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Abstract 

The impact of uncertainty in the geometry of normal faults upon hydrocarbon reservoir 

models has been assessed at the exploration-, field- and individual fault scale.  

At the exploration-scale synthetic 2D seismic sections generated using mapped geometries 

from the Gulf of Corinth rift illustrate the uncertainty in along strike fault geometry and 

displacement continuity when correlating between disparate seismic lines. This uncertainty 

has implications for pore pressure prediction, spill point identification and calculation of 

hydrocarbon column heights.  

At the hydrocarbon field-scale, incorporation of sub-seismic structure has been quantified 

using reservoir production simulations. Although the inclusion of sub-seismic fault tips often 

leads to increased reservoir segmentation, this does not necessarily imply a detrimental 

impact upon hydrocarbon production. Earlier onset of oil production decline for more 

segmented reservoirs is offset by a lower rate of decline due to an enhanced sweep pattern as 

well as a lower volume of produced water when compared to less segmented cases.  

3D seismic forward modelling highlights the discrepancies between realistic, outcrop-derived 

fault geometries and those geometries resolvable in seismic data, with seismically resolvable 

faults significantly simplified in comparison to those observed at outcrop. Complex geometries 

such as displacement partitioning across multiple slip surfaces are hence not incorporated 

within reservoir models leading to the area of across-fault reservoir:reservoir juxtaposition 

being severely underestimated. In turn faults are modelled as overly retardant to flow, with 

the influence of fault rock properties being overstated. Where realistic (i.e. larger) areas of 

across-fault juxtaposition are modelled, the fault rock properties have less impact upon across-

fault hydrocarbon flux. Juxtaposition is therefore the first order control on hydrocarbon flow 

across faults. 
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Chapter 1 

Thesis Introduction, Aims and Background Literature 

1.1 Thesis Introduction 

Within this section a brief outline of the rationale behind this thesis is presented, along with 

the aims of the project. To aid the reader a short explanation of the thesis structure is also 

given.  

1.1.1 Thesis Structure 

The thesis is structured such that each technical chapter can be read as a stand-alone 

document. As a result, much of the relevant background literature is referred to and critiqued 

within each individual chapter. For the sake of brevity repetition has been kept to a minimum, 

hence this literature review chapter mainly focuses on the principal concepts of the thesis 

regarding fault growth and linkage. In addition, the chapters are ordered by the scale to which 

they refer, starting at the rift-scale and progressing through field-scale to individual fault scale. 

1.1.2 Thesis Rationale 

Faults, across a range of scales within the upper brittle crust can be described as being 

ubiquitous within the geologic record, be this as observed at the surface or within the sub-

surface. There is hence a high probability that the majority of hydrocarbon reservoirs contain 

or are influenced by faults. This influence may be at the ‘exploration’ scale, where large faults 

form structural traps and can influence reservoir facies distribution, or at the ‘field’ or 

‘reservoir’ scale, where intra-reservoir faults may influence fluid flow and hydrocarbon 

recovery. Consequently, understanding the geometry and properties of faults within the sub-

surface is critical when attempting to predict the magnitude of their effect upon reservoir 

volumes, compartmentalisation, integrity and performance. However, the methodologies 

available for characterising fault geometries (i.e. 2D/3D seismic data) have limited spatial 

resolution, and hence a significant uncertainty exists surrounding the precise geometry of 

faults in the sub-surface. By integrating data from outcrop analogues, where detailed fault 

geometries can be captured, it is possible to quantify the effect of fault geometric uncertainty 

on reservoir and simulation models at a range of scales, and derive predictive relationships for 

certain aspects of fault growth.    
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1.1.3 Thesis Aims 

The broad aims of the thesis are the characterisation of the influence of uncertainty in the 

geometry of faults on hydrocarbon reservoirs, with additional aims being applicable at 

different scales.  

At the exploration scale, construction of a high resolution, field data-based 3D model allows 

for an improved understanding of the evolution Gulf of Corinth rift. This model also facilitates 

an enhanced understanding of the limitations and potential uncertainties associated with 

correlating faults between disparate data, such as 2D seismic sections.  

At the scale of hydrocarbon reservoirs and fields it is the intention to assess the different 

approaches for incorporating sub-seismic fault tips within reservoir models. An additional 

ambition is to develop a mechanism for predicting the presence or absence of sub-seismic 

breaching faults across relay zones. The influence of incorporating these features will be 

quantified in terms of reservoir segmentation and the effect on sub-surface fluid flow during 

hydrocarbon production. 

Characterising the impact of geometric uncertainty at the scale of individual faults and fault 

relay zones, in relation to both fluid flow and the potential for fault reactivation, is a further 

objective.  The aim here is to reconcile fault growth processes, and the resulting fault 

architectural heterogeneity, with a faults fluid flow properties. Since fine scale fault geometric 

heterogeneity cannot be observed in seismic data, or incorporated within typical reservoir and 

simulation models, the disparity between the influence on across-fault flow of realistic and 

seismically resolvable geometries is also investigated. 

The impact of a number of structural uncertainties on hydrocarbon exploitation can be broadly 

separated into exploration and production scale. These uncertainties, and the chapters within 

which they are investigated are summarised in table 1.1. 
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    Structural Uncertainty Chapter(s) 

EXPLORATION 

● Linkage Geometry   (Chapters 3, 4) 

● Along-Strike Displacement Continuity (Chapters 3, 4) 

● Syn-Rift Reservoir Facies Distribution  (Chapter 4) 

● Fault Rock Properties   (Chapter 4) 

PRODUCTION 

● Linkage Geometry   (Chapters 5, 6, 7, 8) 

● Sub-Seismic Fault Tips   (Chapters 5, 6) 

● Sub-Seismic Fault Complexity (Chapter 8) 

● Juxtaposition Uncertainty   (Chapters 7, 8) 

● Fault Rock Properties   (Chapters 6, 8) 

● Presence of Relay Zones   (Chapters 5, 6, 7, 8) 

● Fault Stability (Chapter 9)   

 

  

 

 

1.2 Literature Review 

Here, a brief review of the existing literature pertinent to the main concepts explored within 

the thesis is presented. 

1.2.1 Fault Geometry 

A large amount of research into the evolution and linkage of extensional fault systems has 

been conducted over the last two decades (Larsen, 1988; Peacock and Sanderson, 1991; 

Dawers et al., 1993; Cartwright et al., 1996). The focus of much of this work has been on 

reconciling our effectively temporally static observations of faults and fault systems with a 

more complete understanding of their dynamic evolution through time. The use of four 

dimensional modelling techniques such as computer based numerical approaches (Cowie, 

1998; Cowie et al., 2000) and sandbox modelling (Marchal et al., 2003; McClay et al., 2005) 

have complemented and helped to constrain and explain the 2D and 3D observations from 

outcrop and seismic data (Walsh and Watterson, 1988; Trudgill and Cartwright, 1994; Dawers 

and Underhill, 2000; Frankowicz and McClay, 2010). As a result of this research it is now widely 

recognised that in rift settings faults systems develop through a combination of growth, 

interaction and linkage of individual fault segments (Cartwright et al., 1996; Childs et al., 1996; 

Cowie et al., 2000; Walsh et al., 2003) across a range of scales.  

Table 1.1. The structural uncertainties investigated within this thesis can be broadly 

separated into whether they are relevant at the hydrocarbon exploration or production 

scale. 
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Prior to developing models describing the growth, interaction and linkage of fault systems it is 

useful to first define the observable characteristics of an isolated normal fault growing in 

response to an extensional stress field. Barnett et al (1987) describe the geometry of an 

idealised isolated planar fault in terms of its displacement field, both parallel and normal to 

strike. Increasing displacement is coupled with increasing length of the fault during growth so 

that a broadly elliptical form is maintained (in the case of a blind fault), with the edge of this 

ellipse defining a contour of zero displacement. Displacement increases from this zero contour 

towards the centre of the ellipse where it reaches a maximum value, with the relationship 

between maximum displacement and fault length being termed the displacement ratio, d:L. 

Normal to strike displacement decreases with distance from the fault resulting in ductile 

deformation in the form of reverse drag (figure 1.1 A). For a blind fault geometrical constraint 

necessitates that additional ductile or small scale brittle deformation occurs due to the vertical 

displacement gradient between the maximum displacement in the centre of the fault and the 

point where displacement reaches zero at the tip (Barnett et al., 1987). This is manifested as 

compression at the top of the footwall and base of the hangingwall and extension at the base 

of the footwall and top of the hangingwall (figure 1.1 B). 

 

 

 

 

 

 

 

 

 

 

1.2.1.1 Displacement: Length Relationship 

 

 

Figure 1.1. (A) View of an idealised blind normal fault in cross section. Decreasing vertical 

displacement away from the fault results in reverse drag, or rollover, in the hangingwall, 

and corresponding footwall uplift as the beds deform. (B) Geometric conservation of 

volume for a blind fault requires extension of beds in the top of the hangingwall and base 

of the footwall and compression in the top of the footwall and base of the hangingwall. 

Modified from Barnett et al (1987).  
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Several studies have been conducted investigating the relationship between fault length and 

maximum displacement for normal faults (Dawers et al., 1993; Cartwright et al., 1996; Walsh 

and Watterson, 1988). Although a positive correlation is observed, the variation in the 

displacement:length ratio spans up to two orders of magnitude (figure 1.2), indicating that no 

single relationship for the geometry of normal faults exists as suggested for a single fault under 

idealised conditions by Watterson (1986). This is partially attributable to heterogeneities in the 

deforming medium (Gross et al., 1997) as well as lithosphere scale controls (Ebinger et al., 

1999), and the timing of observation relative to the growth and linkage history of the fault 

system (Cartwright et al., 1995).  

 

 

 

 

 

 

 

Figure 1.2. Log-log plot of maximum fault displacement against fault length. The majority 

of measured faults fall within the grey shaded area. Although a Dmax:L relationship of 0.01 

appears to be a reasonable best fit, the variability still covers two orders of magnitude.  

The reasons for this variability in fault dimensions include fault growth and linkage 

processes, the mechanical properties of the faulted stratigraphy and observational bias. 

Modified from Kim and Sanderson (2005). 
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1.2.2 Fault Growth and Linkage 

The transfer of displacement through segment linkage in the form of relay ramps and 

connecting faults (Larsen, 1988) is observed to distort both the displacement length profiles of 

the resulting linked fault, and its individual components (Peacock and Sanderson, 1991, 1994). 

As the tips of two faults begin to overlap they become kinematically linked, with subsequent 

growth being accommodated by both faults acting as an individual structure (figure 1.3). At 

this stage the overlap zone has a dip sub-parallel to the strike of the faults and is termed a 

relay ramp. The cumulative displacement of the two faults at the zone of overlap may initially 

appears lower than that which would be expected for a single fault of comparable length. This 

is a result of a portion of the total displacement being accommodated through rotation and 

internal deformation of the relay ramp itself (Walsh et al., 2003; Long and Imber, 2010). This 

relative deviation from the displacement profile is reduced as displacement gradually increases 

on the overlapping tips. Interaction of the stress fields of the two faults within the zone of 

overlap prevents continued lateral propagation of the tips leading to an increase in the 

displacement gradient, hence resulting in a re-adjustment of the displacement profile towards 

that expected for an individual fault. As displacement continues the dip of the relay ramp 

increases. This is accompanied by an increase in stress which may be accommodated by 

fracturing and small scale faulting. Eventually a through going fault is established and the relay 

becomes breached forming a physical, or hard, linkage.    



- 7 - 
 

0

-1

0

1

Fault

Footwall

Hanging wall

0

-1

0

1

Fault

Distance

D
is

p
la

c
e
m

e
n
t

Distance

D
is

p
la

c
e
m

e
n
t

Ramp dip

Distance

D
is

p
la

ce
m

e
n
t

0

1

2

-2

-1

0

0

1

2

-2

-1

0

3

2

1

0

-3

-2

-1

0

3

2

1

0

-3

-2

-1

0

Distance

D
is

p
la

c
e
m

e
n
t

3

2

1

0

-3

-2

-1

0

4

-4

3

2

1

0

-3

-2

4

-4

A) B)

C) D)

0-1

1

10-1

 

 

 

 

 

 

 

 



- 8 - 
 

Figure 1.3 (Previous page). Schematic diagram describing the evolution of contour patterns 

and displacement length (d:L) plots during relay ramp development and breaching. 

Contours are relative to a horizontal datum, with the downthrown side of the fault marked 

by a tick. (A) Initially the faults do not interact either kinematically or physically with the 

linear d:L profiles reflecting this. (B) As the fault tips grow towards each other they begin to 

kinematically interact with displacement accommodated by both faults acting as single 

structure. Displacement is transferred between the two faults by the rotation of beds 

parallel to the strike of the faults in the form of a relay ramp. The overlap of the fault 

segments limits lateral propagation of the fault tips hence increasing the displacement 

gradient whilst leading to a displacement minima. (C) As displacement increases the 

displacement gradient across the relay ramp begins to exceed the limit at which 

deformation can be accommodated in a ductile manner. This results in fracturing and the 

development of cross faults within the area of overlap. (D) Cross faults develop across the 

whole of the overlap zone, breaching the relay ramp. Initially a displacement minima 

remains, however this diminishes as deformation increases. Modified from Peacock and 

Sanderson (1994). 

 
 

Cartwright et al, (1995) recognised that variations in the ratio of fault length to maximum 

displacement can be explained by the process of fault growth through linkage of individual 

fault segments. Their model suggests that physical linkage occurs early in a fault systems 

growth. In the period following linkage of two or more individual fault segments the resulting 

fault set will have a low overall displacement relative to its length. Post linkage accumulation 

of throw results in readjustment of the displacement profile.   

Peacock and Sanderson (1994) and Gupta and Scholz (2000) suggest a subtly different model 

where individual segments interact kinematically prior to physical linkage occurring. This 

interaction results in modification of the displacement profiles of the individual segments, with 

migration of the point of maximum displacement and steepening of displacement gradients at 

interacting fault tips. This results in the displacement profiles of the individual segments 

becoming asymmetric with their d:L ratios also increasing. Increased displacement leads to 

stress being concentrated in relay zones with physical linkage eventually ensuing followed by 

re-adjustment of the displacement profile of the resultant fault.  

Numerical modelling by Cowie et al (2000) produced characteristics of both models, suggesting 

additional factors affect fault behaviour. Position and orientation of the fault segments may 

not be conducive to early linkage due to occurrence of stress shadow zones in the vicinity of 
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the faults (Willemse, 1996; Cowie, 1998; Gupta and Scholz, 2000). Stress perturbations in the 

volume of rock surrounding a fault following slip can be positive or negative (Figure 1.3). This 

can lead to stress accumulation or dissipation on adjacent faults leading to either negative or 

positive feedback. Faults with overlapping positive stress fields tend to experience increased 

stress and hence slip can accumulate more rapidly. This is in contrast to faults with overlapping 

negative stress perturbations, which tends to lead to cessation of fault activity. Gupta et al 

(1998) suggest that this latter geometry favours the growth of en echelon fault arrays, whilst 

Ackermann and Schilsche (1997) also observe that the same stress distribution results in the 

formation of a ‘stress shadow’ in the immediate footwall and hangingwall to a fault leading to 

restriction of fault growth and nucleation within this zone.  

In both models the interaction of individual fault segments is implied to occur coincidentally 

from within an array of randomly distributed discontinuities. This would suggest that faults are 

originally isolated and that growth through linkage initially occurs by chance (‘Isolated Fault 

Model’ - terminology from Walsh et al., 2003).  

An alternative model proposed by Walsh et al (2003) acknowledges that although the implicit 

notion of coincidental linkage occurring is possible, it is more realistic that individual fault 

segments are kinematically related from early in their growth history (‘Coherent Fault Model’-

figure 1.4). This may be manifested by linkage to a more coherent structure at depth, for 

example in the case of reactivated fault systems, or as a series of isolated segments which in 

three dimensions form a kinematically linked array displaying an aggregate displacement 

profile approaching that of an idealised isolated fault.  

The differences between the ‘Isolated’ and ‘Coherent’ models of fault interaction and linkage 

(figure 1.5) can be reconciled by the position and scale of observation. The concept of the 

Isolated Fault Model is for the most part based upon analysis on a single plane of observation 

(e.g. horizontal i.e. outcrop, vertical i.e. cross section) which is unlikely to be located at the 

point of maximum displacement (Figure 1.5), with the potential for out of plane interaction 

therefore being high. Despite this simple observation it is often unconsciously assumed that 

the observation plane is fortuitously located at the fault centre (Walsh et al., 2003). In turn this 

leads to the notion of isolated faults propagating towards each other and interacting by 

chance. Whether the ‘isolated’ or ‘coherent’ model applies to a particular fault set can be 

determined by examining the displacement profiles of the faults. In the isolated model (figure 

1.4 a, b), where faults grow towards each other and interact by random, a displacement deficit 

will exist at all stages of growth, even when deformation due to rotation of the relay zone is 

accounted for. In contrast, where the coherent model is applicable (figure 1.4, c, d, e), a fault 
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set will be described by a continuous profile, with only minor displacement minima at relays, 

attributable to rotation of the rock mass of the relay zone. 

 

 

 

 

 

Figure 1.5 (Next page) Schematic illustrating how the position of the plane of observation 

(red) influences the perceived geometry of a fault relay zone. (A) Map view. The plane of 

observation coincides with the maximum displacement (Dmax) on two faults. The 

observation that the faults are not interacting is therefore correct. (B) The plane of 

observation does not correspond with the position of Dmax (yellow). In this scenario the 

faults are observed to be non-interacting, but are in fact interacting at depth to form a 

horizontal relay zone. (C) Section view. Plane of observation coincides with Dmax. (D) The 

plane of observation does not coincide with Dmax. Faults interpreted as non-interacting 

based upon their observable geometry in fact form a vertical relay zone away from the 

plane of observation. The likelihood that any single observation plane coincides with the 

maximum displacement on a fault is relatively unlikely, therefore 2D observations are 

generally unreliable when quantifying 3D fault geometries.  

Figure 1.4. Figure illustrating the differences between the ‘Isolated’ and coherent fault 

growth models. Block diagrams (a), (c) and (d) show the 3D fault geometries, whilst (b) and 

(e) show the d:L profiles at the top surface of the block diagrams. The isolated growth 

model (a, b), where faults have coincidentally overlapped, maintains displacement deficits 

at all stages of growth, whilst in the coherent model (c, d, e) only minor deficits exist, and 

are accounted for by rotation of relay zones. This is the case for both hard-linked (c), and 

soft linked (d) geometries. Modified from Walsh et al (2003). 
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Growth of fault systems through the dynamic processes of interaction and linkage of their 

individual components occurs at all scales of observation, from micro-cracks (Wibberley et al., 

2000) through to plate boundaries (Peacock et al., 2000), with relay zones also being 

ubiquitous at all scales. Generally though, our observations of faults consist of temporally 

instantaneous snapshots. Consequently when observing, for example, outcrop scale faults it is 

perhaps unintuitive to visualise what may appear to be a single fault plane as a product of its 

individual components. This leads to faults being identified as single isolated structures when 

in fact they are composed of a multitude of kinematically and/or physically interacting 

segments across a range of scales. The different scales of structure involved may not 

necessarily be evident for two reasons. Firstly the resolution of observation may exclude 

differentiation of the smallest structures and secondly, as the individual segments physically 

link they tend to become obscured by the through-going array.  

1.2.2.1 Kinematics of Fault Growth and Linkage 

The initial overlapping of two or more small scale discontinuities may or may not be entirely 

random, but irrespective it leads to modification of the local stress field (the ‘stress shadow’, 

figure 1.6) with strain subsequently becoming localised onto the interacting discontinuities. 

This strain localisation leads to an enhanced strain rate, in turn resulting in increased 

displacement accumulation and 3D propagation of the now kinematically linked faults (Gupta 

et al., 1998; Cowie et al., 2000). The increased propagation (both fault normal and fault 

parallel) increases the probability of further interaction with other individual segments, as well 

as broadening the stress shadow zones in the footwall and hangingwall leading to the 

abandonment of smaller structures. Through this mechanism faults which, by chance, interact 

early in their growth history will continue to grow and eventually become dominant, whilst 

smaller, isolated faults and discontinuities become inactive. Strain continues to accumulate in 

the form of fault displacement, with the associated profile re-adjustment of the interacting 

fault set leading to stress intensification at relay zones where the individual fault segments 

overlap. This ultimately leads to the breaching of relay ramps and hard linkage occurring across 

a broad range of scales. 

Irrespective of which mechanism for linkage is operating within a rift system, the temporal 

variation in the geometry of fault systems implies that any observed relationship between 

displacement and length is valid only at the scale of observation and the relative timing of 

observation (Peacock, 2002). 
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A number of authors have recognised the importance of fault linkage with respect to 

earthquake recurrence (Jackson, 1999; Cowie et al., 2000; Gupta and Scholz, 2000). Sieh et al., 

1993 describe how the Landers earthquake cluster event in 1992 resulted in rupture on a 

number of faults that were linked but previously thought to be separate. It has been suggested 

that behaviour such as this is indicative of fault linkage processes (Cowie et al., 2000; Gupta 

and Scholz, 2000). Clustering of earthquakes may occur as a fault set previously composed of 

two or more segments interacts, links and re-establishes a characteristic displacement profile 

via displacement across the linkage zone (Gupta and Scholz, 2000). In this instance earthquake 

foci will be clustered around the previously soft linked relay zone between overlapping faults. 

In the same way earthquake foci may be observed to migrate laterally as the displacement 

profiles of kinematically linked faults become skewed in response to growth on the fault set as 

a whole (Peacock and Sanderson, 1994; Gupta and Scholz, 2000). As stress increases in the 

relay zone the faults begin to become physically linked through propagation of one or both of 

the fault tips or the development of cross faults. Co-seismic displacement is hence 

concentrated in the vicinity of the linkage zone as the displacement profile re-adjusts (Gupta 

Figure 1.6. Coulomb stress changes due to deformation on a normal fault dipping at 60 

degrees. This leads to stress enhancement (+) or relaxation (-), with a reduced likelihood of 

faulting in the negative perturbations and an increased likely hood in the positive 

perturbations. The areas of stress relaxation are often termed ‘stress shadows’. Modified 

from Gupta et al (1998). 
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and Scholz, 2000). This leads to a clustering of earthquake activity as observed by Jackson 

(1999). 

Cowie et al (2000) note that the differing mechanisms for fault linkage evolution will result in 

different geometries of the resulting hangingwall basins (figure 1.7). Model A (‘early linkage’) 

results in the formation of a number of small sub-basins prior to fault linkage, followed by the 

establishment of a shallow basin spanning the width of the system following linkage. This basin 

then undergoes rapid subsidence in its central portion until the original displacement:length 

ratio of the component segments is reached. In model B (‘late linkage’), the component faults 

are kinematically but not physically linked during sub-basin development. This kinematic 

linkage results in migration of the fulcrum of the sub-basins towards the centre of the linked 

system, with the central sub-basin experiencing higher rates of subsidence and intrabasin 

highs developing at displacement minima between the segments. Eventually hard linkage 

occurs with the relatively deep sub-basins overlain by a broad basin which then subsides in 

response to movement along the entire length of the fault. Dawers and Underhill (2000) 

demonstrated this model for basin evolution using high resolution seismic data. They showed 

that the Statfjord East fault in the Northern North Sea evolved through linkage of a series of 

en-echelon segments, with early separate depocentres coalescing into a single large basin 

following linkage.  
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Cowie et al (2000) proposed a four stage model for fault growth and evolution within rift 

settings (Figure 1.8). Early rift initiation is characterised by nucleation and growth of individual 

fault segments in relative isolation with associated hangingwall depocentres. As extension 

continues individual faults begin to link, creating larger depocentres in their hangingwalls. 

Nucleation of new faults and growth of pre-existing faults is restricted due to stress reductions 

in the footwalls and hangingwalls to these larger faults. In the third stage deformation begins 

to localise onto larger fault segments, with adjacent faults becoming inactive and little 

nucleation of new structures. Smaller depocentres coalesce to form major basins. The final 

stage is characterised by the development of a single linked fault system with a large 

depocentre in its hangingwall. Displacement is localised onto this system and it begins to 

subside more uniformly. This focussing of displacement leads to an increase in the subsidence 

rate of the basin, without the need for an associated increase in the rate of extension. 

 

 

 

A) B)

C) D)

Figure 1.7 (Previous page). Schematic figure of the different hangingwall basin geometries 

formed as a result early (A) and late fault (B) linkage models. Early fault linkage (A) results 

in a broad, shallow hangingwall depocentre which subsides as a single basin. Late physical 

linkage results in narrower, deeper depocentres which initially subside separately. 

Following linkage the basins coalesce and subside as a single entity. Modified from Cowie 

et al (2000).  
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Cowie and Roberts (2001) used field observations from a number of localities to suggest that 

slip rates along strike of normal fault sets vary significantly depending on the stage of linkage 

of the individual fault segments. This variation is explained by the general requirement of 

faults to maintain a characteristic d:L ratio. This ratio itself is dependent on numerous physical 

properties, however it is believed to be relatively constant for a given stratigraphy in a 

homogenous regional stress field. Cowie and Roberts (2001) suggest that as individual fault 

segments link the length of the fault set is correspondingly rapidly increased. To maintain the 

geomechanically desired d:L ratio slip rates increase, both at linkages and towards the centre 

of the new fault set. This increase in slip rate may be manifested as a decrease in earthquake 

re-occurrence period, an increase in the magnitude of co-seismic slip, or as an increase in the 

non-co-seismic (elastic) deformation rate. McLeod et al (2000) were able to constrain the 

timing of segment linkage and deformation rate using 3D seismic data from the North Sea. 

They observed an increase in the slip rate at the centre of a fault correlating to the time of 

linkage. The temporal variation in slip rate attributable to segment linkage suggests that d:L 

data derived from structurally immature regions may tend to overestimate the characteristic 

fault length due to insufficient time for profile re-adjustment (McLeod et al., 2000).  

 

If regional extension and hence strain rates remain constant, any increase in strain localisation 

associated with linkage of fault segments must be accompanied by a decrease in activity in the 

footwall or hangingwall (Gupta et al, 1998). This has been identified by McLeod et al (2000), 

where an increase in slip rate due to segment linkage across the Strathspey-Brent-Statfjord 

fault coincided with reduced activity on faults in its hangingwall.  

 

Figure 1.8 (Previous page). Four stage model for fault growth, linkage and rift evolution. (A) 

Initiation of rifting leads to nucleation of isolated fault segments developing along with 

hangingwall basins. (B) Continued fault nucleation leads to the onset of segment linkage 

and rapid enlargement of the linked fault sets. Major depocentres develop in the 

hangingwalls to theses linked fault sets. (C) Strain is concentrated onto the larger fault 

segments with smaller faults becoming inactive due to stress perturbations. The major 

depocentres grow through coalescence of smaller depocentres, with subsidence ceasing 

adjacent to inactive faults. (D) Continued extension leads to linkage across the rift and the 

formation of a through going fault set(s) with more uniform subsidence rates along strike. 

Modified from Cowie et al (2000). 
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Although the regional strain rate may influence the maximum amount of strain that a system 

can accommodate, the distribution of this strain may also be influenced by local stress 

perturbations surrounding active fault segments (Gupta et al, 1998). Strain accommodation 

due to displacement across a fault results in a drop in the stress magnitude of the local stress 

field in the immediate hangingwall and footwall. If however displacement is limited to an 

individual segment of a fault set, the along strike stress field may in fact be intensified, 

especially in the vicinity of fault linkages where displacement gradients may be anomalously 

high or low (Cowie, 1998). If co-seismic slip and subsequent stress reduction in the fault-

normal direction extends a significant distance then activity on any faults located within the 

reduced stress field may be restricted. This may have the effect of influencing the minimum 

fault spacing, especially in the early stages of rift evolution where strain is accommodated on a 

large number of small isolated faults, rather than fewer linked faults. Conversely, where large 

faults have nucleated and propagated a stress reduction shadow will exist to a distance away 

from the fault proportional to the local displacement. This shadow will limit the nucleation and 

growth of later faults within its boundaries (Ackermann and Schilsche, 1997). This can be a 

very powerful concept for populating reservoir models with sub-seismic scale faults when 

relative fault timing can be constrained (e.g. Maerten et al., 2006).  

 

An additional factor stems from the three dimensional geometry of a fault. Willemse (1997) 

modelled the effect of fault aspect ratio (fault length: fault height) on stress perturbation 

(figure 1.9). They found that low aspect ratio (tall) faults had a larger negative stress 

perturbation field than high aspect ratio (short) faults. Hence high aspect ratio faults can have 

larger overlap for a given separation before kinematiaclly interacting when compared to low 

aspect ratio faults. This introduces the proposition that fault propagation direction, potentially 

controlled by the mechanical properties of the stratigraphy, alters the stress field perturbation 

dimensions and geometry. The inference is that it may be possible that vertically restricted, 

laterally propagating faults reduce the areal extent of their negative stress perturbation fields, 

and hence display a decrease in the minimum spacing between faults (Soliva et al., 2006). 

Conversely if faults are laterally rather than vertically restricted, for example by interaction 

with a pre-existing structural fabric, then their stress reduction fields may tend to extend 

further in a fault-normal direction into the footwall and hangingwall as their aspect ratio 

decreases. This may potentially lead to cessation of activity on smaller subordinate faults, and 

prevention of nucleation of additional faults within this region. The dimensions of the stress 

perturbation field also affect the proximity at which additional faults may nucleate, since 

faulting is less likely to occur in areas which have experienced a stress reduction compared to 

areas which have experienced an increase in stress. In general this increases the likelihood of 
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along strike propagation and linkage. The shape of the stress perturbation field controls the 

degree to which faults can overlap. Interaction of negative stress fields from two faults 

growing towards each other leads to tip restriction (Willemse et al., 1996). This is manifested 

as low displacements and low displacement gradients at fault tips compared to high 

displacement gradients at the point of overlap. A displacement anomaly may be observable 

where faults overlap (Gupta and Scholz, 2000). This is due to the negative stress perturbation 

field preventing lateral propagation of the fault tip. Stress is therefore accommodated in this 

portion of the fault by increased displacement relative to the characteristic d:L profile, hence 

increasing the displacement gradient. It is this increasing stress with increasing segment 

displacement at this point that eventually leads to hard linkages developing. 

 

 

 

 

 

 

 

 

 

 

 

1.2.3 Fault Growth and Linkage: Summary 

Early interpretations of the kinematics of fault growth through the linkage of initially separate 

segments relied upon the assumption that the plane at which observations were made were 

representative of the entire 3D fault geometry (e.g. Cartwright et al, 2005). This assumption 

leads to the model of fault growth and linkage at relay zones occurring coincidentally, through 

the independent propagation of isolated faults. The alternative model of fault growth 

proposed by Walsh et al (2002, 2003) recognises that the plane of observation will rarely be 

located at the position of maximum displacement on a fault, and that as a result out of plane 

Figure 1.9. Influence of three dimensional fault shape on local shear stress perturbations 

for vertical normal faults. Stress is reduced in non-shaded areas and enhanced in shaded 

areas. Since faults can only form when stress exceeds the shear strength of the host, 

additional faults are less likely to form in areas of reduced stress. The aspect ratio of the 

fault at a given time plays a major role in determining the geometry of the altered stress 

field. As aspect ratio increases, the area of the decreased stress reduces. Modified after 

Willemse, 1997.  
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linkage is entirely possible. This implies that the growth of faults occurs through the evolution 

of a coherent array of fault segments, rather than coincidental linkage. Given that the majority 

of early fault growth models (Peacock and Sanderson, 1994; Cartwright et al., 1995; Cowie et 

al., 2000) are based upon 2D rather than 3D observations, the ‘Coherent’ growth model of 

Walsh et al (2003) seems to be more applicable to the majority of situations. 

1.2.4 Mechanical Stratigraphy 

Soliva et al (2006) used field observations coupled with numerical modelling to infer 

mechanical layer thickness as a controlling factor on both fault spacing and maximum relay 

separation (figure 1.10). They show that the mechanical thickness, T, of a layer constraining 

vertically restricted faults is proportional to the fault-normal width, S*, of the region of stress 

drop around a fault (Figure 1.10). In turn this controls the minimum spacing between faults, as 

well as the maximum separation between overlapping fault tips that will allow linkage. For a 

given amount of extension across a brittle layer strain is accommodated through faulting. If 

the brittle deformation (i.e. a fault) cannot propagate vertically due to the layer being 

contained between ductile units then additional faults must form to accommodate the 

horizontal extension. The minimum spacing between faults is controlled by the field of 

reduced stress associated with each fault, providing that the fault has not healed through, for 

example, cementation (e.g. Yasuhara et al., 2005). This area of stress reduction is itself 

controlled by the amount of strain (extension) accommodated by the fault, and hence by the 

thickness of the mechanical layer in which the fault is constrained (e.g. Ackermann and 

Schlische, 1997). Once a fault has propagated to the vertical limits of the mechanical layer 

there must be a stress intensification at its lateral tips. This is due to the regional strain having 

only been accommodated across the brittle portion of the fault (assuming no interaction with, 

or accommodation of strain by, other structures). It is intuitive to believe that this stress 

intensification must lead to an increase in the rate of lateral fault tip propagation, hence 

increasing the aspect ratio of the fault (i.e. decreasing the d:L) and consequently modifying the 

stress reduction field (Willemse, 1997). This may lead to modification of the critical fault 

spacing as described by Soliva et al., (2006). 
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It must be noted that this work relates to a mechanically brittle layer between two ductile 

layers, hence the degree of saturation (defined by the average spacing between faults) will be 

higher to accommodate strain. This could potentially be used as a tool for estimating sub-

seismic fault populations and spacing, as well as constraining whether overlapping faults in 

Figure 1.10. Idealised sketch describing the development of normal faults within a 

mechanical layer of restricted thickness, T. A. Initial faults are randomly distributed owing 

to minor heterogeneities in the stress field and mechanical properties of the host. The 

critical spacing S* is a function of the mechanical layer thickness, T. This dimension refers 

to the width of the stress reduction shadow around faults. This dimension controls the 

minimum spacing of faults and the maximum separation allowed for faults to be able to 

link. B. Faults have grown through nucleation (outside of stress shadows), lateral tip 

propagation and linkage. A relatively regular fault spacing has now developed since the 

mechanical layer is saturated. Modified from Soliva et al (2006). 
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active extensional provinces are likely to become hard linked, with implications for seismic 

hazard management. 

 

A consideration when determining the relative timing of activity on a number of fault sets is 

the ability of a specific fault set to remain active given a constant orientation of the regional 

extensional stress field. The dip of faults may be altered due to mechanical compaction of the 

media through which the fault is formed, rotation due to activity on synthetic faults in the 

hangingwall or footwall or regional scale isostatic or thermal subsidence or uplift. The 

implication of this is that faults may become rotated to such a degree so as to be unfavourably 

orientated for accommodating extension (e.g. Jackson, 1999). This may occur when the dip of 

a fault is reduced so that the stress required for continued movement is greater than the 

applied stress, leading to the preferential formation of a new, more favourably orientated 

fault. 

 

1.2.5 Fault Rock Properties  

The properties of faults pertinent to the flow fluid in the subsurface can be grouped into two 

classifications, geometric and petrophysical. The geometry is dependent on the processes of 

fault growth, which control the distribution of displacement and the resulting across-fault 

juxtapositions. The petrophysical properties of faults, or rather fault rock, determine the 

permeability of a fault, and hence the rate at which a fluid can flow across the fault under a 

specific pressure gradient. It is these petrophysical properties, and their representation in 

geological and simulation models that is outlined herein.  

1.2.5.1 Fault Rock Forming Processes and Classification 

The movement on faults leads to the formation of fault rock via a number of different 

processes (Yielding et al., 1997; Fisher and Knipe, 1998). The permeability of fault rock is 

dependent on the mechanism(s) of deformation, which in turn depend on a number of factors 

including the degree of lithification, clay content and burial depth (Fisher and Knipe, 1998). In 

general poorly indurated (and/or shallowly buried), clean sediments with less than 15% clay 

content will display disaggregation and rotation of grains rather than the cataclastic 

deformation and grain fragmentation seen for more indurated (and/or more deeply buried) 

rocks (figure 1.11). The fragmentation of grains associated with cataclasis results in the 

formation of nucleation sites for quartz cementation at temperatures above 90°C (Fisher et al., 

2000), leading to significantly reduced local permeability. If cementation were to be 

continuous horizontally and vertically along a fault it  could provide a major barrier to across-
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fault flow, although forecasting the distribution and also the degree of cataclasis and 

cementation is difficult, the latter without local sample calibration.  

 

 

 

 

 

 

 

Figure 1.11. Schematic illustration of the different classifications of fault rock at the core-

scale. (A) Disaggregation zone. Generally formed at low confining pressures within poorly 

cemented rocks with <15% clay content. Fault movement leads to grain re-orientation with 

the long axis of gains becoming parallel to the displacement direction. (B) Cataclasis. 

Deformation within well cemented, low (<15%) clay content silisiclastic sediments leads to 

grain fragmentation. Temperatures above 90°C may lead to the formation of a quartz 

cement. (C) Phyllosilicate framework fault rocks (PFFRs). Moderate clay content (15-40%). 

Dominated by the mixing of clay and quartz grains within the fault zone. (D) Clay smears, 

>40% clay content. Ductile smearing of clay rich shale layers along the fault zone.     
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As the clay content of the host sediment increases then the process of grain mixing during 

deformation becomes more dominant, with the entrainment of clay inversely correlating with 

permeability. These types of fault rock are often referred to as phyllosilicate-framework fault 

rocks (PFFRs-Fisher and Knipe, 1998), and have clay contents of between 15 and 40%. The 

proportion of shale within a fault rock can be estimated using algorithms such as the Shale 

Gouge Ratio (SGR, Yielding et al., 1997), which predicts the amount of shale in the fault rock at 

certain point based on the proportion of shale which has passed that point (Figure 1.12). 

 

 

 

 

 

Above approximately 40% clay, fault rocks may begin to be composed of zones of continuous 

clay smears, formed as intervals of more ductile clay rich lithologies are sheared during 

deformation (Ciftci et al., 2013). The low permeability and continuous nature of the clay 

smears can, in certain circumstances, has been used to account for the  development of very 

Figure 1.12. Schematic illustrating the calculation of the shale gouge ratio (SGR). The SGR 

value is the proportion of shale within a fault rock at a specific point on a fault. It is defined 

by the proportion of shale that has been displaced past that point. Modified from Yielding 

et al (1997). 
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large across-fault pressure differences (Childs et al., 2002). Algorithms such as the Clay Smear 

Potential (CSP, Bouvier et al., 1989; Fullijames et al., 1996) and the Shale Smear Factor (SSF, 

Lindsay et al., 1993) use shale layer thickness and displacement to calculate a probability of a 

continuous smear being present along a fault. 

1.2.6 Sealing Mechanisms of Fault Rocks 

The relative importance of the petrophysical mechanisms by which faults rocks influence 

hydrocarbon reservoirs differ between exploration and production scale settings. During 

exploration the ability of a fault to trap an accumulation of oil or gas is relevant, whereas 

during production it is the permeability-reducing effect of faults which is important 

(Manzocchi et al., 2002, 2010). 

1.2.6.1 Exploration Scale 

A fault can support a column of hydrocarbon if the capillary entry pressure of the fault rock is 

greater than the buoyancy force (due to the density difference between hydrocarbon and 

water) of the hydrocarbon column (Schowalter, 1979; Watts, 1987; Fisher et al., 2001; Brown, 

2003). The capillary entry pressure, Pc (eq 1, Schowalter, 1979), is a function of the capillary 

radius, Pr, the interfacial tension between hydrocarbon and water, σ, and the contact angle 

between the wetting (usually water) and non-wetting phase (usually hydrocarbon), θ.  

(1)             
 

  
 

The capillary radius (which generally decreases with increasing clay content), which is defined 

as the minimum pore-throat radius, is generally determined experimentally using mercury 

injection porosimetry of core plug samples. Measured laboratory values can be converted into 

in-situ values using eq 2 (Schowalter, 1979); 

(2)                            

Where    = the interfacial tension of hydrocarbon and water (in dynes cm-1),   = the contact 

angle of hydrocarbon and water,     = the mercury-air capillary entry pressure,   = the 

interfacial tension of mercury and air (dynes cm-1), and   = the contact angle of mercury and 

air. 

By integrating into the equation the buoyancy differential between hydrocarbon and water, 

the maximum column height that a fault can support can be calculated; 

(3)                                       
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Where      = theoretical maximum hydrocarbon column height,   = water density,   = 

hydrocarbon density, and 0.433 is a metric-imperial conversion factor. 

Fault zone complexity and heterogeneity, fault rock hydrocarbon saturation and relative 

permeability effects are however not accounted for within this theory (Fisher et al., 2001, and 

explored further in Chapters 6 and 8). Compiled data of SGR values versus across fault pressure 

differences and column heights provide an alternative for forecasting the maximum column 

height that may be supported by a fault with a specific clay content (Bretan et al., 2003). This 

approach implicitly accounts for fault heterogeneity and does not rely on scaling up core 

sample measurements to entire faults (Yielding, 2012). 

1.2.6.2 Production Scale 

During hydrocarbon production it is the effect of fault rocks as barriers or baffles to flow over 

production timescales which is of primary concern, rather than their ability to form a seal over 

geological time. Where reservoir rock is self-juxtaposed across a fault, the ability of 

hydrocarbon to flow across that fault due to a production induced pressure differential is 

influenced by the fault rock permeability. Processes such as cataclasis, the incorporation of 

clay, and cementation of a fault rock lead to reduced fault rock permeability. If this 

permeability reduction is sufficient and continuous along and up a fault, then it may form a 

barrier to flow, potentially leading to reservoir compartmentalisation. The most common 

approach for calculating the permeability of a fault is to calculate and map SGR values onto the 

modelled fault planes. A number of generic clay content to permeability transforms (figure 

1.13), based upon sample analysis, can be applied to convert this SGR value into a fault 

permeability (Manzocchi et al., 1999; Sperrevik et al., 2002; Jolley et al., 2007), although locally 

calibrated values which link permeability to local burial history and diagenesis are preferred. 

(Freeman et al., 2008). This approach assumes that sample-scale measurements are scale 

invariant and can be applied to an entire fault. This has the limitation that fault geometric 

heterogeneity is not accounted for. 
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To incorporate the calculated values of fault rock permeability within reservoir models a 

degree of simplification of the faults is required. Faults are represented as 2D planes within 

reservoir models, rather than as the 3D grid cells with realistic dimensions containing 

petrophysical properties which represent the host reservoir rock. Despite this representation 

of faults being incorrect (since fault rock does have a discrete thickness) it is employed due to 

the computational difficulties of having adjacent cells of significantly different dimensions 

(Manzocchi et al., 2008, 2010) that modelling faults in 3D as grid cells would necessitate. 

Therefore, in order to incorporate fault rock permeability into reservoir simulation models 

fault rock is represented as a transmissibility multiplier (TM, figure 1.14) between adjacent grid 

Figure 1.13. Commonly applied clay content to permeability transforms used for estimating 

fault rock permeability from either measured or calculated (SGR) clay content values. As 

mentioned, applying these calculated permeability values to the simple fault geometries 

within geocellular grids assumes that the fault rock properties are scale invariant and does 

not account for fault geometric heterogeneity (see chapter 8). Compiled from data within 

Manzocchi et al (1999), Sperrevik et al (2002) and Jolley et al (2007). 
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cells (Knai and Knipe., 1998; Manzocchi et al., 1999). This is a mathematical representation of 

the  transmissibility reduction between two adjacent grid cells due to the fault rock between 

the cells. For example, a TM value of 0 implies a completely sealing fault, whereas a value of 1 

implies a completely open fault with no permeability reduction. Values calculated using 

geologically derived fault-rock clay contents and clay content to permeability transforms will 

be within this range, with higher SGR values (and hence lower permeabilities) leading to lower 

TMs.    

(4)                 
    

   
  

   
  

  

 
  

  
  

  
  

  
 

 

As the impact of this permeability reduction is controlled by Darcy’s law, the length over which 

it acts (i.e. the fault rock thickness) is also required, and can be estimated using relationships 

between displacement and thickness (e.g. Manzocchi et al., 1999; Kim and Sanderson, 2005; 

Childs et al., 2009).  Thicker fault rocks mean that the width over which permeability is 

reduced is larger, hence leading to lower TM values (equation 4). The calculation of fault rock 

thickness generally assumes a linear relationship with fault displacement (figure 1.15). As is 

explored later in the thesis (chapter 8), the complex geometry of ‘real’ versus modelled faults 

may limit the validity of this assumption. 
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Additional, more specific, background literature is covered within the individual chapters. 

 

 

 

Figure 1.14 (Previous page). Schematic illustrating the calculation of transmissibility 

multipliers (TMs) representing a fault separating adjacent grid blocks within a geocellular 

model (see equation 4). Thicker fault rock (tf) and lower permeability fault rock (kf) lead to 

lower TMs for a given host permeability (Ki, Kj) and grid length (Li, Lj). Modified from 

Manzocchi et al (1999). 

Figure 1.15. Fault rock thickness plotted against fault displacement on log:log axes. The 

majority of measured points plot within the transparent grey area, however the scatter is 

large and is influenced by the growth processes of faults (see chapter 8). A single value is 

hence unlikely to represent an entire fault. Modified from Childs et al (2009). 
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Chapter 2 

Methodology 

2.1 Abstract 

This methodology chapter serves as an overview of the broad range of techniques and 

methodologies which have been applied during the course of the project. As many of the 

aspects of the thesis can be viewed as ‘stand-alone’ pieces of work (linked by the common 

theme of fault geometric uncertainty) greater detail of the specific methodologies has been 

included within the individual chapters. The methodologies which have been applied can be 

broadly split into three main sections; Field data collection, 3D geological modelling of field 

data, and digital geological modelling methods.  

2.2 Field Data Collection 

2.2.1 Topographic Base Maps  

A major aim of the thesis was to integrate a range of outcrop data within a geological 

modelling software environment. To accomplish this successfully a number of steps were 

required prior to the initiation of data collection including the generation of topographic base 

maps of a suitable resolution. Although detailed maps for much of mainland Greece do exist, 

their availability is somewhat limited. A road atlas at 1:50000 scale was used as the basis for 

the majority of the field locale, however more detailed hiking maps, also at 1:50000, were also 

employed where available. A period of reconnaissance fieldwork allowed the identification of 

areas where higher resolution mapping would be required. These were produced by enlarging 

digital versions of the available maps to the desired scale (typically 1:20000 and 1:8000). Figure 

2.1 shows the location and scale of the various base maps used during data collection. 
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To maintain cross-compatibility between different software programs during later modelling it 

was decided that field data would be geo-referenced using the international UTM coordinate 

system. However, the available topographic maps of the area utilised a local coordinate system 

not readily recognised by either handheld GPS equipment or software packages such as Petrel. 

To remedy this problem software including arcGIS and GeoMapper was used to overlay a UTM 

grid onto digital versions of the topographic maps.  

2.2.2 Geological Mapping 

Geological mapping provided the largest constituent of field data. As with topographic maps 

the availability of pre-existing geological maps was somewhat limited (Figure 2.2), restricted as 

it was to low resolution maps from the literature (e.g. Collier and Jones, 2004; Ford et al., 

Figure 2.1. Greyscale topographic map derived from digital elevation data with insets 

depicting the location of detailed topographic maps (Anavasi 1:50000 walking maps) used 

for base maps during field data collection. The base map for the remainder consisted of a 

less detailed 1:50000 road atlas. The main area was mapped at 1:50000, with the insets 

showing the locations of higher resolution mapping. 
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2012; Sorel, 2000), an unpublished thesis (Flotté, 2003), and a number of maps from the 

Institute of Geological and Mineral Exploration (IGME). The latter of these sources focus 

largely on the sedimentology of the area, and to some extent neglect the structural 

configuration. This emphasised the requirement for a more detailed set of geological maps in 

order to understand the structural evolution of the area, and its influence on the stratigraphy 

and sedimentology.  

 

 

 

 

 

 

Reconnaissance scale geological mapping was initially conducted over a period of 2 weeks, 

primarily using paved and unpaved roads for access. This allowed a basic understanding of the 

broad scale geology to be rapidly acquired as well as permitting a strategy for more detailed 

data collection to be developed. More detailed mapping was conducted over two longer field 

seasons, each of 5 weeks, allowing an iterative mapping process (figure 2.3) where areas could 

Figure 2.2. Greyscale topographic map derived from digital elevation data with insets 

depicting the location of pre-existing geological maps relative to the area mapped in this 

study. The maps indicated consist of published and unpublished maps compiled by the 

Greek Institute of Geology and Mineral Exploration (IGME), and exclude maps within the 

literature. 
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be studied in greater detail if required. Mapping consisted of locating and tracing lithological 

boundaries and faults, constructing transects both parallel and perpendicular to the main 

structural alignment, collecting structural orientation measurements for both bedding and 

faults, and performing sedimentological characterisation of mappable units. All data points 

used during construction of geological maps were geo-referenced using a GPS device and 

supplemented with field sketches and photographs where appropriate. Completed field maps 

were scanned and geo-referenced before being digitised using CorelDraw graphics software.   
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2.2.3 Palaeocurrent Data 

The influence of faults, and in particular fault linkage zones, on sediment dispersal is relatively 

well understood (e.g. Chapter 1). The topographic lows resulting from relay zones can act as 

sediment input points into hangingwall basins, hence palaeocurrent directions within the syn-

rift facies should radiate away from these point sources. Theoretically if the along strike and up 

section variations in palaeocurrent direction can be disentangled, then the timing of linkage of 

individual fault segments can be constrained (Dart et al., 1994; Gawthorpe et al., 1994). 

The majority of the syn-rift facies consists of continental alluvial fans composed of channel and 

overbank elements, as described in chapter 3. The overbank portion is mud-dominated and 

contains little to no palaeocurrent information. In contrast the channel and braid-complex 

portions are coarse grained sands and conglomerates of pebble to boulder grade, with the 

conglomerates displaying clast imbrications and preferred clast alignment. The long axis of the 

clasts tends to align perpendicular to the flow direction due to the rolling transport 

mechanism. If imbrication of clasts is also present the absolute direction can be identified. To 

ensure statistical validity, a minimum of 50 clast orientations were recorded at each outcrop 

locality, along with the bedding orientation. These were later structurally restored and plotted 

as rose plots allowing the average flow orientation at the time of deposition to be determined 

(figure 2.3). To aid in the accuracy of the structural restorations the depositional dip was 

estimated using Palaeoslope analysis (see below). 

Figure 2.3 (Previous page). Iterative process of geological mapping. (A) Reconnaissance 

scale mapping of the western area including the Dhemesticha sub-basin. (B) Detailed 

mapping of eastern area illustrating the position of outcrop. (C) Lithological map compiled 

from data collected over multiple field seasons. For a more detailed version see chapter 3. 
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2.2.4 Palaeoslope Data   

One of the aims of the fieldwork was to establish the displacement on the faults, with one of 

the methods for this being the extrapolation of syn-rift, hangingwall strata towards their 

intersections with the faults at depth (see Chapter 3). It is recognised that alluvial fans are not 

necessarily deposited horizontally, with depositional dips in excess of 20° being not uncommon 

(e.g. Paola and Mohrig, 1996). Hence, to correctly ascertain fault displacement the 

depositional dip of the syn-rift strata required reconstruction. A method based on the median 

clast size and the flow depth was used (Paola and Mohrig, 1996). Statistically valid clast 

dimensions can be determined where enough measurements are collected (typically 150-200 

Figure 2.4. Example of a restored equal-length rose plot describing the palaeocurrent at a 

single outcrop location as defined by preferred clast orientation.  Additional data included 

on the plot consist of the number of individual measurements, the resultant orientation in 

degrees clockwise from north, the angular deviation and the percentage of readings within 

the largest division.  
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per outcrop), although determining the channel/flow depth is often more difficult and is 

dependent on the quality and orientation of each individual outcrop. Where significant 

uncertainty was present, both minimum and maximum values for channel depth were applied 

to determine a possible range. Despite this the method contains too high a level of uncertainty 

to warrant being relied upon for statistically valid conclusions. 

2.2.5 In-Situ Strength Measurements 

An additional aim of data collection was to examine if any link between the mechanical 

properties of the stratigraphy and the fault geometries mapped in the field could be 

established. This undertaken by taking a series of in-situ strength measurements, with a 

Schmidt hammer being used for indurated outcrop, and a penetrometer used in areas of lower 

consolidation. Collection of data using a Schmidt hammer requires a modicum of preparation 

of the target outcrop. The Schmidt hammer uses a spring loaded mechanism to measure the 

rebound of a rock when a steel pin is fired onto its surface with a greater rebound value 

corresponds to a higher unconfined compressive strength (UCS). The surface used for 

measurement must be in-situ and must be cleared of any debris or vegetation and examined 

for any recent damage. If a surface is loose or damaged then the measurements will be too 

low. The accepted procedure for recording a representative value is to take measurements 

until a consistent value is returned. This ensures that any effects of weathering if the surface 

are negated. A minimum of 10 measurements are subsequently recorded with the mean of the 

highest 6 values being the characteristic value. This dimensionless measurement can then be 

converted into MPa using the calibration values of the individual Schmidt hammer and the 

lithology being tested (Katz et al., 2000). The major shortcoming when using in-situ strength 

measurements for analysis of geological structures is that the present day strength as 

measured may not represent the strength at time of deformation. Outcrops are likely to have 

been exhumed, as well as have been mechanically altered through, for example, cementation. 

This limits the extent to which present day measurements are relevant for characterising 

earlier properties. 

2.2.6 Sample Collection 

The present day position of an outcrop gives only a limited insight into its tectonic history such 

as its maximum burial depth. An aim of the field work was to determine the burial depth of the 

syn-rift sediments in order to constrain fault displacement and evolution. A number of features 

indicative of burial depth are present within both the syn-rift and pre-rift sequences, however 

the majority of these are of a scale requiring microscope identification. Hence a large number 

of samples were collected in order for thin sections to be prepared. 
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Samples were collected only from in-situ outcrop in order that orientation could be recorded 

along with location and present day elevation.  

2.2.7 Sedimentary Logging  

In order to characterise the interplay between structural evolution and sedimentation, a 

quantitative approach in the form of recording a series of sedimentary logs was applied to 

capture sedimentary facies variations (Chapter 3). Where possible, logs were recorded at 

intervals along transects running perpendicular to the major half-graben bounding faults. This 

allowed the evolution of facies from proximal to distal to be captured and correlated with the 

aid of photo-panels. Logs were constructed normal to bedding in order that the correct 

thicknesses of specific packages could be documented. 

2.2.8 Sample analysis 

Sample analysis in the form of optical microscopy was undertaken in order to attempt to 

establish the relative burial depth of syn-rift sediments, and hence the displacement on the rift 

faults. Since carbonates dominate the composition of the syn-rift sediments, depth estimates 

are dissolution-based. 

Pressure dissolution in carbonates can occur at relatively shallow depths, and commonly takes 

two forms; interpenetration of grains or clasts leads to the formation of concavo-convex grain 

contacts, and can occur below approximately 200 m (Larsen and Chilingar, 1983). However, 

the depth range over which they occur is poorly constrained, and they hence represent only a 

minimum burial depth estimate. Stylolites are also depth-dependent dissolution features, 

which can be used to estimate the volume of removed material (Fletcher and Pollard, 1981; 

Peacock and Azzam, 2006). Despite this the depth at which they initiate is poorly constrained, 

with estimates of 90 m (Tada and Siever, 1989), 300-600 m (Ebner et al., 2009) and 800-1000 

m (Railsback, 1993) being proposed.  

As a result a relative, rather than an absolute, depth estimate has been pursued (see chapter 

3), based upon the typical observations outlined in figure 2.5.  
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2.3 3D Geological Modelling of Field Data 

The majority of geological modelling consisted of constructing and populating geocellular grids 

primarily using Petrel (Schlumberger 2012). It is not within the scope of this thesis to 

document the numerous and detailed workflows and procedures employed during geological 

modelling, however the key steps and non-standard approaches used to solve specific issues 

are outlined. Geological modelling software designed for use within the petroleum industry is 

primarily used for subsurface rather than outcrop data. As a result a number of novel 

Figure 2.5. Framework for establishing a relative burial depth estimate for syn-rift  

sediments. Compiled from data within: Larsen and Chilingar (1983), Tucker and Bathurst 

(1990). 
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approaches were required to integrate field data within the 3D software environment. These 

are outlined in the following sections. 

2.3.1 Digital Elevation Models  

To digitally capture the present day topography of the field area a digital elevation model 

(DEM) was constructed using open-source ASTER data acquired by NASA. This is the highest 

quality data currently available over mainland Greece, with a resolution of 30m. The data can 

be downloaded as 1 degree latitude/longitude tiles in a geo-tiff format, where the elevation of 

each 30 x 30 m pixel is designated by its colour on a grey-scale. Prior to import into geo-

modelling software this required conversion to a useable format. This was performed using 3D 

Move (Midland Valley 2012), with each pixel being converted to a point with its position 

defined by x, y, z coordinates in the UTM format. In this manner the required geo-tiff files were 

converted to text files and imported into Petrel as point sets where they could easily be 

converted into surfaces.  

2.3.2 Import of Field Data  

Data collected during fieldwork consisted of 2D maps and 1D points data recording the 

position of specific outcrops, samples or measurements such as palaeocurrent or orientation 

readings. By importing these data into the geo-modelling environment its full 3D architecture 

can be constructed and visualised in order to significantly aid analysis.    

2.3.3 2D Data 

Maps were imported into geo-modelling software (Petrel, Schlumberger 2012) in two formats, 

firstly as the scanned versions of original field maps and secondly as the digitised version. In 

both cases the maps were converted to jpeg format and were cropped so that the corners 

corresponded to a known position in UTM space. The jpeg images could then be imported, 

georeferenced and draped over the DEM surface to allow the 2D map to be visualised in 3D 

(figure 2.6). 
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2.3.4 Point Data 

Points data representing the location of specific outcrops or measurements was imported as 

text files in much the same way as the DEM data (figure 2.5). In addition to the x, y, z 

coordinates additional attributes were attached to each point to capture the measured 

variable. These attributes could subsequently be colour coded or represented by a symbol (e.g. 

dip and dip-azimuth notation) to allow easy visualisation.  

2.3.5 Faults 

Construction of surfaces representing faults utilises both the map and points data (figure 2.6). 

The outcrop locations of faults were digitised directly onto the DEM as a poly line using the 

imported maps as a guide. This also acted as a QC tool since the interaction of a (sub)planar 

surface such as a fault with a complex topography will not be expressed as a linear feature on 

a map. Where the fault intersects valleys and raised topography such as spurs, the position of 

the fault trace will be modified. 

Dip and dip azimuth values for the fault surface were specified using the mean values for each 

specific fault, with additional control points provided by the individual orientation 

measurements. A surface can then be generated using the digitised polygons representing the 

out-cropping fault to define its intersection with the DEM. 

 

Figure 2.6 (Previous page). Process of combing field maps with digital elevation data. (A) 

Aerial view showing imported digitised geological map with corners georeferenced to allow 

correct positioning relative to the DEM. (B) Oblique view of DEM draped with geological 

map, no vertical exaggeration. (C) As (B) but 5x vertical exaggeration. (D) Oblique view of 

section of DEM draped with scanned and imported fair-weather fieldslip. The view is co-

rendered with the detailed digital base map to allow visualisation and orientation relative 

to roads and other markers. V.E. = x3. 
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Surface Generation 

 

 

Figure 2.7. Examples of incorporating 1D field data within the geomodelling environment. 

(A) Aerial view showing symbols representing georeferenced and restored palaeocurrent 

orientations within the alluvial fan sediments. (B) Oblique view with disc symbols 

representing bedding orientation superimposed onto the map-draped DEM. The symbols 

are colour-coded for their dip magnitude. V.E. = x3. 
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2.3.6 Stratigraphic Surfaces 

In order to define the displacement on the faults the position of the surface representing the 

top of the pre-rift, as well as the location of the onlap contact of the syn-rift had to be defined 

in each half graben (figure 2.7). Minimum values of fault displacement could then be 

established by projecting the dip of the syn-rift sediments at the position where they onlapped 

the hangingwall dip slope back towards the fault planes to define the depth of the hangingwall 

cut-offs. The procedure for capturing the depth of this hangingwall cut-off, and hence the 3D 

fault displacement, involved a number of steps for each individual hangingwall sub-basin. A 

series of cross-sections spaced at 1km and orientated perpendicular to the overall fault trend 

were constructed. The dip of the syn-rift at the exposed onlap contact was projected onto the 

cross-sections to define the dip of the top of the pre-rift.  

Figure 2.8. Summary of workflow for generating fault surfaces. (A) Fault trace is digitised 

onto the map-draped DEM (light green line). Points data representing local fault orientation 

measurements are also shown. (B) The mean orientation data for each individual fault is 

used to generate a surface constrained by the local fault orientation measurements and the 

outcrop fault trace.  
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For each cross-section this top-basement surface was digitised and converted into a points set. 

Merging the point sets for each cross section across an individual sub-basin with the digitised 

onlap contact allowed the generation of a surface approximating the top of the pre-rift. The 

top pre-rift surfaces for each basin were merged with a surface representing the present day 

top pre-rift outcrop in order to generate an overall top pre-rift surface. 

This approach for calculating the dip of the top pre-rift within the hangingwalls yielded 

minimum (low-case) estimates of displacement. This is because footwall erosion and the dip of 

the hangingwall slope are not directly included within the calculation, both of which are likely 

to increase estimates of displacement (figure 2.10). Mid- and high-case estimates of 

displacement were also generated by incorporating these features to allow a possible range of 

fault displacements to be generated, albeit with a caveat: The pre-rift consists largely of 

carbonates uplifted and deformed during the Hellenide orogeny to form the Pindos Nappe 

(e.g. Skourtsos and Kranis, 2009). As a result the pre-rift was likely to have had a significant 

topography. Therefore caution was required when using pre-rift surfaces to infer buried 

geometries (figure 2.11).  

Figure 2.9 (Previous page). Generalised workflow for generating the buried top pre-rift 

stratigraphic surface. (A) A series of fault-normal cross sections are generated at intervals 

of 1km. (B) The dip of the syn-rift strata immediately adjacent to the onlap contact for 

each sub-basin is projected onto each cross section and projected down-dip towards the 

faults. (C) The dip of the strata for each cross section is combined for each individual half 

graben to generate a surface. Where this surface intersects the fault defines the position 

of the hangingwall fault cut-off. This allows a minimum fault throw value to be estimated. 

(D) The surfaces for each individual sub-basin are combined, and merged with the DEM to 

generate an approximate top pre-rift surface (E). 
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Figure 2.10. Schematic illustrating the different approaches to estimating fault 

displacement. 

Figure 2.11. Schematic illustrating the effect of basement topography on fault 

displacement estimates. 
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2.3.7 Geo-cellular Grids 

The main difficulties with modelling outcrops within geological modelling software packages is 

the absence of broad scale stratigraphic surface architectures as would be present when 

modelling from seismic data. After this problem has been resolved for the pre-rift to syn-rift 

boundary the workflow for generating and populating a geo-cellular grid is much the same as 

for when 3D seismic data is available (chapters 5, 8).  

Firstly a boundary encompassing the area of interest and any faults present is constructed 

which defines the outer edge of the grid. Grid cell dimensions in the x and y directions are 

specified and the iterative process of generating a corner point grid (Schlumberger, 2012) is 

initiated. Within the grid faulted stratigraphic horizons are generated using the surfaces 

constructed from the outcrop geometries. Additional layers between the stratigraphic horizons 

can be generated at intervals defining the vertical (z) grid cell dimensions, with the cells 

subsequently populated with petrophysical properties (figure 2.12). Fault petrophysical 

properties such as the permeability can then be estimated using published equations, and the 

fault transmissibility multipliers (TMs) derived (Manzocchi et al., 1999). 
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2.4 Digital Geological Modelling 

The use of digital data, such as seismic or LIDAR DEM data, to construct a geological model is a 

similar process to that used for outcrop data. It is if anything perhaps slightly more straight 

forward since key surfaces are relatively easy to interpret or generate, rather than having to be 

constructed manually. 

2.4.1 Seismic Interpretation 

Interpretation of seismic data was performed in relation to a number of different aspects of 

the thesis (Chapters 4, 5, 7, 8). In all cases the seismic interpretation module of Petrel was 

used, with the specific details of the approaches used being covered in each individual chapter. 

In areas of high data quality autotracking tools were sufficient to generate high quality 

surfaces with fault interpretations also being relatively straight forward to produce. In areas of 

lower signal to noise ratio or lower resolution manipulation of the ‘raw’ seismic data was often 

required to aid interpretation of surfaces and faults. These techniques included using volume 

and surface attributes such as coherency, ant-tracking, variance, edge detection, dip and dip 

azimuth, etc. In addition geo-body interpretation tools were utilised which use approaches 

such as seismic facies correlation to identify channels and other features. 

2.4.2 3D Geological Modelling 

As with modelling of field data, 3D geological modelling was conducted primarily using Petrel 

(Schlumberger, 2012). The majority of the techniques and methodologies used correspond 

closely to those described for outcrop modelling (section 2.2).  

2.4.3 Fluid Flow Simulation 

Fluid flow simulation contributes a large component of the thesis. Here it is used to model the 

impact of differing fault geometries on reservoir performance. Despite it allowing 

quantification of the impact of geological factors which are often qualitatively described, its 

Figure 2.12 (Previous page). Generalised construction of a geocellular grid. (A) The grid 

geometry and faults are defined with the grid generated according to these limitations. (B) 

Input data consisting of the stratigraphic surfaces generated previously (e.g. figure 2.7) are 

used to define the fault displacement. (C) The grid can now be populated with petrophysical 

properties allowing further steps such as fluid flow modelling, seismic forward modelling 

and fault property modelling to be undertaken.    
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use as a tool by geologists has remained limited, possibly because it is traditionally viewed as a 

reservoir engineering discipline.  

Two simulators have been used within the project, the Eclipse 100 Black Oil Simulator, and 

FrontSim (Schlumberger 2008). The use of these different simulators corresponds to the 

computational time required for simulation. FrontSim requires shorter run-times, but does not 

capture the full range of variables to the same extent as eclipse. Hence, the different 

simulators have been used when their capabilities have corresponded adequately to the 

purposes of the simulations.  

Populated geo-cellular grids constructed within Petrel form the basis for the reservoir 

simulation models, which are also constructed within Petrel but with the simulations 

themselves run externally through a command prompt dialogue. A number of steps must be 

completed with specific variable values assigned to allow reservoir simulations to be run. The 

values for the specific variables for individual simulations are shown within the relevant 

chapters, however an overview of the requirements is outlined here.  

The first step of constructing a fluid flow simulation model is to define the position of the fluid 

contacts which are present within the model. The location of well heads at the surface, the 

well path design and the well completions, such as the casing and position of perforations, are 

all specified. A fluid model encompassing the physical properties of the fluids present is 

defined which controls the values of pressure, volume and temperature (PVT) for the fluids at 

the range of conditions present during simulation. Rock physics functions including the two-

phase properties of the reservoir rock and its compaction behaviour are stipulated, and an 

aquifer model generated. A development strategy is then specified which instructs the 

simulator when specific wells are active, their flow rates and pressures, as well as the length of 

the simulation run and how often intermediary reports should be made. The final stage is to 

generate a simulation case, the purpose of which is to link the geological grid containing the 

petrophysical properties of the grid cells and the faults with the reservoir simulation model 

and development strategy. Each case is exported to the relevant simulator where it is run, and 

the results subsequently re-imported into Petrel. This allows analysis of the evolution of 

pressure, production rates and fluid movements through the subsurface over the course of the 

simulations 

2.4.4 Seismic Forward Modelling 

Seismic forward modelling has been used to generate synthetic 2D and 3D seismic sections 

and volumes from outcrop based data in order to quantify the uncertainties in fault 
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geometries when they are defined from seismic data (chapters 4, 8, 9). A software program 

called SeisRox (Norsar, 2012) has been used to generate the synthetic seismic based upon geo-

cellular grids constructed within Petrel. The approaches for generating 2D and 3D seismic are 

quite different and have different objectives, as outlined below.  

2.4.4.1 2D Synthetic Seismic 

2D synthetic seismic was generated at a rift-scale in order to investigate exploration rather 

than production scale uncertainties pertinent to fault geometry (chapter 4). The workflow 

employed was subtly different in that the grids being exported from Petrel were significantly 

much larger than for the 3D cases. This necessitated that for each petrophysical property 

required within the forward modelling software an individual seg-y volume had to be created 

and separately exported. When all the requisite property cubes were available the forward 

modelling process was identical other than that a 2D rather than 3D survey design was 

specified. 

2.4.4.2 3D Synthetic Seismic 

Generation of 3D synthetic seismic cubes has been performed in order to quantify the impact 

of reservoir scale faults on hydrocarbon flow. The primary source data has been a high 

resolution (0.5 m) airborne LIDAR DEM dataset from the Afar rift (see chapters 8, 9). Forward 

modelling was focussed on areas of high geometric complexity around fault relay zones. The 

geo-cellular grids constructed from the DEM were exported from petrel using a plug-in piece of 

software allowing direct transfer of all the required grid properties to the forward modelling 

software (figure 2.9). The reflectivity and elastic properties could subsequently be calculated 

using Zoeppritz and Gassman’s equations respectively and combined with a background 

model, 3D survey design and input wavelet. A ray-tracing algorithm (Gjøystdal et al., 2007) was 

then applied to generate the synthetic cube, which could then be exported back to Petrel for 

seismic interpretation. 
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2.4.5 Structural Restorations 

A number of the aspects of the thesis utilise section balancing techniques to illustrate a 

specific argument (e.g. chapter 3). This was performed using 2D Move (Midland Valley, 2012). 

The approach used was to generate fault-normal cross-sections from the models generated 

within Petrel. These were then exported as image files to 2D move. Faults and stratigraphic 

horizons were then digitised and restored to their pre-rift position. Completing a series of 

cross-sections in this manner allowed any along-strike variation in extension to be identified 

(chapter 3). 

 

 

 

 

 

 

 

 

 

Figure 2.13 (Previous page). Generalised workflow for generating 3D synthetic forward 

modelled seismic cubes. (A) A geocellular grid capturing the desired architecture at a high 

resolution is constructed and populated with the relevant petrophysical properties. (B) The 

geocellular grid is exported to seismic forward modelling software where the elastic and 

reflectivity properties cubes are generated. These are combined with a 3D overburden 

model to account for wave attenuation and diffraction along the source-target-receiver 

travel path (C). (D) A 3D survey is designed (Di) with the specific orientations of imaged 

reflections calculated (Dii), and an input wavelet specified (Diii). (E) A ray-tracing algorithm is 

then used to generate a synthetic seismic cube of the target area. (F) This synthetic cube can 

then be interpreted using seismic interpretation software to generate the seismically 

resolvable surface and fault geometries. 
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Chapter 3 

Structure and Evolution of the Onshore Gulf of Corinth Rift 

3.1 Abstract 

Within this chapter the evolution of the onshore Gulf of Corinth rift is investigated. The 

evolution of the rift is found to be significantly more complex than previously thought, with 

multiple fault segments active concurrently. Three stages of rifting are identified, with an 

initially dispersed rift system gradually localising onto larger fault sets which accommodate the 

majority of extension. A final stage of rifting sees reactivation of a number of earlier structures. 

Strain is portioned across multiple faults in the east, whilst further west a single, large fault 

accommodates extension. 

Geocellular models constructed herein to aid interpretation of the rift evolution and fault 

distribution are used as inputs for investigating structural uncertainty at the rift scale (chapter 

4). 

3.2 Introduction and Aims 

In order to examine the influence of fault geometries and linkages on hydrocarbon exploration 

uncertainty a suitable dataset encompassing rift-scale faults was required. The onshore Gulf of 

Corinth rift provides an excellent outcrop example. A complex and uncertain fault evolution 

(Collier and Jones, 2004) is superimposed upon a generalised basinward migration of fault 

activity, the result of which is that older faults are uplifted in the footwalls of younger faults 

(Ori, 1989). This leads to the preservation of a series of rotated blocks and half-grabens 

partially filled with a continental syn-rift stratigraphy. The topography and syn-rift stratal 

architecture capture along strike displacement variations which allude to the presence of 

structures such as relay zones. The aims of this chapter are hence twofold, and are linked to 

those of the following chapter. Firstly, the development of a model for the evolution and 

relative timing of the faults comprising the onshore portion of the southern part of the Corinth 

rift was required. This has been facilitated by the second aim: to construct a geological model 

of the onshore rift capturing the 3D fault geometry. This geological model integrates a range of 

field data and is used to further examine exploration scale uncertainties associated with fault 

geometries in Chapter 4.  
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3.2.1 Regional Tectonics  

The eastern Mediterranean has long been recognised as an area of active tectonism 

(McKenzie, 1970, 1972). Various geometries of convergence and interaction of the African, 

Eurasian, Arabian and Anatolian plates result in a wide variety of active tectonic processes 

(McClusky et al., 2000). The region is dominated by the collision of the African and Arabian 

plates with the Eurasian plate (Figure 3.1). This results in arcuate subduction of the African 

plate beneath the Eurasian and Anatolian plates along the Hellenic arc and continental 

collision of Arabia with Eurasia leading to the fold and thrust belt of the Zagros and Caucasus 

mountains (McKenzie, 1970, 1972). The Arabian plate has a northwards vector of 

approximately 18 to 25 mm/yr compared to 10 mm/yr for the African plate (McClusky et al., 

2000). This differential motion is thought to be accommodated through left lateral movement 

on the Dead Sea transform fault zone (McKenzie, 1972). The Eurasian plate effectively forms a 

buttress to the northwards movement of the Arabian plate leading to westwards extrusion of 

the Anatolian plate facilitated by the development of the North and East Anatolian strike-slip 

faults (McKenzie 1970).  

Subduction of the African plate at the Hellenic arc is occurring at a faster rate than the 

northwards movement of the plate itself leading to slab pull and southwards migration of the 

arc relative to the Eurasian plate (Royden 1993). This leads to back-arc extension and 

continental rifting of mainland Greece to the north (Doutsos et al., 1988). It is postulated that 

rifting initiated at approximately 15 Ma and was distributed across the Aegean region (Armijo 

et al., 1996). Maximum extension occurred in the central Aegean, decreasing to the west and 

east resulting in the arcuate geometry of the subduction zone. Although much of mainland 

Greece is characterised by the continuing continental rifting the Gulf of Corinth is currently the 

most active rift, with extension rates averaging 5 to 15 mm/yr (Davies et al., 1997; Clarke et al., 

1998; Briole et al., 2000; Bell et al., 2008). Armijo et al., (1996, 1999) suggest that westwards 

propagation of the north Anatolian fault has also contributed to extension in the Aegean. 

Dextral movement of Anatolia relative to Eurasia leads to increased extension across the gulf 

in addition to the extension resulting from subduction and back arc rifting. Jolivet (2001) 

proposes an additional control on extension in the form of gravitational collapse of the 

lithosphere thickened during the Hellenide orogeny. It is proposed that the Gulf of Corinth in 

its present form has been experiencing localised extensional deformation since at least the 

Pliocene (Armijo et al., 1996). 
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3.2.2 Structure of the Gulf of Corinth Rift 

The modern day Gulf of Corinth is a large E-W orientated inlet in central Greece approximately 

120 km in length with a maximum width of 27 km and maximum water depth of almost 900m 

(Figure 3.2). It separates the Peloponnese in the south from Central mainland Greece to the 

north, although the northern and southern margins are connected at the eastern termination 

of the Gulf by the Corinth Isthmus. The isthmus disconnects the Gulf of Corinth from the 

Saronic Gulf to the east, although U/Th dating suggests that a single body of water existed 

prior to approximately 300ka (Collier, 1990; Collier and Dart, 1991). In the west the Gulf of 

Corinth is separated from the Gulf of Patras and the wider Mediterranean Sea by the Straits of 

Rion. Water depth is as little as 60m in this area with Pleistocene eustatic sea level variations 

periodically resulting in the Gulf becoming cut off and existing as a lacustrine depositional 

setting (Perissoritas et al., 2000). 

The area is actively extending and is characterised by high extension rates which are 

accommodated on a number of major north dipping and minor south dipping faults. These 

faults run east-west to NW-SE, cross cutting pre-existing NNE-SSW orientated thrusts within 

Figure 3.1. Tectonic setting of the eastern Mediterranean. The Anatolian plate is extruded 

westwards away from the Arabia-Eurasia collision zone and towards the Hellenic 

subduction zone with lateral strike-slip movement accommodated along the North 

Anatolian Fault (NAF) and East Anatolia Fault (EAF). Large block arrows represent mean 

plate motions whilst small arrows represent movement vectors. Localised rifting in the 

Aegean region over the last 15 Ma is indicated by the orange areas with the Corinth Rift 

highlighted by a red box. DSF=Dead Sea Fault. Modified from Armijo et al., (1999). 
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the pre-rift basement (Pe-Piper and Piper, 1984). This basement consists of Mesozoic age shelf 

carbonates, radiolarites, flysch and ophiolite derived from the Tethys Ocean. Closure of the 

Tethys due to Alpine compression during the Oligocene-Miocene resulted in west to northwest 

vergent thrusting and formation of the Hellenide mountain chain, the remnants of which now 

form the pre-rift basement (Pe-Piper and Piper, 1984). 

The bathymetry of the Gulf and the onshore topography to the south and north describe an 

asymmetric graben with the majority of extension being accommodated by both onshore and 

offshore north dipping faults to the south (McNeill and Collier, 2004). Younger faults develop 

in the hangingwalls to older faults suggesting a general trend of northwards migration of 

deformation over time (Ori, 1989; Sorel, 2000), however field observations suggest a more 

complex history (Collier and Jones, 2004). This general northwards trend results in previously 

subsiding sub-basins being subject to footwall uplift and consequent erosion and incision by 

both ancient and modern fluvial systems. The earliest observable rifting in the Gulf of Corinth 

is interpreted as occurring during the Mid to Late Pliocene (Ori, 1989), however due to the 

nature of the sediments chronostratigraphic correlation is limited. At this time sedimentation 

was contemporaneous with, and controlled by, movement on the southern most faults (Ori, 

1989; Sorel, 2000).  

King et al (1985) postulate the presence of a low angle, aseismic fault at depth beneath the 

eastern Gulf of Corinth to explain the surface geometries they observed. They speculate that a 

low angle detachment above the brittle-ductile transition would allow the formation of 

antithetic faults apparently prior to the main surface faults themselves. Microseismicity studies 

(Rietbrock et al., 1996; Rigo et al., 1996; Bernard et al., 1997) indicating the presence of a zone 

of earthquake foci defining a low angle surface at a depth of between 6 and 10km support this 

large scale geometry. These observations are in contrast to those of Sorel (2000) who suggests 

a low angle detachment fault at a depth of 1 to 2 km. The model of Sorel (2000) identifies the 

southern-most onshore fault in the region as the oldest, with progressive northwards 

migration of deformation resulting in a series of half grabens, with the detachment fault at 

their base. Although a generalised trend of northwards migration of fault activity is compatible 

with the overall tectonic setting, field studies by Collier and Jones (2004) suggest a more 

complex deformation history. 
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3.2.3 Chronostratigraphic Correlation and Fault Timing 

Spatial and temporal distribution of faulting in the Gulf of Corinth area is a subject of some 

debate. Although it is generally agreed that dominant active faulting has broadly migrated 

basinward over time (Ori, 1989; Jackson, 1999; Goldsworthy and Jackson, 2001), the detail 

over which this pattern is superimposed is disputed. Sorel (2000) suggests a sequential 

northwards migration of activity, with little to no variation. This is in contrast to other authors 

(Collier and Jones, 2004; Rohais et al., 2007) who suggest a more distribute history of faulting, 

at least in the early stage of rifting. For example, Causse et al (2004) use U/Th dating to suggest 

that the Dhoumena fault, was active at approximately 0.125 Ma, an age significantly out of 

sequence with the northwards progression model, and potentially indicating that multiple 

faults may have been active concurrently. Nevertheless, absolute age markers are rare and 

hence the timing of fault activity is, in detail, relatively poorly constrained. 

The onshore portion of the Gulf of Corinth Rift consists of a series of approximately ESE-WNW 

trending, north dipping fault sets forming a succession of hangingwall half graben depocentres. 

These depocentres were in-filled with continental lacustrine to fluvial-alluvial syn-rift 

sediments, passing northwards into Gilbert style fan deltas (Poulimenos et al., 1989; Ori, 1989; 

Doutsos and Poulimenos, 1992; Dart et al., 1994). Due to their depositional nature the age of 

Figure 3.2. Map showing both the onshore and offshore structural configuration of the Gulf 

of Corinth rift. The area covered by this study is highlighted. Modified after Bell et al (2011); 

Taylor et al (2011); Ford et al (2013). 
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these sediments, and hence also the timing of fault initiation, is poorly constrained. Early stage 

syn-rift intermontane lacustrine sediments within boreholes in the vicinity of Kalavryta have 

been observed to contain various lignite facies dated as Lower Pliocene (5.32-3.58 Ma, 

Papanicolaou et al., 2000). These likely correspond to the observations of this study at the 

base of the syn-rift sequence approximately 5km to the northwest of Kalavryta. Although 

paleontological evidence is scarce throughout the continental syn-rift sequence as a whole, 

mammalian fossils to the east date early conglomerates in this region as Lower Pleistocene 

(1.8-0.78 Ma, Symeonidis et al., 1987). Further constraint can be derived from the age of the 

Gilbert deltas in the uplifted footwalls to the active faults located along the present coastline. 

These deltas are located in the hangingwall to the Mamoussia-Pirgahki fault set which marks 

the boundary between continental and marine sedimentation. The activity of the faults to the 

south of the Mamoussia-Pirghaki fault is a subject of debate and this leads to uncertainty in 

the age of their related hangingwall sediments. 

Biostratigraphic analysis by Malartre et al (2004) indicate that deposition of the Vouraikos fan 

delta occurred during the early Pleistocene (Figure 3.3). Ford et al. (2007, 2012) refine this 

further using palynology to suggest delta formation initiated at 1.1-1.5 Ma, terminating at 

approximately 0.7 Ma. They describe a coarse grained braided fluvial to overbank formation 

(‘Ladapotamus formation’) which unconformably overlies the basement Mesozoic carbonates 

at the base of the Vouraikos delta, separated from the overlying transitional to deltaic 

sediments by an unconformity. This formation is tentatively correlated to the distal portion of 

the alluvial fan facies observed to the south in the footwall to the Mamoussia-Pirgahki fault. 

This correlation is reinforced by pollen samples from of the alluvial sediments in the footwall 

being dated as approximately 1.1 Ma (Ford et al., 2007). This provides a constraint not only on 

the timing of activity of the Mamoussia-Pirgahki fault, but also on the minimum age of 

continental sedimentation in the immediate area. Further to the west, also in the hangingwall 

to Mamoussia-Pirgahki fault, the Kerinitis delta records a similar history. Dart et al, 1994 

suggest a Mid-Pleistocene age for the oldest deltaic sediments; this estimate is constrained by 

correlation with neighbouring deltas to approximately 0.8 Ma for the age of initiation (Backert 

et al., 2010). Further to the east, in the area around the Corinth Isthmus, andesite volcanics 

near the base of the syn-rift sequence have been dated at 4Ma (Collier and Dart, 1991). Flotte 

et al (2001) used U/Th dating of fault related calcites to suggest an age of 0.38 Ma for the 

Valimi fault. Those authors did however concede that since these were syn-rift samples they 

were unlikely to record the time of initiation of faulting. Although the data is relatively sparse 

it does constrain continental sedimentation within the rift as occurring between 5.32-3.58 to 
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1.5-0.8 Ma. The age of breccia deposits at the eastern end of the Kalavryta fault is not 

constrained but is estimated to be less than 0.2 Ma (Ford et al., 2013).          

 

 

 

 

 

 

 

 

Figure 3.3. Map (A), and conceptual north-south orientated chronostratigraphic diagram (B) 

illustrating published timings of faulting and deposition. KF = Kalavryta fault, KPF = Kerpini 

fault, TF = Tsivlos fault, DF = Dhemesticha fault, DhF = Dhoumena fault, VF = Valimi fault, 

MPF = Mamoussia-Pirgahki fault, EEF = eastern Eliki fault, WEF = western Eliki fault, KFD = 

Kerinitis fan delta, VFD = Vouraikos fan delta. Compiled from data within; Symeonidis et al 

(1987); Collier and Dart (1991); Papanicolaou et al (2000); Flotte et al (2001); Causse et al 

(2004); Malartre et al (2004); Ford et al (2007, 2012); Backert et al (2010).  
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3.3 Mapping and Modelling methodology 

In order to better constrain the structural evolution of the area a variety of methodologies 

have been employed. Geo-referenced field data such as fault and bedding orientations have 

been integrated with detailed outcrop mapping and a Digital Elevation Model (DEM) within the 

3D geomodelling environment of Petrel (See methodology in chapter 2). Geological 

information is draped onto a DEM surface to allow 3D visualisation of outcrop patterns and 

rapid identification of spatial variation of data, both in terms of its distribution and properties. 

A confidence attribute can also be attached to each data point to aid in reconciling anomalous 

values or interpretations. 3D geomodelling software is primarily used in conjunction with 2D 

and 3D seismic data to constrain subsurface geometries. When using this software to model 

outcrops where no subsurface constraint is available, it is important to fully exploit all surface 

data. Since the topographic surface described by the DEM is highly incised and eroded, there 

are numerous areas, such as valleys, where vertical sections effectively capture the equivalent 

of the local subsurface geometry and any variation in the orientation of the syn-rift 

stratigraphy. Given that the majority of the syn-rift sediments are back rotated, the outcrop 

tends to increase in age with distance from the faults. Horizontal transects are hence an 

effective tool when identifying any up sequence variation in orientation, for example fanning 

dips, associated with syn-rift strata. When coupled with surface data these transects 

significantly improve the constraint of subsurface geometries (Figure 3.4). 

Figure 3.4 (next page). Horizontal transects provide additional constraint on rift evolution. 

(A) Photo-panorama of dip fan within south dipping alluvial sediments along the 

Ladapotamus river valley to the north of the Tsivlos fault (located right of the image). (B) 

Plot of stratigraphic dip against distance from the fault. As a result of the dip, the age of 

the strata increases with distance from the fault. Increasing dip with distance alludes to the 

syn-rift nature of these deposits. (C) Elevation against dip along the same transect. Dip 

increases as elevation decreases, since the higher, younger sediments have been subject to 

less fault rotation. 
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A key aim of building a 3D model of the study area was to capture along strike variations in 

fault displacement. The displacement fields of the faults can reveal information about their 

interaction and growth history, as well as aiding in the identification of displacement minima 

often associated with relay zones (Peacock and Sanderson, 1994). To this end it was important 

to accurately model the surface describing the top of the pre-rift carbonate basement as this 

provided a marker for characterising the displacement distribution of the rift faults. A number 

of obstacles needed to be overcome to allow reasonable estimates to be made. The primary 

difficulty relates to estimating the subsurface depth of the hangingwall cut off along the length 

of a fault, since it is buried beneath the overlying syn-rift sequence. To estimate the depth of 

this intersection between the fault plane and the top carbonate surface in the hangingwall, 

and hence the amount of hangingwall displacement across the fault, three methods have been 

employed (figure 2.10). The first method involves projecting the dip of the syn-rift sediments 

at the position where they onlap the hangingwall dip slope back towards the faults along a 

series of equally spaced transects orientated normal to the strike of the fault. The second 

method is similar, however rather than back-projecting the dip of the syn-rift sediments, the 

dip of the underlying basement onto which the sediments onlap is used. Both methods result 

in a series of cross sections describing the projected subsurface geometry. The cross sections 

are then used to constrain the geometry of a surface corresponding to the top of the 

basement, from which displacement:length data can be extracted. These methods assume that 

the surface position of the fault corresponds to the footwall cut off and are hence minimum 

displacement estimates. To further constrain the estimates of along strike displacement 

distribution a third method was employed to account for footwall degradation. This involved 

projecting the footwall topography towards the fault plane with their intersection 

corresponding to the position of the footwall cut off. The three methods provide the 

equivalent of low, base and high case estimates of displacement. It must be stressed that 

although these methodologies produce reasonable results, there is a large degree of 

uncertainty, mainly due to uncertainties associated with the effects of any pre-existing 

basement topography on displacement estimates (figures 2.10, 2.11). In addition, since the 

calculation of displacement is based upon back-projected strata, the hangingwall cut-off 

geometries which are predicted will capture only strain accommodated through discrete 

offsets. As a result the presence of any ductile bed rotations at depth is uncertain. This 

potentially has implications for the interpretation of fault evolution as continuous 

deformation, such as rotation of strata, often accounts for the displacement minima 

frequently observed at relay zones (Walsh et al., 2003).   
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Following construction of the top pre-rift surface, isochore maps can be constructed for the 

syn-rift stratigraphy (Figure 3.5). In addition displacement-length plots can be constructed for 

each individual fault, and for the fault system as a whole. This is done in two ways, either for 

the true fault lengths, or for the fault length as projected onto a plane parallel to the overall 

fault strike. Since faults are not linear features their true length is greater than the straight-line 

distance between their two tips. As a result true-length plots often do not capture distortions 

in displacement as a result of fault overlap. By projecting displacements onto a fault-parallel 

plane the displacement variations caused by strain partitioning across overlapping faults is 

more easily discernible. The difference in d:L ratios between the two approaches can be 

significant, and it is often unclear within the literature which approach has been used.  

The spatial variations in displacement can be used to identify areas of high subsidence 

associated with prolonged or rapid fault activity, and help to constrain the relative timing of 

fault activity and deposition of the associated syn-rift sediments in the area.  

Figure 3.5 (Next page). (A) Oblique view looking south onto modelled top-basement 

surface (V.E. = x2). Fault planes are shown in blue. (B) Isochore map of syn-rift strata, with 

a maximum thickness of 2000m. 
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3.4 Onshore Structural Evolution and Lithostratigraphic Framework 

As previously mentioned, this study focuses on the structural evolution of the continental rift 

system and the associated fluvial-alluvial sedimentation. Given the absence of absolute age 

data, relative timing of fault activity has been discerned using fault and stratal architecture 

relationships. Constraining the timing of faulting using stratal geometries required that a 

lithostratigraphic framework be established to aid correlation of sedimentary deposits across 

faults and between basins. 

The scarcity of datable markers within the onshore continental sediments limits the ability to 

confidently use chronostratigraphy to correlate between adjacent half grabens. As a result a 

lithostratigraphic framework provides an alternative, if more uncertain, means of establishing 

a coupled sedimentation-structural evolution model.  

Previous work has illustrated the extent to which sedimentation is controlled by rift evolution 

(Gawthorpe et al., 1994; Collier and Dart, 2004), hence a lithostratigraphic framework has 

been established in terms of the structural configuration and timing. In the broadest sense the 

stratigraphy is classified as being either pre-, or syn-rift in origin. Given that rifting is still 

occurring there is, as yet, no post-rift stratigraphy.  

3.4.1 Pre-rift 

The pre-rift ‘basement’ on which the present day rift is superimposed was highly deformed 

during the formation of the Hellenide mountain range during the Cretaceous to Mid-Cenozoic 

(Roberts and Jackson, 1991) with thrust sheet emplacement towards the W-WSW (Pe-Piper 

and Piper, 1991). It is predominantly composed of Tethyan pelagic shelf carbonates deposited 

during the Mesozoic (Degnan and Robertson, 1998) with subsidiary radiolarite, chert and 

ophiolite as well as flysch sandstone turbidites deposited during the Palaeocene-Eocene (Piper, 

2006; Faupl et al., 2007). The pre-rift in the study area (figure 3.6) is part of the Pindos nappe 

which in turn overlies the Gavrovo-Tripolitza thrust sheet and Zarouchla complex (Skourtsos 

and Kranis, 2009). Despite a 15-20 Myr unconformity between the main phase of 

compressional Hellenide deformation of the pre-rift, and the onset of rifting and deposition of 

the syn-rift, there is evidence to suggest that a significant inherited palaeo-topography with 

relief of up to 1000m (Ford et al., 2013) was present at the onset of rifting in the Pliocene-

Pleistocene.  
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3.4.2 Syn-rift 

The syn-rift stratigraphy can be sub-divided into three distinct elements (Figure 3.7) based 

largely upon their age, depositional environment and geographic location. The overall timing 

of fault activity has migrated northwards other time (albeit with additional complexity 

superimposed), with progressive back rotation of syn-rift sediments within the hangingwall 

depo-centres (Poulimenos et al., 1989; Ori, 1989; Doutsos and Poulimenos, 1992). This 

migration, with concomitant uplift of fault footwall blocks and subsidence of hangingwall 

blocks, has lead to the present day outcrop pattern, describing a general trend of younger 

sediments from south to north. In addition the depositional environment shows a general 

trend of increasing water depth towards the north (Poulimenos et al, 1989; Ford et al., 2007; 

2012. The three elements of the syn-rift stratigraphy consist of an early (circa <5 Ma, 

Papanicolaou et al, 2000; Ford et al., 2007), predominantly continentally deposited system 

(‘continental system’), a ‘deltaic system’ (circa <1.1-1.5 Ma, Ford et al., 2007, 2012) and the 

Figure 3.6. Map showing distribution of main depositional units and faults. Inset shows 

field area location on the Peloponnese peninsula. DF = Dhemesticha fault, DhF = 

Dhoumena fault, VF = Valimi fault, MPF = Mamoussia-Pirgahki fault, EEF = eastern Eliki 

fault, WEF = western Eliki fault. Also see more detailed map in the appendix. 
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recent to present day (circa <0.7 Ma, McNeill and Collier, 2004; Ford et al., 2007) deltaic to 

slope system (‘present day system’). The focus of this work is predominantly on the 

continental sediments, although the younger sediments are also described here for clarity. 

Previous authors (Rohais et al., 2007; Backert et al., 2010; Ford et al., 2012) have often opted 

to sub-divide the stratigraphy of the area into detailed lithofacies units, however since this 

study is primarily focussed on the structural evolution rather than the detailed sedimentology, 

the simple framework outlined here has sufficed. 

3.4.2.1 Continental System (<5 Ma) 

The fanning dips of the continental system attest to its syn-rift nature (Figure 3.4), with the 

sediment input from the south being largely controlled by the Kalavryta-Dhemesticha fault set 

(Collier and Jones, 2004; Ford et al., 2012). Within the syn-rift sequence are a number of 

internal angular unconformities across which there are subtle facies changes. These facies 

changes, along with the differing dip magnitudes, allow the continental system to be sub-

divided into three depositional phases consisting of early, middle and late.  

 

 

 

 

 

 

 

Figure 3.7. Plane and cross polarised light photographs illustrating the variation in 

composition of different stages of basin fill. (A, Oldest) Initial dispersed rifting resulted in 

depocentres filled with both hinterland and locally derived material. (B) The main 

progradational alluvial fan is compositionally varied, dominated by sediments with a 

hinterland provenance. This includes sandstone, chert, radiolarite and carbonate 

lithologies. (C, Youngest) The breccia stratigraphically above the main alluvial fan in the 

hangingwall to the Kalavryta fault is composed entirely of carbonate material derived from 

the local footwall. All stages display carbonate cementation to varying degrees, with both 

vadose and phreatic cements observed.  
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3.4.2.1.1 Early Stage Continental System (Phase 1) 

The base of the syn-rift succession is exposed at a limited number of localities where it onlaps 

the pre-rift ‘basement’ (Figures 3.8, 3.9). To the south, the earliest exposed continental 

sediments consists of fine grained lacustrine marls containing occasional lignite (also observed 

by Papanicolaou et al, 2000) which coarsen upwards into fluvial-alluvial conglomerates 

constituting the middle phase of continental sedimentation (Figure 3.9). These sediments are 

interpreted as being deposited passively within inter-montane lows present within the pre-rift 

topography. Further north, the earliest syn-rift is distinctly different, consisting of well 

indurated breccias and conglomerates. Although a range of clast compositions is present it is 

dominated by carbonate with clasts often supported by a calcite cement (figure 3.7, 3.10). The 

pervasive cementation, possibly combined with a greater burial depth, leads to a higher 

compressive strength relative to the younger conglomerates (Figure 3.11). This is however a 

generalised trend, since the measurement of present day in-situ strength does not necessarily 

correspond to the strength at the time of deposition.  

Cementation consists of an isopachus calcite spar overgrown by a drusy fabric (Figure 3.7, 

3.10), indicating that cementation occurred below the palaeo water table, within the phreatic 

zone. The relative lack of grain contact dissolution suggests that cement growth, and hence 

support of the clasts, was rapid and occurred at a comparatively shallow depth. Stylolite 

formation at contacts between grains and cement suggests that further post-cementation 

burial occurred, possibly as a result of loading by younger sediments. 
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Figure 3.9. Field photograph illustrating the coarsening up sequence at the base of the 

continental syn-rift. A transition from inter-montane lacustrine to alluvial conglomerate 

deposits is observed. 

Figure 3.8 (Previous page). Onlap of alluvial fan syn-rift stratigraphy onto the hangingwall 

dip-slope of the Dhemesticha basin. The inset shows a close up of the onlap contact. 
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3.4.2.1.2 Middle Stage Continental System (Phase 2) 

The second phase of continental sedimentation is the most widespread and contributes the 

vast majority of sediments to the syn-rift stratigraphy of the area. Fluvial-alluvial 

conglomerates, sandstones and silt to mud overbank sediments describe a gradual reduction 

in the net:gross (Figures 3.12, 3.13, 3.14), from the hangingwall basin of the Kalavryta-

Dhemesticha fault set in the south to the Mamoussia-Pirgahki fault set in the north. The 

outcrop pattern describes a broad amalgamated alluvial fan fed by a distributive river system 

with multiple entry points along the Kalavryta-Dhemesticha fault set, the largest of these entry 

points being the Vouraikos river. This fan system extends over, and is offset by multiple faults 

and their associated half-grabens to the north, indicating that its deposition, at least partially, 

Figure 3.11. In-situ rock strength by facies. (A) Un-calibrated Schmidt hammer readings. (B) 

Calibrated Schmidt hammer readings as unconfined compressive strength (UCS). The 

differences in strength are likely to result from a combination of facies, local cementation 

and potentially the depth of burial Nevertheless, although these measurements give a 

reasonable estimate of the present day strength, they do not necessarily relate to the 

strength at the time of deformation. 

Figure 3.10 (Previous page). Thin section images of phase 1, early continental 

conglomerate. (A) PPL image showing stylolite occurrence at grain-cement boundary, and 

within cement indicating post cementation burial. (B) Close up image of the boxed area 

within (A). The stylolite is annotated for clarity. (C) XPL image showing the isopachus 

fibrous cement forming a halo to  a bioclastic grain. A drusy spar cement overgrowth is 

also labelled. The composition of this early conglomerate is dominated by carbonate clasts 

likely derived from the local footwall, although a small fraction of non-carbonate grains 

are also present.   
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pre-dates activity on these fault systems. To the north the fan is observed to onlap earlier 

deposits (Figure 3.8). Palaeoslope analysis, although highly uncertain, indicates that 

depositional dips were negligible, at least for the areas currently exposed (Figure 3.15). 

Qualitative observations adjacent to the Kalavryta fault indicate that clasts decrease in size 

(Figure 3.16) and increase in roundness northwards away from the fault suggesting sediment 

entered the hangingwall basin from the uplifted footwall block. This general fining northwards 

trend is to a lesser degree mirrored across the depocentre as a whole illustrating the transition 

from proximal, through medial to distal sedimentation. Clast analysis of the conglomerate 

facies within the Dhemesticha sub-basin suggest a hinterland provenance, with mixed clast 

compositions (Figure 3.17) reflecting that of the pre-rift stratigraphy to the south. This analysis 

correlates well with previous analyses across the fan system as a whole (Doutsos and 

Poulimenos, 1992; Ford et al., 2013). 

Conglomerates range between being clast and matrix supported depending on the net:gross, 

itself generally controlled by proximity to sediment entry points. The matrix itself is 

predominantly composed of silt and mud, with variable degrees of calcite cementation. 

Although many depth dependent features (Figure 18, 19) are preserved within the 

conglomerates, their occurrence is sporadic. Localised process, such as meteoric water 

drainage coupled with cement dissolution and re-crystallisation, often lead to potentially 

diagnostic features being over-printed. This limits thin section analysis to being qualitative 

rather than quantitative in respect to estimating burial depths. Similarly porosity values 

correlate poorly with depth estimates based upon individual sub-basin structure (Figure 20). 

Again, this is due to localised cement dissolution and re-crystallisation, as well as the 

uncertainties with estimating the palaeo-depth based upon the present day, uplifted 

topography.  

 

Figure 3.12 (next page). A gradual northwards (more distal) decrease in net:gross of the 

continental alluvial fan can be observed along the Vouraikos river valley north of the 

Dhoumena fault. 



- 73 - 
 

 



- 74 - 
 

 

 

 

 

 

 

Figure 3.13. Distal continental alluvial fan sediments onlapping early phase graben fill to 

the north of the Dhoumena fault block. 
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Figure 3.14 (Previous page). The middle phase of continental sedimentation describes a 

general decrease in net:gross to the north reflecting an increase in distance from the 

sediment entry point. (A) Sedimentary logs and cross section illustrating the decrease in 

net:gross. The vertical exaggeration on the logs is x15. (B) Oblique view of map-draped 

DEM showing the position of the logs and cross-section in (A). You need to say that the 

brown colour represents the syn-rift areal extent. 

Figure 3.15. Maps showing integration of field data within the geo-modelling environment. 

(A) Palaeoslope data for syn-rift deposits in the Kerpini and Dhoumena sub-basins. 

Depositional dips are negligible and hence do not effect fault displacement estimates. (B) 

Average clast sizes from same sample locations as (A). Clast size generally decreases 

towards the north, with distance from the main sediment entry point in the south. Ref in 

text missing? 
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Figure 3.16. Outcrop of Kalavryta fault plane to the east of Kalavryta village. Hangingwall 

sediments adjacent to the fault are dominated by angular blocks which decrease in size 

and become more rounded with increasing distance. 
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Figure 3.17. Map of Dhemesticha sub-basin with pie charts illustrating the clast 

composition at various outcrops. See inset map for location.  
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Figure 3.18. Thin section images illustrating the range of depth-dependent features 

present within the middle stage continental conglomerate facies. All images are from a 

single sample. (A) Sutured contact between carbonate clasts indicative of compaction 

induced dissolution. (B) Clast fractured during burial with fracture in-filled by later calcite 

cementation. (C) Concavo-convex contact indicating clast dissolution during burial, with 

later stage infill cementation. (D) Dripstone cement present only on the underside of clast 

indicating cementation within the vadose zone above the water table. (E) Clast with 

multiple sets of cross-cutting cemented fractures illustrating at least two phases of 

deformation. As the cementation does not extend beyond the edge of the clast it is likely 

that the fractures originated during Hellenide deformation of the carbonate hinterland, i.e. 

prior to erosion and subsequent re-deposition as a component of an alluvial fan system. (F) 

Possible primary porosity with cement dissolution and grain etching leading to the creation 

of secondary porosity. 
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Figure 3.19. Thin section images showing additional features present within continental 

alluvial fan sediments. (A, B) Open fractures along clast, grain and crystal boundaries 

possibly indicating reduction in confining pressure during exhumation and un-roofing. (C) 

Angular grains within finer fluvial facies. Grains are matrix supported, with very little 

primary porosity visible. The matrix consists primarily of silt grade material. As a result of 

the support provided by the matrix, limited compaction features are observed compared 

to the coarser grained, clast supported conglomerates. (D) Localised, rather than 

widespread, dolomitization of carbonate bioclasts. 
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3.4.2.1.3 Late Stage Continental System (Phase 3) 

The last stage of syn-rift continental sedimentation is localised to the eastern end of the 

Kalavryta fault set (Figure 3.3), overlying the phase 2 alluvial sediments. A significant angular 

discordance of 8° exists between the two phases of deposition, with phase 2 sediments 

dipping at 25° S, and phase 3 dipping at 17° S (Figure 3.21). Compositionally this phase is 

essentially a monomict, dominated by carbonate and carbonate cement, with very few, if any, 

additional components (Figure 3.22). Clasts are generally sub-angular indicating a local 

provenance, with previous work describing the facies as  slope breccias (Ford et al., 2013). 

Dissolution is common with significant vuggy porosity being present. Localised, interfingered 

occurrences of compositionally varied deposits do occur at the fringes of the slope breccia 

outcrop, potentially indicating the concurrent presence of minor fluvial input routes.   

Figure 3.20. Visual porosity from thin section observations. Porosity values are sub-divided 

by sub-basin and are plotted against sample depth relative to the highest syn-rift within 

that sub-basin. Theoretically porosity should decrease with depth, however no correlation 

can be observed, suggesting that in this instance porosity is not a good proxy for paleao-

depth. This may be due to dissolution and cementation effects during burial and 

subsequent uplift. 
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Figure 3.22. XPL thin section images of phase 3, slope breccia facies. (A) Carbonate 

dominated composition with very few additional components. (B) Cementation is primarily 

in the form of drusy fabric calcite. Primary porosity is limited, although dissolution has 

resulted in occurrences of secondary porosity. 

Figure 3.21. Images of ‘phase 3’ monomict breccias. (A) Dissolution of the carbonate 

dominated lithology leads to the development of vuggy porosity. (B) View of onlap contact 

between phase 2 and 3 facies. (C) An angular unconformity of 8° exists between the two 

phases of deposition. (D) View of onlap contact illustrating the difference in texture. 
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3.4.2.2 Deltaic System (<1.5 Ma) 

The deltaic system is restricted to the hangingwall of the Mamoussia-Pirgahki fault set (Figure 

3.3) and predominantly consists of a number of large, and often overlapping, Gilbert-type fan 

deltas. The sedimentology and stratigraphy of these deltas has been comprehensively 

described (Ori et al., 1991; Dart et al., 1994; Malarte et al., 2004; Ford et al., 2007; Rohais et 

al., 2007; Backert et al., 2010), and is dominated by clast supported, high porosity pebble-

grade conglomerates with a similar composition to the hinterland from which they are 

sourced. Accommodation space created largely by subsidence of the hangingwall of the 

Mamoussia-Pirgahki fault set lead to deltaic sedimentation initiating at approximately 1.5 Ma 

(Ford et al., 2007, 2013), with the sediment being supplied from a series of antecedent rivers, 

the position of which appears to have remained relatively constant since at least the initiation 

of rifting, their position possibly controlled by the pre-existing palaeo-relief (Collier and 

Gawthorpe, 1995; Jackson et al., 2006; Ford et al., 2013). Relative sea-level variations 

(Gawthorpe et al., 1994) are recorded by the sedimentary architecture of the deltas, with 

distinct phases of progradation and aggradation, as well as periods of sea-level highstand 

being observed (Dart et al., 1994). 

3.4.2.3 Present Day System (<0.7 Ma) 

Initiation of displacement accumulation on the eastern and western Elike faults during the late 

Pleistocene (McNeil and Collier., 2004; McNeil et al., 2005) resulted in footwall uplift and 

incision by the major fluvial systems into the Gilbert deltas which they had previously fed. 

Onshore sedimentation is again dominated by a series of small scale Gilbert fan deltas with 

sand to conglomeratic facies being present. Delta tops form distinct, low relief, arcs building 

out into the Gulf (Figure 3.23). The onshore sediments have offshore time-equivalent deposits 

consisting of density currents and turbidites as well as deeper water pelagic sediments closer 

to the axis of the Gulf (Bell et al., 2008, 2009; Taylor et al., 2011). 
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3.5 Structural analysis 

Obtaining fault geometry information from the 3D geocellular model of the area allows us to 

quickly identify displacement minima associated with linkage zones, and hence aid assessment 

of the evolution of the fault system. This has been performed for all three displacement cases. 

Figure 3.24 shows the strike parallel distance along each fault plotted against its down-dip 

displacement for the high, base and low throw cases. The starting position of each fault on the 

graph is the equivalent to its lateral position so that the distribution of strain across the area 

can be observed. Hence, the left of the graphs approximates west whilst the right 

approximates east. The cumulative displacement is also plotted. As is observable in the model 

(Figure 3.25) strain is localised onto large single faults in the western and eastern areas with 

extension partitioned over multiple faults across the centre. Displacement minima are 

identifiable along strike on many of the faults suggesting the presence or relay zones where 

either hard linkage did not occur, or where post linkage profile re-adjustment has not been 

sufficient to remove the displacement minimum. The presence of these significant relay zone 

displacement minima would imply that either fault linkage has occurred relatively late (Walsh 

et al., 2003), or that a significant component of displacement, probably in the form of 

continuous ductile deformation, is missing from the models constructed as part of this study 

(e.g. Walsh et al., 2001, 2002; Long and Imber 2010). 

Figure 3.23 (Previous page).  (A) View west along Gulf of Corinth coastline showing present 

day fan deltas. (B) Map showing the location of the fans in (A). 



- 84 - 
 

 

 



- 85 - 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25. Mid-case displacement-length plots for faults with displacement projected 

onto a strike-parallel plane (approximately E-W). The disparity in cumulative displacement 

between the east and west areas is clearly seen, with a significant displacement minima 

observed between the two areas. In the eastern area to the north of the Kalavryta fault 

strain is partitioned across multiple faults, whereas further west a single fault, the 

Dhemesticha fault, accommodates almost all of the strain. 

Figure 3.24 (Previous page). Low (A), Mid (B) and High (C) displacement length-plots 

generated using true fault length as measured along the map trace of the fault. This leads 

to greater lengths than when displacement is projected onto a planar, strike-parallel plane 

(Figure 3.25). Displacements are based upon the different approaches outlined in Chapter 

2 (Figure 2.10). 
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The d:L ratios for the faults are slightly higher (Figure 3.26) than the generally accepted range 

0.1-0.001 (Kim and Sanderson, 2005), indicating that the faults have accumulated a large 

amount of displacement for their lengths. There are a number of possible explanations for this 

anomaly. The lengths have been calculated for each individual fault segment, rather than for 

the fault sets as a whole. If a fault set is linked, either kinematically or physically, then the 

individual segments will become ‘over-displaced’ as displacement accrues on the fault set as a 

whole (Cartwright et al., 1995; Cowie et al., 2000). Alternatively the high d:L ratios may be 

explained by the pre-existing basement topography influencing estimates of displacement. If 

positive relief is present in the footwall prior to faulting then displacement will tend to be 

overestimated (figures 2.10, 2.11).  

 

 

 

 

 

 

 

Figure 3.26. Displacement:Length (d:L) plot of onshore Gulf of Corinth faults for the mid-

case displacement scenario. The red and green lines represent the upper and lower bounds 

of published d:L data (Kim and Sanderson, 2005). The majority of the modelled faults fall 

above this range indicating a high d:L ratio. 
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3.5.1 Structural Restoration 

The disparity in cumulative displacement between the east and west of the field area (figure 

3.25) is problematic. There is no evidence of strain partitioning or temporal overlap between 

the Dhemesticha fault and the later Mamoussia-Pirgahki and Eliki fault sets to the north, hence 

an additional mechanism must be responsible for the discrepancy in displacement. In addition 

the strike of the mapped faults changes from approximately WNW-ESE in the east to NW-SE in 

the west. Figure 3.27  shows restored cross-sections to illustrate the discrepancy in extension 

from east to west, and the influence of the variation in fault strike. Where restored sections 

are aligned N-S, parallel to the overall extension direction, a significant discrepancy in restored 

length is present between the eastern and western areas, suggestive of an extension deficit. 

Conversely, if the restorations are performed normal to fault strike, rather than parallel to the 

overall extension direction, the disparity in extension is minimal due to no extension being 

unaccounted for through out of plane movement. This suggests that deformation on the fault 

was of a predominantly dip-slip motion, a conclusion supported by fault plane kinematic 

indicators (Roberts, 1996; Skourtsos and Kranis, 2009). The extension direction therefore 

rotates from NNE-SSW to approximately NE-SW from east to west, a pattern which is also 

broadly observed both onshore and offshore for the Corinth rift as a whole (figure 3.2).  

Present day geodetic data suggest that extension rates increase westwards from 5 to 15 

mm/yr (Davies et al., 1997; Clarke et al., 1998; Briole et al., 2000). The amount of extension 

across the area is however greater in the central portion of the rift than the western portion, 

suggesting that the present day westwards increase in extension rate has not always been the 

case (Bell et al., 2008, 2011). The current extension rate pattern is a response to a-symmetrical 

fault growth and linkage processes which resulted in a strain deficit towards the west of the 

Gulf (Bell et al., 2011), which would therefore have had a palaeo-extension rate less than that 

of the central and eastern areas. It is this along strike variation in extension rate, which is 

speculated to be the reason for both the discrepancy in cumulative displacement across the 

onshore faults, and the clockwise rotation further west.   
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3.6 Conceptual Model for Onshore Rift System Evolution 

The field data, maps and 3D geological models capturing along strike displacement variations 

have been synthesised to construct a model of the evolution of the early onshore rift and the 

deposition of the continental syn-rift sediments. A copy is also shown in the appendix. This 

model is based upon the assumption that the rift faults grew according to the theory of fault 

growth illustrated by Cowie et al (2000). Although this model works to describe the observed 

fault geometries, it does not necessarily account for the long rupture repeat times that would 

be required to develop the large displacements observed if the faults can grown through 

‘coincidental’ linkage (Walsh et al., 2003). 

(A) It is proposed that initial extensional stress across the area was accommodated 

through dispersed rifting on a number of isolated faults, comparable in geometry to 

numerical models of rift evolution proposed by Cowie et al (2000). Small sub-basins 

develop in the hangingwalls to these faults with fine grained lacustrine conditions 

evident west of Kalavryta along with occasional occurrences of lignite (Papanicolaou et 

al, 2000). Other sub-basins are filled with coarser sediments composed of a mixture of 

local footwall-derived material and a subordinate component of compositionally 

varied river transported sediment with a hinterland provenance (figure 3.10). This is 

best observed north of the Kerpini fault where early rift sediments are onlapped by 

later alluvial fan deposits (Figure 3.12, 3.13). It is likely that established fluvial systems 

existed with their positions controlled by the pre-existing, approximately NNE=SSW 

orientated, structural fabric of the Hellenide Mountain range. The extent to which the 

courses of these river systems were influenced by early fault growth is unclear and is 

largely dependent on the relative rates of deformation and incision. 

 

 

Figure 3.27 (Previous page). Oblique views of restored sections across field area as derived 

from 3D geocellular models. Start and end points of the sections are located at the same 

arbitrary latitude, with the southern end of the sections pinned. Faults are shown in red 

with the Kalavryta-Dhemesticha fault plane shown in semi-transparency. (A) Extension 

parallel cross sections with a N-S orientation. The orientation change between the 

Kalavryta and Dhemesticha faults leads to a poorly balanced section. (B) Re-orientating the 

sections to be strike-normal leads to significantly more balanced restoration across the 

area.  
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(B) As extension continues deformation begins to localise in the south of the area onto 

what later becomes the Kalavryta fault set. It is likely that at this early stage sediment 

supply would have outpaced accommodation space creation since the individual fault 

segments would not yet have been linked. However, as early sub-basins in the 

hangingwalls to the faults begin to be in-filled by footwall-derived fluvial sediments, 

the individual hangingwall fans begin to coalesce.  This results in the formation of a 

distributive alluvial system which starts to prograde across the hangingwall area, with 

onlap onto the topographic highs of the footwall crests of the proto-Kerpini fault set, 

hence revealing their presence due to dispersed rifting in the initial stage of evolution. 

The compositionally variable nature of the sediment suggests a hinterland provenance 

combined with a proportion of locally derived material (Figure 3.7, 3.17). 

Palaeocurrent data indicates that the main sediment input point was the palaeo-

Vouraikos river to the southwest of Kalavryta, with the majority of sediments fanning 

out radially from this point (Figure 3.28). The incision rate exceeded the rate of 

footwall uplift, and hence allowed the river to maintain its antecedent course, despite 
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lower footwall uplift further to the east. There is however also palaeocurrent evidence 

that multiple secondary input systems were located along strike to the east and west, 

albeit supplying a lower proportion of the sediment to the basin. The position of these 

systems was likely controlled by a combination of the pre-existing topography and 

local perturbations in this topography caused by footwall uplift of the developing 

faults, with displacement minima between fault segments acting as supply conduits to 

the hangingwall basin. Isochore mapping, along strike displacement distribution and 

increasing rotation of bedding with age (figure 3.4) suggest that eastern segments of 

the Kerpini-Tsivlos fault set may also have been active at this early stage, with its 

hangingwall basin possibly supplied with sediment from the Krathis river. The relative 

timing of the initiation of the Dhemesticha fault set to the west is unclear. Although its 

large displacement suggests a sustained period of activity, the significant displacement 

minima between the Kalavaryta and Dhemesticha faults suggests a relatively late 

interaction. 

 

 

 

 

 

 

 

Figure 3.28. Palaeocurrent data from the ‘phase 2’ syn-rift alluvial fan, showing a north to 

NNE average orientation. Orientations are broadly radiate away from the sediment entry 

point of the Vouraikos river indicating its continuous presence during deposition. 

Superimposed on this radial distribution are internal variations due to the distributive 

nature of the fan system.   
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(C) With continuing extension the individual segments of the Kalavryta fault set begin to 

interact, with profile re-adjustment resulting in a rapid increase in the deformation 

rate around displacement minima associated with relay zones. This increasing 

displacement results in high strain and breaching of relays with the fault set becoming 

hard linked. The rate of accommodation creation in the hangingwall increases as does 

footwall uplift, potentially re-directing secondary rivers and hence limiting sediment 

input into the basin. An additional possibility is that these secondary rivers are 

diverted into the Vouraikos as tributaries, hence increasing its erosive potential. Sub-

basins in the hangingwall to the proto-Kerpini fault set preserved from the initial stage 

of dispersed rifting may become filled with distal alluvial fan deposits. 
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(D) To the east regional extension begins to be accommodated by activity on the Tsivlos 

fault. This results in a reduction in stress normal to the fault (Ackermann and Schilsche, 

1997; Gupta and Scholz, 2000) which in turn limits the eastwards propagation of the 

Kalavryta fault set to the south. Further west where no overlap occurs displacement 

continues unimpeded on the Dhemesticha fault. This is reflected in the displacement 

disparity between the Dhemesticha and Kalavryta faults (figures 3.24, 3.25). It is 

possible that continued deposition in the Dhemesticha sub-basin lead to progradation 

and coalescence with the Kalavryta fan. The decrease in extension, and hence in 

accommodation creation on the eastern segment of the Kalavyta fault set does not 

lead to renewed progradation, rather the majority of the sediment flux is captured by 

the newly forming basin in the hangingwall to the Tsivlos fault. Entry into the Tsivlos 

basin was likely to be at the western end of the Tsivlos fault set, in a topographic low 

formed by the relay zone between the Tsivlos fault to the east and the proto-Kerpini 

fault to the west (figure 3.29).  
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(E) Linkage of the individual segments of the Tsivlos fault results in a rapid increase in 

both displacement rate and the available accommodation space in its hangingwall. The 

fans in the hangingwalls to the Tsivlos and Kalavryta fault begin to coalesce leading to 

northward progradation. Initially aggradation is dominant with sediment stored up dip 

in the immediate hangingwall to the fault set. Gradually however the sediment supply 

rate begins to outpace creation of accommodation space resulting in progradation of a 

broad alluvial fan across a wide area. This distributive system extends at least 10km 

north into the hangingwall, first onlapping and then burying the footwall crest of the 

proto-Dhoumena fault. Field observations, data collected along transects 

perpendicular to the fault system, and high sediment thickness in the hangingwall of 

the Tsivlos fault compared to the Kalavryta fault (figure 3.5) indicate that this may 

have been the main depocentre at this stage, with sediment input possibly from both 

the Krathis and Vouraikos rivers. To the west, displacement continues on the 

Dhemesticha fault, with local stresses leading to the formation of a subsidiary fault to 

the north west of the main fault.  

 

An angular unconformity between phase 2 and phase 3 facies at the eastern end of the 

Kalavryta fault (figure 3.21) indicates continuing displacement, albeit with a lack of 

deposition. This reason for this reactivation of the Kalavryta fault set is unclear, 

however a corresponding reduction in slip rates on other concurrently active faults 

would be expected given a constant regional rate of extension. Although reactivation 

would result in creation of accommodation space in the Kalavryta depocentre, earlier 
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incision by the Vouraikos river as a response to subsidence in the hangingwall of the 

Kerpini-Tsivlos fault to the north would have resulted in the majority of sediment by-

passing the Kalavryta depocentre, despite the available accommodation space. This 

may also have been facilitated by uplift of the footwall to the Kerpini-Tsivlos fault set. 

Footwall uplift in the Gulf of Corinth region is common as  illustrated by the present 

altitude of deltaic deposits in the footwalls to the active coastal faults (De Martini et al 

2004; McNeill and Collier, 2004), with uplift to subsidence ratios of 1:1.3-3.5 (Armijo et 

al 1996; McNeill and Collier 2004). As the footwall to an active fault is uplifted it may 

experience increased erosion and instability, as well as leading to an increase in the 

catchment area of rivers supplying sediment to its hangingwall. This process may have 

also contributed to the relative increase in the sediment supply to the Kerpini-Tsivlos 

basin.  Another potential explanation may relate to extensional strain becoming 

partitioned across a number of faults rather than being localised onto the Kerpini-

Tsivlos fault set, hence resulting in a lower rate of accommodation space generation. 

As mentioned, field relationships indicate that at least a localised portion of the 

eastern end of the Kalavryta fault was active subsequent to the cessation of deposition 

in its hangingwall.  

 

 

 

 

 

 

 

Figure 3.29. Obliquely orientated photograph of hard linked relay zone at the eastern end 

of the Kerpini fault where it links to the Tsivlos fault (see Red line). There is a marked 

orientation change of the fault corresponding to the position of the Vouraikos river. 

Where is that? Note that the Tsivlos fault is obscured in this view.  
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(F) The hard linkage of the Kerpini-Tsivlos fault set leads to profile re-adjustment and 

rapidly increasing displacement at former relay zones. Back rotated aggradational 

conglomerates in the immediate hangingwall to the Tsivlos fault show fanning dips, 

attesting to their syn-rift nature (Figure 3.4). This is in contrast to the Kerpini fault 

where only normal drag is recorded by the dips of the syn-rift stratigraphy (figure 

3.30). This indicates that the Kerpini fault was active subsequent to the deposition of 

the main alluvial fan. Increasing displacement on the Kerpini fault leads to its 

westwards propagation and the formation of a number of splays, some of which 

displace the upper portions of sediments in the Kalavryta hangingwall basin (Figure 

3.31). Its eastern tip also propagates, overlapping, interacting and finally linking with 

the western tip of the Tsivlos fault (Figure 3.29). The geometry of this relay area 

suggests a linking fault propagating across a west dipping relay ramp, its orientation 

and location closely matched by the course of the present day Vouraikos river. The 

large amount of displacement accrued subsequent to linkage occurring suggests that 

this fault grew by first establishing its length through a combination of lateral 

propagation and linkage of individual segments followed by accumulation of 

displacement. This is consistent with observations from the Mamoussia-Pirgahki fault 

set and with observations of the Aigion fault by McNeil et al (2007).  
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Eastwards propagation of the Kerpini-Tsivlos fault set is limited by strain being 

accommodated instead on the Valimi fault set to the North. Westwards propagation is 

also limited, with additional strain being accommodated by a number of splays. The 

reason for this stalling in westwards propagation of the Kerpini fault set is as yet 

unclear, however it is speculated that a mechanical barrier, or pre-existing structure 

may be the cause. The presence of a large, un-faulted ridge of basement carbonate 

with significantly greater relief than the surrounding area (Skepasto mountain, 1573 

m) forms the basis for this speculation. To the west displacement accumulation 

continues on the Dhemesticha fault.    

 

 

 

 

 

 

 

 

 

Figure 3.30. (A) Photograph looking west at the hangingwall fill of the Kerpini fault. Limit 

dip variation is observed indicating that deposition pre-dated deformation on the Kerpini 

fault. (B) Dip plotted against distance from the fault. Dip does not increase with distance 

unlike for the Tsivlos depocentre (figure 3.4). Dips are steepest close to the fault, indicative 

of reverse drag. 
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Figure 3.31. Field photograph of faulted alluvial fan deposits adjacent to the western tip of 

the Kerpini fault. The inset shows a close up view of the fault plane and a zone of fault 

gouge in the immediate footwall. This outcrop confirms that the Kerpini fault was active 

subsequent to deposition and progradation of the alluvial in the hangingwall to the 

Kalavryta fault. 



- 99 - 
 

 

 

 

(G) The deformation front moves northwards with strain accommodation switching to the 

Valimi fault set, which offsets the distal facies of the Kerpini-Tsivlos sub-basin deposits. 

Along strike displacement variations suggest that the fault can be divided into two 

segments; an eastern segment active concurrently with the Kerpini-Tsivlos fault set, 

and a western segment active after the majority of deposition in the Kerpini-Tsivlos 

basin had occurred. To the west strain is accommodated through reactivation of the 

now buried Dhoumena fault. A monocline forms over the fault as it propagates 

upwards through the syn-rift strata in the hangingwall to the Kerpini-Tsivlos fault set.  

 

 

An increase in the dip from the Kerpini-Tsivlos basin to the western margin of the 

Valimi basin suggests that deformation on this part of the Valimi fault occurred after 

the deposition of the alluvial fan. The Valimi fault has very high displacement gradients 

(figures 3.24, 3.25) where it overlaps with the eastern segment of the Kerpini-Tsivlos 

fault set suggesting that the two may have been active concurrently with lateral 

propagation potentially being limited by stress shadow effects (Ackermann and 

Schilsche, 1997; Gupta and Scholz, 2000). It also has a large accumulated throw, with 

the lateral extent of its hangingwall extending beyond the margins of the studied area, 

indicating that it accommodated regional extension to the east. Sediments in the 

hangingwall to the fault are correlatable with the medial to distal facies observed in 

the Kerpini-Tsivlos basin, but become dominated by distal facies further to the east, 
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consistent with the model of a broad, arcuate alluvial fan. A significant displacement 

minima between the segments suggest a relatively late linkage, likely following 

removal of the 'displacement shadow' caused by the Kerpini-Tsivlos fault set, which 

would have subsequently allowed westward propagation and hard linkage of the 

Valimi fault set. 

 

 

 

 

 

(H) Continued deformation on the Dhoumena fault demonstrably postdates alluvial fan 

deposition by offsetting sediments in the form of a breached fault propagation fold 

(figure 3.32). A significant hangingwall syncline is observable close to the village of 

Dhoumena, and adjacent to the exposed fault plane (figure 3.33).  Northwards dipping 

packages of alluvial fan sediment are also preserved in the vicinity of the Megaspillion 

monastery to the east, where deformation is expressed as a monocline above the 

buried upper tip of the ellipse of the fault. The occurrence of northwards dips related 

to folding is restricted to the local hangingwall of the Dhoumena fault. Sediments 

further away from the fault, beyond the wavelength of the monoclinal folding are 

unaffected and are back-rotated in a similar manner to sediments in the hangingwalls 

of the other faults in the area. The exposure of the fault plane adjacent to the 

hangingwall syncline (figures 3.32, 3.33), as well as exposure of the basement 

carbonates along the footwall crest implies that the fault continued to propagate 

through, and offset, its own monocline. The broad monocline preserved at the present 
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day erosion surface to the east of the Megaspillion monastery, marks the lateral extent 

of the approximate expression of the Dhoumena fault beneath the surface. The Valimi 

fault set is also propagating westwards potentially beginning to link at depth with the 

Dhoumena fault.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.32. Monocline developed above the upwards propagating tip of the Dhoumena 

fault. (A) Annotated photograph illustrating the hangingwall syncline adjacent to 

Dhoumena village. (B) View across Vouraikos valley showing fault-tip monocline adjacent 

to the Megaspillion monastery. The position of the Dhoumena fault is indicated. 

Figure 3.33. View of outcrop of the Dhoumena fault plane.  
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The monomict ‘phase 3’ breccias and conglomerates are deposited at the eastern end 

of the Kalavryta fault set, forming an angular unconformity where they onlap the 

underlying alluvial fan deposits. Movement on the Kalavryta fault continues after this 

deposition, evidenced by a back rotated dip of approximately 6°. 

 

 

 

 

It is unclear whether deformation on the Dhoumena and Valimi faults pre- or post-dates 

activity on the Mamoussia-Pirgahki fault set to the north. Dating by Flotte et al (2001) and 

Causse et al (2004) place activity on the Valimi and Dhoumena faults as 0.38 and 0.125 Ma 

respectively. The temporal relationship between continental faulting and sedimentation, and 

deltaic sedimentation in the hangingwall to the Mamoussia-Pirgahki fault set can however be 

partially constrained. Distal continental alluvial fan sediments at the base of the Vouraikos fan 

delta implies that the Mamoussia-Pirgahki fault initiated after deposition of the continental 

sediments. Previously it has been thought that this coincided with cessation of activity on 

faults further to the south (Sorel, 2000). However this study suggests that the degree of post 

depositional rotation of the continental sediments in the hangingwalls of the southern faults 

(Kalavryta, Kerpini-Tsivlos) is indicative of their continued activity, concurrent with 

deformation on the Mamoussia-Pirgahki fault set. Long term eustatic sea level fall during the 

Plio-Pleistocene (Miller et al, 2005) combined with local relative sea level fall due to footwall 
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uplift along the Mamoussia-Pirgahki fault set would have resulted in sediment supply 

bypassing the continental depo-centres. The Vouraikos and Krathis rivers switch from being 

distributive systems to erosive valleys which rapidly become laterally confined resulting in up 

to 800m of incision through the alluvial fans they previously supplied sediment to. Continuing 

activity of the onshore faults back rotates the alluvial fan sediments to their present dip of an 

average of approximately 25°. Ford et al (2007, 2013) date the initiation of the Mamoussia-

Pirgahki fault set in the region of the Vouraikos fan delta at 1.5-0.7Ma. Our observations would 

therefore broadly agree with those of Flotte et al (2001) and Causse et al (2004), who date 

both the Valimi and Dhoumena faults as being active subsequent to this time. The process of 

footwall uplift and incision is repeated for the Voraikos and Kerinitis fan deltas following 

initiation of the Eliki fault set, with the same river systems now supplying sediment to modern 

deltas on the margins of the Gulf.  

An area of uncertainty with the model constructed for this study stems from the continued 

movement of the Kalavryta fault set. A secondary fan composed solely of local footwall 

derived carbonate outcrops in the hangingwall to the eastern portion of the Kalavryta fault set. 

This onlaps the main alluvial fan with the respective dips indicating that at the time of the 

secondary fans deposition the main alluvial fan dipped at approximately 8 degrees towards the 

fault. The entire area was subsequently rotated by a further 17 degrees (Figure 3.21). This 

implies two things; 1) A significant amount of displacement (equivalent to 8 degrees of 

rotation) occurred on the Kalavryta fault following cessation of deposition of alluvial deposits 

in the immediate hangingwall. 2) An additional 17 degrees of rotation, almost 70% of the total 

observable at the present day land surface, occurs subsequent to deposition of the secondary 

fan. Although this secondary fan is only preserved at the eastern end of the Kalavryta fault set 

the dips of the underlying alluvial fan are consistent along the entire strike of the fault, 

indicating that this late movement was not simply restricted to the eastern segment. This has 

major implications for the evolution of the rift system. Continuous and/or late activity on the 

Kalavryta fault set necessitates a more complex model than the simple northwards progression 

previously proposed. In analogous settings late stage fault movement and associated 

deposition may significantly modify fairway distribution, as well as compromising seal 

integrity. 

3.7 Relay Zones, Structural Inheritance and Fluvial Incision 

One of the subsidiary aims of field data collection, mapping and structural modelling was to 

evaluate the role of relay zones in determining the position of fluvial sediment transport 

pathways. Conventional models of fluvial-fault interaction suggest that topographic distortion 
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as a result of footwall uplift, hangingwall subsidence and fault linkage will lead to fluvial 

pathways migrating towards the topographic lows produced by fault relay zones (Lambiase 

and Bosworth, 1995; Gupta et al., 1999; Cowie et al., 2000). Although this is likely to be the 

case for situations where the pre-rift strata is horizontal, it is less likely where a pre-existing 

topography is present at rift initiation (Collier and Gawthorpe, 1995; Jackson et al., 2006; Ford 

et al., 2013), as is the case for the Gulf of Corinth, with fluvial systems likely to be well 

established prior to rifting. Whether rift-related topography influences the position of river 

courses will depend on the relative rates of topographic variation (controlled by slip rate on 

faults) and fluvial incision. Where footwall uplift exceeds incision rate, rivers are likely to be 

diverted through relay zones, whilst if the incision rate exceeds uplift, then it is likely that the 

pre-existing course of rivers will be maintained.    

3.7.1 Structural Inheritance   

Inheritance of pre-existing basement structures has often been cited as a factor influencing the 

geometry and behaviour of later fault systems (Paton, 2004, 2006; Molliex et al, 2011; Wilson 

et al, 2010). The majority of observations have described reactivation or inversion of earlier 

structures in similar orientations, with low angular differences between the assumed stress 

fields sometimes accompanied by vertical linkage of different generations of faults (Dore et al, 

1997; Bailey et al, 2005). Reactivation or inversion of less favourably orientated structures is 

possible given low friction coefficients along fault planes or anomalously high fluid 

overpressures (Sibson, 1995). De Paola et al (2005) noted that oblique reactivation is also 

possible under trans-tentional or trans-compressional stress regimes, with the style of 

deformation in wrench zones influenced by the compressibility of the deforming lithology. 

Structures at high angles to rift systems have been suggested as influencing rift segmentation, 

and the location and development of relay and transfer zones (Morley et al, 2004, Nelson et al, 

1992; Tsikalas et al, 2001).  

Within the Gulf of Corinth the topic of structural inheritance has been raised in a number of 

different contexts. Although the general orientation of the pre-rift compressional fabric is 

NNW to SSE, Taylor et al (2011) identify a region along the north coast of the central and 

eastern Gulf where the pre-rift fabric is orientated sub-parallel to the rift faults (WNW-ESE). 

They observe that this localised alignment of the pre-rift fabric normal to the extension 

direction occurs where the Gulf is widest and horizontal extension is large, suggesting that it 

plays an important role in the large scale architecture of the rift. Ghisetti and Vezzani (2005) 

suggest the NNW-SSE trending culmination of the Zarouchla thrust acts as a geomechanical 

barrier to lateral propagation of the later extensional fault system. They propose that this 
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leads to segmentation of the onshore rift into two discrete basins, the Derveni-Corinth to the 

east and the Aigion to the west with the separate basins showing distinct fault geometries. The 

observations of this study partially agree with this interpretation in that the eastern tip of the 

Kalavryta fault is located adjacent to the assumed position of the culmination, however 

mapping during this study traces both the Tsivlos and Valimi faults across its assumed position.  

As previously mentioned the rift faults are highly segmented, being kinematically or physically 

linked by a range of different relay zone geometries. It is tempting to suggest that the positions 

and orientations of the relay zones are controlled by heterogeneities and the pre-existing 

structural fabric within the basement carbonate of the Pindos nappe, since their orientations 

correlate reasonably well. Reactivation of a Hellenide thrust was suggested by Lyon-Caen et al, 

(2004) as a possible explanation for the 2000-2001 Agios Ioanis earthquake swarm, with fault 

plane solutions suggesting a fault orientated NE-SW, dipping to the NW, and with oblique slip 

vectors. The vergence direction of the thrusting within the carbonate basement however is to 

the west to northwest, hence with dips to the east to southeast, ruling out their reactivation as 

a northwest dipping transverse faults linking left stepping segments of the extensional fault 

sets. Geometrically and geomechanically the reactivation of low angle compressional 

structures within the carbonate basement as normal linking faults appears to be unrealistic 

(Jackson, 1987), and is not supported by the field data collected as part of this study.  

3.8 Discussion and Conclusions 

The initial aims of this chapter were two-fold:  the primary aim being to use a range of field 

data to condition a 3D geological model of the field area to use for examining exploration scale 

structural uncertainty (Explored further in Chapter 4). A secondary aim was to establish a 

model for the evolution of the rift, constrained by field data as well as stratal relationships and 

fault geometries defined during the modelling process.  

Three separate 3D models encompassing low-, mid-, and high displacement estimates have 

been constructed using three approaches (Figure 2.10). Although these models have aided the 

development of a conceptual model for the evolution of the rift there still exists a number of 

uncertainties, with the lack of age data also resulting in timings being relative, rather than 

absolute. One of the key lines of evidence utilised for the model of rift evolution is the along 

strike displacement variations associated with the linkage history of the fault system. Although 

distinct displacement minima are observed, they do not necessarily have to correspond to the 

location of relay- or palaeo-relay zones. The uncertainty associated with calculating the sub-

surface position of hangingwall cut-offs, and hence fault displacement is significant, and may 

lead to artefacts being produced. Rifting occurred across a high relief basement, and it is highly 
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likely that this basement relief has lead to anomalies in along-strike displacement magnitudes 

being present. Nevertheless, and despite the uncertainties, the three approaches used to 

calculate displacement do not result in estimates which are at least, consistent. High estimated 

displacement:length ratios can be explained by the individual fault segments being over-

displaced due to kinematic or physical interaction, via relay zones, with other faults. This then 

supports the hypothesis that the observed displacement minima do in fact correspond to relay 

zones, and hence that they can be used to constrain the evolution of the rift. 

A number of points remain un-resolved. Firstly, it is clear from the models and from 

restoration data that there is a significant difference in the way that displacement is 

accommodated between the eastern and western parts of the field area. In the east, multiple 

faults accommodate extensional strain whilst to the west a single larger fault is present. 

Although the evolution model presented accounts for this difference, it does not explain the 

reasons for it. Secondly, the ‘phase 3’ monomict breccias deposits are enigmatic. On one hand 

the angular unconformity where they onlap the underlying alluvial fan deposits proves that out 

of sequence faulting has occurred. Again, however, the reasons for this are unclear.  

Despite these uncertainties a number of conclusions can be drawn;  

● Initial rifting was relatively distributed across the area, evidenced by distal portions of the 

main alluvial fan onlapping early graben fill. 

● Localisation of strain onto the Kalavryta fault set resulted in progradation of an alluvial fan 

across a broad area. Sediment was later diverted into accommodation space created by the 

Tsivlos fault set. 

● Fanning dips within the hangingwall of the Tsivlos fault are not reflected in the adjacent 

Kerpini fault which displays parallel dipping strata. This indicates that the Kerpini fault became 

active after the Tsivlos fault (which it later linked to) and after deposition of the main fan. 

● Displacement on the Dhoumena fault also occurred subsequent to fan deposition resulting in 

the formation of a monocline above its upwards propagating tip. It remains unclear how this 

relates to timing of faulting on the Mamoussia-Pirgahki fault to the north. 

● The Dhemesticha fault accommodates almost the equivalent displacement as all of the faults 

to the east combined. The reason for this is unclear, although may be a combination of lateral 

variability in stratigraphic mechanical properties and a rotation of the regional extension 

direction from east to west.  
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● Fault linkage and strain partitioning across multiple faults (at least in the east) resulted in 

significant sediment bypass occurring. 

● The evolution of the rift was not a simple northwards progression of faulting with deposition 

in successive hangingwall sub-basins. Instead, out of sequence faulting is superimposed on a 

general northwards migration trend, albeit with significant interaction of sub-basins.  
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Chapter 4 

The Onshore Gulf of Corinth Rift as a Hydrocarbon Exploration Analogue 

4.1 Abstract 

The Onshore Gulf of Corinth Rift provides an excellent analogue for rift-scale structural 

uncertainty in the context of hydrocarbon exploration. Synthetic seismic sections have been 

generated across the rift based upon fault geometries illustrated in Chapter 2. Comparison of 

these sections with the known geometry allows quantification of uncertainties encountered 

when extrapolating 2D data into three dimensions. Syn-rift reservoir facies distribution, trap 

integrity, volumetrics and pore pressure predictions are all influenced by how along strike 

displacement variations on faults are interpreted. 

4.2 Introduction and Aims 

In a hydrocarbon exploration setting relay zones often define structural spill points, and can 

hence control the potential volume of hydrocarbon within a trap. Typically only sparse 2D 

seismic data is available during the exploration phase, leading to significant uncertainty in 

along strike displacement variations and the locations of relay zones. Fault geometric 

uncertainty therefore potentially has significant implications for the volumetrics, and 

ultimately the economic viability, of a prospect.  

The aim of this chapter is to use the fault and syn-rift stratigraphic geometries identified from 

the Gulf of Corinth field data presented in chapter 3 (Figure 4.1) as a case study to explore 

some of the fault related geometric uncertainties which may be encountered during 

hydrocarbon exploration where only limited data may be available. A number of the potential 

implications of this geometric uncertainty are also examined. A series of 2D synthetic seismic 

sections have been generated across the 3D geological model constructed from the field data. 

Comparison of the relatively well constrained mapped geometries with those identifiable from 

the synthetic seismic sections allows the influence of uncertainty in along strike displacement 

continuity to be explored.  
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4.2.1 Fault Geometric Uncertainty During Hydrocarbon Exploration 

Faults influence hydrocarbon exploration in a number of ways including through the formation 

of traps, influencing trap and seal integrity, controlling subsidence and hence maturation 

history, as well as controlling and modifying syn-rift sediment distribution and stratigraphic 

architecture. During the exploration phase of hydrocarbon development, data are typically 

sparse, hence the magnitude of the influence of faults is often uncertain. Here, the Gulf of 

Corinth rift is used as an analogue for investigating reservoir volumetric uncertainties, firstly 

through trap geometry in the form of tilted footwall fault blocks and secondly through the 

distribution of syn-rift reservoir facies within hangingwall basins. In both instances the 

extrapolation of 2D data into the third dimension is critical when evaluating potential volumes, 

connectivity and prospectivity.  

 

Figure 4.1. Map showing distribution of main depositional units and faults used to construct 

geocellular grid and subsequent synthetic seismic sections. Inset shows field area location 

on the Peloponnese peninsula. DF = Dhemesticha fault, DhF = Dhoumena fault, VF = Valimi 

fault, MPF = Mamoussia-Pirgahki fault, EEF = eastern Eliki fault, WEF = western Eliki fault. 
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4.2.1.1 Tilted Fault Blocks and Volumetrics 

A common trap geometry in extensional provinces is that of the tilted fault block (Struijk and 

Green, 1991; Yielding et al., 1992; Dominguez, 2007). During extensional faulting a 

combination of elastic (McKensie, 1978; Barr, 1987; Jackson et al., 1988) and flexural (Kuznir et 

al., 1991, 1995) processes lead to reverse drag adjacent to normal faults. This drag takes the 

form of basin-forming subsidence in the hangingwall and uplift of the footwall (Yielding and 

Roberts, 1992). The wavelength of the reverse drag is proportional to the elastic thickness of 

the crust with the relative amplitudes of footwall uplift and hangingwall subsidence controlled 

by loading of the hangingwall (Jackson and McKensie, 1983). A low density load, such as water, 

will allow greater footwall uplift, whilst a denser load, such as a syn-rift stratigraphy will 

increase subsidence of the entire local lithosphere including both the hangingwall and 

footwall. The relief generated by footwall uplift provides a trapping structure for buoyant 

hydrocarbons. Aside from the petrophysical properties of the reservoir (porosity, fluid 

saturation etc), the volume of hydrocarbon which can be trapped depends on the interplay 

between along strike displacement continuity and the thickness of the reservoir interval. This 

is often visualised using Allan diagrams and juxtaposition/triangle diagrams (Allan, 1989; Knipe, 

1997). Where displacement is less than reservoir thickness, fluid can potentially flow across 

the fault into the adjacent fault block. Hydrocarbon column heights which can be supported by 

the fault are therefore dependent on both the fault geometry and the fault rock petrophysical 

properties (Yielding et al., 1997, 2010; Fisher and Knipe, 1998; Sperrevik et al., 2002) 

Conversely where displacement is greater than reservoir thickness a juxtaposition seal is 

formed between the adjacent fault blocks. In this instance the hydrocarbon column height is 

controlled by the structural spill point. The location of the structural spill point will generally 

be at displacement minima, such as relay zones, however the likelihood that a 2D seismic 

section will intersected a displacement minima is low. Therefore being able to predict and 

account for along strike displacement minima is critical in order to prevent trap volumetrics 

from being overestimated.  

4.2.1.2 Syn-Rift Reservoir Facies Distribution 

Faults can also control the distribution of reservoir facies within their hangingwalls, both 

through sediment dispersal and basin entry points (Gupta et al., 1999), general sub-basin 

geometry (Dawers and Underhill, 2000; Cowie et al., 2000; McLeod et al., 2002) as well as 

influencing reservoir quality and facies (Brehm, 2003; Fletcher, 2003). Where only 2D seismic 

data is available, correlating the extent of syn-rift deposits between sections is highly uncertain 

and can depend upon the evolution of the fault system. Models of early versus late linkage 
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(Cowie et al., 2000; Figure 4.2) describe how sub-basin geometry is related to fault growth 

history, assuming that faults are initially isolated rather than growing coherently (Walsh et al., 

2003). In early linked systems there is limited kinematic interaction prior to physical linkage 

occurring (Cartwright et al., 1995), leading to the rapid formation of a broad, shallow 

depocentre in the hangingwall to the linked faults. As profile re-adjustment progresses, the 

basin becomes deeper. In contrast, with late linkage, kinematic interaction allows fault profile 

re-adjustment to occur prior to physical linkage (Peacock and Sanderson, 1991; Gupta and 

Scholz, 2000). This leads to the sub-basins of the individual faults remaining distinct, albeit 

with areas towards the centre of fault sets experiencing greater subsidence. When physical 

linkage occurs, a broad depocentre forms above the coalescing sub-basins. The stage of 

evolution of a rift system, and the way that linkage has occurred can therefore significantly 

influence syn-rift sediment distributions and connectivity of reservoir facies between sub-

basins. Whether linkage occurs early or late will depend on the three-dimensional fault 

geometry (Walsh et al., 2003), the nature of which is often elusive with 2D data.  

 

 

 

 

Figure 4.2. Schematic figure of early and late linkage models, modified from Cowie et al., 

(2000). It should be noted that although these models may describe the observed 

geometries, they do not necessarily capture the growth mechanisms of linked faults (e.g. 

Walsh et al., 2003). 
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4.2.1.3 Pressure 

In addition to indefinite volumetric estimates, the uncertainty in hydrocarbon column heights 

leads to inexact predictions of pressure due to buoyancy within reservoir intervals. Estimating 

the maximum column height within a fault controlled trap depends on correctly identifying the 

crest of the trapping structure, as well as its spill points. If the geometry allows for a greater 

column height than is predicted from 2D seismic data, then the buoyancy pressure at the crest 

of the structure will be greater than anticipated. This may have major implications for trap 

integrity. A top seal can be breached in two main ways, firstly due to membrane leakage where 

the buoyancy pressure at the crest of the trap exceeds the capillary entry pressure of the top 

seal (Schwolater, 1979; Watts, 1987; Ingram and Urai., 1999). Where a top seal has a very high 

capillary entry pressure, such as for low permeability shales, the second mechanism of 

breaching through the formation of hydraulic fractures may occur (Swarbrick et al., 2010; 

Zhang and Ghassemi 2011). 

4.2.1.4 Membrane Leakage 

Membrane leakage of a top seal occurs when its capillary entry pressure is exceeded by the 

pressure due to buoyancy of the hydrocarbon column beneath it. The capillary entry pressure 

depends upon the pore throat radius, the interfacial tension and the contact angle between 

the wetting and non-wetting fluid phases present; 

   
      

 
 

Where, Pe = Capillary entry pressure,   = Interfacial tension,   = Contact angle, and r = pore 

throat radius (Schwolater, 1979; Watts, 1987). See the introduction chapter, and references 

for more details. The buoyancy pressure of the hydrocarbon column depends upon the density 

differential between the hydrocarbon and water within the reservoir. The less dense 

hydrocarbon is buoyant and hence exerts an upwards pressure on the base of the top seal. For 

a horizontal oil-water contact (i.e. no hydrodynamic tilting of contacts-Dennis et al., 2005) this 

pressure is greatest at the crest of a trapping structure, where the hydrocarbon column is 

greatest. For a top seal with a known capillary entry pressure, the maximum hydrocarbon 

column which can be supported can be calculated from the hydrocarbon density; 
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If the column height exceeds this value, then membrane leakage through the top seal will 

occur. This approach is similar, although not identical, to the approach used to estimate 

column heights trapped against faults (Fisher et al., 2001; Brown, 2003). 

A top seal lithology such as shale or chalk (Swarbrick et al., 2010) will have a high capillary 

entry pressure, and will be unlikely to experience significant membrane leakage over short 

timescales (10s Ma). This does however assume that membrane sealing capacity is uniform 

and homogenous, an unlikely prospect given the heterogeneity inherent in geological systems 

(Aplin and Macquaker, 2011; Armitage et al., 2011). Nevertheless, membrane seals are 

generally expected to support column heights in excess of 2000m for very low permeability 

shale cap rocks (Ingram and Urai, 1999) based upon mercury injection porosimetry of 

individual samples. As column heights approach this value, the second mechanism of leakage, 

via mechanical fracturing of the seal lithology, becomes important. 

4.2.1.5 Mechanical Leakage 

Hydraulic fracturing may occur when the pore fluid pressure exceeds the fracture strength of 

the top seal. For tensile fracture formation the value of pore pressure at which fracturing 

occurs depends on the local stress conditions and the tensile strength of the top seal, and 

occurs when; 

        

Where    = the pore fluid pressure,    = the minimum horizontal stress and T = the tensile 

strength of the top seal. For a given tensile rock strength an increased pore fluid pressure 

therefore increases the likelihood of fracture formation. Whether tensile or shear fractures 

form depends on the in situ minimum and maximum normal stresses. A high differential stress 

(σ1-σ3) is more likely to lead to the formation of shear fractures, albeit at a lower increase of 

pore fluid pressure (Figure 4.3). Whether or not shear fracture formation leads to leakage 

depends on if the fractures become dilated or not. Stronger, more brittle rocks being more 

likely to become dilated than weaker, less consolidated and more ductile ones such as shale 

(Ingram and Urai, 1999). 

In the case where pre-existing fractures are present, a lower pore pressure is required to cause 

reactivation and frictional sliding (figure 4.3), potentially leading to fracture dilation and hence 

the formation of leak pathways (Clayton and Hay, 1994; Ingram and Urai, 1999). Asperities 

along fractures and fracture curvature will lead to fractures opening within brittle lithologies, 

whereas they will tend to remain tight when hosted in more ductile rocks (Ingram and Urai, 

1999). 
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The pore fluid pressure is a function of the local overpressure and the buoyancy of the 

hydrocarbon immediately below the top seal (Clayton and Hay, 1994). A larger hydrocarbon 

column height will have a higher buoyancy pressure and will hence increase the pore fluid 

pressure, therefore reducing the effective stress and increasing the likelihood of either 

formation of new fractures or of frictional sliding on pre-existing fractures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Schematic Mohr diagrams illustrating the effect on fracture formation and 

reactivation of increased pore fluid pressure (pfp) under different conditions.   = Shear 

stress, σn = normal stress, Cr = Intact rock cohesion, Cf = Fracture cohesion, σ1 = Maximum 

principal stress, σ3 = Minimum principal stress, T = Rock tensile strength. Note that the initial 

value of σ3 is the same for all cases. (A) A low differential stress (σ1 - σ3). No pre-existing 

fractures are present therefore the Mohr-Coulomb failure criterion is applicable. Increasing 

the pore pressure reduces the effective stress, shifting the Mohr circle to the left into the 

tensile failure region. If the minimum stress (σ3) is negative, tensile fractures will form 

perpendicular to σ3. (B) As (A) but with a higher differential stress. Increasing the pore 

pressure leads to the Mohr circle intersecting the failure envelope whilst σ3 is still positive, 

leading to the formation of shear fractures, although a smaller pfp increase is required for 

fracture formation than for low differential stress. (C) Low differential stress. The presence 

of pre-existing fractures means that the friction sliding criterion is applicable, and a lower 

pfp increase is required in order to reactivate the fractures. (D) A higher differential stress 

requires a smaller pfp increase for fracture reactivation. It should be noted that the 

diagrams above assume that no pore pressure coupling occurs (see chapter 9 for more 

details, and e.g. Zoback, 2007), and hence that the differential stress remains constant 

during depletion or injection.  
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4.3 Methodology  

The fault geometries and syn-rift stratigraphic architecture from the onshore Gulf of Corinth 

rift field area are relatively well constrained, with the three dimensional geometry captured 

within a geocellular grid (see chapter 2, 3 and figure 4.4). The generation of synthetic seismic 

sections across this grid allows the geometries to be observed in the context of a hydrocarbon 

exploration scenario, where the limitations of sparse 2D data lead to significant geometric 

uncertainty. The procedure for generating the synthetic seismic sections is a four-step process. 

 

 

 

 

The geocellular grid capturing the 3D fault geometries is translated from its physical elevation 

to a sub-surface depth of 4000 m. Pre-rift and syn-rift zones are designated, as well as an 

overlying zone of post-rift shale designed to represent a regional top seal. These zones are 

stochastically populated with mineralogical fractions using a sequential Gaussian distribution 

function. Upper and lower bounds broadly correspond to those observed in the field area 

(table 4.1). A porosity property based on published generalised depth trends for carbonate, 

conglomerate and shale, is also defined (figure 4.5), with the upper and lower bounds based 

upon observation of thin sections from the field area (figure 3.20). Examples of the populated 

grids are shown in figure 4.6. 

Figure 4.4. Oblique view of top pre-rift surface and faults within geocellular grid. V.E. = x3. 

The grid can subsequently be populated with the petrophysical properties appropriate to 

the pre-, syn-, and post-rift facies as outlined in table 4.1.   
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 Calcite 

fraction 

Quartz 

fraction 

Sand fraction Shale 

fraction 

Porosity 

Post-rift 0-0.17 0-0.02 0-0.34 0.4414-1 0.0013-0.2  

Syn-rift 0.3-0.81 0.09-0.35 0.04-0.14 0.0558-0.21 0.0044-0.15 

Pre-rift 0.8-1 0-0.02 0-0.14 0-0.04 0.0053-0.18  

 

 

 

 

 

 

 

 

 

Figure 4.5. Published depth trends used to condition population of porosity property within 

the geocellular grid. After Kominz and Pekar, 2001; Ehrenberg and Nadeau, 2005; Min et al., 

2007. 

Table 4.1. Mineralogical fractions used to populate pre-, syn-, and post-rift sequences.  The 

values for the pre-rift assumes an almost entirely carbonate composition, whilst the syn-rift 

composition is constrained by values observed in the field (Figure 3.17). Composition for the 

post-rift stratigraphy is synthetic, but is nevertheless dominated by shale. Where possible 

porosity is also constrained using visual estimates from optical thin section analysis (Chapter 

3, figure 3.20). 
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An oil-water contact is assigned at a constant depth of 3500 m, with hydrocarbon saturations 

of 0.7 within the oil leg and zero elsewhere. These values represent those typically expected in 

a water-wet reservoir (Ahmed, 2010). Pore pressures are assigned separately for the pre-, syn, 

and post rift stratigraphies (figure 4.7). The post-rift has a hydrostatic gradient of 9.792 

MPa/km (0.433 psi/ft), with the underlying pre- and syn-rift strata being overpressured by 5 

MPa (725 psi). The oil column within the syn-rift has a pressure gradient of 6.785 MPa/m (0.3 

Figure 4.6. Oblique view of examples of populated geocellular grids used during forward 

modelling process. (A) Porosity, (B) VShale.  
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psi/ft). The petrophysical, mineralogical and pressure properties are converted into individual 

high resolution seg-y volumes covering the positions where seven synthetic seismic sections 

will be generated (figures 4.8, 4.9). These seg-y property cubes are subsequently exported to 

seismic forward modelling software.  

 

 

 

 

 

 

 

 

Figure 4.7. Cross-sections through model illustrating pore fluid pressure distribution. (A) 

Distribution of pre-, syn-, and post rift intervals. The syn-rift is defined as the reservoir 

interval. (B) Pore fluid pressure. The colour scale is adjusted to highlight pressure differences 

within the syn-rift interval due to the fluid density contrasts between oil and water. This is 

highlighted in the expanded insets. 
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Figure 4.8. Examples of property cubes converted into seg-y volumes to allow export to 

seismic forward modelling software. (A) Distribution of pre-, syn-, and post rift intervals. (B) 

Porosity, (C) VShale. 
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To account for seismic wave propagation, attenuation and diffraction along the travel path 

between the seismic sources and the receivers, a coarse scale grid (250 x 250 x 33 m cell 

dimensions) capturing the properties of the overburden was constructed (figure 4.10). The 

overburden is representative of a regional shale, and is hence populated using the same 

methodology (sequential Gaussian simulation) and property bounds used to generate the 

post-rift interval. These properties are also exported to the seismic forward modelling 

software to be used in conjunction with a ray-tracing algorithm (Gjøystdal et al., 2007) 

 

 

Figure 4.9. Oblique view of sections through geocellular grid populated with a porosity 

property. These sections correspond to the position at which 2D synthetic sections are 

generated. Sections have a spacing of 5 km. 
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The seg-y property cubes are imported into the seismic forward modelling software, where 

density values for the individual mineralogical and fluid components are assigned (Table 4.2) 

and used to calculate the overall density assuming a Reuss mixing model. The pore fluid 

pressure property is used to estimate the confining pressure and the effective pressure based 

upon a lithostatic gradient of 22.5 MPa/km. Gassmann’s theory is then applied along with the 

fluid properties (Table 4.2) and saturation distribution to determine the elastic properties of 

the model, with reflectivity subsequently calculated using the Zoeppritz equations (Gjøystdal 

et al., 2007).  

 

 

 

 

 

Figure 4.10. Coarse scale background model generated using sequential Gaussian 

simulation. The model is used to account for wave propagation effects between survey-

source, target and receiver. Porosity is shown although cubes for pressure, fluid saturation, 

Shale, Sand, Calcite, and Quartz were also generated. 
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PROPERTY VALUE 

Shale density 2.6 g/cm3 

Sand density 2.65 g/cm3 

Calcite density 2.71 g/cm3 

Quartz density 2.65 g/cm3 

Shale bulk modulus 21 GPa 

Sand bulk modulus 37 GPa 

Calcite bulk modulus 76.8 GPa 

Quartz bulk modulus 36 GPa 

Shale shear modulus 7 GPa 

Sand shear modulus 44 GPa 

Calcite shear modulus 32 GPa 

Quartz shear modulus 31 GPa 

Water density 1.02 g/cm3 

Water bulk modulus 2.78 GPa 

Oil density 0.65 g/cm3 

Oil bulk modulus 1.45 GPa 

 

 

 

A 2D seismic survey with a design typical for exploration purposes (O’Dowd, pers. comm.) was 

constructed (Table 4.3), with this geometry repeated to correspond to the position of each 

target section (figure 4.11). 

Property Value 

Depth 100 m 

Offset 100 m 

Streamer Length 10000 m  

Receiver spacing 25 m 

Shot line length 30000 m 

Shot spacing 50 m 

Input wavelet 40 Hz Ricker 

 

Table 4.2. Physical properties used for generation of elastic and reflectivity cubes used in 

the seismic forward modelling process. 

Table 4.3. Geometries used for 2D survey design (O’Dowd, pers. comm.). 
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The derived elastic and reflectivity properties are combined with the survey design, input 

wavelet and background model (figure 4.10) to generate a series of synthetic 2D seismic 

sections (figure 4.12) using a ray-tracing algorithm (Gjøystdal et al., 2007). These sections were 

then interpreted using standard seismic interpretation software, with faults, top pre-rift and 

top syn-rift surfaces being interpreted. The interpretation was carried out independently by a 

third party so as to minimise interpretation bias. The third party is an experienced structural 

geologist with experience in interpreting exploration scale 2D seismic datasets. Their seismic 

interpretations for the seven 2D sections (figure 4.13) were extrapolated using a convergent 

interpolation algorithm in order to generate 3D surfaces for the faults, and the top pre-rift and 

syn-rift stratigraphic surfaces (figure 4.14). These surfaces allow the construction of a fault-

horizon model analogous to those used during in hydrocarbon exploration and prospect 

identification, risking and ranking. Comparison of the models constrained using 3D outcrop 

data, and the model derived from synthetic seismic data allows exploration scale geometric 

uncertainty to be quantified in a number of ways, for example by comparing fault-

Figure 4.11. Oblique view of 2D survey geometries with porosity sections for reference. 
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displacement profiles (figure 4.15). Despite this it is stressed that the geometric uncertainties 

examined here are specific to the Gulf of Corinth, and as such should not be viewed as general 

cases.   

 

 

 

 

 

 

 

Figure 4.12. Comparison of known pre-, syn- and post-rift geometry (A) and the resulting 

synthetic seismic section (B). 
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Figure 4.13. Synthetic seismic sections through the Gulf of Corinth rift geometry defined 

from field data in chapter 3. (A) The syn-rift distribution, top pre-rift surface and fault 

geometries defined from field data are superimposed onto the seismic sections. (B) The 

syn-rift distribution as defined by the interpreted surface and fault geometries. 2D sections 

have a spacing of 5 km.   
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Figure 4.14. Comparison of outcrop-derived top pre-rift surface and faults (A), and top pre-

rift surface and faults generated from extrapolation of 2D seismic interpretation (B). 

Although the broad scale geometries are similar, the seismically resolvable model (B) is 

significantly simplified relative to the outcrop-derived one (A). (C) Aerial view of an isochore 

map highlighting the differences between the outcrop-derived (A) and seismically 

interpreted (B) top pre-rift surfaces. Positive differences are shown in purple, negative in 

red. 
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Figure 4.15. Comparison of displacement: Length plots for selected faults from (A) Outcrop-

defined geometry, and (B) Seismically resolvable geometry. Overall the profiles are 

relatively similar, although much of the detail observed at outcrop is missing at the scale of 

seismic resolution. 
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4.4 Results 

4.4.1 Syn-Rift Reservoir 

To a large extent, fault geometries control the distribution, thickness and volume of syn-rift 

sediments within hangingwall basins. In the Gulf of Corinth rift, from which the synthetic 

seismic sections are generated, the volumetric majority of continental syn-rift deposits do not 

form a viable reservoir due to the high proportion of low net:gross overbank shale facies. 

Despite the basin-fill not being of a reservoir facies, geometrically the basins are very similar to 

many exploration provinces. In such situations mapping the extent of the syn-rift facies would 

be crucial when generating volumetric estimates. Where only 2D seismic data exists the 3D 

extent of a facies is significantly uncertain, with limited constraint on the fault displacement 

minima which often control facies distribution (Athmer and Luthi, 2011). 

4.4.2 Connected Volume 

Connectivity of reservoir facies in the hangingwall block of a fault set depends upon a balance 

between the evolutionary maturity of the fault set and the sediment input rate into the 

depocentre (Gawthorpe et al., 1994). This balance is known as the accommodation to supply 

ratio (A:S), and controls whether a basin is underfilled, or overfilled (Jervey, 1988). 

Accommodation is controlled by subsidence on faults and sea level variations, whilst sediment 

supply is predominantly a function of climate and hinterland uplift. Fault growth processes (i.e. 

linkage of fault segments) lead to along-strike variations in displacement and displacement 

rates, and hence on generation of accommodation space, in turn influencing connectivity of 

hangingwall sediments (figure 4.2). We can observe this influence in the isochore data for the 

models (figure 4.16). Where linkage of fault segments has occurred relatively early during fault 

set growth, profile readjustment (Cowie et al., 2000) leads to sediment thicknesses which vary 

consistently along strike (e.g. Tsivlos fault, see figure 4.1). Where segments have not linked, or 

have linked late, topographic highs (‘Intra Basinal Highs’, Cowie et al., 2000; figure 4.2) at relay 

zones may act as barriers to the amalgamation of sub-basin sediments (e.g. Dhemesticha-

Kalavryta fault set, figures 4.1, 4.16). In turn this effects the connectivity of the syn-rift 

reservoir facies (figure 4.17). 
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For the outcrop based model, where syn-rift sediment distribution has been mapped in the 

field, connectivity is high between sub-basins, with a connected pore volume of 1.1x1011 m3 

(assuming 10% porosity). In an exploration scenario where the syn-rift represented the target 

reservoir facies this would be advantages. Interpretation of the sparse 2D synthetic seismic 

sections (which are generated using the outcrop-based geometry) leads to significant 

uncertainty in the distribution of the syn-rift facies, in this case leading to lower connectivity 

Figure 4.16. Isochore maps for syn-rift of the field based (A), and synthetic 2D seismic based 

(B), Gulf of Corinth rift geomodels. Low syn-rift sediment thicknesses along fault strike are 

indicative of intra basinal highs potentially due to the presence of late-forming fault 

overlaps. More consistent along strike thicknesses are suggestive of earlier fault linkage 

(Cowie et al., 2000). 
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between sub-basins. Based on this interpretation three distinctly separate prospects exist with 

pore volumes of 4.7x109 m3, 4.6x1010 m3 and 5.4x1010 m3. 

 

 

 

 

4.4.3 Spill Point and Column Height 

Uncertainty in syn-rift distribution where only sparse data is available also effects estimates of 

the depth of structural spill points, and hence of potential hydrocarbon column heights. The 

spacing of 2D data (in this case 5 km) means that is unlikely that the structurally shallowest 

position will be intersected and directly identified, but that it will be based upon lateral 

projection of the available data. Similarly, the depth of the crest of a structure will remain 

uncertain. Figures 4.18 and 4.19 show an example of this for the Dhemesticha sub-basin (see 

figure 4.1). For the field data based model 3D constraint on the geometry exists and permits 

Figure 4.17. Aerial views of syn-rift distribution for field data based model (A) and model 

derived from 2D synthetic seismic data (B).  
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the true crest and spill point to be identified. In contrast the spacing of the exploration 

geometry 2D seismic data prevents the exact depths from being identified. For this example 

the result of this geometric uncertainty is a column height of 50% of the true value.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18. Aerial views showing comparison of estimated potential column heights for the 

Dhemesticha sub-basin based upon the outcrop-derived fault and syn-rift geometry (A) and 

that based on the synthetic 2D seismic data (B). The shallower crest and deeper structural 

spill point of the outcrop derived geometry lead to a significantly larger potential column 

height than that of the 2D seismic based model. 

Figure 4.19.  Oblique views of the modelled syn-rift fill in the Dhemesticha sub-basin shown 

in figure 4.18. The figure illustrates the difference in the depth of the structural crest, the 

spill point and the corresponding difference in predicted maximum column height for the 

outcrop-derived (A), and seismically resolvable (B) geometries. 
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4.4.4 Pore Fluid Pressure 

Uncertainty in the column height leads to uncertainty in the pore fluid pressure within a 

prospect, with implications for trap integrity and well balancing during drilling. For the 

example of the Dhemesticha sub-basin (figure 4.18, 4,19), the difference in predicted column 

height leads to different estimates in pore fluid pressure due to buoyancy (figure 4.20). The 

smaller hydrocarbon column height predicted by the seismically resolvable geometry results in 

a lower pore fluid pressure than would actually be present (105 psi versus 210 psi). This is 

important for two reasons. Firstly, the pore fluid pressure within the prospect will be closer to 

the top seal fracture pressure, and its capillary entry pressure, than anticipated. Depending on 

how overpressured the reservoir stratigraphy has become during burial, the top seal may have 

failed, either through mechanical or capillary failure. Secondly, a greater pressure than 

anticipated would be encountered at a shallower depth during drilling. This may result in the 

well being underbalanced, allowing an influx of fluids into the well and a pressure ‘kick’. For 

this example however the differences in pressure between the seismically resolvable geometry 

and the actual geometry are relatively small, and may well be within drilling tolerances 

(Redmann, 1991). 
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4.4.5 Tilted Fault Block Reservoir 

Many prospects are formed in the tilted footwall blocks of large faults due to the process of 

footwall uplift. The along strike decrease in displacement and uplift allows 3-way closure 

against the fault (figure 4.21). If displacement on the fault is greater that the thickness of the 

reservoir interval, and the reservoir interval is juxtaposed against an impermeable lithology, 

then a suitable hydrocarbon trap may exist. In the Gulf of Corinth rift the footwall block to the 

Dhoumena fault is an excellent example of along strike displacement variation, and hence an 

analogue to a tilted fault block hydrocarbon trap (figure 4.22).  

 

 

Figure 4.20 (Previous page). Plot of pressure versus depth for the outcrop derived and 

seismically resolvable prospect geometries shown in figure 4.17. The difference in predicted 

column height leads to an underestimate in pore fluid pressure for the seismically 

resolvable geometry relative to the outcrop derived geometry.   

Figure 4.21. Idealised schematic of a tilted fault block trap. Footwall uplift generates relief 

in the form of a half-dome which abuts the fault plane. Hydrocarbons can fill this dome 

down to the spill points, which are located at the fault tips where displacement is zero, and 

in the footwall where uplift is zero.  
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Using the DEM and fault displacement data it is possible to calculate the theoretical spill points 

and crest for the Dhoumena fault block for both the field-based and seismically forward 

modelled geometries. The spill points are defined as the maximum depth at which the fault 

block is isolated from adjacent structures (figure 4.23). The volumetrics, maximum potential 

column heights (figure 4.23) and pore fluid pressures (figure 4.24), can hence be calculated for 

both geometries. As with the syn-rift reservoir, complexity of the surface representing the top 

of the reservoir unit leads to a significant disparity in the maximum column height for the two 

geometries. A greater column than predicted would be present, leading to pore fluid pressure 

being under estimated (figure 4.24). 

Figure 4.22. The Dhoumena fault block provides an excellent analogue for tilted fault block 

type traps. The footwall crest describes the typical displacement pattern of footwall uplift, 

with the maximum in the centre, decreasing to zero at the fault tips (A, B). Inset shows the 

location and direction of the two viewpoints. Approximate orientations of photographs are 

indicated, with faults dipping at approximately 50 degrees to the North. 
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Figure 4.23. Oblique view of top pre-rift surfaces for the outcrop-derived (A) and 

seismically-derived (B) geometries. The location of the Dhoumena fault footwall tilted fault 

block trap is indicated, with the structural spill point highlighted. Above the spill point is 

green, below is blue. (C) and (D) show close up views of the trap for the outcrop-, and 

seismically-derived geometries respectively. The depth of the predicted spill points, crests 

and resulting maximum column heights are indicated, along with the rock volume of the 

trap. 
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4.4.6 Fault Rock Supported Column Height 

For a tilted fault block trap the fault provides the fourth direction of closure, typically by 

juxtaposing the permeable reservoir facies against an impermeable lithology such as shale in 

the hangingwall. The column height which can be supported is controlled by the structural spill 

point and the top seal integrity. In the situation where the juxtaposed lithology is not 

impermeable then the column height which can be supported depends on the sealing capacity 

of the fault rocks (Yielding et al., 1997; Fisher & Knipe, 1998; Sperrevik et al., 2002; Bretan et 

al., 2003; Yielding, 2012). This is a function of the fault rock capillary entry pressure and the 

buoyancy of the hydrocarbon column (Schowalter, 1979; Watts 1987; Fisher et al., 2001; 

Brown, 2003). Where the buoyancy pressure is greater than the capillary entry pressure 

Figure 4.24. Pressure versus depth for seismically resolvable and outcrop-derived tilted fault 

block trap geometries shown in figure 4.19, assuming that traps are filled to their spill 

points, and that no there is no additional overpressure.  
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(‘threshold pressure’) hydrocarbon will be imbibed into the fault rock, and can migrate across 

the fault. 

Column height estimation is often conducted by relating threshold pressure, and hence 

column height, to fault rock clay content, either through direct sample measurements 

(Sperrevik et al., 2002) or using the SGR algorithm as a proxy (Bretan et al., 2003). Neither 

approach is ideal (see chapter 1) given the inherent heterogeneity of geological systems, with 

a less deterministic, semi-probabilistic approach being preferred (Childs et al., 2007; Yielding, 

2012). Nevertheless, these approaches provide a good mechanism for illustrating the impact of 

seismic resolution related geometric uncertainty on fault seal prediction. 

SGR values are determined by the stratigraphy and fault displacement, hence uncertainty in 

fault displacement distributions will lead to uncertainty in SGR calculations and hence in 

predicted column heights. This is illustrated by comparing the predicted column heights for the 

Gulf of Corinth outcrop derived geometry and the seismically resolvable geometry. This is 

again conducted using the Dhoumena fault block as an example. A simple layercake synthetic 

stratigraphy (as may be available during hydrocarbon exploration) composed of inter-bedded 

shales and sands (figure 4.25) is used to populate the outcrop-defined, and seismically 

resolvable geometries. SGR values are then calculated for the fault plane where the footwall 

block is juxtaposed against the hangingwall block (figure 4.26). The along-strike structural spill 

point (assuming no additional spill points within the footwall, e.g. figure 4.23,) is also shown. A 

juxtaposition diagram approach (Allan, 1989; Knipe, 1997) is used to generate a fault plane 

map of the position of juxtaposition seals and potential leak points. The approach of Bretan et 

al (2003) is used to derive fault threshold pressure from the calculated SGR values, with these 

values superimposed upon the sand:sand juxtaposition windows (figure 4.26). A hydrocarbon 

density of 0.6 g/cm3 is used to generate the column height that can be supported at every 

point along the fault, and is hence used in conjunction with the juxtaposition map to estimate 

the fault rock controlled column height.  

The structural spill point for the outcrop-derived fault geometry is controlled by an area of 

decreased displacement corresponding to the position of a relay zone. Unusually, the fault tip 

is at a higher elevation than the relay zone (figure 4.26), hence the relay zone actually 

increases the depth of the structural spill point in this instance. This leads to the outcrop-

derived geometry having a greater column height than the seismically resolvable geometry 

(543 m versus 487 m), in the situation when the spill point is structurally controlled. However, 

when the fault rock properties are taken into account the column height is significantly 

reduced for both geometries. The fault geometry influences the distribution of the stratigraphy 
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against the fault, resulting in a juxtaposition seal being present at the crest of the structure for 

the seismically resolvable geometry. This increases the potential column height relative to the 

outcrop-derived geometry where no crestal juxtaposition seal is present. In this situation the 

outcrop-derived geometry can support a smaller hydrocarbon column than the seismically 

resolvable geometry (113 m versus 187 m). 

 

 Figure 4.25. High net:gross (0.63) synthetic stratigraphy used to populate outcrop and 

seismically resolvable models. For the purposes of SGR calculation sand is defined as having 

10% clay content whilst shale has 70% clay content (Shaw and Weaver, 1965). 
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4.5 Discussion  

The aims of this chapter were to use the geometries defined through field data collection, (and 

presented in chapter 3), to illustrate some of consequences of fault geometric uncertainty at 

the scale of hydrocarbon exploration. This has been achieved by using seismic forward 

modelling to generate a series of synthetic 2D seismic sections across the Gulf of Corinth field 

area. The uncertainty in the 3D fault geometry when only sparse 2D data is available is evident 

from the differences in the outcrop-defined, and seismically resolvable models (Figures 4.13, 

4.14, 4.16, 4.17). The uncertainty in fault, and associated syn-rift stratigraphic geometries, 

leads to uncertainty in volumetric estimates, structural spill points, pore fluid pressure and 

fault rock supported column heights.  

The uncertainties presented are specific to the Gulf of Corinth geometry, and the petrophysical 

properties modelled within that geometrical framework. Although geometrical uncertainty 

exists in all situations where only a restricted amount of data is available, the consequences of 

that uncertainty are not necessarily consistent. For example, the seismically resolvable 

Figure 4.26. Fault-normal views of the Dhoumena fault plane displaying fault properties for 

both the outcrop-derived and seismically resolvable fault geometries. Properties shown, 

from top to bottom are; SGR, Juxtaposition, Threshold pressure and predicted column 

height. 
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geometry shown here suggests that the syn-rift facies is relatively isolated between individual 

sub-basins, contrasting with the ‘real’ syn-rift geometry which shows high connectivity. 

However, there is nothing suggesting that syn-rift stratigraphy will always have higher 

connectivity than can be identified in seismic data, rather that it will depend on the specific 

geometry in question. Hence, the examples portrayed here are simply an example of the 

potential implications that may arise from exploration-scale structural uncertainty. These 

uncertainties are relatively self-evident, with numerous published examples of how they relate 

to the sparse nature of 2D seismic data (e.g. Needham et al., 1996; Childs et al., 1997; Jolley et 

al., 2007). A number of studies have utilised 2D seismic forward modelling to generate 

synthetic seismic across known geometries and facies distributions (Johansen et al., 1994; 

Hodgetts and Howell, 2000; Alaei and Petersen, 2007), however few if any use the technique 

to illustrate the potential uncertainties pertinent to hydrocarbon exploration as described 

here. 

Using the technique of seismic forward modelling to illustrate structural uncertainty is not 

without its own methodological uncertainties, for example the observation that faults formed 

at the topographic surface (as in Greece), and subsequently buried would reduce in dip due to 

compaction of the surrounding stratigraphy. This is not reflected in the model since the 

outcrop geometries have simply been translated to depth, and hence neither do they say 

anything about the fault growth history. This is however largely irrelevant in respect of the 

illustrative (rather than quantitative) aims of this chapter. It is the difference between the 

synthetic seismic data and the original model used to generate that seismic data that is 

important.     

Other than the generalised uncertainties which have been discussed a number of additional 

observations can be made that can be applied more broadly. Displacement profiles are broadly 

similar for the outcrop-derived and seismically-resolvable fault geometries (Figure 4.15), 

although the detail observed at outcrop is significantly greater than can be observed with 2D 

data. The extrapolation of faults between 2D sections inevitably leads to uncertainty, with 

structures such as relay zones often being unobserved. The location of fault tips and 

displacement maxima are also uncertain, resulting in inaccurate estimates of fault 

displacement length ratios. In turn this can impact on the understanding of how a basin 

evolved (e.g. Figure 4.2). The non-identification of displacement minima tends to lead to the 

smoothing of fault profiles, and the treatment of fault sets as individual faults, rather than as 

being composed of multiple segments. This may have the effect of displacement:length ratios 

being underestimated in 2D seismic data. 
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4.6 Conclusions 

Synthetic seismic sections across known outcrop geometries highlight the uncertainties when 

basing a 3D geometric model on 2D data. The synthetic sections can provide a useful tool for 

understanding the potential impact of structural uncertainty in rift settings. 

• Widely spaced 2D sections are unlikely to correspond spatially to features such as 

displacement minima associated with relay zones. This leads to uncertainty when predicting 

spill points, structural crests and column heights, as well as identifying the location of 

sediment entry points in to basins. 

• The uncertainty in column height as a result of poorly constrained structural geometry leads 

to variations in pore pressure prediction, with implications for drilling strategies. 

• The disparities between fault geometries constrained in 3D and those in 2D can lead to 

significant variation in how stratigraphy is modelled to intersect with, and is mapped onto 

faults. In turn fault rock properties, and hence potential supported column heights, may vary 

considerably. 
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Chapter 5 

Sub-Seismic Fault Tips and Breached Relay Zones: Their Prediction and Effect on Fault 

Network Connectivity in Reservoir Models 

5.1 Abstract 

The effect of sub-seismic scale fault tips and relay-zone breaching faults on the connectivity of 

reservoir faults has been examined by using the currently-producing Penguins C oilfield in the 

North Sea as a case study. A subset of a 3D seismic volume covering the oilfield has been 

interpreted and high-resolution geological models constructed to allow evaluation of the 

different approaches to incorporating sub-seismic fault geometries. Two methods for 

incorporating sub-seismic fault tips are reviewed, modified and compared. In addition a simple 

relationship has been developed for predicting the presence or absence of sub-seismic scale 

breaching faults at relay zones. Incorporating these features leads to significantly increased 

fault network connectivity and hence reservoir segmentation. 

5.2 Introduction and Aims 

The aim of this chapter is to assess the impact of incorporating sub-seismic fault tips and small 

scale relay zone breaching faults on reservoir segmentation. This has been accomplished by 

developing a number of predictive tools and subsequently applying these tools to a sub-

surface dataset. 

Faults influence hydrocarbon exploration and production across a range of scales, from trap 

definition and integrity, to borehole stability. At the reservoir scale faults can cause static 

and/or dynamic compartmentalisation, potentially leading to modification of drilling and 

development strategies (Manzocchi et al., 2007; Freeman et al., 2010; Jolley et al., 2010; McKie 

et al., 2010). Conversely faults may enhance connectivity of reservoir facies (Bailey et al., 2002) 

as well as increasing sweep efficiency during production (Manzocchi et al., 2008a, b; Rotevatn 

et al., 2009a, b). The magnitude of the effect of faults upon hydrocarbon production is 

dependent on both their geometry and the petrophysical properties of any fault rock which 

may be developed.  

Fault geometry controls throw distribution and hence the across-fault juxtaposition of 

reservoir units, whilst the petrophysical properties of the fault rock determine how a fault may 

impede fluid flow under the specific reservoir conditions (e.g. Pressure, saturation, fluid 

properties). Fault geometry is controlled by tectonic history (Paton, 2006), interaction with 

other structures (Peacock and Sanderson, 1991; Trudgill and Cartwright, 1994) and the 
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mechanical properties of the faulted medium (Martel, 1999; Soliva et al., 2006; Morris et al., 

2009). The petrophysical properties of the fault rock (Yielding et al., 1997; Knipe et al., 1998; 

Fisher and Knipe, 1998; Fisher et al., 2001; Sperrevik et al., 2002) are determined by the 

petrophysical properties of the stratigraphy, the burial history, the timing and depth of 

faulting, and the fault geometry and displacement. Accurately modelling both the geometry 

and petrophysical properties of faults, and capturing the associated uncertainty, is therefore 

critical for successfully evaluating their effect upon hydrocarbon production.  

Previous work has indicated that manipulating modelled faults to include sub-seismic 

geometries can have a non-trivial impact on compartmentalisation for faulted reservoirs 

(Pickering et al., 1997; Manzocchi et al., 2008a, b; Rotevatn and Fossen, 2011). Incorporation 

of sub-seismic fault tips may lead to increased fault connectivity and reservoir segmentation 

and potentially to increased reservoir compartmentalisation (Pickering et al, 1997; Rotevatn 

and Fossen, 2011). Intact sub-seismic scale fault relay zones may enhance across-fault 

communication (Manzocchi et al., 2008a, b), whereas sub-seismic faults breaching identifiable 

relay zones may inhibit across-fault flow.  

5.2.1 Sub-Seismic Fault Geometries 

Fault controlled reservoir compartmentalisation occurs when fault geometries and 

petrophysical properties combine to prevent fluid flow between fault bound compartments on 

either a geological or hydrocarbon production timescale (Jolley et al., 2010). From a geometric 

perspective the key uncertainty when interpreting faults from reflection seismic data relates to 

the spatial resolution of the seismic data. A value of ¼λ is often quoted as the theoretical 

minimum fault offset that can be detected based upon the Fresnel zone phenomenon 

(Townsend et al., 1998; Gadallah and Fisher, 2004). However, other factors such as the 

acoustic impedance contrast in the vicinity of faults and the bandwidth of the seismic pulse 

also contribute to the minimum observable fault offset, with throws of 1/8λ or less potentially 

being imaged (Jolley et al., 2007). Any fault, or part of a fault, that has a throw value less than 

the vertical resolution of the seismic data will not be resolved, and can be described as being 

‘sub-seismic’ (figure 5.1). The throw of an idealised isolated fault decreases from a maximum 

at its centre to zero at the fault tips (Barnett et al., 1987). Hence, fault tips are un-resolvable in 

seismic data, with the result being that the length of faults is often underestimated. Extending 

the lengths of faults to include the sub-seismic fault tips may lead to a greater degree of fault 

connectivity and reservoir segmentation than initially identified and, depending on the 

resulting juxtapositions and petrophysical properties of the faults, may lead to increased 

reservoir compartmentalisation. Even in cases where incorporation of sub-seismic fault tips 
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does not lead to increased reservoir segmentation the production response may still be 

influenced. Longer fault tips may result in increased flow tortuosity, potentially effecting 

production rates and sweep efficiency (Manzocchi et al., 2008a). The amount of additional 

sub-seismic length which is added to faults therefore strongly influences the connectivity of 

the fault network and hence its effect on hydrocarbon production.  

 

 

 

 

 

Fault linkage geometry is another factor which influences hydrocarbon production in faulted 

reservoirs. Numerous studies over the previous two decades have highlighted the evolution of 

extensional faults, from the initiation of individual discontinuities as a response to local or 

regional extension, through stages of growth, interaction, linkage and continued growth 

(Peacock and Sanderson, 1991; Childs et al., 1995; Cowie et al., 2000). Relay zones are 

ubiquitous at all stages of this process, and their potential influence on hydrocarbon 

exploration and production is well documented (Peacock and Sanderson, 1994; Rotevatn et al., 

2007; Athmer and Luhti, 2011). At the exploration scale relay zones are often cited as 

influencing sediment distribution both onshore (Gawthorpe and Hurst, 1993; Collier and 

Gawthorpe, 1995) and offshore (Athmer et al., 2010), and of being preferential pathways for 

Figure 5.1. Schematic illustrating how sub-seismic fault tips lead to underestimates in fault 

length. Where displacement is less than seismic resolution (Sr) fault tips are not imaged. 

This leads to the resolvable length (L1) being less than the actual length (L).  
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hydrocarbon migration (Morley et al., 1990). They can also both form, and be a risk to, 

structural traps (Gras and Thusu, 1998; Bense and Van Balen, 2004; Fossen et al., 2010). At the 

production scale a well-connected intra reservoir fault network may lead to static and/or 

dynamic compartmentalisation where the across-fault juxtapositions and fault rock properties 

are such that capillary entry pressures are high enough (and/or permeabilities low enough) to 

support across-fault pressure differences on geological and/or production timescales 

(Schowalter, 1979; Watts, 1987; Fisher et al., 2001; Brown, 2003; Jolley et al., 2010). In fault 

compartmentalised reservoirs determining the presence or absence of relays zones is 

therefore critical since they may provide flow pathways between compartments across 

otherwise sealing faults (Manzocchi et al., 2008a, b).  For open relay zones the flow 

characteristics across individual ramps have been shown to be dependent on both the 

petrophysical properties of the stratigraphy and the internal deformation of the relay ramp 

(Rotevatn et al., 2009a, 2009b, Rotevatn and Fossen, 2011) whilst for breached relay zones the 

geometry and position of the breaching fault(s) has a significant influence under certain 

conditions (See chapter 7).  

As is the case for fault tips, relay zones close to or below the limit of resolution may not be 

fully resolvable in seismic data. This is potentially important in two ways. Firstly, open relays 

may be present where only a single fault plane can be resolved, leading to enhanced across-

fault flow. Secondly sub-seismic breaching faults may be present where an open relay is 

observed. The discrete offsets associated with breached, as opposed to intact, relay zones may 

result in unfavourable juxtapositions for across-fault flow and the development of baffling or 

sealing fault rocks such as clay smears. Predicting the presence or absence of small scale, sub-

seismic faults which breach relay zones is therefore a powerful tool when assessing the 

segmentation and compartmentalisation of a reservoir.     

An assessment of the impact on reservoir segmentation of incorporating sub-seismic scale 

structural features has been conducted using the Penguins oilfield as a case study. This 

dataset, in conjunction with other data sources, has allowed the development of a number of 

predictive tools for incorporating these sub-seismic scale structures.  

5.3 Case Study: Penguins Oilfield 

The Penguins Cluster consists of four oil and gas fields located in the east Shetland basin to the 

northwest of the Viking Graben in the northern North Sea (Figure 5.2). The fields lie on the 

flanks of a north-south trending horst with reservoirs in both Triassic and Jurassic sediments 

(Dominguez, 2007). Reservoir scale faulting is pervasive throughout the area making it an ideal 

location to study the influence of sub-seismic fault geometries upon reservoir segmentation. A 
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sub-area of the Penguin C field has been used as the basis for constructing a number of 

structural models to test the impact of incorporating sub-seismic fault tips and breached relays 

upon reservoir segmentation (figures 5.3, 5.4). A 3D pre-stack depth migrated seismic volume 

was interpreted on every trace for both horizons and faults, with the traces aligned 

perpendicular to the average strike of the fault system resulting in a line spacing of 

approximately 25m (figure 5.5). Dip magnitude, coherency and amplitude attributes were used 

to aid the interpretation and to ensure that the minimum resolvable throw has been 

consistently identified (figure 5.5). For the majority of interpreted faults the minimum throw 

observable towards the tips is approximately 5 m, significantly less than the throw which 

would be implied if assuming a value of 1/4λ (approximately 25 m).  

 

 
Figure 5.2. Map of the northern North Sea highlighting the location of the Penguins cluster 

in relation to key structural elements and adjacent oilfields. Modified after Roberts et al., 

1995. 
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Seismic amplitudes decrease with proximity to faults (figure 5.5) due to diffractions off the 

relatively steeply dipping fault plains (Townsend et al., 1998). This also leads to ‘seismic drag’, 

the effect of which is to obscure the position of hangingwall and footwall cut-offs (e.g. 

Freeman et al., 2010). Uncertainty therefore exists as to the exact across-fault juxtapositions. 

The general approach is to assume that all ‘seismic drag’ is an artefact, i.e. that no physical 

normal drag of the strata is present. Although it is likely that for some faults and stratigraphies 

physical drag may well occur (Jackson et al., 2006; Long and Imber, 2010) it is not easily 

quantified in sub-surface data. We have therefore made the supposition that all the ‘seismic 

drag’ in our dataset is an artefact, and have hence modelled cut-offs by using a parallel 

projection of input surfaces towards faults from the position at which amplitudes begin to 

decay. This approach has allowed consistency in the positioning of fault-horizon intersections. 

 

 

 

 

Figure 5.3. Maps showing structure of the Penguin C oilfield used within this study. (A) 

Broad scale structure with top reservoir horizon coloured by depth and coarsely 

interpreted fault network. (B) Inset shows location of sub-area used for detailed analysis. In 

this area fault and horizon interpretation was conducted on every seismic trace so as to 

maximise the precision of the modelled geometries. 
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Figure 5.4. Oblique view of top reservoir horizon and fault planes for the subset of the 

Penguins oilfield dataset. V.E. = x2. 

Figure 5.5. Oblique view showing pre-stack depth migrated (PSDM) seismic dataset used 

within this study. Surface is coloured by an ‘edge detection’ attribute highlighting the 

position of faults, with ‘hot’ colours indicating a high probability of a fault. V.E. = 2.  Inset 

shows a cross-line (no vertical exaggeration) showing the top reservoir horizon and a series 

of small-scale antithetic faults. 
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5.4 Sub-Seismic Fault Geometries 

In this section a number of both existing and newly developed approaches for predicting and 

incorporating sub-seismic fault geometries are examined and subsequently applied in the 

context of the Penguins C dataset.  

5.4.1 Fault Tips 

Two principle methods for estimating sub-seismic fault tip length can be applied. (1) A 

statistical approach based upon analysis of the dimensions of the identifiable fault population, 

and (2) projecting fault tips based upon the adjacent throw gradient of the fault. Here each 

approach is reviewed, its validity examined, and a number of modifications suggested based 

upon observations from both the Penguins dataset and the existing literature.  

5.4.1.1 Statistical Approach 

The statistical approach to estimating the length of sub-seismic fault tips is based upon 

analysis of the relationship between length and maximum throw of a population of faults (see 

Kim and Sanderson, 2005), summarised by a power law relationship of the form; 

tmax=cLn
 

where tmax is the maximum throw, L is the length, n is the exponent value and c relates to the 

throw at a unit length. The value of the exponent is critical as it indicates whether a linear 

scaling law can be applied to a fault population or not. For exponents of 1 a linear relationship 

applies, where c is the ratio tmax:L. For exponents that are not equal to 1, a scale dependent 

relationship is implied. For values where n<1 the length dimension of a fault increases faster 

than the throw dimension, whilst the converse is true for values where n>1. Published datasets 

suggest a range of values for n based on different datasets. Fossen and Hesthammer (1997) 

suggest a value of 0.5 based on analysis of deformation bands, whilst a figure of 1 has been put 

forward based upon mechanical models (e.g. Cowie and Scholz, 1992a) and empirical 

relationships (e.g. Schlische et al., 1996). Marrett and Allmendinger (1991) propose a value of 

1.5 and Walsh and Watterson (1988) a value of 2 based upon both seismic and outcrop data. 

Despite this, when multiple datasets are combined it is generally shown that a linear 

relationship (i.e. n=1) can be applied (Kim and Sanderson, 2005).  

In seismic data smaller faults will have a greater proportion of their length below seismic 

resolution than larger faults (Figure 5.6). Data derived from fault populations identified in 

seismic datasets will therefore tend to display a power law relationship between length and 

throw where n<1. To correct for this effect a constant value representing the sub-seismic 
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portion of fault length can be incrementally added to the length dimension of every fault in a 

population until a power law trend line reaches the stage where it has an exponent of 1 

(Pickering et al., 1997). Half of this value represents the sub-seismic length expected at each 

fault tip. 

 

 

  

 

 

 

The detailed sub-area of the Penguin C seismic dataset used includes thirty five faults (figures 

5.3, 5.4). Although this is a relatively small population size for statistical analysis, the high 

resolution of the picks results in a relatively low standard deviation. In addition, a coarse 

interpretation over a broader area (using every tenth seismic trace) has been performed 

(figures 5.3, 5.5). This includes a larger population size of 108 faults, which, although displaying 

a significantly higher standard deviation, does show a good correspondence between the 

exponents of the trendlines with the high resolution interpretation (figure 5.7). This suggests 

that the high resolution, relatively small population dataset is valid for statistical analysis.  

Using a reduced major axis regression (RMA) best fit suggests that an additional 200m of 

length is required to account for the sub-seismic fault tips and to produce a linear relationship 

between length and maximum throw (Figure 5.7). This additional sub-seismic length would be 

incorporated as 100m at each tip. 

 

 

Figure 5.6. (A) Plot of fault throw against fault length. R=limit of seismic resolution. If a 

constant throw gradient is assumed then the sub-seismic tip length will be consistent for 

sizes of fault, hence small faults have a greater proportion of their length below seismic 

resolution than larger faults. This results in an exponent value <1 on a log:log plot of throw 

against length (B). By incrementally adding a constant length to all faults within a dataset 

until a linear relationship is achieved (n=1) the sub-seismic tip length can be determined. 
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5.4.1.2 Throw Gradient Approach 

Pickering et al (1997) used the average linear throw gradient for a fault network to project 

fault tips below the limit of seismic resolution, citing significant variation of the throw gradient 

as the reason for using an average value. Cowie and Shipton (1998) showed that for an 

individual fault the tip gradient tended towards being linear, but varied as the fault grew. The 

effect of fault interaction has also been shown to significantly distort throw profiles and throw 

gradients due to stress field perturbations (Burgmann et al., 1994). Observed throw profiles for 

interacting faults are hence considerably different to observations for isolated faults (Peacock 

and Sanderson, 1996, Nicol et al., 1996).  

Tip restriction caused by fault interaction results in an increase in the throw gradient where 

faults are overlapping (Figure 5.8). The implication is that the sub-seismic portion of length will 

be lower for tip-restricted faults than for unrestricted faults, a hypothesis corroborated by 

observations from the Penguins dataset interrogated within this chapter (figure 5.9). It is 

therefore suggested herein that using a single throw gradient to calculate tip length for an 

entire fault population is geologically unrealistic. Instead a modification is proposed where the 

average throw is gradient is calculated over a finite length at the seismically resolvable fault 

tip. This also has the effect of minimising the large fluctuations in throw gradient that have 

been observed elsewhere (Pickering et al., 1997, Cowie and Shipton, 1998). Using this 

Figure 5.7. Log:log plot of maximum throw against length for the faults as interpreted 

(diamonds) and with an additional 200m of length (squares). Trendlines are reduced major 

axis regression (RMA). (A) Detailed fault picks within sub area of field. (B) Lower resolution 

fault picks for entire field, picked on every 5th trace. The good correlation between the 

exponents of the two scales of interpretation suggest that although the detailed fault picks 

represent a relatively small dataset a statistical analysis is still valid. 
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approach the sub-seismic length can be calculated for each fault tip individually, so as to 

account for the effects of tip restriction and throw gradient variability. The length over which 

the throw gradient is calculated has been defined as 200 m, based upon observations from the 

Penguins dataset (figure 5.9). This length produces a good balance between smoothing out 

fluctuations, and accounting for the seismic line spacing (25 m). This value is hence specific to 

this dataset, and would require adjustment with other dataset dependent on their resolution. 

The major uncertainty with this approach is defining the vertical resolution of the seismic data. 

The sub-seismic fault length at each tip is calculated by dividing the vertical resolution by the 

throw gradient, hence a lower resolution will result in a larger prediction of the sub-seismic 

length (Figure 5.8).  

 

 

 

 

 

 

 

Figure 5.8. Schematic illustrating the influence of throw gradient (∆t/∆L) and estimated 

seismic resolution (R) on predicted sub-seismic tip length. The high throw gradients 

associated with tip restricted faults result in shorter sub-seismic fault tips compared to 

non-tip restricted faults. Lower estimates of seismic resolution result in longer predicted 

sub-seismic tip lengths for a given throw gradient. Adapted from concepts illustrated 

within Rotevatn and Fossen (2011).  
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5.4.2 Sub-Seismic Relay Zones 

A number of recent studies have used outcrop examples as the basis for studying fluid flow 

across individual relay zones (Rotevatn et al., 2009a,b; Rotevatn and Fossen, 2011; chapter 7, 

8). These contributions refer to single isolated relay zones where the simulation grid has been 

specifically designed to force fluids to flow across the relays. In hydrocarbon reservoirs the grid 

boundaries will be controlled by the lateral extent of the reservoir, the location of bounding 

faults, and the oil water contact. As a result the influence on the fluid flow properties of relay 

zones is a function of the connectivity of the intra reservoir fault network. Hesthammer and 

Fossen (2000) recognised that sub-seismic relays can have a major influence on fault seal 

potential, given that they may allow hydraulic continuity across faults otherwise predicted to 

be sealing. Abrupt changes in fault strike as well as displacement minima are often indicators 

Figure 5.9. Example from Penguins dataset of how the estimate used for the resolution of 

seismic data influences predictions of sub-seismic fault tip length for both a tip-restricted 

(left) and non-tip restricted (right) fault tip. Note that throw and length do not use the 

same scale. Inset shows the location of the fault relative to the adjacent relay zone. Tip 

restriction at the relay leads to an increased throw gradient, and hence shorter sub-seismic 

fault tips. Where the fault tip is unrestricted the sub-seismic fault tips are longer. A lower 

resolution dataset will lead to a larger sub-seismic tip length. 
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of the presence of relay zones (Hesthammer and Fossen, 2000), which may allow their 

deterministic inclusion in simulation models. Manzocchi et al (2008a) used the approach of 

stochastic population of sub-seismic relays to investigate their effect on flow simulation. They 

found that the relative importance of sub-seismic relays compared to other structural 

uncertainties increased with the degree of compartmentalisation of a reservoir. Since seismic 

data is limited in its horizontal resolution due to Fresnel zone effects, it is often not possible to 

distinguish faults which have a lateral spacing lower than the horizontal resolution of the data. 

It is therefore plausible that a fault interpreted as a continuous structure may in fact be 

composed of a number of segments, connected by breached or open relays.  

An alternative explored here is to look at the importance of incorporating sub-seismic 

breaching faults across relay zones that are otherwise interpreted from seismic data as open 

structures. Depending on the associated fault plane properties and across-fault juxtapositions 

these structures may significantly influence reservoir compartmentalisation, and as a result 

represent a non-trivial uncertainty. Although extending the tips of faults may lead to increased 

fault connectivity where fault strikes are oblique to one another, the same cannot be said for 

situations where faults overlap but are relatively parallel, hence forming a relay zone. 

Extending faults in this case simply increases the degree of overlap, resulting in increased flow 

tortuosity, but not introducing a physical, and potentially sealing or baffling, connection 

between the faults. An empirical relationship linking seismically observable geometries to relay 

zone integrity may therefore be a powerful tool. A number of authors (Aydin and Schultz, 

1990; Huggins et al., 1995; Long and Imber, 2011) have proposed geometric relationships 

between the separation and overlap dimensions of relay zones, however no clear relationship 

exists between overlap:separation ratios and the degree to which a relay zone is soft or hard 

linked (Gupta and Scholz, 2000; Soliva and Benedicto, 2004).  

To attempt to address this, and to develop a predictive tool for assessing sub-seismic relay 

zone integrity, a dataset has been compiled from sources within the existing literature, 

including outcrop, LIDAR and seismic data. In addition, data from this study is also included 

(figure 5.4).  

The data compiled includes displacement profiles of relay zones with dimensions such as 

separation, overlap, and relay throw. From this data variables such as the throw gradient can 

be derived. These measurements have been used identify a relationship between throw 

gradient and relay zone integrity. Figure 5.10 shows a cross plot of fault relay zone overlap 

versus relay throw for 88 open and partially breached relay zones across a range of scales. 

Relay throw is defined as the cumulative throw of the two overlapping faults defining a relay 
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zone, measured at the centre of the relay zone (Figure 5.11). It includes only the throw of the 

overlapping faults, not any component of ductile deformation associated with rotation of the 

relay zone. Relay zones which are fully breached, i.e. have undergone throw profile re-

adjustment, are not included. In seismic data these would be observable as continuous faults, 

possibly identified by ‘jogs’ in the fault trace. Whilst potentially being sites of reduced throw, 

they would not be below the seismic resolution and hence do not contribute to the prediction 

of sub-seismic linking faults.  

 

 

 

 

 

Figure 5.10. Cross plot of cumulative relay throw against overlap for 88 relay zones. 

Breached and open relays are clearly clustered in separate fields, with low relay 

throw:overlap ratios indicating intact relays, and high ratios indicating breached relays. 5% 

error bars are included for fault length measurements, and vertical error bars representing 

10° to account for variation in fault dip are also included. Data compiled from; Walsh and 

Watterson, 1990; Peacock and Sanderson, 1991, 1994;  Cowie et al, 1994; Childs et al, 

1995; Huggins et al, 1995; Cartwright et al, 1996; Schlische et al, 1996; Willemse et al, 

1996; Davies et al, 1997; Bohnenstiehl and Kleinrock, 1999, 2000; Mansfield and 

Cartwright, 2001; Imber et al, 2004; Soliva and Benedicto, 2004; Taylor et al, 2004; 

Mirabella et al, 2005; Hus et al, 2006; Rotevatn et al, 2007; Polit et al, 2009; Long, 2011. 

See figures 5.12, 5.13, 5.14 for examples from this study. 
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Overlap plotted against relay throw is equivalent to the throw gradient where faults are 

overlapping. Lower throws for a given overlap equate to low throw gradients and a lower 

likelihood that a relay zone is breached. Using this criteria open and breached relays plot in 

two distinct fields, although a degree of encroachment is observed. The data used have been 

selected to minimise the potential for scatter introduced by different methodologies of 

acquisition, nevertheless some variation is inevitable. We have chosen to use throw rather 

than displacement since this is representative of the majority of the available data, although 

dip variations between different faults may introduce some error. Where fault dip data are not 

available a dip of 60° has been assumed, however error bars accounting for values 10° either 

side of this are also included. Similarly 5% error bars are included for the measurement of 

overlap (Figure 5.11). We have defined interacting faults as those whose separation is less than 

15% of their combined total length. Overlapping faults separated by greater than 15% of their 

total length are unlikely to have kinematically interacting stress fields (See discussion section) 

and will hence have a low probability of being linked by sub-seismic scale breaching faults 

(Willemse, 1997; Gupta and Scholz, 2000). The overlap dimensions used in figure 5.10 also 

include fault tips calculated using the local throw gradient (section 5.4.1.2). 

Figure 5.11. Schematic defining the measurements used in the analysis of relay geometry. 

Interacting relays are defined as having a separation of less than 15% the total length 

(Gupta and Scholz, 2000). Cumulative relay throw is t1 + t2, and, like separation, is 

measured at the centre of the relay zone. 
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A dividing line can be placed at the apex of the fields representing breached and open relay 

zones on figure 5.10. The confidence of the prediction as to the existence or absence of a 

breaching fault increases away from this line. This suggests that high ratios of relay 

throw:Overlap are indicative of breaching faults, whilst low ratios indicate intact relays. The 

maximum throw of any sub-seismic breaching faults will be by definition equivalent to the 

resolution of the seismic data, with throw values likely to decrease with proximity to the intact 

relay field of the plot. Figures 5.12, 5.13, 5.14 show examples of both interacting and non-

interacting faults from the Penguin C dataset. 

 

 

 

 

 

 

Figure 5.12. (A) Perpendicular view of two interacting faults from our dataset as defined by 

top reservoir footwall and hangingwall cut-offs. Vertical exaggeration is x3. (B) Throw and 

throw gradient profiles of the shown faults in (A). An increase in the throw gradient is 

observed where the faults overlap and are interacting. Fault interaction and tip restriction 

has resulted in migration of the position of maximum throw on the two fault segments 

towards the relay zone. The breaching criteria (figure 5.10) suggests that a sub-seismic 

breaching fault should link the two fault segments. 
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A) 

Figure 5.13. Example of interacting fault geometry from the Penguin C dataset. (A) Fault-

normal view of fault planes as defined by the top reservoir footwall and hangingwall cut-

offs. V.E. = x 3. (B) Throw and throw gradient profiles of the faults in (A). The displacement 

maxima of faults 1 (green) and 2 (blue) have migrated from the fault centres towards the 

relay zone where they overlap. 
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5.5 Effect of Sub-Seismic Structure on Reservoir Segmentation 

To assess the impact on reservoir segmentation of incorporating sub-seismic fault tips and 

breached relay zones, the predictive tools described and developed herein have been applied 

to the Penguin C dataset. This has been achieved by constructing a series of 3D structural 

models based upon the original detailed interpretation (figure 5.3). These models have 

subsequently been modified using the approaches previously described. 

Tips have been extended by including the additional length parallel to the average strike of the 

last observable 200m of the fault, with extended tips being truncated should they intersect 

other faults. This approach has been used to include sub-seismic tip length based upon 

statistical analysis (figure 5.15B), and the local throw gradient and seismic resolution (Figure 

5.15C, D, E). The resolution of the Penguins dataset is approximately 5m, since this is the 

minimum throw which can be detected using a range of seismic attributes. However, to 

illustrate the effect that varying the estimate of seismic resolution (figure 5.6) can have on the 

predicted sub-seismic fault length we have constructed separate models with assumed 

resolutions of 5, 10 and 25m respectively. The fault geometries described in figure 5.15B, C 

and D show realistic throw profiles suggesting all are reasonable estimates for sub-seismic tip 

length. However, figure 5.15E, based upon a seismic resolution of 25m, displays an 

unrealistically long fault tip illustrating the errors which can be introduced by utilising too low 

an estimate for the seismic resolution. 

 

 

 

Figure 5.14 (Previous page). An example of a pair of overlapping faults from the Penguins 

dataset which display limited kinematic interaction. (A) Perpendicular view of fault planes 

illustrating displacement distribution as defined by top reservoir footwall and hangingwall 

cut-offs. V.E. = x 3. (B) Throw, and throw gradient profiles. Little to no increase in the throw 

gradient where the faults overlap suggests limited interaction. The likelihood of a sub-

seismic breaching fault being present is hence low. High displacement gradients elsewhere 

on the faults may however indicate the position of sub-seismic scale splays. 
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A similar approach has been used to incorporate relay-zone breaching faults. Using the 

predictive criterion developed through this research (figure 5.10) suggests that 17 out of 20 of 

the interacting relay zones identified in our data are likely to be breached. 

Fault connectivity and reservoir segmentation increase significantly when sub-seismic fault tips 

and breached relay zones are incorporated into the structural model (Figure 5.16). The 

increase in fault network connectivity and reservoir segmentation due to additional fault tip 

length alone is relatively limited until very large amounts of additional length are included (e.g. 

Figure 5.16I). This is a result of the narrow range of strike orientations for this particular fault 

network. A wider range of strikes would lead to faults being more obliquely orientated relative 

to one another, with subsequent elongation more likely to result in increased fault 

connectivity and hence reservoir segmentation. Since the fault network in this case is largely 

sub-parallel, the inclusion of sub-seismic faults which breach relay zones becomes more 

significant. When combined with breached relay zones even relatively low amounts of fault tip 

Figure 5.15. 3D oblique views (x5 vertical exaggeration) of the effect of extending fault tip 

length using the different methodologies described in the text. Fault surfaces are shown in 

white, whilst the horizon surface is coloured by depth. Grid lines on the surfaces 

correspond to the cell geometry and have sides of approximately 25m. (A) Interpreted fault 

tip length based upon seismic interpretation using attribute analysis. B) Fault tips extended 

using the statistical approach. (C), (D) and (E) Fault tips extended using the displacement 

gradient in the final 100m of the fault assuming a seismic resolution of 5, 10 and 25m 

respectively. Over extending the fault tips, as is the case in (E), may lead to unrealistic fault 

geometries. 
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extension can lead to a significant increase in the degree of reservoir segmentation (e.g. Figure 

5.16E, F).  

It must be noted that although the degree of fault network connectivity increases with 

inclusion of fault tips and breached relays, this does not necessarily imply a greater degree of 

reservoir compartmentalisation. The sealing or baffling nature of the faults is dependent upon 

the petrophysical properties of the stratigraphy which has been faulted as well as the burial 

history. In situations where fault connectivity is not significantly increased the modification of 

fault geometries may still have an impact on oil production and sweep efficiency due to 

alteration of reservoir juxtapositions and fluid flow pathways. 

 

Figure 5.16 (Next page). Maps showing the effect of incorporating sub-seismic fault tips 

and relays on the connectivity of the fault network. Breached relays have been 

incorporated according to the criteria determined in figure 4. Colours represent isolated 

fault bound compartments. (A) As interpreted. (B) As interpreted, with the addition of 

breached relays according to the breaching criteria in figure 4. (C) Statistically elongated 

fault tips, open relays. (D) Statistically elongated fault tips, breached relays. (E) Elongated 

fault tips based on throw gradient and seismic resolution of 5m, open relays. (F) As (E), but 

with breached relays. (G) Elongated fault tips based on throw gradient and seismic 

resolution of 10m, open relays. (H) As (G), but with breached relays. (I) Elongated fault tips 

based on throw gradient and seismic resolution of 25m, open relays. (J) As (I), but with 

breached relays. 
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5.6 Discussion 

5.6.1 Uncertainty with Statistical Fault Tip Length Prediction 

Although using the statistical approach to estimate sub-seismic tip lengths is relatively simple, 

it has numerous associated uncertainties. Even within a single dataset there tends to be a 

relatively large scatter when fault length and maximum throw are cross-plotted. This leads to 

low correlation trend lines and hence a high degree of uncertainty in fault tip length 

predictions. This scatter arises from a number of sources. As with all interpretations a large 

degree of uncertainty is associated with the fault picks made by the interpreter, as well as the 

method of interpretation. Seismic surface and volume attributes such as dip, coherency and 

amplitude allow smaller fault offsets to be detected than are identifiable in the section view 

alone (Townsend et al., 1998; Jolley et al., 2007). If not all faults in a dataset are interpreted 

using the same or similar methodologies then unnecessary spread will be introduced into fault 

length measurements, with the effect magnified where multiple interpreters have worked on a 

dataset. In general it is not standard practise to interpret every fault on every available inline, 

crossline or arbitrary line. Line spacing in modern 3D seismic datasets may be 12.5 to 25m. The 

potential uncertainty in the position of the imaged fault tip will therefore be the line spacing 

multiplied by the number of lines between picks.   

The vertical position of a faulted horizon relative to a fault can strongly influence the 

proportion of a fault tip which is below seismic resolution, and hence the observed tmax:L ratio 

(Walsh and Watterson, 1988). The sub-seismic tip length increases as the angle between a 

faulted horizon and the displacement contours decreases (Figure 5.17). This effect is especially 

prominent for high aspect ratio faults (fault length>fault height, Willemse et al., 1996). As a 

result horizons located away from the vertical centre of a fault will have a larger sub-seismic 

length than those located at the centre of a fault. The aspect ratio of a fault is to some extent 

controlled by vertical variations in the mechanical properties of the stratigraphy (Schultz and 

Fossen, 2002; Long and Imber, 2011). A fault whose vertical extent is mechanically constrained 

will tend to have a high aspect ratio compared to a non-constrained fault, leading to a greater 

increase of the sub-seismic tip length with distance from the fault centre. Since it is unlikely 

that any given seismic horizon will be located at the same vertical position relative to all faults 

within a population, the resulting variation in observed tmax:L ratio will introduce additional 

scatter into a dataset.   

The most important factor to introduce scatter to plots of length versus maximum throw is the 

process of fault growth through segment linkage (Cartwright et al., 1995; Pickering et al., 

1997). The transfer of displacement between fault segments via relay ramps and connecting 
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faults (Larsen, 1988) is observed to distort both the tmax:L ratio of the resulting linked fault, and 

its individual components (Peacock and Sanderson, 1991, 1994; Cowie et al., 2000). A linked 

fault may have a lesser or greater throw relative to the mean for a particular dataset 

depending on whether a physical linkage develops early (Cartwright et al., 1995) or late 

(Peacock and Sanderson, 1994; Gupta and Scholz, 2000). In the case of early linkage faults 

experience limited kinematic interaction and associated profile re-adjustment prior to physical 

linkage occurring. Immediately following linkage of two or more individual fault segments the 

resulting fault will have a low throw relative to its length. Post linkage accumulation of throw 

results in readjustment of the throw profile. In contrast, late linking faults (Peacock and 

Sanderson, 1994; Gupta and Scholz, 2000) experience kinematic interaction prior to physical 

linkage occurring (Figure 5.18). As two or more segments propagate and overlap to form a 

relay zone their respective stress fields begin to interact (Gupta et al., 1998; Gupta and Scholz, 

2000). This interaction results in modification of the throw profiles of the individual segments, 

with migration of the position of maximum throw towards relay zones (Figures 5.18, 5.12). 

Throw gradients at interacting fault tips increase and the tmax:L ratio for the individual 

segments also increases. Stress becomes concentrated in relay zones with physical linkage 

eventually ensuing followed by re-adjustment of the profile of the resultant single fault.  

In seismic data resolution issues complicate the situation somewhat. Lateral resolution may 

lead to difficulties in distinguishing closely spaced, yet separate, structures (Figure 5.18). As a 

result faults picked as a single structure may in fact be composed of two or more faults, 

leading to the tmax:L ratio being underestimated. Conversely displacement minima along strike 

of linked faults may incorrectly be interpreted as open relays between separate fault 

segments. If this occurs measured tmax:L ratios will tend to be overestimated.  

The model for rift evolution proposed by Cowie et al (2000) suggests that fault activity is to 

some extent relatively transient, with localisation of deformation onto larger faults leading to 

abandonment of smaller faults (Ackermann and Schlische, 1997; Willemse, 1997). These 

abandoned faults will display a range of stages of linkage. Any natural dataset (e.g. outcrop, 

seismic) represents an effectively instantaneous snapshot of a dynamic system. When this is 

considered with models for fault and rift evolution it is inevitable that datasets will display a 

range of tmax:L ratios, with statistical methods for estimating fault dimensions containing much 

uncertainty. As a consequence assigning a single ‘n’ value to a dataset to estimate sub-seismic 

fault tip length is geologically non-ideal.     



- 166 - 
 

 

 

 

 

 

 

 

 

The throw gradient may to some extent control the stress concentration within a relay zone, 

however the yield strength of the medium influences at what stress brittle strain occurs. It is 

likely therefore that there is a strong bulk mechanical control on when a relay zone becomes 

breached, itself influenced by factors such as lithology, porosity, cementation, confining 

pressure at time of faulting, etc. We do not however have sufficient data here to produce 

meaningful correlations of these variables. Other factors leading to scatter may include the 

regional extension rate, local strain rate, and the presence of any pre-existing fabrics or 

discontinuities within the rock mass. 

Using the local displacement gradients of individual faults to calculate sub-seismic tip lengths 

accounts for many of the uncertainties introduced by using a statistical analysis of an entire 

fault network, and is our preferred methodology. The displacement gradient approach is not 

however without its own uncertainties, primarily in the form of applying the correct seismic 

resolution. A lower resolution will result in the calculation of longer tip lengths for a given 

displacement gradient (Figure 5.15). Jolley et al (2007) showed that the minimum throw which 

can be detected is often lower than the 1/4λ resolution which is often been invoked. The value 

for the minimum detectable throw will depend not only on the geophysical properties of the 

Figure 5.17. Schematic diagram of half fault plains for high (A) and low (B) aspect ratio 

faults illustrating the difference that the position of a horizon relative to a fault has on 

measured tmax:L values. Horizon (1) is located towards the top of the fault, intersecting 

the throw contours at an oblique angle, whilst horizon (2) is located at the fault centre and 

is perpendicular to the throw contours. The sub-seismic tip length is greater for horizon (1) 

for both faults, however this effect is larger for the high aspect ratio fault (A). Modified 

after (Gauthier and Lake, 1993). 
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data, but also on the attributes used for fault detection and interpretation. It is therefore 

logical that the minimum detectable throw, as defined by careful analysis of a range of seismic 

attributes, rather than a ‘rule of thumb’ value is used when determining the length of sub-

seismic fault tips.  

Depending on the associated fault plane properties and cross fault juxtapositions, breached 

relay zones may significantly influence reservoir compartmentalisation, and as a result 

represent a non-trivial uncertainty. Although extending the tips of faults may lead to increased 

fault connectivity where fault strikes are oblique to one another, the same cannot be said for 

situations where faults overlap but are relatively parallel, forming a relay zone. Extending 

faults in this case simply increases the degree of overlap, resulting in increased flow tortuosity, 

but not introducing a physical, and potentially sealing or baffling, connection between the 

faults. Empirical prediction of the occurrence of sub-seismic scale faults which breach relay 

zones used in combination with fault tip length calculations provides a clearer prediction of 

reservoir segmentation. 

5.6.2 Fault Growth Kinematics 

Here the methods developed herein of using the throw gradient to predict sub-seismic fault 

tips and relay-breaching faults are reconciled with theoretical processes of fault growth 

kinematics. Normal fault rupturing is a plastic strain response to extensional stress, with lateral 

propagation of a fault occurring when the stress concentration at its tips exceeds the yield 

strength of the rock (Cowie and Scholz, 1992b). Following rupture the stress in the footwall 

and hangingwall of a fault is relaxed, whilst stress remains concentrated at the fault tips. The 

magnitude of the stress relaxation decreases away from the fault (Figure 5.18). For an 

overlapping fault to laterally propagate into an area of stress relaxation, the stress 

concentration at its tip must exceed the yield strength of the rock plus the value of the stress 

relaxation (Gupta and Scholz, 2000). If the yield strength is constant, the magnitude of the 

stress relaxation is the controlling factor upon how far an overlapping fault can propagate. The 

position at which propagation can no longer take place occurs at the value of stress relaxation 

termed the critical stress drop contour, with fault tips becoming ‘pinned’ to this contour. 

Increasing overlap and decreasing separation lead to increased interaction of the elastic stress 

fields, limiting lateral fault propagation within those stress fields to the position of the critical 

stress drop contour. To some extent therefore, the dimensions of fault overlap and separation 

are controlled by the location of the critical stress drop contour (Gupta and Scholz, 2000), 

although additional factors such as fault aspect ratio (Willemse, 1997) and the mechanical 

properties of the stratigraphy (Long and Imber, 2011) also have an influence.  
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If extension continues following overlapping fault tips becoming ‘pinned’ to the critical stress 

drop contour, positive throw anomalies arise in the overlap zone (Figure 5.18) (Gupta and 

Scholz, 2000). This localised increase in throw results in increased throw gradients, hence 

overlapping faults tend to have shorter sub-seismic tip lengths than isolated faults. The 

increased throw gradients lead to concentration of stress at the fault tips and within the relay 

zone. As extension continues, and throw gradients continue to steepen, the stress 

concentration within the relay zone will begin to exceed the yield strength of the rock, at 

which point a physical linkage will begin to form. This will tend to be at the position of 

maximum curvature of the relay ramp, usually at its base, top, or both. We can hence infer 

that the throw gradient is indicative as to the degree of physical linkage within a relay zone. In 

the case where linking faults are below the limit of seismic resolution this knowledge can be 

used to predict their presence (Figure 5.10).  

A deficiency with this model of fault growth is that it assumes that faults have grown as 

separate structures (e.g. Cartwright et al., 2005) rather than as a coherent system interacting 

from initiation (Walsh et al., 2003). 
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Figure 5.19 schematically illustrates the progression of a relay from its initial underlapping 

stage, through early interaction and breaching to a final, fully breached, stage in terms of relay 

throw:overlap ratios. The position of an individual relay zone on this plot is determined by its 

initial overlap and separation dimensions, which are controlled by the spacing of the 

individual, pre-linkage fault segments. Closely spaced fault segments lead to low separations 

and will hence begin to interact at low overlaps. In this situation a relatively low relay throw 

can therefore result in a steep enough throw gradient to stimulate the propagation of a 

breaching fault. Conversely more widely separated fault segments will begin to interact at 

larger overlap dimensions leading to a greater amount of relay throw being required to 

achieve a throw gradient sufficient to induce breaching. The variation seen in the dimensions 

of the relay zones in figure 5.10 can therefore be interpreted as being a function of the initial 

separation of the pre-linkage fault segments.  

 

Figure 5.18 (Previous page). Schematic diagrams describing the evolution of a relay zone in 

terms of stress field interaction, throw profile and throw:length plots. (A) Underlapping 

faults have little to no stress field interaction. They have symmetrical throw profiles, and 

plot in the same position on a throw:length plot. (B) At the initial stages of overlap the 

stress fields do not interact sufficiently to effect the fault growth. (C) Increasing overlap 

leads to interaction with the critical stress drop contour (Gupta and Scholz, 2000). This 

leads to tip restriction and migration of the position of maximum throw. Depending on 

whether the faults are defined as separate structures or as a single interacting structure 

determines where they plot on a throw:length plot. (D) Extension continues as does throw 

accumulation, however stress field interaction prevents lateral tip propagation, hence the 

throw gradient within the relay zone increases and the throw profiles become 

progressively more asymmetrical. (E) Above a critical throw gradient the yield strength of 

the rock is overcome, and a breaching fault initiates. The position of maximum throw 

continues to migrate towards the centre of the linked fault pair. If the faults are defined as 

being separate, they will appear as short, high throw structures on a throw:length plot. 

Conversely if they are defined as a single structure they will appear to be a longer, low 

throw structure. Defining interacting faults as single or separate structures is a major cause 

of introducing scatter into fault populations. (F) Post linkage profile re-adjustment occurs, 

with the fault now behaving as a single structure. The throw profile is equivalent to the 

initially isolated faults in (A), with the throw:length plotting along the same relationship.   



- 171 - 
 

 

 

 

 

 

 

 

 

 

 

If our criterion is applied to a seismic dataset where sub-seismic tip length has not been 

accounted for then the overlap length will be lower. Enhanced tip restriction and higher throw 

Figure 5.19. Schematic plot of relay zone evolution relative to relay throw and overlap. 

Labelling is equivalent to that in figure 6. (A) Initially underlapping faults have zero overlap 

and zero cumulative relay throw. (B) As faults overlap, the relay throw begins to increase. 

(C) As the critical stress drop contours are intersected the amount of overlap can no longer 

significantly increase. (D) A small increase in overlap is accompanied by a large increase in 

relay throw as throw gradients steepen due to the interaction of stress fields. (E) The relay 

zone becomes breached, with relay throw:overlap ratios increasing into the breached field. 

(F) Profile re-adjustment leads to throw accumulation on the breaching fault which 

eventually results in it becoming visible in seismic data. 
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gradients at breached relays will lead to a lower proportion of their length being below seismic 

resolution compared to open relays. This results in an increase in the gradient of the line 

separating the breached and open fields (Figure 5.20), as well as the two fields becoming less 

distinguishable at low overlaps. Sub-seismic tips should therefore be included in the overlap 

dimension used to maximise the accuracy of the criterion.  

 

 

 

 

 

 

 

5.7 Conclusions 

A detailed horizon and fault interpretation of a subset of a 3D seismic dataset from the 

northern North Sea has been performed. The length of sub-seismic fault tips has been 

estimated using both a statistical analysis of the fault network as a whole, and by using the 

geometric characteristics of each fault individually.  

A criterion for determining the integrity of relay zones where breaching faults are below 

seismic resolution has been developed. The criterion is based upon work from this study and 

from numerous published datasets and uses measurements easily obtainable from 3D seismic 

data. It is reconcilable with accepted theories for fault growth and linkage. The breaching 

criterion has been combined with estimates for sub-seismic tip length to estimate the impact 

Figure 5.20. (A) Throw against length for open and breached relay zones of equal overlap 

dimensions. R=limit of seismic resolution. The increase in displacement gradient as a result 

of tip restriction leads to larger seismically resolvable overlap for the breached relay 

compared to the open relay. (B) The disparity between the ‘real’ and resolvable overlap 

dimensions for open and breached relay zones leads to an increase in the gradient of the 

line separating breached and open relays on a plot of relay throw against overlap. 
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on fault network connectivity and resulting segmentation of the reservoir. The following 

conclusions can be drawn from this work; 

• Using a statistical approach for estimating sub-seismic fault tip length does not account for 

numerous geological and data-related uncertainties, and may introduce additional statistical 

uncertainty.  

• The local displacement gradient adjacent to a fault tip, combined with an accurate 

assessment of the seismic resolution, provides more geologically realistic estimates of sub-

seismic fault tip length as well as accounting for tip restriction caused by fault interaction. 

• The displacement gradient at fault tips can be used to estimate the integrity of relay ramps 

separating overlapping faults where the throw of a breaching fault (if present) is below the 

scale of seismic resolution. This can be expressed as a plot of overlap versus cumulative relay 

throw. Low relay throw to overlap ratios are indicative of a higher likelihood of relays being 

intact, whilst higher ratios suggest the presence of breaching faults.   

•Where faults have sub-parallel strikes, small increases in length alone do not lead to 

significant increases in connectivity and reservoir segmentation. If a lower seismic resolution is 

inferred, sub-seismic fault tip lengths will increase for a given displacement gradient leading to 

a greater degree of fault network connectivity and hence reservoir segmentation. It is 

therefore critical that seismic resolution is defined correctly. 

•Small scale faults which breach relay ramps pose a comparatively greater risk for reservoir 

segmentation than sub-seismic fault tips in situations where the range in fault strikes is 

relatively restricted.  
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Chapter 6 

The Influence of Sub-Seismic Fault Tips and Breached Relay Zones on Simulated Oil 

Production 

6.1 Abstract 

The previous chapter examined different approaches for predicting and incorporating sub-

seismic fault tips and breached relay zones within reservoir models. Here, the effect of this 

sub-seismic structure on oil production is tested by running a series of reservoir simulations. 

The results of these simulations suggests that although incorporating sub-seismic structure 

may lead to additional reservoir segmentation, this does not necessarily equate to reservoir 

compartmentalisation in the form of non-permeable faults. Indeed, increasing fault tip length 

may enhance the oil sweep pattern of a reservoir and hence aid recovery. Including sub-

seismic structure seems to have a greater impact on water production rates and volumes than 

on oil production, an observation which is economically beneficial. 

6.2 Introduction and Aims 

Characterising how faults influence fluid flow in the sub-surface is a major uncertainty during 

hydrocarbon exploration and production. Correctly incorporating their geometric and 

petrophysical properties within reservoir and simulation models is therefore highly important 

(Jolley et al., 2007; Manzocchi et al., 2008). Fault-normal hydrocarbon flow is influenced by 

juxtaposition across faults of stratigraphic units with dissimilar petrophysical properties, and 

by the petrophysical properties of any fault rocks which may be developed (Yielding et al., 

1997; Knipe et al., 1998; Sperrevik et al., 2002). Both the distribution of cross-fault 

juxtapositions and of fault rock petrophysical properties are, to varying extents, controlled by 

fault geometry. Limitations on the resolution of seismic data prevent fault geometries from 

being fully imaged in the subsurface. The faults, and parts of faults, which cannot be imaged 

are termed sub-seismic. The aims of this chapter are to investigate the effects on simulated 

fluid flow in the subsurface of two key aspects of sub-seismic fault geometry, namely sub-

seismic fault tips and faults which breach relay ramps. The dataset used in chapter 5, for a 

subset of the Penguins oilfield, is employed as a basis for a series of geological and simulation 

models. 

6.2.1 Fault growth and linkage 

Over the last 20 years significant advances have been made in understanding the evolution of 

faults in rift systems. It is widely recognised that extensional faults evolve through a process of 
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initiation, growth, interaction, linkage and continued growth (Peacock & Sanderson 1994; 

Trudgill & Cartwright, 1994; Cartwright et al., 1995, 1996; Childs et al., 1995; Cowie et al., 

2000; Gupta & Scholz, 2000; Walsh et al., 2003).  Linkage of overlapping fault segments occurs 

at relay zones (Peacock & Sanderson, 1991). Initially, overlapping faults will be separated by a 

volume of intact rock termed a relay ramp (Larsen, 1988). As extension and hence 

displacement continues, the relay ramp becomes progressively rotated. This increasing 

rotation may be accompanied by minor brittle strain within the ramp in the form of 

deformation bands, fractures and small scale faults (Ferrill & Morris 2001; Rotevatn et al., 

2007). Eventually the relay ramp becomes breached, with strain being accommodated in the 

form of a discrete fault (or faults) which propagates to link the two initially separate fault 

segments (peacock & Sanderson, 1991; Cartwright et al., 1995, 1996). Following linkage the 

overlapping tips may become abandoned with the now connected fault segments behaving as 

a continuous single structure. The maturity of linkage of a fault set depends upon the position 

of observation (Walsh et al., 2003). For example a soft linked relay may be observed at one 

horizon, although may be hard linked at depth, indicating that the growth of the fault set was 

coherent rather than coincidental (Walsh et al., 2002, 2003).  

6.2.2 Faults in Seismic Data 

The steep dip of faults generally precludes their direct imaging using seismic reflection surveys, 

therefore the primary methodology for identifying seismic scale faults is the observation of 

offset reflectors. Seismic reflection theory predicts that the minimum resolvable vertical 

separation of two reflectors is approximately one quarter of the wavelength. This value is also 

often used as an approximation as to the minimum fault offset which can be resolved, 

however the use of seismic attributes such as amplitude, dip and coherency can greatly 

improve upon this (Townsend et al., 1998; Jolley et al., 2007). For example, Jolley et al (2007) 

found that amplitude reduction in the vicinity of faults, caused by loss of reflected seismic 

energy due to diffractions, allowed fault detection down to 1/8 λ. Despite the use of 

increasingly sophisticated seismic attribute analysis the minimum resolvable fault offsets are 

still limited by the resolution of the seismic data, and specifically its wavelength at the faulted 

horizon. The wavelength is the quotient of the velocity by the frequency. Velocity will tend to 

increase with density (and hence depth), whilst preferential attenuation of higher frequencies 

will reduce the dominant frequency of a seismic wavelet with increasing path length. As a 

result the wavelength increases and the resolution decreases with depth.  If the depth of the 

area of interest is known, a seismic survey can be tailored to maximise the resolution at that 

depth by altering the survey design and bandwidth of the input wavelet, however many faults 

will still remain undetectable, and are hence termed as being of sub-seismic scale. 
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Notwithstanding the increased use of seismic attributes in fault detection, the process of 

seismic interpretation remains largely subjective (e.g. Bond et al., 2012). Caution must 

therefore be exercised when comparing the resolution of a dataset and the resolution of an 

interpretation of that dataset. Different seismic interpreters will interpret the same fault 

geometries in different ways, with corresponding variations in the minimum offsets which are 

identified. As a result, the maximum resolution of a seismic dataset may not coincide with the 

resolution which is interpreted and modelled.   

The fault geometries established in chapter 5 using the pre-stack depth migrated (PSDM) 3D 

seismic survey covering the Penguins oilfield are used within this chapter to generate a series 

of geological models populated with petrophysical properties derived from local well data. 

Fluid flow simulations are then performed to investigate the effect of sub-seismic fault tips and 

breached relay zones on hydrocarbon recovery.  

6.2.3 Sub-Seismic Fault Tips 

The displacement across a fault decreases from a maximum close to the fault centre to zero at 

the fault tips (Barnett et al., 1987). In seismic datasets displacements below the limit of 

resolution will not be imaged, leading to the fault tips not being identifiable. As a consequence 

the interpreted length of faults is often significantly less than their actual length (Figure 6.1). 

This may have significant implications for the validity of geological and simulation models built 

directly from seismic interpretations. Incorporating sub-seismic fault tips in reservoir models 

may lead to an increase in modelled fault connectivity. Conversely, not accounting for their 

presence may lead to an underestimate in reservoir segmentation (Pickering et al., 1997; 

Rotevatn et al., 2011). Depending on the cross-fault fluid flow properties, a more connected 

fault network may result in increased reservoir compartmentalisation, a considerable 

consideration when planning well locations.  

Two methodologies for predicting and incorporating sub-seismic fault tips into reservoir 

models are herein compared. The first is a statistical approach based upon the properties of a 

fault population as a whole, whilst the second method uses a geometric approach based upon 

the dimensions of individual faults. For a full description of the methodologies and their 

limitations see chapter 5. 



- 178 - 
 

 

 

 

6.2.4 Relay Ramps 

The likelihood of a sub-seismic breaching fault being present across a relay zone observable in 

a seismic dataset can be constrained by the throw gradient of the two overlapping faults 

(chapter 5). High throw gradients tend to indicate high stress and an increased likelihood of a 

breaching fault being present, with fault overlap and cumulative relay throw as a proxy for the 

displacement gradient (figure 6.2). High ratios of relay throw:overlap are indicative of the 

presence of a breaching fault, whilst low ratios suggest that the relay zone is open.  
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Figure 6.1 (Previous page). Length-throw plot illustrating how the displacement gradient 

and seismic resolution can be used to estimate sub-seismic fault tip length. 

Figure 6.2 (Next page). Schematic plot of relay zone evolution relative to relay throw and 

overlap developed from data presented in chapter 5. (A) Initially underlapping faults have 

zero overlap and zero cumulative relay throw. (B) As faults overlap, the relay throw begins 

to increase. (C) As the critical stress drop contours are intersected the amount of overlap 

can no longer significantly increase. (D) A small increase in overlap is accompanied by a 

large increase in relay throw as throw gradients steepen due to the interaction of stress 

fields. (E) The relay zone becomes breached, with relay throw:overlap ratios increasing into 

the breached field. (F) Profile re-adjustment leads to throw accumulation on the breaching 

fault which eventually results in it becoming visible in seismic data. It should be noted that 

this evolutionary model only accounts for fault growth and linkage at the plane of 

observation. It does not account for out of plane growth and linkage (Walsh et al., 2003). 
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6.3 Geological and Simulation models 

To assess the impact of sub-seismic fault tips and breached relay zones on hydrocarbon 

production a series of reservoir simulations have been performed using the fault geometries 

defined in chapter 5. The different approaches for incorporating sub-seismic fault tips are used 

to estimate sub-seismic tip length, with the results applied to the original seismic 

interpretation to generate a series of models of varying sub-seismic tip length. Each geological 

model is sub-divided to include scenarios excluding and including breached relays (figure 6.3) 

as defined by the breaching criteria defined in chapter 5 (and illustrated in figure 6.2). As sub-

seismic fault tip length is increased the fault network becomes increasingly connected, and the 

reservoir segmented (figure 6.3). 

Figure 6.3 (next page). Maps showing the effect of incorporating sub-seismic fault tips and 

relays on the connectivity of the fault network. Breached relays have been incorporated 

according to the criteria determined in figure 6. Colours represent isolated fault bound 

compartments. (A) As interpreted. (B) As interpreted, with the addition of breached relays 

according to the breaching criteria in figure 6.2 (C) Statistically elongated fault tips, open 

relays. (D) Statistically elongated fault tips, breached relays. (E) Elongated fault tips based 

on displacement gradient and seismic resolution of 5m, open relays. (F) As (E), but with 

breached relays. (G) Elongated fault tips based on displacement gradient and seismic 

resolution of 10 m, open relays. (H) As (G), but with breached relays. (I) Elongated fault tips 

based on displacement gradient and seismic resolution of 25 m, open relays. (J) As (I), but 

with breached relays. 
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The geometry of the grid boundary for the geological model has a major influence on the 

outcomes of the subsequent simulations. Where all faults are isolated from the edges of the 

grid, their influence on production is difficult to determine since fluids tend to flow around 

rather than across them. This may result in increased flow tortuosity, however 

compartmentalisation is unlikely to occur. The grid boundary has therefore been designed to 

ensure that for the fault model built directly from the seismic interpretation (Figure 6.3a), a 

limited number of open pathways exist between the injection and production wells (Figure 

6.4). This mimics the geometry of the full field model, where the grid boundary is formed from 

bounding faults on three sides and the oil water contact down dip. This geometry therefore 

provides a realistic case for studying the effects of extending fault tips and incorporating 

breached relay zones in a relatively open system. Interpretation of the fault network was 

conducted on every seismic trace, with a resulting spacing for fault picks of 25 m. To capture 

this same detailed variation in throw a grid cell geometry of 25 m has also been used, with the 

fault picks converted directly to fault pillars with no loss of spatial positioning or resolution. In 

this manner the maximum resolution available has been included within the model, without 

the introduction of spurious data that may result if a finer grid dimension is used.  

 

 

 

Figure 6.4. 3D oblique view of the top reservoir horizon and un-modified fault network (as 

shown in map view in figure 6.3a), along with the positions of the production and injection 

wells. Vertical exaggeration is x5, with faults coloured white and the top reservoir surface 

coloured by depth. Each axis square has sides of 500m. 
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To allow reservoir simulation of the different fault geometries a number of stratigraphic and 

petrophysical properties are required to be populated within each geo-cellular grid. These 

properties, and the range of values used, are shown in table 6.1. The values were derived by 

extracting the relevant properties (Vshale, porosity, permeability) from the local well 

stratigraphy and arithmetically up-scaling them to 20 zones of equal thickness within the 

reservoir interval (figure 6.5). The reservoir stratigraphy is that of the Brent group, a vertically 

heterogeneous shaly sand. Properties within each of the 20 layers were treated as isotropic. 

Extrapolation across the model has purposely been done in a layercake fashion with a constant 

thickness so as to exclude the effects of stratigraphic variation on fault plane property 

calculations.  

Reservoir Interval 

  Permeability 15.01-50.13 mD 

Porosity 0.05-0.2067 

 Vclay 6.43-56.75 % 

Overburden/underburden 

  Permeability 0.0001 mD 

Porosity 0.0001 

 Vclay 65 % 

Initial oil in Place 195x106 STB 

 

 

 

 

Table 6.1. Petrophysical properties used to populate geological models. Properties are 

derived from local well data (figure 6.5), and have been upscaled into 20 discrete layers of 

equal thickness. The models have been populated in a ‘layercake’ fashion so as to eliminate 

the influence of stratigraphic variation on the simulation results. 
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Figure 6.5. Well section illustrating upscaled  porosity, permeability and Vshale values used 

during population of the models. The original well-log curves are superimposed where 

available. 
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6.3.1 Fault Rock Properties 

Transmissibility multipliers (Manzocchi et al., 1999) are used in reservoir simulators for 

numerically representing faults. They allow the reduction in permeability between grid cells 

separated by faults to be captured within the simulation model. The scope of this chapter does 

not cover the uncertainties associated with calculating fault rock properties and 

transmissibility multipliers (see e.g. Freeman et al., 2008), however it has been important to 

use meaningful and geologically reasonable values. A proprietary fault seal study of core from 

the Penguin oil field found little evidence of cataclasis or subsequent quartz cementation 

suggesting that faulting occurred at relatively low confining pressures (Fisher & Knipe, 1998). 

Hence, the primary mechanism for cross fault permeability reduction in this case is identified 

as incorporation of clay into the fault rock. The distribution of clay within the fault rocks can be 

calculated using the Shale Gouge Ratio (SGR) algorithm (Yielding et al., 1997), based upon fault 

throw and the clay content of the faulted stratigraphy. Since the clay distribution (Vclay) within 

the stratigraphy cannot be easily calculated from well logs it is common practice to instead use 

the shale distribution (Vshale). This may lead to an overestimate in the sealing capacity of 

faults since the average clay content of shales is approximately 65 % (Shaw & Weaver, 1965). 

To account for this we have multiplied the log-derived Vshale values by 0.65 in order to arrive 

at an approximation of the Vclay value prior to calculating the SGR. SGR values are converted 

to fault rock permeability by means of a clay content to permeability transform, an empirical 

relationship derived from petrophysical measurements of core plug samples (Manzocchi et al., 

1999; Sperrevik et al., 2002; Jolley et al., 2007). In this case we have used the relationship 

proposed by Jolley et al (2007), since it is the most relevant for the burial history, depth, 

sedimentology and tectonic province of the studied area. A fault throw to fault rock thickness 

ratio of 100:1 has been used, with an upper limit of 1m. Fault rock permeability is combined 

with fault rock thickness, host rock permeability and grid cell dimensions to calculate the fault 

transmissibility multipliers used in simulation (Manzocchi et al., 1999). Single vertical 

production and injection wells have been placed perpendicular to the average orientation of 

the faults, with the production well in an up-dip location (figure 6.4). Reservoir simulation was 

conducted using Schumberger’s Eclipse 100 black oil simulator. Simulations were run over a 

period of 40 years, with a constant injection rate of 5000 STB/day and an initial target oil 

production rate also of 5000 STB/day. Additional simulation parameters are included in table 

6.2. In addition to the ten different fault geometries (figure 6.3), an un-faulted grid has also 

been simulated for comparison. 
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Reservoir Conditions     

Min Pressure 2100 psi 

Max Pressure 8400 psi 

Temperature 212 °F 

Reference Pressure  8076 psi 

Datum depth -3596.64 m 

Fluid Properties     

Oil density 40.6 lbm/ft3 

Bubble point pressure 2065 psi 

Water Salinity 30000 ppm 

Rock physics functions     

Residual oil saturation to water 

(Sorw) 

0.25   

Critical water saturation (Swcr) 0.35   

Corey correlation (water) 4   

Corey correlation (oil-water) 3   

Min water saturation 0.3   

Max water saturation 1   

Max relative permeability of water    1   

Max relative permeability of oil 0.8   

Rock compaction functions     

Compressibility 0.00000599 1/psi 

Rock reference pressure 5801 psi 

Aquifer properties     

Aquifer type Carter Tracy   

Drive direction Bottom up, Grid edges   

Initial pressure 8076 psi 

Permeability 50 mD 

Porosity 0.25   

External radius 500 ft 

Thickness 200 ft 

Development strategy     

Simulation run time 40 years 

Reporting frequency 6 months 

Target oil production rate 5000 STB/day 

Injection replacement fraction target 1   

Min bottom hole pressure (producer) 2200 psi 

Water injection rate 5000 STB/day 
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6.3.2 Fault Threshold Pressures 

Assuming a hydrocarbon-water-rock system, hydrocarbon flow across faults cannot occur until 

the capillary threshold pressure of the fault has been exceeded (Schowalter, 1979). Due to 

buoyancy effects, threshold pressures are most likely to be exceeded at the shallowest point 

where a hydrocarbon bearing bed intersects a fault (Schowalter, 1979). When this occurs oil 

will be imbibed into the fault zone and the relative permeability of oil will therefore increase, 

along with its saturation.  

In typical simulation software individual faults are assigned single threshold pressures 

representing the entire fault. Once this value is exceeded at any point on the fault, the entire 

fault becomes transmissive to hydrocarbons, albeit with flow at any single point on the fault 

controlled by the assigned local transmissibility multipliers. This treatment of faults within 

simulation software packages does not account for two important factors. Firstly, that a single 

threshold pressure value is unlikely to be applicable to an entire fault, and secondly that 

transmissibility multipliers do not discriminate between different fluid phases. These issues are 

addressed further in the discussion section. 

Threshold pressure tends to increase with decreasing permeability due to a reduction in pore 

throat diameter (Manzocchi et al., 2002; Sperrevik et al., 2002). Fault permeability is controlled 

by the composition, structure and petrophysical properties of the fault rocks which are in turn 

functions of the petrophysical properties of the stratigraphy, the throw distribution along and 

across the fault and the burial history. Since these parameters are often highly spatially 

variable it seems extremely unlikely that a single threshold pressure value is applicable to a 

whole fault, with the minimum rather than the mean threshold pressure value being critical 

(e.g. Tueckmantel et al., 2010), since this is the most likely to leak. We postulate that a more 

geologically realistic scenario would be that the threshold pressures on a fault vary depending 

on fluid saturation of the fault rock and on the fault rock properties. In this situation threshold 

pressures would be exceeded at discrete locations along the fault, with cross fault flow 

focussed at these localities. This may have important consequences for correctly predicting 

flow pathways relevant for efficient well placement.  

Table 6.2 (Previous page). Parameters used during reservoir simulation. Many of these 

properties are derived from similar studies (e.g. Manzocchi et al., 2008; Rotevatn et al., 

2009; Rotevatn and Fossen 2011). 
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An additional uncertainty when quantifying the threshold pressure to be used during 

simulation is the conversion between the measured Hg-air values and the in situ Hydrocarbon-

water values. Although this is possible using the equations defined by Purcell (1949), variables 

such as interfacial tension and contact angle are often unknown for the reservoir P-T 

conditions. Interfacial tension has been shown to vary with temperature and pressure (i.e. 

depth) for a specific hydrocarbon composition (see e.g. Yielding et al., 2010, figure 9). Similarly 

the contact angle varies with the wetting phase of the fault rock, with angles below 90° usually 

implying water-wet and above 90° implying oil-wet (Schowalter, 1979). It is generally assumed 

that sedimentary rocks in the subsurface will be water-wet due to exposure of grain surfaces 

to water during deposition and early burial. Migration of hydrocarbons over geological 

timescales may however lead to rocks becoming partially oil-wet. In the case of fault rocks this 

will have the effect of reducing their threshold pressures (Schowalter, 1979).  

Since only single values of threshold pressure can be assigned to each fault using traditional 

simulation software we have assessed the influence of varying the threshold pressure by 

running simulations for low, base and high case scenarios. For each scenario every fault has 

been assigned the same threshold pressure value. Low case scenarios use an in-situ threshold 

pressure of 30 psi. This value is based upon two assumptions. Firstly that minimum threshold 

pressures control cross fault flow (Tueckmantel et al., 2010). The second assumption is that 

threshold pressure is being controlled by the clay content of the fault rocks as defined by the 

SGR algorithm. Since core from the reservoir presents little to no evidence of cataclasis or 

cementation we believe that this assumption is reasonable. This being the case, the minimum 

SGR value consistently present at self juxtaposed reservoir on every fault (15.5%, as calculated 

using the SGR algorithm) has been used to calculate the corresponding threshold pressure (30 

psi). To do this an empirical equation has been used (1), defined in Bretan et al (2003) which 

utilises a global dataset;  

(1) y =10 (SGR/27-C), 

Where y = In-situ threshold pressure (bar), C = Depth dependent constant, in this case 0.25. 

A mid-case threshold pressure value of 142psi has been derived using equation (1) utilising the 

mean SGR value found where the reservoir is self juxtaposed (33.5%). High-case threshold 

pressures (300 psi), based on the highest consistently present SGR value at areas of self 

juxtaposition (42.5%) have also been simulated.  
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6.4 Simulation Results 

The simulation models capture both geometric (sub-seismic fault tips and breached relay 

zones) and petrophysical (fault threshold pressures) uncertainties. To more easily assess their 

relative contributions we first examine the geometric uncertainties based upon the mid-case 

fault threshold pressures. This is followed by examination of the effect of varying the fault 

threshold pressure. 

6.4.1 Sub-Seismic Fault Tips and Breached Relay Zones 

Comparison of the simulation results for the different structural geometries reveals a number 

of significant differences. Since the models use stratigraphies populated with identical 

petrophysical properties we can conclude that the differences observed are solely a 

consequence of the different structural geometries modelled. Figure 6.6 shows oil and water 

production rates, and cumulative oil and water production plotted against time for the 

different simulation models. Cumulative oil production is similar for all models over the full 

simulation run time, with less than 5% difference between the best and worst performing 

cases (Figure 6.7). Recovery factors are between 23.8% and 25% after 40 years of production. 

Oil production rates initially appear to have similar trends for all the models, with production 

rates declining following water breakthrough after approximately 16 years. In contrast, water 

production rates and cumulative water production show considerable variations between the 

different geometries. Models where breaching faults are included consistently have lower 

water production rates and lower cumulative water production than their un-breached 

counterparts. Similarly water production (rate and cumulative) decreases with increasing fault 

tip length (Figure 6.7), a trend which is not mirrored for cumulative oil production. 

Figure 6.6 (Next page). Production simulation results for mid-case fault threshold 

pressures (142 psi). (A) Oil (solid lines), and water (dashed lines) production rates for the 

different structural models. (B) Cumulative produced volume of oil (Solid lines) and water 

(dashed lines). For both production rate and produced volume, varying the fault tip length 

and connectivity of the fault network influences water flow to a greater extent than oil 

flow. 
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Figure 6.7 (Previous page). Comparison of total produced oil (A) and water (B) volumes, for 

both open (blue) and breached (red) configurations for the mid-case fault threshold 

pressure (142 psi). The charts are arranged so that the modelled fault tip, and hence fault 

network connectivity, length increases to the right. Whereas including breaching faults and 

additional tip length has only limited influence on produced oil volumes (A), the impact on 

produced water (B) is significant. Increasing the tip length decreases the volume of 

produced water, with models including relay zone-breaching faults also consistently leading 

to lower water production. 

Figure 6.8. Summary of production oil and water rate results illustrating the general trends 

which can be observed for the mid-case fault threshold pressure (142 psi). Breached and 

unbreached cases for the model based on the unaltered interpretation and the model with 

extended fault tips assuming a seismic resolution of 10m are shown. Altering the fault 

geometry has a limited impact on the oil production rate, however increasing the fault tip 

length and including breaching faults across relays both lead to a reduction in the water 

production rate. 
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Although cumulative oil production does not vary drastically, and production rates appear to 

follow a similar trend for the different models, a number of noteworthy tendencies can be 

identified from the production data. The general pattern for oil production rates is one of rapid 

decline shortly following water breakthrough with a subsequent stabilisation to a more gradual 

production rate decline. Within this pattern however variations in the fault tip length and the 

relay integrity lead to a number of behaviours that may be significant in terms of their 

predictability. Figure 6.8 compares four, rather than the full ten, geometries to allow these 

behaviours to be more easily observed, with these observations summarised schematically in 

figure 6.9. As previously described water production rates are lower for models with longer 

fault tips, with the inclusion of breached relays leading to lower water production rates 

compared to un-breached relays. Water breakthrough times are broadly similar. In terms of oil 

production rates, increasing the length of fault tips tends to lead to an earlier onset of 

production decline. The rate of decline however is slower than for shorter fault tips, leading to 

overall similar cumulative production over the full course of the simulations. Inclusion of 

breached relays has a comparable effect, with an earlier onset but more gradual decline in 

production rate when compared to open relays. The difference between the onset of 

production decline between open and breached cases decreases with decreasing fault tip 

length. These behaviours are applicable to all the models with the exception of those where 

the fault tips have been extended based upon a seismic resolution of 25m. This is likely due to 

the increased number of fault intersections created in this scenario (figure 6.2) leading to less 

predictable flow pathways.  

 

 

 

Figure 6.9. Schematic summary of the influence of including relay zone breaching faults 

and sub-seismic fault tips on production rates (A) and production volumes (B). 
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6.4.2 Fault Threshold Pressures 

Varying the fault threshold pressures has a significant impact on both oil and water production 

rates, as well as cumulative production volumes (figures 6.10, 6.11). Figures 6.12 and 6.13 

summarise the generalised trends that can be observed. Similar trends are observed for 

models where the fault threshold pressure has been assigned as 30 psi, although the relative 

effect is less pronounced (figures 6.10, 6.11, 6.12). In contrast the models where faults have 

been assigned high threshold pressure values of 300psi show significant differences between 

the different fault geometries. A noticeable trend seems to be that for each specific geometry 

the onset of production decline tends to be earlier for higher threshold pressures, whilst the 

cumulative oil and water production volumes and the bottom hole pressure at the production 

well tend to be lower with increasing threshold pressures. The timing of water breakthrough is 

however more complex, with higher threshold pressures leading to earlier breakthrough for 

more open fault networks and later breakthrough for more connected fault networks. This 

complexity is reflected in the variability in production rates and cumulative volumes between 

the different geometric models, with variability increasing significantly with the fault threshold 

pressure. This suggests that assigning the correct fault threshold pressure becomes more 

important when the fault network is highly segmented. Conversely, incorporating sub-seismic 

fault tips and relay zone breaching faults becomes increasing important if fault threshold 

pressures are assumed to be high (e.g. for a high clay content stratigraphy). 

An important assumption to note is that of the validity of the representation of threshold 

pressures within conventional reservoir simulators. Recent work (Manzocchi et al., 2010, 2012) 

has shown that across fault flow is often initialised prior to the threshold pressure of a fault 

being exceeded, hence leading to overestimates in across-fault flow.  

Figure 6.10 (Next page). Simulation results for the different structural configurations and 

fault threshold pressures. The upper row shows variation in production rates, whilst the 

bottom row shows variation in produced volumes for oil (solid lines) and water (dashed 

lines). As fault threshold is increased the variation in simulation results between the 

different structural configurations also increases. This is especially the case for the water 

production rate and produced volume. See text for discussion. 
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Figure 6.11 (Previous page). Graphs showing total oil and water production volumes at the 

final simulation timestep for each structural configuration and threshold pressure. Varying 

threshold pressure does not significantly influence the oil production volumes, although 

the produced water volumes are significantly reduced when higher fault threshold 

pressures are employed.  

Figure 6.12 (Next page). Summary graphs illustrating the effect of increasing fault tip 

length, including breaching faults across relay zones and varying the fault threshold 

pressure on oil and water production rates over the course of the simulations. For clarity 

only results for the original interpretation and the model with tips extended assuming a 

seismic resolution of 10m are included. Fault threshold pressures are 30 psi (A), 142 psi (B), 

and 300 psi (C). The impact on production of increasing fault network connectivity 

increases with fault threshold pressure.  
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6.4.3 Pressure and Saturation Distribution 

Pressure distribution within the reservoir following 40 years of simulated production is 

influenced by a combination of the fault connectivity and the fault threshold pressure (figure 

6.14). For a given degree of fault connectivity, the pressure distribution begins to become 

discretised (rather than varying continuously) across faults only when connectivity of the fault 

network is such that hydraulic continuity between fault bound segments is lost. Hence open 

fault networks where relay ramps remain intact tend to have similar pressure distributions 

regardless of fault tip length. The exception to this is the case where fault tips have been 

significantly extended (e.g. figure 6.3i), such that fault connectivity is increased irrespective of 

relay zone integrity. Similarly pressure discretisation varies significantly with threshold 

pressure only for geometrically connected fault networks. An open, low connectivity fault 

network does not result in substantial increases in pressure compartmentalisation with 

increased fault threshold pressure. 

The oil saturation distribution within the reservoir also displays non-trivial variability 

dependent on fault network connectivity and fault threshold pressures (figure 6.15). As with 

pressure distribution, saturation is most significantly influenced by a combination of both fault 

connectivity and threshold pressure. Dissimilarly however, increasing the fault threshold 

pressure for a given geometric configuration, even for open fault networks, leads to a 

noteworthy increase in the complexity of the oil saturation distribution at the end of the 

simulations run times. The effect of increasing fault connectivity for a given threshold pressure 

Figure 6.13 (Previous page). Schematic graphs summarising the impact of varying the fault 

threshold pressure during simulation. (A) General trends. The onset of production decline 

occurs earlier for higher threshold pressures, leading to a lower cumulative produced 

volume. The water production rate, cumulative volume of produced water and bottom 

hole pressure at the production well are all lower for higher fault threshold pressures. (B) 

Variability of simulation results between different structural configurations for increased 

fault threshold pressure. At low threshold pressures the simulation results for the ten 

different fault network configurations (figure 6.3) are relatively similar. However, as 

threshold pressure is increased the variability of the simulation results also increases. This 

indicates that fault network connectivity becomes more important when attempting to 

achieve a realistic forward prediction or accurate history match when fault threshold 

pressures are expected to be high. OPT = Oil Production Total, OPR = Oil Production Rate, 

WPT = Water Production Total, WPR = Water Production Rate, BHP = Bottom Hole 

Pressure. 
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value also increases saturation distribution complexity, with the effect being more pronounced 

for higher fault threshold pressure values. The higher threshold pressures mean that fluid has 

to flow around, rather than across faults. This simultaneously increases the effectiveness of 

the sweep of the reservoir, whilst also trapping some oil down-dip of faults which would 

otherwise be permeable to flow (figure 6.15). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14. Map views of reservoir pressure at the final simulation timestep. Pressure 

compartmentalisation increases with increasing fault network connectivity and fault 

threshold pressure. 
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Figure 6.15. Map views of fluid saturation of reservoir interval at final simulation timestep. 

The complexity of the distribution of remaining oil increases as fault threshold pressure 

and fault network connectivity increase. 
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6.5 Discussion 

6.5.1 Sub-Seismic Fault Tips, Relay Zones and Threshold Pressures 

Fault tips and low throw relay zone breaching faults may be unresolvable in seismic data (e.g. 

Rotevatn and Fossen, 2011), and are hence described as being of sub-seismic proportions. 

Incorporating these sub-seismic features into reservoir models can potentially lead to 

significant increases in fault network connectivity and reservoir segmentation (Pickering et al., 

1997). The influence of increased fault connectivity on simulated hydrocarbon production and 

recovery will be dependent upon the cross fault stratigraphic juxtapositions and fault rocks 

which are developed. The North Sea example considered here has a relatively open fault 

network when viewed at the resolution of seismic data. Low to moderate increases in fault tip 

length have little impact on reservoir segmentation unless combined with breached relay 

zones. High fault tip lengths lead to increased fault connectivity and reservoir segmentation 

due to extended faults truncating against existing structures. Including breaching faults across 

otherwise open relay zones further increases reservoir segmentation.  

The increase in reservoir segmentation for a given increase in fault tip length is somewhat 

influenced by the range in strikes of a fault population (Pickering et al., 1997). In the dataset 

used here the range in strikes is relatively limited, leading to increased fault connectivity and 

reservoir segmentation only where large additional tip lengths are included. A larger range in 

strike values would lead to increased fault connectivity and reservoir segmentation at lower tip 

lengths. Conversely, including breaching faults across relay zones leads to significant increases 

in connectivity and reservoir segmentation, even where the range in fault strike orientation is 

relatively restricted.  

Since even the most segmented of our models display relatively similar production results to 

the less segmented models it is apparent that a distinction is required between the terms 

reservoir segmentation and compartmentalisation. Our results show that a reservoir which is 

segmented by connected faults may not necessarily be compartmentalised. 

Compartmentalisation implies that different compartments do not experience pressure 

communication (Jolley et al., 2010), and hence that across-fault flow does not occur. To 

achieve compartmentalisation depends on both the geometric segmentation of a reservoir 

interval via a highly connected fault network, and either the fault displacements being 

consistently larger than the reservoir thickness (i.e. a juxtaposition seal), or very low 

permeability fault rocks. 
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6.5.2 Implications for Reservoir Development 

Although cumulative oil production volumes tend to be broadly similar over the course of the 

simulations for the base case threshold pressure values (142psi), the economics of an oil field 

are often influenced to a greater extent by the production rates that can be achieved rather 

than the total volume of oil which can be produced (e.g. Manzocchi et al., 2008). The 

difference in the onset of production decline between the different fault geometries modelled 

is a maximum of approximately three years. The model which experiences the latest onset of 

production decline is that which utilises the original, un-modified fault interpretation. This is 

significant for a number of reasons. Although it is generally routine for multiple realisations of 

stratigraphic, facies, petrophysical, and increasingly fault plane property models to be 

incorporated into uncertainty analysis during reservoir development it is less common for 

structural geometric uncertainty to be assessed (Freeman et al. 2010). The initial fault 

interpretation is therefore likely to be incorporated into base-case models. According to these 

simulations this will result in the time to the onset of production decline being overestimated 

relative to cases where sub-seismic fault tips and breaching faults are included. In addition a 

non-trivial cost of oil production relates to the treatment and disposal of produced water. Our 

model based upon the un-modified fault interpretation leads to the largest volumes of 

produced water. Predictive simulations where sub-seismic fault tips are included may 

therefore lead to greater accuracy when forecasting a fields economic potential.  

It must be remembered that the models simulated here eliminate uncertainty associated with 

petrophysical property distribution within the subsurface by using identically populated 

geocellular grids.  The variations in simulation results are therefore exclusively influenced by 

the inclusion or otherwise of sub-seismic fault tips and breached relay zones. The non-

uniqueness of petrophysical property distribution in the subsurface may lead to the 

predictability of the trends observed in our results being diminished. Similarly the influence of 

incorporating sub-seismic scale structural features may be dependent on the degree of 

observable fault compartmentalisation within a field. Our un-modified interpretation resulted 

in a relatively open fault network, with a low number of fault-bound compartments. As a result 

increasing the fault lengths and including sub-seismic breached relay zones leads to a 

significant increase in fault connectivity. For situations where a field is significantly 

compartmentalised at the scale of interpretation, the effects of increasing fault connectivity 

may be relatively lower. 

Approaches such as drilling horizontal wells across multiple compartments are designed to 

minimise the effects of fault related compartmentalisation. Our models purposely used a 
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single vertical well to fully capture the effects of altering the fault geometries. It is unclear as 

to the simulated response that would be generated if a development strategy employing 

horizontal and/or multiple wells were to be adopted.    

6.5.3 Two Phase Properties of Fault Rocks 

Within a grid cell in a simulation model the relative permeability of each phase present can be 

dynamically calculated by referencing the saturation of the grid cell at each stage of a 

simulation to relative permeability curves based upon the fluid properties and absolute 

permeability. Hence as the oil saturation of a grid cell decreases, so does the relative 

permeability of oil within that cell. Below a critical saturation the relative permeability 

decreases such that oil flow can no longer occur. This is the primary reason for limitations on 

recovery factors from hydrocarbon reservoirs. Unlike grid cells, faults within standard 

simulation models are represented as two-dimensional discontinuities with no associated 

volume. As a result the saturation of the fault rock is not incorporated within the simulation 

parameters, and the faults are treated as single phase transmissibility multipliers based upon 

the absolute fault rock permeability (Manzocchi et al. 1999). Manzocchi et al (2002) outlined 

two methodologies for incorporating two-phase flow properties of fault rocks into simulation 

models. The first method incorporates faults as discrete grid cells rather than as numerical 

representations. As they pointed out however, although this method allows the inclusion of a 

large range of fault parameters it is restricted by computational difficulties. The second 

methodology involves using pseudo relative transmissibility multipliers associated with the 

upstream grid block adjacent to a fault. In both cases significant differences in simulated 

production were observed relative to the use of absolute, single phase transmissibility 

multipliers. Manzocchi et al, (2008b) compared the influence of two-phase fault rock 

properties on simulated oil production from a synthetic reservoir model with other fault-

related uncertainties. Their results suggested that the two-phase properties of fault rocks 

present a significant uncertainty, however that this uncertainty would likely be reduced with 

increasing availability of experimental two-phase fault rock data. In recent years this data has 

begun to become available (Al-Hinai et al., 2007; Tueckmantel et al., 2012a), and can be 

incorporated into specialist simulation software (e.g. TransGen, Badley Geoscience) using the 

upscaled pseudo relative permeability approach outlined by Manzocchi et al (2002, 2008b). 

Tueckmantel et al, (2012b) used this methodology to demonstrate the difference between 

using single-phase transmissibility multipliers and laboratory-derived two-phase properties in 

the case of CO2 sequestration in faulted saline aquifers. They concluded that ignoring the two-

phase properties of fault rocks may pose a significant risk to pressure prediction and trap 

integrity during injection of CO2 into the subsurface. 
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It is our suspicion that two-phase fault rock properties (or lack thereof) may be influencing the 

simulation results presented here, in particular the water production. The more segmented of 

our models display a lower cumulative produced volume of water over the course of the 

simulation runs. One explanation for this may be that since two-phase fault rock properties are 

not employed, and single values of fault permeability are used within the simulator, then the 

relative permeability of water is being underestimated for the fault rock. This results in 

reduced across fault flow of water and hence lower water production than may be the case in 

reality. This effect seems to be magnified for higher fault threshold pressures.  

Alternatively (and perhaps the more likely explanation) is that the disparity between produced 

oil and produced water could be a result of relative permeability effects within the grid cells 

themselves. Within the reservoir interval oil saturation is high compared to water saturation, 

and hence oil is more mobile due to its higher relative permeability. It is therefore easier for oil 

to flow around faults than water, with the result being that increasing fault tip length does not 

significantly impact oil flow. Conversely, since water has a low relative permeability any 

increase in fault length significantly increases the time which it takes for water to flow around 

the faults. It would be expected that as a reservoir became depleted and the relative 

permeability of water increased, then fault length and connectivity would begin to impede oil 

flow to a greater extent, and water flow to a lesser extent.    

6.5.4 Fault Threshold Pressures 

Fisher et al, (2001, figure 3) conceptually illustrated that for positions lower down a fault the 

buoyancy force is reduced and there will hence be a lower likelihood of the threshold pressure 

being exceeded. They suggest that this leads to lower across-fault flow rates with proximity to 

the free water level due to reduced oil saturation of the fault and hence reduced relative 

permeability for oil. This concept is not however integrated into the functionality of 

conventional fluid flow simulators, where only a single threshold pressure value for the 

entirety of a fault can be assigned. Once this value has been exceeded then the whole fault 

becomes active for across-fault flow at the same instant, albeit with fault permeability 

controlled by the transmissibility multipliers. It is however geologically unrealistic to assign 

single fault threshold pressures values. Fault threshold pressure is dependent on the pore 

throat diameter, and hence indirectly on the proportion of shale (or other mechanisms, e.g. 

cementation) incorporated along the fault (Bretan et al., 2003; Yielding et al., 2010). As a result 

different parts of a fault with inevitably have different threshold pressures, depending on the 

local stratigraphic properties. The model of Fisher et al, (2001) represents a composite 

scenario, where faults have uniform threshold pressures, but where across-fault flow rates are 
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influenced by relative permeability effects. We would suggest a modification, wherein 

different parts of a fault have different threshold pressures as controlled by fault zone 

architecture and distribution of fault petrophysical properties. In this case the point on a fault 

where threshold pressure is initially exceeded is dependent on both the distribution of 

threshold pressures on a fault, and the buoyancy force at a specific threshold pressure value. 

The leak point may therefore not necessarily be located at the crest of a bed-fault intersection. 

For simplicities sake however let us assume that the position on a hypothetical fault where the 

threshold pressure of the fault rock is initially exceeded is located at the shallowest position on 

the fault. Oil enters the fault rock at this position, displaces water and increases the oil 

saturation and hence its relative permeability. Any cross fault pressure differential can now 

drive oil across the fault, with oil relative permeability increasing to a maximum. The position 

of across-fault flow is however localised to where the threshold pressure was initially 

exceeded. Away from this position the threshold pressure is still higher than the buoyancy 

forces, hence preventing oil from entering the fault. Since pressure is now equalising across 

the fault this is likely to remain the case, assuming that there is no occurrence of along-fault 

flow, which may lead to increased oil saturation and decreased threshold pressures elsewhere 

on the fault. Across-fault flow of hydrocarbons will therefore likely be restricted to localised 

‘windows’ where the threshold pressure has initially been exceeded, in contrast to within 

simulators where an entire fault becomes active at the same threshold pressure value, and 

subsequent across-fault flow is determined by the fault TMs and hence Darcy’s law. This may 

in fact however be a moot argument, since areas of low threshold pressure values (assuming 

threshold pressure is controlled by shale/clay content) will also correspond to less flow-

restrictive TMs. 

6.6 Conclusions 

The simulation results presented within this chapter lead to a number of conclusions regarding 

the effects of incorporating fault tips, breaching faults across relay zones and varying the fault 

threshold pressure during simulations. 

• A segmented reservoir does not necessarily imply that the reservoir is compartmentalised. 

• Cumulative produced water volume and water production rate decreases as fault tip length 

is increased, and/or the reservoir becomes more segmented. 

• Increased reservoir segmentation/fault tip length leads to an earlier onset of oil production 

decline, but the rate of production decline is slower than for less segmented cases. 
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• Cumulative produced oil volumes are marginally higher for the more segmented cases, likely 

due to an enhanced sweep pattern. 

• The influence of including sub-seismic fault tips and relay zone breaching faults increases 

with increasing fault threshold pressures. 

• Variability in simulation results for different degrees of reservoir segmentation increases 

with increasing fault threshold pressure. 

• Higher fault threshold pressures tend to limit water production for a given structural 

configuration, although have limited impact on oil production. 

• Relative permeability effects (both within grid cells and for faults) may control the magnitude 

of the influence of fault length and connectivity on oil and water flow within a reservoir. This 

will alter dynamically during production as saturations, and hence relative permeabilities, 

change. 
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Chapter 7 

The Influence of Relay Zone Geometry and Distributed Deformation on Across-Fault 

Hydrocarbon Flow 

7.1 Abstract 

The influence of fault relay-zone architecture on across-fault fluid flow is investigated using 

example geometries observed in the Gulf of Corinth rift. These outcrop analogues are used as 

a guide to generate geocellular models encompassing a range of different relay zone 

geometries. Simulations of oil production across these relay zones illustrates the local impact 

of varying the geometric configuration. In addition the impact of including varying degrees of 

distributed deformation in the form of normal drag is assessed. For all cases of relay zone 

architecture including distributed deformation increases the juxtaposition area and enhances 

across fault flow. 

7.2 Introduction and Aims 

Chapter 6 illustrated how the incorporation of intact versus breached relay zones can effect 

hydrocarbon production at the field scale. This chapter focuses on the scale of individual fault-

sets, and how varying their geometry may locally influence fluid flow. 

Relay zones play a critical role in the process of fault evolution and growth (Peacock and 

Sanderson 1994; Cartwright et al., 1996; Childs et al., 1995, 2009). Depending upon their 

linkage history they may (or may not) be the location of displacement minima (Peacock and 

Sanderson, 1991; Cartwright et al., 1995; Walsh et al., 2002, 2003), and hence influence the 

depth of structural spill points within fault-controlled hydrocarbon traps (chapter 4). Relay 

zones are also important during hydrocarbon field appraisal and development, with their 

geometry allowing across-fault connectivity of otherwise separated stratigraphy. In turn this 

allows hydraulic continuity across faults which may otherwise form juxtaposition seals and be 

pressure compartmentalising (Manzocchi et al., 2008a, b, 2010). The precise geometry of a 

relay zone may influence how fluids can flow across it. This chapter explores how different 

relay zone geometries influence across-relay fluid flow during hydrocarbon production, using 

example geometries from both the Gulf of Corinth rift, and sub-surface data.   

Seismic resolution often does not allow imaging and full constraint of fault and fault linkage 

geometries, hence leading to uncertainty in cross-fault juxtapositions and fault rock properties. 

Limitations of seismic resolution often permit multiple, equally valid, interpretations of fault 

and fault relay geometries to be constructed, however it is common that only a single 
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geometry is modelled and taken forward as the base case for simulation. In addition, 

geometries observed in the field show (figures 3.32, 7.2) that normal drag occurs at multiple 

scales and can have significant implications for cross-fault juxtapositions (Freeman et al., 2008; 

Wibberley et al., 2008; Povey, 2010), and hence cross-fault flow and reservoir 

compartmentalisation (figure 7.1). Towards fault tips where displacement is relatively low, 

strain may be accommodated entirely through ductile deformation in the form of fault tip 

monoclines (figure 7.2). This effectively reduces the length of the discrete offset on a fault. 

During geological modelling it is standard practise to project key stratigraphic horizons towards 

faults from a set distance. This removes all drag, whether a processing artefact or a genuine 

geometry. Here we apply geometries observed in the field to an analogous North Sea seismic 

dataset to show the effect that geometric uncertainty, including normal drag, can have on 

simulated reservoir performance. 

 

 

 

 

 

 

 

 

Figure 7.1. Images illustrating the effect of normal drag on across-fault juxtaposition. (A) 

Amplitude deterioration at normal faults leads to ‘seismic drag’ which obscures the 

position of footwall and hangingwall cut-offs. Common industry practice is to assume that 

no normal drag is present, with cut-off positions modelled by using a parallel projection of 

horizons to determine their intersection with faults. (B) If normal drag is incorporated the 

throw on a fault is effectively reduced leading to enhanced across-fault juxtaposition 

relative to the case where all drag is excluded (C). 
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7.3 Relay Zone Geometries 

7.3.1 Gulf of Corinth Relay Zone Geometries 

The onshore Gulf of Corinth rift (chapter 3) presents a number of examples of normal drag at 

faults (figure 7.2) as well as a range of relay zone geometries at outcrop scale (figures 7.3, 7.4). 

These geometries consist of hard linked relay zones where either one fault has propagated to 

link to another, or where a separate linking fault has nucleated across a relay ramp. 

 

 

 

 

 

Figure 7.2. Propagation of the Dhoumena fault through the overlying sediments has 

resulted in the formation of a hangingwall syncline (A) analogous to large scale normal 

drag. Towards the tip of the fault there is a limited amount of discrete displacement, with 

deformation instead accommodated through the formation of a fault tip monocline (B).      
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Figure 7.4. Annotated photograph of the Kerinitis relay zone on the Mamoussia-Pirgahki 

fault. The relay geometry is analogous to that of a single linking fault (figure 7.6). The inset is 

taken from the main geological maps presented in chapter 3. 

Figure 7.3. Obliquely orientated annotated photograph of the Kerpini fault relay zone. The 

inset map illustrates the location of the relay zone (see chapter 3 for detailed map). The 

outcrop suggests that the relay geometry is similar to that of the ‘singly breached relay’ 

shown in figure 7.6. 
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Although the geometries identified in the field provide a basis for modelling the influence of 

relay zones on fluid flow, they do not capture the full range of relay zone geometries. A 

number of geometries derived from published literature have also been incorporated (e.g. 

Rotevatn et al., 2009; Soliva and Benedicto., 2004), assuming that the observed geometries are 

applicable across a range of scales. 

7.3.2 Subsurface Data 

The geometries observed at outcrop provide an insight into the potential architecture of relay 

zones in the subsurface where limitations of seismic resolution prevent a unique 

interpretation. This is especially the case for intra-reservoir scale faults, where displacements 

approach the resolution of the data, and are hence difficult to discern. These uncertainties in 

fault geometry can have significant impacts on the performance of a field due to variations in 

how fault displacement, and hence across-fault reservoir juxtapositions and fault rock 

properties, are modelled. To illustrate the impact of uncertainty in relay zone architecture and 

normal drag a 3D seismic dataset from the North Sea has been utilised. The resolution of the 

dataset means that multiple interpretations of fault architecture can be made and are all 

equally valid (figure 7.5). The relay zone geometries observed in the field provide a basis for 

the interpretation of a reservoir scale fault within the dataset.  

 

 

 

 

 

 

Figure 7.5. Cross-section through 3D seismic dataset from the North sea showing different, 

but equally valid, fault interpretations. (A) Single fault plane. (B) Overlapping faults 

consistent with a relay zone geometry. Deterioration of seismic amplitudes close to the 

fault(s) prevent a unique interpretation from being made.  
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7.4 Methodology 

Six separate fault geometry interpretations based on seismic data from the North Sea have 

been modelled (Figure 7.6). Each fault model has been populated with three distinct horizon 

geometries (Figure 7.6, 7.7, 7.8). The fault intersections of the horizons have been modified to 

incorporate varying degrees of normal drag, consistent with geometries observed in the field. 

This results in each fault model having horizons showing no drag (100% throw), moderate drag 

(80% throw) and significant drag (50% throw) at the level of the uppermost stratigraphic layer 

(figure 7.8). These values correspond well with previously observed estimates of main slip 

planes accommodating 50% to 80% of total fault displacement (Freeman et al., 2008; Povey, 

2010; Figure 7.7). All other parameters are constant between the models with a simple, 

homogenous reservoir stratigraphy uniformly populated with reservoir properties (Table 7.1). 

Effectively impermeable layers have been modelled above and below the reservoir interval 

with a standard SGR algorithm used to calculate fault rock properties (Yielding et al., 1997; 

Manzocchi et al., 1999; Jolley et al., 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 (Next page). Oblique views of relay geometries used during reservoir 

simulation. Fault planes are shown in white and illustrate the varied amounts of normal 

drag which have been incorporated. The reservoir interval is shown in yellow, whilst non 

reservoir top and base seals are in brown. 
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The models have been constructed so that the mean fault throw is greater than the reservoir 

interval thickness for cases where no normal drag has been included. This is to emphasise the 

importance of relay zones for across-fault flow (Manzocchi et al., 2010). The displacement 

minima at the relay zones hence act to enhance across-fault juxtaposition and provide 

potential connectivity pathways. Including normal drag has a similar effect, essentially leading 

to a reduction in the discrete displacement and enhanced self-juxtaposition of the reservoir 

across the faults (figures 7.8, 7.9).  

The impact of varying the relay zone geometry on across-fault fluid flow has been tested using 

a simple streamline fluid flow simulation setup (FrontSim), with a single injection well in the 

hangingwall and production well in the footwall. This setup encourages fluid to flow across the 

relay zone allowing the impact of the different geometries to be easily assessed. Selected 

parameters used during simulation modelling are detailed in table 7.2. Although a number of 

Porosity 0.2 

Permeability 50 mD 

VClay 0.1 

Figure 7.7. Plots of total offset versus maximum offset on a single slip surface for outcrop 

examples suggest that between 50 % and 80 % of fault displacement is accommodated on 

a single slip surface with the remainder accommodated in the form of distributed 

deformation. Modified from Freeman et al., 2008 (A), and Povey, 2010 (B).  

Table 7.1. Petrophysical properties of the reservoir interval for the models shown in figure 

7.6. 
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publications have previously explored the impact of relay zones on fluid flow, these have 

tended to be based upon single geometric examples (Rotevatn et al., 2009; Rotevatn and 

Fossen 2011) or for multiple faults within hydrocarbon fields (Manzocchi et al., 2008, 2010).   

Grid cell dimension  5 x 5 m   

Fluid phases present Water, Oil 

Oil Density 875 Kg/m3 

Bubble point pressure 80 bar 

Water Salinity 30000 ppm 

Oil-water contact -3245 m 

Pressure at contact 320 bar 

Min water saturation 0.2 

Max Oil relative permeability 0.9 

Simulation length 3 years 

Initial Oil production rate 175 sm3/day 

Maximum water production rate 175 sm3/day 

Maximum water injection rate 175 sm3/day 

 

 

 

 

 

 

 

 

 

 

Figure 7.8. Cross-sections through modelled geometry showing the different amounts of 

normal drag which have been incorporated. (A) No normal drag. (B) Normal drag accounts 

for 20% of total displacement (i.e. discrete offset is 80% of displacement). (C) Normal drag 

accounts for 50% of displacement. Increasing the proportion of normal drag effectively 

reduces the discrete displacement, hence leading to greater across-fault juxtaposition of 

the reservoir interval (shown in yellow). 

Table 7.2. Parameters used during simulation modelling. For more details see chapters 6, 

8. 
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7.5 Results 

Figure 7.10 summarises the results for the case of a relay zone with a linking fault geometry 

and 20% of the deformation accommodated through ductile drag. The results for all the 

simulations across each geometry are summarised in terms of oil production rate and 

cumulative produced volume of oil in figure 7.11. For all of the geometries the cumulative 

produced volume is greater where a larger proportion of the displacement is accommodated 

through distributed deformation (i.e. normal drag), rather than discrete offsets. The reason for 

this becomes clear when the water saturations are observed (figure 7.12). The mean fault 

displacement is greater than the reservoir thickness, hence where displacement is entirely 

accommodated through discrete offset, the reservoir interval is not self-juxtaposed across the 

fault. Consequently fluid is forced to flow along the fault and across the relay zone. In contrast, 

where a proportion of fault displacement is accommodated through distributed deformation, 

the throw is effectively reduced. This results in the reservoir interval being self-juxtaposed 

along the entire length of the fault (figure 7.9). In turn, and depending on the local fault rock 

properties, across-fault fluid flow is not restricted to relay zones, leading to a greater 

proportion of the reservoir interval being swept of oil. This is also evident from the preferred 

flow pathways mid-way through the simulations (figure 7.13). Where offsets are 

accommodated entirely through discrete deformation streamlines are restricted to relay 

ramps, whereas the inclusion of distributed deformation in the form of normal drag leads to 

streamlines being located along the entire length of a fault. 

Figure 7.9. Oblique views of areas where the reservoir interval is self-juxtaposed across the 

faults, for the ‘linking fault’ geometry (figure 7.6). (A) no normal drag. (B) 20% normal drag. 

(C) 50% normal drag. 
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For some examples, specifically for the ‘linking fault’ and a ‘single fault plane’ geometries 

(figure 7.6), the impact of including distributed deformation is instrumental in controlling 

across-fault flow. For these geometries, where discrete offsets accommodate 100% of the 

deformation, displacement is greater than the thickness of the reservoir interval, and hence 

there is little to no across fault self-juxtaposition. Consequently no across fault flow can occur. 

Including a proportion of normal drag leads to significantly enhanced connectivity and across-

fault flow (figure 7.11, 7.12, 7.13). 

Figure 7.11 (Next page). Simulation results for the different fault relay zone geometries 

shown in figure 7.6. Oil production rate is shown as the solid lines, whilst cumulative 

produced volumes are as dashed lines. The graphs are colour coded by the amount of 

normal drag which has been included, with green being no drag, orange being 20% drag 

and red being 50% drag. (A) Unbreached relay, (B) Unbreached relay, short tips (i.e. fault 

tip monoclines), (C) Single linking fault, (D) Singly breached relay, (E) Doubly breached 

relay, (F) Single fault. 

Figure 7.10 (Previous page). Summary figure illustrating the inputs and results for the case 

of a relay zone geometry including a linking/breaching fault, and with 20% of the fault 

displacement accommodated through distributed deformation (i.e. normal drag). (A) Relay 

zone geocellular model with stratigraphy coloured by reservoir (yellow) and non-reservoir 

(brown). (B) Base reservoir surface with areas of across-fault self juxtaposition of the 

reservoir interval shown in red. These represent the available fluid flow pathways. (C) Water 

saturation at the final simulation timestep. High water saturation is shown in blue, whilst 

high oil saturations are in red. (D) Streamlines at the mid simulation timestep describing the 

flow pathways from the injection well in the hangingwall to the production well in the 

footwall. The streamlines path illustrates how the reservoir juxtaposition across the low-

throw linking fault is crucial in controlling the flow across the relay zone. (E) Plot of oil 

production rate and cumulative oil production versus time for the linking fault geometry 
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Figure 7.12 (Next page). Water saturation for the reservoir interval at the final simulation 

timestep for the different relay geometries and proportions of normal drag as shown in 

figure 7.6. High oil saturations are shown in red, whilst high water saturations are in blue. 

The injection and production wells are shown in the hangingwall and footwall respectively. 
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Figure 7.13. Fluid flow pathways in the form of streamlines for midway through the 

simulation for the different geometries shown in figure 7.6. Streamlines are coloured by 

water saturation and are filtered to exclude values of 0.2 or less. This hence illustrates the 

progression of the water flood front from the injection well. 
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7.6 Discussion 

Simulation results presented above suggest that the inclusion of distributed deformation may 

enhance predicted hydrocarbon recovery from faulted reservoirs. This is especially the case 

where the thickness of the reservoir interval is similar to the mean fault throw. Standard 

industry workflows generally tend to exclude normal drag from reservoir models since it is not 

directly imaged due to limitations in the resolution of seismic data. This is contradictory to 

observations of faults from this (figure 7.2), and other studies (Freeman et al., 2010), which 

suggest that distributed deformation may accommodate up to 50% of a faults total 

displacement. It would therefore be prudent to generate multiple realisations of fault 

displacement when constructing reservoir models to be taken forward for predictive fluid flow 

simulation. 

The differences in the results for the different relay zone geometries are minimal where the 

same proportion of distributed deformation has been assigned (figure 7.11). This suggests that 

simply including across-fault juxtapositions in any form (either via a relay zone or reduced 

throw through distributed deformation), has a similar impact on across-fault flow and reservoir 

production performance, where other variables (e.g. production strategy, fault rock 

properties, etc) remain constant. Determining the presence or absence of a relay zone is 

therefore more influential on across-fault fluid flow (Manzocchi et al., 2008; Rotevatn et al., 

2009a, b, Rotevatn and Fossen, 2011). 

The simulations run here are designed so that fluid is forced to flow across the faults, either at 

the relay zones or where the reservoir is self-juxtaposed. Combined with the restricted grid 

dimensions acting as a lateral boundary to flow, this may distort the flow behaviour relative to 

a larger, more complex grid geometry. Despite this the observation that relay zones are critical 

for across-fault flow at the production scale corresponds with similar studies using full field 

simulations (Manzocchi et al., 2008). 

With this study distributed deformation has been accommodated as normal drag, essentially a 

ductile deformation style. However the impact on displacement, and hence across-fault 

juxtaposition, is similar whether distributed deformation is manifested as normal drag or as 

multiple discrete slip surfaces (figure 7.14), or as a combination of the two. Nevertheless a 

conceivable difference between these two scenarios would be that in the case of multiple slip 

surfaces the fault-normal harmonic average permeability would be reduced relative to the 

normal drag geometry due to the development of multiple zones of fault rock (figure 7.14). 

This would result in reduced fault flow across the fault zone for a given pressure gradient. 

Predicting whether deformation is accommodated through a single or multiple slip surfaces or 



- 225 - 
 
ductile normal drag hence has significant consequences for predicting across-fault fluid flow 

behaviour. This quantitative prediction is however outwith the scope of this research.  
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7.7 Conclusions 

Fault-relay and drag geometries observed in the Gulf of Corinth provide structural analogues 

for hydrocarbon production settings located within similar extensional provinces. By running 

fluid flow simulations across models based on geometries observed in the field, the influence 

of their geometry on across-fault flow behaviour can be quantified.  

• The incorporation of distributed deformation in the form of normal drag may significantly 

influence sweep patterns, production rates and cumulative produced volumes of hydrocarbon 

across relay zones, however the precise relay zone geometry is of less importance. Correctly 

determining whether a relay zone is present or not is a significantly more influential 

uncertainty.  

• In all cases of relay geometries modelled herein, accommodating a proportion of the total 

displacement as normal drag, as observed at outcrop (chapter 3), increases the area of across-

fault reservoir self-juxtaposition.  

• Increased juxtaposition area enhances across fault flow leading to longer periods of high 

production rate (i.e. a later onset of production decline), and correspondingly greater 

production volumes.  

• The initial interpretation of fault and fault-relay geometries in seismic data is a major 

uncertainty and has significant implications for simulated reservoir performance.  

 

 

Figure 7.14 (Previous page). Conceptual diagrams illustrating the impact of different styles 

of deformation accommodation on across fault flow properties in 2D. (A) A single discrete 

slip surface accommodates all displacement. This leads to a juxtaposition seal being 

present. (B) A proportion of the total deformation is accommodated by ductile drag. This 

results in cross fault juxtaposition of the reservoir interval being maintained. (C) Multiple 

slip surfaces accommodate the deformation. Across-fault self-juxtaposition is maintained 

although multiple zones of (low permeability) fault rock are developed, leading to a 

reduction in the overall harmonically averaged effective permeability (Ke). Kr = reservoir 

permeability, Kf = Fault rock permeability, RL1, 2, 3 = reservoir length, Ft = fault rock thickness.    
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Chapter 8 

Comparing Simulated Production Response Across Realistic and Seismically Forward 

Modelled Fault Geometries 

8.1 Abstract 

The impact of geometric uncertainty on across-fault flow behaviour at the scale of individual 

intra-reservoir faults is investigated within this chapter, following from field-scale work in 

chapters 5, 6 and similar fault-scale analysis in chapter 7. A high resolution digital elevation 

model (DEM) is used to construct and subsequently populate an outcrop-scale geocellular grid 

capturing realistic fault geometries. Seismic forward modelling of this grid allows generation of 

a 3D synthetic seismic cube, which reveals the corresponding seismically resolvable fault 

geometries. Construction of a second geocellular model, based upon the seismically resolvable 

fault geometries, allows comparison with the original outcrop geometries. Running fluid flow 

simulations across both models allows the impact of the different geometries to be quantified. 

Results suggest that seismically resolvable faults significantly underestimate the area of across-

fault juxtaposition relative to realistic fault geometries. In turn this leads to overestimates in 

sealing ability of faults, and inaccurate calculation of fault plain properties such as 

transmissibility multipliers (TMs).  

8.2 Introduction and Aims 

The use of outcrop analogues for understanding geological uncertainty in hydrocarbon 

reservoirs has been a common practice for many years, and with the advent, and widespread 

use of geological modelling software significant work has been conducted aiming to better 

integrate analogue data within subsurface models (Bryant et al., 2000; McCaffrey et al., 2005; 

Jones et al., 2009; Pringle et al., 2010). Although this work has considerably aided our 

understanding of geological uncertainty, it has remained largely qualitative when assessing the 

effect of outcrop-scale heterogeneity on hydrocarbon recovery. It is common industry practice 

to define a range of possible production outcomes through the use of multiple realisations of 

petrophysical property distributions. Increasingly, the impact of sub-surface structural 

uncertainty is also being quantified through the use of reservoir simulations (Tveranger et al., 

2008; Manzocchi et al., 2008a, b; Freeman et al., 2010). This allows uncertain parameters to be 

varied within a set range of geologically reasonable values, and the impact on production rates 

and volumes measured permitting efficient scenario ranking. The integration of geological and 

reservoir engineering disciplines has lead to a number of studies characterising the flow 

response across specific outcrops (Howell et al., 2008; Jackson et al., 2009; Rotevatn et al., 
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2009, 2011; Adams et al., 2011), with the aim of constraining the range of possible simulation 

responses and hence improving field development strategies. However, a quantitative 

comparison of the simulation response of outcrop- and seismically-resolvable fault geometries 

has so far been lacking.  

Structural geometry is a key uncertainty in subsurface geological modelling. Precise fault-

horizon intersections, fault zone complexity and fault linkage geometries are often difficult to 

resolve using seismic data due to effects such as amplitude deterioration and diffraction 

(Townsend et al., 1998). As a result, faults are generally incorporated within geological 

modelling software as geometrically simple two-dimensional planes separating host cells 

containing the petrophysical properties of the reservoir. Numerous outcrop examples suggest 

that this simplistic planar fault geometry is unrealistic and contradictory to theories of fault 

growth and evolution. Modelling faults in this manner may lead to inaccurate representations 

of across-fault reservoir juxtaposition and erroneous calculations of the associated fault plane 

properties, with potentially major implications for the simulated production response. To 

quantify the impact of these simplifications of fault architecture, the technique of seismic 

forward modelling has been combined with fluid flow simulation modelling within this chapter. 

Forward modelling the seismic response of geological outcrops can be applied as a tool for 

understanding the constraints that the finite resolution of seismic data places on our 

interpretation of subsurface geology. Previously, it has primarily been used for understanding 

facies architectural geometries (Hodgetts and Howell, 2000; Janson et al., 2007; Bakke et al., 

2008; Armitage and Stright, 2010; Falivene et al., 2010; Tomasso et al., 2010), although it can 

also be applied to structural uncertainty (Johansen et al., 1994; Townsend et al., 1998; Alaei 

and Petersen 2007; Frankowicz et al., 2009). Seismic forward modelling allows the derivation 

of the seismic response generated by realistic, outcrop-derived fault geometries. The aim of 

this chapter is to compare the simulated production across both the realistic and seismically 

resolvable fault geometries. This allows the identification of instances when disparities 

between the different geometries lead to significant variations in the production response. A 

high resolution Digital Elevation Model (DEM) has been used to construct and petrophysically 

populate a fine scale structural model capturing fault architectures at a 0.5 m resolution, up to 

two orders of magnitude greater than that observable in typical seismic data. This geocellular 

grid can be forward modelled to generate a 3D synthetic seismic cube of the response 

expected from a 3D seismic survey. A second structural model, at the scale resolvable in the 

synthetic seismic data, can be constructed and identically populated. Running production 

simulations across the two geometries allows quantification of the impact of the difference 

between realistic and seismically resolvable fault architectures. 
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8.2.1 Fault Evolution and Structure 

The geometries, and hence the fluid flow properties, of faults are a function of their evolution 

and growth. Hence, an understanding of the processes of this evolution is important when 

trying to accurately predict the flow properties of faults in seismic data, where fine scale 

architecture may not be resolvable. 

The evolution of rifts as a response to an extensional stress regime proceeds through the 

processes of fault initiation, growth, interaction and linkage (Peacock & Sanderson, 1991; 

Cartwright et al., 1996; Cowie et al., 2000). The accommodation of strain across a fault results 

in modification of the local stress field, with stress intensification at the fault tips, and a region 

of reduced stress in the footwall and hangingwall within which the growth of other faults is 

inhibited (Willemse, 1997; Gupta et al., 1998; Gupta & Scholz, 2000). This region of reduced 

stress is proportional in size to the length and displacement of the fault (Ackermann & 

Schlische, 1997), hence as individual fault segments link via relay zones their stress reduction 

regions expand. Smaller structures within these stress reduction regions become inactive with 

strain tending to become localised onto the larger, linked structures (Willemse, 1997; Cowie, 

1998; Gupta et al., 2000; Walsh et al., 2001). As a rift evolves it will hence contain fewer active 

faults, but their average size will increase (Cowie et al., 2000). This process occurs across a 

range of scales, and has been documented from outcrop- (Schlische et al., 1996; Ackermann & 

Schlische, 1997), through to rift-scale (Cowie et al., 2000; McLeod et al., 2000). This growth 

model implies that faults across a range of dimensions and at varying stages of evolution are 

likely to be present within hydrocarbon reservoirs. Their potential impact on fluid flow is 

determined both by their geometry and their petrophysical properties. 

At the Intra-reservoir scale the complex growth of fault systems due to stress interactions and 

the continual formation and destruction of relay zones is compounded by local heterogeneities 

in the mechanical properties of the faulted stratigraphy (Ferrill & Morris, 2008; Welch et al., 

2009). These linked processes of fault growth and geomechanics result in significant vertical 

and lateral variability in fault zone structure manifested as multiple slip surfaces, fault bound 

lenses, rotated blocks and normal drag (Childs et al, 1997, 2009). This complexity leads to a net 

reduction in fault displacement relative to the simple, single slip surface case commonly 

observed in seismic data and implemented within reservoir modelling workflows. 

Consequently, the modelled across-fault reservoir juxtapositions may differ significantly from 

those which are present in the subsurface, hence impacting the accuracy of production 

simulations.  
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In addition to the uncertainty in across-fault juxtaposition as considered in cross section, 

complex fault linkage geometries can also represent a significant uncertainty in along-strike 

fault continuity and displacement variation. Seismic resolution may prevent distinguishing 

between different relay zone geometries or even from identifying their presence, with 

potentially significant implications for reservoir and hydraulic connectivity and estimated 

recoverables. By seismically forward modelling detailed fault- and fault-relay geometries 

observed in outcrops we can assess the impact of the discrepancy between realistic sub-

seismic fault architecture and the modelled approximation upon hydrocarbon flow during 

simulated production. 

8.2.2 Fault Properties 

Fault transmissibility multipliers (TMs) are the numerical representation of faults and fault rock 

petrophysical properties within fluid flow simulators (Knai & Knipe, 1998; Manzocchi et al., 

1999). They are a function of fault rock permeability and thickness as well as grid cell 

permeability and length. In silisiclastic sequences fault rock permeability is typically calculated 

as a function of fault rock clay content, often defined by the Shale Gouge Ratio (SGR, Yielding 

et al., 1997), itself defined by the fault throw and the volume of clay within the stratigraphy. 

Fault rock thickness is also routinely defined as a linear function of fault throw, despite 

numerous studies questioning this definition (e.g. Childs et al., 2009). Since, then, the 

calculation of fault transmissibility multipliers is inextricably linked to fault geometry, the fault 

transmissibility multipliers calculated assuming single slip-surface fault geometries will show 

significant discrepancies compared to those calculated using the complex geometries observed 

at outcrop.  

8.3 Methodology 

8.3.1 DEM Data 

To characterise the detailed fault geometries present at outcrop a high resolution digital 

elevation model (DEM) from the Afar Rift system has been used (figure 8.1). The Afar 

depression in northern Ethiopia began to form at approximately 30 Ma (Barberi & Varet, 1977) 

at the triple junction between the Gulf of Aden, Red Sea and East African Rifts (figure 8.1). The 

depression hosts a range of tectonic regimes including the Dabbahu magmatic segment 

(Hayward & Ebinger., 1996; Rowland et al., 2007) where the DEM is located.  
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The DEM is derived from an airborne Lidar survey with a spatial resolution of approximately 

0.5m, which is at least an order of magnitude greater resolution than high quality reflection 

seismic data. This level of resolution reveals outcrop-scale detail which would be obscured by 

Fresnel zone effects in seismic data, hence allowing fault structure and displacement to be 

accurately captured. Numerous ‘reservoir scale’ fault sets with displacements of up to 

approximately 40m are present in the area. The individual segments comprising each fault set 

are laterally connected via relay zone linkages displaying various stages of evolution, from soft-

linked open relays through to fully breached relays with almost continuous displacements. 

Fault architectural complexity is greatest in the vicinity of relay zones where significant 

partitioning of displacement across multiple slip surface occurs. Displacement partitioning 

requires that the mean displacement on each individual slip surface is significantly reduced 

relative to that of a single slip surface scenario, leading to enhanced self-juxtaposition of 

lithological units across the fault set. The inference is that relay zones, whether open, partially- 

or fully-breached, represent the areas with the highest probability of across-fault 

juxtaposition, and hence of hydraulic continuity, of the reservoir intervals. Indeed, previous 

work by Manzocchi et al (2008) has shown that relay zones are the single most important 

structural factor in influencing recovery from faulted reservoirs. Fault growth models (Cowie, 

1998; Childs et al., 2009) suggest that relays are almost ubiquitous in the subsurface across a 

range of scales, hence they are where this study is concentrated.  

Figure 8.1. Location map for the digital elevation data used to generate realistic fault 

architectures. The data is located within the Afar rift system, Ethiopia. A number of the rift 

elements are shown for reference. See Rowland et al., 2007; Barberi & Varet, 1977 for 

details. 
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8.3.2 Seismic Forward Modelling and Geocellular Grid Construction 

The process of deriving a synthetic seismic cube from the DEM and comparing simulated 

production across the outcrop and seismically resolvable fault geometries involves a four-stage 

workflow (figure 8.2). Two separate relay zone examples at reservoir scale have been 

identified and focussed upon, representing both partially- and fully-breached geometries 

(figure 8.3). The DEM is imported as a spatially referenced points set into industry standard 

geo-modelling software, where it is translated to a depth typically analogous to a hydrocarbon 

reservoir (3500m). A convergent interpolation algorithm is applied to generate a surface from 

the points data which is then cropped around the different geometries to a size of 

approximately 400m x 400m. These separate surfaces are then used as the basis for 

constructing high resolution fault models capturing the outcrop derived fault structure. 

Surface attributes such as dip angle and azimuth, and edge detection are employed to aid 

identification of small scale structures which are then used to condition the generation of a 

geo-cellular grid. To avoid prohibitively long simulation runs later in the workflow the grid is 

constructed with horizontal cell dimensions of 5m. Loss of resolution associated with this grid 

cell dimension is minimised by careful location of cell nodes using the higher resolution DEM 

as a guide. Vertical grid dimensions are set at 1.5m, with two different reservoir interval 

thicknesses of either 10m or 30m, which are over- and under-lain by impermeable shales 

(Figure 8.4). These thicknesses represent scenarios where the reservoir is thinner and thicker 

than the mean cumulative fault throw respectively, and henceforth are correspondingly 

referred to as high and low thickness to throw ratios (Th:tw). Each interval thickness is 

populated with two separate sets of petrophysical properties (Porosity, Permeability, VClay), 

representing both a homogenous clean sandstone, and a vertically heterogeneous stratigraphy 

based on proprietary North Sea well data through a Brent group reservoir (figure 8.4). The 

distributions of these properties relative to the fault geometries are then used to calculate the 

fault rock properties used during reservoir simulation, assuming that fault clay content as 

defined by the SGR algorithm (Yielding et al., 1997) is the primary control on fault rock 

permeability reduction relative to the host stratigraphy. Other mechanisms such as clay 

smearing and cataclasis are not considered. Low-, mid- and high-seal case fault transmissibility 

multipliers (Knai & Knipe, 1998; Manzocchi et al., 1999) are calculated by employing three 

separate clay content to permeability functions based on those of Manzocchi et al (1999), 

Jolley et al (2007) and Sperrevik et al (2002) respectively. These represent high-, mid-, and low-

fault rock permeability respectively. Fault threshold pressures of 5.9 bar have been assigned 

based on mean SGR values for the suite of models, and the relationship defined by Bretan et al 
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(2003). To avoid introducing complicating variables this value has been kept constant for all 

faults across all models. 

 

 

 

 

 

 

Figure 8.2 (Next page). Generalised workflow used for comparing simulation results for 

outcrop derived and seismically forward modelled fault geometries. (A) High resolution 

LIDAR DEM is used to construct a detailed fault model and geocellular grid at a depth of 

3500m. This grid is subsequently populated with appropriate petrophysical properties. (B) 

The populated geocellular grid is exported to forward modelling software where the elastic 

and reflectivity properties are calculated. These properties are used in conjunction with a 

background model and seismic survey design to generate a 3D synthetic pre-stack depth 

migrated seismic cube. (C) The forward modelled seismic cube is interpreted and the 

seismically resolvable fault geometries used to construct a second geocellular grid. This grid 

is populated with the same petrophysical properties as the original, outcrop derived 

models. (D) Fluid flow simulation results for both the outcrop derived and the seismically 

resolvable geometries allows the differences in across-fault flow which result due to the 

discrepancies in fault architecture to be identified.   
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Figure 8.3. Summary of the detailed architectures used to generated the outcrop derived 

models. (A) Partially breached (i) and fully breached (ii) relay zone architectures as 

modelled from the high resolution DEM. (B) Cumulative throw profiles for the outcrop-

derived fault geometries in (A).  

Figure 8.4 (Next page). Well log views of petrophysical properties used to populate the 

geometries in figure 8.3. The reservoir interval is either thicker (A, B) or thinner (C, D) than 

the mean fault throws shown in figure 8.3 The stratigraphies are either homogenous (A, C) 

or derived from North Sea well data (B, D).   
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In addition to the petrophysical properties required for reservoir simulation a number of 

additional properties required for the seismic forward modelling process are defined within 

the geo-cellular grid. These properties include mineralogical volumetric fractions such VSand 

and VShale as well as pore pressure and fluid saturations. These properties have again been 

derived from proprietary well data where possible, with pore pressure defined as being 

approximately 22 Mpa above the hydrostatic gradient. This value is based on proprietary data 

from the Penguins oilfield (chapters 5, 6). The populated geo-cellular grids are exported to 

seismic forward modelling software where the mineralogical compositions and porosity are 

used to calculate the solid density assuming a Reuss mixing model (Reuss, 1929). Gassmann’s 

theory (Gassmann, 1951) is then applied along with the fluid properties (Table 8.1) and 

saturation distribution to determine the elastic properties of the model, with reflectivity 

subsequently calculated using the Zoeppritz equations (Zoeppritz, 1919). A 3D seismic survey 

geometry is defined and a coarser resolution overburden model is constructed so as to 

account for wave propagation through the subsurface for a given input wavelet. The 

geological, elastic and reflectivity properties are combined with the background model and 

survey design and a simulated prestack local imaging (SimPLITM) algorithm (Gjøystdal et al., 

2007) is applied to generate a synthetic pre-stack depth migrated 3D seismic cube (figure 8.2). 

This process is repeated for the eight configurations of fault geometry and property 

distribution which have been modelled. 
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PROPERTY VALUE 

Shale density 2.6 g/cm3 

Sand density 2.65 g/cm3 

Shale bulk modulus 21 GPa 

Sand bulk modulus 37 GPa 

Shale shear modulus 7 GPa 

Sand shear modulus 44 GPa 

Water density 1.02 g/cm3 

Water bulk modulus 2.78 GPa 

Oil density 0.65 g/cm3 

Oil bulk modulus 1.45 GPa 

 

 

 

Reflectors within the synthetic seismic volumes which correspond to key horizons are 

interpreted in geo-modelling software with a range of surface attributes such as coherency, 

edge detection and dip azimuth applied to aid fault interpretation and modelling (Townsend et 

al., 1998, Freeman et al., 2010). Faults have been picked on every trace (approximately 10m 

spacing) in order to maximise lateral resolution and to maintain a consistent interpretation 

methodology. The seismically resolvable fault and horizon geometries are used to construct 

geo-cellular grids at the same dimensions and populated with the same properties as the 

detailed grids from which they are derived (figure 8.5). Fault transmissibility multipliers are re-

calculated using the property distributions as defined by the forward modelled geometries. 

 

 

 

 

 

 

Table 8.1. Physical properties used for generation of elastic and reflectivity cubes used in 

the seismic forward modelling process. 

Figure 8.5 (Next page). Oblique view of a selection of the high resolution, outcrop derived 

input models, synthetic seismic with ‘Top Reservoir’ horizon and faults shown, and the 

resulting geocellular grid based upon the seismically resolvable fault geometries. (A) 

Thickness < Throw, homogenous stratigraphy, partially breached relay. (B) Thickness > 

Throw, heterogeneous stratigraphy, partially breached relay. (C) Thickness < Throw, 

homogenous stratigraphy, fully breached relay. (D) Thickness > Throw, heterogeneous 

stratigraphy, fully breached relay. 
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8.3.3 Simulation 

Following generation of both outcrop derived and seismically resolvable grids, the effect of the 

discrepancies between the two geometries upon across fault flow can be quantified using flow 

simulations. Simulation is performed using the EclipseTM black oil simulator (Schlumberger, 

2008), with a 12 year waterflood development strategy consisting of a single injection well in 

the hangingwall and a single production well in the footwall. Maximum production rates have 

been set as 50 sm3/day for oil and 250sm3/day for produced water (i.e. an 83% water cut), 

with injection rates set to match oil production rates (Table 8.2). These rates are broadly inline 

with both the production data from proprietary dataset used to populate the stratigraphy, and 

similar simulation bases studies (Rotevatn et al., 2009a, b, Rotevatn and Fossen., 2011). To 

minimise compositional effects the bottom hole pressure has been set to prevent the bubble 

point pressure from being reached during pressure depletion of the reservoir. Aquifer support 

consists of a Carter-Tracy aquifer (Batycky et al., 2007) with drive from the down-dip 

hangingwall, as would be expected for a tilted fault block trap geometry. 

8.4 Simulation Results 

Key parameters highlighting the differences between the flow response across outcrop and 

seismically-resolvable fault geometries include the oil production rate, cumulative oil 

production volume and fluid saturation. Instances where fault geometry and fault properties 

play a significant role in controlling oil production can be identified by plotting the standard 

deviation of the simulated results against time (figure 8.6). For a particular stratigraphy there 

are 12 possible different structural configurations (figure 8.7). These encompass breached and 

partially breached relay zone geometries, their forward modelled counterparts, as well as the 

low-, mid- and high-case fault TM scenarios for each fault geometry. A high standard deviation 

of the simulation results indicates that the structural variability is significantly influencing the 

production response. Where the reservoir thickness is less than the mean cumulative fault 

throw there is an initially high degree of variability between the different fault geometries for 

the oil production rate (figure 8.6 A), which decreases as the reservoir becomes depleted and 

production rates tend towards zero. Similarly, there is considerable variability in the 

cumulative oil production volume between the different fault configurations (figure 8.6 B). In 

contrast, for cases where the stratigraphic thickness of the reservoir interval is greater than 

the mean cumulative fault throw (high Th:tw) the variability of simulated production results 

for the different structural configurations is minimal.  
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Reservoir Conditions  

Min Pressure 145 Bar 

Max Pressure 580 Bar 

Temperature 100 °C 

Reference Pressure  557 Bar 

Datum depth -3540 m 

Fluid Properties  

Oil density 650 kg/m3 

Bubble point pressure 142 Bar 

Water Salinity 30000 ppm 

Rock physics functions  

Residual oil saturation to water (Sorw) 0.25 

Critical water saturation (Swcr) 0.35 

Corey correlation (water) 4 

Corey correlation (oil-water) 3 

Max relative permeability of water    1 

Max relative permeability of oil 0.8 

Aquifer properties  

Aquifer type Carter Tracy 

Drive direction Grid edge (090-270°) 

Initial pressure 557 Bar 

Permeability 100 mD 

Porosity 0.2 

External radius 150 m 

Thickness 50 m 

Development strategy  

Simulation run time 12 years 

Reporting frequency 10 days 

Target oil production rate 50 sm3/day 

Injection replacement fraction target 1 

Min bottom hole pressure (producer) 175 Bar 

Water injection rate 250 sm3/day (max) 

 

 

Table 8.2. Properties used during reservoir simulation. Many of these properties are 

derived from similar studies (e.g. Manzocchi et al., 2008; Rotevatn et al., 2009; Rotevatn 

and Fossen 2011). 
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 Figure 8.6 (Previous page). Plots of standard deviation against time for the different fault 

geometries, stratigraphies and fault properties modelled. For a particular stratigraphy the 

standard deviation of the simulated results for the different fault geometries and 

properties, and their seismically resolvable counterparts is represented. A high standard 

deviation indicates that the across fault flow is significantly influenced by the fault 

geometry and properties. (A) Oil production rate (OPR), (B) Cumulative oil production 

(OPC). For both OPR and OPC the faults have a significantly greater impact when the 

reservoir interval is less than the mean fault throw (low Th:tw). 

 

Figure 8.7 (Next page). Figure illustrating the 12 different simulation runs for each 

individual stratigraphy. Each stratigraphy is populated within either a partially breached, or 

fully breached relay zone geometry. Each of these geometries is then seismically forward 

modelled. The resultant outcrop-derived and seismically resolvable geometries are used to 

calculate high-, mid- and low-case fault TMs based on the original stratigraphy (albeit 

populated within the resulting grids). Since there are four different stratigraphies used, the 

total number of simulation runs is 48. 
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The simulation results for the different geometries, stratigraphies and fault rock permeabilities 

are summarised in figure 8.8. For a high Th:tw, varying the fault TMs only leads to significant 

variations in simulation results where a clay rich stratigraphy has been combined with the 

high-case (Sperrevik et al., 2002) fault TMs (i.e. low permeability fault rocks) (figure 8.8B). In 

contrast, where the stratigraphic thickness is less than the mean cumulative fault throw (low 

Th:tw) there are major differences in the results between the outcrop and seismically 

resolvable geometries (figure 8.8E, G). These effects are magnified where the well-derived 

stratigraphy, with its higher clay content, has been modelled and has hence resulted in higher 

clay-content, lower permeability fault rocks. Where a low Th:tw has been modelled with a fully 

breached relay zone there is no across-fault juxtaposition of the reservoir interval and hence 

no across-fault hydrocarbon flow or pressure support from the aquifer (8.8F, H). In these 

situations the footwall suffers rapid pressure depletion with minimal hydrocarbon production 

before the production well reaches its minimum bottom hole pressure and ceases to flow.  

Figure 8.8 (Next page). Summary of simulation results segregated according to relay 

geometry (partially or fully breached) and stratigraphy. Both oil production rate (OPR) and 

cumulative oil production (OPC) are plotted, with results colour coded by the fault TMs 

used. Outcrop derived fault geometries are in solid lines whilst forward modelled 

geometries are in dashed lines. 
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8.4.1 Impact of Across-Fault Juxtaposition Area 

The occurence of disparities in production results between the different fault geometries can 

be explained in terms of the effective juxtaposition area. The effective juxtaposition area is 

defined as the area of across-fault self juxtaposition of the reservoir interval that provides a 

direct or indirect flow pathway between the hangingwall and footwall (figure 8.9). 

Juxtaposition area across parts of faults contained entirely within either the footwall or 

hangingwall (e.g. fault tips and splays) does not contribute (although they may still effect the 

overall sweep pattern of the reservoir).  

 

 

 

 

 

 

 

 

 

Figure 8.9. (A) Schematic aerial view illustrating the concept of the effective juxtaposition 

area across a fault or fault set. The effective juxtaposition area is the area of juxtaposition 

which connects the footwall and hangingwall blocks across a fault. Splays (arrowed, and 

shown in grey) contained entirely within a single fault block do not contribute, since they 

do not connect the footwall and hangingwall. (B) Example from seismically forward 

modelled geometries. Across-fault juxtaposition is shown in red. (C) As (B) but with non-

contributing splays greyed-out.  
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Figure 8.10 shows how the effective juxtaposition area varies between the outcrop-derived 

and the forward modelled, seismically resolvable, fault geometries. The plots are normalised 

relative to the outcrop-derived fault geometry, and are also annotated with the absolute 

effective juxtaposition area in square meters. For both partially breached and fully breached 

geometries the effective juxtaposition area is significantly lower for the seismically resolvable 

fault geometries than the outcrop geometries. This is a function of the limited resolution of the 

seismic data. Fault zones are poorly imaged due to diffraction effects (Townsend et al., 1998) 

leading to uncertainty in the fault zone architecture and in the position of fault-horizon 

intersections. Geometries such as slip partitioning, lenses and relay zones resulting from the 

growth processes of faults (Childs et al., 2009) are often not observed. Consequently faults are 

modelled as single surfaces leading to a reduced juxtaposition area (figure 8.11). The 

magnitude of the difference in juxtaposition area is amplified where there is a low Th:tw, since 

a lower throw is required to completely offset the reservoir and result in a juxtaposition seal. 

The absolute values of effective juxtaposition area are higher for the partially breched 

geometries than the fully breached geometries. Again, this is a result of fault growth 

processes, with profile readjustment of the hard linked faults leading to increased throw 

across the relay and hence lower juxtaposition areas being maintained. In addition, as throw 

localises onto the through-going structure small-scale faults and splays are abandoned in the 

footwall or hangingwall and hence do not contribute to the effective juxtaposition area. 

Figure 8.10 (Next page). Effective juxtaposition areas for the different stratigraphies for the 

partially breached (A) and fully breached (B) relay zone geometries. The juxtaposition areas 

for the seismically resolvable geometries are normalised against the outcrop derived 

juxtaposition area. The absolute value for effective juxtaposition area is also shown in m3. 

Seismically resolvable geometries have a consistently lower across-fault juxtaposition area 

than their realistic counterparts, with the effect magnified for instances where the 

reservoir thickness is less than the mean fault throw.   
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The effects on simulated production of the disparities in juxtaposition area can be significant, 

with final cumulative produced volumes varying by over a factor of 4 (figure 8.12, 8.13). Figure 

8.12 shows an expanded version of the simulation results shown in figure 8.8 (A, E) which 

illustrates the differences between outcrop and seismically resolvable geometries for low-, 

mid- and high-case fault rock permeability, and for both high and low Th:tw ratios. Also shown 

are fault-normal views displaying the area of across-fault self juxtaposition of the reservoir 

interval. Where a high Th:tw is modelled the effective juxtaposition areas are on the same 

order of magnitude for both outcrop- (figure 8.12A) and seismically-resolvable (figure 8.12B) 

geometries, leading to virtually no differrence in the simulated production results regardless of 

the different fault TMs. In contrast where a low Th:tw is modelled, the effective juxtaposition 

area is over an order of magnitude lower for the seismically-resolvable geometry (figure 8.12D) 

than the outcrop-derived geometry (figure 8.12C), leading to significant variations in the 

simulation results. The architectural complexity of the outcrop geometry leads to in excess of 

an order of magnitude greater effective juxtaposition area than the seismically resolvable 

geometry, and hence to multiple potential flow pathways being preserved. For the outcrop 

derived fault geometries with a low Th:tw the influence of varying the fault TMs is not as 

pronounced as for the seismically resolvable geometry. Although the different TMs do lead to 

variations in the onset of production decline, over the course of the simulations the cumulative 

Figure 8.11. Cross sections illustrating the differences between the outcrop derived fault 

geometry and the seismically resolvable geometry. The model geometry is superimposed 

onto the forward modelled seismic volume. (A) Outcrop derived geometry. Displacement 

partitioning on multiple slip surfaces leads to maintenance of across fault juxtaposition of 

the reservoir interval (yellow) despite the cumulative fault throw being greater than the 

reservoir thickness. (B) Image of the forward modelled seismic volume. Very few details of 

the fault architecture are resolved. (C) Seismically resolvable fault geometry. Only single 

slip plane can be positively interpreted from the forward modelled seismic (B). This leads to 

the reservoir interval being completely offset and hence a juxtaposition seal being present.  
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produced volumes are similar. This differs to the seismically resolvable geometries, where 

production rates and hence cumulative volumes vary significantly over the course of the 

simulations. The high-case fault TMs (low permeability) lead to restricted across fault flow and 

hence low production rates compared to the mid- and low- case TMs. This is reflected in the 

cumulative produced volumes which vary by up to factor of 7 between the different fault TMs 

over the course of the simulation runs (figure 8.13).  

 

 

 

 

 

 

 

 

Figure 8.12. Simulation results highlighting the importance of the ratio of stratigraphic 

thickness to fault throw (Th:tw) in terms of the effective juxtaposition area (shown) for a 

partially breached relay zone geometry. Colour coding is as figure 8.8. The well-derived 

petrophysical properties are used in all cases. (A) High Th:tw, outcrop fault geometry. (B) 

High Th:tw, seismically resolvable geometry. (C) Low Th:tw, outcrop fault geometry. (D) 

Low Th:tw, seismically resolvable geometry. For discussion see text. OPC = Oil Production 

Cumulative, OPR = Oil Production Rate. 
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The impact of varying the juxtaposition area and the fault TMs is also manifested by the fluid 

saturation distribution (figure 8.14). For the outcrop-derived geometries there is increased 

focussing of flow up the relay zone with decreasing fault rock permeability (high-case TMs), 

since the relay zone offers the path of least resistance. This is true for both high and low Th:tw, 

although is more apparent for low Th:tw. Despite this, for the outcrop derived geometries the 

saturation distributions are broadly consistent irresepective of the fault TMs used (figure 8.14). 

Conversely the saturations for the geometries resolvable in the seismic data vary vastly at any 

one timestep depending on the different fault geometries (and hence juxtaposition area) and 

the different fault TMs. Where a high Th:tw is modelled varying the fault TMs has very little 

impact, whereas  a low Th:tw leads to significant variation in the simulated saturation 

distribution. In this situation the high-, and mid-case TMs reduce across fault flow and hence 

impede the replacement of oil with water in the hangingwall. The low-case TMs however have 

little impact on flow retardation, with production simulation results being very similar to the 

outcrop derived geometry.  

Figure 8.13. Plot illustrating the magnitude in the difference between cumulative produced 

volume for the different fault TM cases modelled for each geometry shown in figure 8. For 

the low Th:tw, forward modelled case varying the fault TMs has a significant impact with 

the produced volume varying by up to a factor of 7 between the low and high cases. In 

contrast varying the fault TMs for a high Th:tw configuration has little impact on the 

cumulative produced volume.  
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Figure 8.14. Images of fluid saturation part way through the simulation runs for the models 

shown in figure 8. There are limited differences in fluid distribution between the outcrop 

and seismically resolvable fault geometries and the different fault TMs where there is a high 

Th:tw, and hence a large juxtaposition area. In contrast the low Th:tw cases show significant 

differences in fluid saturation distribution for the different fault geometries and different 

fault TMs. 
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8.4.2 Impact of Fault Rock Properties 

The results imply that the impact of fault TMs is limited above a critical amount of across-fault 

juxtaposition area being maintained. To illustrate this a number simulations have been 

performed using constant fault TMs and a homogenous stratigraphy (figure 8.15). Using 

constant fault TMs is geologically unrealistic, however it ensures that a single variable 

(juxtaposition area) is influencing the results. Figure 8.15 shows that for the outcrop-derived 

geometry with its high amount of across-fault juxtaposition there is little difference in the 

cumulative produced volumes despite the TMs spanning 3 orders of magnitude. In contrast, 

for the seismicaly resolvable geometry with low juxtaposition area, varying the fault TMs 

makes a significant difference to the cumulative production volume. TMs of 0.001 and 0.01 

significantly impede across-fault fluid flux and hence reduce the cumulative produced volume 

of hydrocarbon. However, the less flow-retardent TM values have limited impact, with 

simulation results being similar to those of the outcrop-derived geometry with its larger 

juxtaposition area. These results confirm that the juxtaposition area is critical in controlling 

across-fault flow, with high juxtaposition areas negating the impact of low permeability fault 

rocks. An alternative viewpoint is based on the observation that the results for the low 

juxtaposition area, seismically resolvable, geometry have very similar production respones to 

that of the high juxtaposition area, outcrop-derived, geometry where the less sealing fault TMs 

have been applied. This suggests that even very small juxtaposition windows can control cross 

fault flow in situations where the fault rock is relatively permeable (e.g. low clay content).  

 



- 254 - 
 
 

 

 

 

 

 

 

 

 

The results have a number of implications. Firstly, as expected, fault geometries resolvable in 

seismic data are significantly simplified relative to outcrop examples. Complex fault 

architectures which are below seismic resolution lead to displacement partitioning across 

multiple slip surfaces, with this partitioning and complexity being a direct a result of fault 

growth processes. The result is that seismically resolvable fault geometries have significantly 

lower across fault juxtaposition area than that likely to be present for relaistic, outcrop-derived 

geometries. The magnitude of this effect is significantly greater where the vertical thickness of 

the reservoir interval is less than the mean cummulative fault throw (low Th:tw), although the 

single dataset examined here does not allow a general estimate of this disparity to be 

confidently made. Seismically resolvable fault geometries generaly consist of a single fault 

plane which accomodates all of the fault displacement. As a consequence, low Th:tw 

configurations are often modelled with the reservoir interval being completely offset, hence 

resulting in widespread juxtaposition sealing. In contrast the architectural complexity of 

realisitic fault geometries, as defined by our outcrop examples, leads to maintanence of 

across-fault juxtaposition, even for low Th:tw situations (figure 8.11, 8.12).  

Our simulation results suggest that it is the juxtaposition area which is the most critical factor 

in controlling across-fault fluid flow, with fault rock properties being of subordinate 

importance (figures 8.12, 8.13, 8.14, 8.15). For realistic fault geometries, with high 

juxtaposition areas, there is minimal difference in simulated results irrespective of the fault 

TMs which are apllied. Converesely the seismically resolvable geometries, with low 

juxtaposition areas, display significant variation between different fault TM scenarios. This 

leads to the most important implication, that seismically resolvable fault geometries are often 

Figure 8.15 (Previous page). Comparison of the simulated cumulative produced volume of 

oil where constant fault TMs are specified. Limited differences exist in the results for the 

outcrop geometry (solid lines) irrespective of the fault TMs applied. In contrast the low 

juxtaposition area of the seismically resolvable geometries leads to significant variations in 

cumulative production between the different fault TMs. This illustrated the importance of 

correctly modelling fault geometry and across-fault juxtaposition area and indicates that 

seismically resolvable fault geometries will tend to result in overly sealing faults being 

modelled during reservoir simulation. Interestingly, where high permeability fault rocks 

(e.g. TMs = 1, 0.1), the simulated response for low and high juxtaposition areas are similar. 

This suggests that under these conditions (high permeability fault rocks) even very small 

juxtaposition windows can dominate the across fault flow of hydrocarbons.  
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modelled as being too sealing, since they underestimate the juxtaposition area available to 

across-fault flow. This also leads to erroneous emphasis being placed on the influence of fault 

rock properties on fluid flow. Indeed, since the calculation of SGR-based fault TMs is 

dependent on fault throw, it is likely that the fault TMs applied to seismically resolvable fault 

geometries may be inappropriate. 

8.5 Stratigraphic Permeability Structure 

Our initial results have largely focussed on how the geometric disparity between realistic and 

seismically resolvable fault geometries effects across-fault fluid flow for different fault TMs. 

There are however a number of additional stratigraphic factors that also contribute to these 

disparities. 

8.5.1 Vertical Permeability 

Although a number of our models utilise a well-derived, vertically layered permeability 

distribution, within each individual layer the permeability values are isotropic. It is common 

however for vertical to horizontal permeability ratios (Kv:Kh) to be significantly lower than 1 

due to compaction and preferential alignment of grains during burial. This leads to the 

impediment of layer-perpendicular fluid flow which hence restricts hydraulic connectivity of 

vertically separated layers. Previous work (Manzocchi et al., 2010) has shown the importance 

of fault structure in enhancing vertical connectivity in low Kv:Kh sequences. The relative 

impact of varying the Kv:Kh on the simulated production response of outcrop and seismically 

resolvable fault geometries has been assessed by running simulations across 6 orders of 

magnitude of Kv:Kh (Manzocchi et al., 2010) (figure 8.16). Mid-case fault TMs have been 

assigned for all scenarios. For both geometries a lower Kv:Kh results in a lower cumulative 

production volume, with the absolute produced volumes being lower for the seismically 

resolvable geometry compared to the outcrop-derived geometry. The results for the 

seismically resolvable geometry also display significantly more variation than those of the 

outcrop-derived geometry. As already seen, outcrop fault geometries are significantly more 

complex than those resolved within seismic data. This complexity enhances vertical 

connectivity by allowing across-fault juxtaposition of otherwise vertically separated areas, and 

hence leads to less disparity between high and low ratio Kv:Kh stratigraphies. As a result, the 

limited across fault juxtaposition area of the seismically resolvable geometries restricts the 

vertical connectivity and leads to greater variability between the different Kv:Kh ratio 

stratigraphies. This suggests that determining the correct Kv:Kh may be less important than 

simulations based upon seismically resolvable fault geometries would imply. 
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Figure 8.16. Plots illustrating the impact of vertical to horizontal permeability ratio (Kv:Kh) 

on cumulative hydrocarbon production for (A) Outcrop derived fault geometry and (B) 

Forward modelled, Seismically resolvable fault geometry. The percentage difference 

between the highest and lowest Kv:Kh ratios is shown by the solid black lines. In both cases 

lower Kv:Kh results in lower cumulative hydrocarbon production over the course of the 

simulation runs. The difference between the highest and lowest produced volumes 

however is significantly greater for the seismically resolvable fault geometries (B, approx 

40%) than the outcrop derived fault geometries (A, approx 20%). Note that the absolute 

produced volumes are also significantly lower for the seismically resolvable geometry (B). 
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8.5.2 Net:Gross Ratio 

The initial models employed a stratigraphy where the reservoir interval had a constant net to 

gross ratio of 1. Vertical connectivity was hence not as restricted as would be the case for an 

interbedded sequence of permeable and impermeable layers. In such vertically stratified 

sequences faults can significantly enhance vertical permeability by juxtaposing otherwise 

separate layers (Manzocchi et al., 2010). To test the impact of fault geometric uncertainty in 

these situations a series of models for both outcrop and seismically resolvable geometries 

have been constructed with the net:gross ratio ranging between 0.14 and 0.46 (figure 8.17). 

The effect of varying the net:gross ratio upon the effective juxtaposition area available for 

across-fault flow is shown in figure 8.18. For both outcrop and seismically resolvable 

geometries the effective juxtaposition area increases with net:gross. Intuitively it would be 

expected that the mean SGR values on these juxtaposition windows would decrease with 

increasing net:gross since overall there is less shale within the sequence, however this is not 

the case. Instead a more complex, less predictable pattern of mean SGR values emerges, 

especially for the outcrop-derived geometry. At the lowest values of net:gross the majority of 

juxtaposition windows occur where the throw is less than the thickness of the individual layers, 

for example towards fault tips (figure 8.19). A minimal volume of shale has therefore passed 

the fault and hence low SGR values result. In contrast, where moderate net:gross ratios have 

been modelled, a greater amount of juxtaposition area occurs, however a larger proportion of 

shale has passed these windows and resulted in a higher SGR value (figure 8.18).  
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Figure 8.18 (Next page). Variation of effective juxtaposition area and mean SGR values with 

Net:Gross ratio. The SGR values are restricted to the values where the reservoir interval is 

self juxtaposed. (A) Outcrop derived geometry, (B) Seismically resolvable geometry. Note 

the different scales for effective juxtaposition area. For explanation see text. 

Figure 8.17. Oblique view of partially breached outcrop geometry populated with varying 

net to gross ratios (N:G). Brown represents shale, whilst yellow represents sand. (A) N:G = 

0.14, (B) N:G = 0.18, (C) N:G = 0.23, (D) N:G =0.27, (E) N:G = 0.36, (F) N:G = 0.46. 
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The ‘net’ portions of the simulation models have a constant horizontal permeability of 50mD 

with Kv:Kh of 0.0001. Figure 8.20 shows the cumulative production volume of the forward 

modelled geometry as a percentage of the cumulative production volume for the outcrop 

Figure 8.19. Oblique view of outcrop-derived fault geometries illustrating the disparity in 

SGR values between low (A) and high (B) net:gross. Faults are shown as a transparency 

with SGR values superimposed where the reservoir interval is self juxtaposed. The base 

reservoir horizon is also shown. (A) Low N:G (0.14) results in the reservoir only being self-

juxtaposed at areas of very low displacement, i.e. at the fault tips. Since these areas have 

passed little shale during deformation, their corresponding SGR values are low. (B) In 

contrast a higher N:G (0.46) leads to multiple sections of the reservoir interval being self-

juxtaposed. Many of these intervals have passed shale during deformation and hence have 

higher SGR values. 
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geometry for low-, mid- and high-case fault TMs (figure 8.20A, B and C respectively). In all 

cases the higher net:gross stratigraphies lead to a greater similarity in the cumulative 

produced volume between the outcrop and the seismically resolvable fault geometries. 

Similarly, the more permeable the fault rock (i.e. low-case TMs), the closer the results for the 

seismically resolvable geometry are to the outcrop geometry (figure 8.20A), although with 

significantly more variability than for the less permeable cases (Figure 8.20C) (high-case TMs).  

As we have seen, juxtaposition area increases with net:gross for both outcrop-derived and 

seismically resolvable geometries, but it remains consistently lower for the seismically 

resolvable geometry (figure 8.18). Where low-case (high permeability) fault TMs are specified 

(figure 8.20A) the disparity in juxtaposition area between the two geometries has less impact 

on the simulated production, since the low-case fault TMs do not excessively restrict across-

fault flow. Therefore, for any given net:gross ratio the difference between the outcrop-derived 

and seismically resolvable geometries is less than for the  cases with lower permeability fault 

rocks (figure 8.20C). Since the low-case fault TMs do not overly influence across-fault flow, the 

disparity in the juxtaposition area of the different net:gross stratigraphies is more pronounced. 

In contrast where high-case TMs are employed (figure 8.20C) the cumulative production 

volume is consistently lower for the seismically resolvable geometry than the outcrop-derived 

geometry irrespective of the net:gross of the stratigraphy. This indicates that the low 

permeability of the fault rocks, combined with the lower juxtaposition areas of the seismically 

resolvable geometry, is severely restricting across fault flow. This emphasises that the 

predicted impact of faults within reservoirs based upon their seismically resolvable geometries 

may vary significantly compared to their impact when realistic geometries (and hence 

juxtaposition areas) are accounted for.  

Figure 8.20 (Next page). Cumulative produced volume of seismically resolvable geometries 

as a percentage of that of the outcrop geometry for varied NTG ratios. (A) low case TMs, 

(B) mid case, (C) high case. Higher fault rock permeability (A) leads to less disparity 

between seismically resolvable and outcrop derived fault geometries than less permeable 

fault rocks (C). For discussion see text. 
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8.5.3 Effective Permeability  

Although the differences in flow response between realistic- and seismically-resolvable fault 

geometries are evident from the results presented, they are for a specific, rather than a 

general case. It is recognised that the relative impact of faults upon fluid flow for a generalised 

case is a function of the effective permeability (Pickup et al., 1994; Manzocchi et al., 1998; 

Freeman et al., 2010). The effective permeability is the harmonically averaged permeability of 

the system as a whole, which includes the permeabilities of the host on the upstream and 

downstream sides of a fault, the path-length from the injection well (if present) across the 

fault(s) and to the production well, as well as the fault permeability and thickness. In numerical 

flow simulators these properties are represented as grid-cell transmissibilities and 

dimensionless fault transmissibility multipliers, however it is perhaps easier to visualise as 

effective permeability. As a consequence of effective permeability the properties of the 

stratigraphic model, the placement of wells, and the production strategy employed all 

influence the relative impact of faults upon fluid flow. Fluid flow in the subsurface follows 

Darcy’s law (EQ1, Darcy, 1856). If a constant pressure gradient, fluid viscosity and path length 

(i.e. well spacing) is assumed then the fluid flux becomes proportional to the permeability, K, 

and cross sectional area, A (EQ2). Where flow is across a fault the cross sectional area is 

restricted and is proportional to the juxtaposition area (figure 8.21, for a more in-depth 

explanation see e.g., Yaxley, 1987; Manzocchi et al., 1999; Schlumberger Eclipse 2008). This 

equation implies that for a given path length (i.e. L1+L2+L3), the effect that a fault has on flow is 

determined by both its own properties (juxtaposition area, thickness and permeability), and 

the permeability of the host rock. 
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To demonstrate the effect of varying the effective permeability a number of simulations have 

been performed with the host permeability being the altered variable, rather than, as with our 

previous examples, the fault permeability. Figure 8.22 shows the simulated cumulative 

production volume for the outcrop and seismically resolvable fault geometries for a low Th:tw. 

The host permeabilities have been varied across three orders of magnitude and high-, mid- and 

low-case fault TMs have been assigned. For the outcrop-derived fault geometry (figure 8.22A) 

with its large area of juxtaposition the host permeability is the controlling factor for the 

produced volume, with the results clustered according to the value of the host permeability 

(line style). The standard deviation between the different TMs for each host permeability 

Figure 8.21. Schematic illustrating the concept and of effective permeability in terms of 

Darcy’s law in two dimensions. P = pressure, K = permeability, A = cross sectional area, L = 

length. 
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grouping is relatively low (figure 8.22B), suggesting that the fault permeability plays a minor 

role. In contrast the results for the seismically resolvable, low juxtaposition area fault 

geometries (figure 8.22C) are broadly clustered according to the fault TMs (line colour). Within 

each host permeability grouping there is a large difference in the simulated results depending 

on the fault TM values assigned, and hence there is a high standard deviation (figure 8.22D). 

The explanation for these differences is reconcilable with the concept of effective 

permeability. As previously stated the across fault fluid flux is proportional to the product of 

the effective permeability and the juxtaposition area. Where the juxtaposition area is high, the 

differences in the effective permeability caused by varying the fault permeability has only a 

limited effect on the across fault flow. In this situation the host permeability is significantly 

more important the fault permeability in respect to controlling fluid flow. Where juxtaposition 

area is low, the variations in the effective permeability caused by the fault permeability are 

large enough to influence the flux rate and hence the cumulative production values. Again, this 

suggests that since seismically resolvable fault geometries will tend to underestimate 

juxtaposition area, faults will tend to be modelled as overly sealing, and too great an emphasis 

placed on the relative importance of fault rock properties. In reality, since the area of 

juxtaposition is significantly larger than can be imaged, the fault rock petrophysical properties 

do not as strongly influence across-fault flow as they would based upon seismically resolvable 

juxtaposition area. 

 

 

 

Figure 8.22 (Next page). The influence of varying the effective permeability (by varying the 

host permeability) on simulated cumulative production results for Outcrop and seismically 

resolvable fault geometries. For the outcrop geometry, with its high juxtaposition area, the 

simulation results are controlled by the host permeability rather than the fault rock 

permeability (A). This leads to a relatively low standard deviation (B) in the results when 

different fault TMs are applied for a specific host rock permeability. Where the seismically 

resolvable fault geometries are modelled (C) the cumulative production is controlled by the 

fault rock permeability due to the low juxtaposition area. This leads to a large standard 

deviation in the results when the fault TMs are varied.  
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8.6 Discussion 

Faults are almost universally represented within fluid flow simulators as simple, single slip-

surfaces. The reason for this is both an issue of data resolution, and the mechanisms for 

incorporating faults within geocellular grids. However, fault growth processes necessitate that 

fault architecture is significantly more complex than the geometries resolvable in, and 

modelled from, seismic data. As a result, simulation models which are constructed based upon 

seismically resolvable fault geometries are unlikely to behave in the same way as would the 

complex fault geometries present in the subsurface.  

A number of different approaches may aid and improve the accuracy of simulations where 

faults are present. A number of tools exist for predicting fault architecture based upon the 

burial history and geomechanical properties of the stratigraphy, however these are generally 

restricted to two dimensions (e.g. Welch et al., 2012). However, difficulties arise in 

incorporating this complexity into large reservoir models, where horizontal grid-cell 

dimensions may typically be on the order of 200m. Locally refining the grid to a level of detail 

which allows the complexity to be captured often leads to prohibitively long simulation run 

times (Manzocchi et al., 2008). Incorporating the vertical heterogeneity in fault structure is 

even less straightforward given the way geo-cellular grids are constructed in the majority of 

reservoir modelling software packages. Indeed, since our models are based on surface data 

(albeit at a high resolution), they are consequently not fully 3D, rather they could be described 

as being 2.5D. Where it possible to capture and subsequently model the full 3D geometry of 

faults it is likely that the additional heterogeneity encountered would lead to even greater 

levels of across-fault juxtaposition than our 2.5D approximations.  

An alternative approach to that of deterministically including fault geometries and properties 

may be to incorporate complexity in relation to juxtaposition area and fault rock permeability 

via a conditioned semi-stochastic or probabilistic methodology (Odling et al., 2005; Rivenæs et 

al., 2005; Childs et al., 2007; Manzocchi et al., 2008; Yielding, 2012). Although this approach 

has a number of potential pitfalls, especially where a laterally heterogeneous stratigraphy is 

present, it may provide more accurate predictive simulations of fluid flow. Perhaps the 

simplest approach to account for geometric complexity is to stochastically include sub-seismic 

relay zones (Manzocchi et al., 2008) which provide across-fault flow pathways. Geometric 

‘rules’ based on variables such as displacement: length ratios could be used to geologically 

condition the stochastic population of such features.   

Our results have indicated that across-fault juxtaposition area is likely to be severely 

underestimated when based on seismically resolvable fault geometries, potentially leading to 
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faults being modelled as overly retardant to flow. However under certain conditions, such as 

marginal, low net:gross reservoirs will indeed promote juxtaposition limited across fault. 

Under these conditions the relative importance of the fault rock properties on influencing 

across-fault transmissibility increases with significant variability observed where different clay 

content to permeability transforms are applied (e.g. figure 8.12D). These permeability 

transforms are dependent on a number of variables including the specific burial history, hence 

applying a locally calibrated clay content to permeability transform is critical where limited 

across-fault juxtaposition area exists.  

We have purposely focussed on clay mixing (SGR) in terms of permeability reduction across 

faults rather than other processes such as smearing, cataclasis and cementation. This is 

partially for the sake of brevity, since it demonstrates our arguments clearly, and partially 

because it is generally the most prevalent methodology within the hydrocarbon industry for 

generating estimates of fault permeability. Although there is some degree of depth 

dependency on the processes of fault rock formation they are not entirely mutually exclusive 

and hence a number of fault rock types are likely to be present in any single area. This 

notwithstanding, and despite its original inception as a deterministic approach (yielding et al., 

1997), SGR can to some degree be treated as a probabilistic indicator of likely fault 

permeability independent of the actual processes involved in fault rock formation (Childs et al., 

2007; Yielding, 2012). This is in part a reflection of the architectural complexity of fault zones-

they are not single slip surfaces of homogenous composition, but discontinuous zones of 

heterogeneous deformation across multiple slip planes. Appropriate in-situ calibration of 

permeability (for production purposes, Childs et al., 2007), or column height and/or across 

pressure differential (for exploration purposes, Yielding et al., 2010) accounts for this 

heterogeneity. As such SGR can be treated as a proxy for fault properties, rather than as a 

direct deterministic representation. 

Although the complexity in fault architecture is largely controlled by fault growth processes, 

the geomechanical properties of the stratigraphy also influence the resulting geometries. The 

complex fault geometries which we have modelled are hosted in basalt and formed at, or close 

to, the free surface of the earth, and hence under limited confining pressure. Both the 

lithology and stress conditions are therefore a-typical of those found in conventional 

hydrocarbon reservoirs. This raises a question as to the applicability of these geometries to 

faults found at depth within silisiclastic sequences. However as depth, and hence confining 

pressure, increases the contrast between the mechanical properties of different lithologies is 

reduced due to compaction and cementation effects. A ‘strong’ lithology under low confining 

stress will therefore deform in a broadly similar manner to a ‘weaker’ lithology at depth. In 
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addition, sedimentary sequences are by their nature mechanically heterogeneous and are 

hence likely to result in even greater fault geometric complexity than more mechanically 

homogenous lithologies such as basalt. In addition, the geometries modelled herein appear (at 

least qualitatively) to be similar to the types of fault and relay geometries observed in 

silisiclastic sediments, for example in Canyonlands (Cartwright et al., 2005). Although the 

geometries modelled here may not be exactly identical to those in the subsurface, it is the 

inherent complexity which is the relevant variable. As seen, this complexity, in the form of 

features such as fault bound lenses and displacement partitioning across multiple slip surfaces, 

leads to enhanced across-fault juxtaposition relative to the single slip surface fault geometries 

typically employed in hydrocarbon reservoir models. It is the presence, rather than the exact 

geometry, of this juxtaposition which is the important factor in controlling across-fault fluid 

flow. 

The concept of effective permeability for reconciling the relative impact of the stratigraphic 

and the fault properties, as well as their respective uncertainties, on across-fault hydrocarbon 

flow is potentially a powerful tool during field development. The influence of faults on 

hydrocarbon flow reduces as the contrast in permeability between host rock and fault rock 

decreases (figure 8.22). Similarly, increasing the path length for given fault and host 

permeability values will increase the effective permeability, since the ratio of high permeability 

values (host rock) to low permeability values (fault rock) will increase. This suggests that 

production from wells which are further away from faults will be less attenuated than for wells 

in close proximity of faults. Understanding effective permeability therefore has important 

consequences for well placement decisions during hydrocarbon field development of faulted 

reservoirs. This is however complicated somewhat by a number of factors. The stratigraphies 

we have modelled to illustrate the influence of effective permeability are horizontally 

homogenous, and as a result fluid can follow a direct path from injection well to production 

well via the faults. In reality stratigraphic property distribution is far from homogenous, with 

flow pathways often being highly convoluted. Our models have been designed to force fluid to 

flow across the faults, however the necessity for across-fault flow depends on the connectivity 

of the fault network as a whole. Property distributions within lower connectivity fault 

networks may result in fluids flowing around, rather than across faults. In a similar manner 

well connected fault networks are highly likely to have a significant level of subseismic 

geometric heterogeneity, such as relay zones, which will act as fluid conduits and control the 

across-fault flux of fluids.  
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8.7 Conclusions 

A high resolution DEM has been used to capture realistic fault geometries from outcrop and 

model them within the framework of a geocellular grid. These models have been populated 

with petrophysical properties typical of a conventional hydrocarbon reservoir and forward 

modelled to generate 3D synthetic seismic cubes. The fault geometries resolvable in the 

seismic data have formed the basis of a second set of geocellular grids. Both the outcrop-

derived and forward modelled geometries have been subject to flow simulations with the 

impact on hydrocarbon production of their geometrical differences being assessed. 

Furthermore the influence of varying the petrophysical properties of the stratigraphy on 

across-fault flow has also been considered, and the following conclusions drawn. 

● Fault geometries identifiable in seismic data are significantly simplified relative to those 

observed at outcrop. The limited resolution of seismic data leads to an absence of the complex 

geometries such as displacement partitioning across multiple slip surfaces that characterise 

fault geometries observed at outcrop. In turn this leads to a severe underestimate in the area 

of across-fault self-juxtaposition of reservoir intervals for seismically resolvable fault 

geometries. The magnitude of this disparity is amplified where reservoir thickness is less than 

mean fault throw. 

● Large juxtaposition areas lead to limited differences in the across flux of hydrocarbon 

irrespective of the fault transmissibility multipliers which are applied. This is the case for the 

realistic, outcrop-derived fault geometries, and for high thickness to throw ratio 

configurations. Conversely, where low thickness to throw ratios are combined with low 

juxtaposition area, seismically resolvable geometries, significant differences arise in simulated 

results when different TMs are assigned. Across-fault fluid flow is therefore, in this situation at 

least, controlled by a combination of both juxtaposition area and fault permeability. Fault 

geometries modelled from seismic data will underestimate the juxtaposition area available for 

across-fault flow, often leading to faults being modelled as overly sealing even when 

appropriate fault permeabilities are included. 

• Where the fault rock is defined as being relatively permeable, only a small juxtaposition 

‘window’ is required to dominate across-fault fluid flow and lead to a similar production 

response to situations with significantly larger juxtaposition areas. Identifying potential 

juxtaposition ‘windows’ is therefore critical when attempting to predict across-fault flow 

behaviour.  
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• Varying the fault TMs does influence the simulated production results where the across fault 

juxtaposition area is low. It is important however to distinguish between instances when there 

is actually a low across-fault juxtaposition area, and instances where low juxtaposition area it 

is simply an artefact of the seismically resolvable, simplistic fault architecture. This emphasises 

the importance of carefully mapping fault geometries in as much detail as is feasible when 

trying to anticipate their effect on reservoir performance. Ideally multiple, rather than a single, 

realisation of fault geometry would be included in reservoir uncertainty analysis. 

• The reduced juxtaposition area of seismically resolvable fault geometries relative to realistic 

geometries leads to reduced vertical connectivity for low net:gross and low Kv:Kh 

stratigraphies. As Kv:Kh and Net:gross decrease the disparity in simulated production between 

the outcrop and seismically resolvable fault geometries increases. This disparity also increases 

when combined with lower permeability fault rocks. 

• The concept of effective permeability can be used to explain the differences in simulated 

production between outcrop and seismically resolvable fault geometries. It also illustrates that 

the effect of faults on reservoir performance is not just a function of the fault geometry and 

properties, but also on the petropyhsical properties of the host stratigraphy. The combination 

of the low juxtaposition area of seismically resolvable fault geometries with a lack of 

appreciation for the consequences of effective permeability may often lead to faults being 

incorrectly labelled as overly sealing to fluid flow.  
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Chapter 9 

Stability of Sub-Seismic Scale Faults During Fluid Injection 

9.1 Abstract 

This chapter applies the concepts of sub-seismic fault geometry investigated in chapter 8 to 

the issue of fault reactivation due to pressure perturbations during hydraulic fracturing. The 

increased range in fault orientations of a realistic fault geometry compared to a simple 

seismically resolvable geometry results in a greater probability that some fault segments will 

become unstable during fluid injection. This may lead to induced seismicity occurring at lower 

pore fluid pressures than that predicted when solely seismically resolvable geometries have 

been modelled.  

9.2 Introduction and Aims 

The recent rapid increase in the application of hydraulic fracturing techniques to release 

hydrocarbons from shales has raised concerns about the potential associated risks (Howarth et 

al., 2011), including that of induced seismicity (Green et al., 2012). A key variable when 

assessing fault stability and the likelihood of inducing seismicity is the orientation of faults 

relative to the in situ stress field. Fault orientation is often characterised using reflection 

seismic surveys, however the limited spatial resolution of reflection seismic data leads to 

uncertainty in, and simplification of fault geometries and orientations (Townsend et al., 1998). 

In this chapter seismic forward modelling is used to generate the 3D synthetic response of 

realistic, outcrop-derived geometries with the aim of highlighting when seismic and 

geomechanical uncertainties can lead to uncertainty in fault stability calculations. The 

observed disparity between seismically resolvable and realistic geometries likely to be present 

in the subsurface suggests that unstable faults may often remain unidentified, potentially 

resulting in induced seismicity during hydraulic fracturing. 

Induced seismicity has previously been reported for geothermal projects (Majer et al., 2007), 

disposal of waste fluids (Healy et al., 1968) and conventional hydrocarbon production (Suckale, 

2010) whilst it is also a concern for potential C02 sequestration sites (Lucier et al., 2006). 

Seismic events as a result of hydraulic fracturing have generally thought to be of a low 

magnitude (‘microseismic’, M=<1, Shapiro et al., 2010), and have been associated with the 

disposal of waste fluids used during the hydraulic fracturing process, (Frohlich et al., 2011; 

Horton, 2012) rather than the fracturing process itself. Some notable exceptions to this are the 

recent seismic events in Oklahoma, USA (Keranen et al., 2013) and in NW England (maximum 

magnitude 2.3, de Pater and Baisch, 2011). A follow-up study to the latter of these events (de 
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Pater and Baisch, 2011) concluded that the seismicity was indeed related to the hydraulic 

fracturing operations, caused by injection of fluids directly into a critically stressed fault plane 

(de Pater and Baisch, 2011). This fault had not been identified in the well data and no seismic 

survey had been conducted. The rupture area required to generate the magnitudes observed 

approximates to 1x104 m2 (Kanamori and Anderson, 1975; de Pater and Baisch, 2011). 

Published relationships between fault displacement and length (Kim and Sanderson, 2005) and 

earthquake rupture dimensions and rupture displacement (Kanamori and Anderson, 1975; 

Wells and Coppersmith, 1994) suggest that it is entirely conceivable that a fault hosting a 

rupture of this size could be of dimensions which would be below the resolution of a 3D 

seismic survey. Fault planes are rarely directly imaged with reflection seismic surveys, their 

presence instead identified by the offset of reflection events (Townsend et al., 1998), with 

fault offsets below the minimum resolution not resolved. The minimum resolution is 

dependent on a number of factors, primarily the seismic wavelength at the specific depth of 

observation, but will typically be on the order of 10m. This limited resolution and the potential 

presence of acquisition and processing artefacts results in the introduction of uncertainty, 

leading to non-unique interpretations of the sub-surface structural geometry and stratigraphic 

architecture (Bond et al., 2012). Geological models derived from seismic datasets are therefore 

inevitably simplified compared to the true geometries and property distributions which are 

present in the sub-surface. Since, by their nature, the presence and orientation of any sub-

seismic faults is unknown, their potential for reactivation under conditions of increased pore 

fluid pressure is uncertain. Hydraulic fracturing techniques induce the formation of fractures 

by raising the pore fluid pressure via the injection of fluids. The increase in pore fluid pressure 

reduces the effective normal stress leading to tensile failure in the form of fractures (figure 

9.1), increasing the permeability and facilitating the flow of gas to the well bore. The seismicity 

associated with fracture formation is generally of very low magnitudes (M=<1 Shapiro et al., 

2010), however larger magnitude seismicity may occur if the increase in pore fluid pressure 

leads to the reactivation of pre-existing fault planes. This raises the question as to whether 

uncertainty in seismic data could lead to unstable fault surfaces remaining unidentified even 

where seismic coverage exists.  
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It is a common practice to use relevant outcrop analogues to help understand and constrain 

the characteristics of sub-surface geology (Bryant et al., 2000; Moraes et al., 2004; McCaffrey 

et al., 2005; Jones et al., 2009; Pringle et al., 2010; Guerriero et al., 2011). Outcrop data 

captures a larger degree of heterogeneity at a higher resolution than can be observed in 

seismic data. This data may be directly incorporated into, (Enge et al., 2007; Paton et al., 2007; 

Sech et al., 2009) or stochastically applied to condition geological models (Hodgetts et al., 

2004; Howell et al., 2008) or used to enhance our understanding of geological processes (Nicol 

et al., 2010; Sumner et al., 2012). Seismic forward modelling has been used previously for 

understanding stratigraphic architectural and sedimentary facies distribution uncertainties 

(Hodgetts and Howell, 2000; Janson et al., 2007; Bakke et al., 2008; Armitage and Stright, 

2010; Falivene et al., 2010; Tomasso et al., 2010). However, its application to structural 

geology has been relatively limited, generally being restricted to two-dimensional (Johansen et 

al., 1994; Townsend et al., 1998; Alaei and Petersen 2007; Frankowicz et al., 2009) or crustal 

scale (Mackenzie et al., 2005) sections. Nevertheless seismic forward modelling presents a 

highly beneficial tool for constraining structural uncertainty across a range of situations, with 

this chapter highlighting how the technique can be applied to aid our understanding of 

induced seismicity during hydraulic fracturing operations. 

Figure 9.1 (Previous page). Schematic Mohr diagrams illustrating the effect on fracture 

formation and reactivation of increased pore fluid pressure (pfp) under different conditions. 

τ = Shear stress, σn = normal stress, Cr = Intact rock cohesion, Cf = Fracture cohesion, σ1 = 

Maximum principal stress, σ3 = Minimum principal stress, T = Rock tensile strength. (A) A 

low differential stress (σ1 - σ3). No pre-existing fractures are present therefore the Mohr-

Coulomb failure criterion is applicable. Increasing the pore pressure reduces the effective 

stress, shifting the Mohr circle to the left into the tensile failure region. If the minimum 

stress (σ3) is negative, tensile fractures will form perpendicular to σ3. (B) As (A) but with a 

higher differential stress. Increasing the pore pressure leads to the Mohr circle intersecting 

the failure envelope whilst σ3 is still positive, leading to the formation of shear fractures, 

although a smaller pfp increase is required for fracture formation than for low differential 

stress. (C) Low differential stress. The presence of pre-existing fractures means that the 

friction sliding criterion is applicable, and a lower pfp increase is required in order to 

reactivate the fractures. (D) A higher differential stress requires a smaller pfp increase for 

fracture reactivation. It is assumed that the effective horizontal stress remains constant 

during fluid injection induced pore pressure changes (Zoback, 2007). 
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As described and illustrated in chapters 1, 4, and 7, fault geometries are significantly more 

complex than can be imaged using seismic data (figure 9.2). As discussed this is largely due to 

the process of fault growth and of the influences of the mechanical properties of the faulted 

medium. Complex fault geometries lead to a greater range in orientations and dips relative to 

those observed and modelled from seismic data. In turn this influences the magnitude of the 

local stress field which is resolved onto each part of a fault surface, and hence its proximity to 

the failure envelope (figure 9.2). 

 

 

 

 

 

 

 

 

 

 

Figure 9.2. Outcrop example of how seismic data leads to underestimates in the complexity 

of fault geometry, and the influence that this has on fault stability during fluid injection. (A) 

View of road cutting showing significant geometric complexity. (B) The seismically 

resolvable version of the same geometry. A single fault plane is imaged effecting how the 

local stress field is predicted to be resolved onto the fault plane. (C) The outcrop geometry 

has a shallower dip than the seismically resolvable geometry (D). For a constant local stress 

field, the complex outcrop geometry is closer to the failure envelope than the seismically 

resolvable geometry. A lower pore pressure increase is hence required to induce failure and 

induce seismicity. 
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9.3 Methodology 

A high resolution airborne-LIDAR derived digital elevation model (DEM) from the Afar rift, 

Ethiopia, with a spatial resolution of 0.5m has been used as the basis for capturing detailed 

fault geometries. The relatively recent timing of the initiation of tectonic activity (Rowland et 

al., 2007) and the arid climate result in minimal erosive degradation of the outcrop, and 

therefore excellent preservation of fault geometries. This DEM has been used to construct a 

detailed fault model and geocellular grid for a fault relay zone (Larsen, 1988; Peacock and 

Sanderson, 1991) using industry standard geological modelling software (Petrel, Schlumberger 

Limited, 2011). A fault relay zones has been modelled since they typically represent areas of 

increased fault geometric complexity induced by linkage processes which is generally not 

resolved within seismic datasets. The model has been constructed assuming a depth of 2500m, 

and has been populated with petropysical properties appropriate to this depth, with pressure 

and fluid saturation properties assigned based upon those of the Barnett Shale, Texas (Palmer 

et al., 2007., Figure 9.3 and Table 9.1). The geocellular grid is then exported to seismic forward 

modelling software (SeisRox, Norsar, 2011, see chapter 1) where elastic and reflectivity 

properties are calculated (Reuss, 1929; Gassmann, 1951; Shuey, 1985). Full 3D ray tracing with 

realistic source-reciever offsets are combined with the subsurface petrophysical properties to 

generate pre-stack depth migrated synthetic seismic cubes (Gjoystdal et al., 2007; Lecomte, 

2008). The seismically resolvable fault geometries can then be identified using seismic 

interpretation software and compared to the outcrop geometry used in their generation 

(figure 9.4). This allows quantification of the stability of both the realistic and the resolvable 

fault geometries under specific subsurface stress conditions. 
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Figure 9.3. Map of the Barnett Shale distribution across Texas, and location of the Fort 

Worth Basin. The Fort Worth Basin is a prolific shale gas producing province, with a number 

of recent seismic events being attributed to hydraulic fracturing operations (Frohlich et al., 

2011). 
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 Barnett Shale 

Vertical Stress (σV) 8200psi (56.5 MPa) 

Maximum Horizontal Stress (σH) 6286psi (43.3 MPa) 

Minimum Horizontal Stress (σh) 5658psi (39 MPa) 

Stress Regime Extensional 

Initial Pore Pressure (P) 4100psi (28.3 MPa) 

Fault Cohesion (C) 100psi (0.69 MPa) 

Fault Friction Angle (φ) 31° 

Figure 9.4 (Next page). Comparison of outcrop-derived geometry and the geometry 

resolvable within forward modelled seismic data. (A) High resolution LiDAR derived fault 

and surface geometry used for generation of forward modelled seismic cube. (B) Section 

through forward modelled seismic. The outcrop fault and surface geometry is 

superimposed. (C) Fault and surface geometry resolvable within the forward modelled 

seismic cube. (D) Section through forward modelled seismic data with resolvable fault 

geometry superimposed. The realistic, outcrop-derived geometries are significantly more 

complex compared to the geometries which can be resolved from the forward modelled 

seismic data.  

 

 

Table 9.1. In-situ stress conditions prior to fluid injection and geomechanical properties 

defining the failure envelope for the faults present. These properties are typical to those 

found in the Barnett Shale (Palmer et al., 2007), a shale gas producing formation found in 

Texas, USA. 
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9.4 Modelling Fault Stability 

The stability of a pre-existing fault depends upon its geomechanical properties (cohesion, 

angle of internal friction), the pore pressure and the in situ stress field. The orientation of a 

fault relative to the regional stress field is critical since this determines the magnitude of the 

stresses which are resolved onto the fault plane, and hence the distance that a fault of a 

particular orientation is to the Mohr-Coulomb failure envelope.  

It is clear from forward modelling that substantially less detail than is present can be resolved 

in the seismic data, with significant disparities in the local fault orientations between the two 

geometries (figures 9.4, 9.5). The stability during hydraulic fracturing of both the outcrop and 

seismic resolvable fault geometries have been assessed under stress conditions found in parts 

of the Barnett Shale (Palmer et al., 2007; Table 9.1, Figure 9.3), a prolific shale gas formation 

found in the Bend Arch-Fort Worth Basin, Texas (Montgomery et al., 2005). Under these 

conditions both the seismic and outcrop geometries are stable. However if the pore pressure is 

Figure 9.5. Stereographic plot of dip angle and dip azimuth for each node on the fault 

surfaces. The outcrop-derived faults (grey) display a much broader range of orientations 

compared to the seismically resolvable faults (red), indicating that they are more likely to 

include unstable portions within a given stress field orientation. 
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raised to represent the injection of fluids during the hydraulic fracturing process the faults 

state of stress begins to approach the failure envelope (figure 9.6). The pore pressure at which 

failure would initially occur varies significantly between the two geometries. Whereas the 

geometry resolvable in the seismic data would not fail until pore fluid pressure had increased 

by 720 psi (4.96 MPa), the outcrop geometry from which it is defined would experience initial 

failure at a pore fluid pressure increase of 530 psi (3.65 MPa). Pore fluid pressure increases 

required for hydraulic fracturing of the Barnett Shale vary between 100 and 900 psi (0.69-6.21 

MPa), with the majority of values lying in the range of 400-600 psi (2.76-4.14 MPa) The value 

at which failure through fault reactivation occurs is therefore well below the estimated upper 

bound of pore pressure increase required to induce hydraulic fracturing in this region (900psi, 

Palmer et al., 2007). Figure 9.6 shows the stress distribution across the outcrop and seismically 

resolvable geometries for a pore fluid pressure increase of 600 psi (4.14 MPa), a typical value 

for the region (Palmer et al., 2007). If fault stability is calculated using the geometry identified 

in the seismic data then failure would not be expected at this value of pore pressure increase, 

however parts of the outcrop geometry would have already passed into an unstable state of 

stress, potentially failing and resulting in seismicity. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.6 (Next page). Aerial view of fault planes shown in figure 9.4. Faults are coloured by 

the increase in pore fluid pressure required for the Mohr-Coulomb failure envelope to be 

reached. Initial in-situ stress conditions and pore fluid pressures are as table 9.1. Under 

these conditions both the outcrop (A) and seismically resolvable (B) fault geometries are 

stable. Increasing the pore fluid pressure by 600 psi (4.14 MPa), a typical fracturing pressure, 

results in parts of the outcrop geometry becoming unstable (C). This is in contrast to the 

seismically resolvable fault geometry (D), which remains stable. Induced seismicity may 

therefore occur at lower pore fluid pressures than anticipated based on seismically 

resolvable fault geometries. 
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Initially conservative values for the geomechanical properties have been applied, with a fault 

friction angle of 31°. To illustrate the importance of accounting for geomechanical uncertainty 

a more moderate fault friction angle of 23° has also been used to assess fault stability (figure 

9.7). Under these conditions the amount of unstable fault surface at a pore fluid pressure 

increase of 600 psi (4.14 MPa) is significantly greater than at a higher angle of friction (figure 

9.8). This is the case for both realistic and seismically resolvable geometries, with the potential 

result being increased seismic magnitudes should fault reactivation occur.   
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Figure 9.7 (Previous page). A less conservative estimate of a fault friction angle of 23° leads 

to a greater proportion of the faults becoming unstable. At this lower friction angle almost 

all of the outcrop-derived geometry (A) is unstable for a pore fluid pressure increase of 600 

psi (4.14 MPa) In contrast significantly less of the seismically resolvable fault geometry (B) 

is unstable. The area of unstable fault surface for the outcrop-derived geometry would be 

sufficient to generate seismicity of magnitude M=2.6. 
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9.5 Magnitude of Induced Seismicity 

Predicting the magnitude of any seismicity associated with reactivation of the structures 

modelled in Figures 9.6 and 9.7 has significant uncertainty. It is widely recognised that the 

seismic moment (M0) of an earthquake event is related to the area of the rupture, the average 

displacement and the shear modulus (1), (Kanamori and Anderson, 1975). The average 

displacement expected can be estimated using the empirical relationship between surface 

rupture length and average rupture displacement (2) defined by Wells and Coppersmith 

(1994). Note that we have modified this relationship to account for their observation that the 

length of a rupture observed at the surface is approximately 75% of its sub-surface length. We 

use a shear modulus for shale of 1.5x1011 dynes/cm2 (Warpinski  et al., 2012), however values 

may be up to an order of magnitude lower (Horsrud, 2001). Seismic moment can be converted 

to moment magnitude (M) using equation (3). The dimensions used are schematically 

illustrated in figure 9.9. 

(1) M0=µAD, where µ=Shear Modulus in dynes/cm2, A = Rupture length x down dip 

rupture width in cm and D=average displacement of rupture in cm (Kanamori and 

Anderson, 1975) 

(2) Log (D) = -1.43 + 0.88 log (0.75L), where D = average displacement in m, L = rupture 

length in km (Modified from Wells and Coppersmith, 1994) 

(3) M=2/3 log M0 - 10.7, (Hanks and Kanamori, 1979) 

 

 

 

 

 

 

Figure 9.8 (Previous page). Mohr circles schematically illustrating the impact of 

geomechanical uncertainty on estimates of fault stability. (A) A conservative value of the 

fault rock friction angle (31°) as used to define fault stability in figure 9.6. (B) The same 

parameters as (A), except that the fault rock friction angle has been changed to 23° as in 

figure 9.7. This results in favourably orientated faults becoming unstable at significantly 

smaller increases of the pore fluid pressure. 
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The maximum length of instability in our dataset is approximately 70m for a pore pressure 

increase of 600psi (Figure 9.6), and a friction angle of 31°. Data compiled by Wells and 

Coppersmith (1994) suggests that on average, rupture dimensions have down-dip width to 

length ratios of approximately 0.66, placing an upper bound on rupture area for our data of 

approximately 3250m2. This equates to a magnitude for the geometries modelled here of 

approximately M=1.39 (assuming µ=1.5x1011dynes/cm2, and D=0.28cm). This value is 

significantly greater than the M=0.5 maximum threshold for the cessation of hydraulic 

fracturing operations recommended by Green et al (2012) in relation to induced seismicity in 

NW England. If however, the less conservative value of fault friction angle is applied (23°, figure 

9.7), then the length of instability increases to 300m for a pore fluid pressure increase of 600 

psi. In turn this leads to a potential seismic magnitude of M=2.6 should reactivation occur. 

Friction angles may in fact be as low as 6° (de Pater and Baisch, 2011), possibly leading to even 

larger magnitude seismicity occurring for a given pore fluid pressure. 

 

9.6 Discussion  

Seismically forward modelling outcrop-based fault geometries confirms that geometries 

observed in seismic data are significantly simplified, and contain a large degree of uncertainty 

relative to realistic fault geometries. The accuracy of the forward modelling procedure 

Figure 9.9. Schematic illustration of the fault dimensions used to calculate earthquake 

magnitude. 
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depends upon how well constrained the petrophysical and elastic properties of the sub-surface 

are for the target area, as well as the properties of the background model, and the definition 

of the seismic survey and input wavelet. Since rock properties are rarely isotropic there will 

inevitably be discrepancies between the modelled properties and those present in the 

subsurface, although due to the low energy environment typical for shale deposition it is 

anticipated that this variation will be relatively limited. Although the ray tracing algorithm does 

account for diffractions in a heterogeneous overburden, it does not include noise which may 

be present during seismic acquisition. Resolution in a forward modelled seismic cube will 

therefore be slightly better than for a ‘real’ seismic cube. The most important uncertainty 

when generating the seismically resolvable fault geometries is the interpretation of the 

synthetic cube. Interpretation is highly subjective, with significant differences even when those 

performing the interpretation are defined as experts (Bond et al., 2012). Although a number of 

surface and volume algorithms have been applied to the data to ensure that the maximum 

possible detail has been captured with the minimum geometric error, fault interpretations are 

nevertheless still non-unique, potentially leading to variation in the magnitude of stresses that 

may be resolved onto the modelled fault plains.  

The modelled geometries are derived from faults hosted in mechanically strong, brittle basaltic 

rocks deformed at the earth’s surface (Rowland et al., 2007). The applicability of these 

geometries to faults within shale gas reservoirs will depend upon the conditions under which 

deformation of the shale occurred. The geomechanical properties of shales vary with the 

confining pressure, temperature, density, consolidation and chemical composition (Magara, 

1968; Hoshino et al., 1972; Bolton et al., 1998; Ingram and Urai, 1999; Bjørlykke, 1999; Petley, 

1999; Nygård et al., 2006). The specific conditions control whether a shale responds to stress 

through ductile or brittle deformation, and hence the occurrence and geometry of any faults 

which may be present. If the shale formation has not been subjected to brittle failure then the 

presence of fault planes susceptible to reactivation during hydraulic fracturing is unlikely, 

although slip along favourably orientated planes, such as dipping bedding, is possible (Donath, 

1961). Since faults are not always resolvable in seismic data reconciling the subsurface 

mechanical properties with the tectonic history is therefore crucial in assessing the likelihood 

of brittle failure having occurred, and hence the presence of any discrete fault structures liable 

to be reactivated during fluid injection.  

Assuming that an entire fault can be ruptured in a single event places an intrinsic upper limit 

on the maximum magnitude which can be generated from that fault. The faults modelled here 

have small horizontal dimensions and surface areas and hence have a low maximum potential 

magnitude. Faults with dimensions sufficient to host much larger ruptures, and therefore 
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higher magnitude seismicity, may however also be undetectable within seismic data, since it is 

fault displacement rather than fault size which is the identifiable dimension. Horizontal 

displacement gradients on faults range between 0.1 and 0.001m/m, with vertical gradients 

approximately double this (Walsh and Watterson, 1988). Therefore a fault plain with a 

maximum displacement just below the typical limit of seismic resolution (~10m) could 

foreseeably have an area on the order of 5x107m2 if the minimum displacement gradients are 

used to calculate its area. This would correspond to a maximum magnitude approaching 

M=5.44 if the entire fault surface should rupture. Nevertheless such a fault would have a down 

dip width dimension of approximately 5km, significantly larger than the thickness of sediment 

that would be subject to increase pore pressures during fluid injection. Indeed, the value 

calculated here of a potential magnitude of M=2.6 resulting from reactivation of the sub-

seismic faults modelled here can be treated as approaching a maximum value. This is because 

it relies on the supposition that a 600psi pore pressure increase during fluid injection is 

instantaneous and isotropic, and that rupture occurs along the entire zone of instability 

simultaneously. In reality fluid is typically injected over the course of a few hours or days 

leading to a more gradual increase in pressure and distributed microseismicity with a higher 

frequency of occurrence but considerably lower magnitudes (Shapiro et al., 2009). 

Heterogeneity in the host permeability and the presence of pre-existing fractures are likely to 

result in pressure increases during hydraulic fracturing varying non-linearly both spatially and 

temporally (Figure 9.10) (Shapiro & Dinske, 2010), leading to uncertainty in constraining the 

distributions of stress across any fault plains which may be present.  

 

 

 

 

Figure 9.10. Illustration of how fluid saturation (A) and pressure (B) vary non-linearly 

during fluid injection. The implication is that different parts of a fault set will become 

critically stressed and will hence fail at different times, rather than simultaneously.  
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There remains uncertainty in the geomechanical properties of faults within shales, leading to 

uncertainty when defining their stability under specific stress conditions. For the purposes of 

assessing the potential for reactivation, faults are often assumed to be cohesionless (e.g. 

Morris et al., 1996), however this is likely to be influenced by the deformation processes and 

the resultant fault rocks, as well as any post deformation healing (Morrow et al., 1982; 

Dewhurst and Jones, 2002). The friction angle of faults within shale is also uncertain, with de 

Pater and Baisch (2011) reporting polished surfaces possibly representing shear plains to have 

friction angles potentially as low as 6°. Incorrect definition of the failure envelope will lead to 

erroneous predictions of the pore pressure at which failure will occur. To maximise the 

accuracy of fault stability predictions additional research constraining the geomechanical 

properties of fault rocks within shale sequences is required.  

An additional uncertainty regarding the stability of faults during fluid injection relates to the 

degree to which the pore pressure is coupled to the effective stress. A pore pressure increase 

will lead to a decrease in the total horizontal stress within a reservoir, and hence a reduction in 

the effective stress (Hillis, 2001). In turn this reduces the diameter of the Mohr circle 

describing the state of stress in the sub-surface (figure 9.11). This will tend to the reduce the 

likelihood of shear failure, whilst increase the likelihood of tensile failure occurring.  
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It has been demonstrated that seismic forward modelling can be employed to limit the 

structural uncertainty that may influence induced seismicity during hydraulic fracturing, 

however the technique also has potential to be applied to numerous additional situations to 

aid the constraint of ambiguous structural data. These include, but are not limited to, 

calculating sub-seismic strain distribution, improving the accuracy of hydrocarbon production 

simulations and modelling the seismic response of C02 injection into the subsurface at 

potential sequestration sites. 

9.7 Conclusions 

Fault geometries identifiable within seismic data are significantly simplified and display 

considerable variations in orientation relative to outcrop geometries. These discrepancies lead 

to differences in the stress magnitudes which are modelled as being resolved onto fault planes 

under the specific in-situ stress conditions. As a result significantly lower pore pressure 

increases than anticipated may induce failure. It is possible that sub-seismic scale faults have 

sufficient surface areas to generate seismicity exceeding the recommended limit for hydraulic 

fracturing operations of M = 0.5. Significantly higher values than this would however require 

an effectively instantaneous large increase of pore pressure with rupture occurring across the 

entirety of an unstable fault surface simultaneously. Further work is required to characterise 

the temporal and spatial evolution of pore pressure increases during injection of fluids into low 

permeability media. 

 

 

 

 

Figure 9.11 (Previous page). Schematic Mohr circle plot illustrating the effect of pore-

pressure/stress coupling during fluid injection. The increase in pore pressure increases the 

minimum horizontal stress (hence decreasing the differential stress), whilst at the same 

time reducing the maximum stress (assumed to be vertical, i.e. extensional faulting 

regime). This leads to the Mohr circle decreasing in diameter and moving to the left, as 

shown above. In turn this reduces the likelihood of shear failure whilst increasing the 

likelihood of tensile failure occurring. 
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Chapter 10 

Discussion and Conclusions 

10.1 Introduction 

The theme of this thesis has been to investigate fault geometric uncertainty and its effect on 

fluid flow in the subsurface, primarily from the perspective of the recovery of hydrocarbon 

reserves. In this context geometric uncertainty stems from the limited resolution of reflection 

seismic data, the principal source of constraint on subsurface structural architectures. The 

influence of this uncertainty has been examined across a range of scales from rift-basin 

through oil-field scale to individual faults, with a deliberate ordering from large to small scale. 

The tools of investigation have included field data collection, seismic interpretation, 3D 

geocellular modelling, fluid flow simulation and forward seismic modelling, and have been 

coupled with an extensive review and integration of the existing literature. The structure of 

the thesis has been for the individual Chapters to be largely independent, although linked by 

the over-arching theme of geometric uncertainty. Consequently the main points of discussion 

have largely been covered therein. This Chapter therefore aims to link and summarise, rather 

than repeat, the points already discussed.  

10.2 Summary 

As mentioned the thesis can be broadly divided by the scale to which each Chapter relates. A 

brief summary is here provided for Rift (Chapters 3 and 4), Field (Chapters 5 and 6), and Fault 

scale (Chapters 7, 8, 9). The majority of figures are referred to although a number of key 

figures are reproduced.  

10.2.1 Rift Scale 

Data from the Gulf of Corinth (Chapter 3) indicate that initial rift activity and fault growth may 

have occurred over a relatively broad area prior to localisation onto more dominant structures 

(e.g. Cowie et al., 2000). Nevertheless ambiguity in the precise nature of the evolution of the 

rift still exists since observations also indicate strain being accommodated along strike by both 

multiple and single fault sets (Figure 10.1). This may be related to a possible rotation of the 

extension direction (figure 3.27), although further work is required to verify this hypothesis. 

These uncertainties illustrate the potential dangers in applying a single model for rift evolution. 
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Multiple phases of discreet activity on individual fault sets indicate that the evolution of the 

Gulf of Corinth Rift did not occur as a sequential northwards progression of faulting as has 

previously been proposed (e.g. Sorel, 2000). A more complex pattern locally superimposed 

onto a more generalised migration towards the rift axis is observed. It remains unclear as to 

whether this more complex rift evolution is a phenomenon local to the Gulf of Corinth rift, or 

whether it can be identified in multiple areas. Major internal unconformities within syn-rift 

strata indicative of multiple phases of rifting may be coupled with facies changes, with 

implications for the distribution of reservoir units. 

The uncertainty inherent in seismic data limits the detail to which faults can be resolved (see 

Chapter 4). In terms of hydrocarbon exploration, where 2D seismic is the primary data source, 

this leads to uncertainty in along-strike displacement continuity. This is often exacerbated 

since the position of displacement minima and/or maxima is unlikely to correspond with the 

position of potentially disparate seismic lines. Pragmatism, and an understanding of fault 

Figure 10.1. Mid-case displacement-length plots for Gulf of Corinth faults with 

displacement projected onto a strike-parallel plane (approximately E-W). The disparity in 

cumulative displacement between the east and west areas is clearly seen. In the eastern 

area to the north of the Kalavryta fault, strain is partitioned across multiple faults, whereas 

further west a single fault, the Dhemesticha fault, accommodates almost all of the strain. 
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evolution (Figure 4.2) are hence required when correlating faults between seismic lines 

(Figures 4.10, 4.11, 4.12, 10.2). Structural spill points, trap crests and maximum column heights 

estimated using 2D data are hence subject to the non-unique nature of seismic data and its 

interpretation (Figure 4.15). This geometric uncertainty has other implications since it also 

influences pore pressure predictions (Figure 4.16, 10.3, 10.4) and fault rock property 

calculations (Figure 4.22).  
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Figure 10.2. Synthetic seismic sections through the Gulf of Corinth rift geometry defined 

from field data in Chapter 3. (A) The syn-rift distribution, top pre-rift surface and fault 

geometries defined from field data are superimposed onto the seismic sections. (B) The 

syn-rift distribution as defined by the interpreted surface and fault geometries. 2D sections 

have a spacing of 5 km.   

Figure 10.3.  Oblique views of the modelled syn-rift fill in the Dhemesticha sub-basin shown 

in Chapter 4. The figure illustrates the difference in the depth of the structural crest, the 

spill point and the corresponding difference in predicted maximum column height for the 

outcrop-derived (A), and seismically resolvable (B) geometries. 

Figure 10.4 (Next page). Plot of pressure versus depth for the outcrop derived and 

seismically resolvable prospect geometries shown in Chapter 4. The difference in predicted 

column height leads to an underestimate in pore fluid pressure for the seismically 

resolvable geometry relative to the outcrop derived geometry.   
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10.2.2 Field Scale 

At the scale of individual oilfields, where 3D seismic data is available, the limitations in seismic 

resolution have different impacts on structural uncertainties. The primary concern regarding 

intra-reservoir scale faults is whether or not they pose a barrier or baffle to across-fault flow of 

hydrocarbons during production, and hence cause any degree of reservoir 

compartmentalisation.  

The impact of two aspects of sub-seismic fault geometries has been investigated. Chapter 5 

shows how sub-seismic fault geometries, in the form of fault tips and relay-zone breaching 

faults can be predicted from seismically resolvable parameters (figures 5.6, 5.7, 5.8, 5.9, 5.19, 

10.5, 10.6). Incorporating these features may lead to enhanced fault network connectivity 

(figures 5.15, 5.16) and corresponding reservoir segmentation. Despite this enhanced 

connectivity the impact on oil production is relatively limited, at least for the example of the 

Penguin oilfield used herein (Chapter 6, figures 6.6, 6.8, 6.10). The simulation results suggest 

that increasing fault connectivity may result in a moderate enhancement of overall recovery 
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due to a more efficient hydrocarbon sweep pattern, an observation in agreement with a 

number of other studies (Manzocchi et al., 2008a, b). In contrast to oil production, increased 

connectivity significantly reduces the volume of produced water (figures 10.7, 10.8). Since the 

processing of produced water is a significant cost during production, the implication is that, 

contrary to the common perception, connectivity and segmentation of a reservoir by faults 

may in fact be economically beneficial in certain situations.  

 

 
Figure 10.5. Cross plot of cumulative relay throw against overlap for 88 relay zones. 

Breached and open relays are clearly clustered in separate fields, with low relay 

throw:overlap ratios indicating intact relays, and high ratios indicating breached relays. 5% 

error bars are included for fault length measurements, and vertical error bars representing 

10° to account for variation in fault dip are also included. Data compiled from; Walsh and 

Watterson, 1990; Peacock and Sanderson, 1991, 1994;  Cowie et al, 1994; Childs et al, 

1995; Huggins et al, 1995; Cartwright et al, 1996; Schlische et al, 1996; Willemse et al, 

1996; Davies et al, 1997; Bohnenstiehl and Kleinrock, 1999, 2000; Mansfield and 

Cartwright, 2001; Imber et al, 2004; Soliva and Benedicto, 2004; Taylor et al, 2004; 

Mirabella et al, 2005; Hus et al, 2006; Rotevatn et al, 2007; Polit et al, 2009; Long, 2011. 

See figures 5.12, 5.13, 5.14 for examples from this study. 
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Figure 10.6. (A) Perpendicular view of two interacting faults from our dataset as defined by 

top reservoir footwall and hangingwall cut-offs. Vertical exaggeration is x3. (B) Throw and 

throw gradient profiles of the shown faults in (A). An increase in the throw gradient is 

observed where the faults overlap and interact. Fault interaction and tip restriction has 

resulted in migration of the position of maximum throw on the two fault segments towards 

the relay zone. The breaching criteria (figure 5.10) suggest that a sub-seismic breaching 

fault should link the two fault segments. 

Figure 10.7. Schematic summary of the influence of including relay zone breaching faults 

and sub-seismic fault tips on production rates (A) and production volumes (B). 
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10.2.3 Fault Scale  

The impact of uncertainty in the geometry of individual faults upon across fault flow has been 

assessed in Chapters 7 and 8. The presence or absence of relay zones is critical in controlling 

the flow behaviour of faults, especially where the mean reservoir interval is less than the mean 

fault throws (figures 7.11, 7.12, 7.13). In these instances the low-displacement at relay zones 

represent the only areas of reservoir:reservoir juxtaposition, and hence of potential across-

fault fluid and pressure communication. The specific geometry of a relay zone is of secondary 

importance compared to the incorporation of discrete deformation, here modelled as normal 

drag (figures 7.6, 7.11, 10.9). This has the effect of reducing the effective displacement of a 

fault, and hence leads to enhanced across-fault juxtaposition, a parameter which is critical in 

controlling across-fault flow during hydrocarbon production (Chapter 8).  

 

 

Figure 10.8 (Previous page). Schematic graphs summarising the impact of varying the fault 

threshold pressure during simulation. (A) General trends. The onset of production decline 

occurs earlier for higher threshold pressures, leading to a lower cumulative produced 

volume. The water production rate, cumulative volume of produced water and bottom 

hole pressure at the production well are all lower for higher fault threshold pressures. (B) 

Variability of simulation results between different structural configurations for increased 

fault threshold pressure. At low threshold pressures the simulation results for the ten 

different fault network configurations (Chapter 6) are relatively similar. However, as 

threshold pressure is increased the variability of the simulation results also increases. This 

indicates that fault network connectivity becomes more important when attempting to 

achieve a realistic forward prediction or accurate history match when fault threshold 

pressures are expected to be high. OPT = Oil Production Total, OPR = Oil Production Rate, 

WPT = Water Production Total, WPR = Water Production Rate, BHP = Bottom Hole 

Pressure. 



- 302 - 
 
 

 

 

 

 

 

Seismic forward modelling allows the comparison of the flow properties of realistic, outcrop-

derived fault geometries, with those geometries observable within seismic data. The 

complexity of realistic fault geometries leads to significantly greater juxtaposition area 

compared with the planar faults imaged in seismic data (figures 8.10, 10.10, 10.11). 

Consequently the impact of faults upon reservoir compartmentalisation may be regularly 

overestimated when sub-seismic fault complexity is not accounted for (Chapter 8). 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.9 (Previous page). Cross-sections through modelled geometry showing the 

different amounts of normal drag which have been incorporated. (A) No normal drag. (B) 

Normal drag accounts for 20% of total displacement (i.e. discrete offset is 80% of 

displacement). (C) Normal drag accounts for 50% of displacement. Increasing the 

proportion of normal drag effectively reduces the discrete displacement, hence leading to 

greater across-fault juxtaposition of the reservoir interval (shown in yellow). 

Figure 10.10. Cross sections through illustrating the differences between the outcrop 

derived fault geometry and the seismically resolvable geometry. The model geometry is 

superimposed onto the forward modelled seismic volume. (A) Outcrop derived geometry. 

Displacement partitioning on multiple slip surfaces leads to maintenance of across fault 

juxtaposition of the reservoir interval (yellow) despite the cumulative fault throw being 

greater than the reservoir thickness. (B) Image of the forward modelled seismic volume. 

Very few details of the fault architecture are resolved. (C) Seismically resolvable fault 

geometry. Only single slip plane can be positively interpreted from the forward modelled 

seismic (B). This leads to the reservoir interval being completely offset and hence a 

juxtaposition seal being present.  
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The sub-seismic complexity of fault zones also influences the way that local and regional 

stresses are resolved onto the fault planes (figure 10.12). In turn this affects estimates of fault 

stability under conditions of deviated pore fluid pressure, such as during hydraulic fracturing. 

The potential for induced seismicity may underestimated when fault stability is calculated 

using solely the seismically resolvable fault geometries (figures 9.6, 10.13).  

Figure 10.11. Simulation results highlighting the importance of the ratio of stratigraphic 

thickness to fault throw (Th:tw) in terms of the effective juxtaposition area (shown) for a 

partially breached relay zone geometry. Red = High case TMs, Yellow = mid-case TMs, 

Green = low-case TMs. The well-derived petrophysical properties are used in all cases. (A) 

High Th:tw, outcrop fault geometry. (B) High Th:tw, seismically resolvable geometry. (C) 

Low Th:tw, outcrop fault geometry. (D) Low Th:tw, seismically resolvable geometry. For 

discussion see text. OPC = Oil Production Cumulative, OPR = Oil Production Rate. 
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Figure 10.12. Outcrop example of how seismic data leads to underestimates in the 

complexity of fault geometry, and the influence that this has on fault stability during fluid 

injection. (A) View of road cutting showing significant geometric complexity. (B) The 

seismically resolvable version of the same geometry. A single fault plane is imaged effecting 

how the local stress field is predicted to be resolved onto the fault plane. (C) The outcrop 

geometry has a shallower dip than the seismically resolvable geometry (D). For a constant 

local stress field, the complex outcrop geometry is closer to the failure envelope than the 

seismically resolvable geometry. A lower pore pressure increase is hence required to induce 

failure and induce seismicity. 



- 305 - 
 
 

 

 

 

 

 

10.3 Geometric Uncertainty  

It is at the production-scale where the disparity between seismically resolvable fault 

geometries and those geometries developed through the processes of fault growth, 

interaction and linkage becomes most apparent (Chapters 5, 6, 7, 8). Faults, as resolvable in 

seismic data and subsequently modelled within geocellular grids, do not geometrically 

resemble faults that can be resolved in the field or in higher resolution data such as DEMs (e.g. 

figure 10.12). They are almost universally modelled as simple planar structures, a geometric 

simplification which completely ignores the processes of fault growth (Peacock and Sanderson, 

1991; Cartwright et al., 1995; Cowie et al., 2000; Walsh et al., 2003; Childs et al., 2009). Faults 

are composed of multiple segments which gradually coalesce as a response to strain through a 

continuous, three dimensional, process of interaction, linkage and further interaction. This 

process occurs at all scales and hence the associated structures which accommodate fault 

interaction (i.e. relay zones) are ubiquitous at all scales (e.g. Childs et al., 2009). This process of 

growth leads to faults being significantly more complex than the planar structures which are 

typically modelled during hydrocarbon exploration and production. The reasons for this 

conflict is a matter of resolution: firstly the fine scale complexity of faults is often not imaged 

within seismic data and secondly, even if it were then the limitations of geocellular modelling 

would prevent an accurate 3D representation from being constructed and advantageously 

used. As a result there is a disparity between the ‘real’ geometry of faults, and the resolvable, 

modelled geometry. This disparity leads to inaccurate modelling of parameters critical for 

efficient hydrocarbon reservoir management such as across-fault juxtapositions and fault 

connectivity (and hence reservoir segmentation and possibly compartmentalisation). 

Furthermore the petrophysical properties of faults used within reservoir simulators are 

calculated using algorithms which have a significant geometric component (e.g. SGR, Yielding 

et al., 1997, Fault TMs, Knai and Knipe, 1998; Manzocchi et al., 1999). Since the resolvable 

geometry is inaccurate, the absolute output from these algorithms is often erroneous if 

Figure 10.13 (Previous page). Fault stability assuming a fault friction angle of 23°. This 

leads to a greater proportion of the faults becoming unstable than for a more conservative 

estimate of 31°. At this lower friction angle almost all of the outcrop-derived geometry (A) 

is unstable for a pore fluid pressure increase of 600 psi (4.14 MPa) In contrast significantly 

less of the seismically resolvable fault geometry (B) is unstable. The area of unstable fault 

surface for the outcrop-derived geometry would be sufficient to generate seismicity of 

magnitude M=2.6. 
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treated deterministically, although may still be valid as a locally calibrated proxy for fault-fluid 

behaviour, at least at the exploration/rift scale (Yielding, 2012).  

Results presented in Chapter 8 illustrate the relative importance of fault geometry and fault 

properties. Correctly modelling (or at least modelling in a way that accounts for) fault 

geometric complexity is significantly more important than the values of fault transmissibility 

multipliers for the majority of situations that have been modelled. TMs which have been 

calculated for seismically resolvable geometries may have limited influence or predictive value 

since they refer to a spurious fault geometry with incorrect representations of the across fault 

juxtapositions. The complex nature of ‘real’ fault geometries leads to displacement partitioning 

across multiple slip surfaces, with a significantly greater amount of across fault 

reservoir:reservoir juxtaposition being maintained when compared to seismically resolvable 

fault geometries (e.g. figure 10.11). This leads to enhanced across-fault communication and 

flow potential, often irrespective of the fault rock properties. This leads to the observation that 

the importance of fault rock properties in flow simulation is significantly overstated when 

compared to geometric uncertainty. Fault rock properties may be relatively unimportant, 

except in cases where NTG of a reservoir interval is low, with a high shale content, or where 

thick, continuous shale layers are present (e.g. Childs et al., 2002). This scenario also implies a 

low quality reservoir, hence also implying that a correct understanding of structural 

uncertainty becomes increasingly more important as hydrocarbon fields become more 

marginal and more complex.  

Since fault geometric complexity is a function of the processes which drive fault growth and 

interaction, an understanding of these processes is critical in understanding the relative 

importance of faults on fluid flow in reservoirs. Although this complexity may not be resolvable 

it can have a significant impact, hence recognising the disparity between seismically resolvable 

and realistic fault geometries is critical. Accounting for this complexity is a challenging process, 

as it cannot currently be modelled deterministically due to gridding and computational 

limitations. Reconciling what we know the fault structure should be like, with resolvable 

geometries and the capability to incorporate this within existing modelling frameworks 

requires the use of methodologies which are proxies for the geometric reality. For example, 

this may take the form of reducing the modelled fault throw by a certain percentage to 

account for sub-seismic displacement partitioning, or continuous deformation (Chapter 7). 

Whilst this is unlikely to represent the real sub-surface architecture, it will allow the 

maintenance of across-fault juxtapositions leading to a more accurate prediction of the impact 

of the faults on fluid flow. Similar approaches may include stochastic, or semi-stochastic, 
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population of displacement minima representing relay zones (Manzocchi et al., 2008), and 

extending the length of fault tips (Chapters 5 and 6). 

As shown in Chapters 5 and 6, extending the faults to include their sub-seismic tips may lead to 

increased reservoir segmentation and fault connectivity, especially in areas where there is a 

range in fault orientations. An important distinction to note, however, is that this increased 

segmentation does not necessarily mean increased compartmentalisation. Fault related 

reservoir compartmentalisation implies that adjacent fault blocks are not in pressure 

communication, due to the presence of sealing faults or other impermeable barriers. 

Segmentation simply implies that faults are connected, with no allusion towards their sealing, 

or non-sealing nature. This division is often overlooked, with the potential result being that 

segmented, but non-sealing, fault networks are vilified as compartmentalising, and hence 

having a negative impact on field development. As the results from Chapter 6 show, this may 

be a misnomer, with increased fault connectivity often leading to enhanced sweep efficiency 

and decrease in the volume of produced water (also shown by Manzocchi et al 2008). This 

segmentation versus compartmentalisation issue is further emphasised by the results from 

Chapter 8, which highlight the role of fault geometric complexity in reducing the perceived 

sealing capacity of faults. It could be argued that fault compartmentalisation is only likely in 

situations where a juxtaposition seal is present, a scenario which, due to geometric complexity 

(i.e. displacement partitioning) requires the mean fault throw to be greater than the mean 

reservoir thickness. Even in such situations, the presence of relay zones would potentially lead 

to enhanced connectivity and hydraulic continuity due to the localised maintenance of across-

fault juxtapositions.  

10.4 Fault Rock Properties 

The majority of the results presented herein have focussed on shale gouge (yielding et al., 

1997) as the primary permeability reducing mechanism across faults. This is simply because it 

is relatively easy to model using standard software, rather than it being a preferred mechanism 

or proxy. Other mechanisms, or combinations of mechanisms, such as disaggregation, 

cataclasis, cementation and clay smearing (Fisher and Knipe, 1998) are also capable of 

reducing fault permeability, leading to pressure compartmentalisation under certain 

circumstances (Childs et al., 2002). The spatial variability of these processes is however often 

poorly constrained, and may display significant localisation.  

The modelled permeability of fault rock used in production-scale simulations often relies upon 

deterministically assigning a fault permeability based on laboratory measurements calibrating 

the estimated clay content (e.g. as defined by the SGR algorithm) against sample permeability 
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(e.g. Sperrevik et al., 2002). This approach assumes invariance between core-scale and 

reservoir-scale fault permeability. As seen in Chapters 8 and 9, faults have significant 

geometric complexity, deviating from a simple planar structure; it is therefore reasonable to 

assume that there is significant heterogeneity in the lateral distribution of their petrophysical 

properties. Therefore applying a core-derived permeability will tend to underestimate the bulk 

permeability of a fault (i.e. overestimate its sealing capacity), whilst not accounting for 

geometric complexity. At a single point on a fault this approach may be valid, but for the fault 

as a whole such a deterministic methodology becomes unreliable. A preferred approach, 

which would account for the effects of geometric and special variability of permeability-

reducing processes, would be that of stochastic or probabilistic fault property population 

(Childs et al., 2007; Manzocchi et al., 2007), coupled with more realistic fault geometries than 

are currently employed.  

At the exploration scale, at least where pressure data is available, the modelled clay content of 

a fault can be calibrated against the across-fault pressure differential (e.g. Bretan et al., 2003). 

The derived relationship can then be modified to predict maximum potential column heights 

for specific SGR values. Since this approach is calibrated against fault-scale, rather than 

sample-scale variables, it implicitly accounts for geometric and petrophysical heterogeneity of 

faults, and can hence be viewed as good proxy for fault sealing capacity at the exploration 

scale (Yielding, 2012).    

10.5 Sealing or Non-Sealing? 

An issue that has come to light over the course of this project is that of the definition of a 

sealing fault. Where a juxtaposition seal is present, this is relatively straight forward, with 

across-fault hydrocarbon leakage prevented by the presence of an adjacent impermeable 

lithology (excluding the possibility of fault parallel flow). In situations where a juxtaposition 

seal is not present, the sealing nature of a fault is dependent on the petrophysical properties 

of the fault rock, and their contrast relative to the host rock adjacent to the fault. Results from 

Chapters 6, 7 and 8 suggest that for geometrically realistic faults, the petrophysical properties 

of the fault rock alone are rarely, if ever, sufficient to form a seal over production timescales. 

Although a pressure differential may develop across a fault, it is acting as a baffle, rather than 

a barrier (seal) to flow. This pressure differential is often incorrectly assumed to represent a 

sealing, rather than baffling, fault (Manzocchi et al., 2012). The term sealing is therefore 

somewhat ambiguous and misleading, inferring as it does an impermeable barrier over 

geological timescales. 
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An associated concept is that of the effective transmissibility and effective permeability of a 

system as a whole (Chapters 4, 8, Freeman et al., 2010). This concept couples the fault and 

reservoir properties with the development strategy to be employed (e.g. well positioning, 

expected induced pressure perturbations). It is essentially based upon Darcy’s law, and 

illustrates that for across-fault fluid flow, the absolute fault properties become less important 

as the reservoir permeability, well-spacing and across-fault pressure differentials increase (e.g. 

due to varying the production rate of a well). This is due to the fault permeability contributing 

relatively less to the bulk permeability of the system as a whole. This concept is considered to 

be under-utilised, however it could significantly improve the efficiency of well placement 

decisions. As an example, the production rate of a well located adjacent to a low permeability 

fault will be influenced by the presence of that fault to a greater extent than if the well were 

placed a greater distance away.   

10.6 Conclusions 

Initially a number of structural uncertainties pertinent to either the hydrocarbon exploration 

or production scale were highlighted (table 1.1). Results from the individual chapters has 

allowed these uncertainties have been ranked as either having a high, medium or low impact 

(Table 10.1). 

 

 

   

 

Each Chapter contains a number of conclusions specific to the work present therein. Here the 

main points are re-iterated. 

● Linkage Geometry High (Chapters 3, 4)

● Along-Strike Displacement Continuity High (Chapters 3, 4)

● Syn-Rift Reservoir Facies Distribution High (Chapter 4)

● Fault Rock Properties Low-Medium (Chapter 4)

● Linkage Geometry Medium (Chapters 5, 6, 7, 8)

● Sub-Seismic Fault Tips Medium (Chapters 5, 6)

● Sub-Seismic Fault Complexity High (Chapter 8)

● Juxtaposition Uncertainty High (Chapters 7, 8)

● Fault Rock Properties Low-Medium (Chapters 6, 8)

● Presence of Relay Zones High (Chapters 5, 6, 7, 8)

Medium-High (Chapter 9)

EXPLORATION

Structural Uncertainty Impact of Uncertainty

PRODUCTION

● Fault Stability

Table 10.1. Summary table highlighting structural uncertainties at either hydrocarbon 

exploration or production scale. Results from the thesis have allowed the relative impact of 

these uncertainties to be ranked. 
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● Fault activity in the Gulf of Corinth rift has not preceded in a sequential, basin-wards manner 

as has previously been reported. Although a general basin-wards trend is observed, a more 

disparate rift history is superimposed onto this. 

● Three stages of rifting are observed in the Gulf of Corinth, with an initial distributed stage 

giving way to localisation of strain onto larger fault-sets. Late stage rifting is observed as 

angular unconformities within hangingwall syn-rift sediments. 

● Synthetic seismic modelling of rift-scale outcrop analogues highlights the uncertainty in fault 

geometries extrapolated from 2D data. Structurally important features such as relay zones, 

trap crests and spill points may remain unidentified leading to uncertainty in pore pressure 

and fault property predictions and calculation of hydrocarbon column heights. 

● Using a statistical approach for calculating sub-seismic fault tip length does not account for 

fault growth processes. Using the local displacement gradient significantly enhances the 

accuracy of predictions by accounting for the effects of fault interaction.  

● The displacement gradient at pairs of overlapping fault tips can be used to estimate the 

integrity of the intervening relay ramp. High displacement gradients imply high strain, and 

hence a higher likelihood that a relay ramp is breached. 

● The impact of extending fault tip length upon reservoir segmentation is dependent on the 

range of strikes present within the fault network. Where only parallel to sub-parallel faults are 

present, increased segmentation is heavily reliant upon the presence of breached relay ramps 

between overlapping faults.   

● Reservoir segmentation is not the same as reservoir compartmentalisation. A segmented 

fault network only compartmentalises a reservoir where the across-fault juxtapositions and 

fault rock properties act to restrict across-fault flow significantly over a production timescale. 

● Increasing reservoir segmentation, at least for the Penguin C field modelled in Chapter 6, 

effects oil production to a lesser extent than water production. Earlier onsets of oil production 

decline for more segmented reservoirs are offset by a lower rate of decline, due to an 

enhanced sweep pattern, and a lower volume of produced water when compared to less 

segmented cases.  

● The influence of sub-seismic fault tips and relay zones on production increases as fault 

threshold pressures are increased, with simulation results also increasing in their variability as 

fault network segmentation is increased. Increased fault threshold pressures also tend to 

effect water production to a greater extent than oil production. 
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● The interpretation of fault-relay geometries in seismic data influences the fluid flow 

behaviour during production. Since relay zones allow hydraulic conductivity to be maintained 

across a fault set, correctly identifying their presence is crucial although the absolute relay 

zone geometry has limited impact on how fluid flows across it.  

● Decreasing fault throw to account for the distribution of deformation, in the form of multiple 

slip surfaces or continuous deformation-‘drag’, can significantly increase the across-fault fluid 

flux. Not including these sub-seismic geometries may lead to overestimates in the 

compartmentalising nature of faults. 

● Fault geometries identified in seismic data are significantly simplified in comparison to those 

observed at outcrop. Complex geometries such as displacement partitioning across multiple 

slip surfaces are hence not incorporated within reservoir models. This leads to the area of 

across-fault reservoir:reservoir juxtaposition being severely underestimated.  

● The disparity in juxtaposition area between seismically resolvable and realistic fault 

geometries is greatest where the thickness of the reservoir interval is less than the mean fault 

throw. In this situation seismically resolvable geometries will tend towards the presence of a 

juxtaposition seal, whereas in reality geometric complexities such as displacement partitioning 

will lead to the maintenance of across-fault juxtapositions.  

● Where realistic (i.e. larger) areas of across-fault juxtaposition are modelled, varying the fault 

transmissibility multipliers has less impact upon across-fault hydrocarbon flux. For cases where 

a very small amount of across-fault juxtaposition area is modelled, fault TMs begin to exert an 

increased influence on across-fault flow. 

● The differences in across-fault flow of hydrocarbons between seismically resolvable and 

realistic fault geometries are magnified as Kv:Kh and Net:gross decrease. This is due to the 

lower vertical connectivity of stratigraphic layers across faults for the simple, planar, 

seismically resolvable fault geometries. 

● In production scale reservoir models, the simplistic fault geometries resolvable in seismic 

data lead to the importance of fault rock properties being overstated. Fault geometry is 

significantly more influential on the across-fault flow behaviour of hydrocarbons.  

● Across-fault juxtaposition of reservoir facies is the primary control on the impact of faults 

during hydrocarbon production.   
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10.7 Further Work 

Through the course of conducting and documenting the work which contributes to this thesis a 

number of ideas have been formulated which time constraints have prevented from being 

validated or refuted. Here, a number of these ideas for future work are briefly outlined.   

Seismic forward modelling is relatively under-represented in the scientific literature, with the 

majority of studies relating to qualitative modelling of outcrop analogues. By adopting a 

multidisciplinary approach a more quantitative result can be obtained, as is the case in Chapter 

8. Significant aspects of geophysics, petrophysics and reservoir engineering are required in 

addition to geological knowledge, although integrating these aspects opens the door to many 

possible applications.  

CO2 sequestration is a topic currently under scientific review at numerous institutions. 

Predicting and monitoring the migration of injected CO2 is important to ensure that the 

integrity of storage sites is maintained (e.g. Tueckmantel et al., 2012). By coupling reservoir 

modelling with 4D seismic forward modelling, the flow of CO2 from injection wells could be 

predicted, allowing for optimisation of well positioning. This would allow minimisation of the 

occurrence of pressure build-ups, which could compromise top- or fault-seals. 

Seismic forward modelling can also be used as a tool for quantifying the contribution of sub-

seismic scale faults to regional strain. Using high resolution data, such as the DEM from the 

Afar rift used in Chapters 8 and 9, allows the identification and incorporation into geological 

models of small-scale faults. By comparing the structurally restored bed-length of outcrop and 

seismically forward modelled geometries, the amount of sub-seismic strain could be 

quantified. 

Recent work has highlighted the potential role of fluid injection in triggering seismicity (Davies 

et al., 2013; Keranen et al., 2013). This has been explored to some extent in Chapter 9. 

Forward modelling the injection of gas or water in conventional and unconventional reservoirs 

would allow 4D monitoring of the predicted pressure perturbations. In turn, the modification 

of the effective stress around faults would allow quantitative prediction of the likelihood of 

reactivation. This methodology could possibly also be adapted to predict subsidence in 

hydrocarbon fields where no artificial pressure support mechanisms are used. 

Work presented in Chapter 8, as well as recent discussions regarding fault structure and the 

impact of faults on hydrocarbon flow (Manzocchi et al., 2010; Childs et al., 2012; Manzocchi et 

al., 2012), have opened a dialogue questioning the notion of faults being able to form a seal 

over production time-scales. It may be possible to develop a methodology to predict the 
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sealing behaviour of a fault with a realistic (rather than seismically resolvable) geometry, over 

longer timescales, such as those relevant to hydrocarbon exploration. By coupling migration 

models with long run-time fluid flow simulations the leakage rate across faults may be 

modelled. 

The impact on oil recovery of extending fault tips is explored in Chapter 6, with results 

indicating that increasing tip length has a greater impact on water, rather than oil flow. One 

explanation discussed was that of the effect of the saturation and relative permeability of the 

two phases impacting their respective mobility, and hence flow velocity. This is an aspect 

which requires further investigation.  

Simulations of hydrocarbon flow across realistic fault geometries (Chapter 8) have highlighted 

the role of the effective permeability of a system as a whole. One variable in the effective 

permeability is the path-length between injection and production wells. The impact of this 

factor could be highlighted by performing simulations with geological grids with a range of 

lengths and populated with identical petrophysical properties. Although this has been 

attempted, time constraints prevented a suitable approach for accounting for the effects of 

increased pore volume associated with increasing the grid dimensions. 

The piece of additional work with potentially the highest impact would involve generating high 

resolution geocellular models of multiple (rather than single) detailed faults from the Afar DEM 

dataset (Chapters 8 and 9). This could be initiated as a full-field simulation model incorporating 

realistic fault geometries. Seismically forward modelling this grid, and re-running simulations 

with the seismically resolvable fault geometries would allow the impact of the disparity in fault 

geometries to be quantified at the field scale. Furthermore, the seismically resolvable 

geometries could be modified using approaches such as probabilistic relay zone population, 

fault tip extension and throw modification. These are approaches that can be applied to try 

attempt to represent detailed fault architectures within the limitations of geological and 

simulation software. By simulating these modified models, the impact, and effectiveness, of 

these different approaches could be quantified by performing a history match against the 

original, realistic grid. This would allow the most appropriate methodologies for accounting for 

fault geometric complexity to be implemented in order to enhance the predictive nature of 

flow simulations and aid hydrocarbon recovery. 
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Normal Fault Relay Zone Geometries in the Early Gulf of Corinth Rift (Greece) and its 
Application as a Hydrocarbon Exploration and Production Analogue

Alan Wood*, Douglas Paton and Richard Collier Basin Structure Group (http://bsg.leeds.ac.uk), School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom. *ee08amw@leeds.ac.uk 

Introduction

Within extensional hydrocarbon provinces the style of deformation and of fault linkages which are developed has major 
implications for hydrocarbon exploration and production, influencing maturation, migration, reservoir distribution, trap 
integrity and reservoir performance (Dou and Chang, 2003). Seismic resolution often does not allow imaging and full 
constraint of fault and fault linkage geometries, hence leading to uncertainty in cross-fault juxtapositions and fault rock 
properties. Volumetric estimations, spill point locations and the extent of reservoir compartmentalisation are strongly 
influenced by these uncertainties, with major implications for recovery rates and economic viability. It is therefore 
crucial to fully assess the potential effects of geometric uncertainty during both the appraisal and development stage.

The onshore Gulf of Corinth Rift presents a high quality study area in which basin- to reservoir-scale fault systems 
encompassing a range of relay geometries are exposed. Detailed field mapping and integration into the three 
dimensional geological modelling environment has constrained relay and deformation geometries and allowed a 
conceptual model describing the evolution of the area to be developed.

Background

The eastern Mediterranean has long been recognised as an area of active tectonism with the region dominated by the collision of the African and Arabian plates with the 
Eurasian plate. Subduction of the African plate at the Hellenic arc is occurring at a faster rate than the northwards movement of the plate itself leading to slab pull and 
southwards migration of the arc relative to the Eurasian plate. This leads to backarc extension and continental rifting of mainland Greece to the north (Doutsos et al., 1988). It is 
thought that rifting commenced at about 15 Ma and was initially distributed across the Aegean region (Armijo et al., 1996). The Gulf of Corinth rift initiated at approximately 5 Ma 
and is currently the most active with extension rates averaging 5 to 15mm/yr (Bell et al., 2008).

Tectonic setting of the eastern Mediterranean. The Anatolian plate is 
extruded westwards away from the Arabia-Eurasia collision zone and 
towards the Hellenic subduction zone with lateral strike-slip movement 
accommodated along the North Anatolian Fault (NAF) and East Anatolia 
Fault (EAF). Large block arrows represent mean plate motions whilst 
small arrows represent movement vectors. Localised rifting in the Aegean 
region over the last 15Ma is indicated by the orange areas with the 
Corinth Rift highlighted by a red box. DSF=Dead Sea Fault. Modified from 
Armijo et al., 1999.

Annotated photo panels highlighting key geometries observed in the field. 
For locations see Geological map. 1) Panorama of Vouraikos river valley. 
Early syn-rift deposits onlap the basement carbonate and are in turn 
onlapped by the main alluvial fan system. A marked decrease in the 
net:gross coupled with progradation is observable northwards. The 
positions of photographs two and three are outlined. 2) View of field scale 
tilted fault block onlapped by early sub-basin fill. This is subsequently 
onlapped by the distal deposits of the main alluvial fan. 3) Annotated 
photograph highlighting the monoclinal geometry at the eastern tip of the 
Dhoumena fault. The approximate position of the fault is marked. 4) 
Hangingwall syncline preserved adjacent to the Dhoumena fault. 5) Hard 
linked relay zone located along the Kerpini faultset. Note that the 
photograph is taken from the footwall of the northern segment of the relay 
(not shown in this image). 6) Hard linked relay along the Mamousia-
Pirghaki fault set with the Gilbert style Kerinitis fan Delta in the hanginwall.
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Limitations of seismic resolution often permit multiple, 
equally valid, interpretations of fault and fault relay 
geometries to be constructed, however it is common that 
only a single geometry is modelled and taken forward as 
the base case for simulation. Here we apply geometries 
observed in the field to an analogous North Sea seismic 
dataset to show the effect that geometric uncertainty can 
have on simulated reservoir performance. 

The modern day Gulf of Corinth is a large E-W orientated inlet in central Greece approximately 120km in length with a maximum 
width of 27km and maximum water depth of almost 900m. It separates the Peloponnese in the south from Central mainland 
Greece to the north. The area is actively extending and is characterised by high extension rates which are accommodated on a 
number of major north dipping and minor south dipping faults. Broadly speaking these faults run ENE-WSW, cross-cutting pre-
existing NNE-SSW orientated thrusts within the pre-rift basement. This basement consists of Mesozoic age shelf carbonates, 
radiolarites, flysch and ophiolites derived from the Tethys Ocean and deformed during Alpine Collision. Early dispersed rifting in 
the northern Peloponnese resulted in the formation of a number of isolated sub-basins prior to strain localisation onto the 
southernmost fault sets. The main phase of onshore syn-rift sedimentation consisted of continental alluvial fan deposits, with 
subsidence on later faults to the north leading to deltaic sedimentation at the margin of the Gulf and turbidite deposition along its 
axis. Younger faults developed in the hangingwalls to older faults suggesting a generalised trend of northwards migration of 

Correctly modelling the amount of normal drag adjacent to a fault has significant impacts on 
the cross-fault juxtapositions and hence on cross fault fluid flow during reservoir simulation. 

Field Observations

Above. Location map showing the 
Peloponnese's location within the 
eastern Mediterranean 

Left. Close up of the Peloponnese 
peninsula. The field area covered 
by this study is highlighted by the 
red box. 

Right. Geological map of field area 
with inset representative cross 
sections showing the general 
s t r u c t u r e  ( n o  v e r t i c a l  
exaggeration). Numbers refer to 
the locations of the annotated field 
photographs.

The stratal architecture of the continental alluvial fan sediments provides a tool for estimating along-strike throw variations of the 
fault systems and constraining fault timing and basin development. Geometries mapped in the field can be integrated with digital 
elevation, structural and sedimentological data within the modelling environment to characterise their three dimensional 
expression and to consider their relevance as analogues to exploration and production settings.
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Initial extensional stress across the area accommodated through dispersed rifting 
on a number of isolated faults. Small sub-basins develop in the hangingwalls to 
these faults with the associated fill being composed of both local footwall derived 
material and more compositionally varied river transported sediments with a 
hinterland provenance.

It is likely that established fluvial systems existed with their positions controlled by 
the pre-existing, approximately N-S orientated structural fabric of the Hellenide 
Mountain range. Whether or not the courses of these river systems were 
influenced by early fault growth is unclear and is largely dependent on the relative 
rates of deformation and incision. However it is suggested that the broad positions 
of these antecedent river systems changed little after the initiation of rifting.

Faults at the southern margin begin to interact kinematically, with strain becoming 
localised onto the Kalavryta fault set. Coalescence of early sub-basins results in 
formation of a broad, shallow depocentre filled with a continental alluvial fan 
dominated by fluvial conglomerates, with subordinate sands and silts. The 
compositionally variable nature of the sediment suggests a largely hinterland 
provenance.

The main sediment input point is the palaeo-Vouraikos river, with incision 
exceeding the rate of footwall uplift, and hence maintaining its antecedent course. 
It is likely that secondary input systems were also present along strike, potentially 
controlled by the positions of early relay zones or the pre-existing structural fabric. 

High sediment input rates coupled relatively with low displacement rates across 
the fault set result in rapid progradation, with onlap onto the topographic highs of 
the footwall crests of the proto-Kerpini fault set reveals their presence due to 
dispersed rifting in the initial stage of evolution.                                                                                                                  

Fault profile re-adjustment results in a rapid increase in the deformation rate 
around displacement minima associated with relay zones. This increasing 
displacement results in high strain and breaching of relays. In turn the rate of 
accommodation creation in the hangingwall increases, limiting progradation of the 
fan system. Footwall uplift is now occurring along the entire fault set potentially re-
directing secondary rivers and limiting sediment input into the basin, possibly 
resulting in aggradation rather than progradation.

Sub-basins in the hangingwall to the proto-Kerpini fault set preserved from the 
initial stage of dispersed rifting may become filled with distal alluvial fan deposits. 
It is unclear as to whether or not the footwall crests to these early faults became 
buried at this stage. 

Extensional deformation moves northwards, concentrating onto the Kerpini and 
Tsivlos fault sets, with an associated decrease in displacement rates across the 
Kalavryta fault set where overlap of fault sets occurs. Further west where no 
overlap occurs, on the segment of the Kalavryta fault set known as the 
Dhemesticha fault, displacement continues unimpeded. Similarly, to the northeast 
of the Kerpini-Tsivlos fault set extension is accommodated by movement on the 
Valimi fault set. 

The majority sedimentation is now within the newly forming basin in the 
hangingwall to the Kerpini-Tsivlos fault set. This results in a similar pattern as 
observed in stage 2, with rapid early progradation fed by the palaeo-Vouraikos 
and subsidiary rivers flowing through soft-linked relay zones. This progradation is 
observable as a diachronous decrease in net:gross in the Vouraikos river valley to 
the north of the Kerpini Fault.

Kinematic linkage and profile re-adjustment of the Kerpini-Tsivlos fault set results 
in a rapid increase in displacement at relay zones and subsequent breaching and 
hard linkage. Minor variations in the displacement along this, as well as other fault 
sets can be explained by 'displacement shadows' where two or more faults are 
located in close proximity in a direction normal to strike.

Displacement continues on the Dhemesticha fault, with local stresses leading to 
the formation of a subsidiary fault to the north west of the main fault.

Eastwards propagation of the Kerpini-Tsivlos fault set is limited by strain being 
accommodated instead on the Valimi fault set to the North. Westwards 
propagation is also limited, with additional strain being accommodated by a 
number of splays. The reason for this stalling in westwards propagation of the 
Kerpini fault set is as yet unclear, however we speculate that a mechanical barrier, 
or pre-existing structure may be the cause. 

The alluvial fan continues to prograde, first onlapping and then burying the 
footwall crest of the proto-Dhoumena fault. 

The deformation front moves northwards with strain accommodation switching to 
the Valimi fault set. Removal of the 'displacement shadow' caused by the Kerpini-
Tsivlos fault set allows westwards propagation and hard linkage of the Valimi fault 
set. 

To the west strain is accommodated through reactivation of the now buried 
Dhoumena fault. A monocline forms over the fault as it propagates upwards 
through the syn-rift strata in the hangingwall to the Kerpini-Tsivlos fault set.

The Dhoumena fault propagates up through the monocline formed above it 
revealing a footwall crest composed of the basement carbonate. A broad 
monocline is preserved at the present day erosion surface to the east of the 
Megaspillion monastery, the lateral extent of which marks the approximate 
expression of the Dhoumena fault beneath the surface. The Valimi fault set is also 
propagating westwards potentially beginning to link at depth with the Dhoumena 
fault. Prior to hard linkage occurring at surface the deformation front again steps 
northwards, with displacement nucleating onto the Mamoussia-Pirgahki fault set. 
This marks a transition from continental to marine deposition, with the hangingwall 
basin of the Mamoussia-Pirghaki fault set being filled with deltaic sediments such 
as those observed at the Kerinitis Gilbert style fan delta to the north.

An area of uncertainty with our model stems from the continued movement of the Kalavryta fault set. A secondary fan composed solely of local footwall derived carbonate outcrops in the hangingwall to the eastern portion of the Kalavryta fault set (see diagram 8). This onlaps the main alluvial fan with the respective dips 
indicating that at the time of the secondary fans deposition the main alluvial fan dipped at approximately 8 degrees towards the fault. The entire area was subsequently rotated by a further 17 degrees. This implies two things; 1) That a significant amount of displacement (equivalent to 8 degrees of rotation) occurred on the 
Kalavryta fault following cessation of deposition of alluvial deposits in the immediate hangingwall. 2) That an additional 17 degrees of rotation, almost 70% of the total observable at the present day land surface, occurs subsequent to deposition of the secondary fan. Although this secondary fan is only preserved at the 
eastern end of the Kalavryta fault set the dips of the underlying alluvial fan are consistent along the entire strike of the fault, indicating that this late movement was not simply restricted to the eastern segment. 
This has major implications for the evolution of the rift system. Continuous and/or late activity on the Kalavryta fault set necessitates a more complex model than the simple northwards progression previously proposed. In analogous settings late stage fault movement and associated deposition may significantly modify 
fairway distribution, as well as compromising seal integrity.

Application for Quantifying Geometric Uncertainty

When a high quality geological model honouring all available data has been constructed and populated with 
appropriate properties it is taken forward for reservoir simulation. However, the subsurface environment is 
non-unique, with multiple structural, sedimentological and petrophysical uncertainties requiring 
consideration (Manzocchi et al., 2008). These uncertainties can have significant impacts on the validity of a 
prospect or the performance of a field. Here we examine the effects that a single structural uncertainty, fault-
relay geometry, has on simulated hydrocarbon production.

Above. Cut out view of model construction. A digital 
elevation model (DEM) is draped with map data. 
Structural field data is used to construct fault and top-
basement surfaces. Arrows indicate where footwall 
cutoffs have been projected to account for fault scarp 
degredation. Uncertainty in reflector positioning leads to multiple interpretations of fault geometry 

being equally valid. 

Plane and cross polarised light photographs illustrating the variation in 
composition of different stages of basin fill. Coloured boxes refer to 
evolutionary diagrams.

1) Initial dispersed rifting resulted in depocentres filled with both 
hinterland and locally derived material. 

2) The main progradational alluvial fan is compositionally varied, 
dominated by sediments with a hinterland provenance. This includes 
sandstone, chert, radiolarite and carbonate lithologies.  

3) The breccia stratigraphically above the main alluvial fan in the 
hangingwall to the Kalavryta fault is composed entirely of carbonate 
material derived from the local footwall.

All stages display carbonate cementation to varying degrees, with both 
vadose and phreatic cements observed.

3D Modelling and Structural Analysis

Field data such as bedding and fault orientations, outcrop patterns, palaeocurrents, mechanical properties 
and sedimentary logs can be integrated with DEM data within geological modelling software. This provides 
a tool for constraining the three dimensional fault geometry and along strike variations in throw associated 
with relay zones.

Right. View of horizon representing the top of the pre-rift 
basement. Fault surfaces between footwall and 
hangingwall cut-offs are shown in blue. Displacement 
minima are associated with relay zones and 
'displacement shadows' where strain is accommodated 
across multiple faults which overlap in a direction 
normal to strike. x2 vertical exaggeration.

Model for Structural Evolution

Subtle structural and stratigraphic relationships have been used to develop a conceptual model for the evolution of the onshore portion of the rift. This 
model illustrates how timing of fault activity is significantly more complex than indicated by previously published models (e.g. Sorel, 2000). 

During geological modelling it is standard practise 
to project key stratigraphic horizons towards faults 
from a set distance. This removes all drag, whether 
a processing artefact or a genuine geometry. 
Geometries observed in the field show that normal 
drag does occur at multiple scales and can have 
s ign i f i can t  imp l i ca t ions  fo r  c ross- fau l t  
juxtapositions, and hence cross-fault flow and 
reservoir compartmentalisation.
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minima are observed at relay zones and within 'displacement shadows'. 
Displacement is partitioned between the east and the west of the area, with extension 
in the west accommodated across a single fault, whilst extension in the east is 
accommodated by a number of faults. The reason for this disparity is unclear.  
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Unbreached relay, normal drag included

Single Fault, no drag
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Six separate fault geometry interpretations based on 
seismic data from the North Sea have been modelled (1-6). 
Each fault model has been populated with three distinct 
horizon geometries (1a, b and c). The fault intersections of 
the horizons have been modified to incorporate varying 
degrees of normal drag, consistent with geometries 
observed in the field. This results in each fault model 
having horizons showing no drag, moderate drag and an 
intact monocline at the level of the uppermost stratigraphic 
layer. All other parameters are constant between the 
models with a simple, homogenous reservoir stratigraphy 
uniformly populated with reservoir properties. Effectively 
impermeable layers have been modelled above and below 
the reservoir interval with a standard SGR algorithm used 
to calculate fault rock properties. 

Unbreached relay, monocline above fault

Unbreached relay, no drag

Singly breached relay, no drag

Doubly breached relay, no dragLinking Fault, no drag
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Further Work

Accounting for, and mitigating against, geometrical uncertainty in flow simulation is currently restricted to 
statistical population based on a limited number of field observations and numerical models. We wish to further 
the current understanding and hence reduce this uncertainty by developing models for predicting under what 
mechanical and stress conditions different relay and drag geometries develop. It is believed that the mechanical 
heterogeneity of multilayered sequences is a major control on fault propagation and fault damage zone 
geometries for reservoir scale faults (Welch et al., 2009). We aim to understand the influence that mechanical 
stratigraphy has on how strain is accommodated at the field to basin scale, and to predict the relative 
proportions of ductile (i.e. drag) and brittle deformation.

Conclusions

• Detailed field mapping, data collection and three dimensional geological modelling have allowed the development of a new model for the structural 
evolution of the onshore Gulf of Corinth. This model describes a more complex evolution of rifting than previously thought, with some faults displaying 
evidence for multiple phases of activity.

• Displacement profiles of the onshore faults indicate a high displacement-length ratio compared with global studies. 

• Fault-relay and drag geometries observed in the field provide structural analogues for both hydrocarbon exploration and production settings located 
within similar extensional provinces.

• The initial interpretation of fault and fault-relay geometries in seismic data is a major uncertainty and has significant implications later in the workflow 
for simulated reservoir performance. 

• Relay geometry and positioning of wells relative to relay zones can significantly influence sweep patterns and timing of water breakthrough.

• Incorporating a proportion of normal drag reduces the effective throw of faults hence altering cross fault juxtapositions and flow response during 
simulation.
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Reservoir Simulation Results

A total of seventeen different geometries were simulated using a dead oil fluid 
model. A production well was positioned in the footwall and an injection well in the 
hangingwall. Two separate water flood production strategies were employed, a 
constant injection rate set to the initial production rate, and a variable injection rate 
set to maintain a minimum bottom hole pressure (BHP) at the production well. 
Although maintaining the BHP lead to a higher cumulative production in most cases, 
it also resulted in high injection rates, earlier water breakthrough and a high water 
cut when compared to a constant injection strategy.
For the same production strategy, the oil production rate for the different geometries 
is highly variable. The highest variability is observed for geometries where an 
element of drag, as observed in the field, is included in the geological model.
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Shown below are simulation results using a 
rate strategy for the six different fault relay geometries 
modelled, with normal drag included in each. 

constant injection 

Streamlines mid-way through 
the simulations. Streamlines are 
displayed from the injection well 
and filtered to display high water 
saturations, hence showing the 
advancement of the water front 
and sweep pattern at this 
timestep. The base reservoir 
horizon is shown in white and 
faults in blue. The injection well 
is blue and the production well 
red. Vertical exaggeration x5. 

Water saturation within the 
reservoir interval at the final 
timestep of the simulations. By 
this stage the majority of models 
have seen water breakthrough 
at the production well, although 
large volumes remain un-swept. 
Vertical exaggeration x5

Plots of Oil Production Rate and 
Water Cut over the course of the 
simulations. Increasing the 
complexity of the relay zone 
geome t r y  i nc reases  t he  
variability of the production rate.

Unbreached Relay
Unbreached Relay, Fault Tip 

Monocline
Singly Breached Relay Linking Fault Doubly Breached Relay Single Fault

Discrete offsets at the fault tips increases the path length for 
water from the injection well, hence improving sweep 
efficiency and delaying water breakthrough. This geometry is 
analogous to including sub-seismic displacement at fault tips.

Shorter faults with monoclines at the fault tips rather than 
discrete offsets provide a shortcut for fluid flow, hence leading 
to early water breakthrough, a high water cut and remaining 
un-drained pockets of the reservoir.

Introducing a physical connection across the relay reduces the 
area of reservoir:reservoir juxtaposition, initially leading to 
pressure compartmentalisation and a drop in production. Once 
a sufficient pressure differential is reached production rates 
increase until water breakthrough occurs.

Having a high throw linking fault initially reduces cross fault 
flux, causing pressure depletion of the footwall block and 
decreasing production rates. The distribution of throw leads to 
multiple along-strike reservoir:reservoir juxtapositions  and 
cross fault flow occurring at multiple positions. This results in a 
recovery in production rates and a relatively low water cut.  

Two negative spikes in production occur as cross flux is 
reduced across the two breaching faults. Production 
subsequently increases until rapidly dropping after water 
breakthrough takes place.

A single fault decreases the probability of cross fault 
juxtaposition hence increasing the likelihood of reservoir 
compartmentalisation. Production rates decrease dramatically 
as pressure depletes in the footwall. Normal drag results in a 
small area of reservoir:reservoir juxtaposition allowing some 
pressure communication and cross fault flux.

Cumulative oil production for variable and constant water injection rates. Although using a variable injection rate results in a larger cumulative oil 
production, a higher water cut is observed for many of the structural geometries. Where the fault geometries limit cross fault flux, pressure 
compartmentalisation occurs requiring an unfeasibly high injection rate to maintain the BHP.

Oil production rates for the different fault relay geometries using a constant 
injection rate strategy. The different models are colour coded by the amount of 
drag incorporated. Where no drag is included cross-fault communication is 
limited to the models where the relay ramp is intact. Breached ramps result in a 
lack of cross-fault reservoir:reservoir juxtapositions, hence leading to rapid 
pressure depletion in the footwall. Monoclinal geometries result in large areas 
with reservoir:reservoir juxtaposition, reducing the impact that different relay 
geometries have on production. Where normal drag is included production rates 
are highly variable for the different fault relay geometries, and significantly 
different to the models where no drag is included. 

Normal Fault Relay Zone Geometries in the Early Gulf of Corinth Rift (Greece) and its Application as a Hydrocarbon Exploration and Production Analogue
Alan Wood*, Douglas Paton and Richard Collier Basin Structure Group (http://bsg.leeds.ac.uk), School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom. *ee08amw@leeds.ac.uk 
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e
c
tio

n
s
, 
fa

u
lt 

z
o
n
e
 c

o
m

p
le

x
ity

 a
n
d
 f
a
u
lt 

lin
ka

g
e
 g

e
o
m

e
tr

ie
s 

a
re

 o
ft
e
n
 d

iff
ic

u
lt 

to
 r

e
so

lv
e
 u

si
n
g
 s

e
is

m
ic

 d
a
ta

 d
u
e
 t
o
 e

ff
e
ct

s 
su

ch
 a

s
 a

m
p
lit

u
d
e
 d

e
te

ri
o
ra

tio
n
 a

n
d
 d

iff
ra

c
tio

n
. 
T

h
is

 in
e
v
ita

b
ly

 
le

a
d
s 

to
 a

 s
im

p
lif

ic
a
tio

n
 o

f 
st

ru
ct

u
ra

l 
m

o
d
e
ls

 w
h
e
n
 c

o
m

p
a
re

d
 t

o
 g

e
o
m

e
tr

ie
s 

o
b
se

rv
e
d
 i

n
 a

n
a
lo

g
o
u
s
 o

u
tc

ro
p
 d

a
ta

s
e
ts

 (
F

ig
u
re

 1
).

 I
n
 t

u
rn

 t
h
is

 
si

m
p
lif

ic
a
tio

n
 le

a
d
s 

to
 in

a
cc

u
ra

te
 r
e
p
re

se
n
ta

tio
n
s 

o
f c

ro
ss

-f
a
u
lt 

re
se

rv
o
ir
 ju

xt
a
p
o
si

tio
n
s 

a
n
d
 c

a
lc

u
la

tio
n
 o

f t
h
e
 a

s
s
o
c
ia

te
d
 o

f f
a
u
lt 

p
la

n
e
 p

ro
p
e
rt

ie
s
 

w
ith

 p
o
te

n
tia

lly
 s

e
ri
o
u
s 

im
p
lic

a
tio

n
s 

fo
r t

h
e
 s

im
u
la

te
d
 p

ro
d
u
ct

io
n
 r
e
sp

o
n
se

. 

H
ig

h
 r

e
so

lu
tio

n
 d

ig
ita

l 
e
le

va
tio

n
 m

o
d
e
ls

 (
D

E
M

s)
 h

a
ve

 b
e
e
n
 u

se
d
 t

o
 c

o
n
st

ru
ct

 d
e
ta

ile
d
 g

e
o
lo

g
ic

a
l 

m
o
d
e
ls

 o
f 

re
a
lis

tic
 r

e
s
e
rv

o
ir
-s

c
a
le

 f
a
u
lt 

g
e
o
m

e
tr

ie
s.

 S
im

u
la

tio
n
s 

h
a
ve

 s
u
b
se

q
u
e
n
tly

 b
e
e
n
 p

e
rf

o
rm

e
d
 to

 a
ss

e
ss

 th
e
 p

re
d
ic

te
d
 c

ro
s
s
-f

a
u
lt 

h
y
d
ro

c
a
rb

o
n
 fl

o
w

. F
o
rw

a
rd

 m
o
d
e
lli

n
g
 th

e
 s

e
is

m
ic

 
re

sp
o
n
se

 o
f 
th

e
se

 r
e
a
lis

tic
 g

e
o
m

e
tr

ie
s 

a
llo

w
s 

co
n
st

ru
ct

io
n
 o

f 
g
e
o
lo

g
ic

a
l m

o
d
e
ls

 b
a
se

d
 s

o
le

ly
 u

p
o
n
 t
h
e
ir
 s

e
is

m
ic

a
lly

 r
e
s
o
lv

a
b
le

 g
e
o
m

e
tr

ie
s
. 
T

h
e
 

si
m

u
la

te
d
 p

ro
d
u
ct

io
n
 r
e
sp

o
n
se

 o
f t

h
e
 d

e
ta

ile
d
, a

n
d
 o

f t
h
e
 s

e
is

m
ic

a
lly

 fo
rw

a
rd

 m
o
d
e
lle

d
 g

e
o
m

e
tr

ie
s
 c

a
n
 th

e
n
 b

e
 c

o
m

p
a
re

d
.

O
u
r 

re
su

lts
 s

u
g
g
e
st

 t
h
a
t 
fo

r 
fu

lly
 o

p
e
n
 a

n
d
 f
u
lly

 b
re

a
ch

e
d
 r

e
la

y 
zo

n
e
s 

si
m

p
lif

ic
a
tio

n
 o

f 
fa

u
lt 

s
tr

u
c
tu

re
 h

a
s
 a

 r
e
la

tiv
e
ly

 s
m

a
ll 

im
p
a
c
t 
u
p
o
n
 p

re
d
ic

te
d
 

si
m

u
la

tio
n
 r

e
sp

o
n
se

, 
re

g
a
rd

le
ss

 o
f 

re
se

rv
o
ir
 t

h
ic

kn
e
ss

. 
C

o
n
ve

rs
e
ly

, 
si

m
p
lif

ic
a
tio

n
 o

f 
th

e
 c

o
m

p
le

x
 f

a
u
lt 

a
rc

h
ite

c
tu

re
 o

f 
p
a
rt

ia
lly

 b
re

a
c
h
e
d
 r

e
la

y
 

P
h

o
to

 C
re

d
it
: 

V
ic

to
ri
a

 W
o

o
d

, 
1

m
3

0
3
m

6
m

F
ig

u
re

 1
. 
(A

) 
A

n
n
o
ta

te
d
 p

h
o
to

g
ra

p
h
 o

f 
re

se
rv

o
ir
 s

ca
le

 f
a
u
lts

 f
ro

m
 U

ta
h
, 
U

S
A

. 
T

h
e
 c

o
m

p
le

x 
fa

u
lt 

g
e
o
m

e
tr

y 
re

su
lts

 in
 p

a
rt

iti
o
n
in

g
 o

f 
d
is

p
la

ce
m

e
n
t 
a
cr

o
ss

 m
u
lti

p
le

 f
a
u
lt 

p
la

n
e
s,

 le
a
d
in

g
 t
o
 t
h
e
 i
n
d
iv

id
u
a
l 
u
n
it
s
 b

e
in

g
 s

e
lf
 

ju
xt

a
p
o
se

d
. (

B
) T

yp
ic

a
l s

u
b
-s

u
rf

a
ce

 s
e
is

m
ic

 r
e
sp

o
n
se

 o
f t

h
e
 fa

u
lt 

st
ru

ct
u
re

 s
h
o
w

n
 in

 (
A

).
 T

h
e
 im

a
g
e
 s

h
o
w

n
 in

 (
A

) 
is

 s
u
p
e
ri
m

p
o
se

d
 fo

r 
re

fe
re

n
ce

. N
o
te

 th
e
 la

ck
 o

f r
e
so

lv
a
b
le

 d
e
ta

il.
 T

h
e
 p

re
cl

u
si

o
n
 o

f d
e
ta

ile
d
 im

a
g
in

g
 o

f f
a
u
lt
 

st
ru

ct
u
re

 g
e
n
e
ra

lly
 le

a
d
s 

to
 fa

u
lt
s 

b
e
in

g
 m

o
d
e
lle

d
 a

s 
si

m
p
le

 tw
o
-d

im
e
n
a
io

n
a
l p

la
n
e
s.

 U
n
ce

rt
a
in

ty
 in

 th
e
 p

o
si

tio
n
 o

f h
o
ri
zo

n
-f

a
u
lt 

in
te

rs
e
ct

io
n
s 

ca
u
se

d
 b

y 
a
m

p
lit

u
d
e
 d

e
te

ri
o
ra

tio
n
 a

d
ja

ce
n
t t

o
 fa

u
lt
s
 is

 ta
c
k
le

d
 b

y
 p

ro
je

c
ti
n
g
 

re
fle

ct
o
rs

 to
w

a
rd

s 
th

e
 fa

u
lts

 fr
o
m

 a
 s

e
t d

is
ta

n
ce

. (
C

) 
T
yp

ic
a
l g

e
o
m

e
tr

y
 o

f a
 g

e
o
lo

g
ic

a
l m

o
d
e
l c

o
n
st

ru
ct

e
d
 fr

o
m

 in
te

rp
re

ta
tio

n
 o

f t
h
e
 s

e
is

m
ic

 d
a
ta

 in
 (
B

).
 In

te
rp

re
tin

g
 th

e
 fa

u
lt 

a
s 

a
 s

im
p
le

 p
la

n
e
 r
e
su

lt
s
 in

 in
c
o
rr

e
c
t c

ro
s
s
-f

a
u
lt
 

1
m

3

In
tr

o
d

u
c
ti

o
n

F
o
llo

w
in

g
 t

h
e
ir
 i

n
iti

a
tio

n
 a

s 
a
 r

e
sp

o
n
se

 t
o
 s

tr
e
ss

, 
fa

u
lts

 e
vo

lv
e
 t

h
ro

u
g
h
 a

 p
ro

ce
ss

 o
f 

g
ro

w
th

, 
in

te
ra

ct
io

n
, l

in
ka

g
e
 a

n
d
 c

o
n
tin

u
e
d
 g

ro
w

th
 (
C

a
rt

w
ri
g
h
t e

t a
l, 

1
9
9
6
).

 F
o
r 
re

se
rv

o
ir
 s

ca
le

 fa
u
lts

 th
is

 
p
ro

ce
ss

, 
a
lo

n
g
 w

ith
 t

h
e
 h

e
te

ro
g
e
n
e
o
u
s 

m
e
ch

a
n
ic

a
l 

p
ro

p
e
rt

ie
s 

o
f 

th
e
 s

tr
a
tig

ra
p
h
y,

 r
e
s
u
lts

 i
n
 

co
m

p
le

x 
fa

u
lt 

a
rc

h
ite

ct
u
re

s 
co

n
si

st
in

g
 o

f 
fa

u
lt 

le
n
se

s,
 m

u
lti

p
le

 s
lip

 s
u
rf

a
ce

s 
a
n
d
 r

e
la

y
 z

o
n
e
s
 

(F
ig

u
re

 1
).

 T
h
is

 c
o
m

p
le

xi
ty

 o
ft
e
n
 le

a
d
s 

to
 a

 n
e
t 
re

d
u
c
tio

n
 in

 f
a
u
lt 

th
ro

w
, 
w

ith
 t
h
e
 p

re
se

rv
a
tio

n
 o

f 
cr

o
ss

-f
a
u
lt 

flo
w

 p
a
th

w
a
ys

. 
In

 c
o
n
tr

a
st

, 
p
o
o
r 

re
so

lu
ti
o
n
 o

f 
fa

u
lts

 i
n
 s

e
is

m
ic

 d
a
ta

 p
re

ve
n
ts

 t
h
e
 

id
e
n
tif

ic
a
tio

n
 o

f 
th

e
ir
 d

e
ta

ile
d
 s

tr
u
ct

u
re

. 
C

o
n
se

q
u
e
n
tly

 f
a
u
lts

 a
re

 c
o
m

m
o
n
ly

 m
o
d
e
lle

d
 a

s
 s

im
p
le

 
tw

o
-d

im
e
n
si

o
n
a
l 

p
la

n
e
s.

 
T

h
e
 

cr
o
ss

-f
a
u
lt 

ju
xt

a
p
o
si

tio
n
s 

re
su

lti
n
g
 

fr
o
m

 
th

e
se

 
si

m
p
lif

ie
d
 

g
e
o
m

e
tr

ie
s 

m
a
y 

b
e
 
si

g
n
ifi

ca
n
tly

 
d
iff

e
re

n
t 

to
 
th

o
se

 
p
re

se
n
t 

in
 
th

e
 
su

b
su

rf
a
ce

, 
w

ith
 
m

a
jo

r 
im

p
lic

a
tio

n
s 

fo
r p

re
d
ic

te
d
 c

ro
ss

-f
a
u
lt 

flu
id

 fl
o
w

 b
e
h
a
vi

o
u
r.

  
 

F
a
u
lt 

re
la

y 
zo

n
e
s 

a
re

 o
ft
e
n
 a

re
a
s 

o
f 
re

d
u
ce

d
 d

is
p
la

ce
m

e
n
t 
a
n
d
 c

a
n
 h

e
n
ce

 e
n
h
a
n
ce

 c
ro

s
s
 f
a
u
lt 

co
n
n
e
ct

iv
ity

 o
f 
re

se
rv

o
ir
 u

n
its

 c
o
m

p
a
re

d
 t
o
 c

o
n
tin

u
o
u
s 

fa
u
lt 

st
ru

ct
u
re

s.
 T

h
e
 la

te
ra

l r
e
so

lu
tio

n
 o

f 
se

is
m

ic
 d

a
ta

 m
a
y 

h
o
w

e
ve

r 
p
re

ve
n
t 

th
e
ir
 i
d
e
n
tif

ic
a
tio

n
 l
e
a
d
in

g
 t

o
 e

rr
o
rs

 i
n
 t

h
e
 m

o
d
e
lle

d
 c

ro
s
s
-

fa
u
lt 

ju
xt

a
p
o
si

tio
n
s.

O
u
r a

im
s 

w
ith

 th
is

 w
o
rk

 a
re

 a
s 

fo
llo

w
s;

(1
) 
To

 c
o
n
st

ru
ct

 g
e
o
lo

g
ic

a
l m

o
d
e
ls

 o
f d

e
ta

ile
d
 fa

u
lt 

re
la

y 
g
e
o
m

e
tr

ie
s 

b
a
se

d
 u

p
o
n
 h

ig
h
 r
e
so

lu
tio

n
 

d
ig

ita
l e

le
va

tio
n
 m

o
d
e
ls

. 
(2

) T
o
 s

yn
th

e
tic

a
lly

 g
e
n
e
ra

te
 th

e
 s

e
is

m
ic

 r
e
sp

o
n
se

 e
xp

e
ct

e
d
 fr

o
m

 th
e
se

 d
e
ta

ile
d
 g

e
o
m

e
tr

ie
s
. 

(A
)

(B
)

(C
)

F
ig

u
re

 2
. 
S

u
m

m
a
ry

 o
f 
w

o
rk

flo
w

. 
O

u
tc

ro
p
 g

e
o
m

e
tr

ie
s
 d

e
ri
v
e
d
 f
ro

m
 h

ig
h
 

re
so

lu
tio

n
 D

E
M

s 
a
re

 f
o
rw

a
rd

 m
o
d
e
lle

d
 t
o
 g

e
n
e
ra

te
 a

 s
y
n
th

e
ti
c
 s

e
is

m
ic

 
cu

b
e
. 

T
h
e
 p

ro
d
u
ct

io
n
 r

e
sp

o
n
se

 o
f 

th
e
 o

ri
g
in

a
l,
 a

n
d
 f

o
rw

a
rd

 m
o
d
e
lle

d
 

g
e
o
m

e
tr

ie
s 

ca
n
 

h
e
n
ce

 
b
e
 

co
m

p
a
re

d
 

to
 

a
s
s
e
s
s
 

th
e
 

ro
le

 
o
f 

fa
u
lt
 

F
a

u
lt

 i
n

te
rp

re
te

d
 a

s
 s

in
g

le
 p

la
n

e

P
ro

je
c

ti
o

n
 o

f 
h

o
ri

zo
n

 t
o

w
a

rd
s

 
fa

u
lt

H
o

ri
zo

n
 

in
te

rp
re

ta
ti

o
n



B
a

s
in

 S
tr

u
c

tu
re

 G
ro

u
p

A
p

p
lie

d
S

tr
u

c
tu

ra
l 
G

e
o

lo
g

y

S
tr

u
c

tu
ra

l 
G

e
o

m
e

tr
ie

s

To
 a

ss
e

ss
 th

e
 im

p
a

ct
 o

f a
rc

h
ite

ct
u

ra
l c

o
m

p
le

xi
ty

 o
f f

a
u

lt 
re

la
y 

zo
n

e
s 

u
p

o
n

 c
ro

ss
-f

a
u

lt 
flu

id
 fl

o
w

 b
e

h
a

v
io

u
r 
h

ig
h

 r
e

s
o

lu
tio

n
 d

ig
ita

l e
le

v
a

tio
n

 d
a

ta
 h

a
s
 b

e
e

n
 u

s
e

d
 to

 
co

n
st

ru
ct

 d
e

ta
ile

d
 s

tr
u

ct
u

ra
l m

o
d

e
ls

. T
h

is
 d

a
ta

 h
a

s 
a

 r
e

so
lu

tio
n

 o
f u

p
 to

 0
.5

m
 a

n
d

 is
 lo

ca
te

d
 a

t o
u

tc
ro

p
s
 in

 U
ta

h
, U

S
A

 a
n

d
 A

fa
r,
 E

th
io

p
ia

. T
h

e
s
e

 a
re

a
s
 h

a
v
e

 li
tt

le
 

ve
g

e
ta

tio
n

 a
n

d
 h

a
ve

 e
xp

e
ri
e

n
ce

d
 l
im

ite
d

 e
ro

si
o

n
 a

n
d

 h
e

n
ce

 a
llo

w
 t

h
e

 f
u

ll 
d

e
ta

il 
o

f 
th

e
 f

a
u

lt 
a

rc
h

ite
c
tu

re
 t

o
 b

e
 r

e
s
o

lv
e

d
. 

O
p

e
n

, 
p

a
rt

ia
lly

 b
re

a
c
h

e
d

 a
n

d
 f

u
lly

 
b

re
a

ch
e

d
 r
e

la
y 

g
e

o
m

e
tr

ie
s 

o
f s

im
ila

r 
d

im
e

n
si

o
n

s 
h

a
ve

 b
e

e
n

 s
e

le
ct

e
d

, a
ll 

o
f w

h
ic

h
 a

re
 a

t t
h

e
 s

ca
le

 o
f i

n
tr

a
-r

e
s
e

rv
o

ir
 fa

u
lts

 (
F

ig
u

re
 3

).
 T

o
 p

re
s
e

rv
e

 th
e

 m
a

x
im

u
m

 
fe

a
si

b
le

 d
e

ta
il 

th
e

 s
tr

u
ct

u
ra

l 
m

o
d

e
ls

 h
a

ve
 b

e
e

n
 c

o
n

st
ru

ct
e

d
 u

si
n

g
 a

 h
o

ri
zo

n
ta

l 
g

ri
d

 c
e

ll 
g

e
o

m
e

tr
y
 o

f 
5

m
 (

F
ig

u
re

 3
).

 T
h

is
 i

s
 s

ig
n

ifi
c
a

n
tly

 f
in

e
r 

th
a

n
 t

y
p

ic
a

l 
g

e
o

lo
g

ic
a

l a
n

d
 s

im
u

la
tio

n
 g

ri
d

s,
 g

e
n

e
ra

lly
 h

a
vi

n
g

 c
e

ll 
d

im
e

n
si

o
n

s 
o

f 2
5

 to
 2

5
0

m
. E

a
ch

 g
e

o
ce

llu
la

r 
g

ri
d

 h
a

s
 b

e
e

n
 p

o
p

u
la

te
d

 w
ith

 fo
u

r 
s
tr

a
tig

ra
p

h
ic

 m
o

d
e

ls
 p

ri
o

r 
to

 
se

is
m

ic
 fo

rw
a

rd
 m

o
d

e
lli

n
g

 a
n

d
 r
e

se
rv

o
ir
 s

im
u

la
tio

n
 (
F

ig
u

re
 4

).

P
e

tr
o

p
h

y
s

ic
a

l 
P

ro
p

e
rt

y
 P

o
p

u
la

ti
o

n

E
a

ch
 s

tr
u

ct
u

ra
l m

o
d

e
l h

a
s 

b
e

e
n

 p
o

p
u

la
te

d
 w

ith
 fo

u
r 
se

p
a

ra
te

 s
tr

a
tig

ra
p

h
ic

 m
o

d
e

ls
 (
F

ig
u

re
 4

).
 T

h
e

s
e

 
co

n
si

st
 o

f 
re

se
rv

o
ir
 i
n

te
rv

a
ls

 w
h

o
se

 t
h

ic
kn

e
ss

e
s 

e
ith

e
r 

a
p

p
ro

xi
m

a
te

 t
h

e
 t

h
ro

w
 o

f 
th

e
 f

a
u

lts
, 

o
r 

a
re

 
lo

w
e

r 
th

a
n

 t
h

e
 f

a
u

lt 
th

ro
w

s.
 T

h
e

 r
a

tio
n

a
l 

is
 t

o
 t

e
st

 w
h

e
th

e
r 

g
e

o
m

e
tr

ic
 f

a
u

lt 
co

m
p

le
xi

ty
, 

su
ch

 a
s
 

m
u

lti
p

le
 s

lip
 s

u
rf

a
ce

s,
 a

llo
w

s 
se

lf 
ju

xt
a

p
o

si
tio

n
 o

f 
a

 t
h

in
 r

e
se

rv
o

ir
 in

te
rv

a
l a

cr
o

ss
 a

 f
a

u
lt 

(F
ig

u
re

 1
).

 I
f 

so
 t
h

e
n

 t
h

e
 c

ro
ss

-f
a

u
lt 

flu
id

 f
lo

w
 c

h
a

ra
ct

e
ri
st

ic
s 

w
ill

 v
a

ry
 s

ig
n

ifi
ca

n
tly

 w
ith

 r
e

sp
e

ct
 t
o

 t
h

e
 s

e
is

m
ic

a
lly

 
re

so
lv

a
b

le
 g

e
o

m
e

tr
y.

 

T
h

e
 r

e
se

rv
o

ir
 in

te
rv

a
ls

 h
a

ve
 b

e
e

n
 p

o
p

u
la

te
d

 w
ith

 e
ith

e
r 

a
 h

o
m

o
g

e
n

o
u

s,
 h

ig
h

 p
e

rm
e

a
b

ili
ty

 r
e

se
rv

o
ir
 

o
r 

w
ith

 a
 v

e
rt

ic
a

lly
 v

a
ri
a

b
le

 s
tr

a
tig

ra
p

h
y 

d
e

ri
ve

d
 f
ro

m
 a

n
 u

p
sc

a
le

d
 N

o
rt

h
 S

e
a

 e
xp

lo
ra

tio
n

 w
e

ll 
d

ri
lle

d
 

th
ro

u
g

h
 a

 t
yp

ic
a

l 
p

ro
g

ra
d

in
g

 s
h

o
re

fa
ce

 s
e

q
u

e
n

ce
 (

F
ig

u
re

 4
b

, 
d

).
 P

e
tr

o
p

h
ys

ic
a

l 
p

ro
p

e
rt

ie
s 

u
s
e

d
 

in
cl

u
d

e
 p

o
ro

si
ty

, p
e

rm
e

a
b

ili
ty

 a
n

d
 V

sh
a

le
.

F
ig

u
re

 
4

. 
W

e
ll 

se
ct

io
n

s 
o

f 
p

ro
p

e
rt

ie
s 

(p
o

ro
si

ty
, 

p
e

rm
e

a
b

ili
ty

, 
V

s
h

a
le

) 
u

s
e

d
 
fo

r 

p
e

tr
o

p
h

ys
ic

a
l p

o
p

u
la

tio
n

. (
A

) 
R

e
se

rv
o

ir
 in

te
rv

a
l t

h
ic

kn
e

s
s
 

 fa
u

lt
 th

ro
w

, h
o

m
o

g
e

n
o

u
s
 

st
ra

tig
ra

p
h

y.
 (

B
) 

R
e

se
rv

o
ir
 i

n
te

rv
a

l 
th

ic
kn

e
ss

 ≈
fa

u
lt 

th
ro

w
, 

w
e

ll 
s
tr

a
ti
g

ra
p

h
y.

 (
C

) 
R

e
se

rv
o

ir
  

in
te

rv
a

l 
th

ic
kn

e
ss

 <
 f

a
u

lt 
th

ro
w

. 
(D

) 
R

e
se

rv
o

ir
 i

n
te

rv
a

l 
th

ic
k
n

e
s
s
 <

 f
a

u
lt
 

th
ro

w
, w

e
ll 

st
ra

tig
ra

p
h

y.

≈

F
ig

u
re

 3
. 
D

ig
ita

l E
le

v
a

tio
n

 M
o

d
e

ls
 (

D
E

M
s)

 d
ra

p
e

d
 w

ith
 a

e
ri
a

l p
h

o
to

g
ra

p
h

y
 w

ith
 t
h

e
 c

o
rr

e
sp

o
n

d
in

g
 s

tr
u

ct
u

ra
l m

o
d

e
ls

 s
h

o
w

n
 b

e
lo

w
. 
E

a
ch

 D
E

M
 s

u
rf

a
ce

 h
a

s 
b

e
e

n
 t
ra

n
sl

a
te

d
 t
o

 a
 d

e
p

th
 o

f 
3

5
0

0
m

. 
T

h
e

 g
e

o
ce

llu
la

r 
g

ri
d

s
 h

a
v
e

 h
o

ri
z
o

n
ta

l c
e

ll 
d

im
e

n
si

o
n

s 
o

f 5
x5

m
. F

a
u

lt
s 

a
re

 s
h

o
w

n
 in

 w
h

ite
 w

ith
 th

e
 h

o
ri
zo

n
s 

c
o

lo
u

re
d

 b
y
 d

e
p

th
. (

A
) O

p
e

n
 r
e

la
y 

st
ru

ct
u

re
 fr

o
m

 U
ta

h
, U

S
A

. (
B

) P
a

rt
ia

lly
 b

re
a

ch
e

d
 r
e

la
y 

st
ru

ct
u

re
 fr

o
m

 A
fa

r,
 E

th
io

p
ia

. (
C

) F
u

lly
 b

re
a

ch
e

d
 r
e

la
y 

st
ru

c
tu

re
 fr

o
m

 A
fa

r,
 E

th
io

p
ia

.

(A
)

(B
)

(C
)

(A
)

(B
)

(C
)

(D
)

F
o

rw
a

rd
 M

o
d

e
ll

in
g

 W
o

rk
fl

o
w

T
h

e
 w

o
rk

flo
w

 t
o

 f
o

rw
a

rd
 m

o
d

e
l t

h
e

 s
e

is
m

ic
 r

e
sp

o
n

se
 o

f 
a

 D
E

M
 s

u
rf

a
ce

 in
vo

lv
e

s 
m

u
lti

p
le

 s
te

p
s 

a
n

d
 

p
ro

ce
ss

e
s.

 T
h

e
se

 a
re

 o
u

tli
n

e
d

 b
e

lo
w

 a
n

d
 o

n
 th

e
 fo

llo
w

in
g

 p
a

g
e

.

Im
p

o
rt

 o
f h

ig
h

 r
e

so
lu

tio
n

 d
ig

ita
l e

le
va

ti
o

n
 d

a
ta

 in
to

 g
e

o
lo

g
ic

a
l 

m
o

d
e

lli
n

g
 s

o
ft

w
a

re
.

D
ig

ita
l 

e
le

va
tio

n
 

d
a

ta
 

is
 

u
se

d
 

to
 

co
n

st
ru

ct
 

a
 

fin
e

-s
ca

le
 

g
e

o
ce

llu
la

r 
g

ri
d

 
in

co
rp

o
ra

tin
g

 
th

e
 

re
a

lis
tic

 
fa

u
lt-

h
o
ri
zo

n
 

g
e

o
m

e
tr

ie
s 

se
e

n
 a

t o
u

tc
ro

p
 s

ca
le

.

T
h

e
 

g
e

o
ce

llu
la

r 
g

ri
d

 
is

 
p

o
p

u
la

te
d

 
w

it
h

 
p

e
tr

o
p

h
y
s
ic

a
l 

p
ro

p
e

rt
ie

s 
in

cl
u

d
in

g
 

p
o

ro
si

ty
, 

p
e

rm
e

a
b

ili
ty

, 
V

s
a

n
d

 
a

n
d

 
V

sh
a

le
. 

T
h

e
 

p
o

re
 

p
re

ss
u

re
 

is
 

a
ls

o
 

m
o

d
e

lle
d

 
a

s
 

a
 

g
ri
d

 
p

ro
p

e
rt

y,
 a

s 
is

 th
e

 fl
u

id
 s

a
tu

ra
tio

n
.

w
w

w
.b

s
g

.l
e

e
d

s
.a

c
.u

k

B
S
G

 

Ф
K

V
s
h

Ф
K

V
s
h

Ф
K

V
s
h

Ф
K

V
s
h



B
S
G

 

B
a
s
in

 S
tr

u
c
tu

re
 G

ro
u

p

A
p

p
lie

d
S

tr
u

c
tu

ra
l 
G

e
o

lo
g

y

F
o

rw
a
rd

 M
o

d
e
ll

in
g

 W
o

rk
fl

o
w

, 
C

o
n

ti
n

u
e

d

w
w

w
.b

s
g

.l
e
e
d

s
.a

c
.u

k

T
h
e
 g

e
o
ce

llu
la

r 
g
ri
d
 i

s 
re

-s
a
m

p
le

d
 i

n
to

 a
 r

e
g
u
la

r 
g
ri
d
 w

ith
 

u
n
ifo

rm
 

ce
ll 

d
im

e
n
si

o
n
s 

p
ri
o
r 

to
 

e
xp

o
rt

 
to

 
th

e
 

fo
rw

a
rd

 
m

o
d
e
lli

n
g
 s

o
ft
w

a
re

.

T
h

e
 g

e
o

ce
llu

la
r 

g
ri
d

 i
s 

im
p

o
rt

e
d

 i
n

to
 t

h
e

 f
o

rw
a

rd
 m

o
d

e
lli

n
g
 

so
ft
w

a
re

. 
V

sa
n

d
 
a

n
d

 
V

sh
a

le
 
a

re
 
u

se
d

 
to

 
ca

lc
u

la
te

 
ro

ck
 

3
3

d
e

n
si

ty
 u

si
n

g
 v

a
lu

e
s 

o
f 2

.6
5

g
/c

m
 a

n
d

 2
.6

g
/c

m
 r
e

sp
e

ct
iv

e
ly

. 
P

o
re

 p
re

ss
u

re
 v

a
lu

e
s 

a
re

 u
se

d
 to

 c
a

lc
u

la
te

 th
e

 c
o

n
fin

in
g

 a
n
d
 

e
ff
e

ct
iv

e
 p

re
ss

u
re

s 
a

ss
u

m
in

g
 a

 v
e

rt
ic

a
l p

re
ss

u
re

 g
ra

d
ie

n
t o

f 
2

2
.5

 M
P

a
/k

m
.

T
h
e
 e

la
st

ic
 p

ro
p
e
rt

ie
s 

o
f 

th
e
 m

o
d
e
l 

a
re

 c
a
lc

u
la

te
d
 u

si
n
g
 

G
a
ss

m
a
n
n
’s

 t
h
e
o
ry

 w
ith

 t
h
e
 p

ro
p
e
rt

ie
s 

o
f 

th
e
 s

a
tu

ra
tin

g
 

flu
id

s,
 a

n
d
 o

f 
th

e
 in

d
iv

id
u
a
l s

o
lid

 c
o
m

p
o
n
e
n
ts

 (
i.e

. 
S

a
n
d
 a

n
d
 

S
h
a
le

) 
a
s 

in
p
u
ts

. A
 R

e
u
ss

 m
ix

in
g
 m

o
d
e
l i

s 
a
ss

u
m

e
d
.

R
e
fle

ct
iv

ity
 i

s 
ca

lc
u
la

te
d
 u

si
n
g
 t

h
e
 Z

o
e
p
p
ri
tz

 e
q
u
a
tio

n
s.

 A
 

ta
rg

e
t 
a
re

a
 is

 d
e
fin

e
d
 a

ro
u
n
d
 t
h
e
 m

o
d
e
l w

h
e
re

 t
h
e
 s

yn
th

e
tic

 
cu

b
e
 is

 to
 b

e
 g

e
n
e
ra

te
d
.

A
 
B

a
ck

g
ro

u
n
d
 
p
ro

p
e

rt
y 

m
o
d
e
l 

is
 
co

n
st

ru
ct

e
d
 
w

ith
in

 
th

e
 

g
e
o
lo

g
ic

a
l m

o
d
e
lli

n
g
 s

o
ft

w
a
re

 (
p
o
ro

si
ty

 is
 s

h
o
w

n
 h

e
re

).
 T

h
is

 
re

p
re

se
n
ts

 t
h
e
 o

ve
rb

u
rd

e
n
 a

b
o
ve

 t
h
e
 d

e
ta

ile
d
 t

a
rg

e
t 

a
re

a
, 

a
n
d
 i

s 
u
se

d
 t

o
 c

a
lc

u
la

te
 s

e
is

m
ic

 w
a
ve

 p
ro

p
a
g
a
tio

n
 e

ff
e
ct

s 
b
e
tw

e
e
n
 t

h
e
 s

u
rv

e
y 

so
u
rc

e
/r

e
ci

e
ve

rs
 a

n
d
 t

h
e
 t

a
rg

e
t.

 I
t 

is
 

e
xp

o
rt

e
d
 t
o
 t
h
e
 f
o
rw

a
rd

 m
o
d
e
lli

n
g
 s

o
ft

w
a
re

 w
h
e
re

 it
s 

e
la

st
ic

 
a
n
d
 r
e
fle

ct
iv

ity
 p

ro
p
e
rt

ie
s 

a
re

 d
e
te

rm
in

e
d
. 

C
ro

ss
 s

e
ct

io
n

 th
ro

u
g

h
 th

e
 s

yn
th

e
tic

 s
e

is
m

ic
 c

u
b

e
 g

e
n

e
ra

te
d
 

u
si

n
g

 t
h

e
 b

a
ck

g
ro

u
n

d
 m

o
d

e
l. 

S
e

ct
io

n
s 

th
ro

u
g

h
 t
h

e
 p

o
ro

si
ty

 
(l
e

ft
) 
a

n
d

 V
sh

a
le

 (
ri
g

h
t)

 m
o

d
e

ls
 u

se
d

 in
 it

s 
d

e
ri
va

tio
n

 a
re

 a
ls

o
 

sh
o

w
n

.

T
h

e
 

e
la

st
ic

, 
re

fle
ct

iv
ity

 
a
n
d
 

b
a
ck

g
ro

u
n
d
 

m
o
d
e
ls

 
a
re

 
co

m
b

in
e

d
 

w
ith

 
th

e
 

su
rv

e
y 

d
e
si

g
n
 

a
n
d
 

in
p
u
t 

w
a
ve

le
t 

to
 

g
e

n
e

ra
te

 
a

 
sy

n
th

e
tic

 
p
re

st
a
ck

 
d
e
p
th

 
m

ig
ra

te
d
 

(P
S

D
M

) 
se

is
m

ic
 

cu
b

e
 

u
si

n
g
 

S
im

u
la

te
d
 

P
re

st
a
ck

 
L
o
ca

l 
Im

a
g
in

g
 

(S
im

P
L

I;
 G

jø
ys

td
a
l e

t a
l, 

2
0
0
7
).

 T
h
is

 c
a
n
 b

e
 s

a
ve

d
 a

s 
a
 s

e
g
y 

fil
e

 fo
r v

is
u

a
lis

a
tio

n
 a

n
d
 in

te
rp

re
ta

tio
n
.

A
 3

D
 s

u
rv

e
y 

is
 d

e
si

g
n

e
d

 (
A

),
 a

n
d

 t
h

e
 d

ip
 a

n
d

 a
zi

m
u

th
 o

f 
p
o
te

n
tia

lly
 

ill
u
m

in
a
te

d
 

re
fle

ct
io

n
s 

ca
lc

u
la

te
d

 
(B

).
 
T

h
is

 
is

 
co

m
b
in

e
d
 

w
ith

 
a
n
 

in
p

u
t 

w
a

ve
le

t 
(C

),
 

th
e

 
e

la
st

ic
 

a
n

d
 

re
fle

ct
iv

ity
 

p
ro

p
e
rt

ie
s 

o
f 

th
e

 
ta

rg
e

t 
a

re
a

, 
a

n
d

 
o

f 
th

e
 

b
a
ck

g
ro

u
n
d
 m

o
d
e
l, 

to
 g

e
n

e
ra

te
 th

e
 s

yn
th

e
ti
c 

se
is

m
ic

 c
u

b
e

. 
  

(A
)

(B
)

(C
)

S
ym

b
o
l L

e
g
e
n
d

O
il
 P

ro
d

u
c
ti
o

n
 R

a
te

, 
O

ri
g

in
a

l

O
il
 P

ro
d

u
c
ti
o

n
 R

a
te

, 
F

W
D

C
u

m
u

la
ti
v
e

 O
il
 P

ro
d

u
c
ti
o

n
, 
O

ri
g

in
a

l

C
u

m
u

la
ti
v
e

 O
il
 P

ro
d

u
c
ti
o

n
, 
F

W
D

W
a

te
r 

C
u

t,
 O

ri
g

in
a

l

W
a

te
r 

C
u

t,
 F

W
D

W
a

te
r 

P
ro

d
u

c
ti
o

n
 R

a
te

, 
O

ri
g

in
a

l

W
a

te
r 

P
ro

d
u

c
ti
o

n
 R

a
te

, 
F

W
D

A
 s

ta
n
d
a
rd

 s
e
is

m
ic

 in
te

rp
re

ta
tio

n
 w

o
rk

flo
w

, i
n
cl

u
d
in

g
 th

e
 u

se
 

o
f 

su
rf

a
ce

 a
tt
ri
b
u
te

s,
 i

s 
u
se

d
 t

o
 g

e
n
e
ra

te
 s

e
is

m
ic

 h
o
ri
zo

n
s 

a
n
d
 fa

u
lt 

in
te

rp
re

ta
tio

n
s.

A
 

g
e

o
ce

llu
la

r 
m

o
d

e
l 

is
 

co
n

st
ru

ct
e

d
 

fr
o

m
 

th
e

 
se

is
m

ic
 

in
te

rp
re

ta
tio

n
 
w

ith
 
th

e
 
sa

m
e

 
d

im
e

n
si

o
n

s 
a

s 
th

e
 
o

ri
g

in
a

l, 
d

e
ta

ile
d

 m
o

d
e

l. 
It
 i

s 
p

o
p

u
la

te
d

 w
ith

 i
d

e
n

tic
a

l 
p

e
tr

o
p

h
ys

ic
a
l 

p
ro

p
e

rt
ie

s.

F
a
u
lt 

tr
a
n
sm

is
si

b
ili

ty
 

m
u
lti

p
lie

rs
 

(T
M

s,
 

M
a
n
zo

cc
h
i 

e
t 

a
l, 

1
9
9
9
) 

a
re

 c
a
lc

u
la

te
d
 f

o
r 

b
o
th

 t
h
e
 o

ri
g
in

a
l 

a
n
d
 t

h
e
 f

o
rw

a
rd

 
m

o
d
e
lle

d
 g

e
o
m

e
tr

ie
s.

 A
 s

im
u
la

tio
n
 c
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 c
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b
e
 r
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c
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h
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 c
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b
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 c
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 d
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b
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 f
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b
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p
e
rf

o
rm

e
d
 o

n
 a

 l
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u
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A
) 
C

ro
ss

 s
e

ct
io

n
 th

ro
u

g
h

 d
e

ta
ile

d
 g

e
o

ce
llu

la
r 
m

o
d

e
l d

e
ri
ve

d
 fr

o
m

 h
ig

h
 r
e

so
lu

tio
n

 D
E

M
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f a
 p

a
rt

ia
lly

 b
re

a
ch

e
d

 r
e

la
y 

zo
n

e
. G

re
y 

is
 s

h
a

le
 n

o
n
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e

se
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o
ir
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h
ils
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e
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w
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e
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a
n

d
y
 r
e

s
e

rv
o
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 in
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a
l. 
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h
e
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rw

a
rd
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o

d
e

lle
d
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e

is
m

ic
 d

a
ta

 d
e

ri
v
e

d
 fr

o
m

 th
e

 fa
u

lt 
g

e
o

m
e

tr
y
 

a
n

d
 p

e
tr

o
p

h
ys
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a

l p
ro

p
e

rt
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s 
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o
w

n
 in
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A

).
 (C

) T
h

e
 g

e
o

ce
llu

la
r 
m

o
d

e
l d

e
ri
ve

d
 fr

o
m

 in
te
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ta
tio

n
 o

f t
h

e
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a
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 m

o
d

e
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d
 s

e
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m
ic

 d
a

ta
 s

h
o

w
n

 in
 (
B

).
 N

o
te

 th
e

 d
iff

e
re

n
ce

s
 in

 c
ro

s
s
-f

a
u

lt 
re

s
e

rv
o

ir
 ju

x
ta

p
o

s
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o
n

s
 b

e
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e
e

n
 th

e
 d

e
ta

ile
d

 (
A

),
 a

n
d

 fo
rw

a
rd

 m
o

d
e

lle
d

 (
C

) g
e

o
m

e
tr

ie
s
.
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a
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s
t 
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e
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p
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e
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u
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s
o
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o
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h
e
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n
 s

e
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m
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 d
a
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, p
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d
u
c
tio

n
 s
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u
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n
s
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e
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p
e
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o
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n
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h
e
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p
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d
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h
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e
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a
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S

G
R
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g
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m
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a
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1
9
9
7
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 p
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a
b
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a
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n
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y 

e
t 

a
l 

(2
0
0
7
).
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e
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u
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u
lt 
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sh
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 p
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u
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e
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u
lt
. 

A
 w

a
te

rf
lo

o
d
 d

e
v
e
lo

p
m

e
n
t 

st
ra

te
g
y 

ru
n
n
in

g
 o

v
e
r 

a
 

c
o
u
rs

e
 o

f 
fiv

e
 y

e
a
rs

 w
a
s 

e
m

p
lo

ye
d
. T

h
is

 c
o
n
si

st
e
d
 o

f 
s
in

g
le

 i
n
je

c
tio

n
 a

n
d
 p

ro
d
u
ct

io
n
 w

e
lls

 l
o
ca

te
d
 i

n
 t

h
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w
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h
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n
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n
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a
l 

3
p
ro

d
u
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io
n
 r

a
te

 o
f 
2
0
0
 m

/d
a
y
 (

1
2
5
8
 b

b
l)
. T

h
e
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e
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lt
s 
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h
e
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o
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.
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u
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 o
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d
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il 
p
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d

u
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n
e

s)
 a

n
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a
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b
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s
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d
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 c
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e
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h
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y
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u

c
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B
) 
P

a
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ia
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 b
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c
h

e
d

 r
e
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ru

ct
u
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. 
(C

) 
F

u
lly

 b
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a
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e
d

 r
e

la
y 
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u
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 m
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n

o
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A
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C
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u
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e

la
y
 s

tr
u

c
tu

re
 (
B

) 
th

e
 p

ro
d

u
c
tio

n
 r
e

s
p

o
n

s
e

s
 o

f t
h

e
 d

e
ta

ile
d

 a
n

d
 s

e
is

m
ic

a
lly

 r
e

s
o

lv
a

b
le

 g
e

o
m

e
tr

ie
s
 a

re
 

si
g

n
ifi

ca
n

tly
 d

iff
e

re
n

t i
rr

e
sp

e
ct

iv
e

 o
f t

h
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 b
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 p
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 t
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Concept 

 Use a range of data and software applications to model 
the seismic response of complex fault geometries. 

 

Aim 

 When does the difference between seismically 
resolvable and sub-seismic fault geometries impact 
production? 

Overview 
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Fault Growth 

Childs et al, 2009 (JSG) 
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Faults in Seismic Data 
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Workflow (1) – Static Model 
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Workflow (2) – Forward Model  
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Workflow (3) – Interpretation, Model 2 

Interpretation 
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Workflow (4) – Simulation 
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Uncertainty 
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Results (1) Reservoir Thickness>Mean Throw 

Seismically Resolvable Geometry Outcrop-Derived Geometry 
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Results (2) Reservoir Thickness<Mean Throw 

Seismically Resolvable Geometry Outcrop-Derived Geometry 
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Outcrop v Seismic Juxtapositions 

Outcrop Geometry 
Forward Modelled  

Seismic 
Seismically Resolvable  

Geometry 
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Juxtaposition Area 

~8x103m2  ~5x102m2  

~4x104m2  ~2x104m2  

Reservoir Thickness>Mean Fault Throw 
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Results Summary: Outcrop v Seismic 

Partially  
Breached 

Breached 

Thickness>Throw  
Layered Stratigraphy Little difference ● 

Thickness>Throw 
Homogenous Stratigraphy Little difference Little difference 

Thickness<Throw  
Layered Stratigraphy 

 
●●● No difference 

Thickness<Throw  
Homogenous Stratigraphy ●●● No difference 
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Implications (1) 

Similar response 

High Seal TMs 
Mid Seal TMs  
Low Seal TMs 
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Implications (2) 

OR Juxtaposition No Juxtaposition 

? 

No Juxtaposition 

~5x102m2  

~8x103m2  

CiPEG Centre for Integrated Petroleum 

Engineering and Geoscience 
Basin Structure Group 

Workflow? 
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Identifiable in Seismic? 

Outcrop Seismic 

● Identify displacement Minima 
● Stochastic population of low-throw areas (e.g. Manzocchi et al, 2008) 
● Reduce throw along faults 
● Modify TMs 
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● Results are specific to grid properties, simulation model etc 

● Impact of fault properties on across-fault flow greater 
where juxtaposition area small 

● Small juxtaposition windows can result in large across fault 
flux 

● Relative importance of fault properties tends to decrease 
with increasing juxtaposition area 

 

  

Conclusions: Case Specific 
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● Significant differences between seismically resolvable and 
realistic geometries 

● Seismically resolvable geometries tend to lead to 
underestimates in across-fault reservoir juxtaposition, 
with disparity greater when reservoir thickness is less 
than mean throw 

● Fault juxtaposition is primary control on across-fault flux, 
fault properties secondary 

 

 

  

Conclusions: General 

~8x103m2  ~5x102m2  

CiPEG Centre for Integrated Petroleum 

Engineering and Geoscience 
Basin Structure Group 

Acknowledgements 

Acknowledgements 

Questions? 



CiPEG Centre for Integrated Petroleum 

Engineering and Geoscience 
Basin Structure Group 

Predicting, Incorporating and 
Simulating the Effects on Hydrocarbon  
Production of Sub-Seismic Fault Tips 

and Breached Relay Zones 
 

Alan Wood1*, Kachi Onyeagoro2, Paton, D.A.1, Marshall, J.D.2, Price. S.P.3, Collier, R.E.L1. 
 

(1) Basin Structure Group, School of Earth and Environment, University of Leeds, Leeds, UK, LS2 9JT 
(2) Shell Upstream International Europe, Aberdeen, UK, AB12 3FY 

(3) Shell Global Solutions, Rijswijk, NL, 2288 GS 
 

*Contact email: ee08amw@leeds.ac.uk 

 

CiPEG Centre for Integrated Petroleum 

Engineering and Geoscience 
Basin Structure Group 

Background 

Kim and Anderson, 2005 

Throw < resolution = sub-seismic 

Observed True 

Incorporation of  
sub-seismic faults 
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Aims 

(1) Review methodologies of sub-seismic fault tip prediction 

 

(2) Develop predictive tool for identifying sub-seismic breached 
relays 

 

(3) Assess impact of sub-seismic structure on reservoir 
segmentation 

 

(4) Assess impact on simulated production 

 

(5) Assess the impact of varying fault threshold pressure 
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Study area: Sub-set of Penguins Cluster 

Roberts et al., 1995. 
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Sub-seismic fault tips 

Two methodologies; 
 
• Statistical Prediction 
• Geometric Prediction 
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Statistical approach (1) 

• Assumes faults are fractal 
• Small faults have a greater proportion  
of their length below seismic resolution 
• Linear relationship between length and throw 

tmax=cLn, (n=1) 



CiPEG Centre for Integrated Petroleum 

Engineering and Geoscience 
Basin Structure Group 

Statistical approach (2) 

N = 0.64 

N = 1 
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Throw gradient approach (1) 

• Accounts for fault interaction 
• Requires estimate of data resolution 
• Time consuming 
• Uses observable dimensions 

Tip Length =  
resolution/throw gradient 
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Throw gradient approach (2) 

High throw gradient at overlap =  
shorter sub-seismic tip length 

CiPEG Centre for Integrated Petroleum 
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Statistical v Gradient approach 

Pros Cons 

Statistical approach 

Quick Assumes faults are fractal 
 

Assumes linear relationship between 
length and throw 
 

Does not account for fault interaction and 
linkage 
 

Gradient approach 

Accounts for fault interaction and linkage 
 

Time consuming 
 

Uses observable dimensions 
 

Requires estimate of resolution of data 
 

CiPEG Centre for Integrated Petroleum 

Engineering and Geoscience 
Basin Structure Group 

Fault Tip Extension 

Observed Statistical 

Gradient, r=5m Gradient, r=10m Gradient, r=25m 

Ave ext=100m 

Ave ext=33m Ave ext=66m Ave ext=166m 

Unrealistic geometry 

Throw Gradient 
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Breached Relays 

Observed True 



CiPEG Centre for Integrated Petroleum 

Engineering and Geoscience 
Basin Structure Group 

Breached Relays (1) 
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faults 

Seismic 

Reality 
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Breached Relays (2) 

Higher Relay throw:Overlap ratio =  
more likely for relay to be breached 

t1+t2 = Relay Throw 

Overlap (m) 

R
el

ay
 t

h
ro

w
 (

m
) 
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Effect on Segmentation 

Statistical 

25m resolution 

5m resolution 

10m resolution 

As interpreted 
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Simulation set-up 

• Well-derived stratigraphy and petrophysical properties 

• Locally applicable fault TMs (Jolley et al., 2007) 

• Producer-Injector pair, 40yr Simulation run-time 

• Low-, Mid-, and High-case fault threshold pressures 
(Bretan et al., 2003) 

 

V.E. = x5 

0 1km 
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Results (1) 

OPR 

WPR 

Lower water production rate with increasing reservoir segmentation 

Less  
segmented 

More  
segmented 
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Results (2) 

Cumulative Oil Production 

Cumulative Water Production 

Cumulative Production 
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Results Summary 

Production Rate Cumulative Production 
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Fault Threshold Pressure 

• Pressure which must be exceeded to allow 
across-fault flow 

• Function of Interfacial tension, contact 
angle, capillary radius (Schowalter, 1979; 
Watts, 1987) 

• Can be measured in lab and calibrated 
against clay content (Sperrevik et al., 
2002; Bretan et al., 2003) 

• High-, mid- and low-cases used (300, 142, 
30psi) 
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Pressure 

Increasing across-fault  
pressure differential 

Increasing fault threshold pressure 

In
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Oil Saturation 

Increased residual oil 

Increasing fault threshold pressure 
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Results Summary 

Increased fault threshold pressure  
increases production variability 
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Engineering and Geoscience 
Basin Structure Group 

Conclusions 

• Throw gradient approach geologically more reasonable than 
statistical approach for fault tip estimation 

• Relationship between cumulative relay throw/overlap and relay 
integrity 

• Incorporating sub-seismic relay zones and fault tips leads to 
earlier, but slower production rate decline 

• Incorporating sub-seismic structures tends to reduce the water 
cut of production wells 

• Increasing fault threshold pressure leads to greater variability in 
simulation results 
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Simulated Hydrocarbon 
Production across Outcrop-
Derived Versus Seismically-

Resolvable Faults  

 
Alan Wood, Richard Collier, Douglas Paton 

Basin Structure Group, University of Leeds 
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Aim 

 When does the difference between seismically 
resolvable and sub-seismic fault geometries impact 
production? 

Overview 
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Fault Growth and Complexity 

Childs et al, 2009 (JSG) 

A) B)

C) D)

Cowie, 1998 (JSG) 

Rift/Basin Scale Field/Reservoir Scale 

= Faults are complex! 
+ Mechanical Heterogeneity 
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Faults in Seismic Data 

V.E. x2 V.E. x2 100m 
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D.E.M. 

100m 

D.E.M. 

CiPEG Centre for Integrated Petroleum 

Engineering and Geoscience 
Basin Structure Group 

Workflow 

(1) Detailed Model (2) Seismic Forward Model (3) Interpretation/Model 

(4) Simulation 

100m 
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Uncertainty 

Φ K Vsh Φ K Vsh Φ K Vsh Φ K Vsh 

Thickness>Throw Thickness<Throw 

Geometry Stratigraphy Fault TMs x x 

100m 

100m 

x Forward Modelled Geometries = 48 simulation runs 
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Results (1) Reservoir Thickness>Mean Throw 

Seismically Resolvable Geometry Outcrop-Derived Geometry 
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Low Seal TMs 
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Results (2) Reservoir Thickness<Mean Throw 

Seismically Resolvable Geometry Outcrop-Derived Geometry 
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Outcrop v Seismic Juxtapositions 

Outcrop Geometry 
Forward Modelled  

Seismic 
Seismically Resolvable  

Geometry 
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Effective Juxtaposition Area 

~0.4x104m2  ~0.02x104m2  

~2x104m2  ~1x104m2  

Reservoir Thickness>Mean Fault Throw = Similar Simulation Results 

Reservoir Thickness<Mean Fault Throw = Varied Simulation Results 

Seismically Resolvable Geometry Outcrop-Derived Geometry 

CiPEG Centre for Integrated Petroleum 

Engineering and Geoscience 
Basin Structure Group 

Implications (1) 

High Seal TMs 
Mid Seal TMs  
Low Seal TMs 

~0.4x104m2  

~0.02x104m2  

~0.4x104m2  
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Implications (2) 

OR Juxtaposition No Juxtaposition 

? 

No Juxtaposition 

~0.02x104m2  

~0.4x104m2  
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Identification and Incorporation 

0 
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T
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Length (m) 

Outcrop 

Seismic 

Throw Minima  
Identifiable in Seismic? 

Outcrop Seismic 

● Identify displacement Minima 
● Stochastic population of low-throw areas (e.g. Manzocchi et al, 2008) 
● Reduce throw along faults 
● Modify TMs 
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 ● Seismically resolvable geometries underestimate across-
fault reservoir juxtaposition (overestimate seal?) 

● Impact of fault properties greater where juxtaposition area 
small, decreases with increasing juxtaposition area 

● Small juxtaposition windows can result in large across fault 
flux 

● Fault juxtaposition is primary control on across-fault flux, 
fault properties secondary 

 

  

Conclusions 

Juxtapositions 

~0.4x104m2  ~0.02x104m2  

CiPEG Centre for Integrated Petroleum 

Engineering and Geoscience 
Basin Structure Group 
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Abstract

Secondary hydrocarbon recovery, hydraulic fracturing and CO  sequestration require that fluids are injected into the subsurface, with a resulting local increase in pore pressure. A major concern is that this increased pore pressure adversely effects fault 2

stability, potentially leading to reactivation and associated seismicity. The stability of a fault in terms of the Mohr-Coulomb failure criteria is dependent on both the physical properties of the fault and its orientation relative to the in-situ stress field, with the 
orientation commonly being characterised through the use of seismic imaging. Inherent limitations in seismic resolution result in simplification of the identifiable geometries compared to those present in the subsurface. The disparity between realistic and 
seismically resolvable fault geometries may lead to incorrect estimates of fault stability under specific stress conditions.

Realistic sub-seismic fault geometries, derived from outcrop data, and those geometries which are resolvable in seismic data are compared using three-dimensional seismic forward modelling. The stability of both geometries has been assessed under stress 
conditions equivalent to those found at depth within parts of the Fort Worth Basin, a productive shale gas province. Fluid injection is simulated by increasing the pore pressure until the failure envelope is reached. The realistic fault geometries fail at significantly 
lower pore pressure increases compared to the seismically resolvable fault geometries, suggesting that relying on seismically resolvable geometries may lead to overestimates in fault stability. As a result it is possible that unexpected seismicity may occur 
during fluid injection into the subsurface.

Using Seismic Forward Modelling to Assess Fault Stability During Fluid Injection 
Alan M. Wood*, Douglas A. Paton and Richard E.L. Collier

 Basin Structure Group (http://bsg.leeds.ac.uk), School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom. *ee08amw@leeds.ac.uk
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Figure 2. Outcrop example of how seismic data leads to underestimates in the complexity of fault geometry, and the influence that this has on fault stability during fluid injection. (A) 
View of road cutting showing significant geometric complexity. (B) The seismically resolvable version of the same geometry. A single fault plane is imaged effecting how the local 
stress field is predicted to be resolved onto the fault plane. (C) The outcrop geometry has a shallower dip than the seismically resolvable geometry (D). For a constant local stress 
field, the complex outcrop geometry is closer to the failure envelope than the seismically resolvable geometry. A lower pore pressure increase is hence required to induce failure and 
induce seismicity. 
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1. Introduction

Fluid injection, such as during hydraulic fracturing, waste disposal, geothermal energy and CO  sequestration raises the pore pressure 2

in the subsurface. The effect of this increased pore pressure is dependent on the magnitude and orientation of the in-situ stress field, 
the local geomechanical properties and the presence or absence of any pre-existing structures (figure 1).  

In the case of hydraulic fracturing the purpose of fluid injection is to initiate the propagation of tensile fractures (figure 1A), hence 
increasing permeability and enhancing gas flow to the well bore. However, the increased pore fluid pressure may lead to reactivation of 
pre-existing structures, in turn resulting in the occurrence of induced seismicity (Green et al., 2012; Keranen et al., 2013). A key 
uncertainty when predicting and mitigating against induced seismicity is sub-seismic fault geometry (figure 2). The limitations of 
seismic data mean that fault orientations and geometries are often not correctly captured. In turn this leads to inaccurate predictions of 
how increasing the pore fluid pressure through the injection of fluids will effect fault stability.
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Figure 1. Schematic Mohr diagrams illustrating the effect on 
fracture formation and reactivation of increased pore fluid 
pressure (p p) under different conditions.    = Shear stress, σ  = f n

normal stress, C  = Intact rock cohesion, C  = Fracture cohesion, σ  r f 1

= Maximum principal stress, σ  = Minimum principal stress, T = 3

Rock tensile strength. (A) A low differential stress (σ - σ ). No pre-1 3

existing fractures are present therefore the Mohr-Coulomb failure 
criterion is applicable. Increasing the pore pressure reduces the 
effective stress, shifting the Mohr circle to the left into the tensile 
failure region. If the minimum stress (σ ) is negative, tensile 3

fractures will form perpendicular to σ . (B) As (A) but with a higher 3

differential stress. Increasing the pore pressure leads to the Mohr 
circle intersecting the failure envelope whilst σ  is still positive, 3

leading to the formation of shear fractures, although a smaller pfp 
increase is required for fracture formation than for low differential 
stress. (C) Low differential stress. The presence of pre-existing 
fractures means that the friction sliding criterion is applicable, and 
a lower pfp increase is required in order to reactivate the fractures. 
(D) A higher differential stress requires a smaller pp increase for f

fracture reactivation.

τ



Using Seismic Forward Modelling to Assess Fault Stability During Fluid Injection
Alan M. Wood*, Douglas A. Paton and Richard E.L. Collier

 Basin Structure Group (http://bsg.leeds.ac.uk), School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom. *ee08amw@leeds.ac.uk 

www.bsg.leeds.ac.uk

B
S
G 

Basin Structure Group

Applied Structural Geology

Distance to Failure (MPa)

5

4

3

2

1

0

-1

σh
σH

0 100m

Distance to Failure (MPa)

5

4

3

2

1

0

-1

σh
σH

0 100m

Distance to Failure (MPa)

5

4

3

2

1

0

-1

σh
σH

0 100m

Distance to Failure (MPa)

5

4

3

2

1

0

-1

σh
σH

0 100m

(A) (B)

(D)
(C)

N

15

15

30

30

45

45

60

60

75

75

0
15

30

45

60

75

90

105

120

135

150

165
180

195

210

225

240

255

270

285

300

315

330

345

0 50m

x

x’

x

x’

x x’

(A) (B)

x x’

0 50m

0 100m

Outcrop Derived Fault Geometries Seismically Resolvable 
Fault Geometries

M = 1.4

New Mexico
Texas

Texas
Oklahoma

O
u
a
ch

ita
 O

ve
rt
h
ru

stFort Worth 
Basin

Barnett Shale 
and equivalent

Undefined

σ1σ3

C ∆Pf

φ = 31º

Normal Stress

Sh
e

a
r 

St
re

ss

0° 10° 20° 30° 40° 50° 60° 70°
Longitude

L
a
ti
tu

d
e

40°

30°

20°

10°

0°

-10°

-20°

Gulf of Aden

Africa

ArabiaRed Sea 
Rift

East African 
Rift System

Eritrea

Ethiopia

Somalia

Djibouti

Yemen

100km

Location of Data

N

Red Sea

2. Seismic Forward Modelling Methodology

To assess the impact of sub-seismic structural complexity on estimates 
of fault stability during fluid injection we forward model the synthetic 
seismic response of outcrop derived fault geometries. The geometries 
are derived from high resolution (~0.5 m) digital elevation data (DEM) 
from the Afar rift in Ethiopia (figure 3). Faulting occurred within the last 2 
Ma and the area has an arid climate leading to limited erosion and 
hence excellent preservation of fault geometries. 
The DEM data is used to construct a high resolution geocellular grid 
which is subsequently populated with petrophysical properties typical 
of the Barnett shale, Texas. Elastic and reflectivity values can be 
calculated and used to generate a synthetic 3D pre-stack depth 
migrated seismic volume (figure 4). Interpretation of this volume allows 
the outcrop derived and seismically resolvable geometries to be 
compared (figure 5), and their respective geomechanical stability 
under increased pore fluid pressure to be assessed (figure 8). 

Import of high resolution digital elevation 
data into geological modelling software.

Digital elevation data is used to construct a 
fine-scale geocellular grid incorporating the 
realistic fault-horizon geometries seen at 
outcrop scale.

The geocellular grid is populated with 
petrophysical properties including porosity, 
Vshale, pore pressure and fluid saturation.

The geocellular grid is imported into the 
forward modelling software, where elastic 
and reflectivity properties used during 
forward modelling are calculated.

The elastic, reflectivity and background 
models are combined with the survey 
design and input wavelet to generate a 
synthetic pre-stack depth migrated (PSDM) 
seismic cube using Simulated Pre-stack 
Local Imaging (SimPLI; Gjøystdal et al, 
2007). This can be saved as a segy file for 
visualisation and interpretation.

A 3D survey is designed (A), and the dip 
and azimuth of potentially illuminated 
reflections calculated (B). This is combined 
with an input wavelet (C), the elastic and 
reflectivity properties of the target area, and 
o f  t h e  
background model, to generate the 
synthetic seismic cube.   

(A)

(B) (C)

A standard seismic interpretation workflow, 
including the use of surface attributes, is 
used to generate the seismically resolvable 
horizons and fault interpretations.

A geocellular model is constructed from the 
seismic interpretation to capture the fault 
seismically resolvable fault geometries.

3. Fault Geometry

4. Fault Stability

Following generation of outcrop-derived and seismically 
resolvable fault geometries, their stability under conditions 
of increased pore pressure analogous to fluid injection can 
be examined. We use published values of in-situ stresses 
and fault rock geomechanical properties for the Barnett 
Shale of the Fort Worth Basin, a prolific shale gas province 
in Texas (figure 6). The stability of the different fault 
geometries can be described by their ‘distance to failure’, 
the pore fluid pressure increase required to induce 
reactivation (figure 7). Fluid injection is simulated by 
increasing the pore fluid pressure. As the pressure 
increases the Mohr circles describing the fault stability 
move closer to the failure envelope. At pressure increases 
typically applied to induce hydraulic fracturing in the area, 
the fault stability is significantly reduced with the outcrop 
geometries failing at much lower pressure increases than 
the seismically resolvable geometries. This suggests that 
relying on seismically resolvable fault geometries may lead 
to overestimates of fault stability.

Fault plane

Earthquake rupture area, (L x W)

L

D

W

Surface rupture length, ~0.75L

Rupture displacement

(1) M =µAD, where µ=Shear 0
2Modulus in dynes/cm , A = Rupture length x 

down dip rupture width in cm and D=average 
displacement of rupture in cm (Kanamori 
and Anderson, 1975)

(2) Log (D) = -1.43 + 0.88 log 
(0.75L), where D = average displacement in 
m, L = rupture length in km (Modified from 
Wells and Coppersmith, 1994)

(3) M = 2/3 log M  - 10.7, (Hanks 0

and Kanamori, 1979)

Figure 5. Comparison of original, outcrop-
derived (A) and forward modelled (B) fault 
geometries. Cross-sections through the 
different geometries highlight the uncertainty in 
fault geometry induced by the limitations of 
seismic data. Fault geometries observed at 
outcrop are significantly more complex than 
those resolvable in  seismic data, with faults 
being composed of multiple segments. This 
leads to a greater range in orientations of fault 
planes compared to the single slip surfaces 
resolved in seismic data (C). In turn this results 
in an increased likelihood of unstable surfaces 
being present in the subsurface. 

5. Earthquake Magnitude

Figure 6. Parameters used for calculating fault stability under conditions of increased pore fluid 
pressure. (A) Map of the Barnett Shale distribution across Texas, and location of the Fort Worth 
Basin. The Fort Worth Basin is a prolific shale gas producing province, with a number of recent 
seismic events being attributed to hydraulic fracturing operations (Frohlich et al., 2011). (B) 
Published values for in-situ stresses and fault rock geomechanical properties for the Barnett Shale 
of the Fort Worth Basin (Palmer et al., 2007).

Figure 7. Aerial views of outcrop-derived (A, 
C) and seismically resolvable (B, D) fault 
geometries coloured by the distance to 
failure. At in-situ values of pore fluid 
pressure both fault geometries are stable (A, 
B). Simulating fluid injection by increasing 
the pore fluid pressure leads to parts of the 
outcrop-derived fault geometry becoming 
unstable and potentially being reactivated 
resulting in the occurrence of induced 
seismicity. This is in contrast to the 
seismically resolvable geometry which 
remains stable. The stability of the faults 
during fluid injection can be illustrated by 
plotting a Mohr diagram. The increase in 
pore fluid pressure moves the state of stress 
on the faults towards the failure envelope 
(E).

The potential magnitude of induced 
seismicity associated with fault instability 
during fluid injection can be calculated using 
the empirical relationships described in 
figure 8. In the case of the seismically 

Figure 4. Workflow used for generating the synthetic seismic response of complex, outcrop-derived fault geometries. Digital elevation data is used to generate a 3D geocellular grid populated with petrophysical properties 
appropriate to a shale gas reservoir. Seismic forward modelling software is used to calculate the elastic and reflectivity values which can be combined with a background model and survey design to generate a synthetic 
seismic volume. Interpretation of this volume allows identification of the seismically resolvable fault geometries and comparison with the original geometries from which they are derived. 

Figure 3. Location maps for digital elevation data used to define realistic fault geometries. The Afar rift in Ethiopia is a 
result of interaction at the triple junction of the Red Sea rift, the East African rift and the Gulf of Aden rift in East Africa 
(Rowland et al., 2007). Figure 8. Following calculations of fault stability the potential moment magnitude of induced seismicity 

associated with reactivation of unstable portions of the faults can be estimated using empirical 
relationships (1, 2) based upon rupture dimensions and typical values of the shear modulus for shale. The 
moment magnitude can be converted into the magnitude, a more widespread unit of earthquake strength 
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6. Geomechanical Uncertainty

A major uncertainty with our calculations of fault stability and hence the magnitude of any seismicity which may occur relates to the 
geomechanical properties applied. Properties such as fault rock friction angle and cohesion are relatively poorly defined for faults within 
shales. The impact of this uncertainty is illustrated in figure 9, where a lower fault rock friction has been applied. 

8. Conclusions

• Seismic forward modelling of outcrop derived fault geometries illustrates the disparity between realistic fault geometries, and those geometries resolvable in seismic data.

• The greater range in orientations for realistic fault geometries leads to an increased potential for unstable faults, or parts of faults, to be present when compared to the simple geometries resolvable in seismic data.

• Realistic fault geometries may experience failure, reactivation, and induced seismicity at lower increases of pore fluid pressure compared to seismically resolvable geometries.   

• Calculations of fault stability using seismically resolvable fault geometries are likely to be overestimated, with realistic geometries more likely to experience failure. The magnitude of any seismicity associated with fault 
reactivation will also differ between realistic and seismically resolvable geometries.

• Significant uncertainty exists regarding the geomechanical properties of fault rocks within shales. In turn this leads to uncertainty and unpredictability of fault behaviour during phases of increased pore fluid pressure, such as 
those associated with hydraulic fracturing operations.

• Prediction of the magnitude of induced seismicity relies on a number of uncertain variables. Pore pressure increases associated with fluid injection are likely to be non-linear and hence increase the uncertainty when 
predicting the occurrence and magnitude of seismicity. 

M = 1.5

Figure 9. Uncertainty in the geomechanical properties of faults and fault rock leads to uncertain calculations of a faults stability during fluid injection. (A) Outcrop derived geometry with a friction angle of 23°, 
rather than 31°. This lower angle is within the range of values seen for other fault rocks within shales (6° to 31°, de Pater and Baisch, 2011), and results in a significantly larger area of instability compared to a 
larger friction angle (figure 7). In turn this larger unstable area has the potential to generate larger magnitude seismicity, up to M = 2.6. (B) Seismically resolvable geometry with the same friction angle. (C) Mohr-
circle plot illustrating how reducing the estimate of the friction angle increases the likelihood of fault reactivation during conditions of increased pore fluid pressure.

(C)

7. Discussion and Future Work

We have modelled increases in pore fluid pressure associated with fluid 
injection as occurring effectively instantaneously and isotropically. In reality 
this is unrealistic since during hydraulic fracturing operations fluid is injected 
over several hours or days. In addition the permeability structure of the 
subsurface is unlikely to be homogenous, leading to a non-uniform distribution 
of injected fluid, and consequently of pore fluid pressure increases (figure 10).

Future work would include 
i n teg ra t i ng  geomechan ica l  
uncertainty and dynamic fluid 
injection in order to better constrain 
the distribution of pore fluid 
pressure increases, and hence the 
localisation of fault instability.

Figure 10. Anisotropic fluid distribution during injection as a result of permeability heterogeneity in the subsurface.
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