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Abstract 

The general thesis aim was to establish geometric criteria to distinguish between folds 

formed in unlithified sediment and lithified rock using dip isogon analyses on folds in sediment, 

lithified rock, migmatites and model materials. The methods involved connecting points of 

equal dip and measuring layer thicknesses at these points to calculate fold classes and to 

understand class changes around the folded layer.  

The criteria were applied to the Bude Formation folds and confirmed that the slump 

folds developed in sediment, but that also the Variscan tectonically-generated ‘upright’ chevron 

folds developed in sediment. ‘Inclined-to-recumbent’ chevron folds exhibit characteristics of 

folding in interbedded sediment and rock, suggesting that Variscan deformation affected the 

formation during lithification. The methods can be used to determine compressional structural 

evolutions with respect to lithification in other basins. 

The specific thesis aim was to study the sedimentary and structural evolution of the Late 

Carboniferous Bude Formation, Culm Basin, SW England.  

New sedimentary structures identified in the formation include: centimetric-scale mud-

draped ripple laminations; decimetric-scale mud-draped and non mud-draped troughs; and 

metric-scale tabular cross-stratification. The sedimentary structures, plus analyses of palaeo-

flow indicators, ichnofabrics and geochemistry, suggest that the formation records a mixed 

depositional environment, with fluctuating base levels and mainly fresh-to-brackish water 

conditions in a lacustrine or possibly marginal-marine setting.  

 The map work revealed decametric-scale local structures in the Black Rock foreshore 

that formed prior to chevron folding. The basin-scale Widemouth South Fault (WSF) juxtaposes 

the Bude and Crackington formations that are separated stratigraphically by 300 m. The 

movement along the WSF is considered using three structural models from the deformation 

accommodated to its north and its south. Although no model holds fully, the Freshney et al 

(1972) ‘late’ normal-faulted Widemouth South Fault model is the most plausible, suggesting 

that the Culm Basin accommodated progressive compressional deformation prior to extension.  

 

Key words 

Chevron folds, Slump folds, Dip isogons, Bude Formation, Variscan deformation, Lithification, 

Mud-draped ripple laminations, Widemouth South Fault,  
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Chapter 1: Introduction 

 

1.1 Aims of the thesis and location of study 

Fold deformation is common in sediment (e.g. slump folds) and in rock (e.g. tectonic 

fold belts). However, the geometric differences between folds in sediment and folds in rock are 

poorly understood. Thus, the general thesis aim was to study such folds in order to establish 

geometric methods to distinguish between folds in sediment and folds in rock.  

The background to this study is that there is a need to understand how the mechanical 

state of deforming stacked layers (i.e. lithification state of beds) affects the resulting fold 

geometries (Waldron and Gagnon, 2011), with such folds being found in foreland basins and 

other fold-thrust belts. An improved understanding of the deformation conditions and processes 

in these regions is thus important for academic, as well as economic, reasons (e.g. hydrocarbon 

exploration). These active regions have been studied to understand their gravitational and 

tectonic structures (Jansma & Speed, 1993; Maltman, 1998; Nigro & Renda, 2004; Corredor et 

al, 2005), with a common structural feature being that syn-depositional deformation, especially 

folding, can occur in sediment (e.g. slump folds), penecontemporaneously with deformation at 

depth in more consolidated strata (e.g. fold belts) (Suppe, 1983; 1985; Hardy & Poblet, 1994).  

The Late Carboniferous (Westphalian A-C) Bude Formation, Culm Basin, SW England 

(Reading, 1965; Freshney et al, 1972; 1979), was chosen as the study area due to the outcrop 

occurrence of both slump folds, clearly formed in sediment (Freshney et al, 1972), and the 

‘archetype’ chevron folds of Ramsay (1974), assumed to have formed in rock. The study area 

comprises mainly, but not exclusively, an 8 km stretch of N-S trending, easily-accessible, well-

exposed outcrops from Northcott Mouth (UK National Grid Reference: SS202087) to Wanson 

Mouth (SS195013) (Fig. 1.1) to test the general thesis aim. The rocks exposed here also provide 

an excellent analogue for both active and ancient foreland basins and fold-thrust belts. 

 

 

Fig. 1.1: Location map of SW England (left), a simple geological map of the Culm Basin 

(middle) and an inset map of the Bude coastal area (right) where fieldwork was undertaken 

(modified from Ordnance Survey
TM

/EDINA
TM

 Digimap, 2010; Lloyd & Chinnery, 2002) 
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Thus, if it is possible to distinguish between folds in sediment and folds in rock, this 

would feed back into the Bude Formation lithification and deformation histories, and geological 

evolution, as the relative timings of lithification and deformation could be determined more 

precisely. To fulfil the general thesis aim, the burial and lithification states during Bude 

Formation folding were established using sedimentary-structural analyses (e.g. folded beds cut 

by mud injections or lying between ‘undeformed’ beds), and dip isogon and quantitative layer 

thickness analyses (Ramsay, 1967). However, an understanding of Bude Formation deposition 

relative to its deformation timing is required before undertaking the general thesis aim.  

The sedimentary and structural evolution of the Bude Formation in the context of the 

Variscan deformation constitutes the specific thesis aim. At least six models for the Bude 

Formation depositional environment have been proposed by King (1971), Higgs (1984; 1986; 

1991), Melvin (1986), Hartley (1991) and Burne (1995), whilst the structural evolution has been 

outlined previously by Ramsay (1974), Sanderson (1979) and also, Lloyd and Whalley (1986). 

Bude Formation deposition took place ahead of an evolving fold-thrust belt (Leveridge & 

Hartley, 2006; Shail & Leveridge, 2009). However, there are issues with the deformation timing 

with respect to both sedimentation and lithification. To fulfil the specific aim, an improved 

understanding was established of the Bude Formation depositional environment, from detailed 

sedimentary logging, as well as the timing and geometry of folds with respect to progressive 

Variscan deformation, using detailed structural mapping together with the Sanderson (1979) and 

Lloyd and Whalley (1986; 1997) chevron fold development methods. 

In summary, the general aim was to investigate whether a geometric method is 

applicable to distinguishing the lithification state of folds during compressional deformation, 

including the chevron folds in the Bude Formation outcrops. The specific aim of this thesis was 

to investigate the sedimentary and structural evolution of the Bude Formation.  

 

1.2 Definitions of sediment and rock 

Underpinning this study of folding is the definition of the distinguishing characteristics 

of sediment and rock, including their mechanical state during folding, which is described here.  

 In sediment, individual grains are not “bound” together by cement, but can flow in a 

ductile manner. The grains act independently of, or lack “communication” with, each other, 

similar to how a bag of wet sand behaves (Borradaile, 1981). Thus, different parts of the same 

sediment unit may accommodate (e.g. compressional) stresses differently during folding. Also, 

sediment accommodates shear stresses poorly when fluid pressure is elevated (Hart et al, 2009).  

In contrast, individual grains in rock are “bound” together (e.g. by cement), so that the 

grains only flow in a ductile manner at high temperatures (Weinburg & Mark, 2008). Thus, the 

grains exhibit dependence upon, or are in “communication” with, each other, so that rock units 

typically accommodate (e.g. compressional) stresses uniformily (e.g. during folding). Also, rock 

units can accommodate shear stresses relatively easily (Sanderson, 1979). 
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1.3 Thesis Description 

Chapter 2 reviews the published literature on soft-sediment deformation structures and 

fabrics; fold mechanics observed in sediment and rock; and the history of Variscan orogenesis 

relevant to the Bude Formation.  

Chapter 3 provides a re-assessment of the sedimentary facies, ichnofabrics, palaeo-flow 

indicators, petrography, mineralogy, carbon-sulphur geochemical analysis (Lloyd & Chinnery, 

2002), diagenesis and stratigraphic evolution of the Bude Formation deposits between Northcott 

Mouth and Wanson Mouth (Fig. 1.1). From this re-assessment, models are discussed on the 

Bude Formation depositional environment.  

Chapter 4 describes the detailed fieldwork undertaken on the faulted boundary 

(Widemouth South Fault) between the Bude and Crackington formations near Widemouth 

(SS195015) in the Black Rock and Wanson Mouth foreshore successions (Fig. 1.1). This 

fieldwork included mapping the two foreshore successions and also, studying and collecting 

data on the chevron folds in both foreshores, as well as the local structures that were previously 

not recognised within one of the foreshores. The apparently different deformation histories of 

these foreshores are explained using structural restorations.  

Chapter 5 provides a review of the slumps and local structures that have been deformed 

by the chevron folds across 8 km of the Bude Formation outcrops between Northcott Mouth and 

Black Rock (SS202087-SS195015; see Fig. 1.1). From the relationships of the slumps and local 

structures, surrounding bedding and later overprinted folding, an improved explanation is 

proposed for the timing of slumping and local structural development with respect to both the 

Bude Formation deposition and compressional deformation history. 

Chapter 6 presents additional field evidence for pre-lithification deformation from the 

slumps and local structures in the Bude Formation outcrops between Northcott Mouth and 

Black Rock (SS202087-SS195015; Fig. 1.1). This includes descriptions of ankerite veins, which 

are deformed by the local structures, and mud injections that cut the hinges of chevron folds. 

Chapter 7 considers various geometrical methods from Ramsay (1967) that aid the 

interpretation of folded structures and fold deformation. In particular, specific fold profile 

geometric criteria are derived that distinguish between folds that developed in sediment and in 

sedimentary rock. These criteria provide a new approach to establishing the mechanical states of 

material during (fold) deformation.  

Chapter 8 describes the application of the criteria derived in Chapter 7 to establish the 

mechanical state during (folding) deformation of the Bude Formation. The structures considered 

include the ‘archetype’ chevron folds of Ramsay (1974), from which a new understanding is 

gained of the relative timing of lithification during progressive Variscan tectonic deformation.  

Chapter 9 assesses four models for the regional (SW England) Variscan deformation 

and places the Bude Formation deposits into the context of the Culm Basin structural evolution. 

This discussion leads onto the main conclusions that are provided in Chapter 10. 
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Chapter 2: Literature review 

Whilst fold deformation in lithified rocks has been studied extensively, there is a 

relative paucity of research into fold deformation in sediments. This is surprising given that 

delta toe fold-thrust belts, foreland basins and accretionary wedges contain large regions of 

folded sediment. As the general aim of this study is distinguishing between folding in sediment 

and in rock, this review concentrates upon deformation in clastic and inter-bedded clay-rich 

sediments, covering slump folds, the thixotropic nature of sediment and the styles of early post-

depositional deformation. A review of compaction and cementation in clastic and clay-rich 

sediments follows, together with a comparison of the fabrics developed in deformed sediments 

with those in lithified rocks and models concerning formation of chevron folds. A review of 

fold-thrust belts and foreland basins introduces the brief overview of the Variscan deformation 

in SW England, which places the structures in the Culm Basin and particularly in the Bude 

Formation outcrops into a regional context, as set out in the specific aim of the thesis.  

The Bude Formation coastal sections form the study area of this thesis and were chosen 

because of the opportunities to test whether different fold types developed during soft-sediment 

or post-lithification tectonic deformation. Due to its importance, the review of the literature on 

the depositional environment of the Bude Formation is deferred until Chapter 3. 

 

 

Fig. 2.1: Classification of structures formed by the effect of earthquakes on sediments (modified 

from Montenat et al, 2007) 

 

2.1 Types of remobilisation structure 

Remobilisation structures in sedimentary successions are important, not least as they 

may provide evidence for syn-depositional seismicity (Montenat et al, 2007) with two important 

types that form in sediment being recognised (after Montenat et al, 2007): (1) seismically-driven 

phenomena, or ‘seismites’ (summarised in Fig. 2.1); and (2) gravity-driven phenomena.  

 

2.1.1 Seismites 

Seismically-driven phenomena and ‘seismites’ include: liquefaction structures; injection dykes; 

and sediment volcanoes (Montenat et al, 2007) and may be considered as types of soft-sediment 

deformation. Slumps are gravity-driven phenomena (Montenat et al, 2007) and may be 

produced by earthquakes (Owen, 1987) (see Fig. 2.1). * 
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 Both load compaction and seismic shocks can form liquefaction structures (Maltman & 

Bolton, 2003) in which sediment cohesion drops to zero (Maltman, 1998). Very fine to silt 

grained, water-saturated sediments are the most sensitive to liquefaction (Montenat et al, 2007), 

which may show flame and load structures, plus contorted internal stratification. Liquefaction in 

laminated sand can cause normal faulting and / or inclined folding, with large displacements 

accommodated where there is basal shearing (Owen, 1996).  

 

 

Fig. 2.2: Conceptual view of the range of sediment mobilisation processes. The untinted area 

indicates those processes, which are potentially most important in the generation of sediment 

mobilisation structures (from Maltman & Bolton, 2003) 

 

Sediment volcanoes are centimetric to metric in scale and result from water-expulsion 

drawing up mud or sand through a fissure (Montenat et al, 2007). Mud volcanoes may occur 

either in tectonic regimes or from the “thermogenic cracking of organic-rich horizons” (Fig. 2.3; 

Deville et al, 2003; 2006). Sand volcanoes in sand-rich beds occur due to ‘independent’ 

particulate flow (Craig, 1997), with controls on their formation including: (1) rate of water 

expulsion; and (2) amount of sediment compaction (Burne, 1970).  

Sediment injections occur due to fluidisation where rapid expulsion is focussed along 

pipe-like structures (Maltman & Bolton, 2003) (Fig. 2.2).  

 

2.1.2 Gravity-driven phenomena 

Gravity-driven phenomena include slumps, slides and truncation scars, with debris and 

grain flows plus turbidity currents also included by Montenat et al (2007). Thus, a variety of 

mechanisms cause sediment to move down a slope, which can be as shallow as 0.14° (e.g. 

Mississippi delta top; Prior & Coleman, 1978; Crans et al, 1980). On shallow slopes, sediment 

is often remobilised above over-pressured or under-compacted muds, especially in shallow and 

marginal marine settings (Elliott & Ladipo, 1981). These movements require that:  
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1. Remobilised sediment was at or within a few metres of the palaeo-surface;  

2. Slopes are sufficiently steep for unstable sediment to be transported.  

 

Slump generation 

Liquefied slump beds are common gravity-driven phenomena, with extension at the 

rear, compression at the front and shear structures throughout (McClay, 2004; Alsop & Marco, 

2011). Slumps are a common fold deformation type in sediments where there is a slope. Their 

generation may coincide with fault movement and the transportation of both turbidites and 

debrites (Wignall & Best, 2000; Fig. 2.3). Likely triggers for slumps are: (1) a seismic event 

(Strachan & Alsop, 2006); (2) fluid over-pressure and liquefaction (Maltman & Bolton, 2003); 

and (3) sudden deposition over an unstable surface (Owen, 1987).  

 

 

Fig. 2.3: Model of slump and turbidite generation in the Gull Island Formation, western Ireland, 

highlighting structures and depositional elements on the slope (from Wignall & Best, 2000). 

 

Palaeo-flow direction from slump folds 

Palaeo-slope direction is the main control on the slump fold vergence direction 

(Woodcock, 1976; 1979; Wignall & Best, 2000; Strachan & Alsop, 2006; Fig. 2.3). Further 

slump fold geometric features, such as hinge line elongation direction, may also be employed to 

describe the palaeo-slope direction. This is useful in areas such as the Early Palaeozoic Anglo-

Brabant fold belt where slump folds have been tectonically-deformed (Debacker et al, 2006). 

 

Analogies with landslides, avalanches and glaciers 

Woodcock (1976) described slump beds as deposits that “retain their original 

sedimentary structures” and where deformation has the strongest influence on structural style. In 

contrast, Middleton and Hampton (1973) described sediment ‘gravity flows’ as the 

disaggregation and redeposition of sediment and other materials (e.g. turbidites, landslides, 

avalanches, etc.). In water-saturated sediment, deformation takes place in a series of thin shear 

zones (Hart et al, 2009). Sub-glacial sediments show recumbent folds, boudinage and augen 
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(Hart, 1999), as well as rotated clasts (Jeffery, 1922). However, ice and sediment have different 

rheological properties, resulting in slightly different behaviours in the two layers (Hart, 1999).  

 

2.1.3 Deformation in slumps 

Gravity-induced, down-slope slump movement involves extension at its ‘head’; 

contraction at its ‘toe’; and strike-slip faulting at its sides (Fig. 2.4a). A useful conceptual model 

for slumping is as a deformation ‘cell’, in which movement occurs as a sheet along an 

underlying detachment (Farrell, 1984; Debacker et al, 2009; Alsop & Marco, 2011). During 

slump movement, extension propagates backwards and upslope, whilst contraction occurs in the 

opposite direction (Fig. 2.4a), thereby causing increased incision into the underlying strata. As 

the slump movement slows and dewatering occurs along normal faults, cessation takes place 

(Farrell, 1984). This causes extension to concentrate onto one fault, whilst contraction may 

propagate backwards and upslope in a ‘piggy-back’ manner (Fig. 2.4b; Alsop & Marco, 2011).  

 

 

Fig. 2.4: Schematic plan-view (top) and cross-section (bottom) of contraction, extension and 

strike-slip structures generated in a slump during its translation (a), and subsequent cessation 

(b). The direction of transport associated with a ‘flow’ from left to right is shown by a black 

arrow, with sequential contractional thrusts (T1, T2, etc.) in red at the slump ‘toe’ and 

extensional faults (E1, E2) in blue at the ‘head’ (from Alsop & Marco, 2011) 

 

Model of structural evolution in slumps 

The deformation ‘cell’ model provides a useful but simplified idea of the structural 

evolution that occurs during slumping. A more detailed model of this evolution is given by 

Alsop and Marco (2011) and is displayed in Fig. 2.5. This model is divided into five stages: 

1. Initiation – density-driven fold initiation and / or horizontal shortening occurs, generating 

‘upright’ buckle folds with a coaxial vertical movement or ‘flow’ of material into the hinges 

of the developing slump folds (Fig. 2.5a);  

2. Translation – buckle folds increasingly verge down-slope until the lower limbs fail via 

thrusting. This results from non-coaxial down-slope, gravity-induced shear deformation and 

causes slump fold amplification (Fig. 2.5b-c);  
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3. Cessation – horizontal shortening continues and contraction-driven fold growth takes place 

above the slump thrusts, causing new buckles to develop before ‘lock-up’ of the slump folds 

(Fig. 2.5d; Alsop & Marco, 2011).  

4. Relaxation – small-scale secondary slumping from slump anticlinal crests into synclinal 

troughs. This additional progressive remobilisation event, of Alsop and Marco (2011), is 

driven by non-coaxial horizontal movement of the slump folds (Fig. 2.5e).  

5. Compaction – ‘flattening’ of the slump folds, leading to ‘mushroom’ or ‘box’ fold 

development. A further event, of Alsop and Marco (2011), that results from vertical 

shortening of the slump folds due to the overburden as sedimentation continues (Fig. 2.5f).  

 

 

Fig. 2.5: Schematic drawings and photographs from the Dead Sea Basin, Israel, of structures 

generated during slump sheet initiation (a), translation (b & c), cessation (d), relaxation (e) and 

compaction (f). Folded beds are shown in yellow, while axial planes (blue) and thrusts (red) are 

also highlighted together with possible deformation styles (from Alsop & Marco, 2011) 
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2.1.4 Sub-surface sediment mobilisation 

Another way to classify deformed sediments is via sub-surface sediment mobilisation 

(van Rensbergen et al, 2003), which include (Fig. 2.6): ‘flame’ and load structures (Owen, 

2003), sand injections (Jolly & Lonergan, 2002) and mud volcanoes (Deville et al, 2003; 2006). 

The mobilisation is caused by pore-fluid over-pressures and elevated hydraulic gradients (Fig. 

2.2; Maltman & Bolton, 2003), with the magnitude and duration of the force generating the 

structures, controlling the amount of deformation accommodated (Owen, 2003).  

 

 

Fig. 2.6: Seismic section through a large fold in the Barbados accretionary wedge, showing a 

cross-cutting mud volcano (soft-sediment compressional deformation) (from Deville et al, 2006) 

 

2.1.5 Effect of compression on the remobilisation of sediment 

Liquefaction causing a temporary loss of sediment strength in slump folds can occur at 

very high shear stresses (Maltman, 1984), in which very high shear strains are accommodated in 

the slump folds. This causes the development of tight, ‘recumbent’ slump fold axial planes 

(Strachan & Alsop, 2006).  

 Another control on the intensity of remobilisation structures, is the proximity of the 

structure to either a local or a regional slope (Del Pino-Sanchez, 2006), where deposition of a 

thick bed, a storm event or earthquake can induce temporary liquefaction (Owen, 1987).  

 

2.2 Deformation in sediment 

As a general aim of the present research project is to establish the mechanical or 

lithification state of the Bude Formation deposits during fold deformation, published models for 

the mechanical behaviour of deforming sediments are highly relevant and are discussed below. 

 

2.2.1 Review of soft sediment deformation theory 

In water-saturated sediment, deforming material can be described as a non-Newtonian, 

pseudo-plastic or thixotropic fluid (Harris, 1977; Vigneresse, 2004). A shear stress (τ) imposed 
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upon a thixotropic fluid, causes a shear strain (e), which is accommodated in the fluid (Fig. 2.7). 

Thixotropic fluids have no yield stress and decrease in viscosity (η) with increasing shear stress 

(τ - MPa) and strain rate (de/dt – per second). This is illustrated in the rheogram (Fig. 2.7) of τ 

vs. de/dt, which has a flattening curve at high stresses for thixotropic fluids (Harris, 1977).  

 

 

Fig. 2.7: Shear response to Newtonian (linear) and non-Newtonian (non-linear) fluids (modified 

from Price & Cosgrove, 1990), illustrating how non-Newtonian thixotropic fluid viscosity 

decreases with accommodation of increasing shear stress over time 

 

In thixotropic fluids, internal deformation occurs “under an increasing duration of 

shearing stress”, causing separation of a “disperse phase in a multi-phase system” (Harris, 1977) 

within water-saturated sediment (Vigneresse, 2004). The grain movement may be described as 

‘controlled’, with the partial cohesion between the grains being influenced by temperature and 

confining pressure (Craig, 1997). As the water-saturated sediment grains are sheared, they rotate 

either through the shearing direction (Glen et al, 1957) or into the shearing direction (Hooyer & 

Iverson, 2000). When the shear stress (τ) reduces, the structure of an ‘ideal’ thixotropic fluid 

will rebuild “at the same rate as the break-down process” (Harris, 1977). However, if structural 

recovery does not occur, the thixotropic fluid may accommodate the additional strain and / or 

expel fluids (after Waldron & Gagnon, 2011).  

 

Plasticity of fine-grained sediment 

Fine-grained, clay-rich and water-saturated sediment has a plastic mechanical state, 

enabling it to undergo a permanent change in shape or size, without fracturing at stresses that 

exceed the elastic limit of the sediment (after Fossen, 2010). During deformation, plastic 

sediment may undergo strain-hardening and / or strain-softening (but not simultaneously) prior 

to a transition to stable sliding (Craig, 1997). Also, ‘plastic’ sediment does not have constant 

frictional properties (Lohrmann et al, 2003) but instead, the grains slide relative to each other 

whilst the layer maintains cohesion (Craig, 1997). Plastic behaviour occurred in the Neogene 

Chilean forearc syn-sedimentary deformation (Houston et al, 2008) and is linked to the 



11 

 

development of layer-bound, polygonal extensional faults, for example in the Palaeogene North 

Sea fine-grained deposits (Cartwright & Dewhurst, 1998). 

 

2.2.2 Structures generated in early post-depositional deformed strata 

Early post-depositional structures are described as having developed in sediment (Nigro 

& Renda, 2004; Lin et al, 2006). In the example from the Pliocene Mount Corvo beds, SW 

Sicily, Italy, by Nigro and Renda (2004), the deformed strata consist of stratigraphically-lower, 

pre-deformational beds that have a consistent palaeo-slope direction in which beds have similar 

thicknesses and slump folds verge in the same direction. However, the stratigraphically-higher, 

syn-deformational (growth) beds thicken onto the fold limbs and the slump folds verge away 

from the growing anticlinal hinge (Fig. 2.8). These criteria can be used to estimate the relative 

timing of deformation with respect to deposition. Also, the fold growth geometry depends on 

the sediment cohesion and angle of internal friction (Nigro & Renda, 2004). 

 

 

Fig. 2.8: Schematic section comparing fold deformation and palaeo-slope directions from a 

growing fold in sediment during deposition (modified from Nigro & Renda, 2004) 

 

2.2.3 Effects of syn-depositional and tectonic deformation on deposition 

In syn-depositional compressional settings, depositional patterns are affected by the 

growing structures (Burbank & Anderson, 2001). For example, growth geometries in fault-

related folds may exhibit “fanning of limb dips, similar to those of growth strata” (Conners & 

Shaw, 1999). This apparent ‘fanning’ may be caused by local onlapping and toplapping 

unconformities, coupled with both compaction and diagenetic processes in the growth strata 

(Connors & Shaw, 1999). These onlapping unconformities may be related to periods of folding 

(after Shaw et al, 2004) and / or thrust deformation (Zoetemeijer et al, 1992; Fig. 2.9).  

 As fold limbs or thrust planes rotate during deformation, the position of each onlap 

truncation is highly variable (Shaw et al, 2004). As a fold grows and / or a thrust propagates 

during deposition, a thinned hinge succession or unconformity forms above the anticlinal crest. 

If thrust activity continues, this may lead to hinterland migration of the basin depo-centre 

(Zoetemeijer et al, 1992; Mouthereau et al, 2007; Mosar et al, 2010; Fig. 2.9).  
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Fig. 2.9: Migrated seismic reflection profile through the Ferrara-Romagna thrust arc (northern 

Apennines, Italy) along profile A-B in inset map. (Mes = Mesozoic; Mio = Miocene; EPl = 

Early Pliocene; MPl = Middle Pliocene; LPl = Late Pliocene; Qua = Quaternary). Angular 

unconformities in Pliocene to Quaternary sediments formed by tectonic movement (purple 

arrows added as onlap reflectors). The black arrow shows a reflection truncation due to new 

thrust activation, which is also highlighted in the box (modified from Zoetemeijer et al, 1992) 

 

2.2.4 Similarities and differences between slump and tectonically-generated folds 

Tectonically-generated folds have been compared to slump folds by many authors 

(Wilhelm & Ewing, 1972; Piper et al, 1973; McClay, 2004; Waldron & Gagnon, 2011) in order 

to define criteria that distinguish them in the field and in seismic sections, such as for the 

slumps in the Late Silurian Montgomery Trough, Wales (Woodcock, 1976). These slumps have 

both geometric similarities and differences to tectonically-generated folds, as described below.  

 

Similarities 

The two types of fold structure are initiated by a buckling process and generate similar 

structural styles, with the hinge line length, wavelength and amplitude all related to each other 

(Woodcock, 1976). Their hinge line length-to-wavelength ratios are described by a lognormal 

distribution (Hudleston, 1973), which suggests that these fold structures grow via a strain 

interaction process of periclinal linkage (Dubey & Cobbold, 1977). Also, common axial micro-

fold lineations and axial planar spaced cleavage are observed in both cases (Tobisch, 1984; 

Engelder & Marshak, 1985; Jansma & Speed, 1993). 

 

Differences 

The differences between the two types of fold structure are as follows: 

1. Gravity-induced folds appear in isolation, being underlain and overlain by ‘undeformed’ 

sediment, whilst ‘tectonic’ folds affect all the deposited beds (McClay, 2004);  
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2. Most slump folded layers have class 1C dip isogons (Woodcock, 1976), whilst folded layers 

in rock have class 1B (more coherent layer) and class 3 (less coherent layer) dip isogons 

(Ramsay & Huber, 1987);  

3. Slump folds have much tighter interlimb angles (mean = 20°; Woodcock, 1976) than 

‘tectonic’ folds (mean = 60°; Price & Cosgrove, 1990); 

4. Syn-depositional (growth) folds are found within compressionally-deformed sediment 

(Zoetemeijer et al, 1992; Shaw et al, 2004; Corredor et al, 2005). 

 

2.3 Structures, fabrics and compaction in deforming sediments and rocks 

Distinct structures and fabrics develop when sediments are deformed. These features are 

observed in accretionary wedges (Maltman, 1987) and include:  

1. Planar deformation bands, which are oblique to the bedding and with minor displacement 

accommodated;  

2. Faults and shear breccia, which have large displacements and may form conjugate fault sets;  

3. Scaly fabric or preferred orientation foliation of clay minerals, which is analogous to 

closely-spaced cleavage planes;  

4. Web structures that are a ‘honey-comb’ of shear zones developed on sandy bedding planes; 

5. Compression-like shear structures via mineral dissolution, veins and shear strain 

localisation, especially in finer-grained sediments (Shin et al, 2008). 

 

2.3.1 Sediment shear and fault zones  

Sediment grain alignments occur where water contents are greater than 25% (Arch et al, 

1988), via rotation and translation, either through the shear plane (Jeffery, 1922) or into and 

remaining within the shear plane (Hooyer & Iverson, 2000). Each sediment type accommodates 

shear strain rates differently (Maltman, 1987), with the level of shear stress having “little 

influence on the geometry of the shear zones” (Arch et al, 1988).  

In addition, sediment cohesion decreases with increased water content (Maltman, 1987) 

so that at water contents above 45%, clay weakens and ‘flows’ pervasively, creating short 

narrow displacement ‘zone’ arrays (Maltman, 1987; Roberts & Hart, 2005). Shear zones only 

occur in sediments that display strain softening after the ‘peak’ strength is reached and where 

“particle volume reduction causes a decrease in horizontal stress”, which is a process that leads 

to “internal shear failure conditions and potential shear strain localisation” (Shin et al, 2008). 

Also, in sand, fault propagation and early back-thrusting occur at higher Young’s Modulus 

values (E), with wider fault zones occurring at higher dilation angles (φ) (Lin et al, 2006).  

 

2.3.2 Syn-depositional normal faulting 

Syn-depositional normal fault planes contain features such as clay-smearing, grain 

mixing, a ‘damage zone’ containing deformation bands and also, precipitation of iron oxide or 
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carbonate (Bense et al, 2003; Caine & Minor, 2009). In examples from the Netherlands (Bense 

et al, 2003) and New Mexico, USA (Caine & Minor, 2009), it was found that: 

1. Particulate flow is the main deformation mechanism during fault development; 

2. Large fluctuations in hydraulic conductivity occur across the fault ‘damage zone’; 

3. Early clay smearing results in the ‘damming’ of groundwater flow across the faults, 

promoting a flux of over-saturated fluids through fault-entrained sand-rich sediments. 

 

2.3.3 Slump fabrics 

In slump folding, deformation occurs whilst the material is still sediment. This can 

include foliation, with preferred grain alignment and silt-sand domains, which is sub-parallel the 

axial plane (Tobisch, 1984). These features are generated by a modified version of slump-

induced grain rotation (after Jeffery, 1922), which occurs during water expulsion. This causes 

the slump fold hinge zones to compact (Tobisch, 1984) but without veins exploiting the 

fractures, so long as the slump does not undergo any later tectonic deformation (McClay, 2004). 

Folds within slump beds may also include: localised deformation on syn-sedimentary normal 

faults; convolute laminations; ‘ball-and-pillow’ structures; dewatering structures; sediment 

volcanoes; truncation by over-lying beds; occasional burrowing by organisms; undeformed 

clasts or fossils; and over-printing by pore-filling cement.  

 

 

Fig. 2.10: Five patterns of disjunctive cleavage cutting beds (from Engelder & Marshak, 1985) 

 

2.3.4 Axial-planar cleavage fabrics in phyllosilicates 

There are numerous types of cleavage and schistosity, whose development is related to 

temperature (i.e. crustal depth) and lithology (i.e. phyllosilicates). In this thesis, only the 

development of cleavage is considered because schistosity, which is formed at about 350-375°C 

during high-grade metamorphism, does not occur in deformed sediment (Fossen, 2010). 

Cleavage forms via grain rotation, preferred orientation in the growth of minerals and pressure 

solution of solvent minerals. Where cleavage forms at shallow depths, ‘cohesive material-water 
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interaction’ can form spaced cleavage planes in four ways (Price & Cosgrove, 1990): (1) 

pressure solution; (2) free-face dissolution; (3) fluid film diffusion; and (4) fluid advection via 

circulation. From this, five disjunctive cleavage types may be formed: (a) sutured; (b) non-

sutured; (c) planar; (d) wavy; and (e) anastomosing (Fig. 2.10; Engelder & Marshak, 1985). 

Non-tectonic compaction cleavage (Fig. 2.11a) forms in shale via reorientation of 

mineral grains and pore-space reduction. The primary foliation (S0; i.e. bedding) is reworked 

and dissolution may occur (Fossen, 2010). Grain dissolution causes a (pressure) solution 

cleavage to develop as first recognised by Sorby (1853). A tectonic-related disjunctive cleavage 

develops in shales that experience horizontal shortening due to horizontal maximum 

compressional stress (σmax). Pressure solution in shales is important where grain dissolution 

causes clay minerals to concentrate, re-orientate and fracture along foliation planes, forming 

pencil cleavage (i.e. S1 foliation; Fig. 2.11b). Pencil cleavage also develops where there are 

local or regional changes in the stress field (Fossen, 2010).  

Slaty cleavage develops where tectonic deformation continues to take place (Fosson, 

2010; Fig. 2.11c). This cleavage type has closely-spaced domains, consisting of axial planar 

bands of less well-cleaved quartz-rich (Q) and more well-cleaved phyllite-rich or clay-rich (P) 

material (Borradaile et al, 1982). This low-grade metamorphic cleavage involves pressure 

solution, which may form fans where the planes converge towards the inner arc in less coherent 

pelites and slates, with the reverse in more coherent psammites and quartzites (Price, 1966). The 

cleavage plane spacing is defined using observations of the fabric and how this corresponds to 

illite crystallinity measurements (i.e. the difference between first (and second) order illite basal 

reflections (°Δ2θ); Arkai et al, 2003). The spacing defined by Price and Cosgrove (1990) is:  

1. Scaly, where domains can be observed in hand specimen or outcrop, which correspond to 

illite crystallinity (IC) values of > 10° Δ2θ (i.e. < 5km burial); 

2. Slaty, where domains can only be observed using in thin section, which corresponds to IC-

values of < 10°Δ2θ (i.e. > 5 km burial).  

 

  

Fig. 2.11: Cleavage development in shale under non-metamorphic and low-grade metamorphic 

deformation. Maximum stress directions (σmax) are indicated by the arrows (from Fossen, 2010) 
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Where the tectonic cleavage is affected by a change in the local or regional stress 

direction, a later cleavage may develop (i.e. S2 foliation or higher) as a crenulation cleavage, 

usually as a refolding of earlier phyllosilicate-developed cleavage (Fossen, 2010; Fig. 2.11d). 

This is described as “a set of closely-spaced, secondary, planar domains that create mechanical 

anisotropy in a cohesive material without any loss of cohesion” (Bayly et al, 1977).  

 

Cleavage development in sediment and diagenetically-altered rock 

Where fold deformation occurs in slumps (Tobisch, 1984), water-saturated sediment 

(Maltman, 1998) or diagenetically-altered rock, a cleavage fabric develops in ‘preferred 

orientation’ zones (Engelder & Marshak, 1985). The zones result from the exploitation of fluid-

escape pathways, either by mechanical grain rotation (Beutner, 1980; Engelder & Marshak, 

1985) or by ‘independent’ particulate flow in which grains slide past each other (Borradaile, 

1981; Craig, 1997). These grain movements are aided by:  

1. “High fluid pressures, which may decrease the effective stress across grain boundaries” 

(Engelder & Marshak, 1985), leading to a scaly cleavage (Jansma & Speed, 1993);  

2. Poor grain cohesion with high viscosity or ductility of clay grains (e.g. kaolinite; illite; etc.).  

 

2.3.5 Sediment compaction, cementation and over-pressure  

Folding in sediment takes place at much shallower depths and nearer the surface than in 

lithified rock, making the roles of compaction and cementation important during deformation. 

In shales, where there are no over-pressure affects during burial, there is a consistent 

relationship between porosity (in percentage) and vertical effective stress (in MPa) (i.e. burial 

depth – in km; Zoback, 2008; Fig. 2.12). Weller (1959) envisaged four stages of compaction: 

(1) Initial dewatering; (2) Closer grain packing, which increases sediment cohesion; (3) Pore 

space infill by clay minerals, which increases sediment cohesion; and (4) Deformation of clay 

minerals by mechanical compaction until all porosity is removed. 

Where sands are uncemented, diagenetic change is limited under shallow burial. 

However as burial increases, porosity decreases and grain contacts increase in number and 

complexity (Palmer & Barton, 1987), forming a pressure solution of detrital quartz and 

consequently increasing amounts of cementation. However, where there is a high percentage of 

clay in the matrix, this retards pressure solution cementation (Molenaar, 1986). 

In cemented material, there are strong bonds between grains. The binding cement may 

be either quartz, which precipitates at temperatures greater than 80°C (Walderhaug, 1994; 

Lander et al, 2008), or carbonate, which precipitates at surface temperatures (McKay et al, 

1995; Caine & Minor, 2009). Where the sediment undergoes deformation, it becomes 

increasingly strain-hardened as the amount of cement in the pore spaces increases (Lambe & 

Whitman, 1969; Schofield & Wroth, 1978). However, if the normal stress (σN) is sufficiently 

high to cause the cement to yield, the viscosity of the cemented sandstone reduces with 
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increasing stress (Fig. 2.7). This in turn, reduces the stress-dependence of the sediment stiffness, 

causing strain-softening and the material to return to being low-coherence sediment (Schofield 

& Wroth, 1978). 

 

 

Fig. 2.12: Diagram exhibiting the ideal relationship between shale porosity and burial depth 

without over-pressure effects (modified from Zoback, 2008) 

 

 

Fig. 2.13: Simplified sketch of over-pressure conditions in an oil well, showing six isolated 

stratigraphic compartments (a-f), which maintain hydrostatic pressure internally but which are 

each separated by a laterally-continuous seal (1-6) that increases pore pressure towards 

lithostatic pressure (after Zoback, 2008) 

 

Pore-fluid pressure is important in both cemented and unbound sediment. Hydrostatic 

pressure (PW) occurs in sediment and rock where the pore and fracture networks are open to the 

surface and inter-connected, usually increasing with depth at a rate of 10 MPa/km (Zoback, 

2008). However, if there are stratigraphic ‘compartments’ with poorly-connected pore and 

fracture networks, hydrostatic pressure can increase towards the lithostatic pressure of the 

sediment (PS) or rock (PR). This can occur in shale beds that are inter-bedded with more 

permeable sands and sandstones, generating over-pressure conditions, which move the stress 
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system towards failure (Zoback, 2008). This is illustrated in a simplified sketch example from 

an oil well (Fig. 2.13; after Zoback, 2008) where hydrostatic pressure (PW) is maintained 

internally in each of the six sandstone ‘compartments’, which are separated by laterally-

continuous shale seals that increase the overall pore pressure towards lithostatic pressure (PC).  

Bedding-parallel ‘beef’ veins form in sediment during over-pressure conditions. 

Usually, the veins grow from the centre to the edge, giving them an antitaxial texture 

(Rodrigues et al, 2009). Such veins occur often in shales and may be formed from quartz, calcite 

or even ankerite. Over-pressures that generate ‘beef’ veins may due to either seismicity 

(Brothers et al, 1996), hydrocarbon generation in organic-rich muds (Rodrigues et al, 2009), or 

dilation during pre-buckle shortening (Price & Cosgrove, 1990). 

 

2.4 Fold mechanics 

Many authors have described chevron fold development in multi-layered sequences 

where the layers have contrasting competence (Ramsay, 1974; Tanner, 1989; Yang & Gray, 

1994; Bazalgette & Petit, 2007; Bastida et al, 2007). This section contains an overview of the 

mechanics of fold initiation and buckling, including ‘forced’ folding, in multi-layered inter-

bedded successions from both sediment and rock. It provides the background for a detailed 

review of chevron fold development.  

 

2.4.1 Fold development stages 

Based upon both theoretical and physical modelling (Ramsay, 1974; Price & Cosgrove, 

1990), the development stages of buckle folds are (Fig. 2.14):  

1. Pre-buckle shortening resulting from layer-parallel compression, inducing homogeneous 

layer thickening;  

2. Buckling occurring at (relative) layer irregularities;  

3. Buckling creating unstable contraction (i.e. deformation resistance decreases due to strain-

softening, whilst the deformation rate increases);  

4. Fold amplification until geometric or mechanical constraints cause strain hardening;  

5. Fold deformation ‘locks-up’ at interlimb angles of about 60°.  

 

2.4.2 Pre-buckle shortening 

Parallel or sub-parallel compression of layers produces a period of homogeneous 

shortening before the initiation of buckle folding. The rate at which pre-buckle shortening 

occurs depends upon the stratigraphic stacking pattern, the confining pressure (PC) and the 

compressive strain-rate (de/dt) (Price & Cosgrove, 1990).  

The pre-buckle strain can be estimated by measuring the period during which a slow 

strain-rate operated (Price & Cosgrove, 1990). Accommodation of this strain can lead to the 

formation of either a pressure solution cleavage under metamorphic conditions or mechanically-

http://apps.isiknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&doc=23&db_id=&SID=T2cgM7BAOPBLD7cA2fh&field=AU&value=Bazalgette,%20L&ut=000245832400011&pos=1
http://apps.isiknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&doc=23&db_id=&SID=T2cgM7BAOPBLD7cA2fh&field=AU&value=Petit,%20JP&ut=000245832400011&pos=2
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rotated alignment cleavage in sediments and diagenetically-altered rock (Engelder & Marshak, 

1985). The transition to multi-layer buckling occurs via deformation in relatively thin coherent 

beds. This may generate small folds on larger-scale folds limbs (Price & Cosgrove, 1990). 

 

 

Fig. 2.14: Comparison of stress and amplitude variations in the development of experimentally-

derived folds from initiation to ‘lock-up’ (modified from Price & Cosgrove, 1990) 

 

Pre-buckle shortening can compact sediment and expel fluids from beds, causing the 

bedding plane fluid pressure to become sufficiently high to overcome its cohesive strength and 

the overburden weight (Price & Cosgrove, 1990). At sites of low cohesion, where the maximum 

(σmax) and minimum (σmin) principal stresses are parallel and normal to the bedding respectively, 

hydraulic fracturing and folds may be initiated (Price & Cosgrove, 1990). This allows fluids to 

move through and out of low permeable sediments (Cosgrove, 2001). 

 

2.4.3 Buckling  

Compressional stresses cause beds to flex where deposits form laterally-continuous 

sheets, creating broad buckle folds (Price & Cosgrove, 1990). Buckling develops due to either 

large compressive stresses parallel to high coherence contrast stacked layers (Fig. 2.14) and / or 

from additional torque causing layer instability (Twiss & Moores, 1992). The stresses generate 

high amplification rates, forming small tight folds. This leads to either layer-parallel flexural-

slip, with no stretching or shortening in the outer or inner arcs (Tanner, 1989), or alternatively, 

to orthogonal flexure in which a line perpendicular to a layer remains unchanged after folding, 

with the outer arc stretching and the inner arc shortening (Price & Cosgrove, 1990).  

For buckling to occur, a critical stress must be reached in order to overcome the folding 

resistance or critical strength of the material. Sedimentary rocks with relatively low critical 
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strengths include shales and siltstones; whereas limestones and sandstones have relatively high 

critical strengths (Nemcok et al, 2005).  

 

2.4.4 Forced Folding 

Forced folding is another mechanism by which compressional deformation is 

accommodated. In contrast to buckle folding, forced folds are characterised by a geometry that 

is imposed upon the folded layers by the orientation and nature of an underlying thrust (Suppe, 

1983; 1985). In this case, the beds are neither “free” to fold, nor to transmit any layer-parallel 

stresses. Instead, they are carried by the underlying thrust, which causes stretching or bending as 

folding progresses (Price & Cosgrove, 1990). This can create three forms of fold (Fig. 2.15):  

1. Fault-bend folds, where deformation occurs when beds are displaced by large magnitudes 

along ‘ramp-flat’ thrusts, thereby creating ‘staircase’ geometries (Suppe, 1983);  

2. Fault-propagation folds, where deformation occurs in a ‘process zone’ at an advancing 

thrust tip with asymmetric folds being overturned in the transport direction (Suppe, 1985);  

3. Detachment folds, where deformation occurs via buckling above a bedding-parallel thrust in 

a weak detachment horizon, so that the fold grows above the maximum displacement point 

without any ramp thrust movement (Hardy & Poblet, 1994; Poblet et al, 1998). 

 

 

Fig. 2.15: Schematic sketches of a fault-bend, fault propagation and detachment folds where the 

depositional rate of the growth strata is slower than the uplift rate on the anticlinal crest 

(modified from Burbank & Anderson, 2001) 

 

These types of fold are observed in numerous compressional settings, such as in 

foreland basins and accretionary wedges (Suppe, 1983; 1985; Maltman, 1998), in 

gravitationally-induced delta toe fold-thrust belts (Zoetemeijer et al, 1992; Corredor et al, 2005); 

and in sub-glacial environments (Phillips et al, 2008; Denis et al, 2009). Also in sub-glacial 

environments, folding occurs when glacial till sediment is in an over-pressured hydro-plastic 

state (Denis et al, 2009). Similar scenarios have been proposed for other folds in sediment. For 
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example, over-pressures resulting from hydrocarbon generation are a possible cause for the 

development of the Niger Delta toe fold-thrust belt (Corredor et al, 2005). 

 

2.4.5 Chevron folding 

The chevron folds in the coastal outcrops of the Bude Formation, SW England, are 

archetypal (Ramsay, 1974; Sanderson, 1974; Lloyd & Whalley, 1986; 1997; Tanner, 1989). In 

the original description of the folds by Ramsay (1974), it was suggested that the less competent 

layers in a sequence of more competent layers, ‘flowed’ into the fold hinge zones. This resulted 

in beds with bulbous hinges (i.e. thicker hinges than limbs) occurring in the less competent 

beds, alternating with uniform thickness hinges in the more competent beds. The beds have 

limb-dip variations due to varying bed thickness-limb length ratios (Ramsay, 1974; Sanderson, 

1974). However, since this initial research into chevron folding, advances in the mechanics 

behind this type of deformation have led to at least five different models.  

 

High ductility contrast model (Ramsay, 1974) 

Ramsay (1974) introduced this model for bedded stacks of alternating competent and 

incompetent rock of high ductility contrast and largely uniform thickness. In the model, chevron 

folding occurs under constant stress and load when compressional deformation acts parallel to 

the layering, so that the incompetent bed “exerts no influence on fold stability”. Where there are 

small thickness variations between individual competent beds, deformation is accommodated by 

the limb faults, bulbous hinge zones or layer boudinage. In contrast, if there are large thickness 

variations between competent beds, “the fold limbs become curved”. Hinge zone dilation causes 

the hinges of competent beds to collapse into the incompetent beds with saddle reef formation 

between these beds involving “competent layer flow into the hinge”. During fold development, 

initiation is slow, but amplification is rapid. During the later stages, there is a progressive 

decrease in the shortening rate and fold growth, thereby causing either fold ‘lock-up’ at 

interlimb angles of about 60°, or limb thinning and hinge thickening at interlimb angles of less 

than 60°. Although the “strains in the hinge zone are related to the rates of shear” between beds 

on the limbs, the model is “not completely stable” throughout fold development.  

 

Flexural flow-flexural slip model (Tanner, 1989) 

Tanner (1989) suggested that chevron folds in rock develop by flexural flow between 

high coherence and low coherence beds during the initial stages of folding when bedding-

parallel shear is uniformly distributed across a low coherence folding bed. In contrast, in more 

coherent beds, flexural slip occurs along some bedding planes, progressively amplifying the 

buckle folds. Where high coherence beds are more widely spaced, bedding-parallel shear is 

concentrated along the bedding, creating a flexural slip fold that develops striations in the slip 

direction on the limb bedding planes, towards the anticlinal hinge (Fig. 2.16). As the fold hinges 
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tighten, the limb bedding aligns increasingly orthogonal to the maximum compressional stress 

direction and so, accommodates both the compressional and shear stresses more easily.  

 

 

Fig. 2.16: Sketched flexural-slip chevron fold, showing displaced beds on the limbs. Striations 

suggest that the slip direction is towards the anticlinal hinge (from Tanner, 1989) 

 

Homogeneous shortening model (Yang and Gray, 1994) 

 Yang and Gray (1994) suggest that chevron folds form by homogeneous shortening and 

pressure solution in rock under greenschist facies conditions, resulting in:  

1. Layer-parallel shortening;  

2. Tangential longitudinal strain due to buckling;  

3. Fold tightening by inner arc collapse;  

4. Spaced cleavage, which may develop at fold limb-dips as low as 15°;  

5. Minor fold flattening at metamorphic peak, demonstrated by ‘mica-beard’ growth.  

 

Localised dip-domain boundary model (Bazalgette & Petit, 2007)  

Experiments into fracture localisation in brittle paraffin wax multi-layers by Bazalgette 

and Petit (2007) suggested that during loading, axial-kink boundaries (i.e. dip-domain 

boundaries or DDBs) play a major role in the development of curvature in fractured buckle 

folds. Under low inter-layer friction conditions, DDBs remain relatively localised during 

shortening, leading to chevron folding via flexural slip (Fig. 2.16). Under high interlayer friction 

conditions, DDBs multiply laterally from an initial chevron fold via orthogonal flexure. 

However, a more discontinuous curvature is produced than is observed in outcrop examples.  

 

Homogeneous layer shortening model (Bastida et al, 2007) 

Bastida et al (2007) used finite element modelling to explore chevron fold development 

and suggested that homogeneous layer shortening, constrained by high layer coherence contrast, 

occurs during initial chevron fold growth. This type of shortening requires equiareal tangential 

longitudinal strain, which results from either parallel tangential longitudinal strain or flexural 

http://apps.isiknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&doc=23&db_id=&SID=T2cgM7BAOPBLD7cA2fh&field=AU&value=Bazalgette,%20L&ut=000245832400011&pos=1
http://apps.isiknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&doc=23&db_id=&SID=T2cgM7BAOPBLD7cA2fh&field=AU&value=Petit,%20JP&ut=000245832400011&pos=2
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flow. Also, their fold amplitude decay models agree with Ramsay’s model (1974) with “high 

values of slip between layers, coupled with changes produced in the later stages of chevron 

folding”, which can “bring an end to buckling, probably at interlimb angle values of 60-70°, 

inducing the onset of homogeneous strain”. However, homogeneous strain is usually not coaxial 

and results in shearing of the chevron folds.  

 

Summary of the models 

The chevron fold models of Ramsay (1974), Tanner (1989), Yang and Gray (1994), 

Bazalgette and Petit (2007) and Bastida et al (2007) agree regarding the layer properties (i.e. 

high relative layer competence contrast), kinematics (i.e. flexural slip; Fig. 2.16) and 

accommodation of deformation (i.e. homogeneous shortening). It is note-worthy that although 

chevron folds develop in rock, Bazalgette and Petit (2007) experimented using flexible paraffin 

wax multi-layers. As wax is not a rock, this raises the possibility that chevron folds may 

develop in other materials. This is investigated in this thesis. 

 

2.5 Compressionally-developed basins 

The literature review has concentrated so far on fold deformation, which occurs in many 

settings, such as fold-thrust belts and foreland basins. These settings are described below.  

 

2.5.1 Fold-thrust belts 

Fold-thrust belts result from accommodating compressional deformation (Poblet & 

Lisle, 2011) that can occur during plate (e.g. Alps and Himalayas) and intra-plate collision (e.g. 

Yinshan belt, China; Davis et al, 1998). Special types of fold-thrust belts include deformed 

sediments in accretionary prisms, above subduction zones (e.g. Nankai Prism; Maltman, 1998), 

passive margins (e.g. Orange Basin, Namibia; De Vera et al, 2010); and delta toes (e.g. Po 

Delta; Zoetemeijer et al, 1992). Compressional deformation is tectonically-driven in both 

continental and intra-continental prisms; gravity-driven on continental margins and delta toes; 

and both tectonically-driven and gravity-driven in accretionary prisms (Poblet & Lisle, 2011).  

The characteristics of individual fold-thrust belts can vary because the belts are affected 

by different factors, including (Poblet & Lisle, 2011):  

1. Plate tectonic setting;  

2. Whether just the sedimentary cover, or the cover and basement are involved in deformation;  

3. Mechanical stratigraphy and lithification state (see chapters 6, 7 & 8);  

4. Presence, distribution and thickness of a salt or shale décollement;  

5. Occurrence of syn-deformation erosion and deposition;  

6. Depth to décollement and effective elastic thickness of the lithosphere;  

7. Occurrence of pre-existing basement structures (e.g. on an ancient passive margin);  

8. Timing and rates of deformation. 

http://apps.isiknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&doc=23&db_id=&SID=T2cgM7BAOPBLD7cA2fh&field=AU&value=Bazalgette,%20L&ut=000245832400011&pos=1
http://apps.isiknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&doc=23&db_id=&SID=T2cgM7BAOPBLD7cA2fh&field=AU&value=Petit,%20JP&ut=000245832400011&pos=2
http://apps.isiknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&doc=23&db_id=&SID=T2cgM7BAOPBLD7cA2fh&field=AU&value=Bazalgette,%20L&ut=000245832400011&pos=1
http://apps.isiknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&doc=23&db_id=&SID=T2cgM7BAOPBLD7cA2fh&field=AU&value=Petit,%20JP&ut=000245832400011&pos=2
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2.5.2 Foreland basins 

Foreland basins are a well-known type of fold-thrust belt that is generated by loading 

the autochthonous continental crust (i.e. foreland) with an allochthonous over-thrusting unit or 

hinterland (DeCelles & Giles, 1996; Nemcok et al, 2005; Shail & Leverage, 2009). They are 

often structurally-above an originally weak, thinned section of passive margin that developed 

following a previous rifting event, such as in the Mesopotamian Basin, northern Iraq (Pitman et 

al, 2004). The overlying deposits exerts a significant loading effect and the weakness of the 

thinned, over-ridden passive margin causes it to subside significantly (DeCelles & Giles, 1996). 

‘Imbricate’ thrusts branch-off from a décollement and cut through the foreland basin deposits, 

generating fault-bend or fault-propagation folds (Nemcok et al, 2005). Examples are found in:  

1. Miocene-Present Adriatic Foreland Basin (Zoetemeijer et al, 1992; Tavani et al, 2006); 

2. Early Carboniferous Antler Foreland Basin, Nevada, USA (Jansma & Speed, 1993); 

3. Tertiary West Alpine Foreland Basin, SE France (Sinclair, 1997; McCaffrey et al, 2002). 

 

Three criteria have been suggested for recognising foreland basins, particularly where a 

basin has undergone uplift, exposure and erosion (Fig. 2.17); namely the presence of:  

1. An elongate wedge of potential sediment accumulation (DeCelles & Giles, 1996);  

2. A down-warping depression, whose subsidence rate increases with time (Kneller, 1991); 

3. A depo-centre consisting of four parts (DeCelles & Giles, 1996):  

a. A wedge-top or ‘piggy-back’ (minor) basin;  

b. A fore-deep (major) basin;  

c. A fore-bulge ‘positive’ (basement) structure; 

d. A back-bulge (minor) basin. 

 

The foreland basin model has been employed to describe the Culm Basin structure of 

SW England by Hartley and Warr (1990) and Warr and Hecht (1993) where it agrees with 

criterion 1 above. However, the basin-scale biostratigraphy (Freshney et al, 1972; 1979) is not 

of sufficient quality or continuity to demonstrate that criterion 2 is fulfilled, whilst the restricted 

extent of both the field and subsurface data do not allow the full demonstration of a four-part 

basin architecture. Alternatively, the Culm Basin has been described as a thrust-top (Shail & 

Leveridge, 2009) or a ‘piggy-back’ basin (Coward & Smallwood, 1984; Warr, 2002).  

A discussion of the Culm Basin and Variscan orogenesis is provided below in order to 

establish whether the deformation observed in the Bude Formation outcrops may reasonably be 

described as having occurred within a foreland basin. Further discussion of Variscan orogenesis 

across SW England and in the Culm Basin is provided in Chapter 9. 
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Fig. 2.17: Schematic diagrams (from DeCelles & Giles, 1996) of: (A) map view of a ‘typical’ 

foreland basin either side of marginal ocean basins; (B) foreland-basin geometry in transverse 

cross-section, following the line-of-section through A (10x vertical exaggeration); (C) cross-

section depicting a simplified foreland basin (wedge-top, fore-deep, fore-bulge and back-bulge 

depo-zones; approximately true scale). Topographic front (TF), a schematic duplex (D) in the 

orogenic hinterland and a frontal triangle zone (TZ) are depicted. Progressive deformation 

(short fanning lines associated with thrust tips) in the wedge-top depo-zone is shown. The 

substantial overlap between the orogenic front and the foreland basin system is noteworthy  

 

2.6 Variscan orogenesis and Culm Basin processes 

The Variscan orogeny occurred during Rheic Ocean closure and creation of Pangaea 

through the Late Devonian to Early Permian (Shail & Leveridge, 2009). The deformation across 

SW Britain was part of the northern orogenic ‘front’ (Fig. 2.18) that stretched from Germany to 

southern Ireland (Shackleton, 1984; Coward & Smallwood, 1984) and possibly also, to Portugal 

(Warr, 2002; Fig. 2.19). This review concentrates on the deformation in SW England 

(Sanderson, 1979; Coward & Smallwood, 1984; Shail & Leveridge, 2009) and the Culm Basin 

in particular (Ramsay, 1974; Sanderson, 1974; Lloyd & Whalley, 1986; Tanner, 1989).  
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Fig. 2.18: Variscan deformation across the south of the British Isles (from Warr, 2002) showing: (a) A structural map of south-west Britain and southern Ireland; (b) 

A cross-section through Pembrokeshire, SW Wales; (c) A cross-section through southern Ireland; and (d) A cross-section through south Wales and SW England  

 

 

Fig. 2.19: Variscan foreland basins in SW England showing the Culm Basin as     Fig. 2.20: Schematic N-S cross-sections of progressive SW England passive 

the structurally-highest and youngest Variscan basin, which lies between the      margin inversion: (a) Early stages (Visean); (b) Culm Basin detail (Westphalian) 

inverted North Basin (north) and Tavy Basin (south) (from Shail & Leveridge,     (c) Cartoon of rift basin geometry control on inversion; and (d) End-Westphalian 

2009)              (convergence ceased) (from Shail & Leveridge, 2009) 
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The Variscan fold-thrust belt of SW England is an amalgamation of small, ‘external’ 

foreland basins that grew during the Late Carboniferous (Warr, 2002). North-directed thrusting 

in the Culm Basin began in the late Visean, before the Variscan ‘Front’ moved to the north. This 

caused the North Devon Basin to uplift, supplying sediments into the Culm Basin during 

deformation (Warr, 2002). This ‘front’ does not represent the deformation limit, as far field 

deformation having been observed across northern England (Leeder, 1987). Instead, the 

Variscan deformation in SW Britain is progressive, with several over-printing relationships 

(Whalley & Lloyd, 1986; 1997; Shail & Leveridge, 2009). 

 

2.6.1 Regional compressional deformation in SW England 

North-west-directed Variscan orogenic oblique convergence (Gayer & Nemcok, 1994) 

began during the Middle Devonian (Shail & Leveridge, 2009; Figs. 2.19-2.20). The deformation 

was partially-controlled by east-west-striking dextral transform faults in south Devon and south 

Cornwall (Holdsworth, 1989; Warr, 2002; Fig. 2.18; SPZ in Fig. 2.19), involving passive 

margin inversion (Hartley & Warr, 1990). It has been proposed that the first stage of progressive 

Variscan deformation during Visean times was the Normannian Nappe emplacement onto the 

Gramscatho Basin (Shail & Leveridge, 2009). This resulted in northwards thrusting and 

associated folding (Coward & McClay, 1983) above a ‘thick-skinned’ mid-crustal décollement, 

which continued through to Westphalian times (Shail & Leveridge, 2009; Fig. 2.20). Alternative 

regional Variscan tectonic models in SW England are discussed in Chapter 9. 

 

 

Fig. 2.21: Geological map of north Cornwall, with the main cleavage facing directions and finite 

extension lineations on the NW coast of Cornwall (from Shackleton et al, 1982) 
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The tectonic inversion across SW England resulted in the northwards progression of the 

Variscan foreland basin development, with each basin becoming infilled and then becoming 

deformed and undergoing metamorphism (Dodson & Rex, 1970; Coward & Smallwood, 1984). 

This has caused Carboniferous stratigraphy to young broadly towards the north, across SW 

England. The associated cleavage in these metamorphosed rocks strikes E-W, with extensional 

lineations oriented NNW-SSE (Fig. 2.21).  

Shortening across SW England is estimated at approximately 150 km (Shackleton et al, 

1982) and occurred at a displacement rate of between 0.25 cm/yr and 0.4 cm/yr (Coward & 

Smallwood, 1984). During the Late Carboniferous, there was a ‘sticking point’ as the northward 

propagation rate slowed to less than the slip rate and was replaced by south-directed back-thrust 

movement (Coward & Smallwood, 1984). Sanderson (1979) modelled the associated shear 

deformation as causing increased south-directed strain and tighter folds towards the south in the 

Culm Basin (Figs. 2.22-2.23). This model is described in more detail in chapters 4 and 8.  

In contrast to the most widespread view, Selwood and Thomas (1986b) suggest that 

tectonic movement was directed southwards. In this model, the Boscastle Formation under-

thrusts the Culm Basin along the Rusey Fault (Warr, 2002), with the ‘Padstow Confrontation’ to 

the south as a modified structure within a south-verging fold train (Selwood & Thomas, 1986a). 

This overview of the regional context and geometry of the Culm Basin shows that the 

following features are consistent with it having developed in a foreland basin: 

1. It fulfils criterion 1 of DeCelles and Giles (1996) in being part of a basin that is broadly 

strike-parallel to the deformation ‘front’ into which deformation propagates through time 

(Zoetemeijer et al, 1992; Mouthereau et al, 2007; Mosar et al, 2010); 

2. The Devonian to Carboniferous strata are upwards coarsening and upwards shallowing, 

which is consistent with a relatively distal to relatively proximal position through time with 

respect to the Variscan deformation ‘Front’ (Freshney et al, 1972; 1979). 

 

On the basis of the above discussion, it is considered appropriate to refer to the Culm 

Basin as a foreland basin (sensu lato). Even so, the general aim of this thesis is to investigate the 

mechanical state of folds, which are known to develop in a variety of contractional settings and 

thus, is not dependant upon the Culm Basin being a foreland basin. 

  

2.6.2 Deformation in the Culm Basin 

The Culm Basin is the structurally-highest basin developed during the Variscan 

deformation (Ramsay, 1974; Sanderson, 1979; Whalley & Lloyd, 1986; Lloyd & Whalley, 

1986). Before deformation and prior to a half-graben opening in the Early Carboniferous (Shail 

& Leveridge, 2009), the Culm area consisted of thin Middle Devonian to Early Carboniferous 

deposits south of thicker syn-rift deposits in the North Devon Basin (Shail & Leveridge, 2009).  
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Fig. 2.22: Variscan deformation reconstructions: (a) Major, low-angle faults Fig. 2.23: Bude Formation chevron fold statistical analyses (from Sanderson, 

(D2 of Sanderson, 1979) and Carboniferous stratigraphy displayed from  1979): Fold interlimb angle distribution from Hartland to Rusey (top); and Graphs 

Widemouth to Boscastle, Cornwall; (b) Reconstruction of D1 structures of of inter-limb angle vs. axial plane dip along the Bude Formation coastal outcrops: 

Sanderson (1979) from matching strata across the low-angle faults; and (c) scattergram (bottom left); and 67% bounds (bottom right) 

Positions of the main sections in relation to reconstructed D1 structures     

(from Sanderson, 1979) 

 

 

Fig. 2.24: Simplified regional structural cross-sections through the Variscan deformation (from Coward & Smallwood, 1984): (a) Cross-section through the Variscan 

deformation of SW Britain (the Lizard to Pembrokeshire). Also, suggested cross-sections through thrust and fold structures of: (b) South Devon to the Mendips; and 

(c) South Cornwall to Pembrokeshire; (d) Schematic section through southern Ireland to correlate with structures in south Wales. Notice in cross-section (c) the 

lower decoupling zone below the high level imbricates  
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During Variscan compression, both the northward-propagating deformation front and 

the inversion of the North Devon Basin caused the Culm Basin to subside (Selwood & Thomas, 

1986b; Hartley & Warr, 1990; Warr, 2002). From a seismic survey across the Culm Basin, a 

south-dipping décollement was interpreted at 15-12 km in Cornwall and south Devon and also, 

at 13-10 km in north Devon (Brooks et al, 1984). This is the basis for the Shail and Leveridge 

(2009) ‘thick-skinned’ tectonic model where deformation propagated northward along a mid-

crustal décollement and into the sedimentary cover. In this model, the décollement underlies the 

Culm Basin, as shown in the Coward and Smallwood (1984) cross-section (c) (Fig. 2.24). A 

comparison with their other cross-sections shows:  

1. North-dipping normal faults in SW England (Freshney et al, 1972; Sanderson, 1979; 

Coward & Smallwood, 1984; see cross-section (a) in Fig. 2.24);  

2. A nappe pile in S Devon and fold train in the Mendips (see cross-section (b) in Fig. 2.24);  

3. Both folding and thrusting in south Wales (see cross-section (c) in Fig. 2.24);  

4. A fold train in southern Ireland (see cross-section (d) in Fig. 2.24).  

 

During the progressive Variscan deformation in the Bude Formation, decametric-scale 

‘early’ (Enfield et al, 1985), metric-scale ‘pre-folding’ (Mapeo & Andrews, 1991) and 

kilometric-scale ‘pre-chevron’ (Lloyd & Chinnery, 2002) have been described. These are 

alternate names for the same deformation structures. Mapeo and Andrews (1991) described the 

‘later’ ‘pre-folding’ bedding-parallel thrusts as over-printing the ‘earlier’ normal faulting. 

‘Upright’ chevron folding dominates many of the outcrops to the north of Bude (UK 

Grid Reference: SS200067; Ramsay, 1974; Freshney et al, 1979; Sanderson, 1974; 1979; Lloyd 

& Whalley, 1986; 1997; Tanner, 1989). Whalley and Lloyd (1986) suggest that these chevron 

folds are associated with north-directed thrusts that cut the Bude Formation beds and have 

interpreted them as having exploited the slump beds. This suggests that contemporaneous 

deformation and sedimentation occurred in the Culm Basin (Leveridge & Hartley, 2006).  

To the south of Bude, increasingly south-directed ‘inclined-to-recumbent’ chevron folds 

have been observed (Freshney et al, 1979; Sanderson, 1979). The south-directed folds formed 

by accommodating increasing amounts of south-directed shear strain to the south (Sanderson, 

1979) and caused the ‘upright’ chevron folds to modify their geometries (Lloyd & Whalley, 

1986; 1997). This shear deformation may have been the result of under-thrusting along the 

Rusey Fault at the south of the Culm Basin (Sanderson, 1972; Warr, 2002). In contrast, Warr 

(2002) suggested that this under-thrusting caused the ‘upright’ chevron folds to develop either at 

the same time as, or even after, the south-directed ‘inclined-to-recumbent’ chevron folds.  

 In the Lloyd and Whalley (1986; 1997) model, shear modification resulted in 

steepening of the south-dipping limbs of the original ‘upright’ chevron fold, with ‘inclined-to-

recumbent’ chevron fold development on these limbs, as described in the experimental models 

of Ghosh (1966). However, shear modification has not been accommodated to the same degree 
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across the whole basin and has resulted in south-directed chevron folds with variable axial plane 

dip angles (Lloyd & Whalley, 1986). Alternatively, the folds may have been generated by back-

thrusting (Warr, 2002; Shail & Leveridge, 2009), as observed in the Millook Nappe (Rattey & 

Sanderson, 1982). Similar folds occur in ‘triangle zones’ ahead of ‘blind’ thrusts (Jones, 1982).  

 A consequence of the progressive Variscan deformation in the Bude Formation is that a 

new but typically local cleavage set over-printed the previous set. All three sets are observed in 

Crackington Formation shale beds at Millook (Fig. 2.25i; Lloyd & Chinnery, 2002), enabling 

the Variscan structural evolution to be determined. The cleavage development at Millook 

includes fabrics related to north-directed thrust deformation (S1) in initially horizontal beds (S0); 

followed by ‘upright’ chevron folding (S2); and by south-directed shearing of the ‘upright’ 

chevron folds (S3) (Fig. 2.25i; Lloyd & Whalley, 1986; Lloyd & Chinnery, 2002). Although the 

structures are distinguished, it is emphasised that deformation was progressive, with different 

structures generated contemporaneously both laterally and with depth (Enfield et al, 1985). 

  

 

Fig. 2.25: Schematic diagrams of three progressive deformation ‘phases’ in the Bude and 

Crackington formations from: (i) over-printing cleavage patterns (SN denotes relative foliation 

age); (ii) low-angle thrusts and chevron folding of the thrusts (from Lloyd & Chinnery, 2002) 

 

The north-directed thrusts include hanging wall folds that have been affected by 

progressive Variscan folding (Lloyd & Chinnery, 2002; Fig. 2.25ii (a)). During ‘upright’ 

chevron folding, both ‘undeformed’ beds and beds involved in north-directed thrusting became 

steeply dipping (i.e. 60°) (Fig. 2.25ii (b-c)). During south-directed ‘inclined-to-recumbent’ 

chevron folding, the originally north-dipping limbs may have become less steep and formed 

north-directed folds where thrusts and hangingwall folds were emplaced (Lloyd & Whalley, 

1986; Fig. 2.25ii (d)). Alternatively, the north-directed folds may have been generated where 

north-directed thrusts exploited the slump beds (Enfield et al, 1985; Whalley & Lloyd, 1986). 

The Variscan fold deformation throughout SW England was NW-directed (Gayer & 

Nemcok, 1994), so accommodating a transpressional component. This transpression caused 

i 

ii 
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kilometric-scale regional NW-SE-striking dextral faults (e.g. Sticklepath Fault) to cut across 

earlier faults (Andrews, 1992; Peacock et al, 1998). This is associated with a variation in 

deformation directions along the strike of the Variscan ‘Front’ (Coward & Smallwood, 1984). 

Displacements on the cross-cutting faults range from millimetre to kilometres, with the smallest 

scale faults accommodating up to 38° of clockwise rotation (Peacock et al, 1998).  

In the Bude and Crackington formations, steeply north-dipping normal faults cut the 

chevron folds (Freshney et al, 1972; Sanderson, 1979) and may represent post-Variscan 

extensional structures (Coward & Smallwood, 1984). The extensional reactivation of the faulted 

contact between the Bude and Crackington formations led to the development of the Permian 

Crediton Trough (Durrance, 1985). The extension may have been assisted by sinistral 

transtensional movement during orogenic collapse (Gayer & Cornford, 1992). This extension is 

associated with Cornubian granite batholith intrusions, and in turn with regional uplift, crustal 

thinning and exhumation (Coward & Smallwood, 1984; Warr, 2002). Also, during the Tertiary, 

both dextral and sinistral wrench movement was accommodated on some faults (e.g. Sticklepath 

Fault) (Williams et al, 1970; Freshney et al, 1972; Peacock et al, 1998) and has been associated 

with the development of the Bovey-Tracey Basin, central Devon, along the Sticklepath fault 

(Holloway & Chadwick, 1986). 

In addition, soft-sediment structures have been described (Burne, 1970; Enfield et al, 

1985; Hartley, 1991; Hecht, 1992) and syn-depositional tectonic deformation inferred in the 

Bude Formation (Hartley & Warr, 1990; Shail & Leveridge, 2009). It is these features, together 

with the geometries of the related fold structures, which form a general aim in this thesis.  

 

2.6.3 Geometries of the fold structures in the Bude and Crackington formations 

Fold deformation structures in the Bude and Crackington formations have been 

analysed by Davison et al (2004) based on remote sensing data collected using a photo-montage 

between Hartland Quay and Speke’s Mill Mouth (SS222257-SS225247). This included an 

analysis of the chevron fold wavelengths, amplitudes and inter-limb angles from 62 folds (Figs. 

2.26-2.27), yielding the following statistics:  

1. Mean fold wavelength (λ) of 146 m (st. dev. ± 108 m), mean fold amplitude (a) of 29 m (st. 

dev. ± 25 m) and a possible linear correlation of: a = 0.19*λ (R
2
 = 0.79; Fig. 2.26); 

2. Mean fold interlimb angle of 67° (st. dev. ± 20°), with bimodal peaks at interlimb angles of: 

44°-55° (tighter folds) and 77°-99° (more open folds) (Fig. 2.27). 

 

The Davison et al (2004) mean fold wavelength (λ) and mean fold amplitude (a) 

suggest that the data scatter is sufficiently small that a linear correlation is applicable. However, 

some caution should be applied to the data, as this correlation appears to be applicable only for 

‘small’ folds (i.e. λ < 200 m; a < 40 m) (Fig. 2.26). At wavelength and amplitude values above 

these, the scatter in the data is too great to provide any meaningful correlation (Fig. 2.26). 
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Further data collection from chevron folds along the north Devon-north Cornwall coastline is 

required to provide a more robust analysis and statistically significant result. 

 

 

Fig. 2.26: Amplitude vs. Wavelength plot for chevron folds between Hartland Point and Speak 

Mill’s Mouth (SS230278-SS225237; n = 62), showing that the correlation of fold amplitude and 

wavelength is best for small folds (modified from Davison et al, 2004)  

 

 

Fig. 2.27: Frequency plot of chevron fold interlimb angles between Hartland Point and Speak 

Mill’s Mouth (SS230278-SS225237; n = 62), showing a bimodal distribution for the fold 

interlimb angle data (modified from Davison et al, 2004) 

 

Also, from Davison et al (2004), the results from the frequency plot of fold interlimb 

angles (Fig. 2.27) suggest that although a bimodal distribution may be interpreted. However, 

there is a large range of fold interlimb angles, of between 22° and 121° (Fig. 2.27), which may 

indicate that compressional strain was accommodated unevenly by the folded beds during 

Variscan deformation. However, as with the fold wavelength-fold amplitude data, insufficient 

folds may have been measured to provide a statistically significant result.  
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2.6.4 Structural geometries of beds in ‘upright’ chevron folds 

The bulbous-hinged sandstone, siltstone and shale beds in Bude Formation ‘upright’ 

chevron folds have interlimb angles of less than 70°. Additional folding is accommodated in the 

beds via hinge expansion, in a direction sub-parallel to the minimum principal stress direction 

(σmin). They are associated with saddle reefs where beds have separated at the fold hinge 

(Ramsay, 1974). In contrast, the only bulbous-hinged beds observed in the Crackington 

Formation are shale beds in the ‘inclined-to-recumbent’ chevron folds (Sanderson, 1974).  

In the Bude and Crackington formations, estimates have been made of the amount of 

dimensionless shortening accommodated (-e), of the dimensionless bed thickness-to-limb length 

ratio (t0/L0) and of the interlimb angle (IA) of the folded beds (Sanderson, 1974; Fig. 2.28). The 

extension vector direction opposes that of shortening, so that extension is a positive direction (e) 

and shortening is negative (-e). The limb length (L0) (in metres) is measured between interlimb 

positions around each folded bed, whilst the bed thickness (t0) (in metres) is that measured at 

the hinge (Ramsay, 1967). Table 2.1 contains the calculated t0/L0 ratios and the shortening (-e) 

for the formations, together with the theoretical IA angle (Sanderson, 1974), which shows that:  

1. IA angle is greater than the calculated angle for the Bude Formation folds; 

2. IA angle is less than the calculated angle for the Crackington Formation folds. 

 

 

Fig. 2.28: Graph of interlimb angle (IA) versus shortening (-e) for different bed thickness-to 

limb length (t0/L0) ratios in the Bude and Crackington formations’ folds (from Ramsay, 1967) 

 

The discrepancy between the theoretical and calculated interlimb angles (IA) suggests 

that the folds in the Crackington Formation are too tight to be consistent with the model 

(Sanderson, 1974). The geometries of these chevron folds are investigated using the dip isogon 

and quantitative layer thickness methods of Ramsay (1967) in Chapters 7 and 8. 
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Table 2.1: Tabulated data from Sanderson (1974) showing how theoretical inter-limb angles 

(IA) relate to shortening accommodated (-e) and bed thickness-to-limb length (t0/L0) ratios; and 

compare to the calculated IA angles, for Bude and Crackington formations’ folds 

 

2.6.5 Lloyd-Whalley shear modification model 

‘Upright’ chevron folds often have interlimb angles (IA) of 60°, which is their ‘lock-up’ 

angle (Ramsay, 1974), causing the limbs to dip at about 60° N or S. If a horizontal deformation 

with dimensionless shear strain (γ) is applied to the folds, it causes the limbs to rotate from their 

initial angles (α = 60° or 120°) to new angles (β) that Ramsay (1967) described by:  

 

cot (β) = cos (α) + γ      (2.1) 

 

Limbs rotate at different rates for the same shear strain, depending upon their initial and 

progressive orientations, thereby modifying the initial ‘upright’ chevron fold style. This 

modification is accommodated geometrically in three models for folds over a range of simple 

shear strains of: 0 < γ < 1, as described by Lloyd and Whalley (1986) (see Fig. 2.29).   

 

Model 1 – The interlimb angle (IA) remains constant and geometric accommodation involves 

passive rotation of rock slices between rotating slip (i.e. fault) planes on either the 60° (Fig. 

2.29i (d)) or 120° (Fig. 2.29i (e)) limbs, thereby conserving the modified fold area in the profile 

plane. In order to prevent over-riding or separation of rock slices on either side of the fault, 

three variations to the model are proposed; namely that both limbs rotate and faulting occurs on 

one of the following parts of the fold: (a) ‘extending’ (i.e. 60°) limb (Fig. 2.29i (a)); (b) 

‘contracting’ (i.e. 120°) limb (Fig. 2.29i (b)); and (c) axial surface (Fig. 2.29i (c));  

Model 2 – IA varies with simple shear strain accommodation and limb-fault modifications, 

reducing the fault angle on the 60° (Fig. 2.29ii (a)) and 120° (Fig. 2.29ii (b)) limb;  

Model 3 – IA varies with simple shear strain accommodation but via fold modification only. 

The 120° limb can be modified and the 60° limb rotates passively, causing broadening of the 

original synform (Fig. 2.29iii (a)) or antiform (Fig. 2.29iii (b)). 

 

These models have been applied by Lloyd and Whalley (1986) to the Bude Formation 

chevron folds between Bude and Widemouth Bay (Grid northings: 065-030; Fig. 2.29iv):  

1. Faults and fault ‘slices’ at: 061, 039, 035 and 030, fit model 1; 

2. Faults and fault ‘slices’ at: 063, 062, 059, 056, 054-052, and 034-032, fit model 2; 

3. Folds at: 061, 057, 052, 040, 038, 036-035 and 031, fit model 3. 
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Fig. 2.29: Models for shear modification of ‘upright’ chevron folds (modified from Lloyd & 

Whalley, 1986): (i) Model 1: (a) axial plane fault, and 60° limb controls deformation; (b) axial 

plane fault, and 120° limb controls deformation; (c) axial plane fault, which itself controls 

deformation; (d) faulting on 60° limb, and 120° limb controls rotation; and (e) faulting on 120° 

limb, and 60° limb controls rotation; (ii) Model 2: (a) faulting on 60° limb, and 120° limb 

controls rotation; and (b) faulting on 120° limb, and 60° limb controls rotation; (iii) Model 3: (a) 

modification of a synform; and (b) modification of an antiform; and (iv) Schematic structural 

sections of the Bude to Widemouth coastline (amended from King, 1967; Freshney et al, 1972). 

Numbers 1, 2 and 3 relate to the model interpreted for the modified fold type. Letters A, B, C, 

etc. from King (1967) stratigraphy. UK national grid northings given at the ends of each section  

 

The manner in which the shear deformation is accommodated by the original chevron 

folds varies from fold-to-fold. Furthermore, the amount of shear deformation accommodated by 

the Bude Formation strata varies irregularly, particularly in the coastal sections between Bude 

and Widemouth (SS202065-SS200029). However, where south-directed ‘inclined-to-

recumbent’ chevron folds occur, there is a general decrease in fold axial plane angle from north 

to south, as suggested in the earlier model of Sanderson (1979). The Lloyd and Whalley (1986; 

1997) back-shear model recognises this general decrease and develops on from the Sanderson 

(1979) model. Further comparisons of the two models are provided in chapters 4 and 8. 

 

2.6.6 Regional metamorphism and geothermal gradients 

Very low-grade metamorphism has affected the Palaeozoic deposits of the Culm Basin 

and SW England. From illite crystallinity (IC) results in the Crackington Formation shales, the 

degree of metamorphism increases south of Wanson Mouth (SS195015; Dodson & Rex, 1970; 
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Bishop, 1990; Warr & Hecht, 1993). The highest metamorphic grade reached is mid to upper 

greenschist facies (i.e. 450°C ± 50°C) around Tintagel (SX0589; Primer, 1985b). This occurred 

before the Bodmin Granite intruded (Andrews et al, 1988), which is dated as 287 ± 2 Ma 

(Darbyshire & Shephard, 1985). However, there is a sudden northwards decrease in IC-values 

across the Rusey Fault Zone (SX1497) from the Boscastle Formation epizonal-grade slates (> 

300°C) to the Crackington Formation anchizonal-grade shales (150-300°C; Grainger & Witte, 

1981; Bishop, 1990) (Fig. 2.30). This occurred despite palaeontological evidence to suggest that 

both formations were deposited in the same Namurian basin (Selwood et al, 1985). 

 

 

Fig. 2.30: Diagrams of illite crystallinity measurements (modified from Bishop, 1990): (a) 

Locations of illite crystallinity measurements along the north Cornwall coast; and (b) section 

along the north Cornwall coast giving the illite crystallinity (IC) and corresponding temperature 

values for different ‘metamorphic’ grades (after Kübler, 1967; Primer, 1985a; Bishop, 1990) 

 

The Rusey Fault (SX127940) was interpreted as a thrust by Zwart (1964) and 

Thompson and Cosgrove (1996). It dips to the NE at more than 30° and moved in a top-to-NW 

direction, emplacing the higher-grade Boscastle Formation over the Crackington Formation at 

approximately 300 Ma (Warr et al, 1991). This explains the change in IC-values and 

temperature values recorded across the thrust (Grainger & Witte, 1981; Bishop, 1990) (Fig. 

2.30). Following the thrust movement, the Rusey Fault has been deformed by south-directed 

shearing to obtain its present orientation (Sanderson, 1979; Lloyd and Whalley, 1986).  

The metamorphic grade decreases gradually from anchizone to digenetic (300-150°C; 

Kübler, 1967) to the north of the Rusey Fault (Primer, 1985b; Kelm & Robinson, 1989; Warr & 

Hecht, 1993) (Fig. 2.30). The decrease in grade may have been sufficient to prevent the sealing 

of feldspars for metamorphic age dating, in which case the 
40

K-
40

Ar age of 329 Ma for the 

timing of Crackington Formation metamorphism at Crackington (SX1497; Dodson & Rex, 

1970) would reflect the age of metamorphism in an adjacent foreland basin, with the sampled 

grains used by Dodson and Rex (1970) having been eroded and re-deposited in the Crackington 

Formation. An alternative estimate for the timing of the thermal maximum in the Culm Basin 

comes from 
40

K-
40

Ar whole rock ages for the North Devon Basin, which is dated as 

approximately 305 Ma (Dodson & Rex, 1970; Warr, 2002). The IC results of Primer (1985b) 
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and Bishop (1990) suggest that the temperature difference (approximately 75°C) across the 

Rusey Fault (SX127940) occurred as a result of heating on the Culm basin contact, following 

Rusey thrust sheet emplacement during northward thrusting (Primer, 1985a). 

In order to explain the temperature difference, a geothermal gradient has been 

calculated by Cornford et al (1987) using an estimate of 7.0-5.8 km for the total pre-erosional 

sediment thickness of the Bude and Crackington Formations. This estimate was based on the 

depth to the Culm basin décollement from the seismic survey of Brooks et al (1984). However, 

in order to account for the temperature difference across the Rusey Fault Zone, these overlying 

deposits were possibly short-lived (approximately 5 Ma) (Cornford et al, 1987). Warr (1989) 

suggests that in order to attain this geothermal gradient, greenschist-grade metamorphic rocks 

had been thrust under the northern Culm basin. The total thickness of the Bude and Crackington 

formations may have been as much as 1600 m (Freshney et al, 1979) but probably less due to 

structural repetition (Lloyd & Chinnery, 2002). Thus, even with sediment compaction and major 

erosion during Variscan orogenesis, the 5.8-7 km burial range of Cornford et al (1987) appears 

to be too large. Two possible models are proposed to explain the temperature difference.  

 

Extremely high geothermal gradient/thin succession – In this model, the present 3.0-3.5 km 

thickness of the Bude and Crackington formations reflects the maximum burial of the 

Crackington Formation shales (Cornford et al, 1987). For the shales to have reached a 

temperature of 250°C, a 70-80°C/km geothermal gradient was required, as has been suggested 

for the coeval Ruhr and Upper Rhine Basins (Cornford et al, 1987). This extremely high 

geothermal gradient would have required that simultaneous igneous activity took place, with 

accompanying metamorphism. Although peak temperatures occurred in the Culm Basin at 

approximately 305 Ma (Dodson & Rex, 1970) the Bodmin Granite emplacement is dated at 287 

Ma ± 2 Ma (Darbyshire & Shephard, 1985), which casts doubt on this explanation. 

 

Elevated geothermal gradient/thick succession – In this model, regional tectonic heating 

raised the geothermal gradient to 40°C/km (Warr, 2002), whilst up to 2 km of now eroded 

sediment was deposited above the topmost Bude Formation, as envisaged by Cornford et al 

(1987). If deposition continued, the later sediments may have been either locally deposited or of 

variable thickness in the basin. Also, as deposition was syn-tectonic (Warr, 2002; Shail & 

Leveridge, 2009), substantial thickness variations may have occurred. Nevertheless, it remains 

uncertain whether sediment thicknesses could have reached 7.0-5.8 km in the basin. 

 

2.6.7 Geochemistry of the Culm Basin deposits 

Two geochemical studies have been undertaken in the Culm Basin. The first study is an 

analysis of rare crustal elements from the Bude and Crackington formations outcrops near 

Exeter, Devon (Haslam & Scrivener, 1991). From these results, it is suggested that: (1) the 
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provenance for both the Bude and Crackington formations is similar; (2) the beds are quartz-

rich, and thus, resistant to weathering; and (3) the deposits are texturally mature.  

The second study is the analyses of Light Rare Earth Elements (LREE) and Heavy Rare 

Earth Elements (HREE) (Diskin, 2008). From these results, it is suggested that the Bude 

Formation is depleted in LREEs and enriched in HREEs. This contrasts with the Bideford 

Formation in the northern Culm Basin and suggests that the two formations had different 

provenances. These findings agree with sedimentological studies on the Bude and Bideford 

formations by Higgs (1991) and Burne (1995), and are discussed further in Chapter 3. 

 

2.7 Summary 

This literature review of the geology of the Culm Basin focuses particularly upon the 

deformation structures formed in sediment and upon chevron fold mechanics, because of their 

relevance to the general aim of the thesis; namely, to establish the different characteristics of 

folds in sediment and folds in rock.  

The review shows that deformation structures in the study areas encompass features 

formed by soft-sediment deformation and, in the case of slump folds, when the sediment was 

liquefied. Slump fold geometries have both similarities and differences when compared with 

tectonically-generated folds.  

The review of fold geometries led onto a more specific discussion of chevron fold 

development. This included a brief overview of five chevron fold models that described layer 

properties, kinematics and strain accommodation during fold development.  

Particular attention is given to the Variscan orogenesis, basin processes and chevron 

folds observed in the Late Carboniferous Bude Formation (Culm Basin, SW England), which is 

part of the specific aim of the thesis. This includes a critical analysis of whether it is appropriate 

to refer to the Culm Basin as a foreland basin. By reference to the criteria derived from studies 

of other foreland basins in the geological record, it is considered that the Culm Basin can be 

referred to as a foreland basin, sensu lato.  

Lastly, this literature review introduces the key research issues that are explored and 

investigated in the following chapters. The first of these chapters describes the observations, 

data collected and analyses undertaken of the sedimentary facies observed in the Bude 

Formation outcrops, as part of the specific aim of the thesis. From the sedimentary data and 

observations, new insights are provided into the Bude Formation depositional environment and 

placed into the context of previously published models, as described in Chapter 3. 
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Chapter 3: Sedimentological interpretation of the Bude Formation 

 

3.1 Introduction 

The Bude Formation is located in the Culm Basin, north Cornwall-north Devon, SW 

England, with some of its most accessible exposures found along the coast around Bude, north 

Cornwall. This sedimentary study of the Bude Formation deposits is part of the specific aim of 

the thesis, with the focus upon its coastal outcrops between Northcott Mouth (National Grid 

Reference: SS202087) and Black Rock (SS195015; Fig. 3.1a), which form a well-exposed 

sedimentary succession (see Chapter 1). A detailed facies analysis is supported by petrography, 

ichnological observations and published palaeo-flow indicators (Freshney et al, 1979; Higgs, 

1991; Burne, 1995) as well as carbon-sulphur (C/S) data (Lloyd & Chinnery, 2002) in an 

attempt to develop an improved environmental interpretation.  

Culm Basin deposition occurred during the Pennsylvanian (Bashkirian-Moscovian), 

equivalent to the Late Carboniferous (Westphalian A-C) (Reading, 1965; King, 1966; Freshney 

et al, 1972; 1979; Gradstein et al, 2004; Walker & Geissman, 2009). Basin subsidence has been 

interpreted to be driven by foreland flexural down-warping ahead of the Variscan mountain belt 

to the south together with uplift of the Bristol Channel Fault Zone to the north (Shackleton et al, 

1982; Coward & Smallwood, 1984; Warr, 2002; Shail & Leveridge, 2009; see Chapter 2).  

Stratigraphically, the Bude Formation lies above the turbiditic Crackington Formation 

deposits in the central and southern Culm Basin (Freshney et al, 1979; Melvin, 1986; Warr, 

2002). The generally coarsening-up and cyclic deltaic Bideford Formation lies in the northern 

Culm Basin and includes black shale beds with listeri and amaliae goniatites that correlate with 

the middle-to-top Crackington Formation and base Bude Formation (de Raaf et al, 1965; Li, 

1990; Higgs, 2004). In the study area, the laterally-continuous Tom’s Cove and Saturday’s Pit 

shales were correlated by King (1971) based on the presence of brackish-water tolerant fish and 

lateral stratigraphic thickness changes measured (Freshney et al, 1972; 1979), the thicknesses 

being about 70 m at Northcott Mouth, 25 m at Bude and 105 m at Upton (Figs. 3.1a & b).   

Many of the sedimentary structures in the Bude Formation outcrops have been well 

documented. Many beds are observed to be sharp-topped and sharp-based with flutes on the bed 

bases, which are indicative of turbidite beds (Higgs, 1991; Burne, 1995). However, there is a 

continuing debate about the Bude Formation depositional environment, which has given rise to 

at least six contrasting depositional models, these being: 

 

Model 1: Fining-up delta (King, 1971): This model discusses the small (no scale), cyclic, 

fining-up packages of fine-grained sandstones to siltstones to carbonaceous shales, the latter 

having been deposited in a variably saline environment. Each package was interpreted as 

representing a change from fluvial conditions, with rapid fine sand sedimentation during a 

period of oscillatory flow, to slow deposition (suspension fall-out) under relatively deepwater 
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conditions. Specific black shales contain lacustrine palaeoniscoid fish Cornuboniscus budensis 

and brackish-water tolerant coelacanthid Rhabdoderma elegans (Forey, 1981). A limited and 

variable trace fossil assemblage has been used to infer variable salinities. From the cyclical 

stratigraphic architecture of the Bude Formation, a correlation was proposed with nine localised 

deltaic cycles as in the Bideford Formation (de Raaf et al, 1965).  

 

Model 2: Wave and storm influenced shallow water environment (Higgs, 1984): Rippled 

bedding surfaces and ripple cross-lamination in Bude Formation siltstones to very fine 

sandstones, with only slightly asymmetric ripple crests, have been interpreted as oscillatory 

ripples. The slight ripple asymmetry was interpreted as either: (a) shoaling, where oscillatory 

motions became asymmetric; or (b) combined flows, where oscillatory wave motion occurred in 

tandem with a uni-directional current. Also, hummocky cross-stratification was described and 

interpreted as the product of storm-wave oscillations, whilst sharp-based, normal-graded, very 

fine sandstones were considered typical of waning-energy event beds. The sedimentary 

structures are interpreted to represent wave-influenced deposition in the lower to mid-shoreface, 

coupled with periodic marine inundation of an otherwise fresh to brackish water lake setting, 

was also suggested on the basis of the palaeontological evidence from Freshney et al (1979). 

 

Model 3: Prograding turbidite fan (Melvin, 1986): This model invokes deposition of the 

Crackington and Bude formations within a delta-fed subsea fan. The thick Bude Formation 

sandstones are interpreted as the deposits from turbidity currents in a relatively shallow basin. A 

key observation by Melvin (1986) is that upwards-thickening and upwards-thinning packages 

are no more common than symmetric packages, but that all of these occur much less frequently 

in the Bude Formation than do disorganised packages. He suggested that siltstone and sandstone 

deposits within both formations are interbedded with laterally-continuous “key” shales that 

resulted from delta-lobe abandonment. Whilst Melvin (1986) recognizes the importance of 

external variables, such as active seismicity and downslope resedimentation, his model 

emphasizes autocyclic lobe switching as the major control on facies architectures. 

 

Model 4: Shallow marine ramp (Hartley, 1991): In this model, a predominantly turbiditic 

sequence was deposited on a shallow sub-aqueous fan (Melvin, 1986) or a brackish-water, low-

angle, shallow-marine ramp that lacked a single significant feeder channel system. The slumps 

and ‘debrites’ are recognised as key deposits, with ‘debris flows’ generated from slope failure 

on the fan or ramp system. Palaeo-current directions suggest that there was a south-dipping 

palaeo-slope, with failure on an unstable northern margin from the Bideford Formation delta.  

 

Model 5: Freshwater lake (Higgs, 1986; 1991): Higgs developed his 1984 interpretations 

further, with a model that considers the early Westphalian ‘Lake Bude’ to have been an 
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equatorial freshwater lake in which there were characteristic alternating periods of sand-poor 

and sand-rich sedimentation. An idealised cycle was described as comprising in ascending 

order: dark grey laminated mudstones with sparse (centimetric scale) event beds; light grey silty 

mudstones with one or two event beds (up to 30 cm thick); a thick (decimetric to metric scale) 

sandstone; silty mudstone facies association; and laminated mudstones facies association. The 

key sedimentary structure that Higgs (1986; 1991) recognised was the centimetric-scale, 

asymmetric, sinuous-crested combined-flow ripples, which was interpreted as being deposited 

from waning storm-generated turbidity currents in a lake shoreface environment that was 

affected by wave processes. Higgs (1991) also recognised seismites, which occur due to syn-

depositional earthquake activity (see Chapter 2), and 0.2 m deep scours.  

Integrating this sedimentology with palaeontological signatures and C/S ratios from five 

silty mudstones, it was suggested that in a lower to mid-shoreface environment, each idealised 

cycle coincided with a trend from brackish water to freshwater and back to brackish water 

conditions. Three of the mudstones were recognised as fully marine, based upon the presence of 

goniatites and pelagic bivalves described by Freshney et al (1979). Except when over-topped 

during sea-level highstands, the model invoked a sill that blocked the pre-Bude Formation E-W 

seaway from open marine conditions, so that brackish (and rarely marine) salinities developed 

and thick black shales were deposited. Higgs (1986; 1991) interpreted the sandstones as event 

beds fed by river-derived underflows and reworked by wave-oscillations above the storm wave 

base. The absence of cycles containing nearshore or emergent facies occurred as a result of:  

1. A regional sill that separating the depositional environment from a full marine connection, 

which was sufficiently high that only during eustatic maximum flooding was it over-topped;  

2. Monsoonal conditions that generated an annual flood;  

3. Relatively distal deposition beyond shoreline progradation. 

 

Model 6: Variably-oxygenated inactive fan (Burne, 1995): In this model, the Bude 

Formation is proposed to be very similar to the underlying Crackington Formation, with the 

exception of thick sandstone units being present. Also, depositional continuity with the Bideford 

Formation deltaic deposits in the northern-most Culm Basin is questioned. The Bude Formation 

facies are interpreted as 10-60 m thick “non-random alternations” between: (1) black shale 

facies, from fine-grained turbidites in a generally anoxic basin; (2) muddy siltstone facies, from 

current-influenced, oxygenated environments (possible fan levees); (3) inter-bedded sandstone-

shale facies, from either levee, lobe or inter-channel turbidite environments; and (4) sandstone-

dominated facies from channel-fill and fan valley environments.  

A shallow shelf depositional environment is not invoked for the Bude Formation 

deposits as in Higgs (1991). Instead, hummocky cross-stratification resulted from anti-dunes 

and rippled bed tops resulting from reworking by the tail of a waning turbidity current. Thus, the 
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Bude Formation thus is viewed in this model as a turbidite-dominated environment in fresh to 

brackish water, on a landlocked, inactive northern shelf margin in the Culm Basin.  

 

 

Fig. 3.1a: Location map of the field study area along the Bude Formation coastal outcrops from 

Northcott Mouth to Wanson Mouth (SS202087-SS193015). A correlation panel of Bude 

Formation summary sedimentary logs across the field area modified and correlated from 

Freshney et al (1972; 1979), including the seven shale beds in the Black Rock foreshore. The 17 

detailed sedimentary logs in the Bude Formation and one log in the Crackington Formation are 

displayed on the location map and also in their relative lateral and stratigraphic positions 
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The lack of agreement on the depositional environment has necessitated a reassessment 

of the sedimentary structures. An analysis of sedimentary data has led to a new facies scheme 

and a comparison between the facies recognised in this work and those by other authors. From 

this, a re-interpretation of the Bude Formation depositional environments is proposed. 

 

3.2 Methods 

As part of reassessing the depositional environments, 17 detailed sedimentary logs of 

the Bude Formation outcrops were taken between Northcott Mouth and Black Rock (SS201087-

SS198016), plus another log in the Crackington Formation at Wanson Mouth (SS195014), with 

a photographic record of each logged section and sample numbers provided (Fig. 3.1c). The full 

logs describe bed thickness and colour, lithology, sedimentary structures, grain size, diagenetic 

features, syn-depositional structures and ichnofabrics. From the detailed logs, a facies scheme 

with ichnofabric descriptions was developed, with North Upton log 12 (SS200047) considered 

representative of the deposits (Fig. 3.2) because it includes almost all the observed facies types.  

The ichnofabric analysis compared the logged associations to those associations 

described by Higgs (1991) and Burne (1995). Likewise, the palaeo-flow indicators from 7 

examples of trough cross-stratification structures and 22 examples of tool marks and ripple 

laminations have been measured across the field study area between Northcott Mouth and Black 

Rock (SS202087-SS195015). These data have been compared with the results of Freshney et al 

(1979), Higgs (1991) and Burne (1995). The palaeocurrent data from flutes, grooves and tool 

marks collected by Melvin (1986) was outside the study area to the north of Northcott Mouth 

and so has not been compared with these results. 

In order to provide a context for the Bude Formation deposits, stratigraphic correlation 

of the continuous black shales was undertaken using sedimentary descriptions and logs from the 

BGS Memoirs (Freshney et al, 1972; 1979). The 17 detailed sedimentary logs taken between 

Northcott Mouth and Black Rock (SS201087-SS195015) were placed into their relative lateral 

and stratigraphic positions using the BGS correlated logs, providing further details on the 

vertical stacking patterns for palaeo-environmental reconstruction (Figs. 3.1a & b), despite the 

lateral stacking patterns being restricted by the width of outcrop on the coastal foreshore. 

Rock samples, tied to the logs (Fig. 3.1c), were collected across the study area in order 

to test for differences in the mineral proportions related to the deposition of the facies. Folk 

diagrams show the estimated the proportions of quartz, feldspar, lithic fragments and mud in 

different sandstone, siltstone and slump beds; along with the proportions of clay, organic matter 

and carbonates in shale beds, obtained from microscopic petrographic analysis of 50 thin 

sections. The composition of the samples was compared with results from two studies by 

Freshney et al (1979) and six from other foreland basin deposits (Schwab, 1986). 

Eight of the samples (six shales and two sandstones) were turned into polished blocks in 

order to study the micro-structures of the slump and chevron folded beds at Upton (SS200046) 
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and Bude (SS201065), using a scanning electron microscope (SEM) in the backscattered 

electron (BSE) atomic number (Z) contrast mode, combined with an energy dispersive X-ray 

microanalysis. As with thin section analysis, the SEM was used to identify minerals, including 

diagenetic phases, as well as cross-cutting and over-printing relations in the different lithologies. 

This enabled a diagenetic sequence for the Bude Formation to be proposed. For example, pyrite 

framboid populations and their sedimentary fabrics provided a proxy for depositional 

oxygenation conditions (Table 3.1; Bond et al, 2004). 

 

 

Table 3.1: Summary of characteristics to define oxygen-related depositional conditions and 

facies in shale beds (from Bond et al, 2004) 

 

The previously published results of carbon-sulphur (C/S) geochemical analyses in the 

Bude Formation (Lloyd & Chinnery, 2002) have been incorporated into this study because it 

provides a measurable proxy for syn-depositional water salinities, following the methods of 

Berner and Raiswell (1984) with a chemical proxy used (ratio of sulphur (S) to organic carbon 

(C)). In freshwater samples, the amount of sulphur can be either zero or very low compared to 

the amount of carbon (i.e. S < 0.8 %) and vice versa in marine samples (i.e. S > 1.5 %). 

Brackish-water samples contain intermediate amounts of sulphur (i.e. 0.8 % < S < 1.5 %). From 

calculations of the total amounts of organic carbon (C) and sulphur (S), an S:C ratio is defined, 

providing a salinity proxy during deposition (from the methods of Berner & Raiswell, 1984):  

1. Relatively low S:C ratio values (< 0.06) indicating a freshwater depositional environment;  

2. Relatively high S:C ratio values (> 0.25) indicating a marine depositional environment; 

3. Values in the range of 0.06 to 0.25, indicating a brackish-water depositional environment. 

 

3.3 Facies within the Bude Formation  

The Bude Formation beds contain a range of sedimentary structures (Table 3.2), with 

the most abundant being planar laminations and two types of ripple coset laminations within 

siltstones and very fine-grained sandstones. Previously unrecognised trough cross-stratified beds 

and rare tabular cross-stratified beds were identified by the author (Figs. 3.1c & 3.2). The trough 

structures occasionally display mud draped bases, whilst reactivation surfaces are occasionally 

observed in trough cross-stratified beds.  
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Fig. 3.2: Combined sedimentary logs over a 25 m vertical section in the cliffs from North Upton anticline (SS200047) showing most of the sedimentary facies types 

described in this chapter 

 

 

Table 3.2: Table of the different sedimentary facies recognised in the Bude Formation outcrops together with a table of comparison for the different recognised 

facies by the author with that of Higgs (1984; 1986; 1991), Melvin (1986), Hartley (1991) and Burne (1995)  
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These deposits are variously inter-bedded with very fine to fine sand-grade, metric to 

decametric scale massive beds; internally-contorted sandstones and siltstones; planar laminated 

shales; and rare massive slump beds. The massive to amalgamated beds, many with flutes on 

bed bases, include occasional low density and diversity bioturbated tops with Skolithos and 

Helminthopsis ichnofabrics. Two erosive-based channels with mud-covered bases and infilled 

by massive and trough cross-stratified sandstones were observed in outcrop (see Fig. 3.1c). The 

following adds detail and interpretations to the sedimentary facies outlined in Table 3.2.  

 

3.3.1 Siltstones and sandstones with ripple laminations (Facies 1a and b) 

Facies 1a siltstones and sandstones with ripple laminations equate to the common ripple 

laminations of Burne (1995), which are also described as combined-flow or sinuous-crested, 

quasi-symmetrical ripples as observed at North Upton (SS200047) by Higgs (1986; 1991). 

Facies 1b consists of mud-draped ripple cosets that alternate between sand or silt laminations 

and mud laminations (Figs. 3.1c, 3.2 & 3.3b, d & g). Some mud-draped structures are deposited 

in a near-rhythmic pattern, with cycles of sandier / siltier ripple laminae giving way to thinner, 

millimetric laminae that alternate with clay partings (Fig. 3.3g). Silty and sandy laminae then 

increase in grain size and thickness, with a progressive loss of muds, before the cycle (3-8 cm 

long) is repeated. The mud-draped ripples of facies 1b may be interbedded with facies 1a 

ripples, but the former are usually found at the tops of beds otherwise dominated by facies 1a 

siltstone and sandstone ripple laminations. The mud-draped ripples and ripple cosets of facies 1a 

and 1b have not been differentiated in previous studies.  

In the siltstone beds, the dimensions of both types of ripple laminations are: 3.0-5.0 cm 

wide stoss sides; 0.5-1.5 cm wide lee sides; and 0.5-0.75 cm amplitudes. In the sandstone beds, 

the ripple dimensions are: 5.0-7.5 cm wide stoss sides; 1.5-2.5 cm wide lee sides; and 0.75-1.25 

cm amplitudes (Fig. 3.3e). From these data, the ripple index range has been estimated as 6.5-8.5, 

whilst ripple symmetry index ranges from 2.5-3 (Reading, 1996; Collinson et al, 2006). From 

these estimates, the similar sized facies 1a ripples and facies 1b mud-draped ripple laminations 

are generally interpreted as representing unidirectional current action. However, some ripples, in 

particular bed-top ripple forms, include more symmetric geometries that overlap between 

current and wave ripple forms (Collinson et al, 2006), as also interpreted by Higgs (1991).  

 

Facies interpretation 

One possible mechanism to generate mud-draped ripples (facies 1b) is fluctuating 

current activity due to semi-diurnal or diurnal, astronomical tidal cyclicity (Visser, 1980). Mud 

drapes would represent deposition during slack tidal phases, whilst silty/sandy ripples or ripple 

cosets would represent active tidal sediment transport and deposition. No herringbone cross-

bedding was observed in the Bude Formation, but this could be explained by the occurrence of a 

dominant tidal current that was sufficiently energetic to transport sediment, compared to a 
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subordinate tidal current that was not (after Visser, 1980). Centimetric-scale mud-draped ripples 

are described from modern sub-tidal channel-fill deposits in the SW Netherlands. They occur in 

ebb-dominated 0.2-2.5 m high tidal dunes that exhibit demonstrably semi-diurnal mud couplets 

in their bottomsets, separated by a thin layer of sandy ripple laminations of opposing current 

direction, produced by the subordinate flow (Visser, 1980; de Boer et al, 1989).  

If the dominant currents had a lower velocity in the case of the facies 1b setting, then it 

is feasible that ripple coset laminations might represent only the dominant flow, with the mud-

drapes being the slack water and subordinate flow phases (Reading, 1996). The modern 

Oosterschelde example of Visser (1980) shows successive tidal bundles (foreset laminae 

separated by slack water mud drapes) thickening and thinning with a sinusoidal cyclicity due to 

the spring-neap-spring cycles, with evidence of slack water mud drapes and subordinate flow 

current reversals. Fig. 3.3g illustrates the near-rhythmic changes in the ratio of silty / sandy 

laminae to mud drapes in the Bude Formation ripple cosets at North Upton (SS200047). These 

mud-draped cosets hint at a tidal cyclicity. However, in the absence of observed current 

reversals, which could be considered diagnostic of tidal influence when taken together with the 

near-rhythmic structures, alternative causes for these small-scale structures are considered also. 

Ainsworth et al (2012) describe sediments from coastal deposits of the modern Lake 

Eyre in Australia. Facies include mud-draped tabular cross-beds and trough cross-bedding up to 

0.25 m in thickness. Paired mud drapes (mud couplets defining bundles) are described as 

common. Mud-draped, small-scale (5-8 cm wavelength) symmetric ripple forms are also present 

(wavy bedding in the terms of Ainsworth et al, 2012). Lake Eyre is non-marine, being located in 

an intracratonic playa lake setting. Ainsworth et al (2012) ascribe the observed sedimentary 

structures to meteorological “tides”, related to cyclical daily changes in wind direction and 

velocity, in combination with weekly or monthly variations in fluvial discharge. This raises an 

alternative set of mechanisms for generating Bude Formation facies 1b mud-draped ripples and 

ripple cosets that would otherwise require a nearshore, shallow water depositional environment. 

Mud drapes have also been generated in experimental conditions that are centimetric-

scale dune forms deposited from muddy-sandy turbidity current underflows (Baas et al, 2011). 

In both facies 1b mud-draped ripples and these small-scale dunes, finer-grained elements would 

have formed during locally and episodically waning flow conditions. Longer term waning flow 

conditions may result in mud-draped tops to beds and structures (Kneller & Branney, 1995).  

Ripple-laminated siltstones and sandstones can have a turbiditic origin, but are not 

themselves diagnostic of this. For example, flute-marks on these bed bases (as observed in the 

Bude Formation) or on the bed bases of massive or fining-up sandstones, would provide 

stronger evidence. Also, turbidity currents generated from storm or slump-generated suspended 

sediment, or direct fluvial discharge, may occur in both lacustrine and marine environments at 

various water depths (Reading, 1996). Thus, other palaeoenvironmental evidence is needed in 

order to establish the cause of the observed ripple laminations, which is discussed in section 3.9. 
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3.3.2 Trough cross-stratified sandstones (Facies 2a and b) 

There are two types of trough cross-stratified sandstones that include centimetric to 

decimetric scale bundled (stacked) or individual trough sedimentary structures. One facies 

includes rare mud draped trough bases (facies 2b), whilst the other is more common and has no 

mud draped bases (facies 2a; Figs. 3.1c, 3.2 & 3.3d). This facies is not described by previous 

authors. The troughs incise lower structures, whilst infilling sediment pinches onto and onlaps 

the trough margins. The sedimentary structures are 5-15 cm wide and 2-5 cm deep, and the fine 

grained trough cross-stratified sandstones are between 0.2 and 5.0 m thick. The sandstones 

include common rip-up mud clasts and rare load-‘flame’ structures on bed bases (Table 3.2). 

Occasional low-angle reactivation surfaces are observed, especially in thicker beds.  

 

Facies interpretation 

Troughs form as a result of high energy current flows that occur commonly in fine-

grained sandstones, at mean flow velocities of more than 50 cm/s (Collinson et al, 2006). Such 

conditions occur in shallow lacustrine or shallow marine settings around the mid-shoreface, 

above the storm-weather and below the fair-weather wave base. The required velocities may be 

generated by either tidal current flows or storm events (Reading, 1996). In the case of mud-

draped troughs (facies 2b), there must be an interval to develop a period of slack water between 

the development of each trough and its subsequent infilling onlapping deposit (Fig. 3.3d).  

The presence of laterally extensive reactivation structures can be caused by changes in 

base level (Collinson et al, 2006) but are more commonly formed by storm reworking. Mud-

draped bases on both trough structures and reactivation surfaces within the bed forms could 

indicate fluctuating current velocities, resulting from astronomical tidal processes within a 

marine setting (Ainsworth et al, 2012). However, the mud drapes alone demonstrate that there 

was a lower energy environment following the erosive trough generation, with perhaps some 

clastic bypass (B. Gréselle, 2012, pers. comm.). Where troughs are formed by storm currents, 

subsequent fairweather conditions must have a lower energy.  

 

3.3.3 Undulose and hummocky cross-stratified sandstones (Facies 3a and b) 

Undulose and hummocky structures in the Bude Formation are found within trough 

cross-laminated sandstone beds, some of which also include low-angle erosive reactivation 

surfaces (Figs. 3.1c, 3.2 & 3.3f). The undulations (facies 3a) have wavelengths of 10-15 cm and 

amplitudes of approximately 1 cm. Other authors have not described this facies clearly, 

although it is included as a smaller scale hummocky cross-stratified structure by Higgs (1991). 

The undulations incise the underlying trough cross-laminated sandstones (facies 2) and are 

overlain by further trough cross-stratified sandstones. Each undulation has a basal mud layer 

and contains a 1-2 cm thick fine grained massive or ripple laminated sandy horizon with rip-up 

clasts (Table 3.2). They are associated with the hummocks, as is observed at North Upton 
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(SS200047). The hummocky structures (facies 3b) show concave-up (hummock) and convex-up 

(swale) surfaces, bound packages of low-angle cross-bedding, which sometimes include 

reactivation surfaces, and often have an aggradational character. They are overlain by variably 

thick shale beds (see facies 8 below) that infill the palaeo-bathymetry. The symmetrical 

hummocks and occasional swales were described by Higgs (1984; 1986; 1991) and have 

wavelengths of 1-2 m and amplitudes of 10-15 cm, making them an order of magnitude larger 

than the undulations (Table 3.2).  

 

Facies interpretation 

The undulations (facies 3a) may represent destruction-construction ‘events’ by storm 

water flowing down gutters where gradients are high (Collinson et al, 2006). The erosional 

surface marks sediment bypass and is infilled by later lower-energy sandy deposits. The 

hummocky (facies 3b) structures (Fig. 3.3f) may result from ‘events’ such as combined storm 

wave oscillations and strong unidirectional currents (Reading, 1996) in the lower-to-mid-

shoreface, below the zone of reworking by fairweather wave action (Higgs, 1986; 1991). The 

fetch needs to be tens of kilometres in order to generate sufficient storm waves (Reading, 1991). 

Also, undulose and hummocky structures may form in lacustrine or marine settings (Reading, 

1996). Where storm waves generate hummocky cross-stratification in a marine environment, the 

hummocks may be associated with infaunal suspension feeders (Burne, 1995; Reading, 1996), 

but this was not observed in the Bude Formation. In the Higgs (1991) model, the storm waves 

have reworked such significant amounts of sediment downslope that the Bude Formation 

deposits never moved into the fairweather upper shoreface environment. This aspect of the 

model is problematic, especially in a lacustrine environment as envisaged by Higgs (1986; 

1991), as base levels were probably highly variable (Reading, 1996; Nichols, 1999). Burne 

(1995) suggested that the hummocks formed as anti-dunes, mega-ripples or via fluidisation 

processes. However, the symmetry of the observed hummocks and the lack of internal 

dewatering features make these explanations difficult to support. 

 

3.3.4 Tabular cross-bedded sandstone (Facies 4) 

At North Upton (SS200047), there is an example of this distinctive, metric-scale, 

tabular, sharp-based cross bedding (Figs. 3.1c, 3.2 & 3.3c). This facies is not described clearly 

by other authors and only mentioned briefly by Higgs (1991). Tabular cross-beds, found only in 

fine-grained sandstones, appear to have neither mud-draped bases to structures, nor conclusive 

evidence for reactivation surfaces. The planar foreset structures are up to 1.4 m high (Table 3.2).  

 

Facies interpretation 

The rare structures are likely to have developed in high energy depositional 

environments such as in a migrating dune or sand wave, with a non-erosive base, where flow 
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velocities exceeded 50 cm/s (Collinson et al, 2006). Such conditions occur in both lacustrine 

and marine settings. Such a dune crest is inferred to have been straight on the basis of consistent 

foreset geometry (Fig. 3.3c). There is no evidence is seen of reactivation surfaces that would 

have indicated emergence and / or fair-weather wave-reworking of the dune. The absence of 

such structures may suggest that depth fluctuations were not large when the tabular cross-beds 

formed (Collinson et al, 2006). Although mud drape couplets have not been seen in the exposed 

example, the presence of a sub-aqueous sand wave or bar form could be explained by significant 

tidal ebb or flow current activity (Reading, 1996). However, given the absence of specific tidal 

features, it is more likely to have been generated by storm wave activity in a lower shoreface 

depositional environment, with the lack of erosion into underlying strata and the presence of 

tabular cross-beds precluding a turbidity current origin (Reading, 1996; Collinson et al, 2006).  

 

3.3.5 Planar laminated siltstones and sandstones (Facies 5a and b) 

There are two types of planar laminated siltstones and sandstones observed in the Bude 

Formation outcrops. The planar laminated facies 5a is common and includes stacked silt and/or 

sand laminations, whilst the mud-draped planar laminated facies 5b is rare and includes 

rhythmic mud and silt-to-sand laminations. These laminations are laterally-continuous stacks of 

parallel, very fine sand or silt alternating with mud laminations (Figs. 3.1c, 3.2 & 3.3a & d). 

They have been observed by Higgs (1986; 1991), Melvin (1986) and Burne (1995); but the mud 

draped planar laminated facies 5b is not described by other authors. The beds that contain both 

types of planar laminations are less than 0.2 m thick and mud rip-up clasts are absent. The 

planar laminated structures are occasionally observed to be associated with ripple laminated 

deposits (facies 1a and 1b) and trough cross-stratified sandstones (facies 2a and 2b) (Fig. 3.3a, 

b, d, k & l). The lamination thicknesses are less than 0.1 mm for mud laminations; 0.1-0.25 mm 

for silt laminations; and 0.25-0.5 mm for sand laminations. The mud draped planar laminations 

have a rhythmic ‘tramline’ pattern that consists of stacks of sandier and siltier laminations, but 

with few mud laminations, alternating with stacks where the reverse is observed (Fig. 3.3a). 

Furthermore, some of the mud laminations may be expanded by bedding-parallel carbonate 

veins that are 0.1-2.0 mm thick. Planar laminations may also be observed in association with 

both trough cross-stratification and ripple lamination facies (Table 3.2).  

 

Facies interpretation 

Various alternative explanations for planar laminated facies 5a have been proposed with 

either: low-energy hemi-pelagic settling of sediment (Collinson et al, 2006); high-energy flows 

from unidirectional flows close to the bed (Baas et al, 2011); or high density turbidity currents 

with sediment concentrations up to 0.36 (Leclair & Arnott, 2005). It has also been proposed that 

such flows, where linked with ripple laminations, may be from turbidity currents on either a 

lacustrine ramp (Higgs, 1991) or in a deep marine environment (Burne, 1995). The mud-draped 
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planar laminated facies 5b represent hemipelagic fallout during episodes of minimum current 

activity (Reading, 1996). Where quasi-rhythmic stacking is observed, this could conceivably 

relate to astronomical or meteorological “tides” (Ainsworth et al, 2012), thereby controlling the 

balance between local current activity and terrigenous input. Independent palaeoenvironmental 

indicators, such as C/S and ichnofabric analyses, would be needed to assess these possibilities. 

 

3.3.6 Amalgamated massive structureless siltstones and sandstones (Facies 6 and 7) 

Bed thicknesses in the massive or amalgamated structureless sandstone and siltstone 

beds (facies 6 and 7) (Figs. 3.1c, 3.2 & 3.3i) vary greatly, but are up to 8.0 m thick for facies 7 

sandstone beds and 4.0 m for facies 6 siltstone beds (Table 3.2). The sandstone beds are very 

fine to fine sand grade and have conchoidal fractures, rare reduction spots and basal load-

‘flame’ structures. Some massive sandstones show flute casts on basal surfaces. In a very few 

massive sandstone and siltstone beds (around a dozen beds), which have no flute casts, 

bioturbation may also be observed. Ichnofabrics are of low abundance, diversity and density and 

are centimetric-scale structures within the top 0.1 m of these few beds. Where ichnofabrics are 

observed, the beds are dominated by vertical Skolithos burrows (Figs. 3.2 & 3.3g) up to 10 mm 

wide and 50 mm long. In a few siltstone beds, Helminthopsis is observed (Fig. 3.3h) but there 

are no stenohaline fauna (i.e. echinoderms, bivalves) from a marine setting (Nichols, 1999).  

 

Facies interpretation 

The deposition of these beds may have occurred in one of three ways: by rapid dumping 

from either collapsing surge-like high-density turbidity currents (Reading, 1996); deposition 

from sustained high-density turbidity currents in a subaqueous fan (Kneller & Branney, 1995); 

or rapid suspension fallout from storm-generated clouds of sediment in the water column, which 

is the preferred interpretation of Higgs (1991). In the Kneller and Branney (1995) model, thick 

massive sands are laid down from a gradual aggradation beneath a sustained turbidity 

underflow, where the lower part of the flow becomes hyper-concentrated and settling is 

hindered. Traction structures are retarded, as there is little rheological difference at the boundary 

between the lower flow and the newly laid-down, dewatering deposit (Kneller & Branney, 

1995). Such massive sand deposits occur at concentrations above 0.36 (Leclair & Arnott, 2005).  

Rapid suspension fallout may occur in a marine setting, but is more likely in a stratified 

lacustrine setting from sediment-laden river discharges. In the latter case, the input waters are 

denser than the surface lake waters (i.e. epilimnion) but could be less dense than the cold bottom 

waters (i.e. hypolimnion) (Nichols, 1999). This causes sediment-laden flows along the 

thermocline between the top and bottom waters and a rain of very fine grained sediment onto 

the lake floor (Reading, 1996). However, the absence of distinguishing features may cause some 

beds to loose any pre-existing sedimentary structures through internal liquefaction and / or 

disruption (see Chapter 2). The limited range of ichnofabrics and the lack of stenohaline fauna 
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associated with this facies, and others in the Bude Formation, suggests a fresh to brackish water 

depositional environment, perhaps with some anoxia (Nichols, 1999). If the oxygen content and 

/ or water salinity increased due to ephemeral storm activity, liquefaction and / or marine 

incursion, this could have resulted in higher levels of colonisation (Reading, 1996). Descriptions 

of the ichnofabrics observed in this study and by other authors are provided in Section 3.5. 

 

3.3.7 Planar laminated shales (Facies 8) 

Planar laminated shale beds (facies 8) vary in thickness between 0.02 m (thin shales) 

and 6.0 m (laterally-continuous black shales). Laminations are on a millimetric scale. Some thin 

shale beds and all the black shale beds include planar laminated siltstones (facies 5a) and very 

fine sandstones (facies 5b), in the form of 0.01-0.05 m thick ‘stringers’ (Figs. 3.1c, 3.3j & 3.4-

3.6), as described by King (1971), Higgs (1986; 1991), Melvin (1986), Hartley (1991) and 

Burne (1995). The sandstone beds within facies 8 contain numerous burrows with Diplocration 

being most common and Arenicolites, Phycodes, Skolithos and Teichichnus much rarer (Higgs, 

1991). Occasionally, the shale beds are also inter-bedded with thin (0.05-0.1 m thick) and 

internally-contorted beds (Fig. 3.4; Table 3.2). In the black shale beds, Planolites ichnofabrics 

have been observed between sandstone ‘stringer’ inter-beds, with body fossils of fish, goniatites 

and pelagic bivalves in distinct pyritised shale layers (King, 1967; Freshney et al, 1972; 1979; 

Higgs, 1991). Abundant bedding-parallel ankerite veins also occur within these beds.  

There are two thick black shale beds, correlated by Freshney et al (1972; 1979) from 

King (1967) between Northcott Mouth and Black Rock (SS202087-SS195015) that provide 

good marker horizons. In stratigraphic-order, the Bude Formation black shale beds are:  

1. Tom’s Cove Shale, with a prominent (0.2-0.4 m) massive sandstone (Figs. 3.1a & b, 3.4 & 

3.5) and associated with the fish R. elegans (Freshney et al, 1972; 1979);  

2. Saturday’s Pit Shale, with numerous sandstone ‘stringers’ (Figs. 3.1a & b, 3.3j & 3.6) and 

associated with the fish C. budensis (Freshney et al, 1972; 1979).  

 

Facies interpretation 

 The shale beds are interpreted as reflecting a restricted or marginal sub-aqueous setting 

with low-energy, hemi-pelagic fall-out of clays (Figs. 3.3j-k & 3.4-3.6), with the silty and sandy 

stringers could due to fall-out from suspended sediment in the water column, perhaps distal to a 

storm event or as distal turbidites, with the latter being the more likely in discontinuous beds 

(Reading, 1996). The amount of clastic input may have varied due to environmental changes, 

with increased input producing the thin (1.0-5.0 cm) planar laminated siltstone and sandstone 

‘stringers’ and laid down either in pulses or possibly seasonal changes from material suspended 

in distant river output (Burne, 1995). In contrast, Higgs (1991) suggested that the mudstone was 

deposited in a low-velocity current, such as a river-fed surface plume entering more saline 
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waters. The mudstone and inter-bedded ‘stringers’ are interpreted by Higgs (1991) to be 

couplets or seasonal varves deposited during an annual wet (i.e. monsoon) and dry season cycle.  

The preservation of the fish fossils in the Tom’s Cove and Saturday’s Pit shales suggest 

that the depositional environments were largely brackish water and dysoxic. The oxygen 

depletion may have resulted from increased organic activity (i.e. eutrophication) when clastic 

supplies increased (Burne, 1995). Such low levels of oxygen could be tolerated by the 

Planolites burrowers (Gringras et al, 2009). However, the presence of R. elegans (King, 1971) 

indicates that salinity conditions may have varied (Forey, 1981). The black shales therefore 

corresponded with intervals of increased salinity, which may have occurred as a result of either 

a marine transgression that brought more marine conditions (Freshney et al, 1972; 1979), or 

increased subsurface seepage, as has been invoked in the Early Cretaceous South Atlantic ‘Pre-

Salt’ lacustrine environments (Harris et al, 2004).  

 

 

Fig. 3.4: Sedimentary log 17 at Maer Cliff (SS200082), showing repeated successions bound by 

bedding-parallel faults below the laterally-continuous Tom’s Cove Shale (see Figs. 3.1a, b & c)  

 

Such marine transgressions could be due to continued subsidence during prolonged 

intervals of reduced sediment input; but is perhaps more likely to be due to a 4
th
-order glacio-

eustatic sea level rise, given the presence of globally widespread transgressive marine bands 

during the Westphalian (Freshney et al., 1979; Rippon, 1996; Higgs, 2004). Alternatively, sub-
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surface seepage (Harris et al, 2004) may suggest that large volumes of more saline fluids leaked 

into the Culm Basin during Bude Formation deposition; but this has not been demonstrated. 

Thus, the thick continuous black shale beds are interpreted as representing deposition either 

during significant increases in base level when the area became distal, or alternatively, when 

near-clastic sediment cut-off occurred due to possible avulsion elsewhere (Nichols, 1999).  

 

 

Fig. 3.5: Sedimentary log 10 at North Upton (SS200049) for comparison with the Maer Cliff 

section (see Fig. 3.4), with the laterally-continuous Tom’s Cove shale (see Figs. 3.1a, b & c) 

 

3.3.8 Slump and internally-contorted beds (Facies 9a, b and c) 

Slump and internally-contorted beds occur at centimetric (facies 9a; internal bed 

contortions) to decametric-scales (facies 9c; massive slumps), with grain sizes between clay and 

very fine sand grade, as recognised by Higgs (1991). The internal contortions were described by 

Higgs (1991) as ‘seismites’ (see Chapter 2) and by Burne (1995) as ‘slurrites’. The internally-

contorted beds (facies 9a) (Figs. 3.1c, 3.3k, l & m & 3.4; Table 3.2) are laterally persistent over 

a few kilometres only (Hartley, 1991), forming mud-draped, convolute, inclined fold or load 

structures. The bed tops may be load deformed or have sand volcanoes (Burne, 1970). There are 

also attached slump beds (facies 9b) comprised of thin (centimetric-scale) inter-bedded shales, 

siltstones and sandstones that retain their original sedimentary structures in isoclinal, recumbent, 

fold structures. Massive, disaggregated, mud-rich slump beds (facies 9c) (Fig. 3.3m) are 

associated with shale deposition and include metric-scale, isoclinally-folded, sandstone ‘rafts’.  
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All of the slump and internally-contorted beds represent varieties of sedimentary 

remobilisation at or near the palaeo-surface (van Rensbergen et al, 2003). Potential triggers 

include storm waves (Owen & Moretti, 2008), seismic activity or over-steepened slopes (Del 

Pino-Sanchez, 2006). A key requirement is that the slumping involves a deforming force that 

exceeds the sediment strength (Owen, 1987; see Chapter 2).  

 

Facies interpretation 

The massive slump beds (facies 9c; Fig. 3.3m) have well-defined bed tops and bases, 

suggesting that their external surface was cohesive, whilst their disaggregated nature suggests 

that their beds underwent gravitationally-induced shear deformation and liquefaction (Owen & 

Moretti, 2008). The shear deformation caused any coherent sedimentary layers within the 

disaggregated matrix, to form ‘recumbent’ sheath-like folds (Strachan & Alsop, 2006). They are 

interpreted by Hartley (1991) as being the product of a debris flow. It is likely that their 

deposition would have modified the palaeo-surface topography. This is considered in Chapter 5 

for the Black Rock Slump Bed at Black Rock (SS197017) and at South Lynstone (SS200051).  

In contrast, internal cohesion is retained in the attached slump folded beds of facies 9b 

(after Owen, 1987), as observed at North Upton (SS200047) and Phillip’s Point (SS200044). 

The attached slump beds and recumbent fold axial planes are consistent with multi-bed 

liquefaction on a slope, with gravitationally-induced shear stress over the bed top (Woodcock, 

1979; Strachan & Alsop, 2006; Debacker et al, 2009).  

 

3.3.9 Channel fill facies (Facies 10) 

Individual channel structures with stacked sedimentary bed fill occur rarely, with only 

two examples recognised within the Bude Formation outcrops: in the south-facing cliff at 

Summerleaze Beach, Bude (SS200067); and in the Black Rock foreshore (SS196016) (Fig. 

3.1c). Both have a north-south oriented channel axis, which is sub-parallel to the coastline. The 

Summerleaze channel is up to 1 m deep and over 20 m wide; whilst in the Black Rock channel 

is 1 m deep and 10 m wide. Although similar structures are recognised by Burne (1995) 

elsewhere along the outcrops, only 0.2 m thick scour infills are recognised by Higgs (1991).  

The channels formed by erosion of earlier beds. The channel bases are overlain by a 

thin mudstone bed above, with a stack of more confined sandstone and siltstone beds filling the 

channels. Once filled, deposition returns to less confined bedding stacking patterns (Table 3.2). 

 

Facies interpretation 

These rare examples of channels may be indicative of changing base levels, due either 

to a fall in sea or lake level (Reading, 1996; Nichols, 1999) or tectonic-related uplift and palaeo-

slope steepening (McCaffrey et al, 2002). In the absence of emergence indicators, the channels 

may represent subaqueous feeder channels of a turbidite form (Reading, 1996). According to 
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Burne (1995), the generation of the channels may result from levee, lobe or inter-channel 

systems. If the channels developed in a shelf slope with turbidites, they are more likely to be 

stacked and avulsing, rather than individual channels (Reading, 1996; McCaffrey et al, 2002). It 

is possible that other similar individual channels have not been recognised or are located inland. 

 

3.4 Palaeo-flow directions  

The sole marks on the bases of Bude Formation facies 1, 6 and 7 turbidite beds provide 

palaeo-flow direction indicators that are linked to palaeo-slopes. Sole marks have been 

measured: stratigraphically between the Tom’s Cove and Saturday’s Pit Shales from Bude to 

Widemouth by Burne (1995) and Higgs (1991) and are plotted in rose diagrams; between the 

Hartland Quay (base Bude Formation) and Saturday’s Pit shales north of Bude by Freshney et al 

(1979) and are plotted in a circular diagram; and between Northcott Mouth and Black Rock in 

this work and are plotted in two circular diagrams for erosional and depositional indicators.  

From the grooves and bounce marks (sample size, n = 115), plus flutes, prod marks and 

longitudinal scours (n = 51) measured by Higgs (1991), the palaeo-flow directions ranged 

between SE and SW, with directions being highly variable from bed-to-bed (Fig. 3.6a). From 

the tool marks (n = 31), current scours (n = 74) and cross-laminations (n = 250) measured by 

Burne (1995), the dominant palaeo-flow directions were towards the S and SW, although 

eastward flow directions were found in some beds (Fig. 3.6b). From the flutes (n = 24) and prod 

casts and grooves (n = 14) measured by Freshney et al (1979), flows occurred in all directions, 

with a north-south channel axis found north of Bude (Fig. 3.6c).  

From the orientations of trough cross-stratification (n = 7), tool marks (n = 20) and 

ripples (n = 2) measured during this work, a highly variable range of palaeo-flow directions are 

suggested for both north and south of Bude (Fig. 3.6d), being: to the north at Northcott Mouth 

(A), Bude (B) and Black Rock ; to the west at North Lynstone (D), Upton-Phillip’s Point (F) 

and Church Races (G); to the east at Maer Cliff (B); and to the south at North Upton (E).  

These directions are corrected for tectonic tilt and show separately the erosional 

(trough) and depositional (tool marks and ripples) palaeo-flow indicators (Fig. 3.6d). The 

depositional features were generated during waning flows that may be related strongly to 

palaeo-slope direction. In contrast, the erosional features were generated during high energy 

incising flows and thus may be unrelated to palaeo-slope direction (Collinson et al, 2006).  

Higgs (1991) and Burne (1995) suggested that there was a regional south-dipping 

palaeo-slope to the south of Bude, with possibly some bathymetry. In contrast, to the north of 

Bude (Freshney et al, 1979), the large variations in palaeo-flow directions suggest an undulating 

and changing palaeo-surface. Possible reasons for the range of palaeo-flow directions include:  

1. Basin margin slope direction variations;  

2. Avulsion of turbidite sheets across the basin floor;  

3. Local bathymetry on the palaeo-surface. 
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Fig. 3.6: Comparison of palaeo-flow indicators from Bude Formation outcrops. Measurements 

taken from Bude to Widemouth by: (a) Higgs (1991); and (b) Burne (1995); (c) north of Bude 

by Freshney et al (1979); and from Northcott Mouth to Black Rock in this work, with 

depositional and erosional indicators at: A. Northcott Mouth; B. N Maer Cliff; C. S Maer Cliff; 

D. Bude; E. Lynstone; F. Upton; G. Upton-Phillip’s Point; H. Church Races; and I. Widemouth 

 

3.5 Ichnofabric analysis 

Ichnofabric analysis was undertaken in order to provide another control on the palaeo-

environmental conditions. Only a few ichnofabrics have been observed in the Bude Formation 

beds, with a low density of Skolithos and Helminthopsis burrows in the metric-scale massive 

sandstones and siltstones (facies 6 & 7). In the sandstones and siltstones within thick black shale 

intervals (facies 8), Higgs (1991) found Diplocration were common, but Arenicolites, Phycodes, 

Skolithos and Teichichnus more rarely. Planolites ichnofabrics were found within the black 

shale laminations by Higgs (1991) and Burne (1995). In the interbedded nodules within the 

black shale beds, King (1967) found Planolites and Cochlichnus ichnofabrics, as well as 

palaeoniscid fish Cornuboniscus budensis and Elonichthys aitkeni, an ancanodian fish 

Acanthodes wardi and a crustacean Crangopsis huxleyi.  

These results suggest that the black shale beds (facies 8) were deposited in a shelf or 

ramp setting, probably below the storm wave base (Higgs, 1991). The ichnofabric community, 

which is best developed in the upper part of facies 6 and 7 beds, may have resulted from 

recolonisation during a period of reduced sediment input, following event bed deposition 

(Reading, 1996). Where Skolithos ichnofabrics are observed (e.g. Fig. 3.3h), it suggests that the 

sandstones and siltstones of facies 6 and 7 were deposited on a shallow oxygenated shelf or 

ramp in the lower to middle shoreface and is consistent with the facies described in section 3.3. 
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Apart from some apparent horseshoe crab traces (Xiphosurid Kouphichnium) and fish 

trails (Undichna) (King, 1971), the low density and diversity of ichnofabrics in other facies may 

be due to variations in non-marine salinities, temperature and sedimentation rates (Bjerstedt, 

1987), plus oxygen content and substrate consistency (Martin, 2004). The lack of ichnofabrics 

suggests that deposition occurred mainly under unfavourable conditions for burrowers.  

From the sedimentary logs in Freshney et al (1972; 1979) (Fig. 3.1) and reproduced by 

Lloyd and Chinnery (2002), the Bude Formation sediment pile may be up to 1300 m thick and 

deposited over a one million year period. In which case, the mean sedimentation rate was about 

1.3 mm/yr, potentially providing enough new nutrients for the burrowing organisms. Their 

absence implies the presence of stressed palaeoenvironments. The implications of salinity (i.e. 

water chemistry) and oxygen content on ichnofabrics are discussed later in sections 3.7 and 3.8.  

 

Sample no. Location Facies Sample no. Location Facies 

64367* SS200046 9b 64607 SS200044 8 

64368 SS200046 9b 64608 SS200044 9a 

64369 SS200046 5a 64609 SS197017 9c 

64370* SS200046 8 64610 SS197017 9c 

64371 SS200046 2b 64611 SS197017 9a 

64372 SS200045 7 64612 SS200044 5a 

64373 SS200045 5a 64613 SS200044 2a 

64374* SS200045 8 64614 SS200044 1a 

64375* SS200045 8 64695 SS200055 5a 

64376 SS200045 1a 64696 SS200055 1b 

64377* SS200045 8 64697 SS200055 7 

64378 SS200045 5b 64698 SS202083 7 

64379 SS200046 9a 64699 SS202083 5b 

64380 SS203067 10 64700 SS202083 5a 

64381 SS203067 10 64701 SS202083 1a 

64382* SS200083 8 64702 SS202083 5b 

64383* SS200083 9a 64703 SS202083 1b 

64384 SS195015 5b 64704 SS202083 5b 

64385* SS195015 9a 64705 SS202083 2a 

64386 SS200047 7 64706 SS202065 2b 

64602 SS200044 1b 64707 SS202065 5a 

64603 SS200044 8 64708 SS202065 1a 

64604 SS200044 5b 64709 SS202065 8 

64605 SS200044 8 64710 SS202065 7 

64606 SS200044 1a 64711 SS202065 1a 

Table 3.3: Sample numbers, locations and facies of the 50 Bude Formation rocks collected for 

thin section analysis (see Fig. 3.1c). An asterisk marks the 8 samples for SEM BSE-Z analyses 
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3.6 Petrographic description of Bude Formation rock samples 

Thin section analyses of 50 rock samples (24 sandstones, 9 siltstones, 7 shales and 8 

slump or contorted beds) provided a petrographic description of each facies type found in the 

outcrops between Northcott Mouth and Black Rock (SS202087-SS195015). This enabled the 

mineralogical differences between facies to be identified. As described in Section 3.2 

(Methods), the sample locations were tied to the sedimentary logs where possible (Fig. 3.1c) 

and are given in Table 3.3. The results are described below. 

 

3.6.1 Siltstone and sandstone beds (of facies 1, 2, 5, 6, 7 and 9) 

The relative proportions of quartz, feldspar and lithic fragments, as well as the amount 

of matrix mud and the maximum grain size have been established from thin section analysis of 

each of the 9 siltstone and 24 sandstone samples. The mean and standard deviation of all the 

samples are displayed in a Folk diagram (Fig. 3.7a) and have been compared with two similar 

studies by Freshney et al (1979), where similar results were found for each parameter tested 

(Table 3.4). These results contrast with those of Burne (1995), who suggests that the Bude 

Formation sandstones and siltstones have higher feldspar and lower rock fragment contents. The 

results from this work show that there is:  

1. High proportions of quartz (79 % ± standard deviation 9 %);  

2. Very low proportions of feldspar (3 % ± 1 %);  

3. Relatively high proportions of lithic fragments (18 % ± 5 %),  

4. High matrix mud contents (25 % ± 6 %) with a minimum of 15% mud;  

5. Very fine to fine grained sand grades (0.187 mm ± 0.065 mm) as the maximum grain size.  

 

The general consistency in the mineralogy between facies suggests that the clastic 

material came from the same provenance. However, there is a variation in the amount of matrix 

mud content between the massive slump beds (facies 9c) with at least 50 % matrix mud, and the 

lower matrix mud contents for the other facies. This high mud content may have helped to retain 

the elevated fluid pressures in the massive slump beds (facies 9c) during and shortly after slump 

deposition (Maltman & Bolton, 2003; see Chapter 2).  

 The results from each sample were plotted onto a Folk diagram in order to link the 

quantitative rock descriptions with Folk’s terminology. In Folk’s classification, the sandstone 

and siltstone samples are found to be either quartz arenite or predominantly sub-lithic arenite. 

From Fig. 3.7a, all the facies contain high proportions of quartz (65-95 %); reasonably high 

proportions of lithic fragments (5-30 %); and low proportions of feldspar (0-5 %). This suggests 

that, in general, the Bude Formation sandstones and siltstones are texturally mature, as 

previously suggested by Melvin (1986), Higgs (1991) and Burne (1995). The planar and ripple 

coset laminated siltstones and sandstones (of facies 1 and 5) have slightly higher quartz but 

slightly lower feldspar and lithic fragment content than in the trough cross-stratified, massive 
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and internally-contorted / slumped siltstones and sandstones (of facies 2, 6, 7 and 9). However, 

these facies groups cannot be distinguished clearly from each other due to the overlaps in 

measured grain proportions (Fig. 3.7a). It is noted that the average relative grain components for 

the Bude Formation deposits are similar to those for deposits from other foreland basins (after 

Schwab, 1986; Fig. 3.7b), which suggests that all these basins have similar textural maturity. 
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Table 3.4: Comparison of the relative proportions of quartz, feldspar and lithic fragments, grain 

size and matrix mud content of sandstone and siltstone samples from two studies by Freshney et 

al (1979), and samples in this work  

 

3.6.2 Shale beds (of facies 8) 

A similar petrographic comparative analysis has been carried out for the thin sections 

from the seven Bude Formation shale samples. The relative percentages of clay, carbonate and 

organic minerals are shown in a Folk triangular diagram (Fig. 3.7c). There are minor amounts of 

organic matter and a large range in the amounts of carbonate (ankerite-siderite) minerals. All the 

shale samples contain less than 5 % quartz. Thus, the shales are described as either 

orthoclaystones or marly-orthoclaystones (Fig. 3.7c).  

 

3.6.3 Bedding-parallel pyrite minerals and ankerite veins in shale beds (facies 8) 

Bedding-parallel pyrite minerals and ankerite veins are observed from the scanning 

electron microscope (SEM) analyses of Bude Formation shale bed samples. These diagenetic 

features were studied in order to assess their timing in relation to the deposition and burial 

processes and also, to establish the environmental conditions during the shale bed deposition. 

 

Bedding-parallel pyrite minerals 

SEM analyses were undertaken on eight Bude Formation samples, of which six are 

from shale beds (facies 8). Four samples were from thin, discontinuous shale beds in Bude 

Formation slump and chevron folded beds (Fig. 3.8a) and two samples from continuous 

‘marine-band’ (Freshney et al, 1979) chevron folded shale beds (Fig. 3.8b). Petrographic 

analyses showed that bedding-parallel pyrite framboids occur in one thin, discontinuous shale 

sample. The results from the two contrasting shale beds are summarised in Fig. 3.8.  

Block 64375 of facies 8 (Fig. 3.8a) from an ‘upright’ chevron syncline at Upton 

(SS200045) has: (1) finely-laminated, kaolinite-rich matrix; (2) large concentrations of < 5 μm-

diameter framboids; and (3) ‘zones’ between pyrite concentrations with rare, variably-sized 

framboids. In contrast, Block 64382 of facies 8 (Fig. 3.8b) from the Tom’s Cove Shale in an 

‘upright’ chevron anticline at Maer Cliff (SS200079) has no finely-laminated, kaolinite-rich 

matrix and no framboidal pyrite minerals.  
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According to Bond et al (2004), the presence of bedding-parallel pyrites suggests that 

there was anoxia at the water-sediment interface during deposition (Table 3.1). In the Bude 

Formation, bedding-parallel pyrite framboids are present in only one of six sampled thin 

discontinuous shales and are absent in the sampled continuous black shales. Using the criteria of 

Bond et al (2004) in Table 3.1, this suggests that the depositional oxygenation conditions in the 

thin discontinuous shale (facies 8) within block 64375 (Fig. 3.8a), fluctuated between euxinic-

lower dysoxic and upper dysoxic. In contrast, in the continuous black shale (facies 8), within 

block 64682 (Fig. 3.8b), the depositional environment remained consistently oxygenated. The 

lack of pyrite in the other discontinuous shale beds may suggest that there was insufficient 

sulphur to form pyrite; most likely due to salinities being too low during deposition (Berner & 

Raiswell, 1984). As a result, the oxygenation degree cannot be estimated for these beds.  

 

  

Fig. 3.8: SEM BSE-Z images of: (a) block 64375 of facies 8, with large variations in bedding-

parallel framboidal pyrite mineral populations (< 5 μm diameter). The pyrites are inter-bedded 

with bedding-parallel ankerite veins; and (b) block 64382 of facies 8, where there are no 

framboidal pyrites but an ankerite vein has been precipitated 

 

Bedding-parallel ankerite veins 

Bedding-parallel carbonate veins are a diagenetic feature, observed both in outcrop and 

from petrographic analyses (thin section and SEM analyses). From the results of the analyses, 

the veins are composed of ankerite (Iron (II) calcium carbonate). This result contradicts Burne 

(1995), who stated that the veins are composed of siderite. The ankerite veins were observed in 

a large number of shale beds, as well as in all the shale samples used in petrographic analysis.  

The best observations of the bedding-parallel ankerite veins are from block 64375 of 

facies 8 (Figs. 3.8a). The petrographic analysis of this discontinuous shale bed sample identified 

variations in the mineralogical phases of the ankerite veins, including a phase transition between 

dark grey, Mg-poor ankerite found towards the vein edge, and mid-grey, Mg-rich ankerite found 

towards the vein centre. These mineralogical phases were not present in the thick, ‘marine-

band’ (Freshney et al, 1979) continuous shale sample block 64382 of facies 8 (Fig. 3.8b). 

Bedding-parallel  

pyrites 

Ankerite vein 

a b 

Ankerite veins 
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Instead, the ankerite vein appears as a smaller number of less well-formed, bedding-parallel 

veins, which cut from top centre to bottom left in the SEM image (Fig. 3.8b). 

Ankerite is an iron (II) calcium carbonate (FeCa(CO3)2) that lies on a spectrum between 

siderite (iron (II) carbonate (FeCO3)) and calcite (calcium carbonate (CaCO3)) and is indicative 

of fresh-to-brackish water conditions (McKay et al, 1995). The Bude Formation ankerite veins 

are observed in shale beds and, occasionally, in clay laminations. In numerous outcrop 

examples, the ankerite veins were found to have been folded or kinked by local structures, 

which are described in Chapter 6. 

 

Carbonate veins elsewhere in the Culm Basin 

Similar bedding-parallel siderite veins have been described in shale beds from both the 

Bude and Crackington formations (De Wall & Warr, 2004). They reported that these veins have 

rhombohedral crystals, with c-axes oriented in a north-south direction and plunging at 45°N (i.e. 

face north). De Wall and Warr (2004) suggest that the siderite precipitated during deposition 

from a constant hydrothermal fluid flowing south-to-north through the Culm Basin. In contrast, 

quartz-ankerite veins have been described between Crackington and Millook (Mackintosh, 

1967) and quartz-siderite veins at Hartland and Millook (Beach, 1977). In both cases, 

Mackintosh (1967) and Beach (1977) suggested that the veins precipitated from within the host 

rocks and the fluids migrated into the surrounding shales.  

 

3.7 Carbon-sulphur (C/S) geochemical analysis 

A carbon-sulphur (C/S) geochemical study has been undertaken on several Bude 

Formation shale beds by Lloyd and Chinnery (2002; Fig. 3.9). However, the locations of the 

samples are not provided. The results from the C/S analysis are used as a salinity proxy, where a 

higher S:C ratio indicates that the formation was deposited under more saline conditions (Berner 

& Raiswell, 1984). The Lloyd and Chinnery (2002) study results (Fig. 3.9) indicate that the 

Bude Formation commonly has a low S:C ratio. This is consistent with the results from C/S 

analysis undertaken by Higgs (1991) and suggests that the deposits were laid down in fresh-to-

brackish water conditions (Lloyd & Chinnery, 2002). Slight salinity increases may have resulted 

from temporary structural-breaching of a lake sill, or alternatively, from sub-surface seepage, as 

has been modelled for the Early Cretaceous South Atlantic Pre-Salt lakes (Harris et al, 2004). 

Alternatively, variable river discharges and lake base levels may affect salinity (i.e. water 

chemistry; Reading, 1996).  

In either case, the environment would have been a hostile, resulting in few burrowing 

organisms, as was observed in the study area. The exception to the low S:C ratios are in two 

Bude Formation laterally-continuous shale beds. Lloyd and Chinnery (2002) do not identify the 

beds but they are possibly the Sandy Mouth and Warren Gutter Shales, making them consistent 

with four out of the five samples taken by Higgs (1991). The two higher S:C ratios obtained by 
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Lloyd and Chinnery (2002) are similar to those from their Crackington Formation shale 

samples, which suggest that more normal saline marine conditions occurred at these times. It is 

possible in these cases that salinity increases occurred as a result of either eustatic transgression 

events (Higgs, 1991) or significant structural-breaching of the lake sill. 

 

 

Fig. 3.9: Comparison of total organic carbon and sulphur for C/S analysis (salinity proxy from 

the methods of Berner & Raiswell, 1984) with data from Lloyd and Chinnery (2002) for shale 

and black shale beds in the Bude Formation and shale beds in the Crackington Formation  

 

3.8 Diagenetic mineral development in the Bude Formation  

An important aspect of basin evolution is that deposits undergo diagenesis as they are 

buried. In the case of the Bude Formation, the diagenesis occurred (Warr et al, 1991; Warr & 

Hecht, 1993) in a dominantly turbiditic depositional environment (Higgs, 1991; Burne, 1995) 

with S:C ratios that indicate generally low salinities (Lloyd & Chinnery, 2002; Fig. 3.9). Except 

for two laterally-continuous black shales, the low S:C ratios found, as well as the presence of 

bedding-parallel ankerite veins in many shale beds, suggest that the geochemical signature of 

the Bude Formation deposits is different to that of normal marine deposits (Higgs, 1991; Burne, 

1995). The Bude Formation geochemistry and diagenesis is not fully established, but a complete 

geochemical study is beyond the scope of this research. However, preliminary petrographic 

analyses of Bude Formation rock samples have provided insights into the diagenetic, 

geochemical and temperature evolution of these deposits.  

 

3.8.1 Diagenetic progression 

Petrographic analyses of Bude Formation rock samples (Figs. 3.10-3.12) found that a 

series of over-printing reaction products formed during diagenesis. These are as follows.  

A quartz vein set in Block 64367B from facies 9b at Upton (SS200046) variably 

exploits fracture sets, some of which appear to be bedding-parallel (Fig. 3.10). The quartz veins 
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precipitated either from a super-saturated fluid or from local pressure solution, possibly during 

Variscan deformation. If the quartz vein precipitated from local pressure solution, this may have 

occurred at any time during Variscan deformation. However, if the quartz vein precipitated from 

a super-saturated fluid, it is not known if the fluids were hotter than or similar in temperature to 

the Bude Formation at the time of precipitation. From geochemical experiments undertaken by 

Walderhaug (1994) and Lander et al (2008), quartz may precipitate at temperatures as low as 

80°C (see Chapter 2), providing a minimum temperature for their generation. In contrast, 

Davison et al (2004) suggests that quartz precipitation in the Bude Formation occurred at 

temperatures between 190°C and 280°C, providing a maximum temperature for their 

generation. However, these latter temperatures are too high as very low grade metamorphic 

minerals have not been observed.  

 

 

Fig. 3.10: SEM BSE-Z image showing mutually-cross-cutting quartz (mid-dark grey) and 

ankerite-siderite (dark grey to light grey) veins within a kaolinite-rich shale bed from block 

64367B of facies 9b (SS200046) 

 

 

Fig. 3.11: SEM BSE-Z image showing an ankerite bedding-parallel vein within a kaolinite-rich 

shale bed from block 64377 of facies 8 (SS200045) 

 

There is an ankerite-siderite vein generation that obliquely cross-cuts the quartz veins 

from Block 64377 of facies 8 at Upton (SS200045) (Fig. 3.11). Beach (1977) also observed 
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similar quartz-siderite vein sets in the Bude Formation, demonstrated that the two vein sets 

displayed preferred orientations and suggested that the veins developed within the sandstone 

beds. However, the timing of the quartz and ankerite-siderite precipitation in the Bude 

Formation with respect to the Variscan deformation is not established.  

In the underlying Crackington Formation, the same vein sets have been described as 

quartz-ankerite by Mackintosh (1967) and quartz-siderite by Beach (1977). However, De Wall 

and Warr (2004) also observed these siderite veins and suggested that the veins precipitated 

from a hot fluid interaction with the sandstones and shales at temperatures over 150°C.  

 

 

Fig. 3.12: Comparative microprobe spectra in block 64377 (facies 8) of peaks for carbon from 

in-situ organic matter (spectrum 11 – turquoise) and polished block resin (spectrum 12 – black)  

 

Minor amounts of organic matter or hydrocarbons were detected from SEM-EDX 

analysis of shale block 64377 of facies 8 at Upton (SS200045). This was established by 

recognising that the carbon peak from the sample was much higher than that obtained from the 

carbon-coated resin block surrounding the sample (Fig. 3.12).  

 

3.9 Discussion 

This discussion provides an overview of the key sedimentary features and observations, 

the different published Bude Formation depositional models and also, the stratigraphy, 

sedimentary facies, palaeo-flow indicators, ichnofabrics, petrography and geochemistry of the 

beds between Northcott Mouth and Black Rock (SS202087-SS195015). Then following on 

from the petrographic insights into the diagenetic minerals in Bude Formation rock samples, 

there is a brief discussion on some aspects of the paragenetic sequence for the Bude Formation. 

In-situ organic 

matter carbon 

Oxygen 

Sulphur 

Chlorine 

Polished block 

resin carbon 
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3.9.1 Summary of the key features in the Bude Formation 

The key features observed in the Bude Formation beds are:  

1. Sharp top-sharp base beds with sole marks on some bed bases (Higgs, 1991; Burne, 1995; 

and this study);  

2. Two types of ripple laminated structures newly distinguished in this study (Figs. 3.1c, 3.2 & 

3.3a-b) (i.e. facies 1a, equivalent to quasi-symmetrical ripples of Higgs (1991) or the ripple 

laminations of Burne (1995); and facies 1b, mud-draped ripple cosets); 

3. Newly described occasional trough (facies 3) cross-stratification as well as tabular cross-

stratification (facies 5) with reactivation surfaces (Figs. 3.1c, 3.2 & 3.3c-d); 

4. Occasional 1-2 metre wavelength erosional structures associated with low-angle cross-

stratification, interpreted as either hummocky cross-stratification (facies 4 of this study) 

(Higgs, 1991) or anti-dune structures (Burne, 1995) (Figs. 3.1c, 3.2 & 3.3f); 

5. Slump and contorted beds (facies 9) (this study; Higgs, 1991; Figs. 3.1c & 3.3k, l & m);  

6. Palaeo-flow directions measured from turbidite sole marks suggesting SW to SE palaeo-

slope directions between Bude and Widemouth, but with a large spread across all directions 

north of Bude (Freshney et al, 1979; Higgs, 1991; Burne, 1995; this study; Fig. 3.6);  

7. Apparently rare channels (facies 10) within the generally sheet-like bedding (Burne, 1995), 

indicating occasional sediment bypass and avulsion (Fig. 3.1c);  

8. Low diversity and density ichnofabrics, except in the black shale beds (facies 8) (Higgs, 

1991; Burne, 1995; this study; Fig. 3.1c);  

9. Local structures that effect surrounding depositional thicknesses; 

10. A lack of stenohaline ichnospecies (i.e. echinoderms, bivalves), which suggests that the 

depositional environment was non-marine; 

11. Generally relatively low sulphur-carbon ratios (Lloyd & Chinnery, 2002; Fig. 3.9); 

12. Occasional bedding-parallel pyrite framboids in shale beds (Fig. 3.8a). 

 

3.9.2 Interpretation of depositional environments for the Bude Formation 

The Bude Formation beds have a varied set of sedimentary facies, together with a wide 

range of palaeoflow directions, low diversity and density ichnofabrics and non-marine salinity 

proxy results from carbon-sulphur analysis. The facies include associated sandstones and 

siltstones with ripple (facies 1a; Fig. 3.3b) and planar laminations (facies 5a; Fig. 3.3h) as well 

as massive structureless beds (facies 6 and 7; Fig. 3.3i) with sharp-tops and sharp-bases. Some 

of these beds have basal flute, tool and prod marks (Freshney et al, 1979; Higgs, 1991; Burne, 

1995) and are indicative of turbidites (Reading, 1996; Collinson et al, 2006) that may stack as a 

fan (Burne (1995; Fig. 3.13a). The basal marks provide generally southwards palaeoflow 

indicators between Bude and Widemouth (SS200065-SS199027) (Higgs, 1991; Burne, 1995).  

 The newly-described facies include mud-draped ripple (facies 1b) and planar (facies 5b) 

laminations (Fig. 3.3a & e) and trough cross-stratification (facies 2a and 2b; Fig. 3.3d), with 
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occasionally associated reactivation structures, as well as a non-mud-draped tabular cross-bed 

(facies 4; Fig. 3.3c). The facies are usually typical of astronomical tidal bedforms in a shoreface 

environment (Collinson et al, 2006; Ainsworth et al, 2012; Fig. 3.13b) and are often associated 

with hummocky cross-stratification (facies 3b; Fig. 3.3f) from storm-wave activity (Fig. 3.13b). 

These facies are interbedded on a decametric-scale with turbidite beds in the log from North 

Upton (SS200047; Fig. 3.2), suggesting that palaeo-slopes were present during deposition.  

 Marine-influenced Late Carboniferous shale (facies 8) “marine bands” (Freshney et al, 

1972; 1979) are recognised as having been deposited during 4
th
-order (10

5
 yr) cycles of sea level 

change (Rippon, 1996). However, the decametric alternations of Bude Formation beds with 

turbiditic (facies 1a, 5a, 6 and 7) and mud-draped facies (facies 1b and 2b) are more frequent 

than black shale repetitions and thus occurred more frequently than 4
th
-order cycles. 

 The ichnofabrics associated with these beds are generally of low diversity and density. 

Where ichnofabrics have been observed, they are dominated by vertical Skolithos burrows. The 

burrowers are found in a shoreface depositional environment, which in the Bude Formation was 

only occasionally sufficiently oxygenated for them. A higher diversity of ichnofabrics is found 

in the thick, continuous black shale beds (facies 8). The ichnofabrics include common 

Diplocration, and rare Arenicolites, Phycodes, Skolithos and Teichichnus from sandstones and 

siltstones within thick black shale intervals, together with both Planolites and Cochlichnus 

ichnofabrics in the black shale laminations (King, 1967; Higgs, 1991; Burne, 1995).  

Other structural, sedimentary and geochemical features are present in the Bude 

Formation outcrops, including local deformation structures that effect on metric to decimetric 

scales, local depositional thicknesses (Fig. 3.6), internal-contorted beds (facies 9a) and slump 

beds (facies 9b and 9c). The slumps of facies 9 formed when wet sediment became unstable and 

moved down a palaeo-slope during deposition, possibly as a result of rapid burial, storm waves 

or earthquakes (Owen, 1987; Owen & Moretti, 2008; see Chapter 2). In the case of the 

decametric-scale massive slump beds (facies 9c) the most likely trigger appears to be an 

earthquake (Del Pino-Sanchez, 2006) because of the very large forces required to generate the 

volumes of liquefied sediment in such beds (Owen, 1987).  

A key geochemical feature of the Bude Formation is the variable carbon-sulphur (C/S) 

ratios from both the thin, discontinuous and thick, continuous shale beds (Lloyd & Chinnery, 

2002) and the bedding-parallel pyrite framboids from thin, discontinuous shale beds (facies 8). 

In the thin, discontinuous shales, the C/S ratios are generally very low, which suggests a fresh to 

brackish water environment; whilst in two of the thick, continuous shale beds (Sandy Mouth 

and Warren Gutter Shales) C/S ratios are higher and indicate more marine salinities (Higgs, 

1991). The bedding-parallel pyrite framboids form near the sediment-water interface under, 

anoxic conditions where reduced sulphur is present (Bond et al, 2004). This may suggest that 

these conditions occurred in a generally poorly-oxygenated lacustrine environment, which was 

affected by temporary marginal marine incursions that caused the reduced sulphur levels (after 
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Bond et al, 2004). Potentially, there was a sill tens to hundreds of metres high that cut the basin 

off from fully marine conditions (Higgs, 1991). This sill may have been occasionally 

overtopped (Higgs, 1991) or breached by active structures. 

 

 

Fig. 3.13: Schematic sedimentary log stacking patterns and clastic sediment distribution 

(modified from Nichols, 1999). The logs display an idealised: (a) deep water turbidite fan at 

various levels and distances from source; (b) shallow marine environment dominated by tidal 

and storm processes. The logs are placed with: (c) a schematic diagram of sediment distribution 

in a deep lake in which turbidity flows occur 

 

The Bude Formation may have experienced fluctuating depositional environments as 

evidenced by the alternations of demonstrably turbidite beds and possible tidal bedforms, with 

low diversity and density ichnofabrics and variable salinity proxy results. A deep lacustrine 

depositional environment, possibly up to hundreds of metres deep, may at times be inferred by 

the turbidites laid down on the slope (Higgs, 1991) or basin floor (Burne, 1995). However, base 

level changes are likely to have occurred, bringing parts of the basin into a shoreface setting 

either due to variable water levels (Reading, 1996; Nichols, 1999) and / or uplift and subsidence 

in a tectonically-active basin (Warr, 2002; Leveridge & Hartley, 2006). The depositional 

environment may have varied both laterally and temporally (i.e. vertically or stratigraphically) 

due to possible growing structures, causing variable bathymetry (Leveridge & Hartley, 2006) 

and which may be associated with lateral stratigraphic thickness variations (Freshney et al, 

a 

b c 
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1972; 1979; Figs. 3.1 & 3.14). The lateral variations in the depositional environment during 

Westphalian B are suggested to be kilometric-scale (Fig. 3.14) from the relative stratigraphic 

locations deduced from the sedimentary logs taken during this work (Figs. 3.1b & c). Variable 

basin bathymetry during deposition may have caused turbidity current deflections, accounting 

for the variable palaeo-flow directions observed by Freshney et al (1979); Higgs (1991), Burne 

(1995) and in this work (see Fig. 3.6). Further discussion of basin-scale structures during Bude 

Formation deposition and its palaeo-environmental significant is provided in Chapter 9. 

The facies recorded in the Bude Formation outcrops include mud-draped structures that 

may indicate deposition from an astronomical tidal regime (Collinson et al, 2006; Ainsworth et 

al, 2012). If the facies were associated with a phase when the basin was connected to open 

marine conditions, then the lack of marine fauna would imply that whilst well oxygenated, local 

salinities were low (Fig. 3.9). This could have inhibited the presence of a diverse fauna and 

stenohaline ichnospecies, implying that the Bude Formation was deposited at the “fresh” end of 

an estuarine system (Reading, 1996), with significant run-off being received from the Variscan 

mountain belt. However, a major problem with this interpretation is the lack of evidence for a 

saline wedge having (repeatedly) travelled into such an estuary, as might be expected from the 

inference of current velocity fluctuations (Reading, 1996).  

Alternatively, the lack of faunal diversity is also consistent with lacustrine deposition 

(Reading, 1996). However, lacustrine environments are not generally known to be affected by 

tides. Thus, a discussion is provided below of alternative models that explain the presence of 

mud-draped ripple laminated structures based upon Baas et al (2011) and apparent 

meteorological “tidal” bedforms described by Ainsworth et al (2012). 

 

Generation of mud-draped ripple and planar laminations  

Centimetric-scale mud-draped ripple and planar laminations have been identified in the 

Bude Formation outcrops (Figs. 3.3a-b). Mud drapes are usually associated with astronomical 

tidal regimes over single tidal and spring-neap tidal cycles (Fig. 3.15a; Collinson et al, 2006) 

that occur in marine lower to middle shoreface settings. An alternative explanation for the 

generation of mud drapes on ripple laminations is provided by the experimental work on fine-

grained muddy sand turbidity flows by Baas et al (2011), in which mud-draped ripple and planar 

laminations developed during several runs within centimetric-scale dune structures (Fig. 3.15b). 

The experiments with suspended sediment of different clay contents measured turbulent 

flows over run times of up to two hours under waning flow conditions. As clay concentration 

increased, five flow types were generated over a smooth, fixed surface. Centimetric-scale ripple 

laminations were generated under turbulent flows, turbulence-enhanced transitional flows and 

lower transitional plug flows; whilst millimetric-scale planar laminations were generated under 

upper transitional plug flows and quasi-laminar plug flows. Under the three ripple lamination-

forming flows, as clay concentration increased, ripple amplitude and wavelength increased too.  
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The nature of the laminated structures formed varied with flow duration (Fig. 3.15b). 

Under ripple lamination-forming flows at clay concentrations of 6.9%, a migrating decimetric-

scale ripple or dune developed after 1 hour of flow where the lee slope was eroded and sediment 

was redeposited on the stoss slope. This created a series of rhythmic silt / mud and sand 

laminations (t3; Fig. 3.15b), similar to the Bude Formation mud-draped ripples (facies 1b). As 

the flow continued, separate laminations became composed of inter-mixed sand, silt and mud 

(t4; Fig. 3.15b), similar to the Bude Formation ripples (facies 1a), although without any of the 

apparent cyclicity in bundle spacing shown in Fig. 3.15a. During the runs by Baas et al (2011), 

the ripple indices became increasingly symmetric, with indices of 2-3 (‘overlap range’ between 

current and wave ripples; Collinson et al, 2006), as also observed in the Bude Formation. 

These experimental results by Baas et al (2011) for mud-drape generation on 

sedimentary structures, suggest that a turbidite association can be ascribed clearly only where it 

can be demonstrated that mud-draped ripple laminations sit within sharp-top, sharp-base beds 

with basal flute marks. Unfortunately, there have been no observational results published yet 

confirming these experimental results. However, if they are not confirmed, it does not 

necessarily demonstrate that the mud-draped ripple laminations (facies 1b) and associated mud-

draped facies resulted from astronomical tides. Instead, a discussion of how such apparent tidal 

bedforms could be generated in a lacustrine environment is provided below. 

 

Generation of apparent tidal bedforms 

Decimetric-scale mud-draped trough and metric-scale tabular cross-stratification, as 

well as reactivation surfaces are occasionally observed in the Bude Formation outcrops (Fig. 

3.3c-d). Generally, these structures have been used to indicate astronomical tidal influence upon 

sedimentation (Collinson et al, 2006; Ainsworth et al, 2012). The mud-draped trough cross-

stratification structures may have been developed from high energy erosive tidal flows, perhaps 

with some storm influence, in a mid-shoreface setting (Reading, 1996). The tabular cross-

stratification structures may have been developed from high energy tidal flows that formed a 

metric-scale dune, sand wave or bar in a mid-to-lower shoreface setting (Collinson et al, 2006). 

The reactivation surfaces may have been developed from depth fluctuations resulting from base 

level changes during tidal ebb and flow or from superimposed storm events (Collinson et al, 

2006). These apparent tidal bedforms are also inter-bedded with metric-scale hummocky cross-

stratified structures, indicating probable storm reworking in the lower shoreface.  

However, the Bude Formation lacks stenohaline (i.e. echinoderm, bivalve) ichnospecies 

and most shale beds recorded non-marine signatures from C/S analysis, apart from two of the 

continuous shale beds found higher in the stratigraphic column (Lloyd & Chinnery, 2002; Fig. 

3.9). The lack of stenohaline ichnospecies and the wide occurrence of non-marine salinity 

proxies, together suggest that an astronomical tidal regime may not have affected the Bude 

Formation depositional environment. 
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Fig. 3.14: Vertically-exaggerated, simplified schematic 3-D sketch of Bude Formation palaeo-geography between Northcott Mouth and Black Rock (bottom) and 

where it is located in the Culm Basin (top left). Positions of sedimentary logs 1-18 (see Fig. 3.1c) taken in the field study area are shown both in the 3-D sketch and 

in the correlation panel of Bude Formation summary sedimentary logs (top right) from Figs. 3.1a & b (modified from Freshney et al, 1972; 1979) 

 

 

Fig. 3.15: Comparison of processes to generate mud-draped ripple structures from strongly uni-directional flows within: (a) tidal beds (modified from Collinson et al, 

2006); and (b) in muddy-sandy turbidites (from the experimental runs of Baas et al, 2011)  
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An alternative model for generating tidal bedforms within a lacustrine or marginal 

marine environment has been demonstrated by Ainsworth et al (2012) in the shoreline deposits 

of the modern Lake Eyre, Australia. These authors have described sediments with facies that 

include mud-draped tabular cross-beds and trough cross-bedding up to 0.25 m in thickness, as 

described in Section 3.3.1 on siltstones and sandstones with ripple laminations (Facies 1a and 

b). Lake Eyre is non-marine and is located in an intracratonic playa lake setting. In comparison, 

the Bude Formation was situated within a Late Carboniferous sensu lato foreland basin setting 

(see Chapter 2). Ainsworth et al (2012) ascribed the observed sedimentary structures in Lake 

Eyre to meteorological “tides”, which are related to cyclical daily changes in wind direction and 

velocity, in combination with weekly or monthly variations in fluvial discharge. This raises an 

alternative set of mechanisms for generating Bude Formation mud-draped ripple laminations 

(facies 1b) within a shoreface depositional setting, without requiring a full marine connection. 

 

3.9.3 Discussion of existing and new depositional models 

In this chapter, descriptions were provided of six existing depositional models for the 

Bude Formation, which are:  

1. Fining-up delta (King, 1971);  

2. Wave and storm influenced shallow water environment (Higgs, 1984);  

3. Prograding turbidite fan (Melvin, 1986);  

4. Shallow marine ramp (Hartley, 1991);  

5. Freshwater lacustrine environment (Higgs, 1986; 1991);  

6. Variably-oxygenated inactive fan (Burne, 1995).  

 

In most of the models, a single non-marine depositional environment has been invoked 

for the Bude Formation. The exception is the prograding turbidite fan model of Melvin (1986). 

From the results of C/S analysis (Lloyd & Chinnery, 2002), fresh to brackish water conditions 

dominated, except during the deposition of the Sandy Mouth and Warren Gutter shales (facies 

8; Higgs, 1991; Burne, 1995). There is no evidence for fluvial deposition from the King (1971) 

model (Burne, 1995), as in the coeval Bideford Formation delta (de Raaf et al, 1969; Li, 1990). 

Instead, a turbidite-dominated depositional environment has been suggested (Melvin, 1986; 

Hartley, 1991; Higgs, 1991; Burne, 1995). However, a connection between the Bideford and 

Bude formations inferred by Hartley (1991) has not been demonstrated (Burne, 1995). 

 A significant debate has been generated on the Bude Formation depositional 

environment by Higgs (1991) and Burne (1995). The key facies for these two authors is the 

centimetric-scale ripple laminations (facies 1a; Figs. 3.3a-b) that may represent either waning 

flow structures from turbidity (and storm-generated) flows with minor wave influence (Higgs, 

1991) or reworking of turbidite bed tops by the tail of the same turbidity current (Burne, 1995). 

The presence of a minor wave influence would suggest that the turbidites were deposited in a 
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shoreface environment from sediment-laden river flows, which were denser than the fresh to 

brackish waters (Higgs, 1991). In contrast, Burne (1995) suggested that the turbidites were 

transported along channels to the basin floor or deep shelf. The present study recognises the 

presence of sharp-topped, sharp-based turbidite beds with flute-marks locally evident on their 

bases. The isolated nature of some of these beds may be consistent with being a down-dip 

product of storm reworking events in the upper shoreface (Reading, 1996). Systematic stacking 

architectures that would necessitate the presence of a subaqueous fan system (Melvin, 1986; 

Burne, 1995; Fig. 3.13a) have not been recognised in the present study, although this does not 

preclude the presence of shoreline-derived turbulent underflows (Fig. 3.13c; Reading, 1996). 

 Higgs (1991) recognised metric-scale undulations at North Upton (SS200047) and 

interpreted them as lower shoreface hummocky cross-stratification (facies 3b; Fig. 3.3f). The 

Burne (1995) alternative model for the hummocks is that they are deep water anti-dunes. 

However, from the present study, the symmetry of observed hummocks, the lack of internal 

dewatering, the rarity of the associated Skolithos ichnofabrics, and the low angle reactivation 

structures in underlying beds (Fig. 3.2), make the Burne (1995) explanations difficult to support.  

 During the brief intervals when salinities increased (Fig. 3.9), water densities may have 

increased sufficiently for sediment-laden river waters to have been less dense than the lake 

waters (Nichols, 1999). This may have generated river-fed surface plumes (Higgs, 1991), high 

concentration sediment clouds (Burne, 1995) or near-clastic sediment cut-off (Higgs, 1991; 

Burne, 1995), causing shale deposition (facies 8).  

Alternatively, if marine black shales (facies 8) equate to eustatic highstands (Higgs, 

1991) then clastic sedimentation may have shifted in a landward direction, such that these shale 

beds represent more distal sedimentation. Also, this muddy environment in the black shales 

(facies 8; Figs. 3.3i, 3.4 & 3.5) was probably more oxygenated, with increased ichnofabric 

diversities in some interbedded sandstones (Freshney et al, 1979; Higgs, 1991; Burne, 1995). 

On rare occasions, the brackish water environments became either dysoxic, with restricted 

Planolites assemblages (Higgs, 1991; Burne, 1995), or anoxic, with bedding-parallel pyrite 

framboids precipitated (after Bond et al, 2004; Fig. 3.8a). Generally however, the Bude 

Formation beds show either low density and diversity ichnofabrics or a complete absence (Fig. 

3.3h), as observed by both Higgs (1991) and Burne (1995). 

 Furthermore, a number of new facies have been either recognised or described more 

fully during this work:  

1. Facies 1b of centimetric-scale mud-draped ripple laminations (Figs. 3.1c, 3.2 & 3.3a);  

2. Facies 2a of trough cross-stratification and facies 2b of mud-draped trough cross-

stratification (decimetric-scale) (Figs. 3.1c, 3.2 & 3.3d);  

3. Facies 4 of a metric-scale tabular cross-bed (Figs. 3.1c, 3.2 & 3.3c); 

4. Facies 5b of millimetric-scale mud-draped planar laminations (Figs. 3.1c, 3.2 & 3.3a & d).  
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The mud-draped facies may suggest that tidal bedforms were generated (Collinson et al, 

2006) in the Bude Formation, albeit from possible meteorological “tides” related to wind 

direction and fluvial discharge variations into a lake or fresh to brackish water body (after 

Ainsworth et al, 2012). On a decametric-scale, these facies are interbedded with turbidite beds, 

as described by Higgs (1991) and Burne (1995). On the kilometric-scale, between the Tom’s 

Cove and Saturday’s Pit shales, lateral stratigraphic thicknesses vary  between about 70 m at 

Northcott Mouth, about 25 m at Bude and about 105 m at Upton (Fig. 3.1a & b; Freshney et al, 

1972; 1979). This suggests that the Bude Formation deposits were affected by Variscan 

deformation during deposition (Leveridge & Hartley, 2006).  

 

Mixed depositional environment 

The occasional presence of apparent “tidal” bedforms in amongst turbidite deposits may 

suggest that a variable depositional environment existed within the Culm Basin during Bude 

Formation deposition. This mixed depositional environment may have continually evolved both 

laterally (i.e. coeval turbidite and potential meteorological “tidal” deposition) and / or vertically 

(i.e. stratigraphically or temporally). For example, there were two marine transgressions where 

clastic sediment supply was greatly reduced, as shown by the metric-scale, laterally-continuous 

‘marine band’ black shales (facies 8; Freshney et al, 1979; Higgs, 1991; Burne, 1995).   

 

3.9.4 Description of Bude Formation diagenesis using a paragenetic sequence 

Following deposition, the Bude Formation beds underwent compaction and burial 

diagenesis (Warr et al, 1991; Warr & Hecht, 1993). From petrographic analyses of the Bude 

Formation rock samples a hypothetical paragenetic sequence has been constructed (Fig. 3.16) of 

the diagenetic mineral development and precipitation:  

1. Framboidal pyrites (5 μm+) precipitated just below the sediment-water interface; 

2. Bedding-parallel ankerite veins precipitated in mud beds near the palaeo-surface; 

3. Quartz veins that infill fractures and cross-cut bedding-parallel ankerite veins; 

4. Siderite-ankerite veins that cross-cut both the quartz and bedding-parallel ankerite veins. 

 

The diagenetic alternations found in all the lithologies indicate that varying degrees of 

dilation and contraction occurred during mineral transformations and compaction (Fig. 3.16). 

Where dilation occurred in the Bude Formation either fluid over-pressure conditions increased 

or mineral growths expanded into pore spaces.  

Also, the preliminary petrographic analyses of the Bude Formation rock samples 

suggest that there is a significant area of low-temperature geochemical research that could be 

undertaken on the diagenesis of the deposits, which were laid down in fresh to brackish water 

(Fig. 3.9) that included a possible anoxic environment (Fig. 3.8). Although some research has 

been undertaken into deposits from such environments, such as in the Late Cretaceous 
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Marshybank Formation, Alberta and British Columbia, Canada (McKay et al, 1995), the Bude 

Formation may provide an informative area for such as investigation of geochemical models 

and diagenetic alterations. 

 

 

Fig. 3.16: Hypothetical paragenetic sequence for all lithologies in the Bude Formation showing 

increasing diagenetic alteration with time and temperature to the right. The relative amount of 

expansion and contraction due to the mineral development or precipitation is also noted 

 

3.10 Conclusions 

The Bude Formation contains a number of key sedimentary and geochemical features 

that have been studied in this chapter by the author for the specific thesis aims and include:  

1. Previously unidentified centimetric-scale mud-draped ripple laminations (facies 1b) that 

could have been generated by uni-directional meteorological “tidal” currents or short 

duration muddy sandy turbidity flows;  

2. Centimetric-scale non mud-draped ripple (facies 1a) and millimetric-scale planar laminated 

beds (facies 5a), as well as metric scale massive structureless beds (facies 6 and 7) with both 

sharp tops and sharp bases, plus basal sole marks, which are likely to have been generated 

from turbidity flows (slope-derived or down-dip of shoreface storm reworking events);  

3. Previously unidentified decimetric-scale mud-draped troughs (facies 2b) that may be 

interpreted as meteorological “tidal” bedforms;  

4. More fully described metric-scale tabular cross-stratification (facies 4) and reactivation 

surfaces that may relate to storm activity in the lower shoreface;  

5. Rare metric-scale symmetrical undulations from oscillatory flows that could have been 

driven by storm waves, generating hummocky cross-stratification (facies 3b);  

6. Metric to decametric scale slumps and contorted beds (facies 9), resulting from earthquakes, 

sediment loading or storm wave activity, showing fold deformation in sediment;  
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7. Occasional low diversity and density Skolithos ichnofabrics, with a slightly more diverse 

suite of ichnofabrics found in some clastic beds within black shale beds (facies 8);  

8. Absence of stenohaline ichnospecies, suggesting non-marine environments; 

9. Results from carbon-sulphur (C/S) analysis that suggest that in all but two of the Bude 

Formation continuous black shale beds (Sandy Mouth and Warren Gutter shales), fresh to 

brackish water proxy salinities occurred during deposition. 

 

Together, these features suggest that the Bude Formation was deposited in a fluctuating, 

mainly fresh to brackish water environment, with low diversity and density of ichnofabrics. 

These features may suggest that the Bude Formation beds were laid down in a lacustrine or 

possibly marginal marine environment, possibly situated behind a sill in a tectonically active 

basin. Salinity changes may have resulted from variations in either river discharge, or lake base 

levels, or through influxes of saline water. Fourth-order marine transgressions may explain the 

presence of the thicker, continuous black shales of marine character. These characteristics of the 

Bude Formation suggest that it developed in a complex, variable and mixed depositional 

environment and that simple models are probably inadequate.  

One possibility is that the Bude Formation beds are stacked turbidites and 

meteorological “tidal” bedforms, generated by variations in wind direction, storm activity and 

fluvial discharge within a lake that experienced significant changes in base level. The frequency 

of the decametric turbidite to shoreface dominated alternations is much greater than the fourth-

order eustatic-driven marine black shales. The high frequency of these alternating palaeo-

environments may suggest that there was a (possibly fifth-order) climatic control on the 

sediment flux and / or base level superimposed upon the longer term progressive Variscan 

tectonic deformation. 

 Following this review of the depositional environment for the Bude Formation, Chapter 

4 will look at the geological mapping of the Black Rock and Wanson Mouth foreshores on the 

faulted boundary of the Bude and Crackington formations. This was undertaken to describe the 

juxtaposed fold structures in the two foreshore successions across the Widemouth South Fault 

(WSF) and how the deformation observed in this small area is important for understanding the 

structures across the Culm Basin. This contributes to the general aim of the thesis, to describe 

whether folds in sediment and sedimentary rock may be distinguished based on their 

geometries, and also the specific aim of the thesis, to understand the geological evolution of the 

Culm Basin. 
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Chapter 4: Geological mapping and evidence for progressive 

Variscan deformation in the Bude and Crackington formations 

 

4.1 Introduction 

This chapter is concerned with establishing the deformation history of the Black Rock 

foreshore in the Bude Formation and the Wanson Mouth foreshore in the Crackington 

Formation. The two foreshore successions have been affected strongly by Variscan deformation 

and are juxtaposed by the Widemouth South Fault (King, 1967; Freshney et al, 1972; Enfield et 

al, 1985; Anderson & Morris, 2004). Study of the deformation history in the two successions 

provides an understanding of the chevron fold geometries that are typical in the Culm Basin 

(Freshney et al, 1972; 1979; Ramsay, 1974; Sanderson, 1974; 1979; Lloyd & Whalley, 1986; 

1997; Davison et al, 2004). This is of direct relevance to the specific thesis aim, to understand 

the geological evolution of the Culm Basin, and also provides some contribution to the general 

aim, namely to establish criteria for distinguishing between folds in rock and sediment.  

 In this chapter, a review is provided of the current literature on the stratigraphy of the 

Bude and Crackington formations from Freshney et al (1979) and where the Black Rock and 

Wanson Mouth foreshores sit relatively within this stratigraphy. This follows on from Chapter 

3, which looked at the different depositional models for the Bude Formation. The review also 

assesses: (1) the map work of King (1967) and the structural features described in this map; (2) 

models for the progressive deformation of the chevron folds in the Culm Basin, with a critical 

review of the Sanderson (1979) and Lloyd and Whalley (1986; 1997) models; and (3) the 

Widemouth South Fault, with descriptions of four models for its development. Following this, 

descriptions are provided of the sedimentary data that were collected in the form of logs and 

correlated in the Black Rock foreshore where laterally-continuous beds were recognised.  

Structural data were collected from every fold and fault in both foreshores and are 

described on a geological map that shows the key sedimentary and structural features. Cross-

sections have been drawn with three dip sections across both foreshores that cut the Widemouth 

South Fault (WSF), four strike sections within the Black Rock foreshore only and one oblique 

section within the Wanson Mouth foreshore only. In the Black Rock foreshore, laterally-

continuous beds allowed a 3D structural overview. These cross-sections have also been restored 

in order to understand the deformation that affected each foreshore. From the restorations, 

models are discussed for the progressive deformation of both successions. 

  

4.1.1 Description of the Black Rock and Wanson Mouth foreshore successions 

The Bude Formation sits in the Culm Basin, SW England (Fig. 4.1), stratigraphically 

above the Crackington Formation (King, 1967; Freshney et al, 1972; 1979; Higgs, 1984; 1986; 

1991; Melvin, 1986; Burne, 1995). Both formations experienced Late Carboniferous Variscan 
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deformation, producing the classic trains of ‘Ramsay-type’ chevron folds, with ‘upright’ and 

south-directed ‘inclined-to-recumbent’ fold styles, with anticlinal hinges in the same direction 

as shear strain, across 28 km of well-exposed coast (Freshney et al, 1972; 1979; Ramsay, 1974; 

Sanderson, 1974; 1979; Lloyd & Whalley, 1986; 1997; Davison et al, 2004; see Chapter 2).  

 

 

Fig. 4.1: Location map of SW England (left), a simple geological map of the Culm Basin 

(middle) and an inset map of the Bude coastal area (right) where fieldwork was undertaken 

(modified from Ordnance Survey
TM

/EDINA
TM

 Digimap, 2010; Lloyd & Chinnery, 2002) 

 

Faults observed along the coastal outcrops cut the chevron folds and are related to 

movements during the latter ‘stages’ of and after the Variscan deformation (Freshney et al, 

1972; Enfield et al, 1985; Durrance, 1985; Peacock et al, 1998) and are termed ‘late’. Local 

extensional and contractional structures developed before chevron folding being termed ‘early’ 

(Whalley & Lloyd, 1986), ‘pre-chevron’ (Lloyd & Chinnery, 2002) or ‘pre-folding’, as 

observed by Mapeo and Andrews (1991) at Menachurch Point (SS202093), Sandy Mouth 

(SS201101) and Northcott Mouth (SS201085). Tests are conducted in this work to assess 

whether they occurred prior to chevron folding and if so are termed ‘early’.  

 All of these deformation styles are rarely observed together, complicating their study 

and comparison. One area that includes all these Variscan deformation structures is in the Black 

Rock and Wanson Mouth foreshores (SS197017-SS195013), thereby providing a microcosm of 

the depositional and structural elements in the 28 km of deformed and repeated outcrops. The 

purpose of the geological mapping is to use this microcosm to consider the geological evolution 

of the Culm Basin, particularly the deformation in the Bude Formation and its relationship with 

that in the Crackington Formation. This includes testing whether ‘early’ structures exist in both 

foreshores and whether there are any depositional thickness variations around the structures. 

Thus, the foreshores are remapped to provide more structural details on the original mapping 

area of King (1967) shown in Fig. 4.3, and which was used in Freshney et al (1972). A 

description of the King (1967) map (Fig. 4.3) is provided in Section 4.1.2. 
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 Despite their proximity, the stratigraphy of the two foreshore successions differs 

greatly, as shown in the Culm Basin stratigraphic columns (Fig. 4.2) produced by the British 

Geological Survey (Freshney et al, 1972; 1979; modified by Lloyd & Chinnery, 2002), where: 

1. The Black Rock foreshore succession from the Black Rock Slump Bed includes up to 120 m 

of stratigraphy in the Bude Formation; 

2. The Wanson Mouth foreshore succession is directly above the Embury black shale (G. 

listeri; early Westphalian) in the Crackington Formation, suggesting that the WSF has cut 

out approximately 300 m of stratigraphy, including the boundary between the Crackington 

and Bude formations at the Hartland Quay Shale (Fig. 4.2; Freshney et al, 1979).  

 

 

Fig. 4.2: Bude Formation stratigraphy (from Lloyd & Chinnery, 2002). Left: generalised UK 

Late Carboniferous stratigraphy (after Rippon, 1996); Centre: ‘restricted’ composite succession 

between Bude and Wanson Mouth (King, 1967); Right: ‘complete’ succession (Freshney et al, 

1979). Black Rock (BR) and Wanson Mouth (WM) stratigraphic sections (solid red lines) are 

projected onto the Freshney et al (1979) column to show their stratigraphic separation (~ 300 m)  

 

Freshney et al (1972) suggested that the structural positions of the foreshores are within 

the “upper limb of a major fold (anticline)” that extends to Bude and the strata are “overturned 
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to the south” (see Fig. 2.22, taken from Fig. 2 of Sanderson (1979)). The foreshores are cut by 

the Widemouth South Fault (WSF; Williams et al, 1970; Freshney et al, 1972; Enfield et al, 

1985). The Wanson Mouth foreshore lies south of the WSF within a fault zone in the 

Crackington Formation that has been deformed by south-directed ‘inclined’ chevron folds 

(Sanderson, 1979; Enfield et al, 1985). The Black Rock foreshore lies north of the WSF in the 

Bude Formation and contains an ‘upright’ chevron fold train (Freshney et al, 1972; Sanderson, 

1979). These contrasting structural styles on either side of the WSF provide a context for testing 

models to explain the progressive development of Variscan structures.  

 

4.1.2 Description of the King map 

The King (1967) map (Fig. 4.3) shows the contrasting deformation structures of the 

Black Rock foreshore (Bude Formation) and Wanson Mouth foreshore (Crackington 

Formation), which lie either side of the Widemouth South Fault (WSF; SS19620144-

SS19400166). The WSF truncates all structures adjoining it in either foreshore, and thus, must 

at least for the later part of its activity, post-date the deformation in both foreshores.  

The King (1967) map is mostly very detailed, but contains areas termed as ‘geologically 

complex’; for example (see Fig. 4.3) in area ‘A4’ SW of the WSF and area ‘A5’ in the strongly-

faulted southern Wanson Mouth foreshore (SS19550134-SS19330146). The areas were largely 

ignored in the geological interpretations presented by King (1967) and subsequently by 

Freshney et al (1972). However, they are shown here to be critical to the understanding of the 

deformation history of not only this small section but also the whole 28 km of coastal section. 

 In order to introduce greater locational precision, reference is made to the area sub-

divisions produced in the geological mapping undertaken in this study. These sub-divisions are 

wholly independent of the King (1967) map (Fig. 4.3), being based purely upon interpreting the 

data collected in this study. However, the three sub-divisions of the Bude formation (areas A1 to 

A3) and the three of the Crackington formation (areas A4 to A6) correspond sufficiently closely 

to the descriptions of King (1967) to be useful here as cross-references.  

 

Black Rock foreshore 

To describe the King (1967) map, three areas were defined in the Black Rock foreshore 

by the author as having different types and degrees of ‘geological complexity’ (areas A1 to A3).  

In the northern part of the foreshore (area A1; Fig. 4.3), there is a steeply north-dipping 

set of stacked beds including a decametric-scale chevron fold pair with E-W-oriented axes 

(SS19610167-SS19450167). Freshney et al (1972) described the folds as parasitic en echelon 

periclines on the “broken northern limb of the northern anticline”. An important marker bed in 

area A1 (Fig. 4.3) is the 12 m thick Black Rock Slump Bed, which lies within a shale bed. North 

of the slump bed, there are two further laterally-continuous stratigraphically higher shale beds.  
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Fig. 4.3: Geological map of the Black Rock-Wanson Mouth foreshores from King (1967) and 

reprinted in Freshney et al (1972), including the locations of areas (A1-A6) described in this 

text. The foreshores have been remapped at a higher resolution during this work (see gusset) 

 

In the south-eastern foreshore (area A2; Fig. 4.3), King (1967) observed a hundreds of 

metres scale train of five chevron folds (three anticlines and two synclines) with E-W-oriented 

axes plunging towards the WNW. In the King map, several faults cause a few metres of offset in 

area A2 (Fig. 4.3), including one that strikes NW-SE across the foreshore (SS19670152-

SS19370173) and cuts through the hinge of a chevron syncline at SS19650154.  

In the central and western foreshore (area A3; Fig. 4.3), a complex set of structures was 

observed, including a set of local, decametric-scale faults together with folds that have N-S-
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oriented axes between SS19510162 and SS19530155. The structures sit on the southern limb of 

a chevron anticline with a NW-SE-oriented axis (SS19530163-SS19430167). The chevron fold 

train in area A2 (Fig. 4.3) dies out around these local structures. 

 

Wanson Mouth foreshore 

The Wanson Mouth foreshore lies to the south of the WSF and has generally steeply 

north-dipping beds that are truncated against sinistral and dextral faults in a strongly faulted and 

folded area. Again, reference is made to the areas defined by the author (i.e. areas A4 to A6) in 

order to aid describing the King (1967) map. In area A4 (Fig. 4.3), King (1967) was unable to 

correlate beds across the foreshore due to the ‘geological complexity’. In contrast, in area A6 

(Fig. 4.3), the beds lie to the north of the Wanson North Fault and appear to be relatively 

undeformed by the sinistral and dextral faults. In between these areas, in area A5 (Fig. 4.3), 

structures are shown in the King (1967) map and include:  

1. A significant sinistral NNE-SSW-striking fault (SS19590145-SS19350138); 

2. A chevron anticline with the hinge zone cut by faults (SS19550140-SS19470138); 

3. Two complex arrays of NW-SE-striking, E-W-striking, and NE-SW-striking faults.  

 

4.1.3 Description of the Sanderson (1979) and Lloyd and Whalley (1986) models 

The Black Rock and Wanson Mouth foreshore successions include alternately ‘upright’ 

and ‘inclined-to-recumbent’ chevron folds (King, 1967; Freshney et al, 1972; Sanderson, 1979; 

Anderson & Morris, 2004). Sanderson (1979) and Lloyd and Whalley (1986; 1997) have 

described the generation of both of these chevron fold types in the Culm Basin and developed 

geometric models, which are useful for understanding the folds observed in the two foreshore 

successions. These two models are described and critically assessed here.  

 

Sanderson (1979) model of chevron fold development 

In order to explain the occurrence of ‘inclined-to-recumbent’ chevron folds, Sanderson 

(1979) used the Ghosh (1966) experimental models in which shear deformation affected beds 

that dipped in the same direction as the shear deformation (Fig. 4.4a). In the Sanderson (1979) 

model, this equates to the originally south-dipping beds of ‘upright’ (chevron) folds. Using the 

Ghosh (1966) model, the south-dipping beds (dip angle δ) rotated to steeper south-dipping 

angles and developed ‘inclined-to-recumbent’ chevron folds with north-dipping axial planes 

(β0) (Fig. 4.4b). The interlimb angles (ILAs) of the resulting ‘inclined-to-recumbent’ chevron 

folds are tighter (30°-40°) than the original ‘upright’ folds (60°-70°). The ‘upright’ chevron 

folds developed by flexural-slip along bedding planes (Tanner, 1989) until they reached an ILA 

of approximately 60° (Ramsay, 1974). Accommodation of south-directed shear strain developed 

the ‘inclined-to-recumbent’ chevron folds (Sanderson, 1979) that tightened the folds via passive 
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flattening (Ramsay, 1974). The tightening continued until the folded beds ‘locked-up’ (Ramsay, 

1967) and formed cleavage parallel to the fold axial planes at dip angle β (Fig. 4.4c).  

 Sanderson (1979) used the Ghosh (1966) model also for the regional development of 

the south-directed, ‘inclined-to-recumbent’ chevron folds (Fig. 4.4), predicting and 

demonstrating that throughout the Culm Basin the south-directed shear deformation caused a 

regional decrease in both fold interlimb angle (ILA) and axial plane dip (APD) towards the 

south. However, whilst a regional decrease in ILA and APD is observed from north-to-south 

across the Culm Basin, the two parameters are too large to fit the Sanderson model between 

Widemouth and Saltstone Strand (including the Wanson Mouth foreshore) and too low between 

Higher Longbeak and Widemouth (including the Black Rock foreshore).  

 

 

 

In order to explain this anomaly, Sanderson (1979) suggested that “there is both a 

regional and local correlation between ILA and APD”, whereby the Higher Longbeak to 

Widemouth section “may represent a zone of low shear strain”, whilst the Widemouth to 

Saltstone Strand section showed low but increasing shear strain accommodation before “the 

transition to recumbent folds south of Saltstone Strand”. Sanderson (1979) observed that south 

of Saltstone Strand ‘inclined-to-recumbent’ chevron folds had lower ILA and APD values and 

suggested that this occurred because the folds were situated on the steep south-dipping limb of a 

regional anticlinorium, whilst the ‘upright’ chevron folds are on the shallow north-dipping limb 

of this structure (see Fig. 2.22). 

 

Lloyd and Whalley (1986) model of chevron fold development 

The Lloyd and Whalley (1986) model is an extension to the Sanderson (1979) model 

that is designed to explain the effect that south-directed shearing had on the geometries of 

‘upright’ chevron folds (see Chapter 2) as well as the occurrence of ‘recumbent’ chevron folds. 

Fig. 4.4: Model of chevron fold development by 

simple shear, based on experiments by Ghosh 

(1966): (a) Initial geometry with folded beds 

dipping at δ; (b) Fold initiation with axial planes 

at β0 to shear zone; and (c) Folds at maximum 

shortening with axial planes at β to shear zone 
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In their model, the south-dipping ‘upright’ chevron fold limbs were subject to a compressional 

regime during south-directed shearing, causing south-directed ‘inclined-to-recumbent’ folds to 

develop. In contrast, the north-dipping limbs were subject to an extensional regime. The 

resulting normal faults either exploited the ‘upright’ chevron fold axial surfaces (Model 1; 

Church Races, SS200043) or the north-dipping limb (Model 2; Lynstone, SS200052; and 

Saltstone-Millook, SS184002; Fig. 4.5). Where no normal faulting occurred, the original fold 

hinge is modelled to have either opened (increased ILA; Model 3; Lower Longbeak, SS199034) 

or tightened (decreased ILA; Model 3; between Bude and Efford, SS200060) (see Chapter 2). 

Lloyd and Whalley (1986) suggest that during fold tightening, cleavage develops in the shales. 

 Comparing the two models, the Lloyd and Whalley (1986) model is consistent with the 

results from the shearing experimental models on already dipping beds by Ghosh (1966) (Fig. 

4.4), which was also the basis for the Sanderson (1979) model. Thus, the Lloyd and Whalley 

(1986) model is in agreement with the Sanderson (1979) model in this regard. This was noted 

by Anderson and Morris (2004), who recognised that localised south-directed shear deformation 

caused modification of the initial ‘upright’ chevron geometry, as described by both Sanderson 

(1979) and Lloyd and Whalley (1986; 1997). Anderson and Morris (2004) also suggested that 

the primary differences between the models are that:  

1. The Sanderson model considered how the initial ‘upright’ fold axial planes and interlimb 

angles evolved with increasing shear strain to produce ‘inclined-to-recumbent’ folds 

2. The Lloyd-Whalley model considered the limbs of initial ‘upright’ chevron folds as 

movement planes, so producing the different ‘inclined-to-recumbent’ chevron fold types.  

 

 

Fig. 4.5: Schematic regional interpretation from Saltstone Strand to south of Millook Haven 

(SS184002), showing a ‘cascade’ of chevron folds (modified from Lloyd & Whalley, 1997) 

 

The progressive deformation suggested by the models for south-directed shear, has 

generated at least three over-printing cleavage sets, although these are rarely observed together. 

One location where this occurs is at Millook (SS185002; Fig. 4.5), but only in tightly-folded 

shale beds (Lloyd & Chinnery, 2002; see Chapter 2). The three over-printing cleavage sets are:  

1. Close to bedding-parallel, related to north-directed thrusting (S1);  

2. Parallel to ‘upright’ chevron fold axial planes after being restored (S2);  

3. Parallel to south-directed ‘inclined-to-recumbent’ chevron fold axial planes (S3).  



90 

 

4.1.4 Models for the development of the Widemouth South Fault (WSF) 

The Widemouth South Fault (WSF) is a regional structural feature in the Culm Basin 

where ‘upright’ and south-directed ‘inclined’ chevron folds are juxtaposed (Freshney et al, 

1972; Sanderson, 1979). The ‘inclined’ chevron folds are equivalent to the ‘inclined-to-

recumbent’ chevron folds of Sanderson (1979). The movement on the WSF caused 300 m of 

stratigraphy to be missing across it (Freshney et al, 1979; pers. comm., 2010; Fig. 4.2). 

Structural interpretation of the foreshore successions relies on understanding the deformation 

accommodated on the WSF, which has been described alternatively as:  

1. A ‘late’ Variscan normal fault (Freshney et al, 1972; pers. comm., 2010; Fig. 4.6); 

2. An inverted north-directed Variscan thrust (Enfield et al, 1985; Fig. 4.7);  

3. A north-directed thrust that was extensionally reactivated as a listric normal fault, which 

further east led to the development of the Crediton Trough (Durrance, 1985; Fig. 4.8);  

4. A Tertiary dextral wrench fault (Williams et al, 1970; Durrance, 1985; Fig. 4.9).  

 

Model 1: ‘Late’ extensional fault model (Freshney et al, 1972; pers. comm., 2010) 

This is the simplest model explaining the WSF (Fig. 4.6) in which the Variscan 

deformation occurred at different stratigraphic levels. Both the Bude and Crackington 

formations accommodated progressive ‘upright’ chevron fold deformation and then, south-

directed shear deformation. This led to the development of south-directed ‘inclined’ chevron 

folds on the south-dipping limbs of originally ‘upright’ chevron folds (Ghosh, 1966; Sanderson, 

1979; Lloyd & Whalley, 1986; 1997; Fig. 4.4). Following fold development at different 

stratigraphic and structural levels, the two domains were juxtaposed against each other by ‘late’ 

normal fault movement along a north-dipping WSF (Fig. 4.6; Freshney et al, 1972).  

‘Late’ extensional movement along the WSF is suggested from work on Anisotropy of 

Magnetic Susceptibility (AMS) by Anderson and Morris (2004). AMS analyses of the folded 

beds in the ‘upright’ chevron fold adjacent to the WSF (SS19630146) (i.e. ‘upright’ chevron 

anticline E; see gusset) suggest that a late-stage stretching occurred along the fault. However, 

Anderson and Morris (2004) could not determine whether the stretching fabrics resulted from 

normal faulting in the ‘upright’ chevron anticline hinge during south-directed shear deformation 

(Lloyd & Whalley, 1986), or from ‘late’ post-Variscan extension.  

The Freshney et al (1972) model describes normal faults from Wanson Mouth 

southwards to the Rusey Fault, which trend 245°-280° and dip at 45°-80° to the north. Although 

the total regional throw of all the normal faults between the WSF and the Rusey Fault is 

considered to be approximately 300 m, the individual fault throws are less than 3 m. This 

suggests that the ‘late’ normal faults are small scale and thus, could not produce the 300 m 

stratigraphic separation between the Bude and Crackington formations across the WSF as 

shown in the logs by Freshney et al, 1979 (Fig. 4.2). 
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Fig. 4.6: Schematic sketches of the progressive deformation in the Crackington and Bude 

formations prior to being placed together by the ‘late’ extensional WSF movement 

 

Model 2: Inverted thrust model (Enfield et al, 1985) 

In this model, the Crackington Formation was emplaced onto the Bude Formation along 

the Wanson Mouth thrust duplex (Fig. 4.7), prior to chevron folding and cutting out at least 300 

m of stratigraphy (Fig. 4.2). If a 30°S thrust dip angle is assumed, this suggests that the Wanson 

Mouth beds have been transported at least 500 m to the north during emplacement. In detail, the 

thrusts include the Wanson North Fault (WNF), which is viewed as the roof thrust whilst the 

sub-parallel fault to the north is an ‘imbricate’ (floor) thrust to the WNF (Fig. 4.7). The Wanson 

Mouth beds have a downward-facing, southwards younging direction and truncate against the 

thrusts (Fig. 4.7). This suggests that the beds and faults may have been inverted by rotation to 

steeply north-dipping attitudes. Between the two faults, there appears to be a lateral ‘ramp’ 

structure. The thrusting may have caused up to 300% of local thickening in the foreshore. 

Following emplacement, the formations either side of the WSF experienced the same 

deformation history. In the model, the thrusting created a “northward verging thrust zone”, 

which generated ‘upright’ chevron folds. According to the Coward and Smallwood (1984) 

model, as described by Enfield et al (1985) (see Chapter 2), these ‘upright’ chevron folds were 

modified by a single rotational deformation from north-directed to being south-directed. The 

change in tectonic movement direction occurred as the northward propagation rate reduced to 

less than the slip rate, thereby causing the tectonic movement to switch directions. This change 

is inferred to have generated the south-directed ‘inclined’ chevron folds, following the 

Sanderson (1979) model of southward increase in intensity of south-directed shear deformation. 

The thrusts were folded and attained their steeply north-dipping attitudes on the overturned 

limbs of these folds, on the scale of the foreshore (Fig. 4.7; Enfield et al, 1985). 
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Fig. 4.7: Sketch diagrams from Enfield et al (1985) showing all major faults in the Wanson 

Mouth foreshore: (a) simplified map of the foreshore showing the Wanson North Fault (roof 

thrust) and an ‘imbricate’ thrust in the Wanson Mouth duplex; (b) simplified cross-section of the 

duplex shown in (a); and (c) cliff section of the Wanson Mouth-Black Rock foreshores 

 

 

Fig. 4.8: Geological evolution of the Widemouth South Fault in the eastern Culm Basin 

(modified from Durrance, 1985): (a) initial north-directed thrust, emplacing the Crackington 

Formation onto the Bude Formation; (b) extensional stresses affect the fault; (c) extensional 

movement on the reactivated fault; and (d) development of the extensional Crediton Trough  

 

Model 3: Extensionally reactivated thrust model (Durrance, 1985) 

The WSF is a basin-scale fault and can be traced to the east towards the Crediton 

Trough. In the model, strong seismic reflectors below the Crediton Trough have been 

interpreted as a south-dipping listric normal fault (Fig. 4.8d) that reactivated along the line of a 

buried north-directed Variscan thrust (Figs. 4.8b & c). This thrust has been interpreted to have 

emplaced the Crackington Formation onto the Bude Formation (i.e. an earlier form of the WSF) 
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(Fig. 4.8a). Durrance (1985) did not consider whether fold deformation had occurred prior to or 

following the thrust movement, and so the relative timing of thrusting is not known. The normal 

fault movement occurred during the Permian forming the extensional Crediton Trough (Fig. 

4.8d). However, Durrance (1985) does not suggest Variscan chevron folding deformed the 

thrust. The model was produced to explain the formation of the Crediton Trough as an 

extensional basin and its New Red sandstone deposition (Fig. 4.8d). The NE-dipping WSF is 

oriented 127/68NE and juxtaposes the Black Rock and Wanson Mouth foreshore successions, 

which casts some doubt on the whether the model can be applied in the mapping area. 

 

 

Fig. 4.9: (a) Sketch structural cliff profile above the Black Rock-Wanson Mouth foreshores with 

schematic fold sketch to show overturned anticline. The WSF is described as a wrench fault but 

the annotations a and e are not described by Williams et al (1970) and (b) Sketch diagram of the 

major ‘late’ Variscan fault movements in the Culm Basin with the dextral WSF of Freshney et 

al (1972) as a possible Reidel shear to the dextral Sticklepath Fault of Peacock et al (1998) 

 

Model 4: Dextral wrench fault model (Williams et al, 1970)  

Williams et al (1970) observed that in the immediate area around the WSF there are 

several “subsidiary fractures and joint patterns in the foreshore”, although they do not show the 

structures in any figure. Whilst the structures were not observed during this mapping project 

(see gusset) they may exist in the areas of ‘geological complexity’ on the King (1967) map (Fig. 

a b 
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4.3). However, this model is considered unlikely because strike-slip movement along the WSF 

could not produce the 300 m of stratigraphic separation between the two foreshore successions. 

Williams et al (1970) described the WSF as a Tertiary dextral wrench fault (Fig. 4.9a) whilst 

Durrance (1985) noted that the WSF at the coast may be part of a tear fault system (Fig. 4.9b).  

 

4.1.5 Discussion of the Widemouth South Fault (WSF) models 

The four models outlined above attempted to explain how the juxtaposition of ‘upright’ 

and ‘inclined’ chevron folded strata across the WSF occurred. Model 4, the purely wrench fault 

model of Williams et al (1970), appears to be unlikely because it could not produce the 300 m 

of stratigraphic separation between the two foreshore successions (Freshney et al, 1979; Fig. 

4.2). Also, the fractures and joints in the foreshores that would suggest that minor dextral strike-

slip reactivation of the WSF occurred (Williams et al, 1970) have not been found. In contrast, 

the models of Freshney et al (1972), Enfield et al (1985) and Durrance (1985) explain the 

stratigraphic separation between the foreshore successions. Model 1, the normal fault model of 

Freshney et al (1972), is also consistent with the ‘late’ extension inferred from the AMS 

analysis of Anderson and Morris (2004). These models will be considered further in this chapter  

 

4.2 Methods 

Sedimentary and structural geology data were gathered during this mapping in order to 

study the chevron folds, the local faults and folds on the limbs and across the hinges of ‘upright’ 

chevron folds and the tectonic significance of the Widemouth South Fault (WSF) that separates 

the Black Rock and Wanson Mouth foreshores.  

 

4.2.1 Foreshore mapping 

As part of the mapping work, montages of relatively high-resolution aerial imagery 

were used from the publicly-available Google Earth
TM

 resource. It is noted that the use of the 

Google Earth
TM

 resource is now becoming more common in geological mapping (Blenkinsop, 

2012). These images are used solely as the base map slips for the detailed map, in order to 

locate accurately the beds and structures in the foreshores. The geological map (see gusset) is 

divided between the Black Rock foreshore (SS196017-SS195015), NE of the WSF, and the 

Wanson Mouth foreshore (SS195015-SS195013), SW of the WSF. Also, the mapping data has 

been overlain onto a conventional OS map for comparison, whilst the GEM images have been 

removed in another example of the map in order to provide clarity on the data (see gusset).  

 Although dipping beds and structural trends can be interpreted directly from the Google 

Earth
TM

 images, there are limitations to this resource; in particular, it is difficult to discern beds 

that are sub-horizontal to shallow dipping (i.e. sub-parallel to the plane of view) and in some 

locations, beds and structures are obscured by sand, boulders and seaweed. 
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4.2.2 Sedimentary logging 

Sedimentary logging was undertaken to describe the different facies in each foreshore 

(see Chapter 3 for methods and data collected), to interpret the depositional environments of 

both successions and to describe the younging using an inverted ‘Y’ symbol pointing in the 

younging direction. The data have also been used to test whether there are strong lateral 

thickness changes across the foreshores associated with any of the structures. In the Black Rock 

foreshore, laterally-continuous shale beds, numbered 1-7, were mapped to divide the strata into 

packages. The data collected in these less detailed sedimentary logs are lithology, bed thickness 

and grain size. However, as there is a lack of fossils, only lithostratigraphic correlations of shale 

beds were possible. Where fault deformation had caused the repetition of beds, the duplicated 

strata have been removed to give the original stratigraphic thickness. 

 

4.2.3 Structural data 

  The field structural data collection consisted of measuring the strike and dip of bedding, 

cleavage and both normal and thrust fault planes, together with the plunge and azimuth of fold 

hinge lines and fault plane striations (see gusset). These data sets were plotted onto stereonets in 

order to analyse the geometries of each deformation structure. To analyse the folds, the fold 

profile plane is found from the π-girdle line plotted through poles to bedding planes, using the 

methods of Davis and Reynolds (1996) and Lisle (2004). As cleavage was only observed rarely 

in tightly folded shale beds, as mentioned by Freshney et al (1979), the fold axial plane 

orientations have been plotted perpendicular to the profile plane, using fold axis plunge data 

from well-exposed bedding surfaces. Where angular data (in degrees) are expressed as a mean, 

this is provided with a calculated circular variance value. 

 In order to provide a structural overview of both foreshores and estimate the amount of 

shortening accommodated in the two successions, eight cross-sections have been drawn:  

1. Three dip-sections (bearing 010°-190°), cutting across both foreshores sub-parallel to the 

dip directions of the chevron folded beds (A-A’, B-B’ & F-F’; see gusset);  

2. Four strike-sections (bearing 100°-280°) in the Black Rock foreshore sub-perpendicular to 

the dip directions of the chevron folded beds (C-C’, D-D’, E-E’ & G-G’);  

3. One oblique section (bearing 135°-315°) in the Wanson Mouth foreshore sub-perpendicular 

to two faults that are oriented obliquely to other structures (H-H’).  

 

Following the methods of Davis and Reynolds (1996), each cross-section line has been 

placed where there is good foreshore exposure and surface geological control. The dip section 

line orientations were chosen to be parallel to the tectonic transport direction (Fossen, 2010). As 

the foreshores are at sea level, the structural mapping data was transferred onto the cross-

sections, with corrections made for apparent dip and then the beds projected without vertical 

exaggeration above and below the horizontal surface. The laterally-continuous black shale beds 



96 

 

provided key stratigraphic markers in the Black Rock foreshore and allowed the sections to be 

balanced, as undertaken for example by McQuarrie (2004) in the Zagros Mountains, Iran. This 

allows a fence diagram to be drawn, showing the 3D structure of the Black Rock foreshore. 

Unfortunately, no marker beds were found in the Wanson Mouth foreshore (see gusset).  

 

Structural restoration  

Balanced restorations assume that cross-sectional area, and where possible line lengths, 

are preserved, whilst restored sections can have gaps and overlaps due to fault movement 

(Fossen, 2010). The flexural slip mechanism (see Chapter 2) assumes that line length and bed 

thickness are conserved. It was applied to the Bude Formation by Ramsay (1974) and Tanner 

(1989) to model chevron folding along bedding planes. The flexural slip mechanism allows 

more coherent beds to move past each other along ‘weak’ bedding planes and assumes that there 

is no compaction or movement out-of-section during restoration (Fossen, 2010). Two examples 

of cross-sections that have been balanced by preserving line length are in the Rocky Mountains, 

Alberta, Canada (Dahlstrom, 1969) and the Zagros fold-thrust belt, Iran (McQuarrie, 2004).  

 To test if the cross-sections balance (see Davis & Reynolds, 1996), the restorations 

were undertaken separately for each foreshore, to allow for the different structural styles either 

side of the WSF (Freshney et al, 1972). All the sections, apart from Black Rock strike-section 

G-G’, were pinned to this fault. In the latter case, the cross-section does not reach the WSF, so 

was pinned to local thrust stack 6. The restorations are undertaken in steps for practicality and to 

make the structural relationships clear. Structural restoration also allows the current models of 

Freshney et al (1972) and Enfield et al (1985) to be tested and to develop new models. 

 The restoration of each cross-section involves a pragmatic approach in which balancing 

is undertaken individually for each bed, which can move relative to other beds via the flexural 

slip mechanism (Ramsay, 1967; Tanner, 1989). The ‘pin points’ are individual to each bed and 

are placed where a bed is truncated by the WSF or otherwise at the full extent of the outcrop. 

Thus, balancing was undertaken for each bed and by comparison to the other adjacent restored 

beds so that bed thicknesses are consistent, as required in the flexural slip model (Tanner, 1989). 

However, balancing may not be achieved fully where the beds have been folded, or cut by a 

fault with movement out-of-plane of section (Fossen, 2010). In these cases, ‘space problems’ 

may occur, with gaps ‘appearing’ through the removal of thrusts and overlaps from normal 

faults, but do not appear to be significant with respect to the overall structural interpretation. 

 

Shortening estimates 

Using the methods of Ramsay (1974), shortening estimates in the Black Rock foreshore 

were made using line (bed) lengths along laterally-continuous beds. Two methods were used to 

obtain the original (l0) and final (l1) bed lengths (in metres) in each Black Rock cross-section, 

both using string laid along the laterally-continuous beds, with the string lengths measured 
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using a ruler with millimetre spacing (Fossen, 2010). The generally applicable method for 

estimating a shortening value for each cross-section involves measuring laterally-continuous 

beds across the whole length of each section (Fig. 4.10b), as undertaken by McQuarrie (2004). 

Where possible in order to account for ‘out-of-plane’ movement, a minimum shortening value 

was estimated between ‘pin positions’, again along laterally-continuous shale beds (Fig. 4.10a), 

also as undertaken by McQuarrie (2004). In the Black Rock foreshore case, the ‘pin positions’ 

are between pairs of anticlinal hinges from trains of:  

1. ‘Upright’ chevron folds trending sub-parallel to Black Rock dip section A-A’;  

2. Local structures trending sub-parallel to Black Rock strike-sections C-C’, D-D’ and E-E’.  

 

The mean percentage shortening (e) estimated using the original (l0) and final (l1) bed 

lengths (in metres) is found from the formula (Davis & Reynolds, 1996; Fossen, 2010):  

 

e = -100((l1 – l0) / l0)       (4.2) 

 

 

Fig. 4.10: Diagram showing original and final length measurements along pink lines taken for: 

(a) a minimum shortening estimate between fold hinges; and (b) a larger-scale shortening 

estimate across the mapped foreshore extent 

 

The shortening accommodated in the Wanson Mouth succession cannot be estimated as 

accurately as for the Black Rock succession because no marker beds could be correlated across 

the faults. Instead, for each laterally continuous bed, line lengths have been measured between 

faults using the string method, in order to provide a range of shortening estimates for each 

cross-section (Fig. 4.10b). The shortening estimates (e) for each cross-section in both foreshores 

are given as both a range and as a mean, together with the standard deviation.  

 

Determination of ‘early’ structures 

The timing of the local decametric scale structures in the Black Rock foreshore is 

assessed to establish whether they occurred prior to chevron folding and also whether this was 

at or near the palaeo-surface. Using the Mapeo and Andrews (1991) methods developed in the 
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Bude Formation, local structures are considered as ‘early’ structures where they have been 

deformed by ‘upright’ chevron folding (i.e. a refolded structure).  

Some local structures are tilted and lie on the ‘upright’ chevron fold limbs. The criteria 

to demonstrate whether these are ‘early’ structures are developed from the seismic section 

interpretations in the Po Delta, Italy, by Zoetemeijer et al (1992) and Niger Delta, Nigeria, by 

Corredor et al (2005) and also outcrop studies in the Pliocene Mount Corvo beds, SW Sicily, 

Italy, by Nigro and Renda (2004) (see Chapter 2). The criteria are as follows (Fig. 4.11): 

1. ‘Undeformed’ beds both overlying and underlying the locally deformed strata;  

2. Toplap truncations of local structures and deformed beds by either overlying ‘undeformed’ 

beds or deformed beds in another local stacked structure;  

3. Variable thicknesses of ‘undeformed’ beds overlying the local structures (i.e. growth strata) 

 

 

Fig. 4.11: Schematic diagrams of: (a) folded and restored local normal faults and thrusts, which 

are used to define a local structure as ‘early’ (modified from Mapeo & Andrews, 1991); and (b) 

criteria to define ‘early’ local structures with associated growth strata, with structures incising 

‘undeformed’ underlying beds and being toplap truncated by overlying ‘undeformed’ beds 

(Zoetemeijer et al, 1992; Nigro & Renda, 2004; Corredor et al, 2005)  

 

4.3 Sedimentary evolution of the Black Rock-Wanson Mouth foreshores  

The sedimentary structures and ichnofabrics observed in the Black Rock foreshore 

succession and elsewhere in the Bude Formation are described in Chapter 3. The lower Bude 
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Formation beds in the Black Rock foreshore include a succession of variably-continuous 

sandstone, siltstone and shale beds all with grain sizes no coarser than fine-grained sand grade 

(Fig. 4.12; see Fig. 3.1c). Some sandstone and siltstone beds pinch-out over distances of tens to 

hundreds of metres, whilst the shale beds (numbered 1-7b) are mainly continuous. In addition, 

one channel structure has been observed (SS19580153), which has a shale bed basal drape, a 

massively-bedded sandstone infill and an overlying clay-draped, trough cross-stratified bed 

(Fig. 4.12; see Chapter 3). The sedimentary structures and ichnofabrics observed in the Black 

Rock foreshore and elsewhere in the Bude Formation are described in Chapter 3.  

  

 

Fig. 4.12: A sedimentary log taken in the Black Rock foreshore (SS19580153), which 

represents an apparently uncommon channel structure within the Bude Formation outcrops 

 

The initial aim of the sedimentary analysis and detailed mapping in the Black Rock 

foreshore was to assess the stratigraphic thickness of the succession compared to the whole 

Bude Formation (Freshney et al, 1979) and whether there are thickness changes in the foreshore. 

To undertake this assessment, five sedimentary logs have been taken with bed thickness and 

lithology measurements collected (Fig. 4.13). The sedimentary record of log E shows that at 

least 120 m of Bude Formation strata are exposed in the foreshore, which according to Freshney 

et al (1979), is about a tenth of the Bude Formation stratigraphic thickness (Fig. 4.2).  
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Fig. 4.13: Correlated simplified sedimentary logs across local structures in the Black Rock foreshore. The correlated logs show the variation in deposition 

thicknesses between the thick sandstone bed and laterally-continuous shale bed 6, which are up to 36 m different between logs B and E. Sedimentary log location 

lines are drawn on the map in yellow (see gusset & Fig. 4.15)  
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In order to test for lateral thickness changes, the five sedimentary logs were correlated 

using strongly-continuous shale beds (Fig. 4.13). Comparison of logs B and E (Figs. 4.13b & e) 

shows that there is a 36 m maximum stratigraphic thickness difference between shale beds 1 and 

6. In the 36 m of additional strata, shale beds 2-5 either onlap onto, or have been truncated by, 

other beds (Fig. 4.13; see gusset). It is possible that there is further local fault repetition of the 

beds, although these faults may be bedding-parallel and thus difficult to locate. Unfortunately, 

without biostratigraphic control, lithostratigraphic correlation of the shale beds has been used.  

 

 

Fig. 4.14: Sedimentary log from the cliffs at Wanson Mouth in the upper Crackington 

Formation (SS19550136), showing thin beds with similar facies to parts of the Bude Formation 

 

The stratigraphic thickness variations occur around local structures, which lie between 

shale beds 1 and 6 and have been logged on the limbs and up to the hinges of the ‘upright’ 

chevron folds in the Black Rock foreshore (Fig. 4.13 & see gusset). The additional strata are 

especially noticeable between logs D and E where shale beds 3-5 pinch-out (Figs. 4.13d & e). 

During this local structural development, it is suggested that accommodation space was created 

on the limb of fold pair 6 and the ‘growth’ or additional strata accumulated here. In contrast, in 
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the stratigraphically-higher sedimentary stack between shale beds 6 and 7a, there is neither fault 

repetition nor local structures. The bedding stack has the same stratigraphic thickness across the 

foreshore as shown in logs A and E (Figs. 4.13a & e). The 12 m thick Black Rock Slump Bed 

was laid down after deposition of shale bed 7a and prior to shale bed 7b. The slump bed is 

described in greater detail in Chapter 5. 

 

4.3.1 Crackington Formation in the Wanson Mouth foreshore 

The upper Crackington Formation beds in the Wanson Mouth foreshore are 

stratigraphically-below the Bude Formation in the Black Rock foreshore and consist of a sub-

vertical to overturned succession of folded sandstone, siltstone and shale beds, some of which 

may pinch-out over distances of tens to hundreds of metres (Freshney, pers. comm., 2010). 

They have been interpreted as turbidite deposits within a deep marine fan (Melvin, 1986).  

As with the Bude Formation beds, grain sizes are no coarser than fine-grained sand and 

there are abundant sole marks on bed bases (Williams et al, 1970; Melvin, 1986; see Chapter 3). 

In order to interpret the stacking patterns and facies present in the Wanson Mouth foreshore, 11 

m of section was logged (SS19550136; Fig. 4.14; see Fig. 3.1c), which consisted of mud-draped 

ripple coset laminated sandstones and siltstones. Occasional trough cross-laminated sandstones 

were found in the bottom 5.5 m of the logged section, whilst in the top 5.5 m, there are no 

trough cross-laminated sandstones and few ripple laminated sandstones and siltstones (Fig. 

4.14; see Chapter 3). Instead, the stack is dominated by planar laminated siltstones with some 

shales, which is indicative of lower energy depositional environments (Collinson et al, 2006). 

 

4.4 Map description 

As discussed previously, the lower Bude Formation of the Black Rock foreshore and the 

upper Crackington Formation of the Wanson Mouth foreshore are separated by the Widemouth 

South Fault (WSF; oriented: 127/68NE; 132/65NE; 134/67NE), which truncates all structures 

and beds in both foreshores (King, 1967; Freshney et al, 1972; pers. comm., 2010; Fig. 4.3; see 

gusset). The stratigraphic separation between the two foreshore successions is 300 m (Fig. 4.2; 

Freshney et al, 1979). This is likely to be the vertical displacement accommodated by this fault 

and would explain the juxtaposition of apparently different structural sections. The WSF may 

have been part of a ‘late’ normal fault that cuts all the structures (Freshney et al., 1972; Fig. 

4.6); or an inverted thrust duplex (Enfield et al, 1985; Fig. 4.7); or a north-directed thrust that 

has been reactivated by ‘late’ Variscan extension (Durrance, 1985; Fig. 4.8).  

Approximately 125000 m
2
 of the two foreshores were mapped and divided into six 

areas (Fig. 4.15; see gusset); three each for the Black Rock foreshore (areas A1 to A3) and 

Wanson Mouth foreshore (areas A4 to A6) that match the areas described in the King (1967) 

map (Fig. 4.3). Structural measurements were taken of the beds, folds and faults. To understand 

the geological evolution of the two foreshores, five sedimentary logs were taken (yellow lines 
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on map in gusset) and eight cross-sections were drawn (orange lines on map in gusset). The 

cross-sections are described in Sections 4.5 and 4.6 after the map description of each foreshore. 

 

 

Fig. 4.15: Simplified map of the locations of areas (A1-A6) in the Black Rock-Wanson Mouth 

foreshores as well as sedimentary log (yellow) and cross-section (orange) lines (also see gusset) 

 

4.4.1 Map description of the Black Rock foreshore 

The Black Rock foreshore lies in the southern-most outcrops of the Bude Formation 

(see gusset) with the mapped part of the foreshore covering an area of approximately 50400 m
2
. 

Shale beds numbered 1 to 7b have been mapped across this foreshore. Other important beds 

include a thick basal sandstone bed immediately above shale bed 1 and the Black Rock Slump 

Bed that was deposited after shale bed 7a and prior to shale bed 7b. All these beds provide 

constraints on the thicknesses of the stratigraphic packages and the structural geometries.  

The foreshore was divided into three areas (areas A1 to A3) distinguished by their 

differing type and degree of structural complexity. In the northern part of the foreshore in area 

A1 (Fig. 4.15; see gusset), there are steeply north-dipping beds with two laterally-continuous 

shales beds (6 & 7a). This includes periclinal fold pair 7 highlighted by the folding of shale bed 

5 with E-W-oriented axes that are refolded by ‘upright’ chevron anticline A (SS19610166-

SS19440165). In the south-eastern foreshore in area A2 (Fig. 4.15; see gusset), a train of five 
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‘upright’ chevron folds (three anticlines and two synclines) occurs, which have E-W-oriented 

axes that plunge to the NNW (see gusset).  

 In the central and western foreshore, in area A3 (Fig. 4.15; see gusset), a complex set of 

local fault and fold structures occur with generally N-S-oriented axes. These local structures lie 

between shale beds 1 and 6 (see gusset). They consist of a similar set of local faults and folds 

lying on the southern limb of ‘upright’ chevron anticline A around SS195015, together with 

thrust stacked beds on its northern limb around SS195016. Other structures include a set of 

NNE-SSW-striking and NW-SE-striking faults (SS19570158-SS19510164) that cut the thick 

basal sandstone bed across the ‘upright’ chevron anticline A axis. There is also no ‘upright’ 

chevron fold train in area A3 (Fig. 4.15; see gusset), but the WNW-ESE-trending ‘upright’ 

chevron anticline A occurs across the foreshore (SS19650156-SS19390172; see gusset).  

 

Local structures 

The local decametric-scale folds and faults observed in area A3 (Fig. 4.15; see gusset) 

have not been described previously in the literature for the Black Rock foreshore. However, 

they are significant features of the Variscan geological evolution in the Culm Basin (Enfield et 

al, 1985; Mapeo & Andrews, 1991). Some local structures in the foreshore are categorised as 

‘early’ because they have been deformed across the hinge zone of ‘upright’ chevron anticline A, 

in areas A2 and A3 (Fig. 4.15; see gusset), following Mapeo and Andrews (1991).  

Other local structures can be categorised as ‘early’ following the convention of 

Zoetemeijer et al (1992), Nigro and Renda (2004) and Corredor et al (2005). This includes 

‘undeformed’ beds overlying the local structures, deformed beds in the local structures being 

toplap truncated by ‘undeformed’ or locally-deformed beds and variable stratal thicknesses 

between laterally-continuous shale beds in the five correlated sedimentary logs (Fig. 4.13). 

 The five sedimentary logs across the foreshore show that there is 36 m of additional 

strata between shale beds 2 and 5 in log E (Fig. 4.13e) compared to log B (Fig. 4.13). Log E 

also shows that shale beds 3 and 4 pinch out on the north-dipping limb of ‘upright’ chevron 

anticline A. Shale bed 2 is repeated across areas A2 and A3 (Fig. 4.15; see gusset) and thus, it is 

possible that further ‘early’ fault repetition of beds may have occurred but cannot be proven.  

 

Fold pair 7 on the broken limb of the northern anticline (Freshney et al, 1972)  

There is the periclinal fold pair 7 (SS19610166-SS19440165) that is a significant 

structure in the Black Rock succession and which has been described as parasitic en-echelon 

periclines on the “broken limb of the northern anticline” by Freshney et al (1972). In this work, 

fold pair 7 was remapped to determine whether it is related to the chevron folding or has been 

refolded by the ‘upright’ chevron folds. From the mapping, it was found that the fold pair has 

been refolded by ‘upright’ chevron anticline A at SS19450167 (see gusset). The fold axes merge 

on the north-dipping limb of ‘upright’ chevron anticline A between dip-sections A-A’ and B-B’ 
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at SS19610166 and also, on its south-dipping limb at SS19440165. Following the convention of 

Mapeo and Andrews (1991), this suggests that fold pair 7 is an ‘early’ structure that formed in 

the Black Rock foreshore succession prior to ‘upright’ chevron folding, which contradicts the 

Freshney et al (1972) model. This may also suggest that there is an unrecognised bedding-

parallel thrust that underlies fold pair 7, which causes repetition of the Black Rock beds. 

 

‘Upright’ chevron fold deformation 

  The ‘upright’ chevron fold train in the eastern Black Rock foreshore in area A2 (Fig. 

4.15; see gusset) contains three anticlines and two synclines. The axial plane of ‘upright’ 

chevron anticline E has been cut by the WSF at SS19590146 (see gusset). The structural data 

for the ‘upright’ chevron folds are given in Table 4.1. There are strong similarities in the 

geometries of the folds, with their profile planes having a generally north-south axis, sub-

vertical axial planes and tight interlimb angles between 50°-60°.  

 

Fold name Profile 

plane 

Axial 

plane 

Northern 

limb bedding 

Southern 

limb bedding 

Interlimb 

angle (°) 

‘Upright’ chevron anticline A 002/85W 093/89S 103/76N 104/51S 53 

‘Upright’ chevron syncline B 013/87E 102/83S 104/51S 100/72N 57 

‘Upright’ chevron anticline C 005/85W 092/70N 100/72N 125/37SW 71 

‘Upright’ chevron syncline D 178/65E 103/71N 125/37SW 084/72N 71 

‘Upright’ chevron anticline E 001/85E 088/84N 084/72N 094/57S 51 

Table 4.1: Table of ‘upright’ chevron fold geometries from the Black Rock foreshore 

 

‘Late’ sub-vertical faults 

In the central Black Rock foreshore (SS19550160) in area A3 (Fig. 4.15; see gusset), 

there is a set of local, sub-vertical, dextral faults that cross-cut the ‘upright’ chevron anticline A. 

The first fault to form, termed ‘late’ fault β, is NNE-SSW-striking (SS19550159) and was cut 

subsequently by a NW-SE-striking fault α (SS19530160). Offsets on the basal sandstone bed 

suggest that fault α has accommodated up to 20 m of horizontal displacement and where it cuts 

fault β, 5 m of horizontal displacement is accommodated (see gusset). As there are no overlying 

undeformed deposits, it is difficult to establish the age of the faulting. Also, the fault planes 

have been strongly eroded, so no structural measurements could be taken. Similar faulting has 

been observed across the Culm Basin, which may have resulted from Variscan dextral faulting 

(Peacock et al, 1998) and / or Tertiary dextral wrench faulting (Williams et al, 1970; Fig. 4.9).  

 

4.4.2 Map description of the Wanson Mouth foreshore  

The Wanson Mouth foreshore lies within the faulted boundary between the Crackington 

and Bude formations, south of the WSF (Freshney et al, 1972; Enfield et al, 1985; see gusset), 

with the mapped part covering an area of approximately 74200 m
2
. The deposits are generally 
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steeply north-dipping and have been deformed by both high-angle north-dipping faults and 

south-directed ‘inclined’ chevron folds (Freshney et al, 1972; Enfield et al, 1985). Although a 

shale bed contains early Westphalian goniatites (Williams et al, 1970), it has proved difficult to 

correlate beds within this foreshore. 

 There are three areas within the foreshore that have different types and degrees of 

structural complexity. In the northern part of the foreshore, there is a steeply north-dipping set 

of stacked beds to the north of an E-W-striking fault, in area A4 (Fig. 4.15). In the central 

foreshore, in area A5 (Fig. 4.15), there is a complex set of fault and fold structures. The 

structures include a south-directed ‘inclined’ chevron fold pair and a steeply NNW-dipping fault 

that ramps through the strata. The ‘inclined’ chevron fold pair is equivalent to the ‘inclined-to-

recumbent’ chevron folds of Sanderson (1979). In addition, near the cliffs, there is a 50 m long 

NE-SW-striking fault zone with significant fault damage in its centre (see gusset). In the 

southern foreshore in area A6 (Fig. 4.15), between the Wanson North Fault (WNF) and the E-

W-striking fault A immediately north the WNF, the beds are steeply north-dipping and truncate 

against the faults, as described by Enfield et al (1985) (see Fig. 4.7).  

 

South-directed, ‘inclined’ chevron fold deformation 

The Wanson Mouth foreshore contains a south-directed, ‘inclined’ chevron fold pair in 

area A5 (Fig. 4.15; see gusset), with overturned steep north-dipping beds on the long limbs of 

the folds (Enfield et al, 1985) and which have been interpreted to result from south-directed 

shear strain accommodation (Sanderson, 1979). Alternatively, the ‘inclined’ chevron fold pair 

may be ‘z-folds’ on the limb of a larger-scale fold. A stereonet shows the orientations of the 

‘inclined’ chevron anticline profile plane as 017/74E, its fold axial plane as 085/40N (Fig. 

4.16a) and its interlimb angle as 46° (Fig. 4.16a).  

 

Oblique faults  

Cross-cutting the Wanson Mouth foreshore, in area A5 (Fig. 4.15), is a steeply NNW-

dipping fault (oriented: 071/74N; 065/75NW; SS19590145-SS19400140; Fig. 4.16b) that strikes 

sub-parallel to the ‘inclined’ chevron fold pair axes (Enfield et al, 1985; see gusset). The 

oblique fault dips steeply to the NW and cut through the overturned steeply north-dipping strata, 

causing bed truncation. Where the oblique fault changed its strike orientation, decametric-scale 

splay faults have cross-cut and deformed the beds, causing periclinal fold pairs to develop (Fig. 

4.17). This suggests that the oblique fault occurred after ‘inclined’ chevron folding and is a 

high-angle thrust or reverse fault that developed fault-propagation folds (see Fossen, 2010). 

Enfield et al (1985) describes the oblique fault as a thrust with a “southerly sense of over-

thrusting” that produces “folds with a southerly vergence” (i.e. the periclinal fold pair in Fig. 

4.17). Although these folds are described in the Wanson Mouth foreshore, further investigation 

is required to assess whether similar folds occur elsewhere in the Culm Basin.  
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A stereonet is provided showing the orientations of the decametric-scale synform in one 

of the fault-propagation fold pairs at SS19400142, with a profile plane oriented 013/68E and 

axial plane oriented 105/88S (Fig. 4.16c). The diagram shows the fault-fold relationship (Fig. 

4.17) with the oblique fault and a splay fault together with the synform described in the 

stereonet in Fig. 4.16c in area A5 (Fig. 4.15; see gusset).  

 

 

Fig. 4.16: Stereonets with a southern hemisphere projection for the Wanson Mouth foreshore, 

with data from the: (a) ‘Inclined’ chevron anticline in the central foreshore (SS19440138); (b) 

Steep north-dipping faults cutting the foreshore; and (c) Periclinal synform associated with a 

splay fault emerging from the oblique fault (SS19400142) (see Fig. 4.17) 

 

 

Fig. 4.17: Schematic map showing the relationship between the oblique fault, a splay fault and a 

minor fold pair from an example in the Wanson Mouth foreshore at SS19420141 

 

In area A5 (Fig. 4.15), an oblique fault zone occurs below the cliff (SS19570141-

SS19540138; see gusset) and is oriented: 050/88NW; 054/82SE; 056/85NW; 059/79SE; 

062/74SE; 064/71SE (Fig. 4.16b). The fault zone length is unknown, as its NE extension is 
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obscured by boulders. Also, the amount of horizontal offset accommodated by the fault zone 

cannot be estimated as bed correlation across it is impossible. On the King (1967) map (Fig. 

4.3), the fault zone was interpreted as accommodating sinistral movement, which is consistent 

with anti-clockwise block rotations in the zone. Sinistral movement suggests that the fault zone 

developed at a different time to the steeply NNW-dipping fault. As there are no overlying 

‘undeformed’ deposits, the timing is unknown but the movement may have resulted from either 

‘late’ sinistral transtension (Freshney et al, 1972; Gayer & Cornford, 1992). 

 

‘Late’ cross-cutting faults 

The Wanson Mouth foreshore consists of folds in areas A4, A5 and A6 (Fig. 4.15; see 

gusset) that are cross-cut by generally E-W-striking, steeply north-dipping faults (Williams et al, 

1970; Freshney et al, 1972). Four north-dipping faults have been identified in the foreshore with 

two of them, including the Wanson North Fault, offsetting all previous structures:  

1. Wanson North Fault (WNF; SS19570131-SS19320142; oriented: 107/81N; 115/82N) is the 

bounding fault between the upper Crackington Formation at Wanson Mouth and middle 

Crackington Formation to the south (Freshney, pers. comm., 2010);  

2. An E-W-striking fault, defined here as fault A, just to the north of the WNF (SS19550135-

SS19340146; oriented: 095/56N; 108/63N), as described by Enfield et al (1985) and shown 

in Fig. 4.7, may have dextrally-offset the beds and structures by approximately 50 m;  

3. An E-W-striking fault, here defined as fault B, offset by the steeply NNW-dipping oblique 

fault at SS19530143 (offset fault is oriented: 093/47N; 094/64N; 113/48N);  

4. An E-W-striking fault, here defined as fault C, south of the WSF that is interpreted as being 

located present day in a sand-filled gully (SS19400150-SS19570145) to account for changes 

in bedding orientation, but as measurements could not be taken of this fault, it is not known 

if it is extensional, strike-slip or offset by the oblique fault. 

 

Measurements taken of the E-W-striking faults indicate that most have only small 

lateral changes in orientation (see gusset). Fault A may have also accommodated 50 m of 

dextral offset across the ‘inclined’ chevron fold pair axes (SS19440137-SS19380141). This 

movement may have occurred during ‘late’ Variscan normal faulting (Freshney et al, 1972) and 

/ or Tertiary wrench movement (Williams et al, 1970; Fig. 4.9), but is not proven.  

 

4.5 Structural evolution of the Black Rock foreshore 

The Black Rock foreshore lies within the Bude Formation immediately to the north of 

the Widemouth South Fault (WSF; oriented: 127/68NE; 132/65NE) and contains a series of 

over-printing faults and folds that are described in this section using three dip sections and four 

strike sections. In each cross-section, the beds have been projected up to 60 m above and below 

the foreshore outcrop, which sits at sea level. From the sedimentary logs taken across the Black 
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Rock foreshore, all beds are the right-way up (Figs. 4.12 & 4.13). To compare the dip and strike 

sections, individual descriptions are provided of the location, dominant structural features, local 

structures, determination of whether the local structures are ‘early’ and a sequential set of 

structural restorations. The restorations are undertaken in steps for practicality and to make the 

structural relationships clear. Also, in the cross-section descriptions, a letter, number or symbol 

is given to distinguish the structures and has no intended relationship to structural timing. This 

remains consistent across each cross-section and restored cross-section. 

 The three dip sections A-A’, B-B’ and F-F’ (oriented 010°-190°; see gusset & Fig. 4.15 

for locations) are sub-perpendicular to the ‘upright’ chevron fold profile planes and are bounded 

to the south by the Widemouth South Fault (WSF; oriented: 127/68NE; 132/65NE) and to the 

north by the beds that sit stratigraphically above the Black Rock Slump Bed. The four strike 

sections C-C’, D-D’, E-E’ and G-G’ (oriented 280°-100°; see gusset & Fig. 4.15 for locations) 

are sub-parallel to the ‘upright’ chevron fold profile planes and are bounded to the west by the 

Widemouth South Fault (WSF) and to the east by beach deposits. No strike-section continues 

across the WSF into the Crackington Formation beds to the west, which are largely below the 

low tide mark and hence not exposed. 

 As no beds and structures traverse the WSF, the continuation of each dip section to the 

south into the Crackington Formation (Wanson Mouth foreshore) is described separately (see 

Section 4.6), whilst discussion of the structural significance of the WSF is left until sections 4.6 

and 4.7. Freshney et al (1972) suggested that the movement on the WSF related to ‘late’ normal 

faulting. Alternatively, Enfield et al (1985) suggested that the WSF is an inverted north-directed 

thrust that occurs on the overturned limb of an ‘inclined’ chevron fold syncline. One of the 

purposes of studying these two foreshores is to gain an improved understanding of the structural 

significance of the WSF in the Culm Basin and hence, which explanation is the more likely. 

 To establish the structural evolution of each foreshore, observations were made of the 

stacked and cross-cutting local faults and folds in the Black Rock foreshore. Some of the 

structures that are deformed around the ‘upright’ chevron fold hinges are truncated by overlying 

beds and other local cross-cutting structures and also, lie below the ‘undeformed’ beds. Where 

this is demonstrated, they can be termed “local ‘early’ structures”. Similar structures have been 

observed elsewhere in the Bude Formation by Mapeo and Andrews (1991), who described them 

as ‘syn-sedimentary’ and as refolded around ‘upright’ chevron fold hinges. Further criteria to 

demonstrate that some local structures are ‘early’ were developed from Zoetemeijer et al (1992), 

Nigro and Renda (2004) and Corredor et al (2005) (Fig. 4.11). 

 

4.5.1 Black Rock Dip-section A-A’ 

The 250 m long Black Rock dip section A-A’ is oriented 010°-190° (SS19650173-

SS19590146; Fig. 4.18; see gusset & Fig. 4.15 for location) and lies across this succession in 

areas A1 and A2 (Fig. 4.15). It includes a right way-up succession of Bude Formation beds up 
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to 120 m thick (see sedimentary log E; Fig. 4.13e), including eight recognisable shale beds, a 5 

m thick sandstone bed above shale bed 1 and the 12 m thick Black Rock Slump Bed deposited 

between shale beds 7a and 7b (Fig. 4.18). The five shale beds sitting between the slump bed and 

the thick sandstone bed are of variable lateral-continuity. Shale beds 3 and 4 are only identified 

in the foreshore around the area of dip section A-A’ and onlap the beds stratigraphically above 

shale bed 2. Shale beds 2 and 6 are laterally continuous across the foreshore, whilst shale bed 5 

is in the projection above the foreshore, onlapping a bed above a folded fault (fault 2; Fig. 4.18); 

but is observed elsewhere in outcrop (see gusset) and in the sedimentary logs (Fig. 4.13).  

 

‘Upright’ chevron folds 

The dominant structures shown in dip section A-A’ are five folds (three anticlines and 

two synclines) in an ‘upright’ chevron fold train observed in profile (Fig. 4.18a). The younging 

directions suggest that the beds become younger towards the synclinal hinges and thus, were 

deformed from a right way-up sub-horizontal orientation. These chevron folds have mean 

wavelength of 102 ± standard deviation 29 m; mean amplitude of 7.8 ± 3.4 m; mean interlimb 

angle of 61 ± circular variance 1°; and mean axial plane angle of 80 ± 1° S, which is in 

agreement with other workers (e.g. Freshney et al, 1972). The individual fold geometries are 

described previously in Section 4.4.1 (see Fig. 4.15; Table 4.1).  

The minimum shortening accommodated by this fold train was estimated along shale 

beds 1, 2, 5 and 6, between the hinges of ‘upright’ chevron anticlines A and E, using the 

‘conservation of line length’ method as 17-30 % (mean 21.5 ± 4.8 %; Fig. 4.18a). A simple line 

length analysis across the dip section was also undertaken along six laterally continuous beds 

and the shortening was estimated as 27-42 % (mean 33.8 ± 5.6 %; Fig. 4.18a). The greatest 

shortening estimate in both cases is from shale bed 1. Sanderson (1979) estimated that 

approximately 50 % shortening was accommodated between Widemouth and Saltstone, but this 

included measurements from the Wanson Mouth foreshore as well (see section 4.6). The smaller 

shortening values estimated here for the Black Rock foreshore may indicate that deformation 

was reduced immediately to the north of the WSF, which would represent the hanging wall to 

the ‘late’ normal fault of Freshney et al (1972) or the footwall to the thrust duplex of Enfield et 

al (1985). Thus, in order to maintain Sanderson’s overall estimate, the shortening would need to 

concomitantly increase within the Wanson Mouth foreshore, to the south (see Section 4.6). 

 

Widemouth South Fault 

The WSF cuts the axial trace of ‘upright’ chevron anticline E (see gusset), truncating all 

the beds (Fig. 4.18a) and thus, is later than the all the deformation. In section 4.1.3, the WSF 

was alternatively described as a dextral wrench fault by Williams et al (1970), a normal fault by 

Freshney et al (1972) and an inverted north-directed thrust by Enfield et al (1985). The modern 

configuration of the WSF is as a normal fault, which is consistent with Freshney et al (1972). 
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Fig. 4.18: Sections drawn across the Black Rock foreshore (SS19650173-SS19590146; see Fig 4.15 & gusset), showing the evolution of Variscan structures in: (a) 

Dip-section A-A’; (b) Restored dip-section A-A’ 1 (removal of ‘upright’ chevron folding); and (c) Restored dip-section A-A’ 2 (removal of local structures). Fault 1 

‘ramped’ through the strata and its hanging wall folded beds were truncated by fault 2. Both faults are described as ‘early’ structures and were folded by ‘upright’ 

chevron anticline A 
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Stacked and cross-cutting local deformation structures 

The northern limb of ‘upright’ chevron anticline A includes the steeply north-dipping 

Black Rock Slump Bed and a thickened package of onlapping beds, as shown in log E (Figs. 

4.13e). This limb has two stacked, local, north-dipping tens of metres long faults that are 

deformed by the ‘upright’ chevron folds (Figs. 4.18a-b).  

The structurally lower fault 1 has a metric-scale anticline in its hanging wall at 

SS19630165 (see gusset). Fault 1 cuts the thickened package of Bude Formation beds that 

includes shale bed 2. This shale bed is found also in the hanging wall of fault 1, where it moved 

to the north and has been folded into a fault-related anticline 1 (Figs. 4.18a-b). Fault 1 does not 

appear to cut the strata on the southern limb of ‘upright’ chevron anticline A and, thus, is likely 

to be bedding-parallel on this limb. The lateral extent of this bedding-parallel fault is uncertain 

because it is difficult to observe in outcrop.  

The structurally higher fault 2 and its associated deformation are only observed on the 

northern limb of ‘upright’ chevron anticline A. Fault 2 truncates some of the beds and emplaces 

other locally-deformed beds stratigraphically-above shale bed 2 (Figs. 4.18a-b). This suggests 

that fault 1 and its associated deformation developed first and fault 2 cut through the deformed 

beds before both faults were deformed. To the south, fault 2 has not been observed and may be 

either a bedding-parallel fault or be local to the northern limb of ‘upright’ chevron anticline A. 

Fault 2 is west-trending and outcrops in the foreshore 50 m south of the Black Rock Slump Bed. 

Also, ‘undeformed’ beds have been observed overlying fault 2 between shale beds 6 and 7a. 

The two faults have slightly different dip angles in outcrop and may coalesce below the 

foreshore. Above the local faults is a bedding stack, including shale bed 6, that is not deformed 

by the faults, suggesting that the local structures have died out in this stack (Figs. 4.18a-b).  

 

Determination of ‘early’ deformation 

Faults 1 and 2 are stacked structures that have been deformed by the ‘upright’ chevron 

folds in dip section A-A’ (Fig. 4.18a) and are considered therefore to be ‘early’ structures 

following the Mapeo and Andrews (1991) refolded structure criterion (Fig. 4.11a). The faults 

and anticline 1 are considered to be ‘early’ structures from the ‘undeformed’ beds and toplap 

truncation criteria following the Zoetemeijer et al (1992), Nigro and Renda (2004) and Corredor 

et al (2005) convention (Fig. 4.11b).  

There is a 36 m stratigraphic thickness difference between shale beds 1 and 6 when 

comparing sedimentary logs B and E (Figs. 4.13b & e). This coincides with the stacked ‘early’ 

structures on the limb between ‘upright’ anticline A and syncline D and may represent either 

‘growth’ strata around the local structures at or near the palaeo-surface, bed repetition from 

unrecognised local bedding-parallel structural stacking or the ‘damage zone’ around a thrust 

fault. This area showing the thickness difference is approximately 100 m across and a ‘damage 

zone’ with bed repetition around a major thrust is likely to be much more extensive than this. 
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Also, no beds show clear thickening and thinning trends around the local structures that would 

result from deposition in bathymetric lows around local structures at the palaeo-surface. This 

may suggest that at least a component of the 36 m thickness difference between sedimentary 

logs B and E (Figs. 4.13b & e) results from bed repetition from further but as yet unrecognised 

local structures.  

The local structures may result also from the accommodation of minor Variscan 

compressional deformation (Mapeo & Andrews, 1991) in sediment that is likely to have been 

unconsolidated. North-directed thrusts have previously been shown to have exploited Bude 

Formation slump beds when they were unconsolidated (Whalley & Lloyd, 1986). 

Furthermore, the north-trending fault 1 and west-trending fault 2 moved in different 

directions, but not in the directions of the SE to SW palaeo-slopes inferred from the palaeo-flow 

indicators of Higgs (1991) and Burne (1995). The fault 1 movement is similar to the NNW 

palaeo-slope directions at Widemouth (SS199027) from the author (see Fig. 3.6). This suggests 

that either a palaeo-slope origin cannot be ascribed to the structures or palaeo-slopes were not 

consistently to the south. Further descriptions of the palaeo-slopes during Bude Formation 

deposition are provided from analysis of slump raft folds in massive slump beds in Chapter 5. 

 

Restoration of the dip section 

In the first restoration ‘step’ of dip section A-A’ (Fig. 4.18b), the ‘upright’ chevron 

folded beds have been restored to be sub-horizontal with the ‘early’ structures remaining. It also 

removes the WSF, causing the beds at the southern end of the foreshore to now define a steeply 

south-dipping ‘line of truncation’ for which there are two possible explanations. Firstly, this 

may suggest that prior to chevron folding, a steep thrust or reverse fault (presumably an earlier 

form of the Widemouth South Fault) truncated the Black Rock foreshore succession. The 

second possible interpretation is that no fault was present to truncate the beds at this stage and 

the Black Rock succession of the Bude Formation continued to the south. These possible 

interpretations are considered further in sections 4.5.9 and 4.7. 

In the second restoration ‘step’ of dip section of A-A’ (Fig. 4.18c), removal of fault 2 

causes ‘space problems’, with some strata now possibly missing. Out-of-plane movement is the 

most likely explanation to account for the ‘space problems’ but they remain difficult to explain. 

Removal of fault 1 places the folded shale bed 2 into its original position, greatly increasing the 

original length of the shale bed to the south (Fig. 4.18c). This causes the beds at the southern 

end of the foreshore to cross the south-dipping ‘line of truncation’ unevenly (Fig. 4.18b). The 

two possible explanations for this truncation line lead to two alternatives; that the WSF had a 

shallower dip than in restored dip section A-A’ 1 (Figs. 4.18b-c), or that there was no fault 

present to truncate the beds and the Black Rock succession of the Bude Formation continued to 

the south. These possible interpretations are considered further in sections 4.5.9 and 4.7. 
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4.5.2 Black Rock Dip-section B-B’ 

The 190 m long Black Rock dip section B-B’ is oriented 010°-190° (SS19550174-

SS19510152; Fig. 4.19; see gusset & Fig. 4.15 for location) and lies across the foreshore in 

areas A1 and A3 (Fig. 4.15). It includes a right way-up succession of Bude Formation beds, 

which are up to 70 m thick on the steeply north-dipping limb of ‘upright’ chevron anticline A 

(see sedimentary log A; Fig. 4.13a) and are up to 55 m thick on its south-dipping limb (see log 

C; Fig. 4.13c). The succession includes five recognisable black shale beds, the 5 m thick 

sandstone bed as well as the 12 m thick Black Rock Slump Bed. The three shale beds (2, 5 & 6) 

between the thick sandstone bed and slump bed are laterally continuous across much of the 

foreshore. Shale beds 5 and 6 are projected above the foreshore as they are observed elsewhere 

in outcrop (see gusset), in the sedimentary logs (Fig. 4.13) and in dip section A-A’ (Fig. 4.18).  

 

Widemouth South Fault and ‘late’ cross-cutting faults 

In dip section B-B’ (Fig. 4.19a), the WSF cuts the southern limb and the axial trace of 

‘upright’ chevron syncline D (see gusset), truncating all the beds (Fig. 4.19a) and thus, is later 

than the ‘upright’ chevron folding. In addition, the ‘upright’ chevron anticlinal hinge has been 

offset by a local, sub-vertical, dextral, decametric scale ‘late’ fault α, that accommodated 2-3 m 

of extensional movement (SS19530163). ‘Late’ fault α is described in the Section 4.4 (also see 

gusset) and may have resulted from ‘late’ normal faulting (Freshney et al, 1972). It cuts the 

hinge zone of ‘upright’ chevron anticline A, does not extend to the WSF (Fig. 4.19a; see gusset) 

so that its timing with respect to the WSF is unknown. As the ‘late’ faulting is localised around 

dip section B-B’ (Fig. 4.19a), the presence of these local faults is consistent with the structures 

observed in dip section A-A’ (Fig. 4.18a; see gusset).  

 

‘Upright’ chevron folds 

The dominant structure in dip section B-B’ (Figs. 4.19a-b) is ‘upright’ chevron anticline 

A observed in profile across the foreshore (SS19530163; see dip section A-A’; Fig. 4.18a) and 

‘upright’ chevron syncline D just north of the WSF (Figs. 4.19a-b; SS19510153). It appears 

therefore that the other folds (‘upright’ chevron syncline B and anticline C) in the chevron fold 

train have died out westwards across the foreshore along their axes in the 100 m from dip 

section A-A’ to dip section B-B’ (see gusset). This may suggest that some of the latter ‘upright’ 

chevron folds developed as periclines (e.g. ‘Whale’s Back’ chevron anticline at Bude; 

SS200065; Dubey & Cobbold (1977)). Also, the younging directions are towards the synclinal 

hinges and thus, the beds were deformed from a right way-up sub-horizontal orientation. 

 It was not possible to estimate the minimum shortening accommodated by the ‘upright’ 

chevron folding. Instead, a simple line length analysis across the dip section was undertaken 

along seven laterally continuous beds with shortening estimated at 20-39 % (mean 30.5 ± 5.0 %; 

Fig. 4.19a) and the greatest shortening along shale bed 5. As with dip section A-A’ (Fig. 4.18a), 
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maintaining Sanderson’s overall estimate of 50 % shortening between Widemouth and Saltstone 

would require that the shortening increased concomitantly within the Wanson Mouth foreshore, 

to the south (see Section 4.6).  

 

Local structures on the south-dipping limb between the ‘upright’ chevron folds 

On the south-dipping limb, there are three stacked and cross-cutting local decametric-

scale faults with folds in the surrounding beds (Figs. 4.19a-c). A structurally-lower decametric-

scale fault 3 cuts to the NE through the strata and has fold pair 3 in its hanging wall that 

deformed beds up to and including shale bed 5 (Figs. 4.19a-c; see gusset).  

 The anticline in fold pair 3 (SS19520155) and deformed beds were truncated by 

decametric-scale fault 4 that emplaced other locally-deformed beds at SS19520155 (see gusset). 

Beds correlated across fault 4 suggest that that the fault ‘ramped’ for tens of metres to the east 

through the strata, where it either died out or went into another ‘flat’ and thus, it is considered to 

be a thrust (Figs. 4.19a-c; see gusset). In the hanging wall to fault 4, the decametric scale fold 

pair 4 affected beds up to and including shale bed 6 (Figs. 4.19a-c; see gusset) but not above, 

just north of the WSF at SS19510152 (see gusset). Fault 4 also cut the high-angle bedding-

parallel fault 5, which itself cut towards the east and exploited shale bed 5. Fault 5 cut down 

through the strata and truncated underlying beds and the syncline in fold pair 3 (Figs. 4.19a-c; 

see gusset). The beds between faults 4 and 5 were folded into the decametric scale syncline 5.  

 

Local structures in the hinge zone of ‘upright’ chevron anticline A 

Folded across the hinge zone of ‘upright’ chevron anticline A, there is the stacked and 

cross-cutting, local, tens of metres long fault 6 that has ‘ramped’ through the basal sandstone 

bed. It has repeated beds, suggesting that it is a thrust. Fault 6 is connected to decametric-scale 

thrust stack 6 that trends to the west (Figs. 4.19a-c; see gusset). Thrust stack 6 has uplifted shale 

bed 2, which is truncated by fault 2 at SS19530165 (see gusset; Figs. 4.19a-b).  

The decametric-scale periclinal fold pair 7 has been described as parasitic en-echelon 

periclines on the “broken limb of the northern anticline” by Freshney et al (1972). However, in 

section 4.4.1, fold pair 7 was shown to be refolded by ‘upright’ chevron anticline A at 

SS19450167 and have axes that merge on the north-dipping limb of the ‘upright’ anticline 

between dip-sections A-A’ and B-B’ at SS19610166 and also, on its south-dipping limb at 

SS19440165 (see gusset). Therefore, following the convention of Mapeo and Andrews (1991), 

this suggests that fold pair 7 is an ‘early’ structure that formed in the Black Rock foreshore 

succession prior to ‘upright’ chevron folding, which contradicts Freshney et al (1972). 

 

Determination of ‘early’ deformation 

Fault 6 is folded around the hinge zone of ‘upright’ chevron anticline A in dip section 

B-B’ (Fig. 4.19a) and from the refolded structure criterion (Fig. 4.11a) is considered to be an 
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‘early’ structure. The ‘undeformed’ beds criterion can be applied also to fold pairs 4 and 7, with 

the truncated structure criterion applied to syncline 5, fold pair 3 and to the beds above thrust 

stack 6. Thus, these are also considered to be ‘early’ structures (Fig. 4.11b).  

As described with respect to dip section A-A’ (Fig. 4.18), there is a 36 m stratigraphic 

thickness difference when comparing sedimentary logs B and E (Figs. 4.13b & e; see gusset) 

that may be in part due to bed repetition from further but as yet unrecognised local structures. 

This is likely to have occurred in sediment that was unconsolidated and had accommodated 

minor Variscan compressional deformation, consistent with Mapeo and Andrews (1991).  

Also, the E-W-trending ‘early’ structures moved obliquely to the SE to SW palaeo-

slope directions of Higgs (1991) and Burne (1995), and the NNW palaeo-slope directions at 

Widemouth (SS199027) from the author (see Fig. 3.6). This suggests that either a palaeo-slope 

origin cannot be ascribed to the structures or palaeo-slopes were not consistently to the south.  

  

Restoration of the dip section 

In the first restoration ‘step’ of dip section B-B’ (Fig. 4.19b), the local, sub-vertical, 

‘late’ dextral fault α was removed. Following this minor restoration, the sequence remains 

truncated along the line of the present Widemouth South Fault (Fig. 4.19b). This first restoration 

‘step’ for dip section B-B’ brings the deformed beds in the Black Rock foreshore to the same 

deformation ‘stage’ (i.e. ‘upright’ chevron folding) as observed in dip section A-A’ (Fig. 4.18a) 

and the following set of restorations is consistent with that of dip section A-A’ (Figs. 4.18a-c). 

 In the second restoration ‘step’ of dip section B-B’ (Figs. 4.19c), the ‘upright’ chevron 

folded beds are unfolded to the sub-horizontal and is consistent with restored dip section A-A’ 1 

(Fig. 4.18b). In the third restoration ‘step’ of dip section B-B’ (Fig. 4.19d), the ‘early’ stacked 

and cross-cutting local structures have been removed, causing beds at the southern end of the 

foreshore to cross the south-dipping ‘line of truncation’ irregularly (Fig. 4.19d). Removal of the 

‘early’ faults also introduces ‘space problems’ and possibly missing strata, which is most likely 

explained by out-of-plane movement. This is consistent with restored dip section A-A’ 2 (Fig. 

4.18c) and will be discussed further in sections 4.5.9 and 4.7.  

 

4.5.3 Black Rock Dip-section F-F’ 

The 150 m long Black Rock dip section F-F’ is oriented 010°-190° (SS19480176-

SS19440158; Fig. 4.20; see gusset & Fig. 4.15 for location) and lies across the foreshore in 

areas A1 and A3 (Fig. 4.15). It includes a right way-up succession of Bude Formation beds, 

which is up to 100 m thick, including four recognisable shale beds 2, 5, 6 and 7a as well as the 

12 m thick Black Rock Slump Bed (Fig. 4.20a). The shales sit stratigraphically below the slump 

bed and are laterally continuous across much of the foreshore (see gusset). Shale beds 5 and 6 

are projected above the foreshore because they are observed elsewhere in outcrop (see gusset), 

in the sedimentary logs (Fig. 4.13) and in the other two dip sections (Figs. 4.18a & 4.19a).  
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Fig. 4.19: Sections drawn across the Black Rock foreshore (SS19550173-SS19510152; see Fig 4.15 & gusset) showing the evolution of Variscan structures in: (a) 

Dip-section B-B’; (b) Restored dip-section B-B’ 1 (removal of ‘late’ faulting); (c) Restored dip-section B-B’ 2 (removal of ‘upright’ chevron folding); and (d) 

Restored dip-section B-B’ 3 (removal of local structures). Local deformation is described as being ‘early’ structures and was found between shales 1 and 6   
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Fig. 4.20: Sections across the Black Rock foreshore (SS19480175-SS19440158; see Fig 4.15 & gusset) showing the evolution of Variscan structures in: (a) Dip-

section F-F’; (b) Restored dip-section F-F’ 1 (removal of ‘upright’ chevron folding); and (c) Restored dip-section F-F’ 2 (removal of local structures). Fold pair 7 

only affects the beds around shales 5 and 6 and does not deform the Black Rock Slump Bed, so is described as an ‘early’ structure 
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‘Upright’ chevron folds and Widemouth South Fault 

The dominant structure in dip section F-F’ is the ‘upright’ chevron anticline A in profile 

(Fig. 4.20a; SS19460166), which is also displayed along its axis in dip sections A-A’ and B-B’ 

(Figs. 4.18a & 4.19a). No other ‘upright’ chevron folds occur in this dip section because they 

have either died out along their axes (i.e. ‘upright’ chevron syncline B and anticline C) or have 

been cut by the WSF (i.e. ‘upright’ chevron syncline D and anticline E). The younging 

directions suggest that the beds become younger towards the synclinal hinges and thus, were 

deformed from a right way-up sub-horizontal orientation. In dip section F-F’ (Figs. 4.20a), the 

WSF cuts the southern limb of ‘upright’ chevron anticline A truncating all the beds and thus, is 

later than the ‘upright’ chevron folding.  

It was not possible to estimate the minimum shortening accommodated by the ‘upright’ 

chevron folding. Instead, a simple line length analysis across the dip section taken along six 

laterally continuous beds has shortening estimated at 28-34 % (mean 31.6 ± 1.8 %; Fig. 4.20a). 

As with the other dip sections (Figs. 4.18a & 4.19a), maintaining Sanderson’s overall estimate 

of 50 % shortening between Widemouth and Saltstone would require that shortening 

concomitantly increased to the south in the Wanson Mouth foreshore (see Section 4.6).  

 

Local deformation structures 

The northern limb of ‘upright’ chevron anticline A includes the local fold pair 7 (Figs. 

4.20a-c) folded by this ‘upright’ chevron fold west of dip section F-F’ at SS19450167 (see 

gusset) and described with dip section B-B’ (see Section 4.5.2; Figs. 4.19a-c).  

 

Determination of ‘early’ structures 

Fold pair 7 is not shown to be deformed around the hinge zone of ‘upright’ chevron 

anticline A in dip section F-F’ (Fig. 4.20a) but as refolded on the map at SS19450167 (see 

gusset), so can be considered as an ‘early’ structure following the refolded structure criterion 

(Fig. 4.11a; see Section 4.4.1). Fold pair 7 is also considered to be an ‘early’ structure from the 

‘undeformed’ beds criterion (Fig. 4.11b). Two of the four criteria are met to describe these local 

structures as being ‘early’ (see Fig. 4.11b).  

 

Restoration of the dip section 

The restorations of dip section F-F’ (Figs. 4.20b & d) are the same as dip section A-A’ 

(Figs. 4.18b & c). The restoration interpretations are considered in sections 4.5.9 and 4.7.  

 

4.5.4 Justification for construction of strike sections 

The dip sections in the Black Rock foreshore reveal that a number of structures, such as 

the ‘upright’ chevron fold deformation and some of the local ‘early’ structures (Figs. 4.18-4.20) 

have moved sub-parallel to the dip section orientation. Also, there are a number of structures 
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that have moved obliquely or sub-perpendicular to the dip section orientation, such as the ‘late’ 

sub-vertical faulting and some of the local ‘early’ structures. The out-of-section movement 

causes ‘space problems’, especially in the final restored dip section ‘stages’ (Figs. 4.18c, 4.19d 

& 4.20c) and so the sections do not balance properly. In order to evaluate the out-of section 

movement, four strike sections have been drawn perpendicular to the dip sections (oriented 

100°-280°; see gusset & Fig. 4.15 for locations), as described in section 4.2.3.  

 

4.5.5 Black Rock Strike-section C-C’ 

The 170 m long Black Rock strike section C-C’ is oriented 280°-100° (SS19440156-

SS19640154; Fig. 4.21; see gusset & Fig. 4.15 for location) and lies across the Black Rock 

foreshore in areas A2 and A3 (Fig. 4.15). Strike section C-C’ is perpendicular to the dip-

sections, sub-parallel to the line of sedimentary log D (Fig. 4.13d) and of which 4.5 m is shown 

in a sedimentary log from the foreshore in Fig. 4.12 (see Section 4.3). It includes a right way-up 

succession of Bude Formation beds that are up to 80 m thick, including five recognisable shale 

beds (1, 2, 5, 6 and 7a) and the 5 m thick basal sandstone bed (Fig. 4.21a; see gusset). Shale 

beds 5 and 6 are projected above the foreshore as they are observed elsewhere in outcrop (see 

gusset), in the sedimentary logs (Fig. 4.13) and in the dip sections (Figs. 4.18-4.20). Whilst the 

Black Rock Slump Bed is absent in this part of the foreshore, it is projected onto the strike 

section in order to show the fold geometries. 

 

‘Upright’ chevron folds and Widemouth South Fault 

The ‘upright’ chevron anticline C and the WSF are shown in strike section C-C’ (Fig. 

4.21a). The section line cuts across this ‘upright’ chevron fold at an acute angle to its axis, 

resulting in its axial trace having a shallow apparent dip. ‘Upright’ chevron anticline C does not 

continue across the strike section (Fig. 4.21a) because the fold dies out between dip sections A-

A’ and B-B’ (Figs. 4.18a & 4.19a; see gusset). The WSF cuts the beds and ‘early’ structures in 

the western foreshore (see gusset) but does not cut any of the ‘upright’ chevron folds in the 

strike section (Fig. 4.21a). 

 

Stacked and cross-cutting local deformation structures 

Four decametric-scale faults and four sets of decametric-scale folds occur in strike 

section C-C’ (Figs. 4.21a-b), and are stacked structures in close proximity to each other, 

constrained between the stratigraphic limits of shale beds 2 and 6. In the western foreshore, the 

stacked and cross-cutting local faults 3, 4 and 5, together with fold pairs 3 and 4 and syncline 5 

are shown in strike section C-C’ (Figs. 4.21a-b) and also dip section B-B’ (Fig. 4.19a-c; see 

Section 4.5.2). Also, fault 3 is folded around the hinges of ‘upright’ chevron anticline C, whilst 

decametric-scale fold pair 6 at SS19490155 (see gusset) is truncated by the WSF. Fold pair 6 

affects beds up to and including shale bed 6, just north of the WSF at SS19490154 (see gusset).  
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Fig. 4.21: Sections drawn across the Black Rock foreshore (SS19450156-SS19640154; see Fig 4.15 & gusset) showing the evolution of Variscan structures in: (a) 

Strike-section C-C’; (b) Restored strike-section C-C’ 1 (removal of ‘upright’ chevron folding); and (c) Restored strike-section C-C’ 2 (removal of local structures). 

Local deformation is described as ‘early’ structures and was found between shales 2 and 6 



122 

 

 

Fig. 4.22: Sections drawn across the Black Rock foreshore (SS19440159-SS19640156; see Fig 4.15 & gusset) showing the evolution of Variscan structures in: (a) 

Strike-section D-D’; (b) Restored strike-section D-D’ 1 (removal of ‘upright’ chevron folding); and (c) Restored strike-section D-D’ 2 (removal of local structures). 

Local deformation is described as ‘early’ structures and was found between shales 2 and 6 
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In the eastern foreshore, there is bedding-parallel fault 1 within shale bed 2. This fault 

moved to the north (see dip section A-A’; Figs. 4.18a-b) but its lateral extent cannot be 

determined because it is bedding-parallel and is only projected in the area of dip-section A-A’. 

 

Determination of ‘early’ deformation 

Fault 3 is folded around the hinge of ‘upright’ chevron anticline C (Fig. 4.21a), and 

from the refolded structure criterion (Fig. 4.11a) is considered to be an ‘early’ structure. The 

‘undeformed’ beds criterion can be applied to fold pairs 4 and 6, with the truncated structure 

criterion applied to syncline 5 and fold pair 3, so these structures are considered as ‘early’ 

structures also (Fig. 4.11b), as is described for dip section B-B’ (Fig. 4.19a; see Section 4.5.2). 

As described for dip section A-A’ (Fig. 4.18), there is a 36 m stratigraphic thickness difference 

when comparing sedimentary logs B and E (Figs. 4.13b & e; see gusset) that may be due to bed 

repetition from further but as yet unrecognised local structures. This is likely to have occurred in 

sediment that was unconsolidated and had accommodated minor Variscan compressional 

deformation (Mapeo & Andrews, 1991).  

 

Shortening of the local structures 

 The shortening accommodated by the local folds along shale bed 6 between the 

anticlinal hinges of fold pairs 4 and 6 (Fig. 4.21a) was estimated at 9 %. All the strike sections 

are perpendicular to the chevron fold tectonic movement direction, so the minimum shortening 

estimates have the least effect from this folding and most from the local folding. A simple line 

length analysis across strike section C-C’ along 11 laterally continuous beds gave an estimated 

shortening of 5-11 % (mean 8.3 ± 1.8 %; Fig. 4.21a), with the greatest shortening along shale 

bed 5. This shows that some local deformation occurred out-of-plane of the dip sections. 

 

Restoration of the strike section 

The restorations of strike section C-C’ (Figs. 4.21b & c) are the same as dip section A-

A’ (Figs. 4.18b & c). The restoration interpretations are considered in sections 4.5.9 and 4.7. 

 

4.5.6 Black Rock Strike-section D-D’ 

The 190 m long Black Rock strike section D-D’ is oriented 280°-100° (SS19430159-

SS19640156; Fig. 4.22; see gusset & Fig. 4.15 for location), is perpendicular to the dip sections 

and lies across the Black Rock foreshore in areas A2 and A3 (Fig. 4.15). It projects a right way-

up succession of Bude Formation beds that are up to 80 m thick, including five recognisable 

shale beds and the 5 m thick basal sandstone bed (Fig. 4.22a; see gusset). The five shale beds (1, 

2, 5, 6 and 7a) were correlated across much of the foreshore, with shale beds 5 and 6 projected 

above the foreshore because they are observed elsewhere in outcrop (see gusset), in the 

sedimentary logs (Fig. 4.13) and in the other dip and strike sections (Figs. 4.18-4.20 & 4.21). 
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Whilst the Black Rock Slump Bed is absent in this part of the foreshore, it is projected onto the 

strike section in order to show the fold geometries. 

 

‘Upright’ chevron folds and Widemouth South Fault 

The ‘upright’ chevron anticline A and syncline B are shown in strike section D-D’ (Fig. 

4.22a). The section line cuts across ‘upright’ chevron syncline B at an acute angle to its axis, 

resulting in its axial trace having a shallow apparent dip. The deformation associated with the 

chevron syncline does not continue across the strike section (Fig. 4.22a) as the fold dies out 

between dip sections A-A’ and B-B’ (Figs. 4.18a & 4.19a). In contrast, the ‘upright’ chevron 

anticline A axis crosses the foreshore and is shown in all three dip sections (Figs. 4.18a, 4.19a & 

4.20a). In this strike section, the WSF cuts the beds and ‘early’ structures in the western 

foreshore, but none of the ‘upright’ chevron folds (see gusset).  

 

Stacked and cross-cutting local deformation structures 

Strike section D-D’ (Figs. 4.22a-b) contains several stacked and cross-cutting local 

structures, some of which appear in strike section C-C’ (Figs. 4.21a-c), and are in close 

proximity to each other, constrained between the stratigraphic limits of shale beds 2 and 6. The 

structures are eight decametric-scale faults with a set of associated folds in surrounding beds.  

 

Western foreshore 

In the western foreshore, there is fault 6 that moved the thick basal sandstone bed to the 

west at SS19520163 (see gusset) and is interpreted as a thrust (see dip section B-B’; Fig. 4.19a-

c). With no exposure of the thrust to the west of SS19490164, it may not have cut through all 

the beds in the sub-surface, (see gusset) and so, is shown to cut the beds only to a point between 

shale beds 2 and 5 (Figs. 4.22a-c). Also, the thrust was folded by ‘upright’ chevron anticline A 

at SS19490164 (see gusset). In the hanging wall to fault 6, fold pair 6 was observed around 

shale beds 5 and 6. The axial traces of the fold pair connect to the axial trace of anticline 6, that 

deforms the same stack of beds around shale bed 2 (Figs. 4.22a-c; see gusset).  

 

Central foreshore 

In the central foreshore, to the east of fold pair 6 and between shale beds 2 and 6, there 

are five faults and associated folds, including faults 3, 4 and 5, together with fold pairs 3 and 4 

and also syncline 5, as shown in dip section B-B’ (Fig. 4.19a-c) and strike section C-C’ (Figs. 

4.21a-b). Also, fault 4 thrusts over bedding-parallel fault 5, as described in dip section B-B’ 

(Figs. 4.19a-c), as well as another bedding-parallel fault 8 at SS19520155 (see gusset). Fault 8 

moved to the east and connects to fault 5 between shale beds 2 and 5, which have been folded to 

form syncline 8 at SS19550158 (Figs. 4.22a-b; see gusset). Faults 5 and 8 cut down through the 

strata and truncated both the underlying beds and syncline 5 (Figs. 4.22a-b; see gusset).  
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Eastern foreshore 

In the eastern foreshore, fault 9 connected to fault 8 and cut down through the strata to 

the east for tens of metres. Between faults 8 and 9, the beds are folded into syncline 9 at 

SS19560156, but as the fold axis is parallel to the line of strike-section D-D’, it is displayed 

only on the map (see gusset). Fault 9 connected to fault 10 that cut down through the strata to 

the east in beds overlying shale bed 2 at SS19570156 (Figs. 4.22a-b; see gusset). As with faults 

8 and 9, the beds between faults 9 and 10 are folded into syncline 10 at SS19580156. Faults 9 

and 10 cut down through the strata to the east and have truncated both the underlying beds and 

syncline 10 (Figs. 4.22a-b; see gusset). The faults (5, 8, 9 & 10) and fault-related synclines (5, 8 

& 10) here connect to each other and thus, it is likely that their deformation is related.  

Also, there is the bedding-parallel fault 1 in shale bed 2, which is deformed by ‘upright’ 

chevron anticline A and moved to the north as shown in dip section A-A’ (Figs. 4.18a-b).  

 

Determination of ‘early’ deformation 

Fault 1 is folded around the hinge of ‘upright’ chevron anticline A, and following the 

refolded structure criterion (Fig. 4.11a) is considered to be an ‘early’ structure. The 

‘undeformed’ beds criterion can be applied to fold pairs 4 and 6, with the truncated structure 

criterion applied to synclines 5, 8 and 10, as well as to fold pair 3. Therefore, these are 

considered to be ‘early’ structures also (Fig. 4.11b). There is a 6 m stratigraphic thickness 

difference between shale beds 2 and 5 when comparing sedimentary logs B and C (Figs. 4.13b-

c) that may be due to bed repetition from further but as yet unrecognised local structures. This is 

likely to have occurred in sediment that was unconsolidated and had accommodated minor 

Variscan compressional deformation (Mapeo & Andrews, 1991).  

 

Shortening by the local structures 

The minimum shortening accommodated by the local folds along shale bed 6 between 

the anticlinal hinges of fold pairs 1 and 3 is estimated to be 6 % in strike section D-D’ (Fig. 

4.22a). A simple line length analysis along six laterally continuous beds across the strike section 

produced a shortening estimate of 14-17 % (mean 15.4 ± 0.9 %; Fig. 4.22a) with the greatest 

shortening along shale bed 2.  

 

Restoration of the strike sections 

The restorations of strike section D-D’ (Figs. 4.22b & c) are the same as for dip section 

A-A’ (Figs. 4.18b & c). The restoration interpretations are considered in sections 4.5.9 and 4.7. 

 

4.5.7 Black Rock Strike-section E-E’ 

The 190 m long Black Rock strike section E-E’ is oriented 280°-100° (SS19430162-

SS19640158; Fig. 4.23; see gusset & Fig. 4.15 for locations), is perpendicular to the dip 
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sections and lies across the Black Rock foreshore in areas A2 and A3 (Fig. 4.15). It projects a 

right way-up succession of Bude Formation beds that is up to 75 m thick, including six 

recognisable shale beds (1, 2, 3, 5, 6 and 7a) and the 5 m thick basal sandstone bed (Fig. 4.23a; 

see gusset). Shale beds 1, 2, 5 and 6 were correlated across much of the foreshore, but shale bed 

3 onlaps beds in the area of dip section A-A’ (Fig. 4.18a). Shale beds 5 and 6 are projected 

above the foreshore because they are observed elsewhere in outcrop (see gusset), in the 

sedimentary logs (Fig. 4.13) and in the other dip and strike sections (Figs. 4.18-4.20 & 4.21-

4.22). Whilst the Black Rock Slump Bed is absent in this part of the foreshore, it is projected 

onto the strike section in order to show the fold geometries. 

 

‘Late’ cross-cutting faults 

In strike section E-E’ (Fig. 4.23a), there is a set of local, metric-scale, sub-vertical faults 

that cut the basal sandstone bed in outcrop (SS19540161-SS19560159; see gusset) and the shale 

beds 2 and 5 in the projection above the foreshore (Fig. 4.23a). In dip section B-B’ (Fig. 4.19a) 

and on the map (see gusset), the faults cut the ‘upright’ chevron anticline A axis, suggesting that 

they are ‘late’ faults. There are two NNE-SSW-striking faults, here ‘late’ faults β and γ, which 

accommodated extension with up to 3 m of vertical displacement, whilst the NW-SE-striking 

‘late’ fault α cross-cuts the ‘late’ faults β and γ and accommodated compression with up to 4 m 

of vertical displacement (Fig. 4.23a).  

In contrast to that observed in the foreshore (see gusset) and shown in dip section B-B’ 

(Fig. 4.19a) the ‘late’ faulting does not cut the ‘upright’ chevron anticline A in this section. 

Also, the ‘late’ faults have not been cross-cut by the WSF and therefore, their timing relative to 

the WSF is unknown. The minor ‘late’ faulting is localised around dip section B-B’ (Fig. 4.19a) 

and strike section E-E’ (Fig. 4.23a), so their presence is consistent with the structures shown in 

the other dip and strike sections (Figs. 4.18a, 4.20a, 4.21a & 4.22a; see gusset). 

 

‘Upright’ chevron folds and Widemouth South Fault 

Strike section E-E’ (Figs. 4.23a-b) cross-cuts the ‘upright’ chevron anticline A axis at 

an acute angle, resulting in the apparent dip of its axial trace being shallow. The axis of 

‘upright’ chevron anticline A crosses the foreshore and is shown in all three dip sections (Figs. 

4.18a, 4.19a & 4.20a). The WSF cuts the beds and the ‘early’ structures in the western foreshore 

(see gusset), but not any of the ‘upright’ chevron folds in the strike section (Fig. 4.23a).  

  

Stacked and cross-cutting local deformation structures 

In the western and central foreshore, between shale beds 1 and 6, there are five stacked 

and cross-cutting local decametric-scale faults and folds, including faults 3, 4, 5, 6 and 8, 

together with fold pairs 3 and 4 as well as synclines 5 and 8 that are shown in strike section D-

D’ (Figs. 4.21a-b; see Section 4.5.6).  
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Fig. 4.23: Sections drawn across the Black Rock foreshore (SS19430162-SS19640158; see Fig 4.15 & gusset) showing the evolution of Variscan structures in: (a) 

Strike-section E-E’; (b) Restored strike-section E-E’ (removal of ‘late’ faulting); (c) Restored strike-section E-E’ 2 (removal of ‘upright’ chevron folding); and (d) 

Restored strike-section E-E’ 3 (removal of local structures). Local deformation is described as ‘early’ structures and was found between shales 1 and 6  



128 

 

 

Fig. 4.24: Sections drawn across the Black Rock foreshore (SS19440166-SS19640163; see Fig 4.15 & gusset) showing the evolution of Variscan structures in: (a) 

Strike-section G-G’; (b) Restored strike-section G-G’ 1 (removal of ‘upright’ chevron folding); and (c) Restored strike-section G-G’ 2 (removal of local structures). 

Local deformation is described as ‘early’ structures and was found between shales 2 and 5
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In the eastern foreshore, there is the bedding-parallel fault 1 within shale bed 2, which 

moved to the north and was deformed by ‘upright’ chevron anticline A. The lateral extent of 

fault 1 is not known because it is bedding-parallel, but is projected where the line of dip-section 

A-A’ crosses this section, as described in strike section C-C’ (Fig. 4.22a-b). 

 

Determination of ‘early’ structures 

 Fault 1 is folded around the hinge of ‘upright’ chevron anticline A (Figs. 4.23a-b) and 

following the refolded structure criterion (Fig. 4.11a) is considered to be an ‘early’ structure. 

The ‘undeformed’ beds criterion can be applied to fold pairs 4 and 6, with the truncated 

structure criterion being applied to anticline 3 as well as synclines 5 and 8. Thus, all these 

structures are considered as ‘early’ (Fig. 4.11b). As described for dip section A-A’ (Fig. 4.18), 

there is a 36 m stratigraphic thickness difference when comparing sedimentary logs B and E 

(Figs. 4.13b & e) that may be in part due to bed repetition from further but unrecognised local 

structures. This is likely to have occurred in unconsolidated sediment and had accommodated 

minor Variscan compressional deformation (Mapeo & Andrews, 1991). 

 

Shortening by the local structures 

In strike section E-E’, the estimated shortening accommodated by the local folds along 

shale bed 6 between the anticlinal hinges of fold pairs 4 and 6 is 3% (Fig. 4.23a). A simple line 

length analysis along six laterally continuous beds across the strike section gave a shortening 

estimate of 2-4 % (mean 3.2 ± 0.3 %; Fig. 4.23a), with the greatest shortening along shale bed 5.  

 

Restoration of the structures 

The restorations of strike section E-E’ (Figs. 4.23b-d) are the same as dip section B-B’ 

(Figs. 4.19b-d). The restoration interpretations are considered in sections 4.5.9 and 4.7. 

 

4.5.8 Black Rock Strike-section G-G’ 

The 190 m long Black Rock strike section G-G’ is oriented 280°-100° (SS19440166-

SS19640163; Fig. 4.24; see gusset & Fig. 4.15 for location), is perpendicular to the dip sections 

and lies across the Black Rock foreshore in areas A2 and A3 (Fig. 4.15). It projects a right way-

up succession of Bude Formation beds that are up to 80 m thick, including six recognisable 

shale beds (2-7a) (Fig. 4.22a; see gusset). Shale beds 2 and 6 in this strike section are laterally 

continuous across much of the foreshore (see gusset), whilst shale beds 3, 4 and 5 onlap beds 

between the lines of dip sections A-A’ and B-B’ (see gusset). Shale beds 5 and 6 are projected 

above the foreshore as they are observed elsewhere in outcrop (see gusset), as well as in the 

sedimentary logs (Fig. 4.13) and other cross-sections (Figs. 4.18-4.20 & 4.21-4.23). Whilst the 

Black Rock Slump Bed is absent in this part of the foreshore, it is projected onto the strike 

section in order to show the fold geometries. 
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‘Upright’ chevron folds 

Strike-section G-G’ (Fig. 4.24a-b) cross-cuts the ‘upright’ chevron anticline A fold axis 

at an acute angle, resulting in the apparent dip of the chevron fold axial trace being shallow. The 

axis of ‘upright’ chevron anticline A crosses the foreshore and is shown in all three dip sections 

(Figs. 4.18a, 4.19a & 4.20a). It should be noted that the WSF is buried beneath sand towards the 

low tide mark and therefore, has not been projected onto this strike section (Fig. 4.24a).  

 

Stacked and cross-cutting local deformation structures 

In strike section G-G’ (Figs. 4.24a-b), the stacked and cross-cutting local structures 

include the thrust stack 6 that has uplifted shale bed 2. This caused shale bed 2 to be truncated 

by fault 2 at SS19530165, emplacing other locally-deformed beds (see gusset), as described in 

dip section B-B’ (Figs. 4.19a-c; see Section 4.5.2). The beds folded by anticline 2, which 

include shale bed 5, that lie in the hanging wall to fault 2, onlap and drape the fold structure. 

The beds above shale 5 up to the Black Rock Slump Bed have a layer-cake stacking pattern that 

is ‘undeformed’ by the local structures.  

In the eastern foreshore, underlying fault 2, there is bedding-parallel fault 1 that moved 

to the north and caused shale bed 2 to be emplaced over shale bed 4, as described in dip section 

A-A’ (Figs. 4.18a-b; see Section 4.5.1). Also, fold pair 7 is observed in this section, as also 

described in dip sections B-B’ (Figs. 4.19a-c) and F-F’ (Figs. 4.20a-b; see Section 4.5.3).  

 

Determination of ‘early’ structures 

No structures have been folded around the hinge zone of ‘upright’ chevron anticline A 

in strike section G-G’ (Fig. 4.24a) and therefore, cannot be considered as ‘early’ structures 

following the Mapeo and Andrews (1991) convention (Fig. 4.11a). The ‘undeformed’ beds 

criterion can be applied to fold pair 7 and anticline 2, with the truncated structure criterion 

applied to the beds above thrust stack 6 (Fig. 4.11b). As two of the four criteria are met, the 

local structures are interpreted as being ‘early’ sensu lato (Fig. 4.11).  

 

Shortening by the local structures 

There is no fold train in strike section G-G’ (Fig. 4.24a), and so a minimum shortening 

estimate cannot be made. Instead, a simple line length analysis along laterally continuous beds 

across the strike section produced a shortening estimate of 2-4 % (mean 2.9 ± 0.4 %) with the 

greatest shortening around shale bed 5 (Fig. 4.24a). 

 

Restoration of the strike section 

The restorations of strike section G-G’ (Figs. 4.24b & c) are the same as dip section A-

A’ (Figs. 4.18b & c). The restoration interpretations are considered in sections 4.5.9 and 4.7. 
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Fig. 4.25: ‘Fence’ diagram of the dip and strike sections across the Black Rock foreshore 

succession, correlating laterally-continuous beds and highlighting the geometric variations in 

the ‘upright’ chevron folds from east-to-west 
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4.5.9 Widemouth South Fault 

No structures or beds traverse the steep NE-dipping Widemouth South Fault (WSF) in 

the southern Black Rock foreshore. This suggests that the WSF is a fault that moved after 

chevron folding and that this movement is extensional, consistent with Anderson and Morris 

(2004). As the restorations of the Black Rock structures are treated separately to those in the 

Wanson Mouth succession (see Section 4.6), ‘lines of truncation’ appeared in the restored 

section ‘stages’ where the WSF occurs. These ‘lines of truncation’ were recognised and / or 

inferred to represent potentially early forms of the WSF. However, if no ‘line of truncation’ was 

defined after a restoration ‘step’, it was interpreted to indicate that no earlier form of the WSF 

existed at this ‘stage’. Restoration of each structure suggested that any earlier form of the WSF 

changed its configuration from restored section to restored section (e.g. compare dip section A-

A’ and restored dip section A-A’ (Figs. 4.18a-b).  

It was recognised also that the configuration of the WSF did not remain consistent 

across the same ‘stage’ of restoration of the sections (e.g. compare restored dip section A-A’ 1 

(Fig. 4.18b) and restored dip section F-F’ 1 (Fig. 4.20b). The inconsistency in its configuration 

between restored sections that are only a few hundreds of metres apart may suggest that the 

WSF is a ‘late’ fault (Freshney et al, 1972) and that there was no earlier form of the WSF during 

restoration. Further discussion of the WSF is provided in sections 4.6 and 4.7. 

 

4.5.10 Three-dimensional projection of the Black Rock foreshore succession 

The Black Rock dip and strike sections provide stratigraphic constraint on the structures 

described in the corresponding restored sections, using eight shale beds, the Black Rock Slump 

Bed and the thick sandstone bed. The constraint on the structures allows a 3D ‘fence’ diagram 

to be constructed with the strike sections cross-cutting the dip sections (Fig. 4.25).  

The variation in structural geometries across the foreshore succession is highlighted 

best in the ‘fence’ diagram (Fig. 4.25) by the change from a train of ‘upright’ chevron folds in 

dip section A-A’ (Fig. 4.18a), to an ‘upright’ chevron fold pair in dip section B-B’ (Fig. 4.19a) 

and then to a single ‘upright’ chevron anticline in dip section F-F’ (Fig. 4.20a). This suggests 

that significant geometric changes occur along the E-W axial extents of the chevron folds over 

tens to hundreds of metres distance in the Bude Formation succession, as described for the 

‘Whale’s Back’ periclinal chevron anticline at Bude (SS200065) by Dubey and Cobbold (1977).  

 

4.5.11 Summary of the geological evolution of the Black Rock foreshore 

The restoration of the deformation in the Black Rock foreshore has revealed several 

‘stages’ of geological evolution (Figs. 4.26a-c). Although structures are distinguished, Variscan 

deformation is viewed as being progressive, as described by Freshney et al (1972). Deformation 

includes stacked and cross-cutting local ‘early’ structures constrained both laterally, as shown 

on the map (see gusset) and cross-sections and also, stratigraphically by the laterally-continuous 
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shales they lie between or deform, which are used as correlatible horizons (Figs. 4.21b, 4.22b, 

4.23c, 4.24b & 4.26c). The ‘upright’ chevron folds have refolded or tilted the ‘early’ structures 

(Figs. 4.18a, 4.19b, 4.20a & 4.26b; see gusset). Cross-cutting the ‘upright’ chevron folds, there 

are local, minor, sub-vertical, dextral faults (Figs. 4.19a, 4.23a & 4.26a; see gusset). 

The ‘early’ structures were defined as occurring prior to chevron folding using the 

Mapeo and Andrews (1991) convention and as structures that occurred at or near the palaeo-

surface using the criteria following Zoetemeijer et al (1992), Nigro and Renda (2004) and 

Corredor et al (2005) (see Fig. 4.11). This is likely to have occurred in unconsolidated sediment 

that had accommodated minor Variscan deformation (Mapeo & Andrews, 1991). The ‘early’ 

structures moved commonly in different directions to the SE to SW palaeo-slope directions of 

Higgs (1991) and Burne (1995) (see Chapter 3), so either a palaeo-slope origin cannot be 

ascribed to the structures, or this implies that palaeo-slopes were not consistently to the south.  

 

 

Fig. 4.26: Schematic section diagrams for the restoration of deformation in the Black Rock 

foreshore. Restorations: (a) Present situation; (b) ‘Late’ faulting removed; (c) Removal of 

‘upright’ chevron folds; and (d) Removal of local ‘early’ structures  

 

4.6 Structural evolution of the Wanson Mouth foreshore 

The Wanson Mouth foreshore lies within the Crackington Formation immediately to the 

south of the Widemouth South Fault (WSF; oriented: 127/68NE; 132/65NE) and north of the 

Wanson North Fault (WNF; oriented: 115/83N) (see gusset). The WSF is a significant tectonic 

feature as it juxtaposes the Bude and Crackington formations in the Culm Basin (Williams et al, 

1970; Freshney et al, 1972; Sanderson, 1979; Durrance, 1985; Enfield et al, 1985) and its 

structural significance and possible geological evolution are described in this section. Across the 

WSF, there is a 300 m stratigraphic difference between the two successions (Freshney et al, 

1979; see Fig. 4.2) and no structures or beds traverse the fault. Accordingly, the Wanson Mouth 

dip sections are described separately from the Black Rock dip sections (see Section 4.5). 
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 The Wanson Mouth foreshore has a series of faults and folds that are described using 

three dip sections and one oblique section. The dip-sections A-A’, B-B’ and F-F’ are oriented 

010°-190° (see gusset & Fig. 4.15 for locations), which are sub-parallel to the profile planes of 

the ‘inclined’ chevron folds. The ‘inclined’ chevron folds are equivalent to the ‘inclined-to-

recumbent’ chevron folds of Sanderson (1979). The oblique section H-H’ has been drawn at an 

angle to the dip sections, is oriented 315°-135° (see gusset & Fig. 4.15 for location) and is sub-

perpendicular to the strike of the oblique faults. In the sections, the beds have been projected up 

to 60 m above and below the foreshore outcrop. In the cross-section descriptions, a letter or 

number is given to distinguish the structures and has no intended relationship to structural 

timing. This remains consistent across each cross-section and restored cross-section. 

 A minimum shortening could not be estimated in the Wanson Mouth beds because there 

are no multiple folds or fold trains. Instead, shortening estimates were made using a simple line 

length analysis on all the beds projected in the dip-sections and compared to the Sanderson 

(1979) estimate that approximately 50 % shortening was accommodated between Widemouth 

and Saltstone. The Wanson Mouth shortening estimates were also compared with those obtained 

from the Black Rock dip sections (Figs. 4.18-4.20). 

 

Restoration of the structures 

The Crackington Formation beds in the Wanson Mouth foreshore proved difficult to 

correlate across the faults, as found by previous authors (e.g. King, 1967; Williams et al, 1970; 

Freshney et al, 1972; Enfield et al, 1985), preventing the estimation of the displacement 

accommodated along the faults. Freshney et al (1972) suggested that extensional movement was 

tens of metres on each fault between Wanson and Rusey, but with little detailed justification. 

Consequently, the two models from Freshney et al (1972) and Enfield et al (1985) that 

have been developed to explain the occurrence of the structures in the foreshore succession are 

used to guide two separate restorations of the dip and oblique sections (Figs. 4.27-4.30). The 

restorations are undertaken in steps for practicality and to make the structural relationships clear  

In the first set of restorations, it is assumed that the Wanson Mouth faults are ‘late’ 

normal fault structures, which occurred after ‘inclined’ chevron folding, as described by 

Freshney et al (1972). In the second set of restorations, the assumption is that the Wanson 

Mouth faults preceded the ‘inclined’ chevron folding, as described by Enfield et al (1985). 

These two sets of restoration provide a basis for comparing the models discussed in section 4.7. 

For the restoration of the ‘inclined’ chevron folds in both models, application of the 

Ghosh (1966), Sanderson (1979) and Lloyd and Whalley (1986; 1997) models would cause the 

beds to be on the south-dipping limb of a larger-scale ‘upright’ chevron fold (see Section 4.1.3). 

However, it was not demonstrated that there was an ‘upright’ chevron fold on a larger-scale than 

the Wanson Mouth foreshore. Thus, geometric restorations of the ‘inclined’ chevron folds were 

undertaken in which the beds retain their present overturned steep northwards dip.  
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The first ‘late’ fault model (Freshney et al, 1972) restoration ‘step’ removes the Wanson 

Mouth faults, which are modelled to cross-cut all previous structures. The removal of the faults 

places the beds into positions where they may have been on the overturned limbs of the 

hundreds of metres long ‘inclined’ chevron fold pair. The second ‘late’ fault model restoration 

‘step’ removes the ‘inclined’ chevron fold deformation in which the beds retain their present 

overturned steep northwards dip. The third ‘late’ fault model restoration ‘step’ returns the beds 

to a right way-up, sub-horizontal bedding pattern following Crackington Formation deposition. 

The first pre-folding fault model (Enfield et al, 1985) restoration ‘step’ removes the 

‘inclined’ chevron folding, which is assumed to have deformed the faults in the Wanson Mouth 

foreshore. In this restoration, the beds and faults retain their present overturned steep 

northwards dip. The second pre-folding fault restoration ‘step’ returns the beds and faults to a 

pre-folding state in which the beds are the right way-up. The third pre-folding fault restoration 

‘step’ removes the stacked faults in order to return them to a right way-up, sub-horizontal 

bedding pattern following Crackington Formation deposition and in which they may have been 

prior to deformation. 

 

4.6.1 Wanson Mouth Dip-section A-A’ 

The 140 m long Wanson Mouth dip section A-A’ (Fig. 4.27a) is oriented 010°-190° 

(SS19590146-SS19560131; see gusset & Fig. 4.15 for location) and lies across the Wanson 

Mouth foreshore in areas A4, A5 and A6 (Fig. 4.15). This dip section includes a generally steep 

north-dipping, overturned succession of Crackington Formation beds, of which 11 m is shown 

in a sedimentary log from the cliff section in Fig. 4.14 (see Section 4.3). This log was taken to 

establish both the younging direction and the deep-water depositional environment of these 

Crackington Formation turbidite beds, as described by Melvin (1986).  

In contrast to the Black Rock foreshore, this succession does not include any 

recognisable shale beds, making bed correlation difficult (Fig. 4.27a; see gusset). However, as 

the beds are generally laterally-continuous turbidite sheet sands (Melvin, 1986) the beds 

measured in the foreshore outcrop can be projected confidently both above and below the line of 

the dip-section (Fig. 4.27a).  

 

‘Inclined’ chevron folds  

The dominant structure shown in dip section A-A’ is an ‘inclined’ chevron fold pair in 

profile (Fig. 4.27a) that deformed the beds in the foreshore succession, causing the long limbs to 

be overturned and dip steeply to the north. In contrast, the tens of metres long short limb 

between the anticline and syncline has a shallow northwards dip. The fold amplitude is 17.5 ± 

st. dev. 6.5 m, but the wavelength cannot be measured as there are no other ‘inclined’ chevron 

folds in the foreshore. Although the beds on the long fold limbs are overturned, the beds on the 

short limbs remain the right way-up albeit with a shallow (~ 30°N) northwards dip. This 
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suggests that the ‘inclined’ chevron folds developed as an anticline-syncline pair (i.e. from beds 

folded when right-way up) and that the beds became overturned due to the accommodation of 

south-direction shear deformation (Sanderson, 1979; Lloyd & Whalley, 1986; 1997).   

 

Shortening estimates 

It was not possible to estimate the minimum shortening accommodated by the ‘inclined’ 

chevron folds as there is no fold train. Instead, a simple line length analysis was undertaken in 

each fault block with shortening estimated from 15 laterally-continuous beds as 42-82 % (mean 

65.7 ± 15.4 %; Fig. 4.27a). These values are somewhat inconsistent with the Sanderson (1979) 

50 % shortening estimate between Widemouth and Saltstone, which includes the Wanson 

Mouth foreshore. The shortening estimates are much higher than those estimated using the same 

method from six beds in Black Rock dip section A-A’ with 27-42 % (mean 33.8 ± 5.6 %; Fig. 

4.18a; see Section 4.5.1). This suggests that the shortening was enhanced immediately south of 

the WSF and consequently, that local shortening variations are large. Thus, Sanderson’s 50 % 

shortening value should be treated with caution. 

 

Important faults 

The important faults observed in dip section A-A’ (Fig. 4.27a; see gusset) include:  

1. The Wanson North Fault (WNF; SS19580131-SS19320142);  

2. The Widemouth South Fault (WSF; SS19630143-SS19430159);  

3. A fault that cuts obliquely across the foreshore, here termed the oblique fault, which is 

truncated just south of the WSF (SS19590145-SS19400139; oriented: 068/74NW);  

4. A fault, here termed fault A (SS19550135-SS19340146; oriented: 108/63N), which is 30 m 

north of the WNF.  

 

The four faults truncate the steeply north-dipping beds (Fig. 4.27a) and two major fault 

blocks are recognised in the foreshore outcrop (see gusset). In the southern fault block between 

the WNF and fault A, only steeply north-dipping beds were observed. Fault A truncated the 

steeply north-dipping beds on the limb of the ‘inclined’ chevron anticline.  

The ‘inclined’ chevron fold pair and oblique fault are in the northern fault block 

between fault A and the WSF (Fig. 4.27a). The oblique fault has a general strike trend of 070°-

250° (see gusset), dips steeply to the NW, cuts through the overturned steeply north-dipping 

stratigraphy and causes bed truncation. This suggests that the oblique fault occurred after 

‘inclined’ chevron folding. However, as it was difficult to correlate the strata across the faults, 

the oblique fault may be either a normal fault or high-angle reverse fault. Enfield et al (1985) 

described this fault as a thrust, which had a “southerly sense of over-thrusting” that produced 

“folds with a southerly vergence” (i.e. the periclinal fold pair in section 4.4.2; see Fig. 4.17). 
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Fig. 4.27: Sections drawn across the Wanson Mouth foreshore (SS19590146-SS19560131; see gusset), showing the evolution of Variscan structures. In the ‘late’ 

fault model, the restoration sequence is: (a) Dip-section A-A’; (b) Restored dip-section A-A’ 1 (removal of ‘late’ faulting); (c) Restored dip-section A-A’ 2 (removal 

of ‘inclined’ chevron folding); and (d) Restored dip-section A-A’ 3 (removal of overturned northwards-dipping beds). In the pre-folding fault model, the restoration 

sequence is: (a) Dip-section A-A’; (e) Restored dip-section A-A’ 1 (removal of ‘inclined’ chevron folding); (f) Restored dip-section A-A’ 2 (removal of overturned 

northwards-dipping beds); and (d) Restored dip-section A-A’ 3 (removal of faulting)
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Restoration of the structures 

To describe the progression of deformation in the Wanson Mouth foreshores, two 

models have been developed. One model follows a restoration sequence where the faults in the 

foreshore are ‘late’ (i.e. after ‘inclined’ chevron folding; after Freshney et al, 1972; Figs. 4.27a-

d), whilst the other model has a restoration sequence where the faults occur prior to folding 

(after Enfield et al, 1985; Figs. 4.27d & 4.27e-f). The two restoration sequence models are 

described in Section 4.6 and are applied to the structural restoration ‘steps’ of this dip section. 

 

4.6.2 Wanson Mouth Dip-section B-B’ 

The 160 m long Wanson Mouth dip section B-B’ (Fig. 4.28a) is oriented 010°-190° 

(SS19510152-SS19450134; see gusset & Fig. 4.15 for location) and lies across the Wanson 

Mouth foreshore in areas A4, A5 and A6 (Fig. 4.15). The dip section includes a generally steep 

north-dipping overturned succession of Crackington Formation turbidite beds (Fig. 4.28a; see 

gusset), as described by Melvin (1986).  

 

‘Inclined’ chevron folds  

The dominant structure shown in dip section B-B’ is an ‘inclined’ chevron fold pair in 

profile (Fig. 4.28a) that deformed the beds in the foreshore succession, causing the beds on the 

long limbs to be overturned and dip steeply to the north. In contrast, the beds on the short limbs 

remain the right way-up albeit with a shallow northwards dip (~ 30°N). This suggests that the 

‘inclined’ chevron folds developed as an anticline-syncline pair (i.e. from beds folded when 

right-way up) and that the beds became overturned due to the accommodation of south-direction 

shear deformation (Sanderson, 1979; Lloyd & Whalley, 1986; 1997).   

 

Shortening estimates 

It was not possible to estimate the minimum shortening accommodated by the ‘inclined’ 

chevron folding as there is no fold train. Instead, a simple line length analysis was undertaken in 

each fault block with shortening estimated from 18 laterally-continuous beds as 38-64 % (mean 

49.8 ± 10.7 %; Fig. 4.28a). These values are consistent with the Sanderson (1979) 50 % 

shortening estimate between Widemouth and Saltstone, which includes the Wanson Mouth 

foreshore. However, the shortening estimates are much higher than those estimated using the 

same method from seven beds in Black Rock dip section B-B’ of 20-39 % (mean 30.5 ± 5.0 %; 

Fig. 4.19a; see Section 4.5.2), but slightly lower than those for the Wanson Mouth dip section 

A-A’ (Fig. 4.27a; see Section 4.6.1). This suggests that the shortening was enhanced 

immediately south of the WSF and consequently, that local shortening variations are large. 

Thus, Sanderson’s 50 % shortening value should be treated with caution. 
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Fig. 4.28: Sections drawn across the Wanson Mouth foreshore (SS19510152-SS19450134; see gusset), showing the evolution of Variscan structures. In the ‘late’ 

fault model, the restoration sequence is: (a) Dip-section B-B’; (b) Restored dip-section B-B’ 1 (removal of ‘late’ faulting); (c) Restored dip-section B-B’ 2 (removal 

of ‘inclined’ chevron folding); and (d) Restored dip-section B-B’ 3 (removal of overturned northwards-dipping beds). In the pre-folding fault model, the restoration 

sequence is: (e) Dip-section B-B’; (f) Restored dip-section B-B’ 1 (removal of ‘inclined’ chevron folding); (g) Restored dip-section B-B’ 2 (removal of overturned 

northwards-dipping beds); and (d) Restored dip-section B-B’ 3 (removal of faulting)
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Important faults 

The important faults observed in dip section B-B’ (Fig. 4.28a; see gusset) are:  

1. The WNF (SS19580131-SS19320142), as described in dip-section A-A’ (Fig. 4.27a);  

2. The WSF (SS19630143-SS19430159), as described in dip-section A-A’ (Fig. 4.27a);  

3. The oblique fault (SS19590145-SS19400139; oriented: 068/74NW), as described in dip-

section A-A’ (Fig. 4.27a), but which is in the central foreshore in this dip section;  

4. Fault A (SS19550135-SS19340146; oriented: 108/63N), which is 20 m north of the WNF 

and is described in dip-section A-A’ (Fig. 4.27a);  

5. A fault, here termed fault B (SS19520144-SS19380147; oriented: 093/47N), which is 30 m 

to the north of the oblique fault;  

6. Another fault, here termed fault C (SS19550146-SS19380151), which is inferred from 

differently oriented beds either side of a sand-filled gully, which is 40 m south of the WSF. 

 

The six faults truncate the steep north-dipping beds (Fig. 4.28a), forming five fault 

blocks in this part of the foreshore (see gusset). The ‘inclined’ chevron fold pair was cut by the 

oblique fault between faults A and B (Fig. 4.28a). In the other four fault blocks, only steeply 

north-dipping beds are observed. The apparent dip of the steep north-dipping beds and that of 

the WSF in dip-section B-B’ (Fig. 4.28a) cause them to appear sub-parallel to each other.  

 

Restoration of the structures 

To describe the progression of deformation in the Wanson Mouth foreshores, two 

models have been developed. One model follows a restoration sequence where the faults in the 

foreshore are ‘late’ (i.e. after ‘inclined’ chevron folding; after Freshney et al, 1972; Figs. 4.28a-

d), whilst the other model has a restoration sequence where the faults occur prior to folding 

(after Enfield et al, 1985; Figs. 4.28d & 4.28e-g). The two restoration sequence models are 

described in Section 4.6 and are applied to the structural restoration ‘steps’ of this dip section. 

 

4.6.3 Wanson Mouth Dip-section F-F’ 

The 220 m long Wanson Mouth dip-section F-F’ (Fig. 4.29a) is oriented 010°-190° 

(SS19440158-SS19390136; see gusset & Fig. 4.15 for location) and lies across the Wanson 

Mouth foreshore in areas A4, A5 and A6 (Fig. 4.15). The dip section includes a generally steep 

north-dipping overturned succession of Crackington Formation turbidite beds (Fig. 4.29a; see 

gusset), as described by Melvin (1986).  

 

Fold deformation  

The dominant feature shown in dip section F-F’ is the steeply north-dipping beds (Fig. 

4.29a) on the overturned limb of the ‘inclined’ chevron syncline. The oblique fault is not present 

in the foreshore along the dip section F-F’ line (Fig. 4.29a), but is found cutting the beds to the 
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west of the dip section (see gusset). Decametre-long splay faults and periclinal fold pairs occur 

where changes occur in the oblique fault orientation as shown in dip section F-F’. A schematic 

map in Fig. 4.17 shows the fault-fold relationship with the oblique fault in this example at 

SS19400142 in area A5 (Fig. 4.15; see gusset; see Section 4.4.2). The synform in this example 

is described in a stereonet (Fig. 4.16c) from Section 4.4.2, with the profile plane oriented 

013/68E; and axial plane oriented 105/88S (Fig. 4.16c). This periclinal fold pair developed on 

the overturned long limbs of the ‘inclined’ chevron folds and have overturned-to-upside down 

younging directions, suggesting that the folds developed as an antiform-synform pair (i.e. from 

beds folded when overturned). This is consistent with the observations of “folds with a 

southerly vergence” (i.e. the periclinal fold pair in Fig. 4.17) by Enfield et al (1985).  

 

Shortening estimates  

It was not possible to estimate the minimum shortening accommodated by the ‘inclined’ 

chevron folding as there is no fold train. Instead, a simple line length analysis was undertaken in 

each fault block with shortening estimated from 15 laterally-continuous beds as 31-76 % (mean 

49.2 ± 17.7 %; Fig. 4.29a). These values are consistent with the Sanderson (1979) 50 % 

shortening estimate between Widemouth and Saltstone, which include the Wanson Mouth 

foreshore.  Also, the shortening estimates are much higher than those estimated using the same 

methods from six beds in Black Rock dip section F-F’ with 28-34 % (mean 31.6 ± 1.8 %; Fig. 

4.20a; see Section 4.5.3). Furthermore, the estimates are similar to those for Wanson Mouth dip 

section B-B’ (Fig. 4.28a; see Section 4.6.2), but slightly lower than those for the Wanson Mouth 

dip section A-A’ (Fig. 4.27a; see Section 4.6.1). This suggests that the shortening was enhanced 

immediately south of the WSF and consequently, that local shortening variations are large. 

Thus, Sanderson’s 50 % shortening value should be treated with caution. 

 

Important faults 

The important faults observed in dip section F-F’ (Fig. 4.27a; see gusset) are described 

in section B-B’ (Fig. 4.28a) and are: (1) the WNF (SS19580131-SS19320142); (2) the WSF 

(SS19630143-SS19430159); (3) the oblique fault (SS19590145-SS19400139), which is above 

the foreshore in this section; (4) fault A (SS19550135-SS19340146), which is 30 m north of the 

WNF; (5) fault B (SS19520144-SS19380147); and (6) fault C (SS19550146-SS19380151).  

 The faults, including the WSF, truncate the steeply north-dipping beds (Fig. 4.29a), 

forming five fault blocks in this part of the foreshore outcrop (see gusset). There is a minor 

decametre-long fold pair causing local perturbation of the generally steeply north-dipping beds 

within the fault block between fault A and fault B (Fig. 4.29a; see gusset). In the other four fault 

blocks, only steeply north-dipping beds were observed (Fig. 4.29a).  

 



142 

 

 

Fig. 4.29: Sections drawn across the Wanson Mouth foreshore (SS19440158-SS19390136; see gusset), showing the evolution of Variscan structures. In the ‘late’ 

fault model, the restoration sequence is: (a) Dip-section F-F’; (b) Restored dip-section F-F’ 1 (removal of ‘late’ faulting); (c) Restored dip-section F-F’ 2 (removal of 

folding); and (d) Restored dip-section F-F’ 3 (removal of overturned northwards-dipping beds). In the pre-folding fault model, the restoration sequence is: (e) Dip-

section F-F’; (f) Restored dip-section F-F’ 1 (removal of folding); (g) Restored dip-section F-F’ 2 (removal of overturned northwards-dipping beds); and (d) 

Restored dip-section F-F’ 3 (removal of faulting) 
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Restoration of the structures 

To describe the progression of deformation in the Wanson Mouth foreshores, two 

models have been developed. One model follows a restoration sequence where the faults in the 

foreshore are ‘late’ (i.e. after ‘inclined’ chevron folding; after Freshney et al, 1972; Figs. 4.29a-

d), whilst the other model has a restoration sequence where the faults occur prior to folding 

(after Enfield et al, 1985; Figs. 4.28d & 4.28e-g). The two restoration sequence models are 

described in Section 4.6 and can be applied to the structural restoration ‘steps’ of this dip 

section. In the restorations of dip section F-F’, the decametric-scale periclinal fold pair (see Fig. 

4.17) is removed in the same restorations as the ‘inclined’ chevron folding (Figs. 4.29c & g). 

 

4.6.4 Justification for construction of an oblique section 

The dip and restored dip sections (Figs. 4.27-4.29) in the Wanson Mouth foreshore 

show that the oblique fault moved at an angle to the dip section orientation and thus, 

accommodated at least some out-of-section movement. In order to describe this movement, an 

oblique section H-H’ (Fig. 4.30) has been drawn at an angle to the dip sections and sub-

perpendicular to the strike of the oblique faults. This oblique section does not continue to the 

NW over the WSF into the Bude Formation beds because the section has been drawn to study 

the deformation in the Wanson Mouth foreshore and also the Black Rock outcrops are below the 

low tide mark and therefore inaccessible to study.  

 

4.6.5 Wanson Mouth Oblique section H-H’ 

The 250 m long Wanson Mouth oblique section H-H’ (Fig. 4.30a) is oriented 135°-315° 

(SS19480154-SS19580130; see gusset & Fig. 4.15 for location) and lies across the Wanson 

Mouth foreshore in areas A4, A5 and A6 (Fig. 4.15). The oblique section is at an angle of 35° 

anti-clockwise to the Wanson Mouth dip sections and thus, many of the dips are apparent (i.e. 

less than true dip). Oblique section H-H’ is bounded to the NW by the Widemouth South Fault 

(WSF) and to the SE by the Wanson North Fault (WNF) in the cliff in the southern Wanson 

Mouth foreshore (see gusset). It includes a succession of Crackington Formation turbidite beds 

(Fig. 4.30a; see gusset), as described by Melvin (1986).  

 

‘Inclined’ chevron folds 

The dominant structure shown in oblique section H-H’ is an ‘inclined’ chevron fold pair 

in profile (Fig. 4.30a) as described in the dip sections (Figs. 4.27a, 4.28a & 4.29a), causing the 

beds on its long fold limbs to be overturned and dip steeply to the north. In contrast, the beds on 

the short fold limbs remain the right way-up albeit with a shallow (~ 30°N) northwards dip. This 

suggests that the ‘inclined’ chevron folds developed as an anticline-syncline pair (i.e. from beds 

folded when right-way up) and that the beds became overturned due to the accommodation of 

south-directed shear deformation (Sanderson, 1979; Lloyd & Whalley, 1986; 1997).   
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Fig. 4.30: Sections drawn across the Wanson Mouth foreshore (SS19480154-SS19580130; see gusset), showing the evolution of Variscan structures. In the ‘late’ 

fault model, the restoration sequence is: (a) Oblique-section H-H’; (b) Restored oblique-section H-H’ 1 (removal of ‘late’ faulting); (c) Restored oblique-section H-

H’ 2 (removal of ‘inclined’ chevron folding); and (d) Restored oblique-section H-H’ 3 (removal of overturned northwards-dipping beds). In the pre-folding fault 

model, the restoration sequence is: (e) Oblique-section H-H’; (f) Restored oblique-section H-H’ 1 (removal of ‘inclined’ chevron folding); (g) Restored oblique-

section H-H’ 2 (removal of overturned northwards-dipping beds); and (h) Restored oblique-section H-H’ 3 (removal of faulting)
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Shortening estimates 

It was not possible to estimate a minimum shortening accommodated by the ‘inclined’ 

chevron fold deformation as there is no fold train. Also, as the section is oblique to the main 

north-south tectonic direction (i.e. of the dip sections and Sanderson (1979)), a simple line 

length analysis would provide an underestimated shortening value for the foreshore succession. 

Therefore, a direct comparison cannot be made with the results from either the dip sections or 

Sanderson (1979), and so the shortening estimates for the oblique section are not provided.  

 

Important faults 

There are six faults in oblique section H-H’ (Fig. 4.30a; see gusset), all of which are 

described in dip section B-B’ (Fig. 4.28a) and are: (1) the WNF (SS19580131-SS19320142); (2) 

the WSF (SS19630143-SS19430159); (3) the oblique fault (SS19590145-SS19400139); (4) 

fault A (SS19550135-SS19340146), which is 40 m north of the WNF; (5) fault B (SS19520144-

SS19380147); and (6) fault C (SS19550146-SS19380151). 

 A minor oblique fault zone has also been observed in the foreshore (SS19540138-

SS19570141), which is 50 m long, strikes ENE-WSW and has accommodated sinistral 

transtensional movement (King, 1967). The fault zone cuts the ‘inclined’ chevron folded beds in 

the foreshore outcrop across the oblique section (Fig. 4.30a) and has possibly accommodated 

extensional movement. The oblique fault zone orientation in the foreshore varies along its 

strike, with the SW tip oriented 064/71S; and the NE tip oriented 056/85NW, as shown in a 

stereonet from Fig. 4.16a (see Section 4.4.2; see gusset).  

The six faults and oblique fault zone truncate the steeply north-dipping beds (Fig. 

4.30a), forming five fault blocks in the foreshore (see gusset). The ‘inclined’ chevron fold pair 

has been cut by the oblique fault between fault B and fault C and also, by the oblique fault zone 

between fault A and fault B (Fig. 4.30a). In the other fault blocks, only steeply north-dipping 

beds were observed. 

 

Restoration of the structures 

To describe the progression of deformation in the Wanson Mouth foreshores, two 

models have been developed. One model follows a restoration sequence where the faults in the 

foreshore are ‘late’ (i.e. after ‘inclined’ chevron folding; after Freshney et al, 1972; Figs. 4.28a-

d), whilst the other model has a restoration sequence where the faults occur prior to folding 

(after Enfield et al, 1985; Figs.4.28e-h). The two restoration sequence models are described in 

Section 4.6 and can be applied to the structural restoration ‘steps’ of this oblique section. 

However, it should be noted that many of the dips are apparent (i.e. less than true dip). Also, in 

the restorations of oblique section H-H’, the oblique fault zone is removed in the same 

restorations as the other faults (Figs. 4.28b & h), causing ‘space problems’ if the oblique fault 

zone was present prior to the chevron folding as the beds cannot be restored next to each other. 
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4.6.6 Evolution of the Widemouth South Fault (WSF) 

The Widemouth South Fault (WSF) has juxtaposed the Black Rock and Wanson Mouth 

foreshores and no structures or beds cross the fault. From analysis of the BGS sedimentary logs 

(Freshney et al, 1979; Fig. 4.2), the strata either side of the WSF are separated by about 300 m. 

The orientations of the WSF and possible earlier forms of this fault are described in the dip-

section and oblique-section descriptions for both foreshores.  

 One possible model highlighted in the section descriptions assumes that the WSF was 

present prior to the chevron folding found in both foreshores. However, in this model, the ‘line 

of truncation’ changes its orientation from restoration-to-restoration. Furthermore, there are 

often differences in the orientations of possible earlier forms of the WSF when the truncation 

lines are compared for each of the restored matching pairs of dip sections from the two 

foreshores. Good examples of these differences are:  

1. The steep southwards dip of the ‘line of truncation’ in the Black Rock restored dip section 

B-B’ 3 (Fig. 4.19d; see Section 4.5.2) compared to it being sub-horizontal in the Wanson 

Mouth restored dip section B-B’ 3 (Fig. 4.28d; see Section 4.6.2); 

2. The steep northwards dip of the ‘line of truncation’ in the Black Rock restored dip section 

F-F’ 2 (Fig. 4.20c; see Section 4.5.3) compared to it having a steep southwards dip in the 

Wanson Mouth restored dip section F-F’ 3 (Fig. 4.29d; see Section 4.6.3).  

 

The other possible model for the WSF is that the fault is a ‘late’ structure that truncated 

the beds after chevron fold deformation (Freshney et al, 1972) and that no fault existed prior to 

this ‘late’ movement, allowing the beds in each foreshore succession to be laterally-continuous 

at their respective stratigraphic levels. As no beds or structures cross the WSF, the amount of 

vertical displacement accommodated on the WSF during this deformation must have been 

greater than the wavelength of the folds in both foreshore successions. The stratigraphic 

displacement on the WSF is 300 m (Freshney et al, 1979; Fig. 4.2). This is much greater than 

the tens of metres of extensional movement interpreted across individual ‘late’ normal faults in 

all the coastal outcrops between Widemouth and Rusey by Freshney et al (1972).  

 

Comparison of the shortening estimates and fold envelopes across the WSF 

There are significant differences in the degrees of shortening accommodated either side 

of the WSF in each foreshore section. In the Black Rock foreshore, the mean percentage 

shortening estimate is consistently around 33 %, whilst in the Wanson Mouth foreshore, 

although less accurate, the estimates are approximately between 50 % and 65 %. Thus, the mean 

percentage shortening accommodated to the south of the WSF is 1.67 to twice that to north of 

the WSF. This work has also shown that across the foreshores local variations in shortening are 

large. Sanderson’s 50 % shortening estimate between Widemouth and Saltstone does not take 

into account these local variations and so should be treated with caution.  
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Fig. 4.31: The Black Rock and Wanson Mouth foreshore sections with a representation of the 

folding in the cliffs in the upper profile and the mean orientation of the fold envelope (stippled 

line) in the lower profile (modified from Sanderson, 1979) 

 

Another aspect of the deformation across the WSF concerns the different orientations of 

the fold envelopes for the chevron folds in the foreshore successions (Fig. 4.31). The ‘upright’ 

chevron folds in the Black Rock foreshore have a sub-horizontal fold envelope, whilst the 

‘inclined’ chevron folds in the Wanson Mouth foreshore have a steep southwards dipping fold 

envelope. The orientations of the envelopes given here are consistent with those determined by 

Sanderson (1979) for the two foreshore successions (Fig. 4.31).  

One possible explanation for the large difference in the shortening estimates and fold 

envelope orientations across the WSF is that the two successions were folded at different 

structural ‘levels’ and then, juxtaposed after the chevron folding that caused the shortening, as 

described in the Freshney et al (1972) model. Alternatively, the beds may have been deformed 

in the same location but with increased shortening in the Wanson Mouth succession due to the 

accommodation of a greater component of shear deformation, causing tighter folds and less 

steep axial planes, as described by Sanderson (1979). This issue will be discussed in section 4.7. 

 

4.6.7 Summary of the geological evolution of the Wanson Mouth foreshore  

The restoration of the deformation in the Wanson Mouth foreshore reveals that several 

progressive ‘stages’ of geological evolution took place (Figs. 4.32a-b). Although structures are 

distinguished, the Variscan deformation is viewed as being progressive (Freshney et al, 1972; 

Enfield et al, 1985). Importantly, it does not appear that any ‘early’ structures occurred that 

meet the criteria of Mapeo and Andrews (1991), Zoetemeijer et al (1992), Nigro and Renda 

(2004) and Corredor et al (2005) (see Section 4.5 & Fig. 4.11). Due to the difficulty of 

correlating the beds across the faults in the Wanson Mouth foreshore, two alternate models for 

its structural restoration have been developed by Freshney et al (1972) and Enfield et al (1985). 

Both of these models are discussed further in section 4.7, where both foreshores are considered. 



148 

 

 

 

Fig. 4.32: Schematic section diagrams showing progressive deformation restoration in the 

Wanson Mouth foreshore succession: (a) Restorations following the Freshney et al (1972) ‘late’ 

normal fault model: (i) Present situation; (ii) ‘Late’ faulting removed; (iii) ‘Unfolding’ chevron 

folds to overturned steep north-dipping beds; and (iv) Beds restored to right-way up, sub-

horizontal; and (b) Restorations following the Enfield et al (1985) inverted thrust duplex model: 

(i) Present situation; (ii) ‘Unfolding’ chevron folds to overturned steep north-dipping beds and 

faults; (iii) Restoration of beds and faults to a north-directed thrust duplex; and (iv) Removal of 

faults with beds restored to right-way up, sub-horizontal 

 

The ‘late’ normal fault model (Freshney et al, 1972) proposed that the steep north-

dipping faults cut the ‘inclined’ chevron fold pair (Figs. 4.27a-b, 4.28a-b, 4.29a-b, 4.30a-b & 

4.32a (i-ii)). In the first restoration ‘step’, the ‘late’ faults are removed to leave the steep north-
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dipping beds on the limbs of the ‘inclined’ chevron fold pair. In the second restoration ‘step’, 

the ‘inclined’ chevron folds are removed and the beds retain their overturned steep northwards 

dip (Figs. 4.27c, 4.28c, 4.29c, 4.30c & 4.32a (iii)). This did not involve the Ghosh (1966), 

Sanderson (1979) and Lloyd and Whalley (1986; 1997) models (see Section 4.1.3), where 

removing the ‘inclined’ chevron folds would cause the deformed beds to be placed onto the 

south-dipping limb of a larger-scale ‘upright’ chevron fold. This omission is because it has yet 

to be demonstrated conclusively that an ‘upright’ chevron fold occurred on a larger-scale than 

the Wanson Mouth foreshore despite large-scale folds appearing in other Culm Basin cross-

sections. The third restoration ‘step’ removes the overturned steep northwards bedding dip to a 

right way-up, sub-horizontal bedding pattern after Crackington Formation deposition (Figs. 

4.27d, 4.28d, 4.29d, 4.30d & 4.32a (iv)). 

 The inverted thrust duplex model (Enfield et al, 1985) proposed that the steep north-

dipping faults in the foreshore sit either on the overturned limbs of an ‘inclined’ chevron fold 

pair (Fig. 4.27a, 4.28e, 4.30e & 4.32b (i)) or have been deformed by a local fold pair (see Fig. 

4.29e). The first restoration ‘step’ removes the ‘inclined’ chevron fold pair (Fig. 4.27e, 4.28f, 

4.30f & 4.32b (ii)) and the local fold pair (see Fig. 4.29f), whilst the beds retain their overturned 

steep northwards dip. This restoration does not involve the Ghosh (1966), Sanderson (1979) and 

Lloyd and Whalley (1986; 1997) models for the same reason in the ‘late’ fault model (see 

Section 4.1.3). The second restoration ‘step’ returns the overturned steep northwards bedding 

dip to a right way-up bedding pattern, causing the faults to become shallow south-dipping (Figs. 

4.27f, 4.28g, 4.29g, 4.30g & 4.32b (iii)), which can be interpreted as north-directed imbricate 

thrusts within a duplex. Enfield et al (1985) (Fig. 4.7) envisaged that this thrusting emplaced the 

Crackington Formation onto the Bude Formation. The third restoration ‘step’ (Figs. 4.27d, 

4.28d, 4.29d, 4.30d & h and 4.32b (iv)) removes the north-directed faults and places the beds 

into a right way-up, sub-horizontal bedding pattern after Crackington Formation deposition. 

 

4.7 Discussion 

This chapter has reviewed the current literature on the stratigraphy of the Bude and 

Crackington formations from Freshney et al (1979) and where the Black Rock and Wanson 

Mouth foreshores sit relatively within this stratigraphy. Further reviews related to:  

1. The map work of King (1967) and the structural features described in his map; 

2. Models for the progressive deformation of the chevron folds in the Culm Basin, with a 

critical review of the Sanderson (1979) and Lloyd and Whalley (1986; 1997) models;  

3. How the different structures have become juxtaposed across the Widemouth South Fault, 

(WSF) with descriptions of four models for its development (Williams et al, 1970; Freshney 

et al, 1972; Durrance, 1985; Enfield et al, 1985; Figs. 4.6-4.9), in order to clarify aspects of 

the geological evolution in both foreshores.  
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There followed an analysis of the sedimentary data collected in both foreshore 

successions and the correlation of the laterally-continuous beds in the Black Rock foreshore in 

order to aid the geological mapping. This led to an examination of the structures from both 

foreshore successions as presented in the map and then in dip, strike and oblique sections. 

In this discussion, the map work and structural data from King (1967) (Fig. 4.3) are 

compared with that produced in this study using dip-section F-F’ across both successions (Fig. 

4.32). Using the results of this comparison, the models from Section 4.1.4 are combined with 

the mapping and structural data from this work in order to: 

1. Compare models for the progressive Variscan deformation of the two foreshores based upon 

the models of Freshney et al (1972) and Enfield et al (1985); 

2. Propose a new model for the Black Rock-Wanson Mouth foreshore structures that can be 

applied to the Bude Formation and beyond, throughout the Culm Basin. 

 

This is followed by a comparison of three models for the evolution of the Widemouth 

South Fault (WSF) using restored sections developed from those in Sections 4.5 and 4.6: 

1. Widemouth South ‘late’ normal fault model (Freshney et al, 1972); 

2. Inverted thrust duplex model (Enfield et al, 1985); 

3. Hypothetical inverted Widemouth South Fault model, from this work.  

 

The discussion continues by considering the relevance of the Durrance (1985) model for 

the WSF beneath the Crediton Trough and the Thompson and Cosgrove (1996) model for the 

Rusey Fault to explain the evolution of the WSF. Lastly in this discussion, there is a 

consideration of the strain accommodated in both foreshore successions. 

 

4.7.1 Comparison of the King (1967) map with that of the author 

King (1967) undertook geological mapping in the Black Rock and Wanson Mouth 

foreshores as part of a wider project to correlate the coastal outcrops of the Bude Formation. At 

the time, the chevron-folded Bude Formation was thought to be structurally continuous and 

relatively simple. However, from the King (1967) mapping (Fig. 4.3), which is shown in 

Freshney et al (1972), it was recognised that the outcrops were geologically complex.  

 The geological mapping of the Black Rock-Wanson Mouth successions in this study 

(see gusset) covers the southern-most part of the King (1967) map (Fig. 4.3) and included 

collecting additional structural and sedimentary data to augment that of King (1967). A 

comparison of the two maps shows consistency in the measurements and the positions of the 

major features (e.g. the Black Rock Slump Bed and WSF). However, due to ‘geological 

complexity’, large areas have been left ‘blank’ on the King (1967) map (Fig. 4.3), but which the 

present mapping and structural analysis has revealed contain structural features that are 

important to interpreting the geological evolution of the Black Rock-Wanson Mouth foreshores. 
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Fig. 4.33: Diagrams of dip-section F-F’ across the two foreshores from: (a) This map work (see 

gusset), where the Black Rock foreshore shows both ‘early’ folds and ‘upright’ chevron folds, 

and the Wanson Mouth foreshore, overturned steep north-dipping beds truncated by steep north-

dipping faults; and (b) The King (1967) map work (see Fig. 4.3), where the Black Rock 

foreshore shows only ‘upright’ chevron folds and the Wanson Mouth foreshore, steep north-

dipping beds truncated by faults and large areas of ‘geological complexity’ with no data marked 

 

In order to compare the geological maps, the dip-section F-F’ line from this work was 

overlaid onto the King (1967) map (Fig. 4.3), allowing the structural geometries in both maps 
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(Fig. 4.33) to be interpreted. An important feature is the WSF that separates the two foreshores. 

Unfortunately, King (1967) did not provide structural data for any faults mapped in Fig. 4.3 and 

consequently these faults are modelled on the King dip section as being vertical (Fig. 4.33b).   

In the Black Rock foreshore (left hand side of Figs. 4.33a & b), the structures include 

‘upright’ chevron anticline 1 with the Black Rock Slump Bed on the north-dipping limb and the 

WSF cross-cutting the south-dipping limb (see gusset). The anticline is projected above the 

foreshore using the shale beds to constrain the fold geometry. In the King (1967) map (Fig. 4.3), 

three shale beds are recognised stratigraphically above the Black Rock Slump Bed and the 

present work also recognises six shale beds stratigraphically below the slump bed (see sections 

4.3 to 4.6). Using the two maps (Fig. 4.3; see gusset) and dip sections (Fig. 4.33), a better 

constraint can be placed upon structures in the Black Rock foreshore.  

An important contradiction between the two maps (see gusset; Fig. 4.3) involves two 

faults in the King (1967) dip-section (Fig. 4.33b) that are shown to cut periclinal fold pair 7 on 

the north-dipping limb of ‘upright’ chevron anticline A (boundary of areas A1 & A3; Figs. 4.3 

& 4.15; see gusset). In this present study, no faults were observed to cut fold pair 7, which was 

refolded by ‘upright’ chevron anticline A at SS19450167 (see sections 4.4.1 & 4.5.2; Fig. 4.19). 

In the Wanson Mouth foreshore (right hand sides of Figs. 4.33a-b), the steeply north-

dipping Crackington Formation beds are truncated against steeply north-dipping faults. In the 

King (1967) dip section (Fig. 4.33b), the northern part of the Wanson Mouth foreshore has been 

left as an area of ‘structural complexity’ (area A4 on the King map; Fig. 4.3) with no data 

presented. In this work, the dip-section (Fig. 4.33a) contains steeply north-dipping beds in area 

A4 (Fig. 4.15; see gusset) that are truncated against the steeply north-dipping faults.  

 In the central and southern Wanson Mouth foreshore (area A5 on the King map; Fig. 

4.3), the King (1967) dip section (Fig. 4.33b) includes steeply north-dipping beds that, again, 

are truncated against the faults but interspersed with areas of ‘geological complexity’. In this 

map work, the beds in the dip section (Fig. 4.33a) also dip steeply to the north in area A5 (Fig. 

4.15; see gusset), but a fold pair is shown that is related to splay faults that coincide with the 

steeply NNW-dipping oblique fault (see Fig. 4.17). Although there are areas of ‘geological 

complexity’ marked in the King (1967) map (Fig. 4.3) and the resulting dip-section (Fig. 4.33b), 

the significant tectonic structures in both foreshores have been described. Significantly more 

structural data were added in this map work (see gusset), which allows the relative timings of 

the structures and their geometries in the foreshore successions to be understood better. One 

such set of deformation structures are the local ‘early’ structures in the Black Rock foreshore. 

 

4.7.2 Geological evolution of the Black Rock-Wanson Mouth foreshores 

To explain the presence of the structures observed in both the Black Rock and Wanson 

Mouth foreshores, three models have been considered. A discussion of the models is presented 

using the restorations for both foreshore successions (see sections 4.5 & 4.6; Fig. 4.34). In each 
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cross-section (Figs. 4.34a (i), b (i) & c (i)), the Black Rock foreshore has an ‘upright’ chevron 

fold train (Fig. 4.18a), whilst the Wanson Mouth foreshore has an ‘inclined’ chevron fold pair 

(Figs. 4.27a, 4.28a & 4.29a). The ‘inclined’ chevron fold pair has overturned steep north-

dipping beds on the long limbs (Enfield et al, 1985), resulting from south-directed shear 

accommodation (Sanderson, 1979). Alternatively, this chevron fold pair may be ‘z-folds’ on the 

limb of a larger-scale fold. Also, from the sedimentary logs of Freshney et al (1979) (Fig. 4.2), 

there is a 300 m stratigraphic separation between the two foreshore successions across the WSF. 

 The series of restorations of the dip sections were described separately across both the 

Black Rock (Figs. 4.18-4.20) and Wanson Mouth foreshores (Figs. 4.27-4.29). The structural 

details vary between the restorations, but the final restoration in each case shows sub-horizontal 

beds with a stratigraphic separation of 300 m between the two formations across the Widemouth 

South Fault (WSF; Figs. 4.34a (iv), b (v) & c (v)). Also, the timing of chevron folding in each 

foreshore is not known relative to the other foreshore and so is treated separately in the model 

restorations. This was undertaken for practical reasons as the only demonstratable limit is that 

the Bude Formation deformation cannot be earlier than that in the Crackington Formation. Each 

model is reviewed using the dip sections and their restorations (see sections 4.5 & 4.6) with the 

restorations undertaken in steps for practicality and to make the structural relationships clear. 

 

Widemouth South ‘late’ normal fault model (Freshney et al, 1972) 

In the Freshney et al (1972) normal fault model (see Fig. 4.6), the WSF has been 

modelled as a ‘late’ normal fault that juxtaposed the Black Rock and Wanson Mouth foreshore 

successions after Variscan deformation (Fig. 4.34a (i)). This model appears to be plausible 

because the WSF truncates all structures on both sides with no correlation between the fold sets. 

Thus, the last displacement on the fault must have been greater than the wavelength of the folds. 

 The first restoration ‘step’ (Fig. 4.34a (ii)) removes the 300 m stratigraphic separation 

between the two foreshores (see Fig. 4.2), which occurred along the normal faults, including the 

WSF. The beds are restored to their pre-‘late’ normal fault positions without ‘space problems’ 

occurring. In the dip sections across both foreshores (Figs. 4.18-4.20 & 4.27-4.29), a ‘line of 

truncation’ appears along the course of the ‘late’ WSF and it is noted whether the restoration 

causes the beds to cross this line. Under the Freshney et al (1972) model, removing the faults 

and the stratigraphic separation would not generate a ‘line of truncation’. Consequently, the 

beds are modelled as being continuous in each foreshore (Fig. 4.34a (ii)). In this restoration 

‘step’, the Black Rock foreshore succession has a separate ‘upright’ chevron fold train on the 

shallow north-dipping limb of a larger-scale fold, whilst the Wanson Mouth foreshore has a 

separate ‘inclined’ chevron fold pair on the southern limb of another larger-scale fold. 

The second restoration ‘step’ (Fig. 4.34a (iii)) removes the ‘inclined’ chevron folding 

with the beds retaining their present overturned steep northwards dip across the Wanson Mouth 

foreshore (Fig. 4.34a (iii)). In the now separate Black Rock foreshore succession, the ‘upright’ 
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chevron fold train is interpreted as being on the north-dipping limb of a larger scale ‘upright’ 

chevron anticline. Under the Freshney et al (1972) model, the foreshore successions have a 

stratigraphic separation of 300 m (Fig. 4.2), with their deformed beds continuing to be laterally 

continuous (Fig. 4.34a (iii)). 

In the third restoration ‘step’ (Fig. 4.34a (iv)), the overturned, steep northwards dip of 

the beds return to right way-up, sub-horizontal orientations. The beds in each foreshore are 

shown as two layer-cake successions, separated by a stratigraphic distance of 300 m (Freshney 

et al, 1979; Fig. 4.2), and also, continue to be laterally continuous (Fig. 4.34a (iv)). 

 

Inverted thrust duplex model (Enfield et al, 1985)  

In the Enfield et al (1985) thrust duplex model, the WSF and other faults in the Wanson 

Mouth foreshore have been viewed as an inverted thrust duplex that emplaced the Crackington 

Formation (Wanson Mouth) onto the Bude Formation (Black Rock) (Fig. 4.7). In this model, 

the vertical displacement on this duplex must have been 300 m or the stratigraphic separation 

between the successions from Freshney et al (1979) (Fig. 4.2), with the WSF and WNF 

(Wanson North Fault) forming the ‘sole’ and ‘roof’ thrusts to the duplex (Figs. 4.7 & 4.34b (i)).  

Enfield et al (1985) proposed that the other inverted thrusts caused bed truncations in 

the foreshore (see Fig. 4.7), rather than being due to ‘late’ normal fault movement as in the 

Freshney et al (1972) ‘late’ normal fault model. It was further proposed by Enfield et al (1985) 

that the thrust duplex is on the steep north-dipping limbs of the ‘inclined’ chevron fold pair in 

the foreshore. Also, the thrust duplex may have been folded above the beds in the Black Rock 

foreshore, raising the possibility that the WSF may be in outcrop under Widemouth Sands north 

of the Black Rock foreshore (Fig. 4.34b (i)).  

 The first restoration ‘step’ (Fig. 4.34b (ii)) removes the ‘inclined’ chevron fold pair. The 

beds and faults retain their present overturned steep northwards dip across the Wanson Mouth 

foreshore (Fig. 4.34b (ii)). In the Black Rock foreshore, the ‘upright’ chevron fold train lay on 

the north-dipping limb of a larger-scale ‘upright’ chevron anticline. The deformed beds in both 

foreshores remain juxtaposed along the WSF as the duplex inverted floor thrust (Fig. 4.34b (ii)). 

 In the second restoration ‘step’ (Fig. 4.34b (iii)), the overturned steep northwards dip of 

the beds and faults are removed and the beds in the Black Rock foreshore succession are 

restored to right way-up, sub-horizontal orientations. The beds and faults in the Wanson Mouth 

foreshore succession are in this model part of a thrust duplex that has emplaced the Crackington 

Formation onto the Bude Formation (Figs. 4.7 & 4.34b (iii)).  

 In the third restoration ‘step’ (Fig. 4.34b (iv)), the faults, including the WSF and WNF, 

that form the thrust duplex (Fig. 4.7) are removed and the beds returned to right way-up, sub-

horizontal orientations. The beds in each foreshore are shown as two laterally continuous layer-

cake successions separated by a stratigraphic distance of 300 m (Freshney et al, 1979; Fig. 4.2) 

that have crossed the line marking the position of the WSF (Fig. 4.34b (iv)).  
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Fig. 4.34: Three schematic structural restoration models to explain the geological evolution of the Black Rock and Wanson Mouth foreshores. The models are: (a) 

the Freshney et al (1972) ‘late’ normal fault model, where 300 m of normal vertical movement was accommodated along the Widemouth South Fault (WSF) 

following Variscan fold deformation in each foreshore; (b) the Enfield et al (1985) thrust duplex model, where 300 m of compressional vertical movement was 

accommodated prior to Variscan folding along the WSF and other faults observed in the Wanson Mouth foreshore; and (c) the inverted Widemouth South Fault 

model, which does not include additional thrust faults proposed by Enfield et al (1985) but which has been reactivated as a ‘late’ normal fault 
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Hypothetical inverted Widemouth South Fault model  

This hypothetical inverted Widemouth South Fault model is developed here as a 

tentative alternative to the Freshney et al (1972) and Enfield et al (1985) models and 

incorporates elements of both models. The development of this alternative model is motivated 

by the relatively recent findings of Anderson and Morris (2004), who suggested that the last 

movement on the WSF was extensional, and also, that the Enfield et al (1985) model does not 

describe any extensional deformation occurring in the Wanson Mouth foreshore. 

In the hypothetical inverted Widemouth South Fault model proposed here, the faults in 

the Wanson Mouth foreshore succession are viewed as ‘late’ normal faults (Fig. 4.34c (i)) that 

cause only tens of metres of displacement, as described by Freshney et al (1972). However, after 

Freshney et al (1979), the beds in the two foreshore successions have a stratigraphic separation 

of 300 m across the WSF (Fig. 4.2). Thus, in order to explain the stratigraphic separation, the 

‘late’ normal fault movement is modelled as the reactivation of the WSF, which is modelled as 

having had an earlier form. 

The first restoration ‘step’ (Fig. 4.34c (ii)) removes the faults, except for the WSF, and 

the beds are restored to their pre-‘late’ normal fault positions, retaining their present overturned 

steep northwards dip across the entire Wanson Mouth foreshore. As the WSF is not removed, 

the beds and structures remain juxtaposed against this fault in both foreshores (Fig. 4.34c (ii)). 

In this restoration, the Black Rock foreshore succession has an ‘upright’ chevron fold train on 

the shallow north-dipping limb of a larger-scale chevron anticline; whilst the Wanson Mouth 

foreshore has the ‘inclined’ chevron fold pair on the overturned north-dipping limb of this 

larger-scale chevron anticline (see Section 4.6). Also, the earlier form of the WSF was deformed 

by ‘inclined’ chevron folds and had a steep northwards dip on their overturned limbs in the 

Wanson Mouth foreshore. Above the Black Rock foreshore succession, the WSF is shown to be 

deformed by the ‘upright’ chevron folding, as described in the Enfield et al (1985) model. 

 The second restoration ‘step’ (Fig. 4.34c (iii)) removes the ‘inclined’ chevron fold pair. 

The Wanson Mouth beds retain their present overturned steep northwards dip across the entire 

foreshore (Fig. 4.34c (iii)). In the Black Rock foreshore succession, the ‘upright’ chevron fold 

train is interpreted to be on the north-dipping limb of this larger scale chevron anticline (Fig. 

4.34c (iii)). Also, the earlier form of the WSF is still present and cuts the overturned limb of the 

larger-scale chevron fold (Fig. 4.34c (iii)). 

 In the third restoration ‘step’ (Fig. 4.34c (iv)), the overturned, steep northwards dip of 

the beds has been removed in the Wanson Mouth foreshore, whilst the beds in the Black Rock 

foreshore have been restored to right way-up, sub-horizontal orientations. The beds and faults in 

the Wanson Mouth foreshore succession are shown on the hanging wall to the earlier form of 

the WSF, which has emplaced the Crackington Formation (Wanson Mouth foreshore) onto the 

Bude Formation (Black Rock foreshore) (Fig. 4.34c (iv)). Thus, this earlier form of the WSF is 

interpreted as a thrust that has accommodated a vertical displacement of 300 m.  
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 In the fourth restoration ‘step’ (Fig. 4.34c (v)), the thrust emplacement along the earlier 

form of the WSF has been removed and all the beds have been returned to right way-up, sub-

horizontal orientations. The beds in each foreshore are shown as two layer-cake successions 

separated by a stratigraphic distance of 300 m (Freshney et al, 1979; Fig. 4.2), that have crossed 

the line marking the position of the WSF (Fig. 4.34c (v)). 

 

4.7.3 Critical review of the structural evolution models 

All the models have been developed using the current understanding of the Variscan 

deformation in the Culm Basin to explain the juxtaposition of the Black Rock and Wanson 

Mouth foreshore successions and how the different structures may have developed and been 

brought together. However, the timing of chevron folding in each foreshore is not known 

relative to the other foreshore and so is treated separately in the model restorations. This was 

undertaken for practical reasons as the only demonstratable limit is that the Bude Formation 

deformation cannot be earlier than that in the Crackington Formation. In order to assess the 

three models, a critical review is provided here.  

 In the Freshney et al (1972) normal fault model (Fig. 4.34a), the Widemouth South 

Fault (WSF) has been modelled as a ‘late’ normal fault that accommodated the 300 m of vertical 

movement between the relative stratigraphic positions of the Black Rock beds in the Bude 

Formation and the Wanson Mouth beds in the Crackington Formation (Fig. 4.2). However, 

Freshney et al (1972) also suggested that the amount of normal movement on the individual 

faults between Widemouth and Rusey was only of the order of tens of metres. Indeed, the 

vertical movement accommodated along the ‘late’ faults in the Black Rock foreshore is only 2-3 

m (Figs. 4.19a & 4.23a). This suggests that ‘late’ normal fault movement along the WSF was 

insufficient to cause the juxtaposition of the two successions, which is an important 

shortcoming in the Freshney et al (1972) model.  

 In the Enfield et al (1985) inverted thrust duplex model (Fig. 4.34b), the WSF and the 

other faults observed in the Wanson Mouth foreshore have been modelled as inverted north-

directed thrusts (see Fig. 4.7). Enfield et al (1985) suggested that the truncated Wanson Mouth 

foreshore beds reflected the inverted faults in a thrust duplex that emplaced the Crackington 

Formation over the Bude Formation prior to chevron folding (Fig. 4.34b (iv)). However, it has 

been impossible to correlate the beds across the faults and no thrust cleavage associated with 

these faults has been observed previously, or in this study, in the Wanson Mouth foreshore. 

Thus, thrust truncation of the Wanson Mouth beds, including along an earlier form of WSF, has 

not been demonstrated as support for the thrust duplex model.  

In the hypothetical inverted Widemouth South Fault model, only the WSF has been 

modelled as an inverted north-directed thrust in the Wanson Mouth foreshore, which has been 

reactivated as a ‘late’ normal fault. The other faults in the Wanson Mouth foreshore were 

modelled as ‘late’ normal faults.  
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 A further issue in regards to the Enfield et al (1985) thrust duplex model (Fig. 4.34b) 

and also, the inverted Widemouth South Fault model from this work (Fig. 4.34c) is that if the 

faults, including the WSF, were inverted then the deformation observed in the Wanson Mouth 

foreshore succession (see gusset) would affect the beds in the Black Rock foreshore succession. 

In the case of the inverted Widemouth South Fault model (Fig. 4.34c), the ‘inclined’ chevron 

folds are offset between the foreshore successions by the ‘late’ extensional movement on the 

WSF. However, the WSF cut all previous structures (see gusset) and no structures from either 

foreshore succession have been observed in the other. This suggests therefore that neither 

inverted fault model is applicable. 

 However, the 300 m stratigraphic separation between the juxtaposed Black Rock and 

Wanson Mouth successions (Freshney et al, 1979; Fig. 4.2) requires that a significant amount of 

movement has occurred along the WSF. As stated previously, the WSF cut all previous 

structures (see gusset), suggesting that the last displacement on the fault must have been greater 

than the wavelength of any previous structure. From Anderson and Morris (2004), this 

movement was extensional. Consequently, the accommodation of only tens of metres of vertical 

displacement during ‘late’ normal faulting on any individual fault, as suggested by Freshney et 

al (1972), is far too little for the WSF, requiring that the vertical displacement accommodated 

by the ‘late’ extension on the WSF was of the order of 300 m. This is feasible but as yet has not 

been demonstrated. Thus, in all other regards, and in the absence of other plausible models, the 

Freshney et al (1972) ‘late’ normal fault model is preferred currently as an explanation for the 

deformation observed in both foreshore successions and along the Widemouth South Fault, but 

with a significantly greater displacement than those authors interpreted.  

 

4.7.4 Consideration of other Culm Basin fault models  

In the Culm Basin, there are two significant basin-scale faults, the Widemouth South 

Fault (WSF) and the Rusey Fault. The WSF is described by Durrance (1985) as continuing 

beneath the Crediton Trough in Section 4.1.4 (Fig. 4.8) and the Rusey Fault is described by 

Thompson and Cosgrove (1996) at Rusey Head to the south of Crackington (Fig. 4.35). In both 

models, the faults are modelled as north-directed thrusts that were reactivated as normal faults 

following Variscan deformation. Fault descriptions and how they relate to the deformation 

along the WSF in the Black Rock and Wanson Mouth foreshore successions is provided here.  

 

Comparison of the Widemouth South Fault with the Rusey Fault 

In an attempt to explain further the complex deformation in the Black Rock and 

Wanson Mouth successions, the WSF is compared to the regional-scale Rusey Fault on the 

southern boundary of the Culm Basin at Rusey Head (Fig. 4.35). Here, the Westphalian 

Crackington Formation fine-grained turbidite sands sit in the hanging wall to the north of the 

Rusey Fault and the Namurian Boscastle Formation silty turbidites in the footwall to the south 
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(Fig. 4.35a). Thompson and Cosgrove (1996) described the two formations as being part of the 

same sedimentary system with a turbidite fan prograding through the Culm Basin. However, as 

with the WSF, a significant portion of stratigraphy is missing across the Rusey Fault.  

 The Rusey Fault strikes between 120-170° (Fig. 4.35b), dips at angles greater than 

30°NE and cuts a fault zone in between the two formations, with dissected folds that show a 

well-developed cleavage that is oriented 016/59E. Although no slickensides or thrust-related 

cleavage planes were observed on the faults by Thompson and Cosgrove (1996), they 

interpreted the Rusey Fault as a thrust with a top-to-NW movement, which cut the Variscan 

chevron fold hinges and limbs. This movement sense is consistent with that suggested by Zwart 

(1964). After the Variscan thrusting, the Rusey Fault also accommodated multi-phase 

deformation, including NE-SW-trending extension and dextral oblique to strike-slip movement 

following Variscan thrusting. Thus, the Rusey Fault may have accommodated ‘late’ extensional 

deformation, similar to that of the WSF (Freshney et al, 1972).  

 In addition to the Thompson and Cosgrove (1996) model, the Rusey Fault has been 

alternatively described by Warr (2002) as having developed from north-directed under-thrusting 

of the Culm Basin and by Shail and Leveridge (2009) as a ‘late’ south-directed thrust. A brief 

discussion of these three models for the Rusey Fault will be provided in Chapter 9. 

 

 

Fig. 4.35: Sketches taken from Thompson and Cosgrove (1996) showing: (a) a plan view map 

of the deformation in the Rusey Cliff; and (b) the cliff section with major faults at Rusey Cliff 

 

Applying the Durrance (1985) and Thompson and Cosgrove (1996) models to the WSF 

The Thompson and Cosgrove (1996) model described the thrust movement along the 

Rusey Fault as occurring after chevron folding, whereas the timing of thrusting with respect to 

the folding is uncertain in the Durrance (1985) model. Using the two models, if an earlier form 

of the WSF had been a ‘late’ north-directed thrust, then a significant south-dipping, low angle 

fault would be expected to cut the folded beds in both the Black Rock and Wanson Mouth 

foreshore successions. However, this has not been observed. Furthermore, if the ‘late’ normal 

fault movement on the present WSF had been a few tens of metres (Freshney et al, 1972), the 
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‘late’ north-directed thrusts would have been offset by the WSF. However, no such thrust has 

been observed either. On this evidence, the Durrance (1985) and Thompson and Cosgrove 

(1996) models cannot be applied to the WSF in the Black Rock and Wanson Mouth foreshores.  

 

4.7.5 Strain accommodation in the two foreshore successions 

In the Freshney et al (1972) model, the large difference in the fold-related shortening 

estimates found across the WSF results from the two successions being folded at different 

structural ‘levels’ and being juxtaposed after the chevron folding. This suggests that the amount 

of fold-related shortening accommodated during Variscan deformation increased to the south 

and thus, the Crackington Formation has been shortened more than the Bude Formation. From 

Sanderson (1979), accommodation of south-directed shear deformation caused tighter folds, less 

steep axial planes and increased shortening south from Bude to Rusey Cliff (see Chapter 2). 

However, this pattern of a lateral southwards increase in the amount of fold-related shortening is 

locally punctuated across the ‘late’ normal faults, such as the Widemouth South Fault (WSF). 

 Another possibility to explain the difference in the amount of strain accommodated by 

the Bude and Crackington formations is due to the mechanical stratigraphy of the deposits. 

From Melvin (1986), the Crackington Formation is much more mud-rich with generally thinner 

and more laterally-continuous sandstone beds than in the Bude Formation. This suggests that if 

both formations were or became lithified during Variscan deformation, the Crackington 

Formation was generally less coherent, could accommodate more flexural slip movement along 

its bedding planes (Tanner, 1989) and thus, may have been able to accommodate more fold-

related shortening (Sanderson, 1979) than the Bude Formation. 

 The Widemouth South Fault and other faults in the Wanson Mouth foreshore are 

significant in terms of their extensional strain accommodation. The WSF accommodated 

extension during its last movement (Anderson & Morris, 2004), but the amount of displacement 

can not be readily calculated. The same is the case for the other faults in the Wanson Mouth 

foreshore. Although Freshney et al (1972) proposed that normal movement on any individual 

fault between Wanson Mouth and Rusey was only tens of metres, precise estimates of the 

amount of movement are not available. In order to provide better estimates of both the 

displacement on the normal faults, including the WSF, and the amount of shortening 

accommodated by the chevron folds, a seismic survey could be undertaken to look at the top 5 

km of sedimentary cover. Such a seismic survey would also test whether the two formations are 

cut by kilometric-scale north-directed thrusts as envisaged by Enfield et al (1985). 

 

4.8 Summary of findings from the Black Rock-Wanson Mouth foreshores 

From the map work (see gusset) undertaken in the Black Rock and Wanson Mouth 

foreshores,  an improved understanding has been gained of the geometries of the progressive 

Variscan deformation structures in both foreshores and the timing of movement along the 
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Widemouth South Fault (WSF) that juxtaposes the two foreshore successions. The juxtaposition 

of very different deformation styles across the WSF and the 300 m stratigraphic gap between 

the foreshore successions is an important and only partially explained feature of the geology. 

Three models have been considered for explaining the structural evolution of the WSF and the 

deformation accommodated in the two foreshore successions. Although no model can be 

demonstrated to hold fully, it is concluded that the Freshney et al (1972) model of a ‘late’ 

normal-faulted Widemouth South Fault is the most plausible, although with some modification. 

 The Black Rock and Wanson Mouth foreshores contain all of the progressive Variscan 

and ‘late’ Variscan deformation structures (Williams et al, 1970; Freshney et al, 1972; 1979; 

Ramsay, 1974; Sanderson, 1979; Durrance, 1985; Enfield et al, 1985; Whalley & Lloyd, 1986; 

Lloyd & Whalley, 1986; 1997) and many of the depositional elements (Melvin, 1986; Higgs, 

1991; Burne, 1995; see Chapter 3) observed in the Culm Basin. Thus, the area represents a 

microcosm of the geologic evolution of the basin. This is of direct relevance to the specific aim 

of the study, to understand the geological evolution of the Culm Basin, and also provides some 

contribution to the general aim, namely to establish criteria for distinguishing between folds in 

rock and sediment. 

 Lastly, the foreshores have provided an appropriate locality for evaluating structural 

models devised to explain the progressive Variscan structural development, particularly as very 

different structural styles are visible across the Widemouth South Fault. This includes a series of 

stacked and cross-cutting local structures in the Bude Formation that are classed as ‘early’ and 

that have been deformed by ‘upright’ chevron folds in the Black Rock foreshore. In Chapter 5, 

examples of these structures from outcrops between Northcott Mouth and Black Rock 

(SS202087-SS195015) are described in more detail because of their importance to the general 

aim of the thesis to establish criteria for distinguishing between folds in rock and sediment. 
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Chapter 5: Analysis of slump and ‘early’ deformation structural 

geometries in the Bude Formation 

 

5.1 Introduction 

This chapter is concerned with establishing the criteria for assessing whether slump 

folds and local structures occurred prior to chevron folding and whether they developed in 

sediment. This follows on from Chapter 4, in which such structures were recognised in the 

Black Rock foreshore. This is of direct relevance to the general aim of the study, namely to 

establish criteria for distinguishing between folds in rock and sediment.  

 In this chapter, a review of the current literature is provided for the previous work by 

Enfield et al (1985) on ‘early’ structures, Mapeo and Andrews (1991) on ‘pre-folding’ structures 

and Lloyd and Chinnery (2002) on ‘pre-chevron’ structures. Following this, the sedimentary and 

structural data collected from the Bude Formation slump folds are analysed. In particular, the 

massive Black Rock Slump Bed with detached slump raft folds is described and tests are 

undertaken on the orientations and geometries of these folds using fabric topology plots and 

statistical calculations. One test of the data is to ascertain whether the Black Rock Slump Bed 

(see Figs. 3.1a, b & c) described in the Black Rock (SS197017) and Lynstone foreshores 

(SS200053) are the same or different beds. The sedimentary logs of the bedding overlying the 

two massive slump beds are correlated across each slump bed to demonstrate whether thickness 

changes in the strata could be detected, thereby indicating syn-depositional slope failures. 

 Structural data were collected across the study area between Northcott Mouth and 

Wanson Mouth (SS202087-SS195013) from 29 high-angle, strata-bound normal faults, plus 35 

bedding-parallel faults or low-angle thrusts together with their associated fold deformation. 

Tests as to whether the structures are ‘early’ (i.e. prior to chevron folding and at or near the 

palaeo-surface) use three diagnostic criteria developed from the structural analyses of 

Zoetemeijer et al (1992), Nigro and Renda (2004) and Corredor et al (2005). 

 Determination of the palaeo-slope directions for the slumps is made using criteria 

described for slump folds by Strachan and Alsop (2006) and slump faults by Debacker et al 

(2009). These methods cannot be applied to the ‘early’ structures as they are not slumps. Both 

sets of slump methods are also reviewed in order to ascertain whether there are further 

comparable criteria from either model that have yet to be demonstrated. 

 

5.1.1 ‘Early’, ‘pre-chevron’ and ‘pre-folding’ structures in the Bude Formation  

The Bude Formation outcrops from Northcott Mouth to Black Rock (SS202087-

SS196015; see Chapter 4) contain several types of Variscan deformation structure, such as 

chevron folds and thrusts (Freshney et al, 1972; 1979; Ramsay, 1974; Sanderson, 1979; 

Whalley & Lloyd, 1986; Lloyd & Whalley, 1986; 1997) and structures that are deformed on 
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chevron fold limbs (Enfield et al, 1985; Mapeo & Andrews, 1991; Lloyd & Chinnery, 2002). 

These latter structures include: (1) bedding-parallel faults and low-angle thrusts, commonly 

associated with hanging wall fault-bend folds (see Chapter 4); (2) high-angle, normal and 

reversed faults; (3) disaggregated, massive slump beds (Hartley, 1991) containing detached 

slump raft folds (see Chapter 3); and (4) attached slump folds (see Chapter 3).  

 In Chapter 4, faults and folds that were deformed by the ‘upright’ chevron folds in the 

Black Rock foreshore (Bude Formation) were also shown to be ‘early’ structures that formed in 

unconsolidated sediment at or near the palaeo-surface during deposition. This chapter aims to 

assess whether these ‘early’ structures (i.e. ‘pre-folding’ or ‘pre-chevron’) are found across the 

Bude Formation outcrops between Northcott and Black Rock, how they relate to Variscan 

deformation and what their timing is with respect to deposition.  

 

 

Fig. 5.1: Stratigraphic evidence for major thrust displacements (see Fig. 1.1 in Chapter 1 for 

location). Two narrowly-spaced ‘marine bands’ on the southern limb of a syncline between 

Wrangle Point and Maer Cliff (SS200074-SS200077) do not reappear on the northern limb but 

are replaced by two more widely-spaced ‘marine bands’ (from Lloyd & Chinnery, 2002) 

 

  Previous work suggests that some of the bedding-parallel faults and low-angle thrusts 

are associated with a general northward propagation of the Variscan deformation front (Enfield 

et al, 1985), and that some may exploit Bude Formation slumped beds (Whalley & Lloyd, 1986; 

Warr, 2002; Leveridge & Hartley, 2006). In the Bude (SS200067) to Duckpool (SS200115) 

coastal section, ‘pre-chevron’ thrust sheets are variably top-to-south and top-to-north (Lloyd & 

Chinnery, 2002). This change in thrust direction may reflect ‘space problems’ during northward 

propagation of the Variscan deformation front. According to Lloyd and Chinnery (2002), the 

‘pre-chevron’ structures are part of “a 3D intra-formation stack, which is at any single locality 

an instantaneous representation of an orogenic front propagating into its own foreland basin”.  

These faults may have been under-recognised as they are commonly bedding-parallel 

(see Chapter 4). Where ‘pre-chevron’ or ‘early’ low-angle thrusts ‘ramped’ through the beds, 

changes in the depositional stacking patterns have been observed. An example of this occurs 
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between Wrangle Point and Maer Cliff (SS200074-SS200077) where apparently laterally-

continuous black shales or ‘marine bands’ show a narrow stratigraphic spacing and cut-offs on a 

‘pre-chevron’ low-angle thrust hangingwall but a wider stratigraphic spacing immediately on 

the footwall (Fig. 8 of Lloyd & Chinnery, 2002; Fig. 5.1). Lloyd and Chinnery (2002) used 

sedimentary logs across this thrust to suggest that the two sedimentary stacks are not lateral 

equivalents. However, the ‘marine bands’ contain no fossils making biostratigraphic correlation 

impossible, so the Lloyd-Chinnery model of separate stacks is not proven. 

As demonstrated in Chapter 4, ‘early’ (‘pre-folding’ or ‘pre-chevron’) structures in the 

Bude Formation may have generated depositional patterns that reflect active deformation whilst 

the beds were being laid down as sediment. This is the case for the massive slump beds where 

these gravity-driven liquefied deformation structures (Woodcock, 1979; Alsop & Holdsworth, 

2002; Strachan & Alsop, 2006) were deposited on a slope (see Chapter 2) at the palaeo-surface 

(Enfield et al, 1985). In contrast, the ‘pre-folding’ structures between Sandy Mouth and 

Northcott Mouth (SS201098-SS202087) have been interpreted as ‘post-lithification’ by Mapeo 

and Andrews (1991) although the authors also describe these structures as “syn-sedimentary”.  

The evidence for ‘post-lithification’ deformation comes from the presence of quartz 

veins on the fault planes. Also, hot quartz-rich fluids of up to 300°C are known to have flushed 

through the Culm Basin deposits throughout Variscan deformation (De Wall & Warr, 2004) and 

this suggests that the quartz veins of Mapeo and Andrews (1991) on the ‘pre-folding’ structures 

may have formed during continued Variscan deformation as flexural slip planes that were 

continually exploited as chevron folds developed (Tanner, 1989).  

 

5.1.2 Assessment of an ‘early’ deformation structure 

In order to assess whether ‘early’ deformation occurred post-lithification, a partially-

restored section was produced from an outcrop at Lynstone (SS200053) (Fig. 5 of Enfield et al, 

1985; Fig. 5.2). The stratigraphy in the partially-restored section (Fig. 5.2b) has been divided 

into 10 stratigraphic units above the ‘Black Rock Slump Bed’ (BRSB). Towards the base of the 

section, a normal fault cross-cuts the lower 5 units and becomes a listric fault into the slump 

bed. On the hanging wall, there are units 1, 3, 4 and 5, whilst on the footwall, there are only 

units 2 and 5. Unit 6 displays a ramp-flat geometry over Unit 5, is apparently unaffected by the 

normal fault and fills the topography across the fault. Units 7-9 are stacked low-angle thrusts 

above Unit 6, whilst Unit 10 shows no deformation structures and drapes all the lower units that 

contain ‘early’ structures (Fig. 5.2b). This suggests that deposition of Unit 10 followed the 

‘early’ deformation, and thus, these structures developed at or near the palaeo-surface prior to 

lithification (Enfield et al, 1985) from the ‘undeformed’ bed criterion of Zoemeijter et al (1992), 

Nigro and Renda (2004) and Corredor et al (2005) (see Chapter 4). 

It is possible that the normal fault that cuts the slump bed represents volume loss from 

this bed by dewatering due to the weight of overlying or over-riding beds (see Chapter 2). Also, 
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if the ‘early’ normal fault moved soon after the slump bed was deposited, the fault movement 

may have controlled the accommodation space before Unit 5 was deposited (Fig. 5.2b). 

Consequently, the ‘early’ thrusts that cut and stack units 7-9 above units 5-6 may have occurred 

in beds prior to lithification at or near the palaeo-surface following the growth strata criterion of 

Zoemeijter et al (1992), Nigro and Renda (2004) and Corredor et al (2005) (see Chapter 4). 

 

 

Fig. 5.2: Diagrams of: (a) antiformal ‘early’ low-angle thrust stack affecting beds immediately 

above the ‘Black Rock Slump Bed’ (BRSB – ornamented at the base of the sections) at 

Lynstone (SS200053); (b) partial restoration of deformation in (a), removing ‘late’ chevron 

folding effects. Enfield et al (1985) has not maintained the exact scale. Major movement 

direction relates to the ‘early’ north-directed thrusts (both diagrams from Enfield et al, 1985) 

 

 In order to generate the slump structures, fluid over-pressures were close or equal to 

lithostatic pressure (see Chapter 2). In this study of the slumps and local structures deformed by 

later chevron folds, the type locations employed in the Bude Formation are at: Lynstone 

(SS200053); Upton-Phillip’s Point (SS200044-SS200045); and Northcott Mouth (SS202082). 

Measurements from these structures allow a series of tests to be undertaken. For the massive 
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slump beds at Black Rock (see Fig. 3.1c) and Lynstone, a test has been undertaken to assess 

whether these beds can be correlated, as is proposed by Freshney et al (1972), or whether they 

are separate beds. A further test on the slump folds is to see if a statistical relationship exists 

between the slump fold elongation direction and the profile plane strike direction. From the 

methods of Alsop and Strachan (2006), the elongation direction is used to estimate the palaeo-

slope direction (Table 5.1). In the case of the massive slump bed at Black Rock, the slump folds 

are oriented vertically into the ground, so the elongation direction cannot be measured. 

However, at Lynstone, both parameters can be calculated.  

 The local structures have been assessed as to whether they formed at or near the palaeo-

surface within sediment. A further test is to assess whether they relate to either movements 

down a palaeo-slope or to progressive Variscan deformation structures. In Chapter 3, palaeo-

flow indicators from sole marks on turbidite bed bases were used as a proxy for the palaeo-slope 

directions identified by Freshney et al (1979), Higgs (1991), Burne (1995) and the author. The 

palaeo-flow results provide a control on palaeo-slope directions across the study area.  

 

5.2 Methods 

Data collection and analysis was undertaken on the slump and local structures deformed 

by chevron folds using circular statistics to calculate mean structural orientation values (Fig. 

5.3). The data collected were structural measurements along bedding, fold axial and fault 

planes, for hinge lines and fault plane striations and hinge line elongation directions. Where 

angular data (in degrees) are expressed as a mean, this is given with a circular variance value. 

In the Bude Formation outcrops between Northcott Mouth and Black Rock (SS202087-

SS195015), there is a massive slump bed (i.e. Black Rock Slump Bed) containing sandy slump 

raft folds (Enfield et al, 1985; Hartley, 1991). Unrestored data from the raft folds in the slump 

bed have been plotted onto a Google Earth
TM

 base slip together with fold axis plunge and profile 

plane data. Statistical analyses of the geometric data from the raft folds at Black Rock 

(SS197017) and Lynstone (SS200053) were undertaken to assess whether:  

1. The two slump beds occurred during the same event;  

2. The slump beds spread out or cut a ‘channel’ into the palaeo-surface;  

3. The slump raft fold profile plane strike is parallel to the hinge line elongation direction. 

 

As slumps indicate that near-surface deformation occurred on a palaeo-slope 

(Woodcock, 1979; Alsop & Holdsworth, 2002; see Chapter 2), a series of methods from 

Strachan and Alsop (2006) have been employed on the raft fold data to determine the palaeo-

slope direction for each massive slump bed (Table 5.1). Although these methods are thorough, 

an additional method is proposed in this chapter, which is analogous to the “Best-fit Girdle to 

Fault Poles” (BGFP) slump fault method from Debacker et al (2009). In the “Best-fit Girdle to 

Bedding Poles” (BGBP) slump folds methods the fold profile plane of the π-girdle may be 
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aligned with the fold maximum elongation direction, and thus, to the down-slope direction as 

well (bold in Table 5.1). A test is undertaken involving structural and statistical analyses to 

assess whether the BGBP method is appropriate for the case of slump raft folds. The test 

statistics employ the calculation of the mean of two proportions using the Z-statistic, which is 

assumed under the Null hypothesis to have a Standard Normal distribution (mean 0; variance 1). 

 

Slump folds (from Strachan & Alsop, 2006) 

Little length change in direction parallel to strike of controlling palaeo-slope 

Folds have axes parallel to palaeo-slope strike and hence have undergone no hinge rotation 

Vergence or facing direction deemed as slip direction and assumed to be down-slope direction 

Folds generated by heterogeneous simple shear about the slip direction 

In slumps, fold asymmetry senses oppose each other about down-slope average axis 

Maximum fold elongation direction is aligned down-slope 

Fold profile plane is aligned with maximum fold elongation direction (i.e. down-slope) 

Fold hinges will verge and face in a statistical arc about transport direction 

With applied shear stress, folds tighten and hinges rotate into a transport-parallel direction 

Slumping direction is parallel to mean axial-planar intersection of opposed vergence folds  

Hinges rotate at either end to form curvi-linear fold geometries 

Table 5.1: Summary table of structural methods applied to studying palaeo-slope direction from 

analyses of slumps (from Strachan & Alsop, 2006). The method in bold is a new method that is 

presented and tested in this chapter to enhance this palaeo-slope methodology 

 

Three fabric topology plots are provided separately for the slump bed at Lynstone and 

Black Rock in order to assess the relationships between the slump fold profile plane strike 

direction and the axial plane strike direction, profile plane dip and fold interlimb angle (all in 

degrees). Regression analysis on each cross-plot assesses the degree of correlation (i.e. 

alignment) between the measurements using the R
2
 statistic. In this case, an R

2
 = +1 indicates 

either a perfect direct or reverse alignment, whilst an R
2
 = 0 indicates no alignment. 

In this study, local structures have been observed in the Bude Formation outcrops that 

are tilted on the limbs of chevron folds, as described in Chapter 4. In order to establish whether 

the local structures occurred at or near the palaeo-surface (i.e. during deposition), and so, prior 

to chevron folding (i.e. ‘early’) criteria have been developed from seismic section 

interpretations in the Po Delta, Italy by Zoetemeijer et al (1992) and Niger Delta, Nigeria, by 

Corredor et al (2005), and also, outcrop studies in the Pliocene Mount Corvo beds, SW Sicily, 

Italy, by Nigro and Renda (2004) (see chapters 2 & 4). The criteria are (see Fig. 5.3): 

1. ‘Undeformed’ beds both overlying and underlying the locally deformed strata;  

2. Toplap truncations of local structures and deformed beds by either overlying ‘undeformed’ 

beds or deformed beds in another local stacked structure;  

3. Variable thicknesses of ‘undeformed’ beds overlying the local structures (i.e. growth strata) 
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Fig. 5.3: Schematic diagram of criteria to define slump and ‘early’ structures in stacked beds, 

with the structures incising ‘undeformed’ under-lying beds and being overlain by ‘undeformed’ 

beds. The slump fold facing directions are preferentially aligned with the palaeo-slope direction 

(see Table 5.1; Strachan & Alsop, 2006). 

 

Where local structures are tilted on chevron fold limbs, restorations using stereonets are 

used to re-orientate the structural data to sub-horizontal and the restored data plotted for each 

structure. The error attached to the restoration, using a 2° grid on a Lambert equal-area 

projection stereonet is ca. 1°, which is important as a small angular change may have significant 

effects on low-angle fault behaviour if elevated fluid pressures occurred (Zoback, 2008).  

 Striations on fault plane veins provide data on structural propagation directions. To test 

if the striations are quartz (Mapeo & Andrews, 1991), acid tests using a bottle of approximately 

10% HCl and scratch tests using a steel pen knife have been undertaken. 

 In order to measure the thickness and depositional variations within growth strata above 

the candidate slumps and ‘early’ structures, sedimentary logs have been taken. Where more than 

one log was taken above a structure, correlation of stratigraphic horizons has been undertaken 

and the positions of onlapping and toplapping, and / or laterally-continuous beds, presented on 

sketches of the growth strata. From the log correlation and resultant reconstruction of stratal 

geometries, the timing of structural uplift or subsidence is established. 

 In addition to slump and local structures, incising channels and their sedimentary fill are 

observed in outcrop. Channels are observed at Summerleaze Beach, Bude (SS201067; Fig. 5.4) 

and Black Rock (SS196015) (see chapters 3 & 4), which indicate that there were palaeo-slopes 

within the Bude Formation. Tool marks on the basal channel infill sandstones provide only data 



169 

 

on the palaeo-flow axis of the channel rather than the palaeo-slope direction. Instead, palaeo-

flow indication data from Freshney et al (1979), Higgs (1991), Burne (1995) and the author 

provide a control on palaeo-slope directions across the study area (see Chapter 3). 

 

 

Fig. 5.4: Oriented, scaled and annotated photograph of a channel incision and fill succession in 

relatively sheet-like strata in the cliff at Summerleaze Beach, Bude (SS201067) 

 

5.3 Slump folds 

Within the Bude Formation, there are several beds and structures that have been 

described as slumps (Burne, 1970; Enfield et al, 1985; Hartley, 1991; see Chapter 3). In this 

chapter, soft-sediment deformation structures are reassessed to establish whether they are types 

of slump and, if so, whether they are attached slump folds or massive slump beds containing 

detached folds. In each case, it is established whether the slump beds:  

1. Lie in between ‘undeformed’ deposits that have been truncated below the slump bed and 

younger deposits which infill topography above the slump bed; 

2. Display dewatering structures (i.e. sand volcano, mud injection; Burne, 1970; Montenat et 

al, 2007; see Chapter 2) and slump scars; 

3. Are indicative of the palaeo-slope direction (Strachan & Alsop, 2006). 

 

5.3.1 Attached slump folds 

A low cliff section at Upton (SS200045) contains a ‘recumbent’ fold with discernable 

bedding attached (Fig. 5.5), which lies above ‘undeformed’ deposits and is truncated by a bed 

that overlies the fold. No striations were observed on this truncation surface. The ‘undeformed’ 

beds both drape above and infill the accommodation space ahead of the fold although no 

significant bed thickness changes were observed (implying sedimentation be suspension fall-

out). The infilling beds are cut by a north-directed thrust and this fault ‘zone’ has been eroded 

(Fig. 5.5). No extensional slump scar typical of slump folds was observed within this outcrop 

but this may be either eroded or is not exposed in the cliff. Despite not meeting the growth strata 
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criterion, the fold is considered to have developed at or near the palaeo-surface from the 

‘undeformed’ beds and bed truncation criteria following the Zoetemeijer et al (1992), Nigro and 

Renda (2004) and Corredor et al (2005) convention (Fig. 5.3) (also see Chapter 4).  

 

 

Fig. 5.5: Annotated photograph (top left) and sketch (top right) of the SSE-verging Upton 

attached slump fold (SS200045). A stereonet with a southern hemisphere projection shows the 

mean orientations of all measured beds in the Upton slump fold (bottom) 

 

 As the surrounding bedding dips at approximately 20°S, the fold structural data have 

been restored using stereonet analysis (Fig. 5.5). The folds face downwards towards the SSE on 

the overturned limb, which is sub-parallel to the profile plane strike direction (172°) and the 

hinge line elongation direction (167°). The fold has a tight interlimb angle of 41° (Fig. 5.5) and 

a curvi-linearity of 108° that has developed symmetrically about the hinge line elongation 

direction. The elongation direction is sub-parallel to the palaeo-flow indicators of Higgs (1991), 

Burne (1995) and from this work (see Chapter 3). From the methods of Strachan and Alsop 

(2006) and the criteria considering that it was at or near the palaeo-surface (Fig. 5.3), this 

suggests that the Upton ‘recumbent’ fold is an attached slump fold (sensu lato) that moved as 

one unit with its beds down a SSE-oriented palaeo-slope (Fig. 5.5).  



171 

 

 

 



172 

 

 



173 

 

5.3.2 Detached slump rafts within massive slump beds 

Massive, disaggregated Bude Formation beds (Enfield et al, 1985; Whalley & Lloyd, 

1986; Figs. 5.6-5.7; see Chapter 3) are found in two examples from the study area between 

Northcott Mouth and Black Rock, which are jointly referred to as the Black Rock Slump Bed by 

Freshney et al (1972) and Enfield et al (1985) (see Figs. 3.1a, b & c). In both cases, they contain 

isolated fold raft structures that are not observed in the underlying and overlying ‘undeformed’ 

beds. The overlying beds have a variably-thick infill over the massive beds at both Black Rock 

(Fig. 5.7) and Lynstone (Figs. 5.2 & 5.6; Enfield et al, 1985). However, no observations have 

been made of an extensional slump scar. The massive bed is considered to have developed at or 

near the palaeo-surface consistent with all three criteria following the Zoetemeijer et al (1992), 

Nigro and Renda (2004) and Corredor et al (2005) convention (Fig. 5.3).  

At Lynstone (SS200053), data were collected from 15 detached raft folds and at Black 

Rock (SS196017) 30 detached raft folds were measured. The structural analysis of these two 

sets of slump rafts is described in detail below and includes fabric topology plots comparing the 

slump fold profile planes with other slump raft structural geometries. Similar plots have been 

drawn by Strachan and Alsop (2006) and Strachan (2008) but they have concentrated on 

comparison of the slump raft structural geometries with the slump fold hinge lines, which are 

perpendicular to their profile planes. The descriptions of the Black Rock Slump Bed commence 

with those from Lynstone (Fig. 5.6) and are followed by those from Black Rock (Fig. 5.7). 

 

5.3.3 Detached slump raft folds in the Black Rock Slump Bed at Lynstone 

The structural data collected from 15 detached slump rafts in the ‘Black Rock Slump 

Bed’ at Lynstone were restored using stereonets (Fig. 5.8). As the slump bed at Lynstone is 

folded around a south-directed, ‘inclined-to-recumbent’ chevron anticline, each slump raft fold 

was restored individually to sub-horizontal based on the orientations of the surrounding beds.  

 The results from restoration using a stereonet (Fig. 5.8) gives the mean axial plane 

orientation for the slump rafts as 107/11S (strike circular variance ± 8°; n = 15), making them 

‘reclined’ sheath fold structures. The raft folds face downwards towards the SSW on their 

overturned limbs, which is sub-parallel to the elongation direction. The rafts also have isoclinal-

to-‘elastica’ (i.e. 20° to -20°) interlimb angles and doubly-plunging hinge lines with a large 

degree of curvi-linearity (154° ± 5°; n = 15) about the elongation direction (Fig. 5.8). The mean 

slump raft hinge line elongation direction (201° ± 14°; n = 15) is parallel to the mean profile 

plane strike direction (201° ± 12°; n = 15; mean profile plane is 021/85W) and sub-parallel to 

the palaeo-flow indicators provided by Higgs (1991), Burne (1995) and this work (see Chapter 

3). From the methods of Strachan and Alsop (2006) and the criteria considering that it was at or 

near the palaeo-surface (Fig. 5.3), this suggests that the ‘Black Rock Slump Bed’ at Lynstone is 

a massive slump bed that moved down a SSW-oriented palaeo-slope (Fig. 5.8). 
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Fig. 5.8: Stereonet with a southern hemisphere projection showing restored mean orientations of 

all detached slump raft folds within the Black Rock Slump Bed at Lynstone (SS200053) 

 

H0: Detached slump raft fold profile plane strike direction and hinge line elongation direction ARE 

parallel; H1: The two directions are NOT parallel 

Mean profile plane strike direction (MP) 

Mean elongation direction (ME) 

Variance profile plane strike direction (VP) 

Variance elongation direction (VE) 

N (profile plane strike direction) = NP 

N (elongation direction) = NE 

Z = ((MP-ME)/√((VP/NP) + (VE/NE))) 

Sample size (K) 

99% confidence limit on Z-statistic that H0 is true 

201.27 

200.60 

13.97 

14.03 

15 

15 

0.39 

2 

2.58 

Table 5.2: Statistics used to determine that the detached slump raft profile plane strike and hinge 

line elongation directions are parallel (from the methods of Hayslett & Murphy, 1971) 

 

As the mean profile plane strike direction is parallel to the hinge line elongation 

direction, the profile plane may be a proxy for the down-slope average axis (see Tables 5.1-5.2; 

from the methods of Strachan & Alsop, 2006). In order to justify this statistically, the profile 

plane strike and elongation direction data have been analysed.  

In this statistical analysis, there are two hypotheses. The Null Hypothesis (H0) is “The 

detached slump raft fold profile plane strike direction and hinge line elongation direction are 

parallel”. The alternative hypothesis (H1) is “The detached slump raft fold profile plane strike 

direction and hinge line elongation direction are not parallel”. The results of statistical analysis 

on the profile plane strike and elongation direction data (Table 5.2; after Hayslett & Murphy, 
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1971) show that there is greater than a 99% confidence that the two directions are parallel. This 

suggests that both directions are oriented down-slope (from the methods of Strachan & Alsop, 

2006), which is important as it may not be possible to measure the elongation direction at each 

outcrop. The profile plane data also provide a quality control on the elongation direction data. 

Also, it is suggested that in lithified rock, sheath folds display asymmetric, curvi-linear 

hinge lines about their profile and axial planes (Alsop & Holdsworth, 2004). However, this has 

not been demonstrated in the detached slump raft folds that developed from liquefied sediment. 

One potential reason for this is that during deformation, the liquefied sediment grains in 

detached slump rafts undergo ‘independent’ flow (Craig, 1997) and the heterogeneous shear 

strain associated with the deformation is not accommodated (see Chapter 2). 

 

Evidence for spreading of the ‘Black Rock Slump Bed’ at Lynstone 

In the ‘Black Rock Slump Bed’ at Lynstone no incision of the underlying beds by the 

slump bed was observed (Fig. 5.6; see gusset). The restored slump raft fold orientations show 

that the folds near the cliff trend southwards, and near the foreshore, south-westwards. This 

provides a test of whether the raft folds were spreading out during slump movement.  

Fabric topology plots were constructed to describe whether the restored profile plane 

strike direction (aligned with the palaeo-slope direction) is related to either the slump raft axial 

plane orientation (Fig. 5.9a) or the profile plane dip angle (Fig. 5.9b), and so describe the 3D 

slump raft fold geometry. There is a strong positive relationship between the restored profile 

plane strike direction and the restored axial plane strike direction (R
2
 = 0.9650) (Fig. 5.9a), but 

no relationship between the restored profile plane strike direction and the restored profile plane 

dip angle (R
2
 ≈ 0) (Fig. 5.9b). The results of the topology plot in Fig. 5.9a suggest that there is 

an orthogonal relationship between the restored profile plane strike direction and the restored 

axial plane strike direction and that the raft folds show large variations in movement direction.  

Together with the sedimentary observations, this may suggest that the slump bed was 

deposited directly onto the palaeo-surface, and that it had lost sufficient energy (i.e. waning 

flow) to incise the underlying beds. A model is proposed showing the raft fold geometries as 

they spread out and is illustrated in Fig. 5.9c.  

 

Development of detached slump raft isoclinal-‘elastica’ interlimb angles 

In the Black Rock Slump Bed at Lynstone, the slump raft folds have isoclinal to 

‘elastica’ interlimb angles (i.e. 20° to -20°). According to Strachan and Alsop (2006), slump raft 

folds tighten when their orientations are increasingly sub-parallel to the main down-slope 

direction. To test if this relationship holds for the raft folds, a third fabric topology plot (Fig. 

5.9d) compares for each slump raft fold compares the profile plane strike direction (aligned with 

palaeo-slope direction; see Table 5.2) and the fold tightness (i.e. interlimb angle), giving a 

strong correlation between the parameters (R
2
 = 0.7507).  
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Fig. 5.9: Fabric topology plots and a plan-view idealised sketch representation of slump fold rafts in the Black Rock Slump Bed at Lynstone. The fabric topology 

plots describe the variation in profile plane strike orientation for the detached slump raft folds with: (a) axial plane strike orientation (good positive correlation; R
2
 = 

0.9650); (b) profile plane dip (no correlation); and (d) fold tightness or interlimb angle (positive correlation; R
2
 = 0.7507). The plan-view idealised sketch 

representation of the slump fold rafts in the Black Rock Slump Bed at Lynstone (c) displays idealised raft geometries  

 

 

Fig. 5.10: Correlated sedimentary logs (bottom) across a syn-depositional high-angle normal fault and low-angle fault that control the variable subsidence and 

thickness of growth strata units (top) above the Black Rock Slump Bed at Lynstone (SS2000055). The annotations on the photograph (top) provide details on the 

variations in unit thickness and the stratigraphic cut-offs (i.e. onlapping and toplapping truncations)  
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This suggests that there is a strong relationship between palaeo-slope direction and raft 

fold interlimb angle. This is consistent with the Strachan-Alsop model in which the raft folds 

tighten due to gravitationally-induced shear strain accommodation during slump transportation.  

 

Growth strata deposited above the ‘Black Rock Slump Bed’ at North Lynstone 

Above the ‘Black Rock Slump Bed’ at North Lynstone (SS200055), variable 

thicknesses of stacked beds, together with both onlap and toplap truncations of beds have been 

observed, as is also described by Enfield et al (1985) at Lynstone (SS200053) (Fig. 5.2). As 

with the Lynstone outcrop, normal faults are associated with variably thick stacked beds. Three 

correlated sedimentary logs have been taken across the faults over a distance of 10 m (Fig. 5.10) 

in order to establish whether the stratigraphic stacking pattern was affected over short lateral 

distances by the normal fault movement, following massive slump bed deposition. These logs 

show that there are seven identified stratigraphic units, plus an additional eighth local unit 

(number 6a) recorded in log 2 only. The thickness of the units in logs 2 and 3 is approximately 4 

m, but is only approximately 3 m thick in log 1 (Fig. 5.10). The log details are:  

Unit 1 is thickest in log 3 (> 1 m) and sits in a roll-over anticline above one of the extensional 

faults and has toplap truncations beneath Unit 2;  

Unit 2 is approximately the same thickness across the logs (0.5 m) and generally onlaps onto 

Unit 1 except around the position of log 3; 

Unit 3 is thin (0.15 m) around log 3, thickens around log 2 (0.8 m) but has toplap truncations 

and so thins between log 2 and log 3; 

Unit 4 has toplap truncations beneath Unit 5, is thin around logs 1 and 2 (0.2 m), but thickens 

considerably around log 3 (> 1 m; Fig. 5.10);  

Unit 5 has toplap truncations beneath units 6a and 6b and also consistent thickness (0.2 m); 

Unit 6a is observed only in log 2 (0.2 m thick), has toplap truncations under Unit 6b and sits 

above one of the normal faults (Fig. 5.10);  

Unit 6b is thin around log 1 (0.3 m), onlaps onto Unit 5, thickens considerably between logs 2 

and 3 (> 1 m) and has toplap truncations beneath Unit 7; 

Unit 7 does not display any thickness changes and has continuous beds across the logged area. 

 

Three conclusions can be drawn from the thickness variations of the units in Fig. 5.10: 

1. In the proximity to log 3, some accommodation space was generated on the low-angle listric 

normal fault hanging wall during the deposition of Unit 1, which caused a roll-over anticline 

to develop. The subsequent units are thin with numerous stratigraphic cut-offs, suggesting 

that limited accommodation space was generated above the roll-over anticline at this stage.  

2. Close to log 2, some accommodation space was generated on the high-angle extensional 

fault hangingwall during deposition of Units 3, 6a and 6b, suggesting that the fault was 

reactivated in extension during deposition.  
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3. Close to log 1, some accommodation space was generated on the high-angle extensional 

fault footwall during deposition of Unit 4, but erosion occurred during or just after 

deposition of units 3 and 6a, so that both are missing on the footwall, suggesting that the 

footwall experienced repeated burial and non-deposition or erosion. 

 

The development of variably thick beds (i.e. growth strata) and stratigraphic cut-offs 

above the Black Rock Slump Bed suggests that there is a link between the accommodation 

space generated above the faults and the depositional thicknesses (Fig. 5.10). Where such a link 

exists, massive slump bed deposition generates local accommodation space. However, as the 

slump beds are liquefied structures, variable dewatering may result in fault-controlled variable 

thicknesses of ‘undeformed’ growth strata above a massive slump bed as observed by Enfield et 

al (1985) in Fig. 5.2 and also in the correlated sedimentary logs from Figs. 5.7 and 5.10.  

 

5.3.4 Detached slump raft folds in the Black Rock Slump Bed at Black Rock 

Structural data were collected from 30 detached raft folds within the Black Rock Slump 

Bed at Black Rock (Fig. 5.7), which have the same geometries as the slump raft folds in the 

Black Rock Slump Bed at Lynstone (Fig. 5.6). The results of stereonet analysis on restored data 

(Fig. 5.8) show that all the unrestored rafts face vertically downwards or are steeply dipping to 

the north. The massive bed sits on the steeply north-dipping limb of ‘upright’ chevron anticline 

A and is between shale bed 7a and 7b (see Chapter 4), with the base of the massive bed 

truncating shale bed 7a (see gusset). The structural restoration of the Black Rock Slump Bed 

involves ‘unfolding’ the ‘upright’ chevron folds so that all the beds are sub-horizontal. 

The restoration of the structures using a stereonet gives the mean axial plane orientation 

for the rafts as 098/17N (strike circ. var. ± 3°; n = 30), making them ‘reclined’ sheath folds (Fig. 

5.11). The interlimb angles are isoclinal-to-‘elastica’ (i.e. 20° to -20°) and the doubly-plunging 

raft hinge lines have a large degree of curvi-linearity (122° ± 5°; n = 30) (Fig. 5.11) about the 

mean profile plane strike direction. The folds face in the same direction as the mean profile 

plane strike direction. The raft hinge line elongation direction could not be measured as the raft 

fold hinges face into the ground to the north at Black Rock. Accordingly, the mean profile plane 

strike direction (013° ± 1°; n = 30) was used as a proxy for the down-slope average axis (see 

Tables 5.1 & 5.2; from the methods of Strachan & Alsop, 2006). The statistical geometric 

significance of the association between the profile plane strike direction, fold hinge line 

elongation direction and palaeo-slope direction is described in section 5.3.3 (Table 5.2). The 

mean profile strike direction suggests that the Black Rock Slump Bed at Black Rock was 

transported down a north-dipping palaeo-slope during Bude Formation deposition. This palaeo-

slope direction opposes the directions from the palaeo-flow indicators of Higgs (1991) and 

Burne (1995), but is sub-parallel to those from this work at Widemouth (see Chapter 3) and may 

imply that either there were variable palaeoslope directions within the basin during deposition.  
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Fig. 5.11: Stereonet with a southern hemisphere projection showing restored mean orientations 

of all detached slump raft folds within the Black Rock Slump Bed at Black Rock (SS197017) 

 

Recognition of separate massive slump beds 

In Freshney et al (1972), the Black Rock Slump Bed is apparently observed at both 

Black Rock (SS196017) and Lynstone (SS200053) and the outcrops were assumed to be from 

the same bed. Consequently, this bed has been used as a marker horizon to correlate the Bude 

Formation between the two locations from the work of King (1967). Correlated logs with the 

Black Rock (BRSB) and Lynstone slump bed (LSB) positions are provided in Figs. 3.1a & b.  

The results from stereonet analysis on the axial plane orientations for the two slump raft 

sets (Figs. 5.8 & 5.11) established that the massive slump bed at Black Rock was transported to 

the north but to the south at Lynstone. Thus, the so-called Black Rock Slump Bed is, in fact, 

two slump beds, hereafter called the “Black Rock Slump Bed” and the “Lynstone Slump Bed” 

(see Figs. 3.1a & b). This suggests that the slump beds moved down different palaeo-slopes in 

separate Culm Basin ‘events’ during Bude Formation deposition and clearly invalidates treating 

these slump beds as laterally-continuous structures. 

 

A constrained environment for the Black Rock Slump Bed 

The basal shale below the Black Rock Slump Bed has laminations defined by bedding-

parallel ankerite veins that have been truncated against the base of the massive slump bed. The 

basal truncations may represent either truncation during slump movement or a ‘channel’ cut into 

the underlying shale bed. Under this ‘channel’ hypothesis, the slump raft fold geometries (i.e. 

profile plane strike and axial plane strike directions, and profile plane dip angles) may have 

been affected by such a ‘channel’ reflecting a flow of material towards its centre.  
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Fig. 5.12: Fabric topology plots in the Black Rock Slump Bed at Black Rock to describe the 

variation in profile plane strike orientation for detached slump raft folds with: (a) axial plane 

strike orientation (slight negative correlation; R
2
 = 0.5062); (b) profile plane dip (possible 

positive correlation; R
2
 = 0.6019); and (c) fold tightness or interlimb angle (no correlation)  

 

In order to assess the relationships between the various slump fold geometries, fabric 

topology plots are constructed for the Black Rock Slump Bed at Black Rock. These plots are the 

same as with the “Lynstone Slump Bed”. When the restored profile plane strike direction is 

compared to the restored axial plane strike direction, there is a small reverse relationship 

between the features (R
2
 = 0.5062) (Fig. 5.12a). When the restored profile plane strike direction 

is compared to the restored profile plane dip angle, there is a possible direct (i.e. positive) 

relationship between the features (R
2
 = 0.6069) (Fig. 5.12b). In both cases, further data would 

be required to demonstrate that any clear relationships exists between the directions of the 

slump raft fold profile plane strike and axial plane strike, as well as the profile plane dip angles. 
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Consequently, the statistical analysis does not support the hypothesis that the raft folds were 

preferentially orientated within a ‘channel’ cut into the underlying shale bed.  

 

Development of detached slump raft isoclinal-‘elastica’ interlimb angles  

In the Black Rock Slump Bed, the slump raft folds have isoclinal to ‘elastica’ interlimb 

angles (i.e. 20° to -20°). According to Strachan and Alsop (2006), slump raft folds tighten when 

their orientations are increasingly sub-parallel to the main down-slope direction. In order to test 

if this relationship holds for these slump raft folds, a third fabric topology plot is constructed in 

order to compare the profile plane strike direction (aligned with palaeo-slope direction; Table 

5.2) and the fold tightness (i.e. interlimb angles) for each slump raft fold (Fig. 5.12c). The 

results of the topology plot show that no regression line could be fitted through the data (R
2
 ≈ 0) 

and suggests strongly that there is no relationship between the palaeo-slope direction and the 

raft fold interlimb angles in the Black Rock Slump Bed. This result is surprising because it 

suggests that gravitationally-induced shear strain during slump transportation has not caused the 

detached slump rafts in the Black Rock Slump Bed to become tighter, as would have been 

expected from the results of Strachan and Alsop (2006).  

 

Evidence for variable subsidence above the Black Rock Slump Bed 

Following deposition of the Black Rock Slump Bed at Black Rock (SS197017), black 

shale deposition recommenced (Fig. 5.7). Over-lying the shale, there is a succession of thinly-

bedded siltstones and very fine-grained sandstones topped by a thick, laterally-continuous, very 

fine-grained sandstone bed. In order to describe the strata, 6 sedimentary logs were taken along 

the Black Rock foreshore. From the results of the correlated logs (Fig. 5.7), the Black Rock 

Slump Bed is much thicker in the centre and to the east of the foreshore (10-12 m in logs 1-4), 

but thinner (8 m) towards the west (logs 5-6). Similarly, the overlying black shale is thicker in 

the foreshore centre (> 1 m in logs 2-4) but thinner (0.5 m) both towards the east (log 1) and 

west (logs 5-6). Between the black shale bed and the 2 m thick laterally-continuous sandstone 

bed at the top of the succession, there is a stack of beds up to 5 m thick towards the east (log 1) 

and west (logs 5-6). In the foreshore centre (logs 2-4), the stack of beds is between 3-4 m thick 

and the laterally-continuous sandstone bed at the top of the succession is 1 m thick (Fig. 5.7).  

Reversal of the thickness trends between the slump bed, overlying shale and overlying 

clastic beds suggests that after slump bed and black shale deposition either: (1) there was 

reactivation and movement of the slump bed from the east (log 1) and west (logs 5-6) towards 

the centre of the foreshore (logs 2-4), causing the slump bed to thicken; or (2) the deposition of 

the over-lying strata onto the still liquefied slump bed caused the bed to dewater and compact. 

The second possibility may have been easier to achieve towards the west (log 1) and east (logs 

5-6) where the overlying black shale bed is thinnest (Fig. 5.6) and is consistent with increased 

accommodation space created for deposition of the overlying beds at those positions. 
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5.4 Analyses of high-angle, strata-bound normal faults 

Local, high-angle, strata-bound normal faults occur in Bude Formation outcrops in the 

study area between Northcott Mouth and Black Rock (SS202087-SS195015) and affect only 

one or a few beds at any particular location. With the strata-bound faults, beds above the faults 

may either drape or infill the hanging walls, causing onlap onto the faults. The faults may be 

folded around the hinges of chevron folds or on their limbs, with variably thick beds infilling 

the accommodation space generated, which Mapeo and Andrews (1991) suggested was “syn-

sedimentary”. A test has been undertaken to see whether the faults described here accord with 

the ‘early’ normal faults of Enfield et al (1985) and the ‘pre-folding’ extensional faults of 

Mapeo and Andrews (1991), and as such may be described as ‘early’ structures as in Chapter 4.  

 In order to undertake this test, structural data have been collected from 29 local, high-

angle, strata-bound normal faults from across the study area. Restoration of the fault data has 

been undertaken using stereonets where local faults are present on tilted beds in order to restore 

them to sub-horizontal. Examples of local high-angle, strata-bound normal faults are given here. 

 

5.4.1 ‘Fanning’ array of high-angle normal faults  

At Upton-Phillip’s Point (SS200045), a well-exposed, decimetre-thick sandstone 

bedding surface has been cut by high-angle normal faults (Fig. 5.13). The faults cease at the top 

of the sandstone bed and cut down into the underlying shale bed. The fault planes also display 

veins, which could not be scratched by a pen-knife. From acid tests on the veins, there was 

slight effervescence. This may still suggest that these are quartz veins but with carbonate 

impurities or washed-up calcareous micro-fossils.  

 To test if these are ‘early’ normal faults, observations have been made of ‘undeformed’ 

beds overlying and underlying these structures (see Section 5.2), with surrounding beds dipping 

approximately 25°S. As a result of the 3D exposure surface, onlap pinch-outs of variably thick 

infilling beds onto the faults have not been observed. This suggests that the normal faults are 

consistent with the ‘undeformed’ beds criterion and are described as ‘early’ high-angle normal 

faults (sensu lato) (Fig. 5.13) from the Zoetemeijer et al (1992), Nigro and Renda (2004) and 

Corredor et al (2005) convention (Fig. 5.3).  

From restorations using stereonet analysis on the ‘early’ normal fault data at Upton-

Phillips Point (SS200044) (Fig. 5.13), seven faults have been identified as dipping NNW (i.e. 

synthetic), whilst two dip SE and one dips SSE (i.e. antithetic). Of the seven synthetic faults, 

their strike orientations range between 047° and 076°, whilst of the three antithetic faults, their 

strike orientations are 044-045° and 078°. The mean fault profile through the poles to fault 

planes is oriented: 151/85SW. Striations observed on the fault planes are in a strongly down-dip 

direction (Fig. 5.13) and are sub-parallel to the profile plane to the faults. This suggests that the 

profile plane lies along the movement axis of the synthetic ‘early’ faults (oriented 148°-328°). 

As the striations tend down the fault slip surface, the main movement direction is towards 328°.  
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Fig. 5.13: Annotated photo-montage (top) and sketch of an ‘early’ normal fault array (centre) in 

a sandstone bed (rock sample 64378) at Upton-Phillip’s Point (SS200044). A stereonet with a 

southern hemisphere projection shows the orientations of restored ‘early’ normal faults (bottom) 

 

If the ‘early’ normal faults occurred at or near the palaeo-surface, then they may be 

influenced by gravity. In the Debacker et al (2009) model, slump fault orientations relate to 

palaeo-slopes in the basin during deposition. Although these ‘early’ faults occurred during 

deposition, they are not slump-generated and so the link to a palaeo-slope origin has not been 

demonstrated. Still, they may be the up-dip extensional fault scars of subaqueous but coherent 

landslides, which would suggest a palaeo-slope origin (Schack Pedersen, 1987). As tectonic 

extension is not being invoked during Variscan deformation, this would require further 

investigation to assess whether a palaeoslope origin is valid for the normal fault array. 

Palaeo-flow indicators from sole marks on turbidite bed bases from Higgs (1991) and 

Burne (1995) suggest that the general palaeo-flow direction is southwards, but are perpendicular 
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to the eastwards orientations of trough cross-stratification structures from this work (see Chapter 

3). As demonstrated with the opposing directions of the massive slump beds in Section 5.3.3, 

there may have been times when palaeo-slope directions changed. However, this does not 

demonstrate a palaeo-slope origin for the high-angle, strata-bound normal fault array at Upton-

Phillip’s Point. 

 

5.4.2 Reversed high-angle normal faults due to emergence on the palaeo-surface 

At Upton (SS200046), stacked beds contain a set of high-angle, reversed normal faults 

that presently dip at approximately 9°SE. Each fault cuts 2 or 3 beds and have southwards 

movement directions (Fig. 5.14). The sandstone bed that drapes the reversed normal faults 

thickens considerably into the down-thrown fault block. Above the draping bed, the overlying 

beds are ‘undeformed’, whilst below the draping bed, underlying beds do not appear to correlate 

across the faults but instead pinch into the fault zone (Fig. 5.14). This suggests that the reverse 

faults are consistent with all three criteria and are considered as ‘early’ structures (sensu stricto) 

that occurred during deposition at or near the palaeo-surface, following the Zoetemeijer et al 

(1992), Nigro and Renda (2004) and Corredor et al (2005) convention (Fig. 5.3). 

 To study the affect of ‘early’ high-angle reverse faulting on deposition, two correlated 

sedimentary logs were taken either side of the faults (Fig. 5.14). The logs show that there are 

thickness changes in a sandstone bed that drapes the reversed fault, suggesting that the 

sandstone bed was deposited after fault movement. In the underlying beds, bed thickness and 

facies stacking pattern variations occur on either side of the faults. Commonly, the thicker beds 

are deposited on the upthrown side and may suggest that the downthrown side of the ‘early’ 

reversed normal faults emerged at the palaeo-surface and caused localised bathymetry changes. 

This is analogous to the reversed normal faults observed in the Gulf of Corinth region, Greece 

(photograph provided in Fig. 5.15 by S. Loveless, University of East Anglia). 

 Restorations using a stereonet on the reverse fault data (Fig. 5.16) show that the poles to 

fault planes fit a profile plane that is oriented: 159/71W. The restored reversed faults include 

occasional striations on the fault surfaces (measurements indicated by [ ]), which are oriented: 

082/64N [64/351], 070/70N [70/348], 072/66N, 085/61N [60/352] and 081/71N. The striations 

are strongly dip-parallel and show that the ‘early’ reversed faults moved to the south or SSE.   

The south-to-SSE fault movement direction is opposite to that of the ‘early’ normal 

fault array 100 m further south. The movement directions of these ‘early’ reverse faults are also 

sub-parallel to the palaeo-flow indicators of Higgs (1991), Burne (1995) and from this work 

(see Chapter 3). As with the ‘early’ fault array, the mean reversed fault profile plane strike 

direction is sub-parallel to the ‘early’ fault movement direction from the striations. Although 

these ‘early’ faults were not generated by slump movement processes, they may be the up-dip 

extensional fault scars of subaqueous but coherent landslides, which would suggest a palaeo-

slope origin (Schack Pedersen, 1987), but which has not been proven.
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Fig: 5.14: Photo-montage and annotation of ‘early’ syn-depositional, high-angle reversed normal faults (right) at Upton (SS200045). Also, there are two correlated 

sedimentary logs to show thickness changes across the fault ‘zone’ (left). Rock sample 64379 taken in the fault ‘zone’ (see Chapter 3) 

 

  

Fig. 5.15: Annotated photograph of a road cutting in the Gulf of  Fig. 5.16: Stereonet with a southern hemisphere projection for the restored data of high- 

Corinth, Greece. Photograph show high-angle reverse normal faults  angle, reversed normal faults at Upton (SS200045) 

in uplifted sediments in the Gulf of Corinth (photograph provided by 

S. Loveless, University of East Anglia, 2010 – orientation not known) 
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5.4.3 Regional variations in ‘early’ high-angle normal fault orientations  

Along the Bude Formation outcrops from Northcott Mouth to Black Rock (SS202087-

SS197015), 29 ‘early’ high-angle strata-bound, normal faults have been measured. Restorations 

of the ‘early’ fault data have been undertaken using stereonets in order to assess the original 

fault movement directions (Fig. 5.17) and where possible this was linked with striation 

measurements. The results from the stereonets suggest that there is a variation in ‘early’ high-

angle normal fault slip direction vertically in the strata, as is seen in the beds between Northcott 

Mouth and Maer Cliff (SS202087-SS200075) (Fig. 5.17). The vertical movement direction 

change occurs across the Saturday’s Pit black shale bed with movement southward before black 

shale deposition and northward in later deposits (Fig. 5.17).  

 

 

Fig. 5.17: Stereonet with a southern hemisphere projection (left) and a map describing mean 

restored ‘early’ high-angle strata-bound normal fault orientations (right) between Northcott 

Mouth and Phillip’s Point (SS202087-SS200044) 

 

There is also a lateral variation in ‘early’ high-angle normal faulting directions across 

the coastal outcrops (Fig. 5.17). Above the Saturday’s Pit black shale, fault movement is 

generally to the north between Northcott Mouth and North Maer Cliff (SS202087-SS200075) 

and also Upton and Phillip’s Point (SS200045-SS200043). In contrast, the faults moved 

generally to the south between Lynstone and Upton (SS200055-SS200045). A key location is at 

Upton (SS200045) where ‘early’ normal fault movement directions face each other (i.e. faults to 

the south slipped northwards and vice versa) as shown in this section (see Figs. 5.13 & 5.14). 
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The variation in faulting directions across the coastal outcrops is displayed on a map (Fig. 5.17). 

However, no link has been demonstrated between fault movement direction from striations and 

the palaeo-slope directions derived from sole marks on turbidite bed bases as reported by Higgs 

(1991) and Burne (1995) between the Tom’s Cove and Saturday’s Pit shales (see Chapter 3). 

Although a Variscan tectonic origin to the faulting during deposition is suggested 

(Mapeo & Andrews, 1991; see Chapter 4), further data collection would be required to link 

‘early’ fault movement with the positions of mapped major folds from Freshney et al (1972; 

1979). In addition to ‘early’ high-angle normal faults, there are bedding-parallel faults and low-

angle thrusts with associated hanging wall folds that are described below. 

 

5.5 Analyses of low-angle faults and associated folds 

Bedding-parallel and low-angle faults occur in the Bude Formation outcrops across the 

study area between Northcott Mouth and Black Rock (SS202087-SS195015). Where faults are 

bedding parallel, they are difficult to observe but have occasionally ‘ramped’ through and cut 

overlying beds. Folds are associated with the low-angle faults either where they cut the beds. 

The fold geometries assist the geological interpretation not only by highlighting the faults but 

also in determining the local fault movement direction from the fold facing direction (Suppe, 

1985) and in correlation of beds across the fault. Although quartz veins striations occur on low-

angle fault planes, multiple generations of striations are observed, which prevents the 

determination of the original, local fault movement directions.  

 The low-angle faults are either folded around chevron fold hinges (i.e. ‘pre-folding’ 

thrusts of Mapeo and Andrews (1991) and ‘early’ bedding-parallel thrusts of Enfield et al 

(1985)) or tilted on their limbs (see Chapter 4), and affect only a few beds at any particular 

location above a basal shale bed. Beds below this shale bed are ‘undeformed’, whilst beds above 

the folds may either truncate the structure or infill the accommodation space on the limbs (see 

Mapeo and Andrews, 1991). The ‘pre-chevron’ thrusts of Lloyd and Chinnery (2002) are 

similar but are much larger (kilometric-scale) structures. A test has been undertaken to see 

whether the faults described here accord with the ‘early’ structures as in Chapter 4. 

 In order to undertake this test, structural data have been collected from 35 bedding-

parallel faults and low-angle thrusts. Where the contractional structures are present in tilted 

beds, restoration of the fault and fold data has been undertaken using a stereonet. The 

restoration removes the chevron folds, so the beds and contractional structures return to sub-

horizontal. Examples of bedding-parallel and low-angle faults, with their associated folds, are 

given from Northcott Mouth (SS202082) and Upton (SS200045). 

 

5.5.1 Recognition of ‘early’ contractional structures  

At Northcott Mouth (SS202082), on the limb of a larger-scale ‘upright’ chevron 

syncline, there is a fold pair above a basal bedding-parallel fault with a low-angle fault that cuts 
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the deformed strata (Fig. 5.18a-b; see Chapter 2). The beds in the fold pair are toplap truncated 

by the overlying ‘undeformed’ beds, whilst the long limb of the local anticline is cut by another 

low-angle fault, which truncates against this overlying stack of ‘undeformed’ beds. Beds are 

repeated across both low-angle faults, which suggest that the faults are thrusts that moved to the 

north (Fig. 5.18a-b). Presently, the ‘undeformed’ beds dip at 35° S and variably thick beds are 

not observed overlying the local structures (Fig. 5.18). This suggests that the local structures are 

consistent with the ‘undeformed’ beds and truncated beds criteria and are considered as ‘early’ 

bedding-parallel faults, low-angle thrusts and folds (sensu lato) (Fig. 5.13) from the Zoetemeijer 

et al (1992), Nigro and Renda (2004) and Corredor et al (2005) convention (Fig. 5.3).  

 

 

Fig. 5.18: Annotated photograph (a) and sketch (b) of a local fold pair above a bedding-parallel 

fault and low-angle thrusts at Northcott Mouth (SS202082). Restoring the local deformation (c) 

returns the faults and surrounding ‘undeformed’ beds to sub-horizontal. Removal of the local 

deformation (d) shows missing strata, which is truncated and overlain by ‘undeformed’ beds. A 

stereonet of restored data with southern hemisphere projection (e) shows the orientations of the 

restored local fault and fold structures (includes rock samples 64698-64703; see Chapter 3) 
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The beds and local ‘early’ structures have been restored to sub-horizontal by removing 

the affect of the ‘upright’ chevron folding (i.e. tilt on the limb). This shows that the beds on the 

fold limb between the local ‘early’ fold hinges are overturned, downwards facing and youngs to 

the north (Fig. 5.18c). Although the underlying bedding-parallel fault may have had a slight dip, 

this is too small to be estimated when restored. Removal of the ‘early’ structures places the beds 

into sub-horizontal orientations and shows that there is a large amount of missing strata towards 

the south that was uplifted during ‘early’ deformation (Fig. 5.18d). The missing strata were 

either cut by the local low-angle fault on the long limb of the local anticline or truncated above 

the local structures. The restoration using a stereonet on the ‘early’ structural data shows that the 

fold axial planes were ‘recumbent’ (synclinal axial plane reoriented to: 092/16S; anticlinal axial 

plane: 092/23S), whilst the low-angle thrust is reoriented to 078/06S (Fig. 5.18e). 

 The low-angle fault planes have veins that cannot be scratched by a steel pen-knife and 

suggests that they are quartz veins. Acid tests on the veins show that there was slight 

effervescence. This suggests that these are quartz veins (Mapeo & Andrews (1991) as the 

effervescence possibly resulting from reactions with carbonate impurities and washed-up 

calcareous micro-fossils. These veins show no visible striations to provide a fault movement 

direction, which is towards the north from the fold facing direction and bed repetition. However, 

the base of the overlying ‘undeformed’ bed has a quartz vein with multiple layers of striations 

on this truncation surface. The striations resulted from movement along this bedding plane, but 

this plane may have been exploited by flexural-slip movement during Variscan fold deformation 

(Tanner, 1989), and thus, it cannot be demonstrated to be a bedding-parallel fault.  

 The ‘early’ structures at Northcott Mouth sit on the limb of an ‘upright’ chevron 

syncline (Fig. 5.18). Although the deformation is described as ‘early’ (i.e. formed prior to 

‘upright’ chevron folding at or near the palaeo-surface in sediment), it may be argued that the 

folds formed as a z-fold pair due to flexural slip during chevron folding (Tanner, 1989). 

However, this link to flexural slip folding has not been confirmed because:  

1. No comparative s-folds occur on the other ‘upright’ chevron syncline limb;  

2. No ‘z-folds’ developed in the ‘undeformed’ beds above and below the ‘early’ structures;  

3. Other similar ‘pre-folding’ duplex structures observed by Mapeo and Andrews (1991) 

“display the wrong sense of transport for generation by the flexural slip mechanism and are 

in unfavourable orientations for post- or syn-chevron progressive fold generation”. 

 

If the ‘early’ structures occurred at or near the palaeo-surface, it may also be argued that 

they are influenced by gravity. In the Debacker et al (2009) model, slump fault orientations 

relate to palaeo-slopes in the basin during deposition. Although these ‘early’ contractional 

structures occurred during deposition, they are not slump-generated. Still, they may be the 

down-dip toe thrusts of subaqueous but coherent landslides, which would suggest a palaeo-slope 

origin (Schack Pedersen, 1987), but which has not been proven. Also, palaeo-flow indicators 
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from sole marks on turbidite bed bases from this work are to the ENE, whilst Freshney et al 

(1979) suggested that there are numerous different palaeo-flow directions around Northcott 

Mouth and so, the palaeo-slope direction is variable (see Chapter 3). Thus, it has not been 

demonstrated that the northward movement directions of the ‘early’ structures at Northcott 

Mouth are related to the palaeo-slope direction. 

 

5.5.2 Deformed strata below a normal-faulted sandstone bed 

At Upton (SS200045), contractional and extensional structures overlie ‘undeformed’ 

beds. The beds include a mudstone bed that is cut by a near bedding-parallel basal fault to these 

structures (Fig. 5.19). There are no striations exposed on the vein surfaces that covered the low-

angle fault planes in order to provide movement directions. Instead, the local structures affected 

the thin-bedded package above this basal fault and include an ‘inclined’ anticline that has an 

overturned, steep downwards facing limb that youngs to the SW (Fig. 5.20). Structural 

restoration using a stereonet shows that the anticlinal profile plane is reoriented to 010/75W and 

the axial plane used to be ‘inclined-to-recumbent’ (reoriented to 149/28NE) (Fig. 5.20).  

 

 

Fig. 5.19: Annotated photo-montage (left) and sketch (right) of deformed thin-bedded strata 

below thick-bedded sandstone at Upton (SS200045) 

 

There is a set of normal faults that cuts the variably-thick sandstone bed and the thin 

stack of beds deformed by the local anticline down to the basal low-angle fault (Figs. 5.19-

5.20). The variably thick sandstone is overlain by ‘undeformed’ beds that have not been cut by 

the normal faults and stratigraphically-above these ‘undeformed’ beds, there is the Upton Slump 

Bed (see Fig. 5.5). Therefore, the faults and folds are consistent with all three criteria to describe 

them as ‘early’ structures (Fig. 5.13) from the Zoetemeijer et al (1992), Nigro and Renda (2004) 

and Corredor et al (2005) convention (Fig. 5.3).  
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A model for the structural development is that after ‘early’ contraction, the folded beds 

were cut by a later but still ‘early’ set of conjugate normal faults (Figs. 5.19-5.20). The 

sandstone bed is structurally-above the normal faults and thickened into their hanging walls and 

thus, was deposited during ‘early’ deformation.  

 

 

Fig. 5.20: Progressively restored sketches (top) from a photograph and sketch at Upton 

(SS200045) in Fig. 5.19. This involved restoring for the present dip of the deformed beds (top 

left) and line-lengths (top right). Also, a stereonet with a southern hemisphere projection is 

shown of the restored ‘early’ extensional and compressional deformation (bottom) at Upton 

 

5.5.3 Regional variations in ‘early’ low-angle thrust orientations 

In addition to the two examples given above, 35 ‘early’ bedding-parallel faults and low-

angle thrusts have been measured in the Bude Formation outcrops between Northcott Mouth 

and Black Rock (SS202087-SS197015). From restorations using stereonets on the ‘early’ fault 

data (Fig. 5.21), assuming that the beds prior to chevron folding were sub-horizontal, the mean 
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restored fault dip angle is 10°. Unfortunately, many ‘early’ fault planes have either eroded veins 

or a series of over-printing striations on these veins, making it difficult to measure fault 

movement directions. Where ‘early’ folds are associated with ‘early’ low-angle faults, fold 

facing directions and the correlation of repeated beds are used to infer fault movement 

directions, with the movement directions varying laterally across the Bude Formation outcrops.  

 

 

Fig. 5.21: Stereonet with a southern hemisphere projection (left) and a map describing restored 

mean ‘early’ bedding-parallel fault and low-angle thrust orientations (right) between Northcott 

Mouth and Church Races (SS202087-SS200042) 

 

‘Early’ fault direction changes occur at Maer Cliff (SS200073), South Crooklets’ Beach 

(SS200069), Bude to North Lynstone (SS202065-SS200055), Upton (SS200045) and Phillip’s 

Point (SS200043; Fig. 5.21). Although a Variscan tectonic origin to the faulting is suggested 

during deposition (Mapeo & Andrews, 1991; see Chapter 4), further data collection would be 

required to link the faults to the positions of mapped major folds in Freshney et al (1972; 1979).  

 

5.6 Discussion of Bude Formation slumps and ‘early’ structures 

Slumps and local ‘early’ structures are common throughout the Bude Formation 

outcrops. The massive slump beds are usually classed as depositional features (Hartley, 1991) 

and formed due to the presence of palaeo-slopes (Woodcock, 1979; Strachan & Alsop, 2006). 

On the other hand, the ‘early’ structures, including the slump folds, may be classed as structural 



193 

 

features and formed due to deformation prior to folding at or near the palaeo-surface (Mapeo & 

Andrews, 1991; Zoetemeijer et al, 1992; Nigro & Renda, 2004; Corredor et al, 2005).  

 In this work, it was shown that some of the ‘early’ extensional structures (e.g. at Upton; 

Figs. 5.13 & 5.14) were emergent onto the palaeo-surface and affected deposition. This is 

consistent with the interpretations of Mapeo and Andrews (1991) of “syn-sedimentary” 

deformation but contradicts the deeper burial (i.e. > 50 m) theory of Whalley and Lloyd (1986). 

 An alternative explanation for the ‘early’ faults is that they are layer-bound compaction 

(polygonal) faults, as imaged in seismic sections from Early Eocene-Late Oligocene North Sea 

deposits (Cartwright & Dewhurst, 1998). Although the seismically-interpreted faults are on 

kilometric-scales, it is the range of non-preferred strike orientations that is relevant (see Fig. 3 

of Cartwright and Dewhurst, 1998). The ‘early’ high-angle, strata-bound normal faults have a 

preferred range of strike orientations, contradicting the Cartwright and Dewhurst (1998) model. 

 The presence of palaeo-slopes during Bude Formation deposition has been described 

previously using palaeo-flow indicators from sole marks on turbidite bed bases (Freshney et al, 

1979; Higgs, 1991; Burne, 1995; see Chapter 3). North of Bude, variable palaeo-slope 

directions have been inferred by Freshney et al (1979), but south of Bude, a general southward 

palaeo-slope direction is inferred (Higgs, 1991; Burne, 1995). In contrast, at least two palaeo-

slopes are evidenced from the opposing palaeo-flow directions of the Lynstone and Black Rock 

Slump Beds (Figs. 5.8 & 5.13). North of Northcott Mouth (SS202087), the occurrence of slump 

beds, and hence, the generation of palaeo-slopes appear to increase higher in the Bude 

Formation (Enfield et al, 1985). The slumps may have been generated by the variable palaeo-

slope directions inferred by Freshney et al (1979) and are described further in Chapter 9. 

 Although ‘early’ deformation modified the palaeo-surface during Bude Formation 

deposition (also see Chapter 4) a link between the ‘early’ structures and regional palaeo-slopes 

in the Culm Basin at that time has not been demonstrated. Instead, the ‘early’ structures could 

have developed locally as part of the Variscan deformation (Enfield et al, 1985; Whalley & 

Lloyd, 1986; Lloyd & Chinnery, 2002) and possibly during deposition (“syn-sedimentary” pre-

folding structures of Mapeo & Andrews, 1991; see Figs. 4.11a, 4.13, 5.14 & 5.19).  

However, Mapeo and Andrews (1991) suggest that their ‘pre-folding’ structures 

occurred in lithified rock due to the presence of quartz veins on ‘early’ (i.e. ‘pre-folding’) fault 

planes. This can be challenged on two grounds:  

1. Hot (150-300°C) quartz-rich fluid fluxes are recognised in the Culm Basin during Variscan 

deformation (De Wall & Warr, 2004; see Chapter 3) and may have precipitated on ‘early’ 

fault planes, creating quartz veins with striations without need for deep burial.  

2. On ‘early’ bedding-parallel faults, flexural-slip movement (Tanner, 1989) is likely to have 

been accommodated during progressive Variscan fold deformation, producing multiple 

quartz vein generations with striations on these planes and so, the presence of quartz veins 

may not reflect the lithological state at time of first deformation.  
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Whalley and Lloyd (1986) observed bedding-parallel north-directed thrusts that 

exploited slump beds. This thrust orientation may suggest that following slump bed deposition, 

this bed retained sufficiently elevated fluid pressures that it remained ‘weak’ (i.e. sediment). If 

this is the case, the thrust movement may have been assisted by such ‘weak’ beds.  

 

Slump folds (from Strachan & Alsop, 2006) Faults in slumps (from Debacker et al, 2009) 

Little length change in direction parallel to strike 

of controlling palaeo-slope 

Little displacement in direction parallel to strike 

of controlling palaeo-slope 

Folds have axes parallel to palaeo-slope strike and 

hence have undergone no hinge rotation 

Fault plane strike is parallel to palaeo-slope 

strike and hence have undergone no rotation 

Vergence or facing direction is deemed as slip 

direction and is in a down-slope direction 

Fault movement direction is deemed as slip 

direction and is in a down-slope direction 

Folds generated by heterogeneous simple shear 

about the slip direction 

Faults generated by heterogeneous compression 

/ extension about slip direction 

In slumps, fold asymmetry senses oppose each 

other about down-slope average axis 

Antithetic / synthetic fault slip directions oppose 

each other about down-slope average axis 

Maximum fold elongation direction is aligned 

down-slope 

Maximum fault displacement direction is 

aligned down-slope 

Fold profile plane is aligned with maximum 

fold elongation direction (down-slope direction) 

Fault profile plane is aligned with maximum 

displacement direction (down-slope direction) 

Fold hinges will verge and face in a statistical arc 

about transport direction 

Faults become listric (curve down) and face in a 

statistical arc about transport direction 

With applied shear stress, folds tighten and hinges 

rotate into a transport-parallel direction 

With applied shear stress, fault angle decreases 

and rotates into a transport-parallel direction 

In slumps, transport direction is parallel to mean 

axial-planar intersection of opposed vergence folds  

Transport direction is parallel to mean fault 

plane intersection of opposed trending faults 

Hinges rotate at either end to form curvi-linear 

fold geometries 

Fault arrays form a curvi-linear break in affected 

strata 

Table 5.3: Summary table of structural methods for studying palaeo-slope directions from slump 

analysis from both Strachan and Alsop (2006) and Debacker et al (2009). The method in bold is 

a new method designed and tested in this chapter. The potential methods in italics remain 

untested but may be recognised in faulted slump beds to enhance palaeo-slope methodology 

 

5.6.1 Discussion on the palaeo-slope direction assessment methodologies 

In this chapter, a series of methods drawn from Strachan and Alsop (2006) were 

employed to assess the palaeo-slope directions from the structural orientations of slump raft 

folds within both the Lynstone and Black Rock slump beds. The structural and statistical 

analyses indicated that there is a statistically-significant alignment between the slump raft fold 

profile plane direction (π-girdle) and the maximum fold elongation direction, and hence, the 

palaeo-slope direction (Table 5.3). This relationship is analogous to the fault profile plane (π-
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girdle) alignment with the maximum displacement direction, and hence, the palaeo-slope 

directions from the methods for slump fault orientations of Debacker et al (2009).  

Demonstrating that the slump fold methods of Strachan and Alsop (2006) and slump 

fault methods of Debacker et al (2009) are analogous implies that there could be other statistical 

relationships between the methods and therefore a comparison has been undertaken (Table 5.3). 

From the comparison, in addition to the slump fold method determined in this chapter (bold in 

Table 5.3), it appears that there are two slump fold relationships without existing analogous 

slump fault relationships. The potential slump fault relationships (in italics in Table 5.3) are: (1) 

antithetic / synthetic fault slip directions that oppose each other about a down-slope average 

axis; and (2) fault maximum displacement is aligned down-slope.  

Therefore, the validity of the potential slump fault relationships needs to be tested on 

faults within a demonstrably faulted slump bed. Unfortunately, this was not possible in the Bude 

Formation and would require further study. 

 

5.7 Summary of slumping and ‘early’ deformation in the Bude Formation 

The Bude Formation contains a number of ‘early’ structures that lie between 

‘undeformed’ beds. The structures include slumps that occurred in unlithified sediments at or 

near the palaeo-surface, which moved down palaeo-slopes in the Culm Basin during deposition. 

Other structures include ‘early’ high-angle, strata-bound normal faults, and both bedding-

parallel fault and low-angle thrusts, with their associated folds, that occurred in unconsolidated 

sediments at or near the palaeo-surface (see Chapter 4). This is of importance to the general aim 

of the thesis, namely to establish criteria for distinguishing between folds in rock and sediment.  

A palaeo-slope origin for the ‘early’ bedding-parallel faults and low angle thrusts, with 

their associated folds, is possible where their direction of movement is parallel to palaeoflow 

indicators and slump fold elongation directions, but has not been proven fully. In the case of the 

high-angle, strata-bound normal faults, as tectonic extension is not being invoked during 

Variscan compressional deformation, this may suggest that a palaeoslope origin could cause 

their generation. This requires further investigation to assess whether this is the case.  

 As the slump and ‘early’ deformation structures occurred in unlithified sediment, other 

soft-sediment and/or tectonically-deformed sediment features should be present in the Bude 

Formation outcrops as well. The purpose of Chapter 6 is to consider these additional sediment 

deformation structures as well, including what they suggest about the mechanical state of the 

Bude Formation beds during Variscan deformation, which is of importance to the general aim of 

the thesis.  
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Chapter 6: Field evidence for deformation in sediment from the 

Bude Formation 

 

6.1 Introduction 

In Chapters 4 and 5, it was recognised that many Bude Formation folds formed in 

sediment at or near the palaeo-surface. In this chapter, further evidence is provided that is 

relevant to part of the general aim of the study, namely of the Bude Formation lithification state 

during folding, using observations and measurements between Northcott Mouth and Black Rock 

(SS202087-SS195015) of: (1) deformed bedding-parallel ankerite veins (see Chapter 3); (2) 

bulbous-hinged beds in folds; and (3) mud injections (see Chapter 2) cutting fold hinge zones.  

 Important Bude Formation structures described in the literature include: bulbous-hinged 

sandstone and siltstone beds in ‘upright’ chevron folds with inter-limb angles less than 70° (see 

Chapter 2; Sanderson, 1974); the ‘early’ structures and slumps deformed by ‘upright’ chevron 

folds (Enfield et al, 1985; Mapeo & Andrews, 1991; Hecht, 1992; see chapter 4 & 5); and sand 

volcanoes on the tops of contorted beds (Burne, 1970; see Chapter 2). However, the significance 

of the bedding-parallel ankerite veins (see Chapter 3) and mud injections (see Chapter 2) cutting 

chevron fold hinge zones have not been described previously for the Bude Formation beds.  

 The Bude Formation is a type area for chevron folds (Freshney et al, 1972; 1979; Ramsay, 

1974; Sanderson, 1974; 1979; Lloyd & Whalley, 1986; Davison et al, 2004), with both ‘upright’ 

and ‘inclined-to-recumbent’ types observed. North-directed thrusts cut the chevron folded beds 

and have also been deformed by the chevron folds (Enfield et al, 1985; Whalley & Lloyd, 

1986). Increasingly towards the south of the Culm Basin, the chevron folds have been modified 

by south-directed shear deformation, which generated increasingly south-directed ‘inclined-to-

recumbent’ chevron folds (Sanderson, 1979; Lloyd & Whalley, 1986; see Chapter 4). North-

directed chevron folds may have formed where thrusts and associated hanging wall folds have 

been emplaced prior to chevron folding and then refolded (Lloyd & Chinnery, 2002; see 

Chapter 2). In order to provide insights into the progressive Variscan deformation that affected 

the Bude Formation beds, data was collected from all the different structures in the Bude 

Formation outcrops. Its analysis has involved stereonet projections of structural features and 

restoration of some of the thrust faults also using stereonets (NB. each estimated angular data 

mean is accompanied by an estimated circular variance). 

 

6.2 Bedding-parallel ankerite veins  

Bedding-parallel ankerite veins are observed in many of the Bude Formation shale beds 

(see Chapter 3). As an example, the thin section 64375 from a shale sample gathered at Upton 

(SS200045) has an ankerite vein that was precipitated into a fracture as it opened. The fibres 

grew from a median line in the centre to the fracture edges (i.e. antitaxial; see Chapter 2). The 
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mineralogy of the vein differs from the present surrounding shale bed, which is predominately 

composed of kaolinite (Fig. 6.1), suggesting that ankerite-rich fluids migrated through Bude 

Formation deposits (see Chapter 3). The formation of bedding-parallel veins requires:  

1. Bedding-parallel stresses (σBP) greater than the bedding-normal stress (σBN);  

2. A sub-vertical minimum principal stress direction (σmin) in extension;  

3. All stresses reduced by high pore-fluid pressures (see Chapter 2). 

 

 

Fig. 6.1: Photomicrograph (plane-polarised light; view = 1 cm) and sketch of thin section 64375 

with dilational, bedding-parallel ankerite veins. Vein growth is from the centre to the edges 

 

 

Fig. 6.2: (a) Photograph and (b) sketch of syn-depositional deformation of ankerite veins within 

a shale bed at North Upton (SS200048). Restoration (c and d) of the syn-depositional 

deformation has been undertaken (bottom) to show schematically how the stacked ankerite 

veins and inter-bedded shale may have looked before minor local deformation 
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In order to study the timing of the vein development, an assessment was made as to 

whether local structures had deformed the veins (see Chapter 3). In an example shale bed from 

North Upton (SS200047; Fig. 6.2a), a sequential set of diagrams shows the restoration of the 

deformation back to the original sub-horizontal mud bed with precipitated bedding-parallel 

ankerite veins (Figs. 6.2a-d). Initially, the bedding-parallel ankerite veins precipitated in the 

shale bed (Fig. 6.2d) prior to deformation of the bed into a local structure (Fig. 6.2c). After 

deformation, mud was deposited, with the variably thick deposits onlapping and then, draping 

the local structure (see chapters 4 & 5 for these criteria). In the later mud deposit, more bedding-

parallel ankerite veins were precipitated up to the onlapping stratigraphic relationship onto the 

local structure (Fig. 6.2b; see chapters 2, 4 & 5).  

 The structural restoration (Fig. 6.2) shows ankerite veins precipitating near the palaeo-

surface, penecontemporaneously with deposition. If this is the case, the overburden thickness 

(h) would have been relatively small when the ankerite veins formed, so that the lateral bedding 

extent was relatively large in comparison. This caused the confining sub-horizontal bedding-

normal stress (σBN) to be large elevated pore-fluid pressures (Pf) (Davis & Reynolds, 1996), 

possibly resulting from contemporaneous Variscan deformation (Enfield et al, 1985; Whalley & 

Lloyd, 1986; Leveridge & Hartley, 2006). This is consistent with Beach (1977) and Jackson 

(1991), who suggested that some of the Bude Formation veins are deformed by the ‘upright’ 

chevron folds. Alternatively, the ankerite veins may have exploited the laminations after the 

minor structure formed, due to migrating diagenetic fluids through the Culm Basin, although the 

veins have been described as siderite by De Wall and Warr (2004) (see Chapter 3). 

 

6.3 Bulbous hinges in Bude Formation folded beds 

Bulbous-hinged folds have thicker hinges than their limbs (i.e. dip isogon fold classes 

1C to 3) (Ramsay, 1967). Ramsay (1974) maintained that bulbous-hinged folds are expected as 

a consequence of folding in variably-thick multi-layered rock. However, other explanations are 

possible because bulbous-hinged folds have developed in similar-thickness multi-layer 

plasticine models (Price & Cosgrove, 1990), folds demonstrably in sediment (i.e. slumps; see 

Chapter 2; Waldron & Gagnon, 2011) and folds that are assumed to have occurred in rock 

without fracturing in its outer arc (i.e. ‘upright’ and ‘inclined-to-recumbent’ chevron folds; 

Ramsay, 1974). In all cases, a degree of dilation is required in the hinge zone (Ramsay, 1974; 

Price & Cosgrove, 1990). Davis and Reynolds (1996) and Zoback (2008) showed that for 

dilation to occur: (1) the minimum principal stress direction (σmin) is in extension; (2) formation 

depths are in the top 5 km of the upper crust (i.e. temperatures below 150°C), where dilation is 

more likely; and (3) pore fluid pressures are elevated towards lithostatic pressure. 

In the case of folded multi-layer slumps, the presence of bulbous hinges may reflect 

hinge zone dilation during sediment folding, where over-pressured water was unable to escape 

(see Chapter 2). However, in the case of Variscan chevron folding, Ramsay (1974) assumed that 
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the beds were lithified when the deformation took place. Examples in the Bude Formation 

outcrops of bulbous-hinged folds originally in sediment (i.e. slump folds) and folds assumed to 

have developed in rock (i.e. chevron folds) were used to assess the validity of this assumption. 

 

6.3.1 Bulbous hinges in slump folded beds 

Where multi-layered sandstones, siltstones and shales underwent slumping in the Bude 

Formation outcrops, bulbous-hinged beds are common. In an example at Upton (SS200046), the 

folded beds have irregular layer thicknesses along their limbs as well as bulbous hinges (Fig. 

6.3). Similar observations in slump folded beds have been made by other authors (Woodcock, 

1976; Patterson & Tobisch, 1993; Waldron & Gagnon, 2011). As all the lithologies in the folds 

have bulbous hinges (i.e. classes 1C to 3 dip isogons; Fig. 6.3), it suggests that all the beds had 

low coherence during slump deformation (Ramsay & Huber, 1987). This is to be expected given 

that slump beds were liquefied sediment when they were deformed (Owen, 1987).  

 

 

Fig. 6.3: Annotated photograph and sketch of the SSE-verging Upton attached slump fold 

(SS200045; looking 060°) with bulbous hinged beds, and ‘undeformed’ beds above the slump  

 

 

Fig. 6.4: Annotated photograph and sketch of an ‘upright’ chevron syncline at Upton-Phillip’s 

Point (SS200045; looking 090°), with two bulbous-hinged siltstone and sandstone beds 
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6.3.2 Bulbous hinges in ‘upright’ chevron folded beds 

Sanderson (1974) observed bulbous-hinged sandstone and siltstone beds in ‘upright’ 

chevron folds where their interlimb angles are less than 70°. An example is in a multi-layered 

stack of similar thickness beds at Upton-Phillip’s Point (SS200044; Fig. 6.4). In this example, 

all the lithologies in the folds show bulbous hinged beds and have similar bed geometries to the 

slump fold at Upton (SS200046; Fig. 6.3; see Chapter 5) that formed in sediment.  

Many ‘upright’ chevron folded beds in the Bude Formation outcrops have bulbous 

hinges with dip isogon patterns that are indicative of low coherence (i.e. classes 1C to 3; 

Ramsay & Huber, 1987) (Fig. 6.4). However, Ramsay (1974) assumed that the beds were 

lithified during Variscan chevron folding. It would expected that if this was the case, although 

the absolute rheology of the beds may not be important, the sandstone beds would have a higher 

coherence than the siltstone and shale beds, due to the lower clay content in the sandstone beds. 

This would result in more bulbous-hinged siltstone and shale beds (i.e. classes 1C to 3 dip 

isogons) than in the sandstone beds, with little bed thickness changes around the hinge (i.e. class 

1B dip isogons; Ramsay & Huber, 1987). This is not the case in many Bude Formation folds. 

 

6.3.3 Bulbous hinges in ‘inclined-to-recumbent’ chevron folded beds 

In ‘inclined-to-recumbent’ chevron folded beds at Church Races (SS200042), there is 

an example of a south-directed ‘inclined-to-recumbent’ chevron anticline where only the shale 

beds have bulbous hinges (Fig. 6.5). This suggests that the shale beds were less coherent than 

the sandstone and siltstone beds during deformation. This is consistent with the description of 

folded rocks in Ramsay and Huber (1987) in which the more coherent sandstone beds have class 

1 dip isogons and the less coherent shale beds have class 2 to 3 dip isogons.  

 

 

Fig. 6.5: Annotated photograph and sketch of a south-directed, ‘inclined-to-recumbent’ chevron 

anticline at Church Races (SS200042; looking 090°) with bulbous-hinged shales  

 

In contrast, bulbous-hinged multi-layer sandstone, siltstone and shale beds occur in 

other ‘inclined-to-recumbent’ chevron folds; an example being an ‘inclined-to-recumbent’ 

chevron anticline at Phillip’s Point (SS200043; Fig. 6.6). The bed geometries are similar to 

those observed in the Upton slump fold (SS200046; Fig. 6.3) and Upton-Phillip’s Point 
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‘upright’ chevron fold (SS200045; Fig. 6.4) but differ from those in an apparently similar fold 

nearby at Church Races (SS200042; Fig. 6.5). This apparent contradiction will be explored 

further in Chapters 7 and 8 using the dip isogon methods of Ramsay (1967).  

 

 

Fig. 6.6: Annotated photograph and sketch of south-directed ‘inclined-to-recumbent’ chevron 

anticline at Phillip’s Point (SS200043; looking 090°) with bulbous-hinged beds 

 

6.4 Structural geometries of progressive Variscan deformation structures 

To provide an overview of the Variscan deformation, structural data were collected 

between Northcott Mouth and Black Rock (SS202087-SS196015) from the ‘upright’ and 

‘inclined-to-recumbent’ chevron folds (Figs. 6.4, 6.7 & 6.9) and the cross-cutting faults (Figs. 

6.7-6.8). The chevron folds deform ‘early’ extensional and contractional structures (Mapeo & 

Andrews, 1991) and some of the north-directed thrusts (Enfield et al, 1985; Whalley & Lloyd, 

1986). Although the ‘inclined-to-recumbent’ chevron folds are generally south-directed, north-

directed chevron folds are also observed. In this section, descriptions are provided of the north-

directed thrusts, followed by the two types of chevron folds observed in the Bude Formation. 

 

6.4.1 Structural geometry of north-directed thrusts 

A number of north-directed thrusts cut the chevron folded beds, whilst other thrusts 

have been deformed by chevron folds (Enfield et al, 1985; Whalley & Lloyd, 1986). Examples 

of folded thrusts are at Lynstone (SS200051; Enfield et al, 1985; see Chapter 5) and South 

Lynstone (SS200053; Fig. 6.7). In order to establish the original thrust orientations, restorations 

were undertaken using stereonets (Fig. 6.8) of 19 north-directed thrusts in the Bude Formation.  

Restoration of the thrust data using a stereonet (Figs. 6.7 & 6.8) shows that the mean 

thrust orientation may have been 077/29S (strike circular variance ± 6°; dip ± 9°; n = 19). 

However, it was not possible to collect striation measurements from the quartz veins on the 

thrust planes due to erosion of the veins and / or lack of surface exposure where veins were 

observed. If dip-slip movement occurred on the thrusts, this would be perpendicular to the strike 

direction and towards 347° (i.e. northwards), consistent with Whalley and Lloyd (1986). 
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Fig. 6.7: Annotated photograph and sketch of a modified ‘upright’ chevron anticline hinge zone 

cut by a north-directed thrust at Lynstone (SS200050)  

 

 

Fig. 6.8: Stereonet with a southern hemisphere projection showing the mean orientations of 

structures related to ‘upright’ chevron fold deformation in the Bude Formation. This includes 

restored north-directed thrusts that either cut the folds or have been deformed by the folds 

 

6.4.2 Structural geometry of ‘upright’ chevron folds 

A structural analysis using a stereonet for 30 ‘upright’ chevron folds in the Bude 

Formation (Fig. 6.8) gave the mean axial plane orientation as 087/84°N (strike ± 2°; dip ± 2°; n 

= 30; i.e. ‘upright’) and a mean interlimb angle of 67° (± 6°; n = 30). These match the results of 

Davison et al (2004) (see Chapter 2).  
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6.4.3 Structural geometry of south-directed, ‘inclined-to-recumbent’ chevron folds 

Structural analysis using a stereonet for 30 south-directed ‘inclined-to-recumbent’ 

chevron folds in the Bude Formation (Fig. 6.9) gave the mean axial plane as 099/40N (strike ± 

2°; n = 30; Fig. 6.9; i.e. ‘inclined-to-recumbent’) and the mean interlimb angle as 54° (± 5°; n = 

30). This is slightly more than the Davison et al (2004) estimate for same chevron fold type (see 

Chapter 2). Using the axial plane dip angle (ω), the formula estimating the dimensionless shear 

strain value (γ ≥ 0) accommodated by the chevron folded beds is (Davis & Reynolds, 1996):  

 

γ = tan (90°-ω)      (6.1) 

 

The mean amount of south-directed shear strain accommodated in the Bude Formation 

to the south of Bude is: 1.28 ± st. dev. 0.50 (n = 30). Across these outcrops, south-directed shear 

strain accommodation generally increases to the south (Sanderson, 1979), but the amount of 

strain accommodated varies laterally at any one point (Lloyd & Whalley, 1986; 1997). A further 

discussion of the accommodation of south-directed shear strain is provided in Chapter 8. 

 

 

Fig. 6.9: Stereonet with a southern hemisphere projection showing the mean orientations of 

structures related to ‘inclined-to-recumbent’ chevron fold deformation in the Bude Formation 

 

6.5 Mud injections cutting fold hinges 

Mud injections occur in sedimentary successions where burial and / or deformation has 

caused mud to liquefy in order to overcome the overburden confining pressure (PC), by allowing 

fluids to escape during fluidisation (Owen, 1996; see Chapter 2). In the Bude Formation, mud 
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injections cut some of the ‘upright’ chevron folds hinges (e.g. Upton-Phillip’s Point; SS200044; 

Fig. 6.10) and possibly, a south-directed ‘inclined-to-recumbent’ chevron fold hinge at North 

Widemouth (SS200032; Fig. 6.12). Although the presence of mud injections suggests that the 

source bed was sediment, the surrounding beds may have been either sediment or rock. 

 

 

Fig. 6.10: Photograph and sketch of a mud-injected, ‘upright’ chevron anticline at Upton-

Phillip’s Point (SS200045). Notice the ‘zigzag mud injections path and north-directed thrust 

cutting the folded beds. The thrust is deformed by the ‘inclined-to-recumbent’ chevron folding 

 

 

Fig. 6.11: Stereonet with a southern hemisphere projection showing the mean orientations for 

mud injections cutting their ‘upright’ chevron folds in the Bude Formation 

 

6.5.1 Mud injections cutting ‘upright’ chevron fold hinge zones 

 Twenty mud injections were observed to cut stacked beds in ‘upright’ chevron fold 

hinges between Northcott Mouth and Black Rock (SS202087-SS195015). In all cases, minor 
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extensional offsets were accommodated along the mud injection planes that result either from 

volume reduction as mud-rich fluid escaped or from extensional reactivation. Most of the mud 

injection plane trajectories are complicated. For example, at Upton-Phillip’s Point (SS200044) 

the mud injection has a bifurcating ‘zigzag’ pattern through the folded beds until it reaches an 

overlying folded thrust (Fig. 6.10). The mud injections have either exploited fractures associated 

with outer-arc extension or pre-existing weaknesses in the beds before chevron folding. 

A structural analysis using a stereonet for the 20 mud injections (Fig. 6.11) gave the 

mean injection plane orientation as 087/84N (strike ± 2°; dip ± 3°; n = 20), which is sub-parallel 

to the mean axial plane orientation, 086/84S (strike ± 1°; dip ± 8°; n = 20; Fig. 6.11), of the 

mud-injected ‘upright’ chevron folds. Thus, it is possible that the injections exploited axial-

parallel fractures formed by outer-arc extension. For the mud to inject through folded beds, the 

fluid pressures must exceed the lithostatic pressure and force the horizontal stress direction (σH) 

into extension (Davis & Reynolds, 1996; Zoback, 2008; see Chapter 2). 

 

6.5.2 Mud injections cutting a south-directed chevron fold hinge zone 

In an example at North Widemouth (SS198029), mud lines a steeply north-dipping 

normal fault plane that cuts a south-directed ‘inclined’ anticlinal hinge (Fig. 6.12). The normal 

fault plane is oriented at 102/74N, which is oblique to the axial plane orientation (093/38N). 

The mud-lined normal fault becomes bedding-parallel, with a mud sediment bed on the 

overturned steep north-dipping limb of this ‘inclined’ chevron anticline (Fig. 6.12). 

There are currently two possible explanations for the development of the fault plane. 

The first is that it is a normal fault plane that cuts the ‘inclined’ chevron anticline. The fault 

plane was smeared during its movement with mud from a thick mudstone bed that may have sat 

above the cliff line but has since been eroded away. Mud smears are continuous on normal fault 

planes only where the shale-to-gouge ratio (SGR), or the ratio of the total shale bed throw to the 

shale bed thickness, satisfies SGR ≤ 3, but due to a lack of mud, a shale smear is only developed 

intermittently on fault planes with an SGR > 3 (Couples, pers. comm., 2007). Fossen (2010) 

terms this the SGR, the ‘shale smear factor’ (SSF), which on fault throws ≥ 10 m, has a SSF ≤ 4. 

Thus, the Couples (pers. comm., 2007) and Fossen (2010) models are consistent.  

However, the source of the mud smear has not been established, although candidates 

include the Tom’s Cove (TCS) and Saturday’s Pit (SPS) shale beds. The TCS Bed is found in 

the nearby cliffs, but it may lie below the folded beds; whilst the SPS Bed is likely to have been 

above the cliff section and so has been eroded away (King, 1967; Freshney et al, 1972).  

The second possible explanation is that this is a mud injection plane that exploited 

axial-parallel fractures formed by outer-arc extension. This suggests that mud sediment was 

folded during south-directed Variscan deformation. The source of the mud may have been a thin 

shale bed, marked in Fig. 6.12, within the folded bedding stack in the North Widemouth 

outcrop. In this case, this would require that some of the beds remained as mud sediment during 
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Variscan deformation. However, the volume of mud required to generate such an injection may 

be large because the mud lines this fault plane to the top of the cliff, and so, this potential source 

bed may have been too thin to have generated the required mud-fluid volumes. Also, as there 

are no structures that cross-cut the injection plane, the timing of the extensional movement 

during progressive Variscan deformation is not known.  

 

 

Fig. 6.12: Annotated photograph (top left), sketch (top right) and stereonet with a southern 

hemisphere projection (bottom) of the North Widemouth south-directed ‘mud-injected’ 

‘inclined’ anticline, where a possible mud injection cuts the fold hinge and long limb 

(SS198029). Notice that extension accommodated on the injection plane reduces to zero where 

it cuts the fold hinge, whilst a minor thrust accommodates deformation on the short limb 

 

6.6 Discussion 

The evidence provided in this chapter and previously in Chapters 3, 4 and 5, suggests 

that the ‘early’ Variscan deformation in the Bude Formation occurred in sediment, near the 

palaeo-surface. Further analyses in this chapter includes evidence of:  

1. Mud injections that cut the chevron folds, suggesting that some of the shale beds were still 

mud sediment during Variscan fold deformation;  

2. Bedding-parallel ankerite veins affected by local folding at or near the palaeo-surface;  
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3. Bulbous-hinged multi-layer folded beds that form usually in all the lithologies in the slump, 

‘upright’ and some ‘inclined-to-recumbent’ chevron folded beds. 

  

Together, these observations and results raise questions and difficulties regarding the 

assumption that progressive development of Variscan folding occurred entirely in lithified rock 

(Ramsay, 1974). Clearly, a better understanding is needed of the mechanical state of the Bude 

Formation beds during Variscan deformation. Accordingly, Chapter 7 investigates the effect of 

the changes in the mechanical state of folded layers within multi-layered successions and 

materials. This idea has precedence. Waldron and Gagnon (2011) assessed the mechanical or 

lithification states of folded multi-layers from various formations, in order to demonstrate the 

differences in lithological coherence. They employed the dip isogon class methods of Ramsay 

(1967) and from their results on slump folds, developed geometric criteria:  

1. Slump folded sand beds have class 3 dip isogons;  

2. Slump folded mud beds have class 1 dip isogons.  

 

In Waldron and Gagnon (2011), slump folded sand beds have a lower coherence than 

the slump folded mud beds, which is the reverse of the situation for folded sandstone and shale 

beds (Ramsay & Huber, 1987). However, from the observations in this chapter, these 

conclusions appear to be too simplistic. Therefore, in Chapter 7, a series of tests are described 

that employ both the dip isogon and quantitative layer thickness methods of Ramsay (1967).  

 

6.7 Summary 

The Bude Formation outcrops provide examples of structures that were formed in 

sediment during deformation or challenge the assumption that all folding occurred in rock (see 

also Chapters 4 & 5), which are of relevance to the general aim of the thesis and include: 

1. Bedding-parallel ankerite veins that have been affected by local structures;  

2. ‘Early’ folds and faults and also, slumped beds (see chapters 2, 4 & 5); 

3. Mud injections (see Chapter 2) that cut chevron fold hinges;  

4. Bulbous-hinged multi-layer folded beds, where the bulbous hinges form in all lithologies in 

the slump folds, ‘upright’ chevron folds and some ‘inclined-to-recumbent’ chevron folds. 

 

Although all of the structures considered suggest that fold deformation occurred in part 

in sediment, it is the geometries of the bulbous-hinged folds that are most intriguing. As 

mentioned previously, there is an assumption that the chevron folding in the Bude Formation 

occurred in rock (Ramsay, 1974), but the four structures mentioned above provide some counter 

evidence. Consequently, a set of geometric criteria would be useful to distinguish between folds 

developed in rock and folds developed in sediment. These criteria are the general aim of the 

thesis, and are developed in Chapter 7 and applied to the Bude Formation folds in Chapter 8. 
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Chapter 7: Distinguishing fold structures in sediment and rock  

 

7.1 Introduction 

Folds form in both sediment and rock, with sediment consisting of loose grains in a 

water-saturated bed that can move or ‘flow’ independently (Craig, 1997), whilst the grains in 

rock are bound together (e.g. by a cement) and move as unified system of beds (see chapters 1 

& 2). The primary aim of this chapter and general thesis aim are to identify the distinguishing 

characteristics of fold deformation in sediment and rock. This is an important distinction as 

folds occur in sediments as described in chapters 2-6 in: (1) gravity-tectonic, delta toe and 

passive margin fold-thrust belts; and (2) tectonic foreland basins and accretionary wedges.  

Folds developed in compressional setting display a variety of geometries, including 

different wavelengths, amplitudes, inter-limb angles, etc. Of particular note and interest is the 

variation in layer thicknesses around the fold. The well-established dip isogon and quantitative 

layer thickness methods of Ramsay (1967) are used to describe these variations and place 

geometric constraints on folded beds or layers. Using dip isogon and quantitative layer 

thickness analyses on folded layers, ‘classes’ are identified to describe the relative coherence of 

each layer involved in that fold deformation.  

 In order to test whether the dip isogon and layer thickness methods are applicable, a 

suite of examples have been measured from the literature covering demonstrably folded rocks 

and sediments. These examples include sediment folds in slumps and glacial till, and rock folds 

in different metamorphic facies. In addition, the dip isogon and quantitative layer thickness 

methods have been tested on examples of folded model materials (wax, plasticine and gelatine) 

and latterly, by way of a final test, migmatites. The model material layers are not comprised of 

grains, whilst the migmatites were partially-melted rock with weak ‘grain binding’ during 

folding. The results from the dip isogon and quantitative layer thickness analyses were used to 

define diagnostic criteria that identify the differences and similarities between the fold 

geometries developed in folded sediment and rock. These criteria are described in this chapter, 

with the term ‘layer being used to encompass both geological beds and model material ‘layers’. 

 

7.2 Methods 

Dip isogon and quantitative layer thickness methods have been employed in order to 

test whether folds (in profile) developed in sediments and rocks can be distinguished using their 

geometric characteristics. Dip isogons are ‘contour’ lines connecting points of equal dip on the 

folded bedding planes or layers. Dip isogon analysis involved a scaled sketch of example folded 

layers drawn in profile from photographs either in the literature or in field outcrops, typically 

using a 10° dip interval. The points where the layer dips at 10°, 20°, etc., are marked around 

each folded layer and connected from layer-to-layer, producing a distinct dip isogon pattern for 
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the folded layers. From the pattern of dip isogons, different fold classes are distinguished (Figs. 

7.1-7.2; Table 7.1), which are themselves related to their relative competence or coherence 

during fold deformation (Ramsay & Huber, 1987). 

 

 

Table 7.1: Comparison of fold classes to the pattern of dip isogons and the isogon relationship 

to the fold axial trace (modified from Ramsay, 1967), with all folds in profile 

 

For the quantitative layer thickness analysis (Ramsay, 1967), the true layer thicknesses 

(tα) and axial-parallel thicknesses (Tα) (both in metres) are measured at 10° intervals (Fig. 7.1a-

b). The layer thicknesses are related to each other via the dip angle (α) by:  

 

tα = Tα cos(α)       (7.1) 

 

Following this, the layer thickness ratios are calculated. For true layer thickness ratio, 

the true layer thickness (tα) is divided by the hinge thickness (t0) and then, this dimensionless 

ratio is plotted on its corresponding diagram at 10° intervals (Fig. 7.1c):  

 

t’α = tα/t0      (7.2) 

 

For the axial-parallel layer thickness dimensionless ratio, the same procedure is used 

but with the axial-parallel layer thickness (Tα) instead of the true layer thickness (tα) (Fig. 7.1d):  

 

T’α = Tα/t0       (7.3) 

 

These dimensionless ratios are related to each other via the dip angle (α) by:  

 

t’α = T’α cos(α)       (7.4) 

 

Quantitative layer thickness analysis was undertaken to provide a means of quantifying 

the dip isogon fold classes. The analysis produces plots of curves within dimensionless fields 

that correspond to each dip isogon class (Fig. 7.2). The idealised folded layer in profile (Fig. 

7.1) represents the special case of a dip isogon class 2 fold where the isogons are drawn parallel 

to each other and the axial-parallel layer thicknesses are equal to each other at each 10° interval.  

A modification to the Ramsay (1967) methods has been undertaken in order to show 

how the dip isogon classes vary from bed-to-bed. This is achieved by using an isogon log, 

which is presented with each sketch (e.g. Fig. 7.3). Each bar on the log includes information on 
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the layer properties in the fold hinge zone. These are: (1) thickness at the hinge (vertical axis); 

(2) dip isogon class (horizontal axis); and (3) lithology (bar colour).  

 

 

Fig. 7.1: Idealised folds in profile to calculate the layer thickness dimensionless ratios (modified 

from Ramsay, 1967). All intervals are taken at 10° 

 

 

Fig. 7.2: Diagram plots for quantitative layer thickness analysis (see Fig. 7.1). Each fold class is 

shown in profile with its corresponding dip isogon pattern drawn on sketched idealised folded 

layers at 10° intervals (modified from Ramsay, 1967) 
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The use of dip isogons to distinguish the mechanical state of different folded sediment 

and rock layers in profile has a degree of precedence. In rocks, commonly shale or pelite is less 

coherent (i.e. less competent, ‘softer’, more viscous) than sandstone or psammite. When these 

layers are folded, the sandstone or psammite has class 1 dip isogons, whilst the shales and 

pelites have class 3 (i.e. less coherent) dip isogons. The class 1 dip isogons occur when there is 

little or no thickness changes around the folded layer (i.e. more coherent), whilst the class 3 dip 

isogons occur when the layer ‘flows’ into the fold hinge zone (i.e. less coherent), creating a 

thick, bulbous hinge compared to the fold limbs (Ramsay & Huber, 1987).  

 A recent paper by Waldron and Gagnon (2011) that is independent of this research 

project, has been published, which has attempted to distinguish between folded rocks and 

slumps. In the paper, the authors describe the geometries of folded structures by using the 

Ramsay (1967) dip isogon method. In the Waldron and Gagnon model, in contrast to rocks 

(Ramsay & Huber, 1987), slump folds contain less coherent sand (class 3 dip isogons) and more 

coherent mud beds (class 1 dip isogons). This hypothesis has been tested using a suite of folds, 

including the slump fold examples employed by Waldron and Gagnon (2011). 

The dip isogon methods have been applied also to slump folds in the Pigeon Point 

Formation, California, USA, by Patterson and Tobisch (1993). The dip isogon patterns that they 

recorded were irregular. They ranged between dip isogon class 1B to class 3 and “did not 

readily lend themselves to the Ramsay (1967) classification scheme”. Layer thicknesses varied 

across the slump folds, but Patterson and Tobisch (1993) were unsure as to whether this resulted 

from variation in original layer thickness or slump-induced deformation. Also, they suggested 

that grain size was not a factor, but that water and/or phyllosilicate contents of layers may be 

factors in the irregular dip isogon patterns. 

 

7.3 Dip isogon analyses of rock, sediment, material and migmatites folds 

In order to test whether the fold geometries can be related to the mechanical state of the 

material at the time of folding, a range of folds developed in different material states have been 

selected for dip isogon and quantitative layer thickness analyses, which are as follows:  

1. Folded rocks: 

a. 5 meta-sedimentary folds (2 from N Norway (Fossen, 2010); 1 from Mull, W Scotland 

(Ramsay & Huber, 1987); and 2 from Roscolyn, NW Wales (Price & Cosgrove, 1990); 

Fig. 7.3);  

b. 2 banded gneiss folds (1 from Gjerdoya Island, Norway (Lisle, 1992); and 1 from the 

Lepontine Alps (Ramsay & Huber, 1987); Fig. 7.3);  

2. Folded sediments: 

c. 2 slump folds in the Manly Slump Bed, New Zealand (Strachan, 2008; Fig. 7.3); 

d. 5 siltstone slump fold rafts from Powys, Central Wales (Woodcock, 1976; Fig. 7.4); 

e. 3 calcarenite slump folds from SW Turkey (Waldron & Gagnon, 2011; Fig. 7.4);  
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f. 3 ‘glacio-tectonic’ folds in till from NW Jylland, Denmark (Fossen, 2010; Fig. 7.4); 

3. Folded materials: 

g. 3 folds in buckled model materials (1 each from gelatine (Blay et al, 1977), wax and 

plasticine (Price & Cosgrove, 1990); Fig. 7.5); 

4. Folded migmatites:  

h. 4 folds from Ladakh, NW India (Weinburg & Mark, 2008; Fig. 7.5). 

 

7.3.1 Descriptions of folded rocks, sediments, model materials and migmatites 

In order to describe the folds in rocks, sediments, model materials and migmatites, dip 

isogon and quantitative layer thickness analyses have been undertaken on each folded layer 

(Figs. 7.3-7.5). Examples have been chosen from the folds in order to display the results (Figs. 

7.6-7.9). The examples are all in profile except for the New Zealand slumps and are as follows: 

1. 2 folded metamorphic rock examples from (a) Roscolyn, NW Wales (Price & Cosgrove, 

1990; Fig. 7.6); (b) Gjerdoya Island, Norway (Lisle, 1992; Fig. 7.6);  

2. 4 folded sediment examples from: (c) New Zealand slumps in plan view (Strachan, 2008; 

Fig. 7.7); (d) Central Wales slumps (Woodcock, 1976; Fig. 7.7); (e) SW Turkey slumps 

(Waldron & Gagnon, 2011; Fig. 7.8); and (f) Denmark tills (Fossen, 2010; Fig. 7.8);  

3. 1 buckle experiment in: (g) wax bilaminate (Price & Cosgrove, 1990; Fig. 7.9); 

4. 1 fold in: (h) migmatites from Ladakh, NW India (Weinburg & Mark, 2008; Fig. 7.9). 

 

a. Meta-sedimentary folds 

The folded rocks at Roscolyn, NW Wales, are in a Precambrian meta-sedimentary succession 

(Price & Cosgrove, 1990; Figs. 7.3 & 7.6). The layers are deformed as harmonic fold structures 

with ‘inclined-to-recumbent’ axial planes and closed-to-tight (90°-40°) interlimb angles.  

b. Banded gneiss folds 

The folded rocks in the banded granitic and tonalitic gneiss occur in very high-grade 

metamorphic rocks and are from the Proterozoic part of the Fennoscandian Shield in the 

Svatisen Window, Gjerdoya Island, Norway (Lisle, 1992; Skar, 2002; Figs. 7.3 & 7.6). The 

gneiss contains lighter-grey felsic and darker-grey mafic bands that have been deformed as 

harmonic fold structures with closed-to-tight (90°-40°) interlimb angles (Lisle, 2004). 

c. Manly Slump Bed folds 

The slump folds in the Manly Slump Bed, North Island, New Zealand, are from the Early 

Miocene Waitemata Basin (Strachan, 2008; Figs. 7.3 & 7.6). The layers are deformed as 

disharmonic fold structures, with ‘recumbent-to-reclined’ axial planes and isoclinal-to-‘elastica’ 

(20° to -20°) interlimb angles (also see Chapter 2). 

d. Clastic slump folds 

The slump folds in the Montgomery Trough, Central Wales, are from the Late Silurian Ludlow 

Series (Woodcock, 1976; Figs. 7.4 & 7.7). The layers are deformed as disharmonic fold 
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structures, with ‘recumbent-to-reclined’ axial planes and isoclinal-to-‘elastica’ (20° to -20°) 

interlimb angles (also see Chapter 2).  

e. Calcarenite slump folds 

The calcarenite slump folds are from the Jurassic Antalya Complex, SW Turkey (Waldron & 

Gagnon, 2011; Figs. 7.4 & 7.8). The layers are deformed as disharmonic fold structures, with 

‘recumbent’ axial planes and isoclinal-to-‘elastica’ (20° to -20°) interlimb angles.  

f. Glacial till folds 

The Pleistocene glacial till folds in NW Jylland, Denmark (Fossen, 2010; Figs. 7.4 & 7.8) were 

deformed in a hydro-plastic state (Denis et al, 2009; see Chapter 2) by glacial movement under 

fluid over-pressure conditions (Phillips et al, 2008). The layers are deformed as disharmonic 

fold structures with ‘upright’ axial planes and closed-to-tight (90°-40°) interlimb angles. 

g. Folds in wax, plasticine and gelatine 

The model materials used in the buckle experiments include gelatine (Blay et al, 1977), 

plasticine and wax (Price & Cosgrove, 1990; Figs. 7.5 & 7.9). The model materials were 

originally horizontal-bedded, 1 cm-thick, alternating lighter and darker coloured multi-layers. 

All the folds have strongly ‘upright’ axial planes and closed-to-tight (90°-40°) interlimb angles.  

h. Migmatite folds 

The migmatite folds in the Karakoram Shear Zone, Ladakh, NW India (Figs. 7.5 & 7.9), 

occurred in extremely high-grade, partially-melted metamorphic rock near to granitic magma 

(Weinburg & Mark, 2008). The layers are deformed as disharmonic fold structures with tight-

to-isoclinal (60°-10°) interlimb angles. 

 

7.4 Dip isogon and quantitative layer thickness analyses 

 

7.4.1 Folded rocks in profile 

 

Results 

Analysis of the dip isogon logs for folded rocks (Figs. 7.3, 7.6-7.7) show that the felsic 

and pelite layers in the meta-sedimentary and gneissose folds, respectively, have higher dip 

isogon classes (i.e. classes 2 to 3) than the psammite / quartzite and mafic layers (i.e. classes 1A 

to 2). The analysis of the folded rock examples (Figs. 7.3 & 7.6-7.7) show symmetric, non-

repeating and harmonic dip isogon patterns on each limb. The quantitative layer thickness 

analysis plots of the folded rock examples (Fig. 7.6) have symmetric curves about the hinge 

position (i.e. α = 0°) on each limb. The curves remain within a single field that represents a 

single ‘Ramsay’ dip isogon class, as is found from dip isogon analysis.  
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Fig. 7.3: Dip isogon sketches: (a) 5 meta-sedimentary rock folds in profile (modified from 

Ramsay & Huber, 1987; Price & Cosgrove, 1990; Fossen, 2010); (b) 2 high-grade gneiss folds 

in profile (modified from Ramsay & Huber, 1987; Lisle, 1992); and (c) 2 slump folds, Manly 

Slump Bed, New Zealand (modified from Strachan, 2008). Dip isogon logs show how the dip 

isogon class varies from layer-to-layer, giving an indication of how the relative coherences of 

the stacked layers change. The examples used in Figs. 7.6-7.7 for the dip isogon and 

quantitative layer thickness analyses have an asterisk next to them 

 

* 

* 

* 
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Fig. 7.4: Dip isogon sketches in profile: (d) 5 Central Wales slump folds (from Woodcock, 

1976); (e) 3 SW Turkey calcarenite slump folds (modified from Waldron & Gagnon, 2011); and 

(f) 3 glacial till folds, Denmark (modified from Fossen, 2010). Dip isogon logs show how the 

dip isogon class varies from layer-to-layer, giving an indication of how the relative coherences 

of the stacked layers change. The examples used in Figs. 7.6-7.8 for the dip isogon and 

quantitative layer thickness analyses have an asterisk next to them 

 

* 

* 

* 
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Fig. 7.5: Dip isogon sketches in profile: (g) 1 fold each in gelatine (modified from Blay et al, 

1977), wax and plasticine (modified from Price & Cosgrove, 1990); and (h) 3 folds in 

migmatites from Ladakh, NW India (modified from Weinburg & Mark, 2008). Dip isogon logs 

show how the dip isogon class varies from layer-to-layer, giving an indication of how the 

relative coherences of the stacked layers change. The examples used in Fig. 7.9 for the dip 

isogon and quantitative layer thickness analyses have an asterisk next to them 

 

* 

* 

* 
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Interpretations 

The combined results from the isogon log, dip isogon and quantitative layer thickness 

analyses for folded rocks show that:  

1. The pelite and felsic layers in the meta-sedimentary and gneissose folds, respectively, are 

less coherence than the psammite / quartzite and mafic layers, respectively;  

2. Each layer reacted to the fold deformation as a single unified system;  

3. Each layer conforms to its own ‘Ramsay’ dip isogon class on both fold limbs with the layer 

retaining the same coherence throughout.  

 

This conforms to the idealised dip isogon class patterns (Fig. 7.2), indicating that the 

criteria can be used to describe the mechanical state of folded rocks with:  

1. Symmetric dip isogons and layer thickness ratio plots about the hinge;  

2. Ordered, non-repeating dip isogons;  

3. Conformity to a ‘Ramsay’ dip isogon class across the folded layer. 

 

7.4.2 Folded sediments 

 

Results 

Analysis of the dip isogon logs for folded sediment (Figs. 7.4-7.8) shows that all layers 

have bulbous hinges and have high dip isogon classes (i.e. classes 1C to 3). Dip isogon analysis 

of the folded sediment examples (Figs. 7.4-7.8) produces asymmetric, scattered, repeating and 

disharmonic dip isogon patterns on each limb because the bed thickness varies across the slump 

and glacial till layers (after Patterson & Tobisch, 1993), causing the dip isogon pattern to show:  

1. A range of ‘Ramsay’ classes within a layer;  

2. Non-matching multiple ‘Ramsay’ classes in the layers across the limbs;  

3. Repeated and looping dip isogons resulting from undulations and minor buckles.  

 

The quantitative layer thickness analysis plots of the folded sediment examples (Fig. 

7.6) have a strong shape asymmetry and scatter in the curves about the hinge position (i.e. α = 

0°) on each limb. These results are similar to those from dip isogon analysis.  

 

Interpretations 

The combined results from the isogon log, dip isogon and quantitative layer thickness 

analyses of the slump sediment and glacial till folds show that:  

1. The dip isogon patterns are indicative of deformed, low coherence layers;  

2. Each layer reacted to the fold deformation independently;  

3. Each layer does not conform to its own ‘Ramsay’ dip isogon class;  

4. The layer does not retain the same coherence throughout.  
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Fig. 7.6: Comparative dip isogon and layer thickness analyses of Norway metamorphic gneiss synform (modified from Lisle, 1992; see Fig. 7.3) with dip isogon logs 

(light grey = felsic; dark grey = mafic), and Roscolyn meta-sedimentary rock antiform (modified from Price & Cosgrove, 1990; see Fig. 7.3) with dip isogon logs 

(orange = sand; green = mud). All folds are in profile. Letters next to graphs relate to the layer being analysed 

 

 

Fig. 7.7: Comparative dip isogon and layer thickness analyses of a slump fold from Manly Slump Bed, New Zealand in plan view (modified from Strachan, 2008; 

see Fig. 7.3) with dip isogon logs (orange = sand; green = mud) and Central Wales slump fold 1 in profile (from Woodcock, 1976; see Fig. 7.4) with dip isogon logs 

(no colour used as all layers are the same lithology). Letters next to graphs relate to the layer being analysed 
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Fig. 7.8: Comparative dip isogon and layer thickness analyses for Denmark ‘glacio-tectonic’ chevron syncline 2 (modified from Fossen, 2010; see Fig. 7.4) with dip 

isogon logs (colours relate to the relative colours of the layers) and Calcarenite slump 1b (modified from Waldron & Gagnon, 2011; see Fig. 7.4) with dip isogon 

logs (purple = calcarenite; green = mudstone). All folds are in profile. Letters next to graphs relate to the layer being analysed 

 

 

Fig. 7.9: Comparative dip isogon and layer thickness analyses for Ladakh migmatite fold 2 (modified from Weinburg & Mark, 2008; see Fig. 7.5) with dip isogon 

logs (light grey = leucosome; dark grey = melanosome) and buckled wax multi-layer (modified from Price & Cosgrove, 1990; see Fig. 7.5) with dip isogon logs 

(colours relate to colours of the wax; white = hinge zone saddle reef). All folds are in profile. Letters next to graphs relate to the layer being analysed
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This does not conform to the idealised dip isogon class patterns used for folded rocks 

(after Patterson & Tobisch, 1993; Fig. 7.2) and instead, suggests that the following criteria can 

be used to describe the mechanical state of folded sediments:  

1. Asymmetric dip isogons and layer thickness ratio plots about the hinge;  

2. Scattered, repeating dip isogon curves;  

3. Lack of conformity to a single ‘Ramsay’ dip isogon class within and across the folded layer. 

 

Evaluation 

There appears to be no lithological control on the dip isogon pattern with all layers 

producing high dip isogon classes (i.e. classes 1C to 3). This is in contrast to the Waldron and 

Gagnon (2011) results of but similar to those of Paterson and Tobisch (1993). In the Waldron-

Gagnon model, the slump folded sands should be less coherent (i.e. class 3 dip isogons) than the 

muds (i.e. class 1 dip isogons), but no such dip isogon pattern exists and suggests that their 

hypothesis is incorrect (see Methods). Also, the folded glacial till was modelled as a hydro-

plastic fluid (Denis et al, 2009). In this state, the grains can ‘flow’ independently whilst the 

layer maintains cohesion (Craig, 1997; see Chapter 2). Modelling sediment as a hydro-plastic 

fluid gives a useful analogy to describe the mechanical states of the example slump folds during 

deformation (Woodcock, 1976; Strachan, 2008; Waldron & Gagnon, 2011; Figs. 7.6-7.8). 

 

7.4.3 Folded model materials in profile 

 

Results 

Analysis of the dip isogon logs for folded model materials (Figs. 7.5 & 7.9) shows that 

all layers have bulbous hinges and have high isogon classes (i.e. classes 1C to 3). Dip isogon 

analysis of the folded model materials (Figs. 7.5 & 7.9) produces asymmetric, scattered and 

repeating dip isogon patterns on each fold limb. This is the same dip isogon geometry as for 

both slump and glacial till folds with the dip isogon pattern showing:  

1. A range of ‘Ramsay’ classes within a layer;  

2. Non-matching multiple ‘Ramsay’ classes in the layers across the limbs;  

3. Repeated and looping dip isogons resulting from undulations and minor buckles.  

 

Likewise, quantitative layer thickness analysis plots of the folded model materials have 

a strong asymmetry, scatter and repetition in the curves about the hinge position (α = 0°) for 

each limb. The curves display similar results on each limb as is found from dip isogon analysis. 

 

Interpretations 

The combined results from the isogon log, dip isogon and quantitative layer thickness 

analyses on folded model materials show that:  
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1. The dip isogon patterns are indicative of deformed, low coherence layers;  

2. The dip isogon patterns are independent of lithology;  

3. The results and observations meet the criteria of folds developed in a plastic material 

analogous to sediment.  

 

It can be seen that the model materials do not behave like lithified rock. However, there 

is a potential dip isogon fold class dependence on the type of model material layer with lighter 

coloured wax layers having generally higher dip isogon classes (i.e. classes 1C to 3) than the 

darker coloured wax layers (classes 1B to 2), and vice versa for plasticine and gelatine layers.  

 

7.4.4 Folded migmatites in profile 

 

Results 

Analysis of the dip isogon logs for folded migmatites (Figs. 7.5 & 7.9) shows that all 

layers have bulbous hinges and have high dip isogon classes (i.e. classes 1C to 3). Dip isogon 

analysis of the folded migmatites (Figs. 7.3 & 7.9) produces asymmetric, scattered and 

repeating dip isogon patterns on each fold limb because the thickness varies across the layers. 

This is the same dip isogon geometry as for slump, glacial till and model material folds:  

1. A range of ‘Ramsay’ classes within a layer;  

2. Non-matching multiple ‘Ramsay’ classes in the layers across the limbs;  

3. Repeated and looping dip isogons resulting from undulations and minor buckles.  

 

Likewise, quantitative layer thickness plots of the folded migmatites have a strong 

asymmetry, scatter and repetition in the curves about the hinge position (α = 0°) for each limb. 

The curves display similar results on each limb as is found from dip isogon analysis. 

 

Interpretations 

The combined results from the isogon log, dip isogon and quantitative layer thickness 

analyses on the folded migmatites show that:  

1. The dip isogon patterns are indicative of deformed, low coherence layers;  

2. The results and observations meet the criteria of folds that developed in a plastic material 

analogous to sediment; 

3. The ‘grain binding’ in partially-melted migmatites is strongly reduced and the grains ‘flow’ 

independently as in sediment (after Craig, 1997; see Chapter 2). 

 

7.5 Discussion  

The outcrops of the Bude Formation, SW England, provide a well-exposed and 

accessible example of chevron folds in profile (Freshney et al, 1972; 1979; Ramsay, 1974; 
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Sanderson, 1974; 1979; Lloyd & Whalley, 1986; Davison et al, 2004). As described in Chapter 

5, the cliff outcrops at Lynstone (SS200053) are a potential microcosm of this progressive fold 

deformation (Enfield et al, 1985). Using the criteria established previously, dip isogon and 

quantitative layer thickness analyses have been undertaken in order to distinguish whether the 

folds in this outcrop developed in lithified rock or unlithified sediment.  

 In addition to this test of the criteria, there is a need to clarify where it is appropriate to 

use the Ramsay (1967) methods and what other methods can be employed to provide insights 

into the deformation accommodated by folded rock and sediment. A discussion is provided of:  

1. The application of the dip isogon and quantitative layer thickness methods to slump folded 

layers in both plan-view and oblique sections; 

2. The limits to the dip isogon and quantitative layer thickness methods;  

3. Potential future work to distinguish the mechanical state of the folded material using the 

inverse thickness method (Lisle, 1992).  

4. Whether the geometric criteria to distinguish folded rock and sediment result from: 

a. Shear strain accommodation on the base slump fold limb caused by the down-slope 

flow (Patterson & Tobisch, 1993; Woodcock, pers. comm., 2011);  

b. High strain rates in sediments and low rates in rocks (Gibbs, pers. comm., 2011); 

c. Water and/or phyllosilicate content of slump layers (Paterson & Tobisch, 1993). 

 

7.5.1 Initial application of methods to the Bude Formation  

In order to provide an initial test of the criteria, the methods have been applied to a 

contiguous set of folds in profile in the Lynstone cliff section (SS200053) of the Bude 

Formation, SW England. For the purposes of these analyses, the folds are described as (Fig. 

7.10): (1) ‘early’; (2) ‘upright’; and (3) ‘late’; using terms defined by Enfield et al (1985). 

 

‘Early’ and ‘upright’ folds in profile 

The analysis of the dip isogon logs for the ‘early’ folds (marked 1 in Fig. 7.10) shows 

that the layers have a range of dip isogon classes (i.e. classes 1A to 3), with many bulbous 

hinges in the folded layers. However, with the ‘upright’ folds (marked 2 in Fig, 7.10), all 

lithologies display bulbous hinges with generally high dip isogon classes (i.e. classes 1C to 3). 

The dip isogon analysis shows that both the ‘early’ and ‘upright’ folds have asymmetric, 

scattered and disharmonic dip isogon patterns on adjacent limbs because the thicknesses vary 

across the layers. The dip isogon pattern on each limb display:  

1. A range of ‘Ramsay’ classes within a layer;  

2. Non-matching ‘Ramsay’ classes in the layers across the limbs;  

3. Repeated and looping dip isogons resulting from undulations and minor buckles.  
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Quantitative layer thickness analysis plots of the ‘early’ and ‘upright’ fold examples 

(Fig. 7.10) have a strong asymmetry, scatter and repetition in their curves about the hinge 

position (α = 0°) for each limb. The characteristics meet the criteria of folds formed in sediment. 

 

‘Late’ folds in profile 

Analysis of the dip isogon logs (Fig. 7.10) show that some of the shale layers have 

higher dip isogon classes (i.e. classes 2 to 3) than the sandstone and siltstone layers (i.e. classes 

1B to 2). However, in other layers, all lithologies show bulbous hinges with generally high dip 

isogon class values (i.e. classes 1C to 3).  

 The dip isogon analysis of the ‘late’ folds (3 & 4, respectively, in Fig. 7.10) have 

symmetric, ordered, non-repeating and harmonic dip isogon patterns on adjacent limbs and 

conform to the idealised dip isogon class patterns (Fig. 7.2). However, some inter-bedded folded 

layers have more asymmetric, scattered, repeating and disharmonic dip isogons, suggesting that:  

1. Each layer conforms to its own ‘Ramsay’ dip isogon class on both fold limbs with the same 

coherence retained throughout the layer;  

2. There is a lithological difference in layer coherence as found in rocks between the relatively 

high coherence (classes 1A to 1C) sandstones and low coherence (classes 2 to 3) shales.  

 

Quantitative layer thickness analysis plots of some of the layers from the ‘late’ folds 

(Fig. 7.10) have a near symmetry to their curves about the hinge position (α = 0°) on each limb. 

This meets the criteria of folds that developed in rock. However, there are scattered, repeating 

and disharmonic dip isogons in some layers on the ‘late’ fold limbs. Such patterns indicate that 

folds developed in sediment.  

 This apparent contradiction can be explained if the ‘late’ fold deformation affected the 

Bude Formation whilst the beds were lithifying (i.e. inter-bedded sediment and rock). If this was 

indeed the case, it is likely that the less coherent, water-saturated sediment layers folded 

passively in step with the more coherent rock layers.  

 

Evaluation of the results 

From an evaluation of the results, it is possible to identify the steps in the lithification 

with fold deformation in the Lynstone cliff section (SS200055; Fig. 7.10): 

1. ‘Early’ and ‘upright’ folds developed in sediment; 

2. ‘Late’ fold deformation took place as some of the Bude Formation beds began to lithify.  

 

Assuming that the Lynstone cliff section (SS200055; Fig. 7.10) is a potential 

microcosm of the progressive Variscan fold deformation in the Bude Formation (see Chapter 5), 

the results from these folds could also apply to the Bude and Crackington formations as a 

whole. This hypothesis will be tested for folds across the both formations in Chapter 8.  
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Fig. 7.10: Photo-montage and sketches of 4 folds from different Variscan progressive deformation ‘events’ in the Lynstone cliff section, Bude Formation, SW 

England (SS200053). Dip isogon and quantitative bed thickness analyses have been undertaken on all the fold types, with a dip isogon log next to each sketched fold 

(orange = sandstone; yellow = siltstone; green = shale). All folds are in profile. Letters next to graphs relate to the bed being analysed
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7.5.2 Dip isogon methods for oblique and plan-view sections through folded layers 

In this chapter, the dip isogon and quantitative layer thickness analyses have been 

applied to folds in profile sections where it is possible to determine the fold orientation. This is 

one of the constraints imposed on the methods by Ramsay (1967). However, in the case of the 

slump folds from the Manly Slump Bed (Strachan, 2008), the methods were applied to one fold 

oblique to the profile plane, and to another in plan-view section, sub-perpendicular to the profile 

plane (Figs. 7.3 & 7.7). The fold in plan-view from the Manly Slump Bed (Fig. 7.7) provides a 

test of whether the geometric criteria can be applied to folds in any plan-view section.  

 

Results from the Manly Slump Bed example 

The dip isogon logs of the Manly Slump Bed fold examples (Figs. 7.3 & 7.7) show that 

all layers have bulbous hinges and have high dip isogon classes (i.e. classes 1C to 3). The dip 

isogon analysis of the folded sediment examples (Figs. 7.3 & 7.7) produces asymmetric, 

scattered, repeating and disharmonic dip isogon patterns on each limb because of the varying 

bed thickness across the slump fold layers. These are the same dip isogon patterns as for the 

other sediment, model material and migmatite examples. Quantitative layer thickness analysis 

plots of the folded sediment examples (Fig. 7.7) show a strong asymmetry and scatter in the 

curves about the hinge position (i.e. α = 0°) on each limb. Thus, the combined results of isogon 

log, dip isogon and quantitative layer thickness analyses in oblique and plan-view sections on 

the Manly Slump Bed example sections are exactly the same as for folds in profile section.  

 

Evaluation 

Evaluation of the results from the Manly Slump Bed examples suggest that the 

geometric criteria for distinguishing folds in profile section from slumped sediment appear to 

hold also for folds from slumped sediment in both oblique and plan-view sections.  

Interestingly, similar dip isogon and quantitative layer thickness analyses have been 

undertaken by I. Alsop on metamorphic sheath folds from N Scotland (TSG Conf. comm., 

Durham, 2011), which presented similar results. Together, the use of the dip isogon methods by 

I. Alsop and in this work provide new research avenues into understanding of the mechanical 

state of the layers during fold deformation.  

 

7.5.3 Limits to the dip isogon and quantitative layer thickness methods 

There are four preconditions needed in order to undertake valid dip isogon and 

quantitative layer thickness analyses, otherwise the results may be misleading or incorrect. The 

four preconditions are that none of the following apply:  

1. Liquefied layers were present, such as in massive, disaggregated slump beds, since the lack 

of friction (i.e. fluid-supported grains) in the layers would prevent folding; 
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2. Stratigraphic cut-offs (i.e. onlapping pinch-outs and toplapping truncations), as this 

produces irregular dip isogon patterns and layer thickness ratio plots; 

3. Strongly-developed sedimentary structures that can be mistaken for bedding planes, 

resulting in unrealistic dip angles being measured;  

4. Later deformation events by fracturing, faulting or refolding in the fold hinge zone, 

otherwise the results from the dip isogon analyses would reflect the later folding event (i.e. 

later folding must be on the limb of the original fold away from the hinge zone). 

 

7.5.4 Proposed future work using the inverse thickness method 

The dip isogon and quantitative layer thickness methods were also applied to a banded 

gneiss synform in profile from Gjerdoya Island, Norway (Figs. 7.3 & 7.6). However, Lisle 

(1992) proposed the inverse thickness method to analyse the fold, which is described below. 

This method has been employed on two example layers, one each from folded sediment and 

folded rock, in order to test whether the method distinguishes between them.  

 

Methods 

In the inverse thickness method, true layer thickness (tα) is measured at 10° intervals 

around the fold. The thickness measurements are inverted (i.e. n/tα) with the n-value dependant 

on the relative inverse thickness size calculated. The points are plotted in a polar co-ordinates 

graph at 10° intervals where “inverse thickness (n/tα) is plotted as a function of the orientation 

of the layer tangent”, so a strain ellipse can be fitted through the points (Lisle, 1992; Fig. 7.11).  

 

Data 

Two example layers are selected to test whether the inverse thickness method can be 

used to distinguish folded sediment and rock in addition to the dip isogon and quantitative layer 

thickness methods. The rock example is a mafic layer from a banded gneiss synform, Gjerdoya 

Island, Norway (Figs. 7.3, 7.6 & 7.11; Lisle, 1992). The sediment example is a sand layer from 

a calcarenite slump fold, Antalya, Turkey (Figs. 7.4, 7.8 & 7.11; Waldron & Gagnon, 2011). 

 

Results 

From inverse thickness analysis of the mafic layer in the banded gneiss synform, one 

strain ellipse is fitted through the inverse thickness points (Fig. 7.11a). The ellipse has its major 

axes oriented sub-parallel (005°-185°) (i.e. maximum extensional direction) and minor axes 

oriented sub-perpendicular (095°-275°) (i.e. maximum compressional direction) to the 

orientation of the fold axial trace. The strain ratio for the mafic layer is 1.97, which almost 

matches the Lisle (1992) estimate of 1.95 for the strain accommodated by this layer.  

From inverse thickness analysis of the sand layer in the calcarenite slump fold, two 

strain ellipses are fitted through the inverse thickness points (Fig. 7.11b). The orientations of the 
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strain ellipses on the limbs have the major axes sub-parallel (left-hand limb: 120°-300°; right-

hand limb: 170°-350°) and minor axes sub-perpendicular (left-hand limb: 030°-210°; right-hand 

limb: 080°-260°) to the bedding orientations. The strain ratio in the slump sand layer varies with 

each strain ellipse: (1) left-hand limb is 5.77; and (2) right-hand limb is 4.67.  

 

Interpretations 

The inverse thickness analysis for the mafic layer (Fig. 7.11a) produces only one 

definitive strain ellipse. This suggests that:  

1. The strain accommodated is the same across the layer;  

2. The layer acted as a single unified system.  

3. These interpretations compliment the criteria established for folded rock from dip isogon 

and quantitative layer thickness analyses.  

 

Inverse thickness analysis for the slump sand layer (Fig. 7.11b) produces two definitive 

strain ellipses, one each for the left-hand and right-hand limbs. The major axes of the strain 

ellipses for both limbs indicate that maximum extensional directions are bedding-parallel and 

bedding-normal for maximum compressional directions (e.g. minor axes). This suggests that: 

1. The limbs acted independently of each other;  

2. The strain ellipses are recording a ‘flow’ of material that travelled towards the hinge zone 

during slump fold deformation.  

3. These interpretations also compliment the criteria established for folded sediment from dip 

isogon and quantitative layer thickness analyses.  

 

Evaluation 

The results of inverse thickness analysis (Lisle, 1992) suggest that this method can be 

used to distinguish folds developed in rock and sediment, in addition to the dip isogon and 

quantitative layer thickness analyses (Ramsay, 1967). The associated geometric criteria for 

strain accommodation in folded rocks are as follows:  

1. One strain ellipse can be fitted to the points from inverse thickness analysis; 

2. The ellipse describes the strain accommodation across the entire folded layer. 

 

The geometric criteria for strain accommodation in folded sediment are:  

1. Multiple strain ellipses can be fitted to the points from inverse thickness analysis;  

2. Each ellipse describes the strain accommodation in part of a folded layer (e.g. a limb). 

 

The potential geometric criteria may provide an extension of the inverse thickness 

methods to assess the mechanical or lithification state of layers during folding and compliment 

the geometric criteria developed from the dip isogon and quantitative layer thickness analysis.  
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Fig. 7.11: Application of the inverse thickness method using a mafic layer in Norway banded 

gneiss synform (Figs. 7.3 & 7.6; modified from Lisle, 1992) and a calc-arenite layer in the 

Turkey slump fold (Figs. 7.4 & 7.8; modified from Waldron & Gagnon, 2011). In both cases for 

inverse thickness points, the left hand limbs have open squares and the right hand limbs have 

closed squares. All folds are in profile. Letters next to ellipses relate to the layer being analysed 
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7.5.5 Potential other relationships to the fold geometric criteria 

 

a. Shear strain 

It has been suggested (Paterson & Tobisch, 1993; Woodcock, pers. comm., 2011) that 

in slump folded layers there is a variation in the limb layer thickness between thinner base and 

thicker top layers. The thinning of the base slump fold limb may occur because it has 

accommodated more shear strain during down-slope movement. However, from analysis of 

slump fold limb thicknesses, such thickness variations are not observed in the slump folds from 

SW Turkey and New Zealand (Figs. 7.3-7.4 & 7.7-7.8), the Denmark glacial till folds (Fig. 7.4 

& 7.8) and the ‘early’ fold at Lynstone (Fig. 7.10). In the case of the Central Wales slump folds 

(Woodcock, 1976; Figs. 7.4 & 7.7) only one fold example displays layers with a thinner base 

slump fold limb. Indeed, within the stack of layers involved in these slump folds from Central 

Wales, one of the layers on the base limb is thicker than on the top limb. Consequently, the 

thickness variations between limbs may reflect the original thickness of the pre-folded sediment 

layers (Paterson & Tobisch, 1993), rather than being a consequence of it being a slump fold.  

 

b. Strain rate 

It has been suggested (Gibbs, pers. comm., 2011) that relative strain rate may generate 

the geometric criteria observed. Thus, the symmetric geometric criteria for folded rocks may 

relate to the accommodation of strain at relatively low rates, whilst the asymmetric geometric 

criteria for folded sediments may relate to the accommodation of strain at relatively high rates. 

However, dip isogon and quantitative layer thickness analyses of the north- and south-verging, 

‘late’ folds at Lynstone (Fig. 7.10) show that the folded inter-bedded layers with symmetric and 

asymmetric geometric criteria are found together. These layers presumably accommodated 

strain at the same rate during the same fold deformation event. Hence, the relative strain ratio 

cannot be responsible for the geometric criteria observed. 

 

c. Water and/or phyllosilicate content 

Paterson and Tobisch (1993) suggest that the water and/or phyllosilicate content of 

slump folded layers may have a relationship to the variation in dip isogon patterns observed. 

From petrographic analysis of thin sections, the phyllosilicate content in the matrix of slump 

folded layer samples has similar ranges to that of non-slump folded layers (i.e. 25 % ± 6 %; see 

Chapter 3). In terms of water content, it is not possible to determine the amount of water or the 

water pressure exerted in the sediment during deformation, as the slump folds have since 

lithified and have become exposed. However, pore-fluid pressure (Pf) must have been 

sufficiently high that the thixotropic sediment ‘fluid’ (after Harris, 1977; Doe & Dott, 1980; 

after Vigneresse, 2004) or hydro-plastic (Denis et al, 2009) sediment ‘fluid’ could fold without 

fracturing (Craig, 1997; see Chapter 2). 
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7.6 Summary of geometric criteria to distinguish folded rock and sediment 

The primary aim of the chapter and the general aim of this thesis have been to identify a 

set of geometric methods to distinguish between folded rock and folded sediment viewed in 

profile. To this end, it has been demonstrated that the dip isogon and quantitative layer thickness 

methods are applicable to distinguishing the mechanical state of the folded layers based on their 

geometries alone. The geometric criteria for distinguishing such folds in profile are as follows. 

 

Folded rocks, with the exception of rocks at high temperatures, are characterised by:  

1. Symmetric dip isogon patterns and layer thickness ratios about the fold hinge zones;  

2. Ordered, non-repeating dip isogon patterns and layer thickness ratios on the fold limbs;  

3. Conformity to a specific 'Ramsay' dip isogon fold class throughout the folded layer. 

 

In contrast, folded sediments behave in a different manner and are characterised by: 

1. Asymmetric dip isogon patterns and layer thickness ratios about the fold hinge zones;  

2. Scattered, repeating dip isogon patterns and layer thickness ratios on the fold limbs;  

3. Lack of conformity to any specific 'Ramsay' dip isogon fold class across the folded layer. 

 

These criteria can be expressed in these terms: 

1. Low-grade meta-sedimentary rocks are likely to have a marked rheological contrast 

between strong lithified layers (e.g. sandstones) and weaker less cemented layers (e.g. 

shales). Folds in such rocks therefore show a consistent contrast between class 1 folds in 

stiff layers and class 3 folds in weak layers, as described by Ramsay and Huber (1987).  

2. Unlithified sediments and very high-grade metamorphic rocks show a smaller rheological 

contrast between different lithologies, which commonly display weak layers. Folds in such 

sediments or very high grade rocks therefore show less consistent geometry, both along 

layers and between layers. 

 

Further to the criteria developed from using dip isogon and quantitative layer thickness 

methods to distinguish folded rock and sediment, potential complimentary geometric criteria are 

proposed from using inverse thickness analysis of the same folded layers and are as follows: 

 

Folded rocks, with the exception of rocks at high temperatures, are characterised by:  

1. One strain ellipse that can be fitted to the points from inverse thickness analysis;  

2. An ellipse that describes the strain accommodation across the entire folded layer.  

 

In contrast, folded sediments behave in a different manner and are characterised by: 

1. Multiple strain ellipses that can be fitted to the points from inverse thickness analysis;  

2. An ellipse that describes the strain accommodation in part of a folded layer (i.e. a limb).  
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Chapter 8: Bude Formation lithification state during folding  

 

8.1 Introduction 

The Bude Formation coastal outcrops, SW England, have been studied by numerous 

authors (see references in Chapters 4-6). Particular attention has been given to the chevron folds 

that have low-curvature limbs and narrow high-curvature hinge zones (Ramsay, 1974) and 

which have been modified increasingly towards the south by south-directed shearing during 

progressive Variscan deformation (Sanderson, 1979; Lloyd & Whalley, 1986; 1997). This 

chapter considers the Bude Formation lithification state during folding via application of 

methods derived in Chapter 7, thus allowing its structural evolution to be reconsidered, which is 

relevant to both objectives of this thesis. Also, some of the folds described in Chapters 4-6 show 

evidence that some or all of their beds were folded whilst still unconsolidated sediment. 

 The Bude Formation has been used in the present study to measure and analyse the 

folded beds from which five fold types are recognised. Four of the fold types have been mapped 

in detail within the Black Rock-Wanson Mouth foreshore (SS196017-SS195013; see chapters 4 

& 5) and all of them are observed elsewhere along the coastal outcrops. The fold types are: (a) 

‘reclined’, ‘elastica’, detached slump raft folds within massive slump beds; (b) recumbent, tight-

isoclinal, attached slump folds; (c) inclined, closed-tight, ‘early’ folds; (d) upright, closed-tight, 

chevron folds; and (e) inclined-to-recumbent, tight, chevron folds. 

 The two types of slump folds (types: a & b) have been measured and analysed to 

determine the variation in palaeo-slope directions during Bude Formation deposition (see 

Chapter 5). The ‘early’ folds have also been studied to understand their relationship with other 

Variscan deformation structures (see Chapter 4). All three types of slump and ‘early’ folds 

(types: a, b & c) are recognised as a result of criteria described in chapter 4 and 5 and that these 

fold types were generated at or near the palaeo-surface in unconsolidated sediment (see chapters 

4 & 5), particularly the slump folds (Hartley, 1991). In contrast, the ‘upright’ and ‘inclined-to-

recumbent’ chevron folds (types: d & e) have been assumed previously to have developed in 

rock (Ramsay, 1974).  

 Geometric criteria have been developed to distinguish folded sediment and rock in 

profile using dip isogon and quantitative bed thickness methods (see Chapter 7). In chapter 7, 

the term ‘layer’ was used to cover both a geological ‘bed’ and a model material ‘layer’.  

 The Bude Formation contains examples of folded sediment and folded rock in profile, 

which provide suitable examples for field tests of the new methods. This is important because 

distinguishing between folds that developed in sediment or rock provides an additional means of 

establishing, for example, the timing of lithification during Variscan deformation. The results of 

these analyses are described in this chapter. 
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Fold Fold type Example name Figure 

1 a. Detached slump raft fold Lynstone slump raft 8.3 

2 a. Detached slump raft fold Black Rock slump raft 3 8.3 

3 a. Detached slump raft fold Black Rock slump raft 15 8.3 

4 b. Attached slump fold Upton attached slump 8.3 

5 b. Attached slump fold Phillip’s Point slump 1 8.3 

6 b. Attached slump fold Phillip’s Point slump 3 8.3 

7 c. ‘Early’ folds Northcott Mouth ‘early’ anticline 8.2b & 8.3 

8 c. ‘Early’ folds Upton ‘early’ anticline 8.2c & 8.3 

9 c. ‘Early’ folds Upton ‘early’ fold pair 8.3 

10 d. ‘Upright’ chevron folds Damehole Point chevron anticline 8.4 

11 d. ‘Upright’ chevron folds Dyer’s Outlook chevron anticline 8.4 

12 d. ‘Upright’ chevron folds Hartland Quay chevron anticline 1 8.4 

13 d. ‘Upright’ chevron folds Hartland Quay chevron anticline 2 8.4 

14 d. ‘Upright’ chevron folds North Mear Cliff bulbous syncline 8.4 

15 d. ‘Upright’ chevron folds South Mear Cliff large chevron 

syncline 

8.4 

16 d. ‘Upright’ chevron folds Bude Harbour bulbous chevron 

anticline 

8.4 

17 d. ‘Upright’ chevron folds North Upton large chevron anticline 8.4 

18 d. ‘Upright’ chevron folds Upton-Phillip’s Point bulbous chevron 

syncline 

8.2d & 8.4 

19 e. ‘Inclined-to-recumbent’ chevron folds Upton-Phillip’s Point north-directed 

anticline 

8.2e & 8.5 

20 e. ‘Inclined-to-recumbent’ chevron folds Phillip’s Point north-directed syncline 8.5 

21 e. ‘Inclined-to-recumbent’ chevron folds Phillip’s Point south-directed anticline 8.5 

22 e. ‘Inclined-to-recumbent’ chevron folds Church Races south-directed anticline 8.5 

23 e. ‘Inclined-to-recumbent’ chevron folds North Widemouth south-directed 

(box) anticline 

8.5 

24 e. ‘Inclined-to-recumbent’ chevron folds North Widemouth mud-injected south-

directed anticline 

8.5 

25 e. ‘Inclined-to-recumbent’ chevron folds Millook recumbent fold 1 8.5 

26 e. ‘Inclined-to-recumbent’ chevron folds Mullion recumbent fold 8.5 

Table 8.1: Folds in the Bude and Crackington formations that were chosen for dip isogon and 

bed thickness analyses. Fold locations are given in Fig. 8.1  

 

8.2 Methodology 

Dip isogon and quantitative bed thickness methods (see Chapter 7) have been employed 

in order to establish the Bude Formation lithification state during folding. The methods, which 

use a set of diagnostic geometric criteria in order to distinguish between folded sediment and 
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rock beds, have been applied to 26 example folds, in profile, from across 28 km of north 

Cornwall and north Devon coastal outcrops (Table 8.1). The folds include 24 examples from the 

Bude Formation and 2 examples from the Crackington Formation (Fig. 8.1). These example 

folds form five recognised fold types that are described below. 

 

 

Fig. 8.1: Map of the SW England (Bude) coastline between Hartland (north) and Millook 

(south) showing the positions of the numbered fold examples displayed in Figs. 8.2-8.4 

 

8.2.1 Description of the fold types recognised in the Bude Formation 

The five recognised fold types in the Bude Formation include an ‘early’ fold type and 

two types of slump folded sediment (see chapters 3, 4, 5, 6 & 7), which have been folded or 

tilted by either an ‘upright’ chevron fold type or an ‘inclined-to-recumbent’ chevron fold type 

(Mapeo & Andrews, 1991). Further details of these five distinct types of fold are as follows:  
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a. Detached slump raft folds: The massive slump beds in the Bude Formation contain 

detached slump rafts whose bed thicknesses vary greatly (Fig. 8.2a) and were generated by 

movement of liquefied sediment during deposition (Strachan & Alsop, 2006; Debacker et al, 

2009). The folds are sheath-like with ‘recumbent-to-reclined’ axial planes, isoclinal-to-‘elastica’ 

(20° to -20°) interlimb angles, and doubly-plunging, highly curvi-linear, elongated hinge lines 

developed in the palaeo-slope direction (see Chapter 5). Examples of the folds are found at 

locations 1, 2 and 3 (Fig. 8.1). 

b. Attached slump folds: The attached slump folds (Fig. 8.2c) represent fold noses from thin (< 

5 cm), liquefied, sand-silt-mud inter-beds that moved down a basin slope during deposition. The 

folds have ‘recumbent’ fold axial planes, tight-isoclinal (60°-10°) interlimb angles and doubly-

plunging, elongated, curvi-linear hinge lines developed in the palaeo-slope direction (see 

Chapter 5). Examples of the folds are found at locations 4, 5 and 6 (Fig. 8.1). 

c. ‘Early’ folds: The ‘early’ folds (Figs. 8.2b-c) resulted from decametric-scale, local folding 

above a basal fault that occurred during Variscan deformation. The folds are commonly 

observed on chevron fold limbs (Fig. 8.2b-c), are strata-bound and have beds overlying and 

underlying them that appear not to have been affected by the deformation. The folds have 

‘inclined’ fold axial planes and tight (90°-40°) interlimb angles. Examples of the folds are found 

at locations 7, 8 and 9 (Fig. 8.1). Criteria to define them are provided in Chapters 4 and 5. 

d. ‘Upright’ chevron folds: The ‘upright’ chevron folds (Figs. 8.2b & d) developed during 

Variscan deformation via flexural slip along bedding planes (Tanner, 1989), have ‘upright’ axial 

planes, closed-to-tight (90°-40°) interlimb angles and minor doubly-plunging, curvi-linear hinge 

lines (see Chapter 6). Examples of the folds are found at locations 10 to 18 inclusive (Fig. 8.1). 

e. ‘Inclined-to-recumbent’ chevron folds: The ‘inclined-to-recumbent’ chevron folds (Figs. 

8.2e-f) formed on overturned limbs of modified ‘upright’ chevron folds from shear strain 

accommodation during Variscan deformation (Lloyd & Whalley, 1986). The folds have 

‘inclined-to-recumbent’ axial planes and tight-to-isoclinal (60°-10°) interlimb angles (see 

chapters 4 & 6). Examples in the Bude Formation are at locations 19 to 24 inclusive and 

Crackington Formation at locations 25 and 26 (Fig. 8.1). 

 

8.3 Dip isogon and quantitative bed thickness analyses 

To describe the folded rocks and sediments, dip isogon and quantitative bed thickness 

analyses have been undertaken on each of the folded beds in profile in Figs. 8.3-8.5. From the 

fold types, examples have been chosen to display the results (Figs. 8.6-8.8) and are as follows:  

Type a: Black Rock detached slump raft fold 3 (SS196017; location 2 in Fig. 8.1; Fig. 8.6);  

Type b: Phillip’s Point attached slump fold 3 (SS200043; location 6 in Fig. 8.1; Fig. 8.6);  

Type c: Upton ‘early’ fold pair (SS200045; location 9 in Fig. 8.1; Fig. 8.8);  

Type d: Bude Harbour bulbous chevron anticline (SS202065; location 16 in Fig. 8.1; Fig. 8.7);  

Type e: Church Races south-directed chevron fold (SS200042; location 22 in Fig. 8.1; Fig. 8.7). 
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Fig. 8.2: Photographs of the five Bude Formation fold types in profile: (a) detached slump raft 

fold (type: a), Black Rock Slump Bed (SS196017; see Chapter 3); (b) ’early’ fold pair (type: c) 

on a limb of an ‘upright’ chevron syncline (type: d), Northcott Mouth-Maer Cliff (SS202083; 

see Chapter 5); (c) ’early’ stacked fault bend folds (type: c) above an attached slump fold (type: 

b), Upton (SS200045; see Chapter 5); (d) bulbous ‘upright’ chevron syncline (type: d), Upton-

Phillip’s Point (SS200044; see Chapter 6); (e) ‘recumbent’ chevron anticline (type: e), Upton-

Phillip’s Point (SS200044); and (f) ‘inclined-to-recumbent’ chevron fold pair (type: e), 

Lynstone (SS200053; see Chapter 7) 

 

a b 
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8.3.1 Slump and ‘early’ folds in profile (Fold types: a, b & c) 

 

Results 

 Analysis of the dip isogon logs (Figs. 8.3, 8.6 & 8.8) shows that all beds have bulbous 

hinges with generally high dip isogon classes (i.e. classes 1C to 3). Dip isogon analysis of both 

slump folds (types: a & b) and ‘early’ folds (type: c) produces asymmetric, scattered, repeating 

and disharmonic dip isogon patterns on each limb (Figs. 8.3, 8.6 & 8.8). As with slump 

examples in Chapter 7, the dip isogon pattern has: (a) a range of ‘Ramsay’ classes within a bed; 

(b) non-matching multiple ‘Ramsay’ classes in the beds across both limbs; and (c) repeated and 

looping dip isogons resulting from undulations and minor buckles.  

 Quantitative bed thickness analysis plots of all three fold types (Figs. 8.6 & 8.8) have a 

strong asymmetry, scatter and repetition in the curves about the hinge position (α = 0°) for each 

limb. The curves display similar results on each limb as is found from dip isogon analysis. 

 

Interpretations 

The combined isogon log, dip isogon and quantitative bed thickness analyses on the 

slump and ‘early’ fold types (i.e. types a, b & c) indicate that: (1) dip isogon patterns are 

independent of lithology and are indicative of low coherence layers; (2) results and observations 

meet the criteria of folds formed in water-saturated, plastic sediment (Craig, 1997; Denis et al, 

2009); and (3) this is consistent with some of the Bude Formation folding occurring in sediment 

(i.e. slump folds; Enfield et al, 1985; Hartley, 1991; Hecht, 1992; Leveridge & Hartley, 2006). 

 

8.3.2 ‘Upright’ chevron folds in profile (Fold type: d) 

 

Results 

Analysis of the dip isogon logs from the ‘upright’ chevron folds (type: d) (Figs. 8.4 & 

8.7) shows that all beds have bulbous hinges with generally high dip isogon classes (i.e. classes 

1C to 3). Dip isogon analysis produces asymmetric, scattered and repeating dip isogon patterns 

on each limb (Figs. 8.4 & 8.7). This is the same as is recognised for the slump and ‘early’ folds 

(types: a, b & c). The dip isogon pattern has: (1) a range of ‘Ramsay’ classes within a bed; (2) 

non-matching multiple ‘Ramsay’ classes in beds across both limbs; and (3) repeated and 

looping dip isogons resulting from undulations and minor buckles.  

 Quantitative layer thickness analysis plots of the ‘upright’ chevron folds (Fig. 8.7) have 

a strong asymmetry, scatter and repetition in the curves about the hinge position (α = 0°) for 

each limb. The curves display similar results on each limb as is found from dip isogon analysis. 
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Fig. 8.3: The 3 dip isogon sketches each from the detached slump raft (type: a), attached slump 

(type: b) and ‘early’ (type: c) folds. Notice the repeated dip isogons on the limbs similar to those 

observed in the slump and glacial till (sediment) folds in Chapter 7. Dip isogon logs (orange = 

sandstone; yellow = siltstone; green = shale) show how the dip isogon class varies from bed-to-

bed, giving an indication of how the relative coherences of the stacked beds change. The 

examples used in Fig. 8.6 (nos. 2 & 6) and Fig. 8.8 (no. 9) for the dip isogon and quantitative 

bed thickness analyses have an asterisk next to them. All folds are in profile 

 

* 
* 

* 
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Fig. 8.4: The 9 ‘upright’ chevron fold (type: d) dip isogon sketches (from this work & Ramsay, 

1974). Notice the repeated dip isogons on the limbs similar to those observed in detached slump 

raft, attached slump and ‘early’ folds (see Fig. 8.3). Dip isogon logs (orange = sandstone; 

yellow = siltstone; green = shale) show how the dip isogon class varies from bed-to-bed, giving 

an indication of how the relative coherences of the stacked beds change. The example used in 

Fig. 8.7 (no. 16) for the dip isogon and quantitative bed thickness analyses have an asterisk next 

to it. All folds are in profile 

 

 

* 
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Fig. 8.5: The 6 Bude Formation north and south-directed, ‘inclined-to-recumbent’ chevron fold 

and 2 Crackington Formation ‘recumbent’ chevron fold (type: e) dip isogon sketches. 

Commonly, the bulbous hinges (i.e. classes 2 to 3 dip isogons) are restricted to the shale beds 

and are rarely developed intermittently in different lithologies as observed in Figs. 8.3-8.4. Dip 

isogon logs (orange = sandstone; yellow = siltstone; green = shale) show how the dip isogon 

class varies from bed-to-bed, giving an indication of how the relative coherences of the stacked 

beds change. The example used in Fig. 8.7 (no. 22) for the dip isogon and quantitative bed 

thickness analyses have an asterisk next to it. All folds are in profile 

* 



240 

 

 

Fig. 8.6: Comparative dip isogon and bed thickness analyses for Black Rock detached slump raft 3 and Phillip’s Point attached slump fold 3 (locations 2 & 6 in Fig. 

8.1; nos. 2 & 6 in Fig. 8.3), with dip isogon logs (orange = sandstone; yellow = siltstone; green = shale). All folds are in profile. Letters next to graphs relate to the 

marked bed being analysed 

 

 

Fig. 8.7: Comparative dip isogon and bed thickness analyses for Bude Harbour ‘upright’ chevron anticline (location 16 in Fig. 8.1; no. 16 in Fig. 8.4) and Church 

Races south-directed, ‘inclined-to-recumbent’ chevron anticline (location 22 in Fig. 8.1; no. 22 in Fig. 8.5) with dip isogon logs (orange = sandstone; yellow = 

siltstone; green = shale). All folds are in profile. Letters next to graphs relate to the marked bed being analysed
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Interpretations 

The combined results of isogon log, dip isogon and quantitative bed thickness analyses 

on the ‘upright’ chevron folds (type: d) indicate that: (1) dip isogon patterns are independent of 

lithology and are indicative of low coherence layers; and (2) results and observations meet the 

criteria of folds developed in water-saturated, plastic sediment (Craig, 1997; Denis et al, 2009). 

 

8.3.3 ‘Inclined-to-recumbent’ chevron folds in profile 

 

Results 

Analysis of the dip isogon logs (Figs. 8.5 & 8.7) show that the shale beds in the Church 

Races fold and Crackington Formation fold examples have higher isogon classes (i.e. classes 2 

to 3) than the sandstone and siltstone layers (i.e. classes 1B to 2). In beds from the other Bude 

Formation ‘inclined-to-recumbent’ chevron fold examples, any of the lithologies can have 

bulbous hinges with generally high isogon classes (i.e. classes 1C to 3). 

 Dip isogon analysis of ‘inclined-to-recumbent’ chevron folds (type: e) produces 

symmetric, ordered, non-repeating and harmonic dip isogon patterns in many of the beds on the 

fold limbs (Figs. 8.5 & 8.7). This is the same as is recognised in Chapter 7 for folded rocks. 

However, some of the beds display asymmetric, scattered and repeating dip isogon patterns on 

each limb. This is the same as is recognised in previous sections for both slump fold types, and 

both ‘early’ fold and ‘upright’ chevron fold types, and in Chapter 7 for folded sediment.  

 Quantitative layer thickness analysis plots of the ‘inclined-to-recumbent’ chevron folds 

(Fig. 8.7) show that many layers have nearly symmetric curves about the hinge position (α = 0°) 

on each limb. However, in some beds, the plots have a strong asymmetry, scatter and repetition 

in the curves for each limb about the hinge position. The curves display similar results on each 

limb as is found from dip isogon analysis.  

 

Interpretations 

The combined results of isogon log, dip isogon and quantitative bed thickness analyses 

on the ‘inclined-to-recumbent’ folds (type: e), the results and observations meet the criteria of 

folds developed in mixed layers of sediment and rock. This suggests that during ‘inclined-to-

recumbent’ chevron fold deformation, the Bude Formation beds were lithifying. However, it is 

possible that as the ‘inclined-to-recumbent’ chevron folds incorporated the effects of ‘upright’ 

chevron folding (i.e. sediment) into its bed thicknesses, and this may have caused the ‘inclined-

to-recumbent’ chevron folded beds to appear to be sediment when in fact they were lithified. 

 

8.4 Model for Bude Formation folds during deposition  

The dip isogon and quantitative bed thickness methods (see Chapter 7) can be used to 

distinguish ‘early’ folds viewed in profile. To aid its application, a model is developed of the 
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idealised dip isogon patterns in early’ post-depositional folds and also, in the subsiding 

synclines and uplifting anticlines of ‘early’ syn-depositional folds (Fig. 8.8). The model is 

demonstrated (Fig. 8.9) on the ‘early’ syn-depositional fold pair at Upton (SS200045) (Fold 

type: c; location 9 in Fig. 8.1) and applied, together with the results of the dip isogon and 

quantitative bed thickness analyses of Bude Formation folds (Figs. 8.3-8.7 & 8.9), to determine 

the relative timing of lithification and fold deformation (Table 8.2).  

 

 

Fig. 8.8: Idealised folds in profile to demonstrate the difference in dip isogon patterns between 

those generated post- and syn-depositionally. Both patterns are best observed in the Upton 

‘early’ fold pair (SS200045; location 9 in Fig. 8.1; Figs. 8.2c, 8.3 & 8.9)  

 

8.4.1 ‘Early’ syn-depositional versus ‘early’ post-depositional dip isogon patterns 

Fold deformation of sedimentary beds following their deposition can occur in either 

rock or sediment. However, where fold deformation occurs in a basin setting during deposition, 

the structures can affect the basin bathymetry and therefore, the thickness of subsequent beds.  
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Fig. 8.9: Dip isogon and quantitative bed thickness analyses of Upton ‘early’ fold pair 

(SS200045; location 9 in Fig. 8.1; Figs. 8.2c & 8.3) with dip isogon logs (orange = sandstone; 

yellow = siltstone; green = shale). All folds are in profile. Letters next to graphs relate to the 

marked bed being analysed 

 

Dip isogon pattern in a post-depositional folded layer in profile 

The dip isogon patterns for the folded rock and folded sediment were described in 

Chapter 7 for the beds deposited prior to folding. In this chapter, the model was applied to all 

the Bude Formation slump folds (types: a & b) and chevron folds (types: d & e). The geometries 

of the example folds described in this chapter (Figs. 8.6-8.7) have dip isogon patterns in each 

bed that depend upon their relative coherence and their mechanical or lithification state (i.e. 

sediment or rock) during folding. In rocks, the dip isogon patterns are regular and symmetrical 
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about the hinge, with the folded layer showing classes 1A to 1C dip isogons for more coherent 

layers and classes 2 to 3 dip isogons for less coherent layers (Ramsay, 1967). In contrast, the dip 

isogon fold patterns in folded sediment are irregular and asymmetrical about the hinge, with the 

folded layer showing a dip isogon pattern between classes 1A to 3 across the hinge ‘zone’. 

 

Dip isogon pattern in an ‘early’ syn-depositional folded layer in profile 

In the Bude Formation, there are examples of ‘early’ folds (type: c) that are recognised 

where the folded layers have ‘undeformed’ beds surrounding them, are truncated by over-lying 

beds and/or have growth strata deposited around them following the convention of Zoetemeijer 

et al (1992), Nigro and Renda (2004) and Corredor et al (2005) (see chapters 4 & 5). The 

example analysed here is the Upton ‘early’ fold pair (SS200045; location 9 in Fig. 8.1; Figs. 

8.2c & 8.9), where there is a large thickness difference in one shale bed across the fold pair 

(growth strata criterion; see chapters 4 & 5). The shale is thinner over the anticlinal crest (i.e. 

class 1A dip isogon pattern; Fig. 8.9a) than in the synclinal trough (i.e. class 3 dip isogon 

pattern; Fig. 8.9b). This results from depositional thickness variations rather than ductile shale 

flow, which can occur in fault-propagation folding (Suppe, 1985). The dip isogon patterns 

around both fold hinges are irregular and asymmetric, matching the criteria for folded sediment.  

 

Interpretations from the dip isogon pattern in an ‘early’ syn-depositional folded layer 

The bed thickness variations over the fold hinges suggest that the anticlinal crest formed 

a positive, albeit small, bathymetric feature on the palaeo-surface during ‘early’ folding, causing 

thinner strata to be deposited above the ‘high’ compared to the fold limbs, whilst the synclinal 

trough received more sediment. If the coherence of the mud bed had remained the same across 

the fold pair, the differing dip isogon patterns between the two folds would have resulted from 

bed thickness changes only. To demonstrate this, a model was developed that displays idealised 

‘early’ syn- and post-depositional fold examples (Fig. 8.8). 

 

8.4.2 Model for ‘early’ syn- and post-depositional fold dip isogon patterns 

In the post-depositional fold dip isogon model, the ‘layer-cake’ beds are assumed to be 

deposited on a palaeo-surface without any topography, so that the dip isogon fold patterns are 

dependent upon the mechanical or lithification state of the beds (i.e. sediment or rock beds). The 

geometric criteria to distinguish folded sediment and folded rock as described in Chapter 7.  

 Generalised descriptions of the anticipated dip isogon patterns are made using the 

sketches for both types of slump fold (types: a & b), both types of chevron fold (types: d & e) 

(Figs. 8.3-8.5) and the simplified sketch chevron fold examples (Fig. 8.8a). In general, the folds 

deformed post-depositionally and lacking bulbous-hinged beds, tend towards class 2 (axial 

parallel) dip isogon patterns. However, the folds with bulbous-hinged beds tend to have class 2 

to 3 dip isogon patterns, with the surrounding folded beds having class 1C dip isogon patterns. 



245 

 

These same dip isogon descriptions may be applicable to ‘arch’, ‘arch’ box and chevron box 

folds as well (Fig. 8.8a).  

 In the ‘early’ syn-depositional anticline dip isogon model, the folded bed is assumed to 

be sediment and the original bed thickness decreases over the anticlinal crest because the 

depositing bed partially onlaps the uplifting high. The variation in original bed thickness affects 

the resulting dip isogon pattern, with the folding bed having a low dip isogon class (i.e. class 

1A). Consequently, the resulting dip isogon pattern for the folded bed does not reflect the 

coherence of the bed during ‘early’ syn-depositional folding (Fig. 8.8b).  

 In the ‘early’ syn-depositional syncline dip isogon model, the folded bed is assumed to 

be sediment and the original layer thickness increases over the synclinal trough due to the 

depositing bed infilling the subsiding topographic low. The variation in original bed thickness 

affects the dip isogon pattern, with the folded bed having a high dip isogon class (i.e. class 3). 

Consequently, its resulting dip isogon pattern does not reflect the coherence of the bed during 

‘early’ syn-depositional folding (Fig. 8.8c). 

 

8.5 Geometries and lateral variation of structures in the Bude Formation 

In this section, the geometries of the Bude Formation chevron folds and faults are 

described in terms of their lithification state during deformation and also, how the structural 

geometries vary laterally along the coastal outcrops. After this, a series of comparisons will be 

undertaken between the Sanderson (1979) results (see Chapter 2) and the results obtained using 

data from the unpublished M.Sc. thesis of Williams (2005). In the case of the Williams work, 

some results will be drawn directly from Williams (2005) and some gained through re-analysis 

of the data. The comparisons concern: (1) the interlimb angle and shear strain from the chevron 

folds between Duckpool and Dizzard Point in the Bude and Crackington formations; and (2) the 

lateral variation in shear strain accommodation in the study area between Northcott Mouth and 

Wanson Mouth (see Fig. 8.1). A review and comparison is then made between the Sanderson 

(1979) and Lloyd and Whalley (1986; 1997) models for south-directed ‘inclined-to-recumbent’ 

chevron folding that follows on from Chapter 4, which leads into a critical review of the Lloyd-

Whalley model with respect to the chronology of the progressive Variscan deformation.  

After the discussion of the structural geometries, the inverse thickness method (Lisle, 

1992; see Chapter 7) is reviewed using two example Bude Formation folded beds: an ‘upright’ 

chevron fold (type: d); and an ‘inclined-to-recumbent’ chevron fold (type: e). Following this, 

two restoration models for the Black Rock and Wanson Mouth foreshores are used to interpret 

similar structures elsewhere in the Bude Formation outcrops. 

 

8.5.1 Review of the Sanderson (1979) and Lloyd and Whalley (1986; 1997) models 

In Chapter 4, a review was undertaken of the Sanderson (1979) and Lloyd and Whalley 

(1986; 1997) models. Both recognised that towards the south, the coastal outcrops of folded 
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beds in the Bude and Crackington formations show a generally increasing level of south-

directed shear strain accommodation. A review of these models by Anderson and Morris (2004) 

suggested that a localised south-directed shear deformation can be invoked “as the cause of 

modification of an initial upright chevron geometry”. The difference between the models noted 

by Anderson and Morris (2004) is that they refer to different parts of the fold geometry:  

1. Sanderson (1979) modelled the evolution of the initial ‘upright’ fold axial planes and 

interlimb angles with increasing shear strain in the fold hinge zones;  

2. Lloyd and Whalley (1986; 1997) modelled only the limbs of initial ‘upright’ chevron folds 

as movement planes that produced the different ‘inclined-to-recumbent’ chevron fold types.  

 

Lloyd and Whalley (1986; 1997) provided a mechanism by which the south-directed 

shearing deformation generated south-directed ‘inclined-to-recumbent’ folds during progressive 

deformation on south-dipping limbs of originally ‘upright’ chevron folds. This is a mechanism 

supported by the Ghosh (1966) experiments (see Chapter 4). Their model considered outcrop 

sections north of Bude (SS200065) where little or no south-directed shear deformation has been 

accommodated. Lloyd and Whalley (1986) examined the folds between Hartland and Dizzard 

and demonstrated, with examples such as the ‘Welcombe Diamond’ structure at Welcombe 

Mouth, that their model can be applied across the Culm Basin (see Fig. 8.1).  

Sanderson (1979) also considered all the sections between Hartland and Rusey, which 

include folds where little or no south-directed shear strain has been accommodated by ‘upright’ 

chevron folding during Variscan deformation. As already noted, these sections include the field 

study area between Northcott Mouth and Wanson Mouth (SS202087-SS195013). ‘Upright’ 

chevron folds dominate the outcrops to the north of Efford (SS200062; see Fig. 8.1); whilst 

south of Efford, many of the fold axial planes have become increasingly ‘inclined-to-

recumbent’. Many ‘upright’ chevron folds between Bude and Hartland considered by Sanderson 

(1979) have accommodated compressional strain via fold tightening, beyond the ‘lock-up’ inter-

limb angle of 60°. This has caused either hinge thickening with corresponding limb thinning, or 

alternatively, minor hinge thrusts (Ramsay, 1974; Davison et al, 2004), with cleavage 

development in some cases (Lloyd & Chinnery, 2002; see Chapter 4). This is consistent with the 

Sanderson (1979) model, of increased accommodation of south-directed shear strain by the 

chevron folds towards the south. 

 It can be noted that north-directed ‘inclined-to-recumbent’ chevron folds (see Figs. 8.2e 

& 8.5) are observed at Phillip’s Point (SS200044; Figs. 8.1 & 8.2e) but are neither described by 

Sanderson (1979) nor appear in Fig. 7 of Lloyd and Whalley (1986) (see section in Fig. 2.29 of 

Chapter 2). Lloyd and Whalley (1986) suggested that the north-directed ‘inclined-to-recumbent’ 

chevron folds formed where locally-emplaced thrusts and hanging wall folds were deformed 

during south-directed shear deformation (see Chapter 2). This suggests that north-directed 

thrusts propagated into the Bude Formation deposits whilst they were still sediment (Leveridge 
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& Hartley, 2006) and that the thrusts were later deformed by progressive Variscan folding as the 

Bude Formation became increasingly lithified, as demonstrated in this chapter (see Table 8.2).  

 Thus, the Sanderson (1979) model described the regional transition from ‘upright’ to 

‘inclined-to-recumbent’ chevron folds in the Culm Basin by focussing on the fold hinge zones. 

In contrast, the Lloyd and Whalley (1986; 1997) model described the types of folds that can be 

generated where south-directed shear strain has been accommodated by the folded beds during 

Variscan deformation. This is presented as three sub-models focussing on the fold limbs, as 

described in chapters 2 and 4. Thus, the differences in focus relate to different but equally-

important aspects of the fold geometries and so the models are not inconsistent with each other. 

 

8.5.2 Chronology of the progressive Variscan deformation 

The Variscan deformation observed in the Culm Basin is widely described as regional 

and progressive (Ramsay, 1974; Freshney, 1972; 1979; Sanderson, 1974; 1979; Coward & 

Smallwood, 1984; see chapters 2, 4 & 6). Lloyd and Whalley (1986; 1997) modelled the 

‘inclined-to-recumbent’ chevron folds as being the modification structures of original ‘upright’ 

chevron folds that developed during Variscan deformation by accommodating south-directed 

shear strain. They noted that: “in order to be available for modification, such [‘upright’] folds 

must have been initiated during the earliest, north-directed thrust movements and may represent 

geometrically necessary folds associated with ramps in the thrust planes”. This suggests that an 

original set of semi-isolated, hundreds of metres scale ‘upright’ chevron folds developed locally 

in the Culm Basin, in the vicinity of north-directed thrusts, early in the Variscan deformation. 

This could be interpreted as suggesting that the Variscan deformation in the Culm Basin was 

punctuated and involved changes in the deformation style, with periods of thrusting and folding. 

However, to demonstrate that Variscan deformation is progressive, Whalley and Lloyd 

(1986) state: “It is possible to recognise folds which deform northerly directed thrust planes. 

There is evidence, therefore, of a continuous process of chevron fold initiation and development 

associated with the continuing thrusting deformation, and one should not envisage a discrete 

ordering of thrusting and folding events. This is in accord with the nature of the progressive, 

shearing deformation which must have occurred in this area throughout the period in question”.  

 The statements of Whalley and Lloyd (1986) could possibly lead to confusion regarding 

the progressive nature of the Variscan deformation. To reduce the potential for confusion, an 

analysis may be needed that takes account the Ramsay (1974) chevron fold model, using further 

structural data from the ‘upright’ chevron folds between Hartland and Bude. Also, a comparison 

of the Ramsay, Sanderson and Lloyd-Whalley models in the Culm Basin, together with models 

for fold development in other deformed basins, may provide further insights into progressive 

fold deformation. Furthermore, it would be useful to test whether the geometric criteria 

developed in Chapter 7 and this chapter, are applicable in other compressionally deformed 

basins to contribute to establishing the relative timing of folding and lithification elsewhere.  
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8.5.3 Lithification states of the chevron folds during progressive deformation 

The results of the dip isogon and quantitative bed thickness analyses for the Culm Basin 

folds suggest that the ‘upright’ chevron folded beds meet the criteria for folding in sediment 

whilst the ‘inclined-to-recumbent’ chevron folded beds meet the criteria for folding in inter-

bedded rock and sediment. This suggests that the ‘inclined-to-recumbent’ chevron folds 

developed after the ‘upright’ chevron folds, once the Bude Formation had begun to lithify. The 

different lithification states found from the results of the dip isogon and bed thickness analyses 

on the five fold types (Figs. 8.3-8.8) are summarised in Table 8.2. 

  

 

Table 8.2: Table showing how the Bude Formation folded beds became more lithified during 

Variscan deformation 

 

In the study area, ‘upright’ chevron folds were found between Northcott Mouth and 

Efford (SS202087-SS200056), Upton and Phillip’s Point (SS200052-SS200046) and at Black 

Rock (SS200020-SS196014) and ‘inclined-to-recumbent’ chevron folds were found between 

Efford and Lynstone (SS200060-SS200052), Phillip’s Point and North Widemouth (SS200046-

SS200027) and at Wanson Mouth (SS195015-SS193015) (see Fig. 8.1). This shows that from 

north-to-south across the Bude Formation outcrops, there is an alternating sequence of areas 

with ‘upright’ and ‘inclined-to-recumbent’ chevron folds (types: d & e).  

Contemporaneously with the chevron folding was the north-directed thrusting, both of 

which were affected by the accommodation of south-directed shear strain (Enfield et al, 1985; 

Whalley & Lloyd, 1986). The thrusts have a shallow northwards dip on the right-way up north-

dipping limb of ‘inclined-to-recumbent’ chevron folds; but in contrast, have a steep northwards 
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dip on the overturned steep north-dipping limbs of the chevron folds. A model explaining these 

geometries was provided in Chapter 4 and is also restated later in order to explain this. 

To the north of Bude (SS200065), the ‘upright’ chevron folds show little modification 

towards becoming ‘inclined-to-recumbent’, whilst to the south, the chevron folds show an ever 

increasing modification to this form. This is consistent with a regional southward increase in 

south-directed shear strain accommodation during Variscan deformation (Sanderson, 1979; see 

Chapter 4). According to the Ghosh (1966) and Lloyd and Whalley (1986; 1997) models, the 

‘inclined-to recumbent’ chevron folds occurred on the south-dipping limbs of modified 

‘upright’ chevron folds that were experiencing south-directed shear deformation (see chapter 2 

& 4). This is consistent with ‘inclined’ fold development on tilted layers dipping in the shearing 

direction from the Ghosh (1966) experiments (see Fig. 4.4 in Chapter 4). The criteria based on 

dip isogon and bed thickness analyses that distinguish between folded rock and folded sediment 

(see sections 8.2 & 8.3) suggest that progressive Variscan deformation occurred in the chevron 

folded beds whilst the Bude Formation became increasingly lithified.  

 This contrasts with Warr (2002), who suggested that the under-thrusting of the Rusey 

Fault in the southern Culm Basin, caused ‘upright’ chevron folds to develop at the same time, or 

just after, the south-directed ‘inclined-to-recumbent’ chevron folds (see Chapter 2). These 

contrasting models for the Variscan deformation in the Culm Basin are discussed in Chapter 9 

together with the regional Variscan deformation in SW England.  

 

8.5.4 Comparison of interlimb angle and shear strain (from Williams, 2005) 

The analyses described in this section use unpublished data from a set of folds from 

Williams (2005) to compare the interlimb angle with the axial plane angle and the shear strain 

(Figs. 8.10-8.11). Williams (2005) had calculated the accommodated shear strain and interlimb 

angles from data on 177 folds obtained in University of Leeds B.Sc. undergraduate fieldwork 

projects conducted between Duckpool and Dizzard Point (SS200115-SX154994; Fig. 8.1). 

These results are compared with those obtained from the same area, by Sanderson (1979) (see 

Fig. 2.23 in Chapter 2). The analysis of these interlimb and axial plane angles in this work (Fig. 

8.10) and their comparison with the Sanderson (1979) results shows that:  

1. There is a much larger number and range of the data values in the University of Leeds data 

for the study area (Sanderson’s data being from a much larger stretch of coastal outcrops);  

2. Most folds in both data sets are ‘upright’ chevron folds, especially to the north of Bude;  

3. The University of Leeds data shows a greater geographical overlap in the fold type clusters 

than is apparent from Sanderson’s data (see Fig. 2.23 in Chapter 2). 

 

Comparing the data in Fig. 8.10 with that of Sanderson (1979) was statistically 

unsatisfactory due to the difference in the samples. The University of Leeds projects generated 

detailed data, but for just a small section of the coast between Hartland and Rusey (see Fig. 8.1) 
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considered by Sanderson (1979). Thus, the relative mix of fold types differs greatly between the 

two data sets, with the area north of Bude being dominated by ‘upright’ chevron folds. 

Unfortunately, Sanderson (1979) did not publish the precise locations of the folds measured, so 

it was neither possible to extract the small sub-set of data that was strictly comparable to the 

project data, nor possible to correct for the complications caused by the differences in the ‘mix’ 

of folds. Thus, from a statistical standpoint, the datasets are not strictly comparable despite 

being concerned with the same structural measurements. 

The analysis of the interlimb angle and absolute shear strain accommodated by the 

chevron folds from this work (Fig. 8.11) shows that there is:  

1. Increasing numbers of folds accommodating large shear strains towards the south (i.e. 

deeper structural and stratigraphic levels), which fits with the results of Sanderson (1979);  

2. A general decrease in interlimb angle with increasing shear strain, which fits with the results 

from Sanderson and Dearman (1973) and Sanderson (1979);  

3. A large spread in ‘upright’ chevron fold inter-limb angles with no change in shear strain.  

 

 

Fig. 8.10: Comparison of the interlimb and axial plane angles for each geographical area (data 

from Williams, 2005). The spread of the data points for each area is marked.  

 

 

Fig. 8.11: Comparison of the variable interlimb angle and shear strain for each geographical 

area (data from Williams, 2005). The spread of the data points for each area is marked. 

 

The interlimb angle and absolute shear strain accommodated by the chevron folds (Fig. 

8.11) has a large range of interlimb angles between 180° and 0° for ‘upright’ chevron folds (fold 

type: d). Many of the ‘upright’ chevron folds between Duckpool and Dizzard Point (see Fig. 
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8.1) have interlimb angles below 60°; which is the angle at which fold ‘lock-up’ occurs (Price & 

Cosgrove, 1990). This results in the bulbous-hinged folds of Ramsay (1974). In contrast, some 

of the ‘inclined-to-recumbent’ chevron folds (fold type: e) show decreasing inter-limb angles (< 

90°) with increasing shear strain accommodation (> 0.5). This suggests that there is a regional 

inverse relationship between the structural parameters, with an increasing level of south-directed 

shear strain accommodated towards the south of the Culm Basin (Sanderson, 1979).  

 

8.5.5 Variable shear strain model for Bude Formation folds (from Williams, 2005) 

Williams (2005) studied how the shear strain varied in the ‘upright’ and ‘inclined-to-

recumbent’ chevron folds between Duckpool and Dizzard Point (SS202115-SX165988; Fig. 

8.1), which includes the study area between Northcott Mouth and Wanson Mouth (SS202087-

SS195013; Fig. 8.1). The dataset and the results of Williams study were used when generating a 

model to explain the variation in shear strain accommodation across the Bude and Crackington 

formations (Fig. 8.12). From Williams (2005), the shear strain accommodated by the Bude 

Formation folds in the study area has two ‘peaks’ of high shear strain that correspond to two 

discrete coastal sections with south-directed ‘inclined-to-recumbent’ chevron folds (Fig. 8.12):  

1. Efford and Lynstone (UK national grid northings 061-048), shear strain range = 1.0 - 3.5;  

2. Phillip’s Point and Widemouth (grid northings 044-020) shear strain range = 2.5 - 4.0. 

 

 

Fig. 8.12: Diagram of mean south-directed shear strain accommodation in the Bude Formation 

folds between Northcott Mouth and Wanson Mouth (Grid northings SS 015-090). Notice two 

peaks in the data corresponding to coastal sections exhibiting south-directed ‘inclined-to-

recumbent’ chevron folds (modified from Williams, 2005). South is to the left 

 

Williams (2005) data showed that there is increasing shear strain accommodated by the 

chevron folds towards the south of the study area (Fig. 8.12), which is consistent with the 

Sanderson’s model of a regional increase in shear strain accommodated towards the south of the 

Culm Basin. However, the amount of shear strain accommodated varies around the trend, as had 

been noticed also by Sanderson (1979) between Widemouth and Saltstone (see chapters 2 & 4). 
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In particular, around Phillip’s Point (SS 045) (Fig. 8.12), an area of ‘upright’ and north-directed 

‘inclined-to-recumbent’ chevron folds where south-directed shear strain accommodation is low.  

 

8.6 Inverse thickness method  

Two example Bude Formation folded beds in profile are analysed using the inverse 

thickness analysis (see Chapter 7). The examples are a sandstone bed from the Church Races 

‘inclined-to-recumbent’ chevron anticline (SS200042; fold type: e) (location 22 in Fig. 8.1; no. 

22 in Fig. 8.5; Fig. 8.7) and a shale bed from the Bude Harbour ‘upright’ chevron anticline 

(SS202065; fold type: d) (location 16 in Fig. 8.1; no. 16 in Fig. 8.4; Fig. 8.7). 

 

8.6.1 Results 

One strain ellipse is required for the plotted points of the sandstone bed in the Church 

Races ‘inclined-to-recumbent’ anticline (Fig. 8.13a). A slight dumb-bell shape is produced, 

which could result from minor variations in original bed thickness rather than from variations in 

the shortening accommodated on each limb. The maximum extensional direction (major axis) is 

005°-185°; and the maximum compressional direction (minor axis) is 095°-275°; which are sub-

parallel and sub-perpendicular to the axial trace, respectively, and have a strain ratio of 2.21.  

  In contrast, three strain ellipses are fitted to the points for the shale bed in the Bude 

Harbour ‘upright’ chevron anticline (Fig. 8.13b). The orientations on the far right limb and the 

right limb-to-hinge zone both have major and minor axes are 135°-315° and 045°-225°, 

respectively. These orientations are oblique to those for the left limb-to-hinge zone, which are 

020°-200° and 110°-290°, respectively. In both cases, the major axes of the ellipses are sub-

parallel to the bedding planes. The strain ratio in the shale bed vary considerably: (1) far right 

limb: 6.05; (2) right limb-to-hinge zone: 2.28; and (3) left limb-to-hinge zone: 1.94.  

 

8.6.2 Distinguishing folded rock and folded sediment (from Chapter 7) 

From the results of inverse thickness analysis in Chapter 7, folded rocks are 

characterised by one strain ellipse that can be fitted through the inverse thickness points, which 

describes the strain accommodation across the entire folded layer. In contrast, folded sediments 

are characterised by multiple strain ellipses that can be fitted through the inverse thickness 

points, which describe the strain accommodation in part of a folded layer (a limb or hinge zone). 

The results from inverse thickness analysis suggest that the sandstone bed in the Church 

Races ‘inclined-to-recumbent’ chevron anticline meet the criteria for folds developed in rock, 

whilst the shale bed in the Bude Harbour ‘upright’ chevron anticline meet the criteria for folds 

developed in sediment (Fig. 8.13). These results of the mechanical or lithification state for the 

folded beds are consistent with those from dip isogon and quantitative bed thickness analysis in 

Fig. 8.7. Thus, the geometric criteria from inverse thickness analysis developed to distinguish 

folded rock and folded sediment in profile can be applied to the Bude Formation folds.  
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Fig. 8.13: Application of the inverse thickness method using a sandstone bed in the Church 

Races ‘inclined-to-recumbent’ chevron anticline (Figs. 8.5 & 8.7) and a shale bed in the Bude 

Harbour ‘upright’ chevron anticline (Figs. 8.4 & 8.7). For inverse thickness points in the Church 

Races anticline, the top-most limb has open squares and the bottom-most limb has closed 

squares. In the Bude Harbour anticline, the left-hand limb has open squares and the right-hand 

limb has closed squares. All folds are in profile. Letters next to ellipse relate to the marked bed 

being analysed 
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8.7 Application of results from the Widemouth South Fault (WSF) 

In Chapter 4, the deformation structures observed in the Black Rock and Wanson 

Mouth foreshores were described as having been juxtaposed by the Widemouth South Fault. 

One model developed in this study by the author for the WSF was of a north-directed thrust that 

became inverted during progressive Variscan deformation. Here, a brief review is provided of 

the author’s model and the Freshney et al (1972) ‘late’ normal fault model, prior to a discussion 

on how the models can be used as a guide in restoring sections and how other methods can be 

applied to the faults that cross-cut the Bude Formation chevron folds. The restorations are 

undertaken in steps for practicality and to make the structural relationships clear.  

 

8.7.1 Widemouth South ‘late’ normal fault model (Freshney et al, 1972) 

The Freshney et al (1972) normal fault model (see Chapter 4), the WSF was viewed as a 

‘late’ normal fault that juxtaposed the Black Rock and Wanson Mouth foreshore successions 

after Variscan deformation (Fig. 8.14a (i)). This model appears to be plausible because the WSF 

truncates all previous structures, implying that the last displacement on the fault must have been 

greater than the wavelength of any fold structure formed previously.  

The first restoration removes the normal faults and 300 m of stratigraphic separation 

between the foreshores (Fig. 8.14a (ii); see Chapter 4). This leaves the Black Rock foreshore 

with an ‘upright’ chevron fold train on the shallow north-dipping limb of a larger-scale chevron 

anticline, whilst the Wanson Mouth foreshore has a ‘cascade’ of ‘inclined-to-recumbent’ 

chevron folds on the overturned north-dipping limb of a different larger-scale chevron anticline. 

 The second restoration (Fig. 8.14a (iii)) removes the ‘inclined-to-recumbent’ chevron 

fold deformation, so that the beds retain their present overturned steep northwards dip and cut 

across the entire Wanson Mouth foreshore (Fig. 8.14a (iii)). In the now separate Black Rock 

foreshore succession, there continues to be an ‘upright’ chevron fold train. The deformed beds 

in both foreshores have become more laterally-continuous and lie on the limbs of separate larger 

scale folds that have a stratigraphic separation of 300 m (Fig. 8.14a (iii); see Chapter 4). 

The third restoration (Fig. 8.14a (iv)) removes the overturned steep northwards dip of 

the beds and returns them to a right way-up, sub-horizontal orientation. The Black Rock and 

Wanson Mouth beds are shown as two layer-cake laterally continuous successions separated by 

a stratigraphic distance of 300 m (see Chapter 4). 

 

8.7.2 Inverted Widemouth South Fault model  

In the inverted Widemouth South Fault model, the faults in the Wanson Mouth 

foreshore are viewed as ‘late’ normal faults (Fig. 8.14b (i)) that cause only tens of metres of 

displacement (Freshney et al, 1972). To explain the 300 m stratigraphic separation across the 

WSF (Freshney et al, 1979; see Chapter 4), the ‘late’ normal fault movement along the WSF is 

viewed as a reactivation of a previous thrust (i.e. earlier form of the WSF; Enfield et al, 1985). 
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Fig. 8.14: Two schematic structural restoration models to explain the geological evolution of the 

Black Rock and Wanson Mouth foreshores. The models are: (a) the Freshney et al (1972) ‘late’ 

normal fault model; and (b) the inverted Widemouth South Fault model, which has been 

reactivated as a ‘late’ normal fault   
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 The first restoration removes the hundreds of metres long ‘late’ faults, except for the 

WSF, and restores the beds to their pre-‘late’ normal fault positions (Fig. 8.14b (ii)). The Black 

Rock foreshore succession has an ‘upright’ chevron fold train on the shallow north-dipping limb 

of a larger-scale chevron anticline, whilst the Wanson Mouth foreshore has a ‘cascade’ of 

‘inclined-to-recumbent’ chevron folds on the overturned north-dipping limb of this larger-scale 

chevron anticline. Also, the earlier form of the WSF is deformed by the ‘inclined-to-recumbent’ 

chevron folds (see gusset; see Section 4.6).  

 The second restoration (Fig. 8.14c (iii)) removes the ‘inclined-to-recumbent’ chevron 

fold pair. The Wanson Mouth beds retain their present overturned steep northwards dip and cut 

across the entire foreshore, whilst the ‘upright’ chevron fold train in the Black Rock foreshore, 

is interpreted to be on the north-dipping limb of the same larger scale chevron anticline. The 

earlier form of the WSF is present and cuts the overturned limb of the larger-scale chevron fold. 

 The third restoration (Fig. 8.14b (iv)) removes the overturned steep northwards dip of 

the beds in the Wanson Mouth foreshore, whilst the Black Rock beds are restored to a right 

way-up, sub-horizontal orientation. The Black Rock beds are on the footwall and the Wanson 

Mouth beds are on the hanging wall to the earlier form of the WSF. This fault has emplaced the 

older Crackington Formation onto the younger Bude Formation, as described by Enfield et al 

(1985) (Fig. 4.7). Thus, the earlier form of the WSF is interpreted as a thrust accommodating a 

vertical displacement of 300 m (i.e. the stratigraphic separation between the foreshores).  

 The fourth restoration (Fig. 8.14b (v)) removes the thrust emplacement along the earlier 

form of the WSF returns all the beds to a right way-up, sub-horizontal orientation but separated 

by a stratigraphic distance of 300 m. With the removal of the WSF, the beds in both foreshores 

are more laterally-continuous. 

 

8.7.3 Application of the models to the Bude Formation coastal outcrops 

The deformation in the Bude Formation between Bude and North Widemouth 

(SS200065-SS200032) includes trains of both ‘upright’ (type: d) and ‘inclined-to-recumbent’ 

(type: e) chevron folds that have been cut by steeply dipping faults and chevron folds that 

deform the faults (Freshney et al, 1972; Sanderson, 1979; Enfield et al, 1985; Whalley & Lloyd, 

1986). Some of the steeply dipping faults in these outcrops appear to be similar to the WSF that 

juxtaposes structures in the Black Rock and Wanson Mouth foreshores (see Chapter 4). From 

the Anisotropy of Magnetic Susceptibility (AMS) analysis by Anderson and Morris (2004), the 

last movement accommodated by the WSF was extensional. This suggests that the WSF 

movement post-dates development of the ‘upright’ (type: d) and ‘inclined-to-recumbent’ (type: 

e) chevron folds although the amount of movement accommodated by the fault differs greatly 

between the models.  

In order to assess the movement directions of the steeply-dipping faults that cross-cut 

the Bude Formation chevron folds between Bude to North Widemouth, it is proposed that future 
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work includes collecting structural data on the folds and faults, followed by AMS analysis of 

the faults. Understanding the movement on these faults would allow for an improved 

assessment of the strain accommodation in these deformed deposits and how this varied on a 

kilometric-scale.  

 

8.8 Summary of the structural evolution for the Bude Formation 

Geometric criteria derived from the results of dip isogon and quantitative bed thickness 

analyses (see Chapter 7) have been applied to the Bude Formation folded beds to establish their 

lithification state during Variscan fold deformation as set out in the general aim of this thesis. 

During deposition, two types of slump fold formed in sediment: detached slump raft 

folds in massive slump beds (fold type: a) and attached slump folds (fold type: b) (see Chapter 

5). During and just following deposition, ‘early’ folds (fold type: c) were also formed in 

sediment (see chapters 4 & 5). As Bude Formation deposition continued and burial occurred 

throughout Variscan deformation, the chevron folds formed. The first type were ‘upright’ 

chevron folds (fold type: d), which developed due to compressional deformation in sediment; an 

explanation that contradicts the previously held assumption that the folds developed in rock 

(Ramsay, 1974). This fold type is observed in many of the Bude Formation cliff sections, 

especially to the north of Bude. As Variscan deformation continued, the Bude Formation beds 

became increasingly lithified and ‘inclined-to-recumbent’ chevron folds (fold type: e) developed 

in the folded beds. The dip isogon criteria indicate that these folds have the characteristics of 

inter-bedded folded sediment and folded rock. The ‘inclined-to-recumbent’ chevron folds are 

found generally to the south of Bude and developed due to the accommodation of increasing 

south-directed shear strain to the south.   

In conclusion, this is the first occasion that tectonic deformation structures have been 

described in terms of their timing with respect to their lithification state. A microcosm for all 

this folding to affect the Bude Formation beds is in the Lynstone cliff section (SS200055; see 

Chapter 7). The importance of the dip isogon methods in developing this explanation 

demonstrates that these methods provide a powerful set of geometric tools to describe the 

mechanical or lithification state of folded beds during fold deformation and are the general aim 

of this thesis.  

In Chapter 9, the deformation described in the Culm Basin will be related to the 

Variscan deformation across SW England (see Chapter 2), which is important to the specific 

aim of this thesis. 
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Chapter 9: Discussion  

 

9.1 Introduction 

This thesis considered the geological evolution of the Bude Formation (see chapters 2, 

4, 5 & 6) and the mechanical conditions under which fold deformation occurred to differentiate 

clearly between folds in unconsolidated sediment and lithified rock (see chapters 7 & 8).  

The geological evolution of the Bude Formation was part of the regional geological 

evolution of SW England during the Late Carboniferous, with its deposition and deformation in 

the Culm Basin affected by Variscan tectonics (Leveridge & Hartley, 2006; Shail & Leveridge, 

2009). In this chapter, the deformation history of the Culm Basin is placed within a larger-scale 

context by considering three models of the progressive Variscan deformation in SW England. 

Following this, the basin (Culm) and regional (SW England) scale interactions between 

tectonics and deposition are considered in terms of the Bude Formation, using schematic cross-

sections and basin-scale sedimentary logs.  

 

9.2 Models for the Variscan orogenesis in SW Britain 

The Variscan orogeny in SW England has been studied by numerous authors (see 

references herein). However, in the Geological Society Special Publication 14 (1984), there was 

debate as to the regional setting and, in particular, whether a décollement underlies the 

‘orogenic belt’. Three distinct models were proposed: 

1. Shortening accommodated throughout the sedimentary cover and also in the continental 

basement at depth (Sanderson, 1984; Fig. 9.1); 

2. ‘Thin-skinned’ tectonics, with a shallow south-dipping décollement that deformed only the 

sedimentary cover under the Culm Basin (Brooks et al, 1983; Shackleton, 1984); 

3. ‘Thick-skinned’ tectonics, with a shallow south-dipping regional mid-crustal décollement 

that deformed the overlying basement and sedimentary cover (Brooks et al, 1984; Leveridge 

et al, 1984) and described recently by Shail and Leveridge (2009) (see Chapter 2). 

 

9.2.1 The basement and sedimentary cover shortening model 

In the Sanderson (1984) model, the continental crust in SW England has been described 

as a Palaeozoic passive margin with a simple stretching factor (β) of 2. This stretching caused 

the approximately 30 km thick pre-extensional continental crust to be thinned to approximately 

15 km and generated passive margin basins into which approximately 5 km of sediments were 

deposited (Fig. 9.1a). The 20 km thick continental crust was then shortened by the Variscan 

deformation, by approximately 40%, thereby thickening it to approximately 33 km. In order to 

account for the shortening, Sanderson (1984) suggested that the Gramscatho Basin of SW 

Cornwall had experienced significant under-plating and under-thrusting of thinned continental 
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crust and obducted oceanic crust from the Lizard ophiolite (Fig. 9.1b). This north-directed 

thrusting propagated into and deformed the Trevone Basin in central Cornwall and South Devon 

(Fig. 9.1c). In this model, reactivation of the passive margin normal faults has not been 

envisaged to have occurred, except in the Culm Basin. The reactivation of these faults formed 

the Culm Synclinorium and outward-facing chevron folds during late-stage Variscan 

deformation at the end of the Carboniferous (Fig. 9.1d) (Warr, 2002; Shail & Leveridge, 2009; 

see Chapter 2). Thus, Sanderson (1984) did not envisage a ‘master’ décollement, but modelled 

shortening of the continental crust and the overlying sedimentary cover. 

 

 

Fig. 9.1: Sketch sections from Sanderson (1984) showing the evolution of SW England prior to 

and during the Variscan orogeny: (a) Early Devonian passive margin in the Gramscatho Basin; 

(b) Late Devonian under-plating and Lizard ophiolite obduction; (c) Carboniferous thrusting 

and deformation of the Trevone Basin; and (d) end-Carboniferous thrusting and deformation of 

the Culm Basin (AB = alkali basalts; TB = tholeiites; vertical stripping = oceanic crust) 

 

9.2.2 ‘Thin-skinned’ tectonics model 

In the Shackleton (1984) ‘thin-skinned’ tectonics model, a gently south-dipping 

décollement is proposed to underlie the Variscan structures across SW England. This 

décollement cuts upwards from the Precambrian continental basement where it is modelled to 

have been affected by the basement ‘grain’, except where it cuts through to the pre-Variscan 

sedimentary cover. Shackleton (1984) suggested that basement influence on the décollement 

ceased in south Cornwall at a line “where the trend of the Variscan changes from E-W to ENE-

WSW” (Sanderson & Dearman, 1973). From the seismic survey of Brooks et al (1983), a 

significant reflector has been interpreted under the SW Wales and the Bristol Channel area from 

depths of 7.5 km to the present surface. This reflector was interpreted by Brooks et al (1983) as 
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a regional thrust that cut through the sedimentary cover and so, may fit with the ‘thin-skinned’ 

décollement of Shackleton (1984).  

A ‘thin-skinned’ tectonics model was proposed for the Variscan deformation in 

Pembrokeshire, SW Wales, by Coward and Smallwood (1984) and Smallwood (1985) and is 

shown in cross-sections along its eastern coast (Tenby-Saundersfoot) (Fig. 9.2a) and its western 

coast (St Ann’s Head-Settling Nose) (Fig. 9.2b). In the Tenby-Saundersfoot section (Fig. 9.2a), 

the shallow décollement emerges from the over-thrusting Retic Thrust at Tenby and cuts the 

surface at Saundersfoot. In the St Ann’s Head-Settling Nose section (Fig. 9.2b), the shallow 

décollement emerges from the Benton-Johnson thrust duplex near Little Haven and cuts the 

surface at Settling Nose. In both sections, north-directed ‘inclined’ folds occur in the hanging 

walls to the ‘imbricate’ thrusts that cut up from the shallow décollement (Fig. 9.2).   

 

 

Fig. 9.2: (a) Simplified balanced cross-section along the east Pembrokeshire coast (ORS = Old 

Red Sandstone; Devonian); and (b) Simplified synoptic section along the west Pembrokeshire 

coast. In both cases, horizontal scale = vertical scale (from Coward & Smallwood, 1984) 

 

9.2.3 ‘Thick-skinned’ tectonics model 

Although Shackleton (1984) modelled a décollement cutting the sedimentary cover, it 

was also suggested that this structure had cut upwards from the Precambrian basement (Fig. 

9.3). In Brooks et al (1984), a further seismic survey was undertaken across SW England and a 

major mid-crustal regional reflector was interpreted at a depth of 15-12 km in Cornwall and 

south Devon and at 13-10 km in north Devon. Brooks et al (1984) suggested that the reflector 

dips to the south at less than 5° and that it equated to a surface at the base of the batholith. This 

surface is most likely to be a thrust that may post-date the granite intrusion. Alternatively, the 

thrust may have exploited an “originally tabular-shaped intrusion” (Brooks et al, 1984). In Shail 

and Leveridge (2009), it is suggested that the granite batholith, which had a lower crustal source 

with a mantle component from beneath the mid-crustal reflector has a tabular form up to 9 km 
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thick and was emplaced during extensional reactivation of the Variscan thrusts. This batholith 

may have exploited the mid-crustal décollement during post-Variscan extension. 

 Regional Variscan thrusting is supported by evidence from other seismic surveys across 

Europe. Leveridge et al (1984) interpreted thrusts in the Rheinish massif, Germany, climbing 

northwards to depths of 6-4 km, in Devizes, SW Britain; climbing north-westwards to depths of 

6.6-3.8 km, and beneath the English Channel, climbing steeply northwards (Brooks et al, 1984) 

from a sole thrust at depths of 15-13.5 km. The latter thrust may connect with the Carrick nappe 

that cuts Devonian strata at depths of 12-10.5 km in south Cornwall (Leveridge et al, 1984).  

 In the Shail and Leveridge (2009) ‘thick-skinned’ tectonics model (Fig. 9.3; see Chapter 

2), it has been suggested that the mid-crustal décollement propagated northwards during the 

Variscan orogenesis. This movement would have caused the original south-dipping passive 

margin normal faults to be inverted progressively during this orogenesis and resulted in a 

sequence of foreland basins being developed progressively to the north (see Chapter 2). The last 

and structurally-highest Variscan basin to develop was the Culm Basin during the Late 

Carboniferous (Namurian to Westphalian stages; Freshney et al, 1972; 1979). During the 

Westphalian, the northward slip along the mid-crustal décollement ceased and southwards back-

thrusting began (Coward & Smallwood, 1984; see Chapter 2). In the Shail and Leveridge (2009) 

model, north-dipping passive margin normal faults were also inverted, with thrusting along the 

Rusey Fault causing the south-directed deformation observed in the south of the Culm Basin 

(Sanderson, 1979; Lloyd & Whalley, 1986; see chapters 2, 4 & 8). This is the preferred model 

as it explains the seismic interpretations better than the other models. 

 

9.3 Regional and basin-scale deposition and tectonics 

The Bude Formation outcrops along the north Cornwall-Devon coastline have been 

deformed by chevron folding. The deposits have been described on a basin scale in BGS 

Memoirs 307/308 and 322 (Freshney et al, 1972; 1979) and these data have been used to 

generate basin-scale correlated sedimentary logs (Fig. 9.4), some of which were used in Chapter 

3 (see Figs. 3.1a & b & 3.14). Using the work by Freshney et al (1979), correlations were 

established between the laterally-continuous black shale beds using biostratigraphy for the 

Warren Gutter (WGS) and Sandy Mouth (SMS) shales and lithostratigraphy for the Saturday’s 

Pit (SPS) and Tom’s Cove (TCS) shales (see chapters 3 & 4; see Figs. 3.4 & 3.5). The logs 

show a number of important features (Fig. 9.4):  

1. The youngest and thickest Bude Formation deposits are near Duckpool (SS198114) in the 

core of the Culm Synclinorium (Freshney et al, 1979); 

2. Large thickness variations between the correlated black shale horizons (also see Chapter 4); 

3. It is argued in this thesis that it is invalid to correlate the Black Rock Slump Bed (BRSB) at 

South Widemouth with a similar slump bed at Lynstone (see Chapter 5; see Figs. 3.1a & b); 

4. Increased slumping is recorded towards the top of the Bude Formation (Enfield et al, 1985). 
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Fig. 9.3: Schematic cross-sections of the progressive Variscan deformation in SW England with inset Culm Basin cross-section (modified from Shail & Leveridge, 

2009) during: (a) Westphalian B (Crackington Formation folding and Bude Formation deposition); (b) late Westphalian B to early Westphalian C (folding in both 

formations and Bude Formation deposition); and (c) Westphalian D (increasing south-directed shear deformation to the south and exhumation). The cross-sections 

modified from Warr (2002) in (d) show contemporaneous progressive Variscan deformation within the Culm Basin but with ‘upright’ chevron folding as a late event 

(Westphalian D to Stephanian) and south-directed ‘inclined-to-recumbent’ chevron folding at the same time or slightly earlier than the ‘upright’ chevron folds 

 

 

Fig. 9.4: Correlated Bude Formation sedimentary logs from the descriptions of Freshney et al (1972; 1979). Correlation is biostratigraphically-calibrated between the 

Warren Gutter (WGS) and Sandy Mouth (SMS) shales but lithostratigraphically-correlated between the Saturday’s Pit (SPS) and Tom’s Cove (TCS) shales, as well 

as the Black Rock Slump Bed (BRSB) equivalents (correlation between Northcott Mouth and Widemouth Bay is provided in Chapter 3; see Figs. 3.1a & b). The 

Freshney et al (1972; 1979) sedimentary descriptions assume that there is no thrust repetition of the Bude Formation, as described by Lloyd and Chinnery (2002) 
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These features suggest that the Culm Basin had variable accommodation space during 

Bude Formation deposition (see Chapter 3), especially during the Westphalian B-C when the 

top of the formation was deposited (Rippon, 1996). This is indicated in the sedimentary logs by 

increased thicknesses between the biostratigraphically-calibrated Warren Gutter Shale (WGS), 

and Sandy Mouth Shale (SMS) at Stanbury Mouth (thinner) and Duckpool (thicker) (Fig. 9.4). 

Thus, the Culm Synclinorium probably experienced increased subsidence with a higher 

deposition rate compared to surrounding areas. It is also possible that this increased subsidence 

in the Culm Synclinorium and the Variscan uplift during the Westphalian generated palaeo-

slopes in the basin (Shail & Leveridge, 2009; see chapters 2 & 3). This is consistent with the 

dominantly westward palaeo-flow indicators in the turbidites between the WGS and SMS 

(Freshney et al, 1979) and the increased numbers of slump beds (Enfield et al, 1985; Fig. 9.4).  

Furthermore, these deposits were deformed by ‘upright’ chevron folding, as described 

in chapters 6 and 8. From the geometric criteria for distinguishing folded sediment and folded 

rock described in chapters 7 and 8, these chevron folded beds show geometries that are 

consistent with folding in sediment and indicates that this deformation occurred relatively soon 

after deposition. This is consistent with the descriptions of Leveridge and Hartley (2006). Such 

high level folding could have generated associated surface deformation (see Fig. 3.14). 

The Freshney et al (1972; 1979) sedimentary descriptions used for the logs in Fig. 9.4 

assume that there has been no thrust repetition of the Bude Formation beds (see Chapter 2). In 

contrast, Lloyd and Chinnery (2002) suggested that north-directed, usually bedding-parallel, 

‘intra-formational’ imbricate thrusts (see Chapter 5) are responsible for repetition of the strata 

between Duckpool and Bude (SS202115-SS200067). Bedding-parallel thrusts often have been 

missed, as in the Black Rock foreshore (SS196016; see Chapter 4) and elsewhere in the Bude 

Formation (Mapeo & Andrews, 1991; see Chapter 5). Lloyd and Chinnery (2002) suggested that 

the thrust repetition reduces the 1300 m Bude Formation stratigraphic thickness proposed by 

Freshney et al (1979) (see Chapter 2). The lack of correlatible sedimentary packages between 

the correlated black shales (green in Fig. 9.4) provides some evidence for such thrust repetition 

of the beds. This is clearest in the Lloyd-Chinnery study area between the TCS and SPS shale 

beds from Northcott Mouth to Lynstone (SS202087-SS200053; see Chapter 5) and between the 

SPS and SMS shale beds from Sandy Mouth to Northcott Mouth (SS201100-SS202087).   

Across SW England, Variscan deformation moved northwards at a slow time-averaged 

displacement rate of 0.25 to 0.4 cm/yr (Coward & Smallwood, 1984; see Chapter 2). The 

northward propagation is consistent with striations and fibre growths on faults in north Devon, 

that show a dominant N-S trend, perpendicular to the chevron fold axes (Coward & Smallwood, 

1984). In both the Warr (2002) and Shail and Leveridge (2009) models, the Culm Basin evolved 

from a rift basin into a thrust-top basin. In order to understand how progressive Variscan 

deformation may have affected the Culm Basin, three regional and basin-scale sketch cross-

sections were drawn (Figs. 9.3a-c). The sections show the Bude Formation thickness variations, 
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with the thicker deposits being towards the Culm Synclinorium around Duckpool, together with 

the growth of Variscan structures across SW England and in the Culm Basin (see Chapter 3).  

 

9.3.1 Restoration of the progressive Variscan structures 

The first section (Fig. 9.3a) shows the northward-moving Variscan ‘Front’ affecting the 

southern Culm Basin during Westphalian B (312 Ma; Gradstein et al, 2004). Both the thrusts 

and chevron folds are modelled as deforming the Crackington Formation, which led to basin-

scale subsidence and thicker Bude Formation deposits in the Culm Synclinorium around 

Duckpool (Freshney et al, 1979; Shail & Leveridge, 2009; Fig. 9.4). Tectonic movements in the 

Bude Formation may have caused some massive slumps and ‘early’ structures to develop 

(Enfield et al, 1985; see chapters 4 & 5). Contemporaneously, inversion began in the northern 

Culm Basin and up to the Bristol Channel (Fig. 9.3a), perhaps with thrusting along the 

Greencliff Fault (Shail & Leveridge, 2009). The uplift may have also created a sill, separating 

the Bude and Bideford formations (Higgs, 1991; Burne, 1995; see Chapter 3), but which is not 

shown in the more localised cross-section modified from Warr (2002) (Fig. 9.3d).  

 The second section (Fig. 9.3b) shows the northward-moving Variscan ‘Front’ affecting 

the whole Culm Basin during late Westphalian B to early Westphalian C (311 Ma; Gradstein et 

al, 2004), but with the northward slip rate slowing (Coward & Smallwood, 1984; Enfield et al, 

1985; see Chapter 2). The Bude Formation began to accommodate compressional deformation, 

which also continued to affect the Crackington Formation (Warr, 2002, Fig. 9.3d). The Bude 

Formation was affected by north-directed thrusts, which were either cut by the ‘upright’ chevron 

folds or deformed by these folds (Whalley & Lloyd, 1986; Lloyd & Chinnery, 2002; Leveridge 

& Hartley, 2006; see Chapter 6). Bude Formation deposition continued, with the thickest and 

youngest sediments still being towards the Culm Synclinorium around Duckpool (Fig. 9.3b & 

9.4; Freshney et al, 1979). This is consistent with the ‘upright’ chevron folds meeting the 

criteria for folding in sediment (see Chapter 8). However, this modifies the Warr (2002) model 

in which south-directed thrusts and ‘inclined-to-recumbent’ folds developed in the southern 

Culm Basin but without ‘upright’ chevron folds to the north (Fig. 9.3d; see Chapter 2).  

The third section (Fig. 9.3c) is a snapshot of the deformation that had developed by 

Westphalian D times (309-308 Ma; Gradstein et al, 2004) after Bude Formation deposition 

above the WGS had ceased and the deposits had been exhumed. This led to erosion (Cornford et 

al, 1987; Warr, 2002; Shail & Leveridge, 2009) and formation of the Variscan Unconformity in 

the topmost Westphalian C (Rippon, 1996; see chapters 2 & 3), as observed in the Culm 

Synclinorium around Duckpool. Also, the tectonic slip direction may have changed in the 

southern Culm Basin as the deposits emerged, causing south-directed shear deformation (see 

chapters 2, 4 & 6; Sanderson, 1979; Coward & Smallwood, 1984; Lloyd & Whalley, 1986; 

Shail & Leveridge, 2009). Alternatively, Warr (2002) suggested that the deformation of the 

Culm Basin deposits is a progressive process, with increasing amounts of south-directed shear 
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deformation of the southern Culm Basin towards the Rusey Fault (Sanderson, 1979; see 

chapters 2 & 4) throughout the Westphalian and into the Stephanian (Fig. 9.3d). Alternatively, 

Shail and Leveridge (2009) suggested that the south-directed shear deformation occurred during 

uplift and emergence in the latest Westphalian (see Fig. 2.20). South directed thrusting is shown 

along the Rusey Fault by Shail and Leveridge (2009) and described under the Millook Nappe by 

Rattay and Sanderson (1982) (Fig. 9.3c; see Chapter 2). 

During progressive Variscan deformation, the Bude Formation may have begun to 

lithify and the Crackington Formation may have become fully lithified (see Chapter 8). This is 

suggested by the ‘inclined-to-recumbent’ chevron folds in both formations meeting the criteria 

for folding in either rock or inter-bedded sediment and rock (see Chapter 8). However, this 

contradicts the Warr (2002) model in which the ‘upright’ chevron folds began to develop during 

Culm Basin uplift and emergence in the Westphalian D to Stephanian (Fig. 9.3d; see Chapter 2). 

The comparable models proposed above provide an overview of the Variscan 

deformation observed both regionally (SW England) and in the Culm Basin, during and just 

after the Bude Formation was deposited. However, it is important to consider how the different 

models relate to the deformation observed on the Rusey Fault at the southern end of the Culm 

Basin (see Chapter 4) and how the preferred ‘thick-skinned’ tectonic model of Shail and 

Leveridge (2006) (see Section 9.2.3) impacts on the Bude Formation depositional environment. 

 

9.3.2 Discussion of the Rusey Fault 

In Chapter 4, Thompson and Cosgrove (1996) suggested that the Rusey Fault was a 

thrust with top-to-NW movement. This is consistent with Zwart (1964), who suggested an 

originally north-directed thrust emplacing Early Carboniferous metamorphosed ‘infra-structure’ 

(Tavy Basin) over the Late Carboniferous non-metamorphosed ‘supra-structure’ (Culm Basin). 

In contrast, Warr (2002) suggested that the Boscastle Formation under-thrusted the Crackington 

Formation along the Rusey Fault (Fig. 9.3d). Also, Shail and Leveridge (2009) showed the 

Rusey Fault as a south-directed thrust (Fig. 9.3c), but did not describe its geometry. This is 

surprising as the southern Culm Basin has accommodated large amounts of south-directed shear 

deformation (Sanderson, 1979). It would require further investigation that is beyond this study, 

to understand the deformation around the Rusey Fault and the southern Culm Basin. 

 

9.3.3 Models for regional tectonics and Bude Formation deposition 

There are two models that are considered to be consistent with the preferred ‘thick-

skinned’ tectonics model of Section 9.2.3 (Shail & Leveridge, 2009), particularly as they may 

account for the different Bude Formation depositional environments proposed in Chapter 3. 

 The first model proposes that the Bude Formation beds were deposited in a generally 

shallow water environment (see Chapter 3), so that localised uplift during Variscan deformation 

may have caused the formation to shallow upwards locally and thus, become exposed above the 
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developing anticlines (see Section 9.3). Only local unconformities were observed in the Bude 

Formation outcrops and these, alternatively, may have resulted from sediment avulsion and 

erosional bypass (e.g. channels; see chapters 3 & 4) rather than by exposure because palaeo-sols 

did not develop as in the Bideford Formation (de Raaf et al, 1965; Li, 1990). Also, it is unlikely 

that 1300 m of Bude Formation strata (Freshney et al, 1979) would have been laid down in only 

1.5 Myrs (after Rippon, 1996) if large basin-wide unconformities had occurred.  

 In the second model, the Bude Formation deposits were laid down initially in a 

generally deeper water environment (see Chapter 3), so that localised uplift during Variscan 

deformation is likely to have caused bathymetry to develop (i.e. accommodation to decrease) 

without exposing the Bude Formation during its deposition. As few unconformities have been 

observed in the Bude Formation outcrops that may have resulted from sediment avulsion and 

erosional bypass (e.g. channels; see chapters 3 & 4), deposition is considered to have been 

generally continuous, as suggested by Freshney et al (1979) (Fig. 9.4). However, from the 

‘intra-formational’ imbricate thrust model of Lloyd and Chinnery (2002), there is some 

uncertainty about the 1300 m of Bude Formation deposits in the Freshney et al (1979) model, 

because of significant repetition of the strata by thrusting (also see chapters 4, 5 & 6; see 

Section 9.3; Enfield et al, 1985; Whalley & Lloyd, 1986; Leveridge & Hartley, 2006). This 

thrusting may have added to the apparent substantial thickness of the Bude Formation (Fig. 9.4).  

The latter model is preferred as it agrees better with the observations of the facies in the 

Bude Formation and the proposed depositional environment for the formation in Chapter 3.  

 

9.4 Summary 

In this discussion, three models are presented in order to explain the regional Variscan 

deformation observed in SW England. In the Sanderson (1984) model, no regional décollement 

was envisaged either in the basement or in the overlying sedimentary cover. However, from 

seismic surveys by Brooks et al (1983; 1984) and field descriptions by Leveridge et al (1984), a 

regional mid-crustal décollement (15-12 km in Cornwall-south Devon and at 13-10 km in north 

Devon) has been interpreted across SW England (Brooks et al, 1984). Of these, the preferred 

‘thick-skinned’ tectonics model of Shail and Leveridge (2009) in which the décollement became 

shallower to the north and cut the sedimentary cover in north Devon and south Wales, is 

preferred because it fits best with the existence of the mid-crustal décollement, although this is 

also envisaged in the ‘thin-skinned’ tectonics model of Shackleton (1984).  

 In order to demonstrate how the Culm basin deformation fits into the regional context, 

three schematic cross-sections were drawn for the Westphalian of the Variscan deformation in 

SW England, each with an inset of the Culm basin. These show the development of ‘upright’ 

chevron folds in sediment (see Chapter 8), followed by the development of south-directed 

‘inclined-to-recumbent’ chevron folds in rock or inter-bedded rock and sediment as the Bude 

Formation lithified (see Chapter 8) and then, the slip direction changed from being north-
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directed to south-directed (Coward & Smallwood, 1984; see Chapter 2). This conflicts with the 

Warr (2002) model in which ‘upright’ chevron folds only began to develop during uplift and 

emergence of the Culm Basin in the Westphalian D to Stephanian (also see Chapter 2).  

In order that the ‘thick-skinned’ tectonics model (Shail & Leveridge, 2009) continues to 

hold, a deep water sedimentation model for the Culm basin during Bude Formation deposition is 

preferred. This agrees with the depositional environment model for the Bude Formation 

proposed in Chapter 3. 
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Chapter 10: Conclusions 

The specific aim of the thesis was to investigate the sedimentary and structural 

evolution of the Culm Basin, looking at the Bude Formation depositional environment; the 

geometric variation in progressive Variscan deformation structures; the identification of ‘early’ 

structures; and deformation within sediment. The general aim of this thesis was to investigate 

fold deformation in sediment and rock, the premise which was achieved, being that fold 

geometries could be used to distinguish between folds in sediment and folds in lithified rock. 

Using structural data from the folds in the publicly-available literature, interpretation of the 

results from dip isogon and quantitative layer thickness analyses on the folded layers provided 

the geometric criteria required for distinguishing folded sediment from folded rock. These 

methods and geometric criteria were then applied to the well-exposed and accessible folds in the 

coastal outcrops of the Late Carboniferous (Westphalian A-C) Bude Formation, Culm Basin, 

SW England, and allowed a reappraisal to be undertaken of the timing of Variscan deformation 

with respect to the lithification of the Bude Formation. All these areas are summarised below.  

 

10.1 Re-interpretation of the Bude Formation depositional environment 

The Bude Formation contains a number of key sedimentary and geochemical features 

that have been studied by the author and include:  

1. Previously unidentified centimetric-scale mud-draped ripple laminations (facies 1b) that 

could have been generated by uni-directional meteorological “tidal” currents or short 

duration muddy sandy turbidity flows;  

2. Centimetric-scale non mud-draped ripple (facies 1a) and millimetric scale planar laminated 

beds (facies 5a) as well as metric scale massive structureless beds (facies 6 and 7) with both 

sharp tops and sharp bases, and basal sole marks, which may be turbidites;  

3. Previously unidentified decimetric-scale mud-draped troughs (facies 2b) that may be 

interpreted as meteorological “tidal” bedforms;  

4. Metric-scale tabular cross-stratification (facies 4) and reactivation surfaces that may relate 

to storm activity in the lower shoreface;  

5. Rare metric-scale symmetrical undulations from oscillatory flows that could have been 

driven by storm waves, generating hummocky cross-stratification (facies 3b);  

6. Common metric to decametric scale slumps and contorted beds (facies 9) that resulted from 

earthquakes, sediment loading or storm wave activity;  

7. Occasional low diversity and density Skolithos ichnofabrics, with a slightly more diverse 

suite of ichnofabrics found in some clastic beds within black shale beds (facies 8);  

8. Absence of stenohaline ichnospecies, suggesting non-marine environments;  

9. Results from carbon-sulphur (C/S) analysis that suggest that in all but two of the Bude 

Formation continuous black shale beds (Sandy Mouth and Warren Gutter shales), fresh to 

brackish water proxy salinities occurred during deposition. 
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Taking the features together, this suggests that the Bude Formation was deposited in 

fresh to brackish water, possibly in a lacustrine or marginal marine environment situated behind 

a sill. The salinity changes could have resulted from variations in either river discharge, or lake 

base levels, or influxes of saline waters. Thus, the Bude Formation depositional environment is 

complex, variable and mixed and also, that simple models are probably inadequate. The Bude 

Formation beds may represent stacked turbidites and meteorological “tidal” bedforms generated 

by variations in wind direction and fluvial discharge in a lake that experienced significant 

changes in base level.  

 

10.2 Structural deformation in the Black Rock-Wanson Mouth foreshores 

From the map work undertaken in the Black Rock and Wanson Mouth foreshores, an 

improved understanding was gained of the geometries of the progressive Variscan deformation 

structures in both foreshores and also, the timing of movement along the Widemouth South 

Fault (WSF) that juxtaposes the two successions. Previously unrecognised ‘early’ structures 

occur in the Black Rock foreshore, some of which were refolded by ‘upright’ chevron folding.  

The juxtaposition of the very different structures across the WSF and the 300 m 

stratigraphic gap between the successions are important and only partially explained features of 

the geology. Three models were considered for explaining the structural evolution of the WSF 

and the deformation accommodated in the two foreshores and includes: the ‘late’ extensional 

WSF model (Freshney et al, 1972); the inverted thrust duplex model (Enfield et al, 1985); and 

the inverted WSF model of the author. Although no model can be demonstrated to hold fully, it 

is concluded that the ‘late’ extensional WSF model (Freshney et al, 1972) is the most plausible. 

   

10.3 Bude Formation deformation structures that occurred in sediment 

Across the Bude Formation outcrops, there are a number of slump beds sitting between 

underlying and overlying ‘undeformed’ beds that formed in unconsolidated sediments at or near 

the palaeo-surface and that moved down palaeo-slopes during Bude Formation deposition. The 

massive disaggregated Black Rock Slump Bed at both Black Rock and Lynstone is up to 12 m 

thick, contains slump ‘raft’ folds within its ‘matrix’ and was strongly folded. From the results of 

restorations using stereonets on the slump raft fold data, it was established that the slumped 

material moved down two different palaeo-slopes and thus, it was concluded that the Black 

Rock Slump Bed is in fact two, completely separate massive slump beds.  

 Thus, the Bude Formation outcrops provide examples of structures that either were 

formed in sediment during deformation or challenge the assumption that all folding occurred in 

rock. The features that challenge the assumption of fold deformation in rock are: 

1. Bedding-parallel ankerite veins that have been affected by local structures;  

2. ‘Early’ folds and faults and also, slumped beds;  

3. Mud injections that cut chevron fold hinges;  
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4. Bulbous hinged beds in all lithologies from slump, ‘upright’ chevron and some ‘inclined-to-

recumbent’ chevron folds. 

 

10.4 Distinguishing folds developed in rock and sediment 

In order to demonstrate that folds within the Bude Formation occurred in sediment, a set 

of geometric criteria were developed in order to distinguish folds that developed in sediment as 

opposed to lithified rock using the Ramsay (1967) dip isogon and quantitative layer thickness 

methods. The methods were applied to a suite of folded rocks, sediments, model materials and 

migmatites. From analyses undertaken using the methods, it was concluded that folded rocks, 

with the exception of rocks at high temperatures, are characterised by:  

1. Symmetric dip isogon patterns and layer thickness ratios about fold hinge zones;  

2. Ordered, non-repeating dip isogon patterns and layer thickness ratios on fold limbs;  

3. Conformity to a specific 'Ramsay' dip isogon fold class throughout the folded layer. 

 

In contrast, folded sediments behave in an essentially opposite manner and are 

characterised by: 

1. Asymmetric dip isogon patterns and layer thickness ratios about fold hinge zones;  

2. Scattered, repeating dip isogon patterns and layer thickness ratios on fold limbs;  

3. Lack of conformity to any specific ‘Ramsay’ dip isogon fold class across the folded layer. 

 

Use of these geometric criteria provides a powerful method for distinguishing the 

mechanical state of folded layers during fold deformation. In order to illustrate this, the criteria 

were applied to the five recognised Bude Formation fold types that were generated during 

Variscan deformation, using example folded layers from each fold type. This established which 

fold types developed in sediment and which in lithified rock. From Ramsay (1974), it had been 

assumed previously that both ‘upright’ and ‘inclined-to-recumbent’ chevron folds developed in 

rock. The results of dip isogon and quantitative bed thickness analyses on the Bude Formation 

fold examples show that:  

1. Only one studied ‘inclined-to-recumbent’ fold met the criteria for folding in lithified rock;  

2. The other Bude Formation ‘inclined-to-recumbent’ chevron folded beds were consistent 

with being composed of inter-bedded folded rock and sediment;  

3. The other fold types, including all the ‘upright’ chevron folds, met the criteria consistent 

with that of folded sediment.  

 

This is of geological importance because this is the first time that tectonic deformation 

structures have been described in terms of their timing with respect to their lithification state. 

Also, the conclusion that the ‘upright’ chevron folds (fold type: d) developed in sediment, 

contradicts the previously held assumption that the folds developed in rock by Ramsay (1974). 
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10.5 Recommendations for further work 

In this thesis, a number of areas of potential future study were highlighted. From this, a 

set of recommendations for further work are provided here: 

1. A combined geochemical and geothermal study of the Bude Formation, with an 

investigation into its diagenetic and temperature evolution related to Variscan and post-

Variscan deformation (see Chapter 3); 

2. A combined structural and palaeo-magnetic study in the Bude and Crackington formations, 

using outcrop studies and analyses of rock samples for Anisotropy of Magnetic 

Susceptibility (AMS) studies to understand the lateral variation in strain accommodation 

related to progressive fold and fault deformation between Bude and Rusey (see Chapter 4). 

This may also be linked with a study to gain an improved understanding of the structural 

evolution of the Rusey Fault and southern Culm Basin (see chapters 4 & 8); 

3. A structural study of enhance slump folding and slump-related faulting methods related to 

palaeo-slope analysis (see Chapter 5). This could be further linked to a study of seismic 

surveys where slumped beds have been interpreted; 

4. A development of the inverse thickness methods (Lisle, 1992) to distinguish folded rock 

from folded sediment and how they can be linked to the results and criteria developed from 

dip isogon methods of Ramsay (1967) (see Chapter 7); 

5. A test of whether the geometric criteria from dip isogon analyses developed in Chapter 7, 

are applicable in other compressionally deformed basins to contribute to establishing the 

relative timing of folding and lithification elsewhere (see Chapter 8); 

6. A seismic survey across the Culm Basin, including acquisition and interpretation linked to 

interpretation of previous and / or new acquisition of gravity and magnetic data, to provide 

more details on the kilometric-scale structures within the basin (see Chapter 8). 
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