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ABSTRACT

Double-sideband amplitude-modulation is widely
used because of its simplicity in transmission and
reception, but in a number of applications the inclusion
of a data channel has become an additional regquirement.

An additional data signal, transmitted with a normal AM
broadcast signal, can be used by a specially-equipped
receiver to provide for display and control functions.
The data signals should not impair the main broadcast
signals, and should be imperceptible to listeners with
ordinary radlio receivers.

The principles of a new modulation scheme, which
permits an additional data channel to be superimposed on
conventional DSB-AM signals without any bandwidth increase
or envelope distortion, are described 1n this thesis. The
proposed system uses combined amplitude/frequency modu-
lation to provide for the additional data channel. It
is shown that bandlimitation may be preserved by freguency
modulating the carrier with frequency-modulating functions
related to the complex zeros of the amplitude-modulating
signal.

The performance of the new modulation technique 1is
assessed by computer simulation. The cross-talk between
the two channels due to multipath propagation is con-
sidered to be a limiting factor. A novel complex

filtering technique to detect complex zeros of real
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signals is introduced and discussed. The distribution
of the complex zeros of positive bandlimited signals
1s assessed experimentally, and the possible data

rates of the proposed system are discussed.
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ABBREVIATIONS

AM Amplitude modulation

DBS-AM Double-sideband amplitude modulation

F'M Frequency modulation

PM Phase modulation

PA Power amplification

CNR Carrier-to-noise power ratio

SNR Signal-to-noise power ratio

S/D Signal-to-distortion power ratio

ZSEFM Zero synchronous frequency modulation
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CHAPTER 1

INTRODUCTION

1.1 Preliminarz

Although the problem of radio frequency spectrum
utilisation has existed since electromagnetic waves
were discovered, the spectrum remains one of the most
under-utilised natural resources. Radio communication
of all kinds areﬁexPanding on a very large scale at the
present time, and radio spectrum requirements are in-
creasing consequently. The efficiency of spectrum
utilisation depends on such parameters as radiated
power, bandwidth, antenna pattern, ... etc. (1).

The use of spectrally efficient modulation systems
is becoming very 1lmportant. Such systems will maximise
the bandwidth efficiency. Conventional double-sideband
amplitude-modulated (DSB-AM) systems are wasteful of
spectrum and power, but they are widely used because of
the simple detection using envelope detectors.

The idea of using multi-parameter modulation to
improve the characteristics of communication systems 1s
not a new one, but only recently has work on this problem
been intensified. This may lead to more rational use
of the radio spectrum, and hence may improve the ef-
ficiency of spectrum utilisation.

For public-service broadcasting, there has not

always been much opportunity to make the most efficient



use of the radio frequency spectrum. This has been
because 1in broadcast systems the emphasis is mainly on
making simple and cheap "domestic" receivers. Hence,
1t would be efficient if additional services could be
1ncorporated while maintaining compatibility with
existing channels. In the past, additional services
have been introduced such as colour signals into tele-
vision broadcasting, and also teletext which exploit
the remaining under-utilised parts of the television
signal (2). In radio broadcast (AM and FM) services,
the inclusion of additional data signals has become of
significant importance (3).

These additional "radio-data" signals, transmitted
along with the normal sound-programme signals, can be
used in many different ways at the receiver to provide
for display and control functions. For example, a
display of the network name (e.g. BBC R2Z2) and programme
type (e.g. NEWS, MUSIC, SPORTS, etc.) can be provided.
Provision and display of motoring information, weather
conditions, time checks is also possible. The data
signals can also be used to control a programme search
in automatic tuning which is highly important for
motorists. Other possible applications of the addi-
tional data signals will emerge as radio-data systems
develop.

However, the additional data signals should not

be allowed to impair the main programme, and should be



imperceptible to listeners with existing ordinary
receilivers. Sultably equipped future domestic radio-
receivers could detect the data messages, and then use
them for display or control purposes.

In this thesis, a novel modulation technique is
studied which permits data signals to be transmitted

with amplitude-modulated radio broadcast signals.

1.2 Radio-Data Systems
During the last years the BBC and other European

broadcasters have been investigating systems for broad-
casting radio-data signals from v.h.f./f.m. radio broad-
cast transmitters (4, 5). The problem for the broad-
caster has been to devise a method of adding the radio-
data signals so that they cause negligible impairment to
normal programme reception on existing recelivers. The
cross—-talk between the data signal and the maln programme
signal should be imperceptible even under difficult

reception conditions.

For v.h.f./f.m. transmitters the preferred method
for broadcasting radio-data signals uses a subcarrier

added to the stereo multiplex signal. Figure 1.1

shows the spectrum of a stereo multiplex signal.
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Spectrum of stereo multiplex signal.

Fig. 1.1

It may be seen that there are two regions in the spectrum
of a stereo multiplex signal where a subcarrier could be,
in theory, located without causing perceptible impair-
ment to the normal programme. The first region 1s 1n
the vicinity of the 19 kHz pilot tone, between the upper
frequencies of the sum signal and the lower frequenciles
of the difference signal. The second region 1is above
the upper frequencies of the difference signal, and sub-
carrier frequencies around 57 kHz are preferred (4).

Some European broadcasters use subcarriers in the region
of 19 kHz, while others use subcarriers in the regionrof
57 KkHz. These subcarriers are amplitude-modulated by
the data signals and added to the multiplex signal at
the transmitter modulation input terminal. The BBC

radio-data system for v.h.f./f.m. has the highest data



rate of 1187.5 bit/sec among all the other European
systems (4).

The above techniques relate to v.h.f./f.m. signals
that have adequately wide bandwidth to accommodate the
additional data signals. The situation is quite dif-
ferent when superimposing additional data signals on
amplitude-modulated broadcast signals. Development
of radio-data systems is considerably less advanced for
low and medium frequency (1.f. and m.f.) broadcasting
where AM predominates and the inherent redundancy of
the double-sideband amplitude-modulated (DSB-AM) signal
is more difficult to exploit. The data signal can be
provided for by using combined amplitude/phase modulation
so that the data phase or frequency modulates the carrier
of a conventional DSB-AM signal, while amplitude modu-

lation is achieved in the usual way. A combined AM/PM

signal can be expressed as:

x(t) = s(t) cos[wot + 6(t) ]
where s(t) = envelope, 6(t) = phase, and W 1s the
carrier freguency. Figure 1.2 shows such a hybrid
AM/PM modulator. e W

—

cos[w t + 0(t))
0!

Fig., 1.2



However, combined AM/PM will generate, in general,
non-bandlimited signals for all but very low data rates
(6) . The limited bandwidth available for AM broadcast
imposes severe limits on the choice of a modulation
system for an additional data signal. Three requirements
must be satisfied:

i) bandwidth must not increase due to the additional
data signals so that no co-channel i1interference
is 1incurred.

11i) the envelope of the AM signal should not be dis-
torted so that the main programme signal 1s not
impaired.

111) the cross—-talk between the two channels should be
negligible even under the worst reception con-
ditions. Cross—-talk causes unwanted a.m./p.m.
and p.m./a.m, conversions rendering the data
signals to be audible. This is mainly due to
two mechanisns, (a) the non-ideal IF tuned
circuits of receivers, and (b) multipath fading
causing the received signal to be the sum of
different versions of the transmitted signal
which have travelled by different paths.

The BBC have proposed a system for adding data
signals to amplitude-modulated broadcast signals, at 1.f.
and m.f., in which the carrier is phase-modulated with
shaped data signals (5, 7). The maximum available

signalling rate is mainly limited by unwanted p.m./a.m.



conversion 1n receilivers causing the data signal to be
audible. In the absence of fading or co-channel inter-
ference, preliminary laboratory tests of the BBC system
showed that signalling rates up to 100 bit/sec using

a peak phase deviation of * 50° would cause imperceptible
impairment to the majority of receivers (5). Biphase
coding of the data is used so that there is no long-
term change to the carrier frequency. The condition

of multipath-fading interference has been found to limit
the BBC system's data rate to about 25 bit/sec and peak
phase deviation to * 22.5° (5, 7). This data rate 1is
too low to be compared with the data rate of 1187.5 bit/
sec that is provided for v.h.f./f.m. signals. Con-
sequently the BBC have suggested that radio-data system
for 1.f. and m.f. broadcast cannot be expected to be
used in similar applications as those for v.h.f./f.m.

A recent BBC Research Department report (8) has re-
vealed that for data signalling at 1l.f./m.f. sound broad-
casts, the dominant mechanism likely to cause cross—-talk
from the PM data channel to the AM sound channel is that

of sky-wave interference. It also showed that if the

impairment due to data signalling is to be imperceptible
when sky-wave fading interference causes a fading depth
of 10 dB, then, for a relative delay of up to 1 msecC
between the ground-wave and sky-wave signals, the data
rate must not exceed 50 bit/sec for a phase deviation

of + 11.25°. For a phase deviation of * 22.5° the data



rate 1s 25 bit/sec under the same conditions. A fading
depth of 10 dB corresponds to the nominal, maximum
acceptable value (8), and it also implies that the sky-

wave signal 1s half the ground-wave signal in magnitude.

1.3 A Novel Modulation Technique for Radio-Data
AEElication

A new modulation technique, permitting additional
data signals to be superimposed on conventional double-
sideband amplitude-modulated (DSB-AM) signals, is intro-
duced briefly in this section. The detailed theoretical

background and the bulk of the results will be presented

later in this thesis.

In principle the new system uses combined amplitude/
frequency modulation to provide for the additional data
channel. A special class of frequency-modulating
functions must be used so that there is no bandwidth
increase or envelope distortion in the DSB-AM signal.
This frequency-modulating function is related to tem-
poral variations of the amplitude-modulating signal.

The principles of this modulation technique are derived
from the concept of the "common envelope set" (9), whose
members have the same envelope and bandwidth but dif-
ferent phase functions. As the zeros of bandlimited
signals can be regarded as fundamental informational
attributes (10), then amplitude-modulating signals can
be characterised as a succession of zeros obtained by

factorisation of their Fourier series. A process of



zero manipulation can lead to the generation of other
members of the "common envelope set" having the same
envelope and bandwidth. The binary data signal is
1mposed by frequency-modulating the carrier with a
frequency-modulating function related to the complex
zeros of the amplitude-modulating signal. It 1s also
required that frequency modulation must be applied in
synchronism with the time of occurrence of the complex
zeros of amplitude—-modulating signal. Therefore the
proposed system isnamed Zero Synchronous Frequency
Modulation (ZSFM).

Additional signal processing is required at the AM
transmitter 1n order to detect complex zeros before
frequency modulation takes place, as well as provision
for combined AM/FM of the carrier.

On reception, the usual arrangements for envelope
detection apply, while a simple frequency demodulator can
be used to recover the additional data signals, which can
then be used for different purposes as mentioned 1n
Section 1.1.

It will be shown that data transmission at rates up

to 5 kbit/sec is theoretically possible over a 10 kHz

broadcast channel.

1.4 Scope of the Thesis

This thesis 1s concerned with the study and

development of a novel modulation technique, permitting
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additional data signals to be transmitted with con-
ventional AM broadcast signals without any bandwidth
increase or envelope distortion.

Chapter 2 presents a mathematical study of the
zeros of bandlimited signals. The zero pattern of
DSB-AM signals 1s discussed due to its significance
in the understanding of the proposed ZSFM system.

The basic theory of the ZSFM system is studied in
Chapter 3. It is shown that the carrier of a DSB-AM
signal can be frequency or phase modulated without
increasing the bandwidth of the transmitted signal. An
aperiodic model for zeros has been developed whereby the
zeros of a signal are viewed individually. Data rates
of ZSFM are derived, and a prototype ZSFM transmitter
is proposed.

The problem of detecting the complex zeros of a
real signal, using complex filters, is studied in Chapter

4, Practical realisations of a complex filter are

proposed comprising:

a) delay line approximation
D) cascaded differentiators
C) computer implementation

The performance of ZSFM has been assessed by com-
puter simulation and the results are presented 1n
Chapter 5. Characteristics of the ZSFM signal such as
bandlimitation and envelope distortion were studied.

Both envelope and frequency detectors were simulated to
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Oobtain the demodulated envelope and data signals res-
pectively. The problem of IF cross-talk between the

two channels was studied by simulating an IF filter
consisting of coupled-tuned circuits. It 1s considered
that the cross-talk due to IF non-linearities is negli-
gible. The problem of multipath fading was studied to
estimate its effects on cross-talk. Multipath propa-
gation of ZSFM has been simulated using a 2-path fading
model, and it has been shown that PM/AM conversion, as

a result of multipath propagation conditions, 1s expected
to be a major limiting factor. Computer implementation
of the complex filter was also studied. Finally a
simple phase-locked loop was used as a frequency detector
to demonstrate recovery of the data signal.

Chapter 6 introduces theoretical and experimental
studies of the complex zero distributions of positive,
bandlimited, real signals. A computer simulation has
been used to find the probability-density function (p.d.
f.) of the complex zeros of a positive bandlimited random
signal. The achievable bit rate of ZSFM has been
estimated.

The performance of ZSFM is compared with the BBC

radio-data system for 1l.f./m.f. broadcast in Chapter 7.
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CHAPTER 2

MATHEMATICAL ANALYSIS

2.1 Introduction
Mathematical information relevant to the problem
of interest is presented in this chapter.

The most general form of bandlimited modulated
signals exhibit simultaneous envelope and phase fluc-
tuations. The general relations, which govern these
attributes, are derived in this chapter. The zeros
of bandlimited signals are shown to have major infor-
mational contribution. The idea of a "common envelope
set" is introduced, and the generation of the different
members of such a set is discussed. It is possible to

classify signals according to their characteristic zero

patterns.
2.2 Hilbert Transform

Let s(t) be a real signal of the real time variable

(L) . If s(t) is Fourier-transformable, then its Hilbert

transform is defined by:

H [s(t)]= s(t) = - P ! %i§l? dTt
_ s(t)
= P f R —— dt
= s(t) * —— = s(t) * h(t) (2.1)
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where P denotes Cauchy principal value, * denotes con-

volution and h(t) = #%vis the i1mpulse response of the

Hilbert transformer.

If S(f) and H(f) are the Fourier transforms of

s(t) and h(t) respectively then the Fourier transform

of s(t) is:

Fls(t)] S(f) . H(f) (2.2)
where [ ] denotes Fourier transform. It is shown in

Appendix (1) that H(f) is given by:

H(f) = -3 sgn (f) (2.3)
(1, £ >0

where sgn(f) = 4 0, £ =0
-1, £ < O

Substituting egn. (2.3) into egn. (2.2) gives:

-4 S(f), £ > 0

0

F [s(t)] = 40 £

(+3 S(£f), £ <O (2.4)
It is apparent that H(f), the transfer function of the
Hilbert transformer, represents a 90° phase shifting

network.

2.3 Analytic Signal

Let m(x) be a complex function of the complex

variable x = t + jo, where t and o are real. m(x) can

be written as
m(x) = u(t,oc) + jv(t,o) (2.5)

where u(t,oc) and v({t,oc) are real functions. If m(x) 1is
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regular (i.e. continuous and free from singularities)
in the region (R) in the x-plane, then a unigue deriva-
tive of m(x) exists (11) and any function obeying the
above is called analytic in the region (R).

A function m(x) which is analytic in the open upper-
half x-plane will be named "Analytic"( 9).

If s(t) is a real signal which is Fourier transformable
and usually bandlimited, its Analytic signal is defined

(12) as:

1

m(t) = s(t) + 3 s(t)

= (m(t) | ej¢(t) (2.6)

where |[m(t)| = Vs?(t) + S (t) = envelope of m(t),

] = phase of m(t),

and s(t) is the Hilbert transform of s(t). To find the
spectrum of the Analytic signal, M(f), we can use eqgns.

(2.6) and (2.4):

M(E) = S(f) + j Fls(t)]

2 S(f£), £ > O |
(2.7)

0 , £ < 0

Hence M(f) is single-sided and has zero content at nega-
tive freguenciles. If s(t) is bandlimited to * W HZ,
then m(t) 1s bandlimited to W Hz. It is this single-
sided property that makes the Analytic signal very use-
ful. The Analytic signal concept can be used to
represent different modulation methods (12). For

example a real modulated signal can be illustrated by
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using the Analytic signal representation as shown:

Jw_t
f (t) = Re [m(t) e ° ]
mO
- Jw__t
= Re [|m(t)]| ed®(E) o707,
= Im(t) | coslu_t + ¢(t)] (2.8)

where Re denotes the real part and W 1s the carrier
radian frequency.
It 1s apparent that the magnitude of m(t) gives

the envelope of the modulated signalfw (t) . It is

O
clear that egn. (2.8) represents a conventional
amplitude-modulated signal when ¢(t) = 0 in which case
egqn. (2.8) becomes:

£ (t)IAM=s(t) cos (w_t) (2.9)

O

Using inverse Fourier transform, the Analytic signal

m(t) can be expressed as:

Q0

j2nft

m(t) = ( M(f) e af

J

= 0

O

- J M(£) ed2TEE g¢ (2.10)

O

Replacing t by x = t + Jo gilves:

-2nfc _j2wft
e

m(x) = { M(f) e df (2.11)
0

It is clear that the existence of the above Fourier
transform requires the integrability and convergence of

eqn. (2.11), and therefore it must converge for any
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¢ 2 0, i.e. no singularities in the open upper-half

—

Xx-plane. The properties of an Analytic signal can be

summarised as follows:

1) 1t 1is a complex-valued signal.

11) 1t has no singularities in the open upper-half
x-plane (UHP)

111) 1ts spectrum vanishes for negative frequencies

1v) 1ts complex conjugate will have conjugate
Analytic properties

m*(t) = s(t) - 3 s(t)

= |[m(t) | e—j¢(t) (2.12)
m*(t) 1is called Image-Analytic ( 6 ) and its spectrum
vanishes for positive frequencies. m*(t) has no singu-
larities 1n the open lower-half x-plane (LHP).

Considering the integral given by egn. (2.11):

-2nfo _j2nft
S e

m(x) = J M(f) df
Q

Assuming that m(f) is bandlimited to W Hz, then the

above becomes (9 ):
W
m(x) = J M(f) e

O

—-2nfo ejZﬂft af

W
. Im(x) % = | j M(£) e 2TEO eJomht af| (2.13)
O

and by Schwarz inequality,
W W
Im(x) [* < f [M(f) |* df ( SRLEY:

N

OW 0
, -4mTWo
< |
0

2 1T - e
IM(£f) |? df [ ———] (2.14)
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The finite energy of the bandlimited Analytic signal

m(t) is given, by Parseval's Theorem, as:

oo W
E = Im(t) [? dt = IM(f) [? df (2.15)

/ J/

egqn. (2.14) becomes:

~-4mWo

2 1 = e
meo |2 ¢p 1 It

(2.16)
This shows that m({x) is bounded (has finite wvalue) in
the finite lower-half x-plane, and hence m(x) is finite
and analytic in the finite X-plane. Thus m(x) is an
entire (integral) function if it 1is bandlimited. For
bandlimited m(x), the singularities at the lower-half
x-plane are at infinity. It is worthy to note that

Analyticity follows from the single-sided property of

M(f) and does not depend on bandlimitation.

2.4 Phase-Envelope Relationships

The Analytic signal is called a minimum-phase
(MP) signal if its envelope and phase satisfy a specific
condition as will be shown.

Consider the integral

where C is a closed contour comprising a real axis t,

excluding a polnt at x = t1, and infinite semi-circle T

in the upper-half x-plane as shown in Figure 2.1.
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X-plane

Fig. 2.1

Closed Contour C

It is shown in Appendix (2) that if g(x) is analytic in

the upper-half x-plane and on C, then:
Im[g(t)] = H { Re[gl(t)]}

Re{g(t)] =-H {Im{g(t)]} (2.17)
where Im denotes imaginary part, Re denotes real part,
and H { } the Hilbert transform.

Applying this result to the logarithm of the Analytic

signal ( 9) given by egn. (2.6) renders:

J¢ (x)

m(x) = |[m(x)| e

. 1n m(x) = 1In |m(x)]| + Jj¢(x) (2.18)

Taking the derivative of the above gives:

In' m(x) = 1In'|{m(x)]| + j¢o'(x)

m (x) (2.19)

The assumption, that m(x) is Analytic, does not
guarantee that In'm(x) will be Analytic as In'|m(x)| can
have upper-half plane singularities at the upper-halt

plane zeros of m(x). However, if m(x) is zero-free in
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the upper-half x-plane, then ln'm(x) is Analytic. If

1t can further be assumed that 1ln'm(x) is square -

integrable then egn. (2.17) applies with g(t) = 1n'm(x).

. ¢'"(t) = H [In'|m(t)]]
In'|m(t)] = - H [¢"' ()] (2.20)

Any Analytic signal m(t) satisfying egn. (2.20) is
called a minimum-phase (MP) signal (9 ) and is zero-free
in the upper-half x-plane. Alternatively, if m(t) has
zeros 1in the upper-half x-plane then ln'm(x) is not
Analytic in general and m(t) is called a non-minimum
phase (NMP) signal. An Analytic signal m(t) with zeros

only in the upper-half x-plane is called maximum-phase.

2.5 Zzeros of Bandlimited Signals

The real and complex zeros of bandlimited signals
can be regarded as fundamental informational attributes.
This follows from the sufficiency of the zero-based
representations of signals (10).

For a periodic signal, the zeros are obtained by the
factorisation of its Fourier series representation. If
s(t) is a real signal and bandlimited then it can be

written as:

s(t) = I a eant (2.21)
n
n= — N
where the an's are the coefficients, £ =?%§ is the
fundamental frequency (rad/sec), T is the period and
s(t) has a bandwidth of # N Hz.

2T
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From the definition of Hilbert transform as given

in (2.4) :
~ -1 S N .
s(t) = H(s(t)] = 3 I a eJ - 7 I ejngt
n=-N n=1 "
(2.22)
The Analytic signal of s(t) is:
m(t) = s(t) + j s(t)
N .
= a_ + 2 L a_ eant (2.23)
n=1
putting:
c =a , c =2 a
O O n n
N InQt
.om(t) = I c_ e’ (2.24)
n=o0o

The above represents an Analytic signal and it is expressed
as a trigonometric polynomial. This trigonometric poly-
nomial behaves within a period, much like an algebraic
polynomial behaves over the whole x-plane.

m (%) eanx

1
Il ™
@

-nol _Jnlt
e

cC e , X = t + jo (2.25)

The Analytic signal m(x) expressed in (2.25) has:

i) N zeros per period

N§2

ii) spectral width of 5 Hz

iii) fundamental frequency ot %% Hz

iv) its bandwidth is proportional to the number of
Zeros per period

. . . JNX .

Using the conformal transformation z = e glves

a direct mapping from the complex x-plane to the complex

z-plane, as shown in Figure 2.2.
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(2.25) becomes :

= L ¢z (2.26)

jo Im(z)

A/ / t //IA',,A Re (z)

Fig. 2.2

This maps the UHP (x-plane) into the interior of the

unit circle 1in the z-plane and the LHP (x-plane) into the

exterior

of the unit circle. The periphery of the unit

circle corresponds to the real time axis. Egn. (2.26)

shows that m(z) is analytic inside the unit circle, 1i.e.

it is Analytic. Egn.(2.26) represents an algebraic poly-

nomial in z of degree N.

m(z) has:
1)

ii)
Henc

factors,

mi(z)

N zeros which are not periodic (z-plane zeros).
(N + 1) coefficients.
e m(z) can be represented as multiplicative

each representing a zero in the z-plane, 1.e.

= a (z - z_) (2.27)

N
m
_ Il

K n=1
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Example

As an example ©f the zeros of bandlimited signal

consider:

JjQt

m(t) = 1 + a e (2.28)
where a 1s a real constant. The function m(x) of the
complex variable x = t + jo is:

m(x) = 1 + a ejQX

Putting z = ejQX gives:

m(z) = 1 + az, which has a simple zero at z = - 1

Clearly m(z) 1s Analytic as it does not have singularities
inside the unit circle 1in the z-plane.
To find the corresponding zeros in the complex x-plane:

ej('n + 2Kkm) (2.29)

1.1
a a
1, £ 2, ...

Taking natural logarithm of both sides of egn.(2.29) gives:

J1NX = 1n (-a—) + J{m + 2Kkm)
o {m + 2km) . 1na 5 30
¥ = ---~~--—-———-——-——-———-Q + j -——-—-—-—Q ( . )

Eqgqn. (2.30) gives the position orf the zeros of m(t) 1in the
X-plane.

Note that the zeros in the x-plane are periodic
repetition, while there is only single zero in the z-

plane.

For a < 1, the zeros are shown in rigure 2.3.
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jo
Im(z)
1/a ; z-plane _ x-plane
' “'II T/
[ -.
| T T ; T !
D SN ol e 3
. ) ?‘( : I
' O O e O
1na /Sl
z~plane and x-plane zeros of m(t) for a < 1
Fig. 2.3
As all the zeros lie in the LHP (x-plane), m(t)
represents a minimum-phase signal. For a > 1, the
zeros are shown in Figure 2.4
Jjo
Im(z)
- . Xx-plane
z-plane Lna /0

? Q . .
A5 ) e
— - Re(z)

z-plane and x-plane zeros of
n(t) for a > 1

Fig. 2.4

m(t) represents a maximum-phase signal as all the

-eros lie in the UHP (x-plane).
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1t

m(t) 1 + a e-

can be represented by phasor diagram

as shown in F igure 2.5

Imag. Imag.

m(t)
a
(0t
A Real it
1 1 -
a < 1 a > 1

Phasor diagram of m(t)
Fig. 2.5

For a < 1 the average speed of rotation of the vector

(1 + a eth) 1s zero, 1.e. it 1is a minimum-phase.
P

For a > 1 the average speed of the rotation of the
Nt

vector (1 + a e ) is Q(rad/sec), i.e. it is maximum-

phase. The above 1s valid for Analytic signals, while
for Image-Analytic signals minimum-phaseness is related

to non-zero average speed of rotation of the vector

and maximum-phaseness 1s related to zero average speed

of rotation of the vector.
For the Image-Analytic signal:
m(t) = 1 + a e_JQt

m(t) is a minimum-phase for a > 1 and a maximum-phase

for a < 1.

Real
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2.6 Characteristic Zero Pattern for DSB-AM Signals
The zeros of bandlimited signals are regarded as
major informational attributes and therefore it is
possible to express these signals in terms of their
zero patterns.
The zero pattern of a conventional double-sideband
amplitude-modulated (DSB-AM) signal is worthwhile to
be considered at this stage as it gives an 1dea about
the zero pattern symmetry of DSB-AM about the real axis.
An AM signal is conventionally defined as given by eqgn.
(2.9) :

£, (8 iay
O

= s(t) cos (wot)

where s(t) is a real modulating signal of bandwidth
+ W Hz, and W, 2 2mW is the carrier frequency.

In DSB-AM the signal must be positive, 1.e. 1t

contains an additive constant that prevents overmodulation

from happening. The Analytic form of the AM signal
£ (t)lAM can be written as:
O
ma (£) = £, (€0 Ly + 3 £, () Iy
O 0
Ju, t
= s(t) e (2.31)

For example, if the real baseband signal s{t) 1is a

single-tone with a constant, 1.e.
s(t) = 1 + a cos@t, a < 1

then the Analytic AM signal becomes:

Jw _t
m (t) =(1 + a cosfit) e O (2.32)

AM
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In terms ot the complex time variable x = t + jo the

Analvtic AM signal becomes:

jwox
mAM(X) = (1 + a cosix) e
- n
Putting z = ejQx: and g :.é?
mAM(Z) (1 + 27_+ 5 2 e
= (1 +% 7 + % 2-1) ZB
==—§-(1+-§—z+22) zB z_‘I
:% (1 +-§-z + 22) 2(8—1)
(B—1)

Ignoring z for the time being, the Analytic AM

signal becomes:

. a 2 2

mAM(z) = 5 (z— + = Z + 1) (2.33)
The zeros of mAM(Z) are obtained by solving for:

(z2 + g-z + 1) =0 , i.e

a
z:--2/ain/c‘-il/a"-—rflz—‘liﬂ---a2
2 a

m. (z) =2 (z + r)(z + ) (2.34)
) AM 2 Y
where 1 = J__:.__a.l___:_a._ , _:E: = _J_i_g__l;_i_ and the

z-plane zeros of m_ ., (z) are shown in Figure 2.6

Im(z)

Zz-plane

- 4. Re (z)
D
1/r

Fig. 2.6
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The corresponding x-plane zeros can be found by

substituting z = eJQX and solving for x to give:
_ (2km + ) . 1nr
X = — 5 1:3—5— , K =0, 1, 2, ...

These complex conjugate x-plane zero pairs are shown in

Figure 2.7

Jo
X-plane
E-Inr/Q
O O O O
T /§2
t

O O ' lnr/ﬂo O

Fig. 2.1

It is apparent that the DSB-AM signal is characterised by
zero pattern symmetry about the real axis of the com-
plex x-plane. When the modulation depth a approaches
1 then r approaches 1 also and the complex zeros move
closer to the real axis till they become real zeros when
a becomes 1, i.e. 100% modulation.

I+ is this zero pattern symmetry of DSB-AM
signal that will be exploited in order to superimpose

additional data channels on conventional broadcast

channels.
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2.7 Common EnveloEe Set

This is a term (9 ) defining a complete group of
signals whose members differ only in phase functions,
but not in envelope or bandwidth.

In equation (2.27) m(t) has N zeros and these can
be conjugated and yet the envelope |[m(t)| is invariant.
Conjugation means that a complex zero in the x-plane 1is
replaced by its complex conjugate, or a zero in the z-
plane 1is replaced by its reciprocal . If a zero 1s to
be conjugated from the upper-half to the lower-half x-
plane, a cancellation operator c(t), which effects zero
conjugation, should have .a pPoOle-zero pair at the conjugate
location.

To explain the process of zero conjugation consider

the Analytic signal given previously:

1 + a e:]Qt , a > 1

m(t)
Tt has xXx-plane zeros at:

X = {m + 2km) + jlgé , as shown before.

{2

The cancellation operator necessary for conjugation should

be of the form:
-3t
< IRt
1 + a e

This has x-plane poles at:

o (m + 2km) .1lna
A

and x-plane zeros at:

X = iﬂ—%—gkll - jl%E , Kk =0, 1, * 2, ..
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The zero-pole pattern of c(t) is shown in Figure 2.8.

Jjo

X-plane
X A X
| | |
| | t
| T T T
\ , l
O O O
a > 1
Fig. 2.8
Pole-zero pattern of c(t)
_ -0t .
m(t) c(t) = 1 + a e , which has a zero pattern as
shown in Fig. 2.9
jo
Xx-plane
m §
t
T T - T
<> >
O O -1na O O
(2
a > 1
Fig. 2.9

Onpe or more zeros can be conjugated without affecting
the envelope or bandwidth of the signal, as the number

of zeros per period (N) is not increased.



30

For a periodic signal with N zeros per period,
there can be up to 2N members, 1f all the zeros are
complex, and of first order type ( 9). If all the

zeros are real, there 1is only one member.

Example

To illustrate the idea of the common envelope set,

consider the signal:

m(z) = 1 + az , a < 1
m(z) has a single zero at z = - % as shown in Filigure
2.10.
Im(z)
z-plane
- - Re(z)
7Zero Pattern of m(z)
Fig. 2.10
. N
*. N = 1, and the number of members 1s 2 = 2.

The second member can be obtailined as:

m*(z) = (1 + az)* = 1 + az* = 1 + %

which has a zero at z = -a as shown in Figure 2.11.
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z-plane

e; o

Zero Pattern of m*(z)

Fig. 2.11

To compare envelope and bandwidth of these two members:

1T + a ejgt )

m(t)

m(t) |[= V(1 + a cosQt)? + (a sinQt)?®

. /T T a7 T 5 a cosit (2.36)
arg(m(t)) = arc tan (1 + a COSQt)
n*(t)= 1 + a e_JQt

m*(t) |= V(a + a cosqQt)? + -a sinqt)?

/1 + a? + 2 a cosQt Im(t) | (2.37)

-a sinft

T+ a cosat |- ~arg (m(t))

arc tan (

arg(m* (t))

The above shows that m(t) and m*(t) have the same

envelope and bandwidth (5= Hz), but they differ in

their phase functions. This is an important character-
istic of the common envelope set which will be ex-

ploited and developed in the next chapter.
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2.8 Zero Patterns

Algebraic and trigonometric polynomials may be
represented unambiguously and uniquely by ordered sets
of their zeros (plus a few parameters). The number
of zeros of an algebraic polynomial is egual to the
polynomial's degree. Trigonometric polynomials have
an 1nfinite number of zeros but their pattern is a
periodic repetition of the finite set of zeros which
occur within a period. It has been shown that the
number of zeros per period is proportional to the band-
width. The zero count of a periodic signal 1is the
number of zeros per single period of the signal.

It was previously shown that zeros may be i1nter-
preted as informational attributes of the signal. Real
zeros of a signal are overt attributes as 1t 1s easy
to observe the zero crossings of the signal and hence
locate its real zeros. On the other hand complex zeros
of a signal are subtler attributes and they can influence
the dips of the signal. For periodic signals, a
factorisation of their finite Fourier seriles repre-
sentation can give the related zero pattern.

Zero manipulation concepts (10) can be used
interpretively to describe different modulation processes.

It will be shown that they can also be used constructively

+o establish new services (13).
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CHAPTER 3

A4ERO SYNCHRONQUS FREQUENCY MODULATION

3.1 Introduction

This chapter 1s devoted to a discussion of the
theoretical foundation of the proposed Zero Synchronous
Frequency Modulation (ZSFM) system. A periodic signal
model has been chosen to represent a general communi-
cation signal due to the simplicity of interpreting the
results in both the time and frequency domains. An
example of the distribution of the complex zeros of a
real periodic signal 1is discussed. The idea of complex
zero conjugation that produces the members of a "common
envelope set" is considered fully in Section 3.4. A
novel phase conjugating function is developed whereby the
complex zero pairs can be treated individually.

The principle of ZSFM is described in Section 3.3,
where a binary data signal can be superimposed on con-
ventional DSB-AM signal without increasing bandwidth or
distorting the envelope. ZSFM derives from the concept
of the "common envelope set" whose members possess the
same envelope and bandwidth but different phase functions.
The binary data signal can be imposed by frequency modu-
lating the carrier using a frequency modulating function
related to the complex zeros of the AM signal. A proto-
type of a 4SFM transmitter is described in Section 3.11,

and finally the possible applications of the proposed

system are discussed.
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3.2 Periodic Signal Model

In the previous chapter a periodic signal was
written as a finite Fourier series as shown in egn. (2.21).
Factorisation of this Fourier series determines the zeros.
This leads to a multiplicative signal model where zeros
can be viewed as informational attributes. Choosing an
elementary signal in the form:

ejﬂt

mr(t) = 1 + a (3.1)

r
a general positive real, bandlimited periodic signal can

be written as:

N
s(t) T

I mr(t) m;(t)

—40t

N |
r (1 +a e (1 + ar e

- * ) (3.2)

r=1
By solving for the zeros of mr(t) and m;(t), the above

can be rewritten in the form:

=

(1 - eIf(Emxp)yq _ TR {ExE), (3.3)

1

s(t) =
Y

, the rth zero of m(t), and x*==tr—jor '

= + ] g
where X t Jo.. r

r

the rth zero otf m;(t), are the generally complex values

of t such that s(t) = 0.

I1f the bandwidth of the elementary signal m(t) 1s

W = £ 1 (Hz) where T is the period of m_(t), then
r 2T T r
the bandwidth of s(t) 1is W = * NW_ (Hz) . Also the

. 1
t ime-bandwidth product of s(#) 1s 2NWr T = 2 N T T = 2N,
which is the zero count of s(t). As s((t) is a real

signal by assumption, then all the zeros of s(t) must be
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either real or complex conjugate pairs.

It was discussed 1n Section 2.6 that for a zero

count (2N) there can be up to 22N different members in

the common envelope set. This upper bound is achieved
1f all the zeros are complex and of first order. For

even number of zero count (2N) the exact number of

members 1s 3N. For example consider a real signal with

two reciprocal zeros (2N = 2) in the z-plane, then there

are exactly 32/2 = 3 different members whose zero con-

figurations are shown in Figure 3.1.

Im(z)

Zero patterns of three different
members of a common envelope set

Fig. 3.1

ExamEle

As an example of periodic signal zeros, consilder

+two tones at different frequencies plus a constant.
The constant is chosen so that there is no real zero

crossings, i.e. all the zeros are complex.
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A computer programme was written to generate this

real signal and to find 1its zeros in both x-plane and

z-plane. The total time period was taken as T = 10240
2
L sec, where T = ?; and the conformal transformation

from the x-plane to the z-plane 1s via z = eJQX as

explained previously.
It was assumed that i1in this period (T) there are

5 cycles of £ _(i.e. £, = %) and 6 cycles of f2(i.e.

] l

f2 =-%). The real signal was taken as:
s(t) = 4 + 2 COS(2ﬂf1t) + 1.5 cos(2nf2t)
5 6
= 4 + 2 COS(ZﬂTt) + 1.5 COS(ZWTt)
= 4 + 2 cos(5Qt) + 1.5 cos(6qt)
where Q =-%£ (3.4)
The above signal should have a zero count of
2 X 6 X %g-x.é%-xT = 12 zeros per period (i.e. 12 zeros

per period in the x-plane).
As the signal given in eqn. (3.4) is real and positive,
all the zeros must be complex conjugate zero pairs.

Expressing s(t) as a sum of exponentials:

S(t) = 4+ o330t o <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>