost of estimating a large number of parameters. As the number of covariates increases in the model, the 
stereotype model becomes more parsimonious and the estimation of the weights is not 
problematic, regardless of the number of covariates presented. The stereotype model would ideally be the most favourable of all these models given 
that one is presented with an assessed response. However, results from our data 
demonstrate that the stereotype model was not as good a fit as the polytomous 
model and the fit of the stereotype model was further illustrated using the Akaike 
Information Criterion 4,19 (AIC = -2 x log-likelihood +2xp, where p is the number 
of parameters in the model). This criterion adjusts the - 2log- Likelihood statistic for the 
number of terms in the model and the number of observations used. It is clear that there 
is not much difference in fit for the proportional odds or stereotype model (AIC for 
proportional odds model = 29353.837; AIC for the stereotype model = 29353.73 and 
the AIC for the polytomous model= 29339.163). 

Given the results above, despite the number of parameters estimated, the polytomous 
model is taken to be the most appropriate model that summarized the data. It is found 
to fit the data well and, more importantly, it allows for the processes that generate the 
data. Thus using this model we can conclude that smoking has a greater impact on 
health status than does having had a heart attack. The odds of having a lower rating of 
health increase dramatically if one smokes (adjusting for whether they have had a heart 
attack or not) compared to a non-smoker. 

It is now computationally possible to fit most, if not all, the different ordinal 
regression models using routine statistical packages. There is therefore no reason 
why one should not account for as much information as possible regarding the data. 
In this paper, we have attempted to illustrate that the way the data have been generated 
can be accommodated in a given ordinal regression model and this provides more 
accurate and refined results. 
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