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Abstract 

DNA methylation marks regulate gene expression and genome structure. Stability and 

dynamics of DNA methylation patterns are influenced by four major factors including 

de novo methylation, maintenance methylation, passive loss of methylation and active 

demethylation. Maintenance methylation functions are still well conserved among 

plants and animals, which separated more than 1.5 billion years ago. In contrast, 

demethylation mechanisms differ considerably among plants and mammals. 

Interfering with DNA methylation and demethylation systems could be a source of 

heritable epigenetic variation if DNA methylation changes are introduced that 

transcend into stable heritable gene expression changes. The high tolerance of plants 

to DNA methylation changes makes them an ideal experimental system to exploit 

DNA methylation and demethylation systems. In this study, four strategies have been 

developed and tested for their capacity to induce heritable epigenetic variation by 

interfering with DNA methylation and demethylation systems. These strategies 

included a chemical treatment with a DNA methylation inhibitor, genetic 

demethylation using a mutant deficient in the maintenance methyltransferase MET1 

and transgenic approaches to over-express MET1 and to express the human TET3 

demethylase. While chemical demethylation only generated non-heritable changes, 

inactivating MET1 induced stable DNA methylation and expression changes at 

specific loci. Expression of the human TET3 protein also induced locus-specific loss 

of methylation but the efficiency of demethylation varied in individual transformants 

independent of TET3 level, which suggests that demethylation is locus-specific but 

stochastic. 
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1.0. General Introduction 

 

1.1. An Introduction to Epigenetics 

 

In 1942 Conrad Waddington coined the term epigenetics to describe how a genotype 

gives rise to a phenotype during development (Waddington, 1942). Waddington 

illustrated his understanding with a visual metaphor called the epigenetic landscape. 

In this model an undifferentiated totipotent cell is represented by a ball at the top of a 

hill. The ball will role down the hill following a specific pathway. This pathway is 

determined by the different peaks and troughs the ball encounters, which represent the 

developmental commitments of the cell. Over time the definition of epigenetics has 

broadened to encompass its roles in genome structure and regulation. In 2007 Adrian 

Bird defined epigenetics as “the structural adaptation of chromosomal regions so as to 

register, signal or perpetuate altered activity states” (Bird, 2007). This proposal would 

include processes that are not mitotically or mieotically heritable and is therefore 

considered wide-ranging by some (Ledford, 2008). A year later, in 2008, a Cold 

Spring Harbor meeting was hosted to arrive at a consensus definition of epigenetics, 

where epigenetics was defined as reversible, heritable changes in gene expression 

without any changes to the underlying DNA sequence (Berger et al, 2009).  

 

Epigenetic gene expression changes have explained phenomena that deviate from 

„normal‟ mendelian genetics and among others include imprinting (Dechiara et al, 

1991), position effect variegation (PEV) (Muller, 1930), transgene silencing (Meyer 

et al, 1992; Napoli et al, 1990) and paramutation (Brink, 1959). Epigenetic gene 

expression changes are regulated by post-transcriptional gene silencing (PTGS) and 

transcriptional gene silencing (TGS) mechanisms. PTGS occurs through degradation 

(Fire et al, 1998) of target mRNA, whereas TGS occurs through changes in chromatin 

conformation. The nucleosome represents the first level of chromatin, where 146 base 

pairs (bp) of DNA is wrapped around a histone octomer assembled from 2 copies of 

histone proteins 2A, 2B, 3 and 4 (Luger et al, 1997). The N-terminal tails of histone 

proteins can be modified to distinguish between transcriptionally active euchromatin 

and transcriptionally repressive heterochromatin (Figure 1.1) (Meyer, 2001). Among 

these modifications are histone methylation, acetylation and phosphorylation. In 

plants histone modifications often associated with transcriptionally repressive 
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heterochromatin include mono- and di-methylation of histone 3 lysine 9 (H3K9me1 

and H3K9me2), mono- and di-methylation of histone 3 lysine 27 (H3K27me1 and 

H3K27me2) and mono-methylation of histone 4 lysine 40 (H4K40me1) (Pfluger & 

Wagner, 2007). Among the histone modifications that correlate with active genes are 

acetylation of histone 3 lysine 9 (H3K9ac) and acetylation of histone 3 lysine 27 

(H3K27ac) (Lauria & Rossi, 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Euchromatic and heterochromatic chromatin states. The figure shows two chromatin states 
and their associated modifications. On the left is transcriptionally active euchromatin and on the right is 
transcriptionally repressive heterochromatin. Histone octamers are represented as blue cylinders with 
protruding N-terminal tails of histones labelled with the letter „N‟. DNA, which is rapped around the 
histone octamer, is represented by the thick black line. Modifications are illustrated as coloured shapes 
using a key in the top left of the image. Taken from Meyer, (2001). 
 

DNA methylation, a modification often associated with gene repression, offers 

another layer of epigenetic control. It involves the transfer of a methyl-group (-CH3) 

from S-adenosyl methionine (SAM) to a DNA base. Histone modifications and DNA 

methylation cross-talk to co-ordinate chromatin structure and regulate gene 

expression (Li, 2002). While histone modifications are readily reversible, DNA 

methylation patterns can vary and are often maintained over generations (Vaughn et 
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al, 2007). This project therefore focuses on the modification of DNA methylation 

marks to induce heritable epigenetic variation in plants.  

 

1.2. DNA methylation 

 

DNA methylation has been found in bacteria, fungi, plants and animals but the 

sequence contexts and epigenetic landscapes can vary among them.  

 

In bacteria, DNA methylation occurs at nitrogen 6 of adenine (
m6

A), carbon 5 of 

cytosine (
m5

C) and in some cases nitrogen 4 of adenine (
m4

A). In E. coli, 
m6

A is 

established by the DNA ADENINE METHYLTRANSFERASE (DAM) at the 

sequence GATC and 
m5

C is established by the DNA CYTOSINE 

METHYLTRANSFERASE (DCM) at the internal C of the two sequences CCWGG 

(where W is an A or a T) (Casadesus & Low, 2006). In bacteria, DNA methylation 

forms part of a restriction-modification system, which is used as a defence mechanism 

against foreign DNA. The system requires restriction endonucleases, which are 

bacterial enzymes that recognise palindromic DNA sequences. Methylated DNA 

cannot be cleaved by restriction endonucleases, unlike unmethylated invading phage 

genomes (Casadesus & Low, 2006).   

 

Many studies of DNA methylation in animals have been carried out in mammalian 

systems where DNA methylation is found exclusively at the carbon 5 of cytosines. 

Work on individual sequences and genomic DNA digests with methylation-sensitive 

restriction enzymes provided the first indications that mammalian genomes are 

globally methylated (Suzuki & Bird, 2008). Long contiguously methylated domains 

are occasionally interrupted by unmethylated regions called CpG islands (Suzuki & 

Bird, 2008), which have a higher CG content than the genome average and associate 

with gene promoters (Larsen et al, 1992) and origins of replication (Antequera & 

Bird, 1999). DNA methylation in mammals is found at cytosines in a CG sequence 

context with the exception of embryonic stem cells, where methylation has been 

found at cytosines in CA and CT sequence contexts (Ramsahoye, 2000). 

 

In comparison to mammals, DNA methylation in plants is also found exclusively at 

the carbon 5 of cytosines. In contrast, in plants DNA methylation is found at CG, 
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CHG and CHH (where H represents an A, T or G) sequence contexts. Shotgun 

bisulfite sequencing revealed that 24% of CG, 6.7% of CHG and 1.7% of CHH 

sequences are methylated in Arabidopsis (Cokus et al, 2008). At transposable 

elements (TEs) and repetitive sequences all three sequence types of methylation are 

highly correlated but when methylation is present within the body of protein coding 

genes it is almost entirely in a CG context (Cokus et al, 2008). The methylation 

patterns in Arabidopsis create a mosaic landscape, where DNA methylation is 

interspersed throughout the genome (Cokus et al, 2008; Zhang et al, 2006). 

 

1.3. Eukaryotic DNA methyltransferases 

 

1.3.1. Eukaryotic de novo DNA methyltransferases 

 

In mammals, reprogramming of DNA methylation patterns occurs at two stages of the 

life cycle (Monk et al, 1987) and requires de novo methyltransferases to establish 

DNA methylation. DNA METHYLTRANSFERASE 3 A (DNMT3A) and DNA 

METHYLTRANSFERASE 3 B (DNMT3B) restore DNA methylation lost in the cell 

cycles before blastulation (Law & Jacobsen, 2010). DNMT3A and DNA 

METHYLTRANSFERASE 3-LIKE (DNMT3L) establish DNA methylation at 

imprinted genes and TEs in primordial germ cells (PGCs), which give rise to the 

germline in mammals (Law & Jacobsen, 2010). DNA methylation is targeted to 

imprinted genes when DNMT3L associates with unmethylated histone 3 lysine 4 

(H3K4) and recruits DNMT3A (Ooi et al, 2007). DNA methylation is targeted to TEs 

via a class of small interfering (si) RNAs, called piwi-interacting (pi) RNAs, which 

target de novo methyltransferases to homologous sequences during male 

gametogenesis (Law & Jacobsen, 2010). In plants, DNA methylation patterns appear 

static across generations and there is no clear evidence for an extensive 

reprogramming of DNA methylation in the developing embryo. De novo methylation 

in plants is controlled by siRNA dependent (Figure 1.2) and independent pathways. 

 

RNA dependent de novo methylation is controlled by the mammalian DNMT3 

homologue DOMAINS RE-ARRANGED METHYLTRANSFERASE 2 (DRM2). De 

novo activity of DRM2 was identified when loss of function resulted in maintenance 

of pre-existing DNA methylation at an endogenous target gene but blockage of de 
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novo methylation at the same target when introduced as a transgene (Cao & Jacobsen, 

2002b). The identification of de novo methyltransferase activity in plants led to the 

characterisation of the targeting pathway, RNA-directed DNA methylation (RdDM) 

(Law & Jacobsen, 2010). In this pathway the chromatin binding protein SAWADEE 

HOMEODOMAIN HOMOLOG 1 (SHH1) enables the recruitment of RNA 

POLYMERASE IV (POLIV) to target loci (Law et al, 2013). Double-stranded (ds) 

RNA is produced by RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) (Chan, 

2004), which synthesises the complementary strand of POLIV transcripts. dsRNA is 

cleaved into 24-nt siRNAs by the DICER-LIKE 3 (DCL3) (Chan, 2004) nuclease, 

which associates with ARGONAUTE 4 (AGO4) (Chan, 2004).  RNA 

POLYMERASE V (POLV) non-polyadenylated, uncapped transcripts act as scaffold 

to recruit the AGO4-siRNA complex (Wierzbicki et al, 2008), which is facilitated by 

SUPPRESSOR OF TY INSERTION 5-LIKE (SPT5-like)/KOW DOMAIN-

CONTAINING TRANSCRIPTION FACTOR 1 (KTF1) (He et al, 2009; Law & 

Jacobsen, 2010). The effector complex directs DRM2 to local DNA (Figure 1.2). 

Argonaute proteins also possess endoribonuclease activity, which can lead to cleavage 

of locus-specific POLV transcripts (Qi et al, 2006). dsRNA could be generated from 

these transcripts by RDR2, leading to the production of secondary siRNAs, resulting 

in a self-enforcement effect.  

 

Although RdDM influences de novo methylation at all three sequence types in plants, 

recent studies have shown that de novo methylation at CHH sites can be initiated 

independently of siRNAs. This requires CHROMOMETHYLTRANSFERASE 2 

(CMT2) (Zemach et al, 2013), which is a member of the 

CHROMOMETHYLTRANSFERASE family, a unique class of DNA 

methyltransferases found in plants. It has been hypothesised that targeting of CMT2 

occurs through an interaction with di-methylation at lysine 9 on histone 3 (H3K9me2) 

via its chromo-domain (Pikaard, 2013; Zemach et al, 2013). 
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Figure 1.2. RNA-directed DNA methylation in plants. The figure shows key steps in the targeting of DNA 
methylation via siRNAs in plants. DNA and RNA are illustrated by the brown double helix and blue wavy 
lines, respectively. Attached methyl groups are represented by the orange pins.  dsRNA is produced by 
RDR2 which synthesizes the complementary strand of POLIV transcripts. dsRNA is then cleaved by the 
nuclease DCL3 to generate 24-nt siRNAs that associate with AGO4. siRNA-AGO4 complexes are 
recruited by POLV transcripts, which signals de novo methylation by DRM2. Taken from Law & 
Jacobsen, (2010).  

 

1.3.2. Eukaryotic maintenance DNA methyltransferases  

 

Semi-conservative DNA replication results in each daughter cell inheriting hemi-

methylated DNA. To prevent loss of DNA methylation via semi-conservative 

replication, maintenance methyltransferases recognise hemi-methylated DNA and 

methylate the symmetrical cytosine. In mammals, DNA METHYLTRANSFERASE 1 

(DNMT1) (Crowson & Shull, 1992) maintains DNA methylation at CG sequence 

contexts. It associates at replication foci via interactions with components of the 

replication machinery, including PROLIFERATING CELL NUCLEAR ANTIGEN 

(PCNA) (Chuang et al, 1997). The chromatin remodelling factor LYMPHOID 

SPECIFIC HELICASE 1 (LSH1) is also required for DNMT1 function, but its exact 

role remains to be elucidated (Dennis et al, 2001).  

 

Maintenance of CG methylation in plants is catalysed by the DNMT1 homologue 

METHYLTRANSFERASE 1 (MET1) (Kankel et al, 2003). Like DNMT1, MET1 

maintenance activity requires a chromatin remodelling factor, DECREASE IN DNA 
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METHYLATION 1 (DDM1), a homologue of the mammalian LSH1 (Hirochika et al, 

2000). However, DNA methylation in a CHH sequence context cannot be maintained 

in this pathway because of its asymmetry. Instead, CHH methylation is maintained by 

constant de novo activity (Law & Jacobsen, 2010). CHG methylation is maintained by 

CHROMOMETHYLTRANSFERASE 3 (CMT3) (Lindroth et al, 2001) via a self-

enforcing loop between histone and DNA methylation. SUPPRESSOR OF 

VARIEGATION 3-9 HOMOLOGUE 4 (SUVH4), a H3K9 histone methyltransferase, 

contains a Set and Ring Associated (SRA) domain. Mutation studies and mobility 

shift assays show that the SRA domain of some histone methyltransferases 

specifically bind methylated DNA, and that the SRA domain of SUVH4 preferentially 

binds CHG and CHH sequence types (Johnson et al, 2007; Lindroth et al, 2004). 

Conversely, the chromodomain of CMT3 has the capacity to bind H3K9 methylated 

histones, suggesting that histone methylation by SUVH4 recruits CMT3 (Lindroth et 

al, 2004). 

 

1.3.3. MET1 effects 

 

Recent evidence suggests that the plant DNA methyltransferase MET1 may not be 

restricted to a CG maintenance function. For example, Zubko et al, (2012) found that 

methylation lost from the body of an endogenous target gene in a met1 Arabidopsis 

mutant, was partially restored at CG sites when MET1 was re-introduced. Re-

methylation did not require passage through the germline, which suggests MET1 may 

have de novo activity at CG sequence contexts (Zubko et al, 2012). MET1 may also 

influence non-CG methylation as Singh et al (2008) showed a reduction in both CG 

and non-CG methylation at a REPETITIVE PETUNIA SEQUENCE (RPS) when 

introduced into a met1 Arabidopsis mutant by a genetic cross. Similarly, both CG and 

non-CG methylation were eliminated at the RPS when transferred into a drm2/cmt3 

mutant. These observations lead to the hypothesis that MET1, DRM2 and CMT3 may 

establish methylation at the RPS by gaining access jointly or the two methylation 

systems may recruit each other (Singh et al, 2008). For example, CG methylation 

maintained by MET1 may be required for binding of DRM2 and CMT3 guiding 

factors (Singh et al, 2008).  
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The coupling of DNA methylation and histone methylation via the SRA domain of 

histone methyltransferases (Johnson et al, 2007) suggests that the effects of MET1 

maintained CG methylation may extend into the histone modification layer of 

epigenetic control. This was shown when H3K9 methylation, a mark associated with 

transcriptionally silent heterochromatin, is lost when CG methylation is completely 

removed in a met1 Arabidopsis mutant (Tariq et al, 2003). H3K9 methylation 

however, is unaffected when non-CG methylation is lost in a cmt3 mutant. (Tariq et 

al, 2003). Therefore, MET1-regulated CG methylation may function in 

heterochromatin formation by acting as a scaffold to direct H3K9 methylation (Tariq 

et al, 2003). Interestingly, in an Arabidopsis met1 mutant, H3K9 methylation appears 

to accumulate within genes, which has been assigned to down-regulation of the H3K9 

demethylase INCREASE IN BONSAI METHYLATION 1 (IBM1) (Rigal et al, 

2012). Conveniently down-regulation of IBM1 also provides an explanation for the 

unusual observation that CHG methylation accumulates within gene bodies in met1, 

as H3K9 methylation is a requisite for CMT3 targetted CHG methylation (Lindroth et 

al, 2004; Rigal et al, 2012). 

 

To ensure proper regulation of the genome and to defend against mobilisation of TEs, 

repressive heterochromatin states need to be maintained, which requires DNA 

methylation and histone modifiers. Liu et al, (2011) showed that the N-terminal 

domain of MET1 directly interacts with the C-terminal domain of HISTONE 

DEACETYLASE 6 (HDA6), which suggests MET1 and HDA6 may function co-

operatively to maintain heterochromatic gene silencing (Liu et al, 2011). 

 

1.4. DNA demethylation  

 

Establishment and removal of DNA methylation are required by eukaryotes to fine 

tune gene expression and respond to environmental and developmental signals. DNA 

demethylation describes the process of passive loss or active removal of DNA 

methylation. 

 

Passive loss of DNA methylation results from SAM shortages, DNA 

methyltransferase down-regulation or dysfunction. DNA methyltransferase 

dysfunction is promoted by conditions such as nucleoprotein blockage (Hsieh, 1999a), 
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where regulatory nucleoproteins occlude target sequences from methyltransferases 

and acetylated histone aversion (Wolffe et al, 1999), where acetylated histones repel 

methyltransferases. Active DNA demethylation describes an enzymatic action where 

a methylated cytosine is replaced with an unmethylated cytosine and occurs in both 

plants and animals.    

 

1.4.1. Active DNA demethylation in plants 

 

In Arabidopsis, there are four DNA glycosylases including REPRESSOR OF 

SILENCING 1 (ROS1), DEMETER (DME), DEMETER-LIKE 2 (DML2) and 

DEMETER-LIKE 3 (DML3). They excise methylated cytosines from DNA by 

hydrolysing the glycosidic bond between the cytosine and sugar-phosphate backbone. 

After base removal, DNA glycosylases use apurinic/apyrimidinic (AP) lyase activity 

to nick the DNA backbone, which induces base excision repair (BER) mechanisms to 

fill the gap with an unmethylated cytosine (Figure 1.3). 

 

ROS1, DML2 and DML3 are active in vegetative cells and function in sequence 

specific removal of DNA methylation at the 5‟ and 3‟ ends of genes (Penterman et al, 

2007). ROS1 counteracts RdDM, possibly to prevent hypermethylation and DNA 

methylation spreading by self-reinforcement mechanisms that could lead to 

detrimental gene silencing. The counteracting mechanism is at least partly reliant on a 

feedback mechanism involving DNA methylation and DNA methyltransferases. For 

example, when DNA methylation levels are reduced in a met1 mutant or by treatment 

with DNA methylation inhibitors, ROS1 levels are down-regulated (Mathieu et al, 

2007). It is still not clear how plant DNA glycosylases are targeted to specific 

sequences. ROS1 co-localises with REPRESSOR OF SILENCING 3 (ROS3), which 

possesses RNA binding capacity (Zheng et al, 2008), making an RNA-based targeting 

system appealing. 

 

DNA glycosylases likely contribute to the global hypomethylation in the Arabidopsis 

endosperm (Hsieh et al, 2009), a nutrient reservoir, which surrounds the embryo. In 

Arabidopsis, the endosperm and embryo are produced via double fertilisation (Figure 

1.4). Each pollen grain contains two sperm cells. These fertilize the egg and diploid 

central cell of the female gametophyte, giving rise to the embryo and triploid 
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endosperm, respectively. In the central cell during female gametogenesis MET1 levels 

are reduced (Jullien et al, 2008) and DME levels are increased (Choi et al, 2002), 

resulting in the loss of DNA methylation via both passive and active mechanisms. 

Therefore, global hypomethylation in the endosperm may be an extension of 

hypomethylation in the central cell.  

 

1.4.2. Active DNA demethylation in mammals 

 

Mammalian DNA glycosylases include METHYL-BINDING PROTEIN 4 (MBD4) 

and THYMINE DNA GLYCOSYLASE (TDG). Unlike plants, mammalian DNA 

glycosylases show weak activity against methylated cytosines compared to thymines 

in T/G mismatches (Zhu et al, 2000). For global epigenetic reprogramming during 

development and sequence specific demethylation in response to environmental 

signals in mammals, it is therefore required that cytosines are modified prior to 

glycosylase intervention. 

 

ACTIVATION-INDUCED DEAMINASE (AID) (Cortellino et al, 2011) and 

APOLIPOPROTEIN B RNA EDITING CATALYTIC COMPONENT 1 (APOBEC1) 

(Harris et al, 2003) deaminate methylated cytosine to thymine. This creates a T/G 

mismatch. The thymine is removed by TDG or MBD4 and replaced in the BER 

pathway (Figure 1.3). Alternatively, methylated cytosines can be oxidised to either 5-

hydroxy-methylcytosine (hmC), 5-formyl-cytosine (fC) or 5-carboxyl-cytosine (caC). 

This oxidation is catalysed by three TEN-ELEVEN TRANSLOCASE (TET1-3) 

proteins (Ito et al, 2011). Oxidised bases are removed by glycosylase activity and 

replaced in the BER pathway (Figure 1.3). TET3 has been found highly expressed 

(Gu et al, 2011) in the paternal pro-nucleus and therefore likely contributes to the 

global epigenetic reprogramming during early mammalian developmental stages. TET 

activity may also facilitate DNA demethylation passively as DNMT1 does not 

recognise hmC (Valinluck & Sowers, 2007).  

 

Interestingly, recent evidence has emerged from in vitro assays that the mammalian 

de novo methyltransferases, DNMT3A and DNMT3B may function as hmC 

dehydroxymethylases (Chen et al, 2012) (Figure 1.3). A dehydroxymethylation 

function of DNMT3 proteins would offer an alternative DNA demethylation pathway 



11 

 

and allow the reversion of hmC to mC (Chen et al, 2012). The latter would be useful 

to correct TET3 errors or hmC produced by natural oxidation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Active DNA demethylation pathways in plants and mammals. Green, Red and Black labels 
and arrows indicate proteins and cytosine modifications that occur in plants, mammals or both 

respectively. In plants the DNA glycosylases ROS1, DME, DML2 and DML3 excise methylated bases. 
Excised bases are replaced with an unmethylated cytosine by BER mechanisms. In mammals DNA 
demethylation can occur via at least three pathways. A methylated cytosine can be deaminated to 
thymine by the cytosine deaminases AID and APOBEC resulting in a T/G mismatch. Thymines in a T/G 
mismatch are excised by the glycosylases TDG and MBD4 and replaced with an unmethylated cytosine 
by BER mechanisms. In mammals methylated cytosines can also be oxidised by TET proteins. 
Oxidative products including 5hmC, 5fC and 5caC can be targeted by DNA glycosylases for excision. 
Alternatively the mammalian de novo methyltransferases DNMT3A and DNMT3B may serve as 

dehydroxymethylases converting hmC to C. Image modified from Ito et al, (2011).  

 

1.5. The biological roles of DNA methylation in plants 

 

DNA methylation within gene promoters is often associated with transcriptional 

repression, as it can directly obstruct transcription factors and recruit methyl-binding 

proteins that signal chromatin changes. Gene silencing is required to prevent the 

activation of TEs, which could threaten genome integrity by inserting into critical 

genes. The genomes of higher plants contain many TEs that could potentially disrupt 

genome integrity. In the Arabidopsis ddm1 mutant, TEs are activated but only 

mobilise after repeated self-pollinations, which can generate mutations. ddm1 induced 

mobilisation of the CAC1 transposon into the DWF4 locus produced the defective in 
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stem and leaf elongation mutant, clam (Miura et al, 2001). Similarly, the EVD 

retrotransposon is reverse transcribed in met1 epigenetic recombinant inbred lines 

(epiRILs) and inserts within unlinked loci (Mirouze et al, 2009). Despite the link 

between hypomethylation and TE activation it is also important to acknowledge that 

in some cases derepression of TEs can occur in the absence of DNA methylation 

changes. Arabidopsis MICRORCHIDIA (MORC) proteins belong to an ATPase 

family and likely play a role in chromatin superstructure (Moissiard et al, 2012). 

Arabidopsis morc mutants show derepression of methylated genes and TEs without 

any DNA methylation changes, highlighting a potential role for MORC proteins in 

DNA methylation-independent gene silencing (Moissiard et al, 2012). 

 

Silencing of repeats via DNA methylation is not restricted to foreign elements. 

Ribosomal DNA (rDNA) in Arabidopsis is arranged in tandem arrays at two Nucleolus 

Organiser Regions (NORs). Transcription of rDNA is a large energy consuming 

process due to the demand for rRNA in a cell and is therefore tightly regulated. Part 

of this regulation is the switching “on” and “off” of rDNA repeats, which requires 

DNA methylation. Interestingly, a positive correlation has been reported between 

rDNA copy number and NOR DNA methylation levels among 41 Arabidopsis 

accessions (Woo & Richards, 2008). This correlation suggests that rDNA copy 

number itself is a determinant of NOR DNA methylation levels and provides insight 

into a possible mechanism by which Arabidopsis accessions silence excess rDNA 

repeats (Woo & Richards, 2008). In this study the inheritance of NOR methylation 

levels were also analysed in F1 lines derived from crossing accessions with low and 

high NOR methylation levels (Woo & Richards, 2008). F1 lines could be divided into 

three classes, including those with intermediate, low or high NOR methylation levels, 

suggesting that NOR methylation is regulated by faithful inheritance of parental NOR 

methylation patterns but also reconfiguration of NOR methylation in the hybrids 

(Woo & Richards, 2008).   

 

In plants, hypermethylated TEs and repeat regions show a low meiotic recombination 

rate compared to hypomethylated low-copy number genes, which indicates that DNA 

methylation may influence the rate of recombination (Melamed-Bessudo & Levy, 

2012). When recombination was analysed in the hypomethylated mutant ddm1 the 

rate of recombination between markers located in euchromatin increased, whereas 
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rates were unchanged between markers located in heterochromatin. This is surprising 

considering that heterochromatic regions are most affected by demethylation in the 

ddm1 mutant, and would suggest that DNA methylation only has a repressive function 

in meiotic recombination of euchromatin (Melamed-Bessudo & Levy, 2012).  

 

DNA methylation plays a central role in imprinting, a phenomenon by which genes 

are expressed in a parent-of-origin specific manner. Imprinting is widespread in plants 

and found in the endosperm during seed development (Jahnke & Scholten, 2009). 

Examples of imprinted genes in plants include the Arabidopsis MEDEA (MEA), 

FERTILIZATION-INDEPENDENT SEED 2 (FIS2), (Luo et al, 2000) and 

FLOWERING WAGENINGEN (FWA) (Kinoshita et al, 2004) genes, which are all 

expressed from the maternal alleles of the endosperm. This most likely originates 

from global demethylation in the central cell of the female gametophyte (Choi et al, 

2002; Jullien et al, 2008) (Figure 1.4), which gives rise to the endosperm after 

fertilisation. Global hypomethylation in the endosperm could facilitate silencing of 

repetitive sequences in the embryo, if siRNAs derived from active TEs in the 

endosperm migrated into the embryo. Migration of siRNAs has been observed in 

pollen grains (Slotkin et al, 2009), which are comprised of a vegetative cell nucleus 

(VCN) and two sperm cells. The genome of the VCN is demethylated due to DDM1 

and DME down and up-regulation, respectively (Figure 1.4). Consequently, TEs are 

activated in the VCN and siRNAs derived from these TEs have been found to silence 

target genes in sperm cells (Slotkin et al, 2009). 
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Figure 1.4. Double fertilisation in flowering plants. The figure shows some key epigenetic regulatory 
networks in plant gametophytes mediated by siRNAs. Two sperm cells fertilise the egg and central cell 
of the female gametophyte to give rise to the embryo and endosperm. siRNAs have been shown to 
migrate from the vegetative cell to silence target loci in sperm cells. This leads to the speculations that 
siRNAs may migrate between the central cell and egg cell of the female gametophyte and between the 
endosperm and embryo to silence target genes. Speculative pathways are marked with a “?”. 

 

Correct DNA methylation patterns are required for regular development. FWA alleles, 

although active in the endosperm, are silent in all other tissues. Silencing of FWA 

relies on DNA methylation of two direct repeats within its 5‟ coding region. In fwa 

epi-mutants the direct repeats are hypomethylated and FWA is expressed. As a 

consequence fwa epi-mutants display a delay in flowering time (Soppe et al, 2000), 

because FWA inhibits FLOWERING LOCUS T (FT), a protein that acts as a mobile 

floral signal (Ikeda et al, 2007). This partially explains the late flowering which is 

observed in the hypomethylated ddm1 (Kakutani et al, 1995) and met1 (Kankel et al, 

2003) Arabidopsis mutants. However, treatment of Arabidopsis with the DNA 

methylation inhibitor azacytidine results in early flowering (Burn et al, 1993). It is 

therefore likely that multiple genes regulated by DNA methylation are required for 

correct flowering time in Arabidopsis. 

 

The significance of DNA methylation within the body of protein coding genes is less 

well defined than TEs and gene promoters. Body methylation is predominantly 

located in exons and more likely to occur within genes that are longer than the 

average, which supports the hypotheses that body methylation may function in 

selecting splice regions and prevent aberrant transcription (Takuno & Gaut, 2011). 

Considering the repressive effects DNA methylation has on single copy genes and 
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TEs, a role of body methylation in silencing of cryptic promoters in central gene 

regions would also be an appealing speculation (Zilberman et al, 2007).   

 

1.6. Thesis objective 

 

The repressive functions of DNA methylation provide an opportunity to exploit this 

epigenetic mark to induce phenotypic variation in plants. This requires the 

development of a strategy that creates stable changes in DNA methylation that alter 

gene expression. In this study four strategies have been developed and tested for their 

capacity to induce DNA methylation changes. This included a chemical treatment to 

inhibit DNA methylation, which was applied directly to a commercial crop. Target 

loci were analysed in the treated lines by DNA methylation-sensitive detection 

techniques. Somatic and trans-generational stability of the chemically induced DNA 

methylation changes were analysed using the same detection techniques after 

treatment withdrawal and in subsequent generations, respectively. In parallel, genetic 

demethylation approaches were trialled in a model organism, including the 

inactivation of the epigenetic modifier MET1. DNA methylation and expression 

changes of target genes were predicted using an epigenome browser and analysed by 

methylation-sensitive and gene expression detection techniques. To analyse the 

stability of target gene expression changes in the epigenetic modifier mutant the wild-

type alleles were restored via a genetic cross. The target genes identified in the mutant 

were analysed in subsequent generations with the wild-type alleles restored. The third 

strategy interfered with DNA methylation pathways via over-expression of MET1 and 

a catalytically inactive MET1. Targets that altered their DNA methylation or 

expression profiles upon MET1 inactivation were analysed in the over-expression 

lines. Additional target genes were identified by screening an epigenome browser for 

loci that accumulate DNA methylation in a glycosylase mutant, since one possible 

result of MET1 over-expression is an increase in DNA methylation. Finally, a DNA 

demethylation strategy was tested expressing the mammalian demethylase TET3. 

Target genes for the mammalian demethylase in plants were selected based on their 

homology with TET3 targets in mammals. To analyse the stability of TET3-induced 

changes DNA methylation patterns at target genes were analysed over multiple 

generations. The most successful strategies were extended into commercially viable 

crops with the support of an industrial partner. 
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2.0. Inducing epigenetic variation in tomato using the DNA methylation inhibitor 

zebularine 

 

2.1. Introduction 

 

DNA methylation is an epigenetic mark and involves the transfer of a methyl-group (-

CH3) to the carbon 5 of cytosines within DNA. It is established and maintained by 

DNA methyltransferases (DNMTs) and actively removed by DNA glycosylases 

(Gehring & Henikoff, 2007). A core feature of DNA methylation is transcriptional 

repression, either by direct obstruction of transcriptional proteins or by serving as a 

target for specific proteins, which signal chromatin condensation (Klose & Bird, 

2006). Mammals, plants and fungi all have DNA methylation systems but the 

regulatory proteins, DNA methylation levels, locations and sequence types vary. In 

plants, DNA is methylated at three sequence types, CG, CHG and CHH (where H is 

A, T or G) (Law & Jacobsen, 2010). Interfering with such systems by either DNMT 

knockout (Kankel et al, 2003) or knockdown approaches (Kim et al, 2008) have 

shown that establishment and maintenance of DNA methylation are required for 

normal vigour, morphology and gene expression. 

 

DNA methylation inhibitors including 5-Azacytidine (azacytidine), 5-aza-2′-

deoxycytidine (decitabine) (Baylin, 2005) and 1-β-D-ribofuranosyl-1,2-

dihydropyrimidine-2-one (zebularine) (Baubec et al, 2009) (Figure 2.1 (Ewald et al, 

2008)) have been used to interfere with DNA methylation systems. These are cytosine 

analogues that undergo cellular uptake by nucleotide transporters and subsequent 

phosphorylation allows their incorporation at cytosine positions into replicating DNA. 

DNMTs are unable to methylate incorporated analogues due to their structural 

differences at the carbon 4 or 5 position (Galmarini et al, 2001). Indirect 

hypomethylation occurs because DNMTs have a reduced dissociation rate from these 

cytosine analogues compared to native cytosines, due to the formation of covalent 

adducts (Baubec et al, 2009; Santi et al, 1983). Their analogy with cytosines means 

that DNA methylation inhibitors can also be incorporated into RNA during 

transcription, which can lead to aberrant protein synthesis during translation (Baylin, 

2005).  
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Figure 2.1. Chemical Structures of cytosine, azacytidine, decitabine and zebularine. The figure shows 
the chemical structures for cytosine (top left), azacytidine (top right), decitabine (bottom left) and 
zebularine (bottom right). Red symbols indicate structural deviations from cytosine. Taken from Ewald et 
al, (2008). 

 

In mammals, DNA methylation inhibitors have shown both in vivo and in vitro to 

release silencing of some tumour suppressor genes, which occurs as a result of altered 

epigenetic modifier activity during malignancy. Therefore, azacytidine and decitabine 

are currently undergoing clinical trails in potential cancer therapies (Raj & Mufti, 

2006), (Das & Singal, 2004).  

 

In plants, DNA methylation inhibitors induce multiple phenotypes. Azacytidine 

transiently inhibits shoot induction in Petunia tissue culture (Prakash et al, 2003), 

causes segregating dwarfism in rice (Sano et al, 1990), increases total protein content 

in wheat seeds (Vanyushin et al, 1990) and reduces flower number in sugar beet 

(Iudanova et al, 2012). The direct mechanisms responsible for these phenotypes have 

not been identified and have been assigned to global hypomethylation and 
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transcriptional activation of silent genes. Azacytidine induces fruit ripening in the 

tomato colourless non ripening (cnr) epi-mutant (Manning et al, 2006; Martel et al, 

2011), as demethylation at the cnr gene promoter allows the binding of the 

transcription factor RIN (Ripening INhibitor) and subsequent gene expression. 

Interestingly, the offspring from azacytidine treated tomato plants do not germinate 

(Zhong et al, 2013). Such observations highlight the potential for DNA methylation 

inhibitors to induce variation but also raise questions about direct heritable changes 

and indirect cytotoxic effects in plants. 

 

If DNA methylation inhibitors can be used to induce trans-generational heritable 

changes, then they could become a fast, non-transgenic approach to induce variation. 

This hypothesis is investigated in this chapter by analysing DNA methylation changes 

and their heritability induced by zebularine in tomato. 

  

2.2. Results 

 

2.2.1. Zebularine induces transient growth inhibition of tomato 

 

It was first necessary to determine a concentration at which zebularine caused 

detectable DNA methylation changes in tomato. This was achieved by growing 

tomato on MS30 medium with increasing concentrations of zebularine. At 80 M, 

phenotypic changes were detected after 10 days that included inhibition of epicotyl 

and lateral root growth (Figure 2.2). To analyse if this observation was due to indirect 

cytotoxic effects, genomic DNA from treated and control plants was digested with the 

methylation-sensitive restriction isoschizomers MspI and HpaII. Both restriction 

enzymes cleave the sequence CCGG but HpaII only cuts the sequence when it is 

unmethylated and MspI cuts the sequence when it is unmethylated and when the 

internal C is methylated (C
m

CGG) (Waalwijk & Flavell, 1978). An 80 M zebularine 

treatment caused loss of DNA methylation in tomato, as some of the high-molecular-

weight DNA was digested in the HpaII lane of treated plants (white box, Figure 2.3) 

but not in the HpaII lane of untreated control plants (black box, Figure 2.3). To favour 

seed development, which would allow the analysis of subsequent generations, 
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zebularine treatment was withdrawn. 7 days after the treatment was withdrawn 

epicotyl and lateral root growth reverted (Figure 2.2).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2. Zebularine treatment of tomato. Epicotyl (top) and root growth (bottom) are shown for tomato 

grown for 10 days on MS30 medium, MS30 medium with 80 M zebularine and MS30 medium with 80 

M zebularine, which was then withdrawn by transplanting tomato onto MS30 medium for 7 days. The 
growth conditions used are as described in Section 8.2.3.3 of Materials and Methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3. MspI and HpaII restriction enzyme digests of genomic DNA from zebularine treated tomato. 
The figure shows an ethidium bromide stained agarose gel of genomic DNA isolated from tomato grown 

on MS30 medium (left) and MS30 medium with 80 M zebularine (right) digested with restriction 
isoschizomers MspI and HpaII according to Sections 8.2.1.1 and 8.2.1.13 of Materials and Methods. 
MspI and HpaII recognise and cleave the sequence CCGG. HpaII will cleave the sequence when 
unmethylated and MspI will cleave the sequence when unmethylated and when the internal C is 

methylated (Waalwijk & Flavell, 1978). White and black boxes are used to highlight differences in the 
digestion pattern between zebularine treated and non-treated samples, respectively. 1kb (Bioline) was 
used as a DNA marker that was loaded on the far left and right of the gel, and the position of the 1kb 
band is indicated on the left of the image.  
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2.2.2. Zebularine induces somatic DNA methylation changes in tomato  

 

After confirming zebularine-induced hypomethylation in tomato it was necessary to 

determine if these changes were heritable. First, somatic heritability was analysed 

using methylation-sensitive amplified fragment length polymorphism (MS-AFLP) 

analysis. MS-AFLP is a standard AFLP analysis where adaptors are ligated to DNA 

digested with EcoRI (Vos et al, 1995) and either of the methylation-sensitive 

restriction isoschizomers MspI or HpaII. PCR amplification with adaptor specific 

primers yields a DNA fingerprint and differences between the fingerprint of controls 

and treated samples is evident of DNA methylation changes at both CG and CHG 

sequence types (Figure 2.4) (Paun et al, 2010; Portis et al, 2004).  
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Figure 2.4. Possible outcomes of a MS-AFLP analysis. The figure shows a schematic diagram of all the 
possible outcomes of a MS-AFLP analysis using the restriction enzymes EcoRI, MspI and HpaII. In the 

top panel DNA is represented by the horizontal thin black line with 5‟ and 3‟ labelled ends. Cleavage by 
restriction enzymes is indicated is by staggered arrows and methylation is represented by “5m”. 
Restriction enzyme cleavage products are provided below the DNA schematic. The bottom panel shows 
a schematic outcome of the restriction enzyme cleavage products in the top panel if they were analysed 
using a polyarcylamide gel stained with ethidium bromide after adaptor ligation and PCR amplification. 
Top panel, A. Methylation at both cytosines in a CCGG sequence prevents digestion by MspI and 
HpaII. As a consequence the next unmethylated CCGG site is cleaved. This creates a larger amplicon 
after adapter ligation and PCR amplification with adaptor specific primers (bottom panel, A). Top 
panel, B. Loss of methylation from the external cytosine in the sequence CCGG allows MspI digestion 
but not HpaII. EcoRI and MspI digests result in smaller amplicons after adaptor ligation and PCR 
amplification, while EcoRI and HpaII digests result in one larger amplicon (bottom panel, B). Top 
panel, C. Both MspI and HpaII cleave an unmethylated CCGG site, which results in smaller amplicons 
after adaptor ligation and PCR amplification (bottom panel, C). Modified from Portis et al, (2004). 
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For the MS-AFLP analysis genomic DNA was used in duplicate from three whole 

tomato seedlings grown for 17 days on MS30 medium, 17 days on MS30 medium 

with 80 M zebularine and 10 days on MS30 medium with 80 M zebularine, which 

was then withdrawn by transplanting tomato onto MS30 medium for 7 days. The 7 

day withdrawal period allowed the formation of the epicotyl to analyse somatic 

changes and only indisputable changes were selected for subsquence analysis.  

 

It is worth noticing the somatic change (Figure 2.5). An amplicon is visible when 

DNA from tomato grown on 80 M zebularine is analysed by the HpaII MS-AFLP. 

The signal presence and intensity are comparable when analysing DNA from tomato 

where treatment had been withdrawn. There is a weak detection of the target when 

analysing the DNA from tomato grown on MS30 medium using the MspI MS-AFLP, 

but the signal strength increases with treatment and when treatment is withdrawn. The 

occurrence of bands with treatment in the HpaII MS-AFLP and the increase in 

intensity of bands with treatment in the MspI MS-AFLP, which are maintained after 

treatment is withdrawn, is indicative of a somatically heritable DNA methylation 

change at both CG and CHG sequence types.  

 

Interestingly, very few regions responded to treatment. One locus, labelled unaffected 

(Figure 2.5), maintained internal methylation at a C
m

CGG site. This can be concluded 

when a signal is detected throughout the MspI MS-AFLP analysis, which is 

insensitive to internal C methylation, but not in the HpaII MS-AFLP analysis, which 

in sensitive to internal C methylation, and there is no change in signal presence or 

strength with treatment in either MS-AFLP analysis.   
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Figure 2.5. MS-AFLP screen to analyse somatic DNA methylation changes in zebularine treated tomato. 
The figure shows a MS-AFLP screen analysed using a polyacrylamide gel stained with ethidium 
bromide performed as described in Section 8.2.1.12 with primers from Section 8.1.4.5 of Materials and 
Methods. All samples were analysed in duplicate including, from left to right, a water only PCR negative 

control, DNA from tomato grown for 17 days on MS30 medium, 17 days on MS30 medium with 80 M 

zebularine and 10 days on MS30 medium with 80 M zebularine, which was then withdrawn by 
transplanting tomato onto MS30 medium for 7 days. The three DNA samples were analysed by a MS-
AFLP analysis using HpaII (left) and MspI (right). MspI and HpaII methylation sensitivities are as 

described in Figure 2.4. 1kb+ (Invitrogen) was used as a DNA marker with some sizes provided on the 
left of the figure. A somatic change is highlighted on the right (top). Methylation has been lost from both 
cytosines in the sequence CCGG with zebularine treatment, enabling both HpaII and MspI to cut the 

sequence, resulting in PCR amplification after adaptor ligation (zeb 80 M). The signal changes are 
detected using DNA from tomato where treatment was withdrawn for 7 days (zeb withdrawn). An 
unaffected locus is highlighted on the right (bottom). There is no change in signal detection with 

zebularine treatment (zeb 80 M).  

 

To test if the somatic DNA methylation changes caused by zebularine were 

genetically stable the analysis was extended into the next generation. DNA for both 

untreated and treated tomato was prepared again in parallel with the DNA from 

offspring of treated parental plants. The same regions responsive and unresponsive to 

treatment were identified (zeb 80 M, Figure 2.6). This indicates, for the highlighted 

loci, that the DNA methylation changes induced by zebularine that were identified in 

this study, are reproducible. The somatic change reverted in the offspring to that of 

untreated tomato grown on MS30 medium (mC reversion, offspring, Figure 2.6), 

suggesting that DNA methylation changes induced by zebularine at this locus are not 

stable across generations. The signal for the unaffected locus has been lost in the 
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offspring (unaffected*, offspring, Figure 2.6). This could be explained if the locus 

existed as an epi-allele in the parent plant, where only one allele is methylated at both 

cytosines and the other allele is methylated at the internal cytosine of the sequence 

CCGG. The offspring from this parent used in this analysis could inherit two fully 

methylated alleles preventing MspI digestion.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.6. MS-AFLP screen to analyse trans-generational DNA methylation changes in zebularine 
treated tomato. The figure shows a MS-AFLP screen performed as described in Figure 2.5, however, 
DNA isolated from offspring of zebularine treated parent plants was analysed to determine the trans-
generational stability of induced DNA methylation changes. The DNA methylation change that reverts in 
the offspring of treated parental plants is indicated on the right hand side of the image using the label 
“mC reversion”. The locus that is unaffected by zebularine treatment and escapes detection in the 
offspring is indicated on the right hand side of the image using the label “unaffected *”.  

 

2.2.3. Zebularine causes DNA methylation changes at rDNA 

  

In order to elucidate the target specificity of zebularine the DNA sequences of both 

affected and unaffected loci were isolated, sequenced and the sequencing results were 

aligned with the tomato genome. To ensure the correct amplicons had been isolated 

they were analysed using a polyacrylamide gel after isolation in parallel with the MS-

AFLP analysis. The region that twice lost DNA methylation with treatment was 

located within rDNA and the region which was twice unaffected by treatment was 

located within the jinling2 retroelement (Figure 2.7, Appendix 10.1). 
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A. 

 

 

 

 

 

 

 

 

 

 

 

 

B. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.7. Identifying the target specificity of zebularine. The figure shows sequencing reads from 
targets identified using the MS-AFLP analysis (Figures 2.5 and 2.6) aligned against the tomato genome. 
Alignments were carried out using the NCBI basic nucleotide blast search tool 
(http://blast.ncbi.nlm.nih.gov/Blast.cgi). The Query represents the DNA sequence of the target and the 
Subject (Sbjct) represents a region of the tomato genome with the highest homology to the Query. 
Nucleotide positions of the Query and Sbjct are provided on the left and right side of the DNA sequence. 
A. The somatic change is within rDNA. B.  The unaffected locus is within the jinling2 retroelement.   
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2.3. Discussion 

 

In this chapter, the use of zebularine as a tool to introduce trans-generational DNA 

methylation changes in tomato has been assessed. 

 

It was found that, at 80 M, zebularine causes transient inhibition of epicotyl and 

lateral root growth in tomato. This suggests that the effects of zebularine, which are 

responsible for these phenotypes are reversible. Recently, it has been shown that 20, 

40 and 80 M zebularine transiently inhibits growth of Arabidopsis (Baubec et al, 

2009) and 10 M inhibits root elongation in wheat. This was attributed to a reduced 

mitotic index found in the root tips of treated wheat when compared to control plants 

(Cho et al, 2011). Analysing the mitotic index in the affected tomato organs would not 

be possible due to their complete inhibition with treatment. The tomato 

DIAGEOTROPICA (DGT) gene encodes a cyclophilin protein and when mutated 

prevents the growth of lateral roots. It is believed to have a role in the auxin signalling 

pathway (Oh et al, 2006). There are multiple auxin-related Arabidopsis mutants that 

prevent the initiation and maturation of lateral roots.  They include alf1, alf3, alf4, 

(Celenza et al, 1995) aux1, axr1, axr4 (Hobbie & Estelle, 1995) and sur (Boerjan et 

al, 1995). In the future, analysing expression and DNA methylation changes at both 

the endogenous DGT gene and Arabidopsis auxin-related homologues could provide 

some insight into the actions of zebularine responsible for the lateral root phenotype 

in tomato. 

 

A viable seed set was obtained from tomato treated with zebularine that enabled the 

analysis to be extended into the next generation. Previous studies show that treating 

tomato fruit with azacytidine did not yield viable seeds, preventing trans-generational 

analysis (Zhong et al, 2013). Treating tomato fruit may be more damaging to seed 

production than the approach used in this study or 5-aza may have higher cytotoxic or 

demethylating capacities than zebularine in tomato. To analyse this, the approach 

used in this studied could be carried out with 5-aza instead of zebularine.     

 

In two independent repetitions it was shown that zebularine caused DNA methylation 

changes within rDNA but not within the jinling2 retroelement in tomato. This 
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indicates that cytosines at different loci differ in their sensitivity to zebularine and that 

rDNA appears to be particularly susceptible. In  Arabidopsis, zebularine causes global 

hypomethylation resulting in the activation of silent single copy genes such as FWA 

and transposable elements including CACTA and MULE (Baubec et al, 2009). DNA 

methylation changes at single copy genes and transposable elements were not found 

in this study. The possibility of such an event cannot be eliminated because the MS-

AFLP analysis relies on the use of selective primers, the requirement for the presence 

of a restriction enzyme site and multi-fragment amplification of templates. To identify 

all targets large scale bisulfite sequencing would be required. 

 

The detected DNA methylation changes introduced by zebularine were somatically 

heritable after treatment was withdrawn. When treatment is withdrawn from 

Arabidopsis DNA methylation changes are restored to wild-type levels within 8 

weeks (Baubec et al, 2009). Therefore, the somatic changes in tomato may require a 

longer period for restoration, which could be analysed if the experiment was repeated 

by sampling tissue long after the withdrawal from zebularine. Alternatively, DNA 

methylation changes in tomato may be more stable than in Arabidopsis. The reversion 

of somatic changes in tomato was found in the offspring of treated parental plants, 

indicating the potential for a resetting mechanism in the germline or during early 

embryogenesis. Evidence for epigenetic reprogramming during early embryogenesis 

in plants is also observed in maize studies, where the MATERNALLY EXPRESSED IN 

EMBRYO 1 (MEE1) maternal allele is demethylated on fertilisation and methylated 

later in embryogenesis (Jahnke & Scholten, 2009). 

 

It is important to note that the method used to screen for DNA methylation changes 

only screens a limited number of target regions. The MspI and HpaII MS-AFLP 

analysis can detect zebularine-induced changes at both CG and CHG sequence types 

but is unable to detect CHH methylation changes. The MS-AFLP approach was 

chosen not to identify all changes but to detect some changes that could be analysed 

for their transmission stability. To detect all DNA methylation changes would require 

large scale bisulfite sequencing.    

 

The evidence presented in this chapter supports the use of inhibitors as a tool to study 

DNA methylation in plants. No evidence was found that indicates DNA methylation 
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changes induced by zebularine are transmitted across generations but the approach 

does not allow the elimination of this theory. Alternative approaches with better 

prospects to generate and identify trans-generational epigenetic changes are required, 

which are discussed in subsequent chapters.    
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3.0. Inducing epigenetic variation in Arabidopsis by inactivating DNA 

METHYLTRANSFERASE 1 

 

3.1. Introduction 

 

Chemical interference with DNA methylation using the DNA methylation inhibitor 

zebularine was analysed in Chapter 2. Using this strategy it was not possible to detect 

trans-generational DNA methylation changes. An alternative strategy to induce 

detectable heritable DNA methylation changes is to exploit Arabidopsis DNA 

methyltransferase mutants. 

 

DNA methyltransferases are required to catalyse methyl-group transfer from S-

adenosyl methionine to the carbon 5 of cytosine within DNA. In plants, this occurs at 

three sequence types including CG, CHG and CHH (where H is A, T or G). In 

Arabidopsis, DNA methyltransferases function in two DNA methylation systems. 

One system is de novo methylation, which is required for the establishment of DNA 

methylation at all three sequence types. De novo methylation is achieved by an RNA 

directed DNA methylation (RdDM) pathway. In this pathway 24-nucleotide (24-nt) 

small interfering RNAs (siRNAs) align with homologous regions of the genome to 

recruit DOMAINS RE-ARRANGED METHYLTRANSFERASE 2 (DRM2) (Law & 

Jacobsen, 2010). De novo methylation at CHH sites can also occur independently of 

RdDM and requires CHROMOMETHYLTRANSFERASE 2 (CMT2) (Zemach et al, 

2013). It has been hypothesised that targeting of CMT2 occurs through its ability to 

bind di-methylation at lysine 9 on histone 3 (H3K9me2) via its chromo-domain 

(Pikaard, 2013). The second system in Arabidopsis is maintenance methylation, 

which is required to preserve DNA methylation after every cellular DNA replication 

cycle (Goll & Bestor, 2005). METHYLTRANSFERASE 1 (MET1) recognises hemi-

methylated DNA in the daughter cells to maintain methylation at CG sites (Goll & 

Bestor, 2005). CHROMOMETHYLTRANSFERASE 3 (CMT3) recognises H3K9 

methylation to maintain DNA methylation at CHG sequences (Lindroth et al, 2004). 

Methylation at CHH sites is maintained by constant de novo activity of DRM2 (Law 

& Jacobsen, 2010).  
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Despite the characterisation of DNA methylation targeting and maintenance systems 

in Arabidopsis, it is still unclear why there is a large variation in DNA methylation 

profiles among wild-type accessions. This variation was apparent when the 

methylation status of 18 genomic loci was analysed among 96 Arabidopsis accessions 

and only one locus, FWA remained uniformly methylated (Vaughn et al, 2007). It has 

been suggested that such epigenetic variation could arise from genetic polymorphisms 

of cytosine residues (Vaughn et al, 2007). This does not, however, explain differences 

in DNA methylation among accessions at genetically identical sequences. It is unclear 

if epigenetic variation is controlled in cis or if trans-acting factors exists among 

Arabidopsis accessions, which contribute to the variation in epialleles.   

 

To analyse if epigenetic modifier mutants can be used to introduce detectable 

heritable DNA methylation changes, the Arabidopsis met1 mutant met1-1 (Kankel et 

al, 2003) was analysed after restoring MET1 wild-type alleles. The met1-1 mutant 

contains a C to T missense mutation, which replaces a proline with a serine within the 

MET1 catalytic domain at position 1300 (Kankel et al, 2003). met1-1 is not a null 

mutant, unlike the Arabidopsis met1-3 mutant that contains a Transfer-DNA (T-DNA) 

insertion, which disrupts the catalytic domain (Saze et al, 2003). The Arabidopsis 

met1-1 mutant was selected because MET1 is responsible for maintaining methylation 

at CG di-nucleotides (Finnegan et al, 1996), and null activity of met1-3 would likely 

prevent the analysis of DNA methylation quantity on gene expression. The analysis 

identified a novel epigenetically regulated target gene coding for a ncRNA. The 

characterisation of this gene highlighted the natural epigenetic variation between 

Arabidopsis accessions. Therefore, the ncRNA locus became an ideal target to analyse 

if trans-acting factors contributed to epigenetic variation between Arabidopsis 

accessions.  
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3.2. Results 

 

3.2.1. Analysing novel epigenetically regulated target genes in an Arabidopsis 

met1 mutant 

 

To analyse if heritable DNA methylation changes were induced by inactivating 

MET1, it was first necessary to identify novel epigenetically regulated target genes. 

To identify such targets the epigenome browser 

(http://neomorph.salk.edu/epigenome/epigenome.html) was screened for loci that 

atypically change their expression or DNA methylation patterns in the met1 mutant. 

Atypical changes, for example, would include down-regulated or up-regulated genes 

without direct DNA methylation changes or reduced DNA methylation at non-CG 

sequence types.  Of ten targets identified, expression changes were confirmed for five 

by semi-quantitative RT-PCR (sqRT-PCR), including AT4G15242, AT5G15360, 

AT4G10850, AT1G19070 and AT2G41380 (Figure 3.1, Appendix 10.2). Two MET1-

regulated targets, previously characterised in the literature, AT4G25530 (FWA) (Saze 

et al, 2003) and AT2G12210 (CACTA) (Kato et al, 2003) were included as controls. 

Changes in expression of two novel target genes, AT4G15242 and AT5G15360 

correlated with a direct loss in DNA methylation (Figure 3.1A). Interestingly, changes 

in gene expression also occurred without a direct change in DNA methylation and 

these changes included both an increase in expression of AT4G10850 and a decrease 

in expression of AT1G19070 and AT2G41380 (Figures 3.1 B and C). It should be 

noticed that down-regulation of AT1G19070 contridicts the epigenome browser result 

that indicates up-regulation of AT1G19070 in met1-3 (Appendix 10.2). 

 

Changes in target gene expression without direct changes in DNA methylation may be 

a result of indirect effects of met1 inactivation. Indirect changes in target gene 

expression could for example occur by transcriptional interference if local over-

lapping or antisense genes were activated in the met1 mutant (Shearwin et al, 2005). 

Local over-lapping and antisense genes were identified for each target gene using the 

epigenome browser (http://neomorph.salk.edu/epigenome/epigenome.html), and were 

subsequently analysed for expression changes by sqRT-PCR in the met1 mutant. No 

changes in local over-lapping or antisense gene expression could be detected for any 

target with an indirect change.   
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Surprisingly, for some targets the epigenome browser 

(http://neomorph.salk.edu/epigenome/epigenome.html) indicated a direct loss in DNA 

methylation at all three sequence types, despite MET1 being the classical CG 

maintenance methyltransferase (Figure 3.1A). These changes were confirmed by 

analysing the methylation patterns within the promoter and transcribed region of 

AT4G15242, which codes for a ncRNA with an unknown function 

(http://www.arabidopsis.org/) (Figure 3.2 A and B). Methylation patterns were 

analysed using bisulfite sequencing. In this technique DNA is treated with sodium 

bisulfite, which deaminates only unmethylated cytosines to uracil. Uracil base pairs 

with thymine when a target locus is amplified by PCR from bisulfite treated DNA. 

Individual clones are sequenced to determine a single-nucleotide methylation profile.   
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A.  

Gene ID Expression mC types present in WT mC types lost in met1 

AT1G07940 

(EF)  
None  None 

AT4G25530 

(FWA)  
CG, CHG, CHH CG, CHG, CHH 

AT2G12210 

(CACTA)   
CG, CHG, CHH CG 

AT4G15242  

(ncRNA locus)  
CG, CHG, CHH CG, CHG, CHH 

AT5G15360 

(unkown)  
CG, CHH CG, CHH 

 

B. 
 

Gene ID Expression 

AT4G10850 

(Nodulin MtN3 

protein)  

 

C. 
 

Gene ID Expression 

AT1G19070 

(F-Box protein) 
 

AT2G41380 

(Protein 

methyltransferase)  

 

 
Figure 3.1. Novel target gene expression changes in an Arabidopsis met1 mutant. The figure shows 
target gene expression and DNA methylation changes in a met1 mutant. Target gene ID and name is 

provided in the left hand column of each table. The column second from the left shows a sqRT-PCR 
analysis using RNA from 2 week old seedlings and an ethidium bromide stained agarose gel for the 
respective gene in wild-type (WT) and met1. AT1G07940 (ELONGATION FACTOR 1a, EF), which 
contains no methylation in wild-type or met1 was used as an internal control for expression levels. FWA 
and CACTA were used as controls to mark met1 induced gene expression changes. The sequences of 
the primers used for the sqRT-PCR analysis are provided in Section 8.1.4.2 of the Materials and 
Methods. If DNA methylation is present within WT at the target locus then the methylation types are 
provided in the third column from the left and colour coded. If DNA methylation is lost in met1 from the 
target locus then the methylation types lost are provided in the final column on the right. A. Target genes 
with an increase in expression and direct changes in DNA methylation in the Arabidopsis met1 mutant. 
B. Target genes with an increase in expression and no direct DNA methylation changes in the 
Arabidopsis met1 mutant. C. Target genes with a reduction in expression and no direct DNA methylation 

changes in the Arabidopsis met1 mutant.  
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A. 
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Figure 3.2. DNA methylation levels at the ncRNA locus in the Arabidopsis Columbia wild-type and met1 
mutant. A. The figure shows the percentage of methylation at individual cytosines determine by bisulfite 

sequencing ten clones for five overlapping regions of the ncRNA promoter (up to nucleotide position -
129) and transcribed region (+1 to +1170) in Arabidopsis Columbia wild-type (top) and met1 mutant 
(bottom). A percentage scale is on the Y-axis and nucleotide positions are provided below the profile. 
The sequences of the primers used for PCR amplification from bisulfite converted DNA isolated from 2 
week old seedlings, and the softwares for compiling bisulfite sequence reads are provided in Sections 
8.1.4.3 and 8.2.1.11 of Materials and Methods, respectively. Due to the low levels of CHH methylation 
deamination of cytosines in a CHH sequence context was used as an indicator for sodium bisulfite 
conversion and DNA methylation types are colour coded according to the key in the top right. B. The 

figure shows total DNA methylation levels for each methylation type within the ncRNA locus in 
Arabidopsis Columbia wild-type (Col) and met1. Total methylation (%mC) and the methylation sequence 
types are indicated in the left hand column. The columns second and third from the left provide the total 
methylation levels for each sequence type in Arabidopsis Columbia wild-type (Col) and met1, 

respectively. The final column on the right shows the percentage of DNA methylation reduction at each 
sequence type caused by the met1 mutation.  

 

 

 

 

AT4G15242 DNA methylation levels  

 
Col  met1  % reduction  

% mC  35.8 10.4 70.9 %  

% mCG  93.1 26.1  71.9 %  

% mCHG  66.0 26.4 60.0 %  

% mCHH  15.5 3.4  78.1 %  
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3.2.2. Analysing trans-generational epigenetic changes induced by inactivating 

MET1 

 

The induction of heritable epigenetic changes could be a source of phenotypic 

variation. To test if the epigenetic changes induced by inactivating MET1 were 

heritable, it was necessary to restore the wild-type alleles in the met1 mutant. The 

wild-type alleles were restored with the help of Dr Elena Zubko and Dr Andrea 

Kunova, P. Meyer lab, at the University of Leeds. The met1 mutant was crossed with 

a wild-type plant to produce a heterozygous line. This heterozygous line was self 

fertilised to produce a segregating seed population. From this segregating seed 

population lines with the MET1 wild-type alleles were selected and self fertilised 

(Figure 3.3). Tracking the alleles was possible because the met1 mutant allele has a 

deletion within a HaeIII restriction enzyme site.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3. A diagram to illustrate how the MET1 wild-type alleles were restored in the met1 mutant. The 
figure shows a schematic diagram of crosses between wild-type and met1 and subsequent self 

pollinations of the resulting hybrids. Crosses and genotyping were carried out as described in Section 
8.1.1 of Materials and Methods. Red and green labels indicate the met1 mutant and MET1 wild-type 
alleles, respectively. The generation is provided on the left of the figure. Beginning from the top of the 
figure, an Arabidopsis F0 met1 mutant and a wild-type line were crossed to produce an F1 

heterozygote. The F1 heterozygote was self fertilised to generate a segregating F2 population. 
Arabidopsis lines with restored wild-type alleles (MET1.Rest) were selected and self fertilised to produce 
an F3 seed population.  

 

After restoring the MET1 wild-type alleles in the met1 mutant, the MET1-regulated 

targets with direct changes in DNA methylation and expression (Figure 3.1A) were 

analysed for their stability across generations. This was achieved by analysing target 

gene expression in two F1 met1/MET1 heterozygote lines and two F3 MET1/MET1 

restored lines. As a control for restored MET1 activity AT4G25530 was analysed, 

which encodes the homeo-domain containing transcription factor FWA that controls 

flowering (Koornneef et al, 1991). Two F1 met1/MET1 heterozygous lines were 

analysed for FWA expression and in both FWA expression are reset and no longer 

detected (Figure 3.4A). In contrast, the ncRNA locus was stable in its expression up to 

the F3 generation with the MET1 wild-type alleles restored (Figure 3.4B). This data 

suggests that some met1 induced expression changes are stably inherited over 
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multiple generations, whereas others are reset upon restoration of one wild-type allele. 

Although not applicable to the example shown in Figure 3.4, it is important to 

acknowledge that in the F2 generation and subsequent generations with the MET1 

wild-type alleles restored, there is no control over the origin of the target alleles. If 

expression of the target locus was not detected in the F2 generation or subsequent 

generations, it would not be possible to determine if this was due to the inheritance of 

the wild-type alleles or epigenetic resetting using an expression analysis.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Analysing trans-generational stability of met1 induced expression changes. The figure shows 
a sqRT-PCR analysis performed as described in Figure 3.1. Water only was used as a negative PCR 
control (-ve) and ELONGATION FACTOR (EF) gene expression was used as an internal control to 
compare target gene expression levels. A. FWA expression in wild-type, met1 and two F1 met1/MET1 
heterozygous lines (F1 met1/MET1 1 and 2) where one MET1 wild-type allele has been restored. B. 
ncRNA locus expression in wild-type, met1 and two F3 MET1/MET1 lines (F3 MET1.Rest A and B) 
where the MET1 wild-type alleles have been restored.  

 

3.2.3. Characterising epigenetic regulation of the ncRNA locus 

 

The reduction in DNA methylation at CHG and CHH sequence types in addition to 

CG in the met1 mutant questioned the involvement of the CHG- and CHH-specific 

methyltransferases, CMT3 and DRM2 in the regulation of the ncRNA locus. To 

analyse if DRM2 or CMT3 influenced the expression of the ncRNA locus, its 

expression was analysed in the drm2 single and drm1,drm2,cmt3 (ddc) triple mutants.  
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The expression of the ncRNA locus was not detected in the drm2 single mutant 

(Figure 3.5A). While this suggests that inactivating DRM2 is not sufficient to activate 

the ncRNA locus, it does not eliminate the possibility that DNA methylation and 

silencing are still maintained by MET1 after DRM2 loss. This has been reported for 

some targets including FWA, where DRM2 is required for de novo but not 

maintenance of gene silencing (Cao & Jacobsen, 2002b).  

 

The ddc triple mutant is a hybrid of Arabidopsis Landsberg erecta (Ler) and 

Wassilewskija (Ws) backgrounds. Therefore, Arabidopsis Ler and Ws wild-type 

accessions were analysed for the expression of the ncRNA locus in parallel with the 

ddc mutant. The expression of the ncRNA locus was not detected in Arabidopsis Ler. 

Interestingly, the ncRNA locus was active in Arabidopsis Wassilewskija wild-type 

(Figure 3.5B). Therefore, no conclusions could be drawn with regards to the 

regulation of the ncRNA locus by CMT3 specific CHG methylation because the ddc 

mutant included a Ws background.    

 

DEFICIENT IN DNA METHYLATION 1 (DDM1) is a member of the SW12/SNF2 

family of proteins and is required for MET1 activity (Brzeski & Jerzmanowski, 2003). 

To analyse if the expression status of the ncRNA locus required DDM1, its expression 

was analysed in a ddm1 mutant. The ncRNA locus was active in the ddm1 mutant 

(Figure 3.5C). 
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Figure 3.5. Characterising epigenetic regulation of the ncRNA locus. The figure shows a sqRT-PCR 
analysis performed as described in Figure 3.1. Labelling on the top indicates the respective wild-type or 
mutant. Labelling on the left indicates the respective gene analysed for expression. Water only was 
used as a negative PCR control (-ve) and ELONGATION FACTOR (EF) gene expression was used as 
an internal control to compare target gene expression levels. A. Expression of the ncRNA locus in the 
de novo methyltransferase mutant drm2 and met1. B. Expression of the ncRNA locus in Arabidopsis 
Landsberg Erecta (Ler), Arabidopsis Wassilewskija (Ws) and the drm1/drm2/cmt3 (ddc) triple mutant. C. 
Expression of the ncRNA locus in Arabidopsis Columbia (Col), ddm1, and met1 mutants.  

 

3.2.4. Analysing DNA methylation and expression levels of the ncRNA locus in 

Arabidopsis Columbia and Wassilewskija wild-type accessions 

 

The difference in expression of the ncRNA locus between Arabidopsis Columbia and 

Wassilewskija highlighted the potential for natural epigenetic variation between the 

accessions. This offered an opportunity to test the link between expression and DNA 

methylation, and the involvement of cis and trans-acting factors in DNA methylation 

variants. To analyse if the expression differences of the ncRNA locus between the two 

accessions were due to different DNA methylation profiles, the promoter and 

transcribed region of the ncRNA locus were analysed in the two accessions by 

bisulfite sequencing (Figure 3.6). This involved sequencing ten clones for seven 

overlapping regions from each accession. In Arabidopsis Columbia (Col), where 

expression of the ncRNA locus is not detected, DNA methylation begins at the 5‟ 
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region of the promoter (top, Figure 3.6A) and persists throughout the transcribed 

region (top, Figure 3.6B). However, in Arabidopsis Wassilewskija (Ws), DNA 

methylation was found at the 5‟ promoter region, but it ceased at position -107 

(bottom, Figure 3.6 A and B). This indicates that both epialleles show a similar 

methylation profile in the upstream promoter region between positions -748 to -129 

(Figure 3.6), while in Ws methylation is almost completely eliminated -107nt 

upstream of the transcription start site and within the transcribed region (Figure 3.6).  
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Figure 3.6. The DNA methylation profile of the ncRNA locus in Arabidopsis Wassilewskija and 
Columbia. The figure shows the percentage of methylation at individual cytosines within the promoter 
(A) and transcribed region (B) of the ncRNA locus in Arabidopsis Columbia (Col) (top) and 
Wassilewskija (Ws) (bottom). DNA methylation was analysed by bisulfite sequencing as described in 

Figure 3.2. A percentage scale is on the Y-axis and nucleotide positions are provided below each 
profile. DNA methylation types are colour coded according to the key in the top right. 

 

3.2.5. Quantifying expression levels of the ncRNA locus in Arabidopsis Columbia, 

Wassilewskija and in the met1 mutant 

 

The differences in DNA methylation and expression levels among Arabidopsis Col, 

met1 and Ws highlighted a possible link between the level of DNA methylation and 

the level of expression of the ncRNA locus. To analyse this, the expression levels of 

the ncRNA locus were determine by quantitative Real Time-PCR (qRT-PCR). 

Interestingly, the low, moderate and high methylation levels found in Arabidopsis Ws, 

met1 and Col (Figure s 3.2a and 3.6) correlated with highest, moderate and absent 

expression levels of the ncRNA locus, respectively (Figure 3.7).       
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Figure 3.7. Quantitative expression analysis of the ncRNA locus in Arabidopsis Wassilewskija, met1 and 
Columbia. The figure shows a qRT-PCR analysis performed as described in Section 8.2.2.3 of Materials 

and Methods using RNA from 2 week old seedlings and primers described in Section 8.1.4.2. The X-
axis indicates the respective wild types and mutant, including Arabidopsis Wassilewskija (Ws), met1 and 
Columbia (Col). The Y-axis indicates fold expression levels of the ncRNA locus normalised to 
ELONGATION FACTOR gene expression.  

 

3.2.6. Exploiting the accession specific epigenetic variation of the ncRNA locus to 

analyse epiallele stability    

 

The differences in DNA methylation and expression profiles of the ncRNA locus 

between Arabidopsis Col and Ws allowed the locus to be used to study epiallele 

stability between the two accessions. To analyse epiallele stability Arabidopsis Ws 

and Col were crossed to produce a Ws/Col F1 hybrid. The resulting hybrid was self-

fertilised to produce a segregating F2 population (Figure 3.8A). The ncRNA alleles 

were followed using a Col specific polymorphism upstream of the transcribed region 

(Figure 3.8B), which was identified using a polymorphism search tool 

(http://www.arabidopsis.org/). Individual F2 lines that contained the three possible 

combinations of ncRNA alleles were selected from the segregating population and the 

DNA methylation and expression levels of the ncRNA locus were determined (Figure 

3.9 A and B). Region -129 to +1 (Figure 3.6A) where there is a sharp transition 

between methylated and un-methylated cytosines in Arabidopsis Ws, was used as a 

target region to analyse DNA methylation levels in the F2 lines (Figure 3.9A). The 

methylation levels in the F2 lines are almost an exact replica of the methylation levels 

in their respective parent. In addition, expression of the ncRNA locus was dependent 

on the parent of origin alleles. For example, the F2 line with two Ws ncRNA alleles 

has the highest ncRNA locus expression levels. However, expression of the ncRNA 
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locus could not be detected in the F2 line with two Col ncRNA alleles. The F2 line 

with Col and Ws ncRNA alleles showed intermediate expression levels (Figure 3.9B). 

This suggests that the Col and Ws ncRNA epialleles are stable when transmitted 

through a Col/Ws hybrid. 
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Figure 3.8. Generating an Arabidopsis Col/Ws segregating population to analyse the stability of the 
ncRNA epialleles between the accessions. A. The figure shows a schematic diagram of crosses 

between Arabidopsis Wassilewskija (Ws) and Columbia (Col) and subsequent self pollinations of the 
resulting hybrids. Crosses were carried out according to Section 8.1.1 of the Materials and Methods. 
Generations are shown on the left and Ws and Col derived alleles are shown in red and green, 
respectively. Beginning from the top, F0 wild-types were crossed to generate a Ws/Col F1 hybrid. The 
hybrid was self fertilised to produce a segregating F2 population. B. The figure shows a screenshot 
highlighting a Col specific polymorphism located upstream of the ncRNA locus identified using a 
polymorphism search tool (http://www.arabidopsis.org/). The top red box highlights the name and type of 
the polymorphism and the lower red box highlights the base (T) specific to the Col accession.  
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Figure 3.9. Analysing Arabidopsis accession specific epiallele stability. A. The figure shows DNA 
methylation levels at individual cytosines at a target region (-129 to +1) within the ncRNA promoter in 
Arabidopsis Col, Ws and Col/Ws F2 segregating lines. DNA methylation levels were analysed as 
described in Figure 3.2 using DNA from basal rosette leaves. The respective polymorphism for each 
accession and hybrid is provided on the left. A percentage scale is on the Y-axis of each graph and 
methylation types are colour coded according to the key. B. The figure shows a qRT-PCR analysis to 

determine expression levels of the ncRNA locus in Col/Ws F2 segregating lines, performed as described 
in Figure 3.7 using RNA from one basal rosette leaf. Expression levels on the Y-axis, which were 
normalised against ELONGATION FACTOR gene expression, are shown in comparison to expression 
in Ws F2. The respective polymorphism for each line is provided below the X-axis. 
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3.2.7. Analysing the activity of the ncRNA promoter using a reporter gene  

 

The absence of DNA methylation within the transcribed region of the ncRNA locus in 

Ws highlights the possibility that methylation marks within the transcribed region 

could contribute to expression. To analyse if the transcribed region is required for 

expression of the ncRNA locus, the ncRNA promoter was fused with a reporter gene 

( GLUCURONIDASE, GUS) and transferred into Arabidopsis Col (Figure 3.10). 

Transferring the reporter gene construct into a met1 homzygous mutant was attempted 

via floral dip but was not possible, most likey due to the reduced fertilitfy of the 

mutant. GUS expression could not be detected in Col reporter gene lines using the 

histochemical assay. One reason for the inability to detect GUS expression using the 

histochemical assay could be a weak activity of the ncRNA promoter, which made it 

necessary to use a more sensitive sqRT-PCR analysis to detect GUS expression. 

cDNA from a Col reporter gene line and met1 were analysed for both GUS and 

ncRNA locus expression to compare the promoter activity of the ncRNA locus with 

and without its transcribed region. Expression of the ncRNA locus was detected at 30 

cycles in met1 and GUS expression was detected at 39 cycles in the reporter gene line 

(Figure 3.11). While differences in transcript stability, primer pair efficiencies and the 

mutant background could all contribute to the different expression levels between 

GUS in Col and the ncRNA locus in met1, a drastic difference of 9 cycles is an 

indication that the transgenic promoter in Col may be weaker than the endogenous 

promoter in met1 (Figure 3.7). To determine if the weaker expression of the reporter 

gene was due to DNA methylation, the methylation profiles of the 107 bp promoter 

regions were analysed by bisulfite sequencing ten clones from met1 and the reporter 

gene line. It was evident that methylation levels were lower at the transgene promoter 

than that of the endogenous promoter in met1 (Figure 3.11). These data indicate that 

the transgenic ncRNA promoter itself may be weaker than the endogenous promoter in 

met1 supporting a model that predicts a role of the transcribed region in ncRNA locus 

expression. 
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Figure 3.10. A map of the reporter gene construct transferred into Arabidopsis to analyse ncRNA 
promoter activity. The ncRNA promoter (-1069 to -1) was amplified and inserted into the polylinker 
region of the pGreen 0029 GUS vector as described in Sections 8.1.4.6 and 8.2.1.7.7 of Materials and 
Methods. Right boarder (RB) and left boarder (LB) mark the T-DNA boundaries. NPTI and NPTII mark 
the bacterial and plant NEOMYCIN PHOSPHOTRANSFERASE genes, respectively, which confer 
resistance to kanamycin. NOS is the terminator region from the NOPALINE SYNTHASE gene. Red 
arrows indicate gene orientation with the arrow head corresponding the to 3‟ end of the respective gene. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. DNA methylation levels and activity of the transgenic ncRNA promoter in Arabidopsis Col 
and the endogenous ncRNA promoter in met1. The methylation profiles of the transgenic and 
endogenous ncRNA promoter between positions -129 and +1 are shown on the left for Col and met1, 
respectively. Methylation levels at individual cytosines were analysed as described in Figure 3.2. A 
sqRT-PCR analysis, preformed as described in Figure 3.1, is shown on the right. Samples are labelled 
on the top and, from left to right, include a water only control (-ve), met1 mutant and Arabidopsis Col 
transformed with the ncRNA reporter gene construct. Targets genes and the PCR cycle numbers are 
provided on the right. ELONGATION FACTOR (EF) gene expression was used as an internal control to 

compare target gene expression levels.    
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3.3. Discussion 

 

In this chapter, the Arabidopsis met1 mutant has been exploited to introduce heritable 

epigenetic variation. The effect of the met1 mutation was analysed by identifying 

epigenetic changes induced in met1 and following their stability when MET1 function 

was restored. Heritable gene expression changes induced in met1 were detected for 

AT4G15242, which codes for a ncRNA (Figure 3.4). In contrast, for AT4G25530, 

which codes for the FWA transcription factor (Koornneef et al, 1991), the met1 

induced gene expression changes were reset when one wild-type MET1 allele was 

restored (Figure 3.4). Interestingly, previous studies using the same method but with a 

ddm1 mutant to initiate DNA methylation changes, found that the FWA gene 

remained active upon restoration of the wild-type alleles (Kinoshita et al, 2007). The 

reason for these differences in FWA epiallele stability when demethylation is induced 

by the different epigenetic modifier mutants is unknown. The possibility that pre-

existing DNA methylation enhances silencing has been shown for FWA (Chan et al, 

2006). Therefore, these differences may arise if demethylation induced by inactivating 

DDM1 is more efficient at this locus than in met1, which could be possible, because 

DDM1 is involved in facilitating both MET1-regulated CG methylation (Soppe et al, 

2002) and CMT2 regulated CHH methylation (Zemach et al, 2013) at some loci. The 

speculation that pre-existing DNA methylation facilitates the reseting of FWA 

expression observed in this study is also appealing considering met1-1 is not a null 

(Kankel et al, 2003).  

 

Heritable DNA demethylation at the FWA promoter induced in met1 has previously 

been reported, using a CfoI methylation-sensitive Southern blot analysis (Kankel et al, 

2003). Heritable DNA methylation changes at the FWA promoter would not support 

the resetting of FWA expression when MET1 is restored. It is, however, important to 

consider that only four CfoI sites exist within the FWA promoter and using CfoI for 

methylation-sensitive Southern blot analysis would only define methylation at four 

cytosines in a CG sequence context (Kankel et al, 2003). This highlights the 

importance of analysing target gene expression in addition to DNA methylation when 

defining epialleles, and a thorough analysis of locus-specific methylation profiles by 

bisulfite sequencing. 
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The stable expression of the ncRNA locus and the resetting of FWA expression in 

MET1 restored lines, indicates that met1 induced changes are reset at some loci, while 

at others they are not. A possible explanation for this variation in stability could be 

that some loci are under strict epigenetic control, such as loci that are associated with 

24-nt siRNAs that would target de novo DNA methylation. De novo methylation can 

then only be effectively maintained by the presence of a functional MET1 protein. 

Such epigenetic control has been observed for some transposable elements (TEs) 

(Teixeira et al, 2009). TEs are repetitive and therefore their transcripts are capable of 

forming double-stranded RNA. Double-stranded RNA is cleaved by a DICER enzyme 

complex into 24-nt siRNAs, which function in RdDM to establish DNA methylation 

at homologues regions of the genome by DRM2 (Teixeira et al, 2009). Interestingly, 

FWA contains two direct repeats within its 5‟ coding region, which have been shown 

to be a target for RdDM when the FWA locus is introduced into wild-type as a 

transgene (Chan et al, 2006) and the FWA locus remains unmethylated and expressed 

when introduced into a drm2 mutant (Chan et al, 2006). Direct repeats and DRM2 

silencing are features lacked by the ncRNA locus. These observations indicate that 

FWA has distinct features required for RdDM, which the ncRNA locus lacks. 

Therefore, the possibility that DNA methylation targeting systems are contributing 

factors in target gene resetting becomes an appealing speculation. 

 

An interesting aspect with regard to the DNA methylation changes induced at the 

ncRNA locus by inactivating MET1, were the stable changes to DNA methylation at 

CHG and CHH sequence types. Changes in CHG and CHH methylation were 

interesting as MET1, CMT3 and DRM2 are the classical CG, CHG and CHH 

methyltransferases, respectively (Cokus et al, 2008). While some redundancy in 

function has been observed between DRM2 and CMT3 (Cao & Jacobsen, 2002a), the 

evidence in this chapter would indicate that MET1 also contributes to DNA 

methylation at some CHG and CHH sequences in wild-type. While it is still not 

known whether these effects of MET1 on CHG and CHH methylation are direct or 

indirect, the same has been observed for the REPETITIVE PETUNIA SEQUENCE 

(RPS) element. The RPS element attracts DNA methylation when introduced into 

wild-type Arabidopsis but loses DNA methylation at all three sequence types when 

transferred into met1 by a genetic cross (Singh et al, 2008). Singh et al, (2008) 

proposes that these effects are likely indirect, as MET1 binding may be required to 
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recruit CMT3 or DRM2 guiding factors (Singh et al, 2008). It has also recently 

emerged that MET1 can de novo methylate the body of some genes (Zubko et al, 

2012), which provides another discrepancy from the classical model for MET1 as a 

CG-specific maintenance methyltransferase. These results emphasise the complexity 

of epigenetic mechanisms, stress the importance of not over-simplifying scientific 

concepts and prompts a re-assessment of functions and target specificity of plant 

DNA methyltransferases. 

 

In addition to direct DNA methylation changes and an increase in expression of target 

genes, some target genes altered their expression in the met1 mutant with no direct 

changes in DNA methylation. These indirect changes included an increase in 

expression for AT4G10850, which encodes a Nodulin MtN3 family protein and a 

reduction in expression for AT1G19070 and AT2G41380, which encode an F-box 

family protein and an S-adenosyl methionine dependent methyltransferase, 

respectively. It is unlikely that transcriptional competition from local over-lapping or 

antisense genes results in the indirect changes in gene expression of AT4G10850, 

AT1G19070 and AT2G41380 as antisense genes were inactive in met1. At this stage, 

changes in expression of AT4G10850, AT1G19070 and AT2G41380 in met1 are 

caused by unknown indirect effects. The fact that AT2G41380 encodes a protein 

methyltransferase, which requires the same substrate as MET1, S-adenosyl 

methionine, led to the speculation about a substrate-specific feedback loop between 

these methyltransferase proteins. AT2G41380 would be an ideal target to analyse 

when MET1 is over-expressed, as more MET1 could result in reduced SAM levels. 

AT2G41380 would have to compete more strongly for SAM and may be up-regulated 

to meet this competition. 

 

The stability of the ncRNA locus and its epigenetic variation between Arabidopsis Col 

and Ws accessions was demonstrated when characterising its epigenetic regulation. 

While the ncRNA locus is silent in Arabidopsis Ler and Col, which requires DDM1 

and MET1 but not DRM2, it is expressed in Arabidopsis Ws wild-type. The reasons 

for epigenetic variation between Arabidopsis accessions are unknown. Speculative 

models that could explain epigenetic variation include genetic variation, trans-acting 

factors and environmental signals (Fujimoto et al, 2012). The DNA sequence of the 

ncRNA upstream region, transcribed region and downstream region are identical 
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between Col and Ws. Additionally, if there were sequence-specific differences 

influencing expression of the ncRNA locus it would not be possible to activate a silent 

Col allele in met1. It is therefore unlikely that genetic variation is responsible for the 

difference in ncRNA locus expression between the accessions. It is also unlikely that 

trans-acting factors are responsible because of the surprising stability of DNA 

methylation and expression profiles observed in the F2 offspring of a Col/Ws hybrid 

parent. However, at this stage, the involvement of environmental factors in ncRNA 

accession specific epigenetic variation is unknown and cannot be eliminated. The 

default state of the ncRNA locus is also not clear but Ws was the only accession with 

an active ncRNA allele, which would argue that the default state is inactive. 

 

A comparison of DNA methylation profiles between the active Ws allele and the 

silent Col allele of the ncRNA locus identified differences in the 3‟ end of the 

promoter and in the transcribed region. Both epialleles show a similar methylation 

profile in the upstream promoter region (-748 to -129), while in Ws methylation is 

almost completely eliminated -107nt upstream of the transcription start site and within 

the transcribed region. This small 107nt hypomethylated region within the ncRNA 

promoter of Ws raises questions with regards to the relevance of the transcribed 

region itself and methylation marks within the transcribed region for expression of the 

ncRNA locus. These questions are encouraged by weak expression of a reporter gene 

under the control of the ncRNA promoter. Evidence that DNA methylation inhibits 

transcriptional elongation but not initiation has been observed in Neurospora crassa 

(Rountree & Selker, 1997). This could be a model that applies to the ncRNA locus if 

the methylation within the transcribed region has a role in expression. Enhancer 

elements have been found within the transcribed region of some genes, including 

ELONGATION FACTOR 1  (Gidekel et al, 1996) and AGAMOUS (Sieburth & 

Meyerowitz, 1997) in Arabidopsis. The presence of an enhancer element in the 

transcribed region of the ncRNA locus could explain its silent state in Col if the 

methylation prevented access of regulatory proteins to the enhancer element.   

 

To analyse the role of the ncRNA transcribed region in expression of the ncRNA locus 

would require the transfer of the ncRNA locus into Arabidopsis. The expression level 

of the transgene when free of DNA methylation could be compared to the endogenous 
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gene in Ws and met1. This would provide some insight into the role of the ncRNA 

transcribed region in its own expression or whether there could be regulatory DNA 

elements further upstream of the endogenous gene. To analyse the role of methylation 

marks within the transcribed region in ncRNA locus expression would require 

targeting of DNA methylation to the transcribed region of the transgenic ncRNA locus 

and subsequent expression analysis. Targeting of DNA methylation could be achieved 

using an inverted repeat to generate 24-nt siRNAs homolgous to the ncRNA 

transcribed region. Silent lines could be crossed with the met1 mutant to analyse if 

methylation in the transcribed region is lost and the transgene expressed. 

 

The objective of this chapter was to identify a strategy to induce heritable DNA 

methylation changes in the model organism Arabidopsis. This was accomplished for a 

target gene, which codes for a ncRNA, using the epigenetic modifier mutant met1 to 

induce DNA methylation changes. This is a strategy that can now be exploited in 

other plants to induce variation without changing the DNA sequence. In addition, the 

project unexpectedly found that the epigenetic and transcriptional states of the ncRNA 

locus vary between Arabidopsis Col and Ws wild-type accession. The stability of the 

epigenetic and transcriptional states was demonstrated by almost identical 

methylation and expression profiles in hybrid offspring.  
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4.0. Investigating MET1 over-expression and methylation-independent functions 

in Arabidopsis  

 

4.1. Introduction 

 

In Arabidopsis, maintenance of methylation at CG sequences is catalysed by DNA 

METHYLTRANSFERASE 1 (MET1) (Kankel et al, 2003). MET1 consists of 1534 

amino acids and shares significant homology with the mammalian maintenance 

methyltransferase DNMT1. Amino acids 1 to 1093 of MET1 contribute the N-

terminal domain that contains the Nuclear Localisation Sequence (NLS), Replication 

Foci Targeting Sequence (RFTS), and two Bromo-Adjacent Homology (BAH) 

domains, which may facilitate protein-protein interactions (Pavlopoulou & Kossida, 

2007). Protein interaction assays and mutational analysis suggest that interactions of 

the RFTS domains result in DNMT1 dimerisation (Fellinger et al, 2009), although 

direct evidence of whether MET1 acts as a dimer via its RFTS domain is yet to be 

demonstrated. The C-terminal region of MET1, which is joined to the N-terminal 

domain via Glycine-Lysine (GK) repeats, contributes the catalytic domain. Functional 

motifs within the catalytic domain are identified by Roman numerals of which motifs 

I and X are required for SAM binding, and the active site is represented as motif IV 

(Figure 4.1) (Pavlopoulou & Kossida, 2007).  

 

Knockdown (Finnegan et al, 1996) and knockout (Kankel et al, 2003) approaches, 

which result in DNA hypomethylation and developmental abnormalities, have been 

used to study MET1. The effects of increasing MET1 levels have never been assessed 

in plants, as the current CG maintenance model would suggest over-expression of 

MET1 would result in maintenance of CG methylation. However, the recent evidence 

described in Chapter 3 suggests that MET1 functions deviate from the CG 

maintenance model. A reduction in DNA methylation at CHG and CHH sequences 

was detected in the met1 mutant, which highlights a new role for MET1 in influencing 

non-CG methylation and raises questions with regards to the role of its catalytic 

domain in this function. Down-regulation of target genes without local DNA 

methylation changes in met1 indicate MET1 levels may have a quantitative effect on 

gene expression. Another example in which MET1 functions deviate from the 

maintenance model is provided by Zubko et al, (2012) when they found that 
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methylation lost from the body of an endogenous target gene in a met1 Arabidopsis 

mutant, was partially restored at CG sites when MET1 was re-introduced. Re-

methylation did not require passage through the germline, which suggests MET1 may 

have de novo activity at CG sequence contexts (Zubko et al, 2012). These examples of 

MET1 functions that deviate from the classical CG maintenance model prompt a re-

assesment of the effects of MET1 over-expression, especially if increasing MET1 

levels was to alter target gene expression or methylation levels. 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.1. MET1 protein structure. The figure shows a schematic diagram of the MET1 protein. Amino 
acid numbers are shown above the schematic. The N-terminal domain of MET1 (left) contains the 
Nuclear Localisation Sequence (NLS), replication foci targeting sequence, basic and acid regions and 
two Bromo-Adjacent Homology (BAH) domains. The C-terminal domain of MET1 (right) contains the 
catalytic motifs indicated by Roman numerals. A sequence logo is provided below the active site of 
MET1 (Motif IV), which shows the most conserved amino acids in this motif between plant DNA 
methyltransferases. Image modified from Kankel et al, (2003) and Pavlopoulou & Kossida, (2007).   

 

To analyse quantitative effects of MET1, the MET1 gene was over-expressed in 

Arabidopsis using the 35S CaMV promoter. In parallel, a mutated MET1 gene 

(MET1mut) was over-expressed to analyse methylation-independent effects of MET1 

over-expression. Target gene expression changes and developmental phenotypes that 

are caused by inactivation of met1 were analysed in the over-expression lines. 
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4.2. Results 

 

4.2.1. The production of MET1 and MET1mut over-expression constructs 

 

To analyse the quantitative effects of MET1, it was first necessary to produce an over-

expression construct. This was accomplished by removing the MET1 cDNA sequence 

from the p-GEM T easy vector (Promega) and inserting it into the polylinker region of 

the plant transformation vector 35S pGreen 0179 (Figure 4.3).  

 

To analyse methylation-independent effects of MET1 over-expression in Arabidopsis, 

a construct was produced to over-express MET1mut, which encodes the MET1 protein 

with its catalytic activity removed. To remove the catalytic function from MET1 the 

strategy employed by Hsieh, (1999b) was exploited (Hsieh, 1999b). In this study the 

active site cysteine of DNMT3B is replaced with a serine. The analogous region of 

DNMT3Bs active site loop region in MET1 is GGPPCQGFSGMNRFN (Figure 4.1). 

In MET1, the region which produces these amino acids is located between the unique 

restriction enzyme sites, Bsu36I and PpuMI. Two pairs of primers were used to 

amplify the 5‟ and 3‟ regions, which encode the MET1 catalytic domain (Figure 4.2). 

One primer from each pair overlaps at the TGT sequence encoding the cysteine, and 

primers were therefore designed so that the TGT sequence was replaced by TCT to 

encode a serine when the two amplicons were assembled (Figure 4.2). After assembly 

the amplicon was cut with Bsu36I and PpuMI and inserted into the 35S MET1 

construct cut with the same restriction enzymes, to produce the MET1mut over-

expression construct (Figure 4.3).  
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Figure 4.2. Assembly PCR for site directed mutagenesis of the MET1 catalytic domain. The figure 
shows a schematic diagram of an assembly PCR reaction to introduce a mutation within the sequence 
encoding the MET1 catalytic motif. 1. Two pairs of primers were designed to amplify two overlapping 

regions that encode parts of the MET1 catalytic domain. These primer pairs are colour coded red and 
green. The reverse primer (red) used to amplify the 5‟ region and the forward primer (green) used to 
amplify the 3‟ region were designed to introduce a G to C mutation in each amplicon, 2. 3. The two 
amplicons were mixed in a PCR reaction where they prime each other producing 1 mutated amplicon. 4. 
The amplicon contains unique restriction enzymes sites Bsu36I and PpuMI allowing the exchange of the 
wild-type sequence with the mutated sequence after restriction enzyme digestion.  
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Figure 4.3. Maps of the 35S MET1 and 35S MET1mut constructs. The 35S MET1 and 35S MET1mut 

constructs were produced according to Sections 8.2.1.7.1 and 8.2.1.7.2 of Materials and Methods, 
respectively. The sequences of the primers used to produce the constructs are provided in Section 
8.1.4.6 of Materials and Methods. LB (left boarder) and RB (right boarder) mark the T-DNA region. The 
T-DNA region contains the plant selectable marker hygromycin (HPH) and the 35S MET1 cassette. 
ColE1-ori and pSa-Ori mark the replication of origin in E. coli and Agrobacterium, respectively. Red 
arrows indicate gene orientation with the arrow head corresponding to the 3‟ end of the respective gene. 
A mutation was introduced into the 35S MET1 construct to replace a cysteine with a serine codon within 
the active site (Figure 4.2) and is highlighted by the purple marker. 

 

4.2.2. The production of 35S MET1 and 35S MET1mut Arabidopsis 

transformants 

 

The two transgenic constructs were transferred into Arabidopsis, and for each, four T1 

transgenic lines were selected that over-express MET1 or MET1mut, respectively 

(Figure 4.4). At this stage of the analysis the copy number status and the zygosity of 

the transformants is unknown. 
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Figure 4.4. MET1 and MET1mut expression in Arabidopsis transformants. The figure shows a sqRT-
PCR analysis of MET1 over-expression in Arabidopsis 35S MET1 and 35S MET1mut transformants 
(T1). The analysis was performed as described in Figure 3.1 using RNA from one basal rosette leaf from 
plants grown as described in Materials and Methods Section 8.2.5. ELONGATION FACTOR (EF) was 
used as an internal control to compare gene expression levels to wild-type (WT) and “-ve” refers to a 
water only reaction. 4 individual over-expressing transformants for each construct were identified and 
are indicated above each gel lane on the left and right for MET1 and MET1mut, respectively. 

 

4.2.3. Identification and analysis of target genes in Arabidopsis MET1 and 

MET1mut over-expression transformants 

 

To analyse the effects of MET1 over-expression it was necessary to identify target 

genes. Target genes were identified using two strategies. The first strategy selected 

genes that were targets for both methylation and demethylation functions by screening 

the epigenome of the DNA glycosylase mutants using the methylome mapping tool 

(http://signal.salk.edu/cgi-bin/methylome) (Mathieu et al, 2007) and the epigenome 

browser (http://neomorph.salk.edu/epigenome/epigenome.html). The second strategy 

selected genes identified in Chapter 3 that altered their expression in the met1 mutant, 

to investigate if they responded to MET1 levels quantitatively. Two target genes 

altered their expression in some of the transformed lines (Figure 4.5). This included 

AT5G52310, which encodes a cold regulated gene RD29A (Sako et al, 2012) and 

AT2G41380, which encodes a SAM dependent methyltransferase. Interestingly, 

RD29A was down-regulated in all four lines over-expressing MET1 but was 

unchanged when over-expressing MET1mut. Contrarily, the expression of 

AT2G41380, which is down-regulated in the Arabidopsis met1 mutant, was up-

regulated when over-expressing both MET1 and MET1mut in three out of four lines. 

These data suggest that over-expression of MET1 and MET1mut in Arabidopsis 

results in changes in the expression of genes, and over-expressing MET1 and 

MET1mut seems to be required but not sufficient for expression changes. 
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Figure 4.5. Analysing target gene expression in Arabidopsis lines over-expressing MET1 and MET1mut. 
The figure shows a sqRT-PCR to analyse target gene expression in T1 35S MET1 and 35S MET1mut 
transformants. The analysis was performed according to Figure 4.4. The lines analysed are indicated 
above the gel image and target genes are provided on the left. “–ve” refers to water only control and 
ELONGATION FACTOR (EF) was used as an internal control to compare gene expression levels to 
wild-type (WT). 

 

4.2.4. Analysing RD29A promoter methylation in Arabidopsis MET1 and 

MET1mut over-expression lines 

 

A reduction in RD29A gene expression when over-expressing the MET1 gene 

highlighted the possibility of direct repressive DNA methylation changes at this locus 

in these lines. To investigate direct DNA methylation changes, a target region for the 

demethylase ROS1 was analysed within the RD29A promoter (Sako et al, 2012) by 

sequencing eight bisulfite converted clones produced from 35S MET1 line 1 and 35S 

MET1mut line 1 (Figure 4.6). No consistent DNA methylation changes were detected. 
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Figure 4.6. Bisulfite sequencing analysis of the RD29A promoter in Arabidopsis lines over-expressing 
MET1 and MET1mut. The figure shows a region of the RD29A promoter in T2 Arabidopsis lines over-
expressing MET1 and MET1mut analysed by bisulfite sequencing as described in Section 8.2.1.11 of 

Materials and Methods using DNA from 2 week old seedlings. The top boxed region contains 
sequencing data calculated by Cymate (Hetzl et al, 2007) from line 1 over-expressing the MET1 gene. 
The bottom boxed region contains sequencing data calculated by Cymate (Hetzl et al, 2007) from line 1 
over-expressing the MET1mut gene. The three DNA methylation sequence types, CG, CHG and CHH 

are colour coded. Methylated and un-methylated bases are represented as filled and empty shapes, 
respectively. Cytosine positions are provided at the bottom of the figure. 

 

4.2.5. Analysing flowering time in Arabidopsis over-expressing MET1 and 

MET1mut genes 

 

A developmental consequence of inactivating MET1 using an antisense RNA in 

Arabidopsis is a delay in flowering time (Ronemus et al, 1996). To analyse if 

flowering time is affected by increasing MET1 levels, flowering time was analysed in 

the offspring from three primary MET1 and MET1mut over-expression transformants. 

Flowering time was analysed by counting basal rosette leaf numbers upon bolting in 

long day conditions (Soppe et al, 2000), and was carried out with the help of 

Marianne Shewell (P. Meyer lab, the University of Leeds). Data for individual plants 

(Figure 4.7 A and B) and averages for each line (Figure 4.7 C and D) are shown. Data 

for MET1 and MET1mut over-expression lines can only be compared to their 

respective wild-type because the two experiments were not performed in parallel. The 

T2 plants used in this analysis were selected on kanamycin and contain at least one 

copy of the transgene. At this stage the zygosity of the lines is unknown. MET1 over-

expression significantly delayed flowering time in line 3 by an average of 25 days 

compared to wild-type (Figure 4.7C) and MET1mut over-expression significantly 

delayed flowering by an average of seven days in line 2 compared to wild-type 
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(Figure d 4.5D). Therefore, MET1 and MET1mut over-expression delays flowering in 

some plants.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Flowering analysis of Arabidopsis lines over-expressing the MET1 and MET1mut genes. The 
figure shows a flowering analysis of Arabidopsis lines over-expressing the MET1 and MET1mut genes. 

T2 plants were grown on selection and analysed as described in Section 8.2.5 of Materials and 
Methods. A. The figure shows data for individual wild-type control plants and offspring from MET1 over-
expression lines 1, 2 and 3. B. The figure shows data for individual wild-type control plants and offspring 
from MET1mut over-expression lines 1, 2 and 3. Individual plants are presented on the X-axis and leaf 
numbers of the Y-axis. C and D show average values for each line from A and B, respectively. 

Significant delays in flowering are highlighted in red. 
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4.3. Discussion 

 

In this chapter target gene expression changes and a delay in flowering time were 

found in some lines when over-expressing the MET1 and MET1mut genes in 

Arabidopsis (Figure 4.5 and 4.7).  

 

The target gene RD29A was down-regulated when over-expressing MET1 and was 

unchanged when over-expressing MET1mut. This suggests that RD29A expression 

changes require the catalytic activity of MET1 when MET1 is over-expressed. While 

this was an encouraging indicator for DNA methylation changes, no direct DNA 

methylation changes were found when analysing a demethylase target region within 

the RD29A promoter by bisulfite sequencing. However, not all regions relevant for 

expression have been analysed for DNA methylation. Recently, it was reported that 

ten WRKY8 binding sites are present within the RD29A promoter (Hu et al, 2013), of 

which three are within the range of the bisulfite sequencing analysis. Therefore, at this 

stage, it is not possible to eliminate that direct DNA methylation changes are 

responsible for RD29A down-regulation when over-expressing MET1. Additionally, 

RD29A expression and promoter methylation could be analysed in MET1 over-

expression lines after stress treatment. In this study plants were grown at 25 
o
C under 

16/8 h day night conditions. Sako et al, (2012) show that DNA methylation levels 

increase within the RD29A promoter in an rpt2a mutant, which has a T-DNA 

insertion within the RPT2A gene encoding a 19S proteasome subunit (Sako et al, 

2012). The increase in DNA methylation within the RD29A promoter in rpt2a was 

assigned to reduced degradation and accumulation of DNA methyltransferases. 

Interestingly, Sako et al, (2012) were able to increase DNA methylation levels at the 

RD29A promoter further by exposing the rpt2a mutant to 4 
o
C for 12 h (Sako et al, 

2012), a stress treatment that could be tested on MET1 over-expression lines.  

 

The target gene AT2G41380 was up-regulated when over-expressing MET1. This 

gene produces a SAM dependent methyltransferase. I hypothesized, because of its 

down-regulation observed in the Arabidopsis met1 mutant, described in Chapter 3, 

that AT2G41380 may be involved in a substrate specific feedback loop with MET1. 

AT2G41380 up-regulation when MET1 levels increase would support this hypothesis. 

This is not, however, the first time that feedback regulation involving epigenetic 
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modifiers has been suggested in plants. ROS1 and DME, which encode demethylation 

functions, are down-regulated in the Arabidopsis met1 mutant (Mathieu et al, 2007). 

No direct DNA methylation changes were detected in the ROS1 promoter and the 

down-regulation was assigned to indirect DNA methylation changes (Mathieu et al, 

2007). This feedback loop would be a useful system to prevent further loss of DNA 

methylation in these genomes.  

 

To analyse if SAM levels are involved in the potential feedback loop, it would be 

required to analyse mutants in feedback loop components (Figure 4.8). For example, 

MET1 and AT2G41380 levels could be analysed in S-adenosyl methionine synthetase 

(sam1/2) or S-adenosyl homocysteine hydrolase (hog1) mutants (Rocha et al, 2005). 

A feedback system will likely involve multiple regulators. To characterize the 

feedback system would require a reporter gene construct using the AT2G41380 

promoter to drive expression. When transferred into plants the expression of the 

reporter gene could be analysed in a T2 population following EMS mutagenesis. 

Plants with changes in reporter gene expression would have mutations in the MET1 

gene but may also have mutations within other genes required for a feedback system 

to function.  
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Figure 4.8. A simplified diagram of S-adenosyl methionine and S-adenosyl homocysteine metabolism. 
Beginning from the bottom left, METHYLTRANSFERASE proteins transfer a methyl-group (-CH3) from 
S-adenosyl methionine to target proteins and DNA. The by-product of methylation, S-adenosyl 
homocysteine is metabolized back to S-adenosyl methionine via an S-ADENOSYL HOMOCYSTEINE 
hydrolase and METHIONINE and S-ADENOSYL METHIONINE synthetases. It has been speculated 
that a feedback system exists between S-adenosyl methionine levels and METHYLTRANSFERASE 
proteins, which is indicated by the red arrow. 

 

AT2G41380 was also up-regulated when over-expressing the MET1mut gene. This 

does not eliminate the feedback hypothesis, as MET1mut may retain SAM binding 

capacity.  MET1mut target gene expression changes strengthen the possibility that 

MET1 may have methylation-independent roles in plants. The same suggestion has 

been made for the mammalian homologue DNMT1 (Espada et al, 2011). In this case, 

increases and decreases in target gene expression without DNA methylation changes 

were observed when expressing DNMT1 with mutations in its N-terminal BAH 

domains (Espada et al, 2011). Elucidating the methylation-independent functions of 

DNA methyltransferases will add a new perspective to these epigenetic modifiers. 

 

It is important to notice that AT2G41380 is not up-regulated in all over-expression 

lines. It is, in fact, up-regulated in six out of the eight lines. Variation in gene 

expression caused by epigenetic processes is classically exemplified by position effect 

variegation (PEV), which is a variegation caused by a change in expression of a gene 
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in some cells. PEV could explain why AT2G41380 is up-regulated in some over-

expression lines if an epigenetic change, induced by increased MET1 levels, occurred 

early in development for it to be mitotically inherited and represented either an „on‟ or 

„off‟ state throughout the organism.  

 

Over-expressing MET1 results in delayed flowering of some plants indicating that 

MET1 over-expression seems to be required but not sufficient to delay flowering. A 

delay in flowering time only in some over-expression lines could arise if loci 

controlled by methylation are regulated by concentration-dependent stochastic effects 

of MET1. For example, lines with higher MET1 expression levels would have 

increased probability of a MET1 induced change. MET1 proteins may stochastically 

associate with a particular locus at a certain developmental stage to induce an 

epigenetic change in some lines, which is mitotically inherited and which causes a 

delay in flowering time. Alternatively, MET1 proteins could stochastically bind 

flowering regulators to delay flowering in some lines.  Interestingly, a delay in 

flowering of some plants also occurs when the MET1mut gene is expressed. While 

this may eliminate a role of CG maintenance, it does not eliminate a role for DNA 

methylation changes in delayed flowering when over-expressing MET1mut, as it is 

unknown if the catalytic function of MET1 is required to influence non-CG 

methylation.  

 

FWA expression is induced when methylation is lost from two direct repeats within 

the 5‟ coding region of the FWA gene (Chan et al, 2006). This activation partially 

explains the delay in flowering time in hypomethylated mutants (Kankel et al, 2003), 

as FWA acts as a floral repressor (Ikeda et al, 2007). While direct DNA methylation 

loss is not a predicted outcome of MET1 over-expression, it has not been eliminated 

that MET1 over-expression may have a dominant negative effect. If MET1 over-

expression has dominant negative effects in Arabidopsis it would become interesting 

to analyse FWA expression in MET1 over-expression lines that show wild-type 

flowering time or a delay in flowering time.  

 

Detecting over-expression of the MET1 gene and phenotypes are good indicators that 

MET1 protein levels are elevated in MET1 over-expression lines. Despite these 

indications MET1 protein levels have never been directly analysed in MET1 over-
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expression lines. Over-expression of the MET1 protein could be determined by 

Western blot analysis after creating FLAG-tagged MET1 over-expression 

transformants. This is an important consideration as post-transcriptional regulatory 

mechanisms can interfere with mRNA over-expression being translated into protein 

over-expression. A final consideration with regards to MET1 over-expression is the 

possibility that other factors required for MET1 activity, which if not increased with 

MET1 levels, may be limiting. For example, the chromatin remodelling factor DDM1 

is required for MET1 activity (Chan et al, 2005). To determine if and what factors 

were limiting when MET1 is over-expressed was not within the project objectives. 

 

This chapter presents data which highlight plants as ideal candidates to study 

methylation-independent functions of DNA methyltransferases. Viable offspring 

produced from MET1 over-expression lines suggests that plants can tolerant increases 

as well as deficiencies (Kankel et al, 2003) in MET1 levels, while, both increases and 

deficiencies of DNMT1 are lethal to the embryo in mammals (Biniszkiewicz et al, 

2002). The high tolerance of plants to MET1 changes will allow catalytically inactive 

DNA methyltransferases but also methyltransferases with domain deletions and 

replacements to be fully characterized in wild-type and the respective DNA 

methyltransferase mutant backgrounds. Analysing methylation-independent functions 

of mammalian epigenetic modifiers could be extended into plants, which would avoid 

the lethal complications that arise in mammals from epigenetic modifier inactivation 

and over-expression. It should, however, be acknowledged that using a heterologous 

system could complicate interpretations.  
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5.0. Activity of mammalian DNA demethylation functions in plants 

 

5.1. Introduction 

 

The stability of DNA methylation is exemplified in Chapter 3 when analysing the 

ncRNA promoter methylation across generations. However, DNA methylation marks 

are epigenetic modifications that can be removed. In plants, this is regulated by two 

DNA demethylation systems.  

 

Passive DNA demethylation refers to the loss of methylation coupled with replication 

(Hsieh, 1999a). It occurs when daughter cells inherit hemi-methylated DNA and 

maintenance methyltransferases fail to propagate DNA methylation onto the newly 

synthesised strand (Wolffe et al, 1999). Passive demethylation is promoted by 

nucleoprotein blockage, which describes the occlusion of methyltransferase targets by 

regulatory nucleoproteins (Hsieh, 1999a) and acetylated histone aversion, when 

acetylated histones repel methyltransferases (Wolffe et al, 1999). 

 

Active demethylation in plants is initiated when DNA glycosylases remove a 

methylated cytosine leaving an abasic site, which is replaced by an unmethylated 

cytosine in the base excision repair (BER) pathway (Gong & Zhu, 2011). Plant DNA 

glycosylases include REPRESSOR OF SILENCING 1 (ROS1) (Gong et al, 2002), 

DEMETER (DME), DEMETER-LIKE 1 (DML1), DEMETER-LIKE 2 (DML2) and 

DEMETER-LIKE 3 (DML3) (Choi et al, 2002). Plant DNA glycosylases function 

throughout the genome targeting the 5‟ and 3‟ ends of genes but not gene body 

methylation (Penterman et al, 2007). Demethylation targeting mechanisms are still 

poorly defined but recent studies have identified REPRESSOR OF SILENCING 3 

(ROS3). ROS3 is found in discrete foci localised with ROS1 and has the ability to 

bind single stranded RNAs, which could function in ROS1-targeted demethylation 

(Zheng et al, 2008).  

 

No orthologs of plant DNA glycosylases are found in mammals but both active global 

demethylation and sequence specific demethylation have been documented. Global 

paternal demethylation occurs in the zygote and in primordial germ cells (PGCs) and 
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sequence specific demethylation occurs in somatic cells in response to various signals 

(Bruniquel & Schwartz, 2003).  

 

The underlying mechanisms in mammalian DNA demethylation appear to be divided 

into two systems. ACTIVATION-INDUCED DEAMINASE (AID) and 

APOLIPOPROTEIN B RNA EDITING CATALYTIC COMPONENT 1 (APOBEC1) 

can deaminate methylated cytosines to thymine, which creates a thymine/guanine 

mismatch. The thymine is removed by the thymine DNA glycosylases THYMINE 

DNA GLYCOSYLASE (TDG) and METHYLCYTOSINE-BINDING PROTEIN 4 

(MBD4) to create an abasic site, which is repaired in the BER pathway (Rai et al, 

2008). Alternatively, active demethylation in mammals can occur via the oxidation of 

methylcytosine to either 5-hydroxy-methylcytosine (hmC), 5-formyl-cytosine (fC) or 

5-carboxyl-cytosine (caC) (Ito et al, 2011). This oxidation is catalysed by three TEN-

ELEVEN TRANSLOCASE (TET1-3) proteins (Figure 5.1) (Ito et al, 2011; Tan & 

Shi, 2012). Oxidised bases are removed by glycosylase activity and replaced in the 

BER pathway (Guo et al, 2011).  
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Figure 5.1. Mammalian TET protein structures. The TET protein and size is provided on the left. 
Diagrams of the TET proteins are provided on the right. The CXXC domain and Cys-rich, double-

stranded -helix (DSBH) and Spacer regions are colour coded and identified using the key. Possible 
functions of the TET domains and regions are in brackets. The C-terminal domain (CD) is provided 
below each protein. Taken from Tan & Shi, (2012). 

 

These differences between plant and mammalian DNA demethylation systems 

provide an opportunity to exploit plants to study mammalian epigenetic modifiers and 

to test if mammalian demethylase functions can be exploited in plants. The 

requirement for this is emphasised by the high tolerance of plants to DNA 

methylation changes, which are lethal to the embryo in mammals (Gruntman et al, 

2008). In this chapter, the effects of expressing a region of the TET3 gene, which 

encodes the catalytic domain and nuclear localisation sequence (NLS) were analysed 

in plants.  
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5.2. Results 

 

5.2.1. Expressing a region of the human TET3 gene in Arabidopsis 

 

To analyse TET3 effects in plants it was necessary to produce Arabidopsis 

transformants that express TET3. The human TET3 cDNA clone was provided by 

Professor R.Meehan (The University of Edinburgh). The 3‟ region, which encodes the 

TET3 catalytic domain and NLS (Appendix 10.4) was inserted into the polylinker of 

the plant expression vector, 35S pGreen 0179 (Figure 5.2A). The 5‟ region of the 

gene was not used, as this encodes the N-terminal region of TET3, which among other 

functions is likely required for the recruitment of regulatory complexes (Koh et al, 

2011) that may not exist in Arabidopsis. Four T2 Arabidopsis lines that express the 3‟ 

region of the TET3 gene were selected for subsequent analysis (Figure 5.2B). The 

zygosity of the T2 TET3 Arabidopsis lines at this stage of the analysis is unknown. 

 

A.               B. 

 

 

 

 

 

 

 

 

 

Figure 5.2. Arabidopsis lines that express the 3‟ region of the human TET3 gene. A. The figure shows 
the 35S TET3 construct, which was produced as described in Sections 8.1.4.6 and 8.2.1.7.6 of Materials 
and Methods. Plasmid labels are as described in Figure 4.3. B. The figure shows a sqRT-PCR analysis 
of four Arabidopsis TET3 lines (T2) performed as described in Figure 4.4. TET3 expression is shown in 
the top boxes. ELONGATION FACTOR (EF) gene expression was used as an internal control and “-ve” 
refers to a water only sample.     
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5.2.2. Analysing DNA demethylation in Arabidopsis plants that express the 3’ 

region of the TET3 gene 

 

After identifying Arabidopsis lines that expressed the 3‟ region of the TET3 gene, 

potential target regions were analysed for DNA methylation changes by bisulfite 

sequencing 10 clones amplified for different putative target regions from the four 

Arabidopsis lines. DNA methylation levels were calculated as the percentage of 

methylated cytosine at individual sequence types. To follow up stability of changes 

any targets that showed a significant change in DNA methylation when analysed by 

bisulfite sequencing were subsequently analysed by methylation-sensitive Southern 

blot. rDNA is a known target of TET3 in mammalian cells (Guo et al, 2011) and was 

therefore the first target analysed in the TET3 Arabidopsis lines (Figure 5.3).  

 

DNA methylation changes within the gene body of rDNA coding for the 18S subunit 

were found in three lines (T2) when analysed by bisulfite sequencing (Figure 5.3A). 

The largest changes occurred in TET3 lines 3 and 4. For this reason they were 

selected for methylation-sensitive Southern blot analysis (Figure 5.3B and Figure 

5.3C). Methylation sensitivities for HpaII and MspII are as described in Sections 2.2.1 

and 2.2.2. BstUI, EcoRII and MnlI are CG, CNG and CNN methylation-sensitive, 

respectively, and will therefore only cleave their recognition sequence when the 

respective sequence type of DNA methylation is absent or lost. Methylation-sensitive 

Southern blot analysis confirmed demethylation in TET3 line 3 when compared to 

wild-type (white boxes, Figure 5.2B and white asterisks, Figure 5.3C). DNA 

demethylation is indicated by a weaker signal from higher-molecular-weight DNA. 

However, based on this logic, it appears that TET3 line 4 gains methylation when 

analysed by methylation-sensitive Southern blot (black box, Figure 5.3B). This 

contrast in data for TET3 line 4 raised questions with regards to the TET3 

intermediates including hmC, fC and caC and their sensitivities to the methylation 

detection techniques.                  
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C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. DNA methylation analysis at rDNA in TET3 Arabidopsis lines. A. The figure shows DNA 
methylation levels within a 310 bp region of rDNA among wild-types and Arabidopsis TET3 lines (T2) 
determined by bisulfite sequencing analysis as described in Sections 8.2.1.11 and 8.1.4.3 of Materials 
and Methods using DNA from basal rosette leaves. DNA methylation levels are represented by the Y-
axis and each sequence type is identified with a unique colour indicated by the key on the right. B. The 
figure shows a HpaII and MspI methylation-sensitive Southern blot analysis of wild-type and Arabidopsis 
TET3 lines 3 and 4 (T2) using DNA from basal rosette leaves and an rDNA specific probe performed as 
described in Sections 8.2.1.13 and 8.1.4.4 of Materials and Methods. HpaII and MspI methylation 

sensitivities are described in Section 2.2.1 and Figure 2.4. DNA methylation changes, which are evident 
when the fingerprint varies from the wild type pattern, are highlighted by a white and black box for TET3 
lines 3 and 4, respectively. The lane labelled “-ve” refers to undigested DNA and is used as a control for 
non-specific digestion or DNA degradation. C. The figure shows a BstUI, EcoRII MnlI and PvuRts1I 

methylation-sensitive Southern blot analysis of wild-type and Arabidopsis TET3 lines 3 and 4 (T2) 
performed as described in Figure 5.3B. Some DNA methylation changes in TET3 line 3, which are 
evident when the fingerprint varies from the wild type pattern, are highlighted by white asterisks. 
Variation in PvuRts1I digestion among wild-type and TET3 lines is highlighted by purple boxes.  

 

The identification of TET3-induced DNA methylation changes at rDNA in 

Arabidopsis prompted the analysis at other target loci known to contain DNA 

methylation. Bisulfite sequencing was used to analyse TET3-induced methylation 

changes at 180 bp CENTROMERIC REPEATS, the retrotransposon AtCOPIA4 and 

the gene body of AT5G10540 (Figure 5.4). No DNA methylation changes could be 

detected at the regions analysed for AtCOPIA4 or AT5G10540 in lines 3 or 4 (T2) 

(Figure 5.4A). Very subtle changes were found at 180 bp CENTROMERIC REPEATS, 
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which prompted a methylation-sensitive Southern blot analysis (Figure 5.4B) but no 

DNA methylation changes were detected. 

 

A. 

 

B. 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Analysing DNA methylation at target loci in Arabidopsis TET3 expressing lines. A. The figure 

shows DNA methylation levels within a region of 180 bp CENTROMERIC REPEATS, AtCOPIA4 and 
AT5G10540 in TET3 expressing Arabidopsis lines (T2). DNA methylation levels were determined by 
bisulfite sequencing analysis as described in Sections 8.2.1.11 and 8.1.4.3 of Materials and Methods 
using DNA from basal rosette leaves. Methylation levels are represented by the Y-axis and each 
sequence type is identified with a unique colour indicated by the key on the right. B. The figure shows a 

methylation-sensitive Southern blot analysis of 180 bp CENTROMERIC REPEATS in wild-type and 
TET3 expressing Arabidopsis lines performed as described in Figure 5.3B.  
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5.2.3. Analysing the stability of TET3-induced changes in Arabidopsis  

 

To test if the TET3-induced DNA methylation changes at the rDNA locus were stable 

the methylation-sensitive Southern blot analysis was extended into the next generation 

(T3 lines, Figure 5.5). T3 TET3 lines were selected and at this stage of the analysis 

the zygosity of the T3 TET3 lines is unknown. A weaker signal is detected in T3 

plants of TET3 line 3 compared to wild-type (white box, Figure 5.5). Signals from 

higher-molecular-weight DNA are observed again in TET3 line 4 T3 plants (Black 

box, Figure 5.5). These observations indicate that the TET3-induced changes in 

Arabidopsis are stable across one generation in the presence of the transgene.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Methylation-sensitive Southern blot to analyse the stability of TET3-induced DNA 
methylation changes in Arabidopsis. The figure shows a HpaII and MspI methylation-sensitive Southern 
blot analysis of wild type and T2 and T3 TET3 lines 3 and 4 using an rDNA probe. The analysis was 
performed as described in Figure 5.3B. DNA methylation changes, which are evident when the 
fingerprint varies from the wild type pattern, are highlighted by a white and black box for TET3 lines 3 
and 4, respectively  

 

5.2.4. rDNA copy number and mutation analysis in Arabidopsis TET3 lines 

 

Changes in DNA methylation are not the only potential cause of the observed 

differences in fragment sizes, as rDNA copy number changes in TET3 lines would 

also result in a different Southern blot fingerprint. To analyse if rDNA expansion was 

responsible for the differences in signal detection in TET3 lines, Southern blot 

analysis was repeated with the methylation insensitive restriction enzyme AseI (Figure 

5.6). There is little change in signal strength between TET3 lines and wild-type when 
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analysed by methylation-insensitive Southern blot using 180 bp CENTROMERIC 

REPEAT and rDNA specific probes. Therefore, rDNA copy number does not vary at a 

level which is detectable by Southern blot analysis between TET3 lines and wild-type. 

It is therefore unlikely that the differences seen in the methylation-sensitive Southern 

blots are due to changes in rDNA copy number.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 5.6. A Southern blot to analyse rDNA expansion in Arabidopsis TET3 lines. The figure shows 
DNA from wild-type and TET3 lines 3 and 4 analysed by Southern blot performed as described in Figure 
5.3B using the methylation-insensitive restriction enzyme AseI. Both T2 and T3 generations were 
included for each TET line. The blot was analysed using 180bp CENTREMERIC REPEAT (top panel) 
and rDNA (bottom panel) probes amplified with primers provided in Section 8.1.4.4 of Materials and 

Methods.  
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5.2.5. Analysing hmC, fC and caC intermediates among Arabidopsis TET3 lines  

 

After analysing DNA demethylation at rDNA in Arabidopsis TET3 lines it was logical 

to question if any of the TET3 intermediates could be detected. rDNA analysis by 

Southern blot was repeated with the restriction enzyme PvuRts1I, which specifically 

cleaves DNA that contains hmC (purple boxed regions, Figure 5.3C). PvuRts1I 

appears to cleave rDNA in wild-type but not rDNA in TET3 lines 3 or 4 (T2). This 

indicates that wild-type Arabidopsis rDNA contains hmC, whereas TET3 lines 3 and 4 

either lack hmC or have low levels undetectable by Southern blot. hmC in TET3 lines 

could be processed to other intermediates preventing digestion by PvuRts1I. PvuRts1I, 

however, is a novel restriction enzyme and caution should be taken when interpreting 

this data. 

 

5.3. Discussion 

 

In this chapter, the effects of expressing the 3‟ region of the human TET3 gene coding 

for the catalytic domain and NLS were analysed in Arabidopsis. The most obvious 

effects were found at rDNA in TET3 line 3. Both bisulfite sequencing and 

methylation-sensitive Southern blot indicate a reduction in DNA methylation levels at 

CG and CNG sequence contexts. Interestingly, DNA demethylation is induced at 

rDNA when over-expressing TET1 in mammalian human embryonic kidney (HEK) 

293 cells (Guo et al, 2011). However, no DNA methylation changes were found in 

Arabidopsis at the retroelement AtCOPIA4 or the gene body of AT5G10540. 

Similarly, LINE-1 retroelements are unaffected when TET1 is over-expressed in 

HEK293 cells (Guo et al, 2011). These data are not sufficient to suggest that rDNA is 

the only region that responds in this manner to TET3 activity in Arabidopsis. To 

identify all regions would require large scale bisulfite sequencing. However, it is 

unlikely that even large scale bisulfite sequencing would reflect the full extent of 

TET3 activity because TET3 proteins have to compete with endogenous epigenetic 

modifiers. Therefore, TET3 activity could be compensated for by DNA 

methyltransferase activity. Regions under strict epigenetic control such as those which 

produce siRNAs may be extremely difficult to detect TET3 activity because 

remethylation would follow demethylation. Another model which could explain 

different target sensitivities is that genomic regions differ in their accessibility to the 
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TET3 enzyme. Heterochromatin regions may be less accessible to TET proteins than 

highly transcribed regions, such as rDNA. 

 

Demethylation identified only at the rDNA locus suggests that rDNA may be 

particularly sensitive to stable DNA methylation changes or TET3 activity. The 

stability of DNA methylation changes induced by TET3 at the rDNA locus is 

reinforced by the conservation of the detected DNA methylation pattern in T2 and T3 

lines. Stable changes may be due to the continuous presence of TET3 or the lack of a 

remethylation mechanism that restores TET3-induced demethylation effects. The lack 

of a remethylation mechanism at the rDNA locus was also observed when rDNA 

demethylation was not restored in a ddm1 hypomethylated background segregated 

back into wild-type (Kakutani et al, 1999). To confirm this, however, would require 

the removal of the transgene to test if remethylation occurs. At this stage it is only 

possible to speculate about the reason why rDNA would be particularly sensitive to 

TET3 activity. For example, epigenetic modifiers have been found localised to 

discrete foci within the nucleus (Zheng et al, 2008). If TET3 was localised at rDNA 

then this could make rDNA a hotspot for DNA methylation changes. A similar 

outcome would occur if rDNA was more accessible to TET3 than other genomic loci.  

 

Identifying TET3 changes only at the rDNA locus suggests that demethylation 

occurred or was stably maintained at specific loci only. This led to the question if 

TET3 could be more efficiently targeted to other genomic loci if it was linked to 

specific target domains. TET3 fusion constructs have now been produced with help 

from visiting internship student Lennard Ganß, Ruprecht-Karls-University of 

Heidelberg. TET3 has been fused with the region that encodes the CHD domain of 

CHROMOMETHYLTRANSFERASE 3 (CMT3) and the MBD domain of the human 

METHYL-CpG BINDING DOMAIN PROTEIN 1 (MBD1). While, analysis of 

TET3-CHD and TET3-MBD lines was not within the project timeframe, 24 TET3-

CHD and 14 TET3-MBD transformants have been produced and analysing these lines 

would be ideal for a new research candidate. 

   

The reason for differences in demethylation levels detected among the TET3 lines by 

bisulfite sequencing is unknown. Only a 310 bp region of the 18S rDNA gene body 

was analysed by bisulfite sequencing and this may not provide a full representation of 
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the level of TET3 activity at rDNA. Within the 5‟ end of the TET3 gene is the 

sequence which encodes the CXXC domain and it is critical for TET3 targeting (Xu et 

al, 2012). The region which encodes the CXXC domain was excluded from the 35S 

TET3 construct design. Removing this specificity could lead to random activity, 

which may explain the difference in methylation levels between the TET3 lines.  

 

A surprising result was the detection of demethylation in TET3 line 4 by bisulfite 

sequencing analysis but an increased sensitivity to methylation-sensitive restriction 

enzymes when analysed by Southern blot. It would be logical if a level of 

demethylation had to be reached before changes were detectable by Southern blot 

analysis. However, the fact that this increased sensitivity is stronger than wild-type 

raised questions with regards to TET3 intermediates and their detection with current 

techniques.  No studies have analysed HpaII methylation sensitivities to TET3 

intermediates but studies have investigated the isoschizomer MspI. MspI will cleave 

DNA when the sequence CCGG is both unmethylated and methylated at the internal 

C, C
m

CGG. It will not cleave the sequence when fC or caC are present (Ito et al, 

2011). Bisulfite sequencing analysis does not convert mC or hmC (Yu et al, 2012) but 

does convert caC (He et al, 2011) and fC (Yu et al, 2012) to uracil. These limitations 

prevent distinguishing between mC or hmC and C, caC or fC. These different 

sensitivities offer an explanation to the conflicting TET3 line 4 bisulfite sequencing 

and Southern blot data. If the rDNA region analysed in TET3 line 4 contained fC and 

caC intermediates then they would be converted by sodium bisulfite. Conventionally 

this would then be interpreted as unmethylated DNA. However, fC and caC 

intermediates would prevent cleavage by methylation-sensitive restriction enzymes, 

which would then conventionally be interpreted as methylated DNA.   

 

To follow up the analysis of TET3 intermediates, the other TET proteins could be 

expressed in Arabidopsis. TET1 and TET2 have stronger oxidative capacities 

compared to TET3 in vitro (Ito et al, 2011). If these capacities were maintained in 

Arabidopsis, then higher intermediate or demethylation levels may be the result, 

which would be easier to detect with current methods. However, strong 

hypomethylation in Arabidopsis causes phenotypic abnormalities, including reduced 

fertility (Bartee & Bender, 2001). This would make lines more difficult to work with 

and was the reason why TET3 was initially chosen for expression in Arabidopsis. To 
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examine the demethylation mechanisms the TET proteins could be expressed in an 

Arabidopsis glycosylase mutant. This would preferably be the ros1;dml2;dml3 triple 

mutant because, while demethylation at some loci is controlled by single DNA 

glycosylases, some loci are controlled redundantly by multiple DNA glycosylases 

(Penterman et al, 2007). Expressing TET3 proteins in an Arabidopsis glycosylase 

mutant would provide a larger window of opportunity to detect TET3 intermediates, if 

the DNA glycosylases are responsible for excision of the oxidised bases. In the 

mutant oxidised bases would not be excised and therefore accumulate making 

detection with current methods more likely. 

 

It would also be useful to express the TET3-MBD and TET3-CHD constructs in the 

glycosylase mutant and analyse the transformed wild-type lines. There is currently no 

known method to target DNA demethylation to specific loci, despite the benefits of 

such a system. In plants, targeting DNA methylation changes could create epigenetic 

variation at particular loci, which may avoid the phenotypic abnormalities produced 

by current global demethylation approaches. In mammals, it would be useful if 

hypermethylated tumor suppressor genes could be targeted for demethylation in 

cancer cells. 

 

In future experiments it may be useful to include Arabidopsis lines transformed with 

mutated TET constructs that remove the catalytic function of the TET protein. This 

would help to determine the effects of TET proteins in plants that were directly 

caused by catalytic activities and would be particularly useful for TET-fusion 

constructs, when dominant negative effects could result from expressing MBD or 

CHD domains. 

 

The data presented in this chapter indicate that the human TET3 protein is 

catalytically active in Arabidopsis and can be used to induce DNA methylation 

change at the rDNA locus. It also highlights the complexities and limitations of 

current detection techniques for the sixth, seventh and eighth bases. New techniques 

to reliably investigate these marks are emerging. For example, oxidative bisulfite 

sequencing (oxBS-Seq) uses potassium perruthenate which oxidises hmC to fC 

(Booth et al, 2012). fC can then be converted by sodium bisulfite to distinguish 

between mC and hmC. Despite these advances there is still no technique to 
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differentiate between fC and caC modifications in vivo. Future studies should develop 

reliable detection methods for these novel bases and create conditions which favour 

their detection, for example, via expressing TET proteins in glycosylase mutant 

backgrounds.  
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6.0. Generating epigenetic diversity in tomato by inactivating the tomato DNA 

METHYLTRANSFERASE 1 

 

6.1. Introduction 

 

Traditional crop breeding strategies can require up to a decade to produce a new 

variety. Genetic-hybridisation methods require the generation of a pure line by 

multiple self pollinations. Pure lines with desirable phenotypes can then be crossed 

(Rommens et al, 2007). Crop breeding has been assisted by advancements in 

technology, such as marker assisted selection (MAS). MAS allows specific traits to be 

followed in breeding programmes, using DNA amplification and sequencing 

techniques to identify single nucleotide polymorphisms (SNPs) associated with a trait 

(Tester & Langridge, 2010). This is particularly useful for traits that are recessive, do 

not display a visible phenotype or when multiple genes are required for a desired 

characteristic (Tester & Langridge, 2010). Traditional crop breeding strategies have 

limitations. Breeding can only be carried out between plants that can mate sexually 

with each other. When plants are crossed unwanted traits may be introduced and pure 

lines have to be constantly maintained to allow F1 lines to be generated (Rommens et 

al, 2007).   

 

Agronomics and breeding techniques have linearly increased global crop yield by an 

average of 32 million metric tons per year since 1961 (Tester & Langridge, 2010). 

The Declaration of the World Summit on Food Security target requires 70% more 

food by 2050 (Tester & Langridge, 2010). To meet this target the average annual 

increase in yield has to rise from 32 to 44 million metric tons. This target becomes 

even more challenging with unpredictable global environment change and reducing 

arable land (Tester & Langridge, 2010).  

 

Tradition breeding strategies rely on genetic changes but there are examples where 

stable changes to the expression of genes without altering the DNA sequence can 

contribute to variation. These examples are called epi-mutants because there has been 

a change in their epigenome. DNA methylation is the most frequent modification of 

plant DNA and changes to the DNA methylation patterns are often found among epi-

mutants. A core feature of DNA methylation is transcriptional repression, either by 
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direct obstruction of transcriptional proteins or by serving as a target for specific 

proteins, which signal chromatin condensation (Klose & Bird, 2006). Examples of 

epi-mutants include, the Arabidopsis superman (sup) epi-mutant, which has sup-like 

flowers. These are flowers characterised by an increase in the number of stamens due 

to hypermethylation within the promoter and 5‟ coding region of the sup gene 

(Jacobsen & Meyerowitz, 1997; Kishimoto et al, 2001). A late flowering phenotype is 

displayed in the Arabidopsis fwa epi-mutant due to hypomethylation at direct repeats 

within the 5‟ region of the fwa gene (Soppe et al, 2000). Silencing of the bonsai gene 

in a ddm1 Arabidopsis mutant produces compact stems (Saze & Kakutani, 2007). A 

rice epi-mutant, Epi-d1 has dwarfed tillers (vegetative branch shoots), assigned to 

hypermethylation at the dwarf1 (d1) gene promoter (Miura et al, 2009). 

Hypermethylation at the colourless non ripening (cnr) locus in tomato inhibits fruit 

ripening (Zhong et al, 2013).    

 

Inducing stable expression changes by interfering with epigenetic systems in 

commercially viable crops could be an additional strategy to create variation and 

reduce the burden on traditional breeding to meet future demands. Therefore, the aim 

of work described in this chapter was to inactivate the tomato maintenance 

methyltransferase, DNA METHYLTRANSFERASE 1 (tomMET1) to examine if this 

would lead to enhanced epigenetic diversity.     

 

6.2. Results 

 

6.2.1. Knockdown of tomMET1 in tomato using an inverted repeat cassette 

driven by the 35S CaMV promoter 

 

A working method was described in Chapter 3 for the generation of stable epi-alleles 

in the model organism Arabidopsis. To apply the same strategy to tomato would 

require the production of a tomMET1 knockout or knockdown line. A knockdown 

approach using an inverted repeat construct was chosen because a knockout line was 

not available. The first objective was to obtain the tomMET1 gene sequence. This was 

acquired using the recently published tomato genome sequence browser (Sato et al, 

2012). Then, a 609 bp region that encodes part of the tomMET1 catalytic domain was 

amplified from tomato cDNA and inserted into the pHannibal inverted repeat vector 
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in opposite orientations. This produced a sense and antisense sequence separated by 

an intron, driven by the 35S promoter. The inverted repeat cassette was then sub-

cloned into the plant transformation vector pGreen 0029 (Figure 6.1A). Tomato 

transformations were carried out in parallel using the 35S tomMET1 inverted repeat 

vector and a pGreen 0029 empty vector control (Figure 6.1B). 1625 explants were 

cultured with the inverted repeat and no positive transformants could be regenerated 

in an antibiotic selection process. 535 explants were cultured with the empty vector 

and five transformants were regenerated in an antibiotic selection process (Figure 

6.2). The lack of 35S tomMET1 inverted repeat tomato transformants highlighted the 

possibility that tomato may be sensitive to the down-regulation of tomMET1 by 

expressing the inverted repeat construct, at least during explant regeneration.  

 

A.                 B. 

  

  

 

 

 

 

 

 

 

Figure 6.1. A map of the 35S inverted repeat constructs used for the knockdown of tomMET1 in tomato. 
Labels and arrows are as described in Figure 4.3. A. The figure shows the 35S tomMET1 inverted 
repeat construct produced as described in Section 8.2.1.7.3 of Materials and Methods. B. The figure 

shows a map of pGreen 0029 used as an empty-vector control.     
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Figure 6.2. A photographic timeline showing the generation of tomato transformed with the pGreen 0029 
empty vector. Tomato transformations were performed as described in Section 8.2.3.2 of Materials and 
Methods. On day one the explants are inoculated with Agrobacterium. Between days 20 and 30 leaf 
primordia begin to emerge highlighted by the purple box. Transgenic tomato leaf and stem structures 
appear after 60 days shown within the red box and require transfer onto rooting medium. Regeneration 
of transgenic lines was only possible for explants transformed with the empty vector control, pGreen 
0029.  

 

6.2.2. Knockdown of tomMET1 in tomato using an inverted repeat cassette 

driven by a heat inducible promoter 

 

The lack of transformants from the 35S tomMET1 inverted repeat transformations 

prompted a change in strategy. A heat inducible (HI) promoter, which had previously 

been characterised in Arabidopsis (Gallois et al, 2002) was chosen to drive the 

tomMET1 inverted repeat. This involved amplifying the HI promoter by PCR using 

primers to incorporate restriction enzyme sites. This enabled the replacement of the 

35S promoter in the 35S tomMET1 inverted repeat construct (Figure 6.3A). The 

activity and tissue specificity of the HI promoter was unknown in tomato. Therefore, 

a HI GLUCURONIDASE (GUS) reporter gene construct (provided by Dr Elena 

Zubko, the University of Leeds) was transferred in parallel into tomato and 

Arabidopsis (Figure 6.3B). Tomato transformants could be generated for both 

constructs. 630 explants were cultured with the HI GUS construct and 11 

transformants were regenerated. 1100 explants were cultured with the HI tomMET1 

inverted repeat construct and 5 transformants were regenerated.  
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A.                   B. 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Maps of the HI tomMET1 inverted repeat and HI GUS constructs. Labels and arrows are as 
described in Figure 4.3. A. The figure shows a map of the HI tomMET1 inverted repeat construct, which 
was produced as described in Section 8.2.1.7.4 of Materials and Methods. B. The figure shows a map of 
the HI GUS construct provided by Dr Elena Zubko, the University of Leeds.   

 

Prior to analysing the HI inverted repeat transformants the activity of the HI promoter 

was characterised using the HI GUS reporter transformants. Arabidopsis and tomato 

HI GUS transformants were grown on MS30 medium with selection. Positive 

transformants were exposed to 30, 35 and 40
o
C overnight and immediately analysed 

for GUS activity. This temperature range was selected because it includes 38
o
C, a 

temperature at which promoter induction was previously found in Arabidopsis 

(Gallois et al, 2002). At 40
o
C, the blue GUS product was detected in the root tips, 

some lateral roots and cotyledon leaf tips of tomato and in roots, root hairs and 

cotyledons of Arabidopsis (Figure 6.4). This data demonstrates that the HI promoter is 

active in both tomato and Arabidopsis. 
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Figure 6.4. GUS histochemical analysis of the HI GUS tomato and Arabidopsis transformants. From left 
to right, the top panels show root tips, lateral roots and cotyledons of 2 week old tomato HI GUS 

transformants after an overnight incubation at 40
o
C and subsequent GUS staining performed as 

described in Section 8.2.4 of Materials and Methods. The bottom panel shows a 2 week old Arabidopsis 
HI GUS transformant after an overnight incubation at 40

o
C and subsequent GUS staining performed as 

described in Section 8.2.4 of Materials and Methods.  

 

Once it had been confirmed that the HI promoter could drive expression of the GUS 

gene in tomato, the HI tomMET1 inverted repeat transformants were analysed using 

the same strategy. First, 5 transformants were confirmed using PCR to amplify a 

region of the transgene. A forward primer that binds to the HI promoter and a reverse 

primer that binds to the tomMET1 antisense insert were used (Figure 6.5).    
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Figure 6.5. Analysing transformants using PCR to amplify a region of the HI tomMET1 inverted repeat 

transgene. On the left is a PCR analysed using an ethidium bromide stained agaorse gel performed as 
described in Section 8.2.1.3 using primers from Section 8.1.4.2 of Materials and Methods. HI tomMET1 
inverted repeat transformant numbers are provided above each lane alongside the 1kb DNA marker 
(Bioline) and a water only control (-ve) on the left. On the right is a map of the HI tomMET1 inverted 

repeat construct. Labels are as described in Figure 4.3. The forward primer binds to the 5‟ end of the HI 
promoter and the reverse primer binds to the 3‟ end of the antisense insert. Primer positions are shown 
on the diagram as green arrows labelled forward and reverse.  

 

After analysing a region of the transgene by PCR, the transformants could be analysed 

for heat induction of the inverted repeat and down-regulation of tomMET1. The 

transformants were exposed to 40
o
C overnight. The expression of the tomMET1 

inverted repeat could be detected at 24 hours after the heat shock (Figure 6.6) using 

the same primers for detecting the presence of the transgene (Figure 6.5) but 

tomMET1 levels were not down-regulated (Figure 6.6). Subsequent samplings after 44 

and 54 hours were scheduled but after 44 hours tissue damage prevented sampling 

(Figure 6.7).  
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Figure 6.6. Analysing the expression of the inverted repeat and endogenous tomMET1 in the HI 
tomMET1 inverted repeat tomato transformant line 1. The figure shows a sqRT-PCR analysis using 
RNA from 2 week old tomato seedlings and an ethidium bromide stained agarose gel. The time of RNA 
sampling after heat shock is provided on the left of the image. Expression of ELONGATION FACTOR, 
INVERTED REPEAT and tomMET1 in a HI GUS line and HI tomMET1 inverted repeat line1 is indicated 
above the gel lanes. A water only sample was included as a negative control (-ve). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7. Tomato transformants 48 hours after heat treatment. The top and bottom panels respectively 
show HI GUS and HI tomMET1 inverted repeat tomato transformants 44 hours after an overnight 40

o
C 

heat exposure.  
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The approach needed to be optimised to avoid heat induced tissue damage. This 

would allow tomMET1 expression analysis at increasing time intervals after heat 

exposure.  In an attempt to avoid tissue damage the 40
o
C exposure period was 

reduced to five and ten hours. These conditions allowed sampling at 15, 44 and 54 

hours but they were not sufficient to induce the expression of the transgene in three of 

the tomMET1 inverted repeat lines analysed (Figure 6.8).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8. Analysing the expression of the inverted repeat in the HI tomMET1 inverted repeat tomato 
transformants. The figure shows a sqRT-PCR analysis using an ethidium bromide stained agarose gel, 
and RNA harvested at 15, 44 and 54 hours from HI tomMET1 inverted repeat lines 1, 2 and 3 after 40

o
C 

heat exposure periods of five and ten hour. Sampling times are indicated on the right and the HI 
tomMET1 inverted repeat line and respective heat exposure periods are indicated above each gel lane. 
ELONGATION FACTOR (EF) was used as a reference gene and DNA isolated from HI tomMET1 
inverted repeat lines 1, 2 and 3 was used as a positive control (+ve DNA) for INVERTED REPEAT 
amplification. A water only sample was used as a negative control (-ve). 
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6.3. Discussion 

 

In this chapter, the inactivation of the tomato maintenance methyltransferase 

tomMET1 was attempted using an inverted repeat cassette. The initial strategy used 

the 35S CaMV promoter to drive inverted repeat expression. Using this strategy it was 

not possible to regenerate transformed tomato, despite repeated attempts and 

successful regeneration of empty vector control lines in parallel. The lack of 35S 

tomMET1 inverted repeat tomato transformants prompted the speculation that 

inactivating tomMET1 in tomato may have extreme consequences for viability, at 

least during explant regeneration. Such an extreme outcome was not anticipated 

because knockout of met1 by mutagenesis has been carried out successfully in 

Arabidopsis (Kankel et al, 2003) and knockdown of met1 by RNA interference 

(RNAi) (Chen et al, 2008; Kim et al, 2008; Oh et al, 2009) has been carried out 

successfully in both Arabidopsis (Chen et al, 2008; Kim et al, 2008) and tobacco (Oh 

et al, 2009). Tobacco was also transformed by explant inoculation and regeneration 

(Oh et al, 2009) similar to the procedure used in this thesis for tomato (Rai et al, 

2012), which would suggest tobacco can tolerate met1 inactivation during explant 

regeneration, unlike tomato. However, Arabidopsis and tobacco do display stunted 

growth and abnormal flower morphology due to DNA hypomethylation (Kim et al, 

2008; Oh et al, 2009), highlighting the fact that DNA methylation changes in plants 

do have developmental consequences.  

 

Lethal effects of interfering with DNA methyltransferases have been documented in 

mammals. For example, mouse dnmt1 (Li et al, 1992), dmnt3a and dnmt3b (Okano et 

al, 1999) mutants are not viable and even quantitative changes can have detrimental 

effects (Loughery et al, 2011). One potential cause of lethality was identified when an 

inverted repeat targeting DNA METHYLTRANSFERASE 1 (DNMT1) activated 

apoptosis in human fibroblast cells (Loughery et al, 2011). This was assigned to a 

drop in steady state protein levels for key mismatch repair (MMR) components, 

resulting in elevated mutations at microsatellite repeats, including those which are 

unmethylated (Loughery et al, 2011). An effective inducible strategy will allow any 

phenotypes of the tomMET1 inverted repeat in tomato to be characterised at specific 

developmental stages.  
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Inverted repeats can target non-specific RNA (RNAi off-targeting) if their sequence is 

also homologous to other sequences in addition to the target. RNAi off-targeting can 

result in translation blocking or cleavage of non-specific targets. It can complicate the 

interpretation of phenotypic effects and result in toxicity (Jackson & Linsley). When 

all full length cDNAs in the Arabidopsis genome are used as initiators of RNAi, it 

was found that an average of 68.7% of transcripts could potentially silence 3.9 off-

target genes (Xu et al, 2006). The tomMET1 inverted repeat sequence was screened 

against the tomato genome (Sato et al, 2012; Xu et al, 2006) and no homology with 

any non-specific targets was found. It is therefore unlikely that the tomMET1 inverted 

repeat has off-target effects, which are responsible for the phenotype. Using a 

different region of the tomMET1 cDNA in the inverted repeat construct and observing 

the same phenotypes would, however, increase confidence in siRNA specificity.    

 

A heat inducible promoter was chosen for the controlled induction of the tomMET1 

inverted repeat. Using this promoter allowed activation of the transgene with an 

overnight 40
o
C heat treatment. However, 24 hours after induction tomMET1 levels 

were unchanged. At this stage the competence of the inverted repeat could be 

questioned but the inability to amplify the inverted repeat cassette in one amplicon 

using PCR from a plasmid template is a good indicator of hairpin formation. It is 

more likely that a 24 hour period is not sufficient to induce silencing as it can take up 

to 48 hours for siRNAs to degrade target mRNA, especially for transcripts with high, 

stable expression levels (Hahn et al, 2004). Tissue damage appeared 48 hours after 

heat exposure preventing sampling and subsequent tomMET1 expression analysis. 

Shorter heat shock periods of five and ten hours were insufficient to induce detectable 

inverted repeat expression. It could be argued that instability of the primary transcript 

would prevent detection by RT-PCR, but the ability to detect inverted repeat 

expression using an overnight 40
o
C heat treatment would agrue against this. A 

Northern blot to analyse siRNAs produced by the inverted repeat would be an 

alternative strategy to analyse inverted repeat expression, and could be performed 

when an effective induction strategy, which does not cause tissue damage after 

induction, is developed to allow tomMET1 expression levels to be analysed over an 

extended time course.  
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The activity of the HI promoter was analysed using the GUS reporter gene in 

Arabidopsis and tomato. GUS activity was detected after a 40
o
C overnight incubation 

in Arabidopsis roots, root hairs and cotyledons and in tomato root tips, some lateral 

roots and cotyledon leaf tips. This demonstrates that the HI promoter is active in both 

Arabidopsis (Gallois et al, 2002) and tomato in specific locations after an overnight 

40
o
C heat exposure. HI promoter activity in other locations in which GUS product 

was not detected, such as the stem, cannot be used as an indicator for null activity. HI 

promoter activity in these areas may be exceptionally weak preventing GUS product 

detection or it may be more difficult to infiltrate with substrate. RNA isolated from 

null expressing tissue could be analysed for GUS expression by PCR based methods 

after heat treatment. 

 

On reflection, the 35S tomMET1 inverted repeat strategy created an unpredictable 

outcome and the heat inducible system caused tissue damage at a temperature which 

activated the promoter. The outlook for this project is now to develop and test a 

system for controlled induction of the tomMET1 inverted repeat that avoids tissue 

damage complications in the heat inducible approach. To test if the use of an 

inducible promoter which does not involve increased temperatures is less damaging, 

knockdown of tomMET1 will be attempted using the same inverted repeat cassette 

under the control of an alcohol inducible (AI) promoter (Caddick et al, 1998; Roslan 

et al, 2001). While an alcohol inducible system should be less damaging than the heat 

inducible system, it is not without its side effects. For example, ethanol treatment of 

tomato inhibits fruit ripening (Kelly & Saltveit, 1988), however, this should not 

prevent molecular analysis. Targeting tomMET1 will remain the focus, as this aims to 

create genome wide epigenetic changes and such large scale changes provide capacity 

for scientific discovery. If the strategy is successful, tomMET1 knockdown lines will 

be phenotypically characterised, which may require large scale expression profiling 

and bisulfite sequencing. 
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7.0. General Discussion 

 

Inducing stable DNA methylation changes that transcend into expression changes 

could be a source of phenotypic variation in plants. In this study, four strategies have 

been developed and tested for their capacity to induce stable DNA methylation and 

expression changes.  

 

7.1. Chemical induction of DNA methylation changes 

 

Zebularine has a half life of approximately 508 hours and effectively demethylates the 

Arabidopsis genome (Baubec et al, 2009). These two properties highlighted the 

chemical as an ideal candidate to induce DNA methylation changes in commercial 

crops. Tomato was appealing due to the recent completion of the genome sequencing 

project (Sato et al, 2012) and the stable epigenetic change demonstrated by the tomato 

cnr mutant (Manning et al, 2006).     

 

Treatment of tomato with zebularine induced DNA methylation changes within rDNA 

in two independent repetitions. However, while these changes were somatically 

heritable they reverted in subsequent generations. These data support an epigenetic 

reprogramming mechanism that functions in the germline or during early 

embryogenesis of tomato. Unlike mammals, there is currently no clear evidence in 

plants for an extensive global epigenetic reprogramming in the developing embryo. 

There is, however, an example for demethylation of an imprinted gene in maize. The 

MATERNALLY EXPRESSED IN EMBRYO 1 (MEE1) maternal allele is demethylated 

during fertilisation and methylated later in embryogenesis (Jahnke & Scholten, 2009), 

which suggests that some plants have evolved a mechanism for resetting of epigenetic 

marks at imprinted loci. Considering that rDNA methylation is not dictated by a 

maternal or paternal imprint, it will be interesting to determine whether epigenetic 

reprogramming in tomato is sequence specific or a global event, as in mammals. 

 

7.2. MET1 inactivation 

 

If DNA methylation changes are to be a source of stable variation in plants, then they 

must be heritable across generations. Therefore, while chemical treatment was 
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suitable for the induction of somatically heritable changes, a strategy was required to 

induce trans-generational changes. The detection of methylated loci unaffected by 

zebularine treatment, highlighted the possibility that trans-generational changes 

required minimal threshold levels. To maximise DNA methylation loss genetic 

strategies were developed to inactivate MET1. The strategy was first tested in 

Arabidopsis and then applied to tomato. 

 

One surprising observation was the different sensitivity of Arabidopsis and tomato to 

MET1 inactivation. While the Arabidopsis met1 mutant was viable and produced 

viable offspring, it was not possible to produce tomato lines transformed with a 

constitutively expressed MET1 inverted repeat. The sensitivity of tomato to the MET1 

inverted repeat was unanticipated since both tobacco (Oh et al, 2009) and rice 

(Teerawanichpan et al, 2004) have been successfully transformed with inverted 

repeats to target their MET1 homologues. However, the requirement of certain 

epigenetic modifiers is critical at early developmental stages in some plants. In rice 

the requirement of the epigenetic modifier ROS1a appears indispensible for viable 

offspring, as the progeny of a ros1a heterozygous mutant contains no homozygous 

mutant lines, due to embryonic lethalility (Ono et al, 2012). It is therefore tempting to 

speculate that MET1 may have an essential role in the regeneration of tomato 

explants.     

 

Alternatively inactivating MET1 in tomato could be lethal. Lethal effects of 

inactivating DNA methyltransferases have been documented in mammals. For 

example mouse dnmt1 (Li et al, 1992), dmnt3a and dnmt3b (Okano et al, 1999) 

mutants are not viable. One potential cause of lethality was identified when an 

inverted repeat targeting DNA METHYLTRANSFERASE 1 (DNMT1) activated 

apoptosis in human fibroblast cells (Loughery et al, 2011). This was assigned to a 

drop in steady state protein levels for key mismatch repair (MMR) components, 

resulting in elevated mutations at microsatellite repeats, including those which are 

unmethylated (Loughery et al, 2011). Therefore, if MET1 inactivation is lethal in 

tomato, secondary functions of MET1 as well as DNA methylation changes should be 

considered.  
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7.3. Novel MET1 targets 

 

A search for novel epigenetically regulated target genes in the met1 Arabidopsis 

mutant identified a ncRNA locus, which has several surprising features with regards to 

its epigenetic regulation. While loss of CG methylation at this locus in met1 was 

expected as MET1 is the CG maintenance methyltransferase, a reduction in non-CG 

methylation was unanticipated. At the ncRNA locus CG methylation is reduced by 

71% in met1 but in addition CHG and CHH methylation levels are reduced by 60% 

and 78%, respectively.  This suggests that the separation between CG and non-CG 

methylation pathways is lost at this locus and that MET1 is required for cytosine 

methylation in all sequence contexts. There are other reports of non-CG methylation 

loss in met1. For example, CHG methylation is modestly reduced at the SADHU1-3 

retroelement (Rangwala & Richards, 2007) and non-CG methylation is lost at a 

REPETITIVE PETUNIA SEQUENCE (RPS) element when introduced into met1 

(Singh et al, 2008). The ncRNA locus, however, is the first example of an endogenous 

gene to show drastic losses of both CHG and CHH methylation in met1, and could 

therefore become a useful model gene to investigate the mechanisms responsible for 

this unusual DNA methylation pattern.  

  

The epigenetic changes at the ncRNA locus were stably inherited over three 

generations, proving that epigenetic modifier mutants can be exploited to induce 

heritable epigenetic variation in plants. This was not consistent among all the target 

genes analysed. The FWA gene, which is activated in met1, reverts when a wild-type 

MET1 allele is restored by a genetic cross. The mechanisms which distinguish target 

gene stability are unknown but it is tempting to speculate that target genes under strict 

epigenetic control are less likely to stably change their DNA methylation profile. This 

may especially apply to targets that are associated with siRNAs, which function as 

part of the RdDM pathway. As soon as a functional MET1 allele is restored 

methylation woud be restored and gene expression switched „off‟ (Teixeira et al, 

2009). This speculation is encouraged as two direct repeats within the 5‟ coding 

region of the FWA gene are targets for RdDM when the locus is introduced into wild-

type as a transgene (Chan et al, 2006). 
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The stable nature of the ncRNA epi-alleles was again demonstrated by the silent 

methylated Columbia allele and active Wassilewskija allele, which were stably 

transmitted through a Columbia/Wassilewskija hybrid. The inactive Columbia allele 

contains methylation throughout the promoter and transcribed regions, while 

methylation in the active Wassilewskija allele is restricted to the upstream promoter 

region. Only a small 107 bp promoter region of the Wassilewskija ncRNA allele 

remains unmethylated, which raises two possibilities. Either the small unmethylated 

promoter region is responsible for expression of the ncRNA locus or expression is 

influenced by methylation within the transcribed region. The observation that the 

ncRNA promoter-reporter transgene has a much lower expression level than the 

ncRNA locus in met1 and Wassilewskija, argues in favour of a contribution from the 

transcribed region to the expression control of the locus, for example via hosting an 

enhancer that could be affected by methylation. Analysing the influence of 

methylation within the transcribed region of the ncRNA locus, would be a particularly 

interesting outlook considering that the role of gene body methylation is still 

speculative, and there are very few examples in which body methylation influences 

transcription. One of the few examples in which body methylation influences 

transcription are CYSTEINE RICH PEPTIDASE (CRP) genes. In comparison to the 

ncRNA locus in Columbia, CRP genes are methylated in leaves at CG and non-CG 

sequences within their transcribed regions (You et al, 2012). The methylation within 

the coding region of CRP genes likely contributes to gene silencing because its loss in 

synergid cells correlates with CRP gene expression (You et al, 2012). 

 

7.4. MET1 over-expression effects  

 

If MET1 was restricted to a CG maintenance function then the predicted outcome of 

increasing MET1 levels would be maintenance of CG methylation. The loss of non-

CG methylation at the ncRNA locus in met1 suggests MET1 functions deviate from 

the classical CG maintenance model. To investigate novel MET1 functions both a 

catalytically active and inactive MET1 were over-expressed in Arabidopsis. In this 

study no direct DNA methylation changes were detected when over-expressing 

MET1. RD29A down-regulation when over-expressing the catalytically active MET1 

is encouraging, as this could be an outcome of increased DNA methylation within the 

RD29A promoter. However, a complete analysis of the RD29A promoter is still 
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required to determine if DNA methylation is involved in RD29A down-regulation in 

MET1 over-expression lines. In contrast to RD29A, some target genes were up-

regulated. This was the case for AT2G41380, which was up-regulated in both MET1 

catalytically inactive and active lines. AT2G41380 codes for a protein 

methyltransferase that requires the same substrate as MET1. These observations 

formed the hypothesis that AT2G41380 could be involved in a competitive feedback 

loop with MET1. Feedback mechanisms involved in the regulation of epigenetic 

modifiers have previously been demonstrated. For example, ROS1 levels are down-

regulated in a hypomethylated background presumably to prevent further loss of 

methylation (Mathieu et al, 2007). These observations highlight the potential 

complexity of feedback networks, which makes them interesting subjects for further 

analysis.    

 

7.5. Active demethylation 

 

The study of mammalian epigenetic modifiers is complicated by embryonic lethality 

caused by epigenetic modifier inactivation. The high tolerance of Arabidopsis to DNA 

methylation changes makes it an ideal candidate to investigate mammalian epigenetic 

modifiers. The fourth strategy therefore exploited Arabidopsis to study the 

mammalian TET3 methylcytosine dioxygenase. Intriguingly, methylation levels at a 

region within AtCOPIA4, AT5G10540 and 180 bp CENTROMERIC REPEATS 

remained stable, while a region within the rDNA locus was demethylated in TET3-

expressing Arabidopsis lines. This implies that demethylation, similar to the 

conservation of hypomethylation described earlier, is locus-specific. The mechanisms 

which dictate selective demethylation within the rDNA locus and the stable 

conservation of methylation at other loci are unknown. It is important to acknowledge 

that the TET3 gene is expressed in a wild-type background and therefore TET3 has to 

compete with endogenous methylation systems. The efficiency of endogenous 

methylation systems in reverting epigenetic changes is exemplified by FWA 

expression in the met1 mutant, which is rapidly reset upon restoration of a functional 

MET1 wild-type allele. A possible model could be that demethylation only affects loci 

that conserve epi-alleles such as the rDNA locus. At other regions, TET3 

demethylation effects would be quickly erased by efficient re-methylation. 
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7.6. Outlook and open questions 

 

7.6.1. Testing and exploiting the ncRNA promoter 

 

Several aspects of this work require further study. It is still unclear, whether 

methylation within the promoter or the transcribed region influences expression of the 

ncRNA locus. To analyse whether methylation within the transcribed region has a role 

in expression of the ncRNA locus, an inverted repeat of the transcribed region could 

be introduced into Arabidopsis Wassilewskija. The inverted repeat would target DNA 

methylation via the RdDM pathway to the transcribed region. The inverted repeat, 

however, could also silence the ncRNA locus via post transcriptional silencing 

mechanisms. Therefore, to prevent transcript degradation the inverted repeat would 

either have to be introduced into a rdr6 mutant that lacks posttranscriptional silencing 

or the transgene has to be segregated after DNA methylation establishment. 

Arabidopsis Wassilewskija lines containing methylation within the transcribed region 

would be analysed for ncRNA locus expression. The same strategy could be carried 

out in parallel to test promoter methylation.  

 

If methylation within the 107 bp region of the ncRNA promoter was responsible for 

expression, then the ncRNA promoter could be exploited to analyse MET1 regulators. 

The ncRNA promoter would be fused with a reporter gene and transferred into 

Arabidopsis Columbia. To analyse MET1 regulators would require silent Arabidopsis 

Columbia reporter gene lines, which could be produced either by screening a large 

population or by exploiting the inverted repeat strategy. The progeny would be 

subjected to EMS mutagenesis and subsequently screened for the release of silencing 

by analysing reporter gene expression. Lines that express the reporter gene will 

contain mutations within the MET1 and DDM1 genes but also within genes coding 

MET1 regulators (Figure 7.1). 

 

In addition silent reporter gene lines could be exploited to identify MET1 inhibitors. 

MET1 inhibitors may become useful as anti-cancer compounds if they were to also 

inhibit DNMT dysfunction that occurs in cancer cells. To analyse MET1 inhibitors, 

protoplast from silent reporter gene lines could be exposed to MET1 inhibitor 
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candidates in a chemical screen. Positive MET1 inhibitors would release the silencing 

of the reporter gene (Figure 7.2).   

 

 

       

 

 

 

 

 

 

 

Figure 7.1. A screen for genetic MET1 regulators. An illustration of some key steps to identify genetic 
MET1 regulators using the ncRNA promoter. ncRNA promoter reporter gene transformants, which have 
a silent copy of the transgene due to DNA methylation, would be subjected to EMS mutagenesis 
indicated on the left by the staggered arrow. Offspring from the EMS mutagenised parent would be 
analysed for expression of the reporter gene to identify genetic MET1 regulators. In the example above 
one line shows resistance to selection (green) and therefore expression of the reporter gene, which 
could be due to loss of silencing from the ncRNA promoter via a mutation in MET1 or a MET1 regulator.   
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Figure 7.2. A screen for MET1 inhibitors. An illustration of some key steps to identify MET1 inhibitors 
using the ncRNA promoter. Protoplasts from a ncRNA promoter reporter gene transformant that has a 
silent copy of the transgene could be used in a chemical screen with MET1 inhibitor candidates. MET1 
inhibitors would be identified by populations of protoplasts that express the reporter gene. The middle 
well third from the right in the final plate would highlight a potential MET1 inhibitor as silencing of the 
ncRNA promoter has been lost allowing expression of the reporter gene. 

 

7.6.2. MET1 depletion in tomato 

 

The inability to transform tomato with a MET1 inverted repeat driven by a 

constitutive promoter led to the speculation that MET1 interference is lethal to 

tomato. To test this theory MET1 will be inactivated using an inducible inverted 

repeat system. If MET1 depletion is lethal in tomato it would highlight its similarity 

to mammalian systems (Loughery et al, 2011). Future work should then investigate 

MMR components to analyse if, as in mammals (Loughery et al, 2011), MET1 

depletion interferes with this system resulting in lethality.  

 

Mammalian embryonic lethality is also caused by increasing DNA methyltransferase 

levels (Biniszkiewicz et al, 2002). Considering the similarity of tomato and mammals 

in response to a reduction of CG methyltransferases, it would be interesting to analyse 
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the sensitivity of tomato to MET1 over-expression by transforming tomato with the 

Arabidopsis MET1 construct used in this work.   

 

7.6.3. SAM levels 

 

It is not clear if expression levels of AT2G41380 are altered by changing SAM 

resources. To investigate if SAM levels are involved in the potential feedback loop, 

the expression of AT2G41380 could be analysed in mutants in feedback loop 

components, such as an S-adenosyl methionine synthetase mutant. Arabidopsis 

contains two SAM synthetase encoding genes, SAM-1 and SAM-2, for which mutants 

are available. It may be necessary to cross the two mutant lines to generate a sam-1, 

sam-2 double mutant to detect changes in AT2G41380 expression.  

 

A feedback system will likely involve multiple regulators. To characterize the 

feedback system would require a reporter gene construct using the AT2G41380 

promoter to drive expression. After transfer into plants the expression of the reporter 

gene could be analysed in a T2 population following EMS mutagenesis. Plants with 

changes in expression would have mutations in the MET1 gene but also within other 

genes required for a feedback system to function.   

 

7.6.4. Target DNA demethylation 

 

The strategies in this work were developed to induce genome-wide DNA methylation 

changes. While a broad approach provides capacity for scientific discovery, it is also 

important to consider a target-specific system, which would be useful to induce DNA 

methylation changes at specific loci. In this work TET3 has been linked to several 

targeting domains, which could be tested for their target specificity in plants. An 

optimised target-specific system could be exploited to activate silent disease- or 

stress-resistant genes. The applications could be extended into mammals where TET3 

could be targeted to tumour suppressor genes that become silenced in some cancers. 

 

 

 

 



103 

 

8.0. Materials and Methods 

 

8.1. Materials 

 

8.1.1. Plant material 

 

All the Arabidopsis mutants and respective wild-types used in this study contain a 

Columbia background, unless stated otherwise. The Arabidopsis met1-1 mutant was 

provided by Dr Ortrun Mittelsten Scheid (GMI, Vienna, Austria) and genotyped 

according to Singh et al, (2008). All other T-DNA lines were obtained from NASC 

and genotyped using primers in Section 2.1.4.1. Hybrid lines were generated using a 

standard crossing procedure (Scholl et al, 2000). 

 

8.1.2. Bacterial strains  

 

Plasmid cloning was carried out using Escherichia coli DH5 (New England 

Biolabs). Plant transformations were carried out using Agrobacterium 

tumefaciens GV3101::pMP90 (Hellens et al, 2000a). 

 

8.1.3. Donated plasmids and DNA sequences 

 

The pGreen plasmid collection (Hellens et al, 2000a; Hellens et al, 2000b) was 

provided by Mark Smedley (John Innes centre, Norwich research park, Colney, 

Norwich, NR4 7UH). pGreen 0179, containing the 35S-NOS cassette, was provided 

by Dr Andrea Kunova (P. Meyer lab, Centre for Plant Sciences, University of Leeds, 

Leeds, LS2 9JT). The heat inducible promoter (Hsp18.2) (Gallois et al, 2002) was 

provided by Robert Stablowski (John Innes centre, Norwich research park, Colney, 

Norwich, NR4 7UH). The Arabidopsis MET1 cDNA cloned in p-GEM T easy 

(Promega) and the Hsp18.2:GUS construct  were provided by Dr Elena Zubko (P. 

Meyer lab, Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT). The 

human TET3 and MBD cDNA clones were provided by Dr Colm Nestor (R. Meehan 

lab, MRC Human Genetics Unit MRC IGMM, University of Edinburgh Western 

General Hospital, Crewe Road, Edinburgh EH4 2XU). The pHannibal inverted repeat 
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cloning vector (Wesley et al, 2001), was provided by Dr Wayne Charlton (Centre for 

Plant Sciences, University of Leeds, Leeds, LS2 9JT). The pACN and pSRNACNBin 

alcohol inducible system was obtained from Zeneca (Caddick et al, 1998; Roslan et 

al, 2001). 

 

8.1.4. Primer sequences 

 

 All of the primer sequences are for Arabidopsis unless stated otherwise. 

 

8.1.4.1. Primer sequences used for genotyping 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mutant Forward primer Reverse primer 

met1-1 (+HaeIII) CTCTTTAGTAGAAGTTGGCATG GTTAAGCTCATTCATAGCCTTGC 

drm2-2 (SALK_150863) ATTCGTGTAGCCCTTGAGCC TTACCGCCTGCCAGATTGTT 

ncRNA SNP CGCACGTCGACTTCTTCTTTT GCAGACAACAAACAACCACAGA 

ddm1-10 TATGCTGCTTTTGCGTTGCT AGCAACGCCAGTATGTCCTC 
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8.1.4.2. Primer sequences used for expression analysis 

 

Target gene Forward primer Reverse primer 

ncRNA (AT4G15242) (qRT-PCR and 

sqRT-PCR) 

CGATCTGTGCGCTTTACTCCC GGCTTGGGAAATGGAAAGAG

G 

SAM dependent Methyltransferase 

(AT2G41380) 

AGCAGAGCAATATGCAGCAGCC TAAATCAACTGATTCAGG 

EF1a (AT1G07940) (qRT-PCR) CTCTCCTTGAGGCTCTTGACCAG CCAATACCACCAATCTTGTAG

ACATCC 

EF1a (AT1G07940) (sqRT-PCR) GCGTGTCATTGAGAGGTTCG GTCAAGAGCCTCAAGGAGAG 

FWA (AT4G25530) GAGAGAGTTGATTACATTGGG CACTTTATGGGTTGATGCCAC 

CACTA (AT2G12210) CATGTGTAAACGACTGCTGTC ATTTCCAGGTTGTTGTGGTCC 

TET3 CTGCCCGAGCCTGCCAAGTC GGGCTTCAGGCCTTGCTGGG 

MET1 (AT5G49160) GGGCTCGAGCTTCCATTATCATC

AGTCAC 

GGGGGTACCGCTGGTTTGGAT

GAGACAGC 

Solanum lycopersicum MET1 CGGCTTGCGTTGAGGTTTAT GATGACAAAGTCCCTGATGG 

Solanum lycopersicum EF1a GAGCGATGGATGGTGAATCT TTGTACGTGCGTCCAGAAAG 

Solanum lycopersicum MET1 inverted 

repeat 

GCCAACAACAGGAAGATCTCCA

A 

TCTTCGTCTTACACATCACTTG

TCA 

UNKNOWN (AT5G15360) GGCTTGTTGTTCGAGCCGGC ACGACAGCCCGAGCCGAGA 

NODULIN MtN3 (AT4G10850) ATTAACAATAAACGGCACAGGG GAAATCCAGCTACCGATAACC 

F-BOX gene (AT1G19070) TCAGATGAGATAATCTGCCACA CCTAATGGGCAAATTGCTTG 

RD29A (AT5G52310) TGATCGATGCACCAGGCGTAAC TCGGGGTCTCGACGTTGACCT 
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8.1.4.3. Primer sequences used for bisulfite sequencing 

 

Target locus Forward primer Reverse primer 

rDNA GGGGAGGTAGTGAYAATAAATAA CACTCTAATTTCTTCAAARTAACA 

Upstream of the AT4G15242 

promoter 

TGATTAYAATTATTAAAGATTATG

TGA 

ATTTATAAATARTAAATAAAAATT

CA 

AT4G15242 promoter TATTTATAAATTGTGTATTGTAAG CATCATTAAATATATCATTTAAAC 

AT4G15242 promoter/body 

(fragment 1) 

AAATTTATGATATAYTGATAAAAT

TA 

TTTACCATTCATAARCTATAATCC 

AT4G15242 promoter/body 

(fragment 2) 

AGTTTATGTTTTAGGTTTTGAATG

AATG 

CCACRCACRTCRACTTCTTCTTTT 

AT4G15242 body (fragment 3) AAAAGAAGAAGTYGAYGTGYGTG

G 

CACCAAAAARARACCAACTTCCC

C 

AT4G15242 body (fragment 4) TGTTTGTGTGTTGYTGTTTTAGGT

GTAG 

CCAAAARTRTTARRCAATRCTTAC

TCACTCTAAC 

AT4G15242 body (fragment 5) GATTGGTGGTGTTAGTATGGCTCT

TTGTG 

TAAATATTCATTATCACAATRAAA

ATTTC 

AT4G15242 terminator 

(fragment 6) 

GAGGATTAGGTTYAAGAATGTTG

TATG 

CACAACRAARCARTCACTTTC 

AT4G15242 hypo/hyper mC 

junction 

GGATTATAGYTTATGAATGGTAA

A 

CCACRCACRTCRACTTCTTCTTTT 

180 bp CENTROMERIC 

REPEAT 

CATAACGRCCCACTTCCTATATCC

ACACA 

TTGAGTATTAGGGTTTCYGGAATA

TTTGG 

AT5G10540  AGTTTGTGATAYAATTGTATATTG

TTTTA 

ACATATACTRAAACACRACATATT

AA 

EVD COPIA  AGATCCCAAAATTCTCTCCCCACC AGATGAAGAAGAAGATAATAA 

RD29A promoter GTAAATGTAAAATGATTATATGAT

GGG 

CTAAAATTAAAATCTACCTAAATA

CTAC 

ncRNA GUS fusion GGATTATAGYTTATGAATGGTAA

A 

CCCACCAACRCTRATCAATTCCAC 

 

 

 

 

 

 

 



107 

 

8.1.4.4. Primer sequencing used for southern blot probe amplification 

 

Name Forward primer Reverse primer 

rDNA TACCTGGTTGATCCTGCCAG

T 

CAATGATCCTTCCGCAGGTTC

AC 

180 bp CENTROMERIC 

REPEAT 

CGCCGCCCATGCATAACG GTTTTCACCACCATTACCTGA

TC 

 

8.1.4.5. Primer sequences used for methylation-sensitive amplified fragment 

length polymorphism (MS-AFLP) analysis 

 

Adaptor and respective primer 

names 

 

EcoRI adapter oligos CTCGTAGACTGCGTACC AATTGGTACGCAGTCTAC 

EcoRI pre-selective primer GACTGCGTACCAATTCA 

EcoRI selective primer GACTGCGTACCAATTCACTG 

HpaII/MspI adaptor oligos GATCATGAGTCCTGCT CGAGCAGGACTCATGA 

HpaII/MspI pre-selective primer ATCATGAGTCCTGCTCGGA 

HpaII/MspI selective primer ATCATGAGTCCTGCTCGGACT 
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8.1.4.6. Primer sequences used for plasmid construction 

 

Construct and 

respective primer 

names 

Forward primer Reverse primer 

8.2.1.7.1   

5‟ Bsu36I 

catalytic domain  

GTTAAAGTGAGAAGGTTTTATAG CAGAAAATCCCTGAGATGGAGGTCCAC

C 

3‟ PpUMI 

catalytic domain 

GGTGGACCTCCATCTCAGGGATTTTCTG TATGCACCGGCCTCCAGGATTCC 

8.2.1.7.3   

ClaI/XbaI Sense GGGATCGATCCGTTCACTTACTGTCAGAG GGGTCTAGACTAAGTGAGCCTATTTTTG

C 

XhoI/KpnI 

Antisense 

GGGGGTACCCCGTTCACTTACTGTCAGAG GGGCTCGAGCTAAGTGAGCCTATTTTTG

C 

8.2.1.7.4   

XhoI/FspI 

Heat inducible 

promoter 

GGGTGCGCAATGGTCATTTCTTCTGGTT GGGCTCGAGCCTGCTGATTTGATCTGA 

8.2.1.7.5   

5‟ NsiI/PstI met1 

inverted repeat 

GGGATGCATAATATGTCCTTTGCTAATCC GGGCTGCAGATTGGGGTACCCCGTTCA

CTTACT 

3‟ KpnI/PstI met1 

inverted repeat 

ACGGGGTACCCCAATTGGTAAGGAA GGGCTGCAGACTAAGTGAGCCTATTTTT

G 

8.2.1.7.6   

HindIII/EcoRI 

TET3 

CCAACCAAGCTTGGCCCCACGGTCGCCTCTA

T 

CCAGAATTCTGAGGTACGCTGGCTCCCT 

8.2.1.7.7   

BstXI/BamHI 

ncRNA promoter 

GGGCCACCGCCGTGGGCAAGTTTTTGGTTTGT

TTT 

GGGGGATCCGCTAAGTATATTGGAAGT

AT 
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8.2. Methods 

 

8.2.1. DNA analysis and cloning 

 

8.2.1.1. Isolation of genomic DNA from plants 

 

Isolation of plant genomic DNA was carried out using the modified Vejlupkova and 

Fowler method (Vejlupkova & Fowler, 2003). 560 l of extraction buffer (200 mM 

NaCl; 18 mM NaHSO3; 200 mM Tris-HCl, pH 8.0; 0.07 mM EDTA) and 180 l of 

5% sarkosyl was added to 0.5 g of plant tissue ground in liquid nitrogen. 2 

phenol:chlorophorm:isoamyl-alcohol (12:12:1) and 1 chlorophorm extractions were 

performed after a 2 h 65
o
C incubation. The DNA was precipitated and washed with 

100% isopropanol and 70% ethanol, respectively. Re-suspension was carried out 

using TE buffer (pH 8.0) supplemented with RNase A (20 mg/l).   

 

8.2.1.2. Mini-prep isolation of plasmid DNA from E. coli 

 

Mini-prep isolation of plasmid DNA from E. coli was carried out using a modified 

alkaline lysis method (Sambrook et al, 1989). Individual colonies were grown in a 

shaking incubator in 2 ml of liquid lysogeny broth (LB) media (10 g/l bacto-tryptone; 

5 g/l bacto-yeast extract; 10 g/l NaCl) supplemented with the required antibiotics for 

17 h at 37 
o
C. 100 l, 200 l and 150 l of solution 1 (50 mM glucose; 25 mM Tris-

HCl, pH 8.0; 10 mM EDTA, pH 8.0), solution 2 (0.2 M NaOH; 1% SDS) and solution 

3 (3 M KAc, pH 5.5) was added to the pelleted culture. Cell debris were removed by 

centrifugation at 17000 g and plasmid DNA was precipitated and washed with 100% 

isopropanol and 70% ethanol, respectively.   

 

8.2.1.3. Isolation of plasmid DNA from Agrobacterium 

tumefaciens GV3101::pMP90 

 

Mini-prep isolation of plasmid DNA from Agrobacterium was carried out using a 

modified alkaline lysis method (Wang, 2006). Individual colonies were grown in a 

shaking incubator in 10 ml of liquid lysogeny broth (LB) media (10 g/l bacto-
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tryptone; 5 g/l bacto-yeast extract; 10 g/l NaCl) supplemented with the required 

antibiotics for 48 h at 28 
o
C. 100 l, 200 l and 150 l of solution 1 (50 mM glucose; 

25 mM Tris-HCl, pH 8.0; 10 mM EDTA, pH 8.0; 4 mg/ml lysozyme), solution 2 (0.2 

M NaOH; 1% SDS) and solution 3 (3 M KAc, pH 5.5) was added to the pelleted 

culture. A phenol:chlorophorm:isoamyl-alcohol extraction was carried out and the 

DNA was precipitated and washed with 99% ethanol and 70% ethanol, respectively.  

 

8.2.1.4. E. coli chemically competent cells and plasmid transformation 

 

E,coli competent cells were made according to (Sambrook et al, 1989). E. coli was 

grown in a shaking incubator in 500 ml of liquid lysogeny broth (LB) media (10 g/l 

bacto-tryptone; 5 g/l bacto-yeast extract; 10 g/l NaCl) at 37
o
C. When an OD600 0.4 

was reached cells were pelleted (6000 g) and re-suspended three times using 100 mM 

MgCl2, 100 mM CaCl2 and 85 mM CaCl2 15% glycerol. The final re-suspension was 

aliquot, frozen using liquid nitrogen and stored at -80
o
C. DNA for transformation was 

added to ice-thawed aliquots and transformed by heat shock.   

 

8.2.1.5. Agrobacterium tumefaciens GV3101::pMP90 electro-competent cells and 

plasmid transformation 

 

Agrobacterium competent cells were made and transformed according to (Mersereau 

et al, 1990; Shen & Forde, 1989). Agrobacterium was grown in a shaking incubator in 

500 ml of liquid lysogeny broth (LB) media (10 g/l bacto-tryptone; 5 g/l bacto-yeast 

extract; 10 g/l NaCl) supplemented with the required antibiotics at 28 
o
C. When an 

OD600 0.8 was reached the cells were pelleted (6000 g) and re-suspended in ice cold 

sterile water. This procedure was repeated 3 times with a final re-suspension in 10% 

glycerol. The final re-suspension was aliquot, frozen using liquid nitrogen and stored 

at -80
o
C. DNA for transformation was added to ice-thawed aliquots and transformed 

by electroporation.   
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8.2.1.6. Polymerase chain reaction (PCR) 

 

PCR for genotyping and semi-quantitative gene expression analysis was carried out 

using My Taq DNA polymerase (Bioline) according to the manufacturer‟s 

instructions. PCR for plasmid construction was carried out using the proof reading 

polymerase Phusion (Finnzymes) according to the manufacturer‟s instructions.   

 

8.2.1.7. Construction of plasmids 

 

Restriction enzymes were used according to the manufacturer‟s instructions (New 

England Biolabs). DNA fragments with compatible ends were ligated in a reaction 

incubated for 17 h at 4 
o
C using 1 U of T4 DNA ligase (Promega). De-

phosphorylation of recipient plasmids was carried out using calf intestinal alkaline 

phosphatase (Promega) according to the manufacturer‟s instructions. 5‟ overhangs 

produced after amplicon assembly were filled by PCR. Expression cassettes were 

transferred into both pGreen 0179 and pGreen 0029, which have in plant hygromycin 

and kanamycin selection, respectively.      

 

8.2.1.7.1. Catalytically active Arabidopsis MET1 over-expression 

 

The MET1 gene was cut from p-GEM T easy (Promega) using EcoRI and 

subsequently ligated into pGreen 0179 35S-NOS, which contains a single EcoRI site 

in the polylinker region between the promoter and terminator. ApaI and NotI allowed 

the cassette to be transferred into pGreen 0029. 

 

8.2.1.7.2. Catalytically inactive (mutated) Arabidopsis met1 over-expression 

 

The 5‟ and 3‟ ends of the MET1 region encoding the catalytic domain were amplified 

using the 5‟ Bsu361 catalytic domain and 3‟ PpUMI catalytic domain primers from 

met1 in p-GEM T easy (Promega). The 5‟ Bsu361 catalytic domain reverse primer 

and the 3‟ PpUMI catalytic domain forward primer overlap and contain a missense 

mutation with respect to the original MET1 cDNA sequence. This missense mutation 

changed a conserved cysteine to a serine in the produced protein, when the two 

amplicons were assembled and replaced the Bsu361 and PpUMI flanked region in the 
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catalytically active Arabidopsis MET1 over-expression plasmid, 8.2.1.7.1. ApaI and 

NotI allow the cassette to be transferred into pGreen 0029.   

 

8.2.1.7.3. 35S Solanum Lycopersicum MET1 inverted repeat 

 

A 609 bp region of the Solanum lycopersicum MET1 gene was amplified by PCR 

using two primer sets, ClaI/XbaI sense and XhoI/KpnI antisense. This produced two 

identical amplicons with different primer incorporated restriction enzyme sites, 

allowing cloning into the inverted repeat vector pHannibal. The inverted repeat 

cassette, which consists of the 35S promoter, met1 sense and antisense regions 

separated by an intron and a NOS terminator, was transferred into pGreen 0179 and 

pGreen 0029 using the restriction enzyme NotI.    

 

8.2.1.7.4. Heat inducible Solanum Lycopersicum MET1 inverted repeat 

 

The heat inducible promoter was amplified by PCR from Hsp18.2:GUS, using the 

XhoI/FspI heat inducible promoter primer pair. The heat inducible promoter amplicon 

with the incorporated XhoI and FspI sites replaced the 35S promoter in the 35S 

Solanum Lycopersicum met1 inverted repeat plasmid 8.2.1.7.3. 

 

8.2.1.7.5. Alcohol inducible Solanum Lycopersicum MET1 inverted repeat 

 

The Solanum Lycopersicum MET1 inverted repeat was amplified in two fragments 

from the 35S Solanum Lycopersicum MET1 inverted repeat plasmid, using the 5‟ 

NsiI/PstI met1 inverted repeat and 3‟ KpnI/PstI met1 inverted repeat primer pairs. 

Both fragments were transferred sequentially into pACN to produce an alcohol 

promoter; Solanum Lycopersicum met1 inverted repeat; NOS cassette. This cassette 

was transferred into pSRNACNBin using HindIII, which encodes a transcription 

factor for full functionality of the alcohol inducible system. 

 

8.2.1.7.6. 35S TET3 

 

The 35S TET3 construct was cloned in collaboration with Dr Elena Zubko (P. Meyer 

lab, Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT).The TET3 gene 
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was amplified from TET3 cDNA cloned in pCMV-SPORT6, using the HindIII/EcoRI 

TET3 primer pair. The amplicon was transferred into pGreen 0179 35S-NOS, which 

contains both HindIII and EcoRI sites in the polylinker region between the promoter 

and terminator.  

 

8.2.1.7.7. ncRNA promoter GUS 

 

The ncRNA promoter was amplified using the BstXI/BamHI ncRNA promoter primer 

pair. The Hsp18.2 region was removed from the Hps18.2:GUS construct and replaced 

with the ncRNA promoter using the corresponding restriction enzymes.   

 

8.2.1.8. DNA sequencing 

 

All amplicons were A-tailed using My Taq DNA polymerase (Bioline). A-tailed 

amplicons were cloned into the T-A cloning vector system p-GEM T-easy (Promega), 

according to the manufacturer‟s instructions. Clones containing the target insert were 

sequenced by Beckman Genomics using the universal SP6 primer. Sequencing reads 

were aligned using the clustal function in Bioedit 7.0.9.0 (Higo et al, 1999) and 

methylated and un-methylated counts were illustrated using CyMate (Hetzl et al, 

2007).  

 

8.2.1.9. Agarose Gel Electrophoresis 

 

Electrophoretic separation of DNA and RNA molecules was achieved using 

horizontal agarose gels (0.6-2.0%) containing 0.1 g/ml ethidium bromide in TAE 

(Sambrook et al, 1989). DNA and RNA was visualised on a UV trans-illuminator 

linked to a digital imaging system (Syngene Bio-imager and Genesnap). 

 

8.2.1.10. Polyacrylamide Gel Electrophoresis 

 

Electrophoretic separation of DNA molecules was achieved using vertical 

polyacrylamide gels (10%) in TBE (Sambrook et al, 1989). DNA was visualised on a 

UV trans-illuminator linked to a digital imaging system (Syngene Bio-imager and 
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Genesnap), after staining with 0.1 g/ml ethidium bromide solution. DNA isolation 

was achieved using the Q-spin gel extraction kit (Geneflow). DNA size was 

determined using either 1kb+ (Invitrogen) or 1kb (Bioline).  

 

8.2.1.11. Bisulfite sequencing 

 

The EZ DNA methylation-lightning kit (ZYMO Research) was used according to the 

manufacturer‟s instructions for the bisulfite conversion of plant genomic DNA. Target 

regions were subsequently amplified by PCR. All amplicons were A-tailed using My 

Taq DNA polymerase (Bioline). A-tailed amplicons were cloned into the T-A cloning 

vector system p-GEM T-easy (Promega), according to the manufacturer‟s 

instructions. Clones containing the target insert were sequenced by Beckman 

Genomics using the universal SP6 primer. Sequencing reads were aligned using the 

clustal function in Bioedit 7.0.9.0 (Higo et al, 1999) and methylated and un-

methylated counts were illustrated using CyMate (Hetzl et al, 2007). Deamination of 

cytosines in a CHH sequence context was used as an indicator for conversion.  

 

8.2.1.12. Methylation-sensitive amplified fragment length polymorphism (MS-

AFLP) analysis  

 

The MS-AFLP analysis is similar to the standard AFLP analysis described by (Vos et 

al, 1995) but has been modified to detect DNA methylation (Paun et al, 2010). 0.5 μg 

of genomic DNA was digested and ligated to double-stranded adapters in one step at 

37 °C for 17 h using a MS-AFLP reaction mix (1.1 μl T4 DNA ligase buffer 

(Promega); 0.55 μl bovine serum albumin (1 mg/ml; New England Biolabs); 50 μM 

NaCl; 10 U MspI or HpaII (Fermentas); 10 U EcoRI (Promega); 1 U T4 DNA ligase 

(Promega); 4.5 μM MspI/HpaII adapters; 0.45 μM EcoRI adapters). The reaction mix 

was used as a template for PCR with pre-selective primers. The pre-selective PCR 

reaction was used as a template for PCR with selective primers. The selective PCR 

reaction was analysed using a 10% polyacrylamide gel. DNA isolation from 

polyacrylamide gels was achieved using dialyzer bags (Novagen). Sequenced MS-

AFLP products were identified using NCBI Blast (www.ncbi.nlm.nih.gov/). 
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8.2.1.13. Southern blot analysis 

 

Southern blot analysis was carried out according to a standard procedure (Sambrook 

et al, 1989). 3 g of genomic DNA was digested with selected restriction enzymes 

according to the manufacturer‟s instructions (New England Biolabs). The digest 

reaction was run on an agarose gel (0.7%) for 16 h, 35 V at 4 
o
C. The gel was 

subsequently washed with depurination (0.125 M HCl), denaturation (0.5 M NaOH; 

1.5 M NaCl) and neutralisation (1.5 M NaCl; 0.5 M Tris, pH 7.4) buffers for 10, 30 

and 30 min, respectively. Membrane blotting was carried out according to (Sambrook 

et al, 1989) by positioning a positively charged membrane (Amersham GE 

Healthcare) between   the wicked treated gel and weighted blotting paper. DNA was 

cross linked using UV and incubated in 100 l/cm
2
 hybridisation buffer (7% SDS; 0.5 

M Sodium phosphate buffer, pH 7.2; 10 mM EDTA) at 60 
o
C for 1 h with rotation. A 

specific PCR amplified probe was radiolabeled, purified and added to the 

hybridisation buffer, using the Prime-It random labelling kit (Agilent technologies) 

and Sephadex G-50 spin columns (Roche), according to the manufacturer‟s 

instructions. After 4 h, the membrane was washed twice at 65 
o
C for 15 min with 2 x 

SSC (0.3 M NaCl; 0.03 M NaCi; 0.1% SDS) and once with 0.1 x SSC (0.15 M NaCl; 

0.015 M NaCi; 0.1% SDS). Blots were sealed in plastic and visualised using the 

FLA5100 phospho-imager (Fuji).        

 

8.2.2. RNA analysis 

 

8.2.2.1. Isolation of RNA from plants 

 

Isolation of total plant RNA was performed using a standard procedure (Stam et al, 

2000). 750 l of RNA extraction buffer (100 mM Tris-HCl, pH 8.5; 100 mM NaCl; 

20 mM EDTA; 1% sarcosyl) was added to 0.5 g of plant tissue ground in liquid 

nitrogen. Two phenol:chlorophorm:isoamyl-alcohol (24:24:1) extractions were 

performed followed by 100% isopropanol, 4 M LiCl and 3 M, pH 7.0 NaAc 

precipitations. Extractions were quantified using the nano-drop spectrophotometer 

ND-1000 (Thermo Scientific). DNA was removed using the TURBO DNase kit 

(Ambion applied biosystems) according to the manufacturer‟s instructions.  
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8.2.2.2. cDNA synthesis 

 

cDNA was synthesised using the Superscript II Reverse transcriptase kit (Invitrogen) 

according to the manufacturer‟s instructions.  

 

8.2.2.3. Real time-PCR 

 

Real time-PCR was carried out with the BioRad CFX96 real time C1000 thermal 

cycler, using SsoFast EvaGreen supermix (BioRad) as per manufacturer‟s instructions 

and cDNA prepared as described in sections 8.2.2.1 and 8.2.2.2 under the following 

conditions; 

 

95
o
C 30 seconds 

95
o
C 5 seconds 

    x 35 

60
o
C 5 seconds 

 

Target gene expression values were calculated as an average of 3 technical replicates 

normalised to the ELONGATION FACTOR 1  using a standard curve plotted from 

½ serial dilutions of cDNA. 

 

8.2.3. Plant transformation and tissue culture 

 

8.2.3.1. Arabidopsis transformation by floral dip 

 

Arabidopsis transformation was carried out by floral dip (Clough & Bent, 1998). A 

500 ml transformed Agrobacterium culture was grown at 28 
o
C with the required 

antibiotics, until OD600 1.0 was reached. Cells were pelleted (6000 g) and re-

suspended to an OD600 0.8 in 5% sucrose; 0.05% Silwett-L77. Wild-type plants grown 

at 25 
o
C, 16/8 h day/light conditions for 4 weeks were inverted into the re-suspended 

culture for 1 min. Seeds were harvested by bagging 6 weeks old plants. Positive 

transformants were identified by growing seeds on MS20 medium (4.405 g/l 
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Murashige and Skoog plus vitamins; 20 g/l Sucrose; 0.55% agar; pH 5.8) containing 

the required antibiotics, at 25 
o
C, 16/8 h day/light conditions for 2 weeks. Seeds were 

sterilised by washing in 70% ethanol for 2 min, soaking in 30% bleach (4.8% active 

hypochloride) for 10 min and washing 3 times with sterilised water. 

 

8.2.3.2. Leaf disc transformation of Solanum lycopersicum 

 

Leaf disc transformation of Solanum lycopersicum was carried out at the premises of 

ENZA ZADEN, Enkhuizen, The Netherlands (supervised by Iris Heidmann). Seeds of 

Moneyberg were washed in 99% ethanol, soaked in 25% bleach (4% active 

hypochloride) for 20 min and rinsed three times with sterilised water. Seeds were 

sown onto MSB530 medium (Murashige and Skoog salts, B5 vitamins, Duchefa 

M0231; 30 g/l Sucrose; 0.8% agar; pH 5.8) and germinated at 25 
o
C, 16/8 h day/light 

conditions for 10 days (until cotyledons expanded). Cotyledons were cut into 0.5cm 

pieces, placed onto solid co-cultivation medium (4.405 g/l MSB5; 3% glucose; 0.8% 

agar; 200 mg/l KH2PO4; 0.2 mg/l 2; 4D, 0.1 mg/l Kinetin; 0.1 mg/l indole-3-acetic 

acid; 46.8 M Acetosyrringone; pH 5.8) and pre-cultured overnight. During this time 

Agrobacterium containing the required clone was grown in YEB media (5 g/l Yeast 

extract; 5 g/l Beef extract; 20 g/l Sucrose; pH 7.2; 2.5 mM MgSO4), with the 

appropriate antibiotics. The Agrobacterium was washed with liquid co-cultivation 

medium (4.405 g/l MSB5; 3% glucose; 200 mg/l KH2PO4; 0.2 mg/l 2; 4D, 0.1 mg/l 

Kinetin; 0.1 mg/l indole-3-acetic acid; 46.8 M Acetosyrringone; pH 5.8), diluted to a 

density of OD600 0.4 and poured over the explants. After one hour the explants were 

briefly dried, transferred onto fresh co-cultivation medium and incubated at 25 
0
C for 

76 h under dim light conditions. The explants were transferred to selective medium 

(4.405 g/l MSB5; 3% glucose; 0.8% agar; 2 mg/l Zeatin; 500 mg/l Cefotaxime; 

selective antibiotic; pH 5.8) for regeneration. 
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8.2.3.3. Zebularine treatment 

 

Solanum lycopersicum seedlings were sterilised and sown on MS30 medium (4.405 

g/l Murashige and Skoog plus vitamins; 30 g/l Sucrose; pH 5.8) containing 80 M 

zebularine (Sigma-Aldrich). Seedlings were incubated in dark conditions for 24 h at 

25 
o
C, and then transferred to 25 

o
C, 16/8 h day/night conditions for 17 days. 

Seedlings were returned to MS30 medium and DNA was isolated. 

 

8.2.4. GUS analysis 

Plant tissue was harvested and vacuum infiltrated in GUS staining solution (100 mM 

NaPO4, pH 7.0; 10 mM EDTA; 0.5 mM K4[Fe(CN)6]; 0.5 mM K3[Fe(CN)6]; 1% 

Triton X-100; 0.5 mg/ml X-Gluc) for 15 min. Samples were left at 37 
o
C for 17 h in 

the staining solution and subsequently washed with 70-100% ethanol and visualised 

under a light microscope (Jefferson et al, 1987).   

8.2.5. Flowering analysis 

Seeds were sterilised by washing in 70% ethanol for 2 min, soaking in 30% bleach 

(4.8% active hypochloride) for 10 min and washing 3 times with sterilised water. 

Sterilised seeds were sown on MS30 medium (4.405 g/l Murashige and Skoog plus 

vitamins; 30 g/l Sucrose; 0.8% agar; pH 5.8) and germinated under long day 

conditions (25 
o
C, 16/8 h day/light). After two weeks seedlings were transferred to 

soil and grown in long day conditions. Once the primary bolt reached 1cm in height 

from the base of the plant, leaves above 1cm in length were counted. Therefore, 

flowering time is measured as the total number of leaves before flowering, described 

by (Soppe et al, 2000).   
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10.0. Appendix 

 

Figure 10.1. Sequencing results from MS-AFLP polymorphisms. Targets labelled somatic change and 
unaffected from Figure 2.3 were sequenced as described in Section 8.2.1.8 of Materials and Methods. 
For each target the sequencing result is shown first and the database alignment result with the highest 
homology follows. Alignments were performed using the NCBI basic nucleotide blast search tool 
(http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

 
Sequencing result for the amplicon labelled somatic change. 

 

CGGATACGGTAGACGCAGTGGGCATGGGGCCTTCACCGGCTTCTATCTGC

CCAAAACGAATGCTCCTTGCGAATGACTGCCGCGCTCGCCTTGGACCCGA

CCGTGCCCGAAAGGGCGCGCCGGGCTCATGCGGCGCGCGGCGTCGTTGAG

GAATGCTACCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATT

AAGCCATGCATGTGTAAGTATGAACAAATTCAGACTGTGAAACTGCGAAT

GGCTCATTAAATCAGTTATAGTTTGTTTGATGGTATCTACTACTCGGATAA

CCGTAGTAATTCTAGAGCTAATACGTGCAACAAACCCCGACTTCTGGAAG

GGATGCATTTATTAGATAAAAGGTCGACGCGGGCTCTGCCCGTTGCTGCG

ATGATTCATGATAACTCGACGGATCGCACGGCCATCGTGCCGGCGACGCA

TCATTCAAATTTCTGCCCTATCAACTTTCGATGGTAGGATAGTGGCCTACC

ATGGTGGTGACGGGTGACGGAGAATTAGGGTTCGAT 

 
NCBI database blast result for the above sequencing read. 
 
It is homologous with an 18S ribosomal DNA gene. 
 

CGGATACGGTAGACGCAGTGGGCATGGGGCCTTCACCGGCTTCTATCTGC

CCAAAACGAATGCTCCTTGCGAATGACTGCCGCGCTCGCCTTGGACCCGA

CCGTGCCCGAAAGGGCGCGCCGGGCTCATGCGGCGCGCGGCGTCGTTGAG

GAATGCTACCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATT

AAGCCATGCATGTGTAAGTATGAACAAATTCAGACTGTGAAACTGCGAAT

GGCTCATTAAATCAGTTATAGTTTGTTTGATGGTATCTACTACTCGGATAA

CCGTAGTAATTCTAGAGCTAATACGTGCAACAAACCCCGACTTCTGGAAG

GGATGCATTTATTAGATAAAAGGTCGACGCGGGCTCTGCCCGTTGCTGCG

ATGATTCATGATAACTCGACGGATCGCACGGCCATCGTGCCGGCGACGCA

TCATTCAAATTTCTGCCCTATCAACTTTCGATGGTAGGATAGTGGCCTACC

ATGGTGGTGACGGGTGACGGAGAATTAGGGTTCGAT 

 
Sequencing result for the amplicon labelled unaffected. 

 

TGCACTCCGGACGGTCCTGGGGGCAAGGCTAATTCATAAGCTGCCTCCCC

CACGCGCTTCAGAACTTCAAATGGACGAATATACCTAGGACTAAGCATAC

CTCTCTTACCAAACCGCATCACTCCTTTCATGGGTGAAACCTTCAGCAAGA

CTTGCTCACCCTCCATAAACTCTAAATCTCTAACCTTTCGATCTGCATATTC

TTTTTGTCTACTTTGAGCCGCTAAAAGCTTTTCTTGAATGCATTTCACTTTA

TCTAATGATTCCCTCAGAAGGTCAGTACCCCAAGGTCTAACCTCGAATGC

ATCAAATCAAACCAACCAATGGGAGATCTACATCTCCTCCCATACAGTCC

CTCAAATGGGGCCATATCAATACTTGAGTGATAGCTATTGTTGTACG 
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NCBI database blast result for the above sequencing read. 
 
It is homologous with a member of the JINLING retrotransposon family in Tomato.  
 

GTGCACTCCTGACAGTCCTGGGGGCAAGGCTAATTCATAAGCTACCTCCC

CCACGCGCTTCAGAACTTCAAATGGACCAATATACCTCGGACTAAGCTTA

CCTCGCTTACCAAACCGCATCACCCCTTTCATGGGCGAAACCTTCAGCAA

GACTTGCTCACCCTCCATAAACTCCAAGTCTCTAACCTTTCGATCTGCATA

TTCTTTTTGTCTACTTTGAGCCGCTAAAAGCTTTTCTTGAATGGATTTCACT

TTATCTAACGAATCCCTCAGAAGGTCAGTACCCCAAGGTCTAACCTCAAA

TGCATCAAACCAACCAATGGGAGACCTACATCTCCTCCCATACAATGCTT

CAAATGGGGCCATATCAATACTTGAGTGATAGCTATTGTTGTATGA 
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Figure 10.2. Epigenome browser screen shots of MET1 targets. The screen shots were obtained for the 
respective gene (red boxed region) from (http://neomorph.salk.edu/epigenome/epigenome.html). 
Methylation types including CG, CHG and CHH are colour coded and are shown on the top four tracts 
for Arabidopsis Columbia (Col-0), the Arabidopsis met1-3 mutant (met1), a drm1, drm2 and cmt3 triple 
mutant (ddc) and a ros1, dml2 and dml3 triple mutant (rdd). The next four tracts and the final tracts 
indicate small RNAs and expression levels, respectively, for Col-0 and the mutants. 
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Figure 10.3. Epigenome browser screen shots of ROS1 targets. The screen shots were obtained for the 
respective gene (red boxed region) from (http://neomorph.salk.edu/epigenome/epigenome.html). 
Methylation types including CG, CHG and CHH are colour coded and are shown on the top two tracts 
for Arabidopsis Columbia (Col-0) and a ros1, dml2 and dml3 triple mutant (rdd). The next two tracts 
indicate expression levels for the respective gene in the two lines. 
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Figure 10.4. TET3 cDNA and protein sequence. The TET3 protein and cDNA sequence obtained from 
NCBI (http://www.ncbi.nlm.nih.gov/) are shown on the left and right of the figure, respectively. The 3‟ 
region coding for the catalytic domain and nuclear localisation sequence are highlighted in blue. 


