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Abstract

This research considers whether hospital single rooms are better than multi-bed accom-
modation at reducing the risk of healthcare-acquired infections. The focus is to provide
a mathematical model which quantifies the contamination levels of healthcare workers’
(HCW) hands from surfaces within rooms. This is achieved through a multidisciplinary
approach involving computational fluid dynamics (CFD) and biological experimental tech-
niques coupled with clinical observation and Markov Chain Monte-Carlo modelling.

Spatial deposition of aerosolised bacteria was measured in a test room under different
layouts: An empty room, a single-bed and a two-bed room. Comparison with CFD
demonstrates realistic predictions of spatial deposition, and a Reynolds Stress turbulence
model yields superior results compared to other models.

An observational study of patient care at a Welsh hospital showed that hand hygiene choice
and frequency varied strongly. HCWs performing short episodes of care had a predilection
for alcohol rub. In other care types the usage of alcohol rub or soap and water was 50/50.

HCW surface contact patterns in rooms were modelled by a Markov chain and fed into
a mathematical model to calculate the pathogen colonisation level on hands after patient
care. A parametric study highlights the differences between care type and colonisation.
Results indicate that hand hygiene carried out by nurses may need to be rethought.

The model was applied using CFD predicted spatial contamination levels, in both multi-
bed and single rooms. When ventilation rates were equal, hand colonisation differences
were small. Results demonstrate that this depends on care type, the number of surface
contacts and in particular on the distribution of surface pathogens. Contamination on
the HCWs’ hands decreases monotonically after care in single rooms; however increases
during contact with subsequent patients in multi-bed rooms. Enforcing hand hygiene due
to the knowledge of an infectious patient makes single rooms significantly less risk prone.
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ṁ Mass flow rate kg/s

n Surface contact count -

ni Brownian forces N

P Pressure Pa

P̂ Maximum likelihood estimate matrix -

P̃ Bootstrapped maximum likelihood estimate matrix -

Q Volume flow rate m3/s

r Refinement ratio -

R0 Reproductive ratio -

Re Reynolds’ Number -

s Sample standard deviation -

S Particle/Fluid density ratio -

xxiii



Nomenclature xxiv

Si First order Sobol index -

Sφ Source term of φ kg/kg

ST i Total Sobol index -

T Temperature ◦C

t Time s

U Velocity vector(u, v, w) m/s

up Particle velocity m/s

u′ Instantaneous velocity m/s

u Average velocity m/s

V Surface contamination quantity CFU/m3

vt Terminal velocity m/s

x Sample mean -

Y Normalised CFU by direct care in single room at 6 ac.h−1 -

y+ y plus -

α Probability of infection -

β Hand-to-surface transfer efficiency -

∆ change -

ε Air change effectiveness -

ε Turbulence dissipation rate m2/s3

Γ Coefficient of diffusion m2/s

µm Microns µm

λ Surface-to-hand transfer efficiency -

µ Population mean -

µ Kinematic viscosity of air Pa s

φ Scalar quantity -

ρ Density of air kg/m3

ρp Density of particle kg/m3

∀ For all values -

δ Small change -

δij Kronecker delta -

∈ Element of -



Nomenclature xxv

(a, b] The set of a to b including a but not b -

∞ Infinity -∑i Sum over i -∏ Product -





Chapter 1

Introduction

Contents
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Health Care Acquired Infections (HCAI), What Are They? . . 3

1.3 Disease Transmission Routes . . . . . . . . . . . . . . . . . . . . 7

1.4 Hospital Room Design . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Infection Transmission Modelling . . . . . . . . . . . . . . . . . . 12

1.6 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 15

This multidisciplinary research deals with the global question of whether hospital single

rooms show any advantage over multi-bed accommodation at minimising the spread of

infection between patients. Some of the therapeutic value of single room spaces is well

known but the scientific evidence is still weak. This thesis considers the potential for air-

borne dispersal of pathogenic microorganisms which leads to environmental contamination

and explores how surface pathogen loading, room design and the health care process may

influence propagation of infection. This research combines computational fluid dynamics

(CFD) with mathematical pathogen exposure models and a behavioural study of health

care workers (HCW) within their work environment to gain a robust understanding of the

potential mechanisms of infection transmission, whereby improving patient centered evi-

dence based design. This chapter outlines the research methodology in a succinct manner

and concurrently consolidates the aims and objectives.

1
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1.1 Overview

Health Care Acquired Infections (HCAIs) are a major concern, costing the UK over £ 1,000

million per annum [29]. As well as causing misery to affected patients, they also impact

on hospital management by increasing the duration of patient stays, constraining nurs-

ing activities, adding to the diagnostic workload and restricting visitor access [30]. At

the close of the fiscal year of 2012, the UK deficit stood at £ 126 billion [31]. There-

fore understanding, predicting and curtailing how this phenomenon develops and spreads

throughout a hospital is of paramount importance. An understanding of how pathogens

behave in the indoor environment is critical to developing appropriate infection control

strategies. It is therefore important for research to involve the multidisciplinary interac-

tion of microbiology, engineering methods of ventilation and room design alongside, human

intervention.

This research has risen from the need for combining the largely disjoint areas of CFD mod-

els of environmental infection spread within hospital buildings and mathematical modeling

to evaluate infection risk as in Figure 1.1. Although it has previously been thought that

direct contact between patients and health care workers contributed most significantly to

the route of infection [28, 32], recent studies suggest that surface reservoir contamination

and airborne transport are also highly important [25, 33, 34, 35].

The key question and research aim is to evaluate and quantify the pathogen transport risk

via hands between patients and health care workers (HCW) by comparing the standard

UK hospital single room against the hospital four-bed ward accommodation. The risk

of hand contamination has received much attention within the agricultural and chemical

industry [36], where molecules can easily be absorbed by the skin, but the study of micro-

bial load on hands (adsorption) within the hospital environment has lagged behind. This

research seeks to develop a framework methodology to predict HCW hand contamination,

focusing on environmental reservoir sources. To accomplish this in any logical and rigorous

manner it is vital to include real-life data of HCW behavioural patterns along with surface

contact frequencies. This will lay the foundations to incorporate the spatial deposition of

particles within the hospital environment predicted by CFD and latterly to quantify the

risk of pathogen accretion under different care activities.
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Room design

CFD
Epidemic
models

Behavioural
models

Figure 1.1: Venn diagram showing overlapping of each discipline involved in cre-
ating a multidisciplinary approach.

1.2 Health Care Acquired Infections (HCAI), What Are

They?

A suitable place to begin is with one of the most famous quotes in British nursing history

and quite possibly that of health care in general:

“It may seem a strange principle to enunciate as the very first requirement in

a hospital that it should do the sick no harm. It is quite necessary, neverthe-

less, to lay down such a principle, because the actual mortality in hospitals,

especially in those of large crowded cities, is very much higher than any calcu-

lation founded on the mortality of the same class of diseases among patients

treated out of hospital would lead us to expect.” Florence Nightingale, Notes

on Nursing, 1883. [37]
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Nosocomial or health care acquired infections (HCAIs) are those acquired whilst staying,

visiting or working in an health care facility, whereby increasing patient morbidity, mor-

tality and additional medical costs [38]. Within this context the causal pathogens can be

classified into two categories:

Pathogenic microorganisms are those that are harmful to healthy human beings. A

wide range of potentially pathogenic microorganisms is associated with HCAIs, many

of which are considered as ‘opportunistic’.

Non-pathogenic microorganisms may or may not be native to the patient’s microflora

but do not pose a health risk to even immunocompromised humans.

Within these categories are two sub-sets:

Endogenous microorganisms belong to the patient’s own microflora, such as Staphylo-

coccus aureus.

Exogenous microorganisms are not native to the patient’s own microflora, but may be

prevalent in the patient’s environment.

Opportunistic microorganisms fall into the first category; these pathogens target patients

who have weaker immune-systems, open wounds from surgical operation, or a depleted

intestinal flora usually occurring as a result of antibiotic therapy [2].

1.2.1 Prevalence of HCAI

The risk of acquiring nosocomial infections is omnipresent in health care facilities world-

wide. Globally, it is estimated that 1.4 million people are suffering from such an affliction

at any one time [39], ranging from a mild bladder infection resulting from bacterial build-up

on a catheter to life-threatening Tuberculosis. In the USA for example, the National Noso-

comial Infections Surveillance (NNIS) calculated that approximately 1.7 million patients

were infected by HCAIs and 99,000 attributable deaths were reported in 2002 [1]. The

European counterpart (Hospital in Europe Link for Infection Control through Surveillance

- HELICS) considers the figure of affected patients to be around 5 million in Europe [39].

Differences in benchmarking of surveillance data often make comparisons difficult on an
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international level however the significance of the problem is undisputed. While the trans-

mission routes for some diseases are well documented, the precise mode of transmission

is uncertain for many infections, particularly for those pathogens that cause HCAIs. Al-

though it is highly likely that the majority of transmission occurs via a contact route [39],

there is evidence suggesting that a proportion of HCAIs potentially could have arisen from

an environmental reservoir [40]. Figure 1.2 shows the percentage prevalence of HCAI in

the USA. UK data is similar [41].

0 5 10 15 20 25 30 35

Bloodstream infections (BSI)

Surgical site infections (SSI)

Ventilator-associated pneumonia (VAP)

Others

Urinary tract infections (UTI)

14

17

14

22

33
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Figure 1.2: Percentage distribution of HCAI in the USA [1].

In 2001 the UK’s chief medical officer [42] introduced a mandatory survey within health

care facilities which recorded cases of patients who contracted nosocomial infections. Fol-

lowing this, several guidelines were introduced in 2003 and consequently a performance

indicator of hospitals in respect to HCAIs was created [42]. Subsequently in 2006 a code

of practice was introduced that aims to provide a framework for hospitals to help minimise

the risk of infection [43]. With antibiotic resistant microorganisms on the rise, surveillance

became mandatory for surgical site infections and Multi-drug resistant Staphylococcus au-

resus (MRSA) in 2001, with the introduction surveillance for Clostridium difficile in 2003.

HCAIs have seen a steady decline from these sources since 2004 and continue to fall as of

March 2013 [44]. Despite the eradication of opportunistic HCAIs being nearly impossible

Harbarth et al. [40] estimated conservatively that at least 20% of these infections could

be avoided.
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1.2.2 Why Are HCAI So Dangerous?

“In 20 years time we could have an ‘apocalyptic scenario’ [where people going

for simple operations could die] because we have run out of antibiotics.” Dame

Sally Davies, UK Chief Medical Officer, 2013.

Antimicrobial resistance (AMR) is defined as the resistance of a microorganism to an

antimicrobial medicine to which it was previously sensitive. Resistant organisms which

include bacteria, viruses and some parasites, are able to withstand attack by antimicrobial

agents such as antibiotics, antivirals, and antimalarials, rendering standard treatments

ineffective. As a consequence, infections persist until the body’s white blood cells overcome

it or the patient dies. AMR is a direct result of the (ab)use of antimicrobial medicines

and develops when a microorganism mutates or through gene transfer [2]. Microorganism

populations are largely heterogeneous where some members are naturally hardier or more

resistant to a particular antimicrobial medicine. These individuals persist and confer their

immunity not only to their offspring but to other members of their own and other species

through a process called horizontal gene transfer [2].

This then requires a change of treatment for the patient, often to more expensive drugs

and the cycle may repeat itself. β-lactam based medicines are a large class of potent

antibiotics. Resistance to these is rising continuously, where an example of which can be

seen increasing exponentially of the last 40 years in Figure 1.3. Eventually a microorgan-

ism may become insensitive to all currently available antimicrobial drugs and no defence

is left in the arsenal [45]. In such a scenario, Dame Sally Davies’ quote may not be

quite so apocalyptically unthinkable as first thought. If AMR does continue to this point

then potentially infection control through design of the environment becomes even more

important.
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Figure 1.3: Bacterial resistance to β-lactam antibiotics [2]. Reproduced courtesy
of the American Society of Microbiology.

1.3 Disease Transmission Routes

Since the early nineteenth century, where doubt was cast over the existence of invisible

organisms to the naked eye [10], there has been much controversy regarding the spread of

diseases. Today, five main transmission routes are identified and shown in Figure 1.4:

1.3.1 Contact Transmission

Direct contact transmission between health care staff and patients is often considered to

be the primary route by which many health care acquired infections are spread within

and between wards [32]. Human behaviour has been established as playing a vital and,

by and large, unpredictable link in the infection transmission chain [19]. Hand hygiene is

therefore considered as critical to curtailing infection spread [32, 46, 47]. As well as the

hands of the HCWs, infection by contact may occur due to the use of medical devices such

as contaminated catheters, intravenous feeding lines, and respiratory aids [28].

Indirect contact transmission involves an intermediary object such as a room surface or

medical implement which acts as a latent object in the transmission pathway.
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1.3.1.1 Environmental contamination

Recent attention has focussed on environmental surface contamination as a reservoir and

potential infection risk hazard [48]. Patients and staff are likely to supply most of this,

but if allowed, environmental surfaces can harbour viable microorganisms for prolonged

periods [20, 48, 49, 50]. Therefore the process of decontamination and sanitation has been

the subject of much contention. “Mopping up hospital infection” by Dancer et al. [24]

highlights the struggle to implement efficient cleaning procedures despite their accepted

importance in infection control. Particular difficulties can be seen when terminal cleaning

is incomplete as shown by over 50% of rooms in a study by Bhalla et al. [51].

While much of the surface contamination may be from hand contact, deposition of pathogens

may prove to be an issue too. In particular, many microorganisms expelled in these

droplets, such as respiratory viruses, remain viable in droplet form that settle on objects

in the immediate environment of the patient. While falling through the air droplets evap-

orate leaving a dry nucleus. Viruses, bacteria and fungi can survive long enough in a

desiccated state on surfaces to be picked up on the hands of patients or personnel [52, 53].

Microorganisms may then be transmitted by inoculation of these membranes by contami-

nated hands in a process known as indirect transfer [54]. In depth characterisation of this

phenomenon is given in Chapter 3 Section 3.1.1.

Host
subject

Susceptible
subject

Modes of infection
transmission

1. Contact: Direct and Indirect

2. Airborne

3. Droplet

4. Common vehicle

5. Vector

Figure 1.4: Transmission pathways set out by the CDC [3].
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1.3.2 Airborne and Droplet Transmission

Airborne droplets of biological origin can range in size from ∼1-100µm. These refer to an

aqueous suspension of pathogenic material, such as in Figure 1.5. Respiratory illnesses are

the first example that spring to mind, where large quantities of bioaerosols are produced

but operations involving bronchoscopies, cutting or drilling produce even greater quanti-

ties [55]. Larger (>5µm) droplets are thought not to remain suspended in the air for more

than a few minutes [18].

Figure 1.5: NHS poster reproduction of gentleman sneezing, courtesy of The
Stationery Office, UK.

Aerosolisation of bioaerosols is the most formal definition of airborne infection. Air-

borne transmission occurs via the dissemination of droplet nuclei (<1µm) from evaporated

droplets containing the infectious agent. The microorganisms are transported through the

air and can, depending on their size, remain suspended for many hours [53, 56]. Sub-

micron sized particles may remain airborne for many hours undergoing the process of

desiccation [57] which, to a great extent, delays their deposition.

The microorganisms can be widely dispersed by air currents and contagion occurs by

inhalation of infectious particles, causing infection starting in the lung or respiratory



Chapter 1. Introduction 10

tract [58]. Consequently, special control of airflow is recommended for the prevention

of the spread of this type of transmission [59]. Patients known to be infected by a mi-

croorganism with an accepted airborne transmission component, including measles, chick-

enpox or TB, are suggested to be quarantined in a negatively pressurised room as a formal

recommendation [60].

1.3.3 Common Vehicle and Vector Borne Transmission

Common vehicle refers to transmission via a single contaminated source such as: Food,

water, medications, intravenous fluid or equipment that serves to transmit infection to

multiple hosts. Control is through maintenance of appropriate standards in the prepara-

tion of food, medications, and the decontamination of equipment. Vector borne diseases

such as malaria are transmitted indirectly between humans by vector agents, mostly in-

sects or parasites. This phenomenon is a less frequent method of transmission in the health

care setting of most developed nations.

Although the transmission mechanisms for many diseases are still poorly understood it is

important to be able to categorise the pathways into broad routes of infection. Indeed, to

improve success in reducing the prevalence of HCAI, the surveillance systems put in place

by the Health Protection Agency (now part of the Public Health England) must monitor

the efficiency of any intervention measures by means of infection route.

1.4 Hospital Room Design

The year 2008 marked a milestone event in the history of the National Health Service

(NHS), not just for its 60th birthday occasion but also in the way that it was funda-

mentally going to change. Whitehall saw the NHS as a dichotomous, underfunded 1940s

organisation lumbering into the 21st century. It was intrinsically inclusive and goal driven;

lacking patient comfort [61]. The report “High quality care for all” [62] commissioned by

Lord Darzi laid out the foundations of health care devolution, which gave back to GPs and

patients greater autonomy and choice. An increase in funding was signed, bringing it up

to the European average which guaranteed amongst other things, an increase in hospital

single rooms. By 2013 50% of new rooms were to be single beds.
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Hospital design guidelines in the UK have relied either explicitly or implicitly on the

four tenets of design: Comfort/practicability, cost-effectiveness, infection control [63] and

latterly energy efficiency [64]. Often, the former two dominate requirements. Within the

Department of Health design framework: The Health Building Note 04-01 [5] allows for

some scope regarding decisions made by architects, estates, clinicians and infection control

groups with regards to the design of new buildings. However, only minimum room sizes

are stipulated [5]. The therapeutic benefits of single patient rooms are known to some

extent [65], where better rest directly results in reduced morbidity and shorter patient

stays [41]. Privacy and dignity rank continuously high on patient questionnaires [41]

which begs the question: Why shouldn’t all rooms be single rooms? Nevertheless, there

is an increasing body of evidence which points towards a relationship between the effect

of design and infection control [49, 66, 67, 68]. Research has attempted to discover and

establish a causal link between the use of multi-bed rooms and the increase in infection

risk to patients [30, 41, 69]. Indeed, many private and PFI hospitals built in Europe and

the USA are tending towards single room preference [70]. However, the UK is still some

way behind with 50% targeted provision as of 2013. Furthermore, hospital room layout

may also influence other infection control procedures such hand hygiene compliance. It

has been shown that the physical barrier exercised by a single room, provides a mental

stimulus, promoting the improved adherence to hand anti-sepsis [19, 22, 49].

Over the last two centuries hospitals have been built based on constantly evolving de-

sign guidelines [71]. Throughout this time, the emphasis has shifted away from large

airy Nightingale wards, naturally ventilated by means of floor to ceiling windows [72], to

smaller, mechanically ventilated rooms based on the Health Technical Memorandum [73].

The motivation in most cases was the cost of the buildings and the patient comfort.

However, the effects of infection spread has not been, until recently, an uppermost prior-

ity [74, 75]. Amongst the measures to prevent cross-transmission of pathogens, European

authorities recommended single rooms, aimed at enhancing compliance with infection con-

trol measures, in the design of intensive care units [41, 69, 76, 77]. This current research

deals with the global question of whether single rooms can reduce the risk of spread of

infection through indirect transmission.
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1.5 Infection Transmission Modelling

“A mathematical model is like a cartoon, it depicts the dynamic world in as

much detail as the artist desires.” Author’s own thoughts.

In the face of unreliable or scarce data, mathematics is a critical tool for formulating

hypotheses, informing data-collection strategies, and discriminating between competing

hypotheses [78].

Predicting infection spread and the possibility of epidemics has occupied mathematical

epidemiologists for nearly a century. Particularly difficult is finding the causal agent

which is responsible for the frequency of epidemic waves. Kermack and McKendrick [79,

80, 81] laid down the foundations of the so-called Susceptible-Exposed-Infected-Recovered

(SEIR) mathematical model, which compartmentalised Susceptible, Infectious and Quar-

antined/Dead/Recovered members of a population (see Figure 1.6). This type of simplistic

model treats infection transmission modes as a homogeneous phenomenon and does not ac-

count for heterogeneous properties of environmental factors, population or infection rates.

Instead, it relies on average rate coefficients of transmission probability and time remain-

ing infectious to describe the progression of a disease. The threshold value, commonly

referred to as reproductive number (R0) corresponds to the tipping point [82] within a

population where a disease will spread to become an epidemic or will die out. This can

be considered an environmental factor which roughly estimates the contact rate between

individuals in a population. The concept applies to both diseases in which recovery from

infection conferred immunity against re-infection and for diseases in which recovered in-

dividuals are susceptible to re-infection [78]. The ability to apply such a model relies

on determining appropriate rate constants to define contact rates between infectious and

susceptible people and disease progression rates within a population.

1.5.1 Contact Transmission Models

A certain quantity of pathogenic material will transfer to the HCW’s hand through each

contact with a contaminated surface [20, 22, 25]. This is a dynamic process in which

multiple factors will vary. Considered by the US Environmental Protection Agency (EPA)

to be two of the most important: both contact frequency and hand movement during
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Susceptible Exposed Infectious Removed

Contact parameters Disease parameters

Environmental
& Human factors

Variable immunity Control parameters

• Airborne transmission

• Contact transmsission

• Common-vehicle
transmission

• Detection

• Quarantine

Figure 1.6: Flowchart of typical disease transmission dynamics in an SEIR model.
Bullet points show important environmental factors affecting transfer from cate-
gory Susceptible to Exposed. Equally they depict control parameters dictating the
rate of progress from Infectious to Removed.

contact can be individual and job specific, while contact pressure may be more controlled.

In their published guidelines [83], the EPA propose evaluation of dermal accretion of

hazardous materials through hand-to-surface contact to be deterministic and linear in

nature. However, reality is slightly different [36, 84, 85] and stochastic effects play an

important role in determining pathogen accretion on skin.

1.5.2 Airborne Transmission Models

Wells and Riley [60, 86] proposed a model based on a Poisson probability distribution

which considers the airborne transmission of pathogens. This model first introduced the

term ‘quantum of infection’ which is an averaged virulence of the pathogen and hence

intrinsically includes the level of reaction from a human immune system. This then may

be considered a ‘disease parameter’ and, broadly speaking, represents the dose required

to infect 66.7% of the population. One of the major disadvantages of this type of model

are the averaged parameters which, although improved in a transient model by Gam-

maitoni [87], assume a homogeneous human population. A major simplification considers

full and random mixing of the air volume. Hospital wards are highly dynamic even with
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the most efficient ventilation systems and hence it is questionable at best whether this

assumption is generally applicable [88].

Further questionable assumptions [89, 90] made within this standard accepted model in-

clude:

1. Homogenised pathogen distribution within the room air volume, hence not taking

into consideration the proximity of individuals or spatial distribution.

2. Single parameters of transmissibility not allowing for variations between individual

populations.

3. Requires a large population (>20) sample for Poisson probability distribution to be

appropriate.

4. Periods of incubation required to be much longer than the time step involved in the

simulation (e.g. TB)

Qian et al. [89] employed a spatially heterogeneous Wells-Riley model in the Prince of

Wales Hospital in Hong Kong with the aid of Computational Fluid Dynamics. This

combats the first assumption of a fully mixed air space which, up until recently could

not be fully addressed due to computing power restrictions. Nevertheless a determinis-

tic approach is still used and assumes a statistically sufficiently large population. Such

a problem is considered by Noakes et al. [90] by the introduction of the stochasticity of

infection possibility.

1.5.3 Importance of Airflow Patterns

Understanding the role that ventilation airflow and ward design play in the dispersion and

deposition of infectious bioaerosols is tantamount to assessing airborne and pathogen ex-

posure risk. With the difficulties in aerosolising microorganisms in hospital settings, many

studies have turned to inert particle tracers [55, 67] or CFD models to infer bioaerosol

behaviour in air and surface deposition [91]. In 2008 the H1N1 SARS corona virus sparked

a renewed surge in funding for airborne disease modelling. As highlighted by Hath-

way et al. [46] direct comparison between CFD models and bioaerosol experiments are
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sparse. Wong et al. [92] undertook a small scale experimental/numerical comparison us-

ing bioaerosol deposition within a climatically controlled enclosure in 2010 which lay the

ground for the publication resulting from this current research [93].

Since CFD relies on high computing power, it has been used up until recently somewhat

sparingly with respect to hospital designs. Most of the effort has gone into predicting

steady state flows within operating theatres and isolation rooms [94, 95, 96, 97, 98].

These studies placed an emphasis on the health risk of the airborne bacteria released from

the surgical team on the patient, and vice versa.

More recently, and with the ever increasing available computational power, CFD has been

used to model both the bulk air flow and particle deposition of skin squamae within whole

wards [12, 57, 99, 100]. Targeting of specific airborne pathogens including respiratory in-

fections including Severe Acute Respiratory Syndrome (SARS) [101, 102] and Tuberculosis

(TB) [103] have been the main focus of some later studies.

1.6 Aims and Objectives

1.6.1 Hypothesis

“I propose that hospital single rooms provide improved protection against the

spread of HCAI to patients in comparison to their multi-bed ward counterparts.”

The aims of this research are two-fold: Firstly to develop a mathematical framework which

will calculate the pathogens accrued on HCWs’ hands from surface contacts during patient

care. Secondly the aim is to utilise this model to quantify the relative risk of infection

in single and multi-bed hospital accommodation, with particular focus on transmission

related to surface contamination through airborne dispersal of pathogens. This is tackled

by examining the effect of room design and ventilation strategy to determine environmental

pathogen contamination. Subsequently, the influence of HCW surface contact patterns is

examined to investigate the opportunities for infection transmission.

“The traditional process of scientific progress is to observe a phenomenon, hy-

pothesize an explanation and then devise an experiment to test the hypothesis.”

Brauer et al. [78]
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This research aims to incorporate the field of computational fluid dynamics (CFD) into

that of infection modelling whereby providing improved detail on the effects of room

layouts and, in particular, the effects of single rooms over multi-bed wards. Principally

it will establish and validate the most appropriate computational approach to model the

spatial deposition of airborne bioaerosols within the hospital room environment. Real life

behavioural data on HCW movements and surface contacts are fed into a custom-written

pathogen accretion model, which gives insight into the risk associated with certain care

types and, indirectly, the advantages of one room design over another. This is intentionally

an inclusive modelling attempt such that it should combine the four aspects of design in

Figure 1.1.
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1.6.2 Objectives and Research Methodology

Objectives within this research are:

1. Establish the routes of transmission of HCAI between patients via HCW and how

this is currently considered in hospital design. This background study is carried out

to assess the requirements of the modelling technique to be employed, involving:

• Investigate the variable factors involved in quantifying infection transmission.

• Evaluate direct and indirect contact transmission routes and the techniques

required to quantify these.

• Review current guidance on UK health care design and the political, scientific

and economic drivers behind it.

2. Demonstrate the most applicable CFD method for predicting spatial deposition of

bioaerosols:

• Gain a robust understanding of the factors which influence aerial dissemination.

• Literature search evaluating validated techniques for biaerosols transport via

CFD and their scope.

• Characterisation of appropriate flow parameters including turbulence models

via anemometry and balometry of airflow patterns within a controlled experi-

mental environment.

• Comparison of the modelling techniques via Lagrangian particle deposition

models against bioaerosol experiments for deposition in a controlled environ-

ment.

3. Quantify frequencies of health care worker (HCW) surface contacts by:

• Conducting an observational study on an hospital ward comprised of single

rooms to record HCW surface contacts during different types of care.

• Generating probability mass functions representing the probabilities of contact

with each surface type.

• Generating maximum likelihood estimators for directed Markov chains and eval-

uating their performance against observations.



Chapter 1. Introduction 18

4. Develop a probabilistic pathogen accretion model (PAM) to evaluate the contami-

nation levels of HCW hands within a defined scenario by:

• Conducting a literature review for environmental parameters which have been

experimentally evaluated e.g. hand surface contact area, pathogen transmission

efficiency from surface to skin and hand hygiene efficacy.

• Conducting a sensitivity study to evaluate the most appropriate mathematical

representation of the pathogen pick-up process onto HCWs’ hands.

• Incorporating the Markov chain methodology of behavioural modelling, forming

the basis of HCW surface contact frequency

5. Use the developed model to asses health care episodes in single and multi-bed sce-

narios by:

• Applying CFD to single and multi-bed scenarios to obtain spatial deposition

patterns to feed into the probabilistic model.

• Assessing the sensitivity of the model and demonstrating the application and

limitations within hospital accommodation.

• Evaluate pathogen loading of HCWs’ hands and compare different room sce-

narios.

• Assess the risk attributed to each care type and scenario.

This research uses a multidisciplinary approach to combine two parallel studies (see Fig-

ure 1.7) to accomplish the objectives above.

The emphasis within the first part (see Chapter 4) is placed on using CFD to predict the

deposition patterns of biologically active aerosols, which allows for the visualisation and

quantification of contaminant transport through hospital settings. Initially, an experimen-

tal comparison will be made under strict controlled environmental condition within the

University of Leeds aerobiology facilities to validate the techniques used. By monitoring

aerosol deposition experiments within a test environment, the precise release method and

location is maintained. Hence, by reducing the number of varying external factors, the

influence of unpredictable variables can be minimised. This set of experiments will release

a benign bioaerosol (Staphylococcus aureus) in different room layouts to determine spatial

deposition patterns. Petri dishes will be placed on room surfaces for the resulting deposited
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colonies to be counted. Comparison with CFD simulations using Lagrangian particle track-

ing will be made and, in particular, stressing the comparison between a Reynolds Stress

(RSM) turbulence model and the abundantly used k-ε RNG model. Subsequent modelling

of hospital scenarios can then be carried out without the need for intrusive or hazardous

experimental apparatus.

The second part of the research centres on observing HCWs in a hospital setting and

recording both the frequency and order of surfaces touched during episodes of patient care.

This study is particularly useful in identifying the activities that represent the greatest risk

of surface contact but also to differentiate hand hygiene frequencies. Statistical analysis

will be used to highlight differences and allow for distribution fitting to HCW behavioural

patterns. Subsequently, probability density functions will be used through a process of

Monte-Carlo sampling to mimic HCW behavioural patterns. This will then be compared

with a Markovian approach and used to simulate surface contacts. By feeding in model

parameters accrued from both the experiments described above and literature searches,

further Monte-Carlo sampling will allow risk distributions to be created for each type of

care activity performed.

1.6.3 Layout of This Thesis

A brief introduction to chapter layout is given in what follows:

Chapter 1: Background Here the concept of pathogen transmission is explained, high-

lighting the aim and objectives which the study intends to fulfil as well as the context

within which it will be carried out. Discussion is then centred on the airborne and

contact transmission routes. Current availability of hospital isolation rooms is known

to be low and hence the focus is made on both single and multi-bed wards. The re-

search perspective is multidisciplinary, aiming to quantify the risk that HCW contact

with contaminated environmental surfaces poses to susceptible patients.

Chapter 2: Hospital layout This chapter reviews the current guidelines surrounding

hospital design and layout followed by the importance of HCAIs. This is analysed

from the medical perspective and the economic impact is shown.



Chapter 1. Introduction 20

Chapter 3: Infection transmission modelling Here emphasis is made on the investi-

gation of both contact and airborne transmission routes, when quantifying infection

risk. Historical background is given on compartmentalised Kermack-McKendrick

type SEIR models [79] and how the effects of small populations can significantly in-

fluence disease spread. Therefore, the rationale for focussing on the individual HCW

as a vector of transmission is explained from the perspective of stochastic modelling.

This is then introduced along with the foundation principles of constructing such

models.

Chapter 4: Bioaerosol deposition: Experimental and CFD validation This chap-

ter considers the ability of CFD simulations to accurately predict spatial distribu-

tions of bioaerosol deposition in indoor environments and explores the influence that

different room layouts have on deposition patterns. Spatial deposition of aerosolised

Staphylococcus aureus is measured in an aerobiology test room arranged in three

different layouts:

1. an empty room

2. a single-bed

3. a two-bed hospital room.

Comparison with CFD simulations using Lagrangian particle tracking demonstrates

that a realistic prediction of spatial deposition is feasible, and that a Reynolds Stress

(RSM) turbulence model yields significantly better results than the k-ε RNG turbu-

lence model used in most indoor air simulations.

Chapter 5: Observational study at Ysbyty Aneurin Bevan Here it is shown how

human behaviour in the health care environment, due to nursing activities, may

result in exposure to pathogens described in Chapter 2. This chapter underpins

the methodology on obtaining real data on hand-to-surface contact frequencies in a

community hospital during different health care activities. This data is subsequently

used to show how behaviour can be modelled realistically by probabilistic methods.

Chapter 6: Infection risk modelling: Model development This chapter describes

the methodology behind the development of a probabilistic model for pathogen ac-

cretion on HCWs’ hands. The main aim of this model is to provide a framework
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which will allow the quantitative comparison of hospital room design, in particular,

single vs. multi-bed rooms by means of an indirect metric.

Chapter 7: Application of the model Here, the results obtained from the observa-

tional study at YAB and presented in Chapter 5 form the basis for the behaviour

of the personnel tending to patients. CFD models for proprietary single and generic

multi-bed rooms are created and a parametric study shows the differences between

particle deposition patterns in both. These results are used in conjunction with the

hand-to-surface contact frequency model to predict a risk distribution for each type

of health care performed. Hence, indirectly, the room layouts are compared between

the two scenarios. A standard exposure risk model is used as a quantification of

contact transmission risk towards subsequent patients in both scenarios.

Chapter 8: Conclusions and Further Work This final chapter presents the general

conclusions from the study and potential areas for further investigation.
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Figure 1.7: Flowchart of model development.
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Hospital room design
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This chapter explores the driving forces behind the design of the modern hospital room;

with particular focus on the UK. Historical perspective is drawn from early designs of

rooms throughout the last two centuries and how the evolution of a modern health care

system is imposing energy efficiency looking forward into the future. Ventilation guidelines

are permanently under scrutiny and with resilience to climate change high on the agenda,

novel ideas and innovative design are increasingly important.

2.1 General Overview of Hospital Room Design

“Health care requirements are changing rapidly and these changes will have a

major financial and operational impact on the existing health care estate. Not

only are costs increasing, but there are pressures on estates to reduce costs,

reduce size, become more specialised, integrate more with the community and

reduce energy and carbon emissions.” (Phil Nedin, Global Health Care Leader,

Arup)

At its inception in 1948, the National Health Service (NHS) inherited an albeit architec-

turally beautiful, but already aging building stock. Some of the finest examples date back

23
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to early Victorian designs: The University College Hospital, London in Figure 2.1, being a

good example. Accelerated change and modernisation are at the epicenter of a developing

National Health Service, forcing its archaic building stock kicking and screaming into the

21st century.

Figure 2.1: University College Hospital, London, UK. Image Copyright Nigel
Chadwick. This work is licensed under the Creative Commons Attribution-Share
Alike 2.0 Generic Licence.

Hospitals are complex multidisciplinary organisms; formed by a mélange of stakeholders,

each with varying degrees of input and interest, all within a constantly developing health

care environment. In 2010 the average government spend (see Figure 2.2) of GDP on

health systems in the EU fell for the first time since 1975 [4]. Coupled with that, the

burgeoning health complications relating to an aging population, chronic heart disease

and uncontrolled diabetes, hospital design can no longer take a back seat. This could be

seen as the NHS’ ‘golden opportunity’ to provide energy efficient buildings for the next 25

years [104].

Hospitals represent some of the most complex building types in existence and design over

the last century has varied continuously, not just aesthetically but functionally. Such is the

case that they represent a network of delicately interrelated functions requiring constant

movement of people and goods [105]. “Building a 2020 Vision: Future Health Care En-

vironments”, appeared in 2001 [61] and culminated research funded by the Nuffield Trust

and RIBA Future studies to outline a roadmap for the NHS over the next twenty years;
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Figure 2.2: Percentage spending of GDP on health care by EU countries between
2000 and 2012, source OECD [4].

particularly with respect to customer expectation: The patient. Indeed, patients are be-

coming ever more discerning, expecting high standards of customer service including lower

waiting times, better food, more personalised care and fully private accommodation [62].

In the UK, the Hospital Division of the Ministry of Health (now Department of Health)

recognised a need to collate and standardise guidance for hospital and ward design. Com-

mon standards and provisions were set out initially in 1961 forming a collection of Hospital

Building Notes, that became the foundation of today’s Health Building Notes:

• HBN1: Building for the Hospital Service

• HBN2: The Cost of Hospital Buildings

• HBN3: The District General Hospital

Today these have evolved into sixteen separate guidance documents as set out in Table 2.1.

These HBNs provide guidance on a range of elements of hospital design from room sizing

to window features. Alongside these documents are a second series of documents, Health

Technical Memoranda (HTMs) which set out guidance on specific aspects of health care

building design services provision. For example: HTM03-01 “Specialist Ventilation for

Healthcare Premises” [73] deals with all aspects of ventilation systems from general ward
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Health Building Note Series title

Health Building Note 00 Core elements Support-system-based

Health Building Note 01 Cardiac care Care-group-based

Health Building Note 02 Cancer care Care-group-based

Health Building Note 03 Mental health Care-group-based

Health Building Note 04 In-patient care Generic-activity-based

Health Building Note 05 Older people Care-group-based

Health Building Note 06 Diagnostics Generic-activity-based

Health Building Note 07 Renal care Care-group-based

Health Building Note 08 Long-term conditions/long-stay care Care-group-based

Health Building Note 09 Children, young people and maternity services Care-group-
based

Health Building Note 10 Surgery Generic-activity-based

Health Building Note 11 Community care Generic-activity-based

Health Building Note 12 Out-patient care Generic-activity-based

Health Building Note 13 Decontamination Support-system-based

Health Building Note 14 Medicines management Support-system-based

Health Building Note 15 Emergency care Care-group-based

Health Building Note 16 Pathology Support-system-based

Table 2.1: Health Building Notes guidelines as of 2013.

areas through to operating theatres, while HTM07-01 “Safe Management of Healthcare

Waste” [106] covers the facilities and procedures to deal with clinical waste.

Design principles have also recently evolved in response to the climate and energy agenda.

The year 2009 saw carbon dioxide (CO2) emissions become priority and are now a central

pillar to modern NHS building and estate design. Guidelines are set out in the NHS

Carbon Reduction Strategy for England: Saving Carbon Improving Health [64]. This aims

to officially reduce carbon output over the following decade, particularly through cutting

down on clinical packaging but also making building and estate design increasingly more
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efficient.

Design of a hospital, due to the services it must provide, is complex in nature. The

designing project group formed by experts from varying backgrounds must take into con-

sideration and accordingly balance four tenets of hospital design as seen in Figure 2.3.

From 2002 Infection Control Teams (ICT) officially take an active and important part in

the project group throughout the planning stage and construction [107]. Prior to this,

ICT and microbiologists had been mainly consultants, and it proved difficult for their rec-

ommendations to be implemented at any early design stage. In the majority of cases from

1950 until 1990, hospital design remained strongly in the domain of architects where cost

effectiveness and patient comfort prevailed [75]. Clinician input was scarce and changes

in ‘best-practice’ recommendations were often implemented retrospectively, incurring high

costs and poor performance [108].

CO2

reduction

Cost-
effectiveness

Infection
control

Customer
satisfaction

Figure 2.3: Four tenets of design for hospitals in the UK according to HBN04-
01 [5].

Stockley et al. [63] highlight the importance of including experienced microbiologists and

ICT at every stage of the commissioning of a new hospital. Stockley’s experiences are

practical, gained from numerous new hospital developments. They have shown that ICT
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are a vital component offering a counter weight perspective to engineers or architects who

often have no training in hospital infection control. Wilson et al. [109] reviews Stockley’s

methods through a retrospective commentary of the building of the University College

London Hospital, highlighting how the infection control team integrated into the design

project. Reality appears to be somewhat different, with clinicians still being excluded

during early discussion or their requirements not heeded [104].

2.1.1 A Brief History of UK Ward Types

Historically (1800-1940) in the UK, physicians primarily visited wealthy patients at home.

Open ward accommodation originated as part of offering hospitalisation for injured mil-

itary personnel and later the poor [104]. As such, this was and still is, seen as being

inclusive and non-discriminatory. Single patient or side-rooms appeared through one of

two reasons: Quarantine measures, or to cater for terminally ill or wealthy patients. The

influence of the latter disappears with the inception of the NHS in 1948.

Since hospitals must house goods, services and people the design of patient wards is

clustered around spaces contained within. As such, patient spaces, nurses stations and staff

space and the combination of layouts of these three areas can be reduced to the resulting

five ward types displayed in Figure 2.4. The Nuffield trust in 1955 [110] summarised these

as simple open or Nightingale ward (Figure 2.4b), duplex or Nuffield ward (Figure 2.4a),

racetrack or double corridor ward, cruciform or cluster ward (Figure 2.4c) and the hub

and spoke or radial form (Figure 2.4d).

Nightingale wards such as the one in Figure 2.4b and Figure 2.5a with high ceilings and tall

windows formed the staple backbone of hospital design from 1861 until the start of World

War II [111]. These offered nurses visibility over 24-36 side-by-side patients, affording high

air change rates through floor to ceiling windows [112]. Ironically, patients scored these

often as being more private than the smaller wards which superseded them in the mid 20th

century. An example of which is a six bedded room in Figure 2.5b. Logic alone would

dismiss this claim, but high noise levels appear to appease the feeling of isolation [104].

With improvements to building envelope sealing, rooms had to be made smaller in order to

maintain mechanical ventilation rates and consequently the standard UK multi-bed ward

became the four bed room depicted in Figure 2.5c.
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(a). Nuffield or Duplex ward

(b). Nightingale ward (c). Cruciform ward

(d). Hub and spoke ward (e). Racetrack ward

Figure 2.4: General UK ward design types reproduced, with permission, from
Alalouch et al. [6].

2.1.2 Evidence Based Design

Evidence Based Design is popular in the health care sector relying on best-practice and

credible scientific evidence that designing the built environment in such as way can result

in patient and staff well-being, promote patient healing and cross-infection rate reduc-

tion [113].
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(a). Nightingale ward
circa 1870, copyright free.

(b). 6-bed ward circa
1970, copyright free.

(c). 4-bed ward modern,
Arup.

Figure 2.5: Examples of hospital multi-bed ward design evolution ca. 1870-2010.

The wealth of knowledge surrounding evidence based health care design has expanded

rapidly in recent years with the York Health Economics Consortium (York HEC, UK)

identifying the main aspects influencing a patients’ hospital stay:

• Infection rates

• Length of stay

• Medication errors

• Patient satisfaction

Several literature review articles have tentatively supported the association between single-

bed rooms and reduced infection rates, including Dettenkofer et al.’s [114] review on the

relationship between architectural design and HCAI and Ulrich et al.’s [41] review on

the advantages and disadvantages of single versus multi-bed accommodations. Others

for example: Chaudhury et al.’s [69] have been more cautious, citing the scarcity of meta-

analysis or truly randomised trials to uphold any general conclusions. However, perception

between health care professionals does appear dichotomous with 67% of UK nurses con-

sidering infection risk to be low or medium and only 11% to be high within single rooms.

The converse applies to double or multi-bed accommodation [113].
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2.1.3 Patient Centered Design: Patient Choice

“If ever there was a time when it was acceptable to treat a patient in the pres-

ence of others [patients], that time has long since passed”. (Baron Ara Darzi of

Denham, Chairman of the Institute for Global Health Innovation at Imperial

College and world leading surgeon.)

Today, patients are seen increasingly more as active stakeholders in the process of their

own health care [104]. Patient privacy and dignity has become ever more prominent and

into the forefront of the design process. The early 1990s showed the emergence of concepts

such as patient-centered care and ‘healing environments‘ [115]. Ever greater emphasis is

placed on the impact of the patient’s physical and psychological well-being on healing and

satisfaction. Therapeutic examples include lighting, sound, natural ventilation, views of

nature, ergonomics, good food and privacy [113].

The lack of privacy in multi-bed ward appears to negatively affect the overall satisfaction

of the patients and is something that has always been questioned [113]. Choice of room

type appears on the surface, to be largely a generational choice with older or geriatric

patients preferring multi-bed rooms and the younger patients often preferring a single bed

room [111]. However, the choice may be a lot more fundamental. Alalouch et al. [6] suggest

that formal quantification by means of spatial layout and integration of bed location can

influence preference. They deduce through both computer simulation of patient visibility

by nursing staff and questionnaires that patients of any age prefer a bed (regardless of

room type) showing low integration and low control as dominant factors. That is to

say they wanted to be easily visible to staff but in wards that are not too busy. This

translates in the case of multi-bed rooms, to periphery beds in direct line of sight of the

nursing station. In single bed rooms this would be homologous to beds with large windows

to the corridor close to the nursing station [116]. Figure 2.6 shows three types of wards

highlighting average patient choice according to nurse location (starred).

Advantages and disadvantages of single rooms were found to exist for both patients and

staff and were collated in the York Health Economics Consortium report of 2005 [26].

Table 2.2 summarises these, and highlights that overall patient satisfaction increased due

to improved privacy. However there are clearly some reservations concerning the potential

lack of patient visibility by nursing staff. Current UK specification requires a minimum of
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(a). Nuffield/duplex ward

(b). Cruciform ward (c). Hub and spoke ward

Figure 2.6: Patient preference for bed positioning.
+++= Most preferred location, - - -=least preferred. (Star= nurse station).
Adapted from Alalouch et al. [6].

50% single bed rooms within all newly constructed and existing hospital wards [62]. Con-

struction has already begun to deploy and or retrofit 45,000 single rooms within hospitals,

costing a minimum of 1,500 million GBP over a five year period.

2.1.4 HBN04-01: In-Patient Accommodation

The Health Building Note 04-01: Inpatient accommodation [5] is a Department of Health

guidance document that lays out the minimum single room and multi-bed room sizings

within the UK. It stipulates that each patient bed should contain access to five zones,

namely: Bed space, WC/shower facilities, clinical support zone, social/family support zone

and nurses’ workstation. Minimum bed space for any type of hospital accommodation is
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3.6m×3.7m, space which must be kept clear at all times to allow for free circulation of

nursing staff and equipment.

2.1.4.1 Multibed-rooms

Figure 2.7 is a typical minimal example layout for a multi-bed ward in the UK. It shows

a four-bed room with an assisted shower room and a second semi-ambulant WC, both en-

suite. Full details of these en-suite facilities are contained in Health Building Note 00-02

- ‘Sanitary spaces’ [117].

Type Example

Perceived

Advantages -increased patient privacy, dignity and comfort and less dis-
ruption from other patients
-improved control over their environment, enhanced sleep,
enhanced contact with families
-increased patient satisfaction

Disadvantages -reduced social interaction and thus patient isolation
-less surveillance by staff
-increased failure to rescue and increased rates of slips, trips
and falls

Potential

Advantages
-more personalised patient contact
-fewer interruptions with medical storage in rooms
-a decreased chance of prescribing errors
-less walking for nurses

Disadvantages -increase in staff travel distances
-adjustments to staff skill-mix

Table 2.2: Perceived and potential advantages and disadvantages of hospital single
rooms according to York HEC [26].
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Figure 2.7: Typical room layout of the four-bed patient accommodation in the
UK [5].

2.1.4.2 Single Rooms

The UK holds one of the smallest quota of hospital beds [4] of the 27 EU countries with 3

per 1,000 population, falling well below the EU average of 5.2. In Great Britain, only 22%

of those are in single rooms [61]. Latest Department of Health figures show that 30.7%

of hospital inpatient beds are now housed in single rooms over the whole the UK, up

from 22.6% in 2002-2003[62]. The provision of at least 50% single room accommodation

has become policy for the incumbent government in the UK. The HBN0401- In-patient
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accommodation as per Figure 2.8 lays out the five-stage make-up of a typical ‘best-buy’

single room. Table 2.3 gives a description of the individual sections within the room.

Figure 2.8: HBN04-01 single room.
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Room feature Comment

Bed space 3.6m × 3.7m

Clear space around the bed + ensuite
WC/hand-wash basin/shower (4.5 m2)
and clinical workstation, storage and
overnight stay facility (up to 3 m2)

Clinical support hand-washing, built-in
storage and space for movable equipment

such as supply or disposal trolleys.
Typical total room area is 23.5 m2

allowing circulation within the room

Table 2.3: Single room construction from HBN04-01:In-patient accommodation.
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Accommodation for visitors should not
impede access to bedside

Touchdown bases are located near to
room entrances so that it is possible to

observe the patient from outside the
room

Table 2.3: (continued) Single room construction from HBN04-01:In-patient ac-
commodation.
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2.1.4.3 Bevan-Ward research project

Figure 2.9: Bevan Ward project comparison of ward layout and room design.

Following the Darzi report, layout of single rooms has received a lot of recent attention.

With 29% of the NHS estate pre-dating 1948, the Bevan Ward research project (unpub-

lished 2009) set out, as part of establishing the costs and benefits of 100% single bed

accommodation, to identify a layout of ward and room that promoted both patient and

staff satisfaction. The study was based on a nine month analysis of 1,289 patients in gas-

troenterology, haematology and general medicine wards. Twenty four rooms comprised in

three connected wards (blue, green and lilac) of differing layout were used by patients for

six months as an annex to Hillingdon Hospital, UK (see Table 2.4). The design combina-

tions were tested on a number of criteria with the primary aim to collate and investigate

by means of observations as well as patient questionnaires:

1. Views and opinions of patients

2. Views and opinions of staff

3. Implications for clinical staffing and costs

4. Implications for non-clinical staffing and costs (e.g. cleaning)



Chapter 2. Hospital room design 39

5. Clinical outcomes of patients

Conclusions suggest that rooms with high HCW-patient visibility (Lilac Room in Ta-

ble 2.4) were most preferred. An important corollary results from the positioning of the

WC either side of the room rather than within the corridor space or on the exterior façade

wall. This allows for large windows both into the corridor and outside. It also reduces the

room cost due to lower exterior surface area materials used.

Green Room Lilac Room Blue Room

• Reduced visibility from
corridor

• Good views outside

• Private for patients

• Easy access to en-suite

• High visibility to corri-
dor and outside

• Less patient privacy,
controllable with blinds

• Flexible bed location

• High visibility to corri-
dor

• Limited views outside

• Less patient privacy,
controlled by blinds

• Poor access to en-suite
due to door position

Table 2.4: Reported advantages and disadvantages in the Green, Lilac and Blue
single rooms from the Bevan ward experiment 2009.
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2.2 Heating, Ventilation and Air-Conditioning (HVAC) Guide-

lines

“To keep the air he [the patient] breathes as pure as the outside air; without

chilling him.” (Florence Nightingale, Notes on Nursing - What is and what is

not, 1860.)

The ventilation strategy and energy consumption are key choices in hospital design. Al-

though the ventilation approach is affected by the climate, it has a direct effect on the

building form and the running cost of the hospital [118].

(a). HTM 03-01 (b). ASHRAE-
170

(c). WHO natural
ventilation

Figure 2.10: Ventilation guidelines for hospital and clinical areas.

Heating, Ventilation, Air-Conditioning and Refrigeration (or HVAC-R) refers to the treat-

ment of air within a building. UK health care facilities come under the Chartered Institute

of Building Engineers’ umbrella of guidance upon which ventilation design, or more com-

monly known CIBSE guide B is based. This a comprehensive text which outlines both

strategy and calculation methodology for building ventilation principals. Health-Technical

Memoranda (HTM) focus this guidance into health care specific elements of standards,

policies and up-to-date established best practice. In particular the Heating and Venti-

lation Systems guidelines are set out in the: HTM03-01 (see Figure 2.10a), which give

“comprehensive advice on the design, [...] installation and operation of specialised building

and engineering technology used in the delivery of health care” [73].

The CO2 reduction agenda has prompted heating and refrigeration to become a significant

issue showing room for improvement and consequently room design [118]. Indeed the

efficiency of heat distribution and management is consequently affected [104]. The HTM
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07-07:sustainable health and social care buildings calls on NHS organisations to achieve

targets of 35-55 GJ/100 m3 for new buildings, and 55-65 GJ/100 m3 for less intensive

refurbishments of existing facilities [64].

Guidelines on how and where ventilation should be achieved are rather vague, partic-

ularly for general ward areas. Minimum threshold ventilation rates are given in terms

of air changes per hour ac.h−1 with most spaces assuming dilution (or mixing) ventila-

tion. However, expert opinion suggests that actual air handling systems, particularly older

installations, may well be under-performing. Gilkeson et al. [112] conduct ward-wide ven-

tilation testing and highlight that through building leakage air change rates are highly

variable.

Spaces are differentiated in terms of clinical need and risk when prescribing ventilation

provision, as set out in Table 2.5. HTM03-01 also indicates a recommended types of

ventilation system for each clinical and non-clinical room; mechanical supply, extract or

natural ventilation. In ward areas, guidance suggests natural ventilation is appropriate,

however many designers opt for mechanical or hybrid systems as it is easier to demonstrate

the ventilation rate is achieved [104].

Room type Ventilation ac.h−1 ∆P Temp. ◦C

General ward S or N 6 - 18 - 28

Communal toilet E 6 -ve -

Single room S,E or N 6 0Pa or -ve 18 - 28

Single room WC E 3 -ve -

Isolation room S, E 10 -5Pa 18 - 28

Operating theatre S,E 25 +25Pa 18 - 25

Critical care areas S 10 +10Pa 18 - 25

Table 2.5: Ventilation strategy as set out in Appendix 2 of HTM03-01 for some
example health care facilities. S=Mechanical supply, E=Mechanical extract,
N=Natural ventilation.

Evidence based rationale for the chosen values in Table 2.5 is quite scare, relying mainly

upon metrics of indoor air quality such as CO2 levels and temperature [118]. However,

it should be acknowledged that the guidance does include an element of a safety factor.
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The USA and many other countries rely on a counterpart document produced by the

American Society of Heating, Refrigerating and Air-Conditioning Engineers: ASHRAE-

170, Ventilation of Healthcare Facilities, 2011 [119]. Hospital ventilation systems are

prescribed as mechanical ventilation for all clinical areas, suggesting a value between 60-

80 L/s of air per person. The basis for this value appeared in the 1989 edition and was

suggested to maintain indoor CO2 levels around or below 1,100ppm to maintain occupant

comfort, but has since vanished in later editions. A requirement of at least 2 ac.h−1 from

external air with the remaining quantity made up of recirculated and filtered air is also

stipulated. This supplementation is understandable when considering deep-plan, energy

intensive hospital designs that have prevailed up until very recently in the USA [104].

As summarised by Sundell et al. [120] the establishment of ventilation requirements for

occupied spaces has a long history. Several literature reviews have been published on

the effects of ventilation on health. Their common conclusion is that lower ventilation

rates can significantly aggravate health outcomes, namely sick building syndrome (SBS).

However, only one longitudinal study conducted by Menzies et al. [121] in a hospital

deduces conclusively that the incidence of TB amongst health care workers is indirectly

tied to the ventilation rate. They conclude that air change rates lower than 2ac.h−1 were

associated with higher incidences of TB. This was supported by a retrospective study

in a Hong Kong hospital conducted by Li et al. [122] following the SARS outbreak in

2003. Noakes et al. [118] suggest that the lowest permissible turn over rate, based on

cost-analysis, should be at least 4ac.h−1.

Indeed, current ventilation guidelines are based primarily on data that pertain to occu-

pants’ perception of indoor air quality such as stuffiness and temperature, rather than on

risk-related aspects of indoor pollutant exposure. Extending ventilation standards to more

explicitly include health risks as well as perceived air quality requires scientific knowledge;

knowledge that is scarce. Whyte et al. [123] set the precedent for clean air supplies within

operating theatres in their study arguing that an average value of 0.5 pathogenic microor-

ganisms /m3 corresponds to an acceptable clean air sample. In parallel to the previous

study, the importance of airborne infection and the protective functions of ventilation

systems were demonstrated by Lidwell et al.[124] in a controlled trial on patients having

joint replacement operations. Both this and Drake’s [125] work in Australia based around

similar premises, prompted the HTM and ASHRAE to employ a standard 12-25 ACH with
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+25Pa pressurisation within their operating theatres. However, nothing is mentioned with

respect to general patient rooms. The following constitute the HTM03-01’s primary list

of important ventilation factors:

1. Human habitation (minimum fresh-air requirement based on CO2 background levels

of 350ppm)

2. The extraction of odours, aerosols, gases, vapours, fumes and dust - some of which

may be toxic, infectious, corrosive, flammable, or otherwise hazardous (Control of

Substances Hazardous to Health (COSHH) Regulations)

3. Dilution and control of airborne pathogenic material

4. Thermal comfort

5. The removal of heat generated by equipment (for example catering, wash-up, steril-

ising areas, electrical switchrooms, and some laboratory areas)

6. The reduction of the effects of solar heat gains

The World Health Organisation (WHO) also provides some guidance (see Figure 2.10c)

with respect to designing natural ventilation systems in health care facilities, although

this is more aimed at hospitals in developing countries. They recommend clinical areas

should be mechanically ventilated providing between 160-180L/s for air per person within

isolation rooms. Natural ventilation systems are preferred for non-critical or non-clinical

areas, for example providing 2.5L/s/m3 in corridors.

2.2.1 Mechanical Ventilation

The provision of the air change rates stipulated by the HTM03-01 and laid out in Table 2.5

can be achieved in at least two different ways according to the room type. Clinical envi-

ronments should be at least partially supplemented by an active mechanical ventilation

system, to ensure constant turnover. For example within this category, clean rooms refer

to areas which must remain aseptic such as pharmacies and packing rooms in sterile ser-

vices departments, and consequently must be provided with a supply of clean air. Extracts

are typically via pressure stabilisers. Conversely dirty rooms such as sanitary facilities,
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dirty utilities and rooms where odorous but non-toxic fumes are likely; should be under

negative pressure and so require extract ventilation. Patient bathrooms also fall in this

category but do not require special treatment of the extracted air. Figure 2.11 shows a

representative hospital cross-section.

Figure 2.11: Mechanical ventilation of hospital cross-section. Adapted with kind
permission from [7].

The HTM03-01 suggests that hospital corridors (Table 2.5) should largely be at a higher

positive pressure than the adjoining single rooms, whereby attempting to prevent cross-

contamination from one patient room into another. Ward design varies greatly and so does

the ventilation provision, often with supply coming from ceiling diffusers and extracts being

located in the WCs. Increasingly common are hybrid systems that rely on mechanical

ventilation but openable windows supplement the fresh air supply [8]. Often standalone

fans provide extra air movement during the summer months [46] but the extent to which

they influence the spread of airborne infections is still unclear [120].

2.2.1.1 Mixing and displacement ventilation

Indoor air quality can be measured by CO2 levels and a metric ε has been found to

represent the air change effectiveness (ACE) of a ventilation system [126]. One way of
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looking at ACE is by means of the age of air τ . This is the total time a small packet of air

has spent in a room from the moment it entered. Calculating this relies on a tracer gas

such as CO2, SF6, or NO2 injected into the ventilation shaft, the concentration of which

can be analytically monitored throughout the room:

τ = 1
C(tend)

∫ tend

0
C(tend)− C(t) dt, (2.2.1)

ACE = τreturn air
τbreathing level

, (2.2.2)

where C(t) is the concentration at the point in question, C(tend) is the steady state

concentration, and t is the time elapsed since the start of tracer gas injection. ACE is then

the ratio between the age of the exhaust-air and that of the average air where occupants

breathe. A short circuiting flow pattern decreases the exhaust-air age and causes the ACE

to be smaller than unity. Perfect mixing results in an ACE of one. This can be represented

also through the concentration of tracer gas at the inlet, outlet and any recycled or return

air:

ε = CO2return air − CO2in
CO2in − CO2out

, 0 ≤ ε ≤ 1 (2.2.3)

(2.2.4)

Short circuiting (ε < 1) ≤ Fully mixed (ε = 1) ≤ Piston displacement (ε > 1)

Idealised ventilation acts like a piston, flushing out old air ahead of incoming air [127] such

as in Figure 2.12b. This is referred to as displacement ventilation with a corresponding ε

value greater than one. Fully mixed air (Figure 2.12a) can be represented by a value of ε =

1 where CO2 concentrations are homogeneous within the room. In reality, contaminations

in indoor air tend to be inhomogeneous in nature, lingering in certain locations. Sometimes

this is a sign of ventilation short-circuiting showing an ε value of <1.
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(a). Mixing (b). Displacement

Figure 2.12: Mechanical ventilation: Mixing and displacement methods.

Positioning of supply and extract diffusers has become an increasingly important area of

research, with much contention over the appropriate location, shape and size of these.

Obscuring the outlet by furniture is not only bad practice but potentially can cause under

performance the system or recirculation zones [8]. Questions are also being raised as to

whether inlets should be positioned at low level [12], with high level extracts or vice-versa

and which provides the best performance.

2.2.2 Natural Ventilation

Ventilation of fresh air into the room from outside can be induced via temperature dif-

ferences denominated buoyancy or stack driven methods, (Figure 2.13a) or through the

natural force of the wind: Wind driven methods. Both of these are widely used in hospital

design [112], particularly within large open Nightingale style wards (Figure 2.13b). How-

ever, improved envelope sealing of new buildings has reached the point that infiltration

through building leakage can no longer be relied upon to provide sufficient air flow and

hence design should make explicit provision for ventilation [73]. Both windows and louvres

offer a low cost method of ventilating non-critical patient rooms and non-clinical areas [8].

Natural ventilation methods can achieve much higher air change rates than their me-

chanical counterparts in an energy-efficient manner, many times the above prescribed

values [112]. While natural ventilation is promoted by the NHS for non-critical spaces

such as wards and offices [128], there are perceived barriers: Concerns about infection

control. There are few examples of natural ventilation/passive cooling strategies being
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(a). Stack driven ventila-
tion combined with wind
assistance

(b). Purely wind driven,
opposite wall opening

Figure 2.13: Passive ventilation strategies and implementation.

used in hospital buildings that allay these fears, although recent research through the

De2RHECC (Design and Delivery of Robust Hospital Environments in a Changing Cli-

mate, UK) shows that innovative simple modes are indeed, not only possible, but mutually

compatible with the HTM03-01’s 6ac.h−1 and the HTM07-07’s 55-65GJ/100m3 energy

consumption [118, 129, 130]. Adamu et al.’s [131] comparison by numerical modelling of

natural ventilation strategies for a single room highlight the potential impact that these

will have on patient satisfaction. However, Short et al.[130] do note that it is unlikely

that current technology in passive ventilation would suffice far into the future without

the necessary installation of an adjuvant mechanical ventilation system further down the

line. In particular Gilkeson et al. [112] argue that when carefully coupled with extractor

fans, such hybrid systems can stabilise the unreliability of wind speed and direction, hence

working in tandem.

Positioning openings or windows within hospital rooms can be tricky, not least to main-

tain correct pressures but to ensure constant supply and extract. Figure 2.14 shows five

different examples of these positions. Nightingale wards take advantage of cross ventila-

tion with their tall windows on opposing walls [112, 129]. Single patient rooms cannot

implement this type of strategy in the same way, often having to combine a natural stack

effect with a single or double opening on the same exterior wall. Low wind speeds coupled

with small temperature difference can mean that air changes are too low at times. In this

vein, the ASHRAE-170 [119] suggests that rooms that are 3m or deeper should not rely

on this method alone.
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(a). Single
window.

(b). Two
openings, same
side.

(c). Two
openings,
opposite sides.

(d). Two
openings, same
side with wings.

(e). Two
openings,
adjacent walls.

Figure 2.14: Passive ventilation examples.

Figure 2.15 shows the natural ventilation of a hospital room at Altngelvin, NI, through

a large windowed façade. This is an example of single sided, double opening ventilation

which relies on buoyancy and can be effective all year round. A maximum window opening

distance of 10cm within patient reach is an added restriction however, promoting the

use of mechanisms such as trickle vents. CIBSE’s Application Manual AM10 - ‘Natural

ventilation in non-domestic buildings’ suggests that wind driven methods are more reliable

throughout the year than their temperature driven counterparts. However, since the wind

is naturally a highly variable phenomenon, it can not be relied upon either within clinical

areas and so should be supplemented by mechanical ventilation. This is then denominated

mixed mode ventilation.

2.2.3 Advanced Passive Ventilation

In the post-2008 economic climate it is unlikely that the NHS will attempt a wholesale

replacement, looking closely at retrofitting, shoehorning and refurbishing of their aging

building stock. With increasing pressure to combine low-cost, highly resilient ventilation

designs, architects and building services modellers are increasingly focussed on staving off

the omnipresent effects of global warming. The UK can suffer from cold winters and very
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Figure 2.15: Example air streamlines of buoyancy driven natural ventilation at
Altnagelvin Area Hospital, Northern Ireland. [8].

warm summers, with the heat wave of 2003 becoming increasingly a more frequent event

by 2050 [132]. The shoehorning of mechanical cooling into existing patient areas appears

to be an unavoidable recommendation from the NHS patient safety risk assessments but

the carbon implications would undoubtedly undermine the NHS’ carbon reduction plans

even further [133]. CIBSE guide A [134] prescribes thermal comfort temperature ranges for

free-running buildings, the upper values of which should not surpass 25◦C+3◦C (operative)

for more than 88h per year (vs. the HTM03-01’s 50h dry-bulb). These seem a little vague

however, and single sided natural ventilation such as that at Altnagelvin in Figure 2.15

would appear to be more susceptible to requiring a helping hand from mechanical systems.

Modified advanced natural ventilation (ANV) strategies are a particularly energy efficient

option in the long run according to feasibility studies conducted by Lomas et al. [9] and

Short et al. [135]. These ventilation strategies make use of internal thermal heat mass

and in particular indoor and exterior temperature differences, sometimes in combination

with wind pressure to drive air-flow. In particular the temperature stratification within a

building induces a stack effect and hence promotes air turnover through windows, skylights

and dedicated towers. Figure 2.16 depicts four possible designs each their own merits.

Air-flow is often mechanically controlled through louvres, which are opened and closed

depending on indoor CO2 or temperature levels. Exhaust fans may also aid in maintaining

consistency of flow direction.
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(a). Edge in Center out (b). Edge out Center in

(c). Edge in Edge out (d). Center in Center out

Figure 2.16: Advanced natural ventilation, adapted from Lomas et al. [9].

Figure 2.16b and Figure 2.16d utilise a large central plenum to feed air into the building

and require a sealed façade to maintain air-flow regimes. In the context of hospital design

this would become somewhat impracticable due to the need for operable windows. This

may be achievable for non-clinical areas or relatively open floor plates such as Nightingale

wards. Although costs may be low in creating or locating a central air-inlet the trend

towards compartmentalised sections and the need for careful air control means that most

modern hospitals would not benefit from center-in designs.

Edge-in methods such as Figures 2.16a and 2.16c avoid the need for large central atria but

urban noise or pollution may still cause some inconveniences. Locating ventilation stacks

on the perimeter of hospitals such as Figures 2.16a and 2.16c allows for uninterrupted

floorplate usage, but generally would hinder any truly deep-plan design. Advantages

do abound however, both aesthetically from creating a new exterior building skin and

functionally allowing for increased shading against solar gains. Windows can be located

between ventilation stacks and as such, can be easily controllable by patients or other

building occupants. Such an example is shown in the refurbishments suggested for the

1960’s Addenbrookes hospital, Cambridge, UK by Short et al. [130] as in Figure 2.17a.
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This proved to be particularly energy efficient but still may prove unsuitable in highly

polluted metropolitan areas [9].

(a). Edge in and edge out
stack ventilation. Adapted from
Short et al. [130]

(b). Façade of the Richard
Desmond Children’s Eye Cen-
tre at Moorfields Eye Hospi-
tal. Architects: Penoyre and
Prasad. Photo ©Flickr- User:
MisterPeter [136]

Figure 2.17: Examples of advanced building design for mitigating the effects of
climate change.

Indeed, there is a clear CO2 penalty for some degree of future-proofing, particularly when

installing mechanical cooling systems. However some of this can be offset by intelligent

solar insulation by means of durable window blinds. The combination of functionality and

aesthetics at the Children’s Eye clinic in Figure 2.17b is a beautiful example of this.

The design of hospital rooms has changed over the last centuries to follow patient pref-

erences, government policy and understanding of infection/healing. Similarly, the role of

ventilation is increasingly well understood, and the need to provide adequate ventilation

without compromising energy efficiency is the driving force for research in this area.
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Hospital patients are at risk of acquiring a secondary infection during their stay. An open

wound, a catheter or simply a lowered immune system can leave patients susceptible to

a nosocomial infection [137]. This chapter analyses the routes of infection transmission

associated with HCAI in the UK and discusses the methodologies that can be applied to

quantify infection transmission.

3.1 Understanding Infection Transmission Pathways

As discussed in Chapter 1, research has shown that potentially, a significant fraction of

HCAIs could be prevented. Research has also shown that HCAIs may be related in some

52
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measure to the layout and design of the built environment [41, 69, 113, 114]. Infection

risk assessment can provide quantitative analysis of disease transmission and the effective-

ness of infection control measures. However, what remains unclear is how these infections

are transmitted, and much controversy reigns regarding the most appropriate method

of tackling them. At least logically, it is known that the transmission of infections (see

Figure 1.4) requires at least three elements: A source of infecting pathogenic microor-

ganisms, a susceptible host and a mode of transmission [28]. Understanding modes of

infection transmission is of utmost importance but remains poorly defined and even less

well understood. Transmission may depend on the microorganism involved [138, 139] and

may be complicated by a process involving multiple transfer routes [140]. The Center for

Disease Control in the USA [3] outlines the five main modes of infection spread in the

developed world some, or all of which, can be involved during transmission. This was

shown diagrammatically in Chapter 1 Figure 1.4.

3.1.1 Contact Transmission

Dr. Ignaz Semmelweis is considered the pioneer of discovering the causal link between

contaminated hands of medical staff and the death rate in an Viennese obstetrics ward

during the summer of 1847. Being appointed the house officer at the Wiener Allgemeine

Krankenhaus during the mid 1800s he noted that the mortality of new mothers was con-

siderably higher in one clinic than another (16% vs. 7%), see Figure 3.1. He observed male

medical students and doctors moving directly from the morgue to the delivery room, while

the female midwives on the other ward did not. He hypothesised that necrotic material

was lingering on their hands. After implementing a strict hand scrubbing regime with lime

water the mortality rate dropped to a consistently low 3% across the hospital. Despite

this success, he was unable to convince his peers, who ridiculed him. Eventually he was

confined to a sanatorium, dying ironically of septicemia, a health care acquired infection.

And still, handwashing compliance remained low.

“Doctors are gentlemen and a gentleman’s hands are clean” (Dr. Delucena-

Meigs, contemporary of Dr Semmelweis, 1848, USA)

The act of contact transfer requires an intermediary object, in most cases fingers or equip-

ment, to pick up pathogens from one location and deposit them elsewhere. Transfer may
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Figure 3.1: Mortality rate plotted against year in the obstetrics ward at the
Wiener Allgemeine Krankenhaus [10].

occur from endogenous sources relating to the patient’s own skin micro-flora or exogenous

pathogens from a foreign ‘reservoir’ [141]. As laid out in Chapter 1 Section 1.5.1 contact

transmission refers to the process of either a direct placement of pathogenic material into

a susceptible host (via touching of mucosa, wounds or the insertion of catheters) or an

indirect contamination of a host via an intermediary fomite or surface.

Endogenous pathogen transfer often occurs from bowel flora contaminating the urinary

tract, particularly in bed-ridden patients [22]. Exogenous transmission, particularly via

surfaces in the patient’s environment is of greatest interest to this study. Figure 3.2 shows

the most likely contact transmission pathways in diagrammatic fashion, highlighting the

necessity of a moving vector such as a nurse or doctor. Very occasionally patient-to-patient

contact is possible, mainly occurring in pediatric wards [142].

Pinning down the transfer of pathogens from patient to patient via a HCW is notoriously

difficult and studies have often relied on polymerase chain reaction (PCR) and nucleic

sequencing [143] or direct culture methods of microorganisms [19] to identify this. This

involves locating an infectious patient, subsequent swabbing of HCWs’ hands and finally

the swabbing of surfaces in the vicinity of susceptible patients.

Cross-transmission is believed also to be linked to HCW clothing where initiatives such

as bare below the elbows [144] attempt to mitigate this. Length of hospital stay has

also been linked with increased likelihood of finding cross-transmission of same-strain
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Figure 3.2: Horizontal transmission diagram including endogenous and exogenous
transmission routes.

microorganisms in multiple patients’ rooms [51]. This still doesn’t rule out any other

method of cross-contamination however, in particular, the airborne route.

3.1.2 Airborne Particles, Droplets and Bioaerosols

An airborne particle of any physiognomy is called an aerosol. The term aerosol refers to

a disperse system of liquid or small solid particles suspended in a gas, often air. Eames et

al. [145] describes them as also applying to airborne particles of biological origin known

as bioaerosols, including pollens, spores, bacteria, fungi and viruses [146]. A represen-

tative selection of bioaerosol sizes are shown in Figure 3.3. Critically, microorganisms

may be transmitted by droplets: Deposition of infectious droplets directly onto the nasal

mucosa or conjunctiva (droplet transmission), or by inoculation of these membranes by

contaminated hands following droplet deposition on surfaces (as part of indirect contact

transmission) [54]. Alternatively, and perhaps more fundamentally, bioaerosols may be

inhaled directly into the lungs, a process which is termed: Airborne transmission. Un-

derstanding of airborne transmission stems from the work of William Firth Wells who

laid down the physical concepts for aerosols containing microorganisms in his pioneering

work in 1934 entitled: On air-borne infection. II. Droplets and droplet nuclei [147]. He

continued to build on this throughout his career, culminating in his exhaustive volume

entitled: Airborne Contagion and Air Hygiene [86]. Wells coined the pivotal definition
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of a droplet nucleus, stating that it is: “The airborne residue of a potentially infectious

microorganism aerosol from which most of the liquid has evaporated” [147]. Highlights of

his extensive work investigate airborne droplet size distributions, their evaporation rates

and their subsequent settling rates. Figure 3.3 shows example size distributions of some of

the most common aerosols, many of which are abundant in the hospital environment [100].
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Figure 3.3: Diameter ranges in µm of some commonly found indoor particles [11].

3.1.2.1 Droplet vs. Airborne transmission

Humans are sources or ‘reservoirs’ of potentially infectious material [146]. Droplets con-

taining pathogens can be expelled into the air during ordinary human activities including

breathing, coughing, sneezing, singing and talking [138]. Hospital procedures such as cut-

ting, drilling or aspirating have also been found to produce large quantities of airborne

droplets [99]. Such microbial nuclei are surrounded by water or a mucus matrix before

leaving the host [12, 57, 96, 103, 145, 148]. The fate of such droplets depends on size and

evaporation rate:

“Larger droplets evaporate slowly, settle rapidly and could deposit to the ground

before drying, while smaller droplets evaporate very quickly, settle slowly and

would totally evaporate in the air before reaching the ground. Droplets larger
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than this critical size would deposit on the ground before total evaporation” Xie

et al. [12].

Figure 3.4: Wells’ original evaporation curve representing particles falling 2m in
quiescent air. Adapted from Xie et al. [12].

Figure 3.4 represents Wells’ pioneering work in 1934 [147], revisited by Xie [12] in 2008,

showing that large expelled respiratory droplets of 100+µm would evaporate within 2m of

the host relatively quickly as they fell to the ground. A threshold value of 120µm represents

the largest droplet which will not evaporate completely in quiescent air before landing.

The lower size boundary between a droplet and its desiccated nucleus is somewhat vague,

but a value of about 1µm appears to be generally accepted as this threshold [145]. This is

important for judging whether particles will deposit out of the air or be carried around by

air currents [93], eventually being extracted via ventilation or being inhaled by susceptible

hosts.

How pathogenic particles are ingested into a susceptible host has been categorised depend-

ing upon the distance from infectious source to susceptible host.

Short-range transmission can be regarded as direct inoculation of the susceptible host’s

mucosa or conjunctiva by large infectious particles within close proximity of the in-

fected source. Wells [86], and subsequently Xie et al. [12] coined the definitions in

Table 3.1:
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Definition Diameter

Large droplet >60 µm

Small droplet ≤60 µm

Droplet nuclei <10µm.

Table 3.1: Droplet sizes and definitions.

Long-range transmission refers to the potential for pathogenic material to be carried

by air flows to cause infection many meters away from the infectious source. This

includes the terms ‘small-droplet’ or ‘droplet nucleus’ and ‘airborne’.

Virtually all infectious agents that can cause infection at long range can also cause infection

at short range as well as by direct contact [138]. Therefore, use of the term ‘long range’

refers to the greatest distance from their source at which these agents have the potential

to cause infection.

Not only does the quantity of pathogenic material released during these activities vary

according to the pathogen itself [57], the procedure and the person involved [143], but

the size distribution of these droplets can span the sub-micron to millimeter range [149].

The velocity at which these bioaerosols are expelled can also vary [18]. Qian [99] and

Xie [12] estimated through experiment that the largest droplets (60-100µm) are expelled

at 50 m/s during sneezing and could travel more than 6m away. Although, very recent

work suggests this velocity may be much lower [150]. In the case of coughing (10 m/s) and

breathing (1 m/s) particles are thought to travel less than 2m and 1m respectively. This

assertion has been recently questioned [93], showing that infectious droplets can be carried

for many meters by indoor air-currents. Hospitals abound with procedures that expel high

quantities of bioaerosols. Tang et al. [138] found that tracheostomies and bronchoscopies,

along with the use of oxygen masks or nebulisers generate high numbers of infectious

aerosols [138]. Other sources of bioaerosols are highlighted by Chadwick et al. [151] which

include vomiting and diarrhoea as particular causes of winter-vomiting type illnesses.
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3.1.2.2 Aerial transmission of HCAI

The importance of the air we breath for the transmission of certain pathogenic bioaerosols

is accepted [147] but still poorly understood [88]. It has long been known that viruses

such as Varicella, Influenza and Rhinovirus can be effectively transported via aerial dis-

semination [3, 48]. Mycobacterium tuberculosis (TB) is another example of an archetypal

communicable disease which is well known to be transmitted primarily via the host breath-

ing in the bacteria [59].

However, other potentially pathogenic microorganisms have been found to remain airborne

for prolonged periods of time. In fact, laboratory studies show that humans shed approx-

imately 700 million skin squamae [75] per hour. This translates to 208,000 particles per

second which may also become aerosolised [94, 152] while walking, hence coining the term:

‘cloud adult’ [153]. The particles may contain pathogenic material such as norovirus, C.

diff spores, VRE or MRSA, all which have been found to remain viable for prolonged pe-

riods of time [145]. Both Hathway and Roberts highlight that routine cleaning activities

also cause aerosolisation of pathogen laden particles, particularly during bed making and

sweeping [46, 141].

Levels of particles larger than 5µm were found between 6×104 and 1×105 during at least

half an hour within the patient space. Results of clinical agar tests showed several species

of Gram-negative bacteria in the ward air including Acinetobacter spp., Haemophilus spp.,

and Moraxella spp., all of which were subsequently found on environmental surfaces.

Hathway et al. [100] find a direct link between total levels of culturable (or viable) mi-

croorganism with the presence of Staphylococcal strains and in particular S. aureus. This

is often a good indicator of pathogenic microorganism presence [46].Indoor air sampling

within hospitals using hand-held Andersen samplers reveals that size distributions and

biological physiognomy of bioaerosols can range from sub-micron to tens of microns [100].

Critically all size ranges can carry viable pathogenic material [154].

The microbiome or microorganism footprint of any given hospital represents in some

senses, its biological signature [154]. DNA sequencing techniques such as polymerase

chain reaction (PCR) [155] have revealed a strong correlation between air temperature,

relative humidity, ventilation rate and indoor bioaerosol loadings. In particular, Kembel

et al.’s [154] pioneering work reinforces the notion that indoor biological loads, regardless
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of room ventilation method, are varied, highlighting the predominance of bacterial taxa

commonly associated with humans. This is in contrast to outdoor loadings of predomi-

nantly floral-related or soil-related bacteria. They suggest that this may be the resultant

relationship between the growth or survival of certain biological species and environmental

conditions in patient rooms. They do not find a significant difference in the microbiome of

mechanically and naturally ventilated rooms. However, critically, ventilation rate is found

to be indirectly proportional to pathogenic loadings.

3.1.3 Environmental Factors Influencing Pathogen Viability

The environment plays an important role in the survival rate or viability of microorgan-

isms. Hence important questions arise regarding the processes that occur during the time

that the pathogen must exist outside of a human host. Xie [12] provides evidence sup-

porting that the evaporation process itself does not lead to virus inactivation, however the

desiccation of the lipid envelope of certain bacteria might.

In such a case environmental factors other than air velocity affecting shear stress, must be

considered [156, 157]. Humidity and temperature of the surrounding air has been shown

to greatly impact on the survival rates of nearly all pathogens [34, 146, 158]. Depending

on the type of bacteria, fungus or virus, their physiological structure is either benefited or

disadvantaged by increasing or decreasing temperature and humidity [108].

The connection between infection risk and hospital ventilation design has long been sus-

pected, particularly with TB. Escombe et al. [159] make the case that nurses working in

environments with lower than recommended fresh air supply rates (see Chapter 2) are

at a substantially higher risk of contracting the disease. Their in-vivo clinical research

made inroads into proving the importance of droplet bioaerosols in the transmission of

TB within hospitals, supporting the need for active ventilation.

Indoor air and ventilation systems can affect the dispersion of aerosols and can potentially

propagate infectious materials further than expected [93, 103]. The Severe acute respi-

ratory syndrome (SARS) outbreak during 2003 highlighted the importance of this. In

particular the Prince of Wales Hospital epidemic emphasised the importance of short and

long range travel of aerosolised infectious particles [57, 122, 138]. This particular outbreak

along with that in the Amoy Garden Hotel has been revisited repeatedly [57, 89, 122, 138].
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The Hospital T1 in Beijing also found SARS infections on multiple floors [57]. In all cases

the ventilation effectiveness (or lack thereof) was to blame for the spread of infection. In

the latter case a maintenance shaft within the bathrooms acted as a chimney, distributing

the coronavirus to many floors, several days apart.

Eventually, airborne particles or droplets settle onto surfaces through the process of depo-

sition [100, 160, 161]. The surface itself can have a strong impact on the levels of viability

of microorganism [156]. A study by Thomas et al. [162] shows the importance of surface

properties with respect to Influenza (A and B), and Rhinovirus. For example most viruses

died within 12 hours on a bank note. However Thomas illustrates that when a protective

matrix of nasopharyngeal secretions enveloped the pathogen, the average viable period

increased drastically. Results here ranged up to 12 days in the case of Influenza A. Faeces

played an important role in the H5N1 virus spread as large quantities are excreted by

fowl, with viruses remaining viable up to 90 days at 277 K [162]. Viability of influenza

in air has been found to be strain-dependent but most definitely related to relative hu-

midity (RH) [163]. In particular, at low RH, influenza retains maximal infectivity. Noti

et al. [163] shows that inactivation of the virus at higher RH occurs rapidly after release.

They suggest that the effects of RH above 40% may mitigate the ability of virus-laden

particles < 4 µm to remain airborne for prolonged periods of time.

Pathogen or main disease Average viability Ref.

VRE 5 days [19]

MRSA average 7 days [157]

C. diff Many months [157, 164]

Table 3.2: Viability of some Department of Health (UK) surveillance microorgan-
isms.

Table 3.3 shows a sample of the Department of Health surveillance pathogens and their

attributed most likely route of transmission. The fact that many pathogens can remain

viable outside of a human host for several hours, makes pinning an exact or even most

likely route of cross-contamination notoriously difficult.
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Potential pathogens Main mode of transmission [165]

Escherichia coli, Shigella, hepatitis A and ro-
tavirus

Contact and common vehicle

Clostridium difficile Contact

Neisseria meningitidis Droplet

Varicella Airborne and Contact

Rubeola Airborne

Mycobacterium tuberculosis (TB) Airborne

Staphylococcus aureus Contact

Table 3.3: Examples of some pathogens and their cited modes of transmission

3.1.3.1 Environmental surface contamination

“The inanimate environment of the hospital is of little importance in the spread

of endemic hospital infection”(Ayliffe et al., 2000, [48]).

Even until recently, environmental surfaces have been dismissed as playing only minor

roles in the transmission chain of hospital acquired infections. Pathogens are not only

transmitted directly from patient-to-patient or from patient-HCW-patient but also indi-

rectly through an intermediary surface [19]. Droplets or airborne particles which deposit

out of the air and onto environmental surfaces may well be the cause. Incomplete cleaning

procedures after a patient has left the room have been shown to occur in over 50% of

observed cases [51, 166]. Good examples of this are contaminated cubicle curtains or WC

door handles, particularly in a multi-bed setting [167]. Surfaces such as bed rails have

been consistently linked with the harbouring of hospital infections. Many of these types of

frequently used surfaces in hospitals have been found to contain viable pathogens includ-

ing staphylococci and enterococci strains [13, 19, 49]. Cooper et al. [142] ignore surfaces

when considering MRSA transmission, which may lead one to believe that contact with

inanimate surfaces to be unimportant. Hayden et al. [19] undertake the first published

in-vivo experiment to determine the percentage of surface contacts that result in transfer

of a pathogen. Their findings, summarised in Figure 3.5, showed that at the lowest end,

one in five contacts with the patient’s table equated to viable material transfer elsewhere.
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Bed rails proved to yield a 50/50 chance and a pressure cuff was almost certain to be

susceptible to pathogen transfer.
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Figure 3.5: Percentage of times transfer from the originating surface was detected
through swabbing. Adapted from Duckro et al. [13]

3.1.3.2 Cleaning procedures

‘Visually clean and dry’ are often heard to be the simple requirements for hospital surface

cleanliness levels [168]. However biological sampling and culturing of samples have revealed

a much starker reality: Visual inspection isn’t sufficient [50]. Smith et al. [25] show a host

of recently cleaned, visibly clean surfaces which ultimately fail a bacterial culture test.

Although the role of surfaces within the chain of infection is still unclear and probably

highly variable, there is consensus that effective environmental cleaning is important in

helping to break this cycle [24].

In an era of austerity, where UK Trusts are increasingly under pressure to balance budgets,

cleaning surfaces costs a great deal of money. However the best way of cleaning is still a

contentious issue. Chemical bioluminescence tests can represent microorganism presence

under UV light, and as such, are an important tool in investigating cleaning methods[169].

In an effort to achieve maximum value NHS trusts recommend the usage of a pure water
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with microfibre cloths during cleaning procedures, which Griffith et al. found to be unsuc-

cessful in many cases [169]. Surface wipes are conducted using either non-ionic detergent

spray in conjunction with a reusable cloth [166] or disposable detergent-soaked wipes.

Not only how but when this happens is vitally important in understanding the life-cycle

of pathogens on surfaces. Detergent of surfaces continues to remove bacteria for hours

after the cleaner has left [166], but promotes a bacterial bloom before the next cleaning

event. Lewis et al. [168] supported these conclusions, and recommend modified procedures

which include using disinfectant not detergent, disposable cloths and subsequent drying of

surfaces with paper towels. Surface cleanliness results are assessed yearly by the Patient

Environment Action Team (PEAT) who suggest a value of 100CFU/cm2 on patient sur-

faces to be acceptably clean. This figure has caused controversy within infection control

teams, who consider a stricter value of 2.5CFU/cm2 to be more realistic [24]. Although

the role of the health care environment in the spread of some infections is far from univer-

sally agreed, circumstantial evidence suggests that contaminated hospital environmental

surfaces can be a risk factor for infection [25, 50, 167].

3.2 Mathematical Epidemiology and Quantitative Infection

Risk Modelling

Analysis of well-constructed models can provide insight into the course of an

epidemic and can be used to test ‘what if’ scenarios to inform the development

of policy. Hollingsworth, Controlling infectious disease outbreaks: Lessons

from mathematical modelling, 2009 [170]

The study of mathematical epidemiology has continued to occupy scientists since the be-

ginning of the eighteenth century. Understanding and capturing the parameters associated

with real world systems is known as the study of dynamical systems. Disease dynamics are

particularly important when influencing mitigation procedures. Conventionally this has

included vaccination and management policies [171], but evaluation of building layout and

ventilation strategies have also been considered [59, 90, 172]. By quantitatively evaluating

infection risks, the influence of different environmental factors on disease transmission and

the effectiveness of different infection control measures can be evaluated.



Chapter 3. Infection transmission pathways and epidemic modelling 65

Some of the first forays into the concept of investigating the effects of disease through

mathematical modelling was carried out by Bernoulli in 1766 who formulated the study

of vaccination against smallpox [173]. However formalised continuous models did not ap-

pear until the twentieth century. Measles posed an important threat at the time, which

Hamer [174, 175] analysed in 1906, creating a time changing (or transient) model of in-

fection spread based on the frequency of interaction between susceptible and infected

patients. However it wasn’t until the late nineteen twenties that saw Kermack and McK-

endrick investigate the tipping point or threshold between infection spreading or dying

out of a disease [79, 80, 81].

3.2.1 Population Models and the Epidemic Threshold: R0

When modeling any disease transmission it is essential to consider the population and

timescales; is the model considering the population as a whole over a long time period,

or a distinct group such as hospital patient over days or weeks? In describing disease

modelling, Hethcote [175] specifies epidemic models as referring to rapid outbreaks that

occur in less than one year, while endemic models are used for studying diseases over

longer periods. Consequently in the latter, population size can vary significantly, mainly

from the introduction of new susceptibles by births or recovery from temporary immunity.

Determining whether a disease spreads through a population indiscriminately or whether

it infects only small clusters of hosts can be represented by an epidemic threshold or basic

reproduction number R0. This is often denominated also as the basic reproduction ratio or

basic reproductive rate [175]. R0 represents the number of secondary infections occurring

due to an index infectious case introduced into a susceptible population. Such that it can

be defined as follows: R0 < 1, infection will die out (provided infection rates are constant);

R0 > 1, infection may spread in a population.

Graham MacDonald’s [176] study of a vector borne disease: Malaria, in 1952, developed

research by Ross and introduced the concepts of β (the infectious contact rate) and γ (the

mean recovery rate). When a population is of size N the basic reproduction number can

be represented by:
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R0 = β

γ
N (3.2.1)

Their realisation that in order to control the spread of Malaria, the eradication of the

causative parasite was not necessary: Instead the ratio of β/γ must remain beneath a

certain number for epidemics to be unable to spread. However, the basic reproduction

number is hence presented as a single value estimate, with no indication of the variability

inherent in the estimation of biological parameters [177].

3.2.2 Compartmental Models

Compartmentalised models can be very apt when considering a sufficiently large popu-

lation. Taking as reference many communicable infections, a population (size N) can be

dissected into three categories: Susceptible hosts (S), Infectious (I) and Removed (R).

Known as the SIR model, the disease dynamics are represented by a system of coupled

nonlinear differential equations dependent on time t. Transmission of infection relies on the

contact between the Susceptible host and an Infected subject. Transmission is dependent

on β, the probability of infection of the susceptible host, due to contact. Within this

model contact is constant. Removal occurs based on γ infectives leaving that class per

unit time. Here the population is assumed to be closed, homogeneous and homogeneously

mixing [178]. A closed a population is one that does not change demographically. Hence,

it is assumed that throughout the course of the epidemic no births, deaths or immigrations

occur.

dS

dt
=− βSI

dI

dt
=βSI − γI

dR

dt
=γI

Non-dimensionalisation shows [103] how the system is explicitly dependent on R0: u =
S
N ,v = I

N , w = R
N , τ = tγ and R0 = βN

γ the system can be rewritten in terms of the
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reproductive number R0:

du

dτ
= −R0uv, (3.2.2)

dv

dτ
= (R0u− 1)v, (3.2.3)

dw

dτ
= v (3.2.4)

This system of differential equations has a continuous, analytical solution (u, v, w) ∈

(R+,R3), found by dividing Equation (3.2.2) by Equation (3.2.4) and integrating to give:

u(t) =u(0) exp {R0(w0 − w(t))} (3.2.5)

v(t) = 1
R0

(u(t)− u0) + v0 + ln
(
u0
u

)
(3.2.6)

w(t) =N − u(t)− v(t) (3.2.7)

Full description can be found in Noakes et al. [103]. The number of susceptibles u(t) is

a non-increasing function on [0,∞) and w(t) in an increasing function on [0,Ą∞). The

limits u∞, v∞ and w∞ exist, and v∞ = 0 where u(0) = u0, v(0) = v0 and w(0) = w0, and

t ∈ (0,∞]. An example of this model is given in Figure 3.6, where a value of R0=2.133 is

used and is commonly associated with some types of influenza [103].
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Figure 3.6: Non-dimensionalised SIR model with R0 = 2.133
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The end of an epidemic is caused by the decline in the number of infected individuals

rather than an absolute lack of susceptible subjects. This is explained by the concept of

herd immunity, where in fact, infection cannot be sustained due to the lack of sufficient

infectious members. Each transition between compartments is governed by an exponential

distribution over time eR0t. Hence, the disease-free states are absorbing, and all other

states are transient. One of the major downfalls of the model resides in the immediate

infectiousness of hosts, not accounting for a period of exposure and incubation of the

pathogen. This can be included in an SIR model such that there exists an extra category

of where individuals are infected but are not yet infectious [179]. As a consequence of this

time delay, a fourth category (Exposed) has been added which accounts for the exposed

population as in Figure 3.7:

Susceptible
S

Exposed
E

Infectious
I

Removed
R

Total population N

Transmission rateβ Disease progression rate 1
α

Removal rate 1
γ

Figure 3.7: Flow diagram of the SEIR model

Non-dimensional equations are then given in Equation (3.2.8)

du

dτ
= −R0uv,

dx

dτ
= R0uv − θx,

dv

dτ
= θx− v, dw

dτ
= v (3.2.8)

Where θ = α
γ and α is the progression rate from exposed to infectious. An example of the

same R0 = 2.133 is given in Figure 3.8.

This relationship assumes that the average number of contacts is sufficient to produce

infection per individual in unit time is proportional to the population density [78]. Studies

have shown that in fact, only a very weak correlation exists between contact number and

population size [79, 175, 180, 181]. Epidemic models are used to describe rapid outbreaks

that occur in less than a year, while endemic models are used for studying diseases over
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longer periods [175]. Variations on these models exist, particularly for the incorporation

of population dynamics such as birth and death rates. Passive immunity is important

within such endemic models but also within those that reflect vertical (from mother to

child) transmission.
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Figure 3.8: Non-dimensionalised SEIR model, N=100, R0 = 2.133

3.3 Stochastic Transmission Effects

Renshaw [182] jests that many mathematically minded biologists attempt to apply sim-

plistic differential equations to biological problems with moderate success. By the same

juxtaposition he muses that mathematicians with an interest in these systems spend only

the minimum time with biologists in order to create large and complex models, equally

with minimal biological realism. Such a sweeping statement should be contemplated care-

fully and to realise that in fact the afore presented deterministic models should be applied

with utmost care.

The epidemic models introduced so far rely on a continuous domain in both time and

population which implies that fractions of people can become infected over time.

In Section 3.2.2, the hand-waving statement of requiring ‘a sufficiently large population’

was made, in reference to compartmentalised SIR models. Here is the time to clarify why

this does not apply in the current context, particularly within the hospital ecosystem.



Chapter 3. Infection transmission pathways and epidemic modelling 70

The importance of stochastic modelling for infection modelling has been highlighted fre-

quently [140, 142, 171, 181, 183], particularly when disease incidence is low or population

size renders the stochastic nature of the transmission process significant.

Deterministic models by their very nature, infer that they are determined ex-ante by

initial conditions. Consider a population model with incorporated dynamics where

γ = births and µ = deaths [182]. Population growth is based on these factors (γ−µ)

but the ultimate fate of the group is determined by the initial condition N(0) thus:

N(t) = N(0)e(γ−µ)t, γ, µ, t ≥ 0

For short periods of time and where the initial population is large, this represents

a satisfactory demographic model, however where N is small such as where N = 1

problems arise. Renshaw [182] considers the case where deaths are only half as

likely as births (i.e. γ = 2µ) and hence N(t) = exp(µt). Despite the obvious

exponential growth expected by this deterministic model, there still exists the real

probability that the population will in fact become extinct. This is given by µ

γ + µ
=

1
3. Therefore if a simulation was run three times, at most one of these would result in

the population disappearing, which is in direct contradiction to the theory proposed.

Simultaneously the exact dynamics of the population appear not to be immediately

visible. Wilkinson [184] highlights how the shape of the population curves are defined

by (γ−µ), not the individual values of γ and µ. For example the shape of the curve

would be identical whether γ = 0.5 and µ = 0.1 or γ = 0.4 and µ = 0.

Stochastic models are primarily used to show the native variability due to the demo-

graphics or environment variability and are particularly important when quantities

in the processes are small; small population size or initial number of infectives [14].

Hence it is a collection of random variables:

{Xt(s)| t ∈ T, s ∈ S} ,

The sample space, or outcome space S, represents the number of members in a

population S ∈ [0, 1, 2, . . .] or S ∈ [0,∞). The index set often represents time T ,
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which can be discrete or continuous such as:

T = {0, 1, 2, . . .} or T =
[
0,∞

)
Different models and methods exist according to whether the index set and the sample set

are continuous or discrete. The distinction between the two types of variables determines

the techniques used to examine models. In the simple case of discrete sets, a stochastic

process amounts to a sequence of random variables known as a time series, where only

one event may occur at any one time. At the most simple level, a stochastic system can

be thought of a purely random and undetermined by and current or future state [185].

Clearly this is not quite realistic since the wellbeing of a patient is likely to be influenced

in some way by their current health. Hospital patients are a countable discrete set which

lends itself well to the use of stochastic modelling and in particular Markov chains.

3.3.1 Markov Chains

A Markov chain is a random sequence in which the dependency of the successive events

goes back only one unit in time. In other words, the future probabilistic behaviour of the

process depends only on the present state of the process and is not influenced by its past

history. This is called the Markovian property [185]. More formally this is given here:

Pr (Xn+1 = x | X1 = x1, . . . Xn = xn) = Pr (Xn+1 = x | Xn = xn) ,
∑
j

pij = 1

3.3.1.1 Discrete time Markov chains (DTMC)

Suppose I is finite or countably infinite, hence a discrete set. A stochastic process with

state space I and discrete time parameter set T = 0, 1, 2, . . . is a collection {Xt : t ∈ T} of

random variables (on the same probability space) with values in I. The stochastic process

{Xt : t ∈ T} is called a Markov chain with state space I and discrete time parameter set

T if its law of evolution is specified by the following:

1. An initial distribution on the state space I given by a probability mass function

{pt : t ∈ T} with pi ≥ 0 and ∑i∈I pi = 1.
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2. A one-step transition matrix P = (pij : i, j ∈ I) with pij ≥ 0 ∀ i, j ∈ I and

∑
j∈I

pij = 1 ∀ i ∈ I

The SIS compartmental model represents an ecosystem where the population is categorised

as either Susceptibles or Infected. This can represent the infection occurring due to in-

fluenza [186], given no long lasting immunity has developed. Consequently infected hosts

will return to the susceptible category [14]. Within this particular model the population

dynamics of both births and deaths are included due to the timescale involved. The deter-

ministic set of ordinary differential equations (ODEs) is given as follows, where the overall

population remains constant:

dS

dt
=− β

N
SI + (γ + b)I (3.3.1)

dI

dt
= β

N
SI − (γ + b)I (3.3.2)

Where

β ≥ 0 = transmission rate b ≥ 0 = birth rate = death rate γ ≥ 0 = recovery rate

N ≥ 0 = population count

In terms of the stochastic counterpart, let I(t) denote the discrete random variable for the

number of infected (and infectious) individuals with associated probability function

pi(t) = Prob {I(t) = i}

where i = 0, 1, 2, · · · , N is the total number infected at time t. The probability

distribution is then

p(t) = (p0(t), p1(t), . . . , pN (t))T

for t = 0, ∆t, 2∆t, . . . Now we relate the random variables {I(t)} indexed by time t by

defining the probability of a transition from state i to state j, i→ j, in time ∆t as

pji(∆t) = Prob {I(t+ ∆t) = j| I(t) = i} (3.3.3)
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Assume that ∆t is sufficiently small, such that the number of infectives changes by at most

one in time ∆t. That is, i → i + 1, i → i − 1 or i → i. Either there is a new infection,

birth, death, or a recovery. This is a time-homogeneous model whereby the transmission

rate does not vary over time. Therefore, the transition probabilities are given by:

pji(∆t) =



βi(N − i)/N∆t = b(i)∆t, j = i+ 1;

(b+ γ)∆ti = d(i)∆t, j = i+ 1;

1− (b(i) + d(i))∆t j = i;

0, j 6= i+ 1, i, i− 1.

.

The probability distribution associated with the epidemic process over time is found by

repeated multiplication of the transition matrix P (∆t) = (pji(∆t)):

p(t+ ∆t) = P (∆t)p(t),

where p(t) = (p0(t), . . . , pN (t))T is the probability distribution and P (∆t) is given by:

P (∆t) =



1 d(1)∆t 0 . . . 0

0 1− [d(1) + b(1)]∆t d(2)∆t . . . 0

0 b(1)∆t 1− [d(2) + b(2)]∆t . . . 0

0 0 b(2)∆t . . . 0
...

...
...

...
...

0 0 0 . . . d(N)∆t

0 0 0 . . . 1− d(N)∆t



3.3.1.2 Calculating nth step transitions

The matrix P (∆t) is known as stochastic and hence the columns sum to one. Which

is to say the vector v = (1, . . . , 1)T satisfies Pv = Iv, where I refers to the identity

matrix. The (N + 1, N + 1)th element is the transition probability from state N to state

N , pNN (∆t) = 1.[b + γ]N∆t = 1 − d(N)∆t. Denote the transition matrix as P (∆t).

Therefore matrix P (∆t) is (N + 1) × (N + 1) tridiagonal. The Markov property shows
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that, whatever the initial distribution of the Markov chain is, we have [187]:

Pr {Xn+1 = j|Xn = i} = pij

Consider a two-step transition,

Pr {Xn+2 = j|Xn = i} =
∑
k∈I

P {Xn+2 = j,Xn+1 = k|Xn = i}

=
∑
k∈I

Pr {Xn+1 = k|Xn = i}Pr {Xn+2 = j|Xn+1 = k,Xn = i}

=
∑
k∈I

pikpkj = (P 2)ij

where P 2 is the product of the matrix P with itself. More generally,

Pr {Xn+k = j | Xk = i} = (Pn)ij

Moreover, if the vector (pi : i ∈ I) is the initial distribution, we get

Pr {Xn = j} =
∑
k∈I

Pr {X0 = k}Pr {Xn = j|X0 = k}

=
∑
k∈I

pk(Pn)kj .

Hence we arrive at:

Pr {Xn = j} = (pPn)j

Three realisations of a Susceptible-Infectious-Susceptible model (SIS) are plotted in Fig-

ure 3.9 against the deterministic solution. It is evident that here there exists a non-zero

probability of the infection dying out before it gets started.
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Figure 3.9: SIS model comparing stochastic vs. deterministic solutions, adapted
from Allen et al. [14].

3.3.2 Airborne Transmission Models

Wells, in his publication entitled Airborne Contagion and Air Hygiene: an Ecological

Study of Droplet Infection [86], he outlined the concept of a “quantum of infection” which

has become widely used, though not fully understood. The idea of a quantum (q) is the

generation rate of pathogenic doses per infectious individual. Although some interpreta-

tions may lead one to believe that a quantum refers to a single particle or a single colony

forming unit (CFU), it is the average dose required to infect 63% of the population or

equivalently an infectious dose: ID63. It can be assumed to be the source strength if there

are no viability losses [188]. In some ways it is a description of the amount of infectious

material released combined with the virulence of an organism and susceptibility of an in-

dividual [103]. Wells described the probability of becoming exposed to a single quantum

through a Poisson distribution [188] hence promoting a threshold quantity theory [189].

P = 1− e−1 ' 0.63 (3.3.4)

Based upon this representation of infectious material within the air, Riley et al. [60]

investigated a measles outbreak in a school and postulated that the number of infected

children followed a exponential probability distribution. They proposed, the now famous,
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Wells-Riley equation, that there exists a relationship between, infection rate, building

ventilation rate, breathing rate, and exposure time [190]. The probability of infection is

defined by Equation (3.3.5) as follows:

P 'S
(

1− exp
{
−Ipqt

Q
+ δ

})
(3.3.5)

lim
Qt/V→∞

δ −→ 0

where

P = Probability of infection q = quanta/h S = Susceptible population fraction

I = Infectious individuals p = pulmonary rate m3/h A = air changes per hour ACH

V = room volume m3 Q = ventilation rate m3/h

3.3.2.1 General assumptions

Equation (3.3.5) corresponds to the complement probability of a person remaining unin-

fected (1− e−1). By definition several major assumptions are made within this model and

ultimately it can become somewhat unphysical in reality:

1. The room’s air is considered to be homogeneously mixed. As a consequence an

infectious particle may reside randomly and immediately anywhere within the room.

2. Host ventilation rate and immune response is considered homogeneous [190].

3. Particle size and quantity generation are considered consistent along with the ven-

tilation rate. All parameters are considered to be an average or most likely value.

4. Most often, quanta values must be measured retrospectively from disease data. [103]

5. Particle decay (loss of viability, deposition, etc.) is thought to be negligible versus

ventilation extraction.

6. Quanta are released continuously over a period of time [87]
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3.3.3 Unsteady Quanta Production

Gammaitoni and Nucci [87] sought to combine the Wells-Riley model with the room

ventilation rate for non-steady state quanta production [88, 103, 188]. The change of

susceptible population fraction is determined by the change in quanta concentration within

the space.

dS

dt
= − p

V
CS (3.3.6)

dC

dt
= −CA+ qI (3.3.7)

where dC is the change in quanta level within the room, and where t is the time elapsed

from when the room becomes occupied. Q as well as being the ventilation rate, can also

incorporate a decay model of the particles through deposition. Integrating Equation (3.3.7)

over the time period 0 to t:

∫ C

0

dC

Iq − CQ
=
∫ t

0
dt

C =Iq

Q

(
1− e(−Qt)

)
(3.3.8)

If the time averaged value of C is required for steady-state quanta production then inte-

gration is made over 0− t∞ to give:

C =1
t

∫ t∞

0
C dt = Iq

Q

{
1− 1

QC
[1− exp (−Qt∞)]

}
(3.3.9)

when Qt

V
is small Equation (3.3.5) becomes:

P =1− exp
[
−Iqpt

Q

{
1− V

Qt

[
1− exp

(
−Qt
V

)]}]
(3.3.10)

From their investigation of a measle epidemic, Gammaitoni et al. reinforce the belief

that there exists a finite probability that infections will occur regardless of the efficacy of

environmental control strategies such as air-change rates [87].
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Noakes et al.’s work [103] successfully integrated the Wells-Riley steady state quanta pro-

duction equation into both the standard SIR and SEIR epidemic models. Given the pos-

sible invariance of quanta production rates in a particular environment Equation (3.3.7)

reduces to

C = Iq

A
(3.3.11)

Substituting this expression into Equation (3.3.6) produces:

dS

dt
= − pq

V A
IS (3.3.12)

In fact, on inspection it is apparent pq

V A
= β, which expresses the contact transmission

rate in terms of quanta generation, pulmonary rate and air flow rate. Given that the SIR

compartmental model is based upon the contact rate (per capita), this parameter (β) was

notoriously difficult to specify even after a retrospective study [103]. Through this study,

the model was shown to be capable of incorporating contact rate in terms of the room

ventilation. By the same token the basic reproduction number is shown to be directly

proportional to the quanta production. And hence:

R0 = pq

γQ
N

where γ is the recovery time for the patients suffering from the given infection. Intrinsically

R0 is therefore coupled to the human immune response and also the pathogens viability or

infectivity [103]. Despite this it is usually represented as a single point estimate [190] and

hence does not reflect the variability or population heterogeneity. Noakes et al. expand

on the possibility of incorporating the effects of personal intervention ventilation devices

(PIV) on the patient environment. Their review of TB studies carried out by Gammaitoni

and Nucci [87] show how this can be incorporated by varying the pulmonary ventilation

rate [103]. By the same token Noakes et al. also relate the basic reproductive number

directly to the probability of infection from Equation (3.3.10) when I=1. This implies that

since the population remained constant: S − 1 = N and hence:
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R0 = [N − 1]
(

1− exp
[
−Iqpt

Q

(
1− V

Qt

[
1− exp

(
−Qt
V

)])])
(3.3.13)

Room overcrowding or population density are highlighted in both Beggs et al. [34] and

Noakes et al. [103] as having the strongest influence on infection spread. This is shown to

be particularly evident when halving the initial percentage of susceptibles reduces R0 < 1

for a given infection of influenza [103]. It is doubtful that this alone governs infectivity

probability but in particular the proximity of the susceptibles and infectors intuitively will

reflect on infection rates. Applicability of the Wells-Riley equation and the modified [87]

model to incorporate varying quanta values is shown by Beggs et al. [88] to be useful

when studying TB, particularly because it exhibits a lengthy incubation period. The

same authors underline the scepticism surrounding the effectiveness of this model which is

restricted by many assumptions. Principally, the notion of a perfectly mixed environment

contravenes the very nature of mechanically ventilated rooms [96, 191, 192, 193, 194]. This

notion is borne out by parametric studies which support the hypothesis that poorly venti-

lated spaces promote the spread of TB [88]. Following from such a corollary Nardell’s [195]

fatalist approach also supports the theory of a non-zero possibility of infection occurring

regardless the level of ventilation.

While there is a fair amount of literature on modeling airborne transmission, these mod-

els cannot natively consider the contribution of particles that deposit onto surfaces. The

Wells-Riley equation depends on back-calculating quanta values rather than specific quan-

tities of pathogens, and so has a tendency to under-predict the risk to an individual pa-

tient [15]. The next section introduces the more plausible concept of the dose-response

model.
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3.4 Modelling Individual Patient Risk

So far modelling has focused on entire populations, making little differentiation between

individuals. In a hospital setting, populations are often very small and individual immunity

may well prove an important parameter which may need to be modelled.

Threshold infection risk assessments assume that infection is certain for an entire popula-

tion if a threshold amount or dose of pathogenic material is ingested. This is also assumed

to be independent of when it is accrued [16]. Models such as the deterministic or stochas-

tic SIR [103] described earlier are based on the effective reproductive number R0. Which,

by definition, takes on only two states (no infection spread or infection spread), hereby

losing the very nature of variability of population immunity. Figure 3.10 is a diagrammatic

representation of threshold theory.
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Figure 3.10: Threshold vs non-threshold concept of infection probability. Adapted
from Sze et al. [15].

3.4.1 Single-Hit Dose-Response Models

Contrary to the threshold principle where an individual is certain to become infected only

after the inoculation of a particular dose, dose-response takes into the consideration that a

single pathogen entering the host could initiate an infection. The concept of infectious dose
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(ID) relates to the number of pathogens required to cause an infection in an individual.

Working within a population it is usually more relevant to refer to the ID50, which refers to

the number of pathogens required per individual to infect 50% of a population [15]. Feeding

trials on animals and humans refer to the clinical inoculation of a group of volunteers and

their monitored immune response for different IDs. These can then produce probability

curves for different pathogens such as in Figure 3.11
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Figure 3.11: A typical dose-response curve for norovirus, adapted from Pujol et
al. [16].

However, inoculation in reality may occur over a period of time [16]. Consider a situation

where an influenza pandemic epidemic is underway, and a government has to spend a

budget on either facemasks, hand antisepsis or a combination of both. An individual in

proximity to an infectious person may constantly be breathing in small doses of pathogens,

whereas they may only directly inoculate themselves via hand to mucosa a few times

per hour, but with a much larger dose. Threshold risk analysis may then favour the

acquisition of masks, placing less weight on hand hygiene simply because it occurs less

often, hereby ignoring that the human immune system may be capable of fighting off small

doses of infection spread out over periods of time. Quantitative microbial risk assessment

metrics often make use of four individual infection risk models know as dose-response

models [16, 196] outlined subsequently.
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3.4.1.1 Exponential Model

Assume in the most simplest of cases that the probability of infection is conditionally

dependent solely on the expected inoculum dosage D and that each pathogen exerts equal

and independent probability of causing infection k. This is a reasonable assumption given

low inocula which are typical of environmental exposure [197]. Then this system can be

considered to be defined by a binomial distribution:

P(infection|D) = 1− (1− k)D (3.4.1)

The main assumption here is that the inoculum D is given all at once [198].

The binomial assumption of a binary state: Infection or no infection, requires the dose

to be an integer value. Typically however, the expected dose is rarely known exactly and

hence D is considered the mean of a Poisson random variable with mean λ, where d is an

integer value representing D.

P(d |λ) = λd

d! exp(−λ)

P(infection) = 1− (1− k)d (3.4.2)

Poisson distributed doses are a reasonable assumption of independent identically dis-

tributed pathogens, that share equal probability of reaching a susceptible colonisation

site and infecting the host. Therefore the exponential model is given in the form:

P(infection |λ) = 1− exp(−kλ) (3.4.3)

Here k can be regarded as the probability of a single organism overcoming the host’s

defences and multiplying. Quantifying k is not straightforward, and parameters are only

available in the published literature for a small number of infections [15]. For faecal-oral

pathogens, a value can be obtained from conducting a clinical study of healthy individuals

being inoculated with varying infectious doses. Their immune response are measured

(termed a feeding trial) and fitted to an exponential curve of the form a exp b [198]. In

such studies the inocula are typically high, in the orders of magnitude of 1× 106 CFU [16]

which is well represented by the Poisson distribution with mean and standard deviation

λ. Little added randomness is added at high values. However, consider a lower inocula of
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10 pathogens, in cases where the exact value is not known, the Poisson distribution allows

a non-zero probability of 0 particles to be inoculated.

3.4.1.2 Beta-Poisson Model

The exponential model assumes a constant survival and infection probability, which im-

plies a steeper curve for low doses. Microorganisms often tend to aggregate in aqueous

suspension depending on the ionic strength, pH, and certain physiological properties [46].

Visual electro-micrography of a norwalk virion cluster published by Teunis et al. [199]

support the claim that the dose administered to feeding trial subjects may be, in reality,

substantially higher than estimated for this reason. As a consequence point estimates of

pathogen infectivity, as in the case of the exponential model may not be realistic. Al-

lowing for non-constant pathogen survival, the value of k can be allowed to vary by the

Beta distribution k = f(k|α, β). Where α and β are shape fitting functions of the Beta

distribution.

f(k |α, β) = Γ(α+ β)
Γ(α)Γ(β)k

α−1(1− k)β−1

Hence the marginal probability of infection is given by:

P(infection |λ ;α, β) =
∫

0<k≤1

(1− exp(−kλ)) f(k|α, β) dk

= 1−
∫

0<k≤1

exp(−kλ) f(k|θ) dk (3.4.4)

However in this preliminary form, the integral does not simplify to an elegant form (in

equation Section 3.4.1.2 1 without strict limitations on the shape parameters α and β

insofar that R b > R a > 0. In such a case the Beta-Poisson model is given by [197]:

P(λ |α, β) '
(

1− λ

β

)−α
(3.4.5)

(3.4.6)
1Kummer’s hypergeometric series can be approximated by the limit of its Riemann sum
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Quantitative analysis of patient risk is especially susceptible to the variability of inter- and

intra-pathogen doses [197], for example quality and viability of the organisms, but also

the variability between hosts, for instance depending on patient susceptibility or acquired

immunity. The Beta-Poisson model Section 3.4.1.2 creates doubts as to whether these

are truly represented by pairing k with α and β at each integration. Again, α and β

are shape parameters which are fitted to feeding trial data, which by definition rules out

patient variability to a great extent [16, 196, 197]. Only young, healthy specimens are

used in the trials as to minimise risk to the individual. On the other hand the pathogen

dose that is administered to the candidate is homogenised as much as possible through

the culture process. Hence valid extrapolation of these parameters for an entire human

population is sceptical at the very least and especially for a hospital sub-set where patients

are immuno-compromised, substantial error may be incurred.

3.4.1.3 Beta-Binomial Model

In the case where a pathogen dose was unknown, the Poisson approximation is assumed

valid, given the properties of the Poisson distribution. However in the case where the

inoculum is known, such as the cases where feeding trials are conducted then it is logical

to use the un-approximated value D. The Beta-Binomial model employs the same shape

parameters α and β as previously:

P(infection |D) = 1− (1− f(k |α, β))D

= 1− Γ(D + β)Γ(α+ β)
Γ(α+ β +D)Γ(β) (3.4.7)

This form is cumbersome to handle due to the difficulty of calculating Γ(D) when D is

very large, and so a the logarithmic form is often preferred [196].

3.4.1.4 Infection Heterogeneity: Statistical non-identifiability

In the special case where α and β are less than 1 a bimodal distribution arises. Hetero-

geneity in host-pathogen interaction, is bimodal, with part of the cases having a very high

risk of infection, and others a very low risk. In other words: part of the host-pathogen
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encounters are associated with a very high risk, and the remainder has a very low risk,

virtually zero. This is an interesting phenomenon, which we may interpret as partial im-

munity: A fraction of the population appears protected against infection (and unprotected

subjects may be at high risk). The corresponding dose response relation looks different:

A steep rise at low doses, and saturation at an infection probability below 1.

In the absence of any heterogeneity the shape of the dose response relation depends only

on exposure. For a Poisson inoculum this produces an exponential dose response relation.

Any heterogeneity added, for instance by assuming variation in infectivity parameter k

or over-dispersed inoculum (e.g. aggregation) produces a less steep dose response rela-

tion. The exponential relation is the steepest model in the hit theory family of functions.

Variation between the age of pathogens can reflect on their viability and as such not all

inocula are identical. Such heterogeneity is adequately modelled by using the Beta-Poisson

relation. One comment needs to be made: If action of the infectious particles is not in-

dependent (as assumed in the single hit model), for instance if there is cooperation (a

dose twice as high leads to a more than twofold increase in infectivity) the dose response

relation is steeper. In the absence of heterogeneity an elegant demonstration of cooper-

ative effects (like quorum sensing) might be found in testing whether the observed dose

response relation is steeper than the exponential model. Unfortunately, in the real world

heterogeneity is always present and we cannot discriminate cooperative interaction from

heterogeneity: One tends to make the relation steeper, the other less steep. Any effect of

cooperation might be countered by a certain amount of heterogeneity producing a relation

with arbitrary slope. In statistics this is called ‘non-identifiability’ [196].

3.4.2 Cumulative Dose-Response Models

Feeding trials such as those conducted to elicit immune responses [199] conclude generally

that, for a particular inocula, the probability of response can be modelled by a single

hit model. Despite the simplicity and elegance of their solutions, the single hit models

exclude the effect of a staggered immune system response. Inoculation may not be made

in a single dose such as is often the case with contact or airborne transmission. And

therefore these models conclude that the cumulative dosage administered can be done so

over any time period. Pujol et al. [16] discuss the effects of staggered inocula over a period

of time allowing for the immune system to mount a defence. Two classes are defined as
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pathogens (P ) and immune cells (I), and similar in construct to a predator-prey model,

a coupled system of ODEs are defined:

d I
d t = αI + P λI − I γI − P I δI (3.4.8)

dP
d t = αP + P θP − P I δP (3.4.9)

Given a small enough time step (δt), it is a reasonable assumption that only one event

takes place during each period. Hence from Section 3.4.2 we identify four states which are

governed by transition probabilities:

State Transition Probability

Increase of I I−→ I+1 αI + P λI

Loss of I I−→ I−1 I γI − P I δI

Increase of P P−→ P+1 αP + P θP

Loss of P P−→ P−1 P I δP

Table 3.4: Transition states for the stochastic model by Pujol et al. [16]

Accretion of immune cells is governed by the natural ebb and flow (αI) in the absence of

infection as well due to the activity of increased numbers of pathogens P λIa. Acquired

immunity is not meant to be reflected here, as the time-frame is intended to be subtantially

smaller than for this to develop. Immune effectors decrease either at a natural death rate

γI or due to mass-action deactivation in the presence of pathogens PIδI .

Inoculation of the pathogen dose (D) takes place over a designated time-frame T , which

is represented linearly as a constant arrival rate αP thus:

αP =


D

T
if t ≤ T

0 otherwise.

After this inoculation period, pathogens can increase only by net reproduction rate θP .

However interaction with immune effectors produces a mass-action induced deactivation
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PIδP . Ultimately the host is able to fight off the infection or the infection takes over.

Figure 3.12 is an example of a 1000 simulations, where red runs end up in infections and

blue runs represent no infection.

Figure 3.12: Stochastic cumulative dose model by Pujol et al. [16]
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3.5 Computational Fluid Dynamics: Modelling Airborne

Particles in Buildings

Understanding the role that ventilation airflow and ward design plays in the dispersion

and deposition of infectious bioaerosols is tantamount to assessing pathogen exposure

risk [75, 103]. With the difficulties in aerosolising microorganisms in experimental settings,

studies have turned to inert particle tracers [55, 91] or computational fluid dynamics (CFD)

models to infer bioaerosol behaviour in air [67].

Spatial distribution of airborne pathogens is unlikely to be homogeneous in nature [90].

This simplification makes modelling infection spread often easier, but the reality is that

ventilation systems do not provide fully mixed air and certain locations or proximity to

infectious patients will, logically, provide a higher likelihood of spreading infection [122].

Computational fluid dynamics is a numerical modelling approach that deals with the

inherent properties and movement of liquids, gases, and the suspension of solid particles.

CFD can predict the most likely ventilation airlfow pathways in a room or building by

splitting up the room into many smaller volumes or elements and solving the continuity

Equation (3.5.2) and momentum Equation (3.5.1) through each volume face. By knowing

the magnitude and direction of the fluid in each volume the larger picture equates to the

sum of the pieces. In general, the smaller the volume the more accurate the picture [172].

However, often a substantial error may accumulate and an iterative approach is applied

in an effort to minimise this. Here, a brief overview of the governing equations are given

before focusing in more detail on the approaches for modeling microorganism spread. A

comprehensive account of CFD including solution methods can be found in many texts

such as Tu et al. [200].

time derivative︷ ︸︸ ︷
∂ρU
∂t

+

advection︷ ︸︸ ︷
U · ∇ρU =

pressure gradient︷ ︸︸ ︷
−∇P +

diffusion︷ ︸︸ ︷
µ∇2U +

body force︷︸︸︷
ρg , momentum eq. (3.5.1)

∂ρ

∂t
+∇ · ρU = 0 continuity eq. (3.5.2)

Where U = (u, v, w) and P are the fluid velocity and the pressure respectively and gravity

is given by g = g(sin θ, 0,− cos θ).
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3.5.1 CFD Approaches to Model Bioaerosols

CFD modelling has the potential to investigate the airborne dispersion of infectious mi-

croorganisms and the effectiveness of different design measures. It has been found par-

ticularly useful to evaluate ventilation design strategies in hospital areas such as single

and multi-bed ward accommodation [33, 103, 122] and high risk areas such as operating

theatres [55, 94] and isolation rooms [98]. However the validity of such simulations relies

on appropriate definition of a pathogen source and an appropriate model for the transport

of the pathogen through the air.

CFD is a useful tool for studying the transport of contaminants in fluids as such it is capa-

ble of simulating the movement of particles which could be biologically active throughout

a room space. As explained in Section 3.1.2, bioaerosols range in size, from a mere tenth of

a micron to hundreds of microns in diameter. Pathogen transport is typically approached

in one of two ways [191, 201]:

• Passive scalar transport

• Lagrangian particle tracking

3.5.1.1 Passive scalar transport

The most fundamental form of monitoring pollutant spread is via a passive scalar field,

which can be thought of as a massless dye. Contaminants move under advection and

diffusion only, where any particle dynamics are ignored:

time derivative︷ ︸︸ ︷
∂ρφ

∂t
+

advection︷ ︸︸ ︷
∇ · (ρUφ) =

diffusion︷ ︸︸ ︷
∇ · (Γ∇φ) +

source term︷︸︸︷
Sφ , scalar transport (3.5.3)

The lack of body force interaction on the scalar field may prove an appropriate assumption

for respiratory particles which are expelled through coughing and rapidly evaporate to

droplet nuclei with a diameter of less than 1µm [202]. As such the model tends to be used

for demonstrating ventilation efficacy [201], where it is ideal for modelling steady state

behaviour. However, skin squamae have a larger size distribution, often appearing an
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average diameter of 14µm and hence may not be well modelled due to the lack of gravity

force [46].

Despite limitations, many authors including Li et al., Noakes et al. and Sekhar et

al.[102, 103, 203, 204] modelled the concentration of bioaerosols via this procedure demon-

strating its ability to determine exposure to airborne pathogenic particles in hospitals. The

advantage of this method resides in treating airborne bioaerosols bellow 1µm [201, 205]

as a massless dye. Consequently this method proves popular for modelling contaminant

dispersal in room air. Disadvantages to this method arise when buoyancy needs to be

taken into account as well as the effects of gravity, implying that the particles would be-

have differently at different diameters [148], and hence negating the initial assumption

that body forces exert no effect on particles.

The 2004 SARS outbreak in south-east Asia prompted a vigorous foray into modelling

airborne respiratory droplets. Not for the first time, CFD proved useful in investigating

the propagation of contaminants throughout entire buildings, such as the Amoy gardens in

Hong Kong [206], whereby revealing previously unsuspected transmission routes [95, 122,

190]. Comparison with experimental tracer gas techniques corroborated the CFD findings,

showing that a maintenance shaft formed the principal route of cross-contamination within

the building.

Inherently, the concentration field of passive scalar predicted by the CFD simulation is

only a representation of pathogen concentration. As it stands this is not an infection

risk. This allows for retrospective studies which compare the likely spread of airborne

pathogens in hospitals and to combine these with the spatial location of subsequently

infected patients and doctors. Li et al. [102] combined a calculated spatial distribution

of SARS virus droplets with the residence time of doctors within the Prince of Wales

hospital in Hong Kong. Quantity of inhaled droplets and the subsequent risk of infection

was evaluated via the Wells-Riley model, dubbing it the inhomogeneous risk model. The

virulence of SARS is considered high and the model compared quite well to reported

infections. Airflow or pathogen spread in large expanses such as entire buildings are

difficult to predict particularly, when ventilation cannot be fully characterised.

More recently, Noakes et al. modelled the spread of archetypal airborne infections such as

TB within hospital rooms [59]. Since the route of transmission is certain, this allows for the
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Figure 3.13: Tracer spread within a hospital isolation room. Adapted from work
by King [17].

effectiveness of intervention strategies such as room partitions and UV light disinfection

devices to be evaluated.Figure 3.13 shows a representative usage of passive scalar transport

within a hospital single room as part of investigating ventilation layout [17].

The spread of pathogens in aeroplane cabins [207] has resulted in experimental tracer

gas comparisons between CFD passive scalar transport. However passive scalar fields

are, by nature, massless and cannot predict the time-dependent gravity-induced sinking of

heavier than air CO2 or SF6 tracer gases [201]. Neither can they approximate the different

behaviours of 100 micron sized particles that tend to settle out of the air. Consequently

this techniques makes for an approximate first-guess estimate.

Midway through the first decade of the 21st century saw a resurgence in the use of species

transport to predict infection transmission within airliner cabins such as by Karthikeyan

et al. [208] and Zhang et al.[194]. Nielsen et al. [172] also applies this formula to hospi-

tal double patient rooms, by comparing NO2 and smoke tracers against multiphase CFD

simulations. The conclusions were that comparison was qualitatively quite good. Never-

theless tracer gases do not represent the full range of particle sizes, their evaporation rate

and cannot account for their deposition rates.
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3.5.1.2 Lagrangian particle tracking

In problems where a secondary phase within the fluid domain has a negligible volume,

regardless of mass, such as in the case of particles released from a cough, the Lagrangian

method tracks particles individually. This approach allows for the discrete phase, where

mass and size play an important role in the transport dynamics, to have a variable coordi-

nate in both space and time. The trajectory of a particle is found considering the change in

particle velocity over time due to the particle’s inertia, gravity, and drag forces. Hence the

position and velocity of the position of the particles form a coupled ordinary differential

equation: Equation (3.5.4). Consequently the Lagrangian approach is computationally

intensive especially when tracking many thousands of particles. Particle trajectories can

be calculated by a fifth order Runge-Kutta method by considering the change in particle

velocity upi due to drag force, inertia (ui − upi ), gravity gi, lift force FLi and Brownian

motion ni(t). Equation (3.5.4) considers only the x direction:

dupi
dt

= 1
τ

CDReP
24 (ui − upi ) + gi + FLi + ni(t) (3.5.4)

where up is the velocity of the particle, ρp and ρ are the particle and fluid density respec-

tively. ni(t) represents Brownian forces while, g is that of gravitational acceleration. Lift

force is represented by FLi . The time required from a particle at rest to reach terminal

velocity within the surrounding fluid [92] is given by τ and is denoted as:

τ = Sd2Cc
18 (3.5.5)

Where, S is the particle-fluid density ratio, d the particle diameter, Cc is the Cunningham-

Stokes slip correction factor and µ the fluid kinematic viscosity. Cc = 1 + 2
d(1.257 +

0.4e− 1.1d
2 ), λ= gas molecular mean free path.

Validation of particle tracking models has been conducted mainly against experiments

conducted in pipes and channels [209, 210]. High quantities of particles are required to

produce an averaged pattern [211], while good correlation with particle distribution has

been demonstrated up to 10µm [194, 212].
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However, direct comparisons between CFD particle models and bioaerosol experiments are

scarce [18]. This is undoubtedly due to the inherent nature of the microorganisms involved.

2006 saw the first published [213] small scale experimental/numerical comparison using

airborne biological organisms within a climatically controlled enclosure which Wong et

al. [92] describe as “encouraging”. However since then respiratory droplets have been

shown to be well characterised by Lagrangian particle tracking as found by Qian et al. [57,

89, 89, 99]. Application of this validated techniques was then applied to compare the

effect of hospital room layout on airborne particle distribution [12, 17] to some extent. Lai

and Chen [213] predicted deposition of particle sizes ranging from 0.01 µm to 10 µm with

strong evidence supporting the claim that larger particles drop close to the source and do

not remain suspended.

This approach proves popular for investigating respiratory droplets, mainly because each

individual particle is tracked throughout the domain separately. Computation can be

expensive and has always restricted the quantity of particles being released. Figure 3.14

is an example set of particles as they are tracked through a replica hospital room similar

to the published study by myself and colleagues in King et al. [93], and presented in the

following chapter.

Figure 3.14: Example of multiple particle tracks coloured by residence time within
an enclosed environment.

3.5.2 Other CFD and Experimental Approaches

Understanding the immediate microclimate around people in indoor environments and how

these change is important in getting a handle on airborne infection transmission. With
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the inherent difficulties attributed to the use of live subjects such as ethical issues and

inter-person variability, breathing mannequins can be a good substitute [138]. Figure 3.15

shows a representative comparison between a breathing mannequin and CFD comparison

under test conditions.

(a). Smoke tracer re-
produced from Bjørn
et al. [214] courtesy of
Wiley-Blackwell

(b). CFD representation

Figure 3.15: Use of mannequins for tracer gas techniques and CFD comparison.

The use of mannequins in airflow visualisation experiments seeks to characterise realistic

scenarios in which repeatable analyses can be performed. These include the analysis of

flow and particle transport in the immediate microclimate surrounding the mannequin or

human volunteer[18]. Heated and breathing mannequins are easy to control within test

facilities and have yielded encouraging results. Tang et al. [138] investigate the spread of a

tracer gas (NO2) between two quiescent mannequins in a test chamber hereby comparing

the effects of different ventilation strategies. This provided visual qualitative smoke-test

data as well as quantitative potential exposure levels.

Techniques involving non-toxic tracer gases such as CO2 provide a convenient way of

tracking contaminant dispersal within indoor environments such as hospital wards and

operating theatres [112, 215]. These can represent the release of infectious particles to

some extent and provide validation data for CFD simulations [99, 122, 205], however

cannot reflect the behaviour of droplets, evaporating or settling onto surfaces.
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3.5.2.1 Schlieren or shadowgraph photography

Respiratory droplets produced during coughing and sneezing have been at the center of

research attention since the early part of the last decade. Initially SARS and latterly the

H1N1 pandemic have been the driving forces behind the search for increased experimental

and modelling granularity. Schlieren or shadowgraph photography relies on the thermal

differences in the air to refract an incident light beam in order to visualise airflows [18].

Figure 3.16b is a diagrammatic setup of instruments required. Human volunteers stand

in front of a concave mirror and cough across the illuminating light beam producing an

instantaneous, visible image of their exhaled airflows and thermal plume [18].

(a). Typical large scale Schlieren imaging set-
up

(b). Example of a cough as de-
picted by Schlieren photography

Figure 3.16: Schlieren set-up and photography of a breathing subject reproduced
with kind permission from Tang et al. [18].

3.5.2.2 Small- and large-scale models

Characterising the movement of contaminants within a working indoor environment such

as a hospital is difficult due to their transient nature. Model analogues of hospital rooms

can be recreated at a tenth of the size within test facilities. To ensure airflow characteris-

tics are similar between scenarios dynamical similarity of the Reynolds’ number must be

maintained by changing of length and velocity scales [18]. Eames et al. [96] investigate

the transport and dilution of a tracer dye within a transparent acrylic model using pho-

tography and computational image tracking techniques. Figure 3.17 shows the spreading

of ink from a model isolation room under mechanically ventilated conditions. Optically,
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this is a pleasing method, which is quick to resolve. However, currently, it has been found

to provide a more qualitative rather quantitative solution due to the Reynolds’ number

associated difficulties of scaling up the models [96].

(a). Top (b). Side

Figure 3.17: Water bath model of tracer escaping from an isolation, reproduced
from of Eames et al. [18], courtesy of the Royal Society Publishing.

Large-scale hospital room replicas are hard to find, nevertheless disused wards have been

shown to provide excellent test facilities [112, 216]. Despite this, much of the current data

on hospital ventilation is derived from investigations of controlled, mechanically ventilated

environments such as operating theatres [66, 124], isolation rooms [138, 145] and idealised

studies conducted in test-chamber environments [202]. Figure 3.18 shows examples of

mechanically ventilated test facilities that replicate hospital isolation rooms. Figure 3.18a

shows the aerobiology chamber, which is capable of handling category II microorganisms

at the University of Leeds, used later on in this investigation. Figure 3.18b shows the

environmental (without capacity to handle biological agents) chamber at BSRIA, Reading.
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(a). Aerobiology chamber at the
University of Leeds

(b). Environmental chamber at
BSRIA

Figure 3.18: Mechanically ventilated experimental facilities of different types.
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Table 3.5 shows a summary of the major advantages and disadvantages of modelling

techniques described above.

Approach Advantage Disadvantage

Human volunteers Realistic subjects and
physiology, particularly
with regard to ther-
mal characteristics and
thermal boundary lay-
ers Safety is important.

Human volunteers
cannot be exposed to
high intensity (e.g.
laser) light or irritant
or toxic tracer gases
or particles. Hospital
monitoring Realistic
situations and environ-
ments Highly variable
results, often obtained
using non-standard
techniques, making
interpretation diffi-
cult, and therefore
limiting any useful
generalisation

Computational fluid
dynamics (CFD)

Good spatial/temporal
information. It is a
standard modelling tool
in the industry

Difficult to model mov-
ing bodies. Difficult to
obtain accurate simu-
lations due to required
computing power
and/or simulation time.

Physical analogues
in scale model or in
full scale (models)

Quick and relatively
easy to build with
reasonable spatial res-
olution. Able to test
different hypotheses
related to flow patterns
in different geometries
using a variety of
flow-generating tech-
niques/devices. Easy
to work with tracer gas
and airborne particles
for the simulation of
viruses and bacteria
in full scale experi-
ments with thermal
mannequins

Difficult to combine dif-
ferent contributions to
bulk air flows in small
scale, and difficult to
work with movements of
persons in full scale

Table 3.5: Advantages and disadvantages of some airflow visualisation techniques.
Adapted from Tang et al. [18].
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In order to model infection transmission a considerable amount of information about the

transmission route and the interaction of people is required. In addition to the need

for adequate characterisation of the air and airborne droplet, it is necessary to employ

physical techniques to understand transport mechanisms alongside the epidemic modelling

approaches.
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This chapter examines the spatial deposition of Staphylococcus aureus onto environmental

surfaces under experimental conditions. Hospital single and double rooms are recreated in

an experimental environment within a mechanically ventilated biological chamber (known

as the PaCE chamber). A parametric study of room and ventilation layout is undertaken

to compare the effects of infectious source location and the mitigation effect of a partition

curtain. These scenarios are then compared to numerical CFD models and analysis is

made of their accuracy. Turbulence models have been found to significantly affect the

predicted deposition patterns [217] so the k-ε RNG model is compared against the more

sophisticated Reynolds’ Stress Model. The work presented here was partially published

as: King et al. Bioaerosol deposition in single and two-bed hospital rooms: A numerical

and experimental study, Building and Environment, 2013 [93].
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4.1 Experimental Methodology

Recommended bed spacing in multi-bed environments is often cited as being based on

droplet transmission risk [218], and studies have recognised the relevance for pathogens

such as Staphylococcus aureus as well as respiratory diseases [153]. Tracer gas and numer-

ical simulation studies have shown that ventilation design [59, 99, 112] and the presence of

partitions between beds [59] influences airborne cross-infection risk between two patients.

There is currently little knowledge as to the importance of bioaerosol deposition in envi-

ronmental contamination, so quantifying deposition in both single and multi-bed rooms is

important for informing nursing practice and design.

This Chapter describes an investigation into the appropriateness of CFD particle tracking

techniques for simulating deposited pathogenic bioaerosols in an enclosed environment.

With the inherent difficulties of releasing bioaerosols within operational hospital building

one must rely on other methods to quantify risk. This work builds on Hathway et al.’s [202]

to carry out a direct comparison between the deposition pattern of Staphylococcus aureus

onto surfaces in a climatically controlled aerobiology test room. The study considers

the ability of CFD simulations to predict realistic deposition patterns for small diameter

bioaerosol particles and the influence of simulation parameters, in particular, frequently

used turbulence models.

Experiments and simulations also consider room layout whereby recreating a single pa-

tient and a two-bed hospital room. This then relates the findings to pathogen exposure

risks in single and multi-bed hospital rooms. The mitigation effect of a partial divider is

subsequently tested under the same conditions.

4.1.1 Overview of Experimental Scenarios

Experiments were conducted in the environmentally controlled, negatively pressurised,

aerobiology chamber at the University of Leeds (PaCE chamber). Dimensions are close to

a hospital single room: 4.26m (L) x 3.36m (W) x 2.26m (H). All walls are well insulated

and considered adiabatic. External air was HEPA filtered before being conditioned by a

humidifier and heater. This air was supplied to the chamber through a high level wall

mounted diffuser as shown in Figure 4.1. Extraction of air was at a low-level, diagonally
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opposite; through a grille of the same design (Outlet). Inlet air temperature (21.8◦ C ± 1
◦C) and humidity (60%± 7%) were controlled throughout the experiments.

Figure 4.1: PaCE chamber geometry

This experimental arrangement was used to investigate four separate scenarios including

an empty room, a hospital single room and a hospital double-patient room. The effect

of infectious patient location and a partial partition between beds was also examined. In

total four main experimental scenarios were investigated and are summarised in Table 4.1:

Case N◦ 1 2 3a and 3b 4a and 4b

Scenario Empty room Single room Double room no
partition

Double room with
particution

Experimental
Description

No furniture or
mannequin

Hospital single
room & heated
mannequin

Hospital double
room & 2 heated
mannequins

Hospital double
room & 2 heated
mannequins &
partition between
beds

Aerosol
release

Room centre Patient head Patient 1 Patient 2 Patient 1 Patient 2

Table 4.1: Experimental case scenarios, single and double-room particle deposition

Empty room: Is similar to Hathway et al. [202], quantifying the spatial distribution of

deposition in a similar manner to Wong et al. [92] but at a room-scale. Bioaerosol

injection occurred at the geometric centre point in the room and no furniture or heat

sources were present.
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Single room: Replicates the situation within a single-bed, hospital room, where an in-

fectious patient lays resting (Figure 4.2). A heated mannequin is used to represent

the heat source of the human. Particle collection is made on surfaces which mimic

hospital furniture.

Figure 4.2: Single room set-up

Double room: Scenarios 3 (Figure 4.3a) and 4 (Figure 4.3b) both present two heated

mannequins, employed in a similar manner to Qian et al. [89]. Cross contamination

of surfaces surrounding an infectious and a susceptible patient is examined by the

collection of bioaerosols on adjacent surfaces. The effect of ventilation is investigated

by reversing the location of susceptible and infectious source. The effect of a partition

(Figure 4.3b) between the two beds is also examined. Table 4.2 shows the dimensions

of the items present in experimental scenarios 2-4.

As is the case in many developing countries or during times of pandemics the shortage

of beds forces hospitals to overcrowd rooms. Noakes et al. demonstrated that low-

cost room partition solutions can significantly reduce risk of airborne exposure [59].

It was therefore of significant interest to investigate the effectiveness of one of the

cheapest option available: Polythene sheeting, as to whether this could provide

significant mitigation effects.
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(a). No partition: for scenarios 3a and 3b

(b). Curtain partition in for scenarios 4a and 4b

Figure 4.3: Double patient room

Originally, hospital curtains were employed to create an environment of privacy for

the patient and to aid cleaning procedures. These hang approximately 20cm from

the ground and similarly from the ceiling. This gap may possibly allow pathogen

cross-transmission.
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Item Quantity

Name Dimension (m) Scenario 2 Scenarios 3-4

Bed 1.75 x 0.60 x 0.8 1 2

DIN man 1 x 0.35 1 2

Bedside table 0.50 x 0.50 x 0.80 1 2

Chair 0.60 x 0.60 x 0.55 1 2

Sink 0.40 x 0.40 x 0.20 1 0

Table 4.2: Dimensions of surfaces and items in the double room

4.1.1.1 Heated mannequin

In scenarios 2-4, a quiescent patient was simulated by a DIN man (Deutsche Institut für

Normung), a hollow aluminium cylinder (length 1m by diameter 0.35m) with an interior

heat source. The heat source was created by a 100W light bulb to represent the thermal

emission of a resting adult human. Convective heat output from the skin is considered

to be approximately 50% [172]. Dimensions of the cylinder are however smaller than

the average person but emit a similar heat flux. Infra-red thermal imaging of the DIN

man shows the surface temperature in Figure 4.4, which represents approximate body

equivalents.

Figure 4.4: Heated mannequin thermal image
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4.1.2 Characterising the Airflow Patterns

To maintain an accurate air change rate within the chamber, the ventilation system was

calibrated using a hand-held balometer as in Figure 4.5 (Digital Balometer TSI, Model

PH721, TSI Incorporated, Shoreview, MN). The blue canvas hood is placed over the

diffuser inlet thus converging all the flow through a known aperture size. The flow velocity

is measured as it passes through the aperture by an array of nine anemometers and so

the volumetric flow can be deduced. Both the flow-rates at the inlet and the outlet

were measured, observing a negative pressure within the chamber. Air patterns were

characterised using a comfort probe (hot-wire anemometer from Testo Ltd, Germany) at

five poles (locations) within the room as per Figure 4.5a, and measurements were taken

at five positions up each pole.

(a). Balometry of ventilation system (b). Measurement positions

Figure 4.5: Airflow measurements within the PaCE chamber

4.1.3 Bioaerosol Generation

Staphylococci are approximately spherical gram positive bacteria existing endogenously

on most human skin squamae. With shedding of some 106 skin flakes per day, they are

consequently abundant in many health-care settings [92, 202]. Staphylococcus aureus, a

surrogate representative of MRSA, was chosen as the bacteriological agent given its ability

to grow on general purpose media and its relevance to HCAI. The S. aureus culture was

incubated in nutrient broth (Oxoid, UK) for 24 hours at 37◦C. Subsequent dilution tests

showed the concentration to be circa 1011 organisms per millilitre. A 10ml aliquot of the

pure culture was aseptically removed and suspended in 100ml of sterile distilled water in
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a pre-autoclaved nebuliser. Sterile distilled water was the preferred suspension medium

since it did not produce foaming of the suspension during nebulisation.

Aerosols were injected into the room via a six jet Collison Nebuliser (CN 25, BGI Inc,

USA) attached to the inlet port of the chamber. The nebuliser utilises a separate pump,

pressure regulator and meter operating at a flow rate of 8 l/min at 25Pa to deliver HEPA

filtered air. Manufacturer’s data from BGI indicate the size distribution of particles ejected

during the process to have a mean mass diameter of 2.5 µm and a standard deviation of

1.8 µm. Eventual size distribution may vary through evaporation. Method of injection

varied based on the requirements for each experimental scenario. In the case of the empty

chamber (scenario 1), bioaerosols were released from the centre of the room isotropically

at the centre (2.13m, 1.15m, 1.675m) as per Figure 4.6. In subsequent cases, (scenarios

2-4) a plastic tube of 2.5cm Ø was clamped at the head of the infectious DIN-man and

droplets were released into the thermal plume (see Figure 4.6).

Figure 4.6: Scenario 1: Isotropic release from inside red diffuser ball in centre of
room

4.1.4 Bioaerosol Collection

All biological samples were taken on Tryptone soya agar (Oxoid, UK) as the controlled

chamber conditions meant that no other species were present. Deposition was measured

using 90mm Petri dishes located on the floor or on surfaces in the room as per Figure 4.7.

Given the inherent variability of biological particle collection, it was found that exper-

iments carried out with fewer than five settle plates at each point yielded inconsistent

results (Kruskal-Wallis test: p ∼ 0.1). Electrostatic effects of aerosolisation were deemed

to be negligible because of isotropic distribution of settle plates. A possible remedy in
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other situations where this may be a factor would be to use Rodac plates (Petri dishes

without sides) or glass Petri dishes.
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Scenario 1: Five 90mm Petri dishes containing the growth media were placed at each

enumerated position as shown in Figure 4.7 with a total of 125 plates.

Figure 4.7: Location of settle plates in the empty chamber scenario with photo-
graph showing a sampling point with a typical group of 5 plates (scenario 1)

Scenarios 2: Petri-dishes were placed on furniture surfaces in the single rooms as in-

dicated in Figure 4.30. A minimum of seven plates were located at each position.

Generally all available horizontal surface area of the furniture was covered with settle

plates. Floor deposition was not measured in these cases.

(a). Single room sketch (b). One DIN man

Figure 4.8: Single-bed room experimental set up. Petri dishes were located on
surfaces representing the Bed, Chair, Table and Sink

Scenarios 3-4: Petri-dishes were placed on furniture surfaces as indicated in Figure 4.9.

A minimum of seven plates, often nine were located at each position. Floor or curtain

deposition was not measured in these cases.



Chapter 4. Bioaerosol deposition: Experimental and CFD comparison 110

(a). Double room sketch (b). Two DIN men

Figure 4.9: Double-bed room experimental set up Petri dishes were located on
surfaces representing the Bed, Chair and Table for each patient and the Sink.

Throughout all experiments particle concentrations (particle sizes 0.5-1µm, 1-3µm, 3-5µm)

were monitored at the outlet via a laser particle counter (at 2.83 l min−1, Kanomax 3886

Optical Sciences Ltd, UK) to ensure steady state conditions were reached. Following

experiments, the covered Petri-dishes were incubated for 24hrs at 37 ◦C . Individual colony

forming units (CFU) were then counted and recorded. All samples were subjected to

minimal viable count threshold and those with less than 25 CFU per plate were discarded

(n=3).

4.1.5 Data Analysis

Variation is known to be due to, at least in part, by unsteady airflow patterns and sam-

pling techniques [100]. Sample sizes used here are reasonable for investigating biological

microorganisms. However since parametric statistics are notoriously sensitive to outliers,

non-parametric statistical inference was used. Variation between sample distributions

within each experiment were evaluated via a Kruskal-Wallis test at the 5% level. Subse-

quently the post-hoc Wilcoxon rank-sum test was used to compare experimental samples

against CFD predictions. Comparison was made based on the null hypothesis of both

samples stemming from distributions with equal variances, or more strictly that two in-

dependent samples emanate from the same distribution.

In all four study scenarios the environmental conditions remain reasonably constant, but

variation can be encountered within the biological organisms in use. In particular it is dif-

ficult to ensure that the injected concentration remains the same in different experiments.
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A uniform normalisation metric is therefore used to ensure comparability of results be-

tween experiments. The fractional bacteria counts Ci represent the normalised deposition

distributions at each location given by Equation (4.1.1):

Ci =
1
m

∑m
j=1 cij

1
mn

∑
i

∑
j cij

, (4.1.1)

where n is the number of zones and m is the total number of Petri dishes in each zone.

Values from colony counting were averaged out based on the number of Petri dishes at

each point giving raw spatial counts. Each positional value was then divided by the global

mean of the experiment. Although scenario experiments were conducted on different

days and using different microorganism cultures it was found that the mean deposition

count within each experiment scenario remained constant (p=0.3 from t-test comparing

means). In addition dilution cultures were carried out for each new culture to ensure

microorganism levels were maintained. This therefore allows for quantitative as well as

qualitative comparison between scenarios.
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4.2 CFD Methodology

With the inherent difficulty of aerosolising bacteria into a working environment such as a

hospital, studies have turned to computational fluid dynamics to test the validity of ‘what

if’ scenarios without the need to move away from the computer screen [12, 55, 55, 57, 103,

172, 219].

Steady-state computational fluid dynamics models of the four experimental scenarios were

developed using Fluent (ANSYS, version 12.0). Flow was simulated using Reynolds Av-

erage Navier-Stokes (RANS) approach computed via the finite volume method, the most

widely used method for indoor airflow [89, 90, 172, 194, 214]. In all cases the double

precision solver was utilised as default along with the SIMPLE pressure-velocity coupling

algorithm and 2nd order upwind discretisation for all variables.

4.2.1 Turbulence Modelling

The choice of turbulence model depends on the context of the problem at hand and how

much detail is needed. Are you modelling a flow through a capillary tube or flow over a

jumbo jet? Broadly speaking the choice is between empirically or semi-empirically derived

methods or direct numerical simulation of turbulent eddies. With the computational power

available today (2013), only being able to calculate a mili-second over a postage stamp is

not of much use when studying indoor airflow. And so, for the time being, semi-empirical

models will be used. These can be split into five categories:

• Mixing length models (algebraic models).

• Spalart-Allmaras model [Spalart and Allmaras, 1992] (one transport equation).

• k-ε model [Launder and Spalding, 1974] (two transport equations)

• k-ω model [Wilcox, 1994] (two transport equations)

• Reynolds stress model [Wilcox, 1998] (seven transport equations).

This chapter will examine only the k-ε and the Reynolds’ Stress Model because they are

optimised and heavily validated for indoor airflows. The others are mainly for outside
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airflow. Firstly a brief overview is given: The highly chaotic and complex form of tur-

bulent airflow renders it inherently very unpredictable. However, over the past century,

increasingly more complex models have appeared [220].

The concept of Reynolds averaging

ui = ui + u′i

of the Navier-Stokes’ equation is given by:

∂ρui
∂t

+ ∂ρuiuj
∂xj

= − ∂p

∂xi
+ ∂

∂xj

[
µ

(
∂ui
∂xj

+ ∂uj
∂xi
− 2

3δij
∂uk
∂xk

)]
+ ∂

∂xj

Reynolds’ Stresses︷ ︸︸ ︷(
−ρu′iu′j

)
(4.2.1)

Reynolds published pioneering groundwork in 1895 which laid the foundation for the

time averaging approach seen today. However, much about viscosity remained a mystery

until Prandtl opened the door to future investigation into boundary layer theory in 1904.

Around the mid-1940s Prandtl again hypothesised that eddy viscosity was proportional to

turbulent kinetic energy k, which inherently takes into consideration flow history. However,

specification of a turbulent eddy length scale still remained; and hence prior knowledge of

the flow must be known before a solution can be calculated. Progress was marred up until

the mid-1960s due to the lack of computing power. An implicit and incomplete problem

still remained.

4.2.1.1 Two equation Eddy Viscosity Model k-ε

Raynolds’ Averaged Navier-Stokes’ (RANS) turbulence models are divided into two cat-

egories. How the Reynolds’ stresses (u′iu′j) are treated in Equation (4.2.1) dictates this.

Launder and Spalding [221] are considered to be pioneers in developing a generalised

turbulence model based on the creation of turbulent kinetic energy and it’s subsequent

dissipation. The so-called k-ε model, first introduced in 1974, is empirically based on two

extra transport equations representing the turbulent properties of the flow:
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∂ρk

∂t
+∇ · (ρkU) = ∇ ·

(
µt
σk
∇k
)

+ 2µtSij · Sij − ρε (4.2.2)

∂ρε

∂t
+∇ · (ρεU) = ∇ ·

(
µt
σk
∇ε
)

+ C1ε
ε

k
2µtSij · Sij − C2ερ

ε2

k
(4.2.3)

where adjustable empirical constants have been most commonly set to:

Cµ = 0.09 σk = 1.30 C1ε = 1.44 C2ε = 1.92

Sij is the fluid strain rate and the turbulent eddy viscosity is given by

µt = ρCµ
k2

ε
(4.2.4)

Boussinesq [222] in 1877 introduced the assumption that the Reynolds’ stresses are pro-

portional to the velocity gradients or strain:

−ρu′iu′j = µt

(
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3δij
(
ρk + µt

∂uk
∂xk

)
(4.2.5)

Where the turbulent kinetic energy is postulated by Prandtl to be the basis of the velocity

scale:

k = 1
2u
′
iu
′
j = 1

2
√
u′2 + v′2 + w′2 (4.2.6)

The Re-Normalisation Group (RNG) k-ε model attempts to account for these smaller

turbulent eddies by adding an extra term to the turbulent dissipation in Equation (4.2.3):

∂ρε

∂t
+∇ · (ρεU) = ∇ ·

(
µt
σk
∇ε
)

+ C1ε
ε

k
(Gk + C3εGb)− C2ερ

ε2

k
−Rε + Sε (4.2.7)

where Gk is the generation of turbulence kinetic energy and Gb is the generation of tur-

bulence kinetic energy due to buoyancy. Moreover renormalisation group techniques are

used to develop a theory for the large scales in which the effects of the small scales are
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represented by modified transport coefficients. These constants used in the formulation

of the RNG model are derived mathematically as opposed to empirically in the standard

k-ε model. Comprehensive descriptions can be found in Fluent’s theory manual [223] or

Tu et al. [224].

However, this assumption ensures that turbulence is isotropic in all directions, which in

the case of swirling flow is unlikely [225]. Cases of high velocity gradients and shear flow

pose significant problems for the k-ε model, most famously where the re-attachment length

of a backward facing step needs to be calculated [200]. In the standard k-epsilon model

the eddy viscosity is determined from a single turbulence length scale, so the calculated

turbulent diffusion is that which occurs only at the specified scale, which is unphysical in

real domains.

4.2.1.2 Seven equation Reynolds’ Stress Model

One of the inherent disadvantages of the k-ε model was its isotropic treatment of eddy vis-

cosity. The Reynolds Stress Model (RSM) closes the RANS equations by solving an extra

six transport equations for the individual Reynolds stress components δiju′iu′j . A separate

equation is then required for the dissipation rate ε. Hence a total of 7 extra transport

equations are solved in 3D. By taking the moment of the stress term in Equation (4.2.1)

we obtain the transport equations thus:

Time derivative︷ ︸︸ ︷
∂

∂t

(
ρu′iu

′
j

)
+

Cij=Convection︷ ︸︸ ︷
∂
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′
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j

)
= −
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∂
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ρu′iu

′
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′
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δkju
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′
j
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+
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(
∂u′iu

′
j

∂xk

)]
−
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ρ

(
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′
j

∂uj
∂xk
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′
k

∂ui
∂xk

)
−
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ρβ
(
giu′jθ + gju′iθ

)

+ p
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∂xj

+
∂u′j
∂xi

) εij=Dissipation︷ ︸︸ ︷
−2µ

(
∂u′i
∂xk

∂u′j
∂xk

)
(4.2.8)

By this method, a more computationally demanding model turbulence model is defined,

but for that, inhomogeneous turbulence components are calculated at each point.
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4.2.1.3 Large eddy simulation

Large Eddy Simulation (LES), is an amalgamation of methods which melds a direct sim-

ulation approach for the largest eddies and entrusts a RANS approach for the eddies

below a certain size. This method is quite appealing but makes very strict requisits about

meshing, particularly with respect to y+ < 20 values. Realising that modelling a simple

small room would require some 16 million grid cells, is not particularly intractable but has

proven excessive [67], and so will be left to future endeavours.

4.2.1.4 Choosing a turbulence model

Previous studies centered on particle deposition have focused on small scale channel flow

such as in the case described in Lai and Nazaroff [217]. Over-prediction of deposition

quantities have been found when using the standard k-ε due to its Boussinesq modelling of

isotropic Reynolds’ stresses, worsening predictions close to the wall. Ideally, all Reynolds’

stresses are calculated individually as in the case of the RSM model. Although Wong et

al. [92] found good comparison using the RNG k-ε model, other studies have found that

improvement achieved over standard k-ε models, still show significant differences compared

to empirically measured DNS data [226]. In order to further explore the influence of

turbulence models to particle deposition in indoor air, both the RNG k-ε and the Reynolds’

Stresses Model are applied in this study.

As the focus of the simulations was on prediction of particle deposition, the resolution of

turbulence, particularly close to the wall is important. RANS solutions of bulk-flow do not

calculate turbulent fluctuations up to the wall, hence high Reynolds flows employ wall-

functions, and therefore an amalgamation of approaches is made. Enhanced wall functions

rely on splitting the boundary region into two layers forcing unrealistic mesh sizes in some

situations. Therefore Fluent’s standard wall function was employed, requiring the y+ value

to be within 30 and 300 in the first cell.

4.2.2 Artificial Viscosity

The term artificial or numerical viscosity [223, 224] refers to the excessive diffusion pro-

duced by any upwind discretisation scheme. As an analogy, the reader must imagine a
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structured, square, grid with fluid flow moving across it diagonally. Since the fluid can

only move either vertically or horizontally as in a Manhattan metric, the grid quickly

becomes filled showing some excessive diffusion, not present in the original flow. This is

particularly visible when discontinuities as in Figure 4.10b must be approximated such

as hot and cold fluid mixing or in flows with pockets of high velocity gradients such as

swirling flow:

(a). A representative dis-
continuity in fluid tempera-
ture or velocity [227]

(b). Forward upwind scheme
[227]

Figure 4.10: Representation of a discontinuity via an upwind scheme

Despite the initial poor performance of this low order scheme, it does offer some comfort

for establishing a platform upon which to base initial solutions for a higher order scheme

to solve [228].

4.2.3 High Resolution Schemes

There exist several ways to improve on this approximation, most notably either to refine

the mesh involved to physically reduce diffusion or to employ a higher order scheme.

Second order schemes tend to give spurious oscillations close to the discontinuity but

approximate the discontinuity more accurately; this is called Gibb’s phenomenon [229]

shown in Figure 4.11. One way of rectifying this is to incorporate both low and higher

order schemes depending on the situation, in a mixed mode.

Essentially, the main point of this discussion is that the diffusive effects of lower order

discretisation methods can be reduced with higher order schemes. However, striking a
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Figure 4.11: Second order upwind scheme

balance between accuracy and stability is absolutely vital for attaining solutions to com-

plex flow problems, and this can only be achieved with experience. Simulations throughout

this chapter use the second order upwind scheme available in Fluent for all variables.
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4.2.4 Defining Ventilation Diffusers

Mechanical ventilation described in Chapter 2 has been found to provide improved indoor

air quality according to several studies, most notably in that of Bauman et al. [230]. Since

the 1970s this type of ventilation has been tested extensively experimentally [68] and also

computationally [231]. Standard airflow modelling within indoor spaces by computational

fluid dynamics (CFD) differs significantly from techniques required for incorporating the

complexities of ventilation diffusers [232]. Consequently this has been regarded as a corner-

stone in being a major limiting factor in applying CFD to room airflow [231]. Particularly

given the actual complexities of some of the diffuser geometries the application of bound-

ary conditions is not made easy. In the vast majority of cases obstacles such as louvres or

vanes prevent the implementation directly into CFD geometry. However correct airflow

prescription is vital to achieving successful CFD representations [172, 231, 233].

Such methods of simplification can be categorised into four areas:

1. Simplified geometrical models

2. Prescribed velocity models

3. Momentum models

4. Box models

Some ventilation diffusers can be quite complicated, made up of many fine geometrical

details. The most common found in the office and hospital is that of the four-way diffuser

pictured (Figure 4.12), which typically uses shaped aerofoils to direct the flow. These are

sometimes called baffles or deflectors. Given their intricate shape, careful consideration

must be given to either their simplification or full inclusion.

4.2.4.1 Velocity prescription

The simplest method for defining an inlet involves direct velocity prescription at the

diffuser face. In reality this may at best represent the geometry in Figure 4.14. In the case

of most diffusers, a significant part of their inlet face is obstructed by louvres which reduce

the actual inlet area (A). Therefore, although the mass flow rate (ṁ) may be maintained
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Figure 4.12: Typical four-way dif-
fuser (0.5m x 0.5m)

Figure 4.13: Simplified diffuser ge-
ometry

by this method, the velocity U = ṁ

Aρ
, where A= cross-sectional area and ρ= density, will

have altered as consequence. Therefore as a correction based on the CIBSE guide B [127]

can be used:

A = Q

0.84
√

∆P

where ∆P is the pressure gradient across the diffuser face. The lack of a resulting Coanda

effect is really the main drawback to this method, mainly due to the lack of knowledge

regarding turbulent intensities at the inlet [127].

Figure 4.14: Diffuser opening

4.2.4.2 Momentum Method

A diffuser is designed to deliver a prescribed mass of air per second, however due to geom-

etry design and posterior simplification in CFD, substantial compensation for flow speed

would be unrealistic. This unphysical increase in air velocity can alter flow patterns fur-

ther afield hence creating features which are not actually present. To avoid this Srebric et

al. [231] propose defining a known momentum to a volume infront of the diffuser, thus both
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mass and velocity are correctly defined. In many cases the energy and turbulent kinetic

energy must also be calculated and these are often unknown a priori. A disadvantage to

this process lies in not being able to prescribe a velocity profile, relying on homogeneity

across the inlet.

4.2.4.3 Box Method

Measurement of either velocity magnitude or direction of a diffuser jet may be difficult

due to several factors. Despite deflectors being useful for directing flow, they often pose a

hinderance for flow measurement instruments. Such instruments are either too bulky to

fit between the vanes, such as in the case of comfort probes or in fact disturb the flow field

itself. In the latter case the anemometer often carries a protective hood which prevents

close measurement and hence a substitute method was presented [172]. The box method

consists of measuring flow variable data on an imaginary bounding volume such as in

Figure 4.15 and Figure 4.16. The challenge arises in compromising between the accuracy

of the measurements within the fully developed region of the jet without altering the flow

further afield.

Figure 4.15: Measurement surfaces
away from the grille

Figure 4.16: A single surface show-
ing 9 measurement points

4.2.4.4 Turbulence intensity

Turbulence plays a role in the generation of fluid friction losses and fluid induced noise [221].

Turbulence intensity is the ratio between mean and fluctuating velocity magnitude, char-

acterising turbulence expressed as a percentage. An idea of this intensity can be deduced

from measuring the time-averaged velocity and the fluctuating velocity at a point. A sin-

gle time-series measured like the one in Figure 4.17 contains a mean velocity (Umean) and
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a fluctuating component (Urms).

U = Umean + Urms

Tu = Urms
Umean

(4.2.9)

Ū Time-average velocity

U Instantaneous velocity
u′ Fluctuating velocity

V
el
o
ci
ty

Figure 4.17: Hypothetical plot of fluctuating velocity along time-averaged velocity

From the single time series, two quantities can be deduced: the mean velocity and the

root mean squared velocity value:

Umean = 1
N

N∑
i

Ui (4.2.10)

Urms = 1
N − 1

√√√√( N∑
i

(Ui − Umean)2
)

(4.2.11)

An idealised flow of air with absolutely no fluctuations in air speed or direction would

have a turbulence intensity value of 0%. In practice this does not occur indoors [234], and

duct-flow generally ranges between 4 and 10%. The measurement and estimation of this

quantity will be used for setting up the boundary conditions of the numerical simulation.

4.2.5 Instruments and Instrumentation Error

The instrumentation within this investigation is calibrated professionally by the manufac-

turer.
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Air velocity magnitudes are measured by means of a Testo low velocity anemometer with

an error (δve) of ±0.03ms−1. Fluctuations occur at the same point within a certain range

depending on the type of flow measured. In the case of fluctuations within the room

space, differences of up to 5% either side of the mean were recorded 1. Temperature was

measured via a Testo temperature sensor at the same time as the velocity magnitudes.

Error treatment is in accordance to that set out by Taylor [235] such that two categories

exist:

• Uncertainty of flow magnitude (δve)

• Uncertainty due to fluctuations (δvf )

Taylor’s description of error is via a metric given here:

δvs =
√

(δve)2 + (δvf )2

Hence in the case of the anemometer used and the rooms measured, the error δvs is√
(0.05x̄)2 + 0.032 ms−1. Where x̄ represents the mean.

Accuracy of the positioning of the magnitude sensors can only be determined realistically

to the nearest 1cm. The proximity to the nearest surface was restricted by the protector

casing attached to the anemometer itself. Hence in the case of diffuser louvresm fluctua-

tions caused by high turbulence would be reduced due to entrainment of the jet further

away from the source. Despite the best efforts to capture data, misalignments and config-

urations of the ventilation duct-work may compound certain errors. In order to consider

this type of asymmetry, careful thought was given when choosing how to represent the

boundary conditions in CFD.

4.2.6 Boundary Conditions

A velocity profile shown in Figure 4.18b was defined at the supply air diffuser based on the

box method described in Section 4.2.4.3. This was due to the complexity of the diffusers

involved and secondly the substantially high Reynolds’ number (' 1.6×105) flow involved.
1the standard deviation will be used (σ2) in handling errorbars within plots
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A series of sixty six airspeed measurements using an hot wire anemometer (Testo Ltd, Ger-

many. Accuracy: ±0.03 m/s +5% of mean, resolution: 0.01 m/s), was used throughout.

Measurements at equally spaced intervals as per Figure 4.16), were taken across the inlet

surface to create a lattice of air speeds (Figure 4.18b). Flow speeds exiting the diffusers

were captured at a 4cm distance from the inlet surface. Closer measurement was not pos-

sible due to the protective casing surrounding the wire filament. The averaging time at

each point was 5 minutes and the sampling frequency for both temperature and velocity

magnitude was 1 Hz. The supply airflow rate and the temperature were monitored and

remained constant during the measurements and all subsequent experiments. Figure 4.18a

shows the velocity magnitude distribution across the centreline of the inlet diffuser. The

extract was modelled as a negative pressure outlet (-25Pa) on the boundary.
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(a). Velocity magnitude of centerline mea-
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(b). Contour plot of anemometry measure-
ments 4cm away from the diffuser surface

Figure 4.18: Anemometry measurements of inlet diffuser air velocity

An isothermal assumption was applied to the empty room simulation (scenario 1), while

a heat load of 35 W/m2 was applied to the DIN man in the hospital room scenarios

(scenarios 2-4). The Grashof/Reynolds’s ratio indicates convective secondary flows and

hence the energy equation was solved using the Boussinesq approximation in the latter

cases. A momentum source of 1 N s is applied to the DIN man to help stabilise the thermal

plume. Fluent’s standard air material ρ=1.225 kg/m, µ=1.84× 10−5 ns/m2 was used for

the continuous phase.
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4.2.7 Modelling Particle Deposition

Although CFD has been shown to well represent the bulk flow within indoor spaces,

modelling of particles has been the study of much contention. Although the tracking of a

log down a river can be done either by sitting on it (Lagrangian) or viewing it from the

bank (Eulerian), the actual mechanics of micron-sized particles makes these techniques

somewhat harder to implement correctly.

Lagrangian particle tracking with stochastic discrete random walk (DRW) was used to

represent the eddy interactions of the discrete phase. Bioaerosols were simulated as spher-

ical water droplets, 2.5µm in diameter and released from source points comparable to

the experimental study. Particle trajectories are calculated by a fifth order Runge-Kutta

method by considering the change in particle velocity upi due to drag force, inertia (ui−upi ),

gravity gi, lift force FLi and Brownian motion ni(t) thus:

d upi
d t

= 1
τ

CDReP
24 (ui − upi ) + gi + FLi + ni(t) (4.2.12)

Where τ is the particle relaxation time given by:

τ = Sd2Cc
18 ν (4.2.13)

Where, S is the particle-fluid density ratio, d the particle diameter, Cc is the Cunningham-

Stokes slip correction factor and ν the fluid kinematic viscosity.

Cc = 1 + 2λ
d

(1.257 + 0.4 exp(−1.1d
2λ )), λ = gas molecular mean free path.

Compared to the bulk-flow in the chamber, particle contribution to density was considered

sufficiently low and therefore only one-way turbulence interaction was employed.

4.2.7.1 Discrete random walk: DRW

Laminar flow allows for reasonable deposition accuracy as it is predicted in a deterministic

manner, especially in the case where the fluid is in steady state equilibrium. However

in the case where diffusional deposition is predominant, which in the context of indoor

air flows is a reasonable assumption, particles require a sort of final push to become
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deposited [236]. The eddy interaction model by Gosman and Ioannides [67] is a discrete

random walk treatment This was shown to be the turbulent fluctuating velocity u′ which

is the instantaneous fluctuating fluid velocity along the particle path line.

u′ =G
√
u′2 = G

√
2k
3 (4.2.14)

Where G is Gaussian white noise generated by a random number between (0,1] and con-

stant during one eddy interaction. K is the kinetic energy. This also shows that turbulent

kinetic energy is isotropic i.e.
√
u′2 =

√
v′2 =

√
w′2 =

√
2k/3. Figure 4.19 shows the com-

parison of particles modelled with and without applying the DRW. Deposition percentages

(with= 68% and without=12%) compared similarly to Wong et al. [92] and Hathway [46].

In the case without using DRW, particles do not deposit readily which is unphysical, some-

what akin to a light aircraft gliding over a runway at 4 miles an hour on a blisteringly hot

day, unable to land.

(a). Without DRW (b). With DRW

Figure 4.19: Particle tracking within a room showing the effects of modelling the
dispersion with and without DRW
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4.2.8 Mesh Generation

Grid choice is important and often geometry dependent. Structured grids of cells with

equal sizes are often computationally the most inexpensive due to their cartesian lay-

out. However, geometry often dictates the need for unstructured cells which closely fit

the underlying contours [228]. To mesh a ventilation duct 5m ×1m × 1m three possi-

bilities are available: hexahedral (Figure 4.20a), tetrahedral (Figure 4.20b) or polyhedral

(Figure 4.20c) dominant meshes.

(a). Hexahedral
mesh= 5,000 cells

(b). Tetrahedral
mesh= 35,934 cells

(c). Polyhedral
mesh= 7,295 cells

Figure 4.20: Hexahedral meshing within the single room

The application of unstructured cells has the distinct advantage of being able to cope with

sudden geometrical changes [228] such as edges and gaps. Meshing this volume with a con-

stant cell size of 0.1m×0.1m×0.1 requires 5,000 hexahedral cells, 35,934 tetrahedral cells

and 7,295 polyhedral cells respectively. For memory allocation alone the hexahedral mesh

is most advantageous. Overall crass conclusions about meshing domains are summarised

below:

• Solutions on hexahedral meshes develop quickest using the least memory for the

given problem

• Hexahedral cells can be aligned to the flow and hence reduce accumulation of errors

or numerical diffusion

• Polyhedral cells reduce the cell-node count by amalgamating contiguous tetrahedra

so approximating hexahedral cell counts, but are still marginally higher

• Tetrahedral cell counts are substantially larger and therefore more memory inten-

sive and solutions are slowest to converge



Chapter 4. Bioaerosol deposition: Experimental and CFD comparison 128

• Numerical diffusion is heavily dominant in tetrahedral meshes due to the compar-

atively high number of cell nodes compared to the other mesh types [223].

The geometry of the rooms in scenarios 1-4 are dominated by varying sizes of shapes

therefore unstructured meshing is required. Additionally, given the cuboidal natures of

the bed, table chair, DIN man etc, hexahedral meshing is chosen. This also reduces the

number of cells used in comparison to all other choices. Meshing is fully hexahedral with

a maximum cell volume of 1.5625× 10−5 m−3 within the bulk domain Figure 4.21

Figure 4.21: Hexahedral meshing within the single room

4.2.8.1 Mesh refinement

Careful and high quality boundary meshing is essential to accurately capture particle

deposition velocity [67]. Cells 1 × 10−6 m−3, 10cm away from all horizontal surfaces are

used throughout. An example of this can be seen in Figure 4.22, corresponding to scenario

1. This type of refinement is called hanging-node.

Reducing the cell size any further at the boundary would cause y+ values to drop below

1 under these conditions causing the standard boundary layer resolution techniques to

become unreliable. Hence no further mesh size reduction should be carried out. Final cell

count is in the region of 4 million volumes.
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Figure 4.22: Hexahedral mesh refinement from bulk flow area to boundary wall
highlighting the cell size reductions in red

4.2.9 Preliminary Mesh-Independence

Grid density and construction have been shown to influence flow results heavily [172,

231, 237]. A misnomer is that it is worth continuously refining the computational mesh

ad-infinitum whereby gaining increased accuracy of the solution. Nielsen highlights that

although this may be true for “a millisecond over a postage stamp”, a rule of thumb

suggests that if by halving the grid sizing produces less than a 5% difference in solution

then stop and use the coarser grid [172].

Roache [237] proposes an error metric which compares the ratio between solutions of coarse

and fine grid solutions:

ε =

√∑100
i |ucoarse − ufine/ufine|

100 (4.2.15)

where ufine ucoarse are velocity magnitudes at the same point on the fine and coarse grids

respectively, for a hundred points. Thus, ε is simply a measure of the difference in solution

variables and how that relates to the coarse or fine grid solution. Roache [237] proposes

that this ratio is not sufficiently descriptive of the variables present in CFD simulations.

In fact a more rigorous approach is to consider the formal order of accuracy, p, and the

grid refinement ratio, r, namely:

r =hc
hf

(4.2.16)
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(a). Position 1 (b). Position 2

Figure 4.23: Anemometry comparison against three hexahedral mesh sizes for the
empty chamber (Scenario 1). Errorbars represent one standard deviation either
side of the mean.

where hf and hc are the fine and coarse grid element edge lengths respectively. Thus a

more appropriate measure of the discretisation error, (based on Richardson Extrapolation)

is given by:

E = ε

rp − 1 (4.2.17)

where p represents the truncation error order of the discretisation scheme used in both

simulations. For example a p value of 1 would represent the 1st order accuracy of Euler’s

Forward Upwinding Scheme, or p=2 for a 2nd order scheme.

Therefore a three-mesh solution independence study was first undertaken in the empty

room. All meshes contained structured hexahedral elements with 8× 10−6 m, 1.5625× 10−5 m

and 1.25× 10−4 m cell volumes respectively. Figure 4.23 shows the visual comparison of

the results at two positions within the empty chamber against experimental measurements.

Computational restrictions on memory meant that meshes of 1×10−6 cm and below across

the whole volume could not be visualised as the cell count reached over 32 million. This

would also impose a restriction on the y+ value. Therefore a compromise was reached

where 0.1m from relevant surfaces, cell volumes were 8× 10−5 m and in the remaining

volume, 1.5625× 10−5 m3.
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4.2.9.1 Particle-mesh independence

Roache [237] suggests that often velocity grid independence may be reached prematurely

with respect to particle tracking, since large disparity must exist between cell size and

particle diameter. Therefore, particle tracking length scale was increased to reflect at least

five calculations per cell. Particle count independence was achieved at particle numbers

above 50,000 and little significant improvement was gained thereafter. Figure 4.24 shows

the convergence on particle deposition percentages plotted against particle injection count.

Mesh independence based on particle deposition distribution was also achieved at this

particle count.
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Figure 4.24: Particle deposition percentage on all surfaces within Scenario 1: The
empty room

4.2.9.2 Convergence criteria

Simulations were considered converged when Fluent’s residuals for continuity and all other

variables dropped below 1× 10−4, and remained below this for at least 100 iterations. All

variables are scaled with respect to the sum of the errors in all cells. In addition continuity

is scaled with respect to the largest absolute value within the first five iterations and so

can be considered normalised [223].
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4.3 Results and Discussion

The (0,0,0) origin in all simulations can be found at the bottom corner facing the inlet

diffuser.

4.3.1 Scenario 1: Empty Room

The first scenario represents a controlled condition to ensure that experimental scenarios

are directly comparable to idealised numerical scenarios. Due to the physical dimensions

of the anemometer’s protective cage there were some restrictions to the distance from the

wall at which the flow could be measured.

4.3.1.1 Airflow patterns

Figure 4.25a shows the representative velocity vectors plotted on the vertical plane per-

pendicular to the inlet diffuser. The inlet jet clearly forces its way into the room where

slower moving air prevents quick turbulent diffusion of the eddies. Both lower left and

upper right quadrants depict recirculation zones, but no visible Coanda effect is present.

Figure 4.25b shows vectors plotted on the horizontal plane, with the highspeed jet im-

pinging on the opposite wall. This creates a large recirculation zone in the upper-left

quadrant

Simulated velocity magnitudes at five vertical locations are presented in Figure 4.26 and

compared against experimental data from anemometry readings at four points at each

location. These measurements were recorded during a prolonged period of steady airflow

and in each case show the mean and standard deviation over a 20 minute measurement

period. Despite some variability in the measured data, both the k-ε RNG and RSM tur-

bulence model simulations capture the main features of the flow well. The data clearly

indicates the spatial variability in the chamber airflow. In the breathing zone (y=1.6m),

the velocity profiles at poles 1 and 2 are generally higher due to the impinging jet from

the inlet diffuser, while there appears to be recirculation in the region of pole-4, charac-

terised by low velocities. These results also concur with smoke tracer tests conducted by

Hathway [46] and appropriate mesh density and boundary conditions have been chosen

confidently.
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(a). Vertical plane, x=0.8m

(b). Horizontal plane, y=1.2m

Figure 4.25: Velocity vectors 0.001-0.07(m/s) plotted on planes within the empty
room

It is clear that CFD is capable of representing the bulk flow field within the chamber

to a high degree. Indoor air patterns are inherently variable but the CFD models using
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(a). Measurement positions (b). Anemometry at position 1

(c). Anemometry at position 2 (d). Anemometry at position 3

(e). Anemometry at position 4 (f). Anemometry at position 5

Figure 4.26: Anemometry comparison against k-ε RNG and RSM turbulence
models for the empty chamber (Scenario 1). Errorbars represent one standard
deviation either side of the mean.
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both RSM and k-ε RNG turbulence models predict reasonable characterisations. Nev-

ertheless the anisotropic turbulence model generally provides an improvement over the

eddy viscosity assumption model, particularly in the regions of higher shear and velocity

gradients.
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4.3.1.2 Bioaerosol deposition

(a). Petri dish distibution in the
empty room: Scenario 1.

(b). Particle tracks in the empty
chamber coloured by residence
time

0 100 200 300 400 500 600

Time s

Figure 4.27: Representative images from scenario 1.

Figure 4.27a indicates the positions of Petri dishes within the empty room. Nine central

and the remaining sixteen periphery points are shown pictorially here. Normalised exper-

imental deposition Ci values (from Equation (4.1.1) on page 111) are presented together

with numerical predictions from the RSM and k-ε RNG turbulence models at all floor col-

lection points within the empty room in Figure 4.28. Figure 4.27b shows a representative

number of particles tracked throughout the domain for 10 minutes.

As explained in Section 4.1.5 comparison is made between numerical and experimental

data sets by means of the correlation coefficient (r) obtained from linear regression. Ideal

fit would be a direct 1:1 relationship between the data (i.e. a line y = x), showing that

either higher or lower experimental values were also captured in the numerical counterpart.

To investigate the statistical significance of the relationship between them, a Wilcoxon-

Ranksum test was performed between the two data sets. Briefly recapping, this ranks the

data in each set, thus preserving spatial differences but remaining unbiased to underlying

extrema if any exist. The null-hypothesis tested is whether the population median ranks

differ (i.e. it is a paired difference test such that H0: median difference between the pairs is
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Figure 4.28: Comparison between experimental data and numerical deposition
predicted by the two turbulence models. Errorbars represent one standard devi-
ation either side of the mean.

zero and H1: median difference is not zero). This is the non-parametric alternative to the

paired Student’s t-test, t-test for matched pairs, or the t-test for dependent samples when

the population cannot be assumed to be normally distributed. Assumptions for this test

require that the data be paired, be measured on an ordinal scale, need not be normal but

the differences should be symmetric about the median. These experiments and simulations

comply with all of the above. In addition each pair should ideally be randomly chosen and

independent. By the nature of the experiment this assumption must be relaxed somewhat

as the entire population must be tested, hence these cannot be truly random even if they

are independent. Based on these assumptions if data sets do not differ significantly at

the 5% level, the null-hypothesis cannot be rejected. This value is displayed subsequently

alongside the correlation coefficient as the accompanying p-value.

Scatter plots comparing the numerical results with experimental averages at all 25 points

are presented for both turbulence models in Figure 4.29. Table 4.3 presents linear corre-

lation coefficients for all data points and then the central and perimeter points separately.

The measured deposition in the nine zones directly below the source is fairly uniform with

normalised reported values between 0.82 and 1.62. Relatively little variance was found

here. Accompanying p-values do not reject the null-hypothesis of 0 median differences

between ranks.
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Figure 4.29: Scatter plots showing correlation between experimental data and
numerical deposition predicted by the two turbulence models

Figure 4.28 shows a comparison between the experimental (Ci) and the numerical pre-

diction, depicting the spatial deposition. Comparison with the simulation results shows

the RSM model more accurately corresponds to experimental data (r=0.93), however k-ε

RNG does not perform poorly (r=0.63) in this region. Zones around the perimeter of

the room showed more sizable scatter (not pictured) with normalised deposition down to

0.69 and compared less well with the CFD models, with correlation coefficients of r=0.27

and r=0.86 for the RSM and k-ε RNG, respectively. The k-ε model simulation tends to

predict a more uniform spatial deposition, with higher Ci around the mean (Figure 4.29a).
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Location Correlation, p-value Correlation, p-value

k-ε RNG RSM

Overall r=0.60, p=0.72 r=0.92, p=0.59

Central r=0.63, p=0.29 r=0.95, p=0.92

Perimeter r=0.27, p=0.61 r=0.86, p=0.46

Table 4.3: Correlation between CFD and experimental results for both turbu-
lence models. The p-value corresponds to the Wilcoxon-Ranksum test comparing
median differences between ranks.

However, the calculations of anisotropic Reynolds stresses under the RSM model produces

a tighter relationship (Figure 4.29b) and hence makes an improved comparison (r=0.95).

Both models tend to over-predict low deposition and under-predict high deposition, but

this is found to a greater extent with the k-ε model. This is indicated in the lines of best

fit and also in both data sets displaying a weak right skew. Overall the p-values associated

the Wilcoxon-Ranksum test suggest that the null-hypothesis cannot be rejected at the 5%

level, showing there is no significant difference evident in the test for either turbulence

model which again is in line with the conclusion that both turbulence models appear to

predict well. Moreover the correlation coefficients in all cases show that the RSM model

outperforms the k-ε.

Experience from the current study shows that a minimum of five settle plates are needed

at each collection point to achieve statistically reliable and replicable results. Bioaerosol

deposition comparisons tended to be well predicted by both turbulence models in the cen-

tral regions, but accuracy deteriorated towards the outer edges of the room, particularly

in the case of k-ε RNG. The prevalence of homogeneity in turbulence appears to trans-

late to particle depositions, particularly for size ranges where body forces dominate [202].

The Reynolds’ Stress turbulence model allowed anisotropic flow patterns to be adequately

captured, leading to a very strong comparison between spatial depositions. In addition

only minor variations were observed in the CFD prediction, given particle number inde-

pendence, which is reflected in the high r value of the linear polynomial fit. Lai et al. [217]

suggest that the inclusion of the effect of turbophoresis may enhance particle deposition,

particularly where the vertical turbulence gradient is high close to the wall.
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Overall the results suggest slightly higher deposition close to the source (sample points

12-14), possibly due to the largest particles dropping out of the air before evaporating.

However deposition is apparent across the room indicating the combined influence of air

movement and gravitational settling on the small diameter particles.
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4.3.2 Scenario 2: Single Patient Room

The second scenario considered adds both complexity and realism by including key items

of furniture plus a DIN-man to take into account the heat plume generated by a quiescent,

resting patient in a hospital single-bed room.

4.3.2.1 Airflow patterns

Figure 4.30 shows simulated temperature contours and velocity vectors for the single

patient room, plotted on horizontal and vertical surface through the bed. Complex flow

structures can be observed, with the cold inlet air impinging on the opposite wall and

multiple recirculation zones at the foot of the bed. A vertical heat plume emanates from

the supine mannequin and is depicted in the vertical plane.

These depict three main different flow features within the chamber, all of which are typical

of indoor air patterns:

A convective plume appears due to density differences created by the heat flux gener-

ated by the DIN man and mainly appears above the head area.

Recirculation zone(s) in the upper left quadrant vortices can be seen rotating in oppo-

site directions as shown in Figure 4.30b. These occur as a result from the convective

plume mentioned earlier rolling off the end of the bed and mixing with the colder

air from the ventilation inlet.

An impinging jet feature is visible and grows as colder, faster moving air is vented

into the room, falling due to density and hitting the opposite wall. This is often a

common feature with slot diffuser grilles when density differences occur.

As such, short circuiting is suspected due to the impinging jet effect. Since the air change

rate chosen is approximate of a real hospital scenario it is reasonable to believe that this

may occur in a room of similar dimensions and make-up.
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(a). Temperature contours and superimposed velocity vectors on vertical
(x=2.5m) and horizontal (y=1.2m) planes

(b). Velocity vectors plotted on vertical plane only.

18 22 26 30 34 38 42 45

Temperature ◦ C

Figure 4.30: Velocity vectors (0.001-0.07m/s) superimposed onto temperature
contours in single room.
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4.3.2.2 Bioaerosol deposition

Normalised experimental deposition on the four horizontal furniture surfaces is compared

to simulation results with two turbulence models in Figure 4.31. While Figure 4.30 shows

the flow in this situation is less homogeneous than the empty room, the experimentally

measured deposition still remains relatively uniform with mean normalised values between

0.64 and 1.16 on the four surfaces. Although the bioaerosol source was located at the

patient head, deposition on the bed is lower than other surfaces which may be due to

the convective plumes above the DIN-man promoting transport away from the source.

The highest measured deposition is on the surface representing a sink, despite this being

the furthest location from the source. While both turbulence models predict the same

spatial trends as the experiments, the k-ε model has a greater tendency to over- or under-

predict in this case, with only one of the four locations showing a good comparison with

the experimental result. However the RSM model shows very good comparison with the

experimental results, with similar magnitude deposition as well as spatial distribution with

a small but consistent tendency to over-predict.
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Figure 4.31: Comparison between numerical and experimental deposition on fur-
niture surfaces in the single patient room. Errorbars show one standard deviation
either side of the mean.

A stronger heterogeneity was observed here in comparison to the empty chamber, mainly

due to the modified flow gradients, e.g. Figure 4.30a, imposed by furniture and the

convective heat plume. Due most probably to the latter, the patient’s bed showed lower

deposition quantities in comparison to neighbouring surfaces. While this gives some insight

into the potential influence of the thermal plume in transporting bioaerosol particles away
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from the source, the results must be interpreted with caution. In reality the patient may

not be permanently facing upwards and would likely move during their sleep. Additionally,

bed clothes are usually present on hospital beds, producing a larger surface area on which

particles may be trapped. While the assumption of a quasi-steady state simulation and

experimental set-up is considered suitable for evaluating the constant release of pathogens

from a breathing patient, this is unlikely to be appropriate for situations where doctors

and nurses are disturbing the airflow patterns by opening doors or shaking bed clothes,

creating inherently transient airflow patterns. Despite the simplifications, it is worth

noting that, as in the empty room scenario, the experiments and simulations both show

measurable deposition across the room space clearly indicating the ability for a bioaerosol

source to result in environmental contamination at some distance from the source.

In terms of numerical comparison, the k-ε turbulence model simulation at best predicts

normalised particle deposition values within one standard deviation of experimental find-

ings. In particular both the bed side table and the chair have almost zero predicted

deposition values. RSM on the other hand appears to slightly over-predict deposition in

all cases, but remains within one standard deviation of the experimental results. The lat-

ter is supported by previous numerical conclusions of particle depositions in pipes [238].

While comparison for both turbulence models shows a lower agreement than the empty

room scenario, this is not unexpected. The addition of a significant heat source and furni-

ture adds complexity and hence uncertainty to the CFD model. It is necessary to simplify

the geometries of furniture and the DIN man in the model, which will have some effect on

the solution accuracy.



Chapter 4. Bioaerosol deposition: Experimental and CFD comparison 145

4.3.3 Scenarios 3 and 4: Double Patient Room

The double-bed room experimental setup was designed to test two main scenarios: The

influence of a partition and influence of the airflow on deposition patterns. The influence

of the airflow is considered by switching the location of the infectious source from patient

1 to patient 2. Comparison between scenario 3 and 4 therefore allows for observation of

the effect of a partial partition and also the extent to which the fresh supply air above

patient 1 influences deposition in that and the neighbouring bed bay. In scenario 4, where

a partial partition is required, a plastic sheet was hung between the patients such that

it provided a physical barrier between beds. Gaps of 20cm were left at the top and the

bottom of the sheet as well as 80cm at the end of the beds to allow for health care worker

passage.

In experiments investigating scenarios 3 and 4 bioaerosol deposition was measured through

9 Petri dishes located on surfaces representing the chair, sink and bedside table for each

patient respectively. Due to the large area of the bed, this was covered by 15 dishes over

3 zones to avoid the effect of spatial variation.

The results from the final stage of this study give some insight into the potential for

cross-transmission of infection between patients due to deposition of pathogenic aerosol

particles on key surfaces. As with the two previous scenarios, both experiments and

simulations demonstrated that a bioaerosol release in both an open (scenario 3 ) and

partitioned (scenario 4 ) room can result in measurable surface contamination across the

whole of the room space. Of particular interest was the effect of both the location of

the infectious source with respect to the inlet diffuser and the level of protection that a

partition provides in terms of surface deposition in the neighbouring cubicle. When the

source patient is located directly under the inlet vent (cubicle 1) the partition proved

effective at limiting the deposition in the neighbouring cubicle (Figure 4.37a). However

the partition’s influence appears to be quite sensitive to reversing the source location (see

Figure 4.37b). In the latter case particle deposition proved more homogeneous and hence

the partition played a secondary role to the effect of ventilation inlet position.

As noted during the CFD and anemometry measurements, cubicle 2 provides areas of very

slow moving air and consequently probable recirculation pockets. Therefore these allow

particles to be dispersed towards cubicle 1 as well as being extracted. As a corollary,
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positioning the susceptible patient upwind of the infectious source (in our case in cubicle

1) also results in a significant reduction in risk. The effectiveness of the partition is

also likely related to its particular deployment in the form of a curtain with gaps above

and below. However during a common diurnal hospital scene most curtains are usually

only half drawn or fully retracted. In addition to this, and mainly to aid in cleaning,

they often hang approximately 20cm from the ground and a similar distance from the

ceiling. Consequently this space poses a gap for potential passage of pathogens, increasing

cross-transfer susceptibility. Previous numerical simulations have shown that full height

partitions may reduce airborne transmission risk [41] and that curtaining the length of

patient beds are more effective than partially extended ones at preventing infection [239].

Physical barriers clearly point to effective intervention measures however further evaluation

is needed to explore the most appropriate design and the limitations of such an approach.

CFD comparison concurred with the findings from the two previous scenarios. The further

increase in complexity in the two-bed case again led to further variation in the CFD solu-

tions. As previously shown, the RSM model generally led to better predicted deposition

than the k-ε RNG model, although both models produced realistic deposition patterns.

Simulations suggested that particles released from patient 2 were drawn towards the inlet

jet, probably due to the regions of low pressure created by the faster moving air. This

effect dominated the simulations where a partial partition was absent and to a lesser effect

when one was present.

4.3.3.1 Airflow patterns

Firstly CFD airflow visualisation results are shown depicting the double room set-up

with and without a partition. Subsequently, experimental colony forming unit values

are compared with predicted results from the same CFD simulations with the use of the

Lagrangian tracking formulation.

Figure 4.32 shows simulated temperatures for scenarios 3 and 4. In the case with no

partition the temperature distribution indicates a tendency for air movement from patient

1 to patient 2 on the way to the outlet, aided by a convective plume. The partition,

however creates a physical barrier whereby streamlining the flow towards the extract

(Figure 4.33). The most striking feature is the influence which the partition has in altering
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(a). Zonal plane; constant x=1m (b). Meridional plane; constant y=1m

(c). Mixing plane at z=1m (d). Both patient meridional planes
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Figure 4.32: Velocity contours (0.001-0.07m/s) superimposed onto temperature
contours. No intervention scenarios 3a 3b.

the temperature distribution at breathing level (Figure 4.32). In the absence of a physical

partition, hot and cold air is able to mix freely, increasing the average temperature in both

zones (Figure 4.33b). Installation of a curtain blocks off hot and cold air by streamlining

the airflow pattern from inlet to outlet. The temperature contours in patient 2 ’s cubicle

also appear to reduce as a possible corollary.
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(a). Meridional plane; constant y=1m (b). Mixing plane at z=1m

(c). Patient 2 zonal plane
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Figure 4.33: Velocity contours (0.001-0.07m/s) superimposed onto temperature
contours. Partial partition scenarios 4a and 4b
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4.3.4 The Effect of a Curtain Partition

Figure 4.34 depicts the normalised experimental deposition results at each patient surface

group for scenarios 3 and 4 based on the source of bioaerosols. Scenarios 4a and 4b

investigated the effect of a partial partition. A plastic sheet was hung between the patients

(as explained in Section 4.3.3) such that it provided a physical barrier between beds. Gaps

were left at the top and the bottom as well as at the end of the beds to allow for HCW

and equipment movement (see Figure 4.3b).

When patient 1, lying directly beneath the supply air vent is made to be the infectious

source (Figure 4.34a) the partition has a negligible effect on the deposition onto the in-

fectious patient surface group (table 1, bed 1 and chair 1). However, the partition does

influence the deposition on the surface group for patient two. In the absence of a partition,

bed 2 becomes the main destination surface for particles released at patient 1, surpassing

that of the own infectious patient. A significant decrease is apparent at this point and

other surfaces around patient 2 when the curtain is installed, although the deposition is

still a similar magnitude to that around patient 1. It is also noticeable that in both cases

with patient 1 as the source, there is greater spatial variation in the deposition pattern

than for any other scenarios under scrutiny.
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Figure 4.34: Influence of curtain and source location on experimentally measured
deposition. Errorbars represent one standard deviation either side of the mean.

Figure 4.34b reverses the source position, where now the infectious point becomes patient

2. Statistically there appears to be no significant difference between the distributions,

where the null hypothesis of equal medians cannot be rejected at the 5% level. However

a tendency of higher deposition on bed and chair 2, which are closer to the partition, can

be observed. This could be in part explained by the thermal plume from the patient 2
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tending to drift towards the partition and hence towards chair 2 (see Figure 4.33). In

contrast patient 1 ’s thermal plume is quickly dispersed and overwhelmed by the incoming

faster, cooler air.
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4.3.4.1 Bioaerosol deposition

Figure 4.35 shows the particle tracking of 1,000 bioaerosols released from the infectious

source within sub-scenarios 3 and 4. Particles are coloured by residence time, with a

maximum turnover of 10 minutes. Most particles are extracted by the ventilation during

this period, but others become attached to surfaces, while a small fraction remain trapped

within the domain. Within Figure 4.35a and Figure 4.35b no partition exists and particles

can be seen to readily spread between patients. In particular, when patient 1 is infectious

a large percentage of particles can be seen to be entrained by the inlet jet above patient

2. This phenomenon is not reversed, with the majority of patient 2’s bioaersols being

evacuated directly, bypassing patient 1. Figure 4.35c and Figure 4.35d show the scenario

4 with a partial partition between patients and highlights qualitatively the effectiveness

of this simple measure.

Comparison of the experimental deposition patterns with CFD simulations are presented in

Figure 4.36 for scenarios 3 and 4 with both patients alternating as the source. In all cases,

both models give a reasonable prediction with only a small number of locations, notably

the values at bed 2 in Figure 4.36a and table 1 in Figure 4.36b, where the CFD simulations

compare poorly with the experimental results. There is noticeably more variation in these

scenarios, with less clear differentiation between the results produced by the two turbulence

models. Generally the predictions are closer to the experimental data nearer to the source

with the RSM model giving slightly better results. This is also evident in the correlation

coefficients presented in Table 4.4.

To further explore the influence of the partition (Figure 4.37) univariate linear regression

was carried out between the data sets, where the only dependent variable was the nor-

malised deposition count. In the case where patient 1 is the source (Figure 4.37a yields:

No partition CFU=-2.016*Partitioned CFU+3.8) a two-fold reduction in pathogen de-

position per surface can be predicted (r=0.32, p=0.0254). The p-value is calculated for

Spearman’s rho, testing the hypothesis of no correlation against the alternative that there

is a nonzero correlation. Since the null-hypothesis cannot be rejected at the 5% level, a

significant underlying correlation is present. Reduction in the second case (Figure 4.37b

yields: No partition CFU=-0.235*Partitioned CFU+1.63), when the pathogen source is

situated directly opposite the extract vent, is however negligible.
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(a). No partition infectious source= Pa-
tient 1

(b). No partition infectious source= Pa-
tient 2

(c). Partition infectious source= Patient 1 (d). Partition infectious source= Patient 2
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Figure 4.35: Particle tracking for scenarios 3a,b,4a and b. Coloured by residence
time (s).
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(a). Scenario 3: Infectious patient=1, Susceptible patient=2

(b). Scenario 3: Infectious patient=2, Susceptible patient=1

(c). Scenario 4: Infectious patient=1, Susceptible patient=2

(d). Scenario 4: Infectious patient=2, Susceptible patient=1

Figure 4.36: Influence of curtain and source location on experimentally measured
deposition compared to numerical results. Errorbars show one standard deviation
either side of the mean.
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Figure 4.37: Comparison between scenarios 3 and 4. Spatial comparison of particle
deposition with and without a permanent partial partition

Scenario 3 Scenario 4
Infectious patient 1 2 1 2

k-ε RNG model p-value 0.46 0.67 0.13 0.81
correlation coefficient (r) 0.23 0.2 0.35 0.94

RSM model p-value 0.48 0.7 0.93 0.59
correlation coefficient (r) 0.8 0.2 0.55 0.43

Table 4.4: Statistical analysis of correlation between experimental deposition and
CFD for scenarios 3 and 4. p-values do not reject null-hypothesis of 0 median
differences between ranks.
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4.4 Conclusions

Although limitations are often acknowledged regarding the accuracy of predicting indoor

particle deposition models, the paucity of literature regarding large scale validation, par-

ticularly for bioaerosol dispersion is clear. This study addresses this issue by providing a

direct room-scale comparison between CFD simulations and experimental bioaerosol de-

position under idealised and realistic single- and two-bed room scenarios. The results have

demonstrated the following:

• Small diameter (<5 µm) bioaerosols are likely to be deposited across a space, re-

gardless of the layout of the room with surface concentration not related to distance

from the source. This suggests that such small pathogen carrying particles may play

a role in the environmental contamination of hospital rooms and hence the risk of

indirect contact transmission. Hospital studies have shown that bed side tables are

both high contact nodes for health care workers [35] and are also proven to exhibit

contact transmission probabilities of at least 1 in 5 [19].

• Deposition onto such surfaces may therefore be important in some situations and

may have implications for nursing practices or frequency of cleaning procedures.

• A good comparison is possible between the spatial deposition patterns predicted

through CFD simulation and experimentation. Comparison is improved by using

an RSM turbulence model which correctly resolves the anisotropic nature of the

flow compared to the k-ε turbulence model that is applied in the majority of indoor

air studies. It is recommended that when CFD is applied as a design tool, careful

consideration should be given to which turbulence model is used particularly where

particle deposition is considered.

• The spatial deposition of particles is influenced by the layout of the room and the

location of the ventilation supply inlet. Locating a susceptible patient closer to the

supply air and introducing a partition between beds are both likely to reduce the

risk of environmental contamination due to bioaerosol release from a neighbouring

patient. This finding concurs with tracer gas and simulation based studies evaluating

airborne infection risk [41, 99]. An added effect of the partition is the separation
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of cool and warm air, reducing horizontal mixing and therefore reducing the overall

temperature of the room.

4.4.1 Implications of Results

Across all scenarios it is noted that both experiments and simulations predict measurable

deposition across the room space. While spatial variation depends on layout, the results

suggest there is clear potential for small diameter (∼2.5 µm) particles to play a role in

transmission of infection through indirect contact routes. This is an important consid-

eration; such particles are routinely regarded as airborne and hence controlled through

ventilation rather than cleaning. Moreover, these small particles are usually only con-

sidered of concern where the pathogen is classed as possibly capable of direct airborne

transmission, for example tuberculosis, measles or influenza. The deposition of culturable

bioaerosols in this study adds support to the hypothesis that airborne dispersion may play

a role in non-respiratory infections such as MRSA and C. difficile [59, 240], with surface

contamination and subsequent contact by susceptible people resulting in transmission.

The study conducted here demonstrates the potential for CFD simulations to accurately

predict the relative spatial distribution of bioaerosol deposition, but it has not been possi-

ble to confirm whether simulations can predict the actual level of contamination based on

a particular amount released into the space. The reason for this lies in the limitations of

the experimental methods. To relate the deposition to the bioaerosol concentration in the

air requires taking air samples. While this is straightforward [202], it is well documented

that sampler efficiencies are far from 100%, with some estimated to sample well below 50%

of the viable concentration in the air [238]. The settle plate approach used to measure de-

position is unlikely to experience microbial losses due to physical damage from impaction

that is present in an air sampler, but may still underestimate total counts as it is based

on colony formation after incubation. As the surface deposition and air samples must be

measured using different techniques, neither of which has a well characterised sampling

efficiency, it is not feasible to quantitatively relate the results from the two approaches. It

is for this reason that biological air sampling was not conducted in this study.
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The CFD solutions may benefit in future from the use of a low-Reynolds’ turbulence model

instead of the logarithmic law utilised with both turbulence models tested. Given the ex-

clusion of the effect of turbophoresis, the DRW model provides extra impetus to deposition

velocities. In some cases this may be unphysically large, which probably accounts for some

of the over-deposition observed. However computational costs would still be unreasonable

due to the level of grid resolution required.

The Reynolds’ Stress model used in this study requires greater care during pre-processing

and initially defining the geometry and mesh than the empirically based k-ε RNG model.

It was found that small fascia such as a patient’s mouth proved a source of instability

when utilising the second order spatial discretisation scheme and hence these should be

replaced by appropriate energy and momentum sources. Implications for convergence

and computational resources are also considerable however substantially lower than those

required for a transient LES simulation. Ultimately a physically realistic solution can

nevertheless be obtained.
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Conservative estimates by Harbarth et al. [40] show that potentially 20% of HCAI con-

tracted through contact transmission may be preventable. Chapters 3 and 4 highlight

the importance played by environmental surface contamination in this process. However,

there is currently little robust understanding as to how HCW activities in the health care

environment result in patient exposure to such pathogens. This chapter is an exposé on

obtaining real data on hand-to-surface contact frequencies in a community hospital during

different health care activities. This data is used in Chapter 6 to show how behaviour can

be modelled realistically in different environments by probabilistic methods.
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5.1 Background

“Human behaviour has been established as playing a vital and largely unpre-

dictable link in the infection transmission chain.” Hayden et al. [19]

Health care settings are known to be reservoirs for pathogenic material [48]. Patients and

staff are likely to supply most of this, but if allowed, environmental surfaces can harbour

them for prolonged periods [20, 48, 49, 50]. Therefore the process of decontamination

and sanitation has been the subject of much contention. ‘Mopping up hospital infection’

by Dancer [24] highlights the struggle to implement efficient cleaning procedures despite

their accepted importance in infection control. Particular difficulties are apparent when

terminal cleaning after a patient is discharged is incomplete as shown by over 50% of

rooms in a study by Bhalla et al. [51]. Pittet et al. describe in their 2006 [20] infection

dissemination review for the World Health Organisation the five vital conditions that are

necessary for successful indirect pathogen transmission:

1. Microorganisms must be present on either the patient’s skin or surrounding inani-

mate intermediary surface (fomites)

2. Transfer of pathogens must occur during contact between the inoculated surface and

the HCW’s hand

3. The transferred organisms must be able to remain viable during this process and for

some time after

4. The hygiene procedure following the patient contact must be inadequate at removing

all the pathogenic material

5. Lastly the HCW’s hands must re-transfer the microorganisms in a timely manner to

another surface or patient

While environmental contamination is recognised as a potential source of infection, there

is surprisingly little data to establish the relationship between surface contamination and

risk of transmission. Hayden et al. [13, 19] undertook an observational study to quantify

the effects of surface contacts by HCWs during patient care by testing surfaces touched

during a procedure for vancomycin resistant enterococci. Careful recordings were made of
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the order in which surfaces and patient skin were touched, meaning that a probabilistic

route of pathogen transmission could be established. Their technique to evaluate cross-

transmission risk relied on microbial swabbing of surfaces, which potentially could mask

occasions in which transmission may have occurred but was not recorded. In other words if

a surface was swabbed and a large proportion of microbial colonies removed then logically,

the probability of the transmission occurring may be altered. Nevertheless, microbial

transfer was established to occur in at least 10% of surface contacts. However this was

not restricted to patient-to-environment contact, but also vice-versa, thus highlighting

the potential for cross-infection. Importantly, patient and environmental surface contact

counts are reported; Figure 5.1 shows that on average 8.5 contacts were made while the

HCW was in the room, 5.1 of which were environmental (any surface but the patient).

However the environmental contacts are not separated into individual surfaces, and as

such this data cannot be used to identify relative risks for different surface contacts.

Figure 5.1: Venn diagram showing the distribution of average contact counts per
episode of care as observed by Hayden et al. [19].

5.1.1 Hand Hygiene

The hand hygiene guidelines elaborated by the CDC [3] and the WHO [39] both place hand

hygiene and compliance as the gold-standard in preventing infection transmission. Indeed,

there is still some scepticism over the full adoption of alcohol based antisepsis. Epidemics
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of gram positive spore forming bacteria such as Clostridium difficile have been linked to the

usage of alcohol-based hand rubs. However since no hand hygiene agents have been proven

reliably sporicidal [241] (eliminates spores), this may not be unfounded. Placing alcohol-

rub as the most effective weapon in the control arsenal has proven controversial given the

desire for a magic bullet solution. The WHO clearly states that 30 second hand washing

procedures with soap, are and remain, the most basic intervention measure. Allegranzi

and Pittet [241] highlight the factors influencing hand hygiene compliance amongst HCWs:

Primarily job status, under-staffing and the misguided belief that generic latex gloves and

gowns are impenetrable to pathogens appear to be the most influential factors. Religious

beliefs in some cases provide barriers to full hand hygiene compliance [241]. Transmission

of pathogens in non-surgical gloves is bi-directional meaning that microorganisms can

traverse the barrier both onto the hand from the patient and out onto the glove surface

from the HCW’s skin [242].

5.1.1.1 Guidelines

Hand hygiene or antisepsis guidelines are set out globally by the WHO [39] and reviewed

periodically; the latest guidelines were published in 2008. Within the UK, further guid-

ance to health-care professionals is given by the National Patient Safety Agency (NPSA),

and is based on Epic2 : National Evidence-Based Guidelines for Preventing Healthcare-

Associated Infections in NHS Hospitals in England [28] (henceforth: Epic2 ), commissioned

under the Department of Health. Every HCW is trained using the “5 Moments for hand

hygiene” approach as shown in Figure 5.2, which corresponds to the Table 5.2.

The Fulkerson scale [27] outlined in Table 5.1 outlines a fifteen point scale of clinical object-

s/procedures ranking them in order of dirtiness [sic]. The “5 Moments for hand hygiene”,

is broken down into three hygiene opportunities: Social, hygienic and surgical. The usage

of gloves is a separate agenda, which also includes personal protection equipment.
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Figure 5.2: 5 moments of hand hygiene in the NHS, reproduced with kind per-
mission from the WHO.

Rank Contact with

1 Sterile or autoclaved materials
2 Thoroughly cleaned or washed materials
3 Materials not necessarily cleaned but free from patient

contact
4 Objects contacted by patients either infrequently or not ex-

pected to be contaminated (e.g. Furniture)
5 Objects intimately associated with patients but not known

to be contaminated (e.g. Patient gowns, linens, dishes, bed-
side rail)

6 Patients but minimal and limited (e.g. Shaking hands and
taking pulses)

7 Objects in contact with patient secretions
8 Patient secretions or mouth, nose, genito-anal area
9 Material contaminated by patient urine
10 Patient urine
11 Material contaminated with faeces
12 Faeces
13 Materials contaminated with secretions or excretions from

infected sites
14 Secretions or excretions from infected sites
15 Infected patient sites (e.g. Wounds or tracheotomy)

Table 5.1: Fulkerson scale ranking hand hygiene [27].
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5.1.1.2 Types of hand hygiene opportunities

Epic2 categorises care types and procedures into categories of hand hygiene: Social, hy-

gienic and surgical. Differing antisepsis guidelines are prescribed for each one of these,

thus reducing the scope and margin of error for each hand hygiene opportunity.

Social hand washing is carried out before and after the following which corresponds

to (3-7 on the Fulkerson scale): Liquid soap (antimicrobial or otherwise) under

When Procedure type

Before the beginning of the shift
preparing, handling and eating food
donning gloves
any patient contact
clean/aseptic procedures
entering/leaving clinical areas
entering/leaving isolation cubicles
preparing/giving medications
using a computer keyboard in a clinical area

After the end of a shift
any patient contact
bed making
contact with patient surroundings
visiting the toilet
the removal of gloves
hands become visibly soiled
handling laundry/waste
using a computer keyboard in a clinical area
the administration of medications
blood and/or body fluid exposure risk

Table 5.2: Hand-washing opportunities from Epic2: 5 moments [28]

warm water for 30 seconds. Bar soap must be avoided. Drying should be with a

disposable paper towel and using a blow-drying in non-clinical areas due to aerosol

productions [28]. Alternatively an Alcohol gel may be used during social hand

hygiene but not under these circumstances:



Chapter 5. HCW behavioural and observational study 164

1. Prior to handling gas cylinders

2. When a patient is known to be infected with C. diff or norovirus

Hygienic hand wash should be carried out before any aseptic procedures (6 on Fulker-

son scale). An approved antiseptic detergent should be used such as: 4% Chlorhex-

idine gluconate or 7.5% Povidone iodine.

Surgical hand wash must be performed before all invasive procedures such as 7-15 on

Fulkerson scale.

5.1.1.3 Personal protection equipment (PPE) usage

According to Epic2 gloves must be worn once only. They are donned immediately before an

episode of patient contact or treatment and removed immediately following the completed

procedure. No mention of contact with surfaces is made however. Gloves are changed

between caring for different patients, or between different care/treatment activities for the

same patient [28]. Non-sterile gloves are used in preference to sterile gloves while carrying

out all but surgical procedures where bodily secretions are involved (e.g. Personal care).

5.1.2 Hand Hygiene Compliance

Measurement of hand hygiene compliance of any sort is notoriously difficult in part because

of the so-called Hawthorne effect [243], where staff being observed either consciously or

subconsciously alter their behaviour. Research has shown that this influence incurs a

generally improved performance, i.e. suggesting a best case scenario, but is not necessarily

fully realistic [25]. The methodology of quantifying compliance therefore has often been

modified from direct observation to covert observation. The latter has generally been

conducted by health care personnel [25] with more reliable results. Indirect methods

include the measurement of hand-sanitiser depletion over a fixed period of time [244].

Adherence to hand hygiene, as prescribed by the Fulkerson scale, appears clearly regional

and deep-rooted [27]. Despite the WHO’s prescription of hand-hygiene procedure, stan-

dards vary internationally, particularly with regards to the method of pathogen removal.

Cultural, ethical and religious beliefs [241] have all been found to influence the HCW’s
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posture towards cleanliness despite strict guidelines. Even good hand hygiene compliance

is rendered obsolete if staff touch contaminated surfaces after hand-antisepsis.

Compliance appears to be highly varied and studies have shown that over a year period

compliance can be as low as 25% [245] in some American hospitals, somewhat higher

in the UK [25] at 25-40% and Germany ranking in the upper 5 percentiles [27]. Overt

observation of HCWs appears to subject any study to bias as compliance appears to be

affected positively. Smith et al. [25] showed that covert observation returned more realistic

compliance values in a Scottish hospital ranging from 7% to 25%, which consistently fell

below requirements. As a corollary, hand-hygiene informative campaigns are shown to

have a temporary positive effect, what the long-term affect is is still unclear.

Pittet et al. [22] noticed a clear trend indicating that HCWs who wore gloves were less

likely to disinfect their hands post-care. This lead the researchers to think that the HCW

erroneously believe the gloves to be sterile and impermeable to pathogens.
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5.2 Observational Study: Ysbyty Aneurin Bevan (YAB)

The use of observational research methodology in the field of hospital care is important to

constructing a resilient evidence base and understanding disparities between care. Studies

of human behaviour in the health care environment have largely acknowledged the lack of

a comprehensive study which collects the minutiae of hand-to-surface contacts.

5.2.1 Objectives

An observational study was conducted during two separate visits in the first quarter of

2012 to Ysbyty Aneurin Bevan, a National Health Service (NHS) community hospital. This

is a 107 single-bed facility in Ebbw Vale, Gwent, South Wales, UK. This is not an acute

hospital, catering mainly for bed-ridden patients, amputees and other postoperative pa-

tients. Outbreaks of MRSA infections are minor and rare here due to the size of the wards,

however since this is entirely single bedded accommodation, it often served as a quarantine

location for neighbouring larger hospitals. During the study one patient was under quar-

antine for MRSA, which imposed strict hygiene regimes within that room, however the

patient often wondered freely down the corridor. Ethical approval (Ref: 11/WA/0200, in

Appendix A) was granted by the South East Wales Research Ethics Committee as well as

the Aneurin Bevan Local Health Board Scrutiny Committee (Ref:RD964/11). The aims

and objectives of this study are to:

1. Establish the different health care activities that are carried out in a typical hospital

single room accommodation ward, including:

(a) The distribution of surface contacts corresponding to the categories in Table 5.4

and creating a probability density plot of touching each one.

(b) The probability frequency density of surface contact counts.

(c) The duration in time of typical care types and investigating a relationship

between length of time and surface contact count.

2. Observe hand hygiene frequency during patient care, through:

(a) Hand washing, usage of gloves and usage of alcohol gel.
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(b) Investigating the three types of hand hygiene suggested by Epic2 [28] and

identifying their differences.

(c) Identifying whether patient contact influences hand hygiene.

(d) Identifying whether patient contact influences choice of hand antisepsis.

It is important to bear in mind that this study was developed to identify how care type

influenced hand hygiene choice not to pass judgement on compliance.

5.3 Methodology

Before describing the main study methodology this section first defines the activities that

were observed during the studies.

5.3.1 Definition of Activities

Since 2012, health care workers at YAB began implementing a structured process known as

“intentional rounding” where they carry out regular checks with individual patients at set

intervals, typically hourly. Each hourly check corresponds to a set itinerary or checklist.

Care has been previously less regimented and responsive rather than proactive. Rounding

helps front-line teams to organise ward workloads to ensure all patients receive attention

on a regular basis. This is intended to further personalise care to the patient but could

potentially lead to more surface contact risk [246].

Health care workers within this study carried out episodes of care within the framework

of intentional rounding categorised into six areas described in Table 5.3. Care types were

divided in this manner following standardised procedures as set out in both Pittet et al.[22]

and Dancer et al. [50]:
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Care Type

Direct care House-
keeping

Mealtimes Medi-
cation
rounds

Misc-
ellaneous

Personal
care

Blood
pressure
measure-
ment

Equipment
cleaning

Dispensing
meals

Distributing
medication

Call
requests

Toiletting

Weighing
patients

Cleaning
high touch
surfaces

Injections Bed making Changing

SATs 1

Table 5.3: Care type and examples of each.

5.3.2 Definition of Surface Categories

As the HCW performs a care activity, constant observation of their hand-to-surface contact

activity is monitored and recorded based on Table 5.3. Surfaces are categorised in five

main areas and summarised in Table 5.4. These are in-keeping with standard HBN04-01

room inventory and current available literature [50]. Figure 5.3 shows the positioning of

surfaces within the single room at Ysbyty Aneurin Bevan:

Surface Category

Equipment Patient Near-patient Far-patient Hygiene prod-
ucts

IV stand Clothing Bedrail Window Alcohol gel
Hoist Skin Bedding Curtain Soap dispenser
BP cuff/stand Tray Light switch Taps
Notes trolley TV Chart/workstation Sink
Medication trolley Chair Door/handles Paper towel

dispenser

Table 5.4: Room surface categorisation
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(a). Room layout

(b). Single room surfaces 1 of 2 (c). Single room surfaces 2 of 2

Figure 5.3: Room surface layout of YAB single room.

5.3.3 Observational Strategy

Observations were made within a 32 room single-bed ward, primarily for elderly bed-ridden

patients. The ward was split into two interconnecting ‘pods’ of 16 rooms each. These were

staffed at all times by 7 or 8 nurses divided between the two, where at least two members

were registered nurses (RN). These are rotated in shifts of 8 hours. The complement of

staff is then completed by 5 or 6 estate nurses (EN) and physiotherapists depending on the

shift. One doctor made daily rounds, while a second consultant made bi-weekly rounds.

Nurse practitioners were on call during weekends and after 5pm during the week. Meals

were dispensed from a trolley in the corridor and only nurses were permitted to enter
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patient rooms to deliver them. Any housekeeping observed was performed by nurses as

these must clean high touch surfaces as of 2012 [35].

An initial scoping study was carried out to pre-assess typical patient rooms in conjunction

with the nursing staff and identify the list of surfaces of interest and their location in the

room Table 5.3.

Over the course of the study a total of 431 care episodes were observed. All patients and

staff who were observed were required by the research ethics committee to give written

consent for the observation. Details of the ethics approval are given in Appendix A. Data

was accrued in the following manner during the period of 8am to 6pm daily for a total of

7 days. Observation actually occurred during two visits due to observer illness. The visits

were interspaced by 3 weeks and the staff remained the same.

During a typical ‘non-invasive’ nursing procedure the surfaces touched by the health care

worker and the order in which this occurred was recorded. The observation took place

from outside of the patient room so as to avoid disrupting the care procedure or influencing

the HCW . Glass windows allowed a full view into the room and therefore all surfaces were

visible. Each observation period began when a HCW entered a patient room and concluded

once they performed a form of hand hygiene, left the room terminally or indicated that

they had finished. In the case where hand hygiene was performed during an episode of

care prematurely because the HCW had not anticipated need for further care, then any

subsequent surface contacts were recorded as a separate observation. Interruptions in the

procedure by leaving the room were recorded as an integral part. In other studies such

as Hayden et al. [19] interruptions in care were also observed but hand hygiene status at

that point was not. The vast majority of observed care activities involved only one HCW,

however if more were present their surface contacts were considered as a separate episode.

The majority of invasive or personal procedures such as bathing and toiletting could not

be observed due to patient privacy and dignity. Therefore during these episodes of care

the investigator was informed and room door closed and observations were not recorded.
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5.3.4 Statistical Analysis

Each objective described above aims to investigate statistical differences (if any) between

HCW behaviour over observable care types. Sample sizes are important to bear in mind

when choosing a statistical test of any kind, as the influence of outliers may induce unre-

alistic bias. Objective 1a deals with discrete data and aims to create probability density

distributions which consider the relationship between surface contacts and care type. The

surface contact order is not taken into consideration at this point and so pooled data is

unnecessary.

Objective 1b is to compare surface category contact frequencies between care types. The

Lilliefors test [247] (based on Kolmogorov-Smirnov tables) is a robust test for normality

appropriate for small sample sizes, where the population mean (µ) and variance (σ) are

unknown. Therefore it tests against the null hypothesis that the data stems from a nor-

mal distribution but not which normal distribution and here is applied to all samples. In

addition since contacts are grouped into 5 surface categories, this renders standard para-

metric statistical tests inappropriate, particularly with groups of unequal sample sizes.

The Kruskal-Wallis test is the non-parametric equivalent of the one-way ANOVA and is

used to infer statistical differences between care type by way of investigating individual

surface contact averages. This test performs a post-hoc Mann-Whitney paired test be-

tween care types, assuming inter-group independent observation, but not normality [247].

This compares the medians of the samples and tests against the null hypothesis that all

samples are drawn from the same population (or equivalently, from different populations

with the same distribution) [247].

Objective 1c investigates the correlation between time and surface contacts by the use of

linear regression. This will measure the covariance between both variables by investigating

their correlation coefficient to linear fit. Pearson’s correlation is the standard choice of

metric and is a measure of the linear relationship between two continuous random vari-

ables. It does not assume normality although it does assume finite variances and finite

covariance, a reasonable assumption given current sample sizes. However it is sensitive to

outliers and other artifacts, which makes Spearman’s Rho represent a better choice [46].

This ranks data pairs instead of using the raw values and so provides a measure of a

monotonic relationship between two continuous random variables. It is particularly useful
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with ordinal data and unlike Pearson’s correlation is robust to outliers. The distribution

of either correlation coefficient will depend on the underlying distribution, although both

are asymptotically normal because of the central limit theorem. Tied ranks are accounted

for by assigning averaged ranks in their place. Spearman’s Rho ranges from -1 where neg-

ative correlation is observed to +1 where strong positive correlation is apparent. P-values

for testing the hypothesis of no correlation against the alternative that there is a nonzero

correlation. The p-value is the probability that one would find the value or more extreme

if the correlation was in fact 0. Low p-values (less than 10%) associated herewith infer

that correlation is unlikely to be by chance alone. As a corollary type I and II errors

are avoided where a falsely positive correlation is shown by excluding the biased effect of

outliers. P-values for Spearman’s rho are calculated in Matlab using exact permutation

distributions. Correlation between variables can have high and low p-values. For example

a high correlation coefficient (r) but equally a high p-value could indicate high variance

or noise. A low correlation coefficient but equally low p-value means that the correlation

is statistically significantly poor.

Objective 2 aims to investigate the hand hygiene levels within the observed care types.

Throughout this part of the investigation, the results of the observational study are binary

(yes/no) and therefore can be considered as independent Bernoulli trials. Sub-objectives 2a

and 2b aim to investigate the usage of the different hand antisepsis methods by subcate-

gorising them by care type.

Under objective 2c the conditional probability of whether patient contact affects hygiene

compliance or indeed hygiene type is scrutinised by a hypothesis test that compares the

chance of hand washing being an independent Bernoulli trial with 50% probability of

success. Sub-objective 2d tests the difference between hand hygiene methods and compares

the HCW’s choices against the probability that they select a method by chance.

5.4 Results & Discussion

Here the results and discussion are presented in three sections corresponding to the three

main top-level objectives outlined above. Each objective outlined at the beginning of this

chapter was investigated by the use of statistical tests to deduce possible relationships be-

tween variables. Objective 1 requires sufficient observations of all the health-care activities
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to be able to differentiate emerging patterns between them. Objective 2 requires meticu-

lous observation of human behaviour particularly with regards surface contacts. Dozens

of surface contacts are possible during each episode of care and multiple HCWs must be

tracked.

Since results were accrued over two separate observation periods, pooling of data was only

possible after comparison of sequence length using the two-sided Kolmogorov-Smirnov test.

This rejected the alternative hypothesis of results stemming from different distributions

(p=0.001) and hence data from both periods could be considered jointly.

5.4.1 Surface Contact Distributions

Throughout the observational period the mornings tended to be the busiest periods, when

patients were bathed, fed, medicated and the ward round took place. General house-

keeping commenced at 8am after which patient doors remained open throughout the day.

Housekeeping conducted by nurses was performed during the afternoon before dinner.

5.4.1.1 Activity profile

Table 5.5 shows the breakdown of all observations by care type. The table shows the

quantity of each type of care presenced. Observation of care types was not systematic of

one single HCW as to avoid bias instead seeking a balance of care types. The reader must

bear in mind that the proportion of different care types observed does not necessarily

reflect the full breakdown of a whole day, since observation began at 8:30am and ended at

6pm. This did also include weekends. However as many care episodes were observed as

possible.

Care Type

Direct
care

House-
keeping

Meal-
times

Medi-
cation
rounds

Misc-
ellaneous

Personal-
care

TOT.

197 17 21 111 72 13 431

Table 5.5: Observed activities or care types at YAB.
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Table 5.5 shows the breakdown of observed care types over the 7 day period. Direct care

predominates with just under half of the total observations as this forms the backbone

of intentional rounding. Cases of miscellaneous care and mealtimes are also abundant.

Personal care might be considered an extension of direct care under some circumstances.

For example a patient may be taken to the toilet during direct care. Total surface con-

tact count were used to compare both care types through the use of the non-parametric

Wilcoxon rank test. Comparison was made based on the null hypothesis of both samples

stemming from distributions with equal variances, or more strictly that two independent

samples emanate from the same distribution. The decision not to merge these two sets of

observations came through rejecting the null-hypothesis of equal medians at the 5% level

(p=0.01).

5.4.1.2 High contact surfaces

Cleaning of the entire patient room occurs daily by housekeeping staff, however “high

touch” surfaces are to be cleaned during the afternoon shift by nursing staff. However the

definition of a “high touch” surface seems somewhat vague. Huslage et al. [35] define a

high contact surface as any exhibiting 1 or more contacts per procedure. The ordering

of average contacts at YAB by surface type in descending order of contacts shown in

Figure 5.4. According to their cleaning criteria all surfaces fall into this category. By their

definition housekeeping should be performed on only high risk surfaces, implying that all

be cleaned multiple times per day. However YAB defines this cleaning as near-bed surfaces

including equipment.

Contacts can also be categorised into those on the patient or their clothing and contacts

with everything else: Environmental contacts. Figure 5.5 shows the break-down of con-

tacts divided between patient and environmental surfaces. In the case of Hayden et al. [19],

the patient was never touched without also incurring environmental contacts. During the

study period at YAB, this was not quite so dichotomous and a number of combinations

were observed. The probability of patient contact alone is approximately 2% (see Fig-

ure 5.6). Epic2 suggests hygiene after patient contact whereas the Fulkerson scale further

differentials between clean and dirty [sic] patient contacts.
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surfaces, categorised for care type. Errorbars represent one standard deviation
either side of the mean.
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Number of total episodes of case=431

Total= 431
Environmental= 189

Patient= 4229 242180

∅

Figure 5.6: Episodes of care containing patient and/or environmental contacts.

5.4.1.3 Surface contact distribution by surface category

Care episodes are subdivided as outlined above in Table 5.3. Principally, the aim of the

study is to quantify hand-to-surface contact events. Breaking down care type enables

in-depth analysis. Figure 5.7 shows the percentage of surface contacts on five surface

categories for each of the six care types observed. Care types can be differentiated by

considering the distribution of surface contacts. a) As promoted by intentional rounding,

HCWs performing direct care exhibit a higher tendency to check equipment and patient

notes (within Far-bed surfaces). b) This is particularly in contrast to housekeeping where

nurses perform the duties of wiping near-patient surfaces and equipment twice daily and

consequently Far-bed surfaces are touched less. c) Nurses at mealtimes exhibit the opposite

behaviour tending to touch surfaces near the patient most often, though surprisingly not

the patient themselves. This can be attributed to the fact that not all patients required

assistance with feeding, but all needed space making on the bed tray for the food plates.

d)Medication rounds exhibit a peak for near-bed surfaces, with lower tendencies for HCW

to come in contact with the equipment. Far-bed surfaces account for a high percentage

particularly due to nurses always touching patient notes. e) Miscellaneous care is much

less regimented given that the HCW is responding to a patient pressing the call-bell. This

may range from needing a drink to being in pain. Consequently, variedness of surface

contacts is observed, highlighting particularly the lack of contact with equipment. f)
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Near-bed surface contacts dominate within Personal care mainly due to the necessity to

help a patient in and out of bed.

0 20 40 60

Equipment

Patient

Hygiene products

Near-bed surfaces

Far-bed surfaces

Percentage

Mealtimes

0 20 40 60

Equipment

Patient

Hygiene products

Near-bed surfaces

Far-bed-surfaces

Percentage

Direct care

0 20 40 60

Equipment

Patient

Hygiene products

Near-bed surfaces

Far-bed surfaces

Percentage

Housekeeping

0 20 40 60

Equipment

Patient

Hygiene products

Near-bed surfaces

Far-bed surfaces

Percentage

Medication round

0 20 40 60

Equipment

Patient

Hygiene products

Near-bed surfaces

Far-bed surfaces

Percentage

Personal care

0 20 40 60

Equipment

Patient

Hygiene products

Near-bed surfaces

Far-bed surfaces

Percentage

Miscellaneous

Figure 5.7: Surface contact distribution subdivided by care type.
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Figure 5.8: Probability density histograms of surface contact counts broken down
by care type.
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5.4.1.4 Contact frequency distribution

Care types can also be differentiated by the total number of contacts as shown in Table 5.6.

Fluctuations are present in all care types representing the variation of human behaviour

and of patient needs. Figure 5.8 displays heavy right skew in all care types except personal

care, where procedures tended to incur higher numbers of total contacts. However this

does alter within housekeeping where a tendency towards normality (as suggested by the

central limit theorem) should be investigated with increased observations. Lilliefors’s

test for normality showed that none of the observed total surface contacts in any of the

care types exhibited a normal distribution (p<1 × 10−9) and hence the non-parametric

Kruskal-Wallis test was chosen to compare medians. This makes a comparison between

groups against the null-hypothesis that they all stem from identically shaped and scaled

distributions. Surface contact probabilities vary statistically between types of care shown

by a p-value of ≤0.001 thus rejecting the null hypothesis at the 1% level. More importantly

it rejects the idea that care is homogenous.

Care Type
Directcare House-

keeping
Mealtimes Medi-

cation
rounds

Misc-
ellaneous

Personal-
care

x̄ 4.6 5.2 2.6 3.9 2.3 6.9

s 3.8 2.6 3.0 2.8 1.8 6.0

Table 5.6: Breakdown of the number of surface contacts sample mean x̄ and
deviation s for care types observed at YAB.
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Splitting contacts into patient contacts and contacts with all other surfaces (environmental

contacts) in Figure 5.7 reveals clearly that all care types tended to exhibit higher envi-

ronmental contact counts than patient contacts. In particular Hayden et al. [19] (shown

in Figure 5.1) also found this. A statistically higher environmental surface contact fre-

quency than that of patient contact is visible with 1.5 vs. 3.7 contacts respectively. The

patient contact counts on average are not statistically different between care types based

on the null hypothesis that they come from the same distribution. Using a Kruskal-Wallis

test shows a p-value of 0.38 upholding this, whereas the Wilcoxon signed-rank test rejects

the null hypothesis at the 5% level for inter-care environmental contact count averages

(p=0.001). In this case the null-hypothesis tested is that of 0 median differences between

ranks. Hence this may be an important factor which could potentially differentiate risk

levels.
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Figure 5.9: Surface contact frequency categorised by care-type. Where Eq. stands
for equipment.

Figure 5.9 further divides the environmental surfaces into the categories in Table 5.4.

The Kruskal-Wallis test (p=0.01) casts further doubt on the hypothesis that the care
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types exhibit no statistical differences in surface contact counts. Therefore although there

appears no strong difference between patient contact counts, the variation is particularly

evident within environmental surfaces amongst all care types.
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5.4.1.5 Duration of care

Figure 5.10 displays the average duration of patient care along with error bars representing

one standard deviation. On average care length was just under 2 minutes 30seconds

with a standard deviation of 2 minutes 40seconds. Personal care exhibited the lengthiest

procedures (up to 9 minutes) which reflects the high variety of patient needs. On the other

hand miscellaneous care was considerably shorter on average at less than 1 minute.
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Figure 5.10: Contact duration categorised by care-type. Errorbars represent one
standard deviation either side of the mean.

Figure 5.11 shows scatter graphs of total care length plotted against total surface contacts.

Surface contacts have not appeared explicitly in published literature, preferring to show

care duration instead [22]. Therefore it is important to be able to make viable comparisons

to the current study. Spearman Rho rank correlation is used to test for linear correlation

and the corresponding correlation coefficients are given in Table 5.7. A low p-value (∼ 0.01)

casts doubt on the null hypothesis that no correlation exists between variable, however a

relatively high (p ∼ 0.1) p-value may be seen as indicating noisy data if the correlation

coefficient is also high. Comparison between data sets shows that correlation, for cases

with low p-values, such as direct care, housekeeping and miscellaneous care is often only

mildly positive (0.33 < r < 0.566). This indicates that high variation was observed.

Both mealtimes and medication rounds reported the highest positive correlation, probably

relating to the particularly rigid structure of the procedure. Medication rounds preceded
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or overlapped mealtimes and both care types were conducted by staff who often were

subsequently also required to bring food to patients. Thus the confounding factor relating

to the variation of the duration of care perhaps lies with the variety of patient motility

and speed of movement e.g. during toiletting in personal care. Other explanations may

well be related to time spent chatting to patients. Interestingly miscellaneous care showed

the poorest correlation of all, perhaps due to the variation of the nature of unplanned

procedures within it.

Care Type

Direct
care

House-
keeping

Meal-
times

Medi-
cation
rounds

Misc-
ellaneous Personal-

care

r 0.525 0.580 0.914 0.678 0.333 0.103

p-value <0.001† 0.015† <0.001† <0.001 † 0.004 † 0.738

Table 5.7: Correlation coefficients and p-values for time versus surface contacts.
Where † represents a statistically significant value.
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Figure 5.11: Total surface contacts for each type of care plotted over time.
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5.4.2 Quantitative Analysis of Hand Hygiene

It is important to remind the reader that the objective of this study was purely informative

and in no way judgemental insofar that it aims to take a snapshot of the working envi-

ronment of a typical HCW. Compliance (or non-compliance) with the preset guidelines in

Epic2 is not relevant here and results on frequencies of hand hygiene are to be interpreted

as either realistic or potentially slight over-predictions of reality due to the Hawthorne

effect [245]. Therefore results will be presented purely as observed with an emphasis to

investigate the cause and effect of surface contacts. This then will create a data set which

can be used to predict human behaviour in Chapter 6.

5.4.2.1 Probability of hand hygiene

Epic2 suggests that the HCW has a choice of hand antisepsis method from alcohol rub or

soap and water when conducting social hand washing. It does not suggest that gloves are

to be worn when conducting social or clean care (Fulkerson scale 1-7). Figure 5.12 shows

hand hygiene subdivided into hand washing, donning gloves and alcohol rub usage and cat-

egorised by care type. The Kruskal-Wallis non-parametric test rejects the null-hypothesis

of samples stemming from the same distribution at the 5% level and hence confirms that

statistically significant different hand washing probabilities can be seen between care types.

The results are reported by investigating the differences between care type and then subse-

quently by discriminating between hand antisepsis method. Personal care accounts for the

highest probability of hand hygiene with over 85% compliance, followed by the medication

round with over 60%. The possible reason for this is their regimented pattern and staff

training [25].

Differences are statistically significant between hand antisepsis choice (p<0.001), where

some variation can be seen in Figure 5.12 within each care type. Alcohol rub was used

abundantly throughout all but personal care in adherence to Epic2 guidelines. Glove

usage accounted for only 2% of observed episodes of care, half of which were during

housekeeping. It was noticed that on many occasions gloves were not changed between

episodes of housekeeping. Multiple antisepsis procedures are a requirement within Epic2

both before donning gloves and after their removal. This however was observed only 50% of

the time. Handwashing and the use of alcohol rub was observed during 21% of procedures,
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Figure 5.12: Cumulative probability of hand hygiene category subdivided by care
type.

most of which were during direct care. Interestingly direct care exhibited joint lowest

probability of hand hygiene along with miscellaneous care at 40%. This is statistically

significant because these two care types account for 62% of the total observations made.

Figure 5.13 shows the probability of hand hygiene of any type categorised by care type

and subdivided into surface contact count. The reader should note that patient contact

is included as a separate surface, which will be discussed in the following section. The

tendency to perform hand antisepsis of any kind is assumed to increase proportionally

as the surface count increases. Pearson’s correlation coefficient was calculated for each

care type based on the surface contact counts and displayed in Table 5.8. They show

strong positive correlation coefficients in all cases but that of miscellaneous care, which is

only weakly positive. Corresponding p-values are also given to strengthen the statistical

inference of the correlation coefficient. As a rough guide, p-values below 0.1 represent a

statistically significant or robust correlation. The correlation coefficient may appear to

be strongly positive (close to +1) or strongly negative (close to -1) but incurring a high

p-value indicates significant noise within the data set. Caution should be exercised when
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Figure 5.13: Probability of hand hygiene by surface contact count subdivided by
care type.

drawing inference in these cases.

Care Type

Directcare House-
keeping

Mealtimes Medi-
cation
rounds

Misc-
ellaneous

Personal-
care

r 0.667 0.869 0.913 0.333 1.000 0.913

p-value 0.333 0.083† 0.167 0.750 0.083† 0.083†

Table 5.8: Correlation coefficients and p-values for hand washing probability ver-
sus surface contacts. Where † represents a statistically significant value at the
10% level.

5.4.2.2 Preference for hand antisepsis type

As categorised by Epic2, the care types observed contain mainly social and hygienic hand

hygiene opportunities as indicated in Table 5.9. Only personal care may present reason

for minor surgical classed procedures (e.g. catheter insertion). Gloves are a requirement

throughout bathing and toiletting but since this occurred privately, the quantity of glove
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use within this category may be proportionally higher. Care type influenced the choice of

hand antisepsis (p=0.0003). Figure 5.12 can be used to distinguish antisepsis preference,

where care formed mainly of hygienic procedures such as personal care was predominated

by hand washing with soap and water. Miscellaneous care which is a mixture of possible

social and hygienic procedures splits the choice of antisepsis method almost 50-50 between

alcohol gel and hand washing. Mealtimes are classed solely as a social hand hygiene

opportunity, which is reflected in the preference for alcohol rub between HCW (p=1×

10−3). Food on trays was assembled in the corridor and doled out by the HCW present.

Given that hand washing with soap and water, according to the “5 moments” guidelines

requires a minimum of 30s, alcohol rub is the obvious choice.

Care Type

Hand
antisepsis

Direct-
care

House-
keeping

Meal-
times

Medi-
cation
rounds

Misc-
ellaneous

Personal-
care

Social X X X X X

Hygienic X X X X X

Surgical X

Table 5.9: Care type categorised by hand hygiene opportunity.

5.4.2.3 Influence of patient contact on hand hygiene

Epic2 suggests that antisepsis should follow contact with the patient or their near sur-

rounding, see Section 5.1.1.1. This section of results investigates this claim and compares

against observed cases. Figure 5.6 shows a breakdown of all hand antisepsis and compares

this with patient contact in the form of a Venn diagram. The probability of hand hy-

giene P (H) being influenced by patient contact P (C) is called the conditional probability

P (H|C), denoted Probability of H given C. This corresponds to the proportion of HCWs
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touching patients who subsequently wash their hands and is given by:

P (H|C) =
∑#care with hand sanitising∑#(care with hand sanitising + care with patient contact ) (5.4.1)

Consider each hand antisepsis event as an independent Bernoulli trial with probability of

success of λ=50%. The variance of this binary trial type is given by:

λ(1− λ) = 1
4

Table 5.10 displays the probability of any hand hygiene given patient contact P (H|C) and

the standard deviation for each type of care. The normal approximation
√

(λ(1 − λ)a),

where a is the number of events has been used to calculate these based on substantial

sample sizes. The effect on hygiene of patient contact is calculated by comparing the

actual number of episodes of care concluding with hand hygiene (of any kind) against

the standard deviation of the Bernouilli trial. Only in the case of personal care is there

a statistically significant association between patient contact and hand antisepsis. In all

other care types, the performance of hand hygiene is close to a 50-50 chance, suggesting

that patient contact does not affect it extensively. Based on the Fulkerson scale [27],

touching a patient is not considered a dirty contact (scale 1-5). However Epic2 guidelines

allow the HCW to assess the care type as either: social, hygienic or surgical, without

providing strict guidelines, thus creating a ‘grey area’.

Care Type

D.C. H M.T. M.R M. P.C. Overall

P (H|C) 42% 50% 33% 54% 42% 89%† 46%*

a 197 17 21 111 72 13 431

√
λ(1− λ)a

7.02 2.06 2.29 5.27 4.24 1.8 10.4

Table 5.10: Probabilities of patient contact influencing hand hygiene for each
care type given with the standard deviation. Where † represents a statisti-
cally significant value. D.C.=Direct care, H=housekeeping, M.T.=Mealtimes,
M.R.=Medication rounds, M=Miscellaneous, P.C.=Personal care.
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5.5 Summary

The randomised controlled trial, the gold standard within research design, is not always

possible within this framework. The difficulties in conducting these types of trials within

palliative care include patient recruitment and physicians gate-keeping [248], hence ren-

dering sample sizes small. Patients changed from study period 1 to study period 2 and

also between days hence allowing for a realistic dynamic environment.

Care type influenced the HCWs’ surface contact distribution to a large extent. However,

length of care was less influential and showed only weakly positive correlation with surface

contact counts. Care types could not be distinguished with respect to patient contacts,

however environmental surface contacts exhibited a statistically significant variation.

Hand hygiene choice at YAB shows a snapshot of a dynamic modern Welsh hospital.

Type of care influenced the choice of hand antisepsis, where HCWs performing short

(<30s) episodes of social care showed a predilection for alcohol rub. Direct care and

miscellaneous care split the usage of alcohol gel and hand washing almost 50-50. Over

90% of the observed episodes of personal care concluded with some form of hand hygiene.

These are considered mostly either hygienic or social care and hence exhibited a 62%

preference for hand washing.

5.6 Implementation of the Results

The completed observational study enabled realistic first-hand data to be collected which

is utilised in the formulation of stochastic models of human behaviour and subsequent

infection risk models in Chapter 6 and Chapter 7.
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Pathogen accretion model: PAM
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This chapter describes the methodology behind the development of a probabilistic pathogen

accretion model PAM on HCWs’ hands. The aim of this model is to provide a framework

which will allow for the quantitative comparison of hospital room design viz. single vs.

multi-bed accommodation by means of an indirect metric. Here, the results obtained

from the observation study at YAB and presented in Chapter 5 form the basis for the

behaviour of the personnel tending to patients. Chapter 4 provides the validation for

using CFD analysis to predict spatial distribution of indoor bioaerosol deposition within

different scenarios, comparing the effects of design variations. This chapter begins with

a background description of why an indirect metric is necessary to compare room design,

followed by the model development. The model is then expanded to more realistically rep-

resent the HCWs’ surface contact patterns by the use of Markov chain modelling, along

191
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with a sophisticated accretion mechanism involving bi-directional transfer from hands-to-

surface. A sensitivity analysis evaluates and validates the parameters chosen, and finally,

a parametric study is carried out, comparing the effects of parameter modification within

a test case scenario. It is important to bear in mind when reading this chapter that many

of the model inputs are necessarily uncertain, which allows for examining different pa-

rameter spaces referring to relative risk of different care and room types. Subsequently

Chapter 7 applies this new methodology to the single room at YAB and a HBN04-01

standard multi-bed [5] room, to demonstrate the application and scope of the model.

6.1 Introduction to Dermal Models

Through the literature review in Chapter 3 and the observational study carried out at YAB,

HCW hand pathogen loading is known to pose a significant risk for cross-contamination or

eventually cross-infection events. In addition, indirect infection transmission shows a dis-

tinct possibility of being exacerbated by incomplete or non-existent hand hygiene as found

in Chapter 5. Hand hygiene is considered the most important tool in the HCW’s arma-

mentarium for preventing HCAI and the spread of antimicrobial resistant pathogens [20].

Much of the transient microflora accrued by HCWs tends to lie on the uppermost level

of the skin called the stratum corneum, whereas the resident or endogenous microorgan-

isms are found somewhat deeper [249]. Modelling of microorganism transmission arises

from the the interaction between risk assessment and ultimately the study of epidemiol-

ogy. However, the underlying mechanisms are still poorly understood. Therefore a clearer

comprehension of the process of surface-to-hand pathogen transmission is critical for de-

signing prevention strategies. This chapter reviews the available evidence for modelling

surface-to-hand pathogen accretion during patient care and proposes a flexible model and

subsequent framework for future validation.

Pittet et al. [20] describe the likelihood of accruing pathogens on a HCW’s hands during

different types of patient care and following subsequent hand-antisepsis as being a critical

factor within indirect pathogen transfer. The essential steps for cross-transmission, shown

pictorially in Figure 6.1, are given by the WHO [39] as being:

1. Microorganisms must be present on either the patient’s skin or surrounding fomites
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2. Transfer of pathogens must occur during contact between the inoculated surface and

the HCW’s hand

3. The transferred organisms must be able to remain viable during this process and for

some time after

4. The hygiene procedure following the patient contact must be inadequate at removing

all the pathogenic material

5. Lastly the HCW’s hands must re-transfer the microorganisms in a timely manner to

another surface or patient

Figure 6.1: Stages involved in pathogen transfer reproduced from Pittet et al. [20].

Attempts to associate types of patient care with pathogen loading have never fully ma-

terialised [250]. In earlier research, Pittet et al. [22] performed an observational study

of some 417 HCWs during patient visits and conducted subsequent pathogen quantifica-

tion techniques, known as glove-juice [39] testing, in a teaching hospital to measure hand

contamination. Particular activities were statistically associated with increases in colony
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forming unit (CFU) counts. CFU values per minute were seen to be highest after direct

patient contact, particularly when tracheostomy care or endotracheal tubes were fitted.

Particular emphasis shows that medical rehabilitation units tended to harbour higher CFU

quantities vs. typical ICUs or step-down units [22]. Possible explanation of this may lie in

the use of complex rehabilitation apparatus and the underestimation of cleaning require-

ments herewith [24]. A significant difference between the transfer efficiency of pathogens

to gloved vs. ungloved hands was also found. A positive linear link was established be-

tween the bacterial colony count on the hands and the length of the duration of the care.

This indicated that the length of care either by surface contact count or time spent in

the room, indirectly increases the risk of pathogen transfer between surface and hands.

CFU values were found to be between 0 and 300 [250], most of which were Gram-negative

bacilli, enterococci and S. aureus. By contrast, in a study [249] carried out prior to glove

use being common amongst health-care workers, it was found that nurses carried 104 CFU

of S. aureus on their hands ranging up to 14.3×106 CFU after patient contact. Hands and

gloves of HCW were also found to be contaminated during contact with environmental

objects and surfaces [13, 51, 250, 251, 252] showing that they may form an integral link

in the chain of infection transmission.

Nurse cohorting whereby nurses are restricting to a particular set of patients was consid-

ered to be an effective intervention measure by Beggs et al. [32]. However, they suggest

that despite a high level of cohorting amongst nurses, doctors move freely between patients,

which may compromise the intervention. Cooper et al. [142] uphold this conclusion by

directly linking infection to handwashing. Indeed, in their transmission model, pathogen

transfer cannot be completely eradicated due to this. Potentially, full hand hygiene com-

pliance to the highest standard can ultimately reduce indirect transfer. However given all

the factors involved in hand anti-sepsis this could prove utopian. Whether or not this is

truly necessary as in the case of herd immunity [171], remains to be seen.

Comparing the layout of a hospital single room against that of multi-bed accommoda-

tion by investigating infection transmission requires a means to measure their parametric

design effects on pathogen transfer. To be able to quantify the risk of indirect infection

transmission one first must design a method to estimate the level of contamination on

HCWs’ hands following patient care. But first a little background.
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6.1.1 Background

Skin exposure from contact with a contaminated surfaces is considered to be a dynamic

process in which multiple factors may vary [253]. Considered by the US Environmental

Protection Agency (EPA) for chemical exposures, they highlight that contact frequency

and hand movement during contact can be individual and job specific, while contact

pressure may be more universal. In their published guidelines [83], the EPA proposed

evaluation of dermal accretion of hazardous materials through hand-to-surface contact to

be deterministic and linear in nature:

D = A×Q×WF (6.1.1)

where D= dermal potential dose rate (mg per day), A= surface area of contact (cm2),

Q=amount retained on skin (mg/cm2), WF= weight fraction of chemical mixture. The

EPA also provides default values for WF and Q for given chemical compounds. How-

ever throughout the last two decades of the twentieth century the EPA Office of Research

and Development developed a probabilistic model for estimating exposure to toxic chem-

icals in the residential setting called Stochastic Human Exposure and Dose Simulation

or SHEDS [254]. This estimates the aggregate exposure to specific chemicals over time

through multiple pathways including via inhaling contaminated air, touching contaminated

surfaces, and ingesting residues from hand/object-to-mouth activities. It then calculates

the cumulative exposure and dosage. Since parameters within the model are rates, events

or concentrations per time, SHEDS cannot quantify the risk posed by, or to, a specific

individual nor represents any one specific real person, therefore the output must be seen as

a time-integrated or time-averaged exposure. However, SHEDS makes use of a subscrip-

tion based activity database called Consolidated Human Activity Database (or CHAD) to

simulate human behaviour throughout the day. As a consequence a model which considers

micro-activity or individual surface contacts over a shorter timescale is necessary.

Foundations for a conceptual dermal exposure model were published by Schneider et

al. [255] being one of the first inclusive models for multiple exposure pathways and dermal

absorption of contaminants (not to be confused with dermal adherence or adsorption which

is what is of interest here). This compartmental model describes the transport of contam-

inant mass from exposure sources to the surface of the skin through three main exposure
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routes: Ingestion, aerial deposition and skin absorption. No validation was presented how-

ever, and subsequently a semi-quantitative dermal model (DREAM) was published by van

Wendel-de-Joode et al. [256] developing the concept further. Nevertheless this still tackles

the problem of ingestion of toxic chemicals into the hosts own body (absorption) rather

than the current problem of temporary hand colonisation by microorganisms (adsorption).

Schaffner [257] highlights the importance of modelling infection transmission pathways as

a logical next step, however so far this has not been fully accomplished. In general models

(such as [85, 142, 198, 254, 258]) tend to include the wide scope of an entire hospital ward,

making generalisations, on the actual mechanics of transmission itself. Within the sphere

of food microbiology, simple pathogen transfer models are abundant. These are generally

additive in nature and dependent only on surface-to-hand transmission efficiency [259].

Den Aantrekker et al. [260] recognise the importance of the role that hands play during

infection transmission, however they develop a deterministic quantitative microbial risk

assessment model which mainly focusses on air-to-surface transfer. Zartarian et al. [85]

developed a dermal exposure reduction model (DERM) which characterised the different

pathways of contaminant exposure, again recognising the importance of contact trans-

mission but appear to gloss over the actual mechanics involved. Their model explores

exposure to toxic substances simulated by considering the day-time activities, the concen-

tration of chemical and the skin surface exposed. Although this is stochastically simulated,

the specific mechanisms required for analysing pathogen transfer are absent. Canales et

al. [36] adapted and refined this model further to simulate the exposure of young children

to lead paint, calling their model CASE or (Cumulative Aggregate Simulation of Expo-

sure). Perez-Rodriguez et al. [259] acknowledge the paucity of exhaustive experimental

studies within the food-chain preparation environment and liken it to health-care settings.

They present a critical analysis of the mathematical transfer models published in current

literature by means of a quantitative microbiological risk assessment (QMRA) frame-

work where, at best, pathogen accretion is calculated additively by means of Monte-carlo

sampling from sparsely populated transfer efficiency distributions. Subsequent efforts by

Zartarian et al. [261, 262] demonstrate that the need for further research into the exposure

and transfer of pathogens in the health-care setting is ever more prominent.
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6.2 Overview and Objectives of the Dermal Model

The aim of creating a probabilistic model of pathogen transfer from surfaces to HCWs’

hands is based on the need for:

1. Utilising realistic behavioural data accrued in Chapter 5 as a basis for predicting

HCW surface contacts.

2. Creating a flexible model of pathogen accretion onto dermal surfaces through Monte-

Carlo sampling of parameters from empirical distributions.

3. Validating the use of the most important parameters through sensitivity analysis.

4. Establishing a parametric study to compare single room patient care against care

extrapolated into a four-bed scenario.

5. Refining model variables to improve prediction of pathogen loading, through:

(a) Bi-directional transfer from surface-to-hand and vice versa.

(b) Markov chain modelling of HCW surface contacts.

6. Laying the foundation for further validation.

It is important for any model to provide quality assurance. This ensures that the model

corresponds to the established objectives accurately or within a margin of accuracy (vali-

dation) and answers the correct questions (verification) [263].

6.3 Model Structure and Approach

The fundamental modelling unit within the pathogen accretion process is the individual

HCW. At first glance deterministic modelling following previous research [260] and using

single-point estimates or ranges might yield interesting results. Each uncertain variable

within a model is assigned a “best guess” estimate and hence yields scenarios such as best,

worst, or most likely case [198]. In comparison, Monte-Carlo techniques sample probability

distributions for each variable to compute thousands of possible combinations. These

results are then statistically analysed to obtain the probabilities of different outcomes

occurring.
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6.3.1 Simulating an Individual HCW

The HCW touching surfaces during an episode of patient care forms the driving force

within this model. As the HCW undertakes their duties, they touch surfaces within

the patient room and these sequences of surface contacts were recorded meticulously in

Chapter 5. This is called the longitudinal activity. 431 care episodes were observed and

form the basis for determining surface contact sequences. Six types of patient care were

observed, each with their own properties and lengths, namely: Direct care, housekeeping,

mealtimes, medication rounds, miscellaneous care and personal care. Each of these is

described in detail in Chapter 5 Section 5.3.1.

Within these next sub-sections two methods are described which demonstrate how the be-

havioural pattern of HCWs are modelled, first by moving randomly between surfaces with

weighted probabilities, and secondly by directed probabilities forming ordered sequences

in a Markov chain. The flowchart of determining this longitudinal activity is described as

follows:

1. Decide which care type the HCW will perform

2. Based on care type predict activity length in number of surface contacts (from ob-

servations in Chapter 5)

3. Generate HCW surface contact sequences based on YAB observations for care type

chosen based on:

Method 1 Empirical probability density functions, with no directed probabilities

Method 2 Markov chains with directed probabilities

6.3.1.1 Method 1: Empirical marginal frequency density (P̂ )

Consider the sequence of surface contacts made by the HCW is independent of the current

surface which they are touching and hence is memoryless. The initial state of the HCW

denotes the first surface which (s)he touches, which is chosen from the observations at YAB

(Figure 5.7). A Monte-Carlo simulation was run to predict the surface contact patterns

for 10,000 HCWs by means of the Gilespie Algorithm in Matlab (2012a MathWorks, MA,
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USA). This method of sampling is denoted ‘quasi-random‘ in the sense that the sequence

of chosen points is not completely unpredictable [264]. The random number generator

used was Matlab’s own pseudo-random algorithm. Since the maximum number of random

numbers generated before duplication exceeds the replicate numbers of this Monte-Carlo

simulation it was deemed sufficient.

The probability of contact with a given surface in the patient’s room is created from the

results in the previous study explored in Chapter 5 and shown in Table 6.1:

Care type Surface category

Equipment Patient Hygiene Near-bed Far-bed
products objects objects

Direct Care 0.255 0.186 0.104 0.202 0.253
Housekeeping 0.247 0.079 0.067 0.393 0.213
Mealtimes 0.000 0.109 0.182 0.564 0.145
Medication round 0.054 0.161 0.179 0.350 0.256
Misc. 0.024 0.115 0.242 0.303 0.315
Personal Care 0.034 0.169 0.213 0.404 0.180

Table 6.1: Probabilities for surface contacts based on care type and surface cate-
gory.

Let us assume that the probabilities of moving to any other state (or surface) do not

depend on the HCW’s current surface location. At each “step” the health care worker will

either remain at the same surface with the probabilities in Table 6.1 or move to another

surface. The sequence of surface contacts is produced by the following algorithm:

1. Create the cumulative sum of probabilities for each care type, thus defining the

interval width

2. for jj=1:m % where m is the number of nurses

3. Choose care type

4. Randomly select care length (n) based on care type

5.

6. for ii=1:n % where n is the sequence length
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7. Generate a random number w

8. Check into which cumulative probability interval w falls and

choose the corresponding surface category

9. update ii=ii+1

10. update jj=jj+1

11. end

12. end

6.3.1.2 Method 2: The Markov Chain

Method 1 assumed no directed probability between surface moves, that is to say that it did

not matter which surface the HCW was currently touching to predict the following contact.

This is not particularly realistic, insofar that touching a surface category in the next move

may be more likely than any other depending where they are currently touching. For

example, consider a nurse who is taking the patient’s blood oxygen saturation level and

ignoring the fact that (s)he is carrying out an episode of direct care, they are more likely

to touch the patient after opening the oximetry meter than open the window. However,

this is not considered in Method 1, and a surface based solely on weighted probabilities is

chosen instead.

To test the hypothesis of non-randomness, the Kolmogorov complexity test [265] compares

values within a sequence against the assumption that they are placed in random order

against the alternative hypothesis that they are not. The test is based on the quantity

of sequences of contiguous values either side of the mean. Too few occurrences indicates

a tendency for extreme values to cluster, and too many indicate a tendency for high

and low values to alternate [265]. Sequences accrued from the YAB observations and

presented in Chapter 5, on average reject the null hypothesis of randomness at the 5%

level (p=0.04). Therefore it is not unreasonable to assume that the HCW touches surfaces

in a sequential or directed manner, insofar that jumping from one surface category to

another has a higher probability than a transition somewhere else. Let us assume that

the surface categories are assigned a numerical value from 1-5: such that Equipment=1,

Patient=2, Hygiene products=3, Near-bed objects=4 and Far-bed objects=5. By means of
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directed probabilities between surface categories the HCW can be made to move between

them based on the property that, given the present state, the future and past states are

independent. This is termed the Markov Property:

P (Xi = xi|Xj = xj) (6.3.1)

The empirical sequences observed contain not only probability frequency densities for each

surface contact but also directed probabilities between them. Given the large sample size

n = 431, including 1824 transitions, for the number of states d, it is reasonable to assume

independence by splitting them into two halves. One-step or first order transitions between

states are defined from empirical sequence data by a maximum likelihood estimator P̂ for

n observations is given thus:

P̂ij = xij∑m xik
where m=1..5 states (6.3.2)

As n→∞, P̂ij−→ P , this is known as asymptotic normality.

By this method all sequences of surface contacts observed at YAB are distilled into creating

a general transition matrix of maximum likelihood estimators, based on all care types,

given by P̂ij in Table 6.2.

P̂ =



Surface category (j)

Equipment Patient Hygiene Near-bed Far-bed
Surface category (i) products objects objects
Equipment 0.183 0.308 0.077 0.148 0.284
Patient 0.480 0.114 0.008 0.250 0.159
Hygiene 0.183 0.240 0.221 0.192 0.164
Near-bed 0.238 0.182 0.063 0.336 0.182
Far-bed 0.246 0.179 0.117 0.179 0.279



Table 6.2: Directed probabilities of moving from surface i to surface j

This matrix P̂ is a general transition matrix and can be used to compute a possible

HCW trajectory during a typical episode of care. Figure 6.2 shows the movement between

surfaces of a HCW during an episode of typical care. Transitions are chosen based on the

above method:
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Figure 6.2: Example of surface contacts of HCW #50 performing a standard
episode of care.

6.3.1.3 Bootstrapping, Laplace smoothing and confidence intervals of P̂ij

Transition matrices P̂care type can also be computed for each care type: Direct care, House-

keeping, Mealtimes, Medication rounds, Miscellaneous care and Personal care by collecting

the observed sequences of transitions for each episode of care. For example personal care

is given by:

P̂personal care =



0 0 0 1.00 0

0 0 0.22 0.44 0.33

0 0.19 0.57 0.10 0.14

0.03 0.19 0.09 0.50 0.19

0 0.06 0.13 0.56 0.25


(6.3.3)

However, this results in a sparse matrix, with some 0 entries suggesting that the cor-

responding transition i → j is impossible. Since the physical movement between these

states is possible, one must attempt to account for this in some fashion, given the data

observed. Furthermore, the non-sparse transition matrix P̃personal care can be calculated

by the method of bootstrapping and Laplace smoothing [266].
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A bootstrap is a statistical technique whereby observed values X = (x1, . . . , xn) are re-

sampled, with replacement, on the basis that the best available estimate of a distribution,

F , is the empirical distribution, F̂ . This allows some idea of the sampling uncertainty

associated with a distribution’s property F (θ̂) to be investigated [266]. Here, a 1000

bootstrap samples are used throughout. Coupled with this, Laplace smoothing accounts

for unobserved transitions by introducing a small probability α of observing a particular

transition [267]:

P̃ij = xij + α∑m xik + αxij
where m=1..5 states and 0 ≤ α, (6.3.4)

An optimum value of α appears to be somewhat subjective, however to ensure boundedness

and hence maintain asymptotic normality, Teodorescu [268] concludes that |P̂ij − Pij | is

minimised with an α value of 1. 95% confidence intervals on P̃ij are then calculated through

this method for each care type. For reasons of succinctness an example of personal care

is given below, all other transition matrices can be found in Appendix B. To what extent

this variation is important, is investigated by sensitivity analysis in Section 6.6. Figure 6.3

represents the confidence intervals calculated for transition probabilities of personal care

P̂personal care, where P̃lower2.5% represents the lower confidence interval and P̃upper2.5% the

upper. A wider distribution suggests more uncertainty.

P̃p. care =


0.167 0.167 0.167 0.331 0.167

0.073 0.073 0.215 0.352 0.284

0.041 0.198 0.479 0.121 0.159

0.059 0.196 0.114 0.435 0.195

0.050 0.099 0.147 0.461 0.241



P̃lower CI2.5% =


0.159 0.158 0.148 0.310 0.165

0.064 0.067 0.206 0.346 0.275

0.035 0.192 0.471 0.117 0.151

0.057 0.190 0.112 0.425 0.189

0.048 0.097 0.138 0.448 0.235



P̃upper CI2.5% =


0.183 0.181 0.175 0.338 0.187

0.074 0.078 0.225 0.366 0.294

0.043 0.205 0.490 0.127 0.165

0.064 0.201 0.123 0.437 0.200

0.055 0.107 0.149 0.468 0.249


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Figure 6.3: Bootstrap confidence intervals for P̃personal care.
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6.4 Model Development: PAM

Given that existing dermal exposure models to date are additive in nature it is reasonable

to assume that over the time scales of interest, pathogen loading will also be so too.

To what extent is still debatable. However a very compelling argument is put forward

by Montville et al. [269] which shows a negative linear correlation between the increase

of inoculum on a surface and the percentage transfer to hands. Therefore the corollary

would suggest that there is no upper limit of pathogen loading on hands. They examined

up to 8log10 CFU which is well above any in-situ testing results. That is to say, inocula

levels on HCW hands have not been detected above this quantity in-vivo. Therefore let

us also make a similar assumption.

Let us simplify notation by allowing the number of colony forming units accrued on the

HCW hands to be called Y . The amount of pathogens accrued currently on hands depends

on the surface contamination levels (V ) and the surface area of skin in contact with the

surface (A). However, it is reasonable to assume that not all of the pathogens in contact

with the surface area of skin touching the surface are transferred. Therefore a transfer

efficiency (λ) is defined to represent the proportion of pathogens that are transferred in

the upward direction. During hand-to-surface contact it is equally reasonable to assume

that some quantity of pathogens already acquired (βY ) are deposited from the hand onto

the surface during a contact. However this quantity deposited will depend on the current

hand inoculum level (Yi−1). Therefore this model will consider transfer in both directions

or bi-directional transfer. Consequently pathogen accretion (Y ) can be modelled by means

of a recurrence relationship given in Equation (6.4.1):

Yi = λiViAi + βiYi−1 (6.4.1)

where i = 1..n, is the surface contact count. Hand sanitation (with probability P and

efficacy 1− h) is performed only once on the final Y value.

For purposes of remaining succinct let σ = λAV then assuming that the transfer of

pathogens to the surface from the HCW occurs sequentially and is independent of the
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surface loading then Y can be described as follows:

Yi =σi + βi(σi−1 + βi−1(σi−2 + ...))

=σi + βiσi−1 + βiβi−1σi−2 + ...

=
i∑

j=0

 i∏
k=j+1

βkσj

 (6.4.2)

6.4.1 Model Input: Contact Surface Area (A)

Canales et al. [270] consider hand contact to be qualitatively categorised into: Side hand

contacts, pinch grips, full front fingers, closed handgrips, and full hand immersions. They

conduct a study to investigate absorption of a chemical over varying hand surface areas.

Results were for children and described in terms of hand surface %. Interestingly however,

their results did show a bimodal distribution for smooth surface contacts, the lower peak

appearing between 4-8% and the higher peak at 23-35%. Brouwer et al. [271] performed an

extensive hand-to-surface contact experiment to estimate the surface contact area. Results

showed that this exhibits a mean of 7 cm2 and standard deviation of 1.9 cm2. However

during in-vivo experiments hand surface area contacts with objects or surfaces may well

be somewhat lower [140]. Given the paucity of experimental data a continuous log-normal

distribution lnN (1.91, 0.266), corroborated by the Kolmogorov-Smirnov goodness of fit

test (p=0.04) will be used based on the empirical data by Brouwer et al.

During episodes of care both hands are often used in conjunction, therefore a second

random value is drawn from Figure 6.4 to reflect this. No evidence supports the necessity

to make distinction for the dominant hand. CFU values are then cumulative for each

HCW over both hands.
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Figure 6.4: Probability density function of hand surface area contact parameter
A.

6.4.2 Model Input: Surface Pathogen Load (V )

During routine activities, the human body has been found to shed nearly 106 skin squamae

that may contain viable pathogens [272] daily. Chapter 4 outlines the spread of respiratory

droplets within the hospital setting, showing how particles can be dispersed throughout

the entire room. Therefore it is without surprise that patient gowns, bed linen, bedside

furniture, and other objects in the immediate environment of the patient become con-

taminated with pathogenic material [20]. Many such pathogens tend to be staphylococcus

or enterococcus strains which are hardy and resistant to environmental desiccation [273].

Noskin et al. [274] show experimentally that enterococci strains can survive for a minimum

of 1 hour on gloved and ungloved fingertips equally effectively. Moreover, viable colonies

were recovered from bed-rails, stethoscopes and telephone handpieces up to a day later and

E. faecalis was recovered from counter tops five days after inoculation. The importance

of hospital surfaces harbouring pathogenic material for extended periods of time cannot

be underestimated. Since it was found that a single C. difficile colony /cm2 is capable
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of eliciting a 100% immune system response in mice and a single milligram of faeces con-

taining VRE could equally infect a human [272]. Surfaces have been found to harbour

VRE colonies even after extensive terminal cleaning hence allowing viable organisms to

be transmitted between HCW and patient [19, 51, 53]. Similarly Weber and colleagues

review the importance of hospital surfaces harbouring pathogenic material of extended

periods of time, hence allowing viable organisms to be transmitted between HCW and

patient.

There appears however to be a lack of recent information and experimental studies re-

garding surface contamination levels, perhaps because of the inherent biological variabil-

ity. Ayliffe et al. [48] conducted a combination of swabbing and settle plate collection

techniques for both floor and walls within a hospital ward and operating theatre. Colony

forming unit counts oscillated between 103/m2, putting this within the WHO cleanliness

guideline [167] of 2.5CFU /cm2. White et al. [50] conducted a yearlong study of surface

swabbing within a Scottish hospital ward and discovered that more than half the surfaces

failed the WHO minimum standard. Otter reviews surface CFU counts and errs on the

side of caution, reporting values in the region of 1-100 CFU /cm2. However reports of CFU

values higher than 200+ CFU /cm2 exist even after cleaning procedures [272]. Friberg et

al. [66] concluded through empirical evidence based on air sampling that a ten-fold linear

correlation exists between airborne CFU /m3 and surface values of CFU /cm2. Given

the uncertainties surrounding the efficacy of Andersen sampling, this comparison may be

untractable.

Surface CFU values will depend on the scenario being modelled insofar that for the testing

and calibration purposes of PAM, Chapter 4 will provide the experimental spatial distri-

butions from aerial deposition. In the first instance a mock single room within the PaCE

chamber will be used as a test scenario to provide calibration, raw CFU values for which

are shown in Section 6.4.2. Subsequent settings such as the single room at YAB and the

HBN04-01 standard hospital four-bed accommodation will be modelled using computa-

tional fluid dynamics and investigated in Chapter 7. There is no evidence to suggest the

existence of extremely high CFU values or clumping sometimes represented by a Poisson

distribution [198] and hence will not be assumed within this model. Instead a log-normal

distribution will be used based on CFD data produced for each scenario including the

respective standard deviation.
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Figure 6.5: Empirical CFU values for test case PaCE chamber single room pa-
rameter V .

6.4.3 Model Input: Surface-To-Hand Transfer Efficiency (λ)

Transfer efficiency, which represents the percentage of surface contaminant transferred

to the hand during a contact event has been shown to be one of the most important

parameters when modelling dermal exposure [83], yet it is one of the most troublesome

to accurately measure [84]. However transfer efficiency could possibly be a function of

multiple ambient parameters such as surface physiology, contact frequency, duration and

pressure; concentration of transferrable material on surface; temperature and or humidity.

Parameters that are not taken into account during pathogen transfer are often denoted:

The physiological state. Bacterial environmental stress such as extreme temperature,

starvation, exposure to detergent or UV rays and biofilm formation can significantly affect

transfer efficiency [259]. Hand-to-surface contacts may also result in no transfer or a failed

transfer. Beamer et al. [84] highlights the paucity of thorough experimental studies for

estimating surface-to-skin pathogen transfer and raises the question whether chemicals

tracers can act as acceptable surrogates.

Probability distributions for λ have been published by the EPA for chemicals, mainly

relating to pesticides or other toxic household compounds. Beamer et al. [84] collate the

most extensive database of chemical transfer experiments known to date. Results show
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measurements from surfaces in the domestic environment such as carpet, vinyl or foil, and

no such database exists for pathogen transfer.

Rusin et al. [275] conclude from experimental studies, that the transfer efficiency from

surfaces to hands varies between pathogens. In three separate experiments, the transfer

of Gram-positive bacteria, Gram-negative bacteria and bacteriophage is reported to be

38.5%, 65.8% and 27.6-40% respectively from non-porous surfaces. However, the transfer

rate reduces to below 0.01% when porous fomites are evaluated. In other studies con-

ducted on transfer to hands from a wider range of surfaces [21, 253], Rusin’s findings are

corroborated with regards the high discrepancy between porous and non-porous materi-

als. Furthermore ambient humidity appeared to play an important factor by increasing

transfer rates, where Brouwer et al. support this with powder transfer experiments from

glass plates to hands [271].

Lopez [21] detected significant differences of pathogen transfer under controlled conditions

where in particular: Drying time, contact time, pressure, friction, type of material, and

porosity of the fomite significantly altered transfer. However transfer efficiency was found

to be greatest under high relative humidity (40-65%) for both porous and nonporous sur-

faces. Widmer et al. [276] allude to the repellent effect of natural fats on hands against

pathogen accretion, however they did not note that this may be down to the individual

microorganism type. In particular hydrophobic bacteria such as enterococcus adhere bet-

ter to hydrophobic surfaces such as unwashed oily hands, PVC or rubber and therefore

do not transfer to non-hydrophobic surfaces readily [259, 277]. On the other hand, bac-

teria exhibiting hydrophilic characteristics (e.g. S. aureus) attach better to hydrophilic

surfaces such as stainless steal. Therefore these may be transferred less readily to oily

skin. Widmer et al. [276] do highlight the detrimental effect of hand washing on the skin’s

natural properties. Nevertheless, humidity may be the overriding factor against the nat-

ural preference for attachment of the microorganism. Cracks and unevenness in rough

surfaces tend to transfer microorganism less readily due to the adhesion properties within

the microscopic level undulations. However biofilm may also grow here, creating large

inocula but consequently prevent high transfer efficiency [277].

Combinations of wet and dry transfer in experiments conducted by Satter et al. [253] show

that six species of bacteria are more efficiently transferred from moist donor fabrics than

from dry ones. Percentage transfer efficiencies ranged from 0.1% to 2% which compare
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Figure 6.6: Empirical comparison between transfer of bacteria to porous and
non-porous surfaces λ. Data reproduced from Lopez et al. [21].

well to those by Rusin et al. [275] for non-porous surface to finger pad transfers. Surface

categories within the hospital room are categorised into porous or hard and non-porous.

All except the patient and bed are considered non-porous. Friction was also found to yield

a fivefold increase in the level of transfer from fabrics to finger pads. Differences also ex-

isted between materials tested where S. aureus transferred more readily from hydrophobic

polymer based materials in comparison to cotton, a hydrophilic material. Furthermore

McDonagh et al. [278] reveal that the effect of pressure may be of more importance than

previously thought, where a clear step transition in transfer of fluorescein between sur-

faces is observed as pressure increases. However to what extent synthetic tracers can be

compared to pathogens remains unclear. Inconsistencies within experimental techniques,

in particular including methodology and data collection render transfer efficiency particu-

larly hard to capture. It is important to note that pressure recovery methods such as agar

stamping or swabbing can alter the recovery rates due to the unequal pressure exerted

during experimentation. Biofilms or variations in bacterial adherence can also confound

these results [259]. The glove-juice method [39] for sampling CFU counts on hands elim-

inates much of this variation where a glove is filled with 20ml of agar broth fitted onto

hands and massaged for 1 min.
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The food and drug administration (FDA) in the USA produce research often parallel to

that within the health-care setting, investigating the same mechanisms of transmission.

Montville et al. [279] conducted an in-vitro experiment (n=30) to examine the transfer of

Bacillus spores from artificially inoculated chicken to food handlers’ gloved and ungloved

hands. To an ungloved hand bacillus spores were transmitted more readily based on a

normal distribution with sample mean 0.71 log10 reductions and a standard deviation of

0.42log10. Conversely, transfer to a gloved hand was found to exhibit a Gamma distribution

with shape parameter 5.91 and scale parameter 0.40. This is equivalent to a minimum of

0.583log10 and a maximum of 6log10 reductions.

Perhaps counterintuitively, a negative linear correlation was found by Montville et al. [269]

for the acquisition of bacteria with respect to inoculum size on the source surface. This

may well pose important implications for research seeking to determine bacterial accretion

rates, since the variation in transfer efficiencies previously reported to be associated with

particular activities may in fact be the result of differing initial surface pathogen loadings.

The initial inoculum size on the source and the amount of bacteria transferred must

both be considered to accurately determine bacterial transfer rates. Pèrez-Rodriguez

et al. [259] suggest that either the attachment strength to a surface alters depending

on inoculum size or alternatively that biofilm matrix strength increases exponentially as

clump size increases as possible explanations. It has been also reported that non-grouped

or clumped cells present poor adherence properties and hence lower pressures are required

for transfer. Therefore the length of time since disinfection is an important factor to be

considered [166]. This investigation works on the premise however, that the microorganism

under consideration present relatively low resistance to transfer due to frequent cleaning.

Therefore Table 6.3 will be used as the basis for an empirical distribution for λ.
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Lead au-
thor

Ref. % transfer or
distribution

Surface
type

Organism

Lopez [21] 12 - 54 Non-Porous Gram -ve bacteria
Lopez [21] 1.9 - 15 Porous Gram -ve bacteria
Montville [279] Γ(5.91 , 0.4,-5) Porous Bacillus spores
Rusin [275] 40 - 41 Non-porous Micrococcus: Gram +ve becteria
Rusin [275] 0.1 Porous Micrococcus: Gram +ve becteria
Rusin [275] 27.6 - 38.47 Non-porous Serratia: Gram -ve becteria
Rusin [275] <0.01 Porous Serratia: Gram -ve becteria
Rusin [275] 33.47 - 65.8 Non-porous PRD-1: bacteriophage
Rusin [275] 0.01 - 0.04 Porous PRD-1: bacteriophage
Schaffner [257] ln N ∼ (-0.93,

0.27)
Porous Gram -ve bacteria

Satter [253] 0.1 - 2 Porous Gram -ve bacteria

Table 6.3: Published data on percentage transfers (λ) from surfaces onto hands

6.4.4 Model Input: Hand-To-Surface Transfer Efficiency (β)

Experimental investigations show that in some special cases pathogens are only accrued

and not deposited, in general however a significant quantity of material residing on hands

will be transmitted reversely to the surface during contact [272, 275]. It has previously

been acknowledged in Section 6.4.3 that the transfer efficiency λ may depend heavily on

surface contact time and also frequency due to skin saturation [271] such that the same

may be true for its counterpart β:

β = β(inoculum size, contact time,pressure, skin/surface humidity, surface type, friction)

More generally however, Brouwer et al. [271] explored this relationship and discovered

that at a relatively low surface contact count of 6, saturation appears to affect accretion

and deposition is visible. Again however, the chemical tracer used in the aforementioned

experiment altered the hand’s natural humidity through it’s hydrophilic properties. There-

fore to include a possible deposition parameter (β) into the accretion model, the extent

to which this affects CFU counts can be evaluated through sensitivity analysis described

in Section 6.6. Rusin et al. [275] conduct an experiment to examine the transfer efficiency
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from subjects’ fingertips to their lips. And although this appears to be an uncontrolled set-

up their results showed transfer rates up to 35%. Montville et al. [269] demonstrate that

a difference exists between the direction of CFU transfer. Statistically significantly lower

transmission is shown during transfer from hands to fomites than vice-versa. They also

highlight the influence of inoculum size on the efficiency of transfer, showing that when

high levels are used transfer rates are more accurately characterised [23]. Surface-to-hand

transfer efficiencies (β) will be sampled from the empirical data Figure 6.7.
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Figure 6.7: Comparison between a non-porous surface-to-hand and hand-to-
surface transfers

6.4.5 Model Input: Antisepsis Efficacy (h)

Antisepsis efficacy refers to the efficiency of reducing the CFU count on HCWs’ hands

after performing one of the three type of hand hygiene: Hand washing with either bland

or medicated/antibacterial soap, removal of non-surgical gloves or dry rubbing with a

waterless alcohol agent (minimum 61 or 62% ethanol by volume).

6.4.5.1 Gloves

Pittet et al. [22] performed an observational study of some 417 HCW during 281 rounds

and subsequent glove juice testing in a tertiary teaching hospital finding a significant
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increase between the transfer efficiency of pathogens to gloved vs. ungloved hands (see

Figure 6.8). This translated to 3 CFU/min on average with gloves vs 16 CFU/min in the

ungloved case. Interestingly they noticed a clear trend indicating that HCW who wore

gloves were less likely to disinfect their hands post-event. A linear link had then been

established between the bacterial colony count on the hands and the length of the duration

of the care. This lead the researchers to interpret that the HCW erroneously believe the

gloves to be impermeable to pathogens. Gloves made from latex or nitrile compounds

are hydrophobic in nature, naturally repelling hydrophilic microorganism [276]. Their

data is presented in Figure 6.8 and may appear bimodal in nature, however truncation

of results are noted due to measuring techniques particularly with respect to maximum

colony counts on Petri dishes.
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Figure 6.8: Distribution of CFU adhering to nurses’ hands after care, comparing
gloved vs. ungloved hands. Data reproduced from Pittet et al. [22].

Montville et al. [279] demonstrate the partial effectiveness of the glove as a physical barrier,

in particular highlighting the higher adherence % of Gram-positive bacteria to skin through

latex gloves during cutting and moving chicken pieces. These results are also supported by

investigating the transfer from a fomite such as a water tap to hands. However “A dirty

hand in a clean glove” [242] highlights the permeability of latex gloves to pathogens both

resident and transient. Research also suggests that permeability of gloves increases over

time, such as when handling food. However this current study considers only relatively
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short care activities and hence will assume constant transfer [280]. Epic2 [28] stipulates

that hand-washing should take place after de-gloving, however this was only observed in

8% of the cases at YAB and the effects of hand-antisepsis on very low inocula has not been

experimentally characterised. Therefore this research will focus on sole hand antisepsis

after each episode of care (see Table 6.4).

Lead author Ref. Distribution In-vivo (i)
/-vitro (t)

Organism

Montville [279] Γ ∼ (5.91, 0.40) t Bacillus spores

Table 6.4: Literature for % transfer through clinical permeable gloves onto hands.

6.4.5.2 Hand washing

Hospitals in the UK are at liberty to choose and use a variety of handwashing products,

including both plain and antimicrobial soaps. The latter, as outlined in Chapter 5 includes

4% minimum Chlorhexidine gluconate (CHG), triclosan and iodophor products [28], the

former being the most common. Blood and bodily fluids however have been shown to

inactivate the active ingredient in CHG and thus is not used universally [249]. Montville

et al. [23] highlight the difference between standard plain soap and antimicrobial soap,

where the latter performs statistically better when sufficiently high inocula are used dur-

ing testing. Differences between results and cohorts of participants appear to be somewhat

vague below inocula levels of 105 CFU per surface. Montville et al. [23] suggest through

meta-analysis that he most important factors in hand hygiene efficacy are the soap type

followed closely by hand drying method along with the use of a sanitiser. Inoculum size

was shown to be highly significant when reporting log10 CFU reductions, with realistic

values of 5-7 log10 demonstrating the full effect of the antimicrobial soaps tested. A test

of the same anti-sepsis agent should be conducted against incremental inocula sizes to

verify this claim and hence avoid confounding factors such as variation in experimental

method or compound preparation. Nevertheless a significant positive linear correlation

was found between inocula size and log reduction. A minimum level of inocula was shown

to be particularly important when evaluating hand-antisepsis efficacy, where statistically

anomalous log10 increases were noticed at inocula values below adequate detection levels
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(2 log10 CFU). Resident microflora also proved to be statistically harder to remove com-

pared to exogenous organisms in all experiments conducted, the rationale for which was

thought to be one of two reasons: Firstly the inocula levels were insufficient to produce

accurate experiments or secondly the physical attachment characteristics of endogenous

microflora may be actually different. No significant differences were found between Gram-

positive and Gram-negative bacteria however (see Figure 6.9). This raises the question

of whether certain hospital pathogens can actually be considered endogenous to HCWs’s

hands [22].
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Figure 6.9: Hand hygiene efficacy of antibacterial soap comparing resident vs.
exogenous microflora reduction (data from Montville et al. [23]).

Sickbert-Bennet et al. [281] conducted an extensive laboratory study of typical handwash-

ing agents used on hospital premises, two of which were in use at YAB: A waterless foam

62% alcohol rub and antibacterial soap and water. They used Serratia marcescens, a

Gram-negative bacteria, along with MS2 bacteriophage both of which pose a low risk to

humans but that serve as surrogate organisms. The inherent variability in hand wash-

ing seen in the published literature [23], particularly within the food protection industry,

underscores the importance in efficacy differences between removal of Gram-positive and

Gram-negative bacteria as well as viruses. Emphasis is also made on discrepancies be-

tween ease of elimination of exogenous (or foreign) rather than endogenous microflora.
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Therefore, the data is not amalgamated and forms a normal distribution curve of log10

reductions.

Girou et al. [282] conducted in-vivo testing of the efficacy of alcohol rub and antimicrobial

soap against CFU counts. Their methodology used hand imprints on Petri dishes and

subsequent dilution and culturing techniques rather than glove-juice analysis. Marked dif-

ferences were noted over results obtained by Sickbert-Bennet [281]. It appears that in-situ

(in-vivo) testing, under less stringent conditions results in efficacy substantially lower than

previously suspected during in-vitro testing. This may be related to the theory proposed

by Montville et al. [269], that inocula sizes under a certain level cannot accurately predict

the efficacy of the hand-antisepsis, where detection and variation errors dominate.

According to published experimental data by the CDC hand washing with plain soap

for 15s achieves a microbial reduction of of 0.6-1.1 log10 which increases to 1.8-2.8log10

after 30 seconds [283]. However, hand washing within hospital scenarios of typically <10

seconds [20]. Therefore, hand washing with bland or plain soap may fail to remove the

stated amount of exogenous microflora under heavy burdens. Minimal decreases or indeed

minimal increases in resident microflora have been associated with the daily use of soap

and water [284].

Lead author Ref. log10 reduction i/t Antisepsis agent Organism

Girou [282] (1.40 - 1.97) i 4% CHG Gram +ve bacteria

Larson [249] (1.2 - 2.1) i 4% CHG Gram -ve bacteria

Montville [23] (2.42 ± 0.88) t Plain soap Gram -ve bacteria

Montville [23] (1.91 ± 0.75) t 4% CHG Gram -ve bacteria

Sickbert-
Bennet

[281] N ∼(1.89 , 0.1) t 4% CHG Gram -ve bacteria

Sickbert-
Bennet

[281] (0.70 - 2.01) t 4% CHG MS2 bacteriophage

Weber [284] (2.1 - 2.4) t Plain soap Bacilus spores

Weber [284] (1.1 - 2.2) t 2% CHG Bacillus spores

Table 6.5: Literature for log10 reductions of CFU for hand-washing. Where i=in-
vivo and t=in-vitro, and CHG denotes chlorhexidine gluconate. N ∼ (µ, σ) rep-
resent the normal distribution with parameters µ and σ.
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6.4.5.3 Alcohol rub

Results obtained by Girou et al. [282] consistently showed that alcohol rub under-performed

significantly in comparison to antimicrobial soap when experiments were carried out in-

vivo on HCWs’ hands. In fact, results showed that either a neutral or negative effect was

shown on resident flora. Hand rubbing length only showed minor increases in reduction

from 10-120 seconds. Discrepancies with these results were found by Weber et al. [284]

however, where the alcohol rubs (61 and 62% ethanol by volume) often outperformed

antibacterial soap under laboratory conditions. Sickbert-Bennet et al. [281] conduct an

extensive investigation comparing alcohol rubs against antimicrobial soaps but cannot sub-

stantiate Weber’s claim for Gram-negative bacteria. Further in-vitro tests against MS2

bacteriophage further negated this claim, where significant increases of organism counts

were found after alcohol usage.

Widmer et al. [276] conclude that in general waterless hand-rub is an ideal replacement

for hand-washing both for time-saving purposes and level of antisepsis. Table 6.6 shows

the typical ranges of log10 reductions used to formulate the hand-hygiene input parameter

(h) in PAM.

Lead author Ref. log10 reduction i/t Antisepsis agent Organism

Girou [282] (1.85- 1.98) i 62% alcohol Gram +ve bacteria

Sickbert-
Bennet

[281] (-0.66 - 0.15) t 62% ethanol MS2 Phage

Sickbert-
Bennet

[281] (1.19 - 1.83) t 62% ethanol Gram -ve bacteria

Sickbert-
Bennet

[281] N ∼(1.10,0.81) t 62% ethanol Gram +ve bacteria

Weber [284] (-0.2 - 0.2) t 61% ethanol Bacilus spores

Table 6.6: Literature for log10 reductions of CFU for waterless alcohol rub, dis-
played as a continuous distribution or as a range. Where i=in-vivo and t=in-vitro
testing.
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6.4.5.4 Summary

Based on the literature findings it is important to differentiate between clinical settings

where inocula are often small and laboratory results, where inocula levels are generally

higher whereby avoiding erroneous or biased results. Inocula levels on HCWs’ hands

tended to be often quite low 0.75 log10 ∼ 2.5 log10 CFU [285], but never exceeding 3 log10

CFU in the case of Pittet et al. [22]. This was often due to the detection technique such as

glove-juice methods [39]. Soap volume (in millilitres) or hand-wash time appeared to exert

no strong distinguishable effect on log10 reductions, nor was there any sizeable discrepancy

between bland soap and antimicrobial soap when analysing these variables [23]. Hence this

study will judiciously err on the side of caution, sampling hand hygiene efficaciousness from

published literatures only where significant sample sizes are available [23] such as the data

in Figure 6.9. Microorganism type also appears to exert a difference on transfer efficiency

or hand hygiene efficacy, which is likely to be due to their individual adherence properties.

Particular difference is noticed between bacteria and viruses (or bacteriophage), where

removal of the latter is often an order of magnitude lower. Nevertheless bacteria is the

primary concern of many infection control teams, where MRSA or C.Diff rank highest on

the prevention list. Consequently a broad view is taken, taking into consideration a wider

distribution in order to be less organism specific.

6.5 Preliminary Results and Validation

Based on each type of care laid out in Section 5.3.1 PAM was calculated via Monte-Carlo

sampling in Matlab (R2012a). Values were drawn from the above distributions for 1,000

HCWs to produce CFU (Y) for each type of care based on:

Y ∼ Y (λ, h, A, V, β, n)

Figure 6.11 shows a scatter plot of CFU values against the total number of surface each

HCW touched while performing an episode of direct care. At first glance the data appears

to positively correlated. That is to say, that as the number of surface contacts increases

so does the final CFU value; which is a logical trend given the construction of PAM.
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Figure 6.10: Hand hygiene efficacy of three different types of hand-antisepsis.
Data from Montville et al. [23].
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Figure 6.11: Scatter plot of CFU (Y) against patient contact for direct care.
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The important question now is: “To what extent is this model realistic?” Making good

estimates of the input parameters is only half way there. Published validation data which

measures contamination levels of HCWs’ hands is very scarce. In particular, Pittet et

al.’s [22] is the only known published study to exist that quantifies both CFU values along

with the time spent in the room by the HCW. However their methodology does not include

surface swabbing and hence a specific value for V cannot be estimated. Nevertheless let

us assume that other variables such as HCW hand surface area, surface types and nursing

behaviour are comparable between scenarios. Therefore it is reasonable to compare the

distribution parameters such as the shape of the resultant plots of CFU counts. Data

produced by PAM is hence compared against the empirical data published by Pittet et al.

(and reproduced in Figure 6.8).

Rather than attempting to convert surface contacts to time spent in the room and perform

ANOVA on the two data samples, a visual quantile-quantile plot (or QQ-plot) is shown in

Figure 6.12. Since every hospital has its own microbial burden absolute values are not of

interest here, but the closeness to linearity of the data comparison. This is a robust linear

fit of the two samples. The solid red line joins the first and third data quartiles, where

the dashed portion extrapolates the solid line. Good comparison is shown particularly

at lower (first quartile) values (p=1× 10−3), where a higher concentration of data exists.

Higher values on both sides become scarcer and the fit performs less aptly (p=0.12). The

reader must note that detection levels by glove-juice and subsequent Petri-dish techniques

carried out by Pittet et al. have lead to truncated data, where colony counts over 300 were

rounded down to 300 CFU. If this data were extrapolated, potentially a tighter fit may be

produced (p' 0.02). However, pending greater sources of data, it is not unreasonable to

conclude that at least through the first two quartiles or the first 50% of CFU colonisation

levels, PAM is a capable and realistic model.

6.6 Model Sensitivity Analysis

Quantitative sensitivity analysis (SA) of a mathematical model addresses two of the funda-

mental questions surrounding the effect that input parameters have on the overall output

uncertainty [286]:
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Figure 6.12: Q-Q plot of published empirical data from Pittet et al. [22] against
modelled data by PAM.

1. “Which of the input variables’ variance influences the model output variance the

most?”

2. “Which of the input variables have to be known more accurately to reduce output

variance?”

Existing literature concentrates on two categories of sensitivity analysis: local and global

SA. Local SA studies show some small variations of inputs around a given value change in

the value of the output. Typically this is done by partial derivatives of the model output

Y with respect to a given input factor Xi evaluated at its baseline x0. Consider the model:

Y = f(X1 , X2 , X3 , ..., , Xn) (6.6.1)

Where X is a set of n non-zero input parameters drawn from some distributions. Then:

∂Y

∂Xi

∣∣
x0
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However we cannot use this method on the current model due to it being defined as a

recurrence relationship, i.e. Yi = AiViλi − βYi−1. This does not yield a easily defin-

ably analytical derivative and instead we should seek other numerical methods as follows.

Global SA takes into account all the variation ranges of the inputs, and apportions the

output’s uncertainty to the uncertainty in the input factors. For the subsequent chapter

we will make use of global SA. It is worth mentioning that in SA type I errors are those

that are made by incorrectly suggesting that a non-influential factor is important. Type

II errors are defined as finding important factors uninfluential. It is also worth including

errors of type III which refer to analysis of input factors which are completely off the

mark. [264].

6.6.1 Methodology

Common methods of sensitivity analysis amongst modellers leads to the application of

what is known as a perfunctory ‘One-factor-at-a-Time’ analysis [287]. This technique

fixes all-but-one input variables and allows this to vary over some ‘best guess’ threshold.

The resulting output variance is then deemed to be solely due to the variation of the one

input factor which was allowed to vary. However what is not accounted for here is the

interaction between input factors, which may be exacerbated by the extent of uncertainty

of all factors. Hence, once this method is judiciously excluded, the choice of SA techniques

will depend mainly on the following factors:

• The computational cost of the model

• The number of input factors

• Model features such as additivity

6.6.1.1 Effect of unobserved Markov chain transitions

The implicit variable of Markov transition probabilities needs to be treated separately to

all other explicit parameters of the model. As discussed in Section 6.3.1.3, sparse transition

matrices P̂ may cause certain transitions i −→ j to appear impossible. However, through

the use of bootstrapping and smoothing techniques, some variation can be accounted for
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in P̃ . Confidence intervals at the 5% level show where the bulk of the bootstrapped

transition probabilities reside. Consequently, this has an effect on the HCWs’ Y value.

The CFU count on a 1000 HCWs was calulated based on the lower and upper confidence

interval transition matrices P̃lower CI and P̃upper CI respectively. These individual values

were compared against the values for Y computed based on the maximum likelihood

estimate P̂ for each care type:

∣∣∣Y (P̂ )− Y (P̃lower CI)
∣∣∣

Y (P̂ )
× 100,

∣∣∣Y (P̂ )− Y (P̃upper CI)
∣∣∣

Y (P̂ )
× 100,

Percentage differences are quantified in Figure 6.13. Mealtimes shows the lowest discrep-

ancy, largely because the care is so regimented. The opposite is reflected well in personal

care.
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Figure 6.13: Confidence intervals representing the percentage difference between
mean Y values calculated by the maximum likelihood estimates P̂ , and those
calculated by P̃lower and P̃upper. Errorbars represent one standard deviation either
side of the mean.

6.6.2 Pearson Correlation Analysis

Graphical methods play an important role in all sensitivity analysis by means of of visualis-

ing the relationships between the input parameters and output factors. Initial investigation
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of the effect of parameters on the output Y can be done via visual scatter plots of input

factors (see Figure 6.14). One way of interpreting each figure is that they maintain the

value along the x-axis fixed while all other parameters vary. Alternatively they can be

seen as allowing all parameters to vary and choosing to plot only one variable against the

output in each instance.

Correlation between variables is investigated initially by the use of the Pearson’s product-

moment introduced in Chapter 5. Briefly, this parametric technique provide a measure of

the strength of the linear relationship between two variables where covariance of the two

variables is divided by the product of their standard deviations.

Pearson’s correlation coefficient (r) is given for two samples by:

r =
∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)
√∑n

i=1

(
Xi − X̄

)2
√∑n

i=1

(
Yi − Ȳ

)2

where Ȳ is the sample mean and Yi are the original values. The geometric interpretation

of this value is the cosine angle between the linear regression lines of both samples given

by: A linear regression model of an N × k input sample X against the output Y takes the

form:

Yi = β0 +
k∑
j=1

βjXij + εi

where βi are regression coefficients to be determined and εi = Yi− Ŷi is the approximation

error. And were Ŷi is the approximated output obtained from the regression model and

Yi are the original values and hence Ȳ is their mean.

Table 6.7 displays the Pearson correlation coefficients r and the corresponding p-value for

input factor plotted against the output CFU value (Y ). The p-value is the probability that

a correlation is found if in reality there is none, whereby a significance test is performed

on the gradient of the resulting linear regression line. That is to say the null-hypothesis

is that the correlation is zero. Surface contacts (n) appears to be the most important

factor in determining the cumulative CFU count, with a strong linear correlation. This

is also verifiable through Figure 6.14a where a linear trend is observed, not exempt of

noise however. The interactions or influences of the other variables are not quite so visibly

quantifiable. Pearson’s test reports the influence of each parameter on the output value
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(a). Surface contacts (n) vs. Y (b). Transfer efficiency λ vs. Y

(c). Transfer efficiency β vs. Y (d). Hand surface area (cm2) A vs. Y

(e). Surface CFU/cm2 count V vs. Y (f). Hand hygiene efficacy h vs. Y

Figure 6.14: Visual inspection of input parameters plotted against output Y .
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by considering linear correlation. Ranking of correlation coefficient values according to

their r-value implicitly implies importance of a parameter on the variation of the output

variable.

Variable
n A V λ h* β

Corr. coefficient. r 0.775 0.085 0.251 0.0182 0.0259 -0.0179
p-value 0.001 0.0891 0.0982 0.0671 0.4 0.0716
Rank by r-value 1 3 2 5 4 6

Table 6.7: Pearson correlation coefficient comparing Y against the different vari-
ables. * indicates inclusion of probability of hand-antisepsis not just efficacy.

A lower p-value means a more trustworthy correlation, however in the case of hand-washing

efficacy Pearson’s correlation indicates that the strength of the correlation is poor. How-

ever it is important to review this in the visual relationship shown in Figure 6.14f. It can

be seen hand-hygiene efficacy appears to exhibit bimodal properties, which is a reasonable

assumption given that hand hygiene compliance varies between care type. Clearly this

is a binary function with either hygiene taking place and being somewhat efficacious or

not taking place at all. Removing those episodes where hand hygiene is not performed

yields an r value of 0.68 with a p-value of 0.04. Surface CFU/cm2 (V ) can be seen to

be ranked in second position, some way behind the effect of n, with only a weakly linear

influence. Although experimental results tentatively suggest a dependence of transfer effi-

ciency (λ) on inoculum size, effectively rendering it a function of V thus: λ = λ(V ). There

is insufficient data to substantiate this and this particular model does not considers it.

Instead scenarios with lower inoculum sizes are contemplated here as representing realistic

hospitals. Ranking of parameters by influence can only be achieved qualitatively through

Pearson’s correlation, where their actual quantitative influence of the individual param-

eter cannot be measured directly. Therefore a more sophisticated method of sensitivity

analysis is required and described subsequently.
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6.6.3 Sobol Indices Si

Calculating a Sobol index offers another approach to exploring sensitivity. Variance based

techniques are best suited to this type of sensitivity analysis because they are model-

independent or model-free and have the ability to capture interactions between input

factors that are not limited to a small range of values in the factors. The latter often

is the case when looking only at scatter plot variations. Each simulation run used here

requires less than a second of CPU time which allows scope for the variance-based Sobol

techniques.

Different input factors can be denoted in general by Xi, where i = 1 . . . d and in our

case X = (A, V, λ, β, n, h). Without loss of generality any function Y = f(X) can be

decomposed into the unconditional expectation E(Y ) and the conditional expectation on

Xi E(Y |Xi):

f(X) = f0 +
d∑
i=1

fi(Xi) +
d∑
i<j

fij(Xi, Xj) + . . .+ f12...d, (6.6.2)

where f0 is a constant and fi is a function of Xi, and fij is a function of Xi and Xj , etc.

In particular:

f0 =E(Y ) (6.6.3)

fi(Xi) =E(Y |Xi)− f0 (6.6.4)

fij(Xi, Xj) =E(Y |Xi, Xj)− f0 − fi − fj (6.6.5)

(6.6.6)

It can be noted that fi is the effect of varying Xi alone, and is known as the main effect.

The conditional expectation E(Y |Xi) can be calculated by splitting up the scatter plot in

Figure 6.15 into arbitrarily thin slices (e.g. red box in Figure 6.15) along the X axis and

averaging the values of (Y |Xi) within the same slice Xi. If this conditional expectation

is found to vary strongly across the range of Xi then this would indicate that Xi was an

important factor.
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Figure 6.15: Conditional variance of Y within the red box representing a specific
value Xi = xi∗

Unconditional variance V (Y ) is the variance calculated by allowing all input factors to

vary. Fixing a parameter Xi at a baseline value x∗i yields a corresponding output Y (within

the red box in Figure 6.15). The variance due to this factor fixing taken over all factors

apart from Xi (i.e. X∼i) is called the conditional variance and is given by:

VX∼i(Y |Xi = x∗i ) (6.6.7)

To avoid the variance due to fixing of a factor Xi becoming larger than the unconditional

variance we take the expectation of Equation (6.6.7):

EXi(VX∼i(Y |Xi = x∗i )) (6.6.8)

and in particular by the law of total variance:

EXi(VX∼i(Y |Xi = x∗i )) + VX∼i(EXi(Y |Xi = x∗i )) = V (Y ) (6.6.9)

Hence the influence of a particular factor can be seen directly on the unconditional vari-

ance when either EXi(VXi∼(Y |Xi = x∗i )) is small or VX∼i(EXi(Y |Xi = x∗i )) is large. A
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sensitivity measure is given by:

Si = VX∼i(EXi(Y |Xi = x∗i ))
V (Y ) , 0 ≤ Si ≤ 1 (6.6.10)

A high value of Si indicates an important factor. However a low value does not necessarily

mean the opposite. Properties which will help with interpreting Si:

• Si is the measure of how much the variance of Y could be reduced if Xi was fixed.

• By Equation (6.6.9) 0 ≤ Si ≤ 1.

• ∑i Si = 1 for additive models and less than 1 for non-additive models. Then 1−∑i Si

is an indication of factor interaction.

6.6.4 The Total Effect ST i

A measure of non-linear or in particular the effect of factor interaction can be obtained

from the Total-effect index ST i. This is the contribution of the output variance of Xi,

including all variance caused by its interactions with any other input variable thus:

ST i = EX∼i(VXi(Y |X∼i))
V (Y ) = 1− VX∼i(EXi(Y |X∼i))V (Y ) (6.6.11)

Properties which will help with interpreting ST i:

• ST i ≥ Si ⇔ Xi does interact with other factors.

Calculation of Sobol indices of both kinds are achieved numerically as follows: Quasi

Monte-Carlo sampling of the distributions in a 2×d-dimensional hyperspace were per-

formed in Matlab (2012a MathWorks, MA, USA) and the Sobol indices were calculated

using the software package SimLab 2.2.1 [Joint Research Centre of the European Commis-

sion]. Table 6.8 shows the Sobol first order indices Si and Total order indices ST i. PAM is

a non-linear recurrence model, which is highlighted by ∑i Si = 0.827, being an indicator of

mild non-linearity. However it is also important to note that notable interaction between

input factors is shown since ST i ≥ Si ∀ Xi.
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Input factor First order indices Si Total order indices ST i

V 0.460152 0.562448
h 0.254362 0.269509
A 0.081124 0.120292
λ 0.037128 0.093935
β 9.05e-6 1.94e-5

TOTAL 0.827 1.045

Table 6.8: First order and total sensitivity factors for each input factor for PAM

6.6.5 Linear Loading of CFU (Y) Without Deposition

According to SA methods β has been shown to exert the smallest influence on the final

CFU count (see Table 6.7 and Table 6.8). It may be considered reasonable to discard

this term entirely and simplify the model to a purely linear form. Then since this would

assume no deposition, the function of accretion could be described simplistically by the

four parameters discussed above:

Y = f(V , λ ,A , h) (6.6.12)

In general surface-hand pathogen loading can then be described as the sum of independent

contact events. Figure 6.19 shows the comparison between the resulting CFU values

generated by Equation (6.6.13) and Equation (6.4.1).

Y =
n∑
i

λiViAi(1− h) (6.6.13)

Comparison between bi-directional and unidirectional transfer by means of ANOVA show

that no statistically significant difference exists at the 5% level (p=0.042). Brouwer et al.

support this conclusion suggesting that pathogen loading on the skin is far from saturation

point and therefore non-porous surface contact will lead to negligible deposition. Despite

this, Lopez [21] highlighted through in-vitro experimentation that deposition on non-

porous hydrophilic surfaces such as glass and stainless steel is statistically non-negligible.
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Figure 6.16: Comparison between unidirectional and bi-directional transfer of
CFU

Therefore the statistical analysis should be treated with caution and henceforth the bi-

directional model will be maintained in this study.
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6.7 Uncertainty Analysis and Parametric Study

Uncertainty analysis which is also known as error propagation is the process of inves-

tigating the intrinsic error of a value that has been calculated from several measured

quantities [264]. For example in this case hand-hygiene efficacy. An uncertainty cloud is

the set of all possible data points within the parameter’s range [254]. If one were 100%

certain that the distributions of the input parameters were accurate, then an uncertainty

cloud would essentially be multiple copies of the same input parameter distribution. In

the more usual case, each point in the uncertainty cloud represents a potentially cor-

rect parametrization of the variability distribution for that input. The uncertainty cloud

amounts to a set of variability distributions, each of which is given an equal chance of

being representative for this target population. The cloud should span the range that

could reasonably be assigned to this population, with a greater density of points in the

more likely regions of the parameter space.

6.7.1 Care Type

The differences between types of patient care are discussed at length in Chapter 5. First

a brief recap: 2011 saw the wide-spread introduction of a new nursing paradigm into

UK hospitals which emphasised short but frequent periods of care: Intentional round-

ing. This brought the focus towards preventative rather reactive care. Consequently this

also reduced paperwork and as a corollary was designed to reassure patients who felt iso-

lated in single rooms, letting them know that a nurse wasn’t far away. Care performed

by the HCW is now categorised into: Direct care, housekeeping, mealtimes, medication

rounds, miscellaneous care and personal care. Chapter 5 highlighted that the major dif-

ferences between care types lies in the number of surfaces touched and the hand hygiene

regimes/frequencies. However it did not tell us anything about the contamination level of

HCWs’ hands.

It is assumed that the underlying mechanisms of PAM do not change based on care type

therefore by analysing the contamination levels we can indirectly distinguish between care

types. Figure 6.17 displays boxplots of before and after hand-hygiene for each type of

patient care. Rankings shown in Table 6.9 in order of CFU decontamination was found

to remain the same both before and after, implying that hand-hygiene probabilities are
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not significantly different between care types. Potential for contamination during Personal

care was shown to be significantly higher than any other care type. Interestingly, however,

housekeeping ranked second in both occasions.

Direct care Housekeeping Mealtimes Medication MiscellaneousPersonal care
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Figure 6.17: CFU count by care type before and after hand-hygiene

Table 6.9 shows the difference in handwashing between care types. The difference between

mean before (Ȳb) and the mean after (Ȳa) show that on average personal care exhibits the

largest reduction of hand contamination followed only closely by housekeeping. This is

likely to be due to the possible use of gloves during these procedures.

Care Type

Direct
care

House-
keeping

Meal-
times

Medi-
cation
rounds

Misc-
ellaneous

Personal
care

Ȳb − Ȳa 6.8 10.9 10.7 4.5 2.4 16.9
log10 reduction 0.83 1.03 1.03 0.65 0.38 1.23
Ranking† 4 2 3 5 6 1

Table 6.9: Average decontamination of hands for all care types and rankings from
best to worst performers. † lower ranking is better. Higher log10 reduction is
better. All hygiene types are included.
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6.7.2 Increasing Hand-Hygiene Probability

The hand hygiene guidelines elaborated by the CDC [3] and the WHO [39] both place

hand hygiene and compliance as the gold-standard in preventing infection transmission.

Epidemics of gram positive spore forming bacteria such as Clostridium difficile has been

linked with the use of alcohol-based hand rubs, despite no hand hygiene agents being

reliably sporicidal [241]. Placing alcohol-rub as the most effective weapon in the control

arsenal has proven controversial given the reliance on a ‘magic bullet’ solution. The WHO

clearly states that 30 second handwashing procedures with soap are and remain the most

basic intervention measure. Given time restrictions to all HCWs this appears almost

unrealistic. However Allegranzi and Pittet highlight the factors influencing hand hygiene

compliance amongst HCW: Primarily job status, under-staffing and the misguided belief

that generic latex gloves and gowns are impenetrable to pathogens appear to be the most

influencing factors. McGuckin et al. and Dancer et al. [25] highlight the effects of hand

hygiene compliance programmes are often temporary, however do demonstrate that they

are effective. In particular Sebille et al. [258]found that increasing hand hygiene compliance

rates had only a modest effect on the prevalence of MRSA colonisation.

Consider the effects of a compulsory increase of hand hygiene compliance. That is to

say, assume an hand-hygiene educational program could be implemented that on average

increased the hand-antisepsis probability by 10% each time it was implemented, then what

is the effect it has on the final CFU count?

Figure 6.18 shows how a linear regression model was fitted to the mean reduction CFU

count showing on average a 10% increase in hand hygiene compliance is likely to result in

a just over a 5% reduction in CFU count. In-vitro testing by Montville et al. [23] casts

doubt on the linearity of hand antisepsis effectiveness however, suggesting an exponential

relationship between inoculum size and log10 reduction % during antisepsis. It may also

be worth considering the realistic scenario where if the compliance increased, length of

hand sanitising may decrease to compensate for the interpreted time loss to the HCW.

The percentage of nurse cohorting was considered to be the most effective intervention

measure by Beggs et al. [32], however they reveal that despite a high level of cohorting

amongst nurses, doctors move freely between patients. Indeed in their transmission model,

pathogen transfer cannot be completely eradicated due to this. Dancer et al. again
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Figure 6.18: Comparison of CFU values due to improved hand hygiene. Errorbars
represent one standard deviation either side of the mean.

suggests that doctors in white coats mistakenly believe that their hands and gown are

exempt of full disinfection [24].

6.7.3 Increasing Surface Cleanliness (V )

Dancer et al. [24, 50, 167], Ayliffe et al. [48] and Lewis et al. [168] highlight the importance

of surface cleanliness, in particular the frequency of cleaning high-touch surfaces. Huslage

et al. [35] suggest that high-contact surfaces should undergo decontamination ‘frequently’

but do not assess the relationship between cleaning and surface CFU/cm2 counts. ‘Fre-

quent’ contact are those surfaces which are touched on average once or more during an

episode of care. In the case of the reported data in Chapter 5 this is all the room surfaces

observed. Dancer et al. [25] suggest a baseline cleanliness value of 2.5CFU/cm2 for all

surfaces.

Figure 6.19 shows a comparison between the WHO baseline 2.5CFU/cm2 value for V and

the empirically deduced values from the PaCE chamber experimental scenario. One-way

analysis of variance suggests that the null-hypothesis of samples stemming from similar

distributions should be rejected at the 5% level (p=0.034). Recent research [166] suggests
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Figure 6.19: Comparison between model or empirical derived CFU counts and
the baseline quantity proposed by Dancer et al. [24]

that a latent effect of detergent may in fact cause exponential re-growth after the 8 hour

mark post cleaning of the hardiest bacteria.

6.8 Summary

This chapter represents the creation and development of a flexible, but robust, mathemat-

ical model which calculates the CFU contamination level on a HCW’s hands. Within the

initial sections of the chapter, the relevant model parameters were explored and, where ap-

propriate, continuous distributions fitted to empirical data. Output values compared well

in distribution against available literature, thus providing a sensible framework for further

data accretion. A sensitivity analysis by quasi-random Monte-Carlo sampling quantified

the influence of the input factors described earlier and allows the user to judiciously dis-

card those that create least variance in the output. Or more importantly, focus more

effort in reducing the range of uncertainty of the most important factors. Subsequently an

uncertainty analysis alongside a parametric study highlighted the differences between care

type and colonisation loads. Surprisingly, housekeeping posed higher contamination levels

than direct patient care. As a result the effectiveness of this cleaning procedure carried out

by nurses may need to be rethought. The model also showed that an education program

which induces a linear increase in hand hygiene compliance may not be as effective as

previously considered.
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Models that require empirically derived parameters are as a result, at best by definition

restricted by the quality of available input data [171]. As a corollary variability of scenario

investigation is also restricted by the extent to which the experimental data was tested.

Pérez-Rodriguez et al. [259] consider that models that do not include terms which deal with

pathogen decay will over predict transfer. However not only is housekeeping within UK

hospitals carried out every 6 hours but the hardiest pathogens have been found to survive

on surfaces days post terminal cleaning [51]. Physical pathogen brush-off or decay via

natural causes or via delayed alcohol gel decontamination is not considered in this model.

Both surface type (porous vs non-porous, hydrophobic vs. hydrophilic) and inoculum level

have been shown tentatively to exhibit an important effect on the transfer of pathogens.

To what extent remains unclear and hence this model does not distinguish between surface

finishing or inoculum level. In such a case λ = λ(V ) or potentially λ = λ(n, V ):

λ =


α1, hydrophobic surface;

α2, hydrophilic surface.

This model will be subsequently applied in Chapter 7 to different hospital room layouts, in

particular to the standard single room at YAB and the HBN04-01 four-bed accommoda-

tion. This will facilitate comparison between scenarios through the use of a pre-established

and validated indirect metric.
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This chapter focuses on comparing single and multi-bed ward environments in terms of

contamination through pathogens released from an aerosol source and subsequent accretion

on the hands of health care workers. This draws on the CFD methodology of particle

deposition presented in Chapter 4 to predict the spatial deposition pattern of a bioaerosols

released from a quiescent patient in a single or multi-bed room. By combining this with

the behavioural patterns of the HCW established in Chapter 5 and the validation of PAM

in Chapter 6, the current chapter aims to compare the effect of room layout on the total

contamination levels on the HCWs’ hands during six different types of patient care. This

will be used to compare the standard single room at Ysbyty Aneurin Bevan against the

HBN04-01 guideline four-bed room. Subsequently, the infection risk to the patient will be

240
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quantified by a dose-response model based on the observed patient contact frequency at

YAB.

7.1 Scenario Description and CFD Case Set-Up

Two scenarios are considered in this chapter to compare single and multi-bed room envi-

ronments. Initially, a typical hospital single room layout based on YAB is investigated and

then compared against a standard four-bedded room, similar to wards at Bradford Royal

Infirmary (BRI). Both rooms are assumed to be fully occupied, however only one patient

is considered to be infectious in both scenarios. Initially the effect of ventilation on the

HCW’s dermal pathogen load is assessed at HTM03-01 [73] standard 6 air changes per

hour (ac.h−1) against 4 ac.h−1 within both the single room (cases 1-2) and then within

the multi-bed ward (cases 3-6). All cases and description are shown in Table 7.1.

Case # Room type ac.h−1 Bioaerosol release
location

1 YAB Single 4 Patient head
2 YAB Single 6 Patient head

3 HBN04-01- 4 beds 4 Patient 1
4 HBN04-01- 4 beds 4 Patient 2
5 HBN04-01- 4 beds 4 Patient 3
6 HBN04-01- 4 beds 4 Patient 4

7 HBN04-01- 4 beds 6 Patient 1

8 HBN04-01- 4 beds 6 Patient 2
9 HBN04-01- 4 beds 6 Patient 3
10 HBN04-01- 4 beds 6 Patient 4

Table 7.1: CFD case names and layout.

Airflow patterns and subsequent particle deposition patterns are investigated using CFD.

The CFD settings are as set out in Chapter 4. Simulation of turbulence follows the

prescription of the RANS Reynolds’ Stress Model with standard boundary wall resolution.

Problem specific details are described in the following sections.
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7.1.1 Single Patient Room: YAB

The room design at the recently built Ysbyty Aneurin Bevan hospital (YAB) at Ebbw

Vale is based on standard HBN04-01 single room guideline. The layout of this has been

previously described in Chapter 5: dimensions of the main room are 4.7m× 3.8m excluding

the en-suite bathroom. Mechanical ventilation is provided by a four-way ceiling diffuser

and extracted via a ceiling mounted grille in the en-suite bathroom (see Figure 7.1).

Figure 7.1: Photo of inside a single room at YAB.

7.1.1.1 Model set-up

As this model is designed to represent an occupied room, a quiescent patient is charac-

terised by means of a heated cuboid volume located on the bed. A sink along with a paper

towel dispenser are located above the workstation opposite the bed, to the right of the

entrance. A bed-side table, chair and windowsill are also modelled. The en-suite itself is

not modelled as mainly the door remains shut and hence the air extraction is modelled

as a transfer grille within the door itself. This is represented by a void as capturing fine

detail in which the air exits the domain is not the primary concern [94]. Heat fluxes are

applied to the patient as described in Chapter 4, which is also recapped in Table 7.2.



Chapter 7. Quantification of Risk and Application of PAM 243

Boundary name Dimensions Boundary value

Bed(s) 1 × (1.9m × 1.1m ) Stationary
Inlet diffuser 0.5m × 0.5m 4 or 6ac.h−1

Outlet transfer grille 0.3m × 0.5m 4 or 6ac.h−1

Patient 1m × 0.4m 56W/m2

Lighting None None
Window × 2 1.3m × 0.8m Closed

Table 7.2: Boundary conditions for YAB single room.

7.1.1.2 Mesh generation

The model is similar in dimensions and characteristics to the control environment described

and modelled in Chapter 4. Therefore the reader will be referred to page 129 Section 4.2.9

for full details on both validation strategy and results. Meshing is fully hexahedral with

a maximum cell volume of 1.5625× 10−5 m−3 within the bulk domain and 1× 10−6 m−3,

10cm away from all horizontal surfaces. Careful and high quality boundary meshing is

essential to accurately capture particle deposition velocity [67]. Final cell count is in the

region of 4 million volumes. Mesh dependency was evaluated at double the cell count

as described in Section 4.2.8.1 showing only minor differences, less than 5% in the worst

case. Reducing the cell size any further at the boundary would cause y+ values to drop

below 1 under these conditions causing the standard boundary layer resolution techniques

to become unreliable. Hence no further mesh size reduction should be carried out.

7.1.1.3 Bioaerosol injection

Release was replicated as per Chapter 4, where 2.5µm sized inert particles were released

via a volume source 10cm above the patient’s head and given an inlet velocity of 1 m/s

in the positive vertical direction. Sensitivity studies presented in Chapter 4 showed that

100,000 particles were sufficient to eliminate statistically significant variation. Bioaerosols

are characterised within Fluent 13 (ANSYS, Canonsburg, PA, USA) as spherical water

droplets with density 1000 kg/m3. Wong et al. showed that minor fluctuations in droplet

density did not significantly alter results [92].
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Figure 7.2: YAB single room layout and CFD geometry.

7.1.2 HBN04-01 Four-Bed Patient Room

The four-bed room used here is based on the Bradford Royal Infirmary (Bradford, UK)

modular ward which includes two such multi-bed bays connected on one side to a central

corridor. Dimensions are similar to the HBN04-01 specifications of 6.8m in height ×

7.6m in width. This model will consider only one four-bed bay accommodation given the

variability of activities within the ward itself. Figure 7.3 illustrates the positioning of

the beds with respect to each other, where a mirrored copy of the beds sits behind the

photographer. During the day the curtains remain open unless personal care is carried

out within the cubicle.

7.1.2.1 Model set-up

The ventilation within the four bed accommodation is assumed to be self-contained, where

air is supplied within the room by two ceiling four-way diffusers (blue) and extracted

(coloured red) at floor level on the wall to right of the door (see Figure 7.4).
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Figure 7.3: Photo of Bradford Royal Infirmary 4-bed maternity ward.

Figure 7.4: Bradford Royal Infirmary multi-bed room.

The model geometry for each of the four bed cubicles is comprised of a heated volume to

represent a supine patient, bed, bedside table, over-bed movable tray and accompanying

chair. As per HBN04-01 specifications, a sink is placed at the entrance to the room

(wall closest) set within the nurses’ workstation. In all cases the geometry of these items

of furniture are models as simplified representative blocks as shown in Figure 7.4. Two

window types (A and B) are located within the multi-bed room; these are modelled as being

shut during the current study. Particle injections are performed in the same manner as

within the single room 10cm above the patients’ heads. Cases 3-10 perform the injections
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Figure 7.5: Close-up of surfaces within a patient cubicle in the multi-bed room.

Boundary name Dimensions Boundary value

Bed(s) 4 × (1.9m × 1.1m ) Stationary
Inlet diffuser 2 (× 0.5m × 0.5m) 4 or 6ac.h−1

Outlet transfer grille 0.3m × 0.5m 4 or 6ac.h−1

Patients 4 × (1m × 0.4m) 56W/m2 each
Lighting None None
Windows type A × 2 1.3m × 0.8m Closed
Windows type B × 2 1.0m × 0.5m Closed
Door Closed Closed
Radiant panel 2 × 1.5m × 0.4m Off

Table 7.3: Boundary conditions for the multi-bed room



Chapter 7. Quantification of Risk and Application of PAM 247

sequentially at the locations shown in Table 7.1.

The meshing of the four bedded room consists entirely of hexahedral elements with a

maximum volume of 1.5625 × 10−5m−3 within the bulk of the domain and a minimum

volume of 1 × 10−6m−3 0.1m from horizontal surfaces. Total cell count is approximately

8 million.

7.2 CFD Results and Discussion

7.2.1 Airflow Pathways

Figure 7.6 and Figure 7.7 show both the velocity vectors and velocity magnitude contours

for each sub-scenario for each room type plotted along a meridional plane at breathing

level (y=1.5m). Airflow pathways and directions can be seen to be similar between both 4

ac.h−1 and 6 ac.h−1 for each case, whereas velocity magnitude does increase as expected.

In certain positions the patient may experience a feeling of a draft due to currents higher

than 0.2 m/s [73].

Airflow movement within the single room reveals that that a strong Coanda effect [68]

forms on the ceiling from the inlet diffusor towards the doorway, particularly at the higher

airspeeds. No large recirculation zones can be observed where stagnant air could sit,

allowing constant fresh air supply to the patient.

In the case of the multi-bed scenario in Figure 7.7, each area in the close vicinity of the

bed-head displays relatively high velocity air movements (ca. 0.05-0.08m/s), particularly

in the case of 6ac.h−1. This shows that although the patients are in a shared space, they

each appear to benefit from a dedicated air stream. Despite this, large stagnant regions

or areas of very low air speeds (dark blue colours) are seen throughout the room.

7.2.2 Bioaerosol Deposition

Figure 7.8 and Figure 7.9 show the tracks of a representative number of particles released

within the single and multi-bed rooms respectively. Figure 7.9 a-d represent the cyclical

location of an infectious patient 1 through 4.
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(a). YAB single bed: 4 ac.h−1, horizontal plane (b). YAB single bed: 6 ac.h−1, horizontal plane

(c). YAB single bed: 4 ac.h−1, vertical plane (d). YAB single bed: 6 ac.h−1, vertical plane

(e). Velocity magnitude

Figure 7.6: Velocity magnitude contours and vectors on horizontal (y=1.5m) and
vertical (x=2m) planes within the YAB single room.
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(a). HBN04-01 4 bed: 4 ac.h−1 (b). HBN04-01 4 bed: 6 ac.h−1

(c). Velocity magnitude

Figure 7.7: Velocity magnitude contours and vectors on horizontal plane (y=1.5m)
within HBN04-01 4-bed room.

Results are examined initially in terms of deposition percentage and subsequently in terms

of CFU/cm2 where each particle trapped on a surface is considered to be equal to a

bacterial colony. Note that in reality bacterial colonies are not necessarily single cells, but

may represent a ‘clump‘ which grows as a single indistinguishable colony [48].

Figure 7.10 shows total particle deposition percentages for both room scenarios and in

the case of the four-bed room, each release position (or infectious patient). In the case of

the single room (Figure 7.10a), only small spatial variations can be distinguished between

the deposition at 4 ac.h−1 and 6 ac.h−1. This concurs with Wong et al.’s [92] findings,

where they establish that successively higher air changes rates only marginally reduced the

deposition percentages. The four-bed room model (Figure 7.10b) shows greater difference

with air change rate increase and also variation in deposition depending on release location.

Wong et al.’s conclusions are borne out to some extent within the multi-bed scenario
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Figure 7.8: Particle tracks by colour ID within the single room.

except in the last simulation where the release point was patient 4. Since patient 4 is

closest to the extract it might be logical to deduce that a higher ac.h−1 rate acts counter

intuitively and incurs higher deposition percentages at this point. The reason for this

could be that the outlet location being close to the ground is influencing particle direction

whereby applying a stronger downward momentum and hence forcing them to deposit

more readily. Consequently a high-level outlet would necessarily produce the opposite

effect [55, 94, 95, 100]. If such is the case the implication is that higher ac.h−1 mainly

affects particles within a reduced locus of the outlet. This may be why cases 5 and 9 (or

release position 3) do not exhibit this behaviour reversal.
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(a). Infectious patient 1 (b). Infectious patient 2

(c). Infectious patient 3 (d). Infectious patient 4

Figure 7.9: Particle tracks coloured by particle ID, when realeased from all infec-
tious patients within the multi-bed room.
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Figure 7.10: Particle deposition on surfaces within both YAB single room and
HBN04-01 4 bed accommodation. Displayed as percentage deposition. Multi-bed
release positions 1-4. Comparison shown between 4 ac.h−1 and 6 ac.h−1 for each
case.
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Figure 7.11: Particle deposition quantities on horizontal surfaces within the
YAB single room displayed as CFU/cm2. Legend: E=Equipment, P=Patient,
H=Hygiene Products, N=Near-bed surfaces, F=Far-bed surfaces.
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(b). HBN04 01 multi-bed release position 2

Figure 7.12: Particle deposition quantities on horizontal surfaces within the
HBN04-01 4 bed accommodation. Displayed as CFU/cm2. Multi-bed release
positions 1-4. Comparison shown between 4 ac.h−1 and 6 ac.h−1 for each case.
Legend: E=Equipment, P=Patient, H=Hygiene Products, N=Near-bed surfaces,
F=Far-bed surfaces
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(c). HBN04 01 multi-bed release position 3
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(d). HBN04 01 multi-bed release position 4

Figure 7.12: (continued) Particle deposition quantities on horizontal surfaces
within both YAB single room and HBN04-01 4 bed accommodation. Displayed as
CFU/cm2. Multi-bed release positions 1-4. Comparison shown between 4 ac.h−1

and 6 ac.h−1 for each case. Legend: E=Equipment, P=Patient, H=Hygiene Prod-
ucts, N=Near-bed surfaces, F=Far-bed surfaces
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Figure 7.11 shows the total deposition quantities for all different surface categories within

the single room. Differences induced due to between air change rates appear negligible

for all categories except the patient, which shows an increase in contamination levels at

6ac.h−1. Equipment surfaces appear to accrue the highest deposition values and hence are

most contaminated.

Figure 7.12 shows the breakdown of particle deposition by CFU/cm2 for the five different

surface categories and for each infectious patient position in turn. Deposition percentages

within areas opposite the source position demonstrate a sharp drop-off, where particles

are maintained airborne and directed towards the extract. This is particularly the case

when patient 2 is the source where a seemingly dichotomous partition within the room can

be observed, and few particles are deposited on patient 1. Equally when patient 3 is the

source negligible counts can be found in the vicinity of patients 1 or patient 2. Wong and

colleagues [92] also noticed that as the air change rate increased, the deposition quantities

increased further from the source. A one-way non-parametric Wilcoxon signed-rank test is

used to investigate this possibility within the small step increase from 4 to 6 ac.h−1 for each

release position in turn. Table 7.4 shows that the distributions cannot be distinguished

at the 5% level and hence Wong et al.’s conclusions are not necessarily borne out in this

scenario. Nevertheless a Kruskal-Wallis test between all scenarios (p=0.04) shows that

release position does indeed provide a significant impact on deposition percentage.

Room type Release point p-value

YAB Single room Patient 0.33
HBN04-01 4-bed Patient 1 0.55
HBN04-01 4-bed Patient 2 0.10†

HBN04-01 4-bed Patient 3 0.42
HBN04-01 4-bed Patient 4 0.65

Table 7.4: Wilcoxon rank test p-values for particle deposition distribution com-
parison between 4 ac.h−1 and 6 ac.h−1. † denotes significant difference at the 10%
level
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7.3 Application of PAM to YAB Single Room and HBN04-

01 Multi-Bed Accommodation

The pathogen accretion model developed in Chapter 6 is subsequently applied in this

section to both room settings. Since the four bed ward is roughly four times the volume of

a single room and containing four times the surface numbers, releasing the same number

of particles in both scenarios results in a natural discrepancy. Therefore in this section

the concept of normalisation is introduced in order to compare room types in a consistent

manner. Standard intentional nurse rounding in single rooms comprises mainly of direct

care, a definition of which can be found on page 167 and as such will be used as a reference

case. Since PAM requires surface contamination to be introduced as CFU/cm2, pathogen

counts at this stage are raw values obtained from the CFD simulations (see Figure 7.12).

Subsequently the results are normalised with respect to the mean contamination level on

HCWs’ hands after direct care in the single room at 6 ac.h−1. This can be considered the

‘base case’.

7.3.1 HCW Behaviour in the HBN04-01 Four-Bed Ward

HCW behaviour has to be assumed at this stage to be related at some level to that observed

in the single room. Without this, comparison between accommodation types purely with

respect to HCW hand pathogen contamination level would not make sense. Smith et

al. [25] conducted an observational study of HCWs in a 4-bedded room applying the same

surface category criteria as used here. In the ward however, they note that patient charts

become near-bed objects as these are often at the foot of the patient’s bed. Therefore this

adjustment is made to the probability densities derived from the observations at YAB.

Figure 7.13 shows that there exists no statistical difference at the 5% level (p=0.068),

highlighting that the only difference in HCW behaviour between single and multi-bed

rooms is the positioning of patient charts. Consequently this demonstrates the similarity

between nurse behaviour in single and multi-bed rooms. Subsequent models will use this

adjusted behaviour in line with Smith et al. for all multi-bed simulations.

Potential differences may still exist however, in particular multi-bed cubicles are often

surrounded by privacy curtains. Hathway et al. [46] found that following morning bathing



Chapter 7. Quantification of Risk and Application of PAM 258

Equipment Patient Hygiene products Near-bed Far-bed
0

0.1

0.2

0.3

P
ro
b
a
b
il
it
y
d
en
si
ty

Smith et al.
Adjusted YAB

Figure 7.13: Adjusted HCW behaviour based on ward observations by Smith et
al.( [25] and private communication). Patient charts become near-bed surfaces in
the multi-bed scenario instead of the far-bed surfaces in the single room.

of bed-ridden patients, cubicle curtains on a standard ward typically remain open during

the daytime. They are only drawn during further personal care whereby adding an extra

surface contact opportunity. Here we will consider the curtain a near-bed porous surface

and enforce the first contact to be with this category.

7.3.2 PAM Results and Discussion

7.3.2.1 Single bed room: YAB

Figure 7.14 shows the normalised CFU values (Y for simplicity) compared against the

average of standard direct care for each subsequent type of care within the single room.

Additionally, the comparison is made between a ventilation rate of 4 ac.h−1 and the

standard HTM 03-01 prescribed 6 ac.h−1. Initially there appears only to be a small

reduction of CFU contamination from 4 to 6 ac.h−1 when comparing medians. This

refers to the 50th percentile on the boxplot or the horizontal bar inside it. However

comparison of extrema reveals that contamination levels under 4 ac.h−1 are consistently

higher throughout (p<0.05). Only in the cases of housekeeping and personal care does

there appear to be a noticeable difference in mean contamination levels (p=0.019 and

p=0.04 respectively) between air change rates.
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Figure 7.14: Boxplots showing normalised CFU values for YAB single room, com-
paring 4 and 6 ac.h−1.

Comparing the resultant differences between the contamination levels reveals that the

discrepancies appear to be magnified through the behaviour of the HCW (see Section 7.2.2

page 247). Table 7.5 shows the ranking of Y values based on care types within the single

room. A non-parametric rank test is used to compare equal medians (or 50th percentiles)

and results given as p-values. Inter-care type comparison reveals some fluctuation with

only mealtimes and miscellaneous care showing on average lower contamination levels

than direct care (p=0.001). A two-sided Kruskal-Wallis non-parametric test supports the

conclusion that care type has a significant effect on final CFU values. This is consistent

with results found in Chapter 6 Section 6.7.1. Ranking by mean and maximum values

show that the distribution (see Figure 7.14) of pathogens shows only minor fluctuations

with a concentration of the majority of the data within the lower quartiles (<50%).

Care type
Rank Direct

care
House-
keeping

Mealtimes Medication
rounds

Misc.
care

Personal
care

by mean 3 5 2 4 6 1
by max. 3 2 5 4 6 1

Table 7.5: Ranking by mean and maximum of care types (lower is better, meaning
cleaner hands) after hand hygiene in YAB single room.
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7.3.2.2 Combined single and multi-bed room comparison

Boxplots of normalised Y values are shown in Figure 7.15 comparing the single room

scenario directly against the multi-bed room. These are broken down into care types

throughout. Each set of boxplots shows the resultant contamination level of HCWs hands

(normalised Y values) for sequential positioning of an infectious patient. In the four-bed

room scenario values are cumulative over care for four patients. Care always starts at

patient 1 and continues chronologically through 2, 3 and finally 4. The same surface

contact sequence is repeated for each patient hence allowing for reproducibility of results.
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(b). Infectious patient=2

Figure 7.15: Comparison of normalised CFU values (Y) against YAB single room
direct care after hand hygiene: YAB single room vs HBN04-01 4-bed room.
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(c). Infectious patient=3
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Figure 7.15: (continued) Comparison of normalised CFU values (Y) against YAB
single room direct care after hand hygiene: YAB single room vs. HBN04-01 4-bed
room.
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Results presented in boxplot form in Figure 7.15 show that hand contamination is similar

in the two rooms, but that there are some differences between care type and in the case

of the four-bed room, the location of infectious patient (see Table 7.6). Given that the

care patterns are the same for each patient, differences between infector location are down

to the airflow paths and the resulting surface contamination levels. To investigate the

reality of this claim a one-sided Wilcoxon ranksum test is applied to each care type pair.

Table 7.7 shows the p-values for the hypothesis that 50% of the care episodes carried out

in the multi-bed room cause higher contamination than the equivalent care in the single

room. This one-sided test rejects the null hypothesis at the 2.5% level (equivalent to

two-sided 5%).

Rank by

Infectious
patient

Mean Median Max Mean rank

1 2 2† 3 2
2 3 3† 2 3
3 1 1 1 1
4 4 4 4 4

Table 7.6: Comparison of infectious patient location by ranking via mean, median
and maximum. A higher rank is better. † indicates a tied rank.

Inspection of Figure 7.15 throughout all four scenarios reveals that differences are not

dichotomous, where contamination levels are dependent on the location of the infectious

patient (p=0.003). This is supported by a Kruskal-Wallis non-parametric test which shows

that in the case of direct care only release position 4 yields systematically lower hand

contamination than from all other locations including the single room. This conclusion

is supported in Table 7.6 by ranking of pathogenic loading following care of an infectious

patient in all four locations. It also shows that by comparison when the infectious patient

is located in position 3 the resulting contamination levels are consistently higher over all

scenarios and care types (p<0.0001).

Figure 7.16 shows an individual boxplot comparison of the normalised Y values between

the single and multi-bed room. These are further broken down by infectious patient

position and care type. Comparison of the 50th percentile through a Kruskal-Wallis
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test reveals that the single room can yield lower contamination spread during all care

types (p=0.03).Comparing the single room against the multi-bed scenario in Figure 7.16

emphasises that the former can yield lower contamination spread via median comparison

during all types of care. The interquartile range for the single room may still be higher in

many cases however. This is a representation of the overall surface contamination level of

the multi-bed room being proportionally lower due to the higher volume.

Care type

Infectious
patient

Direct -
care

House -
keeping

Mealtimes Medication
rounds

Misc.
care

Personal-
care

p-value

1 1 1 0.975 1 0.996 0.971
2 0.011* 0.048† 0.0139* 0.021* 0.015* 0.02*
3 0* 0* 0* 0* 0* 0*
4 1 1 0.974 1 0.966 0.901

Table 7.7: Comparison of CFU values after hand hygiene between YAB sin-
gle room and HBN04-01 4-bed room via a one-sided non-parametric Wilcoxon
ranksum test hypothesising that 50% of the values obtained from the multi-bed
room are higher than those from YAB while performing the same activities. *
denotes significant results at 2.5% level. † denotes significant values at 5% level.

7.4 Quantifying Patient Risk and Application of an Expo-

nential Dose-Response Model

Chapter 3, page 80 highlight the intricacies of empirical feeding trials which estimate the

risk of infection given a certain quantity of inoculum administered. At low doses the

exponential dose-response model given in Equation (3.4.3) was deemed to be of adequate

complexity to investigate the discrepancies between care and room type. The intention of

this is to compare the HCW-patient contact count against the risk of infection for each

type of care. The risk posed is that to the subsequent patients (after care carried is out

on an infectious patient) undergoing HCW care. In the case of the single room this is

assumed to be the patient in the contiguous room for all care types except miscellaneous.

For miscellaneous care the next patient the HCW comes in contact with may potentially
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Figure 7.16: Comparison of normalised Y values between single room (red) and
cumulative sum for each release location within the multi-bed room (black).
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be in a non-random order. This is due to the care being reactionary (to a call bell)

rather than pre-planned. This also holds for the multi-bed room, and therefore risk for

miscellaneous care is calculated as if the HCW had not attended to any previous patient

and hence had clean hands. Figure 7.17a depicts the sequential movement of the HCW

from single room 1 through room 4. Figure 7.17b shows the equivalent route in the multi-

bed accommodation.

Figure 7.18 shows the normalised contamination on health care worker hands (Y values)

for progression through a series of four patients in single Figure 7.18a and multi-bed

Figure 7.18b rooms.

In the absence of airborne cross-transmission between single rooms, CFU values can bee

seen (see Figure 7.18a) to be monotonically non-increasing as hand antisepsis and de-

position onto surfaces removes contamination. Within the multi-bed scenario, however,

the spread of microorganisms to neighbouring cubicles allows for subsequent accretion of

pathogenic material by the HCW regardless of hand hygiene (see Figure 7.18b).

(a). Single rooms route (b). Multi-bed room route

Figure 7.17: HCW route for all care types except miscellaneous care within both
the YAB single room and HBN04-01 4 bed room. Star indicates infectious patient
location in the first scenario.

7.4.1 Relative Risk

An exponential dose-response model is applied to the two scenarios investigated given by

Equation (3.4.3) presented in Chapter 3, Section 3.4:

P(infection |λ) = 1− exp(−αλ)
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Figure 7.18: Boxplots show normalised Y values after an episode of direct care
following care of one infected patient.

where λ represents the dose administered to a susceptible host.

Figure 7.19 shows the relative risk associated with patients in both single rooms and

multi-bed accommodation. This is plotted against the number of times the HCW comes

in contact with the patient. Standard deviations are also plotted at each data point. The

term α represents the probability of the HCW contact being with a patient’s mucous

membrane or other susceptible location. This also accounts for the likelihood of the

pathogens overcoming the patients own immune defences. For example in this case a

value of α = 0.069 [199] (e.g. influenza) was used to represent a relatively low probability

or a pathogen of low virulence. Results are an average of episodes of the same type of

care to three susceptible patients following interaction with an infectious patient. All risk

is normalised with respect to typical direct care in the single room. Figure 7.19 actually

highlights the similarity between accommodation types through this type of comparison.

At a first glance a curious phenomenon occurs at higher patient contact rates, where in

some cases a drop in risk is observed. This is explained by considering that high numbers

of contacts are not necessarily proportional to high inocula. Consider the case where the

value of overall HCW surface contacts may be high, amongst these are also high numbers

of patient contacts. However the timing of the patient contacts is important, insofar

that significant quantities of pathogenic material may have been shed or deposited onto

other inanimate surfaces in the meantime. Consequently the dose of pathogens delivered

through patient contact may, in this case, be quite small. Comparison of risk between the

two accommodations is highlighted by the one-sided non-parametric Wilcoxon rank test
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which shows that the multi-bed accommodation poses a higher risk at low (<4) contact

counts (p=0.04). However this appears to be reversed at higher values (p=0.001). This

phenomenon holds throughout all care types except for the medication round, where on

average multi-bed room shows significantly higher risk throughout. No difference is found,

for miscellaneous care (p=0.89).
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Figure 7.19: Comparing average risk during care to 3 uninfected patients within
single and multi-bed room relative to direct care. α = 0.069. Where infection
status of all patients is unknown. Errorbars represent one standard deviation
either side of the mean.
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7.4.1.1 Prior knowledge of infection

In the UK and many other EU countries, both planned admission and emergency patients

are screened for MRSA [288], however the feedback time on results of this test vary and a

patient may be placed into a multi-bed room before results become available. Therefore

this incurs a latent risk to other patients via surface contamination and subsequent trans-

mission via HCW hands. Figure 7.19 shows the situation in which the state of infection of

the patient is unknown to the HCW and hence no extra quarantine precautions have been

taken. This can be considered a worst case scenario. Conversely however if a patient is

known to be infectious, then increased probability of antisepsis procedures is expected [28].

Let us consider this the best case scenario where some form of hand hygiene is necessarily

undertaken after each episode of care with an infectious patient. Note however that the

efficacy of the antisepsis will still vary as before. The HCW will then return to the original

probability of antisepsis following care with subsequent other known uninfected patients.

Figure 7.20 represents the relative risk to three subsequent susceptible patients plotted

against patient contact count. The HCW is aware of an infectious patient in both scenarios.

Note however that hand hygiene is only obligatory after care concludes with the infected

patient (e.g. patient 1), however the probability of further antisepsis returns to that

observed at YAB for all subsequent care episodes for patients 2, 3 and 4. Comparison

shows the multi-bed room to pose a greater risk (p∼0.038) during all types of care except

miscellaneous, where no difference is found (p=0.78). The latter may be explained by the

low number of patient contacts during this type of care. Despite this, the risk observed

within the single rooms is consistently within one standard deviation of that observed in

the multi-bed counterpart.
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Figure 7.20: Comparing average risk during care to 3 uninfected patients within
single and multi-bed room relative to direct care. Antisepsis is enforced after care
with the infectious patient. α = 0.069. When infectious patient is identified.
Errorbars represent one standard deviation either side of the mean.
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7.5 Summary

This chapter compares the single and multi-bed accommodation through three integral

approaches: CFD, PAM and infection-risk modelling. Section 7.2.2 depicts the CFD

is capable of the prediction of spatial deposition of particles within both environments,

highlighting subtle differences between designs. A higher air change rate of 6 ac.h−1 (vs 4

ac.h−1) showed to have little significant impact for three of the four considered scenarios in

the multi-bed room on deposition quantity or spatial variation under controlled conditions.

A decrease in spread locus was noticed however, when the infectious patient was placed

closest to the outlet vent, highlighting the greater downward momentum on particles

exerted by comparatively higher local air velocities at 6 ac.h−1.

PAM was then applied within both the single and multi-bed room successfully by using

the surface contamination values accrued through the CFD models. Differences were not

clear cut and the positioning of the infectious patient had most effect on the final results.

Locating the infectious patient in a multi-bed room without an unobstructed air pathway

from the bed to the ventilation outlet caused the highest level of surface contamination

of all scenarios tested. Other positions (2 and 3) often led to comparable contamination

levels as in a single room.

Quantification of the risk of the accrued pathogens to subsequent susceptible patients was

investigated by an exponential dose-response model. Significant differences only became

apparent between the two accommodation types when the existence of an infectious pa-

tient was known. Results suggested that CFU values on the hands of the HCWs decreased

monotonically when single rooms were considered, however in the case of the multi-bed

room the biological load either remained stable or increased during contact with subse-

quent patients. Overall, when hand hygiene was enforced due to the knowledge of an

infectious patient, the single room became significantly less risk prone.
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The focus of the research presented in this thesis is to provide a robust but flexible frame-

work which evaluates and quantifies the risk of acquiring a secondary infection from con-

taminated surfaces within hospital single and multi-bed accommodation. This is achieved

by forging a multidisciplinary analysis in numerical and experimental techniques coupled

with extensive in-field clinical observation and mathematical modelling. The three main

elements of the research and the key findings in each aspect are summarised below. A

number of areas for future work are identified and discussed, and considerations are given

to the implications of the research findings.

8.1 Key Findings

This multidisciplinary research potentially has global implications for architects, clinicians

and infection control teams in hospital room design but ultimately for patient satisfaction.

272
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8.1.1 Bioaerosol Deposition: Experimental and Numerical Approaches

Simulation approaches such as computational fluid dynamics (CFD) are increasingly used

to model particle behaviour in indoor air, however previously there have only been tenta-

tive attempts at large scale validation of such methods in the open literature. In this study

a total of four hospital room scenarios were recreated in an aerobiology test chamber to

form a comparative experimental study which could be replicated in a CFD model.

This set of experiments and simulations was designed to assess the ability of CFD simula-

tions to accurately predict spatial distributions of bioaerosol deposition in indoor environ-

ments and explored the influence that different room layouts have on deposition patterns.

Spatial deposition of aerosolised Staphylococcus aureus was measured in the test room

arranged in different layouts: an empty room, a single-bed and a two-bed hospital room.

This was compared with CFD simulations that used a Lagrangian particle tracking method

to simulate bioaerosol dispersion and deposition. This study concluded that:

• Realistic prediction of spatial deposition is feasible within a CFD model, and a

Reynolds Stress (RSM) turbulence model yields significantly better results than the

k-ε RNG turbulence model used in most published indoor air simulations.

• Experimental and CFD results for all layouts demonstrate that small particle bioaerosols

are deposited throughout a room with no clear correlation between relative surface

concentration and distance from the source.

• A physical partition separating patients is effective at reducing cross-contamination

by up to 50% in neighbouring patient zones, particularly with ventilation upwind of

the infected patient.

Across all scenarios it is noted that both experiments and simulations predict measurable

deposition across the room space. While spatial variation depends on layout, the results

suggest there is clear potential for small diameter (∼2.5 µm) particles to play a role in

transmission of infection through indirect contact routes. This is an important conclusion;

such particles are routinely regarded as airborne and hence controlled through ventilation

rather than cleaning. Moreover, these small particles are usually only considered of concern

where the pathogen is classed as possibly capable of direct airborne transmission, for
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example tuberculosis, measles or influenza. The deposition of culturable bioaerosols in

this study adds support to the hypothesis that airborne dispersion may play a role in

non-respiratory infections. This study formed the baseline validation for implementing

CFD and Lagrangian particle tracking with confidence in single and multi-bed hospital

accommodation in subsequent chapters. Consequently direct comparison could be made

between the influence of design and room layout in each scenario.

8.1.2 HCW Behavioural and Observational Study

A gap in the literature for observational studies of HCWs as they perform episodes of

patient care is recognised almost globally [13, 22, 25]. This element (objective 3) of the

research therefore aimed to monitor HCW behaviour and characterise it in a quantitative

manner that could be used in infection risk models. An observational study of some 400+

episodes of care was carried out in the Welsh hospital Ysbyty Aneurin Bevan (YAB).

This hospital, as well as being one of the first to implement ‘intentional rounding‘ with its

patients, also features the first 100% single room accommodation provision within the UK.

This milestone in NHS history provided the ideal setting to watch HCWs as they came

in contact with surfaces within patients’ rooms. This first hand data is of fundamental

importance for the modelling of human hand-to-surface contact events, allowing inclusive

insight into the different types of care and how these also the behaviour of nurses and

doctors. HCWs were observed as they performed standard patient care with particular

interest in the frequency and the sequence of surfaces touched. This formed the basis for

building directed probabilities graphs called Markov chains. The key findings from the

evaluation of HCW behaviour were:

• Data revealed that care type influenced the HCW’s surface contact distribution to

a large extent. Direct care is the mainstay of intentional rounding, forming the ba-

sis against which all other care types are compared. Personal care often contained

the most numerous surface contacts, with miscellaneous care exhibiting the fewest.

However length of care (time) was less influential and showed only weakly posi-

tive correlation with surface contact counts. Care types could not be distinguished

with respect to patient contacts, however environmental surface contacts exhibited

a statistically significant variation throughout.
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• Hand hygiene choice at YAB shows a snapshot of a single dynamic modern Welsh

hospital. Type of care influenced the choice of hand antisepsis, where HCWs per-

forming short (<30s) episodes of social care showed a predilection for alcohol rub.

Direct care and miscellaneous care split the usage of alcohol gel and handwashing

almost 50-50. Over 90% of the observed episodes of personal care concluded with

some form of hand hygiene. These are considered mostly either hygienic or social

care and hence exhibited a 62% preference for handwashing.

• This data then formed the basis of a stochastic model of HCW behaviour as they

moved from one surface to another, and consequently forms the driving force behind

the subsequent model for pathogen accretion on their hands. Replicating hand-to-

surface HCW frequencies for each care type was found to be most effective when

considering directed probabilities through Markov chain modelling. There shows

a statistically significant improvement of predicted surface contact sequences over

simple undirected maximum likelihood estimators.

8.1.3 Quantification of Risk and Application of PAM

The Pathogen Accretion Model (PAM) is developed from the growing understanding of

hand contamination from surface contacts. This model focuses on the physical process

of accruing pathogens onto either the skin or gloved surfaces of HCWs’ hands as they

perform episodes of standard patient care.

The aim of this model, under objectives 4 and 5 is to provide a framework which allows

for the quantitative comparison of hospital room design including single vs. multi-bed

accommodation by means of HCW hand contamination. CFD prediction of bioaerosol

deposition forms the basis for prediction of surface contamination within a test scenario

on which a performance study of PAM can be made. Here the results obtained from the

observational study at YAB and presented in Chapter 5 form the basis for the behaviour

of the personnel tending to patients. The model represents the HCWs’ surface contact

patterns by the use of Markov chain modelling. Monte-Carlo sampling allowed a sen-

sitivity analysis along with a parametric study to be carried out, comparing the effects

of parameter modification within a test case scenario. This permitted the model to be

calibrated and subsequently validated against published literature data.
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The PAM methodology was then applied to a typical single and four-bed hospital room to

explore the application and scope of the model. Quantification of the risk of the accrued

pathogens to subsequent susceptible patients was investigated by an exponential dose-

response model.

Key findings from this element of the study:

• Sensitivity analysis showed that the frequency of surface contacts was the dominant

factor affecting the end contamination quantities. Other parameters showed only

a mildly directly proportional effect. Hand hygiene incorporates the probability

of compliance along with efficacy of the chosen antisepsis, which exhibits a clearly

bimodal distribution with either neutral or positively linear effects. Total Sobol

indices indicated that the mechanism of pathogen transfer was mildly non-linear

indicating that bi-directional transfer from both surface-to-hand as well as hand-to-

surface was important in the overall process. In order allow for this variation, it was

incorporated.

• CFD modelling of the application scenarios revealed that a ventilation rate of 6

ac.h−1 showed little significant improvement over 4 ac.h−1 on deposition percentages

or spatial variation in three of the four considered scenarios in the multi-bed room.

A decrease in spread locus was noticed particularly when the infectious patient was

placed closest to the outlet vent, highlighting the greater downward momentum on

particles exerted by comparatively higher local air velocities at 6 ac.h−1.

• Application of PAM to the scenario rooms showed that differences were not clear

cut and the positioning of the infectious patient had most effect on the final re-

sults. Locating the infectious patient in a multi-bed room without an unobstructed

air pathway from the bed to the ventilation outlet caused the highest level of sur-

face contamination of all scenarios tested. Other positions often led to comparable

contamination levels in a single room.

• Significant differences only became apparent between the two accommodation types

when the existence of an infectious patient was known. Results suggested that

CFU values on the hands of the HCWs decreased monotonically when single rooms

were considered, however in the case of the multi-bed room the biological load either

remained stable or increased during contact with subsequent patients. Overall, when
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hand hygiene was enforced due to the knowledge of an infectious patient, the single

room became significantly less risk prone.

• Hand hygiene compliance obligation significantly improved contamination levels in

both cases, with particular effect in the single rooms.

• No airborne cross-contamination was considered in the single rooms due to the rec-

ommended corridor pressurisation characteristics. This means that pathogens can-

not travel between rooms via air currents meaning that single patient accommodation

acts as an effective passive infection control barrier.

8.2 Future Research

Each section of this research relies on the best data available as of today (2013), how-

ever there are still areas which will benefit from further investigation. Some of the most

important are summarised as follows:

8.2.1 Experimental and Numerical Particle Deposition

Particle release quantities are unknown, à priori, when injecting bioaerosols into the

PaCE chamber using the BGI colison nebuliser. Even with the use of a laser par-

ticle counter, exact values are far from certain and hence a normalisation metric is

necessary to be able to compare different experiments and room layouts. One way

to restrict uncertainty is to use silicon or latex particles of a known quantity [289].

The difficulty then lies in being able to capture and count these in the same way as

live bacteria. Particle size distributions are also particularly important to charac-

terise within indoor environments [18]. The distribution studied in Chapter 4 has a

mean mass diameter of 2.5µm, whereas sneezes or coughs may produce much larger

particles [138]. It would be beneficial to investigate the effects of a larger size range

on particle behaviour in the indoor environment.

Surrogate tracers Unpublished work showed that non-pathogenic tracer chemicals such

as lithium chloride or lithium acetate provide an alternative way of tracking aerosols

in the indoor environment. These chemicals can be diluted and nebulised in the same

way as the S. aureus aliquot and captured on dry Petri dishes. Careful washing of
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the plates in HCl aqueous solution provides an ideal medium from which atomic

absorption spectrometry (AAS) can be performed [290]. In the same manner as the

bioaerosols, a spatial concentration contour plot can be created, but without any of

the contamination concerns associated with the use of live bacteria.

Lagrangian particle tracking + DRW currently appears to be a reliable method to

achieve realistic deposition percentages within CFD models [67]. In the exclusion

of turbophoresis (turbulence induced particle repulsion), the DRW model provides

extra impetus to deposition velocities. In some cases this may be unphysically large,

which probably accounts for some of the over-deposition observed. Lai et al. [213,

217] suggest the usage of empirical turbulent kinetic energy models for particles

within boundary layers possibly being one solution. This method requires the length-

scale of mesh cells to be in the order of millimetres. Therefore computational costs

may become exaggerated for room-size domains.

8.2.2 Clinical Observational Studies

Patient care such as personal care, due to its intimate nature, was not observed entirely

if the hospital room door was closed. Hence, risks attributed to this type of care

may have been underestimated. Therefore to correctly estimate this, the NHS ethics

committee deemed a qualified nurse or doctor would be required to observe this type

of care [25]. This may be feasible as in the cases of Hayden et al. Duckro et al. and

Smith et al. [13, 19, 25], where some form of care has been observed and recorded

but not in sufficient detail.

Surface contamination is largely uncharacterised. Very few studies swab hospital sur-

faces for pathogen loads, mainly due to the ineffectiveness of sampling methods [51]

but also due to the time-delayed effect of cleaning [166]. Effectively this may repre-

sent an oscillating time series which would require substantial sample quantities to

correctly characterised.

Transfer efficiency of pathogens to hands requires full validation in the clinical setting.

This would require glove juice sampling methods in connection with surface swab-

bing [19]. The very nature of sampling microorganisms from the HCWs’ skin or

gloves alters the results of future transfer efficiencies [25]. Adenosine triphosphate,
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which is fluorescent under UV light has been used successfully in qualitatively track-

ing surface contacts around a hospital corridor and nurse station [169]. This could

prove a useful and non-invasive procedure for use in a hospital patient room.

8.2.3 Pathogen Accretion Models

Validation of raw pathogen quantities accrued during surface contact is necessary to be

able to apply this model without normalisation [22]. This is relatively straight for-

ward in theory, however practice has shown that viable microorganism counts vary

depending on the species, culture method and other environmental factors [279].

PAM has been validated against the only known published study containing CFU

levels on HCWs’ hands, but would benefit greatly from intensive laboratory test-

ing. A preliminary study in the PaCE chamber could be used to evaluate certain

sequences of surface contacts but in-vivo glove juice analysis coupled with surface

swabbing and HCW surface contact pattern observation would be ultimately neces-

sary.

Transfer efficiency may also be a function of contact time and pressure as well as contact

method. Assessment of this through a parametric study using live bacteria in a

laboratory setting would narrow the uncertainty of this variable [21].

8.3 Implications of the Study and Conclusions

In this research, a framework has been developed which enables surface contact risks to

be related to room design and healthcare activities. The complementary nature of experi-

mental and computational analysis has facilitated a detailed and systematic investigation

into the deposition of bioaerosols within hospital accommodation, revealing that environ-

mental surfaces many metres away from the infectious source may become contaminated.

Coupling this with the observational study at YAB showed that, on average, every sur-

face category was touched during a care procedure. Hereby, the extent of how important

surfaces really are becomes apparent.

Ayeliffe’s remark about the unimportance of hospital surfaces in the chain of infection

transmission is becoming increasingly wide of the mark, as research is showing that
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aerosolised pathogens are capable of travelling many metres away from the infectious

source. Not only this but they are remaining viable for extended periods of time and de-

positing onto environmental surfaces, putting HCWs at the latent risk of cross-contamination.

This has profound implications for cleaning regimes. Current remits for the cleaning

carried out by HCWs are based on ‘high touch‘ surfaces [35] and equipment. These are

to be cleaned twice daily, but according to findings of this research, this may need to be

extended to the entire set of touchable surfaces in the vicinity of the patient. Consequently,

this has important implications not only for healthcare staff and patients, but also for

overall hospital costings [24].

In this golden-age of hospital design and retrofit we are at the foothills of a century

of incremental climatic change, requiring hospital design teams, infection control teams,

clinicians, housekeeping and the general public to continually adapt and become resilient

to an ever changing environment.
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P̃Direct care =


0.1842 0.3106 0.0759 0.1515 0.2779

0.4553 0.1166 0.0068 0.2569 0.1644

0.1854 0.2425 0.2210 0.1915 0.1595

0.2454 0.1854 0.0636 0.3248 0.1808

0.2452 0.1841 0.1219 0.1806 0.2683



P̃Housekeeping =


0.3071 0.0001 0.0001 0.3953 0.2975

0.0004 0.0004 0.0004 0.6679 0.3310

0.0004 0.0004 0.1621 0.1770 0.6601

0.2408 0.0537 0.0000 0.5993 0.1061

0.2624 0.1343 0.2035 0.2625 0.1373



P̃Mealtimes =


0.9999 0.0000 0.0000 0.0000 0.0000

0.2000 0.2000 0.2000 0.2000 0.2000

0.2000 0.2000 0.2000 0.2000 0.2000

0.2000 0.2000 0.2000 0.2000 0.2000

0.2000 0.2000 0.2000 0.2000 0.2000



P̃Medication rounds =


0.0304 0.2767 0.2196 0.3421 0.1312

0.1560 0.0308 0.1151 0.5537 0.1443

0.0572 0.1660 0.1703 0.3688 0.2377

0.0700 0.3377 0.1208 0.2564 0.2152

0.1374 0.1369 0.1661 0.3567 0.2028



P̃Miscellaneous =


0.0003 0.4185 0.0003 0.2927 0.2883

0.0002 0.0002 0.1245 0.7500 0.1252

0.0001 0.0763 0.2024 0.5235 0.1976

0.0302 0.1152 0.1412 0.3439 0.3695

0.2359 0.0822 0.1162 0.4063 0.1595



P̃p. care =


0.167 0.167 0.167 0.331 0.167

0.073 0.073 0.215 0.352 0.284

0.041 0.198 0.479 0.121 0.159

0.059 0.196 0.114 0.435 0.195

0.050 0.099 0.147 0.461 0.241



(B.0.1)
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