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Abstract 

 

Background: The omega-3 fatty acid eicosapentaenoic acid (EPA) has been 

demonstrated to be incorporated into tumours and inhibit tumour growth in pre-

clinical models of colorectal cancer liver metastases (CRCLM). 

Aims:  To test the safety, tolerability and effect on tumour biomarkers of growth and 

vascularity of orally administered EPA in patients awaiting liver resection surgery for 

CRCLM. 

Methods:  In a Phase II randomised, double-blind, placebo-controlled trial, patients 

with CRCLM received EPA 2g daily (n=43) or placebo (n=45) prior to surgery. 

CRCLM tissue was analysed for fatty acid content, PGE2 content, proliferation 

index (Ki-67), apoptosis index and vascularity. Blood was collected for platelet 

function and monocyte NFkB binding studies, and urine for measurement of PGE-

M.  Supplementary in vitro endothelial cell studies investigated the effects of EPA 

on angiogenesis. 

Results:  The two treatment groups were well matched for burden of disease and 

previous chemotherapy exposure.  Mean duration of EPA treatment was 30 days 

(range 12-65 days).  EPA was safe and well tolerated, with a small excess of 

diarrhoea (p=0.09), and no excess of post-operative complications. Tumours from 

the EPA group had a 40% higher EPA content (p<0.01), no difference in 

proliferation or apoptosis, and a trend to reduced vascularity.  EPA treatment was 

associated with a 36% reduction in urinary PGE-M (p=0.03) compared to placebo, 

and reduced monocyte NFкB DNA binding compared to baseline (p=0.03).  EPA 

inhibited angiogenesis in vitro. 

Conclusions:  EPA 2g daily is safe and well-tolerated in patients with CRCLM 

before liver resection. EPA incorporates into CRCLMs, exhibits systemic anti-

inflammatory effects, and may have anti-angiogenic activity. Phase III clinical 
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evaluation of prolonged EPA treatment is warranted in patients with, or at risk of, 

CRCLM. 
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Chapter 1: Introduction 

1.1 Colorectal cancer (CRC) and colorectal cancer liver metastasis (CRCLM) 

Colorectal cancer (CRC) remains a major cause of morbidity and mortality in the 

western world, responsible for approximately 10% of all UK cancer deaths (1).  In 

2008, there were 31,846 new CRC cases in the UK with an incidence of 57 cases 

per 100,000 in men and 37 per 100,000 in women.(1)  Approximately 5% of CRCs 

are clearly linked to hereditary syndromes, such as familial adenomatous polyposis 

(FAP) and hereditary non-polyposis colorectal cancer (HNPCC), with studies 

suggesting that a further 15-25% of CRCs have a familial link.(2-4)  Other CRCs 

arise on a background of chronic intestinal inflammation such as ulcerative colitis.  

The majority, however, are believed to be caused by a complex interaction of 

environmental exposures and non-Mendelian genetic predisposition. These are 

known as “sporadic” CRCs.  Smoking, alcohol, obesity, dietary patterns and 

exercise levels have all been linked to the development of CRC.(5)  The impact of 

dietary patterns on the development of cancer has been extensively reviewed by 

the World Cancer Research Fund and the American Institute for Cancer 

Research.(6)  In their Second Expert Report into Food, Nutrition, Physical Activity 

and the Prevention of Cancer they conclude that there is convincing evidence that 

the consumption of red meat and processed meats increases the risk of CRC, that 

the consumption of dietary fibre, garlic and calcium probably reduces the risk of 

CRC,  and that the consumption of fish may also reduce the risk of CRC.(6)    

Most deaths from CRC are due to metastatic disease.  Metastasis is the spread of 

cancer from one part of the body to another, with the most common site of 

metastasis from CRC being the liver.  Around 50% of all CRC patients will 

eventually develop metastatic disease of the liver.  Liver metastases are present at 

the time of diagnosis of CRC in 15-20% of patients (known as synchronous 

metastases),(7-9) and a further 6-20% of patients with CRC will develop CRCLM at 
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a later date (known as metachronous metastases).(7, 10)  The metastatic process 

is complex (Figure 1.1).  Not all cells that break away from a cancer develop into 

metastatic tumours.  Only subpopulations of cells with particular combinations of 

genetic mutations and gene expression patterns will have the necessary 

characteristics to proceed through each sequential step of the metastatic process to 

form metastatic colonies.  This involves the acquisition of a mesenchymal as 

opposed to an epithelial phenotype, the so called epithelial-mesenchymal transition.  

Several reviews are available which provide a detailed overview of epithelial-

mesenchymal transition (11, 12) and the metastatic pathway.(13, 14)  Briefly, to 

metastasise cells must first escape their normal structural constraints, acquire 

motile behaviour, and invade and traverse the basement membrane and 

extracellular matrix to enter the circulation.  Cells must survive within the circulation 

then arrest in the capillary bed of a distant organ such as the liver.  Here they must 

escape from the circulation (extravasate) by adherence to and migration through 

the subendothelial basement membrane into the liver parenchyma.  Once in the 

liver parenchyma, cells must respond to growth factors in the liver 

microenvironment to proliferate, evade the signalling pathways that promote 

apoptosis, and stimulate the growth of new blood vessels (angiogenesis) to sustain 

the growth of the metastatic colony.   

The growth of any tissue beyond a size of 1-2 mm3, being the threshold for nutrient 

diffusion across cells, is dependent on angiogenesis to deliver oxygen and 

nutrients, and this occurs in both physiological and pathological processes.    The 

critical role of angiogenesis in the development of tumours has long been 

recognised,(15) with extensive research into understanding the mechanism of 

tumour angiogenesis and its manipulation as a potential therapeutic target.(16-18)  

Of the many pro-angiogenic factors and signalling pathways identified, vascular 

endothelial growth factor (VEGF) has been the most intensely studied.(17, 19, 20)  

It is expressed in approximately 50% of CRC and CRCLM,(21-23) and has been 
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shown to stimulate endothelial cell proliferation, migration and invasion and 

increase vascular permeability.(20) 

It is increasingly apparent that this overview of metastasis is simplistic, and that 

cancer cells interact with cells in both the tumour microenvironment and in the 

circulation to facilitate this process.  For example, macrophages at the tumour 

periphery can be activated and facilitate invasion by the secretion of matrix 

metalloproteinases (MMP) to degrade extracellular matrix.(24, 25)  An interaction 

between cancer cells and platelets has also been shown.  Platelets aggregate with 

circulating tumour cells and may act to shield cancer cells from immune responses 

as well as protecting cells from physical shear forces, thereby promoting survival 

within the circulation.(26)  These aggregations may also promote arrest of cancer 

cells in capillary beds both by physical plugging, and through platelet adhesion to 

the endothelium.(26)  More recently, a direct interaction between platelets and 

cancer cells has been shown in which platelet-derived transforming growth factor β 

(TGFβ) activates epithelial-mesenchymal transition related genes in the cancer cell, 

promoting extravasation and metastasis formation.(27)  Different types of cancers 

have a predisposition to metastasise to different sites.  This is affected by 

circulatory patterns, differences in capillary wall structural features or the 

endothelial cell surface expression of molecules such as integrins and adhesins, 

the favourability of tissue microenvironments to support the growth of different 

cancer cell types, as well intrinsic properties of the circulating cancer cell itself.(28, 

29)  In the case of CRC, venous blood from the colon drains directly to the liver via 

the portal vein, and CRC cells are likely to become trapped in the narrow hepatic 

sinusoids (approximately 7µm diameter).(30)  This, together with the rich 

vascularity, nutrient supply and growth factor production of the liver which makes it 

an amenable microenvironment for the establishment of metastatic colonies, 

probably explains why CRC typically form metastatic colonies in the liver.     
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Figure 1.1.  The carcinogenesis, epithelial-mesenchymal transition and metastasis 

pathway.  Adapted from Thiery JP, Epithelial-mesenchymal transitions in tumour 

progression. Nat Rev Cancer, 2002. 2(6): p. 442-54.   

 

The accumulation of genetic mutations by a normal epithelial cell, each conferring a 

growth advantage, results in uncontrolled proliferation of that cell to become a focus of 

disordered epithelial proliferation (dysplasia).  Dysplasia is identified by characteristic 

cellular and architectural features, with the loss of normal morphological appearance and 

disordered tissue architecture.  In colorectal carcinogenesis, the earliest dysplastic feature 

may be an aberrant crypt focus, a cluster of abnormal tube like glands in the colonic 

epithelium.  As dysplasia progresses, a discrete lump or polyp (adenoma) may form on the 

lining of the colon.   The severity of dysplasia is often classified as low-grade or high-grade 

dysplasia.  High grade dysplasia is often referred to as carcinoma-in-situ in certain cancer 

types, although high grade dysplasia is the preferred terminology in CRC.  These cells have 

all the features of cancer, but have not yet breached the basement membrane.  Once cells 

have escaped their normal structural constraints and acquired motile and invasive 

characteristics (the epithelial to mesenchymal transition) they can invade through the 

basement membrane.  At this stage the tumour is an invasive carcinoma.  The next steps 

on the metastatic pathway involve invasion into an adjacent blood or lymphatic vessel 

(intravasation) and then extravasation from the circulation at a distant site.  Cells may 

then establish a metastatic colony at a distant site.  This may involve reversion back to an 

epithelial phenotype (mesenchymal to epithelial transition).   
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1.2 The molecular basis of colorectal carcinogenesis  

1.2.1 The Wnt/β-catenin pathway, APC, and other genetic mutations 

Activation of the Wnt/β-catenin signaling pathway is believed to be key in the 

initiation of colorectal carcinogenesis.(31)  Cytoplasmic β-catenin levels are 

ordinarily regulated by a multi-protein complex containing the adenomatous 

polyposi coli (APC) protein, Axin and glycogen synthase kinase.(32)  This complex 

binds to β-catenin and promotes proteosomal degradation.  Mutations in the tumour 

suppressor gene APC occur in 60-80% of sporadic CRCs.(33-35) APC mutations 

typically cause truncation of the APC protein with loss of the β-catenin binding site, 

and result in cytoplasmic accumulation of β-catenin.(32)  Similarly, activation of the 

proto-oncogene Wnt which leads to inhibition of the APC-protein complex, mutation 

in the Axin tumour suppressor gene, or a mutation in the β-catenin gene can all 

lead to cytoplasmic accumulation of β-catenin.(32)  With increasing cytoplasmic 

levels of β-catenin, there is the potential for translocation of β-catenin into the 

nucleus where it acts as a co-factor for the transcription of genes associated with 

cell-cycle regulation, such as c-MYC (36) and CCND1,(37) and other genes 

involved in carcinogenesis such as MMP-7 (38) and VEGF.(39)   However, whilst 

APC loss contributes initially to adenoma formation, further mutations are required 

for progression from adenoma to carcinoma.(40)  These typically include 

inactivation of the p53 tumour suppressor pathway as a subsequent step in 

colorectal carcinogenesis, inactivation of tumour-suppressing TGF-β signaling, and 

activation of the oncogenes KRAS, BRAF and PI3K.(31)   The mutations in these 

pathways are described in more detail in the review by Markowitz and 

Bertagnolli.(31)  
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1.2.2 Cyclooxygenase and prostaglandins 

Upregulated cyclooxygenase (COX) expression and the COX-dependent synthesis 

of prostaglandins (PG)s and thromboxanes are also believed to play a critical role in 

the early stages of colorectal carcinogenesis.(41, 42)  Arachidonic acid is the 

principle substrate for COX.  It is a polyunsaturated fatty acid (PUFA) found in cell 

phospholipid membranes.  Fatty acids are carbon chains with a methyl group at one 

end and a carboxyl group at the other.  Saturated fatty acids contain only carbon-

carbon single bonds, whereas unsaturated fatty acids contain one 

(monounsaturated) or more (polyunsaturated) carbon-carbon double bonds.  

Arachidonic acid is a 20-carbon chain with 4 carbon-carbon double bonds.  It is an 

omega (ω)-6 PUFA, so named by the position of the first double bond at the 6th 

carbon from the methyl (omega) end.  Arachidonic acid can therefore be 

represented by the notation "20:4 ω-6 " (Figure 1.2).  Arachidonic acid is liberated 

from phospholipid membranes by phospholipase A2 and catalysed by COX to 

produce PGH2, via the unstable intermediate PGG2.  PGH2 is further catalysed by 

prostaglandin synthases to produce a range of prostaglandins, including PGE2 

(Figure 1.3), and thromboxane (Tx) A2.  AA can also be metabolised by the 

lipoxygenase (LOX) pathway to leukotrienes (LT) such as LTB4.  COX exists as two 

isozymes.  COX-1 is constitutively expressed in most human tissues, including 

platelets, and is responsible for the basal level of PG synthesis required for normal 

tissue homeostasis.  Meanwhile, COX-2 is not normally expressed in most tissues 

but is induced in response to inflammation and carcinogenesis.(43, 44)  Increased 

COX-2 expression has been found in 50-77% of adenomas,(45, 46)  61-84% of 

adenocarcinomas,(45, 47-49) and 100% of CRCLM.(50, 51) 
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Figure 1.2.  Structure and nomenclature of polyunsaturated fatty acids (PUFAs). Cx:y 

ω-z refers to the chemical structure where x is the number of carbon atoms, y is the number 

of carbon-carbon double bonds and z is the position of the first carbon-carbon double bond 

away from the methyl (ω) end of the hydrocarbon chain.  Note that position of the first 

carbon-carbon double bond which defines arachidonic acid as an ω-6 PUFA, in contrast to 

the position of the first carbon-carbon double bond in eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA) which defines them as ω-3 PUFAs.  EPA and DHA are 

discussed further in section 1.6.   

 

 
 

 

 

Figure 1.3.  Metabolism of arachidonic acid by the COX, LOX and CYP450 pathways. 

COX=cyclooxygenase, LOX=lipoxgenase, CYP450=cytochrome P450, 

EET=eicosatetraenoic acid, HETE=hydroxyeicosatetraenoic acid, PG=prostaglandin, 

TX=thromjboxane, HPETE=hydroperoxyeicosatetraenoic acid, LT=leukotriene, LX=lipoxin  
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Prostaglandins mediate their effects through specific cell-surface G-protein coupled 

receptors, with PGE2 acting through the receptors EP1-EP4.(52)  EP1 signals via 

phospolipase C / inositol triphosphate signalling, EP2 and EP4 signal predominantly 

through an increase in intracellular cyclic adenosine monophosphate (cAMP), 

whereas EP3 is regarded as an inhibitory receptor, signaling via a reduction in 

cAMP.(52)  Prostaglandins may also exert an effect by acting as direct ligands for 

peroxisome proliferator-activated receptors (PPARs).  Prostaglandin catabolism is 

regulated by 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a nicotinamide 

adenine dinucleotide (NAD)+ linked dehydrogenase that oxidizes the 15-hydroxy 

group of a prostaglandin to a ketone group, rendering it inactive.(53)  Suppressed 

15-PGDH has been demonstrated in up to 80% of colorectal adenomas and 

carcinomas.(54, 55)     

Prostaglandins and thromboxanes have wide-ranging roles in inflammation, platelet 

aggregation and tissue homeostasis, and can act in an autocrine or paracrine 

manner to effect changes in their immediate environment.  Increased PG signaling, 

through an upregulation of the COX-2/PGE2 pathway is believed to play a key role 

in colorectal carcinogenesis, with PGE2 having been shown to promote CRC cell 

proliferation in vitro (56, 57) and stimulate intestinal adenoma formation in vivo.(58, 

59)  Elevated PGE2 levels have been demonstrated in human CRC and adenomas 

(60).  The pro-tumourgenic effects of PGE2 are mediated through a number of 

signaling pathways involved in tumour proliferation, apoptosis, migration, invasion 

and angiogenesis, which have not been clearly elucidated but which may be 

interlinked.(41, 44)  These include promotion of tumour proliferation through the 

activation of the β-catenin/Wnt pathway (61, 62) and promotion of cell proliferation, 

migration and survival through the activation of epidermal growth factor receptor 

(EGFR) signaling.(63-65)  PGE2 has been shown to suppress apoptosis by 

increasing BCL-2 expression (66, 67), activating EGFR and nuclear PPARδ 

signaling,(59, 64) and activating the Ras-MAPK/ERK and PI3K/AKT pathways.(59, 



9 

 

65, 68)  PGE2 has also been associated with inactivation of E-cadherin and 

increased expression of MMPs, thereby promoting cell migration and invasion.(66, 

69)  Finally, PGE2 has been shown to stimulate the production of pro-angiogenic 

factors including VEGF and basic fibroblast growth factor (bFGF).(70-73).  PGE2 

has been demonstrated to promote tumour angiogenesis in pre-clinical models of 

CRC, (74, 75) whilst the expression of COX-2 and PGE2 has been shown to 

correlate with VEGF expression and tumour vascularity in human CRC,(71, 76, 77) 

CRCLM (78) and gastric cancer.(79) 

Whilst PGE2 levels can easily be measured in vitro, measurement of systemic PGE2 

production in humans is more challenging.  Sampling techniques, such as 

venepuncture, can cause platelet activation and prostaglandin release, and 

prostaglandin production and metabolism can continue in samples ex vivo.  

Measurement of PGE2 in the urine is similarly unreliable as this primarily reflects 

local production of PGE2 in the kidney.(80)  It is widely accepted that the most 

accurate index of systemic PGE2 production is the measurement of PGE-M, a 

stable metabolite of PGE2 that is excreted in the urine.(81)  Elevated levels of 

urinary PGE-M have been associated with colorectal adenomas and carcinomas in 

humans,(82-84) suggesting PGE-M as a potential biomarker for the detection of 

CRC and other cancers.(85)    

 

1.3  Surgery for CRCLM 

Untreated, the prognosis from CRCLM is poor, with a median survival of 6-12 

months.(86)  Current chemotherapy regimens for inoperable disease extend 

median survival up to almost 24 months in those that respond to treatment,(87) but 

this remains a palliative treatment.  Surgery is the only potentially curative treatment 

for patients with CRCLM, with 5 year survival rates after surgery ranging from 30-

60%.(88-92)  Of all patients who undergo liver resection surgery for CRCLM, 40-

60% will develop disease recurrence, at a median of 13.8-16.3 months.(91, 93)  
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Just under half of all recurrences will be in the liver alone, one-third extra-hepatic 

alone, and the remaining one-fifth will be both hepatic and extra-hepatic 

recurrences.(91)  Patients with recurrent hepatic metastases may be offered repeat 

liver resection, so long as the disease is technically resectable.  This is true for first, 

second, and even third recurrences of CRCLMs.  Such a strategy of aggressive 

redo-resections of recurrent CRCLMs is justified by a 5-year overall survival rate 

after repeat resections of almost 30%.(93)      

1.3.1 Liver anatomy 

The liver is the largest solid organ in the body, situated in the right upper quadrant 

of the abdomen and weighing approximately 1.5kg.  The liver has a dual blood 

supply, with approximately 75% of blood flow from the portal vein and 25% from the 

hepatic artery.  The portal vein delivers venous blood from the small intestine to the 

liver, ensuring that substances absorbed from the gut are metabolised and 

detoxified by the liver before entering the systemic circulation.  The portal 

circulation provides a direct route for the haematogenous spread of CRC cells to 

the liver, and explains why the liver is the most common site of CRC metastases.  It 

is the first capillary bed in which CRC cells escaping into the circulation will arrest 

and "plug". 

Whilst the liver might be divided on external anatomic appearances by the falciform 

ligament into a right and left lobe, it is more common to divide the liver based on its 

functional anatomy into two lobes and eight functionally independent segments 

(Figure 1.4), as described by Couinaud in 1957.(94)  The middle hepatic vein 

divides the liver into a larger right lobe (segments 5-8) and a smaller left lobe 

(segments 2-4).  This plane runs in an approximate plane between the gallbladder 

fossa and the inferior vena cava (IVC).  The right hepatic vein divides the right lobe 

into an anterior section (segments 5&8) and posterior section (segments 6&7), 

whilst the left hepatic vein divides the left lobe into a lateral section (segments 2&3) 



11 

 

and medial section (segment 4a and 4b).  All three hepatic veins meet to drain into 

the IVC at the postero-superior aspect of the liver.  The liver is then further divided 

by the right and left portal veins into superior and inferior sections.  The right portal 

vein separates segments 7&8 superiorly from segments 5&6 inferiorly, and the left 

portal vein separates segments 4a&2 superiorly from segments 4b&3 inferiorly.  

Segment 1, also known as the caudate lobe, lies posteriorly adjacent to the IVC. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 1.4. Anatomy of the liver, and its anatomical relations. (Adapted from a Leeds 

Teaching Hospitals NHS Trust patient education leaflet).  The liver is divided into eight 

segments (numbered).  Segments 1-4 form the left lobe of the liver, and segments 5-8 form 

the right lobe of the liver.  The hepatic artery (red) and portal vein (blue) can be seen 

immediately below segments 3 and 4, where they are branching into their respective left 

and right branches before entering the liver.  The inferior vena cava lies behind segment 1 

and is not shown.   
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1.3.2 Liver resection and other surgical adjuncts 

Because each segment of the liver has its own branch of the hepatic artery and 

portal vein (vascular inflow), its own branch of the hepatic vein (vascular outflow), 

and its own branch of the bile duct, each segment can be individually resected 

without compromising the viability of the remaining segments.  Following liver 

resection hyperplasia of hepatocytes in the remaining segments occurs,(95) and 

the remaining liver begins to grow within days of surgery.(96, 97)  Liver functional 

capacity is restored within days to weeks of surgery,(98) and growth will continue 

over a period of weeks and months until the original liver volume is restored.  The 

liver may recover 75% of its original volume within 1-3 months (98, 99) and 100% of 

its original volume within 12 months after a major resection.(96) 

Resectability of CRCLMs is dependent on the ability to obtain a complete 

macroscopic clearance of tumour, preserve at least 2 contiguous segments of liver 

with adequate vascular inflow and outflow, and preserve sufficient liver volume 

(known as the liver remnant) to be able to continue all of the liver functions.  Up to 

75-80% of the liver can be resected whilst still preserving sufficient liver function in 

the liver remnant for the patient not to develop liver failure.(100)  However, the 

extent of resection that is feasible depends not only on the residual volume, but 

also the functional capacity of the predicted remnant.  Functional capacity may be 

impaired in patients with steatotic or cirrhotic livers, such as in chronic liver 

diseases or following chemotherapy,(100) and their rate of liver regeneration may 

be slower.(101, 102)  This may mean that a larger remnant of diseased liver would 

be required to achieve the same function as a smaller remnant of healthy liver.  

Concerns about the functional capacity of the liver remnant may limit the extent of 

resection that can safely be performed in patients with underlying liver disease.  

Historically, only 20-25% of patients with CRCLM presented with resectable 

CRCLMs.(103, 104)  However, over the last 10 years advances in neoadjuvant 
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chemotherapy regimens to reduce the burden of disease has meant that an 

increasing number of patients have a good response to chemotherapy, effectively 

"downsizing" their disease to within operable limits.  Similarly, in patients who may 

have been deemed inoperable on the basis of an inadequate remnant liver volume, 

techniques such as portal vein embolisation or two-stage resections are now used 

to allow the remnant liver to hypertrophy before resection of the main tumour mass.  

For example, when a right hemihepatectomy is planned in a patient with a small left 

lobe, embolisation of the right portal vein 6-8 weeks preoperatively will divert portal 

flow away from the right lobe.  The right lobe will begin to atrophy and the small left 

lobe begins to hypertrophy in response, providing a left lobe of sufficient volume to 

allow the resection to be performed safely without fear of inducing liver failure.  

Alternatively, when a patient presents with disease in both the right and left lobes of 

the liver which cannot all be resected safely for fear of small remnant volume, 

resection of the disease in one side, an interval to allow the remnant liver to 

hypertrophy, followed by a second operation to resect the disease in the other half 

of the liver may also allow resection of all disease whilst leaving an adequate 

remnant volume (a so-called "2-stage resection").(105, 106)  As a result of these 

techniques, and improvements in the peri-operative surgical and anaesthetic 

management of liver resection patients, there has been a change in many 

surgeons' interpretation of "resectability", and a further 10-40% of patients 

previously considered unresectable may now be suitable for potentially curative 

surgery.   

 

1.4 Chemotherapy for CRC and CRCLM 

Chemotherapy can be given at any one of a number of stages in the natural history 

of CRC and CRCLM.  In patients presenting with CRC, "adjuvant" chemotherapy 

may be given following resection of the primary CRC to control microscopic disease 

with the aim of reducing the risk of CRC recurrence or CRCLM in the future.  
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Chemotherapy may also be given to patients with established CRCLMs.  In those 

patients presenting with operable CRCLMs "adjuvant" chemotherapy may be given 

either just before or just after surgery, with the same aim of reducing the risk of 

disease recurrence and improving patient survival following surgery.  By contrast, 

those patients presenting with inoperable CRCLMs may be offered neoadjuvant 

chemotherapy if there is a chance that they have a distribution or burden of disease 

which may become operable if they respond to chemotherapy and the burden of 

disease is reduced.  The aim of such neoadjuvant chemotherapy is to convert 

patients from inoperable to operable disease and thus to be able to perform 

potentially curative liver resection following chemotherapy.  In those patients with 

inoperable CRCLM where neoadjvant chemotherapy is not appropriate, be it due to 

patient factors or the burden of disease, palliative chemotherapy may be offered 

with the aim of slowing disease progression and extending life.  Finally, other drugs 

may be given as long term therapies for the chemoprevention of both CRC and 

CRCLM.  These will be discussed in section 1.5. 

1.4.1 Adjuvant chemotherapy for CRC 

The mainstay of CRC treatment is complete surgical resection, with adequate 

margins (>5cm) and lymphadenectomy (>12 nodes).  Survival is influenced by the 

extent of tumour spread.  The TNM classification describes the extent of local, 

lymph node and metastatic disease and is used to assign an overall tumour "stage"  

(Table 1.1 and 1.2).  Staging of tumours helps to plan further treatments such as 

chemotherapy and can give an estimate of prognosis (Table 1.2).   

Adjuvant chemotherapy aims to improve patient disease-free survival (DFS) and 

overall survival (OS) by killing residual tumour cells, either those persisting locally 

or those that have metastasised to distant sites.  The role of adjuvant 

chemotherapy in Stage III disease is well established.  FOLFOX (folinic acid + 

fluorouracil + oxaliplatin) chemotherapy is now the standard regimen for Stage III 
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disease, following the publication of the MOSAIC and NSABP C-07 trials 

demonstrating a clear survival advantage (7% absolute increase in OS at 3 years) 

with the addition of oxaliplatin to original fluorouracil (FU) based regimens.(107, 

108)  Capcitabine, an oral fluoropyrimidine, can be substituted in place of FU 

without loss of efficacy.(109)  Studies of the addition of irinotecan or newer 

biologics such as the monoclonal antibodies cetuximab (against EGFR) and 

bevacizumab (against VEGF) have not demonstrated any survival benefit.(110-113)  

The evidence for adjuvant chemotherapy in stage II disease is more contentious.  

The QUASAR study demonstrated a 2.9% increase in OS with FU + folinic acid 

compared to no chemotherapy in patients with stage II CRC.(114)  Some, including 

the American Society of Clinical Oncology, advocate adjuvant chemotherapy in 

medically fit patients with “high-risk” stage II CRC, i.e. T4 lesion or tumour 

perforation, poorly differentiated tumour on histology, or less than 12 lymph nodes 

sampled (i.e. an inadequate sampling which may understage lymph node 

status).(115)  However, the MOSAIC study demonstrated no improvement in 6yr 

OS with oxaliplatin + FU in patients with Stage II CRC, and a non-significant 2.3% 

increase in OS in those deemed “high-risk”.(107)  On balance, the risks and 

benefits of chemotherapy need to be discussed with individual patients with Stage II 

disease, although it is clear from the QUASAR and MOSAIC studies that 

chemotherapy does not offer a survival advantage to those aged 70 years and 

older, either with Stage II or Stage III disease.(107, 108) 
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Table 1.1.  The TNM staging of colorectal cancer.  T describes the layer of the bowel wall 

that the tumour has extended into.  The mucosa is the innermost lining of the bowel wall, 

the muscularis propria is the thick muscle layer, and the serosa is the outermost layer of 

connective tissue covering the colon.  Once a tumour has grown through the serosa, it 

either directly invades adjacent tissue (either other parts of the bowel or adjacent organs) or 

there is perforation of the bowel.  N describes the number of lymph nodes that are involved, 

and M describes the presence or absence of metastatic disease.   

 

 

 

 

 
 
Table 1.2.  Staging of CRC.  Staging is a means of defining and describing the spread of 

CRC and is based on the TNM classification of tumour, nodal and metastatic extent of 

disease.   Staging groups CRCs with a similar extent of disease, and is used to plan 

treatment.  It can also help to give an estimate of prognosis.  *Survival in stage IV disease 

depends on the extent of metastatic disease.  If metastatic disease can be fully resected, 

the prognosis is much better than in patients with inoperable disease.  

  

 T (Tumour) N (lymph node) M (metastases) 

0 No evidence of 
tumour 

No lymph nodes involved No metastases 

1 Into mucosa 1-3 lymph nodes Metastases 
present 

2 Into muscularis 
propria 

4 or more lymph nodes  

3 Into serosa   

4 Through serosa   

Stage Definition 5yr survival after 
surgery 

I T1 or T2, no lymph node or metastatic 
involvement 

93% 

II T3 or T4, no lymph node or metastatic 
involvement 

77% 

III Any T, with lymph node involvement 
(N1 or N2) but no metastases 

48% 

IV Metastatic disease (any T, any N) 6%-40%* 
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1.4.2 Adjuvant chemotherapy for CRCLM 

The evidence for adjuvant chemotherapy for CRCLM is less well established than 

that for primary CRC, with only limited randomised controlled trial (RCT) evidence 

for the use of adjuvant chemotherapy in patients presenting with resectable 

CRCLM.  The EORTC 40983 trial (n=364) compared 6 cycles of FOLFOX pre- and 

post- liver resection to surgery alone and demonstrated an increase in 3yr DFS 

from 28.1 to 36.2%.(116)  Other studies have demonstrated a non-significant 

increase in DFS with postoperative FOLFOX or FOLFIRI (folinic acid + fluorouracil 

+ irinotecan).(117, 118)  Whilst the results of the EORTC trial has led to many 

centres advocating pre-operative rather than post-operative adjuvant chemotherapy 

for earlier control of micrometastatic disease, there is currently no evidence 

supporting one over the other, and pre-operative chemotherapy is associated with 

increased steatosis, steatohepatitis, liver vascular lesions, and significantly higher 

postoperative complications.(119, 120) 

1.4.3 Neoadjuvant chemotherapy for CRCLM 

Neoadjuvant chemotherapy to downsize disease is based on FU in combination 

with either irinotecan or oxaliplatin.  In a recent review by the United Kingdom 

National Institute for Health Research, resection rates increased from 7-9% to 35-

51% with these regimens.(121)  More recently cetuximab has been approved by the 

National Institute for Health and Care Excellence (NICE) for first line combination 

therapy with either FOLFOX or FOLFIRI for patients with unresectable CRCLM if 

disease is confined to the liver, the primary tumour has already been resected or is 

potentially operable, and the patient is fit for resection if they demonstrate adequate 

response to chemotherapy.  This approval is based on the results of two studies in 

patients with inoperable CRCLM.  The CRYSTAL study (n=1198) demonstrated 

that addition of cetuximab to FOLFIRI was associated with increased DFS, and a 

non-significant increase in OS from 21 months to 24.9 months.  Post-hoc subgroup-

analysis of patients who were KRAS wildtype demonstrated an increased median 



18 

 

DFS from 8.7 to 9.9 months and increased response rate from 43.2% to 

59.3%.(122)  Similar results were seen in the OPUS study (n=337), with the 

addition of cetuximab to FOLFOX increasing response rates from 36% to 45% 

(37% to 60.7% in KRAS-WT) and a statistically significant increase in DFS from 7.2 

months to 7.7 months, although this small increase in DFS is of limited clinical 

relevance.(123)  A further study has evaluated the effect of giving both oxaliplatin 

and irinotecan in combination with folinic acid and FU (FOLFOXIRI) compared to 

FOLFIRI alone for patients with unresectable disease.(124)  The addition of 

oxaliplatin was associated with an increase in response rate from 34% to 60%, an 

increase in R0 resection rate from 6% to 15%, and significantly increased DFS (6.9 

months to 9.8 months) and OS (16.7 months to 22.6 months).  The FOLFOXIRI 

combination was however associated with significantly increased peripheral 

neurotoxicity and neutropaenia.(124) 

 

1.5 Chemoprevention of CRCLM 

One further approach to treating CRCLM is through chemoprevention, with the aim 

of preventing the development of CRC and CRCLM in the first place.  A large body 

of evidence has accumulated to support COX inhibition as a potential target for 

prevention of CRC in humans.(41, 125, 126)   Large population-cohort and case-

control studies have consistently demonstrated a reduction in CRC incidence with 

regular use of aspirin or other non-steroidal anti-inflammatory drugs.  In a recent 

meta-analysis of 12 such studies, including over 405,000 patients, the pooled 

relative risk (RR) of CRC in patients taking regular non-aspirin NSAIDs was 0.74, 

and RR 0.5 for patients taking regular NSAIDs including aspirin.(127)  Three RCTs 

of the chemopreventative efficacy of the selective COX-2 inhibitors rofecoxib and 

celecoxib in patients with recently removed sporadic colorectal adenomas all 

demonstrated significant reductions in polyp incidence at 3 years follow up of 

between 25-37%.(128-130)  A fourth RCT demonstrated a 28% reduction in polyp 
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number after 6 months of celecoxib supplementation in patients with FAP.(131)  

However, analysis of safety data from these trials demonstrated an increased risk 

of cardiovascular events in the COX-2 inhibitor groups, primarily myocardial 

infarction and ischaemic cerebrovascular events.  A meta-analysis of 145,373 

patients in 138 placebo controlled COX-2 inhibitor trials demonstrated an increased 

risk of myocardial infarction (hazard ratio HR 1.86), but no difference in thrombotic 

strokes in the COX-2 inhibitor group.(132)  This increased cardiovascular risk led to 

rofecoxib being withdrawn in 2004, and the premature closure of another large RCT 

(anticipated n=7000) comparing rofecoxib to placebo for chemoprevention following 

CRC resection, which would have more specifically included CRCLM development 

in their endpoints of DFS and OS.(133)  Further study into the toxicity and tissue 

specificity of COX-2 inhibitors is required if they are to have a role in CRC 

chemoprevention.(134)  

RCTs have also investigated the chemopreventative effect of aspirin.  In patients 

with previously resected colorectal cancer (n=635), 325mg daily aspirin reduced 

adenoma incidence at 3yr colonoscopy by 37% compared to placebo, together with 

a 39% reduction in mean adenoma number and an increase in time to development 

of first adenoma.(135)  A similar study by the same group compared daily aspirin 

81mg vs. 325mg vs. placebo in patients with recently documented adenoma 

(n=1121).  At 3 year colonoscopy the 81mg aspirin group had a 19% reduction in 

adenoma incidence compared to placebo. There was a 4% reduction in adenoma 

risk (non-significant) in the aspirin 325mg group compared to placebo.(136)  In the 

latter study, risk of advanced adenomas (>1cm or with tubulovillous or villous 

features, severe dysplasia or invasive cancer) was reduced in both aspirin groups, 

although again this did not reach statistical significance in the high dose aspirin 

group (HR 0.59 and 0.83 respectively, 40% and 18% reduction respectively), 

whereas no difference in advanced adenomas was seen in the former study.  

Aspirin 600mg daily has also been shown to reduce the risk of colorectal cancer in 
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patients with HNPCC (n=861).  At 4 year follow-up CRC incidence in the aspirin 

group was 4.2% compared to 6.9% in the placebo group (39% reduction).(137)  

Recent meta-analyses of five studies of aspirin in primary and secondary 

cardiovascular protection have shown a reduction in 20-year CRC incidence of up 

to 70% in patients taking aspirin for 5 years or more (n=14,033).  There was no 

increased benefit of taking aspirin doses above 75mg daily.(138).  A second meta-

analysis by the same group of 8 studies of aspirin vs. placebo for at least 4 years, 

demonstrated a reduction in all-cancer death at 20 years follow-up in the aspirin 

group compared to placebo group.(139)  Again, there was no increased benefit to 

aspirin doses greater than 75mg daily.  The benefit for reduced CRC incidence was 

only apparent after 10 years follow-up, with a HR 0.51 at 10-20yrs follow-up.  This 

is consistent with the lag phase in colorectal carcinogenesis, widely taken to be 

approximately 10 years for the development of CRC from a colorectal adenoma.  

As with COX-2 inhibitors, the side-effect profile of aspirin with an increased 

tendency for gastrointestinal bleeding (140) may limit its attractiveness as a long-

term chemopreventative agent, especially in those without cardiovascular disease 

or cardiovascular risk factors.  However, based on the findings of these recent 

meta-analyses there is renewed interest in the risk-benefit ratio of long-term low-

dose aspirin for the chemoprevention of CRC.(141, 142)  

 

1.6 Omega-3 Polyunsaturated Fatty Acids (PUFAs) 

‘Essential’ fatty acids are those which are required for biological processes, but 

which humans are unable to synthesize and must therefore obtain from dietary 

sources.  The parent ω-3 PUFA α-linolenic acid (ALA, 18:3) and parent ω-6 PUFA 

linoleic acid (LA, 18:2) are both found in vegetable oils.  Humans can easily 

metabolise LA to form the ω-6 PUFA arachidonic acid (AA, 20:4).  However, 

endogenous production of the ω-3 PUFAs eicosapentaenoic acid (EPA, 21:5) and 

docosahexaenoic acid (DHA, 22:6) from ALA by humans is so small as to be 
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insignificant.(143)  Therefore, the main ω-3 PUFAs EPA and DHA are considered 

‘essential’ and are obtained predominantly from cold water, oily fish such as 

mackerel, salmon and sardines.  White fish, such as cod and haddock, and shellfish 

typically have much lower ω-3 PUFAs levels.(144)  Table 1.3 details the EPA and 

DHA content of commonly consumed fish.   

 

Fish 
EPA+DHA (mg) per 

140g (5oz) serving 

Salmon 1500 - 3000 

Anchovies, Herring 2900-3000 

Mackerel 1700 - 2650 

Tuna: Bluefin 2150 

Sardines 1400 - 2000 

Oysters: Pacific 1950 

Trout: Freshwater 1250 - 1400 

Mussels 1150 

Squid 950 

Crab 250 - 700 

Tuna: Skipjack and Yellowfin 200 - 450 

Plaice, and Sole 450 

Tuna: Light canned 200 - 400 

Cod 250 

Scallops 250 

Haddock 250 

Shrimp 150 

 

Table 1.3.  EPA and DHA content of common fish and seafood.  Figures are rounded to 

the nearest 50mg per typical 140g cooked weight portion. 

 

PUFAs are biologically important, with roles in phospholipid membrane structure 

and function, as well as cellular signalling and lipid metabolism.  PUFAs can be 

liberated from phospholipid membranes by the phospholipase A2 family of enzymes 

and are metabolised by three main pathways: i) the cyclooxygenase (COX) 
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pathway, ii) the lipoxgenase (LOX) pathway and iii) the cytochrome P450 

monoxygenase (CYP450) pathway.   Metabolites derived from the ω-6 PUFA AA, 

such as prostaglandin (PG)E2, are typically pro-inflammatory and have been linked 

with initiation and progression of colorectal carcinogenesis, whereas those derived 

from ω-3 PUFAs (e.g. PGE3) are less pro-inflammatory, and may even have anti-

cancer properties.  Excellent reviews are already available on the metabolism of ω-

3 PUFAs,(145) the implications of inhibition of AA metabolism on cell proliferation 

(146) and the effects of ω-6 and ω-3 PUFAs metabolites on colorectal 

carcinogenesis.(147) 

 

1.7 Mechanisms of the anti-neoplastic activity of ω-3 PUFAs  

Current knowledge of the anti-neoplastic activity of ω-3 PUFAs has been 

comprehensively reviewed in articles by Calviello, Chapkin and Smith.(145, 147, 

148)  The main mechanisms that have been proposed for anti-neoplastic activities 

of ω-3 PUFAs are:  

 i) modulation of COX activity 

 ii) alteration of membrane dynamics and cell surface receptor function  

 iii) increased cellular oxidative stress 

 iv) production of novel anti-inflammatory lipid mediators including resolvins, 

 protectins and maresins  

The relative contributions of and interactions between these activities to the anti-

cancer properties of ω-3 PUFAs, however, remains unclear.  A summary of each of 

these mechanisms focusing on more recent findings is provided here.  Two further 

mechanisms by which ω-3 PUFAs may also have anti-neoplastic activity will also 

be briefly discussed; the direct activation of G protein-coupled receptors (GPCRs), 

and the effect on nuclear factor kappa beta (NFκB) signalling. 
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1.7.1 Modulation of COX activity 

EPA can act as an alternative substrate for COX-2, instead of AA, leading to a 

reduction in formation of pro-tumorigenic ‘2-series’ PGs (e.g. PGE2) in favour of ‘3-

series’ PGs (e.g. PGE3) in several cell types including CRC cells (Figure 1.5).(145, 

149, 150)  PGE3 has anti-tumorigenic activity against human lung cancer cells in 

vitro (150) and inhibits pro-tumorigenic PGE2-EP4 receptor signaling in human CRC 

cells.(149)  Recently, a ‘PGE2 to PGE3 switch’ has been demonstrated in colorectal 

mucosa of rats treated with fish oil.(151)  However, reduction of PGE2 synthesis 

and/or generation of PGE3 following EPA treatment remains to be demonstrated in 

human CRC tissue.  Meanwhile, one study demonstrated that in vitro and in vivo 

growth of HCT-116 CRC cells was inhibited by ω-3 PUFAs irrespective of whether 

the cells expressed COX, suggesting that inhibition can occur via COX-independent 

mechanisms.(152) 

1.7.2 Alteration of membrane dynamics and cell surface receptor function 

There is some evidence that the incorporation of ω-3 PUFAs into cell phospholipid 

membranes alters the fluidity, structure and/or function of lipid rafts or 

calveolae.(153)  These are sphingolipid and cholesterol rich microdomains that float 

freely in the cell membrane.  The localization of cell surface receptors, such as 

EGFR,(154) in lipid rafts is believed to be crucial for downstream receptor signaling 

controlling proliferation and apoptosis.(155, 156)  In a recent study DHA, but not 

EPA, suppressed CRC cell proliferation via an EGFR dependent mechanism, with a 

reduction in EGFR localisation to lipid rafts, suppression of EGFR signaling, and an 

increase in EGFR degradation.  A reduction in EGFR signaling was also seen in the 

colonic epithelium of mice supplemented with DHA.(157)  ω-3 PUFAs could alter 

EGFR function by changing receptor behaviour in lipid rafts but EPA could also 

decrease trans-activation of EGFR by reduction in PGE2 synthesis.(63)   
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Figure 1.5  The effect of eicosapentaenoic acid (EPA) with or without concurrent 

aspirin on cyclooxygenase (COX) activity.  Adapted from: Cockbain et al. Omega-3 

polyunsaturated fatty acids for the treatment and prevention of colorectal cancer. Gut 

2012;61:135-149 

 

 A) When arachidonic acid (AA), derived mainly from the dietary ω-6 polyunsaturated fatty 

acid (PUFA) linoleic acid in "western" diets is the main substrate for COX-1 and COX-2, 

prostaglandin(PG)E2 is the predominant metabolite in colorectal tissue. B) EPA can act as 

an alternative substrate for both COX-1 and COX-2.  It effectively inhibits COX-1 activity, 

but modulates COX-2 activity such that PGH3 is the predominant metabolite.(145)  This is 

then converted to other three-series PGs, including PGE3, by PG synthases.  Enzymatic 

turnover of EPA is approximately three-fold less than that of AA, so the net result is a 

reduction in COX-2 synthesis of PGE2 and the production instead of (smaller quantities of) 

PGE3.(145)  C) Aspirin irreversibly acetylates COX-1 and COX-2.  COX-1 is effectively 

inhibited.  However, acetylated COX-2 can metabolise EPA to produce 18R-

hydroxyeicosapentaenoic acid (HEPE) and 18S-HEPE instead of PGH3.  HEPEs can be 

further metabolised by 5-lipoxygenase (5-LOX) to produce E-series resolvins, in 

combination with a reduction in PGE2 production.(158, 159)  D-series resolvins are 

produced via docosahexaenoic acid metabolism by LOX-dependent pathways.   
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1.7.3 Increased oxidative stress 

Omega-3 PUFAs may have an anti-neoplastic effect through alteration in the 

cellular redox state and increased oxidative stress.  PUFAs are highly 

peroxidisable, which generates reactive oxygen species (ROS) such as the 

superoxide radical.  Many tumour cells display altered cellular pathways for the 

handling of ROS including depletion of the major intracellular antioxidant, 

glutathione.  A subsequent elevation of intracellular ROS levels by ω-3 PUFAs has 

been hypothesised to induce cancer cell apoptosis.(160)  A potential beneficial 

interaction between ω-3 PUFAs and dietary fibre leading to induction of colonocyte 

apoptosis has been elegantly studied by Chapkin and colleagues.(161-163).   

1.7.4 Novel anti-inflammatory lipid mediators 

In the presence of aspirin, which irreversibly acetylates the COX enzyme, EPA 

drives COX-2-dependent production of resolvin (Rv) E1 (5S,12R,18R-

trihydroxyeicosapentaenoic acid) via metabolism of 18R-hydroxyeicosapentaenoic 

acid by 5-LOX (Figure 1.5).(164)  18R-RvE1 has been detected in plasma of 

healthy volunteers in ng/ml quantities after aspirin and EPA ingestion.(158)  More 

recently, synthesis of the 18S enantiomer of RvE1 has been demonstrated after 

EPA and aspirin treatment in healthy volunteers.(159) The precursors of E-series 

resolvins may also be produced independently of COX by direct CYP450 

metabolism of EPA.(165)   

Metabolism of DHA can produce D-series resolvins, via a LOX-dependent pathway 

to produce 17S-resolvins, or via acetylated-COX-2 leading to 17R-resolvin 

synthesis.(166)  DHA can also be metabolised by leucocyte-mediated pathways to 

produce 17S-docosatrienes termed protectins (167) or by macrophage-mediated 

pathways to produce 14-LOX-derived products termed maresins.(168)  These 

newly described families of EPA- and DHA-derived lipid mediators all share anti-
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inflammatory and inflammation resolution activity in animal models of acute 

inflammation.(168, 169)   

Cell signalling via these novel lipid mediator families is best characterised for RvE1.  

Both 18R and 18S enantiomers of RvE1 are ligands for ChemR23 and BLT1 

GPCRs.(159)  RvE1 has been demonstrated to induce expression of intestinal 

alkaline phosphatase in human CRC cells in a ChemR23-dependent manner and 

abrogate chemically-induced colitis in mice.(170)  It is currently not known whether 

ω-3 PUFA-derived resolvins exhibit anti-neoplastic activity.  However, it is known 

that ChemR23-dependent RvE1 signalling inhibits NFκB activation, which is a 

critical regulator of early-stage colorectal carcinogenesis.(171)  

1.7.5 Direct signalling via G protein-coupled receptors 

Omega-3 PUFAs are known to bind and directly activate GPCRs such as 

GPR120(172) and GPR40.(173)  Whilst the GPR120 signalling pathway has been 

shown to mediate potent anti-inflammatory effects,(172) the potential role of GPCR 

signalling in mediating an anti-cancer activity of ω-3 PUFAs has yet to be studied. 

1.7.6 NFκB signalling 

The transcription factor NFκB is a key component of immune and inflammatory 

signalling pathways, and has been implicated as a regulator of oncogenesis.(174)  

The NFκB family contains five proteins (p50, p52, p65, RelB and c-Rel) which exist 

as homo- or hetero-dimers.  The p50/p65 and p50/p50 dimers are the most 

common.(175)  These dimers are retained in cytoplasm bound to specific inhibitors 

(IκBs).  Cell stimulation activates IκB kinase (IκK) which in turn phosphorylates IκB 

inducing its degradation.  This releases the NFκB dimer which translocates to the 

nucleus and coordinates gene transcription.  NFκB activation promotes the 

expression of anti-apoptotic genes such as Bcl-2, proinflammatory cytokines such 

as IL-1B and TNFα, inducible enzymes such as COX-2, cell adhesion molecules 

such as ICAM-1 and proteases such as MMP-9.(176, 177)  The ability of NFκB to 
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promote cell proliferation, migration, metastasis and angiogenesis and to inhibit 

apoptosis has led to interest in the role of NFκB in carcinogenesis, and in its 

inhibition as a possible chemotherapeutic target.(Karin 2004)  Omega-3 PUFAs 

have been shown to inhibit IκB phosphorylation and reduce NFκB activation in CRC 

cell lines (178, 179) and inhibit NFκB activation in endothelial cells.(180)  Omega-3 

PUFA supplementation has also been associated with reduced expression of IKK 

and NFκB in a transgenic mouse prostate cancer model.(181)  In a breast cancer 

xenograft model, ω-3 PUFAs reduced NFκB DNA binding and NFκB-dependent 

transcription of the anti-apoptotic genes Bcl-2 and Bcl-XL.(182)  Modulation of 

NFκB signalling therefore represents a further mechanism by which ω-3 PUFAs 

might exert an anti-CRC effect.   

 

1.8 Pre-clinical studies of ω-3 PUFAs in the treatment of colorectal cancer 

1.8.1 In vitro studies 

Many in vitro studies have explored the anti-neoplastic activity of ω-3 PUFAs 

against human CRC cells, with both EPA and DHA treatment being associated with 

reduced cellular proliferation (152, 183-189) and increased apoptosis.(183, 184, 

187, 190)  It remains unclear from the few studies comparing EPA and DHA 

whether there is any significant difference in anti-proliferative and/or pro-apoptotic 

activity.  Calviello et al. reported a more pronounced reduction in cell number with 

EPA than with DHA,(186) whereas Chen et al. have reported a lower cell number 

with DHA than with EPA, and that only DHA induced apoptosis.(187)  Both ω-3  

PUFAs have been shown to reduce COX-2 expression and PGE2 production.(149, 

180, 184, 186)  Human CRC cell lines treated with ω-3 PUFAs have demonstrated 

increased membrane fluidity (188) and lipid peroxidation,(188, 189) reduced levels 

of VEGF, β-catenin, PPARγ, BCL-2 and matrix metalloproteinase, and reduced 

extracellular signal-related kinase-1/2 signalling.(156, 184, 186, 187, 190, 191)  
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Suppression of angiogenic factors by ω-3 PUFA treatment has also been 

demonstrated in a number of in vitro studies.  Calviello et al (2004) demonstrated 

that EPA supplementation of HT-29 cells resulted in a significant reduction of VEGF 

expression (90% reduction at 30µM EPA), COX-2 expression (37% reduction at 30 

µM EPA), and PGE2 production.(186)  The addition of excess PGE2 restored VEGF 

expression, demonstrating that one mechanism of inhibition of VEGF by ω-3 

PUFAs is via the COX-2 pathway.  EPA also reduced the phosphorylation of ERK-1 

and ERK-2 which has previously been shown to induce VEGF expression in 

response to PGE2 stimulation.(192)  Other in vitro studies have investigated the 

effects of ω-3 PUFAs on endothelial cells.  Studies culturing endothelial cells in the 

presence of ω-3 PUFAs, typically EPA or DHA added to culture medium at 

concentrations between 15µM and 100µM, have shown increased endothelial cell 

membrane EPA/DHA content,(193) reduced COX-2 expression and PGE2 

production,(180) reduced cell proliferation,(194, 195) reduced cell migration (194, 

196) and reduced VEGF-stimulated endothelial cell microtubule formation.(193, 

194, 196)  Omega-3 PUFAs have therefore been shown to have both direct and 

indirect anti-angiogenic properties through effects on endothelial and epithelial cells 

respectively. 

1.8.2 Animal studies 

The effect of ω-3 and ω-6 PUFA supplementation on the growth of human CRC cell 

lines grown as xenograft tumours in immunocompromised mice has been studied 

widely (Table 1.4).  There has been a consistent 40-60% reduction in xenograft size 

in rodents supplemented with ω-3 PUFAs compared with controls.(152, 186, 197)  

Similar findings have been reported for studies of rodent CRC cell allograft tumours 

(Table 1.4).(198-202)  The ω-3 PUFA content of tumours increased, at the expense 

of AA, in animals supplemented with ω-3 PUFA,(152, 201-203) together with a 

reduction in expression of COX-2 (186, 199) and a reduction in tissue PGE2 

levels.(186)  In the one study which measured tumour vascularity, oral ω-3 PUFA 
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supplementation (1g/kg body weight) was associated with a 46% reduction in 

tumour vascularity compared to controls.(186)  Reduced tumour vascularity has 

also been demonstrated in mammary tumours grown in mice given ω-3 PUFA 

supplemented diets.(204, 205)  Some studies have investigated the effects of 

conjugated EPA.  Conjugated EPA is a mixture of positional and geometric isomers 

of EPA, where the carbon-carbon double bonds form a "conjugated" chain of 

alternating double and single carbon-carbon bonds (Figure 1.6).  Conjugated EPA 

has been shown to suppress the growth of DLD-1 human CRC cell tumours in nude 

mice, which was associated with increased lipid peroxidation in the phospholipid 

membrane, increased levels of oxidative stress and increased apoptosis.(206)  

 

 

 

Figure 1.6.  Comparison of the structure of EPA and conjugated EPA.   

Note the spacing of the carbon-carbon double bonds in EPA (double bonds at carbons 

3,6,9,12,15), compared to the presence of alternating carbon-carbon single bond and 

carbon-carbon double bonds in conjugated EPA (double bonds at carbons 3,6,11,13,15).  In 

chemistry, conjugation is the overlapping of p-orbital electron fields, made possible in 

compounds with alternating single and double bonds.  The overlapping p-orbitals bridge the 

intervening single bond and electrons can delocalise across the aligned p-orbitals.  The 

system is thus said to be "conjugated".  Usage of the term "conjugated" in this sense is 

therefore different form the use of the term "conjugated" in biology where it is often used to 

describe the joining together of two compounds.   
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Study Model N= Treatment Groups Timing/Duration Outcome measure(s) Results (changes are for ω-3 PUFA group vs. 
control group unless stated) 

Cannizzo 
1989 (198) 

BALB/c mouse, CT26 CRC 
cells into 1) descending 
colon 2) tail vein 

330 5% & 25% MO1 vs.  
5% & 25% SAFO 

30 days pre- and 28 
days post- injection 

1) Tumour size 
2) No. lung mets 

3-5x↓ tumour size MO vs. SAFO grps  
↑ lung mets in 25% SAFO grp vs. all other grps 

Iigo 1997 
(202) 

CDF1 mouse 
Co 26Lu CRC cells subcut 

230 0.1/0.2ml EPA vs. DHA vs. 
OA vs. LA ig daily 

Day 5-21 post-injection  
 
 

Tumour size, no. lung mets 
Plasma/tumour PUFA   
 

EPA/DHA grps dose dependent ↓tumour size and 
↓lung mets 
↑EPA/DHA & ↓AA in plasma & tumour  

Calder 1998 
(203) 

Nude mouse 
HT-29 CRC cells subcut 

90 20% CO/SAFO/MO2/OO 
vs. 2.5% CO Ctrl 

3 wk pre- and 2 wk 
post- injection 

Tumour size and PUFA content 65-74% ↑tumour size in high fat grps except MO  
↑tumour EPA/DHA + 57%↓AA in MO grp 

Boudreau 
2001 (152) 

Nude mouse 
HCT116 CRC cells subcut  

102 18% MO3 vs.20% SAFO  
 

2 wk pre- and 3 wk 
post- injection 

Tumour size 
Tumour PUFA content  

50% ↓ tumour size  
↑ tumour EPA and 50% ↓ tumour AA   

Kato 2002 
(197) 

Nude mouse 
WiDR CRC cells subcut 

24 8% & 24% CO 
16% MO4 vs. 16% GAO 

53 days post-injection Tumour wt Tumour wt vs. 8% CO tumour wt: 
87%↓ (GAO), 54%↓ (MO), 36%↑ (24% CO) 

Togni 2003 
(201) 

Wistar rat 
Walker 256 tumour cells  
subcut 

78 1g/kg body wt. MaxEPA  
vs. CO vs. Ctrl 
 
 

10 wk pre- and 2 wk 
post- injection 
 
 

Tumour wt & PUFA content 
Cachexia biomarkers (serum 
glucose, chol, lactate, & 
liver/muscle glycogen)  

40/60% ↓ tumour wt vs. CO/Ctrl 
63/42%↓ tumour AA:EPA vs  CO/Ctrl 
↓cachexia biomarkers 

Calviello 
2004 (186) 
 

Nude mouse 
HT-29 CRC cells subcut 

45 1g/kg body wt. EPA vs. 
DHA vs. H2O Ctrl ig 

1wk pre- and 4 wk post- 
injection 

Tumour size, AI, PI, MVD 
Tumour COX-2 expression 
Tumour PGE2 

No difference in effect EPA vs DHA  
EPA/DHA  vs. Ctrl both showed 55%↓ tumour size,  
50%↓ PI, 1.5x↑ AI, ~50%↓ MVD, 40%↓ PGE2 , 
30%↓COX2 and ↓VEGF  

Tsuzuki 2004 
(206) 

Nude mouse 
DLD-1 CRC cells subcut 

40 50mg 20% CLA/EPA/CEPA 
daily vs. 50mg SAFO Ctrl 
 

4 wk post-injection Tumour wt, DNA fragmentation 
Membrane phospholipid 
peroxidation 

Tumour wt ↓80% CEPA vs Ctrl.   
DNA fragmentation ↑4x CEPA vs Ctrl 
↑ phospholipid peroxidation CEPA vs. all grps 

Pizato 2005 
(200) 

Wistar rat 
Walker 256 tumour cells  
subcut 

60 20% FO1 vs. 20% SUNO vs. 
Ctrl 
 
 

8 wk pre- and 2 wk 
post- injection 
 
 

Tumour wt 
Lipid peroxidation products 
Cachexia biomarkers (blood 
glucose, TAG, chol) 

60% ↓tumour wt 
34% ↑ lipid peroxidation products 
↓cachexia biomarkers 
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Table 1.4  In vivo pre-clinical studies of ω-3 PUFA supplementation for the treatment of CRC 

 
Abbreviations:  ↑ = increase, ↓ = decrease,    = no significant difference, AI = apoptosis index, chol = cholesterol, CO = corn oil, Ctrl = control, FO= fish oil (FO1 = 

13%EPA/20%DHA, FO2 = 18% EPA/12%DHA), GAO = golden algae oil (DHA only), grp = group, grps = groups, ig = intragastric, LA = linoleic acid, MaxEPA = 

18%EPA/12%DHA, mets = metastases, MO = menhaden oil (MO1, MO3, MO4 ω-3 PUFA content unspecified, MO2 11%EPA+5.2%DHA), MVD = microvessel 

density, OA = oleic acid, OO = olive oil, PI = proliferation index, SAFO = safflower oil, SAFO = safflower oil, subcut = subcutaneous, CLA = conjugated linoleic 

acid, CEPA = conjugated EPA,SUNO = sunflower oil, TAG = triacylglycerol, VEGF = vascular endothelial growth factor, wt = weight

Study Model N= Treatment Groups Timing/Duration Outcome measure(s) Results (changes are for ω-3 PUFA group vs. 
control group unless stated) 

Mund 2007 
(199) 

Wistar rat 
Walker 256 tumour cells  
subcut 

70 1g/kg FO2 vs CO vs Ctrl 
 
 

70 days pre- and 14 days 
post- injection 

Tumour weight, AI & COX-2 
Lipid peroxidation products 
Plasma PGE2 

Tumour weight 50%↓(FO) & 30%↑(CO)   
AI 4x ↑(FO) & 50% ↓ (CO) 
COX2 45%↓(FO) & 50%↑(CO) 
Plasma PGE2 ↓ (FO) &    (CO) 
FO 3x↑ lipid peroxidation products 
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1.8.3 Models of CRC metastasis 

Few pre-clinical studies have investigated the effect of ω-3 PUFA supplementation 

on the development of metastatic disease, with only four studies using a liver 

metastasis model, and a further two using a lung metastasis model.   Iwamoto et al. 

supplemented F344 rats with EPA (9.5% w/w as the ethyl ester) for 1 week pre- 

and 3 weeks post-injection of ACL-15 cells into the superior mesenteric vein.  They 

demonstrated a 40% reduction in number and 44% reduction in size of liver 

metastases in rats supplemented with EPA compared to controls fed a standard 

commercial diet containing 5.1% total fat .  This was associated with a reduction in 

tumour cell proliferation index, but no change in apoptosis index, and down-

regulation of vascular cell adhesion molecule 1 (VCAM-1).  Rats fed a diet high in 

ω-6 PUFA (10% w/w LA) showed a 3-fold increase in number and 1.5-fold increase 

in the size of metastases.(207)   

Gutt et al. supplemented WAG/Rij rats with an EPA/DHA mixture (3.23% ω-3 

PUFA; EPA:DHA ratio 3:2)  for 3-days pre- and 4 weeks post-injection of CC531 

cells into the spleen.  They demonstrated a 70% reduction in incidence and 50% 

reduction in size of hepatic and extra-hepatic metastases, as well as a 30% 

reduction in tumours expressing VCAM-1.(208) More recently, a study by Hawcroft 

et al. supplemented BALB/c mice with 5% w/w EPA (95% pure free fatty acid) for 

14 days pre- and 14 days post- injection of MC-26 cells into the spleen.  Notably in 

this study, injection was performed under anaesthesia percutaneously using 

ultrasound guidance rather than through a midline laparotomy as in other studies.  

They demonstrated a 36% reduction in liver weight (used as a measure of tumour 

burden) in mice supplemented with EPA compared to controls fed a diet containing 

5% corn oil.  This was associated in the EPA group with a 9-fold increase in tumour 

EPA content, 54% reduction in tumour AA content, and 19% reduction in tumour 

proliferation index.  There was also a 60% reduction in tumour PGE2 together with a 
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significant increase in tumour PGE3, the first in vivo demonstration in tumour tissue 

of a PGE2 to PGE3 switch with ω-3 PUFA supplementation.(209)    

By contrast, Griffini et al supplemented WAG/Rij rats with an EPA/DHA mixture 

(20% fish oil v/w; EPA:DHA ratio approximately 3:2) 3 weeks pre- and 3 weeks 

post-injection of CC531 cells into the portal vein.  They demonstrated a 10-fold 

increase in liver metastases in rats supplemented with ω-3 PUFAs compared to 5% 

soybean controls and a 4-fold increase compared to those animals supplemented 

with 20% safflower oil (high in ω-6 PUFA).(210)  This was associated with an 

increase in liver:body weight ratio and an increase in mitotic tumour cells in the ω-3 

PUFA group.  These results are difficult to reconcile with the studies of Gutt, 

Iwamoto and Hawcroft, and with the extensive in vitro and in vivo data suggesting 

an anti-CRC activity of ω-3 PUFAs.  The 20% fish oil preparation used in the Griffini 

study was a much higher dose than that used in any other in vivo study, and is far 

in excess of any clinically attainable dose in humans.   

Two further studies have modelled the effect of ω-3 PUFA supplementation on the 

development of pulmonary metastases, by measuring lung colonization after 

injection of CRC cells into the tail vein.(198, 202)  One demonstrated that 

supplementation of either EPA or DHA (0.1 ml aliquots daily of 98% pure EPA or 

DHA ethyl ester) was associated with significantly fewer lung colonisations at 12 

days compared to controls (54% and 58% fewer colonies respectively).(202)  The 

other study found that whilst supplementation with high-fat safflower oil (24.7% by 

weight for 30 days pre-inoculation) caused a 5-fold increase in the number of 

pulmonary colonies, there was no difference in low (5%) or high (24.7%) ω-3 PUFA 

intake on the number of metastases compared with controls.(198)   
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1.9 Clinical trials of ω-3 PUFAs in patients with CRC  

1.9.1 Single agent therapy 

Despite strong in vitro and in vivo evidence for direct anti-CRC activity of ω-3 

PUFAs, only two trials have investigated the anti-neoplastic effect of ω-3 PUFAs in 

patients with CRCLM and no such trial has been performed in patients with CRC.  

The first of these two trials was a recently published double-blind RCT by 

Dennison’s group in Leicester.  They randomized 20 patients to receive a 

continuous 72hr infusion of total parenteral nutrition (TPN) at 1.5ml/kg/hr.  For the 

ω-3 PUFA supplementation group, the standard 2000ml TPN was compounded 

with 500ml of Lipidem® (B Braun) which contained a 50:40:10 (vol/vol/vol) mix of 

medium-chain fatty acids, soybean oil and fish oil, including approximately 3.7g 

EPA + 2.55g DHA.  TPN in the control group was compounded with 500ml of 

Lipofundin® (B Braun) which contains a 50:50 (vol/vol) mix of medium-chain fatty 

acids and soybean oil.  Patients underwent resection of liver metastases a mean of 

9 days (range 5-12 days) after completion of TPN.  There was a rapid uptake of ω-3 

PUFAs into plasma phospholipids, but no change in AA levels, in the 72 hours of 

TPN administration.  However, there was also a rapid return to baseline ω-3 PUFA 

levels by the time of surgery.(211)  There was no significant difference between the 

two groups in tumour EPA, DHA or AA content, although there was a trend in the 

ω-3 PUFA group for a higher total tumour ω-3 PUFA content and lower tumour ω-

6:ω-3 ratio in those patients with a shorter interval between finishing TPN and 

resection of their tumour.(212)  This interval between TPN and surgery limits the 

interpretation of changes in tumour ω-3 PUFA content.  It is not clear how quickly 

tumoural ω-3 PUFA levels rise or fall after iv supplementation, and extrapolation of  

tumoural PUFA data back to the time of finishing TPN, when plasma levels of ω-3 

PUFA were elevated, may be unreliable.   
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The second trial of ω-3 PUFA supplementation in patients with CRCLM is a Phase 

II double-blind RCT trial of oral EPA supplementation prior to resection of CRCLM, 

which is the basis of this MD work (clinicaltrials.gov NCT01070355). 

1.9.2 Adjuvant therapy with traditional chemo-radiotherapy 

In vitro and in vivo studies have shown that ω-3 PUFAs can potentiate the anti-

proliferative and pro-apoptotic effects of chemotherapy and radiotherapy used to 

treat CRC and other solid tumours.(213-217)  Despite this, only one published 

human study of the anti-cancer effects of combining ω-3 PUFAs with chemotherapy 

exists.  A Phase II study evaluated addition of 1.8 g DHA daily to an anthracycline-

based chemotherapy regimen for metastatic breast cancer. Patients were 

dichotomized based on high or low DHA incorporation into plasma phospholipids.  

The high DHA-incorporation group had a significantly longer time to disease 

progression (median 8.7 months vs. 3.5 months) and overall survival (median 34 

months vs. 18 months).(218)  Similarly, only one clinical study of combining ω-3 

PUFAs with radiotherapy was identified. This retrospective study of 143 patients 

who had been prescribed ω-3 fish oil (0.9 g EPA, 1.5 g DHA daily) for 18 weeks 

following radiotherapy for brain metastases found reduced radionecrosis (3.5% vs. 

14.1%) and improved overall survival (median survival 88.8 wks vs. 54.1 wks) 

compared to the 262 patients who had not been prescribed fish oil.(219)  Whilst un-

blinded and non-randomized, this study nevertheless demonstrated a clear survival 

advantage linked to ω-3 PUFA supplementation.  One further study demonstrated 

improved tolerability of chemoradiation for oesophageal cancer in patients taking ω-

3 PUFA supplements, with a reduction in the incidence of grade 2-4 neutropenia, 

diarrhoea and pharyngitis compared to those not taking supplements.(220)   

A paper published in Cancer Cell found that endogenous mesenchymal stem cells 

(MSCs) can become activated during platinum-based chemotherapy treatment and 

secrete fatty acids that induce resistance to chemotherapy.(221)  Mesenchymal 
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stem cells are known to be recruited to the stroma of tumours and help to mediate 

tumour growth, angiogenesis and metastasis by the secretion of growth factors and 

cytokines.(222-224)  In this paper, MSCs activated by platinum-based 

chemotherapy were found to secrete two fatty acids, including the ω-3 fatty acid 

hexadeca-4,7,10,13-tetraenoic acid (16:4, ω-3), that abolished the effect of a 

variety of chemotherapy drugs on C26 (colon cancer cell line) and LLC (lung cancer 

cell line) tumours in vivo.  These fatty acids were only secreted by MSCs exposed 

to platinum-based and not other types of chemotherapy drugs.  Additionally, other 

PUFAs including EPA, did not confer resistance to chemotherapy drugs in this 

model.  Inhibition of thromboxane synthase or COX-1, but not COX-2, prevented 

the MSC-induced resistance of chemotherapy.  The two fatty acids implicated were 

subsequently identified in humans treated with platinum-based chemotherapy.  

Interestingly, 16:4 ω-3 is also found in commercially available fish oil products.  

Such fish oil products fed to mice also induced chemotherapy resistance.  This 

study demonstrates an important new mechanism of chemotherapy resistance 

which is mediated by platinum-based chemotherapy activation of mesenchymal 

stem cells, via the production of two specific fatty acids, and suggests a possible 

negative effect of the use of mixed ω-3 PUFA supplements in patients being treated 

with platinum-based chemotherapies.    

There is a clear need for further human studies to evaluate the role of ω-3 PUFA 

supplementation in improving the efficacy and/or tolerability of chemotherapy and 

radiotherapy.  Two ongoing studies are investigating the combination of fish oil and 

chemotherapy in patients with advanced pancreatic cancer (clincialtrials.gov 

NCT01019382, and International Clinical Trials Registry Platform JPN-

UMIN000003658) and one in advanced oesophagogastric cancer (clincialtrials.gov 

NCT01870791). 
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1.10 Omega-3 PUFAs for the prevention of colorectal cancer 

1.10.1 Animal studies 

The differential effect of ω-3 and ω-6 PUFAs on the prevention of CRC has been 

demonstrated in a number of animal models of early-stage colorectal 

carcinogenesis.  Studies of rodents fed an ω-3 PUFA-supplemented diet versus an 

equivalent ω-6 PUFA-supplemented diet or low-fat control diet control have 

consistently reported a 20-50% reduction in chemically-induced tumour 

incidence,(161, 225-233) together with a 30-70% reduction in tumour multiplicity, in 

both carcinogen and ApcMin/+ mouse studies (Table 1.5).(226, 227, 230, 232, 234-

237)  Studies using the number of aberrant crypt foci (ACFs) as the primary end-

point have reported a similar magnitude effect with ω-3 PUFA supplementation 

(Table 1.5).(228, 231, 235, 238, 239)  These effects are directly related to ω-3 

PUFA supplementation rather than simply a reduction in ω-6 PUFA intake.(199, 

230, 240)  Whilst most in vivo studies have compared a mixture of EPA and DHA, 

attention is drawn to the few studies either directly comparing EPA and DHA (241), 

or using EPA (227, 232, 236)  or DHA (237, 242, 243) as single agents.  In general, 

similar results have been demonstrated with each of the two main ω-3 PUFAs.  

Analysis of mucosal PUFA content has consistently demonstrated incorporation of 

ω-3 PUFA, at the expense of AA content, in rodents supplemented with ω-3 PUFA 

compared to controls,(226, 227, 242) together with a reduction in mucosal PGE2 

,(151, 227, 236, 241, 244) reduction in mucosal cell proliferation (225, 226, 238) 

and an increase in mucosal cell apoptosis (Table 1.5).(151, 161, 162, 238, 244).  
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Study  
 

Model N= Treatment Groups Timing/Duration Outcome measure(s) Results (maximal changes  ω-3 PUFA group 
vs. Ctrl unless stated) 

Carcinogen-induced models 

Nelson 1988 
(234) 

Sprague-Dawley rat 
DMH  

50 17% MO1 vs. 17% CO  
vs. Ctrl 
 

7 wk pre- & 17 wk post- 
DMH 

Tumour incidence & 
multiplicity 
Incidence of metastases 

    tumour incidence  
35% ↓ tumour multiplicty 
    incidence of metastases 

Minoura 
1988 (227) 

Donryu rat  
AOM  

100 4.7% EPA vs. 5% LA   
 

15 wk pre- & 20 wk post- 
AOM 

Tumour incidence 
Tumour & colonic mucosal 
PUFA + PGE2 content 

50%↓tumour incidence,  75%↓multiplicity  
↑ EPA & ↓ AA in tumour & mucosa   
 80%↓tumoural  PGE2  

Reddy 1988 
(245) 

F344 rat 
AOM  

234 4% - 12% MO1 
 vs. 24% & 5% CO 

38 wk post- AOM Tumour incidence 
Tumour PUFA content 
 

50% ↑ tumour incidence + multiplicity in 
24% CO vs. all other grps  
↑ tumoural EPA+DHA with MO diets 

Deschner 
1990 (225) 

CF1 mouse 
AOM  
 

300 4%-16%  MaxEPA vs. 
4% & 20% CO 
 

2 wks pre- & 1-45 wk 
post- AOM 

Colonic mucosa PI & FAD 1wk  
Tumour incidence 45 wk 

Dose dependent ↓ FAD  
38%↓ PI in 16% MO grp  vs. 20% CO 
50%↓ tumour incidence 16%/10% MO grp 

Reddy 1991 
(229) 

F344 rat 
AOM  

273 18% MO2 vs  
23.5% & 5% CO 
 

2 wk pre- & 36 wk post- 
AOM.  Diet crossover 3/7 
post- AOM. 

Tumour incidence 
 

↓ tumour incidence and multiplicity when 
MO vs. 23.5% CO given in either initiation or 
post-initiation phases 

Takahashi 
1993 (242) 
 

F344 rat 
DMH  

97 0.7ml DHA vs 0.7ml  
H2O ig daily 

1 day pre- & 4/8/12 wk 
post-DMH 
 

No. of colonic ACFs 
Serum chol & PUFA content 

60% ↓ ACFs (↓ ACFs seen when DHA given 
in either initiation or post-initiation phase) 
50%↓ AA, 50%↑ DHA & EPA, 20%↓ chol. 

Hendrickse 
1995 (226) 
 

Wistar rat + colon 
anastomosis vs sham  
AOM 

160 20% FO1 vs. 20% CO 
 
 

3 wk pre- & 15/23 wk 
post- AOM  

Colonic mucosal PI 
Tumour incidence, size, no. 
Mucosal PUFA content 

40%↓ tumour incidence, 50%↓ multiplicity  
60%↓ peri-anastamotic tumours.   ↓PI 
↑EPA/DHA & 90%↓ AA in tumour/mucosa 

Chang 1998 
(161) 

Sprague-Dawley rat 
AOM  

260 11.5% FO2 vs. 15% 
CO +/- 6% cellulose 
vs. 6% pectin 

1 week pre- & 16/32 wk 
post- AOM 

Colonic tumour incidence 
Crypt PI/AI/cell differentiation 

20%↓ tumour incidence 
    PI , 20%↑AI, ↑ cell differentiation 
↑AI FO-pectin grp vs all other fat-fibre grps   

Takahashi 
1997 (243) 
 

F344 rat 
AOM  
 

96 1ml  DHA vs 1ml 
water ig daily 

4/12/36 wk No. of ACF and tumours 
Plasma PUFAs &  PGE2 

25%↓ ACF (wk 4/12) & 35%↓ tumour 
multiplicity,  50%↓ plasma PGE2, 75%↓ 
plasma AA, 30x↑ EPA, 6x↑DHA (wk 36) 
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Study  
 

Model N= Treatment Groups Timing/Duration Outcome measure(s) Results (maximal changes  ω-3 PUFA group 
vs. Ctrl unless stated) 

Carcinogen-induced models (continued) 

Good 1998 
(233) 

F344 rats 
AOM  

161 18% MO3 vs.  
5% & 23% CO 
 

5% CO 12 wk post-
injection then 6-12 wk 
experimental diet 

No. ACF 
No. + size colonic tumours 
 

15-20%↑ ACF vs. both CO grps  
25%↓ tumour incidence but 50%↑ tumour 
size MO vs. CO grps (both NS) 

Singh 1998 
(230) 

F344 rat 
AOM  
 

144 21% FO3  vs. 24% CO 
vs. Ctrl  

1/12/36 wk post- AOM  Tumour incidence & 
multiplicity 
 

FO grp 30%↓ tumour incidence & 
multiplicity.  23.5% CO grp 33%↑tumour 
incidence & 90% ↑multiplicity 

Latham 
1999 (238) 

Wistar rat 
DMH  

68 8% FO4 vs. 8% CO 
 

FO vs. CO 24/48hrs post-
DMH then 18 wk CO 

Crypt cell AI & PI (24/48hr) 
No.  ACF (18wks) 

↑ AI and ↓ PI at 24/48hrs 
50% ↓ACF at 18 wk 

Rao 2001 
(228) 

F344 rat 
AOM  

360 17% FO3 vs. 5% CO 
vs. 
20% mixed lipids  

CO 2 wk pre-AOM 
Experimental diets for 8-
38 wk post-AOM 

No. ACF, tumour incidence 
Colonic mucosa AI  
 

44%↓ ACFs , 30%↓ tumour incidence, 60% 
↓ tumour multiplicity & 2x ↑AI vs. 20% 
mixed lipid diet. 

Crim 2008 
(162) 

Sprague-Dawley rat  
AOM 

80 11.5% FO2 vs 15% CO 
+/- 5% butyrate 

3 wk pre- & 8 wk post-
AOM 

No. ACF, colonic mucosa AI,  
 

↑ ACFs CO + butyrate vs all grps 
↓ large ACFs and ↑AI in  FO + butyrate grp 
vs. FO alone or control.  

Vanamala 
2008 (151) 

Sprague-Dawley rat  
AOM  

20 15% FO5 + pectin vs.  
15% CO + cellulose 
 

32 days pre- & 31 wk 
post- AOM  

Colonic mucosa AI 
Colonic mucosa PGE2/PGE3  
β-catenin & PPARδ expression 

2x↑ AI & 78%↓ mucosal PGE2  
↑PGE3 (PGE3 not detected in CO group) 
↓ β -catenin & PPARδ expression 

Moreira 
2009 (231) 
 

Wistar rat 
DMH  

20 18% FO6 vs. 18% 
SOYO 
 

2 wk pre- & 36 wk post- 
DMH  

No. ACFs, adenoma incidence 
Colon/liver PUFA content 

47%↓ ACF, 80%↓ adenoma incidence 
5 x↑ ω-3-PUFA in colon + liver 
 60%-75%↓ n-6 PUFA in colon + liver 

Woodworth 
2010 (246) 

SMAD3
−/− 

mouse 
Helicobacter  induced 
colitis 

122 0.75% - 6% DHA vs. 
6% SAFO vs. 7% CO 
vs. Ctrl 

1. 8 wk pre- infection 
2. 8 wk pre- & 4 wk post- 
infection 

Colon inflammation/dysplasia 
Hepatic PUFA content 
Body wt. 

↑ inflammation/dysplasia 2.25%-6% DHA vs 
Ctrl.  5x↑ hepatic DHA content, 85% less 
wt. gain  & 10-18% ↓4wk survival in 6% 
DHA grp vs CO/SAFO/Ctrl  

Burlamaqui 
2012 (239) 

Wistar rat 
AOM 

36 8.2% lipid diet 
(4.5:3:1  ω-9:6:3)   
vs. 1.6% lipid diet  
(3.2:8:1  ω-9:6:3)   

16wk pre- & 15wk post-
AOM 

No. ACFs 
Body wt. 

12% ↑ body wt 
No difference in total no. ACFs 
33% ↓ no. of ACFs with >4 crypts 
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Table 1.5   In vivo pre-clinical studies of ω-3 PUFA supplementation for the prevention of CRC 

 

Abbreviations:      = no significant difference, ↓ = decrease, ↑= increase,  ACF = aberrant crypt foci, AI = apoptosis index, AOM = azoxymethane, chol = 

cholesterol, CO = corn oil, Ctrl = control, DMH = 1,2-dimethylhydrazine, FAD = focal area of dysplasia, FO = fish oil (FO1= 18% EPA/15% DHA; FO2= 

unspecified ω-3 PUFA content; FO3 = 31% ω-3 PUFA; FO4= 18% EPA/8% DHA; FO5= 18%EPA/11%DHA; FO6= 24%EPA/20%DHA; FO7= 54% EPA/30% DHA),   

ig = intragastric, LA = linoleic acid,  MaxEPA= 18%EPA + 12% DHA, MO =menhaden oil (MO1 16% EPA + 11% DHA; MO2 2.4% EPA + 11% DHA; MO3= 

unspecified ω-3 PUFA content; MO4 = 13%EPA/12%DHA), PI = proliferation index, PPAR = peroxisome proliferator-activated receptor, SAFO = safflower oil, 

SOYO = soybean oil, wk = weeks, wt = weight 

Study  
 

Model N= Treatment Groups Timing/Duration Outcome measure(s) Results (maximal changes  ω-3 PUFA group 
vs. Ctrl unless stated) 

Apc mouse models 

Oshima 
1995 (237) 
 

Apc
∆716

  
 

20 3% DHA vs Ctrl 
 

7wk Colonic  polyp no. and size 69%↓ polyp no. in females mice only 
    polyp no. in male mice 
 ↓ polyp size, more marked in females 

Paulsen 
1997 (235) 

Apc
Min/+

 51 0.4%-2.5%  FO7   
vs 12% CO 

17 wk No. ACFs and adenomas 48-66%↓ no. and 26-38%↓ size of tumours 
↓ACFs in female mice on 2.5% diet only.  

Petrick 
2000a (241) 

Apc
Min/+

 77 3.1% EPA vs. 3.1% 
DHA vs. Ctrl 
 

7 wk 
 

Tumour size + no.  
Mucosal PUFA + PGE2  
 

30%/50%↓ tumour no. DHA/EPA grp vs Ctrl  
15%↓tumour size EPA/DHA grp vs Ctrl 
50%↓ PGE2 in EPA/DHA grp vs Ctrl 

Petrick 
2000b (236) 

Apc
Min/+

 20 1.5% EPA  vs.1.5% AA 
vs. Ctrl 

8 wk 
 
 

Tumour size + no.  
Mucosal PUFA + PGE2  
 

54-68%↓ tumour no. & 18%↓ tumour size 
EPA vs. Ctrl & AA grps.  
74%↓ mucosal PGE2 EPA vs AA grp 

Bose 2007 
(244) 

Apc
Min/+ 

95 12% MO4 vs.  
20% mixed lipid diet 

9 wk 
 

Tumour no. + size 
Tumour PI, AI, PGE2, β-catenin 

    tumour no, 50%↓ no. tumours >2cm  
3.7x↑AI,    PI, 89%↓ PGE2, 62%↓β-catenin 

Fini 2010 
(247) 

Apc
Min/+

 48 2.5% & 5% EPA vs. 
Ctrl 

12wk Mucosal PUFA + COX-2 
Polyp no. + size, body weight 

72%/79%↓ polyp size (2.5%/5% EPA grp)  
↓COX-2 & ↑ EPA in EPA grps,  
↓weight Ctrl grp 
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1.10.2 Epidemiological observations 

A link between dietary ω-3:ω-6 PUFA balance and CRC risk first emerged from 

epidemiological studies that observed reduced rates of CRC in Greenland and the 

Far East compared to Western populations.(248)  Whilst the results of 

epidemiological studies have been variable, they have tended, in general, to report 

a small reduction in CRC risk with increasing dietary fish intake, a view supported in 

2007 by The Second Expert Report into Food, Nutrition and the Prevention of 

Cancer, a meta-analysis by the World Cancer Research Fund (WCRF) and the 

American Institute for Cancer Research (AICR).(6)  Interpretation of epidemiological 

studies has been hampered by heterogeneity in study design.  The use of food 

questionnaires to record dietary intake is subjective, and does not always 

discriminate between oily fish such as sardines (high in ω-3 PUFAs) and lean fish 

such as cod (lower ω-3 PUFA content).  Moreover, studies do not always 

discriminate between processed (smoked or salted) and non-processed fish, or the 

cooking method, which may confound observational data on CRC risk.(6, 249)  

Meta-analyses have also been hampered by the wide variability in both the 

frequency of fish intake and the choice of reporting measures (e.g. grams/day, 

portions/week, ω-3 PUFA g/day).(250)   

Since the WCRF/AICR meta-analysis in 2007,(6) a prospective study of 53,988 

patients found no association between fish consumption and CRC risk, but did find 

a risk reduction with increased fish consumption in patients who also had low fibre 

consumption (OR 0.77).(251)  A systematic review of studies published since 2007 

found a risk reduction for CRC between the highest and lowest fish consuming 

groups in all three case control studies identified (total n=6357 patients, OR 0.58-

0.74) but mixed results in 6 prospective studies identified.(252)  Finally, a meta-

analysis of 41 studies published between 1990 and 2011 (total n=1,454,578 

patients) found a significant reduction in CRC risk between the highest and lowest 

fish consumption groups in 19 case control studies (OR 0.83) and a slight reduction 
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in CRC risk between the highest and lowest fish consumption groups in 21 

prospective cohort studies (OR 0.93).(253)  The results of these more recent 

studies therefore continue to suggest a possible beneficial effect of ω-3 PUFA 

consumption, but the conflicting results and significant heterogeneity between the 

studies makes it difficult to draw any firm conclusions. 

1.10.3 Translational studies of ω-3 PUFAs and CRC biomarkers. 

The long natural history of colorectal carcinogenesis in humans precludes the use 

of CRC incidence as a primary endpoint in clinical intervention studies.  Therefore 

many Investigators have measured the effect of ω-3 PUFA administration on 

putative mucosal biomarkers of future CRC risk, such as epithelial cell mitosis 

frequency in micro-dissected whole crypts or immunohistochemistry (IHC) for the 

Ki-67 ‘proliferation’ antigen.  The design of such studies and their main findings are 

summarised in Table 1.6.  8 studies of oral ω-3 PUFA supplementation in patients 

with previous ‘sporadic’ colorectal adenomas were identified (Table 1.6), in which 

colorectal mucosal biopsies were obtained at endoscopy before and after ω-3 

PUFA supplementation.  In 6 of 8 studies a 13-70% reduction in mucosal epithelial 

cell proliferation index (PI) was observed compared to the respective placebo 

group.(232, 254-258)  One further study noted a more modest 16% reduction in PI 

after 28 days supplementation in healthy volunteers.(259)  By contrast, two studies 

demonstrated no change in PI following administration of 2.4 g ω-3 PUFA daily for 

12 weeks (260) or low-dose ω-3 PUFA (400 mg DHA + 100 mg EPA/day) for 1-2 

years.(261) The latter study did demonstrate a 50% increase in apoptosis index (AI) 

and increased expression of the pro-apoptotic protein BAX.  AI has been measured 

in only two other studies, which demonstrated a significant increase in AI after 3-6 

months treatment with EPA 2g daily.(232, 257)  In those studies measuring 

mucosal PUFA content, significant increases in mucosal DHA and EPA, together 

with a reduction in mucosal AA, were observed in all but one study (Table 1.6). 
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The development of colonic adenomas (polyps) is an alternative to mucosal 

biomarker studies as a surrogate for CRC risk.  Such polyp prevention studies 

typically require a 3-5 yr intervention and follow-up period.  However, patients with 

FAP have a heterozygous germline mutation in the APC gene.  These patients 

develop multiple colorectal adenomas at a young age and prophylactic colectomy is 

advised in order to prevent CRC.  Those who undergo total colectomy with 

ileorectal anastomosis rather than panproctocolectomy (total colectomy + removal 

of rectum) require regular endoscopic surveillance of the remaining rectum which 

remains at risk of developing polyps.  Studies of potential chemopreventative 

agents in these patients allow polyp size and number to be used as endpoints over 

a much shorter  period of time (6-12 months).  A recent Phase III randomised, 

double-blind, placebo-controlled trial investigated treatment with EPA in the free 

fatty acid form (EPA-FFA) 2g daily for 6 months in patients (n=58) with FAP who 

had previously undergone colectomy and ileorectal anastomosis (Table 1.6).(262)  

Rectal polyp multiplicity and size were measured by blinded video-endoscopic 

assessment of a tattooed area at baseline and at 6 months.  There was a 22.4% 

reduction in polyp number in the EPA group compared with placebo (p=0.01), a 

similar magnitude reduction to that seen with the selective COX-2 inhibitor 

celecoxib.(131)  In keeping with previous studies, a significant increase in mucosal 

EPA levels was observed.  The demonstration of chemopreventative efficacy of 

EPA-FFA in FAP patients has led to funding of a randomised, placebo-controlled 

trial of EPA-FFA in patients who have had “sporadic” colorectal adenomas removed 

and who require further colonoscopic surveillance 

(www.eme.ac.uk/projectfiles/0910025info.pdf).   

Only one other polyp prevention study was identified (Table 1.6).(263)  In this small 

study, 5 patients who had previously undergone colectomy for FAP were given 2.2g 

DHA + 0.6 g EPA daily for 1-2 years.(263)  No significant change in polyp number 

was observed.  One patient developed proximal CRC, a second patient developed 
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lung cancer and a third patient developed endometrial cancer prior to termination of 

the study.  The published report does not make it clear whether this study was 

terminated prematurely and gives no indication of the planned sample size for the 

trial.  
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Study Design N= ω-3 PUFA dose Treatment 
Duration 

Primary 
outcome  

Tissue PUFA content Side effects (at highest 
given dose) 

Results 

Mucosal biomarker studies 

Anti 1992 
(255) 

R, DB, PC 
‘sporadic’ adenoma 

24 7.7g FO1 daily  12 wk PI  ↑EPA & ↓AA Not reported. No 
dropouts in FO grp.   

62% ↓PI  

Bartoli 1993 
(256) 

R, DB, PC 
‘sporadic’ adenoma 

40 2.5-7.7g  FO1 daily  30 days PI Dose dependent 
↑EPA/DHA & ↓AA 

Not reported. Dose dependent 
40-70%↓ PI 

Bartram 
1993 (259) 

DB crossover trial 
Healthy volunteer 

12 4.4g FO2 daily  4wk +4 wk PI ω-3 PUFA    
ω-6 PUFA↓( NS) 

Mild fish odour (9/12) 16%↓ PI & 35%↓ 
mucosal PGE2  

Anti 1994 
(254) 

R, DB, PC  
‘sporadic’ adenoma 

60 2.5-7.7g FO1 daily 30 days PI Dose dependent 
↑EPA/DHA & ↓AA 

2/15 dropout, 5/15 fish 
odour, 1/7 diarrhoea 

Dose independent  
50-70%↓PI  

Huang 1996 
(258) 

R, DB, PC 
Dukes A/B CRC or 
severely dysplastic polyp 

27 7.2g FO3 daily  6 months PI ↑EPA/DHA & ↓AA No SEs observed 71%↓PI (only in 
patients with high 
baseline PI)   

Gee 1999 
(260) 

R, PC, single blind 
Awaiting CRC surgery  

51 2.4g FO4 daily 7-21 days pre- 
and 8-12 wk 
post- surgery 

PI ↑EPA/DHA 
↑  ω-3 : ω-6 ratio 

1 dropout due to 
capsule intolerance 
(grp not stated) 

No effect on PI at 
surgery or 12wk 
post-op 

Cheng 2003 
(261) 

R, C, open label 
Previous CRC/adenoma 

41 Dietary advice +- 
500mg FO5 daily  

2 years PI/AI Not assessed Not reported PI↔, 50%↑AI, 
50%↑ Bax,  
COX2 ↔ 

Courtney 
2007 
(264) 

R, single blind 
‘sporadic’ adenoma 

30 EPA 2g daily as free 
fatty acid 

3 months PI/AI ↑EPA/DHA & ↓AA 1/15 dropout each grp   
3/15 mild diarrhoea + 
2/15 abdo pain 

20%↓PI 
7x↑ AI 

West 2009 
(232) 

R, DB, PC 
‘sporadic’ adenoma 

152 EPA 1g/2g daily as 
free fatty acid 

6 months PI/AI ↑EPA/DHA & ↓AA Not reported 13%↓PI 
57%↑ AI (NS) 
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Table 1.6.  Clinical studies of ω-3 PUFA treatment on colorectal mucosa biomarkers and polyp number  

 

Abbreviations:  ↑ = increase, ↓= decrease, ↔ = no change, abdo = abdominal, AI = apoptosis index, Ca = cancer, C= controlled, DB = double blind, FAP = 

familial adenomatous polyposis, FO= fish oil (FO1 = 54%EPA/46% DHA as ethyl esters; FO2 = 48%EPA/44%DHA, as triglycerides; FO3 = 

55%EPA/30%DHA/15% other ω-3 PUFAs; FO4=58% EPA/42%DHA; FO5 = 20%EPA/80%DHA; FO6 = 21%EPA/79%DHA), grp = group,    mo = month, NS = not 

statistically significant, PC = placebo controlled, PI = proliferation index,R = randomized, SE = side effects, wk = weeks 

Study Design N= ω-3 PUFA dose Treatment 
Duration 

Primary 
outcome  

Tissue PUFA content Side effects (at highest 
given dose) 

Results 

Polyp endpoint studies 

Akedo 1998 
(263) 

Open label 
FAP 

5 Dietary advice & 
2.8g FO6 daily 

1-2 years 
?trial stopped 
early 

Polyp no. 
 
 

Not assessed 1x diarrhoea 
1x itching 
1x hypermenorrhoea 

Polyp no. ↔ 
1 x CRC, 1x lung Ca 
1x endometrial Ca 

West 2010 
(262) 

R, DB, PC 
FAP 

58 EPA 2g as free fatty 
acid 

6 months No. rectal 
polyps 

↑EPA 
DHA & AA   

↑nausea EPA grp (31% 
vs 10%).  Other SEs ↔  

22%↓ polyp no.  
30%↓ polyp size 
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1.11 Summary and context for the thesis 

Recent advances in neoadjuvant chemotherapy and the surgical management of 

CRCLM have successfully increased the number of patients suitable for potentially 

curative surgery.  However, we may now be at the limit of our definition of 

resectable disease and advances in adjuvant chemotherapeutic agents such as the 

new monoclonal antibody therapies have demonstrated only very modest survival 

advantages in patients with CRCLM.  At the same time, the use of COX-2 inhibitors 

and other NSAIDs for the chemoprevention of CRC has been limited by the 

recognition of cardiovascular and gastrointestinal side effects associated with long 

term use (although the balance of risk-benefit may favour the use of aspirin for 

prevention of CRC).(142)  There is therefore an urgent need for novel, safe agents 

for the prevention and treatment of CRC and CRCLM.  Accumulating experimental 

evidence suggests that ω-3 PUFAs such as EPA have anti-CRC activity, and 

clinical trial data for ω-3 PUFAs has recently been published from mucosal 

biomarker and polyp prevention studies.  This thesis presents the first clinical trial of 

oral EPA supplementation for the treatment of patients with CRCLM, together with 

supplementary in vitro studies of the effect of EPA on angiogenesis.      
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Chapter 2: Aims and hypotheses to be tested 

 

The primary aim of this research is to investigate the effect of EPA on biomarkers of 

growth and vascularity of human CRCLM in a Phase II randomised, double-blind, 

placebo-controlled trial of EPA in patients awaiting surgery for CRCLM.  The 

following specific hypotheses will be tested. 

Treatment with EPA: 

1. Is safe and well tolerated in patients with CRCLM 

2. Does not inhibit platelet aggregation, and does not cause an increased risk 

of bleeding during liver resection or other post-operative complications 

3. Is associated with reduced tumour cell proliferation compared with placebo 

4. Is associated with increased tumour cell apoptosis compared with placebo 

5. Is associated with reduced tumour microvessel density compared with 

placebo 

6. Leads to an increase in tumour EPA content  

7. Is associated with a reduction in intra-tumoural PGE2 and an increase in 

PGE3 levels  

8. Is associated with a reduction in urinary PGE-M levels 

9. Causes a reduction in active transcription factor NFκB levels in peripheral 

blood mononuclear cells 

A secondary aim of this research is to investigate the effect of EPA on human 

endothelial cells in vitro.  The following specific hypotheses will be tested: 

10. EPA inhibits angiogenesis in vitro 
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Chapter 3: The EMT Trial 

 

3.1 Introduction 

The EPA for Metastasis Treatment (EMT Trial) was a Phase II randomised, 

placebo-controlled, double-blind trial of the safety and efficacy of EPA 2g daily in 

patients awaiting surgery for CRCLM.  It was the first clinical trial of the anti-

neoplastic activity of an oral ω-3 PUFA in patients with CRCLM.  The EMT Trial 

was sponsored by The University of Leeds, and was a collaboration between The 

University of Leeds and the Leeds Teaching Hospitals NHS Trust Department of 

Hepatobiliary Surgery, based at St James’ University Hospital, Leeds, UK.  The 

Trial was been adopted onto the National Institute of Health Research Clinical 

Research Network Portfolio. 

(http://public.ukcrn.org.uk/Search/StudyDetail.aspx?StudyID=8946).  

 

3.2 Regulatory approvals 

The EMT Trial was granted regulatory approval from the NHS Research Ethics 

Committee (REC), the Medicines and Healthcare related products Regulatory 

Authority (MHRA) and the Leeds Teaching Hospitals NHS Trust Research and 

Development (R&D) office.  These approvals were all obtained prior to 

commencement of trial recruitment (Table 3.1).  The trial was registered on 

clincialtrials.gov, a publically accessible database of clinical trials, prior to 

commencing recruitment.  

(http://clinicaltrials.gov/ct2/show/NCT01070355?term=EPA&rank=12). 

 

 

 

 

http://public.ukcrn.org.uk/Search/StudyDetail.aspx?StudyID=8946
http://clinicaltrials.gov/ct2/show/NCT01070355?term=EPA&rank=12
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 Reference number Approval date 

EUDRACT no. 2009-015903-22 07/09/2009 

Leeds (West) 

Research Ethics 

Committee 

09/H1307/94 20/10/2009 

MHRA 16767/0240/001-0001 15/12/2009 

Leeds NHS Trust 

R&D 

GA09/9094 09/02/2010 

Clinicaltrials.gov  NCT01070355 12/02/2010 

 

Table 3.1.  A summary of the regulatory approvals for The EMT Trial 

 

3.3 Trial Steering Committee  

An internal Trial Steering Committee (TSC) met quarterly to review trial progress, 

and received input from an external Data Monitor on a quarterly basis. The TSC 

included: 

Prof Chris Twelves  Independent Chair (Academic Clinical Oncologist) 

Prof Mark Hull   Professor of Molecular Gastroenterology 

Mr Giles Toogood  Consultant Hepatobiliary & Transplant Surgeon 

Mr Andrew Cockbain  Research Fellow 

Mr Richard Maltby  Patient Representative 

 

3.4 Data Monitoring Committee 

The Trial was subject to review from the University of Leeds and Leeds Teaching 

Hospitals NHS Trust joint Data Monitoring Committee.    

There have been some concerns about an anti-platelet activity and possible 

increased risk of bleeding with ω-3 PUFA consumption,(265-267) however, no 

significant bleeding episodes have been seen in over 4000 clinical trial patients 

undergoing invasive interventions or operations whilst taking ω-3 fish oil 
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supplementation alone or in combination with aspirin.(268)  Similarly, other clinical 

trials have shown that ω-3 PUFAs are safe even when given with conventional anti-

platelet or anticoagulant treatments.(269)  Nevertheless, in this first trial of an oral 

ω-3 PUFA supplement in patients undergoing liver resection, the potential for a 

small risk of increased bleeding during surgery could not be excluded.  Therefore, 

patient bleeding complications were proactively and prospectively recorded on a 

Peri-operative Outcome Form (POF), namely the number of units of blood 

components transfused and whether the patient required reoperation for bleeding. 

An independent Data Monitor, who was unblinded to patient allocation, reviewed 

POFs every 3 months and was asked specifically to feed back to the TSC if the 

number of "significant bleeding events" (defined as a packed red blood cell 

transfusion greater than 2 units or reoperation for bleeding) in the EPA group 

exceeded that in the placebo group by 5 at any time, so that the TSC could 

consider stopping the Trial. 

 

3.5 Trial Subject Selection 

3.5.1 Eligibility Criteria 

Patients undergoing liver resection for treatment of CRC liver metastasis(es) 

 

Inclusion Criteria 

(a) Age greater than or equal to 18 years 

(b) Either sex 

(c) Liver resection deemed clinically appropriate for management of metastatic 

CRC liver disease 

(d) Duration between decision to perform liver resection and surgery expected to be 

greater than 2 weeks 

(e) Ability to give written informed consent and follow study protocol 

(f)  Telephone contact possible 
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Exclusion Criteria 

(a)  Neo-adjuvant chemotherapy for CRC liver metastasis 

(b)  Chemotherapy for any cancer in the previous 3 months 

(c)  Known bleeding diathesis or anticoagulation therapy 

(d)  Fish or seafood allergy 

(e)  Use of fish oil supplements (e.g. cod liver oil) and unwilling to stop for          

the duration of the study 

(f)  Pregnancy 

(g)  Use of non-aspirin non-steroidal anti-inflammatories (NSAIDs) or use of   

systemic steroids (i.e. oral or intravenous preparations) 

(h)  Renal impairment (serum creatinine >150µg/l) 

(i)   Active inflammatory disease (e.g. inflammatory bowel disease, rheumatoid 

arthritis) 

 

3.5.2 Recruitment 

Patients with suspected or confirmed CRCLM are referred to the Department of 

Hepatobiliary Surgery at St James's University Hospital by General Practitioners, 

Oncologists and Colorectal Consultants from across the Yorkshire region.  A 

number of patients are also referred to the Department from outside the region.   All 

referral letters were screened prior to each clinic to identify patients who may be 

eligible for participation in The EMT Trial.  Patients were seen in the surgical 

outpatient clinic by a Consultant Hepatobiliary Surgeon, and a decision made 

whether surgical resection of their CRCLM was appropriate.  At the same clinic 

appointment, all patients who were offered liver resection were then approached to 

discuss participation in the EMT Trial, unless pre-screening of their referral letter 

clearly identified that they meet one or more of the trial exclusion criteria.  Patients 

were given a verbal explanation of the trial and a copy of the Patient Information 

Leaflet.  This included detailed information about the rationale, design and personal 

implications of the study.   
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3.5.3  Consent 

Patients referred to the Hepatobiliary department at St James’ University Hospital 

have often travelled considerable distance to attend their outpatient clinic, 

sometimes taking 2-3hrs each way.  It was decided that it would be both impractical 

and an undue burden on the patient to discuss the study on one visit and then 

return the following day after a cooling off period for a second appointment to sign 

the consent form (they would not routinely have a second appointment before being 

admitted a few weeks later for surgery).  A pragmatic approach was therefore 

adopted.  After approaching patients and discussing participation in the Trial, 

patients were given a period of time (at least 1 hour) to read the patient information 

sheet and consider participation.  Since these patients usually attend outpatient 

clinics with their family members, this gave patients the opportunity to discuss the 

trial with their family.  After 1 hour, or when patients returned to the outpatient 

department, they were asked if they had had enough time to consider the 

information provided and address any further questions.  Only if patients were sure 

that they have had been given sufficient time to consider participation, and had the 

opportunity to discuss with their family members if desired, were they asked if they 

were willing to take part in the trial.  This process was clearly documented in the 

patients' medical notes. 

Patients who wished to participate in the Trial were then formally assessed for 

eligibility and invited to provide informed, written consent.  The right of patients to 

refuse consent without giving reasons was explained and respected.  Patients were 

informed that they could also withdraw from the study at any time without giving 

reasons and without prejudicing any further treatment. One copy of the consent was 

given to the patient, a second filed in the Trial Master File, a third filed in the 

hospital notes and a fourth sent to the Sponsor.  The consenting process was 

clearly documented in the patient’s medical notes.  
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3.6 Randomisation and blinding 

Consented patients were randomised 1:1 EPA-FFA:placebo by Leeds Teaching 

Hospitals Trust Pharmacy in a random permutated block of 4 using random number 

tables.  The blind was held by Leeds Teaching Hospitals NHS Trust Pharmacy.  

Unblinding only occurred after all patients have completed follow up, and all 

collected samples had been analysed.  Unblinding before the end of the study was 

only permitted if deemed necessary by the Chief Investigator and the Sponsor in 

the event of a patient safety issue.  This situation did not arise. 

    

3.7 Trial Medication 

EPA-FFA and placebo were manufactured in Germany on behalf of SLA Pharma 

(UK).   SLA Pharma (UK) supplied EPA and placebo free of charge for The EMT 

Trial.  EPA was presented as an enteric-coated soft blue gelatin capsule containing 

500mg of 99% pure EPA in the free fatty acid form.  Placebo capsules were 

identical in form, except for the replacement of EPA with the medium chain 

triglycerides capric and caprylic acid.  These were the same preparations used in 

the Phase III polyp prevention study in patients with FAP.(262)  EPA is unlicensed 

for the treatment of CRCLM.  It was therefore considered an Investigative Medicinal 

Product (IMP) for the purpose of this trial, and approval for use in this trial was 

obtained from the MHRA.  Supplies of EPA and placebo were repackaged, labelled, 

stored and dispensed by Leeds Teaching Hospitals NHS Trust Clinical Trials 

Pharmacy in accordance with Good Clinical Practice (GCP).     

 

3.8 Trial design and patient throughput 

The trial design is outlined in Figure 3.1 and patient flow through the trial is 

described below.   
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Study visit 1 (routine out-patient appointment) 

Immediately after a decision was made to offer surgery for CRCLM, patients were 

seen for trial screening and enrolment.  Randomisation occurred immediately after 

consent had been obtained.  Blood and urine samples were taken, and participants 

asked to complete the EPIC food frequency questionnaire (FFQ; Appendix 1) in 

order to determine dietary ω-3 PUFA intake.(270)  Participants received study 

medication at the same visit.  Patients took EPA 2g, or placebo, daily (as two 

capsules twice daily with food) until the day before surgery (2-4 weeks).  Patients 

were followed up by telephone every 2 weeks to monitor for adverse effects and 

maximise compliance.  

Study visit 2 (admission for surgery) 

Patients were admitted to hospital either the day before or on the day of their 

operation and asked again about symptoms or side effects from medication.  Blood 

and urine sampling were repeated, and the FFQ repeated to determine whether 

there had been any change in dietary ω-3 PUFA intake during the intervention 

period.  Patients were asked to return all study medication for pill counting.  CRCLM 

tissue was collected from the resected liver specimen immediately after resection.  

Patients were then managed according to Leeds Hepatobiliary Unit protocol during 

the post-operative phase.   

Study visit 3 (routine post-operative out-patient appointment) 

At the first routine post-operative outpatient appointment, approximately 6 weeks 

following discharge, a final blood and urine sample were taken.  This marked the 

end of participation in the Trial.  Patients then continued routine follow-up under the 

care of their Consultant Surgeon. 
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2-4 weeks 

Inclusion Criteria 
 

 Age ≥18 years 

 Either sex 

 Duration between decision 
to perform liver resection 
and surgery greater than 2 
weeks  

 Ability to give written 
informed consent and 
follow study protocol  

 Telephone contact 
possible 

 

Exclusion Criteria  

 Chemotherapy for any cancer 
in the previous 3 months 

 Unwilling to stop use of fish oil 
supplements for duration of 
the study  

 Known bleeding diathesis or 
anticoagulation therapy 

 Fish or seafood allergy 

 Pregnancy  

 Non-aspirin non-steroidal anti-
inflammatory (NSAID) use  

 Active inflammatory disease  

 Neo-adjuvant chemotherapy 
for CRCLM 

 Renal impairment (serum 
creatinine >150) 

STUDY FLOW 

CHART 
Interventions 

performed on each 

study day are listed in 

BLOCK CAPITALS below 

 

 

 

 

 

 

 

 

 

 

 

 

STUDY DAY 1 
Preoperative outpatient 
appointment 
BLOOD, URINE 
FOOD FREQUENCY 
QUESTIONNAIRE 
 
 
 
STUDY DAY 2 
Admission for surgery 
BLOOD, URINE 
FOOD FREQUENCY 
QUESTIONNAIRE 
 
 

Day of operation 
TISSUE SAMPLING OF 
RESECTED CANCER 
 
 
 
 
 
STUDY DAY 3 
1

st
 postoperative 

outpatient appointment 
BLOOD, URINE 

DECISION TO PERFORM LIVER RESECTION FOR CRCLM 

Study Information Provided 

 

  

Consent & Randomisation 

 

 

 

 

PLACEBO EPA 

Postoperative Recovery + Discharge 

 

Admission for surgery 

OPERATION 

Review in outpatient clinic 

END OF STUDY PARTICIPATION 

Figure 3.1. Flow chart of patient participation in The EMT Trial 

 

If eligible 
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3.9 Power calculation and sample size  

There are no existing data on the effects of EPA on tumour cell proliferation in 

human CRCLM.  In a previous double-blind RCT of CRCLM patients (271), the Ki-

67 proliferation index (PI) in the placebo arm was 50 (mean) ± 22 (SD).  From in 

vitro and in vivo studies of the effect of EPA on CRC cells, a 30% decrease in PI 

compared with placebo was predicted.(186, 199)  Therefore a minimum of 35 

patients in each of the 2 arms of the study (total 70 patients) was required to detect 

a 30% difference in PI between the groups with 80% power and a 5% 2-sided 

significance level.  To allow for 20% drop out, a target recruitment of 44 patients in 

each arm (total 88 patients) was set. 

The Leeds Hepatobiliary Unit performs approximately 200 liver resections for 

metastatic CRC per year, of which up to 20% receive neo-adjuvant chemotherapy 

(an exclusion criterion).  Allowing for up to 45% ineligibility in the remaining 160 

patients (either do not fulfil inclusion criteria or do not provide informed consent to 

enter the trial), recruitment of 88 eligible patients was predicted to take 1 calendar 

year.  The recruitment rate was monitored monthly. 

 

3.10 Design issues 

Being unable to standardize the duration of study medication was an unavoidable 

consequence of ensuring that study participation did not delay patients’ surgery.  

However, Leeds Hepatobiliary Unit data (unpublished) showed that the median time 

from decision to operate to surgery was 4 weeks and, importantly, the maximal 

increase in tissue and erythrocyte EPA content associated with oral EPA intake has 

been shown to occur over a similar time period.(272, 273)  A variable pre-surgery 

treatment period was also a feature of the previous RCT of rofecoxib (271) when 

randomisation ensured well-balanced active and placebo groups.  The variability in 
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treatment period was therefore considered to be an acceptable limitation in study 

design. 

A second limitation of the study design is that there was no baseline (pre-treatment) 

tumour available for comparison with the post-treatment tumour samples.  This is 

because pre-operative biopsy of CRCLMs is contra-indicated due to the risk of 

seeding tumour cells along the biopsy tract.(274, 275)  Suspected CRCLMs are 

diagnosed radiologically and patients proceed to surgery based on this radiological 

diagnosis.  Biopsy is reserved only for the small proportion of liver lesions which are 

of uncertain radiological diagnosis or of unknown origin, where tissue diagnosis 

may alter a patient’s management.  To obtain pre-treatment tumour samples in this 

trial would have been contrary to the accepted management of CRCLM, and 

unethical due to the risk of tumour seeding.  The lack of pre-treatment tumour 

samples was therefore considered to be an unavoidable but acceptable limitation in 

study design.               

 

3.11 Statistical analysis 

For continuous variables, the difference in means (or medians where appropriate) 

between the EPA and placebo were compared, and significance tested by 

parametric (such as Student’s t test) and non-parametric tests (such as the Mann-

Whitney U test and Wilcoxon rank sum test).  For outcomes that were measured 

serially, e.g. PGE-M, changes within a treatment group over time were compared 

using paired statistical tests, and differences between the two treatment groups at 

each time point were compared using unpaired statistical tests.  Categorical data 

was compared using the χ2 test.  Due to the limitation of being unable to sample 

tumours at baseline, no comparison of tumour tissue pre- and post- treatment could 

be made.  The effect of EPA on tumour tissue parameters was therefore evaluated 

by comparison of the EPA and placebo groups post-treatment only.  In addition, the 



59 

 
 

effect of variability in the duration of treatment on each outcome measure was 

investigated using linear regression.  Statistically significance was set at p<0.05 for 

all comparisons.   
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Chapter 4: Laboratory Methods 

 

4.1 Sample collection and storage 

4.1.1 Blood sampling 

All patients were consented at recruitment into the trial for blood sampling on each 

of the three trial visits.  On each occasion, venepuncture was performed aseptically 

using a 21G needle and vacuette® device.  Venous blood was collected into the 

following sample tubes, and stored at either room temperature or 4oC on crushed 

ice until further processing within 3 hrs: 

 2x 4ml EDTA coated vacuette® collection tubes (Greiner Bio-One, 

Kremsmunster, Austria) for separation of plasma and red cells.  Stored on 

crushed ice.  

 1x Hirudin (25µg/ml) coated collection tube (Dynabyte, Munich, Germany) 

for platelet aggregation.  Stored at room temperature. 

 4x 8ml BD Vacutainer® CPT™ collection tubes (BD, New Jersey, USA) for 

isolation of peripheral blood mononuclear cells.  Stored at room 

temperature. 

Separation of plasma and red cells:  EDTA collection tubes were centrifuged at 

700 x g for 10mins at 4 oC within 3 hours of venepuncture. A plastic Pasteur pipette 

was used to remove the plasma layer which was aliquoted into cryogenic vials.  The 

buffy coat was discarded and the red blood cells aliquoted into cryogenic vials.  

Samples were stored at -80oC for future analysis of i) fatty acid content of red cell 

membranes by gas chromatography – mass spectrometry (GC-MS) and ii) plasma 

PGE2 and PGE3 levels by liquid chromatography – tandem mass spectrometry (LC-

MS/MS).  These analyses have not been performed due to time and funding 

constraints.  Samples remain stored for possible analysis at a later date. 
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4.1.2 Urine sampling 

Patients were asked to provide a fresh urine sample in a sterile 30ml universal 

container at each study visit.  Specimens were stored at 4oC on crushed ice prior to 

aliquoting into cryogenic vials and storage at -80oC for subsequent batch analysis 

of urinary PGE-M by LC-MS/MS.  

4.1.3 Tumour sampling 

Immediately after resection of the specimen containing the CRCLM, the specimen 

was passed out of the sterile surgical field and dissected with care not to disturb the 

resection margin (Figure 4.1).  The tumour was palpated and a perpendicular 

incision made through the centre of the tumour.  A wedge of tumour tissue 

incorporating normal liver margin and at least 1cm of tumour directed towards 

centre of the tumour was taken and placed in formalin (10% v/v).  The orientation of 

the excised wedge from tumour margin to tumour centre was confirmed by making 

radial incisions in the remaining tumour, radiating from the deepest extent of 

excised wedge back out to the tumour margin in at least 2 opposing directions. A 

further 6-8 x 5mm cube-shaped samples of tumour were taken from an area 5mm 

from the macroscopic tumour margin, with care not to include any normal liver, and 

placed in a universal container for storage at 4oC on crushed ice.  The remaining 

resected liver specimen was placed in formalin (10% v/v) and sent to the pathology 

department for routine histopathological assessment, as per standard NHS 

protocols. 

Tumour specimens were returned immediately to the laboratory.  Two cube shaped 

tumour samples were mounted in Cryo-M-Bed (Bright Instruments, Huntington, UK) 

on corks, snap frozen in isopentane cooled in liquid nitrogen, and stored at -80oC 

until subsequent analysis of tumour COX expression.  The remaining cube-shaped 

tumour samples were placed in individual cryogenic vials, snap frozen in liquid 
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nitrogen, and stored at -80oC until subsequent analysis of tumour prostaglandins 

and fatty acid content. 

The wedge of liver was removed from formalin after 24 hours, washed twice in 

phosphate buffered saline (PBS) and stored in 70% (v/v) ethanol before processing 

in an automated tissue processor and embedding in paraffin.  Blocks were stored at 

room temperature for future immunohistochemical analysis. 

 

 

Figure 4.1.  Tumour sampling technique.  Dotted lines indicate area of sampling.  

The tumour was palpated within the liver parenchyma, and a perpendicular incision made 

through the liver capsule and liver parenchyma into the liver tumour.  Having identified and 

incised the tumour with this first incision, the tumour was inspected and re-palpated to 

confirm that the tumour had been incised through its centre.  Additional incisions radially out 

of the tumour were made when required to confirm that the centre of the tumour had been 

incised.  (A) Having identified the centre of the tumour, a 2-3mm section orientated through 

the liver capsule, liver parenchyma and centre of the tumour was obtained for formalin 

fixation.  (B) Secondly 6-8 cubes of tissue (at least 5x5x5mm) were taken from the 

remaining tumour, at least 5mm from the tumour edge, and snap frozen in liquid nitrogen.  

 

 

 

A B 
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4.2 Platelet aggregation studies 

Overview:   

There is no consensus regarding which ex vivo platelet function assay is best suited 

to measuring platelet function,(276-278) let alone which is best suited to measuring 

the effect of ω-3 PUFAs.  Most work has been in the cardiovascular and 

anaesthetic fields looking at detection of 'aspirin resistance'.  A summary of different 

platelet aggregation assays can be found in these two reviews.(279, 280)  Whole 

blood platelet aggregation studies in this study were performed using the 

Multiplate® (Dynabyte, Munich, Germany)  whole blood platelet aggregometer.  

Whole blood is added to a test cell containing two pairs of silver coated sensor 

wires.  The addition of an agonist stimulates platelets to aggregate on the wires, 

causing an increase in electrical resistance measured across the wires (Figure 4.2). 

The change in resistance over time is a function of platelet aggregation, which 

when plotted and "aggregation" measured as the area under the curve. 

 

 

Figure 4.2  Schematic diagram of Multiplate® test cell.  Each cell contains two 

pairs of sensor wires and a stirring magnet (a).  Whole blood is added (b) and addition of 

agonist stimulates platelets (c), causing aggregation of platelets on sensor wires (d).   
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This has the advantage over the traditional gold-standard of light transmission 

aggregometry (LTA) of platelet-rich plasma in that it is less time-consuming, less 

time-sensitive, and does not require a highly-trained operator.  Multiplate® has 

been shown to be as effective as LTA in detecting aspirin- and clopidogrel- induced 

inhibition of platelet aggregation.(281)      

Similarly, there are a range of different agonists which can be used to stimulate 

platelet aggregation in both LTA and whole blood platelet aggregation assays.  AA 

is typically used as the agonist when testing for the anti-platelet effect of aspirin.  

Acetylated COX does not metabolise AA to thromboxane A2 and therefore platelet 

aggregation is reduced.  Other commonly used agonists are adenosine 

diphosphate (ADP) and collagen.  ADP binds to the P2RY12 cell surface receptor, 

a G-protein coupled receptor which activates the glycoproteinIIb/IIIa complex and 

induces platelet binding to fibrinogen which is the major cofactor in platelet 

aggregation.  Collagen stimulates platelet aggregation upstream of AA metabolism 

by COX, this being the first step in platelet activation in vivo when a platelet 

adheres to exposed subendothelial collagen after vessel wall injury.  Amongst other 

effects, this results in liberation of AA from the cell membrane by phospholipase A2 

and also stimulates the release of platelet endogenous ADP.  A more 

comprehensive discussion of the different agonists can be found in these two 

reviews.(282, 283)  In the absence of consensus on the precise mechanism by 

which EPA might inhibit platelet aggregation, or on the optimal agonist for detecting 

platelet inhibition by EPA, in this study Multiplate® whole blood platelet aggregation 

in response to AA, ADP, low dose collagen and high dose collagen was 

investigated. 

Method:  0.3ml 0.9% saline + 0.3ml hirudin-anticoagulated whole blood were 

added to each of four test cells and left to incubate for 3 minutes at 37oC with a 

PTFE coated stirring magnet.  20µl of each agonist (arachidonic acid 0.5mM, 
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adenosine diphosphate 6.5µM, collagen 3.2µg/ml, or collagen 0.64µg/ml) was 

added to respective test cells, and the electrical resistance across duplicate pairs of 

silver coated sensor wires was continuously measured for 6 minutes.  Resistance is 

automatically transformed into arbitrary “aggregation units” and a plot of 

aggregation over time was generated, with maximal resistance, velocity and area 

under the curve recorded. 

 

4.3 Peripheral blood mononuclear cell studies 

Overview:  Peripheral blood mononuclear cells (PBMCs) were isolated from whole 

blood and cultured for 24 hours with and without lipopolysaccharide (LPS) 

stimulation.  Cell conditioned media was collected and frozen for future analysis of 

PGE2/PGE3 content.  PBMCs were then either frozen for future COX RNA analysis, 

or further processed to obtain nuclear extract which was then frozen for subsequent 

batch analysis of nuclear NFκB activation.   

4.3.1 PBMC culture 

Blood collected in CPT™ tubes at each study visit was centrifuged within 3 hours of 

venepuncture at 1500 x g for 20mins to give a layer of mononuclear cells (Figure 

4.3).  The mononuclear cell layers were aspirated into two falcon tubes, washed 

with 15mls of Dulbecco’s phosphate buffered saline (DPBS) and centrifuged at 300 

x g for 15 mins.  The wash step was repeated.  The cells from each tube were re-

suspended in 6 mls GlutaMAX + 10 % foetal calf serum (FCS) with or without 

1µg/ml Escherichia coli serotype 026:B6 LPS (Sigma-Aldrich, MO, USA) 

respectively.  After re-suspension in culture medium, a 20µl sample of LPS-

stimulated and LPS unstimulated cells was taken, diluted 1:10 in DPBS and cells 

counted using a Neubauer chamber. The remaining cells were transferred to a 6 

well culture plate (Figure 4.4) and incubated for 24hrs at 37oC.  
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Figure 4.3.  Separation of mononuclear cells after centrifugation of CPT™ tubes 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.  Layout of 6 well plate for culture of PBMCs.  Following 24 hour culture, 

cells from wells 3 and 6 were harvested and frozen for future COX RNA analysis.  Cells 

from wells 1,2,4 and 5 were processed further to obtain nuclear extract for the measurement 

of nuclear NFκB activation.     
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Culture medium from each well was aspirated into four 15µl falcon tubes as 

described below: 

 i) Wells 1+2 : LPS stimulated for NFκB nuclear expression 

 ii) Well 3 : LPS stimulated for COX RNA expression 

 iii) Wells 4+5 : LPS unstimulated for NFκB nuclear expression 

 iv) Well 6 : LPS unstimulated for COX RNA expression 

Tubes were centrifuged at 300 x g at 4oC for 10mins, and the culture medium 

aliquoted into cryogenic vials and stored at -80oC until subsequent analysis of 

culture medium PGE2 and PGE3 content by LC-MS/MS.  Cell pellets were left in the 

respective falcon tubes. 

4.3.2 Harvest of PBMCs for COX expression analysis 

Wells 3 and 6 were washed with 7mls DPBS, cells gently scraped using a cell 

scraper, and the cells aspirated back into their respective falcon tubes and 

centrifuged at 300 x g at 4oC for 10mins.  The supernatant was discarded and cells 

re-suspended in 1ml DPBS, transferred to a microcentrifuge tube and centrifuged at 

300 x g at 4oC for 5mins.  The supernatant was discarded, cells re-suspended in 

1ml TRIzol® (Invitrogen, Life Technologies, CA, USA) and stored at -80oC.  

Analysis of COX RNA expression by real-time polymerase chain reaction (RT-PCR) 

was not performed due to time and funding constraints.  Samples remain stored for 

analysis at a later date. 

4.3.3 Isolation of PBMC nuclear extract 

PBMC nuclear extract was obtained using the Active Motif Nuclear Extract Kit 

(Active Motif, CA, USA).  Wells 1,2,4 and 5 were washed with 7mls of phosphate 

buffered saline - phosphatase inhibitor solution (PBS-PI), cells gently scraped using 

a cell scraper, and aspirated back into their respective falcon tubes.  Addition of 

phosphatase inhibitor protects proteins from dephosphorylation.  Tubes were 
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centrifuged at 300 x g at 4oC for 10mins, the supernatant discarded, and cells re-

suspended in 1ml PBS-PI.  Cells were transferred to microcentrifuge tubes and 

centrifuged at 300g at 4oC for 5mins.  The supernatant was discarded and cells re-

suspended in 1ml hypotonic buffer solution and incubated on ice for 15mins.  

Hypotonic buffer causes cell swelling, making the cell membrane more fragile. 

50μl detergent was added to each microcentrifuge tube and vortexed gently.  

Detergent causes leakage of cytoplasmic proteins into the supernatant.  Tubes 

were centrifuged at 14,000 x g at 4oC for 30secs, and the supernatant (cytoplasmic 

fraction) aspirated and stored in cryogenic vials at -80oC. 

The nuclear pellet was re-suspended in 100µl of complete lysis buffer, vortexed for 

10 seconds, and incubated on ice for 30mins on rocking platform at 150rpm.  This 

causes lysis of nuclei, and nuclear proteins are solubilised in the lysis buffer, which 

contains a protease inhibitor cocktail to protect proteins from proteolysis.  Tubes 

were centrifuged at 14,000g for 10mins at 4oC, and the supernatant (containing the 

solubilised nuclear proteins) aspirated and aliquoted into microcentrifuge tubes and 

stored at -80oC until subsequent batch analysis of nuclear NFκB activation (see 

section 4.3.4).   

4.3.4 Quantification of PBMC nuclear NFκB activation 

Overview: Nuclear NFκB activation was quantified using the Active Motif 

TransAM™ NFκB p65 enzyme-linked immunosorbent assay (ELISA) (Active Motif, 

CA, USA).  Each well of the supplied 96-well plate is pre-bound with a double-

stranded oligonucleotide containing the NFκB consensus binding site.  Activated 

NFκB in the PBMC nuclear extract samples binds to the oligonucleotide, and in 

doing so an epitope on the p65 NFκB subunit is exposed.  A primary antibody 

directed against this epitope is added.  The primary antibody therefore only binds to 

activated, DNA-bound NFκB.  Binding of an anti-rabbit horseradish peroxidise 
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(HRP)-conjugated secondary antibody provides a colorimetric reaction which can 

be quantified by spectrophotometry.  Nuclear extract from Jurkat cells (an 

immortalised T-lymphocyte cell line) was supplied with the assay for use as a 

positive control.  

Protein concentration of samples: The protein concentration in each nuclear 

extract sample was determined using the Bio-Rad DC Protein Assay (Bio-Rad, CA, 

USA), a modification of the Lowry assay.(284, 285)  Bovine serum albumin (Sigma-

Aldrich, MO, USA) was prepared in DPBS to standard concentrations of 2mg/ml, 

1mg/ml, 0.5mg/ml and 0.1mg/m.  5µl of each standard and sample were added in 

duplicate to separate wells of a 96-well plate.  25µl reagent A’ and 200µl reagent B 

were added to each well and incubated at room temperature for 15 mins.  Optical 

density was read at 750nm on an Opsys MR™ plate reader (Dynex Technologies, 

VA, USA).  The mean of the duplicate samples and standards was calculated.  A 

graph of OD vs. protein concentration was plotted for the standards, and a line of 

best fit generated.  The protein concentration of each sample was calculated 

according to the equation for the line of best fit. 

Binding of NFκB to its consensus sequence: For each nuclear extract sample, 

5µg of nuclear extract protein diluted in 20µl of complete lysis buffer (CLB) were 

added in duplicate to the TransAM™ NFκB 96-well plate.  5µg Jurkat nuclear 

extract in 20µl CLB and 20µl CLB were added in duplicate as positive and negative 

controls respectively.  The plate was left to incubate for 1hr at room temperature at 

100rpm on a rocking platform.  Wells were washed three times with 200µl wash 

buffer. 

Binding of primary antibody: 100µl of NFκB antibody (1:1000 dilution in antibody 

binding buffer) was added to each well and the plate incubated for 1hr at room 

temperature.  Wells were washed three times with 200µl wash buffer. 
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Binding of secondary antibody: 100µl of HRP-conjugated antibody (1:1000 

dilution in antibody binding buffer) was added to each well and the plate incubated 

for 1hr at room temperature.  Wells were washed four times with 200µl wash buffer. 

Colorimetric reaction: 100µl developing solution was added to each well and 

incubated for 4.5 mins at room temperature.  100µl of stop solution was added, and 

OD measured at 450nm and 630nm read on an Opsys MR™ plate reader (Dynex 

Technologies, VA, USA). 

Quantification of NFκB: Optical density at 630nm (reference OD) was subtracted 

from OD at 430nm.  The mean corrected OD of each duplicate sample was 

calculated, and divided by the mean corrected OD of the positive control wells to 

give the nuclear NFκB activation of each sample relative to that of the Jurkat 

nuclear extract standard. 

 

4.4 Urinary PGE-M analysis 

Analysis of urinary PGE-M involves 3 stages, 1) solid phase extraction, 2) liquid 

chromatography, and 3) tandem mass spectrometry.   

1) Solid phase extraction (SPE)  

Overview:  SPE is a process which separates substances dissolved or suspended 

in a liquid based on their physical and chemical properties.  This involves passage 

of liquid (the mobile phase, in this case urine) through a solid (the stationary phase) 

for which the substances of interest (anylates, in this case PGE-M) have an affinity.  

In reversed phase SPE, substances are separated based on their polarity.  The 

stationary phase is typically a cartridge containing a sorbent such as octadecyl-

bonded silica gel, which is silica bound to the hydrocarbon octadecane 

(CH3(CH2)16CH3).  In analytical chemistry this is referred to as simply "C18".  C18 

binds non-polar substances (e.g. PGE-M) by weak non-polar or hydrophobic 
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interactions (Van der Waal forces), whilst polar substances do not bind and remain 

dissolved or suspended in the liquid (urine) and exit the cartridge.  The non-polar 

analytes of interest can be eluted from the cartridge by selectively washing with 

different concentrations of non-polar solvents.  In this case, heptane was used as a 

weak solvent to wash through any impurities bound by weak non-polar attractions, 

and ethyl acetate then washed through to elute PGE-M and other compounds 

bound by strong non-polar attractions. 

Method:  Urine samples were thawed to 20oC. Standards for the calculation of a 

calibration curve were formed by the serial dilution of commercially available PGE-

M (Caymen Chemicals, Tallinn, Estonia) to give a concentration range from 0-

100ng/ml PGE-M. The volume of each calibrant was 1ml. 20µl of 1µg/ml deuterated 

PGE-M (d6-PGE-M) was added to each sample as an internal standard. 

Varian Bond Elut C18 SPE columns were mounted on a ‘VacMaster ‘ extraction 

manifold (Biotage AB) and primed with 1ml methanol followed by 1ml of distilled 

water (acidified to pH 3 with acetic acid).  100µl 10% acetic acid was added to all 

samples and standards prior to being loaded into the columns.  Columns were then 

sequentially washed with 1ml dH2O pH3 and 1ml heptane before eluting the bound 

PGE-M with 1ml ethyl acetate.  The eluted solutions were evaporated to dryness in 

a Genevac EZ-2 centrifugal evaporator (Genevac Ltd, Ipswich, UK) at 37oC.  

2&3) LC-MS/MS 

Overview: The next stage involves sequential liquid chromatography (LC) and 

tandem-mass spectrometry (MS/MS) to give a highly accurate and sensitive 

quantification of PGE-M levels in the eluted sample.  Liquid chromatography 

physically separates PGE-M and structurally similar compounds from other 

compounds remaining in the sample.  The sample is introduced into a stream of 

fluid, known as the mobile phase, passing through a separation column.  The time 
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at which compounds emerge at the other end of the column (retention time) 

depends on their physical and chemical interactions with the stationary phase of the 

column.  This stage is important prior to mass spectrometry because the retention 

time of compounds with the same mass as PGE-M, e.g. isomers, will be different 

because of the different chemical structure and therefore different physical and 

chemical properties.  Mass spectrometry is unable to differentiate between 

compounds of the same mass, but by analysing only those compounds emerging 

from the LC column at a specific retention time, the specificity of quantifying the 

compound of interest is increased.(286, 287) Secondly, purification of the sample 

before it enters the mass spectrometer reduces the interactions between different 

chemicals.  Such interactions can reduce the efficiency of ionisation within the 

spectrometer, which is a particular problem when attempting to detect compounds 

that are present only in small concentrations.(286, 287) 

Whilst mass spectrometry is an analytical tool for measuring the mass of a 

compound, tandem mass spectrometry fragments the sample and uses multiple 

analyzers to detect the mass of the fragments produced.  This allows the structure 

of the compound to be elucidated.  In the case of quantifying PGE-M, using MS/MS 

allows fragments corresponding to the breakdown of PGE-M to be discriminated 

from the breakdown fragments of other compounds in the urine with the same LC 

retention time. The sample delivered from the LC is ionized to give the compounds 

charge.  The compounds pass through the mass analyser in gaseous phase and 

are accelerated into a finely focused beam.  A voltage gradient is applied across the 

analyser to cause deflection of the ionized compounds based on their mass/charge 

ratio.  The analyser is pre-set to only allow compounds with a specific mass/charge 

ratio to exit the analyser, thereby acting as a mass filter.  These selected 

compounds then enter a collision chamber where they are accelerated to high 

speed and bombarded with inert gas to cause fragmentation (collision induced 
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fragmentation).  These fragments pass through a second analyser, again pre-set to 

only allow fragments with a specific mass/charge ratio to exit and reach the 

detector.  In this way the MS/MS can be set to detect and measure fragments with 

a mass/charge ratio corresponding to the known fragmentation products of PGE-

M.(81)  

Measurement of urinary PGE-M by LC-MS/MS is a highly accurate and sensitive 

technique,(81, 288) but requires specific expertise and equipment which are not 

available in our laboratory.  These analyses were therefore performed by our 

collaborators Dr Paul Loadman and Amanda Race at the Institute of Cancer 

Therapeutics at the University of Bradford. 

Method: Liquid chromatography was performed using an Acquity Ultra 

Performance LC™ (UPLC™) 2.1 x 100 mm, 1.7µm particle size BEH C18 column 

attached to an Acquity UPLC™ System (Waters, Milford, USA).  Mobile Phase A 

was 95% dH2O, 5% acetronitrile, 0.1% acetic acid, and mobile phase B was 50% 

dH2O, 50% acetronitrile, 0.1% acetic acid. Samples were removed from the 

centrifuge evaporator and reconstituted in 25µl of mobile phase (60:40 A:B).  

Analytes were separated by a 95%-5% gradient of mobile phase A over 15min at a 

flow rate of 0.3ml/min prior to delivery to a Waters Quattro Premier™ XE bench-top 

tandem quadrupole mass spectrometer operating in negative ion mode and multiple 

reaction monitoring (MRM) mode.  Capillary voltage was set at 3.5V, cone voltage 

at 20V and collision voltage at 16V.  MRM channels were set for PGE-M at 327.4 

→291 and 327.4 →309 and for d6-PGE-M at 333.4 → 296.8 and 333.4 →315.5.  At 

the known LC retention time for PGE-M, the relative abundance of these 

fragmentation products of PGE-M and d6-PGE-M was recorded.   

Quantification of PGE-M level in each sample was performed by calculating the 

ratio of detected PGE-M fragments to d6-PGE-M fragments for each sample.  Since 
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a known concentration of d6-PGE-M was added to each sample at the start, this 

controlled for variability in the efficiency of the SPE process between samples.  The 

ratio of PGE-M:d6-PGE-M was plotted for the PGE-M standards to give a 

calibration curve, against which the PGE-M:d6-PGE-M ratio for each patient sample 

was plotted and the PGE-M concentration calculated.  

Standardisation for urinary creatinine: Urine volume is influenced by whole body 

fluid and electrolyte homeostasis.  The concentration of analyte in random urine 

samples will therefore exhibit both inter- and intra-subject variability based on, for 

example, urine volume, time of day and dehydration status.  Urinary PGE-M was 

therefore corrected for urinary creatinine as a marker of urine concentration.  

Urinary creatinine was measured by The Leeds Teaching Hospitals NHS Trust 

chemical pathology department based on a 'Jaffe' colorimetric assay(289) using an 

AVIDA 1800 (Siemens) analyser.  Urinary PGE-M concentration was divided by 

urinary creatinine (Cr) concentration to give a corrected urinary PGE-M level in 

ng/mg Cr. 

 

4.5 Tumoural PGE2/PGE3 analysis 

PGE2 and PGE3 levels in fresh frozen tumour tissue were analysed using LC-

MS/MS by Dr Paul Loadman and Ms Amanda Race at the Institute of Cancer 

Therapeutics at the University of Bradford.  The principles of LC-MS/MS have 

already been described in this chapter (section 4.4).  The methodology is the same 

as for analysis of urinary PGE-M (section 4.4) with a few minor modifications as 

described below. 

Sample preparation: Fresh frozen tumour samples were defrosted and weighed.  

0.9% saline was added to each sample in a microcentrifuge tube to make a 

homogenate of 1 part tumour to 9 parts saline, with the tumour tissue homogenised 

using ten strokes of a hand pestle.  The homogenised tissue was centrifuged at 
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10,000 x g for 5mins and the supernatant removed to a fresh microcentrifuge tube.  

Standards for the calculation of a calibration curve were formed by the serial 

dilution of commercially available PGE2 and PGE3 (Caymen Chemicals) to give a 

concentration range from 0-100ng/ml. The volume of each calibrant was 1ml.  20µl 

of 1µg/ml deuterated PGE2 (d4-PGE2) standard was added to each sample as an 

internal standard.  100µl 1% (v/v) acetic acid was added to all samples and 

standards.  

SPE and LC-MS/MS: SPE and LC-MS/MS was then performed as described for 

urine samples in section 4.4, with the exception that the MRM channels for MS/MS 

detection of PGE2 and PGE3 fragments were set at 351.5 → 271, 315, 333 for 

PGE2 and 349.5 → 269, 313, 331 for PGE3.  At the known LC retention time for 

PGE2 and PGE3, the relative abundance of these fragmentation products of PGE2 

and PGE3 and d4-PGE2 was recorded. 

Quantification of PGE2 levels in each sample was performed by calculating the ratio 

of detected PGE2 fragments to d4-PGE2 fragments for each sample.  Since a 

known concentration of d4-PGE2 was added to each sample at the start, this 

controlled for variability in the efficiency of the SPE process between samples.  The 

ratio of PGE2:d4-PGE2 was plotted for the PGE2 standards to give a calibration 

curve, against which the PGE2:d4-PGE2 ratio for each patient sample was plotted 

and the PGE2 concentration calculated.  PGE3 levels were calculated in the same 

way using the ratio of detected PGE3 fragments to d4-PGE2 fragments for each 

sample, and plotting this against a calibration curve drawn from the PGE3 

standards.   

 

4.6 Tumoural PUFA analysis 

Measurement of tumour PUFA content was performed by gas-chromatography 

mass-spectrometry (GC-MS).  This is a highly accurate and sensitive technique, but 
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requires specific expertise and equipment which are not available in our laboratory.  

These analyses were therefore performed by our collaborators Dr Andrea Belluzzi 

and Dr Alessandra Munarini at the Saint Orsola-Malpighi Hospital, University of 

Bologna.   

Overview: The principles of GC-MS are the same as for LC-MS/MS, using 

chromatography to first separate compounds in a sample based on their chemical 

and physical properties, and then using mass-spectrometry to quantify the level of a 

specific compound emerging at a particular retention time.  In contrast to LC-

MS/MS, GC-MS uses a gas rather than a liquid as the mobile phase for 

chromatography.  The MS stage is similar in both GC-MS and LC-MS/MS, with 

ionization and fragmentation of compounds entering the spectrometer at a specific 

chromatographic retention time.  With the single MS setup of GC-MS, these 

fragments are separated based on their mass/charge ratio and the fragments of 

interest then detected and quantified, whereas the tandem MS setup of LC-MS/MS 

utilizes a second phase of fragmentation and separation before detection and 

quantification of the fragments of interest. 

Method: This is a summary of the method used by Drs Belluzzi and Munarini, 

which has previously been reported.(209, 247)  

Sample extraction: Tissue samples were homogenised by hand in a pestle and 

mortar in 0.25ml of PBS.  Homogenates were transferred to a Sovirel extraction 

tube and extracted with 3ml of chloroform:methanol (2:1, vol/vol) by a modification 

of the Folch method.(290)  The mixture was shaken for 30min, the centrifuged at 

1.5 x g for 10min and the supernatant transferred to a clean tube.  This was 

repeated three times.  The supernatant was evaporated to dryness under nitrogen 

and the solid residue resuspended in 2ml KOH 0.5M in methanol.  This was then 

heated at 80oC for 10min.  2.5ml of 14% BF3 in methanol was added and the 
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mixture again heated at 80oC for 10min to transesterify the lipids.  Lipid 

methylesters were then extracted by the addition of 3ml hexane and evaporation 

under nitrogen.  The residue was re-dissolved in 100µl ciclohexane. 

GC-MS:  GC-MS analysis was carried out using an Agilent HP6890 GC with PTV 

injector linked to an HP4973 mass spectrometer.  Chromatography was performed 

using SUPELCO SP™2330 columns with Helium as the carrier gas at 0.5ml/min at 

a constant pressure.  The column temperature started at 100oC for 1.25mins, then 

rose by 30oC/min to 185oC.  It then rose at 0.5oC/min to 205oC.  Total GC runtime 

was 32min.  MS was performed in the electron ionization mode at 70eV, and set to 

detect fragments of mass/charge ratio in the range m/z 40 to m/z 550.  Peak 

identification was confirmed by comparison to GC retention times and MS peaks of 

commercially available standards.  Data for each PUFA are quoted as the 

percentage of the total fatty acid content of the tumour. 

 

4.7 Immunohistochemistry 

Fresh 4µm sections were cut from each paraffin-embedded tissue block, mounted 

on a glass slide and left to dry at 37oC overnight.  Sections were then stored at 

room temperature, and stained within two weeks of sectioning to minimise antigen 

degradation.  All immunohistochemistry was performed in runs of 23 slides.  Each 

run contained 1 slide to which the primary antibody step was omitted ("no primary").  

For each antibody protocol, 3 representative sections from the first run were 

selected and consecutive sections from these tumours used in each subsequent 

run as internal controls.  The same batch of antibody was used for all runs to 

minimise variability of staining between runs. 
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Stock solutions consisted of: 

 Low pH buffer: 15ml of Antigen Unmasking Solution (Vector Laboratories, 

Peterborough, UK) in 1.5L distilled H2O 

 Tris Buffered Saline (TBS): 60ml 2.5M NaCl + 20ml 1M Tris HCl (pH7.4) in 

1l distilled H2O 

 Tris Buffered Saline Tween-20 (TBST): 1.2ml 10% (v/v) Tween-20 in 1L 

TBS 

 DAB solution: 20µl of 3,3’-diaminobenzidine (DAB) chromogen substrate in 

1ml of pH7.5 substrate buffer 

4.7.1 Tumour proliferation (Ki-67) 

Staining: Sections were dewaxed and rehydrated in serial xylene and ethanol (both 

x3), and rinsed under running water for 5mins.  Antigen retrieval was performed 

using a pressure cooker.  Briefly, 1.5L of low pH buffer was brought to the boil in a 

stainless steel pressure cooker, the sections added and the lid locked shut.  

Sections were heated for 2mins once full pressure had been reached, then 

removed and cooled immediately in running water for 5mins.  Endogenous 

peroxidase activity was blocked using 0.3%(v/v) H2O2 for 10mins, then the sections 

were rinsed twice in TBS for 5 mins each.   

Slides were placed on a humidified slide chamber and 100µl of antibody diluent 

solution (Zymed Laboratories, San Francisco, USA) added to each slide to block 

non-specific binding sites and immediately drained off.  Mouse monoclonal anti-

human Ki-67 antibody (MIB1 clone) (Dako, Glostrup, Denmark) was used as the 

primary antibody at 1:50 dilution in antibody diluent solution.  100µl of primary 

antibody was added to each slide and left to incubate for 60mins at room 

temperature.  Slides were then rinsed twice in TBST and once in TBS, each for 

5mins.  
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The Dako EnVision™ kit (Dako, Glostrup, Denmark) was used for the following 

steps. 100µl of EnVision™ secondary antibody (HRP-labeled polymer bound to 

goat anti-mouse immunoglobulin) was added to each slide and left to incubate for 

30mins at room temperature.  Slides were then rinsed twice in TBST and once in 

TBS, each for 5mins. 

100µl of DAB solution was added to each slide and incubated for 10mins before 

rinsing slides in running water for 5mins.  Slides were counterstained with 

haematoxylin, dehydrated in serial ethanol and xylene (both x3), and coverslips 

mounted using DePeX mounting medium.  Slides were left to dry at room 

temperature overnight.                        

Scoring: A single high powered (x20) field of view was selected on each slide and 

photographed using a Nikon Eclipse E1000 microscope with NIS Elements software 

(Nikon Instruments Europe, Amsterdam, The Netherlands).  The field of view was 

systematically selected according to a pre-determined method to minimise selection 

bias (Figure 4.5).  The slide was placed on the stage and scanned at low power.  

The edge of the slide containing a tumour-liver interface was identified at low 

power.  Where tumour-liver interface was present at more than one edge of the 

slide, the pre-determined hierarchy of right edge>left edge>top edge>bottom edge 

was used to select the edge of interest.  The midpoint of the tumour-liver interface 

along this edge of the slide was identified at high power.  The high powered field of 

view was moved incrementally towards the centre of the slide to select and 

photograph the first high powered field of view of viable tumour without capsule or 

normal liver.  The edge rather than the centre of the tumour was chosen as the area 

of interest because this would a) likely capture the most highly proliferating area of 

tumour at the advancing edge, b) minimize the risk of selecting central necrotic 

areas of tumour, and c) minimise any potential discrepancy in proliferation between 

large tumours with necrotic centers and small tumours without central necrosis.  
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Photographs were analysed in Image J, a Java-based image processing and 

analysis software (http://rsbweb.nih.gov/ij/), using the cell counter plugin.  All 

positively stained (brown) and negatively stained (blue) tumour cells were counted.  

The proliferation index was taken as the percentage of positively stained cells out of 

the total cell count, with a minimum count of 500 cells.  If less than 500 cells were 

present, a second high powered field of view, immediately adjacent to the first, was 

selected and the cell counts combined. 
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Figure 4.5. Protocol for selection of a high-powered field of view for 

measurement of Ki-67 proliferation index.   a) The section was viewed under low 

power, and the edge of the slide containing liver-tumour interface was selected (X).  

Where more than one edge of the slide contains liver-tumour interface, the 

hierarchy right edge > left edge > top edge > bottom edge was used.  b) the 

midpoint of tumour along this edge of the slide was located (y=y). c) The first high 

powered field of view at this mid-point which excluded capsule and normal liver was 

selected and photographed (circled).  Images were opened in Image J for manual 

cell counts.     
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4.7.2 Tumour microvessel density (CD31) 

Staining: Sections were stained using the same protocol as for Ki-67, with the 

following exceptions: 

 1.  No antibody retrieval step was performed 

 2. The primary antibody used was mouse monoclonal anti-human CD31 

 antibody clone JC70A (Dako, Glostrup, Denmark) at 1:40 concentration 

 diluted in antibody diluent, with overnight incubation at 4oC. 

Scoring: There are a number of methods for the quantification of tumour 

microvessel density on immunohistochemical stained sections, based upon the 

counting of microvessels in a microscopic field view.(291)  These typically involve 

the identification of the most highly stained vascular regions of the section at low 

magnification, so called vascular "hotspots", followed by manual counting of the 

number of microvessels in these hotspots in one or more high powered fields of 

view.  Clearly there is subjectivity in the identification of hotspots that introduces 

intra-observer variability and selection bias.  Frequently, a single vessel will move in 

and out of the plane of section requiring the observer to decide whether to count 

two adjacent stained structures as a single vessel or two separate vessels.  One 

option to reduce this variability is to use a Chalkley graticule, a random grid of 

points which is overlaid on the image.  The Chalkley count is the number of points 

that hit a stained vascular structure, giving a relative vascular area rather than a 

true vessel count.(291)  Alternatively, automated counting with image analysis 

algorithms permits a more objective vessel count and can be used to count across 

the whole section, overcoming the highly subjective identification of vascular 

hotspots.  The drawback is the time and cost of the specialized equipment needed 

to firstly scan the whole slide at high magnification and secondly to analyse the 

scanned image. 
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Genentech (San Fransisco, USA) are a large biotechnology company who 

developed the anti-angiogenic drug bevacizumab (Avastin®).  I am grateful to Dr 

Adrian Jubb, Pathologist at Genentech, California, USA, who used to work in the 

Section of Pathology and Tumour Biology at Leeds Institute of Molecular Medicine, 

for offering us access to the image analysis software used by Genetech to evaluate 

microvessel density.  Stained tumour sections were scanned at x20 magnification 

using an Aperio ScanScope® slide scanner and digitally transferred to Genentech 

for image analysis.  Below is a summary of the image analysis algorithm, which has 

previously been reported.(292, 293) 

Scanned slides were analysed as 24bit RGB images using Matlab software 

(vR2010b by Mathworks, Natick, MA, USA).  Areas of tumour were marked up by 

hand by Dr Jubb, to exclude areas of white space and normal liver.  A segmentation 

algorithm was then applied to identify areas of viable tumour.  Cells were identified 

as either tumour or non-tumour based on the size, shape and density of 

haematoxylin staining.  Non-tumour areas were identified by the density of non-

tumour cells versus tumour cells.  Non-tumour areas were excluded from analysis.  

Brown DAB staining in each viable tumour region was isolated using a blue 

normalisation algorithm in addition to RGB colour.(294)   Vessel lumina were then 

identified by a segmentation algorithm as white areas surrounded by DAB staining.  

Noise was removed based on size and shape criteria.  Vessel number and 

perimeter were reported, as well as vessel area as a percentage of total tumour 

area.  After analysis was complete, the output for each slide was checked by Dr 

Jubb to ensure that the results were consistent with the original unprocessed 

images and to remove any artefacts or aberrantly identified vessels or tumour/non-

tumour areas. 
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4.7.3 Tumour apoptosis (M30) 

Staining: Sections were stained using the same protocol as for Ki-67, with the 

following exceptions: 

 1.  Antigen retrieval was performed by heating for 10mins in a microwave 

 oven at full power with slides submersed in 750ml of low pH buffer in a glass 

 bowl.  Slides were then left to cool for 20mins in the glass bowl before 

 proceeding with the protocol as for Ki-67 staining.  

 2. The primary antibody used was mouse monoclonal anti-human neo-

 cytokeratin 18 antibody (M30CytoDEATH; Roche, Mannheim, Germany) at 

 1:50 concentration diluted in antibody diluent, with 60mins incubation at 

 room temperature. 

Scoring: The M30 antibody recognises a neoepitope exposed by the activity of 

caspase-6 on the cytoskeletal protein cytokeratin-18 in epithelial cells.  This 

neoepitope appears early in apoptosis, before DNA fragmentation occurs.(295)  

M30 staining is therefore an earlier marker of cell apoptosis than the TUNEL 

assay.(295, 296)  The M30 epitope persists in late apoptosis, but is lost when cells 

become necrotic.   

Apoptosis staining in human CRC tissue is more sparse than staining for 

microvessel density or proliferation.  The difficulty in quantifying apoptosis is that 

the use of either a random or pre-determined field of view on a slide is likely to miss 

sparse apoptotic events.  In addition, apoptosis does not cluster in "hotspots", so 

there would be significant operator-variability in selecting hotspots on a slide by 

slide basis.  I therefore chose to score apoptosis across the whole slide using an 

automated image analysis algorithm.  An automated image analysis algorithm was 

designed in collaboration with Mr Alex Wright and Dr Darren Treanor of the Section 

of Pathology and Tumour Biology at Leeds Institute of Molecular Medicine. 
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Stained tumour sections were scanned at x20 magnification using an Aperio 

ScanScope® slide scanner.  Images were marked up by hand to select only areas 

of tumour, excluding normal liver and white space. A colour deconvolution 

programme was used to identify DAB staining, and individual DAB stained objects 

identified by thresholding.  Thresholds for the intensity of staining were set at 0.5 

standard deviations below the mean staining intensity.  Size thresholds were used 

to exclude objects below 10microns and to remove noise and artifact.  Total object 

count and area of staining as a percentage of total marked-up area  were reported.  

The algorithm was validated against a manual cell count by selecting 20 

representative 2000x2000pixel regions of interest from three different slides, 

incorporating regions of low, medium and high staining.  Manual image counting 

was performed on Image J using the cell counter plugin.  All positively stained 

(brown) tumour cells were counted.  The algorithm was then run on the same 

regions of interest.  Manual apoptotic cell counts were plotted against the algorithm 

object count and algorithm % stained area, and correlation assessed with 

Spearman's rank correlation coefficient. 

 

4.8 Human Umbilical Vein Endothelial Cell studies 

Overview: The effects of EPA on angiogenesis have not been investigated fully.  

Human umbilical vein endothelial cells (HUVECs) have been widely used as an in 

vitro model of angiogenesis.(297, 298)  I therefore performed a stand-alone series 

of assays investigating the effects of EPA on HUVEC proliferation, migration and 

tubule formation in vitro as a surrogate for endothelial cell behaviour and 

angiogenesis in tumours, but which would complement the microvessel density 

analysis of human CRCLMs in The EMT Trial.     

Cell culture: Human umbilical vein endothelial cells (TCS Cellworks, Buckingham, 

UK) were cultured in T75 flasks in 15 ml of large vessel endothelial cell culture 
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medium (TCS Cellworks, Buckingham, UK) supplemented with endothelial cell 

growth supplements as supplied by the manufacturer (TCS Cellworks, Buckingham, 

UK) containing 2% foetal bovine serum, gentamicin, amphotericin B, epidermal 

growth factor, basic fibroblast growth factor, heparin and hydrocortisone (herein 

referred to as “plain culture medium”).  The concentration of each of these 

supplements is not disclosed by the manufacturer.  Cells were incubated at 37oC 

with 5% CO2 and culture medium was replaced every 48 hrs.  Cells were split at 

80% confluence and cells between passage 3 and 6 were used for all experiments. 

Experimental culture medium: EPA-supplemented culture medium was created 

as follows.  EPA-FFA was supplied in 500mg capsules by SLA Pharma AG.  Three 

capsules were aspirated to dryness using a 21G needle and the aspirated content 

weighed.  The aspirated weights were 424mg, 427mg and 426mg (mean 425.6mg 

per capsule).  A stock of 0.1mM EPA solution was created by dissolving the 

aspirated EPA (425mg) in 14ml of 95% ethanol. 

[ EPA molecular weight = 302.451g  and  0.425mg/302.451g ÷ 14ml/1000ml = 0.1mM ] 

10µl of 0.1mM EPA was added to 10ml of plain culture medium to give a 100µM 

EPA stock solution with an ethanol (carrier) concentration of 0.1% (v/v).  This 

solution was further diluted with culture medium to provide a range of EPA-culture 

media with EPA concentrations from 0-100µM, with the maximum ethanol carrier 

concentration of 0.1% (v/v) at the 100µM EPA concentration. 

Experimental media were made fresh from new EPA-FFA capsules for each 

experiment to minimise potential oxidation of EPA.   
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4.8.1 MTT proliferation assay 

Acute EPA supplementation:  HUVECs were grown in T75 culture flasks in plain 

culture medium.  At 80% confluence, cells were trypsinised and centrifuged at 200 x 

g for 5mins.  Cell pellets were resuspended in plain medium and cell density 

counted in a Neubauer chamber.  Cells were seeded in 96-well plates at a density 

of 2000 cells/well in 100µl plain culture media.  Six wells were seeded with plain 

culture media alone as a "no cell" control.  After 24hrs incubation, the plain culture 

medium was aspirated and replaced with 100µl experimental media supplemented 

with EPA at concentrations ranging from 0µM to 100µM.  Each EPA concentration 

was replicated in 6 wells.  Six wells were replaced with culture medium + 0.1% (v/v) 

ethanol as a "carrier" control.  Plates were seeded in triplicate and incubated for 24, 

48 and 72hrs respectively.  After incubation, the culture medium was aspirated and 

50µl 1mg/ml Thiozolyl blue tetrazolium bromide (MTT) solution (Sigma-Aldrich, MO, 

USA) added to each well.  The plate was left in the dark for 3hrs.  Mitochondrial 

dehydrogenase in viable cells cleaves MTT to produce purple formazan crystals.  

After 3 hrs the MTT solution was aspirated and the purple crystals solubilised in 

100µl propan-1-ol.  The solution in each well was transferred to a fresh 96 well 

plate and optical density read at 570nm on a spectrophotometer.  The mean optical 

density (OD) of the 6 wells for each EPA concentration was calculated and a graph 

of OD over time was plotted. 

Further experiments were performed using the same method scaled up to a 48-well 

plate format, using 1x104 cells/well in 0.5ml culture medium, 100µl of 1mg/ml MTT 

solution and 200µl of propan-1-ol.  100µl of the solubilised purple formazan crystals 

was then transferred to a fresh 96-well plate for measuring OD as above. 

Chronic EPA supplementation: The effect of chronic EPA supplementation was 

studied by simultaneously growing batches of cells for two weeks in either plain 

culture medium or culture medium supplemented with 1µM EPA.  Culture medium 
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was changed every 48hrs and cells trypsinised and split at 80% confluence. Cells 

were counted and re-suspended in plain or 1µM EPA-supplemented culture 

medium and seeded at 1x104 cells per well with six replicates per condition on 3 

separate plates and incubated for 24, 48 and 72hrs respectively.  The media was 

not changed once cells had been seeded.  An MTT assay was performed as 

described above.   

The effects of VEGF and PGE2 on cell proliferation were studied by the 

supplementation of either 10ng/ml VEGF or 1µM PGE2 to the cell-conditioned 

media when cells were plated onto the 48 well plates.  This was performed with six 

replicates for both the EPA-naive cells and chronic EPA-supplemented cells.      

Concentration of PGE2 and 6-keto-PGF1α in HUVEC culture medium:  To begin 

to explore the mechanistic basis of the effect of EPA on HUVEC proliferation, the 

PG levels in HUVEC cell conditioned medium were analysed.  In the acute and 

chronic EPA supplementation assays, culture medium aspirated from each well 

prior to addition of MTT solution was combined for each of the replicate wells, and 

stored in 0.5ml cryovials at -80oC until analysis.   

Measurement of the concentration of PGE2 in culture medium was performed using 

the same methodology as the analysis of urinary PGE-M (see section 4.4), with the 

exception that the MRM channels were set for MS/MS detection of PGE2 as 

described in section 4.5.   

However, PGI2 rather than PGE2 is considered the main prostaglandin product of 

AA metabolism in vascular endothelium and previous studies in HUVEC cultures 

have shown greater production of PGI2 than PGE2.(299-301)  6-keto-PGF1α is a 

stable product of PGI2 produced by its non-enzymatic hydration.  Measurement of 

6-keto-PGF1α in HUVEC cell conditioned medium was performed using a 

competitive inhibition enzyme immunoassay (Enzo Life Sciences, Exeter, UK) 
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according to the manufacturer's instructions.  In brief, the kit includes a microtitre 

plate to which a donkey anti-sheep antibody is pre-bound to each well.  A polyclonal 

sheep antibody against 6-keto-PGF1α  is added which binds competitively to either 

6-keto-PGF1α in the sample or to an alkaline-phosphatase-6-keto-PGF1α conjugate 

which is added to each well.  The higher the concentration of 6-keto-PGF1α in the 

sample, the lower the concentration of alkaline-phospatase-6-keto-PGF1α conjugate 

that will competitively bind the sheep antibody and therefore bind to the well 

surface.  Reagents are washed away to remove any unbound 6-keto-PGF1α.  A 

substrate of p-nitrophenyl phosphate (pNpp) is added to each well.  This is 

catalysed by alkaline-phosphatase conjugate bound to the plate and produces a 

colour change.  The OD measured by spectrophotometry is inversely proportional 

to the original concentration of 6-keto-PGF1α in the sample, which can be read off 

the optical density on the standard curve produced from the 6-keto-PGF1α 

standards.  The detailed methodology is described below. 

The 6-keto-PGF1α standard was serially diluted in fresh HUVEC culture medium to 

give concentrations of 50000, 10000, 2000, 400, 80, 16 and 3.2pg/ml.  100µl of 

HUVEC culture medium was added to the "non-specific-binding" (NSB) well and the 

no-competitive binding (Bo) well.  100µl of standard or sample was added to the 

remaining wells in duplicate.  50µl of assay buffer was added to the NSB well.  50µl 

of alkaline-phosphatase-6-keto-PGF1α conjugate was added to each well.  50µl of 

polyclonal sheep antibody against 6-keto-PGF1α was added to each well except the 

NSB well.  The plate was incubated at room temperature on a plate shaker for 2hrs 

at 500rpm.   

The contents of each well were washed with 400µl of wash solution for a total of 

three washes.  200µl of pNpp substrate was added to each well and incubated at 

room temperature for 45mins without shaking.  50µl of stop solution was added to 
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each well.  Optical density was immediately measure on a spectrophotometer at 

405nm, with correction at 570nm.  

The OD for each sample and standard well was corrected for the average OD of the 

blank wells.  The net OD for each standard and sample was calculated by 

subtracting the average NSB OD from the average OD of each standard or sample.  

The percentage binding of each standard as a percentage of the maximum binding 

wells (Bo) was calculated by dividing the net OD of each standard by the net OD of 

the Bo wells.  For each standard, percentage binding was plotted against 6-keto-

PGF1α concentration to produce a standard curve.  Percentage binding of the 

samples was plotted on this graph to calculate the concentration of 6-keto-PGF1α in 

the samples. 

The primary antibody in this kit is specific for 6-keto-PGF1α.  The manufacture 

reports cross reactivity with other related prostaglandins at less than 3%.(302)  

They do not have data for cross-reactivity with the equivalent 3-series PGI3 

metabolite δ17-6-keto-PGF1α.  One historic paper has reported less than 10% 

cross-reactivity between the two compounds with two different antibodies against 6-

keto-PGF1α,(303) although this data is of limited value as the antibodies are 

different to those used in the Enzo Life Sciences kit.  Nevertheless, cross-reactivity 

is likely to be small, and given that 3-series prostaglandins might be expected to be 

produced in smaller quantities than the respective 2-series prostaglandins by as 

much as an order of magnitude,(209) any cross-reactivity could reasonably be 

expected to have a negligible effect on the results of the assay.    

4.8.2 Wound migration assay 

HUVECs were seeded in a 6 well plate at a density of 2x105 cells/well in 2ml plain 

culture medium and grown to confluence.  Each well was pre-marked on the 

reverse with two horizontal reference lines using a fine permanent marker (Figure 
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4.6).  Culture medium was replaced every 48hrs.  At confluence, culture medium 

was aspirated and a vertical score made in each well with a yellow pipette tip.  

Medium was replaced with 2ml experimental medium supplemented with EPA at 

concentrations ranging from 10µM to 50µM.  Photographs of each wound were 

taken immediately above and below the intersection of each reference line with the 

wound (4 photos per well) using an Olympus C7070 camera (Olympus, Essex, UK) 

attached to an Olympus CKX41 inverted light microscope (Olympus, Essex, UK) at 

x4 magnification (Figure 4.6).  The plate was incubated at 37oC and repeat 

photographs taken at regular intervals until the wounds had closed. 

Scoring:  Images were scored using TScratch, a freely available MATLAB (The 

Mathworks, Natick, MA, USA) based stand-alone programme designed by the 

Swiss Federal Institute of Technology (Zurich, Switzerland).(304)  TScratch detects 

the edges of the wound using an edge detection algorithm, then calculates the 

percentage open area (i.e. the area of the wound) in each image.  The detected 

open area is saved as an image overlay and available for review.  Thresholds for 

edge detection can be user defined, and in these assays they were set at 0.36 

arbitrary units which subjectively gave the best balance between sensitivity and 

specificity when the image overlays were reviewed.  All overlay images were 

manually reviewed and occasional erroneously detected areas, corresponding to 

patches of poor HUVEC confluence within the image, were deleted prior to the final 

percentage wound area being calculated. 
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Figure 4.6.  HUVEC wound migration assay.   

a) Parallel reference lines were drawn across the back of each well. b) At confluence a 

scratch was made in the HUVEC monolayer, and photographs taken at x4 magnification, 

immediately above and below the intersection of the score with the reference lines, as 

indicated by the dotted lines. c) An example of a photographed wound.   
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4.8.3 Matrigel tubule formation assay 

Matrigel™ (BD Biosciences, Oxford, UK) is a gelatinous reconstituted basement 

protein mixture extracted from the Engelbreth-Holm-Swarm mouse sarcoma.(305)  

It contains laminin, collagen, enactin, EGF, IGF-1, bFGF and other growth 

factors.(305)  HUVECs seeded on a layer of Matrigel form a network of tube-like 

structures which are the closest in vitro representation of capillary microvessels.  

The effect of EPA on HUVECs in a Matrigel assay therefore evaluates the effect on 

the more complex process of tube formation, rather than the more simplistic assays 

of proliferation or migration described above. 

Assay optimisation:  BD Matrigel Basement Membrane High Concentration (BD 

Biosciences, Oxford, UK) was defrosted on ice overnight.  Cold pipette tips, 

cryovials and PBS were used to dilute the liquid Matrigel with PBS into 0.5ml 

aliquots at 50%, 33%, 20%, 10% and 5% (v/v) Matrigel concentrations.  The 

remaining Matrigel was immediately re-frozen.  0.5ml of each Matrigel 

concentration was pipetted into a single well of a cold 6-well plate and spread 

evenly across the well.  These steps were performed on ice with cold equipment 

and reagents because Matrigel rapidly forms a gel above 10oC.  The 6 well plate 

was then placed at 37oC in an incubator for 30mins to allow the Matrigel to solidify. 

2x105 HUVECs in 2ml plain culture medium were seeded in each well of the 

Matrigel-coated 6 well plate.  The plates were reviewed regularly to assess the 

formation of tube-like structures.  Based on the results of this, a 33% Matrigel 

concentration was chosen for the HUVEC-Matrigel assays.  The remaining Matrigel 

was therefore diluted to 33% concentration and aliquoted into 0.5ml aliquots as 

described above and immediately refrozen.  The original Matrigel protein 

concentration was certified at 19.0mg/ml by the manufacturer based on the Lowry 

method.(285)  The 33% dilution therefore represents a 6.4mg/ml protein 

concentration. 
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Acute EPA supplementation assay: Wells of a 6-well plate were coated with 

0.5ml of 33% Matrigel as described above.  HUVECs were cultured in plain culture 

media, trypsinised, centrifuged, resuspended and counted as previously described.  

EPA-supplemented culture media was prepared as previously described.  2x105 

cells in 2ml of culture media supplemented with EPA to a concentration of 0-30µM 

EPA were added to each well.  The plate was incubated at 37oC  in a cell incubator.  

Plates were reviewed every 2hrs for the formation of tube-like structures, and 4 

non-overlapping representative photos taken of each well at each time point using 

an Olympus C7070 camera (Olympus, Essex, UK) attached to an Olympus CKX41 

inverted light microscope (Olympus, Essex, UK) at x4 magnification. 

Chronic EPA supplementation assay: HUVECs were grown for two weeks in 

either plain culture media or 1µM supplemented culture media as previously 

described.  2x105 cells in 2ml of plain culture media were seeded onto each well of 

a Matrigel-coated 6 well plate, 3 wells for the EPA-naive cells and 3 wells for the 

chronic-EPA supplemented cells.  Plates were incubated, reviewed and 

photographed as described above. 

Scoring: Images were analysed using a web-based image analysis service, 

WimTube (Wimasis GmbH, Munich, Germany).  Briefly, their algorithm involves 

filtering, segmenting, object recognition and data processing steps.  The tube-like 

structures identified are highlighted on an overlay image, and the metrics outputted 

are number of tube-like structures, mean tube length, number of branching points 

and number of complete rings formed.  This method has been validated against the 

alternative Angiosys system (TCS Cellworks, Buckingham, England) which requires 

the user to perform image processing in Adobe Photoshop followed by manual 

thresholding and skeletonisation steps in Angiosys.(306)  Angiosys then calculates 

the same metrics as Wimasis, with the exception of number of complete rings 
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formed.  Similar results have been obtained from either system, with the advantage 

that the Wimasis system required less user processing time.(306) 
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Chapter 5: Results - The EMT Trial 

5.1 Patient recruitment and baseline characteristics 

Between April 2010 and July 2011, 203 patients in the Leeds Hepatobiliary Unit 

outpatient clinics were screened for eligibility for The EMT Trial.  A total of 102 

patients did not fulfil the trial inclusion criteria, over half of these because of 

chemotherapy use in the last 3 months (Table 5.1 and Figure 5.1).  Other reasons 

for ineligibility are detailed in Table 5.1.  A further four patients were not 

approached for The EMT Trial because they were being considered for inclusion in 

other concurrent trials, and five patients were eligible but not approached because 

of time constraints in the outpatient clinic. Of the 92 eligible patients who were 

approached, the trial was well received with only four patients declining to 

participate.  Target recruitment of 88 patients (see power calculation, Chapter 3.9) 

was achieved in 15 months (Figure 5.2).   

 

Reason for ineligibility (n=102) N= (%) 

Chemotherapy within 3 months 57 (55.9%) 

Primary CRC in situ, or surgery within 6 weeks 11 (10.8%) 

Anticoagulation therapy 10 (9.8%) 

Inoperable disease 9 (8.8%) 

Regular NSAID use 4 (3.9%) 

Uncertain CRCLM diagnosis 4 (3.9%) 

CRCLM <9mm on cross-sectional imaging 4 (3.9%) 

Active Crohn's disease 1 (1.0%) 

Presence of other primary cancers 1 (1.0%) 

Active participant in another trial 1 (1.0%) 

 

Table 5.1. Patients screened but ineligible for inclusion in the EMT Trial  
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Assessed for eligibility 

(n = 203) 

Excluded (n = 115) 
Not meeting inclusion criteria (102) 
Refused to participate (4) 
Approached for other trials (4) 
Not seen at pre-operative clinic visit (5) 

Randomized (n = 88) 

Placebo 
(n = 45) 

 Reclassified as inoperable 
 at MDT (1) 

 Withdrew consent (1) 
 

CRCLM 
surgery (n = 43) 
 

 

Surgical 
outpatient 

review (n = 35) 

EPA 
(n = 43) 

 Reclassified as inoperable 
 at MDT (2) 

 Withdrew due to SEs (2) 

 Withdrew consent (1) 
 

CRCLM 
surgery (n = 38) 
 

 Transferred to oncology for 
adjuvant chemotherapy (n=4) 

 Inoperable disease at 
laparotomy (n=1) 

 Histological diagnosis of HCC 
(n=1) 

 Did not attend surgical follow-
up (n=1) 

 Died (n=1) 
 

 

 Transferred to oncology 
for adjuvant 
chemotherapy (n=2) 

 

 

Surgical 
outpatient 

review (n = 36) 

Median duration IMP 
26 days 

Median duration IMP 
30 days 

Not meeting inclusion criteria (102) 
Chemotherapy < 3months  (57) 
1

o
 CRC in situ or surgery < 6 weeks (11) 

Anticoagulant therapy (10) 
Deemed inoperable (9) 
Regular NSAIDs (4) 
Uncertain CRCLM diagnosis (4) 
CRCLM <9mm (4) 
Active Crohn's disease (1) 
Presence of another 1

o
 cancer (1) 

Participating in another trial (1) 

Figure 5.1.  CONSORT diagram 
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Figure 5.2.  Graph of cumulative recruitment into The EMT Trial 

 

Forty three patients were randomised to the EPA arm and 45 patients to the 

placebo arm of the trial (Figure 5.1).  The two groups were well matched at baseline 

(Table 5.2) with no significant difference in age, stage of primary bowel cancer, 

node positive primary disease, size or number of liver metastases, previous 

chemotherapy or interval between the end of chemotherapy and CRCLM resection.  

There was a non-significant higher proportion of females in the EPA group (39% vs. 

21%).  The placebo group had a higher proportion of synchronous disease (44% vs. 

30%), and a shorter interval between CRC resection and presentation with CRCLM 

in those patients with metachronous disease (median 19 months vs. 24 months).  

Neither measure reached statistical significance.  Similar proportions of patients in 

each group were taking antiplatelet agents.  Five patients in the EPA group and 

nine patients in the placebo group were already taking regular fish oil supplements 

before enrolment in the trial.  All of these patients stopped taking their own fish oil 

supplements for the duration of the trial.         
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Table 5.2.  Comparison of patient and disease-specific characteristics at baseline.  All 

data presented as n=(%) or median (range). Continuous variables were compared using 

Student t-test if data was normally distributed or Mann-Whitney U test if data was not 

normally-distributed.  Categorical variables were compared using Chi-square test.  

 

 Placebo n=45 EPA n=43 p= 

Patient characteristics    

Age (years)  71 (35-87) 68 (44-82) 0.97 

Sex M:F (% male) 35:10 (78%) 26:17 (61%) 0.08 

Aspirin 10 (22%) 10 (23%) 0.91 

Clopidogrel 3 (7%) 1 (2%) 0.33 

Previous fish oil 9 (20%) 5 (12%) 0.28 

 

Primary bowel cancer 

characteristics 

   

Dukes stage 

A 

B 

C 

D 

 

2 (4%) 

13 (29%) 

10 (22%) 

20 (44%) 

 

2 (5%) 

11 (26%) 

17 (40%) 

13 (30%) 

0.33 

Node Positive 25 (56%) 26 (61%) 0.64 

Synchronous CRCLM 20 (44%) 13 (30%) 0.17 

 

Liver metastasis characteristics    

Interval between primary CRC 

surgery and presentation with 

CRCLM (metachronous disease 

only) 

19 months (3-80) 

n= 30 

24 months (6-91) 

n= 32 

0.16 

Number of patients presenting for 

redo liver resection  

11 (24%) 6 (14%) 0.21 

Number of metastases  2 (1-5) 1 (1-9) 0.44 

Largest metastasis (cm)  2.6 (0.9-12) 3.1 (0.9-15) 0.15 

 

Previous chemotherapy     

Adjuvant chemotherapy > 3months 

prior to CRLM resection 

20 (44%) 20 (47%) 0.85 

Interval between end of 

chemotherapy and CRLM resection  

12 months (5-73) 13 months (6-82) 0.86 
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5.2  Withdrawals, duration of trial medication, and follow-up. 

5.2.1 Withdrawals 

Two patients in each group were withdrawn from the study following randomisation 

after their disease was reclassified as inoperable at the Leeds Hepatobiliary 

Multidisciplinary Team meeting.  One patient in each group withdrew their consent 

after randomisation (Figure 5.1).  One was a patient who decided a few days after 

randomisation that he wanted to start taking fish oil supplements and was not 

prepared to continue in the trial with a 50:50 chance of taking a placebo.  He 

therefore withdrew his consent so that he could start taking commercially available 

fish oil supplements.  The other was a patient who decided immediately after 

randomisation that he no longer wanted to take part in the trial.  He did not receive 

any trial mediation.  Two patients in the EPA group were withdrawn because of 

diarrhoea side effects, likely due to trial medication (see Section 5.3.4).    

5.2.2 Patients proceeding to surgery 

A total of 43 patients in the placebo group and 38 patients in the EPA group 

therefore proceeded to surgery.  There was no difference in the duration of trial 

medication between the two groups (p=0.62).  Median duration of trial medication 

was 26 days in the placebo group (range 15-73 days) and 30 days in the EPA 

group (range 12-65 days).  At surgery, one patient in the placebo group was found 

to have inoperable disease and no tumour tissue was obtained.  One patient in the 

EPA group had no identifiable tumour in the resected liver specimen, despite fine 

sectioning of the resected specimen.  The specimen was subsequently confirmed 

as having two fibrotic lesions but no identifiable tumour on the formal histopathology 

report.  One patient in the placebo group was diagnosed as having hepatocellular 

carcinoma not CRCLM after histological examination of the resected tumour and 

this patient was withdrawn from follow-up at this point.  Tumour samples from this 

HCC, and all preceding blood and urinary samples for this patient were excluded 
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from all analyses.  Samples of CRCLM for FFPE and subsequent 

immunohistochemical analysis, including the primary endpoint of Ki-67 proliferation 

index, were therefore obtained from 41 patients in the placebo group and 37 

patients in the EPA group. 

For two patients in the placebo group there was insufficient tumour to take fresh 

frozen tissue samples as well as for formalin-fixation.  FFPE samples were 

therefore prioritised in order to maximise the number of samples available for 

primary endpoint analysis.  This included one patient who had suspected lymph 

node involvement at the time of surgery which was confirmed on intra-operative 

fresh frozen histological examination.  At the time of confirmation, only a limited 

metastasectomy had been performed and tumour samples could only be taken for 

FFPE.  Similarly, the other patient had a very small tumour from which only a 

sample for FFPE could be obtained.  Two further patients in the placebo group had 

samples taken only for FFPE because their surgery was brought forward without 

our knowledge.  By the time these two patients had been identified, their tumour 

had already been fixed in formalin in the hospital's histopathology department.  

Formalin fixed tumour samples were taken and paraffin embedded in the same 

manner as all other samples, but it was not possible to obtain fresh tumour tissue.  

Fresh frozen tumour samples were therefore obtained from 37 patients in the 

placebo group and 37 patients in the EPA group. 

5.2.3 Loss to follow-up 

It is standard practice for patients to be reviewed 6 weeks after discharge from 

hospital in the surgical outpatient clinic to assess their recovery prior to referring 

patients to their local oncology centre for consideration of adjuvant chemotherapy.  

However, 6 patients (4 placebo group, 2 EPA group) who lived outside the 

Yorkshire region were not followed-up post-operatively in the surgical outpatient 

clinic and instead referred by their Consultant Surgeon directly to their local 
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oncology unit in order to minimise travelling.  These 6 patients therefore did not 

complete the final trial visit.  One further patient in the placebo group did not attend 

the final study visit, and another patient in the placebo group died before the final 

study visit.  Follow-up was therefore completed by 35 patients in the placebo group 

and 36 patients in the EPA group (Figure 5.1).  

  

5.3 Compliance, safety and tolerability 

5.3.1 Compliance  

Compliance was assessed by counting of capsules returned by the patient when 

they were admitted for their liver resection.  With the caveat that patients may not 

have returned all of their unused medication, mean compliance in the EPA group 

was 91% (range 50% - 100%) and in the placebo group 94% (range 43% - 100%). 

5.3.2 Suspected unexpected serious adverse reactions (SUSARs) 

There were no SUSARs recorded during this trial. 

5.3.3 Serious adverse events (SAEs) 

There were no SAEs reported whilst patients were taking study medication.  Seven 

SAEs were reported in the six week post-operative follow-up period.  These are 

detailed in Table 5.3.  Those SAEs that occurred in the post-operative period, 

including one death (1.1%), one pulmonary embolism (1.1%) and four patients 

requiring drainage of a subphrenic collection (4.5%) are all in keeping with the 

expected morbidity of liver resection surgery.  None of these were attributed to 

study medication and none required unblinding of the trial.    
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Patient 

ID 

Arm SAE category SAE description Time between 

surgery & 

SAE 

055 Placebo Death 

Elderly gentleman requiring 

a more extensive resection 

than anticipated developed 

intra-abdominal sepsis, 

multi-organ failure and died. 

31 days 

058 Placebo 
Life-threatening 

event 

Readmitted with pulmonary 

embolism 
21 days 

026 EPA Readmission 
Readmission for drainage of 

subphrenic collection 
21 days 

046 EPA Readmission 
Readmission for drainage of 

subphrenic collection 
16 days 

086 EPA Readmission 
Readmission for drainage of 

subphrenic collection 
31 days 

060 Placebo 

Intervention 

causing increased 

length of stay 

Drainage of subphrenic 

collection 
9 days 

084 Placebo Readmission 

Planned re-admission for 

resection of known lung 

metastases 

49 days 

 

Table 5.3.  Summary of SAEs reported during the trial 

 

5.3.4 Adverse events (AEs) 

Adverse events were classified as pre-operative or post-operative and graded in 

severity as either mild, moderate or severe.  AEs were graded mild if no 

intervention was required, the patient did not require hospitalisation or the AE did 

not prolong inpatient stay.  AEs were graded moderate if intervention was required 

(e.g. dose reduction of IMP) but the patient did not did not require hospitalisation or 

the AE did not prolong inpatient stay.  AEs were graded severe if the patient 

required hospitalisation, required re-operation, or required transfer to a higher level 

of care (e.g. from ward care to High Dependency Unit, HDU).  Based on this 

grading, all severe AEs qualify as SAEs and have been included in section 5.3.2. 
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A total of 16 pre-operative AEs were documented (Table 5.4).  These were all 

gastrointestinal symptoms, and were all considered likely attributable to study 

medication.  There was a greater proportion of patients in the EPA group reporting 

diarrhoea (19% vs. 7%) but this did not reach statistical significance. Of the eight 

patients reporting diarrhoea in the EPA group, two patients were withdrawn and two 

patients' symptoms were effectively controlled with a dose reduction from 2g to 1g 

daily.   Of the three patients reporting diarrhoea in the placebo group, one required 

a reduction in the dose of trial medication.  These AEs were all graded as moderate 

severity.  All other reported diarrhoea was mild in severity.  There was a significant 

increase in patients reporting upper gastrointestinal upset (abdominal pain, nausea, 

dyspepsia) in the EPA group compared to the placebo group (12% vs. 0%, p=0.01).  

None of these patients required dose reduction or withdrawal from the study.   

Adverse Event Placebo (n=45) EPA (n=43) p= 

Preoperative    

Diarrhoea 

 Mild 

 Moderate 

3 (7%) 

2 

1 

8 (19%) 

4 

4 

0.09 

Upper GI upset (mild) 0 5 (12%) 0.01 

Postoperative    

Encephalopathy (moderate) 1 1  

Intra-abdominal collection (mild) 2 1  

Bleeding (mild) 0 1  

Wound infection 

 no antibiotics (mild) 

  required antibiotics (moderate) 

4 

2 

2 

1 

1 

0 

 

Lower respiratory tract infection 

(moderate) 

4 0  

Urinary tract infection (moderate) 0 3  

 

Table 5.4.  Summary of AEs reported during the trial 
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A total of 18 post-operative AEs were documented in The EMT Trial (Table 5.4), all 

of which were considered to be in keeping with the expected complications of liver 

resection surgery, with none of these AEs considered attributable to study 

medication.    Combining the postoperative SAEs and AEs, morbidity was 33% in 

the placebo group and 23% in the EPA group, and the overall operative mortality 

(30-day mortality) was 1.1%.  This is in keeping with current outcome data for liver 

resection from the Leeds Hepatobiliary Unit which shows an operative mortality rate 

of 1.9%, and morbidity of 15.9-30%,(307, 308) of which postoperative collection 

was the most common complication occurring in approximately 7% of patients (307) 

as compared to in 8% of patients in The EMT Trial.  

 

5.5 Surgical outcomes 

Extent of liver resection was defined according to the International Hepato-

pancreatico-biliary Association (IHPBA) 2000 Brisbane classification.(309)  This 

defines liver resection as minor (<3 segments resected), major (3-4 segments 

resected), or extended (5 or more segments resected).  Approximately two-thirds of 

patients underwent minor liver resection and one-quarter of patients underwent a 

major liver resection.  There was no significant difference in the extent of resections 

performed between the two groups (Table 5.5). 

Length of hospital stay is a surrogate marker of surgical quality and complications.  

There was no significant difference in either the length of HDU stay or total length of 

hospital stay between the two groups (Table 5.5).  There was no significant 

difference in the requirement for transfusion of packed red cells between the two 

groups (Table 5.5).  
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Surgical outcomes Placebo n=43 EPA = 38 p= 

Extent of resection  

 Minor 

 Major 

 Extended 

 Inoperable 

 

30 (70%) 

9 (21%) 

3 (7%) 

1 (2%) 

 

25 (66%) 

10 (26%) 

3 (8%) 

0 (0%) 

0.75 

Packed red cell transfusion 4 (9%) 3 (8%) 0.82 

HDU stay (days) median + IQR  1 (1-3) 2 (0-2.25) 0.95 

Total hospital stay (days) median + IQR  7 (5-10) 6.5(5-9) 0.72 

 

Table 5.5.  Summary of surgical outcome measures 

 

5.6  Food Frequency Questionnaire 

Food frequency questionnaires were analysed for all patients who proceeded to 

surgery (n=81).  Baseline FFQs of those patients who were withdrawn prior to 

surgery (n=7) were not included in the analysis because no post-treatment outcome 

data was available for these patients.  FFQs were completed by 72 of 81 patients 

(89%) at baseline,  59 of 81 patients (73%) post-treatment and 67 of 71 patients 

(94%) at six week follow-up (Figure 5.3). 
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Figure 5.3.  FFQ completion rate 

 

Responses to the tick-box question concerning frequency of oily fish intake (Figure 

5.4A) were recorded and analysed according to the original questionnaire 

categories.    Patients' responses were analysed to compare oily fish consumption 

between the two groups at each time-point in the study, as well as comparing 

changes in individual patients' oily fish consumption during their participation in the 

study.  
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Figure 5.4.  Excerpt from the FFQ.  Arrows indicate the questions relating to oily fish 

intake which were analysed for comparison between groups.  Patients were asked to reflect 

on the last 1 month of food use, not 1 year as indicated on the questionnaire.   

 

 

At baseline, the EPA group were non-significantly higher consumers of oily fish than 

the placebo group (Figure 5.5), with 61% of patients consuming 1 or more portions 

per week compared to only 44% of patients in the placebo group (χ2  p=0.16).  This 

difference was not seen when patients were asked again post-treatment and at 

follow-up, with 42-47% of patients in each group consuming 1 or more portion per 

week at these time points.  When examining patients in the highest oily fish 

consumption category of 2-4 portions/week (Figure 5.5), the proportion of patients 

A 

B 
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in this category was similar between groups at baseline (17% placebo vs. 14% 

EPA, χ2 p=0.74).  This proportion fell in the placebo group and increased in the EPA 

group post-treatment (12.5% vs. 19.2%, Χ2 p=0.48), and at follow-up this proportion 

rose in the placebo group and fell in the EPA group (19% vs. 9%, χ2 p=0.20).  

Paired data was available for comparison of individual patients' change in oily fish 

intake between baseline and post-treatment for 26 of 43 patients in the placebo 

group (60%) and 24 of 38 patients in the EPA group (63%).  In the placebo group 

27% of patients report a higher category of fish intake post-treatment than at 

baseline, 27% report a lower category, and 46% reported the same category.  In 

the EPA group, 25% reported a higher category, 35% reported a lower category 

and 42% reported the same category. 

 

 

Figure 5.5.  Patient-reported consumption of oily fish portions per week/month.   
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Responses to the question "how many times did you eat fish or fish products" 

(Figure 5.3B) were analysed as the actual numerical response (Figure 5.6).  

Consumption of oily fish portions remained constant across the duration of the 

study in the placebo group (Wilcoxon matched-pairs signed rank test comparing 

baseline to post-treatment and post-treatment to follow-up, p=0.21 and p=0.56 

respectively).  The EPA group reported a increase in the number of oily fish 

portions consumed post-treatment compared to baseline.  This did not reach 

statistical significance when compared to baseline consumption in the EPA group 

(Wilcoxon matched-pairs signed rank test p=0.79), but was significantly higher than 

the oily fish consumption in the placebo group post-treatment (Mann-Whitney U test 

p=0.02). 
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Figure 5.6. Self-reported number of oily fish portions consumed per week at each 

time point in the trial  
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5.7 Tumour PUFA levels 

Tumour samples were available for analysis of PUFA content for 37 patients in the 

EPA group and 37 patients in the placebo group (as described in Section 5.2, fresh 

frozen tissue samples could not be obtained for all patients).  Levels of individual 

PUFAs in each tumour were analysed and expressed as a percentage of the total 

fatty acid content of the tumour (Table 5.6).  Mean PUFA levels were compared 

between groups (Figure 5.7), with statistical comparisons using unpaired student t-

tests.  Compared to the placebo group, tumours from the EPA group had 40% 

higher EPA levels (p<0.01), but no significant difference in AA levels.  The AA:EPA 

ratio was reduced in the EPA group compared to the placebo group, predominantly 

due to a higher level of EPA rather than a lower level of AA in the EPA group.   

Tumours from the EPA group also had 41% higher levels of the ω-3 PUFA DPA 

(p<0.01) and 11% lower levels the ω-3 PUFA DHA (p=0.05).  

There was no correlation between duration of EPA treatment and tumoural levels of 

AA (Pearson's correlation -0.073, p=0.67), EPA (correlation 0.031, p=0.86), DHA 

(correlation -0.053, p=0.74) or DPA (correlation 0.258, p=0.12).   

Tumour 
PUFA  

PLACEBO EPA % change 
compared to 
placebo 

p= 

EPA   1.30% (+-0.10) 1.82% (+-0.11) +40% <0.01* 

DPA 1.25% (+-0.08) 1.76% (+-0.09) +41% <0.01* 

DHA  2.89% (+-0.12) 2.56%(+-0.11) -11% 0.05* 

AA  12.82% (+-0.53) 12.03% (+-0.45) -6% 0.26 

AA:EPA ratio  11.35 (+-0.72) 7.58 (+-0.53) -33% <0.01* 

 

Table 5.6.  Tumour PUFA content.  Individual tumour PUFA levels were analysed and 

expressed as a % of the total tumour fatty acid content for each tumour.  Data represent 

mean (+-SEM) 
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Figure 5.7.  Scatter plots of PUFA levels in the tumours from each group.  PUFA levels 

were analysed and expressed as a % of the total tumour fatty acid content for each tumour.  

Error bars represent mean+-SEM.   
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Those patients who were either taking fish oil supplements prior to enrolment in the 

trial, or who were in the highest category of oily fish consumption at baseline (2-4 

portions oily fish per week) were identified and highlighted on the tumour PUFA 

graphs (Figure 5.8 A).  This represented 12 patients in the placebo group and 7 

patients in the EPA group.  Those patients in the placebo group who fell into this 

category had significantly higher tumoural EPA content than those patients in the 

placebo group who did not fall into this category (unpaired t-test p=0.04).  Re-

analysis of tumour PUFA levels excluding these patients shows that the magnitude 

of EPA increase, AA decrease, and AA:EPA decrease in the EPA group are all 

more pronounced when these patients are excluded (Table 5.7).   

Re-analysis of tumoural PUFA content excluding the 7 patients in the EPA group 

who were prior fish oil users or in the highest category of oily fish still demonstrated 

no correlation between duration of EPA treatment and tumour PUFA levels.   
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Figure 5.8.  Scatter plots of tumoural EPA content.  A) Tumours from patients who were 

pre-existing FO users or who reported the highest category of oily fish intake (2-4portions 

per week) are marked in red. B) Tumour EPA content after exclusion of those 12 patients in 

the placebo group and 7 patients in the EPA group highlighted in red in Figure A.  

 

 

 

 

Tumour 

PUFA  

PLACEBO EPA %change 
compared to 
placebo 

p= 

AA  13.45% (+-0.70) 12.31% (+-2.74) -8.5% 0.19 

EPA   1.16% (+-0.07) 1.81% (+-0.12) +56.0% <0.01 

DPA 1.22% (+-0.09) 1.81% (+-0.10) +48.4% <0.01 

DHA  2.77% (+-0.13) 2.54%(+-0.13) -8.3% 0.20 

AA:EPA 

ratio  

 12.42(+-0.78) 7.66 (+-0.57) -38.3% <0.01 

 

Table 5.7.  Subanalysis of tumour PUFA content.  Mean (+-SEM) levels of individual 

PUFAs in the tumours from each group after exclusion of patients who were either taking 

fish oil supplements or in the highest category of oily fish consumption prior to enrolment in 

the trial.   Individual tumour PUFA levels were analysed and expressed as a % of the total 

tumour fatty acid content for each tumour. 

A B 
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5.8 Tumour PGE2 and PGE3 levels 

Tumour samples were available for analysis of PGE2 and PGE3 levels for 37 

patients in the EPA group and 37 patients in the placebo group (see section 5.2).  

PGE2 was detected in all tumour samples (Figure 5.9).  Median (range) PGE2 

content of tumours was 6.62ng/g (0.44-33.40ng/g) in the EPA group and 5.87ng/g 

(1.89-447.00ng/g) in the placebo group.  There was no significant difference in 

tumoural PGE2 content between the two groups (MWU p=0.68).  Due to the 

potential confounding factor that aspirin irreversibly acetylates COX, one of the 

pathways by which EPA is proposed to exert anti-CRC activity, subanalysis 

excluding patients who were taking concurrent aspirin was performed for all 

mechanistic analyses.  This subanalysis showed no difference in tumoural PGE2 

content between the EPA and placebo groups (median 6.9 vs. 7.2ng/g respectively, 

MWU p=0.77).   
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Figure 5.9.  PGE2 content of tumours.  Error bars represent median+-IQR.   
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PGE3 was detected in only one tumour sample; that with the highest level of PGE2.  

PGE3 level in this tumour was 21.10ng/g.  If present, PGE3 in all other tumour 

samples was present at concentrations below the limit of detection (<10ng/g). 

 

There was no correlation between duration of EPA supplementation and tumoural 

PGE2 level (Pearson correlation -0.18, p=0.28).  There was a weak inverse 

relationship between tumoural EPA level and tumoural PGE2 (Figure 5.10; 

correlation -0.30, p=0.01), but not between tumoural AA level and tumoural PGE2 

(correlation -0.11, p=0.36). 
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Figure 5.10. Correlation between tumoural PGE2 level and tumoural EPA content    
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5.9 Ki-67 Proliferation index 

Immunohistochemistry for Ki-67 was performed on 78 tumour samples (EPA n=37, 

placebo n=41) in five batches.  Three sections, with a range of staining intensity, 

were chosen from the first batch and sequential sections from these tumours used 

as internal controls for each subsequent batch. Clearly identifiable distinct 

morphological regions of these internal controls were identified and photographed 

in each batch and scored for PI.  Subjectively, there was good consistency of 

staining with a similar pattern and intensity of staining to the naked eye across the 

five batches for each internal control (Figure 5.11).  Objectively there was low 

variance in the PI when calculated for each internal control across the five batches 

(Figure 5.11).  

Regions of interest (ROI) in the sample sections were then identified and scored as 

described in Chapter 4.7.1. The Ki-67 antigen is a nuclear protein expressed in all 

proliferating cells during late G1, S, M and G2 phases of the cell cycle.  Figures 

5.11 and 5.12 show that the pattern of Ki-67 staining is, as expected, localised to 

cell nuclei with no staining of acellular, mucinous or stromal regions of tumour.  

Figure 5.12 shows three representative ROIs, one from a typical cellular tumour 

with dense cellular staining, one from a tumour with a greater amount of stroma and 

more patchy areas of dense nuclear staining, and the other from a mucinous 

tumour with very sparse nuclear staining.  Mucinous tumours were found in 11 

patients (13.6%), six in the EPA group (16.2%) and 5 in the placebo group (12.2%).  

These mucinous tumours with sparse cellular areas typically required more than 

one ROI to be photographed and scored to satisfy the requirement of counting 

>500 cells.  One patient in the placebo group had a very mucinous tumour with no 

identifiable tumour cells in the section.  It was not possible to score this section for 

Ki-67 PI.  Ki-67 PI was therefore scored for 40 patients in the placebo group and 37 

patients in the EPA group. 
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Figure 5.11.  Internal control sections in each batch of Ki-67 staining.   
 
This Figure and legend is continued overleaf.  
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Figure 5.11.  Internal control sections in each batch of Ki-67 staining.  Three tumours 

with a range of Ki-67 staining  were selected for use as internal controls.  Adjacent sections 

of these tumours were used as internal controls in the five batches of Ki567 staining.  A 

distinctive ROI was identified in each internal control, and this ROI scored for proliferation 

index (PI) as a comparison of staining across the 5 batches.   The photographs of these 

ROIs demonstrates the consistency of staining of each internal control across the 5 different 

batches of Ki-67 IHC. The table shows the mean PI and variance for each internal control.  

Internal 
control ID 

Mean PI SEM Range 
Coefficient of 

variance 

10-1097A 77.6% 0.7 75.9 - 79.1 0.02% 

10-1136B 93.7% 0.7 92.5 - 96.1 0.02% 

10-1159A 83.0% 0.8 81.1 - 85.8 0.02% 
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Figure 5.12.  Examples of tumour staining for Ki-67.  These regions of interest show 

tumours with (A) a predominantly cellular architecture, (B) larger amounts of stroma, and (C) 

a predominantly mucinous architecture.  Note that regions of non-tumour cells were not 

counted in the calculation of PI.  Examples of these regions are marked in the dotted areas 

representing  in (A) inflammatory infiltrate, in (B) stroma, and in (C) mucin. 
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The PIs for each group are illustrated in Figure 5.13.  The mean PI in the placebo 

group was 72.96% +- 2.36 SEM (range 33.51% – 96.20%).  The mean PI in the 

EPA group was 70.70% +- 2.65 SEM (range 32.77% - 90.92%).  There was no 

significant difference in PI between the two groups (p=0.68).   

The variable duration of EPA supplementation in this study was a potential 

confounder for the Ki-67 proliferation analysis.  I therefore performed a linear 

regression analysis to investigate the effect of EPA treatment duration on tumour 

Ki-67 PI.  Duration of EPA supplementation was not associated with the Ki-67 PI 

(Figure 5.14, p=0.75).  It was also hypothesised that EPA might affect tumour 

proliferation by increasing tumour EPA content and driving a reduction in tumour 

PGE2 levels.  I therefore performed linear regression analysis to investigate for any 

association between these variables.  Tumour Ki-67 PI was not associated with 

either tumour EPA content (p=0.95) or with tumour PGE2 levels (p=0.64).  

Subanalysis performed after exclusion of patients who were taking concurrent 

aspirin also showed no difference in Ki-67 PI content between the EPA and placebo 

groups (p=0.86). 

  



123 

 
 

 

 Figure 5.13.  Ki-67 proliferation index.  Error bars represent mean+- SEM. 
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Figure 5.14.  Relationship between the duration of EPA supplementation and tumour 

Ki-67 proliferation index.   
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5.10 neo-CK18 Apoptosis index 

Validation of the automated image analysis algorithm (Chapter 4.7.3) was 

performed on a total of 20 representative ROIs taken from 3 separate tumour 

sections.  The image analysis algorithm recorded both the number of positive pixels  

and the number of "objects" i.e. the number of discrete, separate areas of positive 

pixels.  From this, the percentage positive pixels (positive pixels / total pixels x 100) 

and an object count standardised to tumour size (number of objects per million 

pixels) were calculated.  Note that these measures are not referred to as an 

apoptosis index, since neither measure is a true cell count of positive and 

negatively stained cells. 

After reviewing the markup images from the automated image analysis (examples 

shown in Figure 5.15), it was clear that the areas of DAB staining detected by the 

algorithm included both discrete apoptotic epithelial cells in areas of glandular 

epithelium and extruded neo-CK18 positive cells and cell debris in more necrotic 

areas of tumour (Figure 5.15).  By contrast, areas of light brown non-specific 

staining in acellular areas of the tumour were not detected.  I decided that it was 

justifiable to include both of these detected regions in a measure of apoptosis, since 

counting only discrete apoptotic cells would exclude from the analysis those 

tumours with larger areas of necrotic apoptotic debris.  This would risk excluding 

large areas of staining which may be the result of pro-apoptotic activity of EPA.  

Secondly, to the naked eye the sections of low, medium and high intensity of 

apoptosis staining seemed to correlate with the distribution of low, medium and high 

detection on the algorithm markups.  I therefore proceeded to perform a formal 

comparison of manual AI scoring of the ROIs against each of the two measures of 

apoptosis obtained from the automated image analysis.     

There was a strong positive correlation (Figure 5.16) between the manual AI and 

the algorithm “object count” (Spearman r=0.81, p<0.01), and between the manual 
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AI and the algorithm “% positive pixels” (Spearman r=0.80, p<0.01).  Because a) 

the two measures of apoptosis obtained from the automated image analysis provide 

a slightly different means of quantifying apoptosis, b) neither of them represent a 

true apoptosis index, and c) they both correlated well with the manual cell count for 

AI, I decided to use both measures when comparing apoptosis between the EPA 

and placebo groups.  Furthermore, although the measures of apoptosis of the 

automated analysis are not directly comparable to AI scores in other studies, the 

manual AI scores of 0-7% in the tumour sections are comparable with the hotspot 

AI scores (0.07-8.44%) in the similarly designed rofecoxib study by Fenwick et 

al,(271) and with AI scores in various other studies of CRCLM by Marshall et al (2-

8%),(310) Howells et al (3% in control arm),(311) Backus et al (13% in control 

arm)(312) and Tatebe et al (4.8-8.2%).(313)  Therefore any changes in apoptosis 

scoring found on automated analysis could be considered representative of 

changes in AI scores in other studies, even though these different methods cannot 

be directly compared.   
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Figure 5.15.  Representative sections of neo-CK18 staining.  The neo-CK18 stained 

sections are shown (left) together with the corresponding automated image analysis mark-

ups (right).  Areas of apoptosis detected by the algorithm are highlighted in red.  Note that 

the algorithm has detected both apoptotic epithelial cells in glandular epithelium (solid black 

arrows) as well as positive cells or cell debris in necrotic areas of tumour (open arrows).     
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Figure 5.16.  Correlation between manual and automated scoring of neo CK-18 

staining.  Lines represent line of best fit.   

  



128 

 
 

Immunohistochemistry for neo-CK 18 was performed on 78 tumour samples (EPA 

n=37, placebo n=41) in 5 batches.  Three sections, with a range of staining 

intensity, were chosen from the first batch and sequential sections from these 

tumours used as internal controls for each subsequent batch.   

Subjectively the consistency of staining across the five batches was good, with a 

similar pattern and intensity of staining to the naked eye across the five batches for 

each internal control (Figure 5.17).  However, there was wide variation in both 

apoptotic object count and apoptotic area (% positive pixels) across the five 

batches for each of the internal controls (Table 5.9).  The high coefficient of 

variance in the internal controls was more likely due to the very low count of stained 

apoptotic bodies across a large area, with small variations in apoptotic count 

resulting in a large coefficient of variance,  rather than due to poor reproducibility of 

the assay.   

Internal 

control ID 

Object count per million pixels 

Mean SEM Range 
Coefficient of 

variance 

11-0266 4.26 1.21 1.44 - 8.33 65.6% 

11-0271 5.05 1.05 1.54 - 6.46 46.3% 

11-0586 13.91 1.24 10.70 - 15.90 19.9% 

 

Internal 

control ID 

% positive pixels 

Mean SEM Range 
Coefficient of 

variance 

11-0266 0.0028 0.0011 0.0004 - 0.0063 85.9% 

11-0271 0.0017 0.0004 0.0004 - 0.0029 54.0% 

11-0586 0.0102 0.0010 0.0080 - 0.0133 21.6% 

 

Table 5.8.  Measures of apoptosis for the internal control sections stained for neo-

CK18 in each batch.   
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Figure 5.17.  Internal control sections in each batch of neo-CK 18 staining.  Three 

tumours with a range of neo-CK 18 staining  were selected for use as internal controls.  

Adjacent sections of these tumours were used as internal controls in the five batches of 

neo-CK 18 staining.  A distinctive ROI was identified in each internal control, photographed, 

and presented here as an example of the consistency of staining between batches.  Note 

that the measures of apoptosis were scored for the whole of each slide, not just the 

representative ROIs in this figure.    
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Apoptosis was scored for all tumour samples.  The measures of apoptosis for each 

group are illustrated in Figure 5.18.  The median object count per million pixels was   

4.98 (interquartile range, IQR 2.43 - 10.52) in the EPA group and 3.83 (IQR 2.31 - 

8.23) in the placebo group (MWU p=0.56).  The median % positive pixels was 

0.0028 (+-0.0004 SEM) in the EPA group and 0.0020 (+- 0.0004 SEM) in the 

placebo group (MWU p=0.53).  There was no significant difference in the measures 

of apoptosis between the two groups.  Subanalysis performed after exclusion of 

patients who were taking concurrent aspirin also showed no difference in object 

count or % positive pixels between the EPA and placebo groups (p=1.00 and 

p=0.76 respectively). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.18.  Measures of neo-CK 18 positive apoptosis detected by automated image 

analysis.  Two measures of apoptosis, the standardised object count and percentage 

positive pixels were recorded for each tumour.  Error bars represent median +/- IQR.       
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5.11 CD31 Microvessel density 

Immunohistochemistry for CD31 was performed on 78 tumour samples (EPA n=37, 

placebo n=41) in 5 batches.  Examples of the automated CD31-stained vessel 

detection are shown in Figure 5.19 and Figure 5.20.   

Three sections, with a range of staining intensity, were chosen from the first batch 

and sequential sections from these tumours used as internal controls for each 

subsequent batch.  Subjectively there was good consistency of staining across the 

five batches (Figure 5.21) although there was wide variation in both tumour vessel 

density and percentage vascular area across the five batches for each of the 

internal controls (Table 5.10).  

 

Internal 

control 

ID 

Vessel density (vessels per million square microns) 

Mean SEM Range 
Coefficient of 

variance 

11-0587 157.46 18.21 105.49 - 198.45 25.9 

11-0261B 116.33 27.37 33.62 - 204.69 52.6 

11-0263B 26.52 4.89 18.40 - 45.61  41.1 

 

Internal 

control 

ID 

% vascular area 

Mean SEM Range 
Coefficient of 

variance 

11-0587 0.29 0.04 0.17 - 0.37 29.8 

11-0261B 0.38 0.10 0.09 - 0.66 55.9 

11-0263B 0.04 0.02 0.03 - 0.07 43.2 

 

Table 5.9.  Measures of tumour vascularity for the internal control sections stained 

for CD31 in each batch. 
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Figure 5.19.  Representative sections of immunohistochemistry for CD31 tumour 

vascularity.  CD31-stained endothelial vessels are visible in brown, and those vessels 

detected by the automated image analysis algorithm are highlighted in green on the 

corresponding markup image (examples of corresponding vessels marked with solid black 

arrows).  Note that the algorithm does not highlight areas of non-specific DAB staining as 

endothelial cells (examples marked with open arrows).  
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Figure 5.20.  Further representative sections of immunohistochemistry for CD31 

tumour vascularity.  CD31-stained endothelial vessels are visible in brown, and those 

vessels detected by the automated image analysis algorithm are highlighted in green on the 

corresponding markup image (examples of corresponding vessels marked with solid black 

arrows).  Note that the algorithm does not highlight areas of non-specific DAB staining as 

endothelial cells (examples marked with open arrows), which are more extensive in this 

section than in Figure 5.18.  



134 

 
 

     

     

     

     

     

 

Figure 5.21.  Internal control sections in each batch of CD31 staining.  Three tumours 

with a range of CD31 staining  were selected for use as internal controls.  Adjacent sections 

of these tumours were used as internal controls in the five batches of CD31 staining.  A 

distinctive ROI was identified in each internal control, photographed, and presented here as 

an example of the consistency of staining between batches.  Note that the measures of 

tumour vascularity were scored for the whole of each slide, not just the representative ROIs 

in this figure.    
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In the EPA group, one section was scanned out of focus and was unable to be 

scored, and in the placebo group two tumour sections were erroneously scanned in 

duplicate in place of two other tumour sections.  MVD was therefore scored for 36 

tumours in the EPA group and 39 tumours in the placebo group.  The measures of 

tumour vascularity for each group were log transformed to normalise the 

distribution, then summary statistics were converted back to the original scale for 

presentation in numerical and graphical form (Figure 5.22).  The geometric mean 

vessel density in the EPA group was 18.54 vessels per million square microns 

compared to 19.50 vessels per million square microns for the placebo group 

(p=0.87), and the geometric mean % vascular area was 0.030% in the EPA group 

compared to 0.034% in the placebo group (p=0.74).  There was no correlation 

between indices of tumour vascularity and either duration of treatment or tumoural 

PUFA content.  Subanalysis performed after exclusion of patients who were taking 

concurrent aspirin also showed no difference in vessel density or % vascular area 

between the EPA and placebo groups (p=0.66 and p=0.76 respectively).  

 

     

 

 

 

 

 

 

 

Figure 5.22.  Tumour vessel density and % vascular area. Error bars represent 

geometric mean and 95% confidence interval. 
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Subanalysis was performed excluding those patients who were either pre-existing 

FO users or who were in the highest oily fish consumption category at baseline.  

These patients are highlighted in red in Figure 5.23A.  When these patients were 

excluded (Figure 5.23B) and the data re-analysed there was a trend to reduced 

tumour vascularity in the EPA group compared to placebo. Geometric mean tumour 

vascular area was 48% lower in the EPA group lower compared to placebo 

(0.027% vs. 0.052%, p=0.07), and geometric mean tumour vessel density was 43% 

lower in the EPA group compared to placebo (16.87 vs. 29.58, p=0.09). 
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Figure 5.23.  Subanalysis of tumour vascularity.  A) Patients who were already taking ω-

3 PUFA supplements prior to inclusion in The EMT Trial, or who reported the highest 

category of oily fish consumption at baseline, are highlighted in red.  B) Sub-analysis 

comparing tumour vascularity in the EPA and placebo groups was then performed after 

excluding these patients. Error bars represent geometric mean and 95% confidence 

interval.   
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5.12 Urinary PGE-M 

Urine samples were not analysed from the seven patients withdrawn from the study 

before undergoing surgery and the one patient who had a histological diagnosis of 

HCC.  Baseline urine samples were therefore analysed for all 80 patients with 

CRCLM who underwent surgery (EPA n=38, placebo n=42).  Pre-operative urine 

samples were not obtainable from the two patients in the placebo group whose 

surgery was brought forward without my knowledge.  Pre-operatively urine samples 

were therefore analysed for 78 patients (EPA n=38, placebo n=40).  One patient in 

the EPA group was unable to provide a final urine sample at the final study visit, 

and final urine samples were not obtainable from the seven patients in the placebo 

group and two patients in the EPA group who were discharged from the 

Hepatobiliary Unit's care after recovering from their surgery and did not attend the 

final study visit.  Follow-up urine samples were therefore analysed for 68 patients 

(EPA n=35, placebo n=33).    

Urinary creatinine levels were below the limit of detection (<1.5mmol/l) in four 

samples in the placebo group and a technical problem with the MS/MS apparatus 

prevented detection of PGE-M in one sample in the EPA group.  PGE-M 

standardised to urinary creatinine could therefore not be calculated for these 

samples.  Ten samples in the EPA group and 7 in the placebo group had PGE-M 

levels below the limit of detection (LOD, <10ng/g), and were therefore recorded as 

this LOD value for the purpose of analysis.  Data was log transformed to normalise 

the distribution for analysis, then summary statistics were converted back to the 

original scale for presentation in tabular and graphical form.      
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EPA 
Baseline 

n=38 
Post-treatment 

n=37 
Follow-up 

n=34 

1
p= 

(37 pairs) 

2
p= 

(33 pairs) 

Geometric 
mean 

13.58 9.83 14.96 0.17 0.02 

95% CI 10.21 - 18.07 6.82 - 14.16 10.00 - 22.39   

Placebo 
Baseline 

n=39 
Post-treatment 

n=40 
Follow-up 

n=33 

1
p= 

(37 pairs) 

2
p= 

(31 pairs) 

Geometric 
mean 

15.92 20.37 15.52 0.10 0.14 

95% CI 11.75 - 21.63 16.41 - 25.29 11.32 - 21.28   

3
p= 0.44 <0.01 0.89   

 

Table 5.10. Urinary PGE-M.  Geometric mean and 95% confidence interval (CI) for PGE-M 

in ng/mg creatinine at baseline, post-treatment (i.e. completion of study medication), and at 

the six weeks follow-up appointment (off study medication). 
1
 Paired t-test comparing paired 

patient data at baseline and post-treatment.  
2
 Paired t-test comparing paired patient data at 

post-treatment and follow-up.  
3 

Unpaired t-test comparing EPA vs. placebo groups at each 

time point. 
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Figure 5.24.  Scatterplot of urinary PGE-M. Data given in ng/mg creatinine at baseline, 

post-treatment (i.e. completion of study medication), and at the six weeks follow-up 

appointment (off study medication). Error bars represent geometric mean and 95% 

confidence interval. 

p<0.01 

 

p=0.02 
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There was no significant difference in mean PGE-M between the two groups at 

baseline (Table 5.11 and Figure 5.24). Post-treatment PGE-M was 51.8% lower in 

the EPA group compared to placebo (p<0.01).  This represented a 27.6% reduction 

in urinary PGE-M in the EPA group between baseline and post-treatment, and a 

27.9% increase in urinary PGE-M in the placebo group between baseline and post-

treatment. Urinary PGE-M levels rose again by 52.2% at follow-up in the EPA group 

(p=0.02), and fell by 18.2% in the placebo group (p=0.14).  There was no significant 

difference in PGE-M between the two groups at the six weeks post-operative follow-

up appointment (p=0.89), and no significant change in urinary PGE-M between 

baseline and follow-up in either group (EPA p=0.61, placebo p=0.60).    

There was no correlation between the duration of treatment in the EPA group and 

the change in urinary PGE-M between baseline and post-treatment (Pearson 

correlation coefficient 0.059, p=0.73).  Sub-analysis by gender revealed no 

significant differences between the two groups or between male and females 

(Figure 5.25).  Sub-analysis excluding those patients who were already taking ω-3 

PUFA supplements prior to enrolment in the Trial or who were high consumers of 

oily fish did not reveal any significant differences between the two groups.  

Subanalysis performed after exclusion of patients who were taking concurrent 

aspirin also showed no difference between the two groups. 
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Figure 5.25.  Scatterplots of urinary PGE-M stratified by sex.  Error bars represent 

geometric mean and 95% confidence interval.   
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5.13 PBMC nuclear NFκB activation  

Blood samples were not analysed from the seven patients withdrawn from the study 

before undergoing surgery and the one patient who had a histological diagnosis of 

HCC.  Baseline blood samples were analysed for all 80 patients with CRCLM who 

underwent surgery (EPA n=38, placebo n=42).  Post-treatment blood samples were 

not obtainable from the two patients in the placebo group whose surgery was 

brought forward without my knowledge.  Post-treatment blood samples were 

therefore analysed for 78 patients (EPA n=38, placebo n=40).  Follow-up blood 

samples were not obtainable from seven patients in the placebo group and two 

patients in the EPA group who did not attend the final study visit.  Follow-up blood 

samples were analysed for 69 patients (EPA n=36, placebo n=33).  Paired samples 

were available for 40 placebo and 38 EPA patients between baseline and post-

treatment, and for 33 placebo and 36 EPA patients between post-treatment and 

follow-up.  One spuriously high LPS-stimulated sample from the EPA group, 

suggestive of protein contamination in the sample, was excluded from analysis.  

There was insufficient sample left to repeat this analysis.  

LPS stimulation of PBMCs consistently increased nuclear NFκB activation 

compared to un-stimulated PBMCs in both groups and at each time point (Figures 

5.26 and 5.27).  There was no significant difference between the two groups at any 

time point in either LPS-stimulated or LPS un-stimulated nuclear NFκB activation.  

Within the placebo group, there was no significant change in nuclear NFκB 

activation across the study period.  In the EPA group there was a reduction in both 

LPS-stimulated and un-stimulated nuclear NFκB activation post-treatment 

compared to baseline (15.5% and 20.3% reduction, p=0.03 and p=0.07 

respectively).  At follow-up, both LPS-stimulated and un-stimulated nuclear NFκB 

activation increased back to baseline values (28% and 29.5% increase, p<0.01 and 
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p=0.02 respectively).  Subanalysis performed after exclusion of patients who were 

taking concurrent aspirin also showed no difference between the two groups.    

      

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26.  Barchart of LPS un-stimulated mean nuclear NFκB activation. Paired t-

tests were used to compare change in nuclear NFκB activation over time within each group.  

All p-values not depicted were non-significant.  Error bars represent mean +- SEM.    
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Figure 5.27.  Barchart of LPS-stimulated mean nuclear NFκB activation. Paired t-tests 

were used to compare change in nuclear NFκB activation over time within each group.  All 

p-values not depicted were non-significant.  Error bars represent mean +- SEM.    
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5.14 Platelet aggregation  

Platelet aggregation (arbitrary units, AU) at baseline was stratified based on aspirin, 

clopidogrel, or fish oil (FO) supplementation use at the time of entry into the EMT 

Trial to assess the sensitivity of the assay to the anti-platelet effect of these 

medication (Figure 5.26).  Baseline blood samples were available for 15 aspirin 

users, 4 aspirin + FO users, 2 clopidogrel users, 1 clopidogrel + FO user, 9 FO 

users, and 54 patients who were naive to all of these.  One patient withdrew 

consent after randomisation and prior to baseline blood sampling.  One patient's 

blood sample was delayed in returning to the laboratory (greater than the 3 hours 

window for analysis recommended by the manufacturer) and had partially clotted.  

Another patient had poor venous access and blood sampling was technically 

difficult.  This patient's sample had partially clotted on return to the laboratory.  Both 

these partially clotted samples were discarded and not analysed. 

Mean (+-SEM) platelet aggregation in aspirin users compared to naive individuals 

was 83% lower in response to AA stimulation (13.1+-2.4AU vs. 78.2+-3.8 AU, 

p<0.01), 36% lower in response to collagen stimulation (48.6+-5.3AU vs. 75.6+-

3.3AU, p<0.01), and 62% lower in response to low dose collagen stimulation 

(22.6+-4.0AU vs. 59.1+-3.6AU, p<0.01).  Stimulation with ADP had no effect on 

platelet aggregation in aspirin users compared to naive individuals.  Platelet 

aggregation was further reduced in response to all agonists in the small number of 

patients taking aspirin and FO compared to aspirin alone, but this did not reach 

statistical significance (Figure 5.28A). 

Because of the small number of patients in the clopidogrel (n=2) and clopidogrel 

+FO (n=1) groups, these patients were grouped together for the purpose of 

evaluating the assays sensitivity to the anti-platelet effect of clopidogrel.  Mean (+-

SEM) platelet aggregation in clopidogrel users compared to naive individuals was 

58% lower in response to ADP stimulation (27.3+-3.2AU vs. 64.8+-3.9AU, p=0.03) 
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and non-significantly 35% lower in response to low dose collagen stimulation 

(38.7+-11.6AU vs. 59.1+-3.6AU, p=0.20).  Stimulation with AA or collagen had no 

effect on platelet aggregation in clopidogrel users compared to naive individuals 

(Figure 5.28B). 

There was no significant difference in platelet aggregation between FO users and 

naive individuals in response to either AA, ADP, collagen or low dose collagen 

stimulation (Figure 5.28C). 
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Figure 5.28.  Baseline platelet aggregation (arbitrary units) in response to different 

agonists.  Patients have been stratified by prior aspirin (A), clopidogel (B) and fish oil (FO) 

use (C) and compared to "naive" patients not taking these at baseline.  Error bars represent 

mean +- SEM.  AA=arachidonic acid, ADP=adenosine diphosphate, COL=collagen 

3.2µg/ml, COL-LO = low-dose collagen 0.64µg/ml.    
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Blood samples were not analysed from the seven patients withdrawn from the study 

before undergoing surgery and the one patient who had a histological diagnosis of 

HCC.  One patient in the placebo group had difficult venepuncture and his baseline 

blood sample partially clotted prior to analysis and was discarded.  Baseline blood 

samples were therefore analysed for 79 patients (EPA n=38, placebo n=41).  Post-

treatment blood samples were not obtainable from the two patients in the placebo 

group whose surgery was brought forward without my knowledge.  Post-treatment 

blood samples were therefore analysed for 78 patients (EPA n=38, placebo n=39).  

Follow-up blood samples were not obtainable from the seven patients in the 

placebo group and two patients in the EPA group who were discharged from the 

Hepatobiliary unit's care after recovering from their surgery and did not attend the 

final study visit.  Follow-up blood samples were analysed for 68 patients (EPA 

n=36, placebo n=32).   

There was no significant difference between the two groups in platelet aggregation 

in response to either AA, ADP, collagen or low dose collagen at any time point in 

the study (Figure 5.29, unpaired t-tests).  There was a small reduction in platelet 

aggregation in response to low dose collagen stimulation in the EPA group 

compared to the placebo group post-treatment, but this did not reach statistical 

significance (p=0.08), and was in fact due to an increase in platelet aggregation in 

the placebo group compared to baseline rather than a reduction in platelet 

aggregation in the EPA group compared to baseline.  Neither EPA nor placebo 

treatment was associated with a change in platelet aggregation in response to any 

of the four agonists between baseline and post-treatment (Figure 5.29, paired t-test 

analysis, all p=NS). 
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Figure 5.29. Platelet aggregation at baseline, post-treatment and follow-up.  Each 

graph shows platelet aggregation in response to a different agonists.  Error bars represent 

mean +- SEM.   AA=arachidonic acid, ADP=adenosine diphosphate. 
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Although no antiplatelet effect was seen in the EPA group, because of historic 

concerns about the risk of bleeding with ω-3 PUFA supplementation and because 

many patients are already takin aspirin pre-operatively, I performed subgroup 

analysis to investigate the effect on of EPA and aspirin when taken in combination.  

The antiplatelet effect of aspirin alone at baseline has already been shown in Figure 

5.28.  There were seven patients in each group who were taking aspirin and who 

had paired baseline and pre-operative samples available for analysis.  There was 

no significant difference in platelet aggregation at baseline between the aspirin 

consumers in each group (Figure 5.30 A).  Both at baseline, and post-treatment 

(Figure 5.30 B), platelet aggregation was non-significantly lower in the EPA group 

compared to the placebo group.  In both groups there was a significant increase in 

platelet aggregation between baseline and post-treatment (Figure 5.31 A and B)  

However, these results may have been confounded by patients stopping their 

aspririn pre-operatively before they came in to hospital.  Whilst it is not the policy of 

the Hepatobilary Unit to stop aspirin pre-operatively, it is conceivable that either 

patients chose to stop their aspirin because of a perceived bleeding risk of major 

surgery, or they are advised to do so by their GPs or other health professionals for 

the same reason.  Data was not collected on the date of last aspirin use, so this 

could not be investigated further, but on the basis of the available evidence EPA + 

aspirin did not impair platelet aggregation compared to aspirin alone.   
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Figure 5.30  Subanalysis between groups of platelet aggregation in aspirin users.  

Seven patients in each group were taking aspirin during the study and had paired baseline 

and pre-operative samples available for analysis.  Error bars represent mean +- SEM.  

Groups were compared at baseline (A) and pre-operative (B) using Mann Whitney U test.  

Selected p-values are presented, with all other p-values being non-significant.  

AA=arachidonic acid, ADP=adenosine diphosphate, COL=collagen 3.2µg/ml, COL-LO = 

low-dose collagen 0.64µg/ml.       
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Figure 5.31  Subanalysis over time of platelet aggregation in aspirin users.  Seven 

patients in each group were taking aspirin during the study and had paired baseline and 

post-treatment samples available for analysis (A= EPA group, B=placebo group).  Error bars 

represent mean +- SEM.  Comparison of aggregation over time within each group was 

performed using Wilcoxon matched-pairs signed rank test.  Selected p-values are 

presented, with all other p-values being non-significant. AA=arachidonic acid, 

ADP=adenosine diphosphate, COL=collagen 3.2µg/ml, COL-LO = low-dose collagen 

0.64µg/ml.           
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5.15 Discussion of results from The EMT Trial 

 

Safety and tolerability 

The EMT Trial has demonstrated that pre-operative supplementation of EPA is safe 

and well-tolerated in patients with CRCLM awaiting liver resection.  The type and 

frequency of side effects seen, namely gastrointestinal upset, are comparable to 

previous studies using the same preparation of EPA-FFA 2g daily.  In a phase III 

study of six months EPA supplementation in patients who had undergone subtotal 

colectomy for FAP,(262) diarrhoea was reported by 31% of patients taking EPA and 

35% of patients taking placebo.  Withdrawal due to EPA intolerance was 3.4%.  In 

an earlier phase II study in patients with previous colorectal adenoma, 3 months of 

EPA-FFA caused diarrhoea in 14% of patients who took 2g/day, but only in 2% of 

patients who took 1g/day.(257) The long-term tolerability of ω-3 PUFAs is further 

supported in large cardiovascular studies.  The GISSI prevention study gave low 

dose (0.85g) ω-3 PUFA to 2836 patients for 3.5 years.(314)  In this study 

gastrointestinal disturbance was reported by 4.9% of patients, nausea by 1.4% of 

patients, and only 3.8% of patients discontinued ω-3 PUFA supplementation.(314)  

Similar findings were seen in a study of higher dose (6.9g) ω-3 PUFA daily for 6 

months.(315)  Gastrointestinal disturbance was reported by 7% of 275 patients who 

received ω-3 PUFA supplementation, but also by 8% of patients who received the 

corn-oil placebo.(315) 

EPA supplementation was not associated with any increase in post-operative 

bleeding or infective complications, and ex vivo platelet function tests showed no 

evidence of anti-platelet activity of EPA.  The evidence concerning a risk of 

bleeding with ω-3 PUFA supplementation is mixed, with some studies raising 

concern that ω-3 PUFAs inhibit platelet aggregation, and others showing no effect.  

A cross-over study of dietary salmon and salmon oil supplementation versus an un-

supplemented control diet in 11 healthy volunteers found that the salmon 
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supplemented diet was associated with an increase in bleeding time (10mins vs. 

6.75mins, p<0.05) and a 24% reduction (p<0.05) in platelet aggregation in response 

to ADP (2µM) but not in response to AA or collagen.(266)  In a study of Type II 

diabetic patients (n=40), 6 weeks of supplementation of 1.2g/day ω-3 PUFA vs. 

placebo was associated with 15% reductions in platelet aggregation in response to 

ADP and collagen (both p<0.01).(267)  In contrast, a study of TPN following major 

abdominal surgery found that the addition of 0.2g/kg/day ω-3 PUFA to TPN had no 

effect on platelet aggregation as measured by resonance thrombography, and no 

effect on other measures of haemostasis including levels of the clotting factors VIIa 

and XII, the need for transfusion of packed red blood cells, or routine laboratory 

coagulation tests such as thromboplastin time and activated partial thromboplastin 

time.(316)  Similarly, recent reviews of over 4000 patients in 19 trials of ω-3 PUFAs 

who were undergoing either arterial surgery or trans-arterial angiography and 

angioplasty found no evidence that ω-3 PUFAs were associated with an increased 

risk of bleeding.(268, 269)   

Several recent studies have also investigated whether aspirin and ω-3 PUFAs in 

combination increases the risk of bleeding.  In one study, subjects were given a 

single dose of aspirin (625mg) on day 1, then received ω-3 PUFA (4g/day) for 28 

days, then took one day of combined ω-3 PUFA and aspirin on day 30.(317)  

Omega-3 PUFA supplementation alone did not inhibit aggregation in response to 

ADP, low- or high-dose collagen.  Aspirin alone inhibited aggregation in response to 

low-dose collagen only.  However, in combination, ω-3 PUFA and aspirin inhibited 

aggregation to all three agonists.  Similar results were seen in a double-blind, 

randomised, placebo-controlled cross-over study which gave 25 healthy volunteers 

either 3.4g EPA/DHA, 81mg aspirin, or both, and took blood for analysis of platelet 

aggregation at baseline and 4hrs post-treatment.(318)  They found that aspirin and 

ω-3 PUFA in combination, but neither alone, inhibited platelet aggregation 
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measured by the PFA-100 (Siemens, Deerfield, IL) system.  In a further study, 

addition of ω-3 PUFA potentiated the anti-platelet effect of combination aspirin and 

clopidogrel therapy in patients who had undergone coronary angioplasty.(319)   

There were only a small number of patients in The EMT Trial taking aspirin and ω-3 

PUFAs, but a possible potentiation of platelet inhibition with combination therapy 

was still seen.  At baseline, platelet aggregation was significantly lower in the small 

number  of patients who were taking fish oil supplements and aspirin compared to 

patients who were taking aspirin alone.  However, there was no significant 

difference in platelet aggregation in response to any of the four agonists between 

the EPA and placebo groups at the end of the period of supplementation.  It is also 

important to remember that there was no difference between the two groups in the 

rate of blood transfusion (10% vs. 8%), which for both groups was less than the 

17% transfusion rate reported in the last review of transfusion requirement (2004-

2008) in the Leeds Hepatobiliary Unit (320).  Whilst blood transfusion rates have 

likely fallen in the 5 years since this study, the 10% transfusion rate in The EMT 

Trial is considered to be in keeping with current transfusion requirements within the 

Unit.      

Therefore, despite the complexity of the platelet aggregation pathway and the lack 

of consensus regarding the techniques and agonists to best measure platelet 

aggregation, the results from The EMT Trial support the hypothesis that EPA does 

not significantly inhibit platelet aggregation and does not cause an increased risk of 

bleeding during liver resection, although the possibility that EPA might potentiate 

the platelet inhibitory effect of aspirin when given in combination should still be kept 

under consideration. 
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Tumour PUFA content 

Treatment with EPA was associated with significantly higher tumour EPA content 

compared to placebo.  This is the first study to demonstrate that oral EPA 

supplementation leads to incorporation into CRC or CRCLM.  An inherent limitation 

of The EMT Trial is that only post-treatment tumour tissue was available for 

analysis.  It is unethical to biopsy liver metastases before surgery because of the 

risk of tumour seeding, and MRI scan of the liver with liver-specific contrast such as 

Primovist® is the accepted modality for diagnosis of CRCLM.  Pre-operative biopsy 

is therefore only performed in the rare situations when there is doubt about the 

diagnosis of a liver lesion.  Comparison of individual patients' change in tumour 

PUFA content pre- and post-treatment was therefore not possible.  Instead, only 

comparison of post-treatment tumour PUFA content between the EPA and placebo 

groups could be performed.   

A further limitation of the study is that the median duration of supplementation was 

relatively short.  Few clinical studies have examined the effect of short-duration ω-3 

PUFA supplementation (Table 5.11), and only one of these examined ω-3 PUFA 

uptake by solid gastrointestinal tumours.(321)  In this study of 40 patients, five days 

of pre-operative oral ω-3 PUFA supplementation (3.7g ω-3 PUFA/day) versus un-

supplemented controls was associated with significant increases in the EPA content 

of liver tissue (1.25% vs. 0.4%), gastrointestinal mucosa (1% vs. 0.25%) and 

tumour tissue (0.75% vs. 0.25%).  This 0.5% absolute increase in tumour EPA 

content is comparable to the 0.65% absolute increase seen in The EMT Trial.  The 

remaining clinical data which is available for comparison comes from colonic 

mucosa biopsy studies, with periods of supplementation of up to 6 months (Table 

5.11).  These studies showed greater colonic mucosal uptake of EPA than the 

CRCLM uptake of EPA seen in The EMT Trial.  This includes studies of short 

duration (2-6 weeks)(254, 255, 273, 322) and two studies which used the same 
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preparation of EPA as in The EMT Trial (257, 262), albeit in these two studies EPA 

was given for 3-6 months rather than the median 30 days in The EMT Trial.  

Notably, the level of AA in tumours in the placebo group in The EMT Trial was 

much higher than the baseline levels of AA in colorectal mucosa in other studies.  

There are no studies reporting the AA content of solid GI tumours available to know 

whether there is a difference in AA content between human colonic mucosa and 

solid tumours.  It is also noticeable that in all the studies which performed serial 

colonic biopsies, mucosal EPA levels increased early, within 2-4 weeks, whereas 

mucosal AA levels did not fall until 12 weeks or more.(254, 255, 273)  The same 

trend of an early rise in EPA/DHA, with a delayed fall in AA was also seen in a 

separate study of the PUFA content of plasma and blood cells at 0, 2 and 12 weeks 

from eight healthy volunteers taking 1.4-4.2g EPA/day.(323)   

The study by Gee et al investigated the effect of fish oil supplementation (1.4g EPA 

+ 1.0g DHA/day) vs. placebo on 49 patients prior to colorectal surgery.(322)  Mean 

duration of supplementation was 12.3 days.  They found a significant increase in 

EPA content in the colorectal mucosa of patients in the fish oil group compared to 

placebo, but no difference in PUFA levels in mesenteric adipose tissue.  However, 

patients who self-reported use of FO supplements prior to the trial did have higher 

levels of EPA and higher ratios of ω-3:ω-6 PUFA in adipose tissue compared to 

patients who did not report previous FO supplementation.  This mirrors the findings 

of the similar subanalysis of patients already exposed to ω-3 PUFA intake in The 

EMT Trial. 

It is clear that the uptake of ω-3 PUFAs and reduction in AA is time dependent, and 

may vary between different tissues.  Whilst the results from The EMT Trial 

demonstrate an increase in tumour EPA content following EPA supplementation, it 

is likely that the duration of supplementation was too short to reach either the 

maximal EPA incorporation, or to observe a reduction in AA content.  
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Table 5.11.  Clinical studies reporting the change in PUFA content of colonic mucosal or gastrointestinal tumours following ω-3 PUFA 

supplementation.  Levels given are the ω-3 PUFA content as a % of total fatty acids.  *approximate figures read off graph 

Study Duration Tissue Daily  ω-3 PUFA 
(EPA/DHA) 

Baseline Post-treatment  
Placebo group 

Post treatment   
ω-3 PUFA group 

EPA DHA AA EPA DHA AA EPA DHA AA 

Senkal 
2005(321)  

5 days GI mucosa 3.7g - - - 0.3   1.0   

 Liver - - - 0.3   1.3   

 GI tumour - - - 0.3   0.8   

Gee 
1999*(322) 

12 days Colorectal 
mucosa 

2.4g (1.4g/1.0g) - - - 0.5 0.5 4.0 1.0 0.8 5.5 

Adipose 0.1   0.1   

Anti 
1992(255) 

2 weeks Colorectal 
mucosa  

7.7g (4.1g/3.6g) 1.3-1.5 1.5-1.8 5.7-6.1 1.3 1.9 6.3 2.6 1.9 5.0 

12 weeks 1.8 1.6 6.2 2.3 1.8 4.4 

Hillier 
1991(273) 
 

3 weeks Colorectal 
mucosa 

5.4g (3.2g/2.2g) 0.3-0.4 1.7-2.1 8.5-10.0 0.4 1.7 8.6 3.2 3.3 7.9 

6 weeks 0.4 1.7 7.5 3.1 3.1 8.3 

12 weeks 0.2 1.0 5.1 3.1 2.9 5.6 

Anti 
1994(254) 

4 weeks Colorectal 
mucosa 

2.5g (1.4g/1.1g) 0.8-1.2 1.3-2.0 5.8-6.5 1.1 1.5 6.1 1.6 2.2 5.0 

5.1g (2.7g/2.4g) 1.9 2.6 3.6 

7.7g (4.1g/3.6g) 2.5 4.0 4.2 

6 months  2.5g (1.4g/1.1g)       1.5 2.1 3.6 

Courtney 
2007(257) 

3 months Colorectal 
mucosa 

2g EPA-FFA 0.8-1.2 1.7-2.4 8.4-9.4 0.8 1.9 9.1 2.7 2.5 8.0 

West 
2010(262) 

6 months Colorectal 
mucosa 

2g EPA-FFA 0.7-1.0 1.4-1.9 8.5-9.6 1.3 1.4 9.9 2.5 1.7 8.8 

Sorensen 
2013 (324) 

7 days Colorectal 
mucosa 

2.g EPA + 1g 
DHA 

   0.2 0.9 2.0 0.6 1.3 2.6 

EMT Trial 
 

4 weeks CRCLM 2g EPA-FFA - - - 1.3 2.9 12.8 1.8 2.6 12.0 
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Tumour PGE2 and urinary PGE-M 

In this trial there was no difference in tumoural PGE2 levels between the EPA and 

placebo groups, despite previous in vitro and mouse models showing that EPA 

incorporation is associated with a reduction in PGE2 production.(149, 209)   

Notably, PGE2 levels varied widely in both the EPA and placebo groups.  There are 

no previous studies reporting PGE2 production in human CRCLM available for 

comparison.  Two studies have investigated this in human gastrointestinal 

mucosa.(259, 325)  In a study by Bartram et al,(259) 12 healthy volunteers received 

either fish oil (4.4g ω-3PUFA/day) or corn oil for two 4-week periods, with a 4 week 

washout period, in a double-blind crossover study.  They found no significant 

difference in ω-3 PUFA content of rectal biopsies after fish oil supplementation 

compared to after corn oil supplementation (4.00% vs. 4.03%), and a non-

significant increase in ω-6 PUFA content after corn-oil supplementation (19.23% vs. 

14.96%, p=0.11).  PGE2 levels in rectal biopsies were approximately 671 ng/g 

tissue after corn oil and 435.5 ng/g tissue after fish oil supplementation (p<0.05).  

This suggests that corn oil supplementation led to increased ω-6 PUFA and PGE2 

content, rather than fish oil supplementation leading to lower PGE2 content.  In a 

study by Mehta et al,(325) 52 patients with Barrett's oesophagus were randomised 

to receive 1.5g EPA-FFA/day or placebo for 6 months, with biopsies of the Barrett's 

oesophagus taken at baseline and post-treatment.  In the EPA group there was a 

significant increase in mucosal EPA post-treatment (2.4% vs. 0.8%, p<0.01), but no 

change in mucosal AA (6.4% vs. 6.0%, p=0.14) or mucosal PGE2 (36.1pg/µg 

protein vs. 33.1pg/µg protein). 

Median PGE2 levels in CRCLM in The EMT Trial were 6.62ng/g in the EPA group 

and 5.87ng/g in the placebo group.   This is lower than the PGE2 levels seen in the 

Bartram and Mehta studies, although methodological differences make direct 

comparison between the studies difficult.  In the Bartram study PGE2 was 
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measured in culture medium by radioimmunoassay after 2 hrs incubation with the 

rectal biopsies (259) and in the Mehta study PGE2 was standardised to protein 

content of the sample.(325) 

Notably, of the in vivo and clinical studies that have demonstrated a reduction in 

tumour/mucosa PGE2 with fish oil supplementation and also measured tissue PUFA 

content, all demonstrated a significant reduction in AA in addition to significant 

increases in EPA, resulting in AA:EPA ratios ranging between 0.59:1 and 

3.74:1(151, 209, 227, 236, 241, 259, 326) which are lower than the 7.58:1 AA:EPA 

ratio in tumours in the EPA group of The EMT Trial.  This may explain why there 

was no difference in tumour PGE2 levels in The EMT Trial, and again, may reflect 

the duration of supplementation having been too short to achieve maximal tumour 

EPA incorporation and AA reduction.     

In the limited number of in vivo studies that have measured tumour PGE3, levels 

were between 2-20 times lower than corresponding PGE2 levels.(151, 209, 326, 

327)  In The EMT Trial, PGE3 was detected in only one tumour, that with the 

highest level of PGE2 which was one of the placebo group tumours.  PGE3 in this 

tumour (21.10ng/g) was present at 20 times lower concentration than the level 

PGE2 (447ng/g).  The largest concentration of PGE2 in the EPA group was 

33.40ng/g.  Therefore any PGE3 in tumours in the EPA group, at a similar 2-20 

times lower concentration than PGE2 might have been present below the limit of 

detection (10ng/g) of LC-MS/MS, making it impossible to draw any conclusions 

about PGE3 production from this study.   

In addition to measuring tumoural PGE2 I also assayed urinary PGE-M, which being 

a measure of overall PGE2 synthesis, allowed a longitudinal analysis of the changes 

in PGE2 synthesis associated with EPA supplementation.  Baseline levels of PGE-

M in this study ranged from 7.93-28.93ng/mg of creatinine, with a median of 
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16.49ng/mg in the EPA group and 18.24ng/mg in the placebo group.  Studies of 

healthy volunteers have shown mean PGE-M levels of approximately 5-10ng/mg, 

(81, 82, 328) with levels being higher in men than in women (81-83) and higher in 

smokers than in non-smokers.(328)  Mean levels in patients with non-small cell lung 

cancer were approximately 20-30ng/mg,(81, 329, 330) and in the one study found 

of PGE-M in patients with CRC, 17 patients with inoperable or metastatic CRC had 

a mean PGE-M of 25ng/mg.(331) The PGE-M levels in patients with operable 

CRCLM in The EMT Trial therefore seem to be appropriately between those of 

healthy controls and patients with advanced inoperable disease.  

No other studies of the effect of ω-3 PUFAs on urinary PGE-M were found for 

comparison.  Although the 27% reduction in PGE-M between baseline and post-

treatment in the EPA group did not reach statistical significance, the magnitude of 

reduction is plausible, being lower than the 40-60% reductions seen with the more 

potent COX-2 inhibitor celecoxib (81, 83, 329) but higher than the 14% reduction in 

PGE-M seen in a study of 36 healthy volunteers who were supplemented with 7.5g 

of ω-3 PUFA for 10 weeks.(332)  PGE-M levels rose again in the EPA group at 

follow-up, having stopped EPA supplementation, but stayed the same in the 

placebo group, providing further evidence for an effect of EPA on systemic PGE2 

production.  Interestingly PGE-M levels did not fall in either group at follow-up 

despite this being after removal of their cancer.  Together with the finding that 

tumoural PGE2 levels were unaffected by EPA, this might suggest that systemic 

PGE2 production is a greater contributor to urinary PGE-M than tumoural PGE2 

production.  This hypothesis is supported by a study of patients with unresectable 

or metastatic CRC which found no difference in urinary PGE-M between those 

patients who did and those who did not respond to dual therapy with celecoxib and 

cetuximab.(331)  Alternatively, it might be that the six week interval between 

surgery and follow-up was too short for the systemic inflammation caused by 
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surgery to have subsided, and that this masked any reduction in PGE2 synthesis 

attributable to the removal of the tumour.  Such an inflammatory response to 

surgery might be expected to have subsided within 1 week (333, 334) although 

there are no studies examining this beyond 1 week.  An additional confounder that 

could have masked a reduction in PGE-M after removal of the tumour is that 

hepatic COX-2 expression and PGE2 synthesis increase following liver resection as 

part of the liver regeneration response.(335-337)  Whilst the duration of PGE2 rise 

following hepatectomy is unstudied in humans, liver regeneration would still be 

ongoing at six weeks, potentially contributing to elevated systemic PGE2, and 

hence raised urinary PGE-M, secondary to liver regeneration. 

Nevertheless, EPA therapy was associated with a small but statistically significant 

reduction in PGE-M indicative of an effect on PGE2 production, whether this be of 

tumoural or systemic origin.  This anti-inflammatory effect is consistent with the 

known COX inhibitory activity of EPA.(338)  

  

PBMC NFκB activation  

EPA therapy inhibited basal and LPS-stimulated NFκB activation in PBMCs, which 

similar to the PGE-M data, was reversible after cessation of EPA therapy.  This 

provides further evidence of a systemic anti-inflammatory effect of EPA therapy.    

Whilst there are no previous studies of PBMC NFκB activation in patients with 

either CRC or CRCLM, these results are consistent with other clinical studies which 

have demonstrated uptake of ω-3 PUFAs by PBMCs (339-341) with resultant anti-

inflammatory effects. (342-349)  The rate of uptake and washout of different PUFAs 

in these studies mirrors that seen in other cells and tissues in clinical studies 

discussed earlier in this section.  In a study of parenteral fish oil supplementation 

(three days, total 42g ω-3 PUFA), there was a significant increase in PBMC content 

of EPA and DHA, but not AA.(340)  EPA levels returned to normal by eight days, 
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with DHA and DPA levels remaining high up to day 11.  This is consistent with the 

ω-3 PUFA content in plasma and erythrocytes in the Leicester trial of parenteral 

supplementation in patients with CRCLM.(211)   In the study by Yaqoob et al of 12 

weeks oral ω-3 PUFA supplementation (2.1g EPA + 1.1g DH/day) peak EPA 

content of PBMCs occurred by 4 weeks, with a reduction in AA only detected at 12 

weeks.(341)  This is consistent with the majority of human mucosal biomarker 

studies (Table 5.11) and the CRCLM PUFA data in The EMT Trial.  Omega-3 PUFA 

incorporation into PBMCs has been demonstrated to reduce pro-inflammatory gene 

expression, including several NFκB target genes, pro-inflammatory cytokines and 

genes involved in eicosanoid synthesis.(342, 343)  It has also been associated with 

a reduction in PBMC production of PGF2α, PGE2, IFN-gamma, IL-1, IL-6 and 

TNFα,(344-349) and a reduction in paw oedema in vivo.(348)  A minority of studies 

have failed to show any effect of ω-3 PUFAs on PBMC cytokine production.(340, 

341) 

The finding in The EMT Trial that EPA inhibits NFκB activation in isolated human 

PBMCs is also consistent with pre-clinical studies of the effect of ω-3 PUFAs on 

NFκB activation in other cell lines in vitro and in vivo.  In human CRC cell lines, ω-3 

PUFA supplementation has been shown to inhibit IκB phosphorylation, reduce 

NFκB activation and reduce NFκB p65 expression.(178, 179)  Omega-3 PUFA 

supplementation has also been shown to inhibit NFκB activation in HUVECs.(180)  

Similar findings have been shown in pancreatic and breast cancer cell lines,(182, 

350, 351) in transgenic mouse prostate cancers,(181) and in a nude mouse model 

of breast cancer.(182)   

Therefore, whilst no previous studies have directly investigated the effect of ω-3 

PUFAs on NFκB activation in PBMCs, the results from The EMT Trial would be 

consistent with separate studies of the effects of ω-3 PUFAs on PBMCs and of ω-3 

PUFAs on NFκB activation in other cell lines.  Bringing these results together 
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supports the hypothesis of EPA having an anti-inflammatory effect, and potential 

anti-CRC activity, through inhibition of NFκB signalling.    

 

Immunohistochemistry 

In contrast with findings from the recent MC-26 mouse CRCLM model,(209) EPA 

was not associated with a change in either tumour proliferation or apoptosis.  

Subanalysis did, however, reveal reduced tumour vascularity in the EPA group 

compared to the placebo group after exclusion of patients who were either taking 

fish oil supplements or who had a high weekly intake of oily fish prior to the study.  

Whilst there are no other studies of the effect of EPA on CRCLM available, limited 

comparisons can be made with immunohistochemical findings in other studies of 

CRCLM.  The range of Ki-67 PI seen in The EMT Trial (mean 70.7% in the EPA 

group, 73.0% in the placebo group) is in keeping with the range of PIs seen in other 

studies.  Veremeulen et al. found a mean PI of 62.9% (35.8-93.5%) in 26 historic 

FFPE CRLM specimens,(352) and Tatebe et al. found a mean PI of 60.7% (55.3-

70.4%) in 15 historic FFPE CRCLM specimens.(313)  In a similarly designed study 

of the effect of rofecoxib on CRCLM by Fenwick et al, mean (range) PI in CRCLM 

tumours was 54.7% (0-96%) in the rofecoxib group and 52.6% (17-94%) in the 

placebo group.(271)  The lower mean PIs in the rofecoxib study may be due to the 

subjective choice of a high powered field of view for analysis (an area of high 

apoptosis was chosen for counting AI, then PI was counted from the equivalent field 

of view in an adjacent section of tumour), compared to the method of analysis in 

The EMT Trial which counted proliferation at a standardised point at the tumour 

edge.  It is plausible that the advancing edge of a tumour has a higher rate of 

proliferation than more central areas of the tumour which might display higher 

apoptosis counts.  Another study of 90 patients with resected CRCLM found that Ki-

67 PI was >50% in only 29% of tumours.(353)  However, these resected tumours 

were analysed in a tissue microarray, with non-necrotic sections of tumour placed in 
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the array in triplicate.  The random sampling from throughout the tumour might 

again explain why PI is lower in this study than in The EMT Trial which analysed PI 

from the edge of the tumour.   For comparison with other cancers, only one clinical 

trial was found which observed a 32% reduction in prostate cancer Ki-67 PI in 

patients supplemented with 5g ω-3 PUFA/day preoperatively for 4-6 weeks 

compared to those given placebo.(354) The study of the effect of rofecoxib by 

Fenwick et al is the only other study found which measured either apoptosis or 

vascularity in CRCLM.(271)  Similar to the effect of EPA in The EMT Trial, rofecoxib 

had no effect on tumour apoptosis but was associated with a 29% reduction in 

MVD, although as with EPA, this failed to reach statistical significance (p=0.15). 
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Chapter 6: Results – Studies of the effects of EPA on 

Human Umbilical Vein Endothelial Cells (HUVECs) 

 

6.1 MTT proliferation assay 

6.1.1 Assay optimisation 

Initial dose-finding experiments investigating the effect of EPA on HUVEC 

proliferation were performed using a 96-well plate with 6 replicates for each cell 

condition (Experiments 1 and 2).  There were no viable cells seen at 24hrs when 

cells were supplemented with EPA concentrations greater than 50µM, and MTT 

optical density readings at these concentration were equivalent to the no-cell 

controls (Figures 6.1 and 6.2).  This suggested that EPA ≥ 50µM was cytotoxic to 

cells.  There appeared to be a dose-dependent effect of EPA on HUVEC 

proliferation between EPA 5-50µM.  In Experiment 2, duplicate 96-well plates were 

seeded.  In one, culture media was left unchanged for 72hrs, and in the other, 

culture media in each well was changed after 48hrs.  Changing the culture media at 

48hrs was associated with increased proliferation across all cell conditions 

compared with not changing the culture medium (Figure 6.2).  However, because 

this affected all cell lines equally it was decided for future experiments not to 

change the culture media during the experiment in order to a) simplify the 

experiment, b) minimise wastage of expensive culture medium, and c) minimise 

error in repeatedly making up small volumes of EPA containing media.   

The assay was then scaled up to a 48 well format to increase the number of cells 

per well and allow better visualisation of the cells under microscopy (Experiment 3).   

The dose range of EPA was narrowed to 0-30µM.  Similar to the 96-well format, a 

dose-dependent reduction in HUVEC cell proliferation was observed (Figure 6.3). 
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Figure 6.1.  The effect of EPA on HUVEC proliferation: Experiment 1.  Each data 

point is the mean of 6 replicate wells. 
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Figure 6.2.  The effect of EPA on HUVEC proliferation: Experiment 2.     

In experiment 2a culture media was left for the duration of the experiment, whereas in 2b 

the culture media in each well was aspirated and replaced with fresh medium at 48hrs.  

Each data point is the mean of 6 replicate wells. 
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Figure 6.3.  The effect of EPA on HUVEC proliferation: Experiment 3.  In this 

experiment the effect of EPA 5-30µM was investigated in a 48-well format.  Each data point 

is the mean of 12 replicate wells. 

 

After scaling up the experiment to the 48-well format and observing similar results 

to the 96-well format, it was decided to validate the MTT assay before performing 

further experiments in the 48-well format.  The purpose of this was two-fold.  Firstly, 

to confirm that the MTT assay OD readings were proportional to cell number, and 

secondly to exclude the possibility that EPA had a direct effect on the assay itself 

by interfering with mitochondrial metabolism of MTT and the solubilisation of 

formazan crystals by propan-1-ol.   

To investigate whether MTT assay OD readings were proportional to cell number. 

serial 2-fold dilution of cells were plated at densities of 0 - 32000 cells/well and 

incubated for 24hrs before performing an MTT assay.  Figure 6.4 demonstrates that 

OD was proportional to seeded cell number.  This relationship was linear up to a 

cell number of 16000 (OD 0.43).  At the next cell density of 32000 cells, this 

relationship plateaued.  
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Figure 6.4.  Optical density vs. seeded cell number.  Serially diluted HUVECs were 

plated and allowed to attach for 24hrs.  MTT assay was then performed and optical density 

plotted against seeded cell number. A line of best fit has been added between cell densities 

of 0-16000 cells.  Each data point is the mean of 6 replicate wells.    

 

To investigate whether EPA directly affects the MTT assay rather than affecting cell 

proliferation, 1x104 cells were incubated in plain culture medium for 24hrs.  EPA 

100µM or an equivalent volume of ethanol carrier were added to one row each at 

the same time as adding the MTT to the cultured cells, and again to separate rows 

at the time of solubilising the formazan crystals with propan-1-ol.  These 

experimental conditions are summarized in Table 6.1. 

Figure 6.5 demonstrates that the addition of ethanol carrier had no effect at any 

stage of the MTT assay.  Addition of EPA at the MTT step caused a reduction in 

OD, whereas addition of EPA at the propan-1-ol step had no effect on OD.  Under 

microscopy (Figure 6.6) it was clear that the cells which received MTT+EPA were 

less viable than those which received MTT alone, and resembled the cells seen 

previously when grown in media supplemented with EPA50-100µM.  It is therefore 

likely that 100µM EPA had a cytotoxic effect on cells within the 3 hours incubation 
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period when added with the MTT, rather than EPA directly affecting the 

performance of the assay by preventing the metabolism of MTT by viable cells. 

 

 Culture 
conditions 

MTT step Propan-1-ol step 

No-cell 
control 

No cells MTT Propan-1-ol 

Standard  
assay 

Cells +  
plain media 

MTT Propan-1-ol 

MTT +  
EtOH 

Cells +  
plain media 

MTT + EtOH Propan-1-ol 

MTT +  
EPA 100µM 

Cells +  
plain media 

MTT + EPA 100µM Propan-1-ol 

Propan-1-ol 
+ EtOH 

Cells +  
plain media 

MTT Propan-1-ol + EtOH 

Propan-1-ol 
+ EPA 100µM 

Cells +  
plain media 

MTT Propan-1-ol + EPA 100µM 

 

Table 6.1.  Experimental conditions for each row of the 48-well plate.  These conditions 

were replicated in 6 wells per row. 

 

 

Figure 6.5.  Effect of EPA and ethanol (EtOH) carrier on the performance of the MTT 

assay.  Each data point represents a single value. 
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Figure 6.6.  Representative photos of cells seeded in a 48-well plate.  Photograph of 

cells (x10 magnification) remaining in wells after MTT incubation, from wells treated with (a) 

MTT alone as per the standard assay and (b) MTT + 100µM EPA. 

 

 

6.1.2 Acute EPA supplementation 

The effect of acute EPA supplementation on HUVEC proliferation was repeated 

using the 48-well setup and the methodology was altered slightly.  Cells were plated 

in replicate 48-well plates containing plain media and left for 24hrs.  MTT assay was 

performed on one plate after 24hrs of EPA-free culture (Time 0).  The media in the 

remaining plates was then changed to experimental EPA-containing media and 

cultured for 24, 48, or 72hrs before performing the MTT assays. The change in OD 

relative to the baseline OD at Time 0 could then be calculated, whereas in the 

previous methodology no baseline was calculable because the cells had already 

been exposed to experimental EPA-containing media for 24hrs at the time of the 

first MTT assay. 

This methodology was performed on two separate occasions (Experiments 4 and 

5).  In both experiments there was a dose-dependent EPA inhibition of HUVEC 

proliferation.  These results were pooled to give a mean of 12 replicate wells 

(Figure 6.7).  HUVECs supplemented with 10µM EPA showed approximately 26% 

less growth than un-supplemented cells at 24hrs (p=0.02), 33% less growth at 

A B 
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48hrs (p<0.01) and 33% less growth at 72hrs (p<0.01).  Cells supplemented with 

20µM EPA showed 34% less growth than un-supplemented cells at 24hrs (p<0.01), 

38% less growth at 48hrs (p<0.01), and 41% less growth at 72hrs.  At 48 and 

72hrs, cells supplemented with 25-30µM EPA showed 64-69% less growth than un-

supplemented cells (p<0.01).  All statistical analyses were performed using 

unpaired t-tests.      
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Figure 6.7.  Effect of EPA on HUVEC proliferation.  Each data point is the mean of 12 

replicate wells.  Note that for these experiments cells were plated for 24hrs in plain media, 

and then culture media change to EPA-containing media and cells incubated for a further 

24-72hrs.  One plate was read immediately prior to exposing cells to EPA, allowing optical 

density at each time point to be compared to mean optical density of the corresponding row 

of the baseline 48-well plate and expressed as a fold-increase.  Error bars represent 

mean+- SEM.    
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6.1.3 Chronic EPA supplementation 

Whilst the acute EPA supplementation experiments provided a simple, reproducible 

assay, the short period of HUVEC exposure to EPA was not representative of the 

duration of EPA supplementation in in vivo and human studies.  I therefore decided 

to also investigate the effect of a longer-duration, lower-dose EPA supplementation 

as a closer representation of conditions in in vivo and human studies.  HUVECs 

were incubated for two weeks in either plain medium or medium supplemented with 

1µM EPA.  Media was changed every 48 hrs.  After two weeks, cells were 

trypsinised, counted and seeded in 48-well plates and an MTT assay performed as 

in the acute EPA supplementation experiments.  This was performed on two 

separate occasions (Experiment 1 and 2).  In contrast to the acute EPA 

supplementation experiments, a baseline MTT assay could not be performed prior 

to EPA exposure because the cells had already been exposed to experimental 

medium for two weeks.  Results of the chronic EPA supplementation experiments 

are therefore quoted as the mean OD, rather than as the fold-change in OD 

compared to baseline.     

Cells chronically supplemented with EPA showed reduced proliferation compared to 

EPA naive cells at all time points in both experiments.  The proliferation curve was 

steeper in Experiment 2 than in Experiment 1, but the same trends were observed 

in both experiments (Figure 6.8).  At 96hrs, OD in EPA-supplemented cells was 

16.4% lower than in EPA-naive cells in Experiment 1 (p<0.01), and 33.9% lower in 

Experiment 2 (p<0.01). 

VEGF is known to stimulate HUVEC proliferation, and inhibition of VEGF-stimulated 

angiogenesis has been proposed as one mechanism by which EPA might inhibit 

angiogenesis.  To further investigate the mechanistic effect of chronic EPA 

supplementation on HUVEC proliferation, I decided to supplement cells with VEGF 

at the time of seeding onto the 48-well plates to test the hypothesis that EPA-
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supplemented cells would have an attenuated response to VEGF stimulation.  

Supplementation of VEGF 10nM to culture media stimulated proliferation in the 

EPA-naive cells in both Experiment 1 and Experiment 2 compared to VEGF 

unstimulated cells at 96hrs (12.7% and 18.9% increases in proliferation, p<0.01 and 

p=0.01 respectively).  However, VEGF had no significant effect on proliferation of 

cells chronically supplemented with EPA compared to VEGF unstimulated cells at 

96hrs (0.8% increase and 3% increase in proliferation, p=0.77 and p=0.56 

respectively).  The response to VEGF was indeed attenuated in the EPA-

supplemented cells.     

VEGF is known to be upregulated by PGE2,(73, 186) so EPA inhibition of the COX-

PGE2 pathway is a potential mechanism by which EPA might inhibit VEGF-

stimulated angiogenesis.  I therefore decided to supplement cells with PGE2 at the 

time of seeding onto 48-well plates to test the hypothesis that the addition of PGE2 

would restore proliferation in the EPA-supplemented cells to the same levels as that 

seen in control cells (i.e. a PGE2 rescue effect).  In Experiment 2, cells were 

supplemented with 1µM PGE2.  In the EPA-naive cells, PGE2 supplementation 

stimulated proliferation (20.6%, p=0.01), to a similar extent to that seen with VEGF 

supplementation.  PGE2 also stimulated proliferation in cells chronically 

supplemented with EPA, but this response was attenuated compared to the 

proliferation of EPA-naive cells and did not reach statistical significance (12.9%, 

p=0.08).  PGE2 supplementation therefore failed to show a rescue effect in cells 

chronically supplemented with EPA.    
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Figure 6.8.  The effect of chronic EPA supplementation on HUVEC proliferation 

(Experiments 1 and 2).  The effect of VEGF supplementation is shown in Experiment 1 and 

2, and the effect  of PGE2 supplementation is shown in Experiment 2.  Each data point is the 

mean of 6 replicates. 
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6.1.4 Concentration of PGE2 and 6-keto-PGF1α in HUVEC culture medium 

HUVEC cell-conditioned medium was collected from acute EPA supplementation 

Experiment 4 and Experiment 5 at 72 hours, and from chronic EPA 

supplementation Experiment 1 at 96 hours. For each EPA supplementation 

condition in each experiment, medium was collected from the six replicate wells and 

pooled and analysed as a single sample.  This was because it was impractical and 

prohibitively expensive to analyse PGE2 in the cell conditioned medium of each 

replicate well separately.  PGE2 was not detectable in any of the samples by LC-

MS/MS, most likely because PGE2 was present in pg/ml concentrations, i.e. below 

the 10ng/ml limit of detection of PGE2 by LC-MS/MS (Loadman et al, unpublished 

data).   

However, PGI2 rather than PGE2 is considered the main prostaglandin product of 

AA metabolism in vascular endothelium and previous studies in HUVEC cultures 

have shown greater levels of PGI2 than PGE2 production.(299-301)  I therefore 

decided to measure the levels of 6-keto-PGF1α, a stable product of PGI2 , in cell-

conditioned media.  The same batches of cell-conditioned media were used and 

levels of 6-keto-PGF1α measured using an enzyme immunoassay (EIA) as 

described in section 4.8.1. 

The standard curve of 6-keto-PGF1α concentration versus percentage binding for 

the assay is shown in Figure 6.9. 
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Figure 6.9.  Standard curve of 6-keto-PGF1α concentration versus percentage binding 

 

The results of the 6-keto-PGF1α analyses are presented alongside the 

corresponding MTT experiment data in Figures 6.10 - 6.12.  In the acute EPA 

supplementation experiments, the concentration of 6-keto-PGF1α in culture medium 

at 72 hours in Experiment 5 (Figure 6.10) was highest in those cells supplemented 

with the highest concentrations of EPA (20 and 30µM) and lowest in the control 

cells which were not supplemented with EPA (0um). By contrast, in Experiment 6 

(Figure 6.11) EPA supplementation had no effect on 6-keto-PGF1α concentration in 

the culture medium.  The range of 6-keto-PGF1α concentrations (17.9-26.7pg/ml) 

was small, and similar to the 6-keto-PGF1α concentration seen in the culture 

medium of EPA un-supplemented cells in Experiment 5 (22.1pg/ml).  In the chronic 

EPA supplementation experiment (Figure 6.12), 6-keto-PGF1α concentration in the 

culture medium of EPA supplemented cells was 39.8% lower than that in the culture 

media of control cells. The concentration range in this experiment (42.7 - 71.3pg/ml) 

more closely matches that of Experiment 5 of the acute EPA supplementation 

experiments.   
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Figure 6.10.  6-keto-PGF1α concentration in cell-conditioned media: Acute EPA 

supplementation Experiment 5.  Results from the MTT assay of the effect of acute EPA 

supplementation on HUVEC proliferation (Experiment 5, each data point is the mean of 6 

replicates) are shown together with the concentration of 6-keto-PGF1α in the cell conditioned 

medium when aspirated from the 48-well plate of the MTT assay at 72hours (each data 

point is a single replicate of pooled media). 
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Figure 6.11.  6-keto-PGF1α concentration in cell-conditioned media: Acute EPA 

supplementation Experiment 6.  Results from the MTT assay of the effect of acute EPA 

supplementation on HUVEC proliferation (Experiment 6, each data point is the mean of 6 

replicates) are shown together with the concentration of 6-keto-PGF1α in the cell conditioned 

medium when aspirated from the 48-well plate of the MTT assay at 72hours (each data 

point is a single replicate of pooled media). 
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Figure 6.12.  6-keto-PGF1α concentration in cell-conditioned media: Chronic EPA 

supplementation Experiment 1.  Results from the MTT assay of the effect of chronic EPA 

supplementation on HUVEC proliferation (Experiment 1, each data point is the mean of 6 

replicates) are shown together with the concentration of 6-keto-PGF1α in the cell conditioned 

medium when aspirated from the 48-well plate of the MTT assay at 72hours (each data 

point is a single replicate of pooled media) 
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It is not possible to draw any conclusions about the effect of EPA on PGI2 

production based on the inconsistent findings of this small number of experiments 

each with a small number of replicate readings.   

 

6.2 Wound migration assay 

6.2.1 Assay optimisation 

Several experiments were performed to optimise the technique of wound scoring in 

this assay.  The most consistent wound score of an appropriate width was achieved 

with a yellow pipette tip.  Other sized pipette tips produced scores that were too 

thin, too thick, or caused excessive detachment of cells from the sides of the 

wound.  A gentle technique of slowly aspirating and replacing culture media was 

required to prevent cells detaching from the plate in large sheets.  Lifting of cells 

from the plate was also minimised by aspirating culture medium from the cells, 

scoring the dry cell monolayer, then adding fresh culture medium, rather than 

scoring cells in the presence of culture medium. 

6.2.2 Acute EPA supplementation 

In the first dose finding experiment of the effect of acute EPA supplementation on 

HUVEC wound migration (Figure 6.13), 60µM EPA caused cell death, with cells 

seen floating in the culture medium and causing an artificial increase in the size of 

the measured wound.  At EPA concentrations up to 40µM, there appeared to be 

little difference in the closure of wounds, although the variability in wound closure in 

the 3 wells of the upper row of the 6 well plate was higher than that in the 3 wells of 

the lower row, which seemed to have more consistent wound closure.  On closer 

examination of the wound photographs there was a noticeable "shouldering" effect 

in some of the photos (Figure 6.14), with the wound closing at the lower end 

(nearest the centre of the well), but not at the upper end (nearest the edge of the 

well).  Those cells at the peripheral edge of the well appeared less healthy than 
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those more centrally placed.  The assay was therefore refined so that the parallel 

reference lines for taking photographs of the wound crossed the well more centrally, 

avoiding taking photos towards the periphery and therefore avoiding this peripheral 

edge effect.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13. Dose-finding experiment of the effect of acute EPA supplementation on 

HUVEC wound closure.  This was performed on a single 6 well plate with 2 photos taken 

per well.  Error bars represent mean +- SEM of the two photos taken per well.  
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Figure 6.14. Photograph of the shouldering effect seen in some of the wound scores.  

Note the less healthy cells and absence of wound closure at the well periphery (top edge of 

photo) compared to the healthier cells and wound closure more centrally in the well (middle 

and bottom edge of photo).  The transition is marked with arrows. 
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Two further experiments were performed in triplicate 6-well plates with EPA doses 

10-50µM.  In the first experiment (Figure 6.15 & 6.16) there was no appreciable 

wound closure at 3 hours.  At 6 hours, control cells showed 45.8% wound closure.  

In the cells treated with 20, 30 and 40µM EPA, wound closure was approximately 

24% lower than that in controls, with wound closures of 35.0% (p=0.01), 37.5% 

(p=0.04) and 34.9% (p<0.01) respectively.  Wound closure in cells treated with 

50µM EPA was half of that in controls, with a wound closure of 23.6% (p<0.01).  At 

9 hours, wound closure in the control cells was 75%.  Wound closure was 

approximately 13% lower in cells treated with 10, 20 and 30µM EPA than controls 

(p=0.17 to p=0.29).  Cells treated with EPA 40µM EPA showed almost one third 

less wound closure than controls with a wound closure of 54% (p<0.01), and cells 

treated with 50µM EPA showed two-thirds less wound closure than controls with a 

wound closure of 24.4% (p<0.01).  All statistical comparisons were performed using 

unpaired t-tests.  
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Figure 6.15.  Effect of acute EPA supplementation on HUVEC wound closure: 

Experiment 1.  Wound closure over time is shown as the percentage reduction in the width 

of the wound compared to width at baseline.  Each bar is the mean of 6 photos from 3 

separate wells, except for the EPA 50µM group where two of the wells showed a 

shouldering effect at one of the reference lines.  These photos were discarded and bars in 

the EPA 50µM group are therefore the mean of 4 photos from three wells.  Error bars 

represent mean+- SEM. 
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Figure 6.16.  Photographs of HUVEC wound closure over time: Experiment 1.  Wound 

closure at 0, 3, 6 and 9hrs in control cells and cells acutely supplemented with 40µM and 

50µM EPA.  Note the progressive closure of the wound over time in the control group (left 

column), with less pronounced closure in the EPA supplemented groups (centre and right 

column). 
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In the second experiment, supplementation of cells with EPA concentration >20µM 

resulted in cells lifting off the plate and floating in the culture medium within three 

hours.  The reason for this unexpected variability in the dose of EPA which resulted 

in cells lifting off the plate between the two experiments is not clear.  Perhaps the 

technique of wound scoring was too vigorous in the second experiment, resulting in 

more disruption of the HUVEC monolayer.  Alternatively, it could have been due to 

an incorrect concentration of EPA being used in the second experiment, either due 

to an error in the mixing of EPA-supplemented media, or because a new batch of 

EPA capsules was used for this experiment.  Wound closure was only calculable for 

doses of EPA of 10 and 20µM (Figure 6.17 and Figure 6.18).  Supplementation with 

EPA 10µM resulted in a 13.8% reduction in wound closure compared to controls at 

6 hours (p=0.32), and 13.1% reduction at 9hrs (p=0.20).  EPA 20µM resulted in 

37.8% reduction in wound closure compared to controls at 3hrs (p=0.04), 82.5% 

reduction at 6hrs (p<0.01) and 67.8% reduction at 9hrs (p<0.01).      
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Figure 6.17.  Effect of acute EPA supplementation on HUVEC wound closure: 

Experiment 2.  Wound closure over time is shown as the percentage reduction in the width 

of the wound compared to width at baseline.   Each bar is the mean of 6 photos from 3 

separate wells.  Error bars represent mean+- SEM.    
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Figure 6.18.  Photographs of HUVEC wound closure over time: Experiment 2. Wound 

closure at 0, 3, 6 and 9hrs in control cells and cells acutely supplemented with 10µM and 

20µM EPA 
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6.2.3 Chronic EPA supplementation 

In the first experiment of the effect of chronic EPA supplementation (1µM EPA for 2 

weeks) on HUVEC wound closure, the effect of adding 10nM VEGF to the culture 

medium immediately after performing the wound score was also investigated.  The 

results are shown in Figure 6.19.  There was no statistically significant difference in 

wound closure between EPA-supplemented cells and EPA-naive cells, although 

wound closure in the EPA-supplemented cells was 15.2% greater at 6hrs (p=0.15) 

and 20.2% greater at 12hrs (p=0.07) compared to the EPA-naive cells.  Addition of 

VEGF did not increase wound closure in either the EPA-naive or EPA-

supplemented cells.    

 

E ffe c t  o f c h ro n ic  E P A  s u p p le m e n ta t io n  o n

H U V E C  w o u n d  c lo s u re

E x p e r im e n t  1

T im e  (h rs )

%
 w

o
u

n
d

 c
lo

s
u

r
e

6 1 2

0

2 0

4 0

6 0

8 0

1 0 0

n a ive

c h ro n ic  1 u M  E P A

n a iv e  +  1 0 n M  V E G F

c h ro n ic  1 u M  E P A  +

1 0 n M  V E G F

   

Figure 6.19.  The effect of chronic EPA supplementation on HUVEC wound closure: 

Experiment 1  Wound closure over time is shown as the percentage reduction in the width 

of the wound compared to width at baseline.  In the chequered bars, 10nM VEGF was 

added immediately after creating the wound scores.  Each bar is the mean of 6 photos from 

three separate wells.  Error bars represent mean +- SEM.  
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Two further replicate experiments investigating the effect of chronic EPA 

supplementation on HUVEC wound migration were performed (Experiments 2 and 

3).  In each experiment, triplicate 6 well plates were plated up, with three wells per 

plate containing EPA naive cells and 3 wells per plate containing EPA-

supplemented cells.  In Experiment 2 (Figure 6.20) EPA-supplemented cells 

showed slower wound closure compared to controls.  Wound closure compared to 

controls was 16.2% less at 6hrs (unpaired t-test, p=0.03) and 14.7% less at 9hrs 

(unpaired t-test, p=0.06).  In Experiment 3 (Figure 6.21) there was no significant 

difference in wound closure between the EPA-naive and EPA supplemented cells.  

The variability in these three experiments is difficult to explain, with one showing 

increased wound closure in the EPA group, another showing reduced closure, and 

the third showing no difference in closure compared to the EPA-naiive cells.  

However, on the basis of this limited number of experiments, it appears that chronic 

EPA-supplementation does not affect wound closure.  
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Figure 6.20.  The effect of chronic EPA supplementation on HUVEC wound closure: 

Experiment 2.  Wound closure over time is shown as the percentage reduction in the width 

of the wound compared to width at baseline.  Each bar is the mean of 18 photos from 8 

replicate wells.  Error bars represent mean +- SEM.    
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Figure 6.21.  The effect of chronic EPA supplementation on HUVEC wound closure: 

Experiment 3.  Wound closure over time is shown as the percentage reduction in the width 

of the wound compared to width at baseline.  Each bar is the mean of 18 photos from 8 

replicate wells.  Error bars rep[resent mean +- SEM.    
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6.3 Matrigel tubule formation assay 

6.3.1 Assay optimisation 

Matrigel was thawed and diluted with PBS to give concentrations of Matrigel 

ranging from 1 in 1 to 1 in 20.  Diluted Matrigel was spread evenly in a 6-well plate 

and left for 30 minutes at 37oC until solidified into a consistent gel layer.  HUVECs 

were seeded at 2x105 cells/well in 2ml of culture medium, and tube formation 

assessed at 4hrs and 24hrs.  Matrigel at concentrations of 1 in 15 and 1 in 20 

resulted in an uneven and patchy layer of Matrigel when viewed under the 

microscope at low power, with correspondingly poor HUVEC seeding and no tubule 

formation (photos not shown).  Tubule formation at higher concentrations of 

Matrigel are shown in Figure 6.22.  A Matrigel concentration of 1 in 3 resulted in 

good tubule formation.  Matrigel at a concentration of 1 in 2 gave similar results to 1 

in 3, whereas concentrations less than 1 in 3 resulted in poor to no tubule 

formation.  A Matrigel concentration of 1 in 3 was therefore chosen for use in 

subsequent experiments. 
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Figure 6.22.  Formation of tubules when HUVECs were seeded on different dilutions 

of Matrigel. 
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The Matrigel assay was less consistent and reproducible than either the MTT assay 

of HUVEC proliferation or the wound score assay of HUVEC migration.  Small 

adjustments to the technique of Matrigel dilution and plating into a 6-well plate 

improved the consistency and reproducibility of the Matrigel gel layer, and 

minimised the formation of air bubbles that were noticeable in the 1:2 dilution photo 

in Figure 6.23.  This was primarily achieved by ensuring that all reagents and 

equipment was cooled to 4oC and then kept on ice at all stages until the Matrigel 

had been plated into the 6 well plate.  Even following this, the formation of tubules 

varied between experiments.  In some experiments, at 24hrs only a small number 

of short tubules formed with healthy HUVECs remaining seeded on the Matrigel 

layer, whereas in other experiments almost all HUVECs had formed long branching 

tubules within 6 hours.  In two experiments it was noted that tubules formed only in 

the centre of the well whereas in the periphery HUVECs remained as a typical 

cobbblestone-appearance cell monolayer. 

On the advice of colleagues in another department who were performing Matrigel 

angiogenesis assays with HUVEC and fibroblast co-cultures, Growth Factor 

Reduced BD Matrigel Basement Membrane Matrix (BD Biosciences, Cat no. 

356231) rather than High Concentration BD Matrigel Basement Membrane Matrix 

(BD Biosciences, Cat no. 354248) was ordered and used for subsequent 

experiments.  In an effort to further improve the reproducibility of the assay by 

improving the consistency of the Matrigel layer, for subsequent experiments the 

concentration of Matrigel was increased from 1 in 3 to 1 in 2 dilution with PBS, and 

0.5ml rather than 0.3ml of diluted Matrigel were plated in each well of the 6-well 

plate.  This improved the number of tubules formed, with more even tubule 

formation across the whole well, and improved the reproducibility between 

experiments.  The results of subsequent acute and chronic EPA supplementation 

experiments using these modifications to the protocol are detailed below.   
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6.3.2 Acute EPA supplementation 

One acute EPA supplementation experiment was performed after the modifications 

to the protocol described above.  Two 6-well plates were prepared with a Matrigel 

layer as described above.  HUVECs in culture medium supplemented with EPA 0-

30µM were placed into separate falcon tubes.   A post-doctoral fellow then seeded 

the HUVECs into the two 6 well plates (2 wells for each EPA concentration) so that 

I remained blind to the treatment allocation.  Well allocation was only revealed to 

me when the image-analysis results were returned from Wimasis.  An example of 

the photograph of tubules taken and uploaded to Wimasis for analysis, together 

with an overlay of the image-recognition of tubules performed by Wimasis is shown 

in Figure 6.23. 

The results of tubule formation at 6hrs are shown in Figure 6.24.  There was no 

significant difference in total tubule length between controls and any concentration 

of EPA (control vs. EPA 30µM p=0.32).  There was no significant difference in the 

number of tubule branching points between controls and any concentration of EPA 

(control vs. EPA 20µM p=0.14, control vs. EPA 30µM p=0.11).  EPA was 

associated with a reduction in the number of tubule loops compared to controls, 

with this narrowly missing statistical significance at the highest dose of EPA (control 

vs. EPA 20µM, p=0.11; control vs. EPA 30µM, p=0.06).  All statistical comparisons 

were performed using unpaired t-tests.   
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Figure 6.23.  Example of Wimasis scoring of tubules.  a) Photograph of HUVEC tubules.  

The image was uploaded to Wimasis for automated image recognition and analysis.  b) 

HUVECs were identified by binary thresholding (blue).  Individual tubules were identified by 

a skeletonization algorithm (pink).  Tubule branching points were identified (white dots).  

Total tubule number, branching points and loops were calculated. 

A 

B 
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Figure 6.24.  The effect of EPA on tubule length, branching and loop formation.  Each 

bar is the mean of 8 images (4 representative photos from each of 2 replicate wells).  Error 

bars represent mean +- SEM.  
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6.3.3 Chronic EPA supplementation 

The effect of chronic 1µM EPA supplementation on HUVEC tubule formation was 

performed in three experiments following the protocol modifications described in 

6.3.1.  In the first experiment the effect of 10nM VEGF supplementation at the time 

of plating HUVECs onto the Matrigel was also investigated.  Two wells were plated 

for each experimental condition (naive, naive+VEGF, chronic EPA, chronic 

EPA+VEGF).  Peak tubule formation was observed at 6 hours and a total of 3 

representative photos taken from the two wells of each experimental condition.  

Example photographs are shown in Figure 6.25.  The results are shown in Figure 

6.26.  There was no significant difference between EPA-naive and EPA-

supplemented cells in either tubule number (p=0.41), number of branching points 

(p=0.40) or number of loops formed (p=0.52).  Addition of VEGF had no significant 

effect on any of these three measures of tubule formation in either the EPA-naive 

cells (p=0.77, p=0.75, p=0.73 respectively) or the EPA supplemented cells (p=0.15, 

p=0.13, p=0.19 respectively). 

 

  

 

Figure 6.25. Example photographs of the effect of chronic EPA supplementation on 

HUVEC tubule formation: Experiment 1.  Photographs taken 6 hours after seeding a) 

Naive cells and b)  EPA-supplemented cells onto Matrigel®.  

A B 
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Figure 6.26.  The effect of chronic EPA-supplementation in HUVEC tubule formation: 

Experiment 1.  Tube formation, branching points and total number of loops formed were 

scored 6 hours after seeding cells onto Matrigel.  In the chequered bars, VEGF was added 

at the time of seeding cells onto Matrigel®.  Each bar is the mean of 3 representative photos 

from 2 wells (i.e. n=3).  Error bars represent mean +- SEM.  
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In the second experiment a single 6-well plate was seeded with naive cells (3 wells) 

and EPA supplemented cells (3 wells).  Tubule formation was much poorer than in 

the first experiment (Figure 6.27).  One representative photo from each well was 

analysed and the results shown in Figure 6.28.  Tubule formation was reduced in 

the EPA-supplemented cells compared to the EPA-naive cells across all three 

measures of tubule formation at both time points.  At 6 hours the EPA- 

supplemented cells showed a 45.7% reduction in tubule length (p=0.01, unpaired t-

test) and a 60.5% reduction in tubule branching points (p=0.05, unpaired t-test) 

compared to EPA-naive cells.    

 

 

  

 

Figure 6.27. Example photographs of the effect of chronic EPA supplementation on 

HUVEC tubule formation: Experiment 2.  Photographs taken 6 hours after seeding a) 

Naive cells and b)  EPA-supplemented cells onto Matrigel®. 
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Figure 6.28.  The effect of chronic EPA-supplementation in HUVEC tubule formation: 

Experiment 2.  Tube formation, branching points and total number of loops formed were 

scored 6 hours after seeding cells onto Matrigel.  In the chequered bars, VEGF was added 

at the time of seeding cells onto Matrigel®.  Each bar is the mean of 1 representative photo 

from 3 wells (i.e. n=3).  Error bars represent mean +- SEM.  

p=0.01 

 

p=0.05 
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In the third experiment, one six well plate was seeded with naive cells (3 wells) and 

EPA-supplemented cells (3 wells) by a post-doctoral research fellow so that I 

remained blind to the well allocation.  Well allocation was only revealed to me when 

the image-analysis results were returned from Wimasis.  Four representative 

photos were taken from each well and analysed.  Example photos are shown in 

Figure 6.29.  All four photos from each well were analysed and the results are 

shown in Figure 6.30.  At 6 hours the EPA-supplemented cells showed an 18.3% 

reduction in tubule length (p=0.03), a 30.9% reduction in tubule branching points 

(p=0.04) and a 41.9% non-significant reduction in the number of loops formed 

(p=0.11) compared to EPA-naive cells.  All statistical comparisons were performed 

using unpaired t-tests.   

 

    

  

Figure 6.29. Example photographs of the effect of chronic EPA supplementation on 

HUVEC tubule formation: Experiment 3.  Photographs taken 6 hours after seeding a) 

Naive cells and b)  EPA-supplemented cells onto Matrigel®. 

A B 
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Figure 6.30.  The effect of chronic EPA-supplementation in HUVEC tubule formation: 

Experiment 3.  Tube formation, branching points and total number of loops formed were 

scored 6 hours after seeding cells onto Matrigel.  In the chequered bars, VEGF was added 

at the time of seeding cells onto Matrigel®.  Each bar is the mean of 4 representative photos 

from each of 3 wells (i.e. n=12).  Error bars represent mean +- SEM.  
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6.4 Summary of HUVEC data 

A summary of the effects of acute and chronic EPA supplementation on measures 

of angiogenesis in vitro is shown in Table 6.2.  Acute EPA supplementation resulted 

in a dose-dependent inhibition of HUVEC proliferation over concentration ranges 

comparable to other endothelial cell studies,(195, 355, 356) and chronic low dose 

EPA supplementation (1µM for 2 weeks) caused a similar magnitude reduction in 

HUVEC proliferation to that seen with 10-20µM acute supplementation.  HUVEC 

wound migration was inhibited by acute EPA supplementation in the range of 20-

50µM EPA but the results of the chronic EPA supplementation were more 

equivocal, with a trend to reduced wound closure in two out of three experiments, 

but which did not reach statistical significance in either experiment.  HUVEC tubule 

formation in Matrigel® was inconsistently inhibited by chronic EPA supplementation 

but not acute EPA supplementation.   

 

 Acute EPA Chronic EPA 

Proliferation 

Dose dependent inhibition 

with 40-70% ↓ proliferation 

Equivocal effect on 6-keto-

PGF1α in cell-conditioned 

media, with dose dependent 

↑ in one experiment and no 

change in another.   

16-33% ↓ proliferation 
 
Attenuated response to VEGF 
stimulation of proliferation 
 
No convincing PGE2 rescue 
 
↓6-keto-PGF1α in cell-conditioned 
media 
 

Wound closure 
Dose dependent inhibition 
with 24-67% ↓ wound closure 
 

Non-significant ↓ wound closure 
in 2 out of 3 experiments 
 
VEGF did not stimulate closure 
in either EPA-supplemented 
cells or controls 

Tube 
formation 

No effect 
 

↓tubule length and branching 
points in 2 out of 3 experiments 

 

Table 6.2  Summary of the effect of acute and chronic EPA supplementation on  

measures of angiogenesis in HUVECs.  
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Anti-angiogenic activity of ω-3 PUFAs has been demonstrated in previous in vitro 

endothelial cell studies.  Omega-3 PUFA supplementation has been shown to 

reduce expression of VEGFR-2,(195, 196, 356) reduce cell migration,(194, 196) 

and reduce VEGF-stimulated microtubule formation.(193, 194, 196)  Omega-3 

PUFA supplementation has also been associated with reduced tumour vascularity 

in vivo. (186, 204, 205)  However, similar to the findings in my assays, previous in 

vitro studies have also shown mixed results.  HUVEC wound migration was 

arrested by acute supplementation with EPA but not DHA in a study by Tonutti et al, 

(357) and by conjugated EPA but not by EPA in a study by Tsuzuki et al.(194)  In 

alternative types of migration assays which involved measuring the number of cells 

that migrate out of a Matrigel droplet or the number of cells that migrate across a 

Boyen chamber, neither EPA nor DHA reduced the number of migrating cells 

compared to controls whereas AA did significantly increase the number of migrating 

cells.(194, 355)  Some studies have shown that HUVEC tubule formation is 

inhibited by EPA,(193, 194, 356) DHA,(358) and conjugated EPA,(194) whilst 

another study showed that tubule formation was inhibited by 24hr EPA, DHA or 

DPA only when tubule formation was stimulated with 20µM VEGF.(196)  AA, by 

contrast, increased tubule formation compared to controls in both the VEGF-

stimulated and unstimulated experiments.  One further study, without VEGF 

supplementation, showed no effect of 10 μM EPA or DHA on HUVEC tubule 

formation (355).  It may be that EPA exerts anti-angiogenic activity through both 

direct activity on endothelial cells, and indirect activity mediated, for example, by 

effects on VEGFR expression.   

The reasons for the differing effects of EPA on the three angiogenesis assays used 

in my study are unclear.  Compared to the simple MTT assay of cellular 

proliferation, the processes involved in cell migration (e.g. requiring lamellipoia 

extension and actin-myosin complex contraction) and tubule formation (e.g. 
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requiring motility, cytoskeletal rearrangement and interaction with adjacent cells) 

are more complex.  Different pathways are likely to be upregulated in each process.  

The relative contributions of such pathways, for example the COX-PGE2 and VEGF 

pathways, to each of these processes and the relative speed at which EPA 

supplementation affects these pathways might explain some of the conflicting 

results.  These factors might also explain the different effects seen with acute and 

chronic EPA supplementation.  It is conceivable that chronic EPA supplementation 

has different biological effects than acute EPA supplementation.  Chronic 

supplementation might lead to greater EPA incorporation in cell membranes, or 

greater down-regulation of cell surface VEGFR-2 expression.  Acute EPA 

supplementation meanwhile (0-6hrs in the wound migration and Matrigel assays) 

might not have had time to down-regulate the number of VEGFR-2 receptors, and 

instead exert effects in this timeframe predominantly by inhibition of the COX 

pathway and reduction in PGE2 production (and production of 3-series 

prostaglandins).    

PGE2 is known to be a strong stimulant of cell proliferation.  An alternative acute 

supplementation methodology for the wound migration and Matrigel assays would 

have been to pre-condition HUVECs with EPA acutely for 24-48hrs prior to wound 

scoring or prior to plating on Matrigel rather than adding EPA-containing media after 

the scoring or plating of cells.  Whilst this would have more closely mirrored the 

conditions of the MTT proliferation assay, I already knew that EPA inhibited HUVEC 

proliferation, and decided that the addition of EPA to culture medium 24-48hrs prior 

to wound scoring might have affected the HUVEC confluence at time of scoring and 

therefore biased the results.  I did perform a few preliminary experiments 

investigating the effect of PGE2 rescue on the proliferation of HUVECs chronically 

supplemented with EPA.  PGE2 stimulated proliferation in EPA-supplemented cells 

but did not return proliferation to the baseline proliferation of EPA-naive cells.  This 



208 

 
 

might suggest that PGE2 rescue was under-dosed, although PGE2 stimulated an 

even greater proliferation in the EPA-naive cells suggesting that EPA inhibition of 

proliferation was not solely PGE2 dependent.  Interestingly, the concentration of 6-

keto-PGF1α in the cell-conditioned medium of cells chronically supplemented with 

EPA was lower than that of the EPA-naive cells, whilst acute EPA supplementation 

seemed to have no effect on 6-keto-PGF1α levels.  This might suggest that chronic 

supplementation inhibits COX metabolism of 2-series prostaglandins to a greater 

extent than acute supplementation.  However, these assays were only performed 

on culture medium from single MTT assays, and the results would need to be 

reproduced before drawing any conclusions.   

A few studies were also performed supplementing cells with VEGF.  Whilst VEGF 

stimulated proliferation in the EPA-naive cells, cells chronically supplemented with 

EPA showed no response to VEGF stimulation, suggesting either that VEGFR-2 

receptors were down-regulated or that one mechanism of inhibition by EPA occurs 

downstream of the VEGF receptor.  When the same experiment was performed in 

the wound migration model, supplementation with VEGF failed to stimulate 

migration in either the EPA-naive or chronically EPA-supplemented cells, raising 

the possibility that pathways other than the VEGF pathway are more important in 

endothelial cell migration.  

Without more detailed mechanistic analyses, which may include measuring 

mucosal EPA content, cell surface VEGFR-2 expression or further investigation of 

2-series and 3-series prostaglandin levels in cell-conditioned media, any 

explanation for the difference in the effect of acute and chronic supplementation is 

speculative.  Nevertheless, taken together the results from these HUVEC 

experiments do point towards an inhibitory effect of EPA on angiogenesis, which is 

supported by the available literature, and supports the hypothesis that EPA might 

reduce tumour microvessel density by inhibiting angiogenesis.  
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Chapter 7: Discussion 

 

7.1  Safety profile of EPA 

The high rate of uptake of patients into The EMT Trial (96% of eligible patients) 

demonstrates that ω-3 PUFAs are considered by patients to be safe and that 

potential gastrointestinal side effects such as diarrhoea, dyspepsia and nausea do 

not deter patients from accepting ω-3 PUFAs as a potential adjuvant treatment for 

CRCLM.  In The EMT Trial, EPA-FFA 2g/day was demonstrated to be safe and 

well-tolerated.  The rate of compliance with trial medication was over 90%, and the 

rate of gastrointestinal upset was similar to that seen in other ω-3 PUFA trials.(262, 

314, 315)  Importantly, very few patients were withdrawn due to side effects of 

medication (4.7%), further demonstrating the tolerability of study medication.   

Whilst it is easy to identify pre-operative side effects that can be attributable to 

study medication, the effect of pre-operative interventions on post-operative 

morbidity is harder to measure, and harder still to demonstrate causality.  Few 

institutions formally classify the severity of complications according to a recognised 

grading system, such as the Dindo-Clavien classification system.(359)  This makes 

comparison between the often fastidious collection of morbidity data within a clinical 

trial and the morbidity data published in retrospective reviews of institutional 

databases difficult.   Nevertheless, the rate of post-operative morbidity in the EMT 

Trial was comparable to that of other published series,(307, 308) providing further 

reassurance that EPA supplementation is safe in patients undergoing liver 

resection.      

There have been concerns in the literature about the risk of bleeding with ω-3 

PUFA supplementation.(269)  This concern has not been realised clinically, with a 

recent review highlighting that excessive bleeding was virtually non-existent in over 
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4000 patients taking ω-3 PUFAs who underwent coronary artery bypass grafting, 

carotid artery endarterectomy or percutaneous coronary angioplasty.(268)  

Similarly, no excessive bleeding has been seen in studies of patients taking ω-3 

PUFA supplements who are admitted with acute myocardial infarction (typically 

requiring heparinisation or thrombolysis),(360) or in patients having spinal 

surgery.(361)  Nevertheless, liver resection involves parenchymal transection which 

predisposes the patient to bleeding from the cut surface of the liver.  Any small 

increase in bleeding tendency as a result of EPA supplementation might therefore 

be expected to result in a clinically apparent bleed following liver resection.  

However, liver resections are routinely performed on patients who are still taking 

aspirin, which has a well established anti-platelet activity, without any concern 

about bleeding risk and without additional pre-operative or intra-operative measures 

to minimise bleeding.  The clinical risk of bleeding with EPA supplementation in 

patients undergoing liver resection in The EMT Trial was therefore considered to be 

negligible.  This opinion was supported by the finding that EPA supplementation 

had no effect on either laboratory analysis of whole blood platelet aggregation, or 

on clinical bleeding parameters such as the need for packed red cell transfusion 

and the need for drainage of postoperative collections. 

This excellent safety and tolerability profile makes EPA a strong candidate agent for 

the treatment and/or prevention of CRC and CRCLM.  Whilst both aspirin and COX-

2 inhibitors have been shown to have anti-CRC activity,(127-130, 135, 136, 138, 

139) the risk of bleeding and GI ulceration with prolonged aspirin therapy (140)  and 

the risk of myocardial infarction or thrombosis with prolonged COX-2 inhibitor 

therapy (132, 134) has prevented their long-term use for the chemoprevention of 

CRC and CRCLM.  EPA, in contrast, appears to have no such side effects with long 

term use.(314)  
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7.2 Patient characteristics and tumour biology 

Two factors which play an important role in the outcome of CRCLM, and could 

potentially impact on the results of this trial are the "biology" of the disease and the 

use of chemotherapy.  Of all prognostic markers, lymph node status of the primary 

cancer and size of the CRCLM are consistently the most important independent 

predictors of survival following resection of CRCLM.(362-365)  Together with 

factors such as Dukes' stage and synchronicity of disease, these are considered 

surrogate markers for the tumour biology.  The EPA and placebo groups were well 

matched across all of these factors.   Just under half of patients in both groups had 

received chemotherapy at some stage prior to presentation, with no difference 

between the groups in the interval between chemotherapy and enrolment into The 

EMT Trial.  A higher proportion of patients in the placebo group presented with 

recurrent liver metastases (24% vs. 14%).  This could be interpreted as an 

indication of more "aggressive" disease in the placebo group.  However, this was 

not a statistically significant difference, and secondly, it is known that disease-free 

and overall survival after resection of recurrent liver metastases is similar to that 

after the first resection of CRCLM.  The difference in the proportion of patients with 

recurrent disease in this trial is perhaps of limited clinical significance.  Therefore, 

as far as can be determined the tumour characteristics of the two groups at 

baseline were comparable. 

Although the two groups were well matched across all other baseline 

characteristics, two potentially confounding variables were identified.  Firstly, 

approximately 22% of patients in each group were taking aspirin, which as an 

inhibitor of the COX enzyme acts on the same pathway as one of the proposed 

mechanisms of action of EPA.  Aspirin use was deliberately not cited as an 

exclusion criterion for the study because of the interest in the novel anti-

inflammatory compound resolvinE1, which is metabolised from EPA by acetylated 
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COX-2 (see Figure 1.5 and Section 1.7.4) (164).  Inclusion of aspirin-users 

therefore provided the opportunity to look for resolvin E1 in the plasma and tissue of 

patients who were taking both aspirin and EPA.  These analyses were not 

performed as part of this MD project due to cost and time implications, and samples 

have been stored for future analysis.  Sub-analyses were performed excluding 

concurrent aspirin users.  These showed that aspirin use did not affect the results of 

either the tumour immunohistochemistry or the mechanistic analyses.   

Secondly, patient use of fish oil supplements was not cited as an exclusion criterion 

for participation in the trial.  One in five patients in the placebo group and one in 

eight patients in the EPA group were taking an oral fish oil supplement at the time 

of enrolment.  This previous fish oil exposure introduced a potential confounder into 

the study, but did present the opportunity to study those patients with a prolonged 

exposure to fish oil supplementation prior to entering the trial.  In retrospect, the trial 

methodology would have been more robust if patients who were taking fish oil 

supplements at the time of screening for the trial had been excluded.  One possible 

limitation of the trial is not being able to determine whether patients enrolled into the 

trial decided to either purchase their own over-the-counter ω-3 PUFA supplements 

or increase their oily fish consumption after being told about the potential benefits of 

ω-3 PUFAs.  The FFQ attempted to control for this by monitoring patients’ oily fish 

consumption and nutritional supplement use during the trial.  Within the limitations 

of a FFQ, which relies on patients accurately completing the questionnaire, patients 

did not increase their oily fish consumption or start to take over-the-counter 

supplements during the trial.  Measurement of the fatty acid content of red blood 

cells on each study visit by gas chromatography would have been one way of 

monitoring this more objectively, but to perform these analyses on three occasions 

for 88 patients would have been prohibitively expensive, and other mechanistic 

analyses  were instead prioritised. 
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7.3 Choice of primary endpoint 

Immunohistochemistry for tumour Ki-67 proliferation index was chosen as the 

primary endpoint in The EMT Trial, with tumour apoptosis and microvessel density 

also investigated as secondary endpoints.  Ki-67 proliferation index (PI), has been 

widely studied as a prognostic marker of survival in many types of cancer.(366)  

Specifically, the Ki-67 PI has been evaluated as a surrogate for disease-free and 

overall survival in resectable CRC and CRCLM.  In the largest single-centre study 

of Ki-67 PI in patients with resection of CRCLM (n=221), multivariate analysis 

identified Ki-67 PI as the most significant independent prognostic indicator of 

survival, with a 2.8 RR of cancer death in patients with Ki-67 PI >50% compared to 

Ki-67 Pi <50%.(367)  A larger Chinese study of Ki-67 PI in CRC biopsies before 

and after adjuvant regional chemotherapy (n=509) demonstrated a reduction in Ki-

67 PI following chemotherapy from 48.6% to 38.4% (21% reduction, p<0.05).  At 

mean follow up of 42 months the chemotherapy group demonstrated a significant 

improvement in median survival (45 months vs. 40 months; p=0.02), disease free 

survival (74% vs. 62%; p=0.02) and overall survival (81% vs. 60%; p=0.01) 

compared to the surgery alone group.(368)  The association between reduction in 

Ki-67 post-chemotherapy and survival has been most extensively studied in breast 

cancer, where paired pre- and post-chemotherapy tissue is commonly available.  

Many papers have shown that Ki-67 is prognostic for overall and disease-free 

survival in breast cancer, and that the post-treatment PI is more predictive of 

survival than either the baseline PI or the percentage change in PI.(369) 

Although there were no human studies of the effect of EPA on CRC or CRCLM 

proliferation on which to base a power calculation for The EMT Trial, many in vivo 

studies had demonstrated a reduction in PI in colonic mucosa and colorectal 

tumours of rodents supplemented with ω-3 PUFAs.(370)  Only one of these studies 

evaluated tumour vascularity, with a 50% reduction in MVD of HT-29 subcutaneous 
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tumours in nude mice fed 1g/kg EPA versus controls.(186)  Similarly, in nine human 

studies of ω-3 PUFA supplementation, colonic mucosal PI was reduced (13-70% 

reduction) in all but two studies,(370) and apoptosis index increased in all three 

studies that measured AI (50%, 57% and 700% increases, one study did not reach 

statistical significance).(370)  Based on in vitro and in vivo  findings, a 30% 

reduction in PI with EPA supplementation was predicted.(186, 199) This magnitude 

of reduction in PI has been shown to correlate with increased patient survival in 

studies of chemotherapy agents which are now well established treatments for CRC 

and CRCLM.  In a trial of neoadjuvant regional 5-FU therapy for CRC, a 21% 

difference in Ki-67 PI of post-treatment CRC tissue between the control and 

chemotherapy groups was associated with an 18% improved disease-free survival 

and 35% improved overall survival.(368)  Likewise, in a trial of a single intravenous 

5-FU bolus prior to resection of CRCLM, there was a reduction in Ki-67 PI of 48% 

and 30% in patients receiving 5-FU at 2 hours and 46 hours pre-surgery 

respectively compared to no-chemotherapy controls (312).  A 30% reduction in PI 

therefore seemed an appropriate size of treatment effect to use in the power 

calculation for The EMT Trial. 

Because pre-operative biopsy of liver cancers is contraindicated due to the risks of 

biopsy, in particularly the risk of tumour seeding, histological analysis of pre-and 

post-treatment CRCLM tissue was not possible in this study.  

Immunohistochemistry analysis was therefore restricted to the comparison between 

placebo and EPA groups of post-treatment tumour samples only.  

Immunohistochemistry of the original CRC specimen as a baseline for each patient 

was considered, but it would not have been helpful because of the well-documented 

heterogeneity in characteristics between CRCs and their paired CRCLMs.  There is 

no evidence that Ki-67 PI in the original CRC is comparable to the PI in the 

subsequent CRCLM, with some studies showing a reduction in PI in the CRCLM 
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compared to PI in the CRC specimen,(371) some showing an increase,(372) and 

some showing no difference.(313)  

 

7.4 Discrepancy between in vivo data and CRCLM immunohistochemistry 

EPA supplementation had no effect on either tumour PI or AI levels in The EMT 

Trial, although there was a trend towards reduced tumour vascularity in the EPA 

group.  Why then, when there is strong evidence for EPA reducing proliferation and 

increasing apoptosis in rodent models (151, 161, 162, 186, 199, 225, 226, 238, 

244) and in human mucosal biomarker studies,(232, 254-259, 261) did this not 

translate into similar changes in CRCLM tissue in this study?  The limitations of 

animal models as representations of human disease and the difficulties of 

translating in vivo findings into clinical effects are well known.(373)  The use of 

higher doses of study medications in animal models than would be achievable in 

humans is often a factor, with high doses often being given to accentuate 

mechanistic effects.  For example, the study of MC-26 mouse CRC cells in a model 

of CRCLM used the same preparation of EPA as in The EMT Trial, at a dose of 2.5-

5% EPA as a percentage of total dietary intake.(209)  This represents 

approximately 6-12 g/kg mouse body weight and was comparable to the dose used 

in other rodent models of CRC.(370)  This is 200-400 times higher than the 2g/day 

dose of EPA used in The EMT Trial which equates to approximately 30mg/kg 

human body weight.  Even adjusted for the difference in mouse and human body 

surface areas, as recommended when translating animal into human dose 

equivalents,(374) the mouse dose is still 15-30 times higher than that given in The 

EMT Trial.  Tumour proliferation in this mouse study was measured using  5-bromo-

2-deoxyuridine (BrdU) incorporation rather than Ki-67 expression as the marker of 

proliferation.  However, this is unlikely to have had any bearing on the translatability 

of in vivo findings to clinical studies.  Several studies have shown good correlation 

between proliferation indices measured by BrdU and Ki-67 staining in rodent and 
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human tissues.(375-377)  Furthermore, an anti-proliferative effect of EPA has been 

demonstrated using the Ki-67 assay in both rodent models (186) and in human 

mucosal biomarker studies.(257, 261)    

Aside from the difference in dose of study medications, other possible explanations 

for the discrepancy between in vivo findings and the findings in The EMT Trial might 

include the heterogeneity of tumours in The EMT Trial, the duration of EPA 

supplementation, and the timing of EPA supplementation.   Each is discussed in 

more detail below.   

Tumour heterogeneity 

There was significant heterogeneity in morphological appearance between the 

tumours resected in The EMT Trial.  As illustrated in Figure 5.12, some tumours 

were well differentiated with densely packed proliferating cells, whereas other 

tumours were predominantly mucinous with large mucin lakes and very few cells.  

Mucinous CRCs are believed to have distinct genetic profiles and clinico-

pathological characteristics compared to non-mucinous CRCs.(378-380)  They 

have also been associated with poorer outcomes, including higher rates of lymph 

node involvement, more advanced stage of disease, higher rates of metastasis, and 

poorer overall survival.(381, 382)  The morphological differences between 

mucinous and non-mucinous CRCLMs will have impacted on the scoring of PI, AI 

and MVD due to the density of cells and vessels.  Similarly, some tumours had a 

large stromal component or large areas of inflammatory cell infiltrate, whereas other 

tumours contained very little stroma.  It is recognised that the tumour 

microenvironment interacts with metastatic cells and influences the growth of 

tumours, and whilst these interactions are not fully understood they are of 

undoubted importance to the growth and survival of cancers such as through the 

secretion of pro-angiogenic growth factors or the secretion of MMPs.(383)  It is 

difficult to quantify how this tumour heterogeneity might have affected tumour PI, AI 
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and MVD, but it is worth noting that in most in vivo models of CRC and CRCLM, 

well-established and characterised cell lines are used which will produce a more 

homogeneous cohort of tumours, with a more consistent morphology and biology 

for which to investigate the effects of any intervention.  In The EMT Trial tumour 

heterogeneity could not be quantified, suffice to say that the distribution of different 

tumour types seemed to be equally spread between the placebo and EPA groups.  

Sub-analysis of PI after exclusion of mucinous tumours was performed, but this did 

not reveal any difference in the PI between the two groups.     

Duration of supplementation 

Another explanation for the negative PI and AI findings in The EMT Trial is that the 

period of supplementation may have been too short to observe either the maximal 

incorporation of EPA into the tumour, or to begin to see a reduction in tumoural AA 

content.  On the limited evidence available from colonic mucosa studies, a 

reduction in tissue AA content does not seem to occur until around 12 weeks, 

whereas EPA content seems to peak much earlier at around 4 weeks.(254, 255, 

273, 323)  

It remains unclear why mucosal EPA peaks before the AA content starts to fall, but 

this would suggest that EPA incorporation is not simply a direct substitution of EPA 

for AA.   EPA can be converted to DHA, via DPA, in a two-stage process involving 

elongase and desaturase activity.  Limited evidence from clinical trials suggests 

there is no significant EPA to DHA conversion in human colorectal mucosa,(257, 

262)  Interestingly, there was a significant increase in tumoural DPA, but not DHA, 

content in the EPA group in the EMT Trial.  Similar findings of comparable EPA and 

DPA increases, without a rise in DHA, were seen in the equivalent in vivo study of 

MC-26 mouse CRCLMs using the same preparation of EPA as used in the EMT 

Trial.(209)  This suggests that the conversion between EPA and DPA in CRCLM is 

greater than first appreciated, and greater than that seen in human colonic mucosa.  
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If mucosal EPA content reaches a threshold beyond which EPA is converted to 

DPA and DPA levels continue to rise and diplace AA, this may explain why the EPA 

content seems to plateau before a reduction in AA content is seen.  Interestingly, 

DPA has recently been shown to have anti-CRC activity(384) and has previously 

been shown to inhibit endothelial cell migration.(196)  Future work might consider 

testing the following hypotheses: 

 Mucosal incorporation of EPA occurs at the expense of fatty acids other 

than AA 

 Changes in mucosal fatty acid composition stimulate liberation of AA from 

the mucosa, rather than the direct substitution of one fatty acid (EPA) for 

another (AA) 

 There is a threshold for mucosal EPA content beyond which additional EPA 

is converted into other ω-3 PUFAs such as DPA. 

 DPA has anti-CRC activity   

It was also observed that the tumoural AA content in The EMT Trial was higher than 

the baseline levels of AA in previous human mucosal biomarker studies (Table 5.8).  

Perhaps the ratio of AA:EPA is more important than the absolute level of either fatty 

acid.  The ratio of AA:EPA in The EMT Trial was certainly higher than the AA:EPA 

ratios in the human mucosal biomarker studies which demonstrated reduced 

proliferation and increased apoptosis.   Alternatively, perhaps human mucosa has a 

faster rate of proliferation than CRCLMs, and therefore changes in PUFA 

metabolism due to EPA supplementation will manifest in changes in PI and AI more 

rapidly.   

In the only other study of ω-3 PUFA supplementation in patients with CRCLM, 

72hrs of pre-operative parenteral ω-3 PUFA supplementation was associated with 

an increase in plasma EPA and DHA levels immediately following supplementation 

compared to the control group, but no change in plasma AA levels and no 
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significant change in the ω-3 PUFA content of red blood cell membranes.  Surgery 

for CRCLM was performed 5-12 days following ω-3 PUFA supplementation, by 

which time plasma EPA and DHA levels had returned to baseline levels.  There was 

no significant difference in the EPA, DHA or AA content of tumours from the ω-3 

PUFA supplemented group compared to those from the control group.  The authors 

extrapolate their data backwards to suggest that the total ω-3 PUFA content of 

CRCLMs at the end of supplementation would have been approximately 8%, 

compared to a mean of 5.6% at the time of resection.  This data really only provides 

evidence of a transient rise in plasma ω-3 PUFA content following parenteral 

supplementation.  Extrapolating the tumour PUFA data back to estimate tumoural 

ω-3 PUFA at the end of supplementation is of limited clinical relevance.  If the 

increase in tumoural ω-3 PUFA content was so transient as to have returned to 

baseline values within 5-12 days, what is the likelihood of this having had any 

clinically relevant effect on the tumour biology?  By comparison, oral EPA 

supplementation in The EMT Trial was associated with a statistically significant 

increase in tumoural EPA, DPA, and total ω-3 PUFA (6.2%) content.   

The two studies cannot be compared to assess the relative merits of oral or 

parenteral ω-3 PUFA supplementation on the speed of uptake of ω-3 PUFAs by 

CRCLM, or indeed its washout after cessation of therapy,  because neither study 

assessed tumoural ω-3 PUFA content over time.  What can be said by comparing 

the two studies, however, is that 4 weeks of oral supplementation was feasible, 

could be continued up to the day of surgery, was associated with significant 

changes in tumour ω-3 PUFA content, and that such supplementation could readily 

be applied to future clinical trials.  By comparison, 72hrs of parenteral 

supplementation was not associated with significant changes in tumour ω-3 PUFA 

content, and to bring surgery closer to the end of parenteral supplementation on the 

assumption that the tumour ω-3 PUFA content would be higher would not only be 



220 

 
 

based on extrapolated and unproven data, but would also be logistically more 

challenging than oral supplementation in a clinical trial setting.  Furthermore, neither 

trial saw any change in AA content of tumours, or of plasma or RBCs in the 

Leicester study, suggesting that a longer period of supplementation would be 

required for any future trial.  This further commends the oral route as the more 

pragmatic for any future trial.   

Timing of EPA supplementation 

A third explanation for the discrepancy between the findings of pre-clinical studies 

and The EMT Trial is the timing of EPA supplementation in relation to the 

inducement of CRC/CRCLM.    In The EMT Trial, EPA was given to patients with 

well established CRCLMs, which would have seeded in the liver and started 

growing before the original CRC was resected.  EPA supplementation could 

therefore be considered as given late in the "life-cycle" of the CRCLM.  By contrast, 

ω-3 PUFA supplementation in animal CRC treatment models is started either 

before, at the time of, or shortly after the subcutaneous injection of tumour cells.  

This does not accurately reflect the situation in The EMT Trial where 

supplementation is started in the presence of well-established CRCLMs.  Those in 

vivo  models which pre-load animals with ω-3 PUFA prior to chemical inititation of 

carcinogenesis, or prior to the injection of cancer cell lines, may increase EPA in 

the microenvironment before a tumour has even started growing, altering the 

cancer cell - microenvironment interaction and affect the tumour's growth 

characteristics.  In these situations there may not be a clear distinction between 

"chemoprevention" and "chemotherapy".  Similarly, those in vivo models that start 

ω-3 PUFA supplementation at, or shortly after, cancer cell injection are giving ω-3 

PUFA much earlier in the "life-cycle" of the tumour than in The EMT Trial, which 

may therefore have a greater effect on the tumour's growth characteristics.     
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7.5 Tumoural and urinary prostaglandins 

It is widely believed that one of the mechanisms of action of EPA is the inhibition of 

COX metabolism of AA, causing a reduction in the production of 2-series 

prostaglandins, whilst at the same time providing EPA as an alternative substrate 

for COX causing an increase in the production of 3-series prostaglandins.  There is 

convincing evidence that EPA supplementation reduces pro-tumourgenic PGE2 

production in vivo. (151, 186, 209, 227, 236, 241, 244, 327)  A "PGE2 to PGE3 

switch" has been demonstrated in vitro,(145, 327)  and in rodent models of 

CRC,(151)   pancreatic cancer, (327)  and more recently in mouse CRCLMs using 

the same preparation of EPA as used in the EMT Trial.  However, as yet no studies 

have investigated the effect of ω-3 PUFA supplementation on the levels of PGE2 in 

human CRC or CRCLM, and a PGE2 - PGE3 switch has not been demonstrated in 

any human tissue.   

That there was no difference in tumoural PGE2 levels between the two groups is 

perhaps unsurprising given that there was also no difference in tumoural AA 

content between the two groups.  It is difficult to tease out from the literature 

whether it is the reduction in tissue AA, the inhibition of COX metabolism of AA, or a 

combination of both that accounts for the reduction in PGE2 seen in pre-clinical 

studies of EPA therapy.  Again, for the same reasons that the short duration of EPA 

supplementation might explain why there was no change in tumoural AA content 

with EPA supplementation, so too might it explain why EPA was not associated with 

a reduction in PGE2 in this trial, in contrast to the findings of many pre-clinical 

studies.(151, 186, 209, 227, 236, 241, 244, 327)  It is also unsurprising, given the 

low levels of PGE2 in these tumours and the observation that PGE3 tends to be 

present at 10-20 times lower concentration than PGE2, that PGE3 was detectable in 

only one tumour.  PGE2  levels were an order of magnitude lower in this study than 

in previous in vivo studies.  This might be due to the biological characteristics of the 
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cell lines used in these in vivo  studies.  These can be high expressers of COX and 

produce vast quantities of PGE2, unrepresentative of that seen in human tumours.  

These factors could make it difficult for any study to demonstrate a PGE2 - PGE3 

switch in human tissue.     

Interestingly, although EPA supplementation was not associated with a reduction in 

tumoural PGE2, it did seem to cause a reduction in urinary PGE-M.  Over the last 

10 years there has been interest in the measurement of urinary PGE-M as a non-

invasive measure of systemic PGE2 synthesis, and therefore as a potential 

biomarker of CRC activity.  Some studies have shown a correlation between PGE-

M and the presence of colonic adenomas,(83, 385) and between PGE-M and CRC 

risk.(82)  Other studies in non-small cell lung cancer have shown that celecoxib 

treatment is associated with a reduction in PGE-M,(330) and that patients who had 

the greatest reduction in PGE-M demonstrated improved overall survival.(329)  

Looking at the trends in the data in Figure 5.25, urinary PGE-M fell whilst patients 

were taking EPA, and then rose again to baseline levels after they stopped taking 

EPA.  Although the change in the EPA group between baseline and post-treatment 

did not reach statistical significance, urinary PGE-M post-treatment was significantly 

lower in the EPA group than the placebo group.  The small but statisttically 

significant reduction in PGE-M with EPA therapy indicates that EPA 

supplementation has an effect on PGE2 synthesis.  Whether this is tumour-derived 

PGE2 or systemic PGE2 cannot be determined.  It would be expected that CRCLMs 

are the predominant source of PGE2 production and therefore of PGE-M in the 

urine.  However, the absence of any observed effect of EPA on tumour PGE2 levels, 

and the observation that PGE-M did not fall following resection of the tumour would 

suggest that the urinary PGE-M was coming from systemic sources, for example 

endothelial cells.(386)  One possible explanation could be that the systemic 

inflammatory response to surgery and liver regeneration contributed to elevated 
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systemic PGE2 synthesis, and therefore elevated PGE-M levels, at the six week 

follow up.   Future studies would need to monitor serial PGE-M levels in the 

immediate post-operative period and over a longer period of follow-up to investigate 

this.  Given the strength of the preclinical data that EPA reduces tumoural PGE2 

levels, the relatively small changes in PGE-M seen in this study, and the limitations 

to the study which might explain why there was no change in tumoural PGE2, these 

PGE-M results should not be taken as evidence that EPA does not inhibit tumoural 

PGE2, only that there was absence of an effect of EPA on tumoural PGE2 in this 

trial.  The finding that EPA therapy was associated with small but statistically 

significant reversible reductions in both PGE-M and NFκB activation in PBMCs is 

evidence for a systemic anti-inflammatory effect of EPA, even if in this study it 

cannot be attributable to a direct anti-tumoural effect.  Nevertheless, PGE-M may 

still have a role as a biomarker for CRC activity and justifies further investigation, 

either for the detection of CRC, for assessing and monitoring the response to 

treatment, or for the prognostication of outcome.  

 

7.6 Angiogenesis 

Previously published studies support the hypothesis that ω-3 PUFAs have anti-

angiogenic activity,(387, 388) although the evidence is much more limited than that 

for its effects on the COX-PGE2 pathway and on tumour proliferation.  The 

mechanisms by which ω-3 PUFAs might inhibit angiogenesis are multi-factorial and 

remain unclear.  Pro-angiogenic VEGF induces endothelial cell proliferation, 

migration and invasion, and increases vascular permeability.(19, 389)  Production 

of VEGF is stimulated by inflammatory mediators including PGE2.(390)  Its effects 

are mediated by stimulating a variety of pathways including the MAPK, ERK, JNK 

and PIK3/Akt pathways.(389)  VEGF and VEGFR-2 expression have been shown 

to correlate with CRC tumour vascularity, proliferation and metastasis.(391)   
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Omega-3 PUFAs have been shown to reduce endothelial cell expression of 

VEGFR-2 (195, 196, 356) and inhibit VEGF-induced activation of MAPK.(195)   In 

another study, conjugated EPA, but not EPA, reduced VEGF-stimulated MMP-9 

and MMP-2 mRNA expression and protein secretion at the same concentrations 

that inhibited HUVEC wound migration and tubule formation.(194)  In a further 

study, ω-3 PUFAs suppressed VEGF- and bFGF-mediated expression of 

angiopoietin-2 and secretion of MMP-9, whereas ω-6 PUFAs increased 

angiopoietin-2 expression and MMP-9 secretion.  These effects were COX-

mediated, demonstrated by the abbrogation of these effects in the presence of the 

COX-inhibitor indomethacin and the finding that PGE2, but not PGE3, increased 

angiopoietin-2 expression.  EPA and DHA have both been shown in vitro in HT-29 

CRC cells to reduce VEGF and COX-2 expression, reduce PGE2 levels and inhibit 

the ERK and HIF pathways which are associated with the induction of VEGF 

expression by PGE2.(186)  Similarly, when HT-29 cells were transplanted in nude 

mice EPA and DHA supplementation was associated with a reduction in VEGF and 

COX-2 expression in tumours, a reduction in tumoural PGE2 levels and a reduction 

in tumour vascularity.(186)  These studies support a role of the COX pathway as a 

mechanism for the inhibition of VEGF expression and angiogenesis by EPA.  

The EMT Trial demonstrated a trend towards reduced tumour vascularity with EPA 

supplementation.  Perhaps one would not expect any anti-angiogenic effect of EPA 

to manifest as a reduction in tumour vascularity after only 4 weeks of 

supplementation.  The effect of EPA would most likely be on new vessel formation 

rather than causing disruption of existing vessels.  A longer period of 

supplementation with more prolonged inhibition of new vessel formation might 

reveal a more pronounced effect on tumour vascularity.   

Immunohistochemistry for MVD was performed using the well-established 

endothelial cell marker CD31.  This protein is present on both large and small blood 
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vessels in both tumour tissue and normal tissue and is considered to be a pan-

endothelial cell marker.(392, 393)  CD105, by contrast, is thought to be a 

proliferation-associated protein expressed specifically by newly formed 

(neoangiogenic) blood vessels.(394, 395)  CD105 has therefore been proposed as 

a better marker than CD31 for the evaluation of angiogenesis.(394, 395)  Both 

CD31 and CD105 have been shown to be prognostic for metastatic risk and poor 

outcome in colorectal (396-398) and other types of cancers.(399-402)  Despite the 

recent interest in CD105 as a better marker of neoangiogenesis, the specificity of 

CD105 for tumour blood vessels is not universally accepted and may be dependent 

on the type of tissue being studied.(395, 403)  For example, high levels of CD105 

staining of mature blood vessels has been seen in normal lung and brain tissue but 

not in normal breast tissue or gastric mucosa,(403) and high levels of CD105 

staining of non-endothelial cells has been seen in normal liver and kidney tissue 

(35-70% non-specific expression) but not in normal lung, breast or colonic 

tissue.(395)  Similar findings were observed when a batch of 20 tumours sections 

from The EMT Trial were stained for CD105 as a pilot to assess the quality of 

CD105 staining, using colon cancer tissue microarrays (TMA) which had shown 

good CD105 staining in an unrelated study as a positive control.  The specificity of 

CD105 staining for endothelial cells was poor in the CRCLMs, with a high level of 

non-specific background staining compared to either the comparative CD31 

staining of CRCLMs or the CD105 staining of the colon TMAs (data not shown).  

CD105 was therefore not explored further as a marker of MVD in The EMT Trial. 

These seemingly tissue-specific findings, together with variability in the particular 

antibody and staining methodologies used in different studies might explain the 

inconsistency in findings between studies and explain why no single endothelial cell 

marker has established itself as the marker of choice.  
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The trend to reduced tumour vascularity in The EMT Trial after only a short period 

of EPA supplementation is encouraging for an anti-angiogenic effect of EPA and is 

supported by the in vitro data from the HUVEC studies which demonstrated that 

both acute and chronic EPA supplementation inhibited endothelial cell proliferation, 

and also inhibited, less consistently, endothelial cell migration and tubule formation.  

The anti-angiogenic effects of EPA should be investigated further.  Pre-clinical 

studies might focus on further elucidating the differences between acute and 

chronic EPA supplementation and the mechanistic basis underpinning these 

differences.  Clinical studies of tumour vascularity should investigate the effects on 

MVD of longer periods of EPA supplementation, and should consider carefully the 

choice of endothelial cell marker, perhaps using a combination of markers such as 

CD31 and CD105 to differentiate between mature and neo-angiogenic vessels. 

   

7.7 Tumour microenvironment 

The communication between tumour microenvironment and the growth and 

metastasis of cancer cells is well recognised even if not fully understood.  

Inflammation at the site of a tumour is recognised as an important component of the 

tumour microenvironment, and causes a wide variety of cells to accumulate locally 

and infiltrate the tumour.(404) This has been particularly studied in relation to the 

importance of the COX pathway and pro-inflammatory prostaglandins to the 

initiation and promotion of CRC.(405)  An in-depth discussion of the tumour 

microenvironment in CRC carcinogenesis can be found in the review by 

Peddareddigari et al.(383)  Cells that accumulate and infiltrate CRCs include 

tumour associated macrophages (TAMs), mesenchymal stem cells, myeloid-

derived suppressor cells, mast cells, neutrophils and platelets, amongst 

others.(383)  Of these, TAMs are one of the most important components of the 

tumour, secreting a range of chemokines and growth factors which are involved in 
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inflammation, angiogenesis, epithelial-mesenchymal transition and 

immunosuppression.(383, 406, 407) 

There is limited evidence for the effects of ω-3 PUFAs on the tumour 

microenvironment.  In The EMT Trial, a PBMC model of TAMs showed that EPA 

supplementation was associated with inhibition of the transcription factor NFκB.   

NFκB activation is associated with pro-proliferative, anti-apoptotic and pro-

metastatic pathways and its inhibition has been suggested as a potential 

therapeutic target.(176, 408)  Although changes in NFκB activity in PBMCs cannot 

be taken as direct evidence for an effect of EPA on NFκB activity within CRCLM 

tissue, it is feasible that changes in PBMCs reflect changes in TAMs making the 

PBMC model a biologically plausible surrogate marker of changes within the tumour 

microenvironment.  An alternative approach would have been to attempt to 

measure NFκB activation in CRCLM tissue.  This would have required additional 

CRCLM tissue (which for many patients with small tumours would have been 

scarce), would have been subject to the heterogeneity of the tumour, and would 

have only permitted measurement of NFκB activation post-treatment.  The PBMC 

model, by contrast, permitted a more controlled ex vivo analysis of NFκB activation 

and allowed comparison of NFκB activation pre- and post-treatment.  Further 

studies are required to determine whether inhibition of NFκB signalling by EPA 

contributes to a direct anti-CRC cell activity, whether it exerts an indirect anti-CRC 

effect mediated by the tumour microenvironment, PBMCs or other circulating cells 

e.g. platelets, or whether its effects are more broadly due to a reduction in systemic 

inflammation.  The effect of EPA on tumour microenvironment and circulating cells 

is very much understudied.  Future work might investigate the effect of EPA on the 

number and localisation of macrophages within tumours, the effects of EPA on 

other cells within the tumour microenvironment, and the effect of EPA on signalling 

between circulating platelets and tumour cells which was recently described and 

shown to promote metastasis.(27) 
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7.8 Future clinical work 

Now that two years have passed since the last patients recruited into The EMT Trial 

underwent liver resection, it would be an appropriate time to collect data for a 

comparison of disease-free survival and overall survival between the two groups.  

Whilst this was not explicitly stated as an endpoint in the trial, because the trial 

would have been underpowered for this as an endpoint, it was always planned to 

perform this analysis because the data would be readily available from the Leeds 

Hepatobiliary Unit’s internal prospectively maintained database.  The intention to 

perform such an analysis after 2 years of follow-up was included in the original 

application to Cancer Research UK for approval of The EMT Trial by the Clinical 

Trials Awards and Advisory Committee (CTAAC).   

In the Rothwell meta-analyses of patients who participated in studies of the effect of 

aspirin on cardiovascular disease, there was a significant reduction in 20-year CRC 

incidence (138) and a reduction in all-cancer death after 10 years follow-up.(139)  

The protective effect of aspirin was not evident for 10 years because of the lag time 

between carcinogenesis and the development of clinically evident CRC.  If EPA 

supplementation was associated with a similar separation or time-lag of the Kaplan-

Meier curves for DFS or OS in The EMT Trial, this may indicate a biological effect 

of EPA which was not detectable by the short timeframe IHC and mechanistic 

endpoints measured in the trial.    

Rothwell et al. were able to make use of large multi-centre trials of the effects of 

prolonged aspirin therapy on cardiovascular disease to look at CRC incidence in 

these patients many years after they completed participation in their respective 

trials.(138, 139)  In the same way, it might be possible to perform a similar analysis 

of the chemopreventative effects of ω-3 PUFA supplementation using patients who 

participated in large trials of ω-3 PUFAs in cardiovascular disease such as the 

Italian GISSI trial.  This would be dependent on there being accurate national 

cancer registries in the countries that took part in the original trials.  The 
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coordination of ethical approval for this work may also prove an obstacle.  However, 

given the convincing chemoprevention and cancer-mortality benefits that were 

shown in the Rothwell studies, (138, 139) a similar study for ω-3 PUFAs is worthy 

of investigation, especially given the more favourable long-term side effect profile of 

EPA than aspirin. 

Having demonstrated in The EMT Trial that EPA is safe and well tolerated in 

patients with CRCLM, and confirmed for the first time in CRC/CRCLM at least some 

of the anti-neoplastic effects that have been seen in pre-clinical and mucosal 

biomarker studies, the question that remains is what context would EPA find most 

utility in the treatment of CRC and CRCLM.  Potential uses of EPA include primary 

prevention of CRC or secondary prevention of CRCLM, neoadjuvant/adjuvant 

treatment of patients with established CRC and CRCLM who are undergoing 

surgery with curative intent, and management of incurable disease.  The 

encouraging findings from The EMT Trial support progression to a large, multi-

centre Phase III evaluation of EPA in patients with CRC or CRCLM.  Since the 

duration of supplementation in The EMT Trial was perhaps too short to demonstrate 

some of the potential anti-CRC activity of EPA, Phase III evaluation should involve 

supplementation over a longer period of time, of at least 6 months.  This could be a 

study of EPA supplementation following CRC resection, with outcomes of DFS and 

OS at 5 years.  Alternatively, a similar study of EPA supplementation after CRCLM 

resection would perhaps require a shorter period of follow-up of between 2-5yr for 

DFS and OS endpoints since most CRCLM recurs within the first two years.  There 

is also evidence to support a role for the use of ω-3 PUFAs in combination with 

established chemotherapeutic agents or with radiotherapy, and evaluation of this is 

already underway in other cancers including breast and pancreatic cancer.  

Omega-3 PUFAs also have a potential role as immunonutrition to improve cancer-

related cachexia and to improve outcomes following cancer surgery.  There is 
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therefore also scope to evaluate the use of EPA in combination with current 

neoadjuvant and adjuvant chemotherapy regimens for CRC and CRCLM.  Such 

studies could include chemotherapy side effects and quality of life as outcomes in 

addition to DFS and OS endpoints.       

 

 7.9 Conclusions 

The EMT Trial is the first RCT of an oral ω-3 PUFA in patients with CRCLM.  EPA 

was safe and well tolerated in this population of patients, confirming the excellent 

safety and tolerability profile of ω-3 PUFAs which makes them an attractive 

candidate for the treatment and/or prevention of CRC and CRCLM.  Previous 

concerns that ω-3 PUFAs may predispose patients to bleeding were dispelled, with 

no difference in platelet aggregation or in clinical endpoints of bleeding, transfusion 

rate or post-operative complications following liver resection. 

The EMT Trial demonstrated that EPA supplementation was associated with an 

increase in tumour EPA content, and although there was not a reduction in 

tumoural AA or PGE2 levels, it is conceivable that the period of supplementation 

was too short for this to have been observed.  Similarly, although there was no 

reduction in tumour proliferation index or an increase in apoptosis index, the pre-

clinical evidence for this is strong, and is further supported by the recent 

demonstration of chemopreventative efficacy of EPA in a Phase III trial in patients 

with FAP.  Perhaps with a longer period of supplementation these effects may have 

been observed.  There was a trend to a reduction in tumour vascularity,  supported 

by supplementary in vitro angiogenesis experiments, which taken together provide 

encouragement that EPA might indeed reduce tumour angiogenesis.  EPA 

supplementation was associated with a reduction in urinary PGE-M.  Whether this 

simply represents a reduction in systemic inflammation or is representative of 

changes within the tumour cannot be determined based on the results from this 
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Phase II trial, but it does demonstrate a positive systemic effect of EPA 

supplementation and raises the possibility of urinary PGE-M as a non-invasive 

biomarker of disease progression or response to treatment.  Finally, EPA was 

shown to inhibit PBMC NFκB activation, providing further evidence of a systemic 

anti-inflammatory effect of EPA, and raising the possibility of an effect of EPA on 

the tumour microenvironment.   

Although no firm conclusions about the anti-CRC activity of EPA can be drawn from 

this study, the results from such a short period of supplementation are encouraging 

for there being a beneficial effect of EPA supplementation, and support further 

evaluation of EPA for the treatment and/or prevention of CRC and CRCLM.  The 

mechanistic analyses from this trial also support the need for more pre-clinical 

studies to further elucidate the effects of EPA on tumour growth, angiogenesis, and 

on the tumour microenvironment.  When available, it will be interesting to see the 

DFS and OS analysis from this trial, and this data may help to guide the design of 

any subsequent Phase III trial.   
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List of Abbreviations 

 
AA arachidonic acid 

ACF abberant crypt foci 

ADP adenosine diphosphate 

AE adverse event 

AI apoptosis index 

AICR American Institute for Cancer Research 

ALA alpha-linolenic acid 

APC adenomatous polyposis coli  

BAECs bovine artery endothelial cell  

bFGF basic fibroblast growth factor 

cAMP cyclic adenosine monophosphate 

CLB complete lysis buffer 

COX cyclooxygenase 

Cr creatinine 

CRC colorectal cancer 

CRCLM colorectal cancer liver metastases 

CYP450 cytochrome p459 

DAB diaminobenzedine 

DHA docosahexaenoic acid 

DPA docosapentaenoic acid 

DPBS Dulbecco's phosphate buffered saline 

EC endothelial cell 

EDTA ethylenediaminetetraacetic acid 

EGFR epidermal growth factor receptor 

EIA enzyme immunoassay 

ELISA enzyme-linked immunosorbent assay 

EMT EPA for Metastasis Treatment 

EPA eicosapentaenoic acid 

ERK extracellular signal-regulated kinase 

FAP familial adenomatous polyposis  

FFA free fatty acid 

FFQ food frequency questionnaire 

FOLFIRI folinic acid + fluorouracil + irinotecan 

FOLFOX folinic acid + fluorouracil + oxaliplatin 

FOLFOXIRI folinic acid + fluorouracil + oxaliplatin + irinotecan 

FU fluorouracil 

GC gas chromatography 

GC-MS gas chromatography - mass spectrometry 

GCP good clincial practice 

GPCR G protein-coupled receptor 

HDU high dependency unit 

HNPCC hereditary non-polyposis colorectal cancer 

HPLC high performance liquid chromatography 
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HR hazard ratio 

HRP horseradish peroxidase 

HTA Human Tissue Authority 

HUVEC human umbilical vein endothelial cell 

IHC immunohistochemistry 

IHPBA International Hepato-Pancreatico-Biliary Association 

IMP investigative medicinal product 

IQR interquartile range 

LA linoleic acid 

LC liquid chromatography 

LOX lipoxygenase 

LPS lipopolysaccharide 

LT leukotriene 

LTA light transmission aggregometry 
MHRA Medicines and Healthcare related products Regulatory 

Authority 

MMP matrix metalloproteinase 

MRM multiple reaction monitoring 

MS/MS tandem mass spectrometry 

MTT methylthiazolyldiphenyl-tetrazolium bromide 

MVD microvessel density 

NAD nicotinamide adenine dinucleotide 

NFκB nuclear factor kappa B 

NICE National Institute for health and Care Excellence 

NSB non-specific binding 

OD optical density 

OR odds ratio 

PBMC peripheral blood mononuclear cell 

PBS phosphate buffered saline 

PG prostaglandin 

PGDH prostaglandin dehydrogenase  

PI proliferation index 

pNpp p-nitrophenyl phosphate 

POF perioperative outcome form 

PPAR peroxisome proliferator-activated receptor 

PTFE polytetrafluoroethylene 

PUFA polyunsaturated fatty acid 

RCT randomised controlled trial 

REC research ethics committee 

RIA radioimmunoassay 

RNA ribonucleic acid 

ROS reactive oxygen species 

RR relative risk 

RT-PCR real-time polymerase chain reaction 

Rv resolvin 

RvE1 resolvin E1 
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SAE serious adverse event 

SEM standard error of the mean 

SPE solid phase extraction 

SUSAR suspected unexpected serious adverse reaction 

TAM tumour associated macrophage 

TBS tris buffered saline 

TBST tris buffered saline Tween-20 

TGF transforming growth factor 

TMA tissue microarray 

TPN total parenteral nutrition 

TSC trial steering committee 

VCAM vascular cell adhesion molecule  

VEGF vascular endothelial growth factor 

WCRF World Cancer Research Fund 
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Appendix A 

 

Pages from the EPIC Food Frequency Questionnaire that concern dietary fat intake 

were selected for use in The EMT Trial and are shown here. 
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