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APQMDTr'm 

Double-sideband amplitude-modulation is widely 

used because of its simplicity in transmission and 

reception, but in a number of applications the inclusion 

of a data channel has become an additional requirement. 

An additional data signal, transmitted with a normal AM 

broadcast signal, can be used by a specially-equipped 

receiver to provide for display and control functions. 

The data signals should not impair the main broadcast 

signals, and should be imperceptible to listeners with 

ordinary radio receivers. 

The principles of a new modulation scheme, which 

permits an additional data channel to be superimposed on 

conventional DSB-AM signals without any bandwidth increase 

or envelope distortion, are described in this thesis. The 

proposed system uses combined amplitude/frequency modu- 

lation to provide for the additional data channel. It 

is shown that bandlimitation may be preserved by frequency 

modulating the carrier with frequency-modulating functions 

related to the complex zeros of the amplitude-modulating 

signal. 

The performance of the new modulation technique is 

assessed by computer simulation. The cross-talk between 

the two channels due to multipath propagation is con- 

sidered to be a limiting factor. A novel complex 

filtering technique to detect complex zeros of real 
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signals is introduced and discussed. The distribution 

of the complex zeros of positive bandlimited signals 

is assessed experimentally, and the possible data 

rates of the proposed system are discussed. 
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ABBREVIATIONS 

AM Amplitude modulation 

DBS-AM Double-sideband amplitude modulation 

FM Frequency modulation 

PM Phase modulation 

PA Power amplification 

CNR Carrier-to-noise power ratio 

SNR Signal-to-noise power ratio 

S/D Signal-to-distortion power ratio 

ZSFM Zero synchronous frequency modulation 
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CHAPTER 1 

INTRODUCTION 

1.1 Preliminar 

Although the problem of radio frequency spectrum 

utilisation has existed since electromagnetic waves 

were discovered, the spectrum remains one of the most 

under-utilised natural resources. Radio communication 

of all kinds are expanding on a very large scale at the 

present time, and radio spectrum requirements are in- 

creasing consequently. The efficiency of spectrum 

utilisation depends on such parameters as radiated 

power, bandwidth, antenna pattern, ... etc. (1). 

The use of spectrally efficient modulation systems 

is becoming very important. 

the bandwidth efficiency. 

Such systems will maximise 

Conventional double-sideband 

amplitude-modulated (DSB-AM) systems are wasteful of 

spectrum and power, but they are widely used because of 

the simple detection using envelope detectors. 

The idea of using multi-parameter modulation to 

improve the characteristics of communication systems is 

not a new one, but only recently has work on this problem 

been intensified. This may lead to more rational use 

of the radio spectrum, and hence may improve the ef- 

ficiency of spectrum utilisation. 

For public-service broadcasting, there has not 

always been much opportunity to make the most efficient 
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use of the radio frequency spectrum. This has been 

because in broadcast systems the emphasis is mainly on 

making simple and cheap "domestic" receivers. Hence, 

it would be efficient if additional services could be 

incorporated while maintaining compatibility with 

existing channels. In the past, additional services 

have been introduced such as colour signals into tele- 

vision broadcasting, and also teletext which exploit 

the remaining under-utilised parts of the television 

signal (2). In radio broadcast (AM and FM) services, 

the inclusion of additional data signals has become of 

significant importance (3). 

These additional "radio-data" signals, transmitted 

along with the normal sound-programme signals, can be 

used in many different ways at the receiver to provide 

for display and control functions. For example, a 

display of the network name (e. g. BBC R2) and programme 

type (e. g. NEWS, MUSIC, SPORTS, etc. ) can be provided. 

Provision and display of motoring information, weather 

conditions, time checks is also possible. The data 

signals can also be used to control a programme search 

in automatic tuning which is highly important for 

motorists. Other possible applications of the addi- 

tional data signals will emerge as radio-data systems 

develop. 

However, the additional data signals should not 

be allowed to impair the main programme, and should be 
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imperceptible to listeners with existing ordinary 

receivers. Suitably equipped future domestic radio- 

receivers could detect the data messages, and then use 

them for display or control purposes. 

In this thesis, a novel modulation technique is 

studied which permits data signals to be transmitted 

with amplitude-modulated radio broadcast signals. 

1.2 Radio-Data Systems 

During the last years the BBC and other European 

broadcasters have been investigating systems for broad- 

casting radio-data signals from v. h. f. /f. m. radio broad- 

cast transmitters (4,5). The problem for the broad- 

caster has been to devise a method of adding the radio- 

data signals so that they cause negligible impairment to 

normal programme reception on existing receivers. The 

cross-talk between the data signal and the main programme 

signal should be' imperceptible even under difficult 

reception conditions. 

For v. h. f. /f. m. transmitters the preferred method 

for broadcasting radio-data signals uses a subcarrier 

added to the stereo multiplex signal. Figure 1.1. 

shows the spectrum of a stereo multiplex signal. 
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f 
(kHz) 

L+R= sum (mono) signal 
L-R= difference signal 

Spectrum of stereo multiplex signal. 

Fig. 1 .1 

It may be seen that there are two regions in the spectrum 

of a stereo multiplex signal where a subcarrier could be, 

in theory, located without causing perceptible impair- 

ment to the normal programme. The first region is in 

the vicinity of the 19 kHz pilot tone, between the upper 

frequencies of the sum signal and the lower frequencies 

of the difference signal. The second region is above 

the upper frequencies of the difference signal, and sub- 

carrier frequencies around 57 kHz are preferred (4). 

Some European broadcasters use subcarriers in the region 

of 19 kHz, while others use subcarriers in the region of 

57 kHz. These subcarriers are amplitude-modulated by 

the data signals and added to the multiplex signal at 

the transmitter modulation input terminal. The BBC 

radio-data system for v. h. f. /f. m. has the highest data 
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rate of 1187.5 bit/sec among all the other European 

systems (4). 

The above techniques relate to v. h. f. /f. m. signals 

that have adequately wide bandwidth to accommodate the 

additional data signals. The situation is quite dif- 

ferent when superimposing additional data signals on 

amplitude-modulated broadcast signals. Development 

of radio-data systems is considerably less advanced for 

low and medium frequency (1. f. and m. f. ) broadcasting 

where AM predominates and the inherent redundancy of 

the double-sideband amplitude-modulated (DSB-AM) signal 

is more difficult to exploit. The data signal can be 

provided for by using combined amplitude/phase modulation 

so that the data phase or frequency modulates the carrier 

of a conventional DSB-AM signal, while amplitude modu- 

lation is achieved in the usual way. A combined AM/PM 

signal can be expressed as: 

X (t) =S (t) cos [wot +OWI 

where s(t) = envelope, 0(t) = phase, and wo is the 

carrier frequency. 

AM/PM modulator 

8(t) 

s(t) 

Figure 1.2 shows such a hybrid 

1.1 

Fig, 1.2 

x(t) 
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However, combined AM/PM will generate, in general, 

non-bandlimited signals for all but very low data rates 

(6ý. The limited bandwidth available for AM broadcast 

imposes severe limits on the choice of a modulation 

system for an additional data signal. Three requirements 

must be satisfied: 

i) bandwidth must not increase due to the additional 

data signals so that no co-channel interference 

is incurred. 

ii) the envelope of the AM signal should not be dis- 

torted so that the main programme signal is not 

impaired. 

iii) the cross-talk between the two channels should be 

negligible even under the worst reception con- 

ditions. Cross-talk causes unwanted a. m. /p. m. 

and p. m. /a. m. conversions rendering the data 

signals to be audible. This is mainly due to 

two mechanisms, (a) the non-ideal IF tuned 

circuits of receivers, and (b) multipath fading 

causing the received signal to be the sum of 

different versions of the transmitted signal 

which have travelled by different paths. 

The BBC have proposed a system for adding data 

signals to amplitude-modulated broadcast signals, at l. f. 

and m. f., in which the carrier is phase-modulated with 

shaped data signals (5,7). The maximum available 

signalling rate is mainly limited by unwanted p. m. /a. m. 
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conversion in receivers causing the data signal to be 

audible. In the absence of fading or co-channel inter- 

ference, preliminary laboratory tests of the BBC system 

showed that signalling rates up to 100 bit/sec using 

a peak phase deviation of ± 500 would cause imperceptible 

impairment to the majority of receivers (5). Biphase 

coding of the data is used so that there is no long- 

term change to the carrier frequency. The condition 

of multipath-fading interference has been found to limit 

the BBC system's data rate to about 25 bit/sec and peak 

phase deviation to ± 22.5° (5,7). This data rate is 

too low to be compared with the data rate of 1187.5 bit/ 

sec that is provided for v. h. f. /f. m. signals. Con- 

sequently the BBC have suggested that radio-data system 

for l. f. and m. f. broadcast cannot be expected to be 

used in similar applications as those for v. h. f. /f. m. 

A recent BBC Research Department report (8) has re- 

vealed that for data signalling at l. f. /m. f. sound broad- 

casts, the dominant mechanism likely to cause cross-talk 

from the PM data channel to the AM sound channel is that 

of sky-wave interference. It also showed that if the 

impairment due to data signalling is to be imperceptible 

when sky-wave fading interference causes a fading depth 

of 10 dB, then, for a relative delay of up to 1 msec 

between the ground-wave and sky-wave signals, the data 

rate must not exceed 50 bit/sec for a phase deviation 

of ± 11.25°. For a phase deviation of ± 22.5° the data 
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rate is 25 bit/sec under the same conditions. A fading 

depth of 10 dB corresponds to the nominal, maximum 

acceptable value (8), and it also implies that the sky- 

wave signal is half the ground-wave signal in magnitude. 

1.3 A Novel Modulation Technique for Radio-Data 
Application 

A new modulation technique, permitting additional 

data signals to be superimposed on conventional double- 

sideband amplitude-modulated (DSB-AM) signals, is intro- 

duced briefly in this section. The detailed theoretical 

background and the bulk of the results will be presented 

later in this thesis. 

In principle the new system uses combined amplitude/ 

frequency modulation to provide for the additional data 

channel. A special class of frequency-modulating 

functions must be used so that there is no bandwidth 

increase or envelope distortion in the DSB-AM signal. 

This frequency-modulating function is related to tem- 

poral variations of the amplitude-modulating signal. 

The principles of this modulation technique are derived 

from the concept of the "common envelope set" (9), whose 

members have the same envelope and bandwidth but dif- 

ferent phase functions. As the zeros of bandlimited 

signals can be regarded as fundamental informational 

attributes (10), then amplitude-modulating signals can 

be characterised as a succession of zeros obtained by 

factorisation of their Fourier series. A process of 



9 

zero manipulation can lead to the generation of other 

members of the "common envelope set" having the same 

envelope and bandwidth. The binary data signal is 

imposed by frequency-modulating the carrier with a 

frequency-modulating function related to the complex 

zeros of the amplitude-modulating signal. It is also 

required that frequency modulation must be applied in 

synchronism with the time of occurrence of the complex 

zeros of amplitude-modulating signal. Therefore the 

proposed system is named Zero Synchronous Frequency 

Modulation (ZSFM). 

Additional signal processing is required at the AM 

transmitter in order to detect complex zeros before 

frequency modulation takes place, as well as provision 

for combined AM/FM of the carrier. 

On reception, the usual arrangements for envelope 

detection apply, while a simple frequency demodulator can 

be used to recover the additional data signals, which can 

then be used for different purposes as mentioned in 

Section 1.1. 

It will be shown that data transmission at rates up 

to 5 kbit/sec is theoretically possible over a 10 kHz. 

broadcast channel. 

1.4 Scope of the Thesis 

This thesis is concerned with the study and 

development of a novel modulation technique, permitting 
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additional data signals to be transmitted with con- 

ventional AM broadcast signals without any bandwidth 

increase or envelope distortion. 

Chapter 2 presents a mathematical study of the 

zeros of bandlimited signals. The zero pattern of 

DSB-AM signals is discussed due to its significance 

in the understanding of the proposed ZSFM system. 

The basic theory of the ZSFM system is studied in 

Chapter 3. It is shown that the carrier of a DSB-AM 

signal can be frequency or phase modulated without 

increasing the bandwidth of the transmitted signal. An 

aperiodic model for zeros has been developed whereby the 

zeros of a signal are viewed individually. Data rates 

of ZSFM are derived, and a prototype ZSFM transmitter 

is proposed. 

The problem of detecting the complex zeros of a 

real signal, using complex filters, is studied in Chapter 

4. Practical realisations of a complex filter are 

proposed comprising: 

a) delay line approximation 

b) cascaded differentiators 

c) computer implementation 

The performance of ZSFM has been assessed by com- 

puter simulation and the results are presented in 

Chapter 5. Characteristics of the ZSFM signal such as 

bandlimitation and envelope distortion were studied. 

Both envelope and frequency detectors were simulated to 
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obtain the demodulated envelope and data signals res- 

pectively. The problem of IF cross-talk between the 

two channels was studied by simulating an IF filter 

consisting of coupled-tuned circuits. It is considered 

that the cross-talk due to IF non-linearities is negli- 

gible. The problem of multipath fading was studied to 

estimate its effects on cross-talk. Multipath propa- 

gation of ZSFM has been simulated using a 2-path fading 

model, and it has been shown that PM/AM conversion, as 

a result of multipath propagation conditions, is expected 

to be a major limiting factor. Computer implementation 

of the complex filter was also studied. Finally a 

simple phase-locked loop was used as a frequency detector 

to demonstrate recovery of the data signal. 

Chapter 6 introduces theoretical and experimental 

studies of the complex zero distributions of positive, 

bandlimiteci, real signals. A computer simulation has 

been used to find the probability-density function (p. d. 

f. ) of the complex zeros of a positive bandlimited random 

signal. The achievable bit rate of ZSFM has been 

estimated. 

The performance of ZSFM is compared with the BBC 

radio-data system for 1. f. /m. f. broadcast in Chapter 7. 
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CHAPTER 2 

MATHEMATICAL ANALYSIS 

2.1 Introduction 

Mathematical information relevant to the problem 

of interest is presented in this chapter. 

The most general form of bandlimited modulated 

signals exhibit simultaneous envelope and phase fluc- 

tuations. The general relations, which govern these 

attributes, are derived in this chapter. The zeros 

of bandlimited signals are shown to have major infor- 

mational contribution. The idea of a "common envelope 

set" is introduced, and the generation of the different 

members of such a set is discussed. It is possible to 

classify signals according to their characteristic zero 

patterns. 

2.2 Hilbert Transform 

Let s(t) be a real signal of the real time variable 

(t). If s(t) is Fourier-transformable, then its Hilbert 

transform is defined by: 
co 

H [s(t)] = s(t) _ 
7T 

Pf 
s(T)T d-E 
t J 

_00 co 
s(T) 

=P 
IT t_ T) 

dT 

_co 

s (t) *t=s (t) *h (t) (2 .1) 
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where P denotes Cauchy principal value, * denotes con- 

volution and h(t) =t is the impulse response of the 

Hilbert transformer. 

If S (f) and H (f) are the Fourier transforms of 

s(t) and h(t) respectively then the Fourier transform 

of S (t) is: 

F[s(t) ]= S(f) . H(f) (2.2) 

where F[ ] denotes Fourier transform. It is shown in 

Appendix (1) that H (f) is given by: 

H(f) =-j sgn (f) 

1, f>0 

where sgn(f) = 0, f=0 

-1, f<0 

Substituting eqn. (2.3) into eqn. (2.2) gives: 

-j S (f) ,f>0 

F [s (t) ]=0, f=0 

(2.3) 

(+j S (f) ,f<0 
(2.4) 

It is apparent that H(f), the transfer function of the 

Hilbert transformer, represents a 90° phase shifting 

network. 

2.3 Analytic Signal 

Let m(x) be a complex function of the complex 

variable x=t+ jß, where t and a are real. m(x) can 

be written as 

m(x) = u(t, ß) + jv(t, ß) (2.5) 

where u (t, Q) and v (t, cr) are real functions. If MW is 
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regular (i. e. continuous and free from singularities) 

in the region (R) in the x-plane, then a unique deriva- 

tive of m(x) exists (11) and any function obeying the 

above is called analytic in the region (R). 

A function m. (x) which is analytic in the open upper- 

half x-plane will be named "Analytic"( 9). 

If s(t) is a real signal which is Fourier transformable 

and usually bandlimited, its Analytic signal is defined 

( 12) as: 

m(t) =s (t) +j s(t) 

_ (m(t) ý e7ý 
(t) (2.6) 

where jm(t) i= s2 (t) + sý {t) = envelope of m(t), 

A 

(t) = arc tan [S (t) ]= phase of m(t) , 
s(t) 

and s (t) is the Hilbert transform of s (t) . To find the 

spectrum of the Analytic signal, M(f), we can use eqns. 

(2.6) and (2.4) : 

M(f) = S(f) +j F[s(t) ] 

2 S(f), f>0 
_ (2.7) 

0, f<0 

Hence M(f) is single-sided and has zero content at nega- 

tive frequencies. If s(t) is bandlimited to ±W Hz, 

then m(t) is bandlimited to W Hz. It is this single- 

sided property that makes the Analytic signal very use- 

ful. The Analytic signal concept can be used to 

represent different modulation methods (12). For 

example a real modulated signal can be illustrated by 
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using the Analytic signal representation as shown: 
jw t 

f (t) = Re [m(t) e0 ] 
W 

0 

= Re [I m(t) I eJý 
(t) 

ej 
0tI 

=I m(t) l cos [wot +ý (t) ] (2.8) 

where Re denotes the real part and wo is the carrier 

radian frequency. 

It is apparent that the magnitude of m(t) gives 

the envelope of the modulated signalfw (t). It is 
0 

clear that eqn. (2.8) represents a conventional 

amplitude-modulated signal when 4(t) =0 in which case 

eqn. (2.8) becomes: 

fw (t) 
AM=s 

(t) cos (wot) 
0 

(2.9) 

Using inverse Fourier transform, the Analytic signal 

m(t) can be expressed as: 

00 

m(t) _ M(f) ej2irft df 
J 

_Co 

co 

- M(f) ej2Trft df (2.10) 

0 

Replacing t by x=t+ jQ gives: 

Co 

m(x) -J M(f) e-2TrfQ ej2Trft df (2.11 ) 

0 

It is clear that the existence of the above Fourier 

transform requires the integrability and convergence of 

eqn. (2.11), and therefore it must converge for any 
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6>0, i. e. no singularities in the open upper-half 

x-plane. The properties of an Analytic signal can be 

summarised as follows: 

i) it is a complex-valued signal. 

ii) it has no singularities in the open upper-half 

x-plane (UHP) 

iii) its spectrum vanishes for negative frequencies 

iv) its complex conjugate will have conjugate 

Analytic properties 

m* (t) =S (t) -jS (t) 

=I m(t) e-jý (t) (2.12) 

m*(t) is called Image-Analytic (6) and its spectrum 

vanishes for positive frequencies. m*(t) has no singu- 

larities in the open lower-half x-plane (LHP). 

Considering the integral given by eqn. (2.11): 

co 

m(x) = M(f) e-2Trfa ej2Trft df 

0 

Assuming that m(f) is bandlimited to W Hz, then the 

above becomes (9 

W 

m(x) = M(f) e-2Trfa ej27rft df 

0 

... 
Im (x) j2=I M(f) e2Trfa ej27rft df1 i (2.13) 

0 

and by Schwarz inequality, 

Ww 

Im(x) 12 < IM(f) 12 df 
1 

e-4Trfa df 

o0 w 
-4TrWa IM(f) 12 df [1a (2.14) 4ý 

0 
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The finite energy of the bandlimited Analytic signal 

m(t) is given, by Parseval's Theorem, as: 

co 
Em_ (m(t) 12 dt = (M(f) 12 df (2.15) 

co - 

. '. eqn. (2.14) becomes: 

_ -47rW6 Im (X) 2- Em [1 
4rQ 1 (2.16) 

This shows that m(x) is bounded (has finite value) in 

the finite lower-half x-plane, and hence m(x) is finite 

and analytic in the finite x-plane. Thus m(x) is an 

entire (integral) function if it is bandlimited. For 

bandlimited m(x), the singularities at the lower-half 

x-plane are at infinity. It is worthy to note that 

Analyticity follows from the single-sided property of 

M(f) and does not depend on bandlimitation. 

2.4 Phase-Envelope Relationships 

The Analytic signal is called a minimum-phase 

(MP) signal if its envelope and phase satisfy a specific 

condition as will be shown. 

Consider the integral 

I= dx 

c 

where C is a closed contour comprising a real axis t, 

excluding a point at x= t1, and infinite semi-circle r 

in the upper-half x-plane as shown in Figure 2.1. 
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ýQ 

t Ll 1 
Fig. 2.1 

Closed Contour C 

It is shown in Appendix (2) that if g(x) is analytic in 

the upper-half x-plane and on C, then: 

Im[g(t)) =H{ Re[g(t)) } 

Re[g(t) ] =-H {Im[g(t) ]} (2.17) 

where Im denotes imaginary part, Re denotes real part, 

and H{} the Hilbert transform. 

Applying this result to the logarithm of the Analytic 

signal ( 9) given by eqn. (2.6) renders: 

m(x) = jm(x) + eil 
ixt 

.'. In m(x) = in j m(x) 1+ jý (x) (2.18) 

Taking the derivative of the above gives: 

Zn' m(x) = ln' 1 m(x) 1+ jý' (x) 

m' (x) (2.19) 
m(x) 

The assumption, that m. (x) is Analytic, does not 

guarantee that ln'm(x) will be Analytic as ln'lm(x)j can 

have upper-half plane singularities at the upper-half 

plane zeros of m (x) . However, if m (x) is zero=free in 
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the upper-half x-plane, then ln'm(x) is Analytic. If 

it can further be assumed that ln'm(x) is square - 

integrable then eqn. (2.17) applies with g(t) = ln'm(x). 

.'. ý' (t) =H [ln' Im(t) I] 

ln' I m(t) I=-H Lý' fit) (2.20) 

Any Analytic signal m(t) satisfying eqn. (2.20) is 

called a minimum-phase (MP) signal (9) and is zero-free 

in the upper-half x-plane. Alternatively, if m(t) has 

zeros in the upper-half x-plane then ln'm(x) is not 

Analytic in general and m(t) is called a non-minimum 

phase (NMP) signal. An Analytic signal m(t) with zeros 

only in the upper-half x-plane is called maximum-phase. 

2.5 Zeros of Bandlimited Signals 

The real and complex zeros of bandlimited. signals 

can be regarded as fundamental informational attributes. 

This follows from the sufficiency of the zero-based 

representations of signals (10) . 

For a periodic signal, the zeros are obtained by the 

factorisation of its Fourier series representation. If 

s(t) is a real signal and bandlimited then it can be 

written as: 

N 
s (t) =E an eJnS2t (2.21) 

n= -N 

where the an 's are the coefficients, 0=T is the 

fundamental frequency (rad/sec), T is the period and 

s(t) has a bandwidth of ± 2ý 
Hz. 
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From the definition of Hilbert transform as given 

in (2.4) : 

nStt s (t) =H [s (t) ]= jEa eJnS2t -jEa ej nn n=-N n=1 
(2.22) 

The Analytic signal of s(t) is: 

m(t) =S (t) +jS (t) 
N jnQt 

= a0 +2E an e (2.23) 
n=1 

putting: 

c0 = a0 , cn =2 an 

N 

.'. m(t) =E cn eJnSZt (2.24) 
n=o 

The above represents an Analytic signal and it is expressed 

as a trigonometric polynomial. This trigonometric poly- 

nomial behaves within a period, much like an algebraic 

polynomial behaves over the whole x-plane. 

N jnS2x 
MW =E cn e 

n=o 

N 
-fcc jnQt 

=E cn ee, x=t+ jQ (2.25) 
n=o 

The Analytic signal m(x) expressed in (2.25) has: 

i) N zeros per period 

ii) spectral width of 
2ý Hz 

iii) fundamental frequency of 
f Hz. 

iv) its bandwidth is proportional to the number of 

zeros per period 

Using the conformal transformation z= e3RX gives 

a direct mapping from the complex x-plane to the complex 

z-plane, as shown in Figure 2.2. 
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t 

Fig. 2.2 

Im(z) 

(2.26) 

This maps the UHP (x-plane) into the interior of the 

unit circle in the z-plane and the LHP (x-plane) into the 

exterior of the unit circle. The periphery of the unit 

circle corresponds to the real time axis. Eqn. (2.26) 

shows that m(z) is analytic inside the unit circle, i. e. 

it is Analytic. Eqn. (2.26) represents an algebraic poly- 

nomial in z of degree N. 
m(z) has: 

i) N zeros which are not periodic (z-plane zeros). 

ii) (N + 1) coefficients. 

Hence m(z) can be represented as multiplicative 

factors, each representing a zero in the z-plane, i. e. 

N 

m(z) = ak Tr (z - zn) (2.27) 
n-1. 

" eqn. (2.25) becomes 

N 
m(z) =Ec zn n n=o 

JQ 

Re (z) 
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Example 

As an example of. the zeros of bandlimited signal 

consider: 

m(t) =1+a ejot 

where a is a real constant. 

(2.28) 

The function m(x) of the 

complex variable x=t+ jQ is: 

ni (x) =1+a e3 x 

Putting z= ejox gives: 

m(z) =1+ az, which has a simple zero at z=-I. a 

Clearly m(z) is Analytic as it does not have singularities 

inside the unit circle in the z-plane. 

To find the corresponding zeros in the complex x-plane: 

Z ej52x =-1=1 ej 
Or + 2k7T) (2.29) 

a a. 

k=0, ± 1, ± 2, ... 

Taking natural logarithm of both sides of egn. (2.29) gives: 

jQx = 1n (1 )+j (ir +2 kTr ) 
a 

.'. x= 
Or + 2kir) 

+ 
mna (2.30) 

Egn. (2.30) gives the position of the zeros of m(t) in the 

x-plane. 

Note that the zeros in the x-plane are periodic 

repetition, while there is only single zero in the z- 

plane. 

For a<1, the zeros are shown in Figure 2.3. 
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Ja 
Im(z) 

z-plane and x-plane zeros of m(t) for a<1 

Fig. 2.3 

As all the zeros lie in the LHP (x-plane), m(t) 

represents a minimum-phase signal. For a>1, the 

zeros are shown in Figure 2.4 

Ja- 

Im(z) 

Re(z) 

-plane 
a>1 

Fig. 2.4 

m(t) represents a maximum-phase signal as all the 

t 

t 

zeros lie in the UHP (x-plane). 
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m(t) =1+a e1Rt can be represented by phasor diagram 

as shown in Figure 2.5 

Imag. 

a<1 

Real 

Imag. 

Phasor diagram of m(t) 
Fig. 2.5 

a>1 

For a<1 the average speed of rotation of the vector 

(1+ajot t) is zero, i. e. it is a minimum-phase. 

For a>1 the average speed of the rotation of the 

vector (1 +a eJQt) is Q(rad/sec), i. e. it is maximum- 

phase. The above is valid for Analytic signals, while 

for Image-Analytic signals minimum-phaseness is related 

to non-zero average speed of rotation of the vector 

and maximum-phaseness is related to zero average speed 

of rotation of the vector. 

For the Image-Analytic signal: 

m(t) =1+ae 
jot 

m(t) is a minimum-phase for a>1 and a maximum-phase 

0 

eal 

for a<1. 
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2.6 Characteristic Zero Pattern for DSB-AM Signals 

The zeros of bandlimited signals are regarded as 

major informational attributes and therefore it is 

possible to express these signals in terms of their 

zero patterns. 

The zero pattern of a conventional double-sideband 

amplitude-modulated (DSB-AM) signal is worthwhile to 

be considered at this stage as it gives an idea about 

the zero pattern symmetry of DSB-AM about the real axis. 

An AM signal is conventionally defined as given by eqn. 

(2.9) . 

fw (t) Im, =s (t) cos (wot) 
0 

where s(t) is a real modulating signal of bandwidth 

±W Hz, and wo > 2irW is the carrier frequency. 

In DSB-AM the signal must be positive, i. e. it 

contains an additive constant that prevents overmodulation 

from happening. The Analytic form of the AM signal 

fW (t) iAM can be written as: 
0 

AM(t) = fw 
0 

(t) lAM +j fw 
0 

(t) lAM 

Js(t) 
e (2.31) 

For example, if the real baseband signal s(t) is a 

single-tone with a constant, i. e. 

s (t) = 1+ a cosctt, a<1 

then the Analytic AM signal becomes: 

mAM(t) =(1 +a cosRt) e 
jw 

0t (2.32) 
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In terms of the complex time variable x=t+ ja the 

Analytic AM signal becomes: 

mAM (x) = (1 +a cos12x) e 
tw 0x 

w 
Putting z= eýýX and ° 

m (z) _ (1 + 2Z+ 2 Z-1) eJt3 

(1 +2 Z+ 
2 

Z-1 z 

=2 (1 +äz+Z2) zß Z-1 

a 
=2 (1 +2z+ z2) z(ß-ý) 

Ignoring z(ß-1) for the time being, the Analytic AM 

signal becomes: 

m (z) =a (z2 +2z+ 1) (2.33) 

The zeros of mAM (z) are obtained by solving for: 

(z2 +? z+ 1) =0 , i. e. 
a 

-2/a ± 4/a2- -4 -1 ± 
2=a 

.'. m (z) =a (z + r) (z + 
r) 

(2.34) 

where r1r 
1_ 1+ 

and the 
ara 

z-plane zeros of m(z) are shown in Figure 2.6 

lane 

Re(z) 

Fig. 2.6 
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The corresponding x-plane zeros can be found by 

substituting z= ejQx and solving for x to give: 

(2kß + 7r) + 
lnr k=0, ± 1, ± 2, 

These complex conjugate x-plane zero pairs are shown in 

Figure 2.7 ;r 

t 

Fig. 2.7_ 

It is apparent that the DSB-AM signal is characterised by 

zero pattern symmetry about the real axis of the com- 

plex x-plane. When the modulation depth a approaches 

1 then r approaches 1 also and the complex zeros move 

closer to the real axis till they become real zeros when 

a becomes 1, i. e. 100% modulation. 

It is this zero pattern symmetry of DSB-AM 

signal that will be exploited in order to superimpose 

additional data channels on conventional broadcast 

channels. 
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2.7 Common Envelope Set 

This is a term (9 ) defining a complete group of 

signals whose members differ only in phase functions, 

but not in envelope or bandwidth. 

In equation (2.27) m(t) has N zeros and these can 

be conjugated and yet the envelope Im(t)l is invariant. 

Conjugation means that a complex zero in the x-plane is 

replaced by its complex conjugate, or a zero in the z- 

plane is replaced by its reciprocal . If a zero is to 

be conjugated from the upper-half to the lower-half x- 

plane, a cancellation operator c(t), which effects zero 

conjugation, should have--a pole-zero pair at the conjugate 

location. 

To explain the process of zero conjugation consider 

the Analytic signal given previously: 

m(t) =1+a ejQt ,a>1 

It has x-plane zeros at: 

X 
(Tr 2kTr) 

+ jlna , as shown before. 

The cancellation operator necessary for conjugation should 

be of the form: 

1 
C(t) 

+a e-jQt 

1+a ejRt 

This has x-plane poles at: 

(7T + 2kir) 
+ 

lna 
S2 ý SZ 

and x-plane zeros at: 

(2.35) 

(ii + 2knr) jlna k_o, ±1±2, . 
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The zero-pole pattern of c(t) is shown in Figure 2.8. 

ja 

ne 

Fig. 2.8 

Pole-zero pattern of c(t) 

. 
'. m(t) c(t) = 1. +ae JQt, which has a zero pattern as 

shown in Fig. 2.9 

JQ 

ne 

t 

Fig. 2.9 

One or more zeros can be conjugated without affecting 

the envelope or bandwidth of the signal, as the number 

of zeros per period (N) is not increased. 
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For a periodic signal with N zeros per period, 

there can be up to 2N members, if all the zeros are 

complex, and of first order type ( 9). If all the 

zeros are real, there is only one member. 

Example 

To illustrate the idea of the common envelope set, 

consider the signal: 

m(z) =1+ az ,a<1 

m(z) has a single zero at z=-ä as shown in Figure 

2.1.0. 
Im(z) 

ilane 

Re (z) 

of m(z) 

Fig. 2.10 

. 
'. N=1, and the number of members is 2N = 2. 

The second member can be obtained as: 

gym (z) = (1 + az) *=1+ az* =1+z 

which has a zero at z= -a as shown in Figure 2.11. 
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Im(z) 

z-plane 

(z) 

of m*(z) 

Fi. g. 2.11, 

To compare envelope and bandwidth of these two members:. 

m(t) =1+a ej2t 

I m(t) I= 1(1 +a cosQt) + (a sinct) 

=1+ a2 +2a cosQt 

arg(m(t)) = arc tan (a sint 
1+a cnsQt 

m* (t) =1+ae 
JQt 

m*(t)I= (a +a cosct) + -a singt) 

(2.36) 

=1+ a2 +2a cosQt = Im(t) I (2.37) 

arg (m* (t)) = arc tan (1++a 
co 

s osZsSttt )= -arg (m(t) ) 

The above shows that m(t) and m*(t) have the same 

envelope and bandwidth (0 Hz), but they differ in 2 Tr 

their phase functions. This is an important character- 

istic of the common envelope set which will be ex- 

ploited and developed in the next chapter. 
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2.8 Zero Patterns 

Algebraic and trigonometric polynomials may be 

represented unambiguously and uniquely by ordered sets 

of their zeros (plus a few parameters). The number 

of zeros of an algebraic polynomial is equal to the 

polynomial's degree. Trigonometric polynomials have 

an infinite number of zeros but their pattern is a 

periodic repetition of the finite set of zeros which 

occur within a period. It has been shown that the 

number of zeros per period is proportional to the band- 

width. The zero count of a periodic signal is the 

number of zeros per single period of the signal. 

It was previously shown that zeros may be inter- 

preted as informational attributes of the signal. Real 

zeros of a signal are overt attributes as it is easy 

to observe the zero crossings of the signal and hence 

locate its real zeros. On the other hand complex zeros 

of a signal are subtler attributes and they can influence 

the dips of the signal. For periodic signals, a 

factorisation of their finite Fourier series repre- 

sentation can give the related zero pattern. 

Zero manipulation concepts (10) can be used 

interpretively to describe different modulation processes. 

It will be shown that they can also be used constructively 

to establish new services (13). 
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CHAPTER 3 

ZERO SYNCHRONOUS FREQUENCY MODULATION 

3.1 Introduction 

This chapter is devoted to a discussion of the 

theoretical foundation of the proposed Zero Synchronous 

Frequency Modulation (ZSFM) system. A periodic signal 

model has been chosen to represent a general communi- 

cation signal due to the simplicity of interpreting the 

results in both the time and frequency domains. An 

example of the distribution of the complex zeros of a 

real periodic signal is discussed. The idea of complex 

zero conjugation that produces the members of a "common 

envelope set" is considered fully in section 3.4. A 

novel phase conjugating function is developed whereby the 

complex zero pairs can be treated individually. 

The principle of ZSFM is described in section 3.8, 

where a binary data signal can be superimposed on con- 

ventional DSB-AM signal without increasing bandwidth or 

distorting the envelope. ZSFM derives from the concept 

of the "common envelope set" whose members possess the 

same envelope and bandwidth but different phase functions. 

The binary data signal can be imposed by frequency modu- 

lating the carrier using a frequency modulating function 

related to the complex zeros of the AM signal. A proto- 

type of a ZSFM transmitter is described in section 3.11, 

and finally the possible applications of the proposed 

system are discussed. 
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3.2 Periodic Signal Model 

In the previous chapter a periodic signal was 

written as a finite Fourier series as shown in eqn. (2.21). 

Factorisation of this Fourier series determines the zeros. 

This leads to a multiplicative signal model where zeros 

can be viewed as informational attributes. Choosing an 

elementary signal in the form: 

mrfit? _1+ ar ejQt (3.1) 

a general positive real, bandlimited periodic signal can 

be written as: 

N 
s (t) _wm (t) mr (t) 

r=1 r 

N 
= (1 ar e 

jot) (1 + a* e -jSZt 
Tr +) (3.2) 

r=1 
r 

By solving for the zeros of mr(t) and mr(t), the above 

can be rewritten in the form: 

s (t) =rN (1 - ejo 
(t-Xr) )(1 -e 

jo (t-X 
r)) (3.3) 

r=1 

where xr = tr + jQr, the rth zero of m(t), and x* = tr-jßr 

the rth zero of mr(t), are the generally complex values 

of t such that s(t) = 0. 

If the bandwidth of the elementary signal m(t) is 

Wr = 
2ý 

=T (Hz) where T is the period of mr(t), then 

the bandwidth of s(t) is W=± NWr (Hz). Also the 

time-bandwidth product of s(t) is 2NWr T=2NTT= 2N, 

which is the zero count of s(t). As s(t) is a real 

signal by assumption, then all the zeros of s(t) must be 
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either real or complex conjugate pairs. 

It was discussed in Section 2.6 that for a zero 

count (2N) there can be up to 22N different members in 

the common envelope set. This upper bound is achieved 

if all the zeros are complex and of first order. For 

even number of zero count (2N) the exact number of 

N 
members is 3. For example consider a real signal with 

two reciprocal zeros (2N = 2) in the z-plane, then there 

are exactly 32/2 =3 different members whose zero con- 

figurations are shown in Figure 3.1. 

Im (z) 

(z) 

Tm(7) 

ane 

(z) 

Zero patterns of three different 

members of a common envelope set 

Fig. 3.1 

Exam le 

As an example of periodic signal zeros, consider 

two tones at different frequencies plus a constant. 

The constant is chosen so that there is no real zero 

Z' 

crossings, i. e. all the zeros are complex. 
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A computer programme was written to generate this 

real signal and to find its zeros in both x-plane and 

z-plane. The total time period was taken as T= 10240 

sec, where T= 
27T 

and the conformal transformation 

from the x-plane to the z-plane is via z= ejý2x as 

explained previously. 

It was assumed that in this period (T) there are 

5 cycles of f1(i. e. f, = T) and 6 cycles of f2(i. e. 

f2 = 
6The 

real signal was taken as: 

s (t) =4+2 cos (2Trf1t) +1 .5 cos (27rf2t) 

=4+2 cos (2Tri 56 t) +1.5 cos (2TrTt) 

=4+2 cos (5 2t) + 1.5 cos (60t) 
2Tr 

where (3.4) 

The above signal should have a zero count of 

2x6xTx 2ý 
xT= 12 zeros per period (i. e. 12 zeros 

per period in the x-plane). 

As the signal given in eqn. (3.4) is real and positive, 

all the zeros must be complex conjugate zero pairs. 

Expressing s(t) as a sum of exponentials: 

s(t) =4+ ej5Qt + e-j5Qt + 0.75 eJ62t + 0.75 e-j6Qt 

(3.5) 

Putting x=t+ jß and using z= ejQxgives: 

s(z) =4+ z5 + z-5 + 0.75 z6 + 0.75 z-6 (3.6) 

Clearly s(z) is an algebraic polynomial in z of degree 

12 and hence should have exactly 12 zeros (roots). 

Eqn. (3.6) can be rearranged as follows: 
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s(z) = z-6 (4 z6 + z11 +z+0.75 z12 + 0.75) 

= z-6 (0.75 z12 + z11 +4 z5 +z+0.75) (3.7) 

To find the roots of s(z), it is required to solve for: 

0.75 z12 + z11 +4 z6 +z+0.75 =0 

The computer programme makes use of the NAG Library 

subroutine C02 AEF (14) to solve for the roots of the 

above polynomial, and then the corresponding x-plane 

jQzeros are computed by solving for z in z= ex 

Figure 3.2 (a, b, c) shows the computer results where the 

first two show the real signal s(t) and the x-plane 

zeros (6 complex conjugate pairs), and it should be 

noted that the x-plane zeros lie at the dips (troughs) 

of s(t). The third figure shows the z-plane zeros which 

are reciprocal pairs around the unit circle. There are 

12 zeros exactly as expected. 

3.3 Envelope and Phase of the Elementary Signal 

Consider the elementary signal as defined in eqn. 

(3.1) 
. 

m(t) =1+a ejot 

= Im(t) I jOm(t) 

where 

Im(t)I = (1 +a cos1t) + (a singt) 

ngt (3 em(t) = arc tan (a sin 
+a cosc2t) 

(3.8) 

Clearly both the envelope and phase of m(t) are periodic 

functions with period T7. The phasor diagram of 

m(t) is shown in Figure 3.3. 
M[VERSITY LIBRARY LEEDS 
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A 
M 
P 

TIME(MICRO SEC X10) 

X 
1 
0 

t 
0 

4 Fig. 3.2(b) x-plane zeros of s(t) 
X10 4 

-408 -208 a 230 483 

Fig. 3.2(a) The real signal s(t) 
ja 
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3_ AA 

-3 00 

Fig. 3.2(c) z-plane zeros of s(t) 
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Imag. 

Real 

Phasor diagram of m(t) =1+a ejot 

Fig. 3.3 

The following points emerge: 

i) at t=0 

Im(t) I=1+a+ 2a = (1. + a) = max 

em (t) =0 

ii) at Ot =n radians: 

Im(t) I=1+ a2 - 2a cosQt = (1 - a) = min 

em (t) =0 

iii) It can be judged that the complex zeros of m(t) 

occur at Ot = n, 3'n, 5n, ... i. e. at the 

envelope minima (dips). 

iv) The instantaneous frequency em(t) = 
ät 

6m(t) is 

maximum at the zero positions, i. e. at 

Qt = rr 3 Tr ,5 Tr , ... 

®m (t) = 
dO (t) 

dt 1+a sinnt 
1+a cosQtj 

ac cosQt(1 +a cosct) + azc sin2ct 
(1 +a cosQt)2 



41 

_1 
S2 (a2 +a cosc2t) 

a sinnt 2 
1+ 1+ a cosot] 

(1 +a cosS2t) 2 

_ 
SZ (a2 +a cosQt) (rad/sec) (3.9) 1+ a2 + 2a cosQt 

At a=1, the instantaneous frequency 6m(t) is 

constant and is equal to: 

6m(t) =2 (rad/sec) 

v) At very small a, em (t) =. a singt 

Figure 3.4 shows five cycles of Im(t) J, 6m(t) , and 

6m(t). it is apparent that the instantaneous frequency 

of m(t) is maximum at the positions of complex zeros of 

M(t) . 

3.4 Zero Conjugation. of Periodic Signals 

Consider the periodic signal model defined in eqn. 

(3.2). For simplicity only one pair will be considered. 

Let 

s(t) = m(t) m*(t) 

=(1+a 
jot) (1+ae 

jot) 
,0<a<1. 

=1+ a2 + 2a cosOt (3.1.0) 

Clearly the zero pattern of s(t) can be obtained by 

superimposing the zero patterns of m(t) and m*(t). From 

previous results given in saýction 2.6 the zero pattern of 

s (t) is depicted in Figure 3.5. 
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Im(z) 

Lane 

Re(z) 

a<1 

zeros of s(t) 

;. 

t 

x-plane zeros of s(t) 
Fig. 3.5 

The zero count of s(t) is 2N =2 zeros per period 

and hence (see Section 3.2) there are exactly 32N/2 =3 

different members in this common envelope set. One 

of these members is s(t) as shown above and the two other 

members will be generated through a process of zero 

conjugation. 

Let S (f) be the spectrum of s (t) then: 

S (f) = F[1 + a2 +2a cosQt] 

+ a2) d (f) +a6 (f - 
-) 

+a6 (f + 
ý2 ) (3.11 ) 

2 Tr 2Tr 

where F[ ] denotes Fourier transform. 

Figure 3.7(a) shows this spectrum. 
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To produce the second member it is necessary to con- 

jugate all the UHP (x-plane) zeros to the LHP (x-plane) 

zeros of s (t). 

In order to effect zero conjugation, a cancellation 

operator c(t), as discussed in section 2.6, must be used 

in the form: 

e fit' _ m* (t) _11++aa 
ee 

j-2t 

jot '0<a<1 

= ej2ßm(t) (3.12) 

where 6m (t) = arc tan (a sinOt 
sStt) as given in eqn. (3.8). 

Let the conjugated signal be n(t) 

.'. n(t) =s (t) c (t) (3.13) 

n(t) = m(t) m* (t) m(t) 
m (t) 

= m2 (t) 

= (1 +a ejQt) 2 

=1+ 2a e3ý2t + a2 ej22t (3.14) 

and taking Fourier transform gives: 

N(f) =d (f) + 2a 6 (f - 2ý) + a2 S (f - 
227T (3.15) 

Figure 3.7(b) shows this spectrum. 

The zero pattern of n(t) is the same as that of m(t) but 

all the zeros are of second order type, as shown in 

Figure 3.6 (a) . 
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-plane 

Re(z) 

lane zeros of n(t) 

icy 

x-plane 

1T /Q 

4- T --ý 

000000 Ina/SZ 

t 

x-plane zeros of n(t) 

Fig. 3.6 (a) 

It is apparent that: 

i) n(t) has the same envelope as s(t) because they 

are two members of a common envelope set. This 

can be proved by using eqn. (3.14): 

n(t) = m(t) m*t 
m*( 
m (t) 

.'. 
In(t)j= Im(t) m* (t) 1 

=l (l +a ejQt) (1 +a e-jQt) 

(1 + a2 + 2a cosf2t ( 

=s (t) (3.16) 
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ii) n(t) is a complex signal and is Analytic as it has 

no singularities in the open UHP (x-plane). 

iii) As all the zeros of n (t) lie in the LHP (x-plane) 

then n(t) is a minimum-phase signal (Siection 2.4) . 
iv) The zero count of n(t) is 2N =2 which is the same 

as that of s(t) and hence this type of zero con- 

jugation is bandwidth - preserving as the zero 

count is not changed. n(t) has the same bandwidth 

as that of s(t) and this is a characteristic of the 

common envelope set. 

v) The cancellation operator c(t) which is used to 

effect zero conjugation conjugates all the zeros 

of the UHP (x-plane) from t= -- to t= +- and 

produces the zero pattern of n(t). Consequently 

the conjugated signal n(t) has also a periodic 

zero pattern. 

vi) Using eqn. (3.12) and eqn. (3.13) it is evident 

that n(t) can be obtained by multiplying s(t) by 

the cancellation operator c(t) or equivalently by 

phase modulating s (t) with (2 6m(t)) . 

vii) The spectrum of n(t) is shifted from that of s(t) 

by 2ý Hz as shown in Figure 3.7. 

To generate the third member of the common envelope 

set it is necessary to conjugate zeros in the reverse 

sense, i. e. to conjugate all the LHP (x-plane) zeros into 

their UHP complex conjugates. The cancellation operator 

required for this type of zero conjugation is: 
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c (t) - 
m* (t) 

_1+a 
e- jot 

m(t) 1ta ejct 
0< a< 1 

= e^j2em(t) 

where errL(t) = arctan (a sinnt 
sS2t 

The conjugated signal will be: 

9(t) =S (t) C (t) 

= M(t) m* (t) m* (t) 
- (m* (t)) 2 

m(t) 

"'"g (t) = (1 +a e^J2t) 2 

=1+ 2a e+ a2 e-j2Stt 

The spectrum of g (t) ,G (f) , is given by: 

(3.17) 

(3.18) 

G(f) =6 (f) + 2a d (f + 
2, 

ý 
+ a2 S (f + 

2ý (3.19) 

Figure 3.7(c) shows this spectrum. The zero pattern of 

g(t) is the same as that of m*(t) but all the zeros are 

of second order type as shown in Figure 3.6(b) 

z-plane 

Re(z) 

-plane zeros of g(t) 

.(T --'r 

ja 

n a\Z-/ 
QET 

t 

x-plane zeros of g(t) 

Fig. 3.6 (b) 
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In this case: 

i) g (t) has the same envelope as s (t) and n (t) as they 

are members of the same common envelope set. This 

can be shown as follows: 

g (t) = m(t) m* (t) m* (t) 
m(t) 

. '. 
1 9( t)I=I m(t) m* (t) 

=1 (1 +a ejotHl +a e-jc2t) 

= (1 + a2 +2a cosctt l 

=s (t) _n (t) (3.20) 

ii) g(t) is a complex signal and it is Image-Analytic 

signal as it has no singularities in the open LHP 

(x-plane) . 

iii) As all the zeros of g (t) lie in the UHP (x-plane) 

then g(t) is called an Image-Analytic maximum-phase 

signal. 

iv) The zero count of g(t) is 2N =2 which is equal to 

the previous two members s(t) and n(t) and consequently 

g(t) has the same bandwidth. 

v) g(t) is a periodic signal as the cancellation 

operator c(t) conjugates all the zeros of the LHP 

(x-plane), from t= --to t= +- to their conjugates. 

vi) Using eqn. (3.16) and eqn. (3.17) it is possible to 

deduce that g(t) can be obtained by multiplying s(t) 

by c(t), or equivalently by phase modulating s(t) 

with (- 20 (t)) 
. 
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vii) The spectrum of g (t) is shifted from that of s (t) 

by 2ý Hz and g(t) has zero content in the positive fre- 

quencies which is a characteristic of the Image- 

Analytic signal. Figure 3.7(c) shows this spectrum. 

The results obtained in this section have theoretical 

interest in that they provide a satisfactory answer to the 

general implementation of zero conjugations and manipu- 

lations. It has been found that there is a frequency 

shift between the three members discussed. Provided the 

number of zero conjugated in one sense equals the number 

conjugated in the other sense, then for practical purposes 

the frequency range occupied by the different signals 

remains unchanged. The effect of unequal zero conjugation 

senses. can be considered by generalising eqn. (3.2): 

s(t) = (1 + a_N e-jNS2t) ... (1 + a_1 e 
jQt) 

x 

(1 + a1 ejRt ) ... (1 + aN ejNStt) (3.21) 

By inspection the spectral limits of s (t) extend from -NS2 

to +NO with the carrier represented by a constant atf =0. 

(The double-sideband amplitude-modulated signal is just this 

spectrum translated by w20 Hz). Now conjugation in one 

sense implies replacing a factor (1 +a 
ne 

JnSIt) by 

(1 +a 
ne 

jnQt) 
above and this changes the spectral limits 

to - (N + 1) SI to (N - 1) Q. The conjugation in the other sense 

replaces a factor (1 +a 
-n 

e 
jnQt) by (1 +a 

n e-jnRt) which 

causes a similar shift but in the positive frequency 

direction. In general a shift will always occur unless 

the number of conjugations in each sense is equal. 
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N(f) 
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(b) 

Spectrum of n(t) = 1+2aejQt + a2ej2Qt 

G(f) 

Spectrum of g(t) = 1+2ae-3Qt + ate 
32Qt 

f 

f 
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f 

Fig. 3.7 

2 2Tr 
Spectrum of s(t) = l+a2+2acos2t 

-ZSa -aa 
27r 27r (c) 
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3.5 Zeros in x- and z-Planes and Modellinq for 

Aperiodic Zeros 

The material discussed in this section is meant to 

introduce the idea of treating the zeros of a signal 

individually and irrespective of each other. Consider 

the periodic real signal s(t) defined as: 

S (t) = m(t) m*(t) 

_ (1 -a eJQt) (1 -ae 
jot) 

,0<a<1 

=1+ a2 -2a cosc2t (3.22) 

T= 2- 
period. 

The z-plane zeros are given by z=a, z=ä and the cor- 

j responding x-plane zeros are given by x= 
2k7 lna 

k=0, ± 1, ±2, ... as shown in Figure 3.8. 
Im(z) 

ýQ 

plane 

Re (z) 

-1na/Si x-plane 

TTO0 
IT- 2 Tr/St 

00o0 
lna/P 

t 

Zeros of s (t) + a2 -2a cosctt 

Fig. 3.8 

.i 
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Thus the complex zeros of s(t) occur at t= kT, k=0, 

+1, ±2, ... coincided with signal dips. 

For the elementary signal, m(t), the phase function 

am(t), and the instantaneous frequency em(t) are given 

by: 

e (t) = arc tan (- a singt ) 
m1-a cosQt 

-- arc tan 1 sia2cosctt 

em (t) _ 
ash (a 2 cost t) 

(3.23) 
1+a- 2acosc t 

At the complex x-plane zeros of s (t) which occur at t= kT, 

k=0, ±1, ±2 ... the phase and instantaneous frequency 

of m(t) have the values of: 

em(t) =01 
I 

at t= kT (3.24) 
em(t) (a - 1) 

Now consider the same signal m(t), as defined in eqn. 

(3.22), in the form: 

ot 
m(t) _ (1 - a(eJN )N) (3.25) 

The above can be interpreted as a signal having N zeros 

in a period NT, where T=0 2Tr 

The "z" expression of eqn. (3.25) becomes: 

m(z) = (1 - azN) 

: Nx NQ It 

with z=e=ee 

(3.26 

In this z-plane, we have roots given by the solution of 

(1 - az) =0. 

Figure 3.9 shows such a zero distribution for N=8. 
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Im(z) 

ze 

Re(z) 

Zeros of (1 - az8) =0 

Fig. 3.9 

Looking at the zero at t=0 we have the z-plane root 

given by: 

,r z= (ä) N 

As time (t) progresses the other z-plane zeros will 

be equally spaced and all zeros have the same radius 

1N (a ), i. e. dependent on N. 

Let us view N periods of (1 -a eJQt) as a model of 

an infinite time signal, and we wish to examine the phase 

function of a single x-plane zero (say at t=0 for 

convenience) for N large as shown in Figure 3.10. 
J`r pVetne 

I 

000000 OOOOOOl 
Nrr 1 

Zeros of (1 -a ejnt) 

t 

Fig. 3.10 
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The z-plane factor related to the zero at t=0 is: 

z 
1/N jNx 

1-_ (1 -a z), z=e (3.27) 
(ä) 1N 

The phase function related to this factor is: 

1/ jQt 
01 (t) = arg [1 -aNe) 

a1 
N sin(t)1 

- arc tan (3.28) 
1- a1 

/N 
cos (at) 

l 

N 
As N becomes larger a tends to 1 and the phase 

function ea(t) approximates an aperiodic behaviour. 

Also a representation of a fixed time interval about 

t=0 (say -2,2) on the circumference of the unit 

circle will become proportionally smaller as shown in 

Figure 3.11. 

Tmap_ 

Interval 

C-2 2 

Real 

1/N jNt 
Phasor diagram of (1 -ae) 

Fig. 3.11 

The aperiodic phase function related to a single zero 

is considered in detail in the next section. 



55 

3.6 Single-Zero Phase Function 

The phase function related to a single isolated 

zero is considered. This concept of treating the zeros 

of a signal individually is important as it permits con- 

jugating any complex zero pair irrespective of all the 

other pairs. A mathematical proof follows which shows 

that the periodic phase function approaches the aperiodic 

phase when the period becomes infinitely large. Consider 

the periodic signal model expressed in eqn. (3.3): 

) jS2 (t-x 
r) -jct (t-x* 

r s(t) = 
ý(1 

-e) (1 -e 
r=1 

_ 
IT f (t) fr (t) 

r=1 r 
(3.29) 

j1 (t-x )_Q (t-x* ) 

where fr (t) er fr (t) er) 

xr = tr + jar = x-plane complex zero 

X* r: -- 
tr - jar = x-plane complex conjugate zero 

* denotes complex conjugation. 

In principle conjugation can be achieved by multi- 

plying s(t) by the cancellation operator (conjugating 

function) c(t) as discussed in Section 3.4. Since a 

zero pair may be conjugated "up" or "down" the con- 

jugating function, c(t), can be generally expressed as: 

fr(t) +1 
C (t) f* (t) ] (3.30) 

r 

This corresponds to imposing a PM function 

()(t) = arg [c (t) ]=±2 arg [fr (t) ] on the signal s (t) 

as discussed previously. 
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These functions refer strictly to periodic con- 

jugation; i. e. conjugation of a zero pair repeated at 

intervals of T seconds rather than of a single isolated 

zero pair. If T is made sufficiently large, then a 

single zero pair may be isolated for all practical 

purposes. 

Consider the factor: 

7c (t-x ) 
fr(t) _ (1 -er) 

=1- {1 + jc2 (t-xr) + 
[ja (t-xr) ]2 

+ ... 
} 

21 

[]c (t-x )2 

r ... -- jc (t-x )-2! r 

If , Q(t-xr)I is small then 2nd and higher order terms may 

be neglected and hence: 

fr (t) =-jQ(t-xr) (3.31 

This expression will be valid for finite values of t or 

xr provided c= 
2T is sufficiently small. Expressing 

the complex zero as xr = tr + jar then eqn. (3.31) 

becomes: 

fr (t) jo (t - tr - 30r? 

=- SI(ar +j (t - tr)) (3.32) 

t-t 

. '. ®r (t) = arc tan (Qr (3.33) 

r 

Then PM function is given by: 

o (t) =±20r (t) _±2 arg [fr (t) 

(t-t 
2 arc tan (ar1 (3.34) 

r 
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This phase function conjugates one zero pair only 

that occurs at t= tr and has an imaginary part of ar. 

or (t) has a zero value at the time of occurrence of 

the complex zero (t = tr) and approaches ± 7/2 asymp- 

totically for Qr + 0. 

Choosing the complex zero to lie at t=0 and with an 

ordinate value of ar = 
lna 

then the aperiodic phase 

becomes: 

0r (t) = arc tan (lna) (3.35) 

Now consider the zero at t=0 that has been shown in 

Section 3.5, the factor related to this zero is: 

1 /N At 

(1 -a z) ,z=e 

1/N jNt 

... 81 (t) = arg [1 -ae] 

aN sin( 
Qt) 

arc tan 
N (3.36) 

1-a Cos( N t) 

Figure 3.12 (a, b, c) shows a phasor diagram of this factor 

and also the phase functions 0r (t) and 01 (t) as defined 

in eqn. (3.35) and (3.36) respectively. 
1/ N As N -ý ,a -ý 1 and 61 (t) changes between ± IT 

. 

To prove mathematically that as N -ý 01(t) approaches 

6r (t) as defined in eqn. (3.35), consider the sine and 

cosine expansions: 

35 
xx 

ý 5; sin x=x-3+ 

x2 x4 
cox x=1-2, + 4! 

7 
x+-<x< 03 

6 
x+... 

,- 03 <x< 6! 
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Irrag, 

Real 

Phasor diagram of 

(1-a 
11N 

ejQt/N) 
(a) 

A/+\ 

t 

-lT/2 6(t) = are tan(CZt/1na) 
Ct) B1 

t 

e(t)= - arc 

NT 

(c) 

Fig. 3.12 

1/N SA 
a sin() 

tan N 

1-a11NCos( 
Nt) 
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Using these in eqn. (3.36) gives: 

aN (S2t/N - 
(Stt/N) 3+ 

(SZt/N) 5 

... 
) 

8 (t) arc tan 3! 5! 
11- 

a1 
/N 

(Qt/N) 2+ (Qt/N) 4 

... ) 2! 4! 

a 
1/ 

N (Qt/N _ (ct/N) 3+ (c2t/N) 5 

3! 5! 1im 6 (t)=tim - arc tan 
N}o 

1 
N-)-, - 1- a1 

iN 
(1 - 

(S2t/N) 2+ (Qt/N) 4 

2! 4! 

To a first order approximation the above becomes: 

1/ 
aN (52t/N) lim 0 (t)= lim - arc tan 

N-*c 1 
N-*co 1- a 

1/ 
N 

1/ 
Now aN can be expanded using the formula (15): 

(3.37) 

(3.38) 

ax = exlna =1+ xlna + 
(xlna) 2+ (xlna)3. 

+... , 2.3. 

ý 1N 
Upon using the above expansion for a then eqn. (3.33) 

becomes: 

l im el (t) =1 im - arc tan 

1 
(Nina) 2 

(1 +1 lna +2 
.) 

(Qt/N) 

1 
(Nina) 2 

1- (1 + Nlna + 2! ... ) 

-- arc tan (_1na) 

= arc tan (lna 

= 6r(t) (3.39) 
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The above proof assures that the periodic phase 

approaches the aperiodic phase 0r(t) when the period is 

large enough. In the vicinity of the complex zero both 

01 (t) and e(t) are similar. 

A very important point that requires emphasising at 

this stage is that the periodic phase function 0m(t) con- 

jugates all the zeros of s(t) from t= -- to t= +° and 

hence it yields also a periodic signal with periodic zero 

pattern as shown in Figure 3.13 (a, b). On the other hand 

the aperiodic phase function 0r(t) conjugates only one 

zero pair when used in eqn. (3.34). Thus the conjugated 

signal does not have a periodic zero pattern as shown in 

Figure 3.13(c), and consequently the conjugated signal 

is no longer periodic and is not expected to have a line 

spectrum. 

3.7 Analytical Study of the Aperiodic Conjugating 

Function 

In the last section we discussed the aperiodic phase 

function that conjugates only one zero pair. This phase 

function is: 

8r (t) = arc tan (t. - tr ) 
r 

For simplicity the zero can be chosen to lie at t=0, 

hence: 

e (t) = arc tan (ý )= arg (1 + jQ ) 
rrr 

Upon using the results obtained above, the conjugating 

function c (t) becomes: 
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icy 

Zero pattern of a real periodic signal s(t) 

(a) 

Jß 

oooooiooooo 

Zero pattern of a conjugated signal using a periodic phase 
function 0 (t) 

(b) m 

(c) 

t 

t 

t 

Fig. 3.13 

Zero pairs after conjugation using aperiodic phase function 6 (t) 
r 
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(t) 
j26r (t) j2 tan 

1 (t/Qr) 
c=e=e 

+ Jtf`: r 
1- it/ar (3.40) 

It is worth finding the Fourier transform of c(t) since 

it then becomes possible to find the Fourier transform 

of any conjugated signal simply by convolving the 

Fourier transform of the real signal with C(f), the 

frequency spectrum of c(t). 
00 

. '. C(f) = c(t) e Jwt dt 

Co 
cwt 

it/ 
= e 1 jt/Q dt 

r 
-Co 

Co 
1+ jt/Q 1+ 

r 
jt/6 

_cwt r 
_ e 1- jt/6 1+ jt a 

dt 
r r 

Co 
(1 + jt/cr) 2- 

jwt 
+ t2 6r 

e dt 

-o 
c 

(1 +j 2t/csr - t2 /ßr2 )j 
wt - 

= J 1+tQ 
dt e 

r 

_00 Co 1- t2/Qr2 2t/Qr2 
-]Wt 

= 1+ t2 Qr 
+ 1+ t2 Qr 

e dt 

CO 
Co 

cr 2 -t2 2cs t 
C (f ) 

Q = 
r2 

+t2 +] 
r Gr2 +t2 

(coswt - jsinwt) dt 
r 
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co 

2 1i2 
cosut + 

Zart 
sinwt dt +j 

2cy 
rt coscýt-ar -t singt dt 

6 +t 2 7-T2-+ t26 

rrrr 
_ _00 co 

R(f) X(f) 

Note that X(f) =0 as the integrand is an odd time function, 

hence: 

00 

C (f) =r 

CT 2 
_t2 

r coswt + 
2ý 

rt 
2 

sinwt dt 

Q +t Q +t z 
rr 

_Co 

Co 
2-t2 ar coswt + 

2cr 
rt sinwt dt 

2 

r 
+t 

rz 
0 

To integrate the above we need to use two definite in- 

tegral formulae (15) . 

OD 00 

cosmx dx = it e-ma ;x sin. mxdx =---Me-ma ,m positive 
x2 + a2 2a x2 + a2 2- 

00 

OD 00 OD 

Iar2t2 

22 
coswtdt =2 [Qr2 

dos---jt2 
dt -2 

t2t2 
coswt dt l 

. .2 
CY r 

+t 

r 
000 

00 

2 -csr 
IwI1 

tz +Q z 
-6 

2 

= 2[ý "e-rr coswt dt] 
r 2Qr r 

+t2 
0 

Co Co 

-Q rIWI 
Q2 coto dt] 

=2 EQ 2 IT e- coswt dt +rQ +t r2 Qr 
00r 
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co 

6Iw 

=2 [Q 2 7T er- coswt dt + Qr2 r 2Q 
r 

0 

co 
-6rlwl 

= Zar n e- -2 coswt dt 

0 

Now: 

0 Co 

2 coswt dt = coswt = 

0 
-Co Co 

00 00 

=2[ ejWtdt +e 7wt dt] 

-Co _OD 

-cr Iw 

ir e 
2Q 

r 

ýejwt + 
jwt)dt 

-Co Co 

=2 ý_ e-7Wt dt + e-7Wt dtj 

Co -Co 
OD Co 

e-jwt dt + Ie_iwt dt] 

1 
- Co -00 

=1 [ä(f) + s(f)j = ö(f) 
2 

where 8(f) is the delta function 

. '. eqn. (3.41) becomes: 

CO 
12 

_t2 

II 

ta coswt dt = 2Qr it er 
w- 

SM ) 2 
Erz 

+ 
r 

J0 

(3.41) 
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12Q 
tatr 

rQ 
t-Y sinwt dt =4a ty sinwt dt 2+ -7 

jr r 

00 

=4 6r 2e sgn (w ) 

where sgn(w) _ [+ 1w>0 
-1 ,w<0 
-Q 

Iw! -a Iwj 

. '. C(f) = 2Qr Tr er-6 (f) +2 Qrir er sgn(w) 

-Qrlwi 
46 it e- -d (f) cý >0 

. '. C (f) =r (3.42) 
- 6(f) ,w<0 

Therefore c(t) is Analytic as it has zero negative 

frequency content. For very large ar the exponential 

decay of the first term in eqn. (4.42) is fast, while 

for small Qr the decay is slow. For ar =0 (i. e. real 

zero) then the cancellation operator has a line spectrum 

a. s: 

C(f) =-6 (f) 

For the real signal s(t) discussed in Section 3.5 the 

complex zeros become real (i. e. Qr = 0) when a=1, i. e. 

s(t) =2-2 cosQt 

. '. S (f) =2S (f) -S (f - 
2ý) 

-ö (f + 2u) 

If the conjugated signal is n(t) then: 

n (t) =s (t) c (t) 

. '. N(f) = S(f) * C(f) 

(3.43) 

_ [2 6(f) - (f - 2-) 6 (f + 27r)] *6 (f) 
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. '. N(f) =26 (f) -6 (f - 
22) 

-6 (f + 
2L) (3.44) 

The above verifies that conjugating only one zero of s (t) 

gives no change as all the zeros are real. 

Consider the periodic cancellation operator c(t) 

given in eqn. 

C(t) +a ejot 
1+ae -32t 

The above can be written as: 

a ejQt) (1 +a eJStt) -1 

_(1+aeJSZt) (ý-ae-jStt+a2 e -j2ct-a3e-j3Qt+a 4e-j4ct... ) 

=(1 -a2) +aeJot+ (a3-a) e-jot+(a 
2 

-a4 )e- j2slt+ (a5-a3 )e j3Qt. . 

This has a spectrum of: 

C(f) =(1-a2)6(f) +a6 (f-2Q) +(a3-a)5(f+2-, 
ý)+ 

(a2-a4)S (f+2 

+(a 
5 

-a 
3)S (f+2-0ý) 

... 

The above shows that c(t) is non-bandlimited but has a 

line spectrum. 

For real zero (ßr =0 or a= 1) the spectrum is band- 

limited as was the case for the aperiodic cancellation 

operator. 

3.8 Superposition of Data Signals on Bandlimited Channels 

The concept of the common envelope set (Section 2.7) 

may be exploited to study the possibility of super- 

imposing binary data signals on bandlimited speech 

channels. 
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Conventional double-sideband amplitude-modulation 

DSB-AM is widely used because of its simplicity in trans- 

mission and reception, but in a number of applications 

the inclusion of a data channel has become an additional 

requirement (5,16) . This can be achieved by the use of 

FM for data transmission with AM in the usual way but 

in general, combined AM/PM will generate nonbandlimited 

signals for all but very slow data rates (6). It will 

be shown that bandlimitation may be preserved by applying 

FM in synchronism with the complex zeros of the amplitude- 

modulating signals. 

This technique, named zero Synchronous Frequency 

Modulation (ZSFM), requires provision for complex zero 

detection and combined AM/FM at the transmitter. Normal 

arrangements apply for envelope detection at the receiver 

and the additional data signal can be recovered by simple 

frequency modulation (e. g. phase-locked loop). 

A conventional DSB-AM signal may be expressed in 

the general form (10 ): 

7wot 
x (t) = Re{ s (t) e} (3.45) 

where s(t) >0 is a real modulating signal and wo is the 

carrier frequency. If s(t) is periodic with period T 

it may be expressed as multiplicative factors repre- 

senting complex conjugate zeros as given by eqn. (3.29). 

N jc (t-x ) -7c (t-x*) 

s (t) _ ýr (1 -er) (1 -er 
r=1 

N 
_'f (t) fr (t) (3.46) 

r=1 
r 
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where xr = tr + jar and x* = tr -jar are the rth generally 
r 

complex conjugate zero pair such that s(t) = 0. 

The principle of ZSFM derives from the equality 

fr (t) fr (t) J from which it follows that the envelope 

Is(t)I will be unaffected if any fr(t) is replaced by its 

complex conjugate fr(t), or vice versa. Thus the 

envelope of the modulated signal is invariant to a pro- 

cess of zero conjugation in which any zero may be re- 

placed by its complex conjugate. Since s(t) will be- 

come generally complex, arg s(t)jO and it is apparent 

that the modulated signal will be phase modulated as 

discussed in Section 3.4. 

However, the process of zero conjugation (i. e. 

replacing fr(t) by fr(t) or vice versa) will not increase 

the number of multiplicative factors in eqn. (3.45) and 

hence the bandwidth of s (t) and hence x (t) will not be 

affected. However, there will be a spectral shift in 

the modulated signal as discussed in Section 3.4 unless 

the number of conjugations in each sense (i. e. "up" and 

"down") is equal. This condition is not difficult to 

meet since if s(t) models a very long signal quite long 

asymmetrical strings of binary data of "1" and "0" can 

be tolerated provided they balance in the mean. 

Thus this process of complex zero conjugations 

preserves envelope bandwidth which is a characteristic 

of the "common envelope set" ( 13 ) whose members possess 

the same envelope and bandwidth, but different phase 

functions. Since a zero paix may be conjugated "up" 
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or "down" (resulting in a second order zero with Qr >0 

or ßr <0 respectively) or left unconjugated there are 

3 possibilities and therefore a total of 3N signals 

exist that possess the same envelope and bandwidth as 

s(t) constituting a "common envelope set". It follows 

that by making the process of complex zero conjugation 

dependent on a binary data signal then the redundancy 

inherent in conventional DSB-AM signals can be exploited 

without distorting the envelope or increasing the band- 

width. It was shown in Section 3.6 that the process 

of conjugation can be achieved by imposing the PM 

function 6(t) on the modulated signal. The equivalent 

FM function can be obtained by differentiation. 

t-t 
8 (t) _±2 arc tan ( r) 

r 

e, (t) Y 
de (t) 

dt 

2Q 
_+r Qr 

2+ (t 
-tr) 

2 (3.47) 

Imposition of either PM or FM function will be 

sufficient to conjugate a single zero pair without 

affecting bandwidth or envelope. 6'(t) is symmetrical 

about t= tr and falls asymptotically to zero with t2. 

Thus in practice A'(t) may be truncated within a finite 

time interval of P seconds centred on tr with an approxi- 

mation error which can be reduced by increasing P. The 

effect of truncating 6'(t) is discussed in Section 5.10. 
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Since the above analysis can be applied to any 

zero pairs represented in eqn. (4.46), conjugation of 

any combination of zeros can be achieved by forming 

the product of s(t) and the related conjugating functions 

or, equivalently, superimposing the associated PM or FM 

functions on the carrier. Thus in general for FM: 

2b6 
rr V (t) =r Qr + (t - tr) (3.48) 

where br =±1 denotes the binary data signal (1 or 0) 

required for transmission. 

Figures 3.14(a) and 3.24(b) shows a series of zero 

pairs before and after conjugation for data transmission 

(binary code 101100), while Figure 3.14(c) shows FM 

function as given by eqn. (3.48) denoting the 6-bit data 

signal 101100. 

The combined AM/FM signal carrying both channels 

can be obtained by frequency modulating the carrier with 

the FM function 6'(t) and also amplitude modulating the 

carrier with the amplitude modulating signal s(t) in 

the conventional way. Using eqn. (3.45) this can be 

written as: 

x(t) = Re{s (t) eje 
(t) 

e3 ot} 

=s (t) cos [wot +6 (t) (3.49) 

where the FM function 0'(t) relates to the complex zeros 

of s(t) and must be applied in synchronism with the time 

of occurrence of the complex zeros of s(t) as explained 

before. 
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Theoretically ZSFM permits data transmission to 

be superimposed on conventional DSB-AM signals without 

increasing bandwidth or distorting the envelope. Thus 

x(t) has the same bandwidth as s(t) and can be generated 

by imposing either the PM or the FM function on the 

carrier. For example, the function 6'(t) might be 

applied to a voltage-controlled oscillator (VCO) which 

will produce cos [w0t +A (t) ]. 

3.9 Data Rates of ZSFM 

The maximum data rate for ZSFM depends on the 

average rate of occurrence of complex zeros of the positive 

amplitude modulating signal s(t). For N complex zero pairs 

during a period T, the data rate will be: 

R=N bits/sec (3.50) 

The above assumes that all the complex zeros may be 

associated with a data bit, i. e. all the complex zeros 

are detected and suitable for conjugation. Using eqns. 

(3.45) and (3 .4 6) , the bandwidth of s (t) and hence of 

x(t) is: 

W= 
2NQ 

_ 
2N Hz 

2rr T 

The data rate is therefore (17 ): 

R=2 bits/sec (3.51) 

Thus in principle data rate up to 5 kbits/sec may 

be transmitted over a 10 kHz broadcast channel, but in 

practice not all the available complex zeros are usable 
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for conjugation. For very small ar the envelope modu- 

lation depth approaches 100% in which case frequency 

detection of the transmitted data signal during the 

'envelope trough will be unreliable due to low signal- 

to-noise ratios. For very large ar eqn. (3.48) shows 

that the frequency deviation rad/sec) becomes in- 
r 

sufficient for detection at the receiver. Nevertheless 

it is known ( 18) that the majority of the complex zeros 

of bandlimited signals are distributed in the vicinity 

of the real axis and hence it is expected that most of 

the complex zeros are amenable to conjugation. If a 

fraction v of the available complex zero pairs are 

detectable and suitable for conjugation, then only vN 

complex zero pairs may be conjugated causing the data 

rate to become: 

R= v2 bits/sec ,v<1 
(3.52) 

It was discussed in Section 3.4 that unless the 

number of conjugations in each sense (i. e. "up" and "down") 

is equal, there will be a spectral shift in the conjugated 

signal. This condition is not difficult to meet since 

if s (t) models a very long signal then asymmetrical 

strings of 1's and 0's can be tolerated provided they 

balance in the mean. In practice, however, s(t) is 

effectively limited to a "time window", but if necessary 

a redundant complementary bit may be sent after each infor- 

mation bit , thus ensuring equal numbers of 1's and O's. 
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This results in a reduction in the data rate by one half. 

If 50% of the available complex zero pairs is used only 

then the data rate becomes: 

R=0.5 
10 

= 2.5 bits/sec 

In the last section it was shown that the complex 

zero pair can be either conjugated "up" or "down" or 

left unconjugated giving 3 possibilities and therefore 

for N complex zero pairs during a period T the date 

rate is: 

R=T log2 3N =T log, 3, bits/sec 

Quoting the result of eqn. (3.51) the above becomes: 

R=2 log 
23 (3.53) 

The above gives a data rate of 7.93 kbits/sec over 

a 10 kHz broadcast channel, but this requires complex 

zero detection at the receiver which would significantly 

complicate the circuitry and increase costs. 

3.10 Zero Detection 

This section introduces the complex filter that 

detects complex zeros of a signal very briefly, whereas 

the next chapter is devoted mainly to complex zero 

detection. Complex zero detection is necessary for the 

conjugation process, and consequently for data transmission 

in ZSFM. 

Peal zeros of a signal are simple to detect, but 

complex zeros, in general, do not have an obvious 
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physical interpretation. It will be shown in Chapter 4 

that if the signal s(t + jar) can be formed, then all 

the complex zeros of s(t) with imaginary part ar will 

transform into easily detected real zeros. If the 

Fourier transform of s(t) is S(f) then the Fourier 

transform of s(t + jGr) is: 

-2Trf_a 
F[s (t +ju)]=er SM (time translation theorem) 

-Wa 

=er SM (3.54) 

Thus s (t + jar) is obtained by passing s (t) through a 

filter with frequency response: 

-wa 
H (w) =er (3.55) 

This filter is complex for Qr =0 and has a complex 

impulse response, but in practice such a filter may be 

approximated in a number of ways (19 ). For example, 

this filter may be realised by two tapped delay lines 

having weights representing real and imaginary parts 

respectively of the sampled impulse response, the weights 

being obtained from the inverse Fourier transform of the 

filter frequency response which is equivalent to the 

sampled impulse response. Each delay line is connected 

to a respective summing circuit and a logic circuit 

indicates when both summing circuits have zero weighted 

sums, indicating a complex zero. Since the filter 

detects complex zeros of s(t) with imaginary part ar, 

a bank of such filters must be used for different ar 

values if complex zeros within a range of ar values are 

to be detected. 
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3.11 A ZSFM System 

A possible implementation for a ZSFM transmitter 

is now described with reference to Figure 3.15. The 

amplitude modulating signal is applied to the bank of 

complex filters so that the complex zero pairs are 

transformed into real zeros that can be detected by real 

zero detectors. This signal may, for example, be an 

audio signal (speech, music) but it must contain a d. c. 

component of sufficient value to prevent zero crossings 

occurring. The filters are described in more detail 

later in Chapter 4. Each filter output is connected 

to a real zero detector which envelope detects the filter 

output and signifies by means of an internal comparator 

when the envelope passes through a real zero, thus 

indicating the presence of a complex zero in the cor- 

responding signal output. The logic circuit coupled 

to the real zero detectors provides a first output 

indicating that a complex zero pair has been detected, 

and a second output giving the imaginary part of the 

complex zero (ar). These two outputs are passed to 

the conjugation function generator. After a complex 

zero pair has been detected at t= tr, a conjugation 

according to the data signal is achieved by imposing 

the FM function given by eqn. (3.48) on the carrier. 

This function is generated by the conjugation function 

generator which outputs the correct positive or negative 

function according to the binary data signal. This 

function generator provides an output voltage each time 
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a zero is detected. The conjugation function generator 

may comprise a number of shift registers, one for each 

imaginary part of the zero (ar) detected by the bank of 

complex filters. Each shift register has taps weighted 
2a 

according to samples of the function 
Qs+ 

rt 
-t )2 ( 

evaluated in the region t= tr; that is each weight 
2a 

corresponds to a value of 2Y qtr t)2 
for the value 

r 
of ar for that shift register and for values of t in 

the region t= tr. On detection of complex zero, a 

binary bit is applied to the appropriate shift register 

which is clocked in accordance with increments of t, and 

a sampled version of the required function is generated 

by a summing circuit connected to the tap outputs. A 

low-pass filter is preferably used to smooth the summed 

outputs. 

The conjugation function generator may also be based 

on digital techniques, for example, samples of the required 

function may be stored in read-only memory and addressed 

by values of Qr and t. It is then required to use 

digital-to-analogue converter at the output of the 

generator. 

In order to take account of the binary data signal 

the function generator may include a circuit which 

inverts the signal from the low-pass smoothing filter 

if, for example, the binary value is zero. 

In practice the FM function is truncated within 

a duration of P second as was discussed in Section 3.8, 
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and the effect of this truncation on the bandwidth of 

the modulated signal will be studied in Chapter 5. 

If a constant data source is used then an expanding/ 

contracting buffer must be employed since the FM must be 

imposed synchronously with zeros which, in general, will 

not occur regularly in time. 

The voltage function from the conjugation function 

generator is passed to frequency modulate the voltage 

controlled oscillator which provides the carrier signal. 

This carrier signal is then amplitude modulated by the 

input signal s(t) and thus producing the combined AM/FM 

signal given by eqn. (3.49). 

Since the FM function is impressed only within an 

interval (tr ± 2) seconds, the amplitude modulating 

signal must be delayed by 2 
seconds before amplitude 

modulation takes place. The delay must also incorporate 

the time required to detect zeros due to the delay intro- 

duced by a physically-realisable filter bank. 

The output of the amplitude modulator is passed 

to a transmitter for transmission according to known 

techniques. 

From the preceding information it is clear that the 

ZSFM technique requires no modification at the trans- 

mitter other than provision for carrier frequency modu- 

lation as well as complex zero detection by bank of 

f ilters. 
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At the receiver, envelope detection is carried out 

in the usual way to recover the amplitude modulating 

signal. The data signal can be recovered by hard 

limiting the received signal followed by frequency de- 

modulation using a phase-locked loop to detect positive 

or negative frequency deviations from the carrier. 

It should be noted that zero detection at the 

receiver is not required since demodulation of a binary 

data signal can be performed without the need to locate 

the time positions of zeros. 

Figure 3.16 shows a possible ZSFM receiver. 

3.12 Applications of ZSFM 

The additional data capacity made available by 

ZSFM technique can be utilised in many different ways. 

Applications include the provision of advisory services 

(for example, monitoring weather conditions and motoring 

information), signalling for regular time checks to 

reset a free-running quartz clock in the receiver and 

thus providing a highly accurate but low cost clock. 

Station identification with particular relevance to 

medium wave broadcasting is also feasible. 

The additional data signal may also provide control 

and display functions at the receiver (5,16 ). The 

control functions include a network identification code 

where a programme search in automatic tuning becomes 

possible, and also programme type code (e. g. news, music) 

can be used. The display functions can include a 
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display of network name (e. g. BBC LON for BBC Radio 

London), and also a display of the programme type such 

as news or music. 

The importance of adding the additional data signal 

to the broadcast radio signals at m. f. and v. h. f. was 

considered by the BBC (4). However, according to 

their technique, at m. f. the data rate is limited to 

30 bits/sec, while at v. h. f. the data signal can be 

added to the multiplex signal by modulating a subcarrier 

(located at the gaps in the spectrum of the conventional 

stereo multiplex signal) by the data signal. This BBC 

suggested system for v. h. f. has a data rate of 1187.5 

bits/sec, while the ZSFM provides, in principle, a 

maximum data of 5 kbits/sec for medium wave broadcast. 

It should be noted that the additional data signals 

are imperceptible to listeners with existing receivers 

and they cause no impairment to the main programme re- 

ception on existing receivers. However, suitably 

equipped future receivers will be able to detect and 

use the data signals in the aforementioned ways. 

3.13 Final Remarks 

It has been shown that in principle, ZSFM will 

permit the transmission of data signals at high rates 

to be superimposed on conventional DSB-AM signal without 

introducing envelope distortion or increasing the band- 

width. The different possible applications of ZSFM 
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have been discussed where the facilities it would offer 

for automatic tuning and the different control functions 

would be significant steps forward in making the best 

use of the available broadcast channels. 

In practice the effects of cross-talk between AM 

and FM channels due to propagation and IF filtering at 

the receiver may affect the ZSFM technique. This will 

be studied fully in Chapter 5 where a computer simulation 

is developed. The FM function imposed on the carrier 

will be truncated within a finite time window in a 

practical transmitter. This situation will be viewed 

and investigated in Chapter 5. 



84 

CHAPTER 4 

ZERO DETECTION AND COMPLEX FILTERING 

4.1 Introduction 

In the last chapter, zero conjugation of a real 

signal was discussed, but in order to implement zero 

conjugation the complex zeros must be detected first. 

This chapter introduces the fundamental idea of complex 

filtering where the complex zeros of a real signal are 

transformed into easily detected real zeros. The impulse 

response of the complex filter is discussed together with 

possible realisations of a complex filter. 

In principle, inspection of a signal's waveform 

sometimes can provide information on the location of its 

complex zeros, but yet the quantitative method for finding 

complex zeros involves the numerical factorisation of a 

trigonometric polynomial. 

The means of zero detection may include a bank of 

complex filters having characteristics related to res- 

pective imaginary values of complex zeros and respective 

envelope detectors coupled to the filters for generating 

an output when a real zero occurs. Alternatively, the 

zero detection may be realised using digital signal 

processing techniques. It is shown that the complex 

filter can be envisaged as a series of differentiators 

which can be implemented using non-recursive digital 

filters . 

4.2 Envelope Minima 

It was shown in Section 3.2 that typically a com- 
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plex zero pair produces a dip in the envelope of the real 

signal s(t) at the corresponding instant of time. Also 

Section 3.3 described how the complex zeros of the com- 

plex zeros of the complex elementary signal m(t) lie at 

the dips of the envelope m(t). A direct approach to 

locating the time of occurrence of the zeros is to find 

derivatives of the envelope. If the first derivative 

of the envelope is zero at a specific point then that point 

might be a minimum, a maximum, or an inflection point. 

However, the sign of the second derivative tells whether 

the envelope is concave upward (i. e. a minimum point) or 

concave downwards (i. e. a maximum point). If the second 

derivative is positive at that point at which the first 

derivative is zero then that point represents a minimum 

value. On the other hand negative second derivative means 

a maximum point. Figure 4.1 shows graphically the signal 

s(t) with its first and second derivatives where point B 

represents a minimum, point C an inflection point, and 

point Da maximum point. 

The signal s(t) is said to have a local or relative 

minimum at point t= t1 if s(td) < s(t1 +h) for all positive 

and negative values of h sufficiently near zero (20). 

Local minimum is used to distinguish such a point from an 

absolute minimum which would happen at t= t1 if s(td) < 

s(t) for all t as shown in Figure 4.2. 

However, the detection of complex zeros by obser- 

ving the envelope minima is misleading due to the pos- 

sibility of having more than one complex zero pair 

corresponding to the same envelope trough. 
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Example: 

Let us consider the positive real signal s(t) of the 

form: 

a ejot ) (1 _a e-7ot) (1 -b eJStt) (1 -b e-'fit 

0<b (4.1) 

The z-plane zeros of s (t) are given by the zeros of the 

factors as: 

(1 -a ejSIt) has a zero at z= 
1 
a reciprocal 

(1 -ae 
jet) has a zero at z=a zero-pair 

(1 -b eJ 
t) has a zero at z=b reciprocal 

(1 -be -int) has a zero at z=b zero-pair 

Figure 4.3 shows the z-plane zeros and the corresponding 

x-plane zeros of s (t) as given by eqn. (4.1) . 

The signal s(t) can. be rewritten in the form: 

s (t) = (1 + a2 -2 a cosctt) (1 + b2 -2 b cosctt) (4.2) 

Figure 4.4 shows 5 cycles of s(t) as given above and it 

is apparent by comparison with Figure 4.3 that at every 

envelope dip there are two complex zero pairs. It is 

also evident that the added zero pair has the effect of 

sharpening the maximum edge of s(t), and in the limit when 

the number of complex zero pairs per period of s(t) is 

unbounded then the maximum edge of s(t) becomes a cusp 

point and s(t) a non-bandlimited periodic signal. The 

envelope minima technique is therefore not an efficient 

way of determining the complex zeros. 
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Now let us consider another situation in which one 

of the zero pairs of s(t) given by eqn. (4.1) has shifted 

slightly and changed its position. This results in 

considering s(t) as follows: 

s(t)=(1 -a 
jot t) (1 -a e ade )(1-b1 -b e3S2t) (1 -b e JStt) 

(4.3) 
0< a< 1,0< b< 1, b< a 

where d is a real constant and represents the shift in 

radians. 

(1 -a ejdej"t) has a zero at z=ä e 
Jd 

reciprocal 

(1 -ae 
jde jQt) 

has a zero at z=ae -jd zero-pair 

Figure 4.5 shows the z-plane zeros of s(t) and also 

the x -plane zeros (found by substituting z= ejQx and 

solving for x as mentioned before) of the signal s(t). 

The signal s(t) as given by eqn. (4.3) can be written 

in the following way: 

s(t) = [1 +a2 -2 a cos(Qt+d)] [1 +b2 -2 b cosctJ (4.4) 

The effect of the shifted zero pair, through d radians, 

is another possible noticeable dip in the envelope of 

. s (t) 

Figure 4.6 shows 5 cycles of s(t) as given in eqn. 

(4.4) and for d=0.9 radians and it can be seen that the 

extra dip caused by the shifted zero pair is not very 

noticeable. 

Figure 4.7 shows 5 cycles of s(t) and for d=1.4 

radians, and it is apparent that the shifted zero pair has 

produced a noticeable extra dip in s(t). 
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Now it is possible to generalise the idea that to 

every dip of a positive real signal there must corres- 

pond at least one pair of complex zeros. However, when 

any two zero pairs get closer and occur nearby each other 

in real time, then the two envelope dips corresponding 

to each pair get less pronounced until they become a 

single dip when the two zero pairs coincide (i. e. 

occur at the same instant of time). 

As a final comment it is apparent that detecting 

the envelope minima does not determine the complex zeros. 

In order to conjugate zero pairs, it is essential to 

determine both the time of occurrence of the zero pair 

(tr) and the imaginary part of the complex zero (ar) as 

discussed in Chapter 3. Hence another approach for 

detecting the complex zeros should be utilised. 

4.3 Complex Filters 

This section describes how a complex filter trans- 

forms the complex zeros of a real signal into easily 

detected real zeros. Complex filters are derived with 

their transfer functions, while the possible realisations 

of complex filters are discussed in Section 4.5. 

Given a real signal with complex conjugate zeros, 

the relation of the zeros of s(t) with those of 

s(t -j Qr) is considerd where ar is a real constant. 

Let the Fourier transforms of s (t) and s (t -j ß) be 

S(f) and L(f) respectively, then by using the time- 
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translation property of the Fourier transform (21) it is 

possible to write: 

L(f) = F[s(t -ja r) 
J= S(f) e-j2Trf(j Or) 

=S (f) e2TrfQr 

=S (f) HQ (f) 
r 

(4.5) 

where Har (f) represents a transfer function of a filter 

which is complex due to its asymmetrical frequency 

response. The impulse response of this filter is com- 

plex and can be implemented in a number of ways as will 

be discussed. Figure 4.8 shows frequency responses 

of the complex filter for positive and negative values 

of Qr. Thus s(t -ja) can be obtained by passing s(t) 

through a complex filter with transfer function Har (f) 

as shown by eqn. (4.5). If Qr is chosen to be equal to 

the ordinate value of the complex zero of s(t), then 

s(t -jar) has a real zero at the same real time 

position as the following example shows. 

Example: Consider the real signal s(t): 

saej0.1ejQt) (1 -a eJ0.1e-j52t) ,a<1 

1-aej0.1 ej 
of ) has a z- lane zero at z= 

1-ej 0.11 
reciprocal (pa 

_ 
zero-pair 

(1-a ej0'1e 
jot) has a z-plane zero at z =aej0.1 

(1-a e-0 "1 eJ 
fit) has x-plane zero at x -0 .1+ 2mw 

-3 
lna 

SZ SZ m=0 

(1-a ej 
O. 1ej ý2t)'has x-plane zero at x=0"10 

2mir 
+jlnal 

±1, ±2, 



96 

Q 
(f) 

Q r 

Frequency response of the complex filter 

Fig. 4.8 



97 

Figure 4.9 shows both the z- and x-plane zeros of 

s(t). Now let ar be equal to the imaginary part of 

the zero of s (t) , then s (t - ja 
r 

)becomes : 

s (t - jar) =(1 -a e 70.1ejQ (t-j ar)) (1 -a ej0 . 1ejo (t-jar) 
) 

On substituting ar= - 
lýa 

s (t-jar) _ (1 -ae 
J0.1e-lnaejQt) (1 -a ej0.1elnae-jQt) 

_ (1 _ aä e-j0.1ejot) (1 - a. a eJ0.1e-jot) 

(1 _ e-j0. 
lejS2t)(l 

-ale 
jo. 1 

e- 
jot ) (4.6) 

(1 -e 
J0'1eýQt) has a z-plane zero at z= ejO. 

l 

(1 - a2 ej0'1e 
jQt) has a z-plane zero at z= azeJ0.1 

Note that the z-plane zeros of s(t - jar) are not 

reciprocals as those of s(t). 

(1 -e 
i0' 1ejQt) has x-plane at x=0"1+ 

2mTr 
Q M=O 

2jo. 1 -j Sit 0.1 +2m lna ±l' 
(1 -aee) has x-plane zero at x= -j2 ±2, 

The x-plane zeros are not complex conjugates as 

those of s(t). Figure 4.10 shows both the z- and x-plane 

zeros of s (t - jQr) . 

The following points emerge: 

i) s(t - jQr) is a complex signal as its complex zeros 

do not occur in conjugate pairs as shown above. 

This is because of the effect of the complex filter 

HQ 
r 

(f) which converts the real signal s(t) into 

the complex signal s(t - jar). 
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ii) It is clear that one of the complex zeros of 

s(t) has changed into a real zero at the same 

real time position after being passed through the 

complex filter. However, the vertical separation 

between the zeros of s(t -ja r) 
is still 2 lna. 

iii) It is therefore possible for a complex filter HQr (f) 

to convert one of the complex zeros at x=tr± jar 

into a real zero at x=t. In other words a r 

complex zero pair of ordinate value ± Qr can be 

detected whenever the envelope of s(t - jar) has 

a real zero. 

iv) In practice we need a bank of such complex filters, 

each designed to detect a zero with different Qr 

value or range of ar, so that different complex 

zeros can be detected. At the output of each 

complex filter there is a real zero detector which 

envelope detects the output of the complex filter 

as was described in Section 3.11. To understand 

how the real zeros of the envelope of s(t - jGr) 

correspond to the complex zeros of s(t) consider 

the signal: 

s (t) =1+ a2 -2a coscc t 

The x-plane zeros of s(t) above are given by: 

2mß lna 
X=±jm=0, ±T, ±2, ... 

as found in Section 3.5 

The complex filtered signal is: 
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S (t - jar) =1+ a2 -2a cosc2 (t - jar) 

=1 +a? -2a[COssýt cos JQUr+sinQt sinjQar] 

Using the relations cosjy = coshy, sinjy =j sinhy the 

above can be written as: 

s (t - jCF 
r) =1 +a' -2a [coscct coshQcs +j sinnt sinhctar] (4.7) 

Now taking the modulus of s(t - jar) gives: 

Is (t-jar) I_ (1 +a2 -2acosc2t coshc2cr )2+ (2asinc t sinh2Or) 2 

(4.8) 

The above is never negative. 
lna -lna 

If ar= 
lQa 

, then coshQur = cosh(lna) =e +2 
= 

1"2ä 

and also if t= 
2m7 

, in = 0, ±1, ±2, ... then sinct =0 

and the modulus becomes: 

Is (t - jQr) _ 
/(1 

+ a2 - 2a 12az )2=0 
a 

which is a real zero corresponding to the complex zero 

of s(t). For ßr + lna 
the envelope is always non-zero 

and therefore there are no extra real zeros of 

Is(t - jcr)I that do not correspond to complex zeros of 

s(t). A plot of Is(t - jar)I is shown in Section 5.9. 

v) Most of the zeros of bandlimited signals are close 

to the real axis ( 18), and hence zeros with very 

high ar values can be neglected, restricting the 

required number of complex filters. An important 

point which will be considered is the increment 

between successive values of Qr in the bank of 

Al 

91 

filters. 
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4.4 Impulse Response 

The impulse response of the complex filter 

discussed in the last section will be derived, and a 

a practical bandlimited version of the complex filter 

described. Given the transfer function of the complex 

filter HQ (f), the impulse response can be found by 
r 

taking the inverse Fourier transform of HQ (f). From 
r 

eqn. (4 . 5) . 
2TrfQ 

H (f) =er 
Q r 

a, 

. '. hQ (t) = H6 ej21Tft df 
rr 

_Co 
Co 

e27rfar ej21Tft df 

Co 
j21rf (t-ja 

r) 
=e df (4.9) 

J 

Using the relation that a delta-function and 1 are a 

Fourier transform pair, then eqn. (4.9) above becomes: 

. '. hG (t) =d (t - JQr) 
r 

(4.10) 

However, the effective complex filter transfer function 

is bandlimited within a finite frequency range (say 

±fc Hz), then the bandlimited version of the complex 

filter has a transfer function as 

2Trfar f 
Hc(f) =e rect(2f ) (4.11) 

c 
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I 1, , f/2fc1< 
2 

where rect 2f 
f 

c l0, otherwise 

Figure 4.11 shows the transfer function of the 

bandlimited version of the complex filter, where fc 

gives the cut-off frequency of the filter. In practice, 

if the filter is designed to detect complex zeros of 

speech signals then fc may be chosen as 5 kHz. The 

impulse response of the bandlimited version of the 

filter can be obtained by taking the inverse Fourier 

transform of He (f) as given by eqn. 
. CO 

ho(t) = Ho(f) e3wt df 

_co 
fc 

= He (f) ej27rft df 

-f c 

c 

2Trfa 
r 

=e 

c 

ej 
2lTft df 

c 

j27rf (t-jar ) 

=e df 

f 
c 

(4.11), i. e. 



104 

2TrfQ 
Hc(f) =er rect(f/2fc) 

Fig. 4.11 

f 

Bandlimited version of the complex filter. 
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f 
c 

ej27rf (t-jar 

j2Tr (t-jar ) 

-fc 

ej2Trfc 
(t-jar) 

- e-j27fc 
(t-jcrr 

j 27r (t-jc1 

sin [27rfc (t-jcsr) ] sin [wc (t-jcr) 

7T (t -jar) - (t-ja 

sinwct cos jwcar - cos wt sin jwcQr 

Tr (t-j(j r) 
(4.12) 

coshes a sinwt -j sinhw 6 cosw t 
hc(t) =cr 

7r(t-]ý 

r) 

cr (4.13) 

[coshwcar sinwct-j sinhwccrr coswct] [t + jar) 
he (t) 

ir (t + 6r ) 

If he(t) = r(t)+j q(t), where r(t) and q(t) are real 

functions of time, then: 

t sinwct coshwcar +a sinhwcar coswct r 
r(t) _ (t2 + Cr 2) 

(4.14) 

ar sinwct coshwca -t sinhwcar coswot rq (tý 
.r (t + ßr2 ) 

It should be noted that r(t) is an even function of 

time as r (t) =r (-t) , and q (t) is odd as q (t) = -q (-t) . 

It will be shown that the real and imaginary parts of 

the impulse response have amplitude and frequency 

variations and the envelope diminishes with ItI. 

Let A= coshwcQr ,B=a sinhwcar then r(t) can be 
r 

written as follows: 
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At sinwot +B cosu, 
ct r (t) _ 

,T (t2 + are) 

r (t) _ Ott)i ++Bz 
At 

sinw 
ct+B 

coswt ar) (At) 2 -+-B--Y- (At) 2 +E c 

_ 
IT 

(At) 
+Qr 

Bz) [sind (t) sinwct + cosh (t) coswct] 

_ 
VAt)2 +B2 cos[w t- (t)] (4.15) 
it (t2 + Qr 2) c 

where 4 (t) = arc tan (Bt) 

Thus r(t) has amplitude variations as well as frequency 

variation, imposed by fi(t), but the frequency variation 

is nearly negligible because fi(t) changes very slowly 

compared to (wet) . Also, r (t) diminishes with time. 

Similarly, q(t) can be analysed by letting C= ar coshwcQr 

D= sinhweor in eqn. (4 .1 4) . 

q(t) =C 
sines ct-Dt cosw ct 

Tr (t2 + crr2 ) 

22 C+ (Dt) C 
sinw t- Dt 

Cosw t 
7r (t2 + Qr C2 + (Dt) 

C FC-r + (Dt) 2C 

_ lT (t 
DtaI- 

.) [cosh (t) sinwct -sind (t) coswCt] 
r 

CZ + (Dt) 2 
sin[w t- {t)) (4.16) 

-rr(t + Qr )c 

where ¢ (t) = arc tan (ý ) 
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Therefore q(t) can be viewed as having envelope vari- 

ation and frequency variation imposed by 4(t). The 

envelope diminishes as Its increases, and approaches zero 

in the limit when jtI}-. A similar expression can 

be derived for the magnitude of the impulse response 

(i. e. Ihc(t) I). 

Using equ. (4.13) we have: 

cosh2wear sinewet + sinh2wca costwet 

. '. Ih (t) v= c 
7T t2 +6 

r 

1(1 + sinh2 wca ) sine wct + sinh2 wcßrcos2 wct r 

it t2+a 2 

r 

1 

TT t2 +Q2 
r 

sinhw a cr 

7r�t2 +ß r 

For fc =5 kHz, ar = 100 

I he (t) I= 
3.68 

t2 + ý0-8 

sinew t+ sinh2w a ccr 

sine -wt 

+c 
sinh2 w cs cr 

(4.17) 

µsec, sinh2wcar = 133.37, hence: 

sinew t 
c ý+ 133.37 

The dependence of (hc(W on sinzwct 

the values given above as the factor 

varies between 1}1.0037 as sin2wct 

is negligible for 

sine ci t 
c 1+ 133.37 

varies between 0 -} 1. 

Hence for fc =5 kHz and Or > 100 sec the effect of 

the term sin2wct can be neglected and Ihc(t)j 

approximated as: 
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I hý (t ) 
sinh a r^ r 

7T�t2 +Q2 
r 

(4.18) 

Figures 4.12,4.13 and 4.14 show the real part, the 

imaginary part, and the magnitude of the impulse res- 

ponse respectively for fc = 5kHz and Qr = 100 µseconds 

and it is clear that they all diminish with time. 

4.5 Realisation of the Complex Filter 

Some of the possible realisations of the complex 

filter, discussed in the last two sections, will be 

described in more detail. 

a) Delay line approximation 

The tapped delay line is one of the simplest ways 

of implementing the practical bandlimited version of 

the complex filter. 

Although the impulse response of the complex filter 

is complex, having real and imaginary parts, each filter 

can be realised by two tapped delay lines having weights 

representing real and imaginary parts of the impulse 

response of the filter. The weights are obtained from 

the inverse Fourier transform of the filter transfer 

function which is equivalent to the impulse response. 

Each delay line is connected to a respective summer and 

a comparator can be used to indicate when both summers 

have zero sums implying a complex zero. Implementation 



r(t) 

t 

1.11'1 l-1 

1ý11ý1 

q(t) 

t 

-ý41t 1 

-1L30 t 
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Ihm (t) 

-7 

1 

' 
f=5 kHz, Q= 100. x 10_ 

g 
sec 

x 40 µ sec 

cr 

Magnitude of the impulse response 

Fig. 4.14 

1` O . _114_I ýý, ºý 
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using the well-known analogue transversal filter is 

the simplest approach for detection of complex zeros. 

The transversal filter is a linear network since it 

utilises delay, multiplication by a constant and sum- 

mation (22 ). A digital transversal filter can be 

similarly implemented provided that the input signal is 

passed through an analogue-to-digital converter. In 

this case the weights represent the sampled impulse 

response, and a logic circuit can be used to indicate 

when both summers have zero output implying a complex 

zero. 

It is also possible to use one tapped-delay line 

with half the weights representing the real part of the 

impulse response and the remainder representing the 

imaginary part. 

If s(t) is a real input signal, and h(t) is the 

complex impulse response of the filter then the output 

complex signal s(t - jcr) is: 

s (t - jar) =s (t) * he (t) (4.19) 

where * means convolution. 

. '. s (t - jar) =s (t) * [r (t) +jq (t) 

where hc(t) is expressed as a sum of real and imaginary 

parts 

. '. s (t - jcr) =s (t) *r (t) +js (t) *q (t) (4.20) 

Using eqn. (4.21), the envelope of s(t - jar) is: 
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I S(t -ja )I= Is(t) * r(t) +j s(t) * q(t) I 

= [s (t) *r (t)] 2+ [s (t) *q (t) ]Z 

(4.21) 

Thus it is apparent that the envelope is zero only 

when both [s (t) *r (t) ] and [ s) t) *q (t) ] are zero. 

Figure 4.15 shows a possible delay line implementation 

of the complex filter where the upper weighting resistors 

represent the real part of the impulse response while 

the lower weights represent the imaginary part. At 

the outputs of the upper and lower summing circuits 

we have [s (t) *r (t) ] and (s (t) *q (t) ] respectively. 

Two squaring circuits are then used to give [s (t) *r (t) ]2 

and [s (t) * q(t)]' At the summer to the right-most, 

a logic circuit can be used to indicate when the sum is 

zero. 

For a delay line with 32 taps it can be assumed 

that 16 correspond to positive time samples of r(t) and 

q(t), while the other 16 correspond to negative time 

samples of r (t) and q (t) . Assuming the delay between 

any two successive taps is 32 µseconds, then the delay 

between the centre and the end taps is 16 x 32 = 512 

µseconds. The expressions for the amplitude variations 

of r (t) and q (t) are given by eqns. (4 . 15) and (4.16) 

respectively. The following results, assuming fc = 

5 kHz and cl = 100 µseconds, may be obtained: 
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} 
r 

Fig. 4.15 Delay line implementation of the complex filter 
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t 
(At) 2+ Bz 

Tt (t. ±. ßr2. 

0 
512 x 10_6 

C2. .+ 
(Dt) 2 

Tr. (t2. 
.±c 

2) 

r 

36760.654 36898.482 

7072.119 7047.640 

The ratio between the end to the centre taps is 

about 0.19 which might be a tolerable approximation to 

the decaying nature of the impulse response discussed 

in Section 4.4. If the number of taps is doubled then 

the ratio will roughly be halved to 0.1. 

b) Cascaded differentiators 

An alternative realisation of the complex filter 

can be derived from eqn. (4.5): 

2'irfß 
L(f) = S(f) er 

where S(f) is the Fourier transform of the real signal 
2irfa 

s(t) input at the filter, er is the transfer function 

of the filter, and L(f) is the Fourier transform of the 

output complex signal s(t - jar) as mentioned previously. 

The exponential transfer function can be expressed as 

an expansion: 
2Trfa 

L(f) = S(f) er 

(2lrfa )Z (2Trfa )3r= 
S(f) [1 + (2Trfar) + 2! + 3! 

r + ... 
1 

(4.22) 

(_jQr) 2 

= S(f) [1 + (j2Trf). (-jar)+(j2'rf)2 2! 

(-ja )3 
+ (j2irf)3 3r +... ] 

(4.23) 
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Taking inverse Fourier transform of eqn. (4.23) and 

using the property 
dn Snt) ý-ý (j2Trf)nS(f) gives: 

dt 

s(t_ýQ ) _s (t) + (_ýa )ds (t) 
+ 

(-j `ýr) Z+ d2 s (t)+ (j `Y r) 
3 d3 s (t) +.. . rr dt 2! dt2 3! dt3 

(4.24) 

Therefore the complex filter can be realised by cas- 

caded differentiators, weighting resistors, and a summer. 

Figure 4.16 shows such an implementation of the complex 

filter. It is also possible to truncate this complex 

filter by decreasing the number of differentiators as 

the multiplying weights become negligible with increasing 

order (Qr/5, ar/6, ... ) of differentiation as is apparent 

from Figure 4.16. 

It is also possible to derive eqn. (4.24) directly 

through the use of Taylor's series of complex variable 

( 11 ) as shown: 

f (z) =f (a) + (z-a) f' (a) + (z-a) 2f2 a) +... + (z -a) 
nfn 

_(a) 

Applying this to the complex signal s(t - jar) and sub- 

stituting z=t- jar , it is then possible to obtain: 

11 

s (t-ja )=s (t) + (-jcsr) s' (t) + (-jar) 2s 2t) + ... 

which is the same as eqn. (4.25). 

Similar to the delay-line realisation, the envelope 

of the output signal s(t - jßr) is the important thing 

whose real zeros correspond to complex zeros of s(t). 
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Example: 

As an example on the cascaded differentiators 

implementation of the complex filter let us consider 

the real signal given as: 

sit) =1+ a2t2 (4.25) 

The zeros of the above polynomial representing a real 

signal are complex conjugate zeros given by: x=± j1 ; a 
i. e. the two complex zeros have ordinate part of 

±6= +1 As s(t) is a polynomial of degree two, then 
r -a 

only two differentiators are required. 

The filtered signal is: 

s (t-jar) =1+ a2 (t -jcr) 2=1+ a2 (t- j 
ä) 

z 

=1+ a2 (t2 -j 
2t 

- 
12 

a 

=a 2t2 - j2at (4.26) 

s (t-j Qr ) has two x-plane zeros, one real zero at x =0 , 

and one complex zero at x=j? . a 
Figure 4.17 shows the complex filter for s(t) realised 

as two cascaded differentiators. To prove that the 

envelope of s(t-ja r) 
does not have extra real zeros that 

do not correspond to complex zeros of s(t) let us assume 

in eqn. (4.26) that ßr +ä then we have: 

s (t-jar) =1+ a2 (t-j(j 
r) 

2 

=1+ a2(t2-j2Qrt - are) 

=1+ alte - a2Qr2 - j2a2art (4.28) 
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ja r)I 

Is (t-jar) 

Fig. 4.16 Complex filter implemented as 
cascaded differentiators 

Fig. 4.17 Complex filter for s(t) =1+ a2t2 
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The envelope of s(t-ja ) is given by:. 

Is (t-jar) J= �(1 + a2t2 - a2Qr2) '+4a arIt2 (4.28) 

The above is always positive unless a- =ä in which 

case it becomes: 

ýs(t-jor) I_ (1 +a't2 -a2ä2)2 +4 a4 
2t2 

= �a t+4 a2t2 

which becomes zero at t=0 where the complex zeros of 

s(t) occur, thus indicating a zero detection. 

In practice a differentiator can be implemented 

digitally by a non-recursive filter ( 23 ) with a finite 

impulse response. This guarantees stability as all non- 

recursive filters have no feedback and hence are 

stable ( 24) 
. 

Figure 4.18 shows a non-recursive digital filter 

with one delay element and a summer, xn representing the 

samples at the input and yn representing the output 

samples. This first order non-recursive filter 

represents a crude differentiator as its output samples 

are proportional to the rate of change of the input 

samples. The relation between the output sequence and 

the input sequence of the filter can be written in the 

from: 

yn = xn - xn_ 1 
(4.29) 

The above has a z-transform as: 

Y(z) = x(z) - x(z) zr1 (4.30) 
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i/p 

X 
n 

o/p 

First order Non-Recursive Filter 

Fig. 4.18 
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where z-1 =e 
jwT 

T is the sampling period. 

If H(z) is the transfer function of the digital filter 

then: 

Y (Z) 

The frequency response of the above can be obtained by 

substituting z-1 =e 
jWT 

ý(ejwT) = (1 - e-jwT) 

... 
IH(eýwT) I=1 (1 -e 

3wT) 

=2 (1 - COSWT ) 

. '. arg (H (eý`ýT) = arc tan (sinwT (4.31) 
1- cosWT 

A computer implementation of this differentiator will be 

described in Chapter 5. 

Figure 4.19 shows the magnitude and phase frequency 

responses of the digital filter given by eqn. (4.31) 

where the periodic nature of the response is clear. 

An ideal differentiator has a transfer function of the 

form: 

H(w) = jw 

. 
'. I H(w) I=w 

. '. arg [H (w) ]=2 radians (4.32) 

A comparison between eqns. (4.31) and (4.32) reveals that 

at very low frequencies the non-recursive digital filter 

gives a good approximation to the ideal differentiator. 

Smaller T gives better approximation. However, there are 

more sophisticated ways of realising a better differentiator. 
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C) Computer Implementation 

An alternative means of realising the complex 

filter is through the use of a computer for real-time 

signal processing. In this case the input signal is 

sampled and quantised and passed to the computer. 

This quantised input signal is then processed in blocks 

by the fast Fourier transform routine giving the fre- 

quency domain samples of the signal. The resulting 

Fourier coefficients are digitally weighted by the 

respective filter frequency reponses (that is by values 

of e27rfur) such that this product corresponds to the 

complex filtered frequency samples. An inverse Fourier 

transform will generate the time samples of the filtered 

signal as previously discussed in Section 4.3. A com- 

plex zero is detected if the computer indicates that 

the real and the imaginary parts of the sample (i. e. 

its envelope) are simultaneously zero. 

Although a specific embodiment of the complex 

filter has been described it is worthwhile to emphasise 

that the aforementioned examples of realisation are not 

exhaustive and there may be many other ways of imple- 

menting complex filtering in practice. 

4.6 Final Remarks 

The theoretical foundation of complex filtering 

has been developed and also a practical realisation of 

the new technique has been described in three different 
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ways. The squaring circuits used in Section 4.5 can 

be replaced by full-wave rectifiers that give modulus 

of the signals. The new complex filtering technique 

confirms that although complex zeros of real signals do 

not generally have an obvious physical interpretation, 

it is still possible to detect complex zeros contrary 

to what was thought (25 ). 

As discussed before a bank of complex filters 

having different ar values is required in order to 

detect different complex zeros. It will be shown that 

values of ar corresponding to potential complex zeros 

have to be selected in specifying the filter bank, and 

only "medium" values of Qr are considered of practical 

use. Due to filter imperfections, each filter in the 

bank must correspond to a small range of ar values. 

If these ranges cover all the Qr values of interest, 

only a few filters are required. This will be con- 

sidered in Chapter 6. 
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CHAPTER 5 

SIMULATION OF ZERO SYNCHRONOUS 

FREQUENCY MODULATION SYSTEM 

5.1 Introduction 

The performance of the Zero Synchronous Frequency 

Modulation (ZSFM), introduced in Chapter 3, is investi- 

gated in this chapter by means of digital computer simu- 

lation with the objective of evaluating the performance 

under different conditions. Bandlimitation of the modu- 

lated signal is considered first using the periodic and 

aperiodic phase functions for zero conjugation. An ideal 

channel and a receiver are simulated with envelope and 

frequency demodulation. 

The first source of degradation to be considered is 

that of additive Gaussian noise which is present in any 

communication channel. Signal-to-noise ratios (SNR) of 

the detected envelope are measured. 

The effect of the nonlinear IF filtering character- 

istic at the receiver is also considered. This gives 

rise to AM/PM conversion effect causing cross-talk problems 

between the data channel and the main envelope modulation. 

A practical IF transformer is simulated with its specified 

magnitude and phase responses so that the cross-talk effect 

on the detected envelope due to phase non-linearity can be 

investigated. A condition of mistune is also considered 

with its degrading effects. The signal-to-distortion 

ratios of the detected envelope signal are measured showing 
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the significance of the distortion introduced due to 

non-linearities. 

Multipath fading is also considered with its impli- 

cations for reception of both envelope and data signals. 

Two implementations of the complex filters are pre- 

sented in this chapter; as cascaded differentiators and 

as blocks of FFT in the frequency domain. 

The effect of truncating the FM function generator 

which has been discussed in Section 3.11, is investigated 

in order to evaluate its effect on system performance. 

All simulation is performed at baseband for simplicity 

of computation. Finally, a simple circuit is used as 

a frequency demodulator utilising phase-locked loop to 

detect the data signal. 

5.2 Bandlimitation Test 

In this section computer simulation of a ZSFM signal 

is considered including the bandwidth of the signal whose 

complex zeros have been conjugated according to the binary 

data signal as explained in Section 3.8. The test signal 

used is a single-tone deterministic signal of known band- 

width. This has the advantage that the time positions of 

the signal complex zeros can be predetermined analytically 

before conjugation. The test signal considered is: 

s aeýýt) (1 - ae 3ýt) 
,0<a<1 

=1+ a2 -2a cosczt ( 5.1) 
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where s(t) has a bandwidth of W=± 2ý Hz and its zeros 

are given by: 

x= 
22 

±ý 
lQa 

,k=0, ±l, ±2, ... 

as shown in Section 3.5. 

For 0<a<1 the signal s(t) is always positive and 

all the zeros are complex conjugate pairs. The signal s(t) 

given in eqn. (5.1) can be written in the form: 

s (t) =1+ a2 -2a cosc2t 

_ (1 + a2) (ý -1+ a2 cosc t) 

= (1 + a2) (1 -m cosSZt) (5.2) 

where m+ ä2 is the modulation depth of s(t), and 

s(t) can represent a DSB-AM signal with the d. c. term 

(1 + a2) corresponding to the carrier component and the 

two tones at ± 2L Hz corresponding to upper and lower 

sidebands of the DSB-AM signal. 

The signal s(t) is represented on the computer by 

1024 time samples over which a block of 64 cycles of s(t) 

is generated within a time duration of 10240 u seconds. 

The bandwidth of this specific test signal is therefore 

given by: 

W=±2ý±1 
64 

6=±6.25 kHz 2 'Tr 10240 x 10_ 

The number of the complex zero pairs is N= 64 and 

the 64 cycles of s(t) can be viewed as a model of a long 

time signal. 
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Figure 5.1 shows the 64 cycles of s(t) for 60% modu- 

lation depth (m = 0.6). The frequency spectrum of s(t) 

can be calculated by the Fast-Fourier Transform (FFT) sub- 

routine and this is illustrated in Figure 5.2. 

In order to simulate the conjugated signal on the 

computer it is necessary to generate the phase function 

O(t) and then to form the product: 

c (t) =s (t) eje 
(t) (5.3) 

where c(t) is the conjugated signal and A(t) is the PM 

function. For the periodic case e(t) is given by eqn. 

(3.28) : 

a1/N sin(Nt) 
6(t)= ±2 arc tan (5.4) 

1- a1 N cos (fit) 

while for the aperiodic phase conjugating function re- 

lated to a single zero pair it is given by eqn. (3.34): 

t-t 
6 (t) _±2 arc tan (6r (5.5) 

r 

as discussed in Section 3.6. 

After the conjugated signal c(t) is formed, then the 

frequency spectrum can be found by the FFT subroutine. 

Consider first the conjugated signal spectrum with 

the periodic phase conjugating function as given by eqn. 

(5.4), and N= 64 for the signal s (t) . Six zero pairs of 

s(t) at the middle are chosen for conjugation. These 

are the 27th, 29th, 31st, 33rd, 35th and 37th pairs res- 

pectively. The conjugation depends on the binary data 

code, and if the code used is 101010 the number of con- 
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jugations in both directions is equal ensuring that the 

average spectral shift of the carrier is zero. 

Figure 5.3 shows the magnitude spectrum of the 

ZSFM signal for 60% modulation and it can be observed that 

the signal is bandlimited to ± 2L= ±6.25 kHz. The 

spectral components that lie between the tone components 

correspond to the superimposed binary signal (101010), 

while the out-of-band components, that fall about 115 dB 

below the tone components, are due to numerical noise 

generated in the programme. The spectral shift is also 

zero due to conjugating equal numbers in both senses. 

Next, all the zero pairs (64) of s(t) are conjugated 

using the periodic phase conjugating function and a 

random binary code with equal numbers of "ones" and "zeros". 

Figure 5.4 shows the magnitude spectrum of this ZSFM sig- 

nal for 60% modulation, where it can be observed that it 

is a bandlimited signal and therefore is consistent with 

the theory discussed in Chapter 3. 

The aperiodic phase conjugating function given by 

eqn. (5.5) will now be considered so that every zero pair 

can be treated individually. As was explained in 

Section 3.6, tr in eqn. (5.5) is the time at which the 

related zero pair occurs, and Qr = 
lna for the test sig- 

nal s(t) under consideration. The same approach to con- 

jugation is followed as before but with the difference 

that the phase function used for conjugation is folded 

or "wrapped" several times for the following reason. 
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Fig. 5.3 Spectrum of the ZSFM signal, 
6 zero pairs conjugated. 
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1024 time samples representing the signal s(t) in a time 

window of length 10240 4 sec are fed to the FFT sub- 

routine, which then produces a periodic repetition of 

this signal. Considering the zero pair at tr = 0, 

then phase folding can be achieved as: 

t t-10240 t+10240 0(t)=± 2 arc tan (Q ) ±2 arc tan (t-1 
ar)±2 arc tan (-Q ) ±. . 

rr 

2 arc tan (t-nxl0240 2 arc tan ( t+nx10240 ±)±) 
rQ r 

(5.6) 

where n is the number of times the phase function is folded. 

This folding is used for all the conjugated zero pairs and 

n is chosen as 4. The essence of folding the phase func- 

tion is to take into consideration the fact that the FFT 

subroutine produces a periodic repetition of the time 

window as mentioned above. Similarly, six zero pairs of 

s(t) at the middle are conjugated according to the binary 

code 101010 and using the aperiodic phase function,. 

Figure 5.5 shows the magnitude spectrum of this ZSFM signal 

for 60% modulation and the signal is considered as band- 

limited where the highest out-of-band component is about 

100 dB below the tone components. There is no spectral 

shift due to conjugating equally in both directions. 

Finally, all the 64 zero pairs of s(t) are conjugated 

using the aperiodi. c phase function and also a random 

binary code with equal numbers of "ones" and "zeros". 

Figure 5.6 shows the magnitude spectrum of this signal 
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for 60% modulation. Bandlimitation is preserved to 

± Hz in consistence with the theory of ZSFM explained 2n 

in Chapter 3. The spectral components contained in 

between the tone components correspond to the binary 

data signal. The maximum data rate that can be used 

with this test signal is the ratio between the number 

of zero pairs (64) and the length of the signal in 

seconds (10240 4 sec) i. e. 

R= 64 
= 6250 bits/sec 

10240 x 10-6 

Considering the double-sided bandwidth of the signal s(t) 

as W then: 

W=± 
2Q 

Hz 

then quoting the result of eqn. (3.51) gives: 

R=2= 2ý 
= 6250 bits/sec 

In this section, only the ideal ZSFM signal itself 

has been simulated and it has been shown that band- 

limitation is preserved as expected in theory. 

However, the phase conjugating functions are not 

confined to a limited time window in this test. In 

practice conjugation must be applied within a finite time 

window as discussed in Section 3.8, and this is considered 

in Section 5.10. 

5.3 ZSFM Reception Performance 

This section describes the approach taken in imple- 

menting the simulated receiver. Simulation of an ideal 
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channel with constant frequency response is performed. 

Also white Gaussian noise is added with specified 

carrier-to-noise ratio (CNR) in order to investigate the 

performance of ZSFM under such conditions. A fading 

channel is considered in Section 5.8. 

The detected envelope and phase (data) signals can 

be simulated by the following approach. If c(t) is the 

ZSFM signal then it can be expressed as shown in eqn. 

(5.3) : 

c (t) =s (t) ej 
0 (t) 

= ZSFM signal. 

where s(t) is a real envelope signal and 6(t) is the phase 

conjugating function which is also real. In all the 

tests to be described, 6(t) is used as defined in eqn. (5.5) 

in which case any complex zero pair is conjugated indi- 

vidually irrespective of all the other zero pairs. 

If C(f) is the Fourier transform of the ZSFM signal, 

c(t), then C(f) must be bandlimited and must have the same 

bandwidth as s(t) as was shown in Section 5.2. The samples 

obtained at the output of the FFT subroutine represent the 

frequency components of CM. Both s (t) and c (t) are 

bandlimited to ± ZýHz 
as they are members of the same 

common envelope set. Nevertheless, c(t) will not be band- 

limited if the phase function used for conjugation utilises 

a different Qr value from that of the complex zero. 

If cBL (t) is the bandlimited (± 2`-Hz) 
version of c (t) , 

that has some out-of -hand components, then cBL(t) can be 

expressed as: 
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cBL(t) =F {C(f) HR(f) } (5.7) 

where F- 
1 

means inverse Fourier transform and HR(f) is 

the receiver I. F. filter which is assumed to have a 

constant magnitude over the band of interest and a single- 

sided bandwidth of 
2L Hz with linear phase characteristics. 

The FFT subroutine can be used in the reverse direction 

to produce time samples of c BL 
W. Thus the magnitude 

IcBL(t)! gives the detected envelope signal, while the 

binary data signal can be obtained by taking the imaginary 

part of the logarithm of c. BL 
(t) and then differentiating 

with respect to time, i. e. 

In [cBL(t) 1= In! cBL(t) 1+j arg[cBL(t) ] 

. 
'. Im [In{cBL(t) 1= arg [cBL(t) ] 

, ', 
ät 

Im [ In { cBL (t) }] gives the binary data signal. 

A forward-difference formula is used to estimate the 

numerical differentiation in the simulation. Figure 5.7 

shows the detected evelope of the ZSFM signal whose spec-- 

trum is shown in Fig. 5.5 and for 60% modulation also. 

The IF filter used is of constant magnitude response and 

linear phase, and has a bandwidth of ± 2ý 
=±6.25 kHz. 

A comparison between Figures 5.7 and 5.1 reveals that the 

detected envelope of this ZSFM signal is only a replica 

of the original modulation signal s(t). Figure 5.8 

shows the detected binary data signal 101010, where the 

positive frequency deviation from the carrier (zero here) 

represents the binary "1" and the negative frequency 
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deviation from the carrier represents the binary "0". 

Using the theoretical result given by eqn. (3.47), the 

FM function used for zero conjugation is in the form: 

8' (t) _± 
2Q 

r 

cr tr)2 
rad/sec 

Thus at the time of occurrence of a zero pair, t= tr , 

6' (t) becomes: 

e' (t) =±? rad/sec 
r 

_+ 
lna 

ýr Q 

For m= 60% modulation, a=0.333 and hence the complex 

zero ordinate of s(t) is given by: 

3 
ar _}2n x 6250 -±2.8 x 10-5 second 

Therefore the maximum frequency deviation is: 

2 
_5 -=± 71428.6 rad/sec 

2.8 x 10- 0 

A comparison of this value and Figure 5.8 confirms the 

resemblance of the simulation and theoretical results. 

So far only an ideal IF filter has been used which 

gives no PM to AM conversion. The effect of using 

practical IF filters on the ZSFM performance will be 

considered in Section 5.5. 

The quality of the detected envelope and phase will 

be evaluated using the approach outlined in this section. 
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5.4 SNR Calculation and Quality of Detected Data 

In this simulation, Gaussian noise samples are 

added in the channel before reception permitting 

evaluation of ZSFM performance under noisy conditions. 

The NAG Library subroutine G05DDF (14 ) is used to 

generate noise samples having a Gaussian distribution. 

For a random variable x, the statistical average or mean 

value (x) is the numerical average of the value of x 

weighted by their probabilities ( 26 ), i. e. 

l im Em xm 
n -Ei =m ExP (xm ) 

n->-- 

where P(xm) is the probability. 

(5.8) 

In order to add noise to the channel, it is neces- 

sary to specify the standard deviation of the noise. 

This can be determined from a specified carrier-to- 

noise ratio (CNR) . 

If BN = noise bandwidth 

= receiver IF filter bandwidth (single-sided) 

and 2= noise spectral density (watt/Hz) 

then the noise power is: 

N=n BN 

For a random variable x, the variance is given by 

-2 
variance 

r- }{ 

The standard deviation is the square root of the 

variance, i. e. 

(5.9) 

(5.10) 

_z 
standard deviation =/-x (5.11) 
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For processes with zero mean value (x = 0) the standard 

deviation becomes: 

standard deviation =� xz 

= mean power (N) 

-Ti 

If C is the carrier power then: 

CNR = 10 log (N) (dB) 

. 
'. N=C 

10 
0.1 CNR (5.12) 

Using eqns. (5.9) and (5.12) we can express the spectral 

density as: 

_N_C n BN 
Bx 10 

0.1 CNR 
N 

(5.13) 

The above shows how the standard deviation is calculated 

from a given CNR. In the SNR tests, zero mean Gaussian 

samples are assumed throughout the experiments. 

The signal-to-noise ratio at the output of the envelope 

detector is defined as: 

S= full load signal power ýN, 
D - noise power available in the absence of modulation 

The full load signal power (i. e. without any noise added) 

can be calculated, then from the given CNR Gaussian noise 

is added to the carrier only with zero modulation and the 

noise power at the output of the detector can thus be 

calculated. For the test signal 

s (t) =1+ a2 -2a cosilt 
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the d. c. term corresponding to the carrier in the absence 

of modulation (a = 0) is 1. Regarding the quality of 

the detected binary data the error rate is more useful 

than the measured SNR value. There is the possibility of 

the detected noise clicks being interpreted as a trans- 

mitted "one" or "zero" and hence giving an error. In a 

noisy channel the noise clicks will always be present at 

the output of the frequency detector due to the fact that 

noise is added to the envelope and phase of a ZSFM signal. 

Criterion for evaluating quali. ty'of detected data 

The frequency deviation from the carrier is given by 

the FM conjugating function 6'(t) defined as: 

2 cr r 
Qrz + (t - tr)2 

as explained previously. At the time of occurrence of a 

conjugated zero pair, t= tr, the deviation is maximum 

and equal to ± 2/Qr. It will be shown in Section 6.6 

that complex zeros with Qr values larger than 200 sec 

can be neglected and this gives a lower bound of 6'(t) 

equal to: 

6'(t) = 
200 x2 10_6 

= 10000 rad/sec 

The above figures can be taken as a threshold value and 

therefore if the noise clicks at the output of the 

frequency detector are below 10000 rad/sec then the 

quality of the detected binary is regarded as "good". 
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This is because of the fact that when all the noise 

clicks are below 10000 rad/sec, then there is no error, 

i. e. a noise click being interpreted as binary "1" or 

"0". If some of the noise clicks are approximately 

equal to the threshold value of 10000 rad/sec, the 

quality is considered as "fair" and the detected data 

might have some error. Finally, if the noise clicks 

are considerably greater than 10000 rad/sec then the 

quality is regarded as "bad" and the above-threshold 

noise clicks give erroneous detection. 

The next three experiments show the simulation 

results of the measured SNR and also the quality of the 

detected data for different carrier-to-noise (CNR), while 

the modulation depth is varied in each experiment. The 

ZSFM signal used is the same as expressed in Section 

5.2, i. e. 

c (t) =s (t) e7 
et 

where s (t) =1+ a2 -2a cosc2t 

t-t 
e (t) =±2 arc tan (r 

Q) r 

A cluster of six zero pairs at the centre are conjugated 

according to the binary code 101010, while the signal 

s(t) generated has 64 zero pairs. Throughout the three 

experiments the measured SNR and quality of detected data 

are observed repeatedly but with the first and sixth zero 

Pairs conjugated using different Qr values from the actual 

value required for conjugation. The objective is to 
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EXPERIMENT 1 

CNR = 30 db 

Modulation 
depth 

_or 

ar 

SNR of 
detected 

envelope 
dB 

Quality of 
detected 

binary 

Highest noise 
click rad/sec 

10% 0 6.973 good 2320 
20% 0 13.076 good 2700 
30% 0 16.741 good 3340 
40% 0 19.451 good 4300 
50% 0 21.690 good 5766 
60% 0 23.659 good 8220 
70% 0 25.535 fair* 12890 
80% 0 27.457 bad* 23710 
90% 0 29.688 bad* 88670 
30% 5 16.701 good 3350 
30% 10 16.663 good 3360 
40% 5 19.423 good 4300 
40% 10 19.395 good 4310 
50% 5 21.661 good 5770 
50% 10 21.642 good 5780 
60% 5 23.646 good 8230 
60% 10 23.632 good 8240 
70% 5 25.527 fair* 12900 
70% 10 25.519 fair* 12910 
80% 5 27.453 bad* 23730 
80% 10 27.448 bad* 23750 

* The detected binary data are still recognizable and not 

lost in the noise clicks, i. e. binary "1" is not 

interpreted as binary "0" or vice versa. 
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EXPERIMENT 2 

CNR = 40 dB 

Modulation 
depth 

Aar 

ar 

SNR of 
detected 

envelope 
dB 

Quality of 
detected 

binary 

Highest noise 
click rad/sec 

10% 0 16.976 good 680 
20% 0 23.080 good 780 
30% 0 26.744 good 940 
40% 0 29.454 good 1190 
50% 0 31.684 good 1570 
60% 0 33.662 good 2176 
70% 0 35.538 good 3250 
80% 0 37.460 good 5560 
90% 0 39.691 bad* 18070 
30% 5 26.704 good 950 
30% 10 26.66 good 950 
40% 5 29.426 good 1200 
40% 10 29.398 good 1200 
50% 5 31.664 good 1570 
50% 10 31.645 good 1570 
60% 5 33.649 good 2170 
60% 10 33.636 good 2170 
70% 5 35.530 good 3250 
70% 10 35.522 good 3250 

80% 5 37.456 good 5560 
80% 10 37.452 good 5560 

The data code 101010 is not lost in the noise clicks. 
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EXPERIMENT 3 

CNR = 50 dB 

Modulation 
depth 

% 
Aar 

ar 

SNR of 
detected 

envelope 
dB 

Quality of 
detected 

binary 

Highest noise 
click rad/sec 

10% 0 27.977 good 200 
20% 0 33.081 good 230 
30% 0 36.746 good 280 
40% 0 39.455 good 350 
50% 0 41.685 good 460 
60% 0 43.663 good 630 
70% 0 45.539 good 940 
80% 0 47.461 good 1590 
90% 0 49.692 good 4540 
30% 5 36.705 good 280 
30% 10 36.667 good 280 
40% 5 39.427 good 350 
40% 10 39.400 good 350 
50% 5 41.665 good 460 
50% 10 41.646 good 460 
60% 5 43.650 good 630 
60% 10 43.637 good 630 
70% 5 45.531 good 940 
70% 10 45.522 good 940 
80% 5 47.457 good 1590 
80% 10 47.453 good 1600 
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notice the effect of using slightly different Qr for 

conjugation on the quality of detected signal. The 

receiver filter simulated is of constant magnitude over 

the passband and has a linear-phase response. The 

receiver IF filter has a bandwidth of ± 2ý 
=±6.25 kHz, 

i. e. equal to the ZSFM signal bandwidth. 

The last three experiments showed that the degra- 

dation in the SNR of the detected envelope due to using 

incorrect Qr values for conjugation is tolerable. The 

degradation is less than 0.1 dB for an error up to 10%. 

In Experiment 1 the detected binary has an error for 

modulation depth > 70%, while in Experiment 2 the de- 

tected binary is error-free up to 90% modulation depth. 

It was noticed that the noise clicks in the detected bi- 

nary increase as the modulation depth increases for any 

given CNR. For low modulation depth the envelope trough 

is far from zero and the corresponding complex zero has 

a high ar value. Hence the binary data, imposed 

through the frequency function 6'(t), are not highly 

affected by noise as mentioned in Section 3.9. While 

for high modulation depth the envelope trough is close 

to zero and the corresponding zero has a low Qr value. 

Therefore the binary data are highly affected by noise 

and the noise clicks are higher and can be misleading, 
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i. e. noise clicks can be interpreted as "1" or "0" 

at the receiver. Figure 5.9 shows the detected enve- 

lope for 60% modulation and 40 dB CNR, and Figure 5.10 

shows the detected binary code (101010) for the same 

condition. 

A test was carried out to measure the highest 

noise clicks available in the detected binary data for 

different modulation depths. The same signal is used 

as that of the last experiments and Aar is kept equal 

to zero throughout, i. e. a correct value of Qr is used. 

Figure 5.11 shows the noise click variation against the 

modulation depth for 40 dB CNR. The noise clicks are 

unharmful and do not exceed 10000 rad/sec up to 87% 

modulation depth. Figure 5.12 shows the noise clicks 

for 45 dB CNR and it is noticeable that noise clicks are 

less than 10000 rad/sec for modulation depths < 90%. 

Thus the hazard of noise clicks being interpreted as a 

conjugated zero pair is tolerable for modulation depths 

less than 90%, and consequently zero conjugation and 

data transmission can be performed safely for signal 

modulation depth up to 85% - 90%. In practice the 

modulation depth rarely exceeds 80% in radio broadcast 

transmission. 
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The error performance of ZSFM can be studied by 

observing the detected data of a prototype real ZSFM 

system. Three types of errors are expected in the 

detected system of ZSFM; the first type is a noise 

click being interpreted as binary "1" or "0" when it 

exceeds the threshold value of ± 10000 rad/sec. The 

second type occurs when binary "1" is being interpreted 

as binary "0" and vice versa, and the third type of 

error occurs when binary "1" or "0" is so badly cor- 

rupted by noise that it gives, on detection, a 

deviation less than 10000 rad/sec in magnitude. 

Probability of error can then be found for different 

CNR values by counting the errors that occur in the time 

of record. 

The second and third types of errors were not 

detected in the last three experiments of this section, 

even under the worst considered noise condition of 30 

dB CNR. However, the first type of error was 

detected and it can significantly affect performance 

at high modulation depths and high noise level. For 

higher CNR values the detected binary was error-free 

for modulation depths up to 90%. 
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5.5 Simulation of IF Cross-Talk 

In the previous section an ideal IF filter was used, 

having a constant magnitude over the passband and linear- 

phase response. This ideal IF filter gives no p. m. to 

a. m. conversion and hence it is important to investigate 

the effect of using practical IF filter on the detection 

performance of ZSFM. For every linear-phase filter the 

group delay (also called envelope delay) is constant, and 

it describes a constant delay of a packet of frequencies 

which is highly desirable in FM systems. For such a 

linear-phase response the group delay is constant for all 

components of the FM signal, and there is no distortion 

introduced (27 ). 

In the domestic AM receiver the IF amplifier comprises 

coupled tuned circuits operating at a fixed frequency 

(28,29,30). High selectivity (narrow bandwidth) needs 

high Q values for the coil. Single-tuned circuits are 

not normally used in IF amplifier as they give a narrow 

selectivity and poor attenuation in the stopband. Coupled 

circuits give more satisfactory curve and usually they 

have identical L, C, and R values. 

We will consider the IF tuned transformer with mutual 

inductance coupling, and study its magnitude and phase 

frequency responses. The equivalent circuit diagram 

( 30) for the double-tuned transformer with mutual in- 

ductance coupling and a derivation of the magnitude and 

phase responses are given in Appendix (3). Quoting the 

results of Appendix (3), the magnitude and phase responses 

of a practical IF transformer can be expressed in the form: 
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!H (F) t=2 Qk (5.14) 
Iý 

[1+ 02 (k2 
-F24 Q2 FZ 

i2 
IF 

(F) = arg HIF (F) = arc tan 
1+ Qi QF -F) 

2 

where Q is the Q-factor of the coil, k is the coupling 

coefficient (k <, 1), F= 
f'ýf 

, fo = central frequency 
0 

(mid-band frequency) and tf is the off-tune frequency from 

f' 
0 

The assumptions made in order to obtain the above 

expressions lead only to small errors with normal coup- 

lings at an IF of f0 = 465 kHz or over and off-tune (hf) 

frequencies up to ± 50 kHz. 

The phase response gIF(F) has little significance in 

AM reception, but it is of considerable importance in FM 

reception because the non-linear characteristic over the 

passband range can cause distortion of the modulation con- 

tent of the signal. 

The simulation of this IF stage in the computer is 

performed by generating the corresponding magnitude and 

phase responses, (HIF(F)l and 4IF(F) given by eqn. (5.14), 

and multiplying this response with the spectrum of the 

received ZSFM signal before detection takes place. This 

allows the effect of phase non-linearities on the detected 

signal to be estimated, and the problem of cross-talk 

(due to the data signal in ZSFM) can be evaluated. A 

value of Qk =1 is used as it is the common figure for 

commercial IF transformers in domestic receivers ( 31)- 

For critically-coupled double-tuned circuits the bandpass 
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double-sided bandwidth is given by: 

B= 
�2 fo (5.15) 

Q 
A value of Q is chosen such that the 3-dB bandwidth of 

the IF transformer is 5 kHz (i. e. Af =5 kHz and B= 

10 kHz). This can be calculated from eqn. (5.15) where 

the IF mid-band frequency is f0 = 470 kHz. 

Yl _2 f 
B= 2Af = 10 kHz = 4 

10 kHz = 
�2 x 470 kHz 

Q 

. '. Q= 66.468 

But Qk =1 

. '. k=0.015045 

Now these values for Q and k, when used in the magnitude 

and phase characteristics of the IF stage, give the 

required IF response with 5 kHz 3-dB bandwidth. 

Figure 5.13 shows the magnitude response of the IF 

transformer and it can be noticed that at 5 kHz the mag- 

nitude is 0.70 7 (3 dB point) . 

Figure 5.14 shows the phase response. Now the 

problem of cross-talk can be investigated by observing the 

detected envelope and data signals of ZSFM using this 

practical IF filter. The ZSFM signal considered is: 

c (t) =s (t) ejO 
(t) 

where a block of 64 cycles of s (t) =1+ a2 -2a cosclt 

is generated in a time duration of 40960 4 second which 

gives a modulating frequency of 
27r 

= 1.5625 kHz, i. e. 

it lies in the IF passband range. 
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The PM function is as usual given by: 

t-t 
e (t) 2 arc tan (r) 

r 
A cluster of six zero pairs at the middle of s(t) are 

conjugated according to the binary code (101010). 

Figure 5.15 shows the detected envelope for 60% 

modulation depth. It is apparent that the detected 

envelope signal is almost free of distortion and hence 

the IF transformer does not appear to significantly 

degrade p. m. to a. m. conversion. 

Figure 5.16 shows the spectrum of the detected enve- 

lope signal from which the distortion components can be 

seen to fall about 60 dB below the envelope tone. A 

quantitative study of the degradation of the detected 

envelope due to the distortion introduced by the IF trans- 

former is discussed in Section 5.7. 

Figure 5.17 shows the detected binary signal (101010). 

From the theoretical result given by eqn. (3.47), the FM 

function used for zero conjugation is: 

2Q 

+ (t -t)2 
rad/sec 

rr 

At the time of occurrence of a zero pair t= tr the FM 

function becomes: 

? 
ar 

For 60% modulation Qr =±1.12 x 10-4 second 

. '. 0' (t) =± 17856.3 rad/sec 

This value is confirmed in Figure 5.17. 
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Another ZSFM signal was simulated in which all the 

64 complex zero pairs are conjugated according to a 

random binary code that has equal numbers of "ones" and 

"zeros". Figure 5.18 shows the detected envelope sig- 

nal for 60% modulation depth. Figure 5.19 shows the 

spectrum of the detected envelope signal, and it is ap- 

parent that the distortion components are about 70 dB 

below the envelope tone. The envelope harmonics that 

are more than 50 dB below the fundamental are filtered 

out easily by the low pass filter after envelope de- 

tection. 

Figure 5.20 shows the detected binary code that has 

equal numbers of randomly varying "ones" and "zeros". 

The last three experiments discussed in Section 5.4 

for calculating the SNR of the detected envelope and 

observing the quality of the detected binary data in 

presence of noise, can be repeated using the practical 

IF transformer. In calculating the SNR, the receiver 

IF filter bandwidth (BN) used to obtain the noise spec- 

tral density is made equal to the 3-dB bandwidth of the 

IF filter, i. e. 5 kHz. The same criterion for the 

quality of the detected data signal is used. The ZSFM 

signal considered in the next three experiments has six 

zero pairs at the centre conjugated according to the 

binary code (101010). Different carrier-to-noise ratio 

(CNR) are considered. 
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EXPERIMENT 4 

CNR = 30 dB 

Modulation SNR of Quality of Highest noise 
depth detected detected click rad/sec 

envelope binary 
dB 

10% 6.851 good 2113 
20% 12.954 good 2228 
30% 16.618 good 2518 
40% 19.328 good 2956 
50% 21.557 good 3561 
60% 23.536 good 4459 
70% 25.413 good 5927 
80% 27.336 good 8725 
90% 29.568 bad* 15675 

The detected binary data are recognisable, i. e. binary 

"1" is not interpreted as binary "0" or vice versa. 

EXPERIMENT 5 

CNR = 40 dB 

Modulation 
depth 

SNR of 
detected 

envelope 
dB 

Quality of 
detected 

binary 

Highest noise 
click rad/sec 

10% 16.846 good 654 
20% 22.949 good 714 
30% 26.614 good 827 
40% 29.323 good 977 
50% 31.553 good 1187 
60% 33.531 good 1502 
70% 35.408 good 2030 
80% 37.331 good 3079 
90% 39.563 good 5935 
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EXPERIMENT 6 

CNR = 50 dB 

Modulation 
depth 

SNR of 
detected 

envelope 
dB 

Quality of 
detected 

binary 

Highest noise 
click rad/sec 

10% 26.840 good 204 
20% 32.943 good 225 
30% 36.607 good 262 
40% 39.317 good 310 
50% 41.546 good 378 
60% 43.525 good 480 
70% 45.402 good 652 
80% 47.325 good 994 
90% 49.557 good 1937 
95% 51.042 good 3320 

The last three experiments show that the detection 

performance of ZSFM using an IF stage with non-linear 

characteristics appears satisfactory. 

A comparison of these experiments with those in 

Section 5.4 shows that the SNR of the detected signal is 

not degraded by more than 0.1 dB when using the practical 

IF filter. The detected data have proved very satis- 

factory and there was only noise click exceeding 10000 rad/ 

sec at 90% modulation and for 30 dB CNR. 

After simulating a practical IF transformer it can be 

concluded that the problem of IF cross-talk is almost 

negligible, as the detected envelope and data signals do 

not appear to have been affected significantly due to non- 

linearities of the IF tuned circuit. 



162 

5.6 Condition of Mistune 

In practice it cannot be assumed that a perfect 

tune to a specific station is obtained as this varies from 

person to person. In such a case where a receiver is 

slightly mistuned to a station, more distortion can be 

expected in the detected envelope signal and some of the 

data signals may possibly become perceptible. Therefore 

an investigation of the detection performance of ZSFM 

becomes necessary under such conditions. 

In order to simulate such a mistune condition on the 

computer, it is only required to shift the transfer func- 

tion of the IF transformer HIF(f) from the centre fre- 

quency f0. In the present computer simulation this 

corresponds to shifting HIF(f) from the zero frequency 

as the simulation is performed at baseband as illustrated 

by Figure 5.21. This can be achieved by multiplying the 

impulse response of the IF transformer, hIF(t), in the 
j2ýf t 

time domain by e 
MIS where finis is the mistune fre- 

quency. Taking the discrete Fourier transform using 

the FFT subroutine then gives the required shifted IF 

transformer characteristics, i. e. 

F [hIF (t) ]= HIF (f ) 

F [hIF (t) ej2 
Tr f mis 

t]= 
HIF (f - fmis) (5.16) 

where F[] denotes Fourier transform. 
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The same ZSFM signal, described in the previous 

section with six zero pairs at the centre conjugated 

according to the code (101010), is used to investigate 

the effect of a mistune condition. A mistune of 

1 kHz (1 kHz 
10 kHz x 100% = 10% mistune) is considered. 

Figure 5.22 shows the detected envelope for 60% modu- 

lation depth. Figure 5.23 shows the spectrum of the 

detected envelope signal from which the distortion com- 

ponents can be seen to fall about 55 dB below the 

envelope tone components. A quantitative study of the 

degradation of the detected envelope signal due to mis- 

tune will be made in the next section. Figure 5.24 

shows that the detected binary signal (101010) is 

clearly recognisable. It is apparent that a. m. /p. m. 

conversion occurs in this case of receiver mistune as 

the upper and lower sidebands of the DSB-AM signal are 

unequal. 

The performance of ZSFM is apparently satisfactory 

even in the condition of 10% mistune. 

The next three experiments show the ZSFM detection 

performance in noisy conditions and also in a 10% mistune 

condition. The same procedures in calculating the SNR 

and observing the quality of detected binary apply as 

before. Different carrier-to-noise ratios (CNR) are 

considered. 
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EXPERIMENT 7 

CNR = 30 dB, finis =1 kHz (10% mistune) 

Modulation SNR of Quality of Highest noise 
depth detected detected click rad/sec 

envelope binary 
dB 

10% 6.722 good 2310 
20% 12.822 good 2239 
30% 16.486 good 2254 
40% 19.195 good 2628 
50% 21.426 good 3129 
60% 23.405 good* 3862 
70% 25.283 good* 4955 
80% 27.208 good* 7008 
90% 29.443 bad* 17344 

* Positive and negative frequency excursions are unequal 

in magnitude. 

EXPERIMENT 8 

CNR = 40 dB, finis =1 kHz (10% mistune) 

Modulation SNR of Quality of Highest noise 
depth detected detected click rad/sec 

envelope binary 
dB 

10% 16.564 good 722 
20% 22.663 good 749 
30% 26.327 good 769 
40% 29.037 good 873 
50% 31.267 good 1052 
60% 33.246 good 1356 
70% 35.125 good 1811 
80% 37.050 good 2768 
90% 39.285 good 7198 
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EXPERIMENT 9 

CNR = 50 dB, finis = 1_kHz (10% mistune) 

Modulation SNR of Quality of Highest noise 
depth detected detected click rad/sec 

envelope binary 
dB 

10% 25.264 good 236 
20% 31.364 good 264 
30% 35.028 good 288 
40% 37.737 good 332 
50% 39.968 good 448 
60% 41.947 good 626 
70% 43.825 good 908 
80% 45.750 good 1601 
90% 47.985 good 4622 

These experiments reveal that the quality of the de- 

tected envelope and data signals of ZSFM in a Gaussian 

noise condition appears acceptable even with 10% mistune 

of the IF transformer. It is possible to notice by com- 

paring these experiments with those of Section 5.5 that 

the degradation in the SNR of detected envelope is not 

more that 1 dB for 10% mistune. The detected binary data 

signal is also acceptable and it should be noted that the 

positive and negative frequency deviations from the 

carrier are not always equal in magnitude. This effect 

occurs because of the asymmetry of the IF stage character- 

istics in a mistune condition. It is more likely to 

happen with small CNR values and high modulation depth in 

which case the detection of the data signal becomes un- 

reliable due to low CNR as discussed in Section 3.9. 

It can therefore be concluded that the problem of IF 

cross-talk due to a practical IF transformer does not 
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appear to significantly affect performance, even in the 

condition of mistune. The distortion introduced to 

the detected envelope signal is negligible and should 

be imperceptible. There will be some distortion intro- 

duced to the detected data signal due to the a. m. /p. m. 

conversion in the case of mistune. 

5.7 Envelope Distortion Measurement 

This section discusses a quantitative approach to 

determine the distortion in the detected envelope signal 

of ZSFM due to a non-ideal IF stage which may produce 

some perceptible cross-talk. The signal-to-distortion 

(S/D) ratio can be calculated from the spectrum of the 

detected envelope signal which will contain the envelope 

components and distortion components. When calculating 

the signal-to-distortion ratio, no noise is added to the 

signal in the channel as the aim is to evaluate the 

deterioration of the envelope due to the IF stage. 

The signal power (S) and the distortion power (D) 

can be calculated from the spectral components of the 

detected envelope signal, with some modifications to 

account for d. c. de-coupling and low-pass filtering as 

shown below. Consider the spectrum of the detected 

envelope signal (single-tone) shown in Figure 5.25 
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Only positive frequency components will be considered 

because of spectral symmetry. Assuming that the spec- 

tral component a16 lies just below 5 kHz, then the com- 

ponents a17, a18, ... are neglected since these will not 

normally be perceptible due to low-pass filtering effect 

at the receiver. The d. c. spectral component a0 is 

not considered in the calculation as the carrier term is 

removed after detection. If x(t) is the detected enve- 

lope and a,, a2, ... a16 are in volts, then the related 

power xz(t) is: 
22 2- 

la, I la I la 1 
x2 (t) =+2+... + 26 2_ 

(signal + distortion) power 

=S+D (5.17) 

Assuming that a5 represents the signal tone then the sig- 

nal power is given by: 
2 

I a51 
S=2 

-3KnZ -1. DO KriZ 
1.56 kHz 5 kHz 
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Therefore the distortion power is given by: 

2 1a51 
D= x2(t) -S= x2 (t) -2 

2 

. '. 
S/D = 

(a5 1 /2 

x2(t) - ja51 /2 

Experiment 10 

(5.18) 

This experiment measures the S/D ratio of the de- 

tected envelope signal of ZSFM for different modulation 

depths. The ZSFM signal used is the same as in Section 

5.6, with a cluster of six zero pairs at the centre con- 

jugated according to the code (101100). The same IF 

stage is used with 5 kHz 3-db bandwidth. Figure 5.26 

shows the calculated S/D ratio where the envelope signal 

is low-pass filtered to 5 kHz. It is apparent that the 

S/D ratio is more than 40 dB even for a very small modu- 

lation depth (10%). This implies that the distortion is 

unlikely to be perceptible in the envelope signal. 

Experiment 11 

Experiment 10 was repeated but with a1 kHz mistune 

(i. e. 10% mistune). Figure 5.26 shows the S/D ratio 

which has fallen by almost 10 dB below the S/D ratio 

without mistune. 

Experiment 12, 

In this experiment the modulation depth is kept con- 

stant at 50%, while the mistune frequency of the IF 
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stage is varied from 0 to 2 kHz. The same ZSFM signal 

and IF stage are used as in the last two experiments. 

The degradation of the S/D ratio of the detected enve- 

lope signal is calculated against different mistune 

frequencies. Figure 5.27 shows the result, and the 

degradation is apparently worst (20 dB) for 2 kHz mis- 

tune (20% mistune). The envelope signal deteriorates 

significantly for mistune frequencies larger than 1 kHz. 

It can therefore be inferred that the distortion intro- 

duced due to the IF non-linearities does not degrade 

ZSFM performance significantly. The problem of cross- 

talk being perceptible in the main programme has been 

found to be negligible. However, if crystal filters 

with linear-phase can be used in the IF stage then this 

will even improve the performance of Z. SFM. Crystal 

filters will complicate receiver circuitry and increase 

costs. 

5.8 Multipath Fading 

For the l. f. transmission the propagation mechanism 

is surface-wave giving stable transmission for distances 

up to 1500 km. For the medium wave (m. f. ) band the 

propagation mechanism is surface-wave for short distances 

and sky-wave over longer distances which is subject to 

fading ( 32 ). The surface-wave is the direct wave pro- 

duced by energy propagating close to the ground and guided 

by it to follow the same curvature as the earth. The 

sky-wave is the indirect signal produced by waves 
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propagating upwards being bent by an electrically 

charged layer in the upper atmosphere (ionosphere) and 

reflected back towards the earth. During the day time, 

l, f. and m. f. sky-waves are absorbed by the ionosphere 

and are therefore unable to propagate further. During 

the night, however, the D layer of the ionosphere, which 

absorbs the sky-waves during the day, decays and waves are 

reflected from the higher E and F layers (33 ). Inter- 

ference fading results from this diurnal fluctuation in 

the ionosphere causing the received signal to be the sum 

of a number of components with different path lengths. 

It is therefore important to consider the effect of sky- 

wave fading on the performance of ZSFM, since it has 

potential application to the m. f. band broadcast services. 

At night the strength of the reflected sky-wave from the ion- 

osphere may be sufficient to cause a noticeable deterio- 

ration of the quality of detected ZSFM signals. 

In order to simulate a two-path fading condition of 

ZSFM, a direct ZSFM signal must be added to the reflected 

delayed version multiplied by a constant smaller than one. 

If r(t) is the received signal, and c(t) is the ZSFM 

complex signal then: 

r (t) =c (t) +kc (t - (5.19) 

where k<1, and T is the time difference between the two 

paths. Substituting for 

jw t 

r (t) = s(t)e0(t)e0 

= ej 
wot 

{s (t) eý 
8 

c(t) in eqn. (5.19) gives: 

+ ks (t - T) ej 
e (t-T) 

e 
jW 

o 
(t--[) 

(t) 
+k e0 s (t-T) e76 

(t-r) } 

where s(t) is the envelope, g(t)i. s the phase modulation, and 

.. .-+ ho narri Pr frr-rnii nn-,. - NTArt1 Ant i nrr *hc i-ranc1 a f-i nn 
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-jw 0T r` (. t) =s (t) ehe 
(tý 

+kes (t - T) eý6 
(t-T) 

Letting z(t) = s(t)eJe(t) , the above becomes: 

r' (t) =z (t) +ke jwoT Z (t --) 

Taking Fourier transform of r'(t) gives: 

-iw T 

R' (f) =Z (f) +ke0Z (f) e-ý2nfT 

-j2, r (f +f 
0)T = Z(f) {1 +ke} 

=Z (f) X(f) (5.20) 

where X(f) is the channel transfer function with two-path 

fading. The magnitude response of this fading channel 

is: 

IX(f) I_ 11 +ke 
-j27 (f+fo) T 

= 11 +k2+2k cos 271 (f+f T (5.21) 

The first trough of IX(f)l occurs at: 

2Tr (f+fo) T= it 

. '. f= 2T1-fo 

The worst fading occurs when k=1, in which case the 

trough attains zero as shown in Figure 5.28. 

By considering X(f) as a function of T, it is pos- 

sible to show that R'(f) will be minimum at the trough 

of X(f). The carrier will be minimum when 

135 If f1 MHz then this T= 2fo , 2fo ' 2f 
0 

.... o 

first occurs at T=0.5 4 sec and repeats at 1µ sec 

intervals. The distortion introduced will depend on 
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where the carrier frequency of the signal falls, and 

the worst distortion occurs when k=1 and the carrier 

falls on the channel trough. Assuming that the carrier 

lies at equidistance from any two successive troughs, 

then for a 10 kHz broadcast channel the lowest fade 

occurs if: 

10 kHz 

. '. 0.1 ursec 

However, in practice the path time difference (T) might 

be greater than 0.1 msec. It is reasonable to assume that 

the maximum path difference between the direct and re- 

flected waves is around 100 km for a single-hop propa- 

gation. This implies a time difference (T) of 0.3 

msecond. 

Experiment 13 

In this experiment the signal-to-distortion ratio 

of the detected envelope signal of ZSFM during a two- 

path fading condition is measured. The baseband 

version of the received signal in a two-path fade is as 

given above : 

r' (t) =s (t) ehe 
(t) 

+ke 
Jw°T 

s (t-T) ej6 
(t--u) 

,k<1 

It is apparent that the worst case occurs when k=1 and 

Wo-c = n, 3u, 51T, ..., where the carrier term is cancelled 

as explained above. For DSB-AM signals, it has been 

mound that satisfactory sound reception in a multipath 
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fade is not possible where k>0.5 (8). 

The ZSFM considered is the same as in Section 5.6, 

where the data signal is alternate positive and nega- 

tive conjugation applied to 6 zero pairs, giving a data 
6 

rate of 40960 x 10-6 = 146.5 bit/sec. The same 

practical IF stage with 5 kHz 3-dB bandwidth is used. 

The modulation depth is maintained at 50%, while a 
w 

carrier frequency of 2-° =1 MHz was chosen to represent 

a possible medium-wave radio frequency. This implies 

that the distorting effect of the sky-wave on the 

envelope will be maximised due to partial carrier can- 

cellation when T=0.5,0.15,0.25, ... sec as discussed 

before in this section. The path time difference (T) 

is varied between 0.5 sec and 0.3 msec in steps of 0.5 

µsec, while the S/D ratio is measured for k values of 

0.3 and 0.5 respectively. Since partial carrier 

cancellation occurs when T= 2f 2f 2f 
000 

the p. m. /a. m. conversion will fluctuate at this rate 

with increasing delay. Figure 5.29(a) shows the 

variation of the S/D for k=0.3, and the curve has been 

expanded over the range of 0}0.075 msec to show the 

behaviour of the S/D fluctuations, where there are 10 

minima points every 10 µsec. Figure 5.29(b) shows the 

result for k=0.3 and over the whole range of T con- 

sidered, where the two curves describe the upper and 

lower limits of this fluctuation. It is apparent that 

the detected envelope quality deteriorates significantly 
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for path time differences greater than 0.15 msec. 

Figure 5.29(c) illustrates the result for k=0.5 and 

it has the same fluctuations between upper and lower 

curves as shown in Figure 5.29(a). The deterioration 

is worse than it was for k=0.3, and the results 

suggest that p. m. /a. m. conversion will be problematical 

even for relatively smaller values of delay. Figure 

5.29(d) shows the S/D fluctuation for k=0.5, whereas 

all the 64 zero pairs of the ZSFM signal have been con- 

jugated randomly with equal numbers of "ones" and "zeros" 

giving a data rate of 
64 

6= 1562.5 bit/sec. 
40960 x 10 

It can be noticed by comparing Figures 5.29(c) and 5.29 

(d) that increasing the data rate does not appear to 

significantly increase the p. m. /a. m. conversion. For 

very small values of delay the performance has worsened 

by about 3 dB. 

The fading channel causes a considerable p. m. /a. m. 

conversion on reception, especially for a severe fade 

that lasts for sufficient periods of time to make the 

data signal audible in the main programme. 

Figure 5.30 shows the detected envelope signal for 
W 

50% modulation depth, 20 =1 MHz, k=0.5, and T=0.2 

msec. The cross-talk introduced because of fading is 

apparently of considerable degrading effect. The con- 

dition of k=0.5 gives a fading depth of 10 dB which 

corresponds to the nominal, maximum acceptable value (8). 



GO, 0 

S/D 50.0 DB 

40.0 

30. 

20.0 

10.0 

60.0 

S/D 50.0 DB 

40.0 

30.0 

20.0 

10- 0 

0.0 

0.0 

2.000 2.050 0-1 00 0.190 0.200 0.250 0.300 

PATH TIME DIFF. (MILLI SEL) 

Fig. 5.29(c) Signal/distortion variation for 
k=0.5,50% modulation depth. 

K=0. S 

0.000 0.650 0.1 00 0. ISO 0.200 0.25e 0.300 

PATH TIME DIFF. (MILLI SEC) 

Fig. 5.29(d) Signal/distortion variation for 
k=0.5,50% modulation depth. 

182 



183 

However, smaller values of k (due to different path 

losses) might give a tolerable degrading effect. 

Figure 5.31 shows the detected binary code (101010) for 

the same conditions; apparently the data signal is not 

so badly affected by fading as the envelope signal. 

The p. m. /a. m. conversion caused by multipath 

propagation conditions is, therefore, expected to be 

a major limiting factor. However, in a severe fading 

condition the envelope signal will be impaired signi- 

ficantly even without the interference imposed by the 

data signal. 

An experimental ZSFM system will be needed to 

assess basic performance under realistic operating 

conditions. 
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5.9 Complex Filter Implementation 

This section is devoted to a discussion of the 

implementation of complex filters on-the computer. 

Two possible realisations of the complex filter are 

considered; the first as a cascade of differentiators 

in time domain and the second by FFT in the frequency 

domain. It has been explained (Section 4.5. b) that a 

complex filter can be realised by cascaded differentiators, 

weighting resistors and a summer. 

Considering the simple real signal: 

s (t) =1+ a2 t2 (5.22) 

whose complex zeros are given by X=± jý, i. e. Qr a, 

then the required complex filter for this signal is as 

shown by Figure 4.17. The filter is comprised of two 

differentiators, multiplying weights, and a summer. This 

filter is simulated on the computer, and each differen- 

tiator is implemented as a first order non-recursive 

filter. The first order non-recursive filter approxi- 

mates differentiation using the forward-difference 

formula: 

s, (k) =s 
(k + 1) -s (k) 

TD 
(5.23) 

where s (k) is the time sample of s (t) , and TD is the 

sampling period. 

Figure 5.32 shows the real signal s(t) as defined 

by eqn. (5.22), and also shows the envelope of the 

filtered signal Is(t - jar) I. It is apparent that the 
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complex zero of s(t) has been converted into an easily 

detected real zero at the same instant of time. 

Another possible way of realising the complex 

filter is by processing the signal in the frequency 

domain. The real signal s(t) i. s processed by the com- 

puter in blocks by an FFT subroutine that gives the 

frequency domain samples of the signal. These fre- 

quency samples are digitally weighted by the respective 

filter frequency responses (i.. e. by. values of Ha (f) 
2lrfcr r 

e r). The resulting product corresponds to the 

frequency samples of the complex filtered signal. 

Using the FFT subroutine in. the inverse direction produces 

the time samples of the filtered signal. The envelope of 

this filtered signal is observed, and any detected real 

zero of this envelope signifies a complex zero detection. 

This has been simulated on the computer with two real 

positive signals for complex zero detection. 

The first signal is the familiar single-tone 

defined as: 

s(t) =1+a. 2 -2a cosct (5.24) 

A block of 10 cycles at 
22 

=1 kHz is generated, and then 

it is processed in the computer as above. The imaginary 

value of the complex zeros of s(t) can be theoretically 

obtained as: 

6=+ 
lna 

, as discussed previously (Section 3.4). 
r0 
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The complex filter response is bandlimited to 

±f=±3 kHz (Section 4.4) 
c 

Figure 5.33 shows 10 cycles of the real signal s(t) 

for a=0.3, and also it shows the envelope of the 

filtered signal Is(t - jar). It is apparent that the 

complex zeros of s(t) that lie at the troughs have been 

changed into real zeros of Is(t - )I at the same 

instants of time. The condition of filter imperfection 

was also simulated, where each complex filter in the bank 

(see Figure 3.15) corresponds to a small range of 6r 

values. This can be simulated by generating the fol- 

lowing response: 

2irf (Qr + AQr 
H6 (f)=e (5.25) 

r 

where to is the error in a value. rr 

Figure 5.34 shows the envelope of the detected sig- 

nals as in Figure 5.33, but the errors in Qr value are 

2µ sec, 10 µ sec respectively. It can be observed that 

for 2µ sec error the real zeros are approximately the 

same as the perfect case (lar = 0). For Aar = 10 µ sec 

the envelope of the filtered signal has a trough value 

slightly larger than zero. 

The second signal considered for complex zero de- 

tection is a positive pseudo-random real signal with 

Gaussian distribution. This random signal is band- 

limited by multiplying its spectrum with that of a low- 

pass filter having cut-off frequency at ±3 kHz, and then 

the zeros of the bandlimited random signal are found 
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using its Fourier coefficients. 

cussed in detail in Section 6.3. 

This approach is dis- 

Complex filtering is 

then accomplished in the same way as the last single-tone 

signal, i. e. by multiplying the frequency samples of the 

bandlimited random signal by the respective filter fre- 

quency responses using different Qr values that correspond 

to the complex zeros of the random signal. Investigation 

of the envelope of time samples of the filtered signal 

gives the detected real zeros that correspond to complex 

zeros of the random signal. 

Figure 5.35(a) shows the bandlimited positive real 

random signal that has a mean value of 5 and standard 

deviation value of 8. Figure 5.35(b) shows the envelope 

of the filtered signal, and the real zero at tr = 9148 

4 sec corresponds to a complex zero with Qr = 151.9 4 

sec and tr = 9148 µ sec. It is apparent from the figure 

that there is another real zero at tr = 2990 µ sec, and 

this corresponds to a complex zero with Qr = 153 µ sec 

and tr = 2990 µ sec. These two complex zeros detected 

by the same filter are separated by A0r = 1.1 4 sec. 

Figure 5.35(c) shows a real zero corresponding to a com- 

plex zero with Qr = 351.1 µ sec and tr = 7895 µ sec. 

Figure 5.35(d) shows another complex zero detected at 

tr = 2397 p sec and the complex zero lies at Qr = 427.1 

4 sec and tr = 2397 4 sec. Figure 5.35(e) shows another 

real zero corresponding to a complex zero at ar = 138.8 

µ sec and tr = 9871 4 sec. Figure 5.35(f) shows two 

real zeros corresponding to two complex zeros at 
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Qr = 182.7 µ sec, 182.8 µ sec and tr = 1789 µ sec, 

3717 4 sec respectively. Figure 5.35(g) shows a real 

zero at tr = 7211 4 sec that corresponds to a complex 

zero with Qr = 89.27 µ sec and tr = 7211 µ sec. 

It can be noticed from the figure also that there 

is a trough very close to zero at tr = 381 4 sec, and 

this corresponds to a complex zero at ar = 92.24 µ sec 

and tr = 381 u sec. These two complex zeros are sepa- 

rated by Aur = 3.13 µ sec. It is considered therefore, 

that the different complex filters in the bank (see 

Figure 3.15) can be designed so that for any two suc- 

cessive filters Aur =24 sec. The logic circuit at 

the bank output can decide whether the envelope trough 

is closer to zero for the filter with r or for the 
1 

filter with Qr , where ar ar = Aar. The number of 
221 

filters required in the bank can be decreased if Aar 

is made larger or also if the range of ar values of 

interest is made smaller. A possible number of complex 

filters is considered in Section 6.5. 

5.10 Effects of Truncating the FM Function 

The FM function, imposed in order to achieve com- 

plex zero conjugation, has to be truncated within a 

finite time interval of length P seconds (see Section 

3.8). This section investigates the effects of this 

truncation on the performance of ZSFM, and it also 

describes how this situation can be simulated. 
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Consider a block of a signal x(t) representing 

a DSB-AM signal with only one complex zero pair con- 

jugated at the middle, where the FM function is applied 

through a window of width P seconds only. The signal 

x(t) is assumed to be bandlimited. Figure 5.36 

illustrates such a modulated' signal having 5 zero pairs, 

and the carrier frequency has been made unrealistically 

low in order to distinguish individual carrier cycles. 

The FM function has been impressed so that the complex 

zero pair. at t=0 is conjugated in the positive sense. 

The resulting increase in the instantaneous frequency and 

carrier phase inversion is evident in the vicinity of t=0. 

x1 (t) is the conjugated part of x(t) that lies through 

the window P seconds long. 

The signal outside the P seconds window can be 

expressed as: 

x (t) [1 - rect (P) j 

1, 
where rect (p 

I tI < P/2 

0, otherwise 

as shown in Figure 5.37. 
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[1-rect(t/P)] 

t 

0 

Fig. 5.37 

The conjugated signal can be written in the form: 

y (t) =x (t) [ 1-rect (P) ]+ x1 (t) rect (p) 

=x (t) + rect (P) [x1 (t) -x (t) 1 (5.26) 

The signal inside the P seconds window, x1 (t), can be 

written in the form given by eqn. (5.3): 

xý (t) = x(t) ej6 
(t) 

j2tan-1 (t/ar) 
=x (t) e 

11 +j t/ßr 
=x (t) 

1- t/Qr 

Q+ jt 
(5.27) = x(t) 6r - it 

r 

Substituting for x1(t) in eqn. (5.26) gives: 

+ jt 

y (t) =x (t) + rect (P) [x (t) 
Qr - jt - x(t)1 

r 

ßi 
-1] x(t) + rect (p) x(t) [6r+ it 

r 

= x(t) + rect(P) x(t) 
Q 

j_2tt 

r 

_x (t) + rect (P) q (t) (5.28) 
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where q (t) =x (t) Q [_j2t]t = x1 (t) -X (t) 
r 

q(t) is bandlimited as both x1 (t) and x(t) are theoreti- 

cally bandlimited signals. The signal x1 (t) is band- 

limited as it is derived from a bandlimited signal (x(t)) 

by conjugating only one zero pair, and the process of 

zero conjugation does not increase the bandwidth 

(Section 3 . 8) 
. 

If Y (f) ,X (f) , and Q (f) are the Fourier transforms 

of y (t) ,x (t) , and q (t) respectively, then taking the 

Fourier transform of eqn. (5.28) gives: 

Y(f) = X(f) +P sinc (Pf) * Q(f) (5.29). 

where * denotes convolution and 

P sinc(Pf) =p 
sin(TrPf) 

TrPf 

The sinc function has zero crossings at 

fPk=1,2,3, 
... 

The spectrum of y(t) is non-bandlimited, and the out-of- 

band components are due to the convolution of the sinc 

with Q(f). The bigger P is, the smaller the out-of-band 

components are. In the limit when P becomes infinitely 

large, the spectrum of y(t) will be bandlimited as the 

sinc function will become a dirac-delta giving the same 

bandlimited spectrum when convolved with Q(f). 

Therefore the ZSFM signal is not strictly bandlimited 

when the FM function is truncated in practice. This 

effect can be studied through imposing the truncation 

effect on the PM function 6(t). Consider the truncated 
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version of the FM function given as: 

2a 
8' (t) _ +rt 

r 
rect (P) (5.30) 

where rect (P) _ 

1, Itl P/2 

0, otherwise 

Figure 5.38 shows this truncated FM function. 

0 '(t) 

t 

Fig. 5.38 

The PM function can be obtained analytically by inte- 

grating 6'(t): 

For t<- P/2 ,0 (t) =0 

For - P/2 <t< P/2 

t 

8 (t) = 
2crr 

dT =[2 tan-1 (T) ]t 

- 
P/ 

CT r 'r 6r 
-P/2 

=2 tan-1 (ý )+2 tan-1 
Q 

(5.31) 
rr 

r <- 



202 

at t=- P/2 
,0 (t) =0 

at t=0, O (t) =2 tan-' (p/2crr) 

at t=+ P/2 
,O (t) =4 tan-1 (P/2Q 

r 

If Ia I=I Ina I, 
27T = 1.5625 kHz ,a=0.3, 

then 
r 

IßrI = 1.23 x 10-4 sec, and the following table shows 

the range of 6(t) for different P values: 

P (µ sec) P/ar 6 (t) range 

800 6.5 0 - 291.6° 
1 600 13 0 325 ° 
3200 26 0 -- 342.4° 
6400 52 0 } 351.2° 

12800 104 0 ± 355.6° 
25600 208 0 357.8 ° 
51200 416 0 ý 358.9° 

The results show that as the width (P) of the window 

increases, then 6(t) varies through ranges approaching 

2Tr radians. 

In the computer simulation, a block of 64 cycles 

of: 

s (t) =1+ a2 -2a coscit 

is generated, and only two complex zero pairs at the 

middle (27th and 37th pairs) are conjugated using the 

truncated FM function: 

2Q t-t 2a t-t 
e' (t) = Qr + 

(t-tr) rect ( 
pr) 7r-T+ 

fit- 
s>Zrect 

(F) 

(5.32 

This truncated FM function represents the binary code 
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code (10), and is shown in Figure 5.39. 

s 

eßt) 

t 

Fig. 5.39 

The corresponding truncated PM function can be obtained 

by integration. 

For t< tr - 
P2 

,e (t) =0 

t-t 
For tr- 2<t< tr +2,6 (t) =2 tan 

1(Q r) +2 tan1 2a 
rr 

For tr+2 <t<ts-2 , A(t) =4 tan-2Q 
r 

For is -2<t< is +f ,e (t) is obtained by 

integrating over the negative area and adding the result 

to the previous 6(t) value, i. e. 

6 (t) =4 tan-1 

t 

(P)+ 2Qr 
J 

ts- P/2 

-2a r dT 
ar2+ (T 

-ts)2 

T-tt 

=4 tan-1 2Q - [2 tan-1 (Q S)] 
P/ 

rt2 s 

- 
=2 tan-1 (2Q )-2 tan-1 (tQts 

rr 
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At t=t-2j, O (t) =4 tan-ý 2Q S r 

At t= is +p, 0 (t) =o 

The following table summarises the analytical expressions 

of 0(t) for the respective intervals. 

Interval 6(t) 

t< t - P/2 0 
r 

t-t 
-1 r -1 t- P/2 <t<t+ P/2 2 tan ( )-2 tari ( 

Q 
) 

r r a 2 
_ r r 

t+ P/2 <t<t- P/2 4 tan-1 (2Q ) 
r s 

r t-t 

t - P/2 <t< is + P/2: 2 tan-1 ( 
a s 2 tan-1( 

S 2 6 
rr 

t> t+ ßj2. - 0 
S 

Figure 5.40 shows the truncated phase function for the 

binary code (1 0) . 

0(t) 

r 

t 

Fig. 5.40 
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It is apparent that the width of window (P) is not to 

exceed the upper value of: 

P< (ts - tr) 

i. e. the time slot between two successive conjugated zero 

pairs. If P exceeds this value, then a discontinuity 

(jump) will occur in e(t) corresponding to an infinite 

0'(t) at the corresponding instant of time. The shorter 

P is, the data rate of ZSFM is more as more zero pairs 

can be conjugated within a finite time slot. 

Experiment 14 

The above situation was studied through computer 

simulation, with two zero pairs conjugated according to 

the binary code (10) using the truncated PM function as 

given analytically in the previous Table. The value 

of (ts - tr) is 6400 u sec, and therefore the window 

width cannot exceed this value. P is varied to find 

the truncation effect on the bandwidth of the ZSFM 

signal, while the modulation depth is kept constant. 

The experiment calculates the suppression (in dB) 

of the biggest out-of-band component compared to the 

single-tone component at 
2ý 

= 1.56 kHz. It is known 

from a previous result (Section 3.8) that the FM function 

6'(t) is symmetrical about t= tr and falls asymptotically 

to zero with t2. However, when 8'(t) is truncated 

within P seconds interval, the approximation error 

introduced because of truncation is larger for high ar 
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values than for small a values. r 
Thus it is beneficial 

to evaluate the ZSFM performance for the worst extreme 

case, i. e. for high ar values. Choosing a modulation 

depth of m= 30% gives ar value of approximately 194 µ 

sec (ar =± 
lna) 

and this might represent an extreme 

or value suitable for conjugation (see Section 5.4 and 

Chapter 6). 

Figure 5.41 shows the suppression against the 

window width for modulation depths of 30% and 70%. For 

70% modulation the value of ar is 91 4 sec and as ex- 

pected the truncation effect is smaller than for the 30% 

modulation case. It must be mentioned that the out-of- 

band components decrease significantly and quickly in 

magnitude as the difference in frequency from the single- 

tone at 
2ý increases. The suppression obtained for 70% 

modulation is improved by 6-7 dB over the case for 30% 

modulation for the same P value. The case when P= 640 

4 sec allows all the complex zero pairs of the signal to 

be conjugated as it is the time slot between any two 

successive zero pairs. On the other hand for this P 

value the out-of-band components might not be tolerable. 

If the window width is made equal to 1280 4 sec, then for 

the worst case the suppression is more than 17 dB, but 

this means that the data rate will be halved, and for a 

10 kHz channel the rate is 2.5 k bit/sec rather than 

5k bit/sec. 

It is considered that if more than one conjugating 

function generator is used, then the truncation effect 
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will be less pronounced. For example, two conjugating 

function generators can be interlaced each one for 

different range of Qr values. In this case the gene- 

rator for high ar values can be given larger P to mini- 

mise the approximation error, while the other generator 

for small ßr values functions through shorter P. 

Figure 5.42 shows the ZSFM signal spectrum for 70% 

modulation and 4000 4 sec window width. 

Experiment 15 

In this experiment the effect of truncated FM 

function 0'(t) on the detected envelope signal of ZSFM 

is studied. The same ZSFM signal as in the last experi- 

men is used. In the receiver the same practical IF 

stage with phase non-linearity is used. The modulation 

depth is kept at 50%, while the window width is varied. 

The signal-to-distortion ratio of the detected envelope 

signal is calculated in the same way given in Section 

5.7. The Qr value corresponding to 50% modulation is 

ar = 1.34 x 10-4 sec (ar =± 
lna). 

Figure 5.43 shows 

the calculated S/D ratio against different values of 
r 

where Qr is kept unchanged. The window width is changed 

between (100-6400) 4 sec. It is apparent that the de- 

tected envelope quality is nearly independent of the 

window width for P> 800 u sec. Even for P< 640 p. sec 

the SID ratio is more than 45 dB. Figure 5.44 shows 

the detected envelope and data (10) signals for 50% 

modulation and window width of 640 4 sec. It can be 
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concluded that the detected, signals of Z. SFM are not 

impaired by the FM function truncation. 

Experiment 16 

In this experiment, the out-of-band components 

power relative to the average ZSFM signal power is cal- 

culated. This gives a better estimate of the signi. fi. - 

cance of oat-of -band components due to the truncation effect. 

Figure 5.45 shows the result of 50% modulation 

depth and (P ) ratios of 3 and 25. It is apparent that 

even for the case of 
Q=3 the highest out-of -hand 

r 
component is about 25 dB below the signal average power, 

knowing that zero frequency corresponds to the band edge 

(2ý). It is, therefore, thought that the bandlimitation 

of ZSFM is not affected considerably due to truncation. 

The data rate of ZSFM will depend on the window width P 

and is equal to 
p. 

Hence if P is taken as equal to 

3a the data rate is 3Q and for the extreme case 
r r 

r= 
200 u sec) the data rate i. s approximately 1.667 

k bit/sec. Using interlaced conjugating function 

generators will increase the data rate, but at the ex- 

pense of hardware costs. 

5.11 A Demonstration of Data Demodulation 

The object of this section is to provide a practical 

demonstration of data detection in ZSFM using a phase- 

locked loop (PLL). A general ZSFM signal is expressed 

as: 
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X (t) =S (t) cos (wot +o (t) ) (5.33) 

where wo is the carrier frequency and e(t) is the phase 

information that conveys the binary data signal. A 

phase-locked loop should give an output voltage linearly 

related to the instantaneous frequency 0'(t) of ZSFM. 

A phase step produces a large frequency spike (click) 

when applied to a PLL, and it is this instantaneous 

frequency click that should be detected in ZSFM. The 

polarity of this instantaneous frequency click determines 

whether a "one" or a "zero" has been transmitted. 

To investigate experimentally the response of a 

phase-locked loop to ZSFM signals, two sine waves of 

different frequencies were added. 

m(t) =1+a ejQt 

im(t) 
jem(t) 

_e 

where 0 
m 

(t) = arc tan (1 a 
alcosct 

Consider the signal: 

then two added sine wave can be represented as: 

Re [ (1 +a ejct) e3wotý = coswot +a cos (wo + St) t 

where Re denotes real part. 

The sum of these two sinusoids should, therefore, 

give 0'm (t) when applied to a PLL. A simple circuit 

incorporating an adder and a PLL has been built for this 

purpose. Figure 5.46 shows the added signal and the 

output of the PLL for a=0.5,0 =4 it k rad/sec, and 

w= 80 it k rad/sec. It can be seen that the spikes 
0 

corresponding to maximum values of e'"m(t) occur at the 



Data detection by a phase-locked loop 
for a=0.5, c= 47T k rad/sec, and 
w0= 807 k rad/sec. 

Fig. 5.46 
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envelope troughs of the signal. This demonstrates that 

the phase-locked loop can be used to detect the data 

signal of ZSFM. However, other frequency discriminators 

should also be suitable for this purpose. 

5.12 Final Remarks 

A number of different aspects of the performance 

of ZSFM has been studied under different circumstances. 

It was shown that ZSFM preserves the bandwidth and does 

not distort the envelope of DSB-AM signal, when super- 

imposing data. It has been verified by computer 

simulation that cross-talk between the two channels 

might be problematical only under conditions of severe 

multipath fading. However, the envelope distortion 

of conventional DSB-AM will also be significant under 

the same conditions. 

Computer simulation of complex filtering has 

demonstrated the efficiency of a novel technique for 

detecting complex zeros of real signals. 

The effect of truncating the FM function required 

for zero conjugation is expected to reduce the maximum 

theoretical data rate of ZSFM (5 k bits/sec for 10 k Hz 

channel). Data rates of 1.67 k bits/sec may be 

feasible, which compares favourably with BBC radio-data 

at 25 bits/sec (7). 

N. B. Assuming the out-of-band radiation levels 

of 20 dB are acceptable in practice. 
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CHAPTER 6 

COMPLEX ZEROS OF POSITIVE 

BANDLIMITED SIGNALS 

6.1 Introduction 

The expression of bandlimited signals in terms 

of their real and complex zeros (Chapters 2 and 3) leads 

us to regard these zeros as informational bearing 

attributes. 

This chapter presents theoretical and experimental 

studies of the distribution of the complex zeros of 

positive bandlimited signals. As complex zero con- 

jugation is the basis of data superposition in ZSFM, a 

knowledge of the zero distribution is required for a 

determination of realistic data rates. The complex 

zero distribution of entire signals is discussed 

revealing the zero distribution characteristic of any 

bandlimited signal. An experimental study is carried 

out to estimate the probability - density function 

(p. d. f. ) of the complex zero distribution of a positive 

bandlimited random signal with Gaussian distribution. 

The achievable bit-rate of ZSFM is then discussed, as 

it partly depends on the number of complex zeros avail- 

able in a given range of Qr. 

6.2 Entire Functions 

A description of the complex zero distribution of 

entire functions, that are generalisation of bandlimited 
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signals , is presented in this section. 

Any bandlimi. ted signal is an entire function (EF), 

as it is analytic in the finite x-plane (see Section 2.3). 

Entire functions should be continuous and differentiable 

any number of times in the finite x-plane (11 ). An 

entire function is a generalisation of polynomials of 

infinite degree, and hence usually an EF has an infinite 

number of aperiodic zeros in the complex x-plane 

(x =t+j cr) . The Taylor series of an EF is (18 ): 

co 
f (x) =Eaxn (6 .1) 

n=o ß 

which converges for all finite x. 

As a polynomial of degree n admits a product expansion in 

terms of its n roots, an EF can also be expressed in terms 

of its zeros. If the above EF is expressed as a product 

expansion of the x-plane zeros as Tr (1 -x), then the 
n 

infinite product may not converge. An entire function 

of finite order 6 can be expanded as (18 ): 

cc 
(x/xn + (x/xn)2 

+ ... + 
(x/xn)P) 

X 

f(x)= xmeQ(x)n=l 
(1 

x)e2P 
n 

a< 00 (6.2) 

where xn are the non-zero roots of f(x), P<p, Q(x) is 

a polynomial of degree q<p, and m is the number of zeros 

at the origin. If the complex x-plane can be divided into 

three sections as shown in Figure 6.1, 
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Jß 

r 

Fig. 6.1 

t 

and also if it can be assumed that the number of zeros 

with modulii less than r which lie in r*, r+, and r are 

n* (r), n+ (r), and n -(r) respectively, then an EF has zeros 

close to the real axis if its zeros satisfy: 

Z 1Im (-) 1 
n=1 n 

or lim n 
r(r) =0 (6.3) 

r->, - 

where Im denotes imaginary part. 

The above implies that there are not too many zeros in 

the region I' , i. e. with high a values. 

Define the density of zeros in the three sectionsas: 

}=1im n} (r) 
,d= lim n (r) 

, 0* = lim n* (r) 

r-*- r r-*-- r r-*- r 

An EF satisfying eqn. (6.3) and having A+ = A-, A=0 

is called a B-function. The complex zeros of a B- 

function are close to the real axis, i. e. they have 

small Qr values. 
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Any bandlimi_ted signal in the usual sense is a B- 

function, and trigonometric polynomials are a class of 

periodic B-function. For trigonometric polynomial 

the bandwidth is proportional to the number of zeros 

per period (zero count), while for B-function the band- 

width is proportional to the zero density as defined 

above. 

The zero distribution characteristic of a B-function 

simplifies the task of detecting complex zeros in ZSFM, 

as it implies that the majority of complex zeros are 

distributed within a finite range of ar values. This 

zero distribution is estimated experimentally by com- 

puter simulation in the following section. 

6.3 Factorisation of Fourier Coefficients 

It is explained in this section how the Fourier 

coefficient can be used to find the complex zeros of a 

real, positive, bandlimited random signal, in the com- 

puter simulation. This approach is used in a following 

section to determine zero distribution. 

The signal used in the computer simulation is a 

pseudo-random positive real signal with Gaussian dis- 

tribution. This random signal is bandlimited to ± fo 

Hz by an ideal filter in the frequency domain. The 

discrete Fourier transform (DFT) and the inverse DFT can 

be expressed (22) as: 
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k N- 
E1x (k) e 

-j2ýnN 
X (n) 

N k=0 

N-1 j2Trnk 
x(k) =E X(n) e (6.4) 

k=0 

where N is the number of samples. 

Now if x(t) represents a bandlimited (±fc =±3k Hz) 

random real signal, and if the number of samples is 

N= 1024, then a sampling interval of TD = 10 sec would 

imply that the time duration of the signal is: 

(N-1) TD = 1023 x 10 x 10-6 = 0.01023 sec = 10230 4 sec. 

The sampling frequency is FMAX = 2TD = 50 kHz, while 

the frequency increment between any two successive 

frequency samples is: 

FINC =2 FMAX/N = 97.66 Hz 

Taking the FFT of x(t) gives its frequency samples X(n), 

which are the Fourier coefficients of the signal x(t). 

These, generally complex, Fourier coefficients are used to 

find the complex zeros of x(t) by utilising a NAG 

Library subroutine(14 ) that calculates roots of a poly- 

nomial with complex coefficients. As a result of band- 

limitation, it is not required to use N= 1024 frequency 

samples of X(n). For ± fc _±3k Hz bandlimitation, it 

is necessary to consider only: 

2ýfc 
FMAX 

2(530 1024 
= 61 frequency samples 2 

This implies that the number of zeros is equal to 60. 
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It can be deduced that the dimensionality of the signal 

is also equal to the number of zeros as: 

dimensionality =2x time duration x bandwidth 

=2x 10230 x 10-6 x 3000 

= 60 = number of zeros 

The Fourier coefficients X(n) are ordered in the form: 

-30 23 0+... 
+ X(31)z0 + X(995)z + ... + 

X(1023)z- 2+ 
X(1024)z- 1 

where z= ej27 
FING t 

After locating the zeros in z as defined above, then the 

corresponding zeros in complex time are required. For 

(M+1) Fourier coefficients there are M zeros in z. If 

zm is the generally complex zero given by: 

j arg zm 
zm = IzmI e 

then the corresponding time domain zero is obtained by 

equating ej27T 
FING t to zm and solving for t, i. e. 

ej27T 
FING t= !zej 

arg zm 
(6.5) i rn 

Taking natural logarithm of the above yields: 

j2 Tr FINC t= In I zm j+j arg zm 

arg z 
In 

In Iz 
mi 

'"' t= 27r F INC -j -27T FINC 
(6.6) 

where FINC = 97.66 Hz = frequency resolution. 

Therefore ordinate values of complex zeros are given by: 

.. in . 
L_zm 

27T FINC 
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The above method was used in the simulation to determine 

the complex, zeros of a positive real bandlimited signal. 

Example 

Consider the output of the FFT whose frequency samples 

are given by the array X(1024). Assuming for 3 kHz band- 

width there are 30 non-zero samples for positive frequency, 

and 30 non-zero samples for negative frequency as shown 

in Figure 6.2. 

X(1) 
X(1024) 

Frequency samples of X(n) 

Fig. 6.2 

The polynomial in z can be written as: 

P(z) = X(1) +X(2)z + "". +X(31)z30 +X(995)z-30+ ... X(1024)z-1 

where z= e327T 
ERIC t 

Rewriting P (z) as: 

0 FMAX 2FMAX 
FING 
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P(z)=X(31)z30+... +X(2)z+X(1)+X(1024)z-1+... +X(995)z_30 

= z-30[X(31)z60+. . +X(2)z31+X(1)z30+X(1024)z29+... +X(995)1 

(6.8) 

The above represents a polynomial in z of degree M= 60, 

and with 61 coefficients. Solving for the roots gives 

60 zeros in z, and the corresponding time domain zeros are 

obtained via eqn. (6.6). Figure 6.3 shows the bandlimited 

version of a real positive pseudo-random signal with mean- 

value of 5 and standard deviation of 8. It is bandlimited 

to ±3 kHz and hence as discussed above is expected to have 

60 complex zeros, which lie in complex conjugate pairs as 

the signal is positive and real. Figure 6.4 shows the 

complex zeros of the bandlimited positive, real signal. 

It can be seen by comparing Figures 6.3 and 6.4 that most 

of the complex zeros occur in the vicinity of signal 

troughs. It is also clear that very few complex zeros 

have high ar values, and thus they are consistent with 

the B-function zero distribution characteristic explained 

in Section 6.2 

6.4 Distribution of Complex Zeros 

The theoretical background, necessary for determining 

the probability-density function (p. d. f. ) of the complex 

zero distribution of a positive real random signal, is 

presented in this section. In order to determine the 

p. d. f. of a random variable by an empirical method, 

consider a waveform x(t) available over a very large time 

interval as shown in Figure 6.5. 
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x (t) 

X+ 

0 

Fig. 6.5 

The amplitude of x(t) varies randomly, i. e. it can be con- 

sidered as a random variable x. The p. d. f., p(x), based 

upon the relative-frequency interpretation of probability 

( 34) is required. 

lim p(x) Ax = probability (x < x(t) <x+ Ax) 
Ax-}0 

According to the relative-frequency interpretation, the 

probability that x(t) assumes a value between x and x+ Ax 

.T 
is the ratio T, where Tx is the total amount of time 

that x(t) falls inside the range (x, x+ Ax) during the 

observation time T (T Thus: 

T 
tim p(x) = tim T (6.9) 
Ax+O T-}u 

T Eft 

, '. p(x) =l im 
T Ax 

lam 
T ýx 

1 (6.10) 
T-±- T±03 
Ax-}0 Ax-}0 
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Similarly in order to determine the p. d. f. of the complex 

zero distribution of a positive, real random signal by an 

empirical method, the same procedure can be followed. 

Consider the zero pattern shown in Figure 6.6. 

1a 

r 

t 

Fig. 6.6. 

The ordinate value a of a complex zero takes different 

values randomly, i. e. Q is a random variable. The prob- 

ability-density function, p(a), can be found by using the 

relative-frequency interpretation of probability, i. e. 

lim p(ar) 1Qr = probability (ar <a< ar + par) 
La }0 

r 

i. e. the probability that at any given instant of time t. 

the ordinate value of a complex zero falls in the range 

((j 
r, 

a+ Aa ). 
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According to relative-frequency interpretation, the 

probability that ß assumes a value between Qr and a +La 

is the ratio (n), where n is the total number of complex 

zeros having positive ordinate values during the obser- 

vation time T (T } co) , and v is the number of complex 

zeros with cr values in the range (a 
, cs + p6 

rrr 
Therefore we have: 

aim p (Qr) Aa "= lim n 
Au 

r -}0 n-+-w 

.. P (crr )=1 im 
n fl6r 

nom- 
Aß -}0 r 

It is clear that lim implies lim 
n}oo T}co 

(6.11) 

In practice n will be taken as a finite number, and also 

Aar will be taken as a positive small number different 

from zero. Thus an approximate p. d. f. should be 

expected. 

) nj v 
rn to 

r 
(6.12) 

The empirical method, outlined in this section, is used in 

the following section to estimate the p. d. f. of the com- 

plex zero distribution of a positive, real, bandlimited 

random signal. 

605 An Experimental Study of Complex-Zero Probability 

Distribution 

This section summarises the experimental procedure 

followed in obtaining the probability-density function 
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(p. d. f. ) of the complex zero distribution of a positive, 

real, bandlimited random signal. The study is confined 

to the experimental estimation of the p. d. f. of complex 

zero distribution using the empirical method explained 

in Section 6.4. 

For positive real signals the zeros occur as complex 

conjugate pairs. Because of the symmetry of the complex 

zero distribution around the real time axis (a = 0), the 

p. d. f. of complex zero distribution is expected to have 

an even symmetry about a=0, i. e. 

P (ß) =P (-Q) 

A positive, real, bandlimited random signal with Gaussian 

distribution is considered, whose complex zero's p. d. f. 

will be estimated experimentally. Different positive 

random signals having different modulation depths are 

considered. The range of Qr values considered is 0 -500 

µ sec, which is sufficient to cover all the possible com- 

plex zeros expected. If Aßr is chosen to be 54 sec, 

then the total ar range under consideration is divided 

into 100 narrow strips, each of Aur =54 sec width. 

To prevent repeated counting of complex zeros in two 

successive strips, the number of complex zeros falling in 

each strip will be considered such that: 

(k - 1) iar < cy <k Aa 

where k is the strip number. 

The random signal considered has 30 complex zero 

pairs on bandlimitation to ±3 kHz (see Section 6.3). 
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Therefore if the computer programme is run 100 times 

(varying the modulation depth of the positive random 

signal) the total number of complex zeros having positive 

ordinate value is: 

n= 30 x 100 = 3000 complex zeros 

. 
'. n Au = 3000 x5x 10-6 = 0.015 

Using the empirical formula of the p. d. f. given by eqn. 

(6.12) : 

V (6 
r) Iý ý6 

r 
V 

0.01.5 (6013) 

where v is the total number of complex zeros that lies 

within any strip of a during the 100 different runs. 

The approximate relation given in eqn. (6.13) becomes 

exact in the limit when an infinite number of complex zeros 

is considered in the measurement interval, and when 

AG } 0. 
r 

Finally, the histogram of the complex-zero p. d. f. 

corresponding to the positive real random signal can be 

obtained. 

Experiment 1 

In this experiment the p. d. f. of the complex zero 

distribution is measured for a positive, real bandlimited 

(± 3 kHz) random signal with Gaussian distribution. The 

computer programme was run 100 times using a mean value of 

6 while the standard deviation was varied between 0.7 and 



231 

10.5. This corresponds to varying the modulation depth 

of the random signal between 6% and 98%. The number of 

complex zeros corresponding to the 100 different strips 

of a is given in Table 6.1. 

a strips Number of complex zero s 

1-10 0 0 0 0 0 1 1 2 3 6 
11-20 6 6 7 8 12 12 18 30 37 39 
21-30 56 56 58 66 76 78 73 92 120 139 
31-40 140 123 118 100 100 91 102 96 86 90 

41-50 81 79 70 62 59 51 45 40 37 38 

51-60 31 27 23 24 18 12 12 10 8 7 

61-70 6 5 3 1 2 0 1 0 0 0 

71-80 47 21 11 6 5 3 3 1 2 1 

81-90 0 0 0 0 0 58 24 9 5 2 
91-100 2 0 0 0 0 0 0 0 0 0 

TABLE 6.1 

It is apparent that the total number of complex zeros is 

3000, which is the total outcome of the process for 100 

trials. Also, 88% of the complex zeros have ßr value 

less or equal to 200 µ sec. The p. d. f. is calculated by 

the relation given in eqn. (6.13) and Figure 6.7 shows the 

p. d. f. histogram. The distribution is Gaussian in nature 

in the Qr range (50 - 350) 4 sec, while the two spike- 

shaped parts of the distribution are attributed to the 

estimation error given. the very few complex zeros with 

high Qr values. This Is consistent with the zero 

distribution characteristic of a B-function discussed 

previously in Section 6.2. 
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Experiment 2 

In this experiment, the same positive, real, band- 

limited (± 3 kHz) random is used similar to Experiment 1. 

The same procedure to find the p. d. f. is followed, but the 

modulation depth was varied between 29% and 80%. The 

mean value of the random signal was kept at 6, while its 

standard deviation was varied between 3.15 and 8.54. 

Table 6.2 below shows the number of complex zeros that 

correspond to the 100 different strips of Q. 

a strips Number of complex zeros 

1-10 0 0 0 0 0 0 0 0 0 0 

11-20 0 0 0 5 8 9 13 16 23 30 

21-30 48 64 64 81 80 95 113 123 124 139 

31-40 160 199 196 169 150 126 114 107 109 87 

41-50 71 80 60 43 33 30 21 10 0 0 

51-60 0 0 0 0 0 0 0 0 0 0 

61-70 0 0 0 0 0 0 0 0 0 0 

71-80 49 38 13 0 0 0 0 0 0 0 

81-90 0 0 0 0 0 69 31 0 0 0 

91-100 0 0 0 0 0 0 0 0 0 0 

TABLE 6.2 

It can be calculated from Table 6.2 that 82% of the com- 

plex zeros lie between ar values of 70 and 200 4 sec. 

Figure 6.8 shows the corresponding p. d. f. histogram., and 

it is apparent that the distribution is restrained to a 

narrower width of Qr values than Figure 6.7 showed. This 

is attributed to the fact that modulation depths of very 

small or very high values are not considered in this 
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experiment. This corresponds to excluding complex zeros 

of very small or very high ar values. The two spike- 

shaped parts of the distribution at high ar values are 

narrower than in the last experiment, implying less 

contribution to the distribution function. The main 

part of the p. d. f. has similarly a Gaussian shape. 

Experiment 3 

The same random signal is used, and the same pro- 

cedure is followed in finding the p. d. f. as in the last 

two experiments. The computer programme was run 100 times, 

but both the mean value and standard deviation of the ran- 

dom signal were varied. Five different mean. values of 

5,6,7,8, and 9 were used respectively for each 20 runs, 

while the standard deviation was varied such that for every 

20 runs the modulation depth ranges approximately between 

25% and 85%. Table 6.3 below gives the number of 

different complex zeros. 

Q strips Number of complex zeros 

1-10 0 0 0 0 0 0 0 0 0 0 
11-20 0 2 3 10 5 10 14 14 26 33 

21-30 51 53 66 72 87 91 104 109 117 143 

31-40 169 189 169 167 141 131 118 118 105 84 

41-50 84 84 61 46 39 33 27 14 4 4 

51-60 3 0 0 0 0 0 0 0 0 0 

61-70 0 0 0 0 0 0 0 0 0 0 

71-80 47 36 15 2 0 0 0 0 0 0 

81-90 0 0 0 0 0 66 33 1 0 0 

91-100 0 0 0 0 0 0 0 0 0 0 

TABLE 6.3 
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It can similarly be calculated from the above table that 

80% of the complex zeros lie in the ßr range of (70 - 200) 

4 sec. Figure 6.9 shows the corresponding p. d. f. histo- 

gram, which is similar to the p. d. f. obtained in Experiment 

2. 

The cumulative distribution function can be found by 

calculating areas under the p. d. f. curve. The p. d. f. 

shown in Figure 6.9 is numerically integrated and Figure 

6.10 shows the cumulative distribution. function, which is 

a non-decreasing function of a. 

The measurements made during this study showed that 

the complex-zero distribution's p. d. f. are similar in. 

nature for the last three experiments. When the band- 

width of the positive random signal is changed from ±3 

kHz, the p. d. f. of complex-zero distribution shows a very 

similar nature and the majority of the complex zeros are 

again found to lie in the Qr range (70 - 250) 4 sec. 

This verifies the complex-zero distribution that character- 

ises a B-function (Section 6.2). 

The experimental study introduced in this section has 

revealed that more than 80% of the complex zeros are lo- 

cated in the ar range (70 - 200) µ sec. If only these 

complex zeros are to be considered for conjugation in 

ZSFM, then the bank of complex filters (Section 5.9) will 

have to cover this range 

value Aßr = ar - ar in 
21 

be taken as 2µ sec (Sec 

cover the required range 

of ß values. Given that the 
r 

the bank of complex filters may 

Lion. 5.9), then it is possible to 

with 
200 -270 = 65 filters. 
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6.6 Achievable Bit Rate 

The maximum theoretical data rate of ZSFM was shown 

(Section 3.9) to be 5 kbit/sec for a 10 kHz broadcast 

channel. However, in practice, this rate is not expected 

to be reached for different reasons. The truncation 

effect of the FM function 0' (t) (Section 5.10) , with one con- 

jugating function generator, reduces the data rate to 1 
and 

if the window width P is made equal to 3Qr then the 

data rate becomes 31a The FM function, e'(t), used in 
r 

ZSFM is expressed as: 

2Q 
r 

ar + (t-tr) 

and it diminishes to its half maximum value (± at 
r 

(t-tr) =a, i. e. 

e' (t) 
t-t =Q rr 

2 a 

Cf r 6 
r r 

6 
(6.1.4) 

Therefore the larger is Qr , the longer time 0'(t) takes 

to attain half the maximum value, and in general the 

truncated FM function will require a longer P window for 

large Qr than for small Cr to give the same performance. 

Figure 6.11 shows the FM function 6'(t) for small Qr and 

large Qr values. 
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The other factor affecting the practical data rate of 

ZSFM is the value of ar used in complex zero conjugation. 

it was previously discussed (Section 3.9) that complex 

zeros having very large ßr values are unsuitable for con- 

jugation as the frequency deviation 6'(t) becomes insuf- 

ficient for detection. Also for complex zeros with high 

ar , the window width P through which the FM function 0'(t) 

is imposed on the carrier needs to be very long. However, 

it was found experimentally in Section 6.5 that most of 

the complex zeros of a positive bandlimited signal are 

distributed in a finite range of ßr. More than 80% of 
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the available complex zeros were found to have a values 
r 

ranging between 70 4 sec and 200 4 sec. Hence the value 

of ßr = 200 µ sec can be taken as an upper bound for 

usable ßr values, and yet more than 80% of the available 

complex zeros are covered. If only one conjugating 

function generator is used, then the data rate (31a ) is 
r 

equal to 1.67 kbit/sec for an upper bound of ar = 200 

sec. However, if two conjugating function generators can 

be interlaced, the data rate of ZSFM will double to 3.34 

kbit/sec at the expense of additional hardware. 

Confining the usable Qr values to the range (70 - 200) 

4 sec will mitigate the task of complex zero filtering 

(Chapter 4), and consequently the number of complex filters 

in the bank is reduced. 

The maximum and minimum frequency deviations 0'(t) 

that correspond to minimum. and maximum usable Qr value 

respectively are: 

e'(t) =±2=2 _6 
=± 28571.428 rad/sec 

0 max r 70 x 10- 

_±4.5 kHz 

01 (t) =+? =±2 _6 
=+ 10000 rad/sec 

0 min 
ar 200 x 10- 

=±1.5 kHz 

In practice, the above frequency deviations can easily be 

detected by a phase-locked loop. Determining the lower 

bound of the frequency deviation, 0'(t), helps to give a 
min 

threshold value for noise clicks on detection. Every 

frequency spike at the output of a Z. SFM frequency de- 
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modulator, having a value less than 104 rad/sec is re- 

garded as a noise frequency click and therefore discarded. 

If a threshold value of 104 rad/sec is assigned, then 

noise clicks larger than this value will give an error. 

6.7 Final Remarks 

The complex-zero distribution of positive bandlimited 

signals has been studied theoretically and experimentally. 

Entire functions representing generally bandlimited signals 

were introduced with their characteristic zero distributions. 

Factorisation of Fourier coefficients of the random- band- 

limited signal was used to locate the zeros in. the com- 

puter simulation. The results obtained verify the theo- 

retical zero distribution characteristic of entire func- 

tions. The p. d. f. of the complex zeros of a positive band- 

limited random signal has been estimated using a computer 

simulation. More than 80% of the available complex 

zeros were found to lie in the ar range (70 - 200) µ sec. 

Possible data rates for ZSFM were also discussed, and it 

was concluded that the bit rate is not expected to be less 

than 1.67 kbit/sec. The data rate can. be increased but 

at the expense of cost. It should. finally be noted that 

data rates of Z. SFM compares favourably with that of BBC 

system for MW broadcast that handles 25 bit/sec (8 ti. 
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CHAPTER 7 

CONCLUSIONS 

A new modulation technique has been considered and 

developed that may be applied to the provision of radio- 

data services for l. f. and m. f. sound broadcasting using 

DSB-AM. It has been shown that this technique, ZSFM, 

allows a DSB-AM carrier to be frequency or phase modu- 

lated without increasing the bandwidth of the trans- 

mitted signal or disturbing its envelope. 

Radio-data systems for v. h. f. /f. m. have been im- 

plemented and tested in several European countries and 

some progress has been made towards standardisation 

(16). Development of radio-data systems is, however, 

considerably less advanced for l. f. and m. f. broadcasting 

where AM predominates and the inherent redundancy of the 

DSB-AM signal is more difficult to exploit. 

It has been shown that provided certain frequency 

modulating functions are impressed on a DSB-AM carrier 

in synchronism with the complex zeros of the amplitude 

modulating signal, then the transmitted signal will 

remain strictly bandlimited. It was shown that the 

principle of ZSFM derives from the concept of the 

"common envelope set" of signals, each of which possesses 

an identical envelope, occupies the same bandwidth but 

differs in phase modulation. The process of complex 

zero conjugation of a signal leads to the generation 
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of other signals of the same "common envelope set". 

The symmetrical zero pattern of a conventional DSB-AM 

signal has been studied, and it has been shown how a 

process of conjugating the complex zeros of a DSB-AM 

signal preserves the bandwidth and does not distort the 

envelope of the transmitted signal. Frequency modu- 

lating functions appropriate to the conjugation of 

isolated complex zero pairs of aperiodic signals have 

been derived. Provided the number of zeros conjugated 

in one sense equals the number of zeros conjugated in 

the other sense, then for all practical purposes, there 

will be no shift in the carrier frequency of the DSB-AM 

signal. 

The data rate of ZSFM depends on the rate at which 

zero pairs can be satisfactorily detected and conjugated, 

and it has been shown that for aW Hz channel the data 

rate is upper-bounded by 2 bit/sec. This implies an 

upper theoretical data rate of 5 kbit/sec over a 10 kHz 

broadcast channel. In practice, however, this data 

rate is not expected to be achieved for. various reasons. 

If one FM function generator is used, the average data 

rate will be limited to P bit/sec where P is the window 

over which the FM function is impressed on the carrier, 

assuming that at least one zero pair is detected every 

P second interval. A data rate of 1.67 kbit/sec is 

considered feasible for ZSFM, although this could be 

increased at the expense of more hardware. 
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The BBC radio-data system for l. f. and m. f. broad- 

cast, using linear phase modulation of the carrier by 

the shaped data signal, can provide 25 bit/sec data 

rate (7). The data rate of ZSFM has been shown to 

compare favourably with that of the BBC. 

The performance of Zero Synchronous Frequency 

Modulation (ZSFM) has been studied using digital 

computer simulation. Some practical aspects of ZSFM 

have been investigated such as the bandwidth of the 

ZSFM signal, and the detection performance under noisy 

conditions. It has been verified that the Z-SFM signal 

is strictly bandlimited to the same bandwidth of a 

DSB-AM signal, and this confirms that theoretically 

there will be no co-channel interference. However, 

when the FM function generator is truncated within. a 

finite time interval of length P seconds, the spectrum 

of ZSFM signal will be non-bandlimited due to the 

truncation effect. Nevertheless, it has been shown 

that the out-of-band components relative to the average 

ZSFM signal power are of insignificant importance, and 

therefore it is considered that the out-of-band compo- 

nents have negligible effect on co-channel interference. 

The detection performance of ZSFM signals has proved to 

be satisfactory for all carrier-to-noise ratios (CNR) 

greater than 30 dB. The results of the experiments 

described have shown that the detection of the data 

channel of ZSFM is most affected at high modulation 
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depths, when the instantaneous, signal-to-noise ratio 

(SNR) is low during envelope troughs. 

Characteristics such as p. m. /a. m. and a. m. /p. m. 

conversions due to practical IF filtering at the 

receiver and other mismatches have been studied, and 

their degrading effects on ZSFM performance have been 

evaluated. The cross-talk caused by IF filters, having 

non-linear characteristics, was found to be of negligible 

importance. It has been shown that there will be some 

distortion introduced to the detected data signal due 

to the a. m. /p. m. conversion in the case of a receiver 

mistune. However, the results of the experiments 

described in Chapter 5 suggest that the cross-talk 

caused by IF filtering does not appear to significantly 

impair the detected envelope and data signals, even 

under conditions of receiver mistune. 

It has become apparent that, of all mechanisms 

likely to cause cross-talk from the data channel to the 

AM sound channel, the dominant effect is that of multi- 

path propagation. Computer simulation results have 

confirmed that p. m. /a. m. conversion as a result of 

multipath propagation conditions is expected to be a 

major limiting factor. However, the envelope signal 

will be impaired significantly in a severe fading 

condition even without the interference imposed by the 

data signal. The simulation results have shown that 

the p. m. /a. m. conversion, in multipath propagation 

conditions, does not significantly increase when the 
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data rate of ZSFM was increased from 146.5 bit/sec to 

1562.5 bit/sec. An experimental ZSFM system is 

required to assess the performance under realistic 

fading conditions, in which case subjective tests can 

be carried out. 

The effects of truncating the FM function generator 

on the performance of ZSFM have been considered. It 

has been shown that the approximation error introduced 

because of truncation is larger for high ar values than 

for small a values. A window width of P=3ß, 

giving 
Q 

ratio of 3, is considered to be feasible for 
r 

satisfactory performance. The simulation results 

suggest that the effect of a truncated FM function on 

the IF filtered and detected envelope signal is almost 

negligible, even for very small values of the window 

length (P). It has also been shown that the out-of- 

band components, due to the truncation effect, have 

negligible contribution to the average ZSFM signal 

power. It is, therefore, considered that the band- 

limitation of ZSFM is not affected significantly by 

truncation. However, the data rate of ZSFM will be 

reduced because of truncation, and it has been shown 

that a data rate of 1.67 kbit/sec is feasible when 

using one FM function generator only. This data rate 

compares favourably with the BBC radio-data system that 

handles 25 bit/sec (8). The data rate of ZSFM would 

be increased if more than one FM function generator 
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could be interlaced, but at the expense of hardware 

costs. 

The theoretical foundation of complex filtering 

has been developed, and it has been shown how complex 

filters could detect the complex zeros of real signals. 

Practical realisations of the complex filter have been 

described in three different ways. The simulation 

results have shown that the complex filters in the bank 

can be designed so that for any two successive filters 

Aar =2µ sec. The computer simulation has demon- 

strated the efficiency of the novel technique for 

detecting complex zeros of real signals. 

The distribution of the complex zeros of positive 

bandlimited random signals has been investigated. An 

experimental study has been carried out to estimate the 

probability-density function (p. d. f. ) of the complex 

zero distribution of a positive bandlimited random 

signal. The results have shown that the main part of 

the distribution is Gaussian in nature, and it has also 

been shown that more than 80% of the available complex 

zeros are located in the ar range (70 - 200) 4 sec. 

In order to detect the majority of complex zeros con- 

tained in the above range only, the bank of filters 

should contain at least 65 complex filters. 

ZSFM requires no modifications at the transmitter 

other than provision for carrier frequency modulation, 

and complex zero detection by a bank of filters. At the 
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receiver, envelope detection is carried out in the 

usual way to recover the amplitude modulating signal. 

The data signal can be recovered simply by any fre- 

quency demodulator, such as a phase-locked loop which 

detects positive or negative frequency deviations from 

the carrier. This favours applications such as broad- 

casting where one transmitter serves a large number of 

receivers and expensive modifications of receivers is 

uneconomic. 

* N. B. Assuming the out-of-band radiation levels 

of 20 dB are acceptable in practice. 
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APPENDIX 1 
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Consider the integral: 

-j zt e- dz ,t<0 z 

r 

where r is a closed contour as shown 

Similarly it can be shown that: 
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: '. sgn (t) {ý -7 ýr f 

Or in other words: 
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if - jsgn(f). 
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APPENDIX 2 
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APPENDIX 3 

The equivalent circuit diagram for the double-tuned trans- 

former with mutual inductance coupling is shown below: 

ZZ Z4 

R, L1 +M \LL*M RZ 

I: E9 
G, EE, z 

C2- 
-zf -- M 35ýi T 

Equivalent circuit for a 
double-tuned IF transformer. 

E 

The transfer impedance (ZT = I? 
) can be calculated as: 

a 

E2 Z5 

E1 Z4 + Z5 

z3 (Z4 + Z5) 

E1 Z3 + Z4 + Z5 

Ez3 (Z4 + Z5) 

z3+ Z4 + Z5 + Z2 
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E2 E2 E1 Z3Z5 

E E1 E Z3 (Z4 + Z5) + Z2 (Z3 + Z4 + Z5 

Z+ 
Z3 (Z4 + Z5) 

2Z+Z+Z 
But E= IaZ 345 

ý Z3 (Z4 + Z5) 

5 
Zý +Z2 + Z3 + Z4 + 7, 

E2 Z1 Z3Z5 
. '. ZT = Iä =Z+ Z2 + Z3) (Z3 + Z4 + Z5 Z3 

Q1= 
ß'0L 1F 2f 

,f= central or mid-band frequency R1 fo 0 

°L2 
2 R2 

f=_ 
° 27r�L1C1 2Tr L 22 

j RD1 Q2 k 1L 
ZT C1 +j Q1F) (1 +j Q2 F) + Q1Q2k 

where RD1 is the dynamic resistance of the primary when 

not coupled to the secondary circuit. 

k is the coupling coefficients, (k«1) . 

When the two circuits are identical, 

Lý = L2 , Cl = C2 , Ql = 42 =Q 

. '. ZT becomes: 

j RD Qk 
ZT =1}jQ Fý z+ Qzkz 

j RD Qk 

- Q2 (k2 - F2) + j2 QF 
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. 
'. IZTý _ 

RD Qk 

C7+ Q2 (k2 
- F2) ] -2+ 4( FZ 

The conditions for maximum IZT1, the peaks of the frequency 

response curves, can be found by differentiating the above 

with respect to F and equating to zero. This gives: 

k2 1 Ff 
maxZT =±_ Q2 

Three conditions: k<Q, k Q, k> Q 

When k<QýFI 
max ZT 

is imaginary and max 
R 

DQk value of ZT occurs at F=0, JZT! = 1+ 2k2 
max 

QR 

When k=1 JZTImax occurs at F0 and iZ D 
T+max 2 

When k>1, Fj k2 - 
Q2 

, i. e. double peaked 

response is produces and also (Z t 
RD 

T2 
max 

RD 
The maximum value of JZTj never exceeds 2 

In order to calculate the magnitude frequency response 

of the IF transformer, it is only required to find 
IZ 

TI 
-1 1 

T 
max 

and taking into consideration that: 

R 
ýZTI -D 

max 

. 
'. IH(F) J= 

I ZT 1=2 
Qk 

Z ax [+ Q2 (k2 F' 22 + 4Q2F2 

The phase response of the IF transformer can be obtained 

from the transfer impedance ZT since it represents phase 

change from primary input to secondary output. 

Using the expression for ZZ, and rationalising it, yields: 
RDQ k[2 QF + j(1 + Q2(k2 -F2))] 

ZT = [1 + Q2 (k2 - F2) 12+4 Q2F2 

From the above, the phase angle ý can be obtained: 

) 
= arg [H (F) 1= arg (ZT) = arc tan +2QiQFk 2 _F z 
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