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Abstract 

Organic semiconductors have increased in popularity over the last two decades. The versatility 

of organic chemistry enables the development of organic semiconductor devices which can 

substitute for their abundant inorganic counterparts in various applications. A series of recent 

innovations in both synthetic chemistry and device fabrication have resulted in remarkable 

improvements in both the performance and the environmental stability of organic 

semiconductor devices, which had initially hindered their industrial growth. 

Moreover, the processability of organic materials facilitates the development of large-scale 

electronics on flexible plastic substrates. In addition, the interesting peculiarities of organic 

semiconductors can be harnessed for the development of gas sensors. The field of organic 

field-effect transistors (OFETs) is promising for the development of gas sensors capable of 

detecting more specific interactions between the substance under investigation (analyte) and 

the sensitive materials of the sensor; the advantage of OFET sensors derives from their 

complex structure and the plethora of parameters which govern their operation. 

This thesis focuses on the field of organic semiconductor devices intended for gas sensing 

applications. The research work presented here includes the optimisation of the device 

fabrication methodology with an emphasis on the field of OFETs, the development of bespoke 

readout electronics for the effective characterisation of these devices and the demonstration 

of their sensing capabilities by performing quantitative measurements with the aid of the 

developed readout electronics. Additionally, a study of the environmental stability of the 

fabricated devices was conducted; this study included an extensive investigation of the 

sensitivity of these devices to visible light illumination and a demonstration of how minor 

fabrication optimisations can result in significant light stability enhancement. 
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Chapter 1. Fundamental concepts 

1.1. Introduction 

This thesis describes the author’s contribution to FlexSMELL Marie Curie Initial Training 

Network (ITN) of the 7th Framework Programme of the European Commission. The main scope 

of this research network has been the development of an integrated olfaction system based on 

hybrid (organic and inorganic) electronics and built on a flexible substrate [1]. This system is 

mainly intended for food freshness monitoring by the incorporation of the appropriate sensors 

and readout electronics into food packaging. 

The following chapters describe the research work conducted towards three major objectives: 

i. The optimisation of the fabrication process of organic semiconductor devices, with a 

special focus on the field of organic-field effect transistors (OFETs). This includes the 

use of new dielectric materials and the fabrication of devices on flexible plastic 

substrates. 

ii. The development of novel methods for the electrical characterisation of organic 

semiconductor devices, including the development of bespoke electronic circuits and 

supporting software, as well as the exploitation of these methods for the study of the 

performance and stability of OFETs. 

iii. The use of the fabricated semiconductor devices in conjunction with the developed 

characterisation electronics for the delivery of quantitative vapour sensing 

measurements. 

The sequence of the chapters follows a course from basic theoretical concepts to the 

fabrication, characterisation and use of organic semiconductor devices as actual gas sensors. A 

brief description of each chapter follows: 

Chapter 1 provides an introduction to the terminology and the basic theory behind electronic 

gas sensors and the use of organic semiconductor devices for gas sensing applications. 

Moreover, an overview of the important concepts of both inorganic and organic 

semiconductor physics is given. 

Chapter 2 discusses organic semiconductor devices with an emphasis on the concept of 

organic field-effect transistors (OFETs); this includes a description of their operation, their 

fabrication methodology and the materials used. 

Chapter 3 discusses the methods employed for the morphological and electrical 

characterisation of the fabricated semiconductor devices. 

Chapter 4 describes in detail the novel electrical characterisation system developed and 

extensively used for the needs of this project. 

Chapter 5 discusses the results from the characterisation of OFETs made of different material 

combinations. 

Chapter 6 discusses the results of a supplementary comprehensive study on the light 

sensitivity of organic semiconductor devices 

Chapter 7 is dedicated to vapour sensing using organic semiconductor devices. The 

experimental methodology and the results from a series of gas exposure measurements are 

discussed in detail.  



2 | P a g e  
 

1.2. Gas sensors 

1.2.1. Terminology 

The electronic gas sensors, also known as gas detectors, are devices capable of detecting the 

presence of a particular substance within a gas sample; these devices can perform either 

qualitative or quantitative sensing and are designed to transduce the presence or the quantity, 

respectively, of this substance into a change in their electrical properties.  

The airborne substance under investigation is commonly referred to as the analyte or target 

analyte; hereafter, the term analyte is used to describe it. An interferant is a substance other 

than the analyte that can induce an unwanted change in the electrical properties of the 

sensor; such change can be misinterpreted as a response of the sensor to the presence of the 

analyte. The selectivity of a sensor is a measure of its capability of detecting the actual analyte 

in the presence of interferants.  

The limit of detection (LoD) of a sensor is the lowest analyte concentration that the sensor can 

detect. At a high analyte concentration a sensor may saturate; i.e. its output reaches a 

maximum (or minimum) and does not further change with increasing analyte concentration. 

The importance of LoD is very critical for particular applications. For instance, flammable gases 

have a lower explosive limit (LEL), i.e. a concentration level above which they can explode; a 

practical gas sensor for the detection of such a substance must have a lower LoD than the LEL 

of the gas. Similarly, in food spoilage detection applications, the LoD of a sensor must be lower 

than the minimum analyte concentration that can render the food inedible.  

The analyte concentration range between the LoD and the saturation limit is called the 

dynamic range of the sensor. The sensitivity of a sensor is a measure of how much the output 

of the sensor changes for a change in the analyte concentration; for instance, for a linear-

output sensor, its sensitivity is defined as the factor of proportionality between its output and 

the analyte concentration. 

An electronic gas sensor typically consists of two functional parts, the sensitiser and the 

transducer. The sensitiser is the part that physically or chemically interacts with the analyte; 

this interaction is usually referred to as the binding of the analyte to the sensitiser. The 

transducer is the part of the sensor that converts this binding into a change of measurable 

physical quantities; the transducer is usually accompanied by readout electronics, which are 

designed to convert those physical quantities of the sensor into a meaningful electrical output. 

The majority of the reported and commercially available electronic gas sensors employ either 

resistive or capacitive transducers. However, more complex semiconductor devices, such as 

the field-effect transistors (FETs) discussed here, have grown in popularity, mainly thanks to 

their multiple changeable electrical properties which can be used as individual sensing 

parameters in some applications. 

The reverse phenomena are equally important for the development of practical gas sensors. 

The time and the conditions which are required for the unbinding of an analyte and the return 

of the sensor to its initial state play a significant role in the concept of sensor recovery; i.e. the 

ability of its output to return to its pre-exposure value. Some exposure effects may be 

irreversible, impeding the use of the sensor for multiple exposures.  
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1.2.2. Field-effect transistor sensors 

Inorganic FETs have long been used as gas sensing transducers; prominent examples are the 

ion-sensitive FETs (ISFETs) [2, 3], the suspended-gate FETs (SGFETs) [4], and the hybrid 

suspended-gate FETs (HSGFETs) [5, 6]. In the majority of these examples, the sensing 

interactions take place at the gate stack of the FET; changes, such as a drift in the work 

function of the gate electrode, can modulate the channel of the FET and consequently, detect 

the presence of an analyte in terms of a change in the electrical characteristics of the FET. 

In the field of organic electronics, the relatively low mobility of organic semiconductors has 

hindered their growth and integration in demanding transistor applications, such as high-

frequency integrated circuits (ICs). Nevertheless, the peculiarities in the chemistry of carbon 

and the nanoscale structure of organic semiconductors nominate them as good candidates for 

specialised applications, such as optoelectronics and gas sensing. There are several reports of 

organic field-effect transistors (OFETs) operating as gas sensors [7, 8]. Similarly to their inorganic 

counterparts, OFET-based transduction is a versatile platform which provides more 

information than resistive and capacitive transducers; additional electrical parameters, such as 

threshold voltage and field-effect mobility can be employed as sensing parameters [9]. 

Moreover, another advantage of OFET-based sensors is the fact that they are able to operate 

at room temperature, in contrast to metal-oxide semiconductor sensors which require 

elevated operating temperatures [10, 11]; this attribute enables OFETs to be used as a viable 

solution for low-power portable sensing systems. 

A remarkable difference between inorganic and organic FET transducers lies in the fact that in 

OFETs, the semiconductor itself can be sensitive to a target analyte, acting as both the 

sensitiser and the active material of the transducer. For this reason, the OFET channel is 

deliberately exposed to the medium which contains the analyte; considering that a top gate 

stack practically acts as an encapsulation which inhibits any interaction between airborne 

species and the underlying semiconductor, the development of bottom-gate OFETs is more 

favourable for sensing applications [7, 8]. 

Moreover, the versatility of organic chemistry can be exploited for the enhancement of 

sensitivity and selectivity of OFET sensors; appropriate material engineering, such as additions 

of specific functional groups, in the form of side chains, to an organic semiconductor 

backbone, can effectively modify the sensing capabilities of an OFET sensor based on this 

material [12]. Although the exact phenomena that occur during the exposure of an organic 

semiconductor device to an analyte remain under investigation, it is commonly observed and 

accepted that analyte molecules bind to the semiconductor surface and trigger several 

mechanisms in the nanoscale. This binding is mainly attributed to electrostatic interactions 

between the analyte and the sensor active material molecules, be they of weak van der Waals, 

dipole-dipole or hydrogen bonding nature [7]. Macroscopically, the observed and quantified 

effect of an analyte binding is the alteration of the carrier injection and transport in an organic 

semiconductor device. Duarte et al. have given a report on the physics which govern the 

sensing of chemical vapours with OFET sensors [13]. 

Firstly, analyte molecules diffusing through the semiconductor and approaching the interface 

between the source and drain contacts and the organic semiconductor can affect the carrier 

injection [14]. Secondly, the migration of analyte molecules into the organic semiconductor 
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grain boundaries can deteriorate the carrier transport along the conduction channel of an 

OTFT, due to either the introduction of localised charge traps or the screening of the applied 

field by the accumulation of the analyte molecules [7]. These interactions may have an impact 

on the conductance of the channel and the mobility of the carriers. Additionally, the analyte 

molecules that diffuse deeper into the semiconductor film and migrate at the semiconductor-

dielectric interface of an OFET can also affect the threshold voltage of the device. 

Moreover, the introduction of analyte molecules into the semiconductor film can practically 

increase the dimensions, hence the volume, of the film; this effect is commonly referred to as 

swelling and sensors based on this mechanism have been demonstrated [15]. 

Furthermore, the presence of an analyte in the channel of an OTFT can sometimes enhance its 

conductivity, thanks to the introduction of more charge carriers into the channel; this 

mechanism is usually referred to as ‘doping’ [16]. Doping may manifest itself as an increase in 

the off-state current flowing through the device, which can also be harnessed as a useful 

sensing parameter [17]. 

Alternatively, the sensitivity and selectivity of an OFET sensor can be enhanced by the addition 

of selective receptor molecules acting as sensitisers. For instance, calixarenes have been used 

as a coating of the active material for selective molecular uptake [18], whereas biosensors 

incorporate agents, such as antibodies, that are complementary to the analyte, leading to a 

very strong and selective binding, known as ‘lock and key’. These kinds of interactions are not 

studied in this work. 

Furthermore, the development of arrays of sensors made of different active materials or 

bearing differently sensitised surfaces allows for more specific analyte detection based on 

known patterns or identities for each target analyte; these configurations are known as 

electronic noses [19]. 
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1.3. Inorganic semiconductors 

In spite of the essential differences in their physics, a reference to the abundant inorganic 

semiconductors cannot be excluded from any organic semiconductor study, especially when its 

main focus is on transistor devices. From the first days of integrated circuits (ICs) to the 

recently announced (as of 2013) state-of-the-art microprocessors based on 14 nm CMOS 

technology [20], silicon has been the flagship of the semiconductor technology evolution. 

This section provides a brief presentation of the fundamental concepts of inorganic 

semiconductor technology with a special focus on the properties of silicon. In the following 

sections, these properties will be compared and contrasted to those of organic 

semiconductors. 

1.3.1. Conductors, insulators and semiconductors 

A rather simplified yet widely adopted classification of solid-state materials employs their 

conductivity (σ) as the main categorisation criterion. Materials with conductivity magnitudes of 

less than 10-8 S/cm are classified as insulators and at the other extreme, the ones with σ 

greater than 103 S/cm are called conductors. Materials falling within the intermediate range of 

conductivities are defined as semiconductors.  

Inorganic semiconductors can be classified into two major categories with respect to their 

constituting elements. First, the element semiconductors consist of only one kind of atoms, 

which populate Group IV on the periodic table of elements; prominent examples of this 

category are silicon (Si) and germanium (Ge). Second, the compound semiconductors are 

formed by two or more species of atoms. Despite their relatively higher fabrication costs, 

compounds of elements from Group III and Group V, such as GaAs, have been espoused by the 

industry, as thanks to their interesting properties, they may outperform silicon in specialised 

applications. 

1.3.2. Crystals, charge carriers and energy bands 

Silicon, as well as many other inorganic semiconductors, forms crystals; silicon atoms are 

periodically arranged at fixed relative positions in a three-dimensional space. The atoms 

remain bound to their initial position and can only vibrate around it due to thermal activation. 

The smallest primary building block of a crystal is called unit cell. A single crystal is formed by 

repetitive unit cells which constitute the so-called lattice of the crystal. 

The atoms of a lattice are bound together by covalent bonding; each of them shares the 

electrons of its outer orbital with its neighbouring atoms. A silicon atom in particular, shares its 

four outer electrons with its four neighbouring atoms forming four pairs of electrons, also 

known as covalent bonds.   

The electrons of an isolated atom have discrete energy levels. These energy quantities are 

commonly expressed in eV, a unit which is defined as the energy gained by an electron when 

its potential is increased by one volt. In the vicinity of other atoms, as in the case of crystals, 

the outer electron orbitals overlap and the interactions of the neighbouring atoms induce an 

increase in the number of the allowed energy levels; effectively, the existing energy levels are 

split into more closely spaced ones. The number of allowed energy states in a given energy 
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range, i.e. the allowed energy levels including the possible electron spin orientations, per unit 

volume is called density of states. 

In the case of a silicon crystal, the interatomic spacing only affects energy levels of the four 

outer (valence) electrons. The orbital radii of the inner 10 electron energy levels are much 

smaller, leaving them intact. The third (outer) shell of the silicon atom is a doubly degenerate 

energy level which consists of 3s and 3p subshells. In an isolated atom, 3s subshell bears two 

allowed quantum states, whereas 3p has six. At absolute zero (T = 0 K), two of the four valence 

electrons are found in 3s and the remaining two in 3p. When the atom is found in a crystal 

lattice, its 3s and 3p subshells are altered and when the crystal is at an equilibrium state, they 

comprise four quantum states each. At absolute zero again, the four valence electrons occupy 

the respective quantum states of the 3s subshell leaving 3p unoccupied. This extreme 

condition, of a fully occupied 3s and an empty 3p subshell does not allow any charge 

conduction through the crystal. 

The highest occupied band, which is 3s in this case, is called valence band, while the lowest 

unoccupied is named conduction band.  The lowest energy level of the conduction band is 

denoted by EC and the highest energy level of the valence band by EV. There are no allowed 

energy states between EC and EV and the energy difference EC-EV is called bandgap energy (Eg). 

The Eg is an important figure of merit for semiconductors as it defines the required energy 

which can excite an electron from the valence to the conduction band leaving an unoccupied 

state in the former. These excited electrons are called free electrons and contribute to the 

electrical conduction of the crystal; meanwhile, the resulting electron deficiencies in the 

valence band are referred to as holes. Holes possess positive charges and also contribute to 

the total conduction of the crystal; electrons and holes are referred to as charge carriers. It is 

worth emphasising that the electrical conduction in a semiconductor requires the presence of 

charge carriers, which is possible only when its energy bands are partially filled with electrons. 

This excitation described above is known as electron-hole pair generation and constitutes the 

mechanism which the conduction in semiconductors in based upon. Electron-hole pair 

generation can be induced by the absorption of photons of adequate energy. Also, Eg 

decreases with increasing temperature, while elevated temperatures can excite carriers across 

the bandgap, effectively increasing its conductivity. 

The band structure illustrates the energy-momentum relation in a crystalline solid. It is a 

common practice to plot the energy bands, including EC and EV, as energy versus momentum 

(k). The structure of EC and EV constitutes an important classification criterion for 

semiconductors; i.e. the dependence of EC and EV on k defines the type of the semiconductor. 

In a direct bandgap semiconductor, such as GaAs, the minimum of EC occurs for the same k as 

the maximum of EV, whereas in an indirect bandgap semiconductor, such as silicon, the 

respective minimum and maximum levels appear at different k. Direct bandgap 

semiconductors are of great importance for optoelectronic applications, as their band 

structure facilitates the absorption and emission of photons; this results in higher quantum 

yields compared to silicon, which is key for the development of very efficient devices, such as 

light-emitting diodes (LEDs). 
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Recalling the crystal lattice structure, when charge carriers move over distances extending 

beyond the size of the unit cell, their movement differs from that expected in vacuum. This 

difference can be simplified with the introduction of the concept of effective mass of electrons 

(me
*) and holes (mh

*). The effective mass depends on the energy-momentum relation 

according to: 

   
  

   

          
 (1.1)  

 

where E(k) is the energy of the electron in band, E0 is the edge energy of that band, ħ is the 

reduced Planck constant (~6.582 x 10-16 eV·s) and k is the momentum. 

As a result, the effective mass can be extracted from the energy-momentum graphs by 

applying appropriate parabolic fits to them. However, the complexity of the band structures of 

most semiconductors does not provide for a single definition of effective mass. In practice, for 

common calculations, effective masses of particular materials are usually taken as constants. 

1.3.3. Fermi energy, intrinsic and extrinsic semiconductors 

In the absence of any other external excitations, the thermal activation at a given non-zero 

temperature is the only mechanism which can induce the electron-hole pair generation. When 

the concentration of impurities in a semiconductor crystal is small in comparison with the 

amount of thermally-generated carrier pairs, the semiconductor is called intrinsic. 

The total number of electrons per unit volume in a semiconductor, also known as electron 

density, can be calculated as an integral of the product of the density of states N(E) and the 

probability of an electron occupying each state F(E) for a range which extends from the top of 

the conduction band to the bottom of the valence band. The probability function F(E) is known 

as Fermi distribution function.  The energy for which F(E) = ½ is called Fermi energy. In the case 

of intrinsic semiconductors, the Fermi energy at room temperature lies in the middle of the 

bandgap Eg. The electron density at the bottom of the conduction band alone is denoted by n, 

whereas the hole density at the top of valence band by p. For an intrinsic semiconductor, n =p 

= ni , where ni is called intrinsic carrier density.  

The addition of doping impurities, i.e. commonly other elements from Groups III to V, to the 

crystal introduces new energy levels and the semiconductor is then referred to as extrinsic.  In 

general, additives which are more electronegative than the main crystal element donate 

electrons to the crystal, hence they are called donors. The extra electrons are loosely bound to 

their original nuclei and can more easily be excited to become free electrons, as described 

above. The required energy for this excitation is called ionisation energy. In a similar manner, 

electropositive dopants introduce holes to the crystal and they are referred to as acceptors. In 

some cases, dopants from the same Group can be deliberately added to the crystal; these 

techniques do not necessarily introduce charge carriers but aim to alter other properties of the 

carriers by changing the crystal structure. An example of this approach is strained-silicon 

technology based on Si-Ge heterostructures [21]. 

In lightly-doped semiconductors, commonly referred to as non-degenerate semiconductors, 

the electron or hole density is very small as compared to the effective density of states in the 

conduction or valence band, respectively. In the case of electron donation, it is assumed that 
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the thermal energy at room temperature can activate all donor atoms, which density is 

denoted by ND, and consequently provide an equal number of electrons to the conduction 

band; a phenomenon which is known as complete ionisation [22]. The Fermi energy is affected 

by doping and moves towards the bottom of the conduction band and its value can be 

calculated by the following equation: 

            
  
  
  (1.2)  

 

where k is Boltzmann’s constant, T is the absolute temperature and NC is the effective density 

of states in the conduction band. 

Likewise, when acceptors of NA density are present in the crystal, the Fermi energy moves 

closer to the top of the valence band. Its magnitude can be calculated by: 

            
  
  
  (1.3)  

 

where NV is the effective density of states in the valence band. 

The intrinsic Fermi level is denoted by Ei. It is a common practice to express charge carrier 

densities with respect to the intrinsic quantities ni and Ei: 

          
     
  

  (1.4)  
 

and  

          
     
  

  (1.5)  
 

 

As in the case of intrinsic semiconductors, the product of n and p constantly equals ni
2 at 

thermal equilibrium. This relation is known as the mass action law: 

       
  (1.6)  

 

Even in the presence of both donors and acceptors in the same crystal, the one of the highest 

concentration prevails and determines the conduction type of the semiconductor. The carriers 

with the highest concentration are called majority carriers, whereas the fewer ones are named 

minority carriers. When electrons are the majority carriers in an extrinsic semiconductor, the 

latter is characterised as n-type semiconductor. Similarly when holes prevail, it is a p-type 

semiconductor. 

1.3.4. Charge carrier transport 

The understanding of the charge carrier transport phenomena taking place in a semiconductor 

is of vital importance for the development of semiconductor devices. There are several 

contributing factors to the electrical conduction of inorganic semiconductors, the most 

important of which are carrier drift and carrier diffusion. However, in particular applications, 

other phenomena such as electron-hole pair generation and recombination, quantum 

tunnelling, avalanche multiplication and thermionic emission can have a major, even prevalent 

contribution to the current conduction of the semiconductor. Due to their significance and 

mainly due to the key differences in the carrier transport between inorganic and organic 

semiconductors, a brief description of first four mechanisms is given below. 
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1.3.4.1. Carrier drift, mobility and conductivity 

As discussed above, in the absence of any external excitations, the electrons of a uniformly 

doped semiconductor are thermally activated at any non-zero temperature; the lattice 

vibrations provide kinetic energy to the electrons and consequently, the holes of the lattice. In 

non-ideal crystals and at non-zero temperatures, the motion of the electrons along a crystal 

lattice is subject to collisions; electrons may scatter due to the presence of crystal defects, the 

presence of impurities (atoms of different elements present in the crystal) and/or the thermal 

vibrations of the lattice. The thermal vibrations are described by a concept of quasiparticles, 

known as phonons.  

Two important quantities related to these collisions are the distance an electron travels 

between collisions, commonly referred to as the mean free path, and the time between 

collisions, called the mean free time tc. When a bias is applied to the semiconductor, an 

electrostatic force is exerted on the electrons of the partially occupied bands, i.e. free 

electrons; consequently, these carriers drift along the applied field lines. The velocity 

component induced by the presence of the electric field is named drift velocity, which can be 

calculated according to: 

         
    (1.7)  

 

or 

     
   
  
   (1.8)  

 

where q is the elementary charge, Ɛ is the electric field and vn is the drift velocity of electrons. 

The factor qtc/mn
* is called electron mobility μn. Similarly, μp denotes hole mobility. Charge 

carrier mobility constitutes one of the most important quantities for both inorganic and 

organic semiconductors and it is commonly used as a benchmark of their electrical 

performance. 

   
   
  

 (1.9)  
 

where m* is the effective mass of the charge carriers. The dependence of the effective mass on 

the energy-momentum relation, as described by eq. (1.1), also reflects on the dependence of 

mobility on this relation. 

Mobility is vulnerable to various carrier scattering mechanisms which effectively act as 

mobility degradation factors. The two major mechanisms are impurity scattering and lattice 

scattering. The former occurs when the charge of ionised impurities deflects the drifting 

electrons and holes from their trajectory due to Coulomb force interactions; for this reason, it 

is usually referred to as Coulomb scattering.  The latter is due to the interactions between the 

drifting carriers and the thermal lattice vibrations (phonons); likewise, this mechanism is also 

known as phonon scattering. 

The effect of each of these mechanisms on the mobility is temperature dependent. At low 

temperatures, Coulomb scattering is the prevalent mobility degradation cause, especially in 

the case of heavily doped semiconductors, which comprise a large number of impurities. 

However, as temperature increases the higher kinetic energy of the carriers mitigates the 

Coulomb force effects. Conversely, at higher temperatures, phonons become the dominant 
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mobility degradation factor; the amplitude of vibrations increases, effectively increasing the 

probability of collisions and consequently, reducing the mean free time (tc). 

In principle, all carriers in a semiconducting crystal lattice suffer from mobility degradation at 

elevated temperatures. This constitutes a major difference between single crystal and 

amorphous or polycrystalline materials, in which temperature changes can induce opposite 

results as more carrier transport mechanisms are involved. A further discussion on the charge 

transport of amorphous organic materials is given in section 1.5.2. 

The total current in a semiconductor induced by an applied electric field is called drift current 

Idrift and equals the sum of electron and hole drift currents. The conductivity σ of the 

semiconductor equals: 

              (1.10)  
 

where n is the electron density, p is the hole density, μn is the electron mobility and μp is the 

hole mobility.  

The drift current density Jdrift is the drift current per unit area which flows through a 

semiconductor of a cross-sectional area A under the effect of an applied field Ɛ and it can be 

expressed by Ohm’s law: 

  dri  
 dri 
 

    (1.11)  
 

1.3.4.2. Carrier diffusion and total current density 

In the idealised assumption of a uniformly doped semiconductor, drift current is the only 

major carrier transport mechanism. When impurities are not uniformly distributed in the bulk 

of the semiconductor, their concentration gradients trigger the transport of carrier from high 

to low concentration regions. This mechanism is known as carrier diffusion. The diffusion 

process governs the operation of all semiconductor devices which employ p-n junctions, such 

as silicon diodes and bipolar transistors. 

In this case, the induced current is called diffusion current Idiff and has two components; the 

electron diffusion current and the hole diffusion current. Its density Jdiff in a semiconductor of 

cross-sectional area A is defined as: 

  di  
 di 
 
     

  

  
   

  

  
  (1.12)  

 

where Dn and Dp are the diffusion coefficients, constants or diffusivities of electrons and holes, 

respectively, and dn/dx and dp/dx are the spatial derivatives of electron density and hole 

density, respectively.  

The total current density Jtotal is the sum of drift and diffusion current densities for both 

electrons and holes; from (1.10), (1.11) and (1.12), it is derived that: 

  total   dri   di           
  

  
        

  

  
  (1.13)  

 

Interestingly, carrier drift and diffusion are associated through Einstein relation, which 

describes the dependence of the diffusion coefficient on mobility: 

    
   

 
 (1.14)  
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where k is the Boltzmann constant (~1.3806 × 10-23 m2 kg s-2 K-1), q is the elementary charge 

and T is the temperature. 

1.3.4.3. Electron-hole pair generation and recombination 

The mass action law expressed by eq. (1.6) is valid at thermal equilibrium and in the absence of 

any external excitations. When more carriers are introduced to the semiconductor by an 

external stimulation, such as light illumination, this relation is no longer valid as: 

       
  (1.15)  

 

In this occasion, competing mechanisms for the restoration of the thermal equilibrium 

conditions take place; the injected electrons may recombine with holes or vice versa. The 

process is called electron-hole pair recombination and results in the release of photons or heat 

which is transferred to the crystal lattice. The former case is known as radiative recombination 

and the latter as non-radiative recombination. 

The nature of the recombination mechanism varies between direct- and indirect-bandgap 

semiconductors. In the former case, the process is called direct recombination and does not 

require any momentum change contributions from the lattice vibrations. At thermal 

equilibrium, electron-hole pair generation and recombination present themselves at equal 

rates so that the mass action law remains valid. However, the probability of the occurrence of 

the direct recombination mechanism in an indirect-bandgap semiconductor is very low. Most 

likely, a momentum change is required for a carrier pair to recombine; hence interactions with 

the lattice vibrations must be involved. In this case, the process is called indirect 

recombination. 

1.3.4.4. Quantum tunnelling 

When two different semiconductors or a semiconductor and a metal are separated by thin 

dielectric, i.e. a material with large bandgap energy, an energy barrier hinders carriers from 

crossing the interface between the two materials. Nevertheless, it is possible for charge 

carriers to tunnel from one another through the high intermediate energy barrier, even if their 

energy is lower than the barrier energy itself. This phenomenon is referred to as quantum 

tunnelling. 

Although the effect of this phenomenon on large dimension semiconductor devices is usually 

negligible, quantum tunnelling constitutes a major impediment to the scaling of the very large 

scale integration (VLSI) technology down to the few-nm-node regime [23] and the continuation 

of the widely accepted Moore’s law on VLSI evolution [24]. This is mainly due to tunnelling-

induced high gate leakage currents which are encountered in complementary metal-oxide-

semiconductor (CMOS) technology transistors of such small dimensions. However, special-

purpose semiconductor devices, such as tunnel diodes, deliberately exploit quantum tunnelling 

in their operation. 
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1.4. Organic chemistry 

Organic semiconductors (OSCs), which are commonly categorised according to their degree of 

polymerisation; they can be classified as either low-molecular-weight semiconductors, also 

referred to as semiconducting oligomers, or semiconducting polymers. 

Inorganic semiconductor physics is based upon covalent crystal models; the major charge 

carrier transport mechanisms in inorganic semiconductors are best explained by band 

transport theory, which derives from the interactions of atoms in a crystal lattice. In OSCs, the 

crystal model and the band transport theory cannot adequately describe the occurring charge 

transport phenomena. 

The difference in the charge transport of OSCs is mainly due to their molecular nature; the 

charge carriers are strongly bound to their original molecule, a concept known as charge 

localisation. The charge carriers cannot easily move between neighbouring molecules, even in 

the case of organic crystals. Recalling the carrier drift terms from section 1.3.4.1, it can be 

thought that, in the case of OSCs, the mean free path of charge carriers does not easily extend 

beyond the size of a molecule.  

The transition from inorganic to organic semiconductor theory requires an understanding of 

the chemistry which dictates the bond formation in the case of carbon (C) atoms. An important 

peculiarity of carbon lies in the concepts of promotion and hybridisation, which are described 

in the following section. 

1.4.1. Hybridisation and carbon bonds 

In the ground state, the six electrons of a carbon atom are found in the locations shown in 

Table 1-I: 

Table 1-I – Electron distribution in the orbitals of a carbon atom in ground state 

Orbital → 1s 2s 2px 2py 2pz 

Number of electrons → 2 2 1 1 0 

Promotion is carried out when one 2s electron moves to the previously empty pz orbital; this 

promotion of the 2s electron results in the formation of three possible combinations of the 

remaining 2s electron with one to three 2p orbitals; these combinations are referred to as 

hybrid orbitals and are denoted by sp, sp2 and sp3 when they involve one, two or three 2p 

orbitals, respectively. 

From a stereochemical point of view, each hybrid leads to different bonding arrangements in a 

three-dimensional space, as shown in Figure 1-1. First, sp3 hybrid orbitals form equispaced 

bonds. The angle between the bonds is roughly 109.5° as the four bonds coincide with the 

segments joining the centre and the vertices of a tetrahedron. An sp3 hybrid can form four 

bonds with the outer orbitals of its neighbouring atoms. Two sp3 hybrids are tied together by a 

strong σ bond (C-C). 

Next, sp2 hybrid orbitals have three of these segments equispaced on one plane, forming 120° 

angles between them; the remaining p orbital is perpendicular to this plane. For a molecule to 

be formed, the presence of another sp2 hybrid is necessary. The two hybrids are linked by a 
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strong σ bond as in the case of sp3 hybrids plus a weaker bond due to the overlap of their 

perpendicular p orbitals. The latter bond is called π bond and the respective shared electron is 

referred to as π electron. The two bonds together constitute a bond commonly known as 

double bond (C=C), which is encountered in chemical compounds such as alkenes. It is worth 

noting that π bonds are weaker due to the fact that their respective orbitals are more distant 

from their parent nuclei, making π electrons loosely bound to them. This attribute is known as 

delocalisation and is of great importance for the charge carrier transport in organic 

semiconductors. 

 

Figure 1-1 – Graphical representations of: a. four sp3 hybrid orbitals, b. three sp2 hybrid orbitals and c. two sp 
hybrid orbitals [25] 

Last, sp hybrid orbitals have two of their segments on one axis, say x, and each of their 

remaining p orbitals on each of the two perpendicular axes, say y and z. A molecule can be 

formed by the combination of two sp hybrids. In this combination, three bonds are made; a σ 

bond between the orbitals of the respective x axes plus two π bonds between the 

perpendicular p orbitals. This combination of bonds is known as triple bond (C≡C), which is 

found in chemical compounds such as alkynes.  

1.4.2. Conjugation, molecular orbitals and bandgap 

The main building block of many functional organic semiconducting molecules is the benzene 

ring. Benzene is formed by six sp2 hybrids. The planar arrangement of the sp2 hybrid orbitals, 

with the 120° angles between their bonds, creates a planar regular hexagon with each carbon 

nucleus residing on each of its vertices. There is a σ bond between each atom of the ring, 

whereas each carbon hybrid makes a π bond with either of the neighbouring atoms. This 

results in two possible configurations as shown in Figure 1-2. Much of the material engineering 

for organic semiconductors focuses on the enhancement of conjugation, i.e. the delocalisation 

of π electrons over a larger extent of the system. These chemical modifications can result in 

desirable changes in properties such as the mobility of charge carriers, as discussed in section 

1.5.   

 

Figure 1-2 – Graphical representations of the possible benzene ring configurations 
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These configurations of alternating single and double (or triple) bonds between carbon atoms 

are a typical example of conjugation in organic systems; every organic molecule having this 

series of bonds is considered a conjugated system. In practice, the π electrons are not strictly 

associated with an atom or the bond between two adjacent atoms; conversely, they are 

delocalised and shared among a larger number of atoms of the same molecule. 

The molecular orbital (MO) theory provides a better understanding of the behaviour of π 

electrons within an organic molecule. According to this model, a molecule constitutes an entity 

with its own orbitals rather than a superposition of individual atomic orbitals of its constituent 

atoms. In the case of semiconductors, the MO approach introduces concepts for organic 

molecules which bear some resemblance to their inorganic counterparts; the molecular 

electronic orbitals also have discrete energy levels, which are occupied by electrons. According 

to the MO theory, the most energetic orbital occupied by electron(s) is called highest occupied 

molecular orbital (HOMO). Similarly, the term lowest unoccupied molecular orbital (LUMO) 

refers to next higher orbital. It should be mentioned that the concept of HOMO is homologous 

with the valence band (EV), whereas that of LUMO is homologous with the conduction band 

(EC), in inorganic semiconductor theory, as discussed in section 1.3.2. HOMO and LUMO are 

called the frontier orbitals of a molecule. 

An inherited inorganic term is the meaning of bandgap. In organic molecules, the energetic 

difference of HOMO and LUMO levels constitutes the bandgap of the molecule. The size of this 

gap depends on the delocalisation of π electrons, which, in turn, depends on the conjugation 

of the molecule. As the conjugation of a molecule increases, the π electrons become more 

delocalised; the decrease of the energetic difference between subsequent discrete energy 

states can be explained and visualised by an analogue of the particle in a box model of 

quantum physics by considering that this energetic difference scales with the extent of 

delocalisation according to: 

   
 

  
 (1.16)  

 

where E is the energetic difference or the HOMO-LUMO gap (bandgap) and L is the size of the 

box in the typical model or can be thought as the length of delocalisation in an one-

dimensional π system. 

In molecules with extended delocalisation, the bandgap can drop in the range of a few eV, 

similar to the energy of visible light photons; this facilitates the excitations of electrons from 

HOMO to LUMO. For this reason, conjugated molecules can be classified as organic 

semiconductors. In practice, these two terms are usually interchangeable. 

The elimination of bandgap in an one-dimensional π system and thus, the development of 

organic conductors, is inhibited by an instability explained by Peierls transition; this theorem 

implies that a bandgap always arises in an one-dimensional system regardless of the extent of 

delocalisation. 
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1.4.3. Polarons, ionisation potential and electron affinity 

A fully occupied HOMO brings a molecule in its ground state. For the initiation of charge 

transport in a molecule, its ground state must be disturbed by the removal of an electron from 

its HOMO or the addition of an extra electron which will occupy its LUMO. These changes 

transform the molecule into a radical ion. In the former case, the ion bears a positive charge, 

thus it will be a radical cation. In the latter case, the total charge is negative and the ion is a 

radical anion. 

 

Figure 1-3 – A diagram illustrating the frontier orbitals of an organic molecule along with their electron affinity 
(Ea) and ionisation potential (Ip) levels.  

Radical cations and anions are usually referred to as hole and electron polarons. The addition 

or subtraction of charge carriers not only affects the total charge of the resulting ion, but also 

results in alterations of its stereochemical configuration as compared to that of the molecule 

in the ground state. These alterations are usually referred to as relaxation. In other words, the 

molecule polarises itself under the influence of the added/withdrawn charge; hence, the 

concept of polaron covers both the charge and the induced polarisation of the ion. 

The coupling of electrons with the stereochemical configuration of the molecule, known as 

electron-phonon coupling, complicates the energetic relations related to the development of 

polarons. As a result, the amount of energy needed to inject an electron into the LUMO or 

withdraw an electron from the HOMO does not equal the bandgap of the molecule. To 

account for this coupling, two additional energy levels are defined; the ionisation potential (Ip) 

is the energy needed for the withdrawal of electron from the HOMO and electron affinity (Ea) 

is the energy gained by an electron when added to the LUMO. Ip is of lower energy compared 

to HOMO, whereas Ea is of higher energy compared to LUMO. These energy levels are 

illustrated in Figure 1-3. 

  



16 | P a g e  
 

1.5. Charge injection and transport in organic 

semiconductors 

The operation of all semiconductor devices hinges on the injection of charge carriers into a 

semiconducting medium and the transport of charge over the functional extent of the 

medium. In most device configurations, carrier injection is achieved by the use of metal 

electrodes brought in direct contact with the semiconductor; thus, the physics of the metal-

semiconductor interface dictate the injection process. Section 1.5.1 refers to these 

mechanisms. 

Charge transport in organic semiconductor devices has been mainly attributed to the 

properties of small polarons from the early years of the relevant research [26]. However, much 

of the transport mechanisms in both low-molecular weight and polymer semiconductors still 

remain under investigation. The involvement of extrinsic factors, such as the presence of 

impurities in the semiconductor, impedes the development of consistent models for the 

understanding and simulation of a pragmatic organic semiconductor device. Section 1.5.2 

discusses the major charge carrier transport mechanisms which are widely accepted in modern 

organic semiconductor theory. 

1.5.1. Metal work function, contact resistance and charge injection 

The work function (WF) is a surface property of a metal which expresses the energy required 

for the removal of an electron from its surface to a point in vacuum. WF is commonly 

expressed in eV. 

The selection of metals of appropriate work functions is of utmost importance for the 

operation of organic semiconductor devices. A good match of the WF with either the electron 

affinity (Ea) of the semiconductor for electron injection, or its ionisation potential (Ip) for hole 

injection (electron withdrawal) is imperative. In a rather simplified notion, for the unhampered 

injection of charges from a metal to a semiconductor, the WF must be higher than the Ip for 

hole injection or lower than the Ea for electron injection. In this case, the metal-semiconductor 

contact is considered as ohmic. However, in many cases, the WF of the metal electrodes does 

not meet this requirement and this consequently introduces a potential difference which must 

be surmounted for carrier injection to take place. This potential difference is known as 

injection barrier. 

Assuming that Schottky-Mott rule holds true, the injection barrier (qφb) for electron injection 

from a metal to semiconductor simply writes: 

           (1.17)  
 

and similarly for hole injection: 

           (1.18)  
 

From an application perspective, this barrier can be interpreted as an additional requirement 

for the operating voltage of the semiconductor device; i.e. a portion of the applied voltage, 

which equals φb, will be used to compensate for the injection barrier. 

However, several actual metal-semiconductor interfaces do not comply with the Schottky-

Mott rule. Instead, complex physical and chemical interactions between the metal and the 

semiconductor induce the development of dipoles at their interface. The presence of dipoles 
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results in a misalignment of the vacuum levels for the metal and the semiconductor, which 

effectively results in an increase or lowering of the injection barrier. In other words, the dipole 

can either impede or enhance the injection of charge carriers depending on its polarity. 

Indisputably, the involvement of dipoles impedes the understanding of charge injection in real 

devices. In many cases, advanced characterisation techniques, such as ultraviolet 

photoemission spectroscopy (UPS) and inverse photoemission spectroscopy (IPES), are required 

for precise quantification of the actual injection barrier in a device. 

In inorganic semiconductors, injection barriers can be modified by deliberate doping of the 

semiconductor in the areas which come in direct contact with the metal. However, the doping 

of organic semiconductors for charge injection enhancement remains a challenging endeavour, 

especially in the case of electron injection [27]. Interestingly, it has been shown that in some 

instances, slightly contaminated metal-organic semiconductor interfaces can practically 

enhance injection [28]. In this example, contamination acts as a passivation layer which 

eliminates the interactions between the metal and the semiconductor and thus, the 

development of dipoles. 

There is a variety of mechanisms underpinning charge injection from a metal to a 

semiconductor. While the energetic barriers discussed above could be overcome by 

thermionic emission, experimental studies have confirmed that field-emission, also known as 

Fowler-Nordheim quantum tunnelling, has a contribution to charge injection [29, 30]. 

Furthermore, it is suggested that defects of the semiconductor at its interface with the metal 

contact introduce intermediate energy states which could practically act as stepping stones for 

the injection of charges, in a process referred to as defect-assisted injection [31].  

In most types of semiconductor devices, such as organic field-effect transistors (OFETs) and 

chemiresistors, described in sections 2.1.2 and 2.1.3, respectively, carriers are injected by a 

metal contact into a semiconducting film and after traversing a conduction channel, they get 

collected by a second metal contact. The two potential barriers, for the injection and collection 

of charge, manifest themselves as a measureable quantity, commonly known as contact 

resistance (Rc). In practice, a metal-semiconductor contact is defined as ohmic when contact 

resistance is substantially smaller than the resistance of the semiconducting channel (Rch), i.e.: 

        (1.19)  
 

However, when this condition does not hold true, the charge injection from a metal contact 

constitutes a bottleneck for the operation of a device. In this occasion, the charge carrier 

transport through the semiconductor device is considered as injection- or contact-limited. 

Conversely, when channel resistance is comparable or even higher than contact resistance and 

charge carrier transport is considered as bulk-limited. The theory which describes the charge 

transport in the bulk of organic semiconductors is discussed in the following section. 
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1.5.2. Charge carrier transport in conjugated systems 

As previously discussed, unlike inorganic semiconductors, the charge carrier transport in 

organic molecules cannot adequately be explained by the band transport theory. This section 

discusses the widely accepted theories which explain the charge carrier transport in organic 

semiconductors. 

1.5.2.1. The polaron model 

The occurrence of real band transport in organic semiconductors was first reported by Karl et 

al. to have been observed in pure crystals of oligoacenes [32]; the authors mainly base their 

conclusion upon the mobility (μ) dependence on temperature (Τ): 

          (1.20)  
 

where n is typically a positive constant, thus μ is expected to decrease with increasing 

temperature. However, the validity of these claims remains challenged and controversial [33]. 

A better received theory is based upon the concept of polarons, discussed in section 1.4.3. 

Recalling the inorganic notion of drift velocity (v) under the application of an electric field (Ɛ): 

      (1.21)  
 

According to the polaron model, the total mobility of carriers (μ) is defined as the sum of 

mobilities induced by a coherent (band-like) transport mechanism (μcoherent) and an incoherent 

transport mechanism (μhopping), known as hopping: 

    coherent   hopping (1.22)  
 

It should be mentioned that the coherent mechanism is referred to as tunnelling by some 

authors [34]; to avoid confusion, this term is not adopted here as, in fact, the incoherent 

mechanism (hopping) also describes the thermally-assisted tunnelling of carriers between 

adjacent molecules. 

The prevalence of either of these two contributing factors depends on the strength of 

electron-phonon interactions of a molecular system; for strong electron-phonon coupling, the 

hopping contribution becomes dominant.  As previously mentioned in section 1.4.3, organic 

materials typically exhibit stronger coupling than inorganic materials and as a result, hopping is 

expected to be the major driving force for charge carrier mobility at room temperature. 

Hopping is a thermally-assisted phenomenon; the mobility of organic semiconductors typically 

increases with increasing temperature. 

Contrarily, band-like transport can only be possible in the very low temperature regime, where 

the electron-phonon interactions are minimised, so is the hopping contribution to total 

mobility of charge carriers [35]. 

1.5.2.2. The effect of disorder 

The structural disorder of OSCs, which is more pronounced in the case of amorphous and 

polycrystalline films, introduces additional impediments in charge carrier transport. Disorder 

can be classified into diagonal and off-diagonal. The former term refers to the distribution of 

the energetic (HOMO/LUMO) levels in the individual molecules of an organic system; the latter 

addresses the fluctuations in the strength of interactions between adjacent molecules. In the 

particular case of semiconducting polymers, diagonal disorder can stem from the distribution 
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of the effective conjugation length and other effects of electrostatic nature [34]. Conversely, off-

diagonal disorder is closely related to the molecular packing and the morphology of a 

semiconducting thin-film; this fact underscores the importance of device fabrication conditions 

in the electrical performance of the device. 

Bässler et al. have pioneered the study of the role of disorder in the charge carrier transport in 

organic materials by conducting Monte Carlo (MC) simulations [36]. In that study, equations for 

the numerical approximation of mobility based on the degree of both diagonal and off-

diagonal disorder were introduced. The suggested equations predict a straight line in a plot of 

ln(μ) versus 1/T2, which slope depends on the both the diagonal and off-diagonal disorder 

parameters. This dependence can be exploited for the quantification of disorder changes from 

electrical measurements taken at different temperatures [37]. 

This model was further expanded by Pasveer et al. to account for dependence of mobility on 

the charge carrier density [38]. 

1.5.2.3. The effect of space charge 

The conductance of a real semiconductor device cannot be accurately described by Ohm’s 

Law, described by eq. (1.11), as the strength of the electric field varies along the 

semiconducting film employed in the device. Assuming an initially intrinsic (undoped) 

semiconductor, the injection of charge carriers from a metal electrode into the bulk of the 

semiconductor introduces space charges along the conduction path; the presence of these 

charges effectively masks the externally applied field and, consequently, results in a reduction 

of the resulting current; this current is commonly referred to as space-charge-limited current 

(SCLC) and the respective current density is described by: 

        
 

 
     

  

  
 (1.23)  

 

where εr is the static permittivity of the semiconductor, ε0 is the vacuum permittivity (~8.854 x 

10-12 F/m), μ is the mobility of charge carriers, V is the externally applied voltage and L is the 

length of the conduction path. 

Although the SCLC model is better suited for real organic semiconductor devices, the 

assumption of the absence of dopants, i.e. charge carrier donating agents, and charge carrier 

traps, discussed in the following section, remains an unrealistic scenario.  

1.5.2.4. The effect of charge carrier traps 

In real organic semiconductor devices the presence of charge carrier traps is unavoidable. 

Traps can be characterised as either electron traps, when their energy state is somewhat 

higher than the electron affinity (Ea) of the semiconductor, or hole traps, when their energy 

state is somewhat lower than its ionisation potential (Ip). Charge carriers are effectively 

trapped by these energy sites due to the aforementioned energy differences. 

Traps are also classified into shallow and deep traps with respect to the thermal energy (kBT); 

when thermal energy can easily release the trapped charge carriers then the trap is considered 

to be shallow, otherwise it is thought as a deep trap. Charge carriers need external excitations 

in order to be released from deep traps; this can be achieved by an increase in temperature, 

the application of an external electric field or illumination.  
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Moreover, the presence of deep traps is believed to define the type of an organic 

semiconductor; i.e. hole-transporting (p-type) or electron-transporting (n-type). In inorganic 

terms, the type of a semiconductor is controlled by the deliberate introduction of dopants into 

the bulk of an intrinsic semiconductor such as silicon; the introduction of electron-donating 

atoms, such as arsenic (As), results in electron-transporting (n-type) properties, whereas the 

introduction of electron acceptors, such as boron (B), induces hole-transporting (p-type) 

properties. Instead, organic semiconductors have long been observed to intrinsically be either 

hole-transporting or electron-transporting materials, with the former constituting the vast 

majority of OSCs. However, studies on organic semiconductor devices employing materials 

with low trap densities have revealed that the transport of both types of carriers is possible for 

some semiconductors [39]; this type of semiconductors is commonly referred to as ambipolar. 

The presence of traps introduces more parameters to be taken into account for the 

understanding of the operation of semiconductor devices; the experimental observations on 

actual devices usually deviate significantly from behaviours described by SCLC theory. In 

complex semiconductor devices, such as the organic field-effect transistors (OFETs), which 

constitute the main focus of this study, the presence of traps in the bulk of the semiconductor 

and at the semiconductor-dielectric interface, has an impact on important parameters, such as 

their threshold voltage and mobility. More information on the operation of OFETs is given in 

section 2.1.2. 
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Chapter 2. Organic semiconductor devices 

2.1. Thin-film semiconductor devices 

Thin-film semiconductor devices consist of a combination of either patterned or non-patterned 

thin films of materials in such fashion that can give the device particular functional properties. 

The concept of inorganic thin-film devices such as thin-film transistors (TFTs) was first 

introduced by Weimer in 1962 [40]. This concept has been adopted by the industry for the 

development of various electronic applications employing amorphous or polycrystalline silicon 

deposited onto insulating, and in some instances, transparent substrates; some of their most 

popular applications are the active matrix, TFT liquid-crystal displays (LCDs), in which TFTs are 

used to drive individual pixels of the display. 

The thin-film architecture is the most successful approach in the development of organic 

semiconductor devices; the majority of the demonstrated devices, be they organic light-

emitting diodes (OLEDs), organic photovoltaic cells (OPVs), organic chemiresistors or organic 

field-effect transistors (OFETs), are thin-film devices. This concept enables the fabrication of 

electronic devices on plastic, flexible and transparent substrates broadening the spectrum of 

potential applications. 

This section describes the organic thin film deposition methods and equipment used for the 

purposes of this study; moreover, the structure and operation of OFETs and chemiresistors are 

discussed. 

2.1.1. Organic thin film deposition methods 

The ease of fabrication has been suggested as one of the major advantages of organic 

electronics. The most popular organic thin film deposition methods can be classified into two 

major categories; i.e. vacuum techniques and wet techniques. The former category comprises 

physical vapour deposition (PVD) methods, such as thermal evaporation and sputtering; the 

wet techniques include methods such as spin coating and, more recently, inkjet printing. Wet 

techniques are more favourable for the organic semiconductor industry as they can be used 

for the large-scale deployment of organic electronics; successful large-scale roll-to-roll (R2R) 

processes employ wet techniques for the deposition of various materials [41]. 

This section describes the two common deposition techniques, i.e. thermal evaporation and 

spin casting, that were used for the development of the devices presented in the following 

chapters.  

2.1.1.1. Thermal evaporation 

Thermal evaporation is one of the most used techniques for the deposition of thin films of 

metals and low-molecular weight organic semiconductors. The process is carried out in high 

vacuum. The source material, found in either solid or liquid phase, is placed in an appropriate 

holder and gets heated by electric means (filament). The material evaporates and its vapour 

travels a short distance in vacuum before it reaches a target surface, where it re-condenses 

forming a thin-film. The morphology and quality of the deposited film depends on several 

factors; the type and roughness of the target surface, the quality of the vacuum, the 
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deposition rate and the total thickness of the film have an impact on the final results. 

Furthermore, the temperature of the substrate has been found to play a key role in the 

morphology of the deposited organic semiconductors [42]. Higher temperatures do not 

necessarily improve the device performance; Dimitrakopoulos and Mascaro showed that the 

charge carrier mobility of pentacene films deposited on substrates heated at 57 °C were six 

orders-of-magnitude lower than that of substrates at slightly above room temperature (27 °C) 
[43]; considering X-ray diffraction measurements, the authors attribute the drop in mobility 

observed at this elevated temperature to a possibly high defect concentration due to the co-

existence of two different ‘phases’ of pentacene: a well-ordered thin-film phase and a single-

crystal phase. However, Song et al. have suggested that the ideal substrate temperature for 

the deposition of pentacene is 80 °C [44]. 

In the work presented here, thermal evaporation was used for the deposition of metal 

electrodes, employing aluminium, chromium, gold and silver, and three low-molecular weight 

semiconductors; i.e. tetracene, pentacene and PDI8-CN2. Moreover, despite the general belief 

that polymers cannot successfully be evaporated and re-organise on a target surface, the 

recently introduced technique of thermal evaporation and deposition of low-density 

polyethylene (LDPE) as the gate insulator of OFETs was successfully tested and optimised. 

 

Figure 2-1 – A photograph of the thermal evaporator during aluminium deposition. The incandescent tungsten 
coil encompassing the aluminium source appears in the middle. 

An Edwards 306 (manual model) thermal evaporator was used for the deposition of the 

aforementioned materials. A removable glass bell jar, sealed by a rubber gasket, lies on the top 

side of the apparatus; this glass dome is kept in place by the difference between the pumped 

down internal pressure and the ambient pressure. All electrical feedthroughs, gauges and 
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vacuum and cooling piping are located at the metal bottom of the dome. A photograph of the 

evaporator during aluminium evaporation is shown in Figure 2-1. 

The substrates are placed upside-down on specially designed steel frames based on a circular 

stage; the height of the stage can be adjusted so that the distance between the source and the 

target surface can be optimised. When patterned material deposition is required, magnetic 

sheets are placed on the rear side of the substrates. Then, thin ferromagnetic shadow masks 

are placed on the substrate surface and are kept in place by the magnetic attraction induced 

by the magnetic sheets on the opposite side of the substrates. An example of patterned 

aluminium electrodes using shadow masks is shown in Figure 2-7. 

A rotary pump serves for rough pumping. Fine pumping is carried out by a mains-water- and 

liquid-nitrogen-cooled diffusion pump. The pumping sequence is manually controlled. The 

dome is initially roughly pumped down to a pressure in the range of 10-2 Torr. Then, the 

diffusion pump takes over and quickly reduces the pressure to 10-5 Torr. Prolonged pumping, 

assisted by continuous liquid-nitrogen cooling can yield pressure levels as low at 10-7 Torr. 

The particular apparatus supports two material sources enabling the deposition of layers of 

two different materials (bilayers) without the need for venting the dome to the atmosphere. 

This asset can eliminate any possible contamination which could compromise the performance 

of the developed thin-film device. The source materials are either placed inside special 

tungsten ‘boats’ (a common practice for several metals), put in quartz crucibles surrounded by 

tungsten wire baskets (common for many organic materials which come in powder form) or 

wedged inside tungsten coils (as in the case of pure aluminium wire). The tungsten heating 

elements are powered by a manually-controlled variable DC voltage source, which is capable 

of supplying a maximum of 10 V. Typical current values for the evaporation of the materials 

used in this work range from 0.3 A to 2.0 A. 

A quartz crystal microbalance (QCM) is placed inside the chamber, at roughly the same height 

as the target surfaces; its readout electronics reside outside the chamber and a thickness 

monitor provides information on the thickness of the deposited films. The deposition rate is 

calculated manually by the use of stopwatch. The calibration of the thickness monitor is 

necessary; apart from defining the density of the deposited material, the user must also 

calculate an additional calibration factor with the aid of profilometer measurements, discussed 

in section 3.1.3. 

A shutter disc is interposed between the source material and the target surface; it is used in 

the beginning of the evaporation process to protect the target surface from residual volatile 

contaminants in the source material and undesired fluctuations in the deposition rate. When 

the desired deposition rate is achieved, the shutter is removed by the use of a lever and the 

thickness monitor is simultaneously reset to zero. 

The deposition procedure varies among the materials used. The required dome pressure, 

source material quantity, supply current, deposition rate and final deposited thickness depend 

on the evaporated material and the intended thin-film device. These parameters are discussed 

in the respective sections below. 
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2.1.1.2. Spin coating and drop casting 

Spin coating has been used for decades in the microelectronics industry; its main use has been 

the deposition of photoresist for the needs of photolithography. In organic electronics, it is the 

most common method for the deposition of polymers onto substrates. 

The organic material must first be dissolved in an appropriate solvent. The concentration of 

the solution is usually quoted in milligrams of dissolved substance per millilitre of solvent 

(mg/mL). The dissolution can be assisted by heat and agitation using a magnetic stirrer. The 

selection of the solvent is crucial for the properties of the deposited film and, consequently, 

the performance of the fabricated devices [45]. One of the most important properties of a 

solvent is its volatility; when a solvent evaporates slowly, it allows more time to the deposited 

OSC molecules to organise into crystalline domains. The resulting increase in crystallinity, is 

usually desirable as it typically enhances the charge carrier mobility. 

The substrates are placed onto a small turntable, known as the chuck. In the centre of the 

chuck, there is a pipe connected to a rotary vacuum pump; the substrates are kept in place by 

the force exerted by the vacuum. The chuck is usually placed in the middle of a cavity made of 

polytetrafluoroethylene (PTFE), also known as Teflon. A transparent lid covers the cavity and 

prevents splashing; the lid typically has a small opening on top of the chuck. The cavity is 

usually purged with dry nitrogen during the spin coating in order to eliminate the effects of 

ambient oxygen and moisture on the deposited thin films.  

A small quantity of the solution is cast onto the substrates through the opening of the lid with 

the aid of a pipette. The casting can be done prior to the onset of spinning (static deposition) 

or during the spinning (dynamic deposition). 

An electronic controller allows for adjustments of the rotational speed of the chuck, the spin 

time and, sometimes, the acceleration. Multiple phases of spin coating can usually be defined; 

two-phase processes are common, with an initial slow spin being succeeded by a faster one. 

The rotational speed is usually expressed in revolutions per minute (rpm). 

The thickness (t) of the deposited film is a function of the rotational speed of the substrate (ω), 

the concentration (c) and the viscosity (η(c)) of the solution: 

     
     

  
 (2.1)  

 

The proportionality constant depends on the solvent, the temperature, the type of the 

substrate and other factors. Usually, profilometer measurements, discussed in section 3.1.3, 

are conducted for the quantification of the thickness of the deposited film and the 

optimisation of the concentration, speed and time parameters. 

In this work, spin coating was used for the deposition of thin films of P3HT and PBTTT, 

discussed in sections 2.5.4 and 2.5.5. The solvents used, the solution concentrations and the 

exact spin coating conditions are discussed in the device preparation sections of the respective 

chapters. The typical values of concentration were 5 to 10 mg/mL and those of rotational 

speed were 1000 to 4000 rpm. 
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2.1.2. Organic field-effect transistors (OFET) 

Organic field-effect transistors (OFETs), also known as organic thin-film transistors (OTFTs) 

share the same structural and operational principles with the inorganic thin film transistor 

(TFTs). As discussed in section 1.2, OFETs can be used as versatile gas sensing transducers. 

Their structure and operation are discussed in this section. Details on the fabrication and 

characterisation of OFETs are given throughout Chapter 5 and examples of their exploitation in 

gas sensing experiments are discussed in sections 7.3 and 7.4. 

In the common, bottom-gate/top-contact architecture, illustrated in Figure 2-2 and adopted 

for all fabricated devices discussed in the following chapters, a thin film of a semiconductor is 

deposited on top of the gate stack. The gate stack consists of a conductor, i.e. usually a metal, 

doped silicon or a conducting oxide, and an insulating layer which separates the conductor 

from the semiconducting film; the metal electrode is usually simply referred to as the gate (G), 

while the insulator is known as the gate dielectric. 

On top of the semiconductor, two patterned metal (or other conducting material) electrodes 

are deposited; the electrodes are known as the source (S) and the drain (D) of the transistor. In 

the devices presented in the following chapters, the source and drain electrodes have the 

same geometry and can, in principle, be swapped. As discussed in section 2.6.1, the manual 

alignment of the evaporation shadow masks can lead to unintentional asymmetries, which can 

effectively differentiate the two electrodes. 

The area between the source and drain electrodes is referred to as the channel of the 

transistor, its length (L) is the distance between the electrodes and its width (W) is the width of 

the electrodes. Figure 2-3 shows an SEM image of the cross-section and the surface of the 

channel region of a pentacene OTFT with top gold contacts. 

 

Figure 2-2 – Graphical representation of a bottom-gate/top-contact OFET. Typical values for the fabricated 
devices discussed here: L: 5 μm to 10 μm, W: 1 mm to 2 mm and t: ~6.5 nm (for aluminium oxide) / 100 nm to 300 
nm (for silicon dioxide) 25 nm to 400 nm (for low-density polyethylene). 
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2.1.2.1. MISFETs, TFTs and threshold voltage 

In a typical TFT configuration, the source is grounded and the gate and drain voltages are 

expressed with respect to the source voltage; i.e. VGS=VG-VS and VDS=VD-VS, respectively. TFTs 

are voltage-controlled devices which typically operate in accumulation mode; this comes in 

contrast to the inorganic metal-insulator-semiconductor field-effect transistors (MISFETs) that 

usually operate in inversion mode. The accumulation and inversion terms refer to the charge 

carriers which populate the channel area and create a conduction path between the source 

and the drain of the device. 

For instance, in an n-type silicon MISFET, the source and drain regions are made of n-doped 

silicon, whereas the silicon bulk is p-doped; when no gate bias is applied, the source and the 

drain are electrically isolated due to the presence of two p-n junctions placed back-to-back. 

The application of a positive gate voltage repels the majority charge carriers (holes) and 

attracts the minority carriers (electrons) at the semiconductor-dielectric interface; this action 

creates an inversion layer, in which the minority carriers populate the channel and form a 

conduction path (n-channel) between the source and the drain, effectively switching the 

device on. 

 

Figure 2-3 – Field-emission scanning electron microscope (FE-SEM) image of the top surface and the cross-section 
of the channel area of a top-gold-contact pentacene OFET based on AlOx-LDPE dielectric. The sample was cut 
across the channel (longitudinal section). The two light-coloured lateral regions are the top source/drain gold 
electrodes and the darker region in the middle is the exposed pentacene channel having a length of roughly 10 
μm. At the bottom of this image, the cross-section of the multi-layered OFET structure is shown; the silicon wafer 
is the thick lowest layer exhibiting sharp edges, while the overlying deposited layers cannot be clearly seen and 
visually separated as they tend to crumble during the sample cutting process. 

Contrarily, in the case of OTFTs, the semiconductor can be intrinsic (undoped); charge carriers 

are injected from the source electrode into the bulk of the semiconductor and the application 

of a gate voltage of the appropriate polarity accumulates the injected carriers at the 
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semiconductor-dielectric interface. Gate voltage can modulate the current which flows 

through the channel, known as the drain current (ID), by effectively controlling the amount of 

charge carriers present in the channel. OTFTs employing semiconductors which are capable of 

transporting electrons (n-type) are called n-channel transistors and respectively, those 

employing hole-transporting (p-type) semiconductors are known as p-channel transistors. 

In MISFETs, the minimum gate voltage which can induce strong inversion at the 

semiconductor-dielectric is known as the threshold voltage (Vth) of the transistor [46]; above this 

voltage the device is capable of conducting ‘substantial’ drain current. Regarding OTFTs, the 

physical meaning of Vth was debated in the early days of organic electronics [47]; nevertheless, 

Vth is now widely accepted as an important concept that rationalises the operation of OTFTs, as 

explained below.  

2.1.2.2. Linear and saturation regions 

When gate voltage exceeds the Vth value, the conduction path (channel) has been formed. 

Both the gate (VGS) and drain (VDS) voltages control the drain current; their values determine 

the mode (region) of operation. Considering an n-type OTFT, when         , there are two 

regions of operation : 

a. when             the transistor operates in the linear region and ID is described by: 

         
 

 
              

   
 

 
  (2.2)  

 

where μ is the charge carrier mobility, Ci is the capacitance per unit area of the gate dielectric, 

W and L are the width and length of the channel, respectively. 

 

Figure 2-4 – An example of output characteristics of a typical enhancement-mode (normally-off) n-type OFET for 
different gate bias. The dashed red line illustrates the transition from the linear to the saturation regions. 
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b. at a given VGS and as VDS increases, the voltage difference between the gate and the drain 

electrodes is minimised; the field effect at the drain end of channel weakens and this 

effectively reduces the amount of charge carriers and shrinks the channel at this side. When 

           , the amount of charge carriers reaches a minimum at the drain end; this 

phenomenon is known as pinch-off. At pinch-off, the maximum drain current is limited 

(saturates) and can only be controlled by the gate voltage; in this case, the transistor operates 

in the saturation region and ID is described by: 

         
 

  
         

  (2.3)  
 

The electrical characteristics of OTFTs are conventionally illustrated as either output or 

transfer characteristics. The output characteristics are plotted as drain current versus drain 

voltage at a constant gate voltage; usually the same drain voltage sweep is applied for 

different fixed gate voltage values, as shown in Figure 2-4. Conversely, the transfer 

characteristics are plotted as drain current versus gate voltage at a constant drain voltage; the 

saturated transfer characteristics, measured at a relatively high drain voltage are of great 

interest for the extraction of other parameters. An example is given in Figure 2-5. More details 

on the characterisation methodology are given in section 3.3. 

 

Figure 2-5 – An example of transfer characteristics of a typical enhancement-mode (normally-off) n-type OFET. 
Top: semi-log plot of drain current versus gate voltage, indicating the offset current (artefact) of the 
measurement instrument, the onset voltage (Von), the threshold voltage (Vth) and the subthreshold and 
saturation regions; the linear region is not shown in this graph as the saturation condition, VDS>VGS-Vth is always 
met over the entire gate voltage range. Bottom: The same data plotted in linear scale (black triangles) and as 
square root of drain current (red squares) versus gate voltage; the dashed red line indicates the simple linear 
regression fit used for Vth extraction. More details on parameter extraction are given in section 3.3.2. 
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2.1.2.3. Subthreshold region 

Both eq. (2.2) and eq. (2.3) imply that ID equals zero for        ; in reality, none of these 

equations can describe the operation of an OTFT when        . When this condition holds 

true, the OTFT operates in the subthreshold region and ID is described by [48]: 

          
 

 
                       (2.4)  

 

where K is a constant that depends on the employed materials and the device structure, k is 

the Boltzmann constant (~1.3806 × 10-23 m2 kg s-2 K-1), q is the elementary charge, T is the 

temperature and     is the ideality factor. 

The subthreshold characteristics are usually plotted as the logarithm of drain current versus 

gate at a constant and relatively large drain voltage. A useful quantity is the inverse 

subthreshold slope, also known as subthreshold swing (S): 

  

     
    
      

 (2.5)  
 

The subthreshold swing is proportional to the ideality factor according to: 

      
  

 
      (2.6)  

 

This quantity typically expressed in units of mV/decade; this expression describes the gate 

voltage change required for an order-of-magnitude change in drain current. 

At room temperature (293 K) eq. (2.6) writes: 

                   (2.7)  
 

For an ideal transistor and in the absence of traps, n=1; however, typical swing values for 

OTFTs are in the range of 0.5 to 5 V/decade [48]. Subthreshold voltage is of great importance for 

the study of trap densities at the semiconductor-dielectric interface; variants of eq. (2.6) 

account for the capacitance of the gate dielectric and the trap density. These equations are 

used for the comparison between different gate stacks; more details are given in section 

5.2.2.3. 
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2.1.3. Organic chemiresistors 

Two-contact organic semiconductor devices can be used as resistive gas sensing transducers, 

known as organic chemiresistors; there are numerous demonstrated examples of sensing with 

chemiresistors in the literature [15]. In this work, organic chemiresistors were used for the 

delivery of the humidity sensing tests described in section 7.2. Their structure and operation 

are discussed in this section. 

Chemiresistors are devices of much simpler design as compared to OTFTs. In the case of a top-

contact chemiresistor, a thin film of an organic semiconductor is deposited onto an insulating 

substrate and two patterned electrodes, made of metal or other conducting material, are 

deposited on top of the semiconductor. Conversely, in a bottom-contact chemiresistor, 

illustrated in Figure 2-6, the metal electrodes are first deposited onto the substrate and then, 

the semiconductor on top of them; this design can also be employed as the foundation for the 

development of water-gated OTFTs, as discussed in section 2.4.6. 

 

Figure 2-6 – Graphical representation of a bottom-contact chemiresistor. Typical values for the fabricated devices 
discussed here: L: 5 μm to 10 μm, W: 1 mm to 2 mm. 

In the absence of a gate electrode, the conduction of a chemiresistor exclusively hinges on the 

conductivity of the semiconductor film and the efficient injection of charge carriers from and 

to the metal electrodes. A detailed discussion on charge carrier injection from metal 

electrodes is given in section 1.5.1. 

The total resistance (R) of a chemiresistor writes: 

          (2.8)  
 

where Rch is the resistance of the channel between the two electrodes and Rc is the sum of the 

two contact resistance terms. 

In spite of their structural simplicity, organic chemiresistors can be employed in various 

applications; in particular, there are numerous published examples that demonstrate 

chemiresistors as effective vapour sensing transducers [15, 49].  
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2.2. Substrates 

The device substrate, apart from providing mechanical support to the device, can determine 

the properties of the overlying deposited layers and play a functional role in the operation of 

the fabricated device. This section briefly discusses the types of substrates used in this study 

and the substrate preparation methodology. 

2.2.1. Silicon 

Silicon substrates are a common solution for the development of organic semiconductor 

devices; their low surface roughness is suitable for the deposition of thin film of other 

materials. Moreover, the combination of a doped silicon wafer with a layer of thermal silicon 

dioxide (SiO2), as discussed in sections 2.3.1 and 2.4.1, can serve as the gate stack of bottom-

gate OFETs. 

2.2.2. Quartz and fused quartz 

Quartz and fused quartz substrates were mainly used in support of the spectroscopy 

measurements, thanks to their wide transparency range, which extends beyond the visible 

range limits [50]; thin films of organic semiconductors were deposited on these substrates and 

transmission measurements were conducted with the use of a spectrometer. More details on 

spectroscopy can be found in section 6.1.2. 

2.2.3. Flexibles substrates 

The development of flexible devices was one of the main objectives of this work. Two different 

types of plastic substrates were used: a foil of polyethylene terephthalate (PET) and A4-sized 

sheets of commercial overhead projector transparencies designed for laser printers (Xerox 

Premium Transparencies, part number: 003R98199). The results on PET were poor, possibly 

due to its evident surface roughness. Nevertheless, the devices built of the laser printer 

transparencies exhibited comparable performance to their rigid counterparts. More details on 

device characterisation are given in Chapter 5 and a demonstration of vapour sensors built on 

flexible substrates is given in section 7.4. 

2.2.4. Substrate preparation 

The cleanliness of the substrates plays a very important role in the yield of the device 

fabrication and the quality of the fabricated devices. It was found that inadequate cleaning 

resulted in delamination of the deposited aluminium films; delamination of these films has 

been reported to occur during anodisation [51]. In this section, the substrate preparation 

techniques are described. All of the following procedures were performed in clean room 

facilities. 

2.2.4.1. Substrate cutting 

Most of the devices presented in this work were built on silicon substrates; these samples 

were cut from 3-inch arsenic-doped <100> wafers with a resistivity of 1-10 Ω/cm, a total 

thickness of 500 μm and an 100-nm-thick layer of thermally-grown oxide; the wafers were 

diced manually. A diamond-tipped glass cutter was used to scribe the rear (unpolished) side of 

the wafer with respect to its crystallographic orientation. Following that, the wafer was broken 
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into smaller parts by the application of manual force on both sides of the scribed line. This 

procedure was repeated until the silicon samples had the desired size. In most cases, the final 

dimensions were approximately 11 mm x 22 mm. Finally, the samples were blown with dry 

nitrogen for the removal of any remaining debris. 

In some of the fabricated SiO2-gated OFETs, substrates from a wafer with a 300-nm-thick 

thermally-grown oxide layer were used. A thicker oxide mitigates the gate-leakage-related 

problems which are common for thin insulators [52, 53]. This wafer was automatically cut by a 

dicing saw. These samples were also blasted with dry nitrogen prior to the wet cleaning 

procedures described below. 

In the case of plastic substrates, two different materials were used; a foil of polyethylene 

terephthalate (PET) and common laser printer transparencies, as discussed in section 2.2.3. 

The latter have a special adhesion promoting coating on their glossy (top) side, thus this side 

was chosen for the deposition of the other layers. These soft materials were cut to the desired 

dimensions using either common scissors or a sharp blade. The standard size was the same as 

the one of the silicon substrates. For the deformation studies presented in section 7.4, 

substrates of a larger area of 40 mm x 40 mm were cut to match the dimensions of the syringe 

pumps used. More details on these measurements are given in that section. 

2.2.4.2. Alkaline solution cleaning 

All substrates were cleaned in an alkaline solution. A Petri dish containing a roughly 1:100 (v/v) 

solution of Hellmanex detergent in high-purity deionised (D.I.) water was placed on a 

thermostatically-controlled hot plate at 70 °C to 75° C. The substrates were immersed into the 

solution and preheated for 5-10 minutes. Then, the Petri dish was placed into an ultrasonic 

bath (model: Digital Ultrasonic Cleaner UD100SH-3L, power: 100W). The bath was filled with 

deionised water kept at roughly the same temperature. Due to the low power of the heater of 

the bath, the water was warmed in a separate kettle and then poured into the bath. 

The samples were sonicated for 5 minutes. After sonication, each sample was rinsed with DI 

water at room temperature. Residual droplets were absorbed by touching the edge of the 

samples on a piece of lab wipe. The samples were finally placed in a clean Petri dish on the hot 

plate and left to dry completely. 

2.2.4.3. Isopropyl alcohol cleaning 

All silicon and glass substrates were further cleaned using isopropyl alcohol (IPA). The 

procedure is similar to the one described above. A Petri dish was filled with IPA and placed on 

the hot plate to get preheated at 70 °C. The previously dried samples were dipped into the 

warm solvent for 5 minutes. The Petri dish containing the substrates was placed in the 

ultrasonic bath and was sonicated for 5 minutes. It is important to keep the bath temperature 

well below 75°C to prevent IPA from boiling. 

Similarly, the samples were rinsed with clean IPA, dried with the aid of a lab wipe and placed in 

a clean Petri dish on the hot plate until they had completely dried out. 
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2.2.4.4. Ultraviolet light ozone cleaning 

A final ozone cleaning process was applied to all silicon and glass substrates. The samples were 

placed in a Petri dish and then the dish was put into an ultraviolet light ozone chamber 

(Bioforce Nanosciences Inc., model: UV.TC.220).  

This process took place at room temperature. The apparatus converts ambient oxygen into 

ozone using a mercury-vapour lamp. For the majority of the substrates, the application time 

was 260-280 seconds. 

2.3. Gate electrode materials 

In the case of electrolyte- and water-gated OTFTs, the selection of the gate electrode material 

has an impact on important device parameters, such as threshold voltage, charge carrier 

mobility and Ion/Ioff ratio [54, 55]; however, in the case of conventional, i.e. dry, OFETs, the 

material selection is mainly made according to processability rather than functional 

considerations. 

All OFET examples given in this work follow a bottom-gate architecture. Three different 

materials were used for this purpose: doped silicon, aluminium and silver. The properties of 

these materials are briefly discussed in this section. 

2.3.1. Doped silicon 

For the SiO2-gated devices presented in the following chapters, the doped bulk of the silicon 

wafers was used as the gate electrode material; the wafers were arsenic-doped with a <100> 

crystal orientation and a resistivity of 1-10 Ω/cm. 

For the delivery of electrical measurements, part of the insulating thermal oxide layer was 

scraped off of the silicon using a scriber; the doped silicon was typically contacted with 

tungsten needles. 

2.3.2. Aluminium 

Aluminium was used as the gate contact material for all low-voltage OFETs employing an 

aluminium oxide gate. It was also used as the bottom electrode material for aluminium oxide 

capacitors. It was thermally evaporated on silicon and plastic flexible substrates.  

The evaporation source material comes in wire form. A tungsten coil was used as the heating 

element. Pieces of aluminium wire were wedged into the coil. The length of the aluminium 

wire used for each evaporation was roughly 15 cm. This quantity is adequate for the 

deposition of a maximum of 150 nm of aluminium film onto the target surface. The coil is 

connected to the power leads through insulated feedthroughs at the bottom of the thermal 

evaporator described in section 2.1.1.1. 

As seen in Figure 2-7, the substrates were placed upside-down on a custom-made steel frame 

and magnetic sheets were placed on their bottom (rear) side. A thin ferromagnetic metal 

shadow mask was placed on the top side of each substrate and was held in place by the 

attraction of the magnetic sheets. These masks serve for the patterning of four 10-μm-channel 

OFETs per substrate. 
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The entire assembly, including the frame, the magnetic sheets and the substrates with the 

masks, was placed on a stage inside the evaporator, at a height of 100 to 150 mm above the 

aluminium source. 

 

Figure 2-7 – A photograph of patterned aluminium features deposited on plastic transparent substrates. Inset: a 
graphical representation of the layout of the aluminium evaporation shadow mask. 

The evaporator dome was pumped down to a high vacuum of < 5 x 10-7 Torr before each 

thermal evaporation process began. The typical thickness of the deposited aluminium layers 

was 100 nm. More details are given in the device preparation sections of Chapter 5. 

2.3.3. Silver 

Silver was used as a gate material for the OFETs which employed solely low-density 

polyethylene (LDPE) as their gate dielectric; it was also used as the bottom and top electrode 

material for LDPE-based capacitors.  

Silver was thermally evaporated and successfully deposited on both rigid and flexible plastic 

substrates showing good adhesion. The raw material comes in the form of beads. A tungsten 

boat bearing a dimple in the middle was used as a heating element. 

The deposition procedure was very similar to the aluminium evaporation process described in 

the previous section; shadow masks were used for the deposition of patterned features onto 

the substrates. The typical thickness of the silver thin films varied from 50 to 100 nm. 
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2.4. Dielectrics 

In OFET devices, the gate dielectric physically and electrically separates the gate contact 

material from the semiconductor. In the most common case of enhancement-mode OFETs, the 

application of a bias of the appropriate polarity induces the accumulation of carriers charge at 

the semiconductor-dielectric interface, as discussed in section 2.1.2.1. 

The properties and quality of the selected dielectric are of utmost importance for the 

performance and stability of the transistor. There are several factors that determine the 

selection of the appropriate dielectric for a device. Roughly speaking and according to the 

drain current equations, given in section 2.1.2, dielectrics with high permittivity can result in 

good OFET performance by yielding high drain currents. 

Nevertheless, the dielectric layer plays a more complex role in the operation of an OFET; for 

instance, in bottom-gated devices, the underlying dielectric can have an impact on the 

morphology of the deposited semiconductor film and significantly alter its charge transport 

properties. Moreover, the presence and the amount of charge traps in a dielectric and at the 

semiconductor/dielectric interface determine important OFET parameters, such as the 

threshold voltage. The most common trends in the selection of dielectrics for OFETs are 

discussed below. 

Silicon dioxide (SiO2) has been the prevalent dielectric in inorganic semiconductor industry for 

decades and as such, it was inherited by the emerging organic semiconductor technology as 

the dielectric of choice for most of the demonstrated bottom-gate OFETs while it serves as a 

benchmark for all alternative dielectrics. 

A newer approach is the employment of materials with relatively (as compared to SiO2) high 

permittivity, known as high-k dielectrics. Most of these materials are inorganic oxides, such as 

aluminium oxide (Al2O3), also referred to as alumina, tantalum oxide (Ta2O5) , titanium dioxide 

(TiO2) and hafnium dioxide (HfO2); additionally, a selection of polymeric high-k dielectrics have 

exhibited remarkable results; these include materials such as poly(vinyl alcohol) (PVA) and 

cyanoethylpullulan (CYEPL) [56]. Despite their superiority in terms of permittivity, inorganic 

high-k dielectrics have been associated with high trap densities, which result in pronounced 

hysteresis in the I-V characteristics of FETs [57]. More information on hysteresis is given in 

sections 3.3.2.3 and 4.2.5. 

An alternative approach is the use of polymeric dielectrics with relatively low permittivity, 

respectively known as low-k dielectrics; it has been shown that despite their low permittivity, 

these dielectrics, such as particular fluoropolymers, can effectively result in high OFET drain 

current values thanks to their low-polarity, which is closely related to lower charge trap 

densities [58]; this attribute can provide low threshold voltage values and low hysteresis, in 

conjunction with high FET mobility values, similar to those achieved in the bulk of the 

semiconductor. 

Another widely used method is the application of self-assembled monolayers (SAMs) as a 

treatment for the surface of oxides. Hydrophobic silanes, such hexamethyldisilazane (HMDS) 

and octadecyltrichlorosilane (OTS) applied onto SiO2 oxides result in alterations in the 

semiconductor grain formation and enhanced charge carrier mobility values [59]. Furthermore, 
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OFETs with aluminium oxide dielectric treated with phosphonic acid SAMs have also exhibited 

very good performance [60]. 

A different trend is the use of electrolytes as gate media for the development of electrolyte-

gated thin-film transistors. The operating principle of these devices lies in the formation of an 

electric double layer (EDL) at the electrolyte/semiconductor interface; this layer effectively 

induces a very high capacitance, which is necessary for the accumulation of charge carriers and 

the channel formation. Both solid and liquid electrolytes have been demonstrated as 

candidate materials for the development of both p-type and n-type transistors. More recently, 

OFETs gated exclusively by water droplets have been demonstrated [54, 61, 62].  

In this section, the dielectrics employed in this study are presented; their properties are 

discussed and their deposition methodology is described.  

2.4.1. Silicon dioxide (SiO2) 

Silicon dioxide (SiO2) is the best studied dielectric used as gate medium in both inorganic and 

organic FETs. SiO2 is usually grown by thermal oxidation of silicon wafers. The dielectric 

constant of SiO2 is 3.9 and its leakage current is very low for a thickness larger than 2 nm; for a 

lower thickness, quantum tunnelling becomes dominant resulting in significantly larger leakage 

current values [63]. 

In this study, silicon wafers with 100- and 300-nm-thick thermal oxide layers were used for the 

development of OFETs; the respective capacitance per unit area (Ci) values for these 

thicknesses are roughly 27 nF/cm2 and 9 nF/cm2. The surfaces of these dielectrics were 

prepared with appropriate cleaning techniques, described in section 2.2.4. In most cases, the 

oxide surfaces were treated with either octadecyltrichlorosilane SAMs or evaporated low-

density polyethylene (LDPE); these approaches are described in sections 2.4.3 and 2.4.5, 

respectively. 

2.4.2. Aluminium oxide by anodisation (AlOx) 

Aluminium oxide (Al2O3), also known as alumina, is a high-k dielectric which has been 

suggested as a good alternative of SiO2. Aluminium oxide films intended for use in OFETs were 

first made with radiofrequency magnetron sputtering and were reported in 2002 [64]; a short 

time later, Majewski et al. demonstrated an OFET gated by an aluminium oxide layer made by 

anodisation of the underlying aluminium film [51]; their dielectric had low leakage current and a 

measured Ci of 60.7 nF/cm2 for an anodisation voltage of 100 V. Later improvements from the 

same group include the growth of anodised aluminium oxide layers on plastic (Mylar) 

substrates; these layers had a Ci value larger than 600 nF/cm2 using a anodisation voltage of 5 

V [65]. It should be mentioned that aluminium oxide films made by anodisation are not as 

stoichiometric as that made by such techniques as sputtering [66]; hence, hereafter, aluminium 

oxide is abbreviated as AlOx, rather than Al2O3. 

The last approach was adopted for the development of AlOx films on thin layers of aluminium 

deposited by thermal evaporation. A bespoke anodisation bath for the electrochemical 

oxidation of thin aluminium films, which was previously developed and demonstrated by 

Majewski et al., was used for this purpose. The bath consists of a glass container with two thin 

platinum sheets covering two of its internal sides. The container is filled with a dilute aqueous 
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solution of citric acid (~1 mM). Up to two substrates can be anodised simultaneously; each of 

them is clipped with a pair of stainless steel tweezers, which is held by a crocodile clip 

suspended over the bath. The substrates are partly immersed into the solution so that their 

patterned aluminium features get wetted while the tweezers are not in contact with the 

solution. The surface of the substrate bearing the deposited aluminium is aligned so that it 

faces one of the platinum sheets while the distance between them is kept to a minimum 

(roughly 1-2 mm). 

A constant DC current source with selectable voltage compliance powers the system. The 

positive terminal is connected to the dangling crocodile clip that is in contact with the thin 

deposited aluminium film on the substrate. The negative terminal is connected to the platinum 

sheets inside the bath. 

 

Figure 2-8 – a. and b.: a graphical representation of the anodisation bath from two different viewing angles; red 
features: silicon substrate, golden features: crocodile clip and cable to positive terminal, green features: platinum 
plate and cable to negative terminal, light yellow: citric acid solution. c. typical current and voltage curves during 
anodisation; the values shown are indicative. 

The supply current is selected with respect to the intended current density Janod and the area A 

of the immersed aluminium film: 

                 (2.9)  
 

For all anodisation processes described in this work, the selected current density was roughly 9 

mA/cm2 and the maximum voltage limit was set at 5 V. The typical current application time 

was 75 seconds. According to the aforementioned studies, the thickness of the AlOx can be 

estimated by: 

                (2.10)  
 

where cAl is the anodisation constant of aluminium and Vanod is the maximum anodisation 

voltage. For the reported values of cAl of 1.3 to 1.37 nm/V [67] and a Vanod of 5 V, the thickness 

of the grown oxide is calculated at 6.5-7.0 nm. 

The impedance measurement results on capacitors based on these anodic AlOx dielectrics 

treated with either OTS SAMs or evaporated LDPE layers, discussed in section 5.1, come in 

good agreement with the previously reported values by Majewski et al. for Al anodisation at 5 

V, regardless of the largely different values of applied current density. 
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2.4.3. OTS treatment 

As discussed in section 2.4, the application of self-assembled monolayers (SAMs) can enhance 

the morphology of the deposited semiconductor films and result in better electrical 

performance of the fabricated devices. Octadecyltrichlorosilane (OTS) is a common SAM 

treatment for OFET oxides, which provides multiple device enhancements. First, OTS 

passivates the –OH groups on the surface of the gate oxide, which act as charge carrier traps; 

this action can affect the threshold voltage of the OFET and increase the mobility of charge 

carriers. Second, it has been demonstrated that the semiconductor grain formation is 

enhanced by growing in repeatable patterns when the target surface is pre-treated with OTS 
[68]. Figure 2-9 a. illustrates the binding of a single monolayer of OTS to an oxide surface. 

OTS treatment was first reported by Sagiv et al. in 1980 [69]. The presence of water molecules 

adsorbed on the surface of the oxide is essential for the binding of OTS molecules; however, 

excessive water content can result in polymerisation of the OTS molecules to the formation of 

cross-linked networks of molecules that are only partly anchored to the oxide surface [70], as 

shown in Figure 2-9 b. Hence, the control of the moisture present on the substrates during OTS 

self-assembly is very important.  Moreover, apart from using OTS as a surface treatment of 

oxides, there are reports of metal-oxide-semiconductor (MIS) devices gated solely by a single 

monolayer of OTS grafted on the very thin native oxide of silicon [71]. 

 

Figure 2-9 – Graphical representation of a. a single monolayer of OTS bound to an oxide surface and b. a 
polymerised network of OTS molecules with only one molecule bound to the oxide surface. 

In the work presented here, OTS was used as a surface treatment for both SiO2 and AlOx 

dielectrics. OTS was purchased from Sigma-Aldrich (product code: 104817) and was dissolved 

in cyclohexane (10 mg/mL). The substrates bearing the SiO2 or AlOx layers were immersed into 

the solution; the process was carried out in a nitrogen glove box to prevent the uncontrolled 

polymerisation of OTS, as mentioned above. The typical application times were 60 minutes for 
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SiO2 and 10 minutes for AlOx. After the OTS application, the substrates were rinsed with clean 

cyclohexane and dried on a hot plate before the deposition of the semiconductor. 

2.4.4. Evaporated low-density polyethylene (LDPE) 

There are very early reports of successful evaporation and deposition of polyethylene (PE); in 

1965, White reported the vacuum deposition of PE by thermal evaporation at 290 °C. The use 

of polyethylene in the gate stack of OFETs was first reported by Chua et al. as a SiO2 surface 

treatment that can yield electron transport in semiconducting polymers [39]. Very recently, the 

use of evaporated low-density polyethylene (LDPE) films as gate media for OFETs was first 

demonstrated by Kanbur et al. [72]; a C60 OFET gated exclusively by an LDPE layer, along with 

other p-type, n-type and ambipolar OFETs gated by bilayers of AlOx and LDPE were successfully 

fabricated and presented in this paper. In the work presented here, pentacene and PDI8-CN2 

were successfully fabricated on both rigid and flexible substrates, employing either LDPE alone 

or a combination of oxide insulators and LDPE. 

The LDPE was purchased from Sigma-Aldrich and was obtained in pellet form. The pellets were 

placed inside a quartz crucible and were sublimed in vacuum for several hours to degas. After 

the degassing process, the crucible was placed in an appropriate tungsten coil, inside the 

evaporator described in section 2.1.1.1. All LDPE evaporations were carried out in high vacuum 

with a pressure below 10-6 Torr.  

The control of the evaporation temperature is crucial for the deposition of LDPE; according to 

the study of Kanbur et al. [72], as well as early studies on the evaporation of LDPE [73], the 

temperature must be kept below 350 °C during evaporation. In the absence of an appropriate 

high-temperature thermocouple, rough estimations of the coil temperature were made based 

on the voltage and current readings of the evaporator gauges; in this case, the coil itself was 

effectively used as a thermometer. 

Assuming a negligible resistance on the current copper leads, due to their very large cross-

section, and also assuming a uniform temperature along the tungsten coil, applying Ohm’s law 

yields the resistance of the coil. At room temperature, its resistance (Rref) was measured with a 

multimeter at 0.2 Ω. Then, according to: 

                          (2.11)  
 

where Rref = 0.2 Ω is the filament resistance at reference (room) temperature, atungsten is a 

constant which describes the sensitivity of tungsten to temperature (0.044 / °C) and Tref  is the 

reference (room) temperature (293 K). The calculated values of Rcoil at 300 °C is 2.66 Ω, and at 

350 °C is 3.1 Ω; accordingly, the resistance of the coil was kept below 2.7 Ω throughout the 

evaporation process. 

All LDPE deposition processes were carried out in high vacuum with a pressure kept below 10-6 

Torr. The deposition rate typically was in the 10-2 nm/s range. The typical thickness for OFETs 

gated exclusively with LDPE was 400 nm. Specific details on the deposition conditions are given 

in the preparation section of each investigated device in Chapter 5. 
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2.4.5. Evaporated LDPE as oxide treatment 

The use of a combination of aluminium oxide with a thin layer of evaporated LDPE was first 

demonstrated by Kanbur et al. [72]; the combination of a high-k inorganic oxide with a 

polymeric surface treatment was shown to give good results for all p-type, n-type and 

ambipolar semiconductors, which confirms the low trap density at the semiconductor-

dielectric interface. 

In this work, evaporated LDPE was used as a surface treatment for both SiO2 and AlOx 

dielectrics for the fabrication of pentacene and PDI8-CN2 OFETs. The deposition methodology 

was identical to the one described in the previous section; in this case, the typical thickness of 

the LDPE layer was 20 nm. 

2.4.6. Water-gating 

Kergoat et al. recently introduced concept of gating OTFTs with water [54]; this architecture is 

promising for the development of new applications, such as the sensing of waterborne species 

(analytes) with OTFT transducers. Indeed, the same research group has more recently 

demonstrated a water-gated OTFT used for DNA detection [74]; although the responses of this 

type of sensor were weak, this demonstration creates new prospects for water-gated OTFTs. 

The operation of a water gate remains under investigation; according to Kergoat et al., the 

operation of water as a gating medium is mainly a field-effect interfacial phenomenon, similar 

to that of conventional OFETs, rather than explained by electrochemical interactions in the 

bulk of the semiconductor [54]. In electrolyte-gated devices, a metal electrode is in contact with 

the electrolyte; when a bias is applied to the electrode, the mobile ions, which charge is of the 

opposite polarity to the applied bias, are attracted by the metal; this action induces the 

formation of an electric double layer (EDL) in close proximity to the electrode. 

The EDL in water is believed to act as a high capacitance insulator, yielding Ci values in the 

range of a few μF/cm2, which is even higher than the typical values of high-k dielectric gates; 

this attribute results in very low threshold voltage and substantially high drain current that 

allows water-gated TFTs to efficiently operate below the electrochemical window of water, i.e. 

1.23 V approximately [75]. In the same study by Kergoat et al., it was also shown that the 

selection of the gate electrode metal has an impact on the threshold voltage of the OTFT [54]. 

On the contrary, a drawback of electrolyte- and water-based gates is their susceptibility to high 

operating frequencies; mobile ions are known to move slowly, hence the time needed for the 

formation of an EDL is determined by their slow motion. For an efficient operation, the 

frequency of operation is limited to a few Hz [54]. 

An extensive study of water-gated devices has been conducted by our research group in the 

University of Sheffield; very recently, Al Naim et al. demonstrated the successful development 

of water-gated OTFTs using nanowires of organic semiconductors [62]. The electrical 

characterisation of these devices was performed with the I-V converter system, described in 

Chapter 4. Considering the peculiarities of water-gated devices, appropriate adjustments of 

the applied characterisation voltage and frequency were made; more details on the 

characterisation of these devices are given in section 4.1.2.  
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2.5. Organic Semiconductors 

As mentioned above, organic semiconductors (OSCs) can be classified into two major 

categories with respect to their degree of polymerisation; i.e. low-molecular-weight materials, 

also known as oligomers, and polymers. The former are usually processed and deposited in 

vacuum, whereas the latter are usually prepared in solutions and deposited with methods such 

as spin coating or inkjet printing. 

In this work, devices fabricated with three oligomers (tetracene, pentacene and PDI8-CN2) and 

two polymers (P3HT and PBTTT) are presented. These materials are briefly discussed in the 

following sections. 

2.5.1. Tetracene 

Tetracene is a low-molecular-weight semiconductor that belongs to the family of oligoacenes; 

its molecular representation is given in Figure 2-10. Tetracene can be processed in vacuum and 

form polycrystalline films when deposited onto a target surface; however, much of the interest 

in tetracene processing lies in the development of single-crystals which have been shown to 

yield hole mobility values as high as 1.3 cm2V-1s-1 [76]. Moreover, tetracene single-crystals have 

successfully been employed in the development of ambipolar organic light-emitting transistors 

(OLETs) [77]. The performance of tetracene is highly susceptible to ambient conditions, 

including light, oxygen and humidity; this fact impedes the development of environmentally-

stable tetracene-based semiconductor devices, as discussed in section 5.4. 

 

Figure 2-10 – A schematic representation of tetracene 

In this study, tetracene was purchased from Aldrich (“Benz(b)anthracene 98%”, product code: 

B2403-100MG, lot: 16596LMV) and comes in powder form. The HOMO/LUMO levels, as given 

in the datasheet, are 5.4 eV / 2.7 eV [78]. The material deposition was performed with thermal 

evaporation in high vacuum; the powder was placed in a quartz crucible which was heated by a 

tungsten coil. More details on the deposition conditions for tetracene are given in section 

5.4.1.1. 

2.5.2. Pentacene 

Pentacene is a popular low-molecular-weight semiconductor that is also a member of the 

family of oligoacenes; its molecular representation is given in Figure 2-11. Pentacene is usually 

processed and deposited in vacuum; the deposited films are polycrystalline and their 

morphology is favourable for the achievement of very high charge carrier mobilities; there are 

recently reported hole mobility values as high as 8.85 cm2V-1s-1 [79]. 

Similarly to tetracene, one of the major drawbacks of pentacene is its environmental stability; 

significant mobility degradation is observed when pentacene OFETs operate in ambient 

conditions [80]. The low ionisation potential of pentacene facilitates its oxidation which results 
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in localisation of the conjugated π-system and, consequently, in reduced mobility. Factors such 

as ambient oxygen, humidity and ozone have all been associated with the mobility degradation 

of pentacene [81-83]. 

 

Figure 2-11 – A schematic representation of pentacene 

In this work, pentacene was purchased from Sigma-Aldrich (“Pentacene triple-sublimed 

99.995%”, product code: 698423-500MG, lot: MKBC3171) and comes in powder form. The 

HOMO/LUMO levels, as given in the datasheet, are 5.0 eV / 3.0 eV [84]. The material deposition 

was performed with thermal evaporation in high vacuum; the pentacene powder was placed in 

a quartz crucible which was heated by a tungsten coil. Typically, an amount of 5 to 7 mg is 

adequate for the deposition 100-nm-thick films; however, the majority of the grown films 

studied here had a thickness of 50 nm. More details on pentacene deposition are given in 

section 5.2. 

2.5.3. PDI8-CN2 

N,N′-bis(n-octyl)-x:y, dicyanoperylene-3,4:9,10-bis(dicarboximide), known as PDI8-CN2, is an 

low molecular weight semiconductor; its molecular representation is given in Figure 2-12. This 

semiconductor was first synthesised and demonstrated by Jones et al. along with a series of 

other modified perylene tetracarboxylic diimide (PTCDI) molecules with various substituent 

functional groups [85]; the material used in this study comes in powder form and is 

commercially available by Polyera in their ActivInk™ series (product code: N1200) of organic 

semiconductors. PDI8-CN2, as well as other perylene-based molecules, is known for its 

electron-transporting properties and it has been shown to have excellent environmental 

stability [85]. The HOMO/LUMO levels of this semiconductor are 6.4 eV / 4.3 eV [86]. 

 

Figure 2-12 – The schematic representation of PDI8-CN2 

PDI8-CN2 was thermally evaporated for the deposition of thin films on various dielectrics. 

Typically, an amount of 5 to 10 mg of substance were placed in a quartz crucible, a tungsten 

coil with a basket shape was used the heating element of the crucible. The typical thickness of 
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the deposited films was 50 nm. The exact details of the deposition conditions are given in 

section 5.3. Additionally, thin films of PDI8-CN2 were deposited onto fused quartz substrates 

for the spectral analysis of their absorption; more details are given in section 6.1.2. 

2.5.4. P3HT films and nanowires 

Poly(3-hexylthiophene), known as P3HT, is an alkyl-substituted polythiophene; its molecular 

representation is given in Figure 2-13. The various polythiophene derivatives have been 

pioneering materials for organic electronics, being among the first polymers used for the 

development of functional semiconductor devices. Many of them, such as poly(triaryl amine) 

(PTAA), form disordered films with low charge carrier mobilities, in the range of 10-3 cm2V-1s-1 
[87]; however, appropriate material engineering and purification can result in ordered 

structures with good performance. A notable example is regioregular P3HT (rr-P3HT), initially 

synthesised by McCullough et al. in 1993 [88] and illustrated in Figure 2-14, which was the first 

semiconducting polymer to exhibit a hole mobility in the range of 0.1 cm2V-1s-1 [89]. P3HT has 

been widely used as an OSC in thin film transistors [65, 90]. 

 

Figure 2-13 – A schematic representation of P3HT 

In the past decade,  a new concept has been introduced to the organic semiconductor 

processing and device fabrication;  several research groups have demonstrated that various 

OSCs can be prepared in the form of organic nanowires (NWs), as reviewed by Briseno et al. 
[91]. NWs are long, needle-shaped crystals that may grow when some OSCs get subjected to 

suitable physicochemical treatment while in solution; for instance, this can be the a application 

of  thermal cycles or addition of a non-solvent [91]. 

An interesting characteristic of organic NWs is that adjacent aromatic molecules, such as 

polythiophenes, stack face-to-face along the long axis of the NW, while the alkyl chains of the 

molecules extend across the width of the NW [92]. This molecular arrangement (π-stacking) 

facilitates the charge transport between adjacent molecules, resulting in high charge carrier 

mobilities [92]. In other words, the conductivity of nanowires is anisotropic with their long axis 

being more favourable for current conduction. 

After preparation, NWs form stable suspensions in their growth medium and can be deposited 

by such techniques as spin coating or drop casting. However, the morphology of deposited 

films significantly differs from the smooth, uniform films obtained when casting OSCs from 

proper solutions. Depending on spin conditions, and NW density in the growth medium, films 
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may contain isolated single wires, lightly overlapping wires, or a dense multilayer NW  network 

(mesh) [91]. 

 

 

Figure 2-14 – A schematic representation of regioregular head-to-tail P3HT (rr-P3HT). Regioregularity describes 
polymers in which each repeat unit is derived from the same isomer. 

In this work, solutions of P3HT and suspensions of P3HT nanowires were prepared and 

provided by our collaborating partners in the University of Cardiff; these materials were used 

for the development of the semiconductor devices employed in the humidity sensing tests, 

discussed in section 7.2. P3HT was originally purchased from Sigma-Aldrich and comes in 

powder form. The HOMO/LUMO levels of P3HT are 3.0 eV / 5.0 eV [93]. The conventional P3HT 

solution was prepared by dissolving P3HT in chlorobenzene. The P3HT NW dispersion was 

prepared following the whisker method by initially dissolving P3HT in anisole [94]. More details 

on the solution preparation and deposition conditions are given in section 7.2.2. 

2.5.5. PBTTT 

A variety of poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophenes), known as PBTTT, 

semiconducting polymers with side chains of different lengths were introduced by McCulloch 

et al. in 2006 [95]; a schematic representation of PBTTT is given in Figure 2-15. The members of 

this family of polythiophenes were appropriately engineered to provide a twofold 

improvement. First, the incorporated fused aromatic unit effectively increases the ionisation 

potential; this fact results in a high environmental stability by inhibiting the oxidation of the 

molecule. Second, according to the authors, the rotational invariance of the fused rings 

promoted the formation of highly-ordered crystalline domains that practically enhance the 

mobility of charge carriers. 

The material used in this study was poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno(3,2-

b)thiophene) (PBTTT-C16) and comes in powder form; it was purchased from Ossila (product 

code: M141 PBTTT) and was produced by Merck under the Lisicon® brand. According to the 

datasheet, its ionisation potential is 5.1 eV [96]. 
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Figure 2-15 – A schematic representation of PBTTT 

PBTTT-C16 was dissolved in 1,2-dichlorobenzene and was heated and stirred prior to spin 

coating. More details on the solution preparation and deposition conditions are given in 

sections 5.5.1.1 and 7.3.2. 
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2.6. Source-drain contact materials 

The importance of the work function of the metal electrodes in the operation of organic 

semiconductor devices is discussed in section 1.5.1. Gold and silver were used as the source 

and drain contact materials; these metals are briefly discussed in this section. 

2.6.1. Gold 

Gold is the material of choice for the majority of the demonstrated p-type semiconductor 

devices. Its work function, with reported values ranging from 5.0 to 5.3 eV [87, 97], is a good 

match for the ionisation potential of most hole-transporting materials and thus, it serves for 

efficient injection of charge carriers with no or low potential barrier. 

The gold used in this work comes in wire form and was thermally evaporated; a tungsten boat 

was used as its heating element. Shadow masks of appropriate dimensions were used for the 

patterning of the deposited electrodes. For the deposition of top gold electrodes on OFETs 

gated with aluminium oxide (AlOx), the positioning of these shadow masks is crucial as it 

requires the manual alignment of a 10-μm-wide feature (channel area) with the 370-μm-wide 

underlying aluminium/AlOx stripe. Misalignment results in an asymmetry in the overlap of the 

source and drain electrodes with the underlying oxide; in this case, considering that the 

parasitic capacitance is a function of the area of this overlap, the electrical properties of the 

source and drain electrodes will differ. More details on gold deposition are given in the 

respective device preparation section of Chapter 5. 

One of the disadvantages in the use of gold is its low adhesion properties which might result in 

delamination of the deposited gold thin films. This problem can be circumvented by the 

deposition of few-nm-thick adhesion promoting layers made of other metals, such as titanium 

or chromium, prior to gold deposition. For some of the SiO2-gated OFETs presented in this 

work, bilayers of aluminium and chromium were deposited on the SiO2 surface prior to the 

semiconductor and gold deposition; these layers were patterned with shadow masks, having 

the same dimensions as the overlying gold electrodes. The preparation of these devices is 

discussed in section 5.5.1.1. 

2.6.2. Silver 

Silver was used as the top-contact material for the fabrication of polymer-gated PDI8-CN2 

OFETs; its work function (4.26 eV [77]) is very close to the electron affinity of this electron-

transporting semiconductor making the injection of electrons very efficient. As discussed in 

section 2.3.3, silver was also the material of choice for the fabrication of parallel-plate 

capacitors. 

The source material used was in the form of beads and was thermally evaporated using a 

tungsten boat. Shadow masks were used to pattern the deposited features. More details on 

silver deposition for the fabrication of n-type OFETs are given in section 5.3.3.1. 

Moreover, it is worth mentioning that silver was successfully used in lieu of gold for the 

fabrication of top-contact polymer-gated pentacene OFETs; it was found that silver did not 

exhibit the gate-leakage problems derived from gold penetration into the insulator. However, 

further optimisation of the gold deposition rate overcame these problems and yielded 

functional devices with low gate leakage, as discussed in section 5.2.3. 
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Chapter 3. Morphological and electrical characterisation 

methodology 

3.1. Morphological characterisation methods 

This section gives a brief description of all the morphological characterisation methods used in 

support of this organic semiconductor device study. Some essential information on atomic 

force microscope, scanning electron microscopy, profilometry and optical microscopy follows. 

3.1.1. Atomic force microscopy (AFM) 

Atomic force microscopy (AFM) is a scanning probe microscopy (SPM) technique which has 

found very good reception in the field of thin film characterisation. Considering the importance 

of the surface morphology in the electrical performance of thin film devices, a good knowledge 

of the surface properties of a thin film allows for important correlations between the material 

morphology and the electrical properties of a device based on this material. The information 

taken from methods such as AFM can be used for the optimisation of material deposition and 

modification techniques, such as the thin-film deposition of thin films with thermal 

evaporation and the application of self-assembled monolayers (SAMs), which are both used 

and discussed in this study. 

 

Figure 3-1 – An AFM image of a PBTTT film spin cast onto a SiO2 surface. 

In an atomic force microscope, a sharp tip is attached to the bottom side of the free end of a 

cantilever; this tip interacts with the surface under investigation. There are two common 
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modes of operation: the contact mode, in which the tip is continuously in contact with the 

surface, and the mode known as tapping mode, in which the cantilever oscillates at (or near) 

its resonance frequency [98]. Tapping mode is typically used for study of organic materials; all 

AFM images shown in this study were taken using this mode. A laser beam is used to read out 

the motion of the cantilever; the laser beam is deflected by the cantilever and sampled by a 

photodiode detector. AFM systems usually comprise a computer system with special control 

and data-processing software, which is capable of controlling and calibrating the instrument 

while extracting meaningful information from the measurement data. 

A Digital Instruments Dimension 3100 atomic force microscope was used for the imaging of 

various surfaces of the materials used in this study. An example is given in Figure 3-1. The 

contribution of other colleagues in AFM imaging is mentioned in the Acknowledgments. 

3.1.2. Scanning Electron Microscopy (SEM) 

Scanning electron microscopy (SEM) is a widely used kind of electron microscopy; a focused 

electron beam scans the surface of the sample under test. In the most common mode of 

operation, the process takes place in high-vacuum and secondary electrons, which get excited 

by the incident beam, are sampled by a detector. The image of the surface can be 

reconstructed by the readout electronics and, in modern SEM machines, by special digital 

signal processing (DSP) software. 

A major drawback of this method is the need for conductive samples under test; non-

conductive materials tend to accumulate electrostatic charge which leads to the appearance of 

undesired artefacts. Although this problem can be mitigated with the use of special 

techniques, such as the deposition of thin films of conductive materials, SEM images are rarely 

seen in organic electronic studies. Moreover, the soft nature of the employed material inhibits 

the sample preparation as these thin films are usually brittle. 

 

Figure 3-2 – An SEM image of the cross-section of a top-contact pentacene OFET under a top-gold-contact area. 

Here, a JEOL JSM-7401f field-emission scanning electron microscope (FESEM) was used to 

image the cross-sections of a selection of devices for the precise quantification of the thickness 

of stacked layers of different deposited materials; this process is beyond the capabilities of a 
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contact profilometer, discussed in the following section. An example is given in Figure 3-2. The 

contribution of other colleagues in SEM imaging is mentioned in the Acknowledgments. 

3.1.3. Profilometry 

A contact profilometer (Veeco Dektak³ ST Surface Profiler) was used as an auxiliary tool for the 

quantification of the thickness of deposited films. The operation of this kind of instruments 

depends on the use of a stylus that comes in contact with and scans the surface under 

investigation; the motion of the stylus is converted into an electrical signal which is sampled 

and processed by a computer. 

This profilometer was also used for the calibration of the quartz crystal microbalance (QCM) 

thickness monitor of the thermal evaporator. Thin films of materials were deposited onto 

control samples and their thickness was quantified by the profilometer; the results were used 

to calculate the appropriate calibration factor of the thickness monitor for a particular 

deposition process. 

3.1.4. Optical microscopy 

A standard optical microscope with a maximum magnification of 100x was used for performing 

quick inspections of the deposited films and fabricated devices. Its most frequent use was for 

the evaluation of shadow mask alignment and the detection of device fabrication problems 

such as shorts between the source and drain electrodes.  

 

Figure 3-3 – A top-down optical microscope image of the channel area of a PDI8-CN2 OFET with top silver 
contacts.  

Figure 3-3 shows an example of an optical microscope image; a good alignment of the top 

silver electrodes with the underlying (red) AlOx stripe is confirmed. 
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3.2. Impedance measurements 

Impedance measurements were conducted on the three sets of capacitors, as described in 

section 5.1 using a Solartron SI 1260 impedance / gain-phase analyser. The instrument was 

remote-controlled by a computer running its control software (SMaRT v. 3.0.1). 

A bespoke test rig was built for conducting the measurements. A stainless steel box served as a 

Faraday cage which enclosed the capacitor under test. Two Cascade-Microtech PH100 probe 

positioners were also placed inside the box and contacted the capacitors with tungsten 

needles. Coaxial feedthroughs were placed on the chassis of the box and served for the 

connection of the probe positioners with the impedance analyser with the use of 50-Ohm 

coaxial cables. The operating frequency specifications of all employed components were 

orders-of-magnitude higher (in the GHz range) than the frequencies used for measurements 

presented here. 

For all measurements, the same signal generator conditions were applied. The generated 

signal had an amplitude of 1 V with a zero DC offset and the applied frequency range was from 

1 Hz to 10 KHz. The software calculates capacitance and resistance data which can be 

converted into capacitance per unit area (Ci) and leakage current density values. More 

information on parameter calculation, as well as the measurement results can be found in 

section 5.1. 
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3.3. OFET current-voltage measurements 

The most common method of electrical characterisation of OFETs is the extraction of their 

output and transfer characteristics. In the former case, drain current is plotted versus source-

drain voltage, whereas in the latter, drain current is plotted versus gate-source voltage. The 

output characteristics mainly serve for the qualitative analysis of an OFET, whereas for the 

quantification of other OFET parameters, the transfer characteristics are usually exploited. A 

new alternative method for the real-time characterisation of OFETs is described in detail in 

Chapter 4. 

For the extraction of the output characteristics of an OFET, drain current is measured and 

plotted versus a drain voltage range at a fixed gate voltage. Usually, the output characteristics 

at various gate voltages are measured and all curves are plotted on the same graph. Figure 3-4 

gives an example of the output characteristics a p-type and an n-type low-voltage OFETs.  

 

Figure 3-4 – Examples of output characteristics of OFETs based on hole-transporting (p-type) and electron-
transporting (n-type) semiconductors. Top: a p-type (pentacene) low-voltage OFET. Bottom: an n-type (PDI8-CN2) 
OFET of the same device architecture. 

The output characteristics can reveal interesting characteristics of an OFET. For instance, in the 

example given in Figure 3-4, from their output curves at VG = 0V, it can be seen that the p-type 

OFET is a normally-off (enhancement-mode) device, whereas the n-type is a normally-on 

(depletion-mode) device. Moreover, in the same example, the drain current of the p-type 

OFET saturates as its output curves level-off as the modulus of drain voltage increases; 

conversely, the drain current of the n-type OFET shows poor saturation, which can be 

interpreted as an indication of doping. Furthermore, significant gate leakage can be indicated 

by the output characteristics; this can be observed at non-zero gate voltages, if the output 

curves and the x-axis do not intersect at x=0. Both devices in Figure 3-4 exhibit low gate 

leakage. 
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For the extraction of the transfer characteristics of an OFET, drain current is measured and 

plotted versus a gate voltage range at a fixed drain bias. Typically, the characteristics at a low 

(linear region) and a high (saturation region) drain voltage are measured.  

The transfer characteristics are of great importance for the quantification of other important 

OFET parameters; threshold voltage, mobility and on/off ratio are typically calculated from the 

output characteristics of a device; detailed information on parameter extraction is given in 

section 3.3.2. Moreover, when plotted in log(ID) versus gate voltage graph, the transfer 

characteristics can be used for the calculation of the subthreshold swing and for estimations of 

the trap density at the semiconductor-dielectric interface; more details on the subthreshold 

region are given in section 2.1.2.3 and examples of calculations on real devices are given in 

section 5.2.2.3 

3.3.1. Equipment and methodology 

There are specialised instruments for the conduct of electrical measurements on 

semiconductor devices available in the market; they are commonly referred to as 

semiconductor parameter analysers. These instruments are usually capable of automatically 

calculating several important device parameters based on user-defined OFET specifications. An 

Agilent 4155C semiconductor parameter analyser was used on PBTTT OFETs for the extraction 

of the results discussed in section 7.3.6. 

 

Figure 3-5 – A photograph of a substrate with four OFETs. The bottom-left device is contacted by the source-drain 
(lateral) tungsten needles. The common gate electrode is contacted by the tungsten needle seen in the back. 

An alternative implementation is the combined use of a pair of general-purpose current-

voltage source-meters. For most measurements presented in this work, a pair of Keithley 2400 

SourceMeter instruments, connected to a computer over a GPIB bus and controlled by a 

custom Windows application was used.  The ground terminals of both units were tied together 

and connected to the source of the OFET under test. One of the units controlled the gate 
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voltage and the other the source voltage, while measuring the gate leakage current and the 

drain current, respectively. This configuration was used for extracting all the output and 

transfer characteristics discussed in Chapter 5. 

A custom-made steel stage served as a test bench for the characterisation of OFETs. Three 

Cascade-Microtech PH100 probe positioners with tungsten needles were used to contact the 

OFETs under test. Coaxial cables were used for all interconnections; a bespoke switch box was 

also developed for quickly swapping between this characterisation system and the I-V 

converter system discussed in Chapter 4, without the need for changing any cable connections; 

this allowed for direct comparisons between the results extracted by these two systems. 

In the accompanying software, there are separate modes for the delivery of output and 

transfer measurements. The test parameters are defined by the user; these include the 

number of sweeps per test (typically one or two), the voltage sweep range, the voltage step 

size, the delay between two consecutive steps and the current compliance. The data are 

plotted by the software and can be exported as tab-delimited text files. Only voltage and 

current values are exported; other parameters, such as threshold voltage and mobility can be 

calculated using other data analysis software; more details on OFET parameter calculation are 

given in the following section. 

3.3.2. OFET parameter calculation 

This section describes the commonly used conventions and methods for OFET parameter 

calculation that were applied in this study. 

3.3.2.1. Saturated Drain Current and on/off ratio 

For a normally-off (enhancement-mode) OFET, the saturated drain current (ID,sat) is usually 

measured at         for        . It is a common practice to use the measured value at 

the maximum VDS and VGS of either an output or transfer characteristic curve. 

The on/off ratio is a useful parameter which is defined as the ratio of the drain current in the 

saturation region over that in the off-state; this ratio is a measure of how effective the gating 

effect is. There is no standardised definition of on/off ratio; however, for a normally-off OFET, 

this quantity is usually expressed as the ratio of the drain current at the maximum VDS and VGS 

over the drain current at the maximum VDS and VGS=0, i.e.: 

 
   

    
  

                    

                  
 (3.1)  

 

The I-V converter method, which was used in several OFET characterisation tests presented in 

this work, uses a different definition of on/off ratio; more information is given in section 4.2.2. 

3.3.2.2. Threshold voltage and mobility 

Threshold voltage (Vth) and charge carrier mobility (μ) are two parameters that are not directly 

measured but can be extracted from the I-V characteristics of an OFET. There are several 

suggested parameter extraction methods in the literature [99, 100]; these studies have shown 

that the use of different methods can lead to largely different calculated values. Section 4.2.4 

gives examples of the use of different extraction methods based on the measurement data 

taken from the I-V converter system. 
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Figure 3-6 – An example of the application of ESR method. The calculated Vth value is roughly -1.0 V. Using this 
method, the selection of the measurement data range, taken into account for the application of a simple linear 
regression fit, has a significant impact on the calculated values. It is a common practice to arbitrarily choose this 
range, but this can result in significant deviations. A discussion on the data range selection and a comparative 
example are given in section 4.2.4.1. 

A widely used parameter extraction method using conventional I-V characteristics is the 

extrapolation in the saturated region (ESR); this method was adopted for all Vth and μ 

calculations discussed in the following chapters. According to the ESR method, the saturated 

(at high VDS) transfer characteristics are plotted as the square root of the modulus of drain 

current (|Id|1/2) versus gate voltage; a simple linear regression fit is applied to a data range of 

the curve (usually in the highest gate voltage range) and this straight line is extrapolated to the 

x-axis. The intercept of the straight line with the x-axis (for y=0) is the threshold voltage of the 

OFET; an example is given in Figure 3-6. The slope of the fit is used for the calculation of 

mobility; from the saturated drain current notions, described by eq.  (2.3), it is derived that the 

slope of the fit depends on the charge carrier mobility, the capacitance per unit area (Ci) of the 

gate dielectric and the device dimensions (W and L) according to: 

           
 

  
 (3.2)  

 

which also writes: 

   
  

   
        (3.3)  

 

As eq. (3.3) signifies, a good knowledge of Ci is imperative for the calculation of mobility. The 

impedance measurements, discussed in section 5.1, come in support of these calculations. 

More details on parameter calculation using this method, as well as the significance of the 

selected data range and the correction of doping effects, are given in section 4.2.4. An 
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example of the application of the ESR method to the saturated transfer characteristics of a low 

voltage p-type OFET is given in Figure 3-6. 

3.3.2.3. Hysteresis 

Hysteresis is a phenomenon which manifests itself as a short-term shift in the output and/or 

transfer characteristics of an OFET; the direction of the shift depends on the direction of the 

voltage sweep and other characterisation-related factors, such as voltage application time and 

the time between successive measurement points [101].  

Hysteresis can usually be seen when two consecutive voltage sweeps are applied, i.e. one of 

increasing and one of decreasing voltage, or vice versa; the combination of the two curves 

appears as a loop. An example of mild hysteresis is given in Figure 3-7; in this graph, Id values 

are slightly larger when drain voltage is swept from the maximum voltage down to zero (red 

dashed curve). In the literature, hysteresis is usually characterised as either clockwise or 

anticlockwise depending on the direction of the loop; nevertheless, as the direction of the loop 

also depends on the direction and the sequence of the applied voltage sweeps and since there 

are no standardised conventions that dictate how these measurements must be performed 

and interpreted, these terms are not used in this text. 

 

Figure 3-7 – Transfer characteristics of a PDI8-CN2 OFET with evident hysteresis. 

Hysteresis is related to the presence of traps at the semiconductor/dielectric interface, but 

mainly with those within the bulk of the semiconductor [102]. The IEEE standard 1620™ on OFET 

characterisation suggests the application of both rising (from off to on) and falling (from on to 

off) voltage sweeps in order the detect the presence of hysteresis [103]; however, this standard 

does not provide explicit suggestions on what data the OFET parameters must be calculated 

from. 
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In this study, pre-conditioning cycles including both rising and falling voltage sweeps were 

applied to all devices under test; however, hysteresis is not studied in the following chapters. 

As a convention, all parameter calculations were performed using only the measurement data 

taken from the rising voltage sweeps. 

Moreover, section 4.2.5 introduces a new hysteresis quantification method, based on the 

measurement data of the I-V converter system. 
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Chapter 4. I-V converter method 

This chapter describes the novel OFET characterisation system that was developed in support 

of the experiments discussed in this work.  This portable system serves for the needs of real-

time quantification of multiple OFET parameters; this capability is of great value for the 

detection of rapid parameter changes in applications such as gas sensing with OFET 

transducers, which constitutes one of the main objectives of this work. 

In 2011, the principle of operation of this system was first demonstrated [37]. Many further 

technical modifications and the development of accompanying software followed this initial 

demonstration. As of 2013, a number of units have been built and the system has found 

application in other collaborating laboratories. 

The operation, parameter calculation and the automated characterisation software are 

discussed in this chapter. The relevant circuit schematics and PCB information can be found in 

Appendix II.1. 

 

Figure 4-1 – A simplified schematic of the I-V converter characterisation system. The operational amplifier (op-
amp) on the LHS acts as a non-inverting high-voltage (±45 V) amplifier of the sinusoidal signal (Vsig) generated by 
the waveform generator. The amplified signal (Vin) is inverted and attenuated by the op-amp at the bottom; this 
signal (-0.1 Vin) is fed into the second channel of an oscilloscope connected to a computer running a NI LabVIEW 
application. Vin drives the source of the OFET under test, while its gate is grounded and its drain is connected to 
the inverting input of a high input-impedance op-amp (shown on the top). The non-inverting input of this op-amp 
is grounded and thus, its inverting input constitutes a virtual ground. This last op-amp converts the drain current 
into an inverted output voltage (Vout) with the aid of a high-precision feedback resistor. Vout is sampled by the 
first channel of the oscilloscope. 

4.1. Operation 

The system is designed to rapidly extract the saturated transfer characteristics of an OFET, 

parametric in time, with the use of a two-channel oscilloscope; the application of a sinusoidal 

drive allows for the quantification of multiple OFET parameters in a fraction of a second, which 

serves for the needs of the detection of rapid parameter changes when OFETs are used as 

sensing transducers. Moreover, the selection of a sinusoidal drive facilitates the use of low-
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pass filters while it enhances the long-term stability of an OFET under test by eliminating the 

common gate-bias stress effects; these advantages are discussed in the following section.   

4.1.1. Electronics 

Figure 4-1 shows the simplified circuit diagram of this system and Figure 4-2 a photograph of 

the actual system. This portable system is interfaced to a PC via a USB oscilloscope (Pico 

Technology Picoscope 2204 or similar), which acts as both a two-channel digital oscilloscope 

and a waveform generator. The circuit is mainly based upon three operational amplifiers (op-

amps) of different specifications. A high-voltage op-amp (Texas Instruments OPA445AP) is used 

for the amplification of the sinusoidal waveform provided by the Picoscope waveform 

generator (Vsig), which has a limited maximum voltage amplitude of ±2 V; the amplified drive 

signal (Vin) can have a maximum amplitude of ±45 V. The amplitude of Vsig can be controlled by 

the software, while the final amplitude of Vin is adjusted by a rotary potentiometer found on 

the PCB. 

 

Figure 4-2 – The OFET test bench with the I-V converter system. On the LHS, a substrate with four OFETs is placed 
on the metal stage, the common gate pad is contacted by the blue-marked probehead. The source and drain of 
the top-left OFET are contacted by the lateral probeheads. The main I-V converter PCB is enclosed in the black 
box in the middle. 

Vin is fed into the source of the OFET under test. The gate of the OFET is connected to the 

electrical ground and the drain is connected to the inverting input of a high-input-impedance 

op-amp (Analog Devices AD549JH); this input of the op-amp constitutes a virtual ground since 

the non-inverting input of the same op-amp is connected to the real ground. The output of this 

op-amp is fed back into the inverting input via a feedback resistance (Rf). The adjustment of Rf 

can be made using either an external resistance box connected to the circuit through the two 

coaxial sockets available on the PCB or chosen from five on-board high-precision fixed-value 
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resistors, covering a range of five orders-of-magnitude, from 100 KΩ to 1 GΩ; a block of DIP 

(Dual In-line Package) switches serves for this purpose. 

The configuration of the second op-amp and Rf constitute a current-to-voltage (I-V) converter, 

which is the main building block of this system; the op-amp converts the drain current of the 

OFET into an inverted voltage (Vconv) using Rf, as discussed below and described by eq. (4.1). 

The specifications of the op-amp are appropriate for performing measurements on devices 

with very low mobility, as its extremely low input bias current (in the fA range) does not 

compromise the measurements of the, typically, low drain currents (in the nA to μΑ range).  

Also, an appropriate selection of Rf is important so that the converted voltage can be sampled 

by the oscilloscope with good precision, as discussed below. 

 

Figure 4-3 – Oscilloscope screenshot for a SiO2-gated PBTTT p-type OFET. Rf is appropriately adjusted so that the 
peaks of Vout  and -Vin roughly coincide. The curvature of the output curve over the positive range of -Vin (off-
state) is an indication of doping. 

This OFET driving configuration is equivalent to connecting source to ground and applying -Vin 

to both drain and gate. Considering normally-off (enhancement-mode) OFETs, a hole (or 

electron) transporting device will turn on for a sufficiently large positive (or negative) Vin, and 

deliver a saturated drain current, ID,sat(VG = VD = -Vin). Vin is sufficiently large when its modulus 

exceeds the modulus of threshold voltage (Vth). The resulting saturated drain current is fed 

into the virtual ground of the described current-to-voltage (I-V) converter, and gets converted 

into an output voltage (Vconv) according to: 

                  (4.1)  
 

It should be pointed out that Vsig and, consequently, Vin are zero-offset low-frequency (usually 

between 6 to 70 Hz) sinusoidal signals. Several studies have demonstrated the effects of gate-

bias stress on the threshold voltage of OFETs [104]; for this reason, the application of a 
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symmetrical bias ensures that the gate dielectric is stressed equally by positive and negative 

voltages and presumably, the threshold voltage is not affected. Moreover, the single harmonic 

content of the sinusoidal signal facilitates the use of low-pass filters in both hardware and 

software for noise mitigation. From a device characterisation perspective, even a single cycle 

of the sinusoidal drive allows for the extraction of a full set of saturated transfer characteristics 

with a large number of data points, including both rising and falling voltage sweeps.  

The third op-amp (Linear Technology LT1677) is a low-noise attenuator and inverter of the 

input signal (Vin), which provides a reference voltage: 

              (4.2)  
 

Vref can be safely sampled by the oscilloscope and is also used to trigger the measurement; the 

employed oscilloscope has maximum input voltage of 20 V which is lower than the drive 

requirements of some SiO2-based OFETs studied here. Also, the inversion of input voltage 

accounts for the converted drain current, which is also inverted (Vconv), as discussed above. 

This convention serves for a more straightforward representation of the input and output 

voltages on the oscilloscope screen, as the maxima and minima of both curves appear at the 

same time (same coordinate of the x-axis). 

The output voltage (Vconv), which is proportional to ID,sat, and the attenuated and inverted input 

voltage (Vref) are connected to each of the oscilloscope channels. Together, Vconv(t) and Vref(t) 

represent the OTFTs saturated transfer characteristics, parametric in time. An example from 

the characterisation of a slightly-doped p-type OFET is given in Figure 4-3. An important 

remark is that a factor x10 is applied to both voltages by the software; this is to account for the 

x0.1 attenuation of the drive signal, as described by eq. (4.2). To avoid any confusion, 

hereafter, the output voltage is defined as: 

                           (4.3)  
 

An important remark is that since the gate electrode is connected to the ground, this system 

provides no information on gate leakage; any current flow from the source to the gate cannot 

be observed. However, since drain is connected to a virtual ground and gate is connected to 

the actual ground, there can be no current flow from the drain to the gate, or vice versa.  

4.1.2. Drive considerations and adjustments for water-gated OTFTs 

The maximum frequency of the sinusoidal drive is limited by the properties of the device under 

test. The combination of a typically high channel resistance (in the MΩ to GΩ range) with the 

presence of parasitic capacitances, due to the structure of the OFETs, makes the device under 

test resembling an RC network, effectively acting as a low-pass filter. At high operating 

frequencies, a phase-shift is evident on the oscilloscope screen, with Vout lagging behind –Vin. 

This condition can compromise the measurement results and lead to significant differences 

between the values calculated by this method and those measured by conventional DC 

methods; thus, appropriate selection of drive frequency is necessary. In all measurements 

discussed in this work, the drive conditions were always adjusted so that no phase-shift occurs. 

Although AlOx-gated pentacene devices were successfully tested at frequencies as high as 100 

Hz, in most cases the frequency of the drive signal ranged from 6 to 16 Hz. 
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Moreover, considering that, in the case of AlOx-gated OFETs, the anodisation voltage for the 

formation of the AlOx dielectric layer was 5 V, the amplitude of the drive voltage was 

accordingly set at 3 V in order to prevent the breakdown of the dielectric, as it has been 

demonstrated by Majewski et al. [51]. 

As discussed in section 2.4.6, electrolyte- and water-gated devices cannot operate at high 

frequencies due to the slow motion of ions that form their electric double layers (EDLs) [54]. 

Moreover, the electrochemical window of water is ~1.23 V [75], which also limits the maximum 

drive voltage that can be applied to a water-gated OTFT under test. 

Several tests were conducted on water-gated devices for the optimisation of their 

characterisation using the I-V converter method. Considering that the drive signal was used as 

the trigger source for the oscilloscope, this very low frequency operation fails to trigger and 

synchronise the sampling process of many oscilloscopes; hence, an appropriate selection of 

the oscilloscope specifications was necessary for successfully using this characterisation 

method in order to perform real-time multiparametric measurements on this kind of devices. 

The typical amplitude of the drive voltage for these devices was 0.5 to 1.0 V, whereas the 

typical frequency range was from 0.25 to 3 Hz. 

Electrical measurements on novel water-gated OTFTs based on organic nanowires were 

successfully conducted using this system. The results of this study were recently published in 

the Organic Electronics journal [62]. 

4.2. Parameter calculation 

As described above, the Vin(t) and Vout(t) are simultaneously sampled by the two channels of an 

oscilloscope; the oscilloscope data from both channels plotted together constitute an 

alternative representation of the saturated transfer characteristics of an OFET under test, 

providing the same physical information as the saturated transfer characteristics measured by 

conventional equipment, as described in section 3.3. 

This section describes the conventions and the methodology for the calculation of all the 

important OFET parameters using the oscilloscope data recorded by the I-V converter system. 

4.2.1. Saturated drain current calculation 

Based on the convention given in eq. (4.3), the maximum saturated drain current (Ion) can be 

directly calculated from the oscilloscope data according to: 

     
  

     
 (4.4)  

 

where  Vm is the peak output voltage. 

4.2.2. On/off ratio calculation 

The on/off ratio of an OFET is easily calculated as the ratio of the positive maximum over the 

negative maximum for an n-type semiconductor device or inversely for a p-type one: 

n-type: 
   
    

  
         

         
  (4.5)  
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p-type: 
   
    

  
         

         
  (4.6)  

 

Using these equations, it should be mentioned that Ion and Ioff are defined as the drain current 

values for VGS=VDS=±V0 (where V0 is the amplitude of the sinusoidal drive), with opposite signs 

respectively. Thus, deviations from the conventional Ion/Ioff ratios are expected, considering 

that in most cases found the literature, Ion/Ioff is calculated as the ratio of the ID at maximum 

VGS over the ID at VGS=0 for the same VDS, recalling eq. (3.3): 

 
   
    

 

 
                       

 

 
                   

 (4.7)  
 

4.2.3. Off-current correction / doping compensation 

In the presence of dopants, the equivalent circuit of an OFET can be described by a resistor 

connected in parallel with an ideal OFET.  In this case, the total current that flows through the 

channel of an OFET is defined as the sum of the drain current of the ideal OFET and an ohmic 

current due to the presence of dopants: 

                         (4.8)  
 

 

Figure 4-4 – The on-region of the same OFET before (blue curve) and after (purple curve) the off-current 
correction. The dashed red rectangle in the inset indicates the region of the original where the data of the main 
graph are taken from. 

Generally speaking, the modulus of Iohmic is the same at a given drain voltage, regardless of its 

polarity. This characteristic allows for the correction of doping effects using the symmetry of 

the sinusoidal drive; the pure transistor current can be extracted from the saturated transfer 

characteristics by the application of a point-to-point addition, i.e. subtraction (considering the 

polarity), of the off-region to the on-region of the OFET. This method can be described as: 
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(4.9)  
 

Figure 4-4 shows an example of off-current-correction; the off-cycle of the oscilloscope data 

shown in Figure 4-3 and in the inset of Figure 4-4 were added to the blue curve (Vout) resulting 

in the purple curve (Vout, corrected). 

In the following sections, OFET parameters are calculated from both raw (before correction) 

and off-current-corrected data. This allows for comparisons and a quantification of the effects 

of doping on parameter calculation. 

4.2.4. Threshold voltage and mobility calculation methods 

As previously mentioned in section 3.3.2.2, the use of different threshold voltage and mobility 

extraction methods can result in significant differences in the calculated values [99, 100]. In this 

section, three different parameter extraction methods, tailored for this characterisation 

system, are discussed and compared. 

4.2.4.1. Transfer curve conversion and extrapolation method 

Considering that using the I-V converter system, the input and output voltages are plotted 

parametric in time, the same oscilloscope data can be converted and plotted as standard 

transfer curves by eliminating the time parameter, i.e. plotting the oscilloscope data in X-Y 

mode (with input voltage being on the x-axis) and converting the output voltage into drain 

current according to eq. (4.3). 

 

Figure 4-5 – Converted saturated transfer characteristics from the oscilloscope data. Left y-axis: modulus of drain 
current versus drive voltage with and without off-current correction. Right y-axis: square root of the modulus of 
drain current versus drive voltage with and without off-current correction. 

A significant difference between these converted data and the standard transfer 

characteristics lies is the fact that, in this case, VDS is not kept constant while the VGS range is 

swept, but it changes along with VGS so that VDS=VGS at all times. Strictly speaking, since, for a 
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normally-off OFET, the fundamental condition for saturation, i.e.                , is always 

satisfied, there should be no dependence of the drain current on the varying drain voltage. 

However, in reality, this difference can have a minor impact on the measurement results when 

compared to standard transfer characteristics measured by a semiconductor analyser and can 

serve for comparisons between the two methods. 

Figure 4-5 shows the converted transfer characteristics of the same OFET discussed above. The 

first suggested parameter extraction method is the same as the ESR (extrapolation in the 

saturated region) method discussed in section 3.3.2.2. A simple linear regression fit is applied 

to the square-rooted ID values and this straight line is extrapolated to the x-axis; the intercept 

of the straight line with the x-axis reveals the threshold voltage of the device under test (DUT). 

The slope of the linear fit can be exploited for the calculation of mobility. Recalling eq. (3.3): 

   
  

   
        (4.10)  

 

 

Figure 4-6 – Square root of the modulus of the off-current-corrected drain current versus drive voltage (black 
curve). Three different simple linear regression fits (dashed red, green and blue straight lines) for three different 
data ranges. 

In practice, a critical detail is the selection of the data range which is considered for the linear 

regression fit. The range is usually chosen manually and arbitrarily; the fit details are rarely 

mentioned explicitly in published papers. In fact, this selection can induce wide deviations in 

the calculated values of Vth; an example is given in Figure 4-6 and the respective calculation 

results are shown in Table 4-I. In this example, three different data regions were used for the 

application of the linear fit. Additionally, another factor which can yield significantly different 

results is the off-current-correction, as discussed in the previous section; a comparison 

between the values extracted from raw and corrected data can also be seen in Table 4-I. 
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As a general rule, derived from the analysis and comparison of a large amount of 

measurement data (not shown here), the selected data range affects both parameters; if the 

selected range results in a fit with comparatively steep slope, this is interpreted as a relatively 

high mobility at the expense of a higher modulus (a shift towards normally-off behaviour) of 

threshold voltage. Conversely, when the selected range results in a fit with smaller slope, this 

induces the opposite results.  In the case of off-current-correction, the corrected results always 

show a larger modulus of Vth, but mobility is usually slightly affected. 

Table 4-I – Comparison of Vth and μ values for raw and off-current corrected data and different fit data ranges 

Fit data region Raw data Off-current corrected data 

from to 
Vth  

(V) 

μ 

(cm
2
V

-1
s

-1
) 

Vth 

(V) 

μ 

(cm
2
V

-1
s

-1
) 

-25.5 -29.5 -11.5 0.01015 -12.5 0.01069 

-20.9 -29.5 -9.9 0.00836 -10.9 0.00888 

-14.8 -29.5 -7.3 0.00634 -8.7 0.00682 

4.2.4.2. Sinusoidal integration method 

A new numerical method for Vth and μ calculation is discussed here. The method exploits the 

large number of data points exported by the oscilloscope; typical input and output curves, 

measured by a Picoscope oscilloscope, consist of more than 4500 data points each, which 

allows for the plotting of smooth curves with good resolution. The curve of Vout is integrated 

over time assuming an ideal sinusoidal drive. 

As explained above, according to the circuitry of this system, the following notions apply: 

                         (4.11)  
 

where V0 is the amplitude of the sinusoidal drive. For an enhancement-mode (normally-off) 

OFET and for a sufficiently high Vth, the saturated region condition is met: 

                    (4.12)  
 

thus the OFET operates in the saturated region. Recalling the drain current equation in 

saturation: 

       
 

  
        

  (4.13)  
 

and assuming that µ is constant and independent of the drive voltage, a constant k can be 

defined as: 

      
 

  
 (4.14)  

 

Substituting, we get: 

             
  (4.15)  

 

To ensure that the measurement data are taken within the saturated region, the limits of the 

integral must be defined by making a pragmatic assumption. For the calculations given in the 

section, it is assumed that: 
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             (4.16)  
 

Thus, given the case of an n-type OFET, we can safely integrate in the range  
 

 
 
  

 
  since: 

         
 

 
        

  

 
        (4.17)  

 

The respective integral limits in the time scale are:  
 

  
 
  

  
 , where T is the period of the 

sinusoidal drive. Integrating over the negative semi-period        has no physical meaning. 

Integrating eq. (4.15) over this time range yields: 

          
       

      

          
    

       

      

 (4.18)  
 

From the exported measurement data, we also get: 

          
 

    
           
       

      

       

      

 

    
 (4.19)  

 

where Rf the feedback resistance and A is the area between the output voltage curve and the x 

axis (in units Vs); an example on a p-type is given in Figure 4-7; in this example, the integral 

limits are  
  

  
 
   

  
  and the grey-shaded region illustrates the area A. 

 

Figure 4-7 – An example of integration of the output voltage curve of a p-type OFET over the (7T/12, 11T/12) 
range. 

Substituting eq. (4.19) into eq. (4.20), we get:  
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 (4.20)  
 

From this equation, it can be derived that: 

     
  
 

 

 
 
  
   
  

  
   

        
    
  

 
 
   

 
  

  
   

   
  
 

   
 
   

 

 
 
 

 (4.21)  
 

where V0 is the amplitude of the sinusoidal drive, Vm is the peak of the output voltage, A the 

area between the output curve and x axis for the range  
 

 
 
  

 
  and T the period of the drive. 

The full derivation is given in Appendix I.1. 

 

Figure 4-8 – Application of the sinusoidal integration method to the raw measurement data. The grey-shaded 
region represents the calculated area.  

When hysteresis is evident, the rising (turning-on) and falling (turning-off) flanks of Vout are not 

symmetrical; this phenomenon is discussed in section 4.2.5. Hysteresis can introduce 

calculation errors, thus it can be deliberately omitted by using different integration limits; in 

this case, only the rising flank of Vout can be integrated. 

Recalculating the equations given above for the integration limits  
 

 
 
 

 
  gives the following 

expression of threshold voltage (derivation given in Appendix I.2): 
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 (4.22)  
 

Eq. (4.22) is used for Vth calculation in the examples given in Figure 4-8 and Figure 4-9, which 

show the areas of the raw and off-current-corrected data, respectively. 

When Vth is extracted, mobility can be calculated using the following equation: 

   
 

      
 
  

 
 

    

            
 

 (4.23)  
 

 

Figure 4-9 – Application of the sinusoidal integration method to the off-current-corrected data. The grey-shaded 
region represents the calculated area.  

The calculation results for both the raw and off-current-corrected data are shown in Table 4-II. 

Again, off-current-correction was found to significantly alter the results, giving a substantially 

higher Vth modulus in conjunction with a higher μ value. 

Table 4-II – The calculated Vth and μ values from sinusoidal integration method for the raw and off-current-
corrected data. 

Input voltage data region Raw data Off-current corrected data 

from to 
Vth  

(V) 

μ 

(cm
2
V

-1
s

-1
) 

Vth 

(V) 

μ 

(cm
2
V

-1
s

-1
) 

-20.9 -29.5 -7.6 0.00677 -9.1 0.00748 
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4.2.4.3. Non-linear fit / output simulation 

Modern programming languages, as well as data analysis software packages allow for user-

defined non-linear fit functions. It is possible to accurately calculate threshold voltage and 

mobility using such functions. 

Given that in the saturated region, the following equations apply: 

                    
 

  
        

  (4.24)  
 

and given that: 

                    (4.25)  
 

Substituting eq. (4.25) into eq. (4.24) gives: 

             
 

  
                 

  (4.26)  
 

This equation is slightly modified to account for the time offset (Dt) present in the exported 

data from the oscilloscope. The non-linear fit equation writes: 

                 
 

  
                      

 
 (4.27)  

 

 

Figure 4-10 – The green curve is the non-linear fit of the output voltage for the selected data range (π/4,π/2) 
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Figure 4-11 – The green curve is the non-linear fit of the off-current corrected output voltage for the selected data 
range (π/4,π/2) 

The selected data region for the non-linear fit was the same as that used in the previous 

examples, which allows for comparisons. The non-linear fit curves for the raw and the off-

current-corrected data are shown in Figure 4-10 and Figure 4-11, respectively; Table 4-III gives 

a comparison of the calculated Vth and μ values in both cases. 

Table 4-III – The calculated Vth and μ values from non-linear fit for the raw and off-current-corrected data. 

Fit data region Raw data Off-current corrected data 

from to 
Vth  

(V) 

μ 

(cm
2
V

-1
s

-1
) 

Vth 

(V) 

μ 

(cm
2
V

-1
s

-1
) 

-20.9 -29.5 -7.2 0.00658 -8.4 0.00703 
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4.2.4.4. Comparison of threshold voltage and mobility calculation methods 

The three different methods described above exemplify the impact of the parameter 

extraction method, the selection of the data range and the correction for off-current in the 

calculation of OFET parameters. A comparison of the three methods applied to the same data 

range is given in Table 4-IV. 

Table 4-IV – Comparison of the calculated Vth and μ values using the three different parameter extraction 
methods for the same data range 

Method used Raw data Off-current corrected data 

Input voltage data range: 

(-20.9,-29.5) 

Vth  

(V) 

μ 

(cm
2
V

-1
s

-1
) 

Vth 

(V) 

μ 

(cm
2
V

-1
s

-1
) 

Extrapolation in the 

saturated region (ESR) 
-9.9 0.00836 -10.9 0.00888 

Sinusoidal Integration (SIM) -7.6 0.00677 -9.1 0.00748 

Non-linear fit (NLF) -7.2 0.00658 -8.4 0.00703 

 

In the case of OFETs used as multiparametric sensing transducers, as discussed in Chapter 7, 

the calculation of Vth and μ is of great importance as minor differences can be misinterpreted 

as sensing responses. It is worth mentioning that, in this case, the most important merit of a 

characterisation method lies not in the magnitude of the calculated values in absolute terms, 

but the method’s capability of providing consistent results under the same conditions while 

remaining capable of detecting small changes in the investigated parameters, even in the 

presence of noise.  

Due to the use of two different characterisation methods in this work and in accordance with 

the majority of published papers on OFET characterisation, the ESR method has been used for 

both the conventional current-voltage measurements and the measurements taken with the I-

V converter system, unless explicitly stated. Moreover, ESR is the method of choice in the case 

of the automated multiparametric characterisation, described in section 4.3. Multiple tests of 

the automated system in different laboratories, even in the presence of evident 

electromagnetic interference (EMI), gave consistent results with insignificant noise effects. 
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4.2.5. Hysteresis quantification 

Hysteresis is an important characteristic in the characterisation of OFETs; although, it is usually 

an undesired attribute, it can be harnessed for specialised applications, such as memory 

devices [105]. 

In conventional output or transfer characteristics, hysteresis manifests itself as a mismatch 

between the rising and falling current curves under their respective rising and falling voltage 

sweeps, with the former either preceding or falling behind the latter. Hysteresis is usually only 

qualitatively discussed but not quantified. There are few methods for hysteresis quantification 

suggested in the literature; these methods have arbitrary definitions and are based on either 

C-V measurements [106] or the transfer characteristics of an OFET [107]. 

A new method for the precise quantification of hysteresis in OFETs is presented here. Two 

integrals are employed for the evaluation of the symmetry of the output curve and, 

consequently, the quantification of hysteresis. This can be described by the following 

expression: 

    
           

     
      (4.28)  

 

where Arise and Afall are two symmetrical integrals of Vout(t) versus time, with respect to  
 

 
 (for 

an n-type OFET) or  
  

 
 (for a p-type OFET).  

 

Figure 4-12 – A comparison of two Vout integrals for hysteresis quantification. Arise is the grey-shaded region inside 
the yellow rectangle and Afall the grey-shaded region within the cyan rectangle. 

Figure 4-12 gives an example of a p-type OFET with evident hysteresis, manifested by the 

delayed fall of the Vout curve. 
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 In this example, the selected areas for comparison are: 

                 
      

      

 (4.29)  
 

and 

                 
      

      

 (4.30)  
 

Applying eq. (4.28), the calculated hysteresis is +9.4%. The positive sign indicates that, at a 

given bias, drain current is higher in the falling flank of the sweep than in the rising, as 

previously shown in the example of Figure 3-7. 

In conclusion, this example suggests that hysteresis quantification can constitute an added 

value to the electrical characterisation of OFETs. In the particular case of OFETs used as sensing 

transducers, this method of quantification allows hysteresis to be used as an additional sensing 

parameter; for instance, hysteresis studies can enhance the detection of analytes (vapour 

under investigation) which induce charge trapping in an OFET [108].  
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4.3. Automated electrical characterisation 

The capabilities of the I-V converter system have been fully exploited by the development of 

supporting software that enables a fully-automated characterisation process. A National 

Instruments LabVIEW application was developed for this purpose. The graphical user interface 

(GUI) of one of the early versions of this application is shown in Figure 4-13.  

 

Figure 4-13 – The graphical user interface of the I-V Converter Assistant application 

The program communicates with a Picoscope oscilloscope via a Microsoft Windows dynamic-

link library (DLL) provided by the manufacturer; the control signals and sampling data are 

physically transferred between the program and the hardware over a USB connection. 

A series of parameters must be defined by the user before the characterisation process is 

initiated; these include information on the OFET under test (the Ci of the gate dielectric, the 

channel dimensions and the type of semiconductor used; i.e. n-type or p-type) and the value of 

the feedback resistance (Rf) used. Changing these parameters during the characterisation is 

possible, but any changes are applied only to the next measurements. 

The oscilloscope initialisation data must also be defined; these include the signal generation 

settings (waveform type, frequency, amplitude, DC offset), as well as the sampling and trigger 

settings (time base, input voltage ranges, trigger source, direction and level, etc.). There are 

stored default values for all fields, which facilitate this initialisation process. 

The OFET parameters are calculated and plotted in a time-resolved manner; the interval 

between the data points can be defined by the user. Median filters can be applied to all 

calculated parameters for further noise mitigation. The window size of these filters, i.e. the 

number of consecutive measurements for each data point, can be also selected by the user 

using the Averaging field. The throughput of this characterisation system depends on the 

frequency (f) of Vin. If no averaging is applied, then one set of OFET parameters can be 

calculated every 1/f. As previously mentioned, the maximum frequency is mainly limited by 

the mobility of the semiconductor and the parasitic capacitance of the device under test, as 

the transistor can be modelled as a RC network which effectively operates as a low-pass filter. 
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Although tests on pentacene OFETs have shown a good operation for frequencies up to 100Hz, 

lower frequencies (<10 Hz) are typically chosen for the tests. As discussed in section 4.1.2, 

water-gated OFETs are typically characterised with frequencies even below 1 Hz. 

Each set of data consists of 5 parameters; the maximum (modulus of) saturated drain current 

(Ion), the maximum (modulus of) off-state current (Ioff), the on/off ratio (Ion/Ioff), the threshold 

voltage (Vth) and the charge carrier mobility (mu). For the calculation of Vth and mobility, the 

transfer curve conversion and the extrapolation in the saturated region method (ESR), 

described in section 4.2.4.1, is used. 

Using this method, the simple linear regression fit is applied to the transfer curve in always the 

same range of input voltages for consistency. For instance, for p-type OFETs, such as 

pentacene, making the assumption that the threshold voltage is smaller than the 70% of the 

amplitude of Vin, this range is the [5π/4 , 3π/2] region of the sinusoidal drive. In the example 

given in Figure 4-14, the negative peak voltage was set at -3V, thus this range equals [-2.12V , -

3.00V]; this region is white-shaded in this figure.  

 

Figure 4-14 – Illustration of the ESR parameter extraction method applied by the automated characterisation 
software. The inset shows the raw oscilloscope data, the dashed red rectangle indicated the data region which is 
converted and shown in the main graph. The main graph shows the square root of the modulus of drain current 
versus –Vin. The white-shaded region indicates the data region for the application of the simple linear regression 
fit. 

The measurement results can be exported as text files with comma-separated values (.csv) for 

further analysis. Moreover, oscilloscope screenshots can also be exported as text files while 

the characterisation process is running. 

This system was successfully used for the detection of quick OFET parameter responses in the 

light-sensitivity tests discussed in section 6.3, as well as in most of the vapour sensing 

experiments discussed in Chapter 7. 
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Finally, a different approach to the automated characterisation of organic semiconductor 

devices has been the miniaturisation of the I-V converter system into a stand-alone handheld 

characterisation system. An embedded system, based on a RISC microcontroller (Atmel 

ATMega644PA), was designed and a working prototype was built. The source code was written 

in C language using AVR Studio 4 and WinAVR-20100110 C Compiler. 

This apparatus incorporates a signal generation unit, signal conditioning circuitry, an 

embedded analogue-to-digital (ADC) converter and the characterisation logic. Changeable 

OFET and resistive sensors can be externally connected to a special socket. The 

characterisation results are displayed on an LCD display and the measurement data can also be 

sent to a computer over a USB connection in real-time. 

This system was tested and used in actual gas sensing measurements with resistive 

transducers. However, the limited processing power of the employed 8-bit microcontroller 

(MCU) does not allow for fast multiparametric characterisation on OFETs. For this reason, 

further development of the I-V converter system focused on the improvement of the LabVIEW 

platform described above. 

It is worth mentioning that the novel sinusoidal integration method for the calculation of 

threshold voltage and mobility, described in section 4.2.4.2, can be less demanding in 

processing power than other calculation methods, which employ linear fits. In particular, an 

MCU with an embedded multiplier-accumulator (MAC) unit can greatly reduce the parameter 

calculation time using this method. 

The circuit schematic of the handheld system and a photograph of one working prototype are 

shown in Appendix II.8.  
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Chapter 5. Device characterisation results and discussion 

As mentioned before, in this work, organic field-effect transistors (OFETs) and their gas sensing 

capabilities constitute the main focus of this study. Prior to their exploitation as gas sensing 

transducers, a good understanding of the operation of these devices in ambient conditions is 

necessary. 

This chapter discusses the results from the characterisation of the fabricated OFETs; this 

includes their output and transfer characteristics, the quantification of their important 

parameters, a comparative study of the impact of the gate dielectric in the morphology, 

performance and the environmental stability of these devices. 

Section 5.1 discusses the results from impedance measurements on capacitors based on the 

dielectrics similar to those used as gate insulators of the fabrication of OFETs. Sections 5.2 to 

5.5 discuss the results from the characterisation of pentacene, PDI8-CN2, tetracene and PBTTT 

OFETs, respectively. The former two provide comparisons between different dielectric 

combinations. Finally, section 5.6 gives an overall comparison of the types of fabricated 

devices. 

5.1. Impedance measurements on capacitors 

The quantification of the capacitance per unit area of the gate dielectric (Ci) is of great 

importance for OFET characterisation, especially due to the fact that the extraction of field-

effect mobility (μeff), discussed in sections 3.3.2.2 and 4.2.4, is based upon a fixed known value 

of Ci. For the electrical characterisation of the gate stacks used in the OFET configurations 

discussed in the following sections, parallel-plate capacitors were prepared; these devices 

were fabricated using the same techniques as those used for the fabrication of the respective 

gate stacks of low-voltage OFETs, having the same dimensions and combinations of materials. 

These capacitors were also used in the light sensitivity measurements and served for making 

comparisons between inorganic oxide and polymeric dielectrics; these results are discussed in 

section 6.2. 

For an ideal and uniform parallel-plate capacitor, capacitance is calculated by: 

       
 

 
 (5.1)  

 

and Ci is consequently expressed as: 

    
    
 

 (5.2)  
 

where εr is the relative static permittivity of the dielectric material between the plates, which is 

also denoted by k and referred to as the dielectric constant, ε0 is the vacuum permittivity 

(~8.854 × 10−12 F/m),  A is the area of overlap of the two plates and t is the thickness of the 

dielectric material which separates the plates. 

Considering several factors, such as the non-uniformity and roughness of the grown 

(aluminium oxide - AlOx) or deposited (LDPE) thin film dielectrics, the difficulty in precisely 

quantifying their thickness, as well as the use of multi-layered structures made of different 
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materials (aluminium oxide and surface treatment), a numerical calculation of Ci can result in 

inaccurate values, which in turn, can yield misleading mobility calculation results. Moreover, in 

the case of thin films, k can be thickness dependent rather than constant. Also, dielectric 

materials, such as anodised AlOx, are not stoichiometric [66], which results in variations of their 

dielectric constant depending on several growth factors. For these reasons, an experimental 

quantification of the capacitance of these thin-film insulators is advisable. 

Furthermore, the need for precise Ci measurements is more imperative when devices with 

different gate stacks are compared; considering that different gate materials and especially 

their surface affects the overlaying semiconductor grain formation and their properties [60, 109], 

a good knowledge of Ci is crucial for the quantification of the actual effects of the 

dielectric/surface treatment combination on mobility. 

5.1.1. Preparation 

Three different sets of capacitors were prepared in clean-room facilities; the first employed 

OTS-treated aluminium oxide (AlOx), the second AlOx with an LDPE coating, and the third one 

was exclusively based on LDPE; hereafter, these capacitors are referred to as AlOx-OTS, AlOx-

LDPE and LDPE (only), respectively. All devices were built on cleaned silicon substrates with a 

top SiO2 layer of 100 nm thickness; detailed information on substrate preparation is given in 

section 2.2.4. 

 

Figure 5-1 – A graphical representation of the AlOx-based capacitors. Area of overlap: 0.74 mm
2
 

For the AlOx-based capacitors, an 100-nm-thick film of aluminium was initially deposited on 

the substrates through shadow masks; this layer served as the bottom electrode of the 

capacitors. The shadow masks patterned strips (fingers) of aluminium with a width of 370 μm. 

Each aluminium layer was anodised for the formation of a thin-film of AlOx, which constituted 

the dielectric of the capacitor. The applied current was set at 0.95 mA with a voltage limit of 5 

V; the current application time to each substrate was 75 seconds. More details on AlOx 

formation are given in section 2.4.2.  

For the AlOx-OTS capacitors, the substrates were immersed into a 10 mg/mL cyclohexane 

solution of OTS. The application time was 10 minutes and the process took place in a nitrogen 
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glovebox. The substrates were rinsed with clean cyclohexane and let dry on a hot plate. More 

information on OTS application on oxides is given in section 2.4.3. 

For the AlOx-LDPE capacitors, a 20-nm-thick film of LDPE was deposited on the entire surface 

of the substrates by thermal evaporation in high vacuum. The starting pressure within the 

dome of the evaporator was 3.6 x 10-7 Torr and it was preserved below 6.3 x 10-7 Torr over the 

course of the deposition process; the deposition rate was roughly 10-2 nm/s. In contrast to the 

LDPE treatment for the OFET gate oxides, the LDPE thin films of these capacitors were not 

annealed after deposition. As demonstrated by Kanbur et al. [72], the annealing of such thin (20 

nm) films of LDPE is advisable for a better coverage of the oxide surface. The impedance 

results from these devices, as discussed below, indicate a possible penetration of the top 

electrode metal into the LDPE layer during deposition; this observation can be a result of not 

annealing these films. More details are given below. 

For the LDPE (only) capacitors, silver was selected as the bottom-electrode material. It was 

thermally evaporated and deposited through shadow masks of the same pattern as the ones 

used for AlOx-based devices. On top of silver, a 400-nm-thick film of LDPE was deposited 

without the use of a shadow mask.  

 

Figure 5-2 – Optical microscope top-down image of an AlOx-OTS capacitor 

Silver was the top-electrode-material of choice for all capacitors; for each substrate, a 40-nm-

thick film was deposited through a shadow mask on top of the dielectric. Each top-electrode-

pad had dimensions of 2 mm x 2 mm; the dimensions of overlap between each top electrode 

and the bottom aluminium or silver electrode were 2 mm x 370 μm, which give a total overlap 

area of 7.4 x 10-3 cm2. 

The fact that a few-nm-thick layer of silver is semitransparent makes the selection of top-

silver-electrodes appropriate for the study of the effects of illumination on gate capacitance, 

as discussed in section 6.2. 
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Figure 5-3 – Capacitance per unit area versus frequency for an AlOx-OTS (black line) and an AlOx-LDPE (red line) 
capacitor in the dark. 

 

Figure 5-4 – Capacitance per unit area (Ci) versus frequency for an LDPE (only) capacitor in the dark. The dielectric 
thickness is roughly 400nm. The scattered data points in the frequency range from 1 Hz to 10 Hz are an artefact 
that was observed in all impedance measurements taken using this instrument; this effect is more pronounced in 
this example due to the relatively small Ci of the device under test. 

The impedance measurement test rig is described in detail in section 3.2. The applied drive 

was a zero-offset AC drive with an amplitude of 1 V, for a frequency range from 1 Hz to 10 KHz. 

The leakage current of the capacitors under test was not recorded by the impedance analyser, 
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thus no results are shown here. However, notable leakage currents were only observed in the 

output characteristics of very few fabricated OFETs, as discussed in the following sections. 

5.1.2. Results and discussion 

Figure 5-3 and Figure 5-4 show the capacitance per unit area (Ci) versus frequency for the AlOx-

based and LDPE (only) capacitors, respectively. The frequency of 6.33 Hz was selected as the 

reference frequency, as most of the real-time measurements using the I-V converter system 

applied a sinusoidal drive with a frequency of 6 Hz. 

At the reference frequency of 6.33 Hz, the LDPE (only) capacitor exhibited a very low Ci of 

roughly 5 nF/cm2, which comes in good agreement with numerical calculations based on the 

reported values of the dielectric constant of LDPE, i.e. 2.2 to 2.35 [110]. 

At the same frequency, the AlOx-based capacitors were found to have high Ci values that were 

in the same order of magnitude as previously reported values [65].  The LDPE-treated oxide 

exhibited a Ci of 675 nF/cm2, whereas the value of OTS-treated was 470 nF/cm2. 

However, the value of the LDPE-treated device deviates from the anticipated values; 

considering that the capacitance per unit area of 20-nm-thick layer alone (Ci,LDPE) has a value of 

~100 nF/cm2 and that the total Ci of the bilayer can be calculated from: 

 
 

  
 

 

       
 

 

       
 (5.3)  

 

it can be easily deduced that              . As mentioned above, the very thin LDPE 

layers of these capacitors were not annealed after deposition, which probably resulted in an 

incomplete coverage of the oxide surface; Kanbur et al. have underlined this situation with the 

aid of AFM images [72]. In the same work, the reported value for an annealed 8-nm-AlOx / 20-

nm-LDPE bilayer was 96 nF/cm2. If we consider that a value of 600 to 700 nF/cm2 for Ci,AlOx 

alone is normal [65], the measured values can be explained by the fact that it is very likely that 

the silver deposited on top of the LDPE layer actually came in direct contact with the AlOx layer 

by penetrating the LDPE layer. 

Moreover, in the case of the AlOx-OTS capacitors, if we assume that the AlOx layer has a Ci,AlOx 

of ~700 nF/cm2, that the thickness of a single monolayer of OTS has been reported to be 2.6 to 

2.8 nm [71, 111] and that measured value was 470 nF/cm2, it can be estimated that the actual 

OTS treatment does not consist of only a single monolayer but a polymerised network of OTS 

molecules due to the presence of adsorbed humidity on the oxide surface; this situation is 

discussed in section 2.4.3. 

For the mobility calculations discussed in the following sections of this chapter, the measured 

Ci values for the AlOx-OTS and the LDPE (only) dielectrics were used, whereas, for the AlOx-

LDPE calculations, a numerically approximated value of Ci (98 nF/cm2) was used instead. For 

the OFETs built on the 100-nm- and 300-nm-thick SiO2 gate dielectrics, the effect of the surface 

treatment on the Ci of the dielectric is negligible; hence, the numerically calculated values of 

27 nF/cm2 and 9 nF/cm2, respectively, were used.  
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5.2. Pentacene OFETs 

Pentacene is one of the best studied organic semiconductors. There are numerous published 

papers on OFETs employing pentacene; these examples include high-performance OFETs with 

mobility values as high as 8.85 cm2V-1s-1 [79], small integrated circuits such as ring oscillators on 

flexible substrates [112], as well as temperature, humidity and vapour sensing transducers [83, 113, 

114].  

Pentacene was the most used organic semiconductor in the work presented here. Several 

different configurations with various fabrication conditions were tested. This section discusses 

the results from measurements on representative examples of each configuration. The results 

have been categorised with respect to the employed gate dielectric.  

5.2.1. Silicon-dioxide-gated devices 

Silicon dioxide (SiO2) is by far the most used gate dielectric in both inorganic and organic FETs. 

In this work, SiO2 is used as a reference material, as the focus was mainly put on AlOx and LDPE 

dielectrics. The fabrication procedure and the characterisation results of SiO2-based pentacene 

OFETs with OTS and LDPE surface treatment are presented in this section. 

5.2.1.1. Preparation 

Arsenic-doped silicon substrates with a 100-nm-thick thermal oxide were used. The substrates 

were initially cleaned by sonication in an alkaline solution and in IPA and UV-ozone treatment. 

A detailed description on substrate preparation is given in section 2.2.4. 

For the OTS-treatment, the cleaned substrates were immersed into a cyclohexane solution of 

OTS (10 mg/mL) for 60 minutes. The process took place in a nitrogen glove box.  

For the LDPE-treatment, a 20-nm-thick film of LDPE was deposited using thermal evaporation; 

the deposition rate varied between 0.007 and 0.01 nm/s and the pressure within the dome of 

the evaporator was roughly 8.0 x 10-7 Torr. The substrates were annealed at 105 °C in vacuum 

for 30 minutes. 

Pentacene was thermally evaporated and deposited onto both substrate sets. The final film 

thickness was 50 nm, the deposition rate varied from 0.05 to 0.078 nm/s, while the pressure 

was roughly 8.5 x 10-7 Torr. 

Finally, gold was deposited through shadow masks using thermal evaporation. The final 

thickness of the patterned top electrodes was 50 nm and the dimensions of the channels were 

10 μm (length) by 2 mm (width). The deposition rate varied from 0.015 to 0.055 nm/s, while 

the pressure was limited below 3.3 x 10-6 Torr throughout the evaporation process. 

5.2.1.2. Electrical characteristics 

All measurements were taken in ambient conditions, i.e. at room temperature and under usual 

room light conditions. Figure 5-5 to Figure 5-7 show the output and transfer characteristics of 

these two devices. The output characteristics from both the OTS- and the LDPE-treated devices 

show that the curves poorly saturate.  

The threshold voltages of both devices were found to be rather low, namely -1.4 V for OTS and 

-2.4 V for LDPE. The OTS-treated device outperformed the LDPE-treated one in terms of 

mobility; their calculated values were 0.105 cm2V-1S-1 and 0.057 cm2V-1S-1, respectively.  
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Figure 5-5 – Output characteristics of a top-gold-contact pentacene OFET based on SiO2-OTS dielectric. 

 

Figure 5-6 – Output characteristics of a top-gold-contact pentacene OFET based on SiO2-LDPE dielectric. 
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Figure 5-7 – Transfer characteristics of a pentacene OFET with SiO2-OTS dielectric (triangles) and a pentacene 
OFET with SiO2-LDPE dielectric (squares). 
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5.2.2. Aluminium-oxide-gated devices 

In this section, the preparation process for pentacene OFETs, which employ aluminium oxide 

as their gate dielectric material, is presented. Two different structural approaches were 

studied; the first batch of devices was based on oxide which was treated with OTS, whereas 

the second one was based on LDPE-treated oxide. Hereafter, these devices are referred to as 

AlOx-OTS and AlOx-LDPE, respectively. 

5.2.2.1. Preparation 

Silicon substrates bearing an 100-nm-thick oxide were used. They were cleaned by sonication 

in an alkaline solution and IPA and undergone UV-ozone treatment. A detailed description on 

substrate preparation is given in section 2.2.4. 

An 100-nm-thick aluminium layer was deposited by thermal evaporation through shadow 

masks in high vacuum. The pressure within the evaporator dome was 6.1 x 10-7 Torr in the 

beginning of the deposition process and reached a maximum of 2.5 x 10-6 Torr during the 

evaporation. The deposition rate was adjusted at roughly 10-3 nm/s for the first 10nm and it 

was then gradually increased up to 5.0 x 10-1 nm/s. 

The aluminium films were anodised in a 1 mM citric acid solution. The applied current was set 

at 0.95 mA and the maximum voltage at 5 V. The current application time was 75 seconds. The 

devices were rinsed with DI water and dried before further process. Detailed information on 

aluminium anodisation can be found in section 2.4.2. 

For the AlOx-OTS devices, the substrates were immersed into a 10 mg/mL cyclohexane solution 

of OTS for 10 minutes. This process took place in a nitrogen glove box. Following that, the 

substrates were thoroughly rinsed with clean cyclohexane and dried on a hot plate. Further 

details on OTS treatment are given in section 2.4.3. 

For the AlOx-LDPE devices, a 20-nm-thick film of LDPE was deposited on the substrates after 

the aluminium anodisation process. No shadow masks were used, so LDPE covered the entire 

surface of the substrates. The starting pressure was 6.3 x 10-7 Torr, whereas the maximum 

pressure during evaporation was 9.5 x 10-7 Torr. The deposition rate was being varied between 

0.065 and 0.08 nm/s throughout the entire process. These substrates were later annealed at 

105 °C in vacuum for 30 minutes. The LDPE-treatment of oxides is discussed in section 2.4.5. 

Pentacene was thermally evaporated so that a 50-nm-thick was deposited on the entire 

surface of all substrates. The pressure ranged from 7.6 x 10-7 Torr in the beginning to 8.7 x 10-7 

Torr during the evaporation. The deposition rate was limited to 5.0 x 10-2 nm/s for the first 10 

nm and was then increased to 7.8 x 10-2 nm/s until the end of the process. The substrates were 

not further heated during the thin-film deposition. 

Gold was also deposited by thermal evaporation though shadow masks. Each substrate was 

fitted with one mask which patterns four source-drain pairs on the surface of the substrate; 

the dimensions of the resulting OFET channels are 10 μm (length) x 2 mm (width). The masks 

were aligned in such a way that the channel overlaps with the underlying gate electrode and 

oxide. The deposition rate was limited below 0.015 nm/s for the first 10 nm and was then 

increased to roughly 0.045 nm/s until a final thickness of 50 nm was deposited.  The pressure 

was kept below 3.3 x 10-6 Torr. 
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Figure 5-8 – Output characteristics of a top-gold-contact pentacene OFET based on AlOx-OTS dielectric. 

 

Figure 5-9 – Output characteristics of a top-gold-contact pentacene OFET based on AlOx-LDPE dielectric. 
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Figure 5-10 – Transfer characteristics of two top-gold-contact pentacene OFETs based on AlOx-OTS (triangles) and 
AlOx-LDPE (squares). 

5.2.2.2. Electrical characteristics 

All measurements were taken in ambient conditions, i.e. at room temperature and under usual 

room light conditions. Similar to the SiO2-gated devices discussed in section 5.2.1, the OTS 

treatment resulted in better electrical characteristics. The threshold voltage of the AlOx-OTS 

device was -1.0 V and that of the AlOx-LDPE was slightly higher, at roughly -1.4 V.  

The mobility was calculated at 7.0 x 10-4 cm2V-1s-1 for the AlOx-OTS OFET and 3.1 x 10-3 cm2V-1s-1 

for the AlOx-LDPE one; these values are much lower than those of the SiO2-gated devices, 

discussed in section 5.2.1; however, mobility values of this order-of-magnitude are common 

for non-heated substrates [44] and a similar relative decrease in mobility has been reported for 

poly(triaryl amine) (PTAA) OFETs built on AlOx dielectric [51]. An explanation for these relatively 

low values can be sought in the high surface roughness of both AlOx surfaces; the AFM images 

shown in Figure 5-11 and Figure 5-12 illustrate the surface of an area of evaporated aluminium 

before and after anodisation, respectively, while Figure 5-13 and Figure 5-14 show the 

pentacene surfaces of the channel areas of the AlOx-OTS and AlOx-LDPE OFETs, respectively. 

Despite the higher modulus of Vth, the LDPE-treated devices exhibited remarkably higher 

mobility performance compared to the OTS-treated ones. Moreover, additional comparative 

studies on the environmental stability of these devices suggest that LDPE can be an excellent 

candidate for highly stable devices; calculations of their interfacial trap densities are given in 

section 5.2.2.3, air degradation measurements are discussed in section 5.2.2.4 and a detailed 

study on light-stability of AlOx-based pentacene OFETs is presented in section 6.3. 
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Figure 5-11 – AFM image of an aluminium area deposited on a Si/SiO2 substrate. 

 

Figure 5-12 – AFM image of an anodised aluminium area deposited on a Si/SiO2 substrate. 
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Figure 5-13 – AFM image of the channel area of a pentacene OFET with AlOx-OTS dielectric 

 

Figure 5-14 – AFM image of the channel area of a pentacene OFET with AlOx-LDPE dielectric 
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5.2.2.3. Oxide surface treatment and traps 

A rough estimation of interfacial trap densities can be derived from the subthreshold transfer 

characteristics of the two tested devices. 

In a variation of eq. (2.6), the subthreshold swing of the two OFETs can be expressed as: 
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and: 
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where Ci is the capacitance per unit area of each combination of dielectrics, q is the 

elementary charge, εs is the dielectric constant of pentacene, Νbulk is the density of traps in the 

bulk of the pentacene film and ΝAlOx/OTS and ΝAlOx/LDPE are the total densities of traps, including 

the bulk traps in the semiconductor film and the traps at the interface of each device. In the 

absence of traps, the ideal subthreshold swing is approximately 57 mV/dec at room 

temperature. 

Assuming that the bulk trap density is the same for both OFETs, regardless of their dielectric 

surface treatment, a difference in the total trap densities is exclusively due to a difference in 

their interface trap densities. The ratio of the two swings is: 
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The subthreshold swing values, shown in Figure 5-15 and Figure 5-16, are: 
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Considering that SAlOx/OTS and SAlOx/LDPE are similar, we can simplify eq. (5.6) by letting: 
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Substituting into eq. (5.6) yields: 

 
         

          
 
           

            
 (5.10)  

 

From the impedance measurements and the calculations given in section 5.1: 
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From substitution into eq. (5.10), it can be derived: 

                       (5.13)  
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Thus, the comparison of the respective subthreshold swings and the dielectric capacitances 

indicates a much higher trap density at the OTS-treated interface as compared to the LDPE-

treated one. 

 

Figure 5-15 – Subthreshold transfer characteristics of a top-gold-contact pentacene OFET based on AlOx-OTS 
dielectric. 

 

Figure 5-16 – Subthreshold transfer characteristics of a top-gold-contact pentacene OFET based on AlOx-LDPE 
dielectric. 
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5.2.2.4. Air degradation and temperature dependence 

A comparative study on the impact of the two different surface treatments of AlOx on the 

OFET air stability was performed. Despite the initial resemblance of the AlOx-OTS and AlOx-

LDPE devices, in terms of saturated drain current, the devices showed different performance 

degradation rates in ambient conditions. All devices were stored in ambient air and in dark 

conditions; their electrical performance was studied with the use of the I-V converter system 

over the course of 14 days. 

As shown in Figure 5-17, after nine days, the LDPE-treated device exhibited a saturated drain 

current drop of one order-of-magnitude, whereas the decrease of the OTS-treated one was 

five times larger than that. Figure 5-18 shows multiple plots of the square root of the modulus 

of drain current versus drive voltage for both devices over several days; these curves clearly 

show the falling trend of their slopes, which indicate a drop in mobility over time. 

Considering that the initial measurements were taken in standard room light conditions and 

not in absolute dark, the initial drop can be partly attributed to the higher sensitivity of OTS-

treated devices to light. However, the further mobility degradation trends reveal that the 

pentacene film morphology which results from an OTS-treated surface is more susceptible to 

the ambient conditions than that on an LDPE-treated one. 

An explanation can be sought in the AFM images shown in Figure 5-13 and Figure 5-14; the 

pentacene film surface on OTS-treated AlOx had a very repeatable pattern with small grains of 

similar dimensions, whereas its counterpart, built on LDPE-treated AlOx, had a random grain 

pattern with much larger aggregates. The repeatable pattern of pentacene grains on an Al2O3-

OTS dielectric and the resulting enhanced mobility have been previously underlined by Kalb et 

al. [68]; however, this small-grain pattern results in larger total grain boundaries which, in turn, 

create a larger surface area for interactions between the pentacene molecules and airborne 

species, such as oxygen [81, 82], water [83], and ozone [82], which reportedly play a role in mobility 

degradation.  

In addition, temperature sensitivity measurements were conducted; an AlOx-OTS and an AlOx-

LDPE pentacene OFETs were placed on a programmable hot-plate (Linkam TMS 94) while their 

transfer characteristics were evaluated. It is worth mentioning that a temperature sensor 

which exploited the subthreshold characteristics of a pentacene OFET has previously been 

demonstrated by Jung et al. [113]. 

Figure 5-19 and Figure 5-20 show the transfer characteristics of the two devices at seven 

different temperature levels from 25 °C to 55 °C; higher temperatures were not attempted so 

that major alterations in the grain formation of both the LDPE and the pentacene films were 

avoided. Threshold voltages were not affected by the elevated temperature in both cases. 

Interestingly, despite the noticeable differences in pentacene grain formation, the relative 

mobility dependence on temperature was not affected by the AlOx surface treatment. As 

shown by the AFM images in Figure 5-13 and Figure 5-14, for a temperature increase of 30 °C, 

i.e. from 25 °C to 55 °C, both devices showed a very similar mobility increase. The AlOx-OTS 

device exhibited a change of +36.8%, while the change for AlOx-LDPE one was +35.7%. 
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Figure 5-17 – Maximum saturated drain current versus time for two pentacene OFETs, based on AlOx-OTS (black 
squares) and AlOx-LDPE (green triangles) dielectrics. 

 

Figure 5-18 – Converted transfer characteristics from the I-V converter measurements on pentacene based on 
AlOx-OTS (black curves) and AlOx-LDPE (green curves) dielectrics over a period of 14 days. 
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Figure 5-19 – Multiple plots of the square root of drain current versus gate voltage for a top-gold-contact 
pentacene OFET based on AlOx-OTS dielectric at various temperatures, ranging from 25 °C to 55 °C. 

 

 

Figure 5-20 – Multiple plots of the square root of drain current versus gate voltage for a top-gold-contact 
pentacene OFET based on AlOx-LDPE dielectric at various temperatures, ranging from 25 °C to 55 °C. 
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5.2.3. Polymer-gated devices 

Polymer-gated pentacene devices have previously been demonstrated [115]; however, as of 

October 2013, there is no published report on pentacene OFETs gated exclusively with 

evaporated LDPE. Moreover, no p-type OFETs using this gate dielectric have been 

demonstrated, as the only demonstrated example of LDPE (only) OFET used an n-type 

semiconductor (C60) 
[72]. 

Indeed, the early fabrication attempts of LDPE (only) pentacene OFETs suffered from severe 

gate leakage. This problem is likely to be related to the penetration of gold into the pentacene 

and LDPE layers during the deposition of the top source-drain electrodes [116]; it is worth 

mentioning that no similar problems were observed when silver was used instead of gold. 

Finally, the optimisation of the gold deposition rate yielded favourable results with low gate-

leakage current. 

Furthermore, despite the relatively low drain current, as compared to pentacene OFETs built 

on other dielectric combinations, as discussed above, the electrical characteristics of these 

devices gave valid indications of ambipolar behaviour, as discussed below. 

5.2.3.1. Preparation 

Pre-cut quartz substrates were used as substrates for these devices. The standard cleaning 

process was followed; the substrates were sonicated in an alkaline solution and in IPA and a 

final UV-ozone treatment was applied for 270 seconds. More details on substrate preparation 

are given in section 2.2.4. 

Silver was thermally evaporated and deposited on the substrates through shadow masks for 

the growth of the patterned gate electrodes. The final thickness was 50 nm, the deposition 

rate varied from 0.025 to 0.063 nm/s and the pressure in the dome was kept below 5.5 x 10-7 

Torr throughout the deposition process. 

LDPE was evaporated and deposited on the entire surface of each sample. The final thickness 

of the deposited film was 400 nm, the deposition rate varied between 0.01 and 0.055 nm/s 

and the maximum pressure was 1.2 x 10-6 Torr. The substrates were not annealed after the 

LDPE deposition. 

Pentacene was also evaporated without shadow masks. The thickness of film was 50 nm, the 

deposition rate varied from 0.03 to 0.078 nm/s and the pressure was limited under 4.2 x 10-7 

Torr. The substrates were not additionally heated during the pentacene deposition. 

Finally, gold was thermally evaporated through shadow masks. The resulting channel 

dimensions were 10 μm (length) by 2 mm (width). The final thickness of the electrodes was 50 

nm. For the mitigation of gold penetration, the deposition rate was adjusted to be about an 

order-of-magnitude slower than the typical rate used for the most of the device batches 

presented in this work; it was limited to 0.0035 nm/s for the first 15 nm, and then it was 

gradually increased to a maximum of 0.009 nm/s until the desired thickness was achieved. The 

gold deposition process lasted more than 3 hours and then pressure was limited below 1.1 x 

10-6 Torr throughout this period of time. 
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5.2.3.2. Electrical characteristics 

All measurements were taken in ambient conditions, i.e. at room temperature and under usual 

room light conditions. The calculated characteristics of these all-polymer devices were inferior 

to those of all other pentacene devices based on different dielectrics. A threshold voltage of -

3.2 V, a mobility of roughly  4 x 10-5 cm2V-1s-1, in conjunction with the very low capacitance per 

unit area (Ci) of the 400-nm-thick LDPE dielectric, which was measured at ~5 nF/cm2, as 

discussed in section 5.1, resulted in very low saturated drain current values. The measured 

drain current for Vds = Vgs = -30 V was as low as 9 nA. One of the possible reasons for these low 

mobility value is the, otherwise intentional, limited gold penetration into the semiconductor, 

as previously reported by Cho et al. [116]. 

 

Figure 5-21 – Square root of the modulus of drain current versus input voltage (Vin=Vgs=Vds) for a LDPE (only)-
gated pentacene OFET with top gold contacts; converted transfer curve from the AC saturated measurement data 
enveloped by the dashed rectangle of the inset. Results show a quadratic dependence of drain current on input 
voltage for both negative and positive bias, which can constitute an indication of ambipolar behaviour. 

Nevertheless, the measurements from the I-V converter system, discussed in Chapter 4, 

revealed a very interesting behaviour under positive bias. Figure 5-21 shows a converted data 

from the oscilloscope screenshot, shown in the inset, which are presented as the square root 

of the drain current versus input voltage plot. This graph clearly shows a quadratic dependence 

of the drain current on the input bias; this dependence can be seen on both negative (p-type) 

and negative (n-type) directions. These results indicate an ambipolar behaviour of a material 

which is widely reported as a hole-transporting semiconductor. Ambipolar behaviour of well-

known p-type semiconductors has been previously achieved with the application of an 

appropriate surface treatment on the gate insulator [39]; in particular, OFETs with pentacene 

deposited on Ta2O5 treated with poly(vinyl alcohol), known as PVA, have been reported to 

yield some unconventional n-type output characteristics [117]. In that paper, the ambipolar 

behaviour and the gate-bias-effects were found to be dependent on factors such as the 

thickness of the deposited PVA layer, its impurity (Na+) content and the annealing process; in 
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some occasions, under n-type operation, increasing gate voltage resulted in a decrease in drain 

current. Similarly, in the output characteristics shown in Figure 5-22 and Figure 5-23, although 

the gating-effects in the p-type regime appear common, the n-type characteristics show an 

inverse dependence on gate bias, with drain current decreasing with increasing gate voltage.  

 

Figure 5-22 – Output characteristics for negative bias (p-type bevaviour) of a LDPE (only)-gated pentacene OFET 
with top gold contacts. 

 

Figure 5-23 – Output characteristics for positive bias (n-type bevaviour) of a LDPE (only)-gated pentacene OFET 
with top gold contacts. Drain current decreased with increasing gate bias. 
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5.2.4. Flexible devices 

One of the most promising assets of OSCs is their exploitation in the development of flexible 

electronics on plastic substrates. Flexible pentacene OFETs based on various dielectrics have 

previously been demonstrated; as early as 2004, Majewski et al. demonstrated the 

development of pentacene OFETs on Mylar substrates coated with a sputtered aluminium 

layer which was anodised for the formation of a few-nm-thick aluminium oxide gate insulator 
[65]. More recently, Graz et al. reported on the fabrication of pentacene OFETs and inverters 

built on poly(dimethylsiloxane) (PDMS) substrates employing parylene C as their gate dielectric 
[118]. 

In this section, the fabrication methodology and the electrical characterisation results from 

pentacene OFETs built on common plastic substrates are discussed. The substrates were 

commercially available laser printer transparencies, as discussed in section 2.2.3, the gate 

electrodes were made of evaporated aluminium and the dielectric was aluminium oxide 

formed by anodisation of the aluminium electrodes; the dielectric was treated with a layer of 

evaporated LDPE. This combination of dielectrics has only been demonstrated for pentacene 

OFETs built on rigid substrates [72].  

5.2.4.1. Preparation 

The substrates were sourced from a common A4-sized laser printer transparency. As discussed 

in section 2.2.3, while the exact composition of the employed substrate is unknown, it is well-

known that the laser printer transparencies are designed to tolerate the high temperatures of 

the printing process, while most of them bear a special coating on their top side which 

enhances the adhesion of the toner on the plastic surface [119, 120]; this coating apparently 

improved the adhesion of the evaporated aluminium films as no delamination problems were 

experienced during anodisation. 

The substrates were cleaned with an alkaline solution and sonicated at 70 °C. No IPA cleaning 

and no UV-ozone treatment were applied in order to prevent any damage on the coated 

surface. 

An 100-nm-thick aluminium layer was deposited by thermal evaporation through shadow 

masks in high vacuum. The pressure within the evaporator dome was 7.4 x 10-7 Torr in the 

beginning of the deposition process and reached a maximum of 3.7 x 10-6 Torr during the 

evaporation. The deposition rate was adjusted at roughly 10-3 nm/s for the first 10 nm and it 

was then gradually increased up to 9.0 x 10-1 nm/s. 

The aluminium films were anodised in a 1 mM citric acid solution. The applied current was set 

at 0.95 mA and the maximum voltage at 5 V. The current application time was 75 seconds. The 

devices were rinsed with DI water and dried before further process. Detailed information on 

aluminium anodisation can be found in section 2.4.2. 

A 20-nm-thick film of LDPE was deposited on the substrates after the aluminium anodisation 

process. No shadow masks was used so the deposited LDPE layer spread over the entire 

surface of the substrates. The starting pressure was 4.8 x 10-7 Torr, whereas the maximum 

pressure during evaporation was 9.9 x 10-7 Torr. The deposition rate was being varied between 

0.015 and 0.07 nm/s throughout the entire process. These substrates were later annealed at 

~100 °C in vacuum for 30 minutes. The LDPE-treatment of oxides is discussed in section 2.4.5. 
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Figure 5-24 – Output characteristics of a flexible top-gold-contact pentacene OFET based on AlOx-LDPE dielectric. 

 

Figure 5-25– Transfer characteristics of a flexible top-gold-contact pentacene OFET based on AlOx-LDPE dielectric. 

Pentacene was thermally evaporated so that a 50-nm-thick was deposited on the entire 

surface of all substrates. The deposition rate varied from 0.02 to 0.04 nm/s. The pressure 

inside the dome was roughly 4.0 x 10-7 Torr. The substrates were not further heated during the 

thin-film deposition. 
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Gold was finally deposited by thermal evaporation though shadow masks. Each substrate was 

fitted with one mask which patterns four source-drain pairs on the surface of the substrate; 

the dimensions of the resulting OFET channels are 10 μm (length) x 2 mm (width). The 

deposition rate varied from 0.05 to 0.08 nm/s while the pressure was kept below 2.0 x 10-6 

Torr. The final thickness of the top electrodes was 50 nm. 

5.2.4.2. Electrical characteristics 

All measurements were taken in ambient conditions, i.e. at room temperature and under usual 

room light conditions. The output and transfer electrical characteristics of one of these devices 

are shown in Figure 5-24 and Figure 5-25, respectively. The threshold voltage of this devices is 

comparable to its AlOx-LDPE counterpart, discussed in section 5.2.2.2, which was built on rigid 

silicon substrate; the Vth of the flexible device was calculated to be -1.7 V, whereas the rigid 

sample gave a value of -1.3 V. Contrarily, the mobility was found to be interestingly higher; the 

value for the flexible device was ~2.1 x 10-2 cm2V-1s-1, whereas the rigid device exhibited a 

much lower value of ~3.1 x 10-3 cm2V-1s-1. 

There can be multiple reasons for the much higher mobility value on the plastic substrate. As 

discussed in section 5.2.2.2, AFM images from the Al and AlOx surfaces on silicon revealed a 

high roughness profile which can result in a low mobility of charge carriers; it is possible that 

the coating of the plastic substrates provides a smoother deposition of aluminium on the 

plastic substrate. However, there are no comparative AFM images to back this assumption. 

Another reason can be the somewhat higher gold deposition rate in the case of the flexible 

devices, which can result in higher mobility according to Cho et al. [116]. 

5.2.5. Comparison and conclusions on pentacene OFETs 

Pentacene is a thoroughly studied organic semiconductor and the abundance of published 

examples of its exploitation in the field of OFETs does not allow for groundbreaking 

innovations. However, the results from some novel approaches to pentacene OFET fabrication 

are presented in this section. These examples include the development of pentacene OFETs on 

common, commercially available, flexible plastic substrates using a combination of AlOx and 

LDPE dielectrics which use has only been demonstrated on rigid substrates. Moreover, the 

fabrication of top-gold-contact pentacene OFETs, exclusively gated by an evaporated LDPE 

layer, is presented here; as of October 2013, there are no published examples of any p-type 

semiconductor employed in OFETs based exclusively on an LDPE dielectric layer. 

Comparative results from all fabricated OFET architectures are given in Table 5-I. The best 

charge carrier mobility performance was measured on a SiO2-gated device with OTS-treated 

surfaces; the calculated value was roughly 0.1 cm2V-1s-1 with a threshold voltage as low as -

1.4V. The SiO2-LDPE device had a μ value of 5.7 x 10
-2 cm2V-1s-1 and a Vth of -2.4 V. Both SiO2-

gated devices showed poor drain current saturation as revealed by their output characteristics. 

Next, the AlOx-gated devices had slightly lower Vth values, but their mobility values were 

significantly lower than those of the SiO2-gated devices. The AlOx-OTS device had a Vth of -1.0 V 

and a μ of 7.0 x 10-4 cm2V-1s-1, the AlOx-LDPE device on a silicon substrate had a Vth of -1.4 V 

and a μ of 3.1 x 10-3 cm2V-1s-1 and the AlOx-LDPE device on a plastic substrate had a Vth of -1.7 V 

and a μ of 2.1 x 10-2 cm2V-1s-1. Additional comparative studies on the film morphology, the 
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environmental stability and the temperature dependence of OFETs built differently treated 

AlOx surfaces are discussed in this section. Furthermore, the importance of the surface 

treatment for the light stability of the fabricated OFETs is highlighted in an extensive 

comparative study given in section 6.3. 

Last, the pentacene OFET gated exclusively by a 400-nm-thick LDPE layer showed inferior 

electrical characteristics with a Vth of -3.2 V and a μ of roughly 4.0 x 10-5 cm2V-1s-1. However, 

the measurements with the I-V converter system, described in Chapter 4, revealed an 

interesting ambipolar behaviour of this device, as drain current was found to have a quadratic 

dependence on drive voltage, for both positive and negative polarities.  

Table 5-I – Comparison of all fabricated pentacene OFET architectures. The cells highlighted in green colour 
indicate material combinations that have not been reported in the international literature, as of October 2013. 

OSC Substrate Dielectric Treatment 
Top-contact 

material 

Ci 

(nF/cm2) 

Vth 

(V) 

μ 

(cm2V-1s-1) 
Comments 

Pentacene 

Si/SiO2 

SiO2 

OTS 

Au 

27 -1.4 0.10537 

Poor saturation 

LDPE 27 -2.4 0.05671 

AlOx 

OTS 480 -1.0 0.00070  

LDPE 98 -1.4 0.00315  

LDPE 5 -3.2 0.00004  

Plastic AlOx LDPE 98 -1.7 0.02119 
Ambipolar 

behaviour 
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5.3. PDI8-CN2 OFETs 

N,N′-bis(n-octyl)-x:y, dicyanoperylene-3,4:9,10-bis(dicarboximide), known as PDI8-CN2, is an n-

type semiconductor. There are few published examples of PDI8-CN2 used as an active material 

in OFETs. In 2011, Hague et al. demonstrated an AlOx-gated PDI8-CN2 OFET used as an amine 

vapour sensor [114]. About a year later, Liscio et al. published a detailed study on SiO2-gated 

PDI8-CN2 OFETs [121]. 

A description of the fabrication methodology and the results from the electrical 

characterisation of these OFETs is given in this section. Similarly to the study of pentacene 

devices, discussed in section 5.2, the PDI8-CN2 OFETs are categorised with respect to their 

main dielectric; moreover, a separate section is dedicated to devices built on flexible 

substrates. 

5.3.1. Silicon-dioxide-gate devices 

A comparison of two different surface treatment of SiO2 is given in this section; the SiO2 

surfaces were treated with either OTS or LDPE before PDI8-CN2 deposition. The device 

fabrication and the measurement results are discussed below. 

5.3.1.1. Preparation 

Arsenic-doped silicon substrates with a 100-nm-thick thermal oxide were used. The substrates 

were initially cleaned by sonication in an alkaline solution and in IPA and UV-ozone treatment. 

A detailed description on substrate preparation is given in section 2.2.4. 

For the OTS-treatment, the cleaned substrates were immersed into a cyclohexane solution of 

OTS (10 mg/mL) for 60 minutes. This process was carried out in a nitrogen glove box.  

For the LDPE-treatment, a 20-nm-thick film of LDPE was deposited with thermal evaporation; 

the deposition rate varied between 0.007 and 0.01 nm/s and the pressure within the dome of 

the evaporator was roughly 8.0 x 10-7 Torr. The substrates were annealed at 105 °C in vacuum 

for 30 minutes. 

PDI8-CN2 was thermally evaporated and deposited onto both substrate sets. The final film 

thickness was 50 nm, the deposition rate varied from 0.03 to 0.05 nm/s, while the pressure 

was kept below 8.0 x 10-7 Torr. 

Finally, gold was deposited through shadow masks using thermal evaporation. The final 

thickness of the patterned top electrodes was 50 nm and the dimensions of the channels were 

10 μm (length) by 2 mm (width). The deposition rate varied from 0.015 to 0.035 nm/s, while 

the pressure was limited below 2.3 x 10-6 Torr throughout the evaporation process. 

5.3.1.2. Electrical characteristics 

All measurements were taken in ambient conditions, i.e. at room temperature and under usual 

room light conditions. Similarly, the output characteristics of the SiO2-gated PDI8-CN2 OFETs 

with OTS-treated and LDPE-treated surfaces are shown in Figure 5-26 and Figure 5-27, 

respectively. Regardless of the choice of dielectric treatment, all tested devices showed a 

normally-on behaviour; similar characteristics can be seen in the plots shown in the work of 

Liscio et al. [121]; nevertheless, this observation is not explicitly discussed in this paper. 
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Figure 5-26 – Output characteristics of a top-gold-contact PDI8-CN2 OFET based on SiO2-OTS dielectric. 

 

Figure 5-27 – Output characteristics of a top-gold-contact PDI8-CN2 OFET based on SiO2-LDPE dielectric. 

Figure 5-26 and Figure 5-27 show the output characteristics of the SiO2-OTS and the SiO2-LDPE 

devices, respectively. The SiO2-OTS device exhibited pronounced doping effects, which are 

remarkably highlighted by the almost linear dependence of drain current of drain voltage at 

zero gate voltage. The LDPE-treated device was not found to be significantly doped; however, 
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the negative Vth (normally-on) results in poor saturation at high gate voltages; this is 

anticipated as the saturated region condition, i.e.             , does not hold true at high 

VGS. 

Figure 5-28 gives a comparison of transfer characteristics of the devices built on differently 

treated oxides, expressed as the root of drain currents versus gate voltage. 

The threshold voltages were calculated at -5.8 V and -2.4 V for the SiO2-OTS and the SiO2-LDPE 

devices, respectively, confirming the observed normally-on behaviour. Similarly to the SiO2-

gated pentacene a device, the mobility of the OTS-treated PDI8-CN2 OFETs was found to be 

roughly double than that of the LDPE-treated ones; the respective values of mobility were 

0.01379 and 0.00755 cm2V-1s-1. 

 

Figure 5-28 – Transfer characteristics of a PDI8-CN2 OFET with SiO2-OTS dielectric (triangles) and a PDI8-CN2 OFET 
with SiO2-LDPE dielectric (squares). 
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5.3.2. Aluminium-oxide-gate devices 

PDI8-CN2 OFETs built on AlOx dielectric with OTS treatment have been demonstrated by Hague 

et al. [114]. In this section, a comparison between OFETs based on AlOx dielectrics treated with 

either OTS or the novel evaporated LDPE approach is given. The details on device fabrication 

and the results from their electrical characterisation are given below. 

5.3.2.1. Preparation 

Silicon substrates with a 100-nm-thick thermal oxide layer were used. They were cleaned by 

sonication in an alkaline solution and IPA and undergone UV-ozone treatment. A detailed 

description on substrate preparation is given in section 2.2.4. 

An 100-nm-thick aluminium layer was deposited by thermal evaporation through shadow 

masks in high vacuum. The pressure within the evaporator dome was 6.1 x 10-7 Torr in the 

beginning of the deposition process and reached a maximum of 2.5 x 10-6 Torr during the 

evaporation. The deposition rate was adjusted at roughly 0.002 nm/s for the first 10 nm and it 

was then gradually increased up to 0.5 nm/s. 

The aluminium films were anodised in a 1 mM citric acid solution. The applied current was set 

at 0.95 mA and the maximum voltage at 5 V. The current application time was 75 seconds. The 

devices were rinsed with DI water and dried before further process. Detailed information on 

aluminium anodisation can be found in section 2.4.2. 

For the AlOx-OTS devices, the substrates were immersed into a 10 mg/mL cyclohexane solution 

of OTS for 10 minutes. This process was carried out in a nitrogen glove box. Further details on 

OTS treatment are given in section 2.4.3. 

For the AlOx-LDPE devices, a 20-nm-thick film of LDPE was deposited on the substrates after 

the aluminium anodisation process. No shadow masks were used; LDPE covered the entire 

surface of the substrates. The starting pressure was 6.3 x 10-7 Torr, whereas the maximum 

pressure during evaporation was 9.5 x 10-7 Torr. The deposition rate was being varied between 

0.065 and 0.08 nm/s throughout the entire process. These substrates were later annealed at 

105 °C in vacuum for 30 minutes. The LDPE-treatment of oxides is discussed in section 2.4.5. 

A 50-nm-thick film of PDI8-CN2 was deposited on the entire surface of all substrates by thermal 

evaporation. The deposition rate was varied from 0.03 to 0.05 nm/s. The pressure was kept 

below 8.0 x 10-7 Torr throughout the evaporation process. The substrates were not further 

heated during the semiconductor deposition. 

Gold was finally deposited by thermal evaporation though shadow masks. The dimensions of 

the resulting OFET channels are 10 μm (length) x 2 mm (width). The final thickness of the 

deposited electrodes was 50 nm. The deposition rate varied from 0.015 to 0.035 nm/s. The 

pressure was kept below 3.3 x 10-6 Torr. 
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Figure 5-29 – Output characteristics of a top-gold-contact PDI8-CN2 OFET based on AlOx-OTS dielectric. 

 

 

Figure 5-30 – Output characteristics of a top-gold-contact PDI8-CN2 OFET based on AlOx-LDPE dielectric. 
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5.3.2.2. Electrical characteristics 

All measurements were taken in ambient conditions, i.e. at room temperature and under usual 

room light conditions. The similarly to the SiO2-gated PDI8-CN2 OFETs, both AlOx-gated devices 

were also found to have a normally-on behaviour. Figure 5-29 and Figure 5-30 show the output 

characteristics of the AlOx-OTS and AlOx-LDPE devices, respectively. Also, both devices show 

negligible doping effects; this comes in contrast to the pronounced doping of the SiO2-OTS 

device, discussed in section 5.3.1.2. 

Figure 5-31 gives a comparison of the transfer characteristics of these devices, expressed as 

the root of drain currents versus gate voltage. The calculated threshold voltage value of the 

OTS-treated device  was exactly zero volts, whereas the value for the LDPE-treated one was -

0.4 V. Similarly to the pentacene devices discussed in section 5.2, the mobility values of PDI8-

CN2 OFETs built on AlOx dielectrics were found to be lower than those on SiO2. However, both 

AlOx surface treatments yielded comparable results; the AlOx-OTS device was found to have a 

mobility of ~2.0 x 10-3 cm2V-1s-1, while the mobility of the AlOx-LDPE device about an order-of-

magnitude higher, having a value of ~1.5 x 10-2 cm2V-1s-1. 

 

Figure 5-31 – Transfer characteristics of a PDI8-CN2 OFET with AlOx-OTS dielectric (triangles) and a PDI8-CN2 OFET 
with AlOx-LDPE dielectric (squares). 

 

  



108 | P a g e  
 

5.3.3. Polymer-gated devices 

As of October 2013, there are no published examples of PDI8-CN2 OFETs based on polymer 

dielectrics. In this section, the fabrication methodology and the electrical characteristics of 

such OFETs, employing an evaporated LDPE layer as their gate dielectric and silver as their top 

electrode material, are discussed.  

5.3.3.1. Preparation 

Silicon samples with a 100-nm thermal oxide layer served as the substrates of these devices. 

The standard cleaning process was followed; the substrates were sonicated in an alkaline 

solution and in IPA and a final UV-ozone treatment was applied for 270 seconds. More details 

on substrate preparation are given in section 2.2.4. 

Silver was thermally evaporated and deposited on the substrates through shadow masks for 

the growth of the patterned gate electrodes. The final thickness was 60 nm, the deposition 

rate varied from 0.05 to 0.08 nm/s and the pressure in the dome was kept below 6.2 x 10-7 

Torr throughout the deposition process. 

LDPE was evaporated and deposited on the entire surface of each sample. The final thickness 

of the deposited film was 400 nm, the deposition rate varied between 0.01 and 0.13 nm/s and 

the maximum pressure was 2.2 x 10-6 Torr. The substrates were split into two groups; the 

substrates of one of them were annealed at 100 °C for 20 minutes in a nitrogen glove box, 

whereas the rest were not annealed before the semiconductor deposition. Figure 5-32 and 

Figure 5-33 show the optical microscope images of the surfaces of two complete OFETs with a 

not-annealed and an annealed LDPE dielectric, respectively. 

PDI8-CN2 was also evaporated without shadow masks. The final thickness of deposited films 

was 50 nm, the deposition rate varied from 0.01 to 0.07 nm/s and the pressure was kept 

below 4.4 x 10-7 Torr. None of the substrates was additionally heated during the pentacene 

deposition. 

Finally, silver was thermally evaporated through shadow masks. The resulting channel 

dimensions were 10 μm (length) by 2 mm (width). The final thickness of the electrodes was 

100 nm. The deposition rate varied from 0.003 to 0.24 nm/s and the pressure reached a 

maximum of 5.2 x 10-7 Torr. 
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Figure 5-32 – An optical microscope picture from the channel area of a not-annealed PDI8-CN2 OFET with top Ag 
contacts. The 10-μm-long channel can be seen as a vertical red line, aligned in the middle of the underlying gate. 

 

Figure 5-33 – An optical microscope image of the channel area of an annealed PDI8-CN2 OFET with top Ag 
contacts. The bright pink area on the top, which extends under the silver electrodes, is the underlying gate 
electrode. The 10-μm-long channel is clearly shown in the middle.  
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Figure 5-34 – Output characteristics of a not-annealed top-Ag-contact PDI8-CN2 OFET based on LDPE (only) 
dielectric. 

 

Figure 5-35 – Output characteristics of an annealed top-Ag-contact PDI8-CN2 OFET based on LDPE (only) dielectric. 
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5.3.3.2. Electrical characteristics 

All measurements were taken in ambient conditions, i.e. at room temperature and under usual 

room light conditions. Figure 5-34 and Figure 5-35 show the output characteristics of the 

devices with not-annealed and annealed LDPE dielectrics, respectively. Figure 5-36 gives a 

comparison of the transfer characteristics of the two devices, expressed as the square root of 

drain currents versus gate voltage. 

The dielectric layer annealing was found to significantly affect the off-current and the 

threshold voltage of the tested devices. Threshold voltages were calculated at -1.7 V and -0.9 V 

for the devices built on not-annealed and annealed LDPE dielectric, respectively. As it can be 

seen in Figure 5-36, annealing induced a downward shift in the transfer characteristics, which 

clearly indicates a reduction in the ohmic (doping) contribution to the drain current. 

Contrarily, despite the apparent changes in the grain formation, as revealed by the microscope 

images in Figure 5-32 and Figure 5-33 and as suggested by Kanbur et al. [72], the effect of 

dielectric annealing on mobility was found to be negligible, as the calculated values for the 

not-annealed and the annealed devices were 9.5 x 10-4 and ~1.0 x 10-3 cm2V-1s-1, respectively. 

 

Figure 5-36 – Transfer characteristics of an annealed (squares) and a not-annealed (triangles) top-Ag-contact 
PDI8-CN2 OFETs based on LDPE (only) dielectric layers. 
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5.3.4. Flexible devices 

As of October 2013, there are no published examples of PDI8-CN2 OFETs built on flexible 

substrates. In this section, the methodology for the fabrication of such devices on plastic 

substrates and the results from the electrical measurements on them are discussed. Moreover, 

in section 7.4, the operation of such devices as flexible amine sensors is discussed. 

5.3.4.1. Preparation 

Similarly to the fabrication of flexible pentacene OFETs, described in section 5.2.4.1, the 

substrates were taken from a common A4-sized laser printer transparency; they were cleaned 

with an alkaline solution and sonicated at 70 °C. No IPA cleaning and no UV-ozone treatment 

were applied. 

An 100-nm-thick aluminium layer was deposited by thermal evaporation through shadow 

masks in high vacuum. The deposition rate was adjusted at roughly 0.08 nm/s for the first 10 

nm and it was then gradually increased up to 0.5 nm/s. The pressure within the evaporator 

dome was 7.6 x 10-7 Torr in the beginning of the deposition process and reached a maximum of 

3.9 x 10-6 Torr during the evaporation.  

The aluminium films were anodised in a 1 mM citric acid solution. The applied current was set 

at 0.95 mA and the maximum voltage at 5 V. The current application time was 75 seconds. The 

devices were rinsed with DI water and dried before further process. Detailed information on 

aluminium anodisation can be found in section 2.4.2. 

For the OTS treatment of the oxide surface, the substrates were immersed into a 10 mg/mL 

cyclohexane solution of OTS for 10 minutes. This process was carried out in a nitrogen glove 

box. Further details on OTS treatment are given in section 2.4.3. 

A 20-nm-thick film of LDPE was deposited on the substrates after the aluminium anodisation 

process. No shadow masks were used; LDPE covered the entire surface of the substrates. The 

deposition rate was limited to 0.005 nm/s for the first 9 nm of thickness and it was then 

increased to 0.01 nm/s and maintained at this level until the end of the process. The pressure 

within the dome was kept below 8.0 x 10-7 Torr. The substrates were later annealed at 95 °C in 

ambient atmosphere for 25 minutes. The LDPE-treatment of oxides is discussed in section 

2.4.5. 

A 50-nm-thick film of PDI8-CN2 was deposited on the entire surface of all substrates by thermal 

evaporation. The deposition rate was varied from 0.02 to 0.07 nm/s. The pressure was kept 

below 8.2 x 10-7 Torr throughout the evaporation process. The substrates were not further 

heated during the semiconductor deposition. 

Gold was finally deposited by thermal evaporation though shadow masks. The dimensions of 

the resulting OFET channels are 10 μm (length) x 2 mm (width). The final thickness of the 

deposited electrodes was 50 nm. The deposition rate varied from 0.033 to 0.11 nm/s. The 

pressure was kept below 1.0 x 10-6 Torr. 
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Figure 5-37 – Output characteristics of a flexible top-gold-contact PDI8-CN2 OFET based on AlOx-OTS dielectric. 

 

Figure 5-38 – Transfer characteristics of a flexible top-gold-contact PDI8-CN2 OFET based on AlOx-OTS dielectric. 
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5.3.4.2. Electrical characteristics 

All measurements were taken in ambient conditions, i.e. at room temperature and under usual 

room light conditions. The electrical characteristics of these devices were comparable with 

those of the devices built on the same dielectric combination (AlOx-LDPE) but on rigid 

substrates, as discussed in section 5.3.2. The threshold voltage of the device under test was 

found to be -1.3 V, which again indicates a normally-on behaviour; this can be confirmed by 

both its output and transfer characteristics, shown in Figure 5-37 and Figure 5-38, respectively. 

As seen in Figure 5-37, gate leakage was found to start becoming pronounced at Vds = +3 V, 

which can indicate that the AlOx dielectric strength is weaker when it is grown on this kind of 

plastic substrate, as something similar was not observed in the characteristics of the devices 

with AlOx-LDPE dielectric which were built on rigid substrates. 

The mobility was also found to be comparable; its calculated value was ~1.1 x 10-2 cm2V-1s-1. In 

the deformation tests discussed in section 7.4, it is shown that mobility is highly sensitive to 

mechanical stress applied to the substrate; this property can potentially be harnessed as a 

strain sensing parameter. 

5.3.5. Comparison and conclusion on PDI8-CN2 OFETs 

PDI8-CN2 is an interesting organic n-type semiconductor with good environmental stability and 

good mobility [85]. The scarcity of demonstrated examples in the literature gives an additional 

value to the work presented in this section. The novelties discussed here include the 

fabrication of OFETs with LDPE-treated SiO2 and AlOx dielectrics, OFETs with an all-polymer 

gate dielectric, as well as flexible OFETs based on this semiconductor; the latter were also used 

in the mechanical deformation tests and the amine vapour sensing experiments, discussed in 

section 7.4. 

A comparison of the calculated values for all the fabricated PDI8-CN2 OFET architectures is 

given in Table 5-II. All investigated OFETs were found to be from largely to marginally normally-

on devices. The SiO2-OTS device had among the highest mobilities, having a value of roughly 

1.4 x 10-2 cm2V-1s-1, almost double than that of the LDPE-treated one. However, the very 

negative threshold voltages of both devices make it difficult to switch them off; the SiO2-OTS 

device had a Vth of -5.8 V, while the SiO2-LDPE one gave a value of -2.4 V. 

AlOx-OTS on silicon substrate showed a relatively low mobility of roughly 2.0 x 10-3 cm2V-1s-1, 

whereas the values for both AlOx-LDPE devices were about an order-of-magnitude higher; the 

device built on silicon had a value of ~1.5 x 10-2 cm2V-1s-1 while the value of the device built on 

a plastic substrate was ~1.1 x 10-2 cm2V-1s-1. Regarding threshold voltages, the AlOx-OTS 

showed a Vth of zero volts, while the rigid AlOx-LDPE had a Vth value of -0.4 V. On the contrary, 

the AlOx-LDPE device built on a flexible plastic substrate had an even more negative Vth value 

of -1.3 V. 

The investigated PDI8-CN2 OFETs gated exclusively by an evaporated LDPE layer and employing 

top silver electrodes showed a slightly lower mobility values than those of the AlOx-gated 

devices; the calculated values were roughly 1.0 x 10-3 cm2V-1s-1. The annealing of the LDPE 

insulator prior to the semiconductor deposition was found to affect the off-current and the Vth 

of the devices; the not-annealed device had a Vth value of -1.7 V, whereas the value of the 

annealed device was -0.9 V. 
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Table 5-II – Comparison of all fabricated PDI8-CN2 OFET architectures. The cells highlighted in green colour 
indicate material combinations that have not been reported in the international literature, as of October 2013. 

OSC Substrate Dielectric Treatment 
Top-contact 

material 

Ci 

(nF/cm2) 

Vth 

(V) 

μ 

(cm2V-1s-1) 
Comments 

PDI8-CN2 

Si/SiO2 

SiO2 

OTS 

Au 

27 -5.8 0.01369 

 

LDPE 27 -2.4 0.00755 

AlOx 

OTS 480 0.0 0.00196  

LDPE 98 -0.4 0.01526  

LDPE Ag 

5 -1.7 0.00095 Not-annealed LDPE 

5 -0.9 0.00106 Annealed LDPE 

Plastic AlOx LDPE Au 98 -1.3 0.01086 
Pronounced gate 

leakage at Vds>+3V 
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5.4. Tetracene OFETs 

The use of tetracene has been demonstrated in the fabrication of OFETs and the organic light-

emitting transistors, known as OLETs. Remarkable ambipolar and light emitting properties 

have been reported for transistors built on tetracene single-crystals in conjunction with a 

PMMA-treated SiO2 gate dielectric [77]. 

In this section, the device fabrication methodology and the results from the electrical 

characterisation of tetracene OFETs are discussed. As an overall observation, tetracene OFETs 

were found to have very unstable electrical characteristics when measured in ambient 

conditions; nevertheless, their interesting light sensitivity can be exploited for specialised 

applications as discussed in section 6.4. 

5.4.1. Aluminium-oxide-gated devices 

Tetracene OFETs built on OTS-treated AlOx dielectric are investigated in this section. The 

properties of tetracene devices built on SiO2 dielectric and operated as two-contact devices 

(with no use of the gate electrode) are discussed in section 6.4. 

5.4.1.1. Preparation 

Silicon substrates with a 100-nm-thick thermal oxide layer were used. They were cleaned by 

sonication in an alkaline solution and IPA and they were finally treated with UV-ozone. A 

detailed description of substrate preparation is given in section 2.2.4. 

An 100-nm-thick aluminium layer was deposited by thermal evaporation through shadow 

masks in high vacuum. The pressure within the evaporator dome was 7.4 x 10-7 Torr in the 

beginning of the deposition process and reached a maximum of 3.7 x 10-6 Torr during the 

evaporation. The deposition rate varied from 0.003 nm/s to 0.8 nm/s. 

The aluminium films were anodised in a 1 mM citric acid solution. The applied current was set 

at 0.95 mA and the maximum voltage at 5 V. The current application time was 75 seconds. The 

devices were rinsed with DI water and dried before further process. Detailed information on 

aluminium anodisation can be found in section 2.4.2. 

For the AlOx-OTS devices, the substrates were immersed into a 10 mg/mL cyclohexane solution 

of OTS for 10 minutes. This process was carried out in a nitrogen glove box. Further details on 

OTS treatment are given in section 2.4.3. These substrates were stored in a dark vacuum oven 

for several weeks before tetracene deposition. 

A 50-nm-thick film of tetracene was deposited on the entire surface of all substrates by 

thermal evaporation. The deposition rate varied from 0.07 to 0.09 nm/s. The pressure was 

kept below 3.3 x 10-7 Torr throughout the evaporation process. The substrates were not 

further heated during the semiconductor deposition. 

Gold was finally deposited by thermal evaporation though shadow masks. The dimensions of 

the resulting OFET channels were 10 μm (length) x 2 mm (width). The final thickness of the 

deposited electrodes was 50 nm. The deposition rate varied from 0.013 to 0.08 nm/s, while 

the pressure was kept below 1.7 x 10-6 Torr. 
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5.4.1.2. Electrical characteristics 

The electrical characteristics of the tetracene OFETs with AlOx-OTS dielectric exhibited 

significant instability issues; consecutive drain or gate voltage sweeps yielded largely different 

results, mainly due to pronounced hysteresis. Figure 5-39 shows the oscilloscope screenshot 

from the I-V converter characterisation system, discussed in Chapter 4; in this plot, hysteresis 

is clearly observed in the difference between the rising and falling flanks of the output (blue) 

curve. In addition, even low light intensities had a large impact on the electrical properties of 

these tetracene devices, as discussed in detail in section 6.4.2.1. 

Some representative output characteristics of a tetracene OFET are shown in Figure 5-40. In 

this graph, at the highest gate bias of -3 V, a curvature and drop of drain current was observed 

for high drain voltages above saturation. Interestingly, a very similar behaviour can be seen in 

the graphs given in published work on SiO2-gated tetracene OFETs with NiOx top electrodes 
[122]. 

The transfer characteristics of the same device are shown in Figure 5-41. The values of 

threshold voltage and mobility were found to be very similar to those of pentacene devices 

built on the same dielectric combination (AlOx-OTS), discussed in section 5.2.2.2; the calculated 

value of Vth was -1.7 V and the value of μ was roughly 6.0 x 10-4 cm2V-1s-1. 

 

Figure 5-39 – Oscilloscope screenshot of a top-gold-contact tetracene OFET based on AlOx-OTS dielectric 
measured with the I-V converter system. The minor oscillation seen in the Vout (blue) curve is due to mains pickup 
(50Hz).   
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Figure 5-40 – Output characteristics of a top-gold-contact tetracene OFET based on AlOx-OTS dielectric. 

 

Figure 5-41 – Transfer characteristics of a top-gold-contact tetracene OFET based on AlOx-OTS dielectric. 
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5.5. PBTTT OFETs 

As discussed in section 2.5.5, a variety of poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-

b]thiophenes), known as PBTTT, semiconducting polymers with alkyl side chains of different 

lengths have been developed; examples of their exploitation as active materials in OFETs have 

shown remarkable charge carrier mobility values and enhanced environmental stability than 

other common polythiophenes such as P3HT [95, 123]. 

In this section, the fabrication methodology and the results from the electrical characterisation 

of SiO2-gated OFETs based on a PBTTT polymer with a C16H33 side chain (PBTTT-C16) are 

discussed. Devices of this architecture were also used as sensing transducers for the alcohol 

vapour sensing tests, discussed in section 7.3. 

5.5.1.1. Preparation 

The employed substrates were taken from an arsenic-doped silicon wafer covered with a 300-

nm-thick thermal SiO2 layer. The substrates were cleaned with the standard cleaning process, 

i.e. they were sonicated in an alkaline solution and in IPA and a final UV-ozone treatment was 

applied for 270 seconds. More details on substrate preparation are given in section 2.2.4. 

No surface treatment was applied to the SiO2 surfaces. An adhesion-promoting bilayer of 

patterned aluminium (Al) and chromium (Cr) pads was deposited on the SiO2 surface; the 

thickness of each layer was 10 nm for Al and 5 nm for Cr. The shadow masks used were of the 

same pattern and dimensions as the gold masks discussed below. 

PBTTT-C16 was dissolved in 1,2-dichlorobenzene (7.5 mg/mL) and heated at 100 °C. An 

amount of 50 μL of pre-heated solution was spin cast onto each substrate; the substrates were 

spun at 1500 rpm for 60 seconds. All substrates were annealed at 95 °C in ambient 

atmosphere for 45 minutes. All solution preparation, spin coating and annealing processes 

were conducted in dimmed light conditions. 

Gold was deposited with thermal evaporation through shadow masks; the masks were aligned 

with the previously deposited Al/Cr adhesion promoting pads. The resulting channel 

dimensions were 5 μm (length) by 1 mm (width); 20 OFETs were made on each substrate. The 

deposition rate varied from 0.023 to 0.043 nm/s, while the pressure was kept below 2.3 x 10-6 

Torr throughout the deposition process. 

5.5.1.2. Electrical characteristics 

All measurements were taken in ambient conditions, i.e. at room temperature and under usual 

room light conditions. 

Figure 5-42 and Figure 5-43 show the output and transfer characteristics of device under test. 

Similarly to the SiO2-OTS pentacene devices, the output curves show that drain current did not 

saturate regardless of the absence of off-current. The threshold voltage was found to have a 

very low value of -0.5 V and the mobility was calculated at roughly 1.2 x 10-2 cm2V-1s-1. As a 

reference, mobility values of 0.6 cm2V-1s-1 for PBTTT-C14 OFETs based on OTS-treated SiO2 

dielectric have previously been reported [124]; this significant difference can be attributed to 

the fact that OTS treatment enhances grain formation and results in higher charge carrier 

mobility values. 
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Figure 5-42 – The output characteristics of a top-Au-contact PBTTT OFET built on SiO2. 

 

Figure 5-43 – Transfer characteristics of a top-Au-contact PBTTT OFET built on SiO2. Left y-axis: modulus of drain 
current versus gate voltage. Right y-axis: square root of the modulus of drain current versus gate voltage  
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5.6. Overall comparison of fabricated OFETs 

The results from the electrical characterisation of all OFETs presented in this section are 

summarised in Table 5-III. The values extracted from the experimental data reveal the typically 

low (<1 cm2V-1s-1) charge carrier mobility of organic semiconductors; this performance is 

inferior to that of inorganic semiconductors. This fact confirms that OSCs are inappropriate for 

demanding applications where the high output impedance of a semiconductor device would 

compromise the performance of an integrated system. Nevertheless, the OSCs remain a very 

competitive and versatile solution for specialised applications, such as the vapour sensing 

systems discussed in Chapter 7.  

Table 5-III – Comparison of OFET electrical characteristics. The cells highlighted in green colour indicate material 
combinations that have not been reported in the international literature, as of October 2013. 

OSC Substrate Dielectric Treatment 
Top-contact 

material 

Ci 

(nF/cm2) 

Vth 

(V) 

μ 

(cm2V-1s-1) 
Comments 

Pentacene 

Si/SiO2 

SiO2 

OTS 

Au 

27 -1.4 0.10537 

Poor saturation 

LDPE 27 -2.4 0.05671 

AlOx 

OTS 480 -1.0 0.00070  

LDPE 98 -1.4 0.00315  

LDPE 5 -3.2 0.00004  

Plastic AlOx LDPE 98 -1.7 0.02119 
Ambipolar 

behaviour 

PDI8-CN2 

Si/SiO2 

SiO2 

OTS 

Au 

27 -5.8 0.01369 

 

LDPE 27 -2.4 0.00755 

AlOx 

OTS 480 0.0 0.00196  

LDPE 98 -0.4 0.01526  

LDPE Ag 

5 -1.7 0.00095 Not-annealed LDPE 

5 -0.9 0.00106 Annealed LDPE 

Plastic AlOx LDPE Au 98 -1.3 0.01086 
Pronounced gate 

leakage at Vds>+3V 

Tetracene Si/SiO2 AlOx OTS Au 480 -1.7 0.00060  

PBTTT-C16 Si/SiO2 SiO2 none Au 9 -0.5 0.01174 Poor saturation 

 

The highest mobility of 0.105 cm2V-1s-1 was recorded for a pentacene OFET based on SiO2-OTS 

dielectric. For both pentacene and PDI8-CN2 devices with SiO2 dielectric, the OTS treatment of 

the oxide resulted in roughly double mobility values than those on LDPE-treated surfaces. 

The pentacene devices built on AlOx dielectric showed significantly lower mobility values; this 

result comes in good agreement with previously published work on other hole-transporting 
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semiconductors gated with AlOx. Interestingly, the electron-transporting PDI8-CN2 devices 

showed slightly better mobility characteristics on AlOx rather than on SiO2. 

The tetracene OFETs on AlOx-OTS dielectric showed very similar characteristics to the 

pentacene devices built on the same dielectric combination. 

The PBTTT-C16 OFETs built on bare SiO2 showed very low threshold voltage values and had a 

mobility of roughly 6.0 x 10-3 cm2V-1s-1. 

Moreover, the green-shaded cells of Table 5-III show the material combinations which have 

not been demonstrated in the literature, as of October 2013. An interesting example is the 

demonstrated pentacene OFET which was exclusively gated by an evaporated LDPE layer; this 

is the only example of a hole-transporting semiconductor ever reported to operate on this 

dielectric.  

Finally, Figure 5-44 shows two pairs of PDI8-CN2 and pentacene OFETs built on a plastic 

substrate with AlOx-LDPE dielectric, in an early attempt to fabricate a flexible CMOS inverter 

based on these two semiconductors. All devices operated well when tested individually, but 

failed to operate as an inverter when appropriately wired as such; this could be due to either 

the normally-on behaviour of PDI8-CN2 or the difference in the mobility values of pentacene 

and PDI8-CN2 built on the same dielectric. Further optimisation of this approach is suggested 

as a future goal. 

 

Figure 5-44 – A photograph of two pairs of PDI8-CN2 (red on LHS) and pentacene (purple on RHS) low-voltage 
OFETs built on the same plastic substrate. 
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Chapter 6. Light sensitivity of organic semiconductor devices 

One of the most attractive potentials of organic semiconductors (OSCs) is their exploitation in 

optoelectronic applications. Devices such as organic light-emitting diodes (OLEDs) and organic 

photovoltaics (OPVs) currently are the flagships of organic semiconductor industry; prominent 

examples are the use of active-matrix OLED (AMOLED) displays in Samsung’s top-of-range 

smartphones [125], and the very recently announced curved smartphone by LG, which employs 

an 6-inch OLED display built on a plastic substrate [126]. 

Although the sensitivity of OSCs to light is the operating principle of some devices such as 

OPVs, this property remains unwanted for several applications in which device stability is of 

vital importance. OFETs used as sensing transducers fall within this category; the sensitivity of 

any sensing parameter to environmental conditions can lead to erratic behaviours, which can 

be misinterpreted as sensing responses. In some device configurations, the light-related 

problems can be mitigated by the application of opaque encapsulation layers; however, in the 

case of OFET operating as gas sensing transducers, no encapsulation can be applied to the 

surface of the semiconductor as it should be exposed to the environment so that an airborne 

substance can be detected. This fact puts more accent on the value of light stability of OFETs in 

such applications. 

This chapter focuses on the effects of light on several electrical parameters of OFETs. A 

comprehensive study of the results of different wavelength ranges on the gate capacitance, 

drain current, threshold voltage and mobility of pentacene and PDI8-CN2 OFETs is presented in 

sections 6.1 to 6.3. The tests discussed here include spectral analyses of the emitted (incident) 

light and the semiconductor film absorption, impedance measurements on capacitors, and 

real-time multiparametric OFET measurements in bespoke light-exposure test rigs. Moreover, 

the results from a separate study on tetracene-based devices are discussed in section 6.4.  

 

Figure 6-1 – A photograph of an illuminated OFET under test placed on light exposure test rig  
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6.1. Experimental methods 

For the wavelength-dependent light sensitivity measurements on capacitors and OFETs, which 

are presented in sections 6.2 and 6.3, a special light exposure test rig was built. The light 

sources were measured and calibrated using a spectrometer. Moreover, the absorption 

spectra of thin films of pentacene and PDI8-CN2 were studied. This section describes the 

methodology followed for the delivery of these measurements. 

6.1.1. Thin-film sample preparation 

For a deeper understanding of the light-induced phenomena in OFETs, discussed in section 6.3, 

a study of the absorption spectra of the employed semiconductors was conducted. Thin films 

of both organic semiconductors studied here were deposited on transparent substrates for 

later analysis using a spectrometer, as discussed in the following section. 

Two sets of round substrates (diameter: 20 mm) made of fused quartz were used for this work; 

they were initially cleaned by immersion in a Petri-dish filled with IPA and then dried using dry 

nitrogen. A 50-nm-thick film of pentacene was deposited on the first set of samples using 

thermal evaporation; the pressure of the evaporator dome was kept below 3.9 x 10-7 Torr and 

the deposition rate was varied from 0.02 to 0.07 nm/s. Similarly, on the second set of samples, 

50 nm of PDI8-CN2 were deposited in a high vacuum with a pressure kept below 6.4 x 10-7; the 

deposition rate varied from 0.016 to 0.023 nm/s. None of the substrates were additionally 

heated during the semiconductor evaporation. Additionally, two cleaned blank substrates later 

served as control samples for the spectral measurements.  

6.1.2. Spectral analysis and LED calibration setup 

Four commercial high-brightness light-emitting diodes (LED) were used as light sources 

(Multicomp OVL-5528, OVL-5526, OVL-5524 and OVL-5523). Their nominal peak wavelengths 

are 465 nm, 520 nm, 589 nm and 625 nm for the blue, green, yellow and red LED, respectively.  

For various constant DC current values, over the entire LED operating range, the 

electroluminescence emission of the LEDs was collected with an optical fibre coupled to a 

spectrometer (Andor Shamrock 303i). Considering their identical emission patterns, as given by 

their specifications, and due to their high intensity, the LEDs were measured from a fixed 

position, at a distance of 30 cm from the input of a centrally aligned optical fibre without 

additional focussing lenses; this approach was followed in order to avoid the saturation of the 

spectrometer sensor. The aperture (slit) of the spectrometer was set to 10 μm and the 

exposure time to the minimum setting of 21 ms for all measurements. The LEDs were powered 

by a programmable current source (Keithley 2400) and the total photon counts under various 

driving forward currents were measured for each of them.  

The absorption spectra of the semiconductors were also calculated from transmission 

measurements; a white light source was used to shine light on one side of the fused quartz 

samples, described in the previous section, and the input of the optical fibre of the 

spectrometer was placed on their opposite sides. The absorption spectra were calculated by 

the spectrometer control software. In addition, measurements on blank control samples were 

performed for comparison and correction of the results. Figure 6-2 shows the normalised 
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absorption spectra of pentacene and PDI8-CN2 along with the emission spectra of the four 

LEDs, all driven with a DC current of 15 mA. 

 

Figure 6-2 – Comparison of the spectra of the four LEDs (coloured curves) with the normalised absorption spectra 
of a pentacene (dashed black curve) and a PDI8-CN2 (solid grey curve) films deposited on quartz substrates. Left 
Y-axis: measured photon counts for If=15mA, spectrometer slit diameter: 10 μm and exposure time: 21 ms. Right 
Y-axis: normalised absorption of the 50-nm-thick pentacene and PDI8-CN2 films. 

 

Figure 6-3 – Total photon counts (integrals) of the four LEDs versus forward drive current for the same 
measurement conditions. Simple linear regression fits for the linear (higher) operating region of each LED are 
shown as dashed lines. A total photon count value of 9 x 10

5
 was selected; this value corresponds to a photon flux 

of 5.5 x 10
17

 photons x m
-2

 x s
-1

 for the given spectrometer settings. The calibrated drive current values for the 
selected photon flux are shown on the bottom right. 
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For reliable comparative tests between different wavelengths of light, the drive voltages which 

effectively yield the same photon flux were calculated for each LED. As shown in Figure 6-3, for 

a photon count of 9 x 105, which, for the given spectrometer settings, corresponds to a photon 

flux of 1024 photons x m-2 x s-1, the LED forward currents (If) were calculated to be 22.9 mA, 

10.9 mA, 28.2 mA and 15.0 mA, for the blue, green, yellow and red LED, respectively. 

6.1.3. Exposure optics setup 

Appropriate light exposure and characterisation rigs were built for the tests on capacitors and 

OFETs. The four LEDs analysed in the previous section were soldered onto a printed-circuit 

board (PCB) which, in turn, was attached to a horizontal rail at a height of 120 mm from the 

device under test (DUT). A collimating and a focusing lens were placed between them 

providing a focused beam which illuminated the entire OFET channel area. Comparing the 

illuminated area of the sample to the aperture of the spectrometer sensor and assuming that 

the intermediate lenses do not attenuate the light and that the entire beam shines on the 

channel area, the calibrated photon flux on the surface of the OFET channel can be estimated 

to be 7 orders of magnitude higher than the value measured by the spectrometer, i.e. roughly 

1024 photons x m-2 x s-1. 

Specific details on the characteristics of the light exposure test rigs for capacitors and OFETs 

are given in sections 6.2.1 and 6.3.2, respectively. 

 

Figure 6-4 – A sketch of the light exposure test rig  
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6.2. The effect of illumination on gate capacitance 

For a comprehensive study of the light sensitivity of devices with complex structure, such as 

OFETs, it is meaningful to investigate the individual effects that can be induced on each of their 

building blocks. For this reason, along with the previously discussed investigation of the 

absorption spectra of the employed semiconductors, a study of the effects of illumination on 

the gate stack was considered as an important supplement. For this purpose, the capacitors 

which had been fabricated and served as a tool for the quantification of their dielectric 

permittivity, as discussed in section 5.1, were then tested under light exposure. In principle, 

the large energy bandgap of the employed dielectrics, i.e. aluminium oxide (AlOx) and low-

density polyethylene (LDPE), do not absorb light of the wavelengths used for these 

measurements and thus, they cannot be affected by such illumination. Interestingly, the 

results from the tests on AlOx-based capacitors revealed an unusual behaviour, which has not 

been reported before. The methods used and the results of these series of tests are discussed 

in this section.  

6.2.1. Test methodology 

Three sets of capacitors based on three different dielectric configurations, namely: AlOx-OTS, 

AlOx-LDPE and LDPE (only), were used for these tests. The preparation procedure for all sets of 

capacitors is described in section 5.1.1. The thin silver layers, which served as the top 

electrodes, were semi-transparent, permitting the incident light to reach the dielectric.  

The impedance measurement rig described in section 3.2 was modified for the light sensitivity 

tests; the metal box lid was removed and the assembly comprising the calibrated LEDs and the 

lenses, described in sections 6.1.2 and 6.1.3, respectively, was attached to it. 

 

Figure 6-5 – A photograph of the actual light illumination test rig for impedance measurements on capacitors. 

The same impedance analyser (Solartron SI 1260) was used and the same settings were 

applied: a frequency sweep from 1 Hz to 10 KHz for a zero-offset AC drive with an amplitude of 
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1 V. The capacitors were initially measured in the dark and then under red, yellow, green and 

blue light with interleaving recovery periods in the dark. The capacitors were illuminated for 

one minute before the measurement sweep was applied and they were left to recover for 5 

minutes between illuminations. Control measurements were also taken in the dark during 

these interleaving recovery periods. 

6.2.2. Discovery of photocapacitance 

Figure 6-6 to Figure 6-8 show the plots of Ci versus frequency for the three kinds of capacitors 

under all light conditions. The results from impedance measurements in the dark are also 

discussed in section 5.1. 

Recalling the discussion given in section 5.1.2, the AlOx-LDPE devices showed an unexpectedly 

high capacitance, with a Ci of roughly 680 nF/cm2 in dark conditions. This is explained by the 

possible penetration of silver into the not-annealed, very thin LDPE layer, which, as 

demonstrated by Kanbur et al. [72], is very like to have voids. Considering that the gate stacks of 

all AlOx-LDPE OFETs were annealed, this sample does not represent the actual gate stack of the 

respective OFETs. However, this capacitor was tested under illumination for comparison with 

the AlOx-OTS sample. The values for the AlOx-OTS device fell in the same order of magnitude 

with a Ci of 480 nF/cm2 in the dark. It is worth mentioning that, for both AlOx-based capacitors, 

capacitance dropped significantly with increasing frequency. 

When exposed to light, both capacitors exhibited a substantial capacitance increase, which 

was independent of the wavelength of the incident light; all calibrated light sources, which 

roughly cover the entire visible light spectrum, induced almost identical results. For the 

reference bias frequency of 6.33 Hz, the relative capacitance changes (ΔCi/Ci,0) varied between 

15% to 18.5% for both capacitors and for all wavelength ranges; the comparative results are 

shown in Figure 6-9. Additional measurements were conducted during the intermediate dark 

periods; a new measurement sweep was applied one minute after each illumination was 

switched off. In all cases, the measured capacitance values recovered to their respective pre-

exposure levels; however, considering this one-minute-long window, it remains unknown 

whether this quick recovery is immediate or takes some seconds. 

Contrarily, the LDPE (only) capacitor was found to be largely immune to illumination, as no 

significant capacitance change was measured over the entire range of applied drive 

frequencies. Neglecting the noisy figures at low frequencies, the capacitance of this all polymer 

dielectric was insensitive to both light and the frequency of the applied bias. These results 

nominate an LDPE (only) architecture as a good candidate for a light stable gate stack, at the 

expense of a much lower Ci. When light stability is of vital importance, a compromise in gate 

capacitance can be made; besides, low-k dielectrics have been demonstrated as a good choice 

for OFET dielectric, as they can enhance charge carrier mobility and mitigate its degradation 

under gate bias thanks to their low polarity [58]. The low polarity of LDPE can be considered as 

an important factor for the immunity of these capacitors to both high frequencies and 

illumination. 

The phenomenon of dielectric photocapacitance has not attracted significant attention in the 

literature, as the relevant publications are scarce; there are few published studies on metal-

insulator-semiconductor (MIS) devices employing both inorganic [127, 128], and organic 

semiconductors [129]. The structural differences between these demonstrated examples and 

the devices presented here do not allow for direct comparisons between them. In the latter 
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example [129], Watson et al. used a well-known photosensitive semiconductor, poly(3-

hexylthiophene) (P3HT) for their MIS capacitors; presumably, the detected capacitance 

changes under illumination were mainly due to the sensitivity of P3HT which overshadowed 

any sensitivity of the employed dielectric. 

 

Figure 6-6 – Capacitance per unit area versus frequency for an Al-AlOx-OTS-Ag capacitor versus frequency in the 
dark and under red, yellow, green and blue light. AC amplitude: 1 V. DC offset: 0 V. 

 

Figure 6-7 – Capacitance per unit area versus frequency for an Al-AlOx-LDPE-Ag capacitor versus frequency in the 
dark and under red, yellow, green and blue light. AC amplitude: 1 V. DC offset: 0 V. 
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Figure 6-8 – Capacitance per unit area versus frequency for an Ag-LDPE-Ag capacitor versus frequency in the dark 
and under red, yellow, green and blue light. AC amplitude: 1 V. DC offset: 0 V. 

 

Figure 6-9 – Relative Ci change for AlOx-OTS (black squares), AlOx-LDPE (red circles) and LDPE (only) (blue 
triangles) capacitors under red, yellow, green and blue light illumination. 
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However, as of October 2013, there are no reports of light-induced capacitance changes in 

simple capacitor structures, based exclusively on oxide dielectrics. The sensitivity or inertness 

to illumination can be related to the changes that light can or cannot, respectively, induce on 

the polarisability and thus, the electric dipole moment of the dielectric; such changes can 

rationalise a change in the permittivity of the dielectric. The fact that the energy of the 

incident photons is much lower than the bandgap of the AlOx dielectric can possibly be 

explained by the presence of impurities, which introduce allowed energy states within the 

bandgap, or the fact that anodised AlOx is not as stoichiometric as alumina made with other 

techniques, such as magnetron sputtering. The study and analysis of these interesting 

phenomena extend far beyond the scope of this work; nevertheless, a further investigation of 

the effects of illumination on anodised AlOx capacitors and comparison with capacitors made 

of other oxides is proposed as future work. 

6.2.3. Conclusion 

Light exposure measurements on capacitors showed that aluminium oxide (AlOx) capacitors 

are remarkably susceptible to light as their capacitance increases under illumination. As of 

October 2013, this behaviour has not been reported in the literature. The fact that this 

behaviour was observed in capacitors sourced from different device batches and employing 

differently surface-treated oxides, denotes that the photosensitivity is inherent to the 

anodised oxide itself rather than the surface treatment material. 

According to the wavelength-resolved measurements using calibrated light sources with 

different emission spectra but the same photon flux, the effect of light on all AlOx capacitors 

was found to be independent of the wavelength of the incident light, at least within the visible 

frequency range. A full and rapid recovery was observed once the capacitors were returned in 

dark conditions. 

Conversely, LDPE capacitors were found to be immune to any of these tested wavelength 

ranges. This attribute nominates them as a good dielectric candidate for light-stable OFETs. 

The findings from the tests on the AlOx-based devices justify and motivate a further, thorough 

investigation of the phenomenon of photocapacitance; experiments that confirm these 

important observations remain to be carried out.  Anodised AlOx capacitors with no surface 

treatment must be fabricated for the reproduction and confirmation of the results presented 

here. Then, considering that all four calibrated light wavelength ranges induced very similar 

changes in capacitance, it is worth investigating the effect of different photon fluxes; this study 

can provide information on the relation between the photon flux and the induced 

photocapacitance and whether there is a ‘threshold’ photon flux, above which the 

phenomenon occurs. Moreover, a comprehensive comparison of anodised aluminium oxide 

with stoichiometric Al2O3 grown with other techniques, such as magnetron sputtering, can 

shed light on the nature of this unexpected sensitivity to visible light.  Additionally, 

measurements on capacitors based on other anodised metal oxides, such as titanium dioxide 

(TiO2), would confirm whether this behaviour is unique to anodised AlOx or common for 

different anodised metal oxides.  
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6.3. The effect on OFET electrical characteristics 

As discussed in section 2.4, the importance of the gate insulator in the performance of OFETs 

has been emphasised in several published studies. In the pursuit of high gate insulator 

capacitance, a low thickness of the gate dielectric layer (tox) is generally desirable, since 

capacitance is inversely proportional to tox; however, pinholes and quantum tunnelling are 

common problems which result in high gate leakage currents when the insulator thickness is 

minimised. Dielectrics with high permittivity (high-k dielectrics) are suggested as a solution for 

the mitigation of the severe gate-leakage problems experienced in the modern few-nm-node 

CMOS technology, which transistors conventionally need extremely thin films of SiO2 
[130]. 

However, while a number of alternative oxides with high k have been demonstrated, silicon 

dioxide (SiO2) remains the prevalent and best studied material. 

Apart from determining the drain current of an OFET, as eq. (2.2) and eq. (2.3) describe, the 

permittivity of the gate dielectric also affects drain current indirectly by having an impact on 

the threshold voltage (Vth) of the OFET, as explained below. 

The flat band voltage (VFB) can be approximated by:  

                (6.1)  
 

where φMS is the difference between the work function of the semiconductor and that of the 

gate metal, Qi is the trap charge at the semiconductor-dielectric interface and Cox is the gate 

dielectric capacitance. 

Vth depends on VFB according to [47, 131]: 

                      (6.2)  
 

which, by substituting eq. (6.1), writes: 

                             (6.3)  
 

where ψB is the bulk potential, q is the elementary charge (~1.602 x 10-19 C), n0 is the number 

of free carriers at equilibrium and d is the thickness of the semiconductor. 

Eq. (6.3) suggests that a high Cox value eliminates the dependence of Vth on factors other than 

the intrinsic φMS, whereas a high Qi due to the presence of interface traps can alter Vth. The 

aforementioned high-k dielectrics are usually polar compounds, which are more likely to have 

many surface trap sites and thus, undesirably high Qi.  

A number of approaches to gate insulators with high Cox, yet low Qi, have been proposed; 

these include ultrathin films of polymers that get cross-linked after deposition [132], and thin 

inorganic oxide films with surface modifications to reduce Qi, either by the application of self-

assembled non-polar monolayers  [133, 134], or the physical deposition of non-polar polymer 

interface layers  [135]. Recently, Kanbur et al. demonstrated a novel approach, by successfully 

evaporating low-density polyethylene (LDPE), which can operate as either a stand-alone 

dielectric or a surface treatment of inorganic oxide layers [72], resulting in OFETs with 

apparently low interfacial trap density. 

Most frequently, Cox and Qi of an OTFT are qualitatively or quantitatively assessed from purely 

electrical measurements: Cox is usually measured on a separate parallel-plate capacitor sample, 

as shown in sections 5.1 and 6.2; information on Qi can be derived indirectly from 

subthreshold characteristics, in which the trap density at the semiconductor/dielectric 

interface (Nt) plays an important role; this is described by a variation of eq. (2.6) [136]: 
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  (6.4)  
 

where S is the subthreshold swing (in mV/dec), k is the Boltzmann constant (~1.3806 10−23 JK-

1), T is the temperature and Nt is the trap density at the semiconductor-dielectric interface. 

Sometimes, very low Nt can qualitatively be claimed by the observation of ambipolar 

behaviour in organic semiconductors, as reported by Kanbur et al., and previously by Chua et 

al.  [39]. 

The presence of charge carrier traps has been correlated with the sensitivity of organic 

semiconductor devices to light, however the published work on this field of study remains 

limited. A brief review of published light-sensitivity studies on OFETs follows. 

Salleo et al. published an early study on the use of illumination as a means of OFET recovery 

from gate-bias stress [137]. In this study, polyfluorene (F8T2) OFETs with various gate dielectric 

configurations, based on either an oxide (SiO2) or a polymer (parylene) dielectric, were used; 

the SiO2 oxides were treated with a selection of self-assembled monolayers (SAMs). The 

devices were first electrically stressed by the application of gate bias and then, their recovery 

between dark and illuminated conditions was studied; Vth was found to recover quickly under 

illumination. The authors have concluded that the light-induced recovery is irrelevant of the 

choice of both the dielectric and the dielectric/treatment used; instead, it is suggested that 

this behaviour is due to the absorption of the semiconductor itself. Moreover, they have 

suggested that the affected charge traps were located within the semiconductor film and in 

close proximity to the dielectric, but not at the semiconductor/dielectric interface or within 

the dielectric itself; they assume that visible light should not affect the traps in the dielectric 

due to its high bandgap and that if the traps had been located at the interface, the effect of 

light would have been weaker for the wavelengths absorbed by the semiconductor. All these 

facts and assumptions constitute key differences between this published work and the findings 

of the study presented here. Especially, the discovery of capacitance changes under 

illumination (photocapacitance), discussed in section 6.2.2, shows that even high bandgap 

materials can be affected by visible light. 

Furthermore, a study of the light-induced trap-release in pentacene films was recently 

published by Smieska et al. [138]. In this work, pentacene films with deliberately introduced 

species that induce charge carrier trapping (trap-precursors) were studied using electric force 

microscopy; light-wavelength-resolved measurements revealed that the charge trap release 

rate is higher when the spectrum of the incident light overlaps with the absorption spectra of 

either the pentacene film or the introduced trap-inducing species. 

Feng et al. recently demonstrated pentacene OFETs with tunable Vth, which incorporate a 

poly(9,9-dioctylfluorene) (PFO) conjugated polymer film as gate oxide surface treatment  [139]. 

In this study, the polymer film was intentionally employed to enhance charge-trapping and 

therefore make the threshold voltage more susceptible to illumination. Substantial Vth changes 

towards a normally-on behaviour were observed, whereas hole mobility showed no 

dependence on illumination. 

Very recently, Yang et al. demonstrated the detection of either left- or right-handed circularly 

polarised light using OFETs based on the two different enantiomers of helicene organic 
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semiconductor; a left-handed (-) and a right-handed (+) one, respectively [140]. The matching of 

the chirality of the semiconductor with the respective polarisation incident light manifested 

itself as a change in the subthreshold characteristics of the OFET under test. 

In another study, Shang et al. also suggested that light-induced Vth changes are independent of 

the dielectric used [141]. However, both employed oxides, i.e. SiO2 and Al2O3, had been treated 

with an octadecyltrichlorosilane (OTS) SAM prior to the deposition of the semiconductor; 

therefore, it is very likely that the interfacial trap densities were very similar despite the 

different underlying oxide. 

It is worth mentioning that none of the aforementioned studies considers the phenomenon of 

photocapacitance, i.e. a change of the bulk capacitance of the gate dielectric (Ci) under 

illumination with photon energies well below the bandgap of the insulator; as mentioned 

above, Salleo et al. even suggested that visible light should have no effect on a material with 

such a large bandgap. However, the results from the photocapacitance study, discussed in 

section 6.2, show that AlOx is highly susceptible to light. This fact adds another important 

factor into consideration when the light stability of complex devices such as OFETs is under the 

spotlight. 

This section presents the results from the electrical characterisation of OFETs under controlled 

light-exposure. In contrast to the work demonstrated by Shang et al. [141], the study presented 

here, compares and contrasts pentacene and PDI8-CN2 OFETs based on the same underlying 

oxide (AlOx), but modified with different surface treatments: either an octadecyltrichlorosilane 

(OTS) self-assembled monolayer (SAM) or an evaporated low-density polyethylene (LDPE) 

layer. Real-time multiparametric measurements disentangled the trends of Vth and μ under 

illumination, which allows for drawing safe conclusions on the importance of the gate 

dielectric treatment. 

6.3.1. Device preparation 

All substrates for the OFETs under test were taken from a silicon wafer with an 100-nm-thick 

silicon dioxide layer. The substrates were cleaned in an ultrasonic bath twice, using an alkaline 

detergent with deionized water and IPA, respectively. The final cleaning process was an UV- 

ozone treatment. More details on substrate preparation are given in section 2.2.4. 

Following the common bottom-gate device architecture, an 100-nm-thick layer of aluminium 

was thermally evaporated through shadow masks at a deposition rate of 10-2 nm/s under a 

high vacuum of 5 x 10-7 Torr. The patterned aluminium layer was electrochemically oxidised in 

a citric acid solution by the application of a constant current of 0.95 mA at a voltage limit of 5 

V; the current application time was 75 seconds. More information on aluminium oxide (AlOx) 

formation is given in section 2.4.2. 

On the first group of samples, an OTS SAM was deposited by immersion of the samples into a 

cyclohexane solution of OTS for 10 minutes; this process was carried out in a nitrogen glove 

box. Further details on OTS treatment of oxides are given in section 2.4.3. Hereafter, these 

samples will be referred to as AlOx-OTS. 

On the second group of samples, a 25-nm-thick layer of low-density polyethylene (LDPE) was 

thermally evaporated at a low temperature of 300°C-400°C under high vacuum. The deposition 

rate was in the range of 10-2 nm/s. These samples were annealed at 95°C for 20 minutes in 
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vacuum. Details on LDPE deposition are given in section 2.4.4. Hereafter, this group of samples 

will be referred to as AlOx-LDPE.  

On sets of devices, 50-nm-thick layers of pentacene and PDI8-CN2 were deposited in high 

vacuum. The deposition rate was in the range of 5 x 10-2 nm/s for both materials. Both of them 

were used as purchased, without further purification. The substrates were not additionally 

heated during the evaporation.  

Finally, the source and drain top electrodes were deposited by thermal evaporation of gold 

through shadow masks. The deposition rate was 7 x 10-2 nm/s under a high vacuum of 5 x 10-7 

Torr. The resulting OFET channels had a length of 10 μm and width of 2 mm. After fabrication, 

the devices were stored in a dark vacuum oven, thermostatically-controlled at 40 °C. 

6.3.2. Test methodology 

The measurements were taken in ambient air in an air-conditioned laboratory at a stable room 

temperature of 23 °C. The samples under test were contacted by three Cascade-Microtech 

PH100 probe positioners with tungsten needles. The needles were electrically connected to a 

switch box which could route the source, drain and gate signals to either a set of Keithley 2400 

units for the extraction of conventional current-voltage characteristics, as discussed in section 

3.3, or the automated real-time characterisation system, described in Chapter 4. 

 

Figure 6-10 – A photograph of a substrate with 4 OFETs placed in the light exposure test rig. A focused beam of 
blue light illuminates the channel area of the bottom-right device. Substrate dimensions: 12 mm  x 24 mm. 

For the automated AC measurements, the applied drive was a zero-offset sinusoidal signal 

with a frequency of 6 Hz and a 3 V (peak) amplitude. Sets of eleven consecutive cycles of the 

input and output signals were simultaneously sampled every five seconds, and a median filter 

was applied to all calculated parameters of these sets. More details on the automated 

electrical characterisation are given in section 4.3. 

As a control experiment, an integrated circuit temperature sensor (LM35) was tested in lieu of 

the samples; the sensor was illuminated by the same focused beams and under the same 
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conditions as above. For all calibrated light sources, a rapid minor temperature increase of 0.2 

°C ± 1% above room temperature was measured. The sensor quickly recovered to room 

temperature when the illumination was ceased. 

6.3.3. Results and discussion 

6.3.3.1. Standard I-V characteristics 

The optical test rig, described in sections 6.1.2 and 6.1.3 , was used for the investigation of the 

effects of visible light illumination on OFETs.  The conventional transfer curves of both the 

hole-transporting pentacene and the electron-transporting PDI8-CN2, and for both dielectric 

combinations are shown in Figure 6-11 to Figure 6-14. The measurements were taken in the 

dark and under light illumination by the blue LED. 

Interestingly, despite the fundamental differences between the two semiconductors, very 

similar changes in the electrical characteristics of these OFETs were found; both pentacene 

and PDI8-CN2 devices with OTS-treated dielectric were found to be more susceptible to light 

than their LDPE-treated counterparts. In detail, threshold voltage (Vth) shifted towards a 

normally-on (depletion-mode) behaviour in all cases. OTS-treated devices exhibited substantial 

changes under light with a Vth change of +1.05 V for pentacene and -1.15 V for PDI8-CN2. LDPE-

coated devices appeared significantly more stable, with a Vth change of +0.3 V for pentacene 

and -0.35 V for PDI8-CN2. This finding confirms the dependence of light sensitivity on the 

employed dielectric treatment. 

It is worth noting that while LDPE-treated PDI8-CN2 OFETs are normally-off (enhancement-

mode) devices even in the dark, in the case of OTS-treated dielectric, light exposure caused a 

transition from enhancement-mode operation to depletion-mode (normally-on) operation as 

Vth became negative. Similar behaviour has been reported by Feng et al. for pentacene OFETs 

with PFO dielectric treatment [139]. 

In the case of pentacene devices, a safe assumption that the changes are not due to 

photoconductivity can be made. This is backed partly by the absence of any off-current change 

under illumination, but mainly by the fact that the absorption of the semiconducting layer is 

very low in the blue LED emission spectrum, as it can be seen from the spectral analysis in 

Figure 6-2. 

The effects on the calculated mobility were very small; although these changes are not so 

pronounced in these DC measurements, they constitute a noteworthy behaviour in the case of 

prolonged and continuous real-time AC measurements, as discussed below. 
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Figure 6-11 – Transfer characteristics of a pentacene OFET built on an AlOx-OTS dielectric in the dark (black 
rectangles) and under a 5-min-long period of blue light illumination (light blue rectangles). 

 

Figure 6-12 – Transfer characteristics of a pentacene OFET built on an AlOx-LDPE dielectric in the dark (black 
rectangles) and under a 5-min-long period of blue light illumination (light blue rectangles). 
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Figure 6-13 – Transfer characteristics of a PDI8-CN2 OFET built on an AlOx-OTS dielectric in the dark (black 
rectangles) and under a 5-min-long period of blue light illumination (light blue rectangles). 

 

 

Figure 6-14 – Transfer characteristics of a PDI8-CN2 OFET built on an AlOx-LDPE dielectric in the dark (black 
rectangles) and under a 5-min-long period of blue light illumination (light blue rectangles). 
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6.3.3.2. Automated real-time AC measurement results 

The pentacene OFETs with different gate dielectric combinations were further tested with the 

automated real-time multiparametric characterisation system. The advantages of this 

characterisation method are versatile; apart from its capability of calculating multiple 

independent parameters in real time, the symmetrical AC drive can eliminate the gate-bias-

stress-related Vth shifts [104, 142]; moreover, such driving conditions resemble a more realistic 

OFET operation cycle with alternating on and off periods.  

The four calibrated LEDs were used in this optical test rig to shine light on the channel areas of 

the devices under test. The same test pattern was applied to both devices under test. The 

devices were initially characterised in the dark and consequently illuminated by red, yellow, 

green and blue light for 10-minute-long exposure periods with interleaving recovery periods in 

the dark.  

Figure 6-15 to Figure 6-18 show the effects of light exposure on the saturated drain current, 

the threshold voltage (Vth) and the field-effect mobility (μ) of the two samples. All four 

different wavelength ranges induced a drain current increase on both devices, regardless of 

their dielectric surface treatment. However, the magnitude of the effects and the mechanisms 

which induced these changes exhibited a dependence on the wavelength of the light and the 

dielectric surface treatment, as discussed below. Moreover, the incident photon energy was 

found to be an important factor, with blue light illumination resulting in the most remarkable 

changes. This finding comes in contrast to the photocapacitance results, discussed in section 

6.2.2, which showed that the changes in capacitance were independent of the wavelength of 

the incident light. Therefore, the generally observed increase in drain current under 

illumination can, at best, only partially be explained by the photo-enhancement of the bulk 

capacitance of the dielectric itself. 

Moreover, Figure 6-2 shows that the emission spectra of the red and yellow LEDs strongly 

overlap with the pentacene absorption band, the spectrum of the green LED has only a small 

overlap, and that of the blue LED does not overlap at all; considering these spectra, the 

photoconductivity of the semiconductor or the release of traps within the bulk of the 

semiconductor, as suggested in other studies [137, 138], can safely be neglected, as this would 

lead to stronger, not weaker as observed, current enhancement for the absorbed wavelengths.  
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Figure 6-15 – Time-resolved measurements of drain current (black data points) and Vth (blue data points) of a 
pentacene OFET based on AlOx-OTS dielectric layers. The colour-shaded regions indicate the periods of 
illumination of the device with light of the respective colour (red, yellow, green and blue). 

 

Figure 6-16 – Time-resolved measurements of drain current (black data points) and μFE (green data points) of a 
pentacene OFET based on AlOx-OTS dielectric layers. The colour-shaded regions indicate the periods of 
illumination of the device with light of the respective colour (red, yellow, green and blue). 
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Figure 6-17 – Time-resolved measurements of drain current (black data points) and μFE (green data points) of a 
pentacene OFET based on AlOx-LDPE dielectric layers. The colour-shaded regions indicate the periods of 
illumination of the device with light of the respective colour (red, yellow, green and blue). 

 

Figure 6-18 – Time-resolved measurements of drain current (black data points) and μFE (green data points) of a 
pentacene OFET based on AlOx-LDPE dielectric layers. The colour-shaded regions indicate the periods of 
illumination of the device with light of the respective colour (red, yellow, green and blue). 

The analysis of the independent OFET parameters can shed more light on the actual effects 

induced by the illumination. In all cases, threshold voltage (Vth) was promptly affected by light, 
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showing an initial steep positive shift, i.e. towards a normally-on behaviour. This was followed 

by a further slower increase which resembled an exponential change. The OFET with OTS-

coated dielectric was found to be more susceptible; it showed a substantial Vth change from -

1.4 V, in the dark prior to the first illumination, to -0.35 V under blue light. The LDPE-coated 

device was remarkably more stable, exhibiting a maximum change from -1.9 V to - 1.5 V under 

blue light. 

Recalling eq. (6.7), it is clear that Vth can be significantly affected by the density of traps at the 

semiconductor-dielectric interface. Also, as discussed in the introduction above, several 

studies have correlated the illumination of semiconductor devices with trap density reduction; 

this phenomenon is also referred to as trap-release or trap-filling. Considering these facts 

along with the trap density analysis, given in section 5.2.2.3, the much higher interfacial trap 

density of the OTS-treated device, as compared to the LDPE-treated one, can explain its higher 

susceptibility to light exposure. 

Furthermore, the stronger effects induced by the more energetic photons of blue light, as 

compared to light of longer wavelengths, can be explained by the fact that the release of 

charge carriers from deep traps requires photons of high energy. An additional explanation can 

be sought in the spectral analysis, illustrated in Figure 6-2; as discussed above, the absorption 

of pentacene is stronger in the yellow and red wavelength range, which actually filters the 

incident photons with the respective energy. It can then be assumed that a portion of the 

photons emitted by the yellow and red LEDs get absorbed by the semiconductor film and 

never reach the semiconductor-dielectric interface. However, the actual impact of this 

attenuation cannot be easily quantified. 

It is worth mentioning that the employed Vth evaluation algorithm, which is described in 

section 4.2.4.1, is independent of the magnitude of Ci. Therefore, any light-induced 

capacitance changes did not compromise the accuracy the calculated results presented here. 

The calculated mobility trends differ significantly; the LDPE-coated device showed small 

increases in mobility at the onset of all illumination periods; these initial changes were 

followed by slow decreases during and after each illumination. Conversely, the mobility of the 

AlOx-OTS device exhibited negligible initial increases followed by steep mobility drops. In this 

case, the mobility reached a new plateau every time the illumination was ceased and did not 

recover over the course of each following recovery period in the dark.  

A noteworthy remark is that, in contrast to the Vth calculation method, mobility is extracted by 

an algorithm which takes account of the gate dielectric capacitance per unit area (Ci), as 

described by eq. (4.10). According to this equation, a possible increase in capacitance under 

illumination can be misinterpreted as a mobility increase since Ci is taken as a constant. Hence, 

the observed mobility drop under illumination is certainly not an evaluation artefact; 

contrarily, the calculated μ drop might have slightly been mitigated by a possible light-induced 

capacitance increase. 

Notably, in a very different comparative study between OFETs with bare and SAM-treated 

alumina dielectrics, Kalb et al. have shown that the dependence of mobility on gate bias was 

related to the surface treatment [68]; although on bare alumina, mobility increased with 

increasing gate voltage, interestingly, on the SAM-treated alumina, μ showed an initial 

increase  followed by a decrease. This behaviour resembles the behaviour of the OTS-treated 
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devices under illumination, discussed above; this apparently irrelevant similarity between 

gate-bias- and illumination-induced changes is discussed and given an explanation in the 

following section. 

6.3.3.3. Mobility dependence on illumination  

The observed reduction of field-effect mobility under illumination and even more, the 

dependence of this reduction on the gate dielectric surface treatment cannot be given an 

explicit explanation. However, there are reports and suggested models of the mobility 

degradation in OFETs under high electric fields. A closer look at the physics which govern these 

mobility degradation mechanisms can provide an explanation for the calculated mobility 

trends, discussed in the previous section. 

The effective mobility (μeff) of carriers of MOSFETs depends on the gate-bias induced field in 

the channel area. As discussed in 1.3.4.1, the charge carriers are susceptible to various mobility 

degradation mechanisms, such as Coulomb scattering at the semiconductor-dielectric 

interface, phonon scattering and surface roughness scattering. In inorganic MOSFETs, a 

simplified empirical expression of μeff is given by [33]: 

 
     

  
       

 

 

(6.5)  
 

where θ is an empirical parameter and the effective field Eeff can be expressed as [143]: 

      
          

   
 (6.6)  

 

Where Qdep is the charge per unit area in the depletion layer, Qinv is the charge per unit area in 

the inversion layer, εSi is the permittivity of silicon, n is a constant which typical values for a 

(100) lattice are ½ for electrons and ⅓ for holes, but can vary significantly. 

Both charge factors are proportional to gate dielectric capacitance, as described by [144]: 

                   (6.7)  
 

and 

                      (6.8)  
 

where Cox is the capacitance of the gate dielectric, Vgs is the gate bias, Vth is the threshold 

voltage, VFB is the flat band voltage and φs is the surface potential. 

More recently, Mottaghi and Horowitz developed a model for the charge transport in vapour-

deposited molecular films such as pentacene [145]. In this model, the stacked monolayers of 

pentacene are considered as parallel conductors, in which the charge is equally distributed 

along each layer. According to this approximation, the application of a high gate-induced field 

results in the accumulation of charge within the lowest, i.e. adjacent to the dielectric interface, 

monolayer of pentacene which exhibits relatively lower mobility due to the presence of the 

aforementioned scattering factors. This model assumes Vth=0 and gives the following 

expression of the total charge in the semiconductor film: 
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(6.9)  

 

where ntot is the total number of charge carriers, j is the farthest monolayer from the insulator 

interface, ni is the number of charge carriers in each monolayer and V0 is the potential at the 

insulator-semiconductor interface. 

The aforementioned models have been developed for the study of the effect of gate bias on 

the mobility degradation in both inorganic and organic FETs; all of them assume a constant 

value of Ci. However, in this study, the photocapacitance measurements presented in section 

6.2 revealed that Ci is light-dependent. Moreover, in the measurements presented in this 

section, Vg was a low-frequency zero-offset symmetric time-varying signal (sine) which equally 

charged and discharged the gate capacitor, effectively eliminating the accumulation of charge 

over a full sine period. 

From eq. (6.5) to eq. (6.8), another expression of μeff can be derived: 

 
     

  

     
                                

 

 

(6.10)  
 

According to eq. (6.10) and assuming that n<1, the reduction of the modulus of Vth, which was 

observed when the OFET under test was illuminated, can potentially result in an increase of 

mobility. Indeed, for the first seconds of illumination mobility showed a small but noticeable 

increase. However, according to the same equation, the substantial increase in the capacitance 

of the AlOx dielectric apparently prevailed after some seconds and the mobility dropped until 

the illumination was ceased. In addition, the more pronounced mobility degradation in the 

case of OTS-treated surface can be attributed to the higher density of interfacial traps in the 

case of the OTS-treated oxide as compared to the LDPE-treated one, as discussed in section 

5.2.2.3. 

6.3.4. Conclusion 

The work presented in this section suggests that the light stability of organic field-effect 

transistors (OFET) can be controlled by the application of an appropriate surface treatment on 

their oxide gate dielectric. Environmental stability is of utmost importance for many OFET 

applications; for instance, when OFETs are used as sensing transducers, the sensitivity of any 

OFET parameter to light can be misinterpreted as a sensing response. 

Backed by the photocapacitance measurements, discussed in section 6.2.2, this study focused 

on a comparison between two different surface treatments, i.e. an OTS SAM and an 

evaporated LDPE layer, of a high-k inorganic oxide insulator (AlOx);  

Light exposure induced a drain current increase in these AlOx-based OFETs. The surface 

treatment of the oxide dielectric was found to play a key role in the susceptibility of these 

devices to light. Both p-type (pentacene) and n-type (PDI8-CN2) OFETs with OTS-treated AlOx 

exhibited major threshold voltage changes under illumination, whereas the LDPE-treated ones 

were slightly affected. Thus, it can be safely assumed that these phenomena are more likely to 

be related to trap releasing mechanisms at the semiconductor-dielectric interface. 
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Moreover, in pentacene devices, a comparison of the OFET photosensitivity for particular 

wavelengths to the absorption spectrum of the semiconductor itself disproved that the 

measured drain current increase is due to either photoconductivity or trap release within the 

semiconductor; this assumption is also backed by the insensitivity of the measured off-current 

to illumination. 

Conversely, the light effects were found to be stronger for shorter wavelengths, which are not 

absorbed by the semiconductor film. This phenomenon can be attributed to the fact that the 

higher energy of these photons can release charge carrier from deep traps. Moreover, the 

semiconductor film effectively acts as filter for the incident low-energy photons; i.e. a portion 

of them never reaches the semiconductor-dielectric interface; however, the contribution of 

this mechanism cannot be easily quantified. 

The pentacene OFETs were further measured with the real-time multiparametric system, 

described in Chapter 4. The data analysis provided a deeper understanding of the induced 

changes in a functional OFET under illumination by disentangling rapid mobility and threshold 

voltage changes in constantly running devices under an AC drive; this straightforward 

separation of individual parameters was found to work as a good proof-of-concept example for 

this characterisation system. 

Using this system under illumination, the threshold voltage of all devices showed a positive 

shift, i.e. towards a normally-on behaviour; the changes for the OTS-treated OFETs were more 

pronounced and induced a rapid initial increase in drain current. However, the same devices 

suffered from extensive mobility degradation under prolonged illumination while operating 

under a continuous AC drive. The mobility dependence on illumination was found to be rather 

small for their LDPE-treated counterparts. A theoretical approach to explaining the possible 

mobility degradation mechanisms is given in section 6.3.3.3. 

Further work for the generalisation of these observations is advisable; in particular, the use of 

other semiconductor/dielectric combinations is suggested, especially an all polymeric 

dielectric, which is very likely to yield the best results in terms of light stability. Motivated by 

these findings, pentacene devices with LDPE (only) dielectric were successfully fabricated, as 

discussed in section 5.2.3; however, the indications of an ambipolar behaviour complicated 

their analysis under illumination and consequently, they were finally excluded from this 

comparative study. 

Finally, recalling the conclusions from section 6.2.3, the observed changes in the dielectric 

constant of anodised aluminium oxide under illumination constitute a remarkable finding; 

although this photocapacitance had a small contribution in the photosensitivity of the 

investigated OFETs, it remains a very interesting topic for future investigation. 
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6.4. Photosensitivity of tetracene devices 

The electrical characteristics of tetracene devices are discussed in section 5.4; as mentioned in 

that section, tetracene OFETs showed a very unstable electrical behaviour while operating in 

ambient conditions. Nevertheless, light exposure measurements yielded interesting results, 

which are presented in this section; an OFET with AlOx/OTS gate dielectric was exposed to 

white light, while another SiO2-gated OFET with an unconnected gate electrode was found to 

operate as a good metal-semiconductor-metal (MSM) photodetector. A brief literature review 

of tetracene optoelectronic applications and MSM photodetectors follows.  

First, the photosensitivity of tetracene OFETs has previously been demonstrated. Choi et al. 

have published a comparative study between pentacene and tetracene OFETs exposed to light 
[122]; in that paper, the photoresponse (Ilight/Idark) of tetracene OFETs was found to be much 

higher than that of their pentacene counterparts. 

Second, the MSM photodetectors are planar devices with simple structure, consisting of two 

Schottky (metal-semiconductor) contacts of the same type; they are usually made by 

deposition of two metal electrodes on top of a semiconductor. The concept of inorganic MSM 

photodetectors has been adopted for specialised commercial applications, such as high-speed 

optical-fibre communications; devices based on III-V semiconductors, such as GaAs, have 

exhibited remarkable characteristics which outperform the conventional photodiodes in terms 

of response time and  low-dark-current capability [146, 147]. 

Third, tetracene has been employed in the fabrication of heterojunction photodiodes; for 

instance, Campbell and Crone recently demonstrated a photodiode based on a tetracene/C60 

heterojunction separated by a thin tunnel barrier made on lithium fluoride (LiF) [148]. However, 

as of October 2013, there is no published evidence of functional MSM photodetectors made of 

tetracene or even any other organic semiconductor.  

6.4.1. Test methodology 

Two devices from different batches were used in the tests presented in this section. The device 

fabrication procedure for the AlOx OFET is described in section 5.4.1.1. For the tests on the 

MSM photodetector, Si substrates with an 100-nm-thick thermal oxide were cleaned with an 

alkaline solution, IPA and a final UV-ozone treatment. More details on substrate preparation 

are given in section 2.2.4. The substrates were immersed into a cyclohexane solution of OTS 

(10 mg/mL) for 60 minutes; details on OTS-treatment of oxides are given in section 2.4.3. 

Tetracene was thermally evaporated in high vacuum with a pressure of 9 x 10-7 Torr; the 

deposition rate varied from 0.03 to 0.06 nm/s and the final thickness of the deposited film was 

50 nm. Finally, 50-nm-thick top gold electrodes were evaporated through shadow masks; the 

deposition rate was roughly 0.05 nm/s and the pressure in the dome varied from 4.5 x 10-7 to 

4.5 x 10-6 Torr during the evaporation. 

The I-V converter system, described in Chapter 4, was used for the electrical characterisation 

of these devices. The devices were contacted by three Cascade-Microtech PH100 probe 

positioners with tungsten needles. The applied drive was a zero-offset sinusoidal signal with an 

amplitude of 3 V (peak) and a frequency of 6 Hz for the OFET, and 2.5 Hz for the MSM 

measurements. 
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Tetracene was also thermally evaporated and deposited onto a fused quartz substrate; a 50-

nm-thick film was finally deposited. The absorption spectrum of this film was measured by a 

spectrometer (Andor Shamrock 303i); the results are shown in Figure 6-19. 

Two different light sources were used in these light exposure tests. For the OFET 

measurements, a common desk lamp with a tungsten-halogen bulb with a power rating of 20 

W and a reflector was placed above the device under test; the distance between the bulb and 

the surface of the sample was roughly 15 cm. For the tests on the MSM photodetector, the 

blue and green LEDs, discussed in section 6.1.2, were place at a distance of roughly 20 cm 

above the sample; the LEDs were electrically connected in parallel and powered by a constant 

current of 30 mA supplied by a Keithley 2400 unit. No focusing lenses were used in both cases. 

It is worth mentioning that the work presented here is mainly a qualitative study; neither 

wavelength- nor intensity-resolved light sensitivity measurements were conducted. The 

devices were measured in two different states; in the dark and under illumination.  

 

Figure 6-19 – The absorption spectrum of a 50-nm-thick tetracene film 
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6.4.2. Results and discussion 

6.4.2.1. Illumination effects on tetracene OFETs 

A tetracene OFET with AlOx/OTS gate dielectric was measured in the dark and under white 

light illumination from the common tungsten-halogen bulb.  The oscilloscope data taken from 

the I-V converter system, described in Chapter 4, are shown in Figure 6-20. The saturated drain 

current (Id,sat) for Vds = Vgs = 3V was 23 μA. Under illumination, the Id,sat tripled, taking a value of 

~71 μΑ. As a reference, Choi et al. have previously reported a photoresponse (Ilight/Idark) of 35%-

50% for a tetracene OFET operating in the saturation region and being illuminated by blue light 

(450 nm) with a power density of ~0.1 mW/cm2 [122]; however, the differences in the drive 

conditions, light spectrum and power density do not allow for a valid comparison. 

 

Figure 6-20 – An oscilloscope screenshot from the I-V converter system: drive voltage (red curve), output voltage 
in the dark (black curve) and output voltage under white light illumination (blue curve). 

Both threshold voltage (Vth) and mobility (μ) were affected; Vth shifted towards a normally-on 

behaviour, from -2.5 V to -1.8 V, while μ decreased by 21.4%. The positive shift of Vth can 

partly, if not exclusively, be attributed to the trap-releasing mechanisms at the semiconductor-

dielectric interface, as discussed in detail in section 6.3. The mobility degradation can also be 

explained by the theoretical approach given in section 6.3.3.3. 

However, considering the absorption spectrum of tetracene, as shown in Figure 6-19, and the 

fact that tungsten-halogen incandescent lamps have a wide and continuous emission spectrum 

which covers the entire absorption spectrum of tetracene [149], it can be assumed that these 

phenomena can also be attributed to the release of trapped charge carriers in the bulk of the 

semiconductor. This assumption is backed by the findings from the tests on simple two-contact 

devices, discussed in the following section. 
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More interestingly, the reduction of the trap density in the bulk of the semiconductor can be 

confirmed using the novel hysteresis quantification method introduced in section 4.2.5; as 

mentioned in that section, hysteresis is mainly affected by the presence of traps in the bulk of 

the semiconductor. Figure 6-21 illustrates a comparison of the calculated hysteresis for the 

same device between dark and illuminated conditions, the curves are the same as the ones 

shown in Figure 6-20. These calculations come in good agreement with the light-induced trap-

releasing assumptions made above; hysteresis showed a substantial change from +10.2% in 

the dark down to +3.7% under illumination. This decrease in hysteresis constitutes a strong 

indication of a decrease in the density of traps. 

 

Figure 6-21 – A comparison of the hysteresis of an AlOx-OTS PBTTT OFET in the dark (top) and under illumination 
(bottom), using the hysteresis quantification method described in section 4.2.5. 
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6.4.2.2. Illumination effects on a tetracene MSM photodetector 

An OFET with SiO2/OTS dielectric and gold top contacts was used for this light exposure test. 

All measurements were conducted using the I-V converter system, described in Chapter 4. The 

gate electrode was left unconnected and thus, the device operated as a simple two-contact 

device. Assuming that the physical presence of the Si/SiO2 substrate does not affect the charge 

transport within the semiconductor film, this layout resembles the structure of a metal-

semiconductor-metal (MSM) photodetector; hereafter, it will be referred to as such. However, 

some peculiar, yet interesting, rectifying properties of this particular device were observed and 

are discussed in this section. 

The electrical characteristics of the device were measured in the dark and under illumination; 

the employed blue and green LEDs emit light over a wavelength range which coincides with 

the absorption spectrum of tetracene, as shown in Figure 6-2 and Figure 6-19. 

Also, both current flow directions were tested, with the application of a drive voltage to both, 

the right- and the left-hand-side, electrodes; due to the symmetry of the tested device, these 

two different configurations are simply referred to as LHS and RHS, with respect to what 

electrode the output current of the device is taken from; i.e. the drain electrode in an OFET 

configuration. 

 

Figure 6-22 – Oscilloscope screenshots for a tetracene OFET with an electrically unconnected gate. Measurements 
taken in the dark (black curves) and under blue and green illumination (blue curves). The red curves represent the 
drive voltage.  

Starting from an LHS-output configuration in dark conditions, the current flowing through the 

device was undetectable, as the black curves in Figure 6-22 illustrate. Under illumination, the 

device was interestingly found to rectify the drive signal; the measured current had a 

maximum value of roughly 2 μΑ, whereas its minimum value was limited to roughly 67 nA; 
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these figures give a rectification ratio (RR) of 29.7. This profile resembles a p-type OFET 

characteristic, similar to the blue and black curves shown in Figure 6-20; apparently, this fact 

can lead to the assumption that the presence of the gate stack, even with an unconnected 

gate electrode, effectively gates the device and amplifies its p-type behaviour. 

However, after taking the first set of measurements, the electrical connections to the 

electrodes were swapped so that the rectification capabilities of the device could be evaluated 

for both current directions. For this RHS-output configuration, the output current was again 

undetectable in the dark; nevertheless, when the device was illuminated, the output curve was 

rectified in the opposite direction; the positive behaviour prevailed. The RR ratio was 26.2. This 

small difference can be attributed to minor differences in the charge carrier injection from and 

to the two top electrodes; i.e. a difference in the contact resistance when LHS or RHS 

configuration is used. Moreover, this finding is opposed to the SiO2-gating assumption given 

above; if the Si/SiO2 stack affected the carrier transport, then the polarity should not be 

inverted when the electrodes were swapped.  

The excellent Ilight/Idark ratio constitutes a very interesting property, which can be attributed to 

a high trap density present within the bulk of the semiconductor in the dark, which is 

drastically reduced under illumination. This phenomenon is also discussed in section 6.4.2.1. 

On the contrary, the rectifying properties cannot easily be given an adequate explanation; the 

absence of a real p-n junction and the symmetry of the device (two identical Schottky-diodes 

placed back-to-back) do not allow for drawing meaningful conclusions on the mechanisms 

which enable this one-way rectification. 

6.4.3. Conclusion 

Tetracene devices were found to give strong responses to light exposure. The illumination of a 

AlOx-gated tetracene OFET with white light resulted in an increase of roughly 200% in its drain 

current, which is much higher than previously reported values. 

Furthermore, the tests on a SiO2-gated OFET with an unconnected gate electrode yielded some 

remarkable results. First, the device had an excellent light-to-dark current ratio, as its dark 

current was practically zero. Second, the device acted as an one-way rectifier when 

illuminated. 

The behaviour of the latter device cannot be fully understood and explained by simplified 

semiconductor physics theory. Considering these interesting characteristics, a further 

investigation of these structurally simple devices and their sensitivity to light is advisable. 
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Chapter 7. Vapour sensing with organic semiconductors 

This chapter demonstrates the analyte vapour sensing capabilities of organic semiconductor 

devices. An introduction to gas sensors with a special reference to organic-field effect 

transistors (OFETs) employed in gas sensing applications is given in section 1.2. 

Both resistive (chemiresistors) and OFET transducers were used in the experiments discussed 

in this chapter. A selection of organic semiconductors, including polythiophene-derivatives 

(P3HT and PBTTT) and an electron-transporting material (PDI8-CN2), was employed for the 

fabrication of these transducers. The analytes into investigation were water vapour, three 

different alcohols and an amine, all discussed in separate sections. Moreover, in the last 

section of this chapter, a demonstration of a real flexible OFET sensor is given as a proof-of-

concept. 

For the delivery of these experiments, the automated characterisation system, discussed in 

Chapter 4, was upgraded in order to support multiple devices under test and also control the 

analyte concentration, which the sensors were exposed to. Additionally, a complete gas 

exposure test rig was built in support of these experiments; this fully-automated sensor 

characterisation system enables the detection of quick responses of multiple parameters of an 

OFET sensor, which can hardly be detected using conventional electrical characterisation 

methods. This capability exploits the actual advantages of OFETs over chemiresistors. 

The following sections discuss the experimental methods, including a description of the test 

rigs and the equipment developed, and provide an analysis of the results of a series of vapour 

exposure experiments using the aforementioned transducers and analytes. 

7.1. Experimental methods 

The development of appropriate test rigs is of great importance for performing consistent and 

quantitative vapour-exposure measurements. Tailor-made gas chambers, device-contacting 

systems, bespoke driving and multiplexing circuits for the characterisation of multiple sensors, 

as well as computer-controlled gas-mixing systems were designed and developed by the 

author in order to meet the requirements of the experiments discussed in this chapter.  

These developments were used in conjunction with the automated OFET characterisation 

system discussed in section 4.3. A LabVIEW application was developed to fully exploit the 

capabilities of this system; Figure 7-1 shows a screenshot of its graphical user interface (GUI). 

In addition to the communication with the USB oscilloscope for the acquisition of sensor data, 

as discussed in section 4.3, this application establishes a bi-directional communication link with 

a National Instruments (NI) USB-6008 multifunction data-acquisition (DAQ) instrument and a 

bespoke microcontroller-based multiplexing unit. The NI USB-6008 unit, underpinned by a 

bespoke driving circuit, controls the solenoid valves and the flow-mass controllers of the 

pneumatic system, while it samples the outputs of temperature and humidity sensors fitted 

inside the exposure chamber. The multiplexing unit can be used to switch between 20 sensors; 

simultaneous measurements on any four of them are supported by the developed software. 
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The sub-systems of this gas exposure and sensor characterisation rig are described in the 

sections 7.1.1 to 7.1.4. The respective schematics and PCB layouts are given in the appendices. 

 

 

Figure 7-1 – Screenshot of the graphical user interface (GUI) of the LabVIEW application for the control of the gas 
exposure system and the real-time characterisation of OFET sensors.  

7.1.1. Computer-controlled gas-mixing system 

Figure 7-2 shows a schematic diagram of the automated gas mixing system and Figure 7-3 is a 

photograph of one of the two installed systems. The gas delivery is controlled by two voltage-

controlled mass-flow controllers (Tylan FC-260); one of them regulates the flow of pure 

nitrogen, while the second one adjusts the flow of nitrogen that gets mixed with the saturated 

vapour of an analyte. For the majority of the tests, controllers with a full-scale throughput of 

500 sccm (standard cubic centimetres per minute) of nitrogen were used. In some 

experiments, dry synthetic air was used as the carrier gas in lieu of nitrogen. 

A solenoid valve is placed before each of the flow-mass controllers and another one on each of 

the two pipes before the mixing T-junction, as shown on Figure 7-2. These valves serve for 

securely blocking the small but undesirable gas flow which is admitted through the flow-mass 

controllers at the minimum setting of their scales. In some experiments, manual valves were 

used instead of the solenoid valves.  

In this setup, the NI USB-6008 unit is used to generate the analogue control signals for the 

mass-flow controllers; also, it controls the operation of the solenoid valves with the support of 

a relay-based circuit. The circuit schematic and the respective PCB layout are given in Appendix 

II.7. 
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Figure 7-2 – Schematic diagram of the entire automated gas exposure test rig. 

 

Figure 7-3 – A photograph of one of the automated gas exposure test rigs. Top-left: Input solenoid valves, mass-
flow controllers and the corresponding driving PCB bearing the NI USB-6008 DAQ. Rear-left: Output solenoid 
valves (black with yellow tags). Left: Gas exposure chamber with the 20-DUT contacting lid. Front: I-V Converter 
system (black box) with a USB-oscilloscope (blue box). Middle: The sold-state multiplexing embedded system 
(light blue box).  Right: Laptop running the LabVIEW control application shown on the external monitor. 



156 | P a g e  
 

The analytes were placed in sealed glass bubblers; the bubblers were either kept at ambient 

temperature or immersed in a thermostatically-controlled water bath. The control of 

temperature can effectively control the concentration of the analyte, as discussed in section 

7.1.4.2. The second nitrogen line was fed into the bubbler and consequently, the carrier gas 

was mixed with the saturated vapour of the analyte. This mixture left the bubbler and then 

was further mixed with the first pure nitrogen line; this final mixture was fed into the exposure 

chamber. An optional check valve on the pure nitrogen line prevents the analyte vapour from 

flowing backwards and thus, contaminating the pipes. All pipework and the inside of the 

chamber were thoroughly flushed with nitrogen before and after each test. 

7.1.2. Gas chambers and device contacting systems 

A selection of custom-made gas exposure chambers were used for the measurements 

discussed in this chapter. Each of these assemblies consists of a hollow aluminium cylinder; the 

inner surface of the cylinder is lined with polytetrafluoroethylene (PTFE), due to its chemical 

resistance. 

 

Figure 7-4 – The inner side of a PTFE-lined gas chamber. Middle: A P3HT nanowire chemiresistor placed on a 
sample holder and contacted by copper probes is shown. A current-to-voltage converter PCB is seen on RHS and a 
commercial RH sensor hanging over the sample under test. The pipe on LHS supplies the gas mixture into the 
chamber. Chamber capacity: ~400 cm

3
. 

Some of the experiments were carried out using a chamber with a capacity of 400 cm3, 

approximately. In this case, the sensors were either contacted by copper probes, as shown on 

Figure 7-4,  or using polymer-coated copper wire bonded with carbon-black-based glue (Fluka 

Leit-C, product number: 09929). Twelve electrical feedthroughs serve for routing the driving 

signals in and the sensor outputs out of the chamber. The large volume of this type of chamber 
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can accommodate additional commercial sensors for monitoring the temperature and relative 

humidity (RH) levels inside the chamber; in some cases, even the amplification circuits were 

incorporated into the chamber for noise mitigation. An aluminium lid bearing an O-ring seals 

the top of the cylinder. The lid and the body of the cylinder can be connected to electrical 

ground, offering good electromagnetic interference (EMI) protection by effectively acting as a 

Faraday cage. 

A later improvement has been the design and construction of a small volume (90 cm3) 

chamber with specially designed lids which serve as contacting systems for all the devices built 

on each substrate. Two different designs were developed. The first of them is capable of 

contacting four devices under test (DUT) and its design and geometry are based on the layout 

of the respective evaporation mask; which is mainly intended for low-voltage, aluminium-

oxide-gated OFETs. The second design is based on the layout of a commercially available 

evaporation mask (Ossila E326); in this case, twenty devices reside on the same substrate and 

they are all contacted by the lid.  

The lids are tailor-made PTFE-coated printed-circuit boards (PCBs) with a series of special 

sockets soldered onto them; the sockets can accommodate a selection of commercial spring-

loaded test probes. In most cases, gold-plated probes with rounded tips were used to contact 

devices with top metal contacts, usually made of gold. On the contrary, probes with sharp tips 

were used to contact the underlying gate electrodes, be they doped silicon, aluminium or 

silver; these tips could penetrate the deposited semiconductor film and get in direct contact 

with the gate contact material. A similar type of probe tips was used for devices with bottom 

source-drain contacts. Figure 7-5 shows a 20-DUT substrate being contacted by this system. 

Detailed technical information on the contacting lids is given in Appendix II.2 and Appendix 

II.3. 

 

Figure 7-5 – Photograph of the gas exposure contacting system during the assembly. A twenty-OFET substrate is 
inserted into the recess of PTFE sample holder (bottom). The mating gold-plated probes are suspended over the 
sample. Distance between adjacent probes: 2.54 mm, total width of the substrate: 20 mm. 
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7.1.3. Sensor multiplexing systems 

The contacting systems presented in the previous section comprise multiple-pin connectors (of 

D-subminiature type); each of these pins corresponds to one contact of devices-under-test 

(DUT). For the exploitation of multiple sensors using one set of read-out electronics, the 

presence of an appropriate multiplexing unit is necessary. For this reason, three different units 

were built. 

In the case of the 4-DUT system, a manual and an automatic unit were designed and made. 

The manual unit is a PCB with two sets of quadruple DIP switches which allow for routing the 

source and drain signal lines to any of the four DUT. The automatic unit is a relay-based PCB 

which is controlled by one of the digital output ports of the NI USB-6008 instrument; as in the 

operation of the manual unit, four double-pole double-throw (DPDT) relays route the source 

and drain signal lines to any of the four DUT. Additionally, the PCB has four operational 

amplifiers (op-amp) which buffer the outputs of the temperature and RH sensors so that they 

can be sampled by the NI USB-6008 analogue-to-digital converter (ADC). Technical information 

on these units can be found in Appendix II.4 and Appendix II.5. This system can safely operate 

with applied voltages which comply with the highest ratings of the I-V converter system, i.e 

±45 V.  

In the case of the 20-DUT system, a microcontroller-based embedded system with solid-state 

analogue switches has been designed to multiplex the signals from the twenty sensors. The 

microcontroller (Atmel ATMega88) communicates with the LabVIEW application over a USB 

connection and controls four integrated circuit (IC) chips (Analog Devices ADG1606/BRUZ), 

which are capable of multiplexing analogue signals. Any DUT can be selected from the 

graphical user interface (GUI) running on the control computer. Up to four sensors can be 

tested using virtually simultaneous real-time characterisation. The applied voltages are limited 

to ±8V due to the limitations of the solid-state switches. The circuit schematic and the PCB 

layout of this circuit are given in Appendix II.6. 

7.1.4. Exposure test methodology 

7.1.4.1. Exposure and recovery periods 

Most of the vapour-sensing measurements were conducted in a time-resolved manner; the 

sensors were initially pre-conditioned under a constant-flow nitrogen purge while their 

electrical performance was being monitored and recorded. For some experiments, a pre-

conditioning period of up to 3 days was applied. Details are given in the respective 

experimental sections 7.2, 7.3 and 7.4. 

The pre-conditioning phase was followed by analyte exposure periods. During exposure, the 

flow-mass controllers are commanded to mix the pure carrier gas line with the line delivering 

the saturated analyte vapour; at the same time, the solenoid (or manual) valves of the analyte 

line open to permit the gas flow. Using the automated system described in section 7.1.1, the 

mixing ratio of the saturated vapour line to the pure carrier gas line can be selected by the 

user while the total gas flow is automatically adjusted by the software to ensure that it 

remains constant. For instance, given that two identical flow-mass controllers are in use and 

the pre-conditioning phase was set at 100% maximum flow, if a mixing ratio of 40% is selected, 
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then the pure carrier gas controller will be re-adjusted at 60% maximum flow, whereas the 

saturated vapour one will be set at 40%, so that the total flow remains as it was initially.  

When each exposure was ceased, a recovery period was initiated and the flow-mass 

controllers were reset; the pure nitrogen line controller alone provided the total flow, whereas 

the second controller was set to zero; additionally, the solenoid (or manual) valves on the 

saturated vapour line were closed, in order to block any leakage flow through the controller.  

7.1.4.2. Analyte concentration 

It is a common practice to express the analyte concentration in terms of parts per million 

(ppm); ppm concentration has several definitions as it can describe ratios of various quantities, 

such mass-to-mass (m/m), mass-to-volume (m/v) etc. In the work described in this chapter, as 

in most papers on gas sensors, ppm concentration is defined as the number of analyte 

molecules in every one million molecules of substances which form a gas mixture. There are 

two main factors which determine the ppm of an analyte in a vessel; the (saturated) vapour 

pressure of the analyte and the mixing ratio of the saturated vapour delivery line to the pure 

carrier gas one, as mentioned above. 

The saturated vapour pressure (psat) of a liquid is the pressure exerted by its vapour when it is 

in thermodynamic equilibrium with its liquid phase at a given temperature in a closed system. 

The exponential dependence of psat on temperature is described by the Clausius-Clapeyron 

relation. In practice, psat can be extracted from experimental data taken at different 

temperatures; an example is given in section 7.3.3, which provides information on the 

calculation of the vapour pressure for the three analytes used in quantitative measurements. 

In the saturated vapour line, the carrier gas molecules are mixed with molecules of the 

analytes; neglecting the presence of any contaminants, each of the two constituent substances 

have their own partial pressures such that: 

                     (7.1)  
 

where P is the total pressure, pcarrier and panalyte are the partial pressures of the carrier gas and 

the analyte, respectively. 

Given that the carrier gas flow is rather slow, it can be assumed that the bubbler resembles a 

closed system so that the partial pressure of analyte vapour in the mixture, which leaves the 

outlet of the bubbler, equals its vapour pressure at that temperature: 

               (7.2)  
 

Also, we take the ideal gas law: 

        (7.3)  
 

where P is total pressure of the gas, V is volume it occupies, n is the number of mol of the gas, 

T is the temperature and R is the ideal gas constant (8.314 JK-1mol-1).  

For this gas mixture, eq. (7.3) writes: 

                                        (7.4)  
 

where ncarrier and nanalyte are the number of molecules of the carrier gas and the analyte, 

respectively. 
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By its definition, the concentration in ppm can be expressed as: 

     
        

                 
     (7.5)  

 

which, according to (7.4), can write: 

     
    
 
     (7.6)  

 

For all calculations, the standard pressure (100 Kpa) has been used as the value of total 

pressure P, as it serves as a good approximation of the actual ambient pressure in the 

laboratory. 

Equation (7.6) gives the ppm of the analyte in the saturated vapour delivery line. As this line is 

mixed with the pure carrier gas line before being fed into the exposure chamber, the actual 

ppm concentration is calculated by: 

        
    
 
     (7.7)  

 

where MR is the mixing ratio of the saturated vapour line to the pure carrier gas line (v/v). 

However, in some examples given in this text, the analyte concentration (C) is sometimes 

expressed as a percentage of psat: 

           (7.8)  
 

7.1.4.3. Relative Humidity 

In section 7.3, water vapour is the analyte under investigation. In this particular case, the 

analyte concentration is expressed in terms of relative humidity (RH). RH represents the water 

vapour content of an air-water mixture as a percentage and it is described by: 

    
  
      

      (7.9)  
 

where psat is the partial pressure of water and pw,sat is the saturated vapour pressure of water, 

both at a given temperature.  

Again, assuming that the analyte vapour delivery line is saturated, i.e. RH = 100 %, the RH of 

the final mixture, which is fed into the chamber, equals the mixing ratio (MR) of the flow of 

this line to that of the pure carrier gas line: 

       (7.10)  
 

Roughly speaking, for a given mixing ratio, RH remains constant under room temperature 

fluctuations. 
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7.2. P3HT devices under humidity 

7.2.1. Introduction 

Humidity is a measure of the amount of water vapour in air; it is an important parameter for 

many meteorological, domestic, medical and industrial applications and several quantification 

methods and respective transducers have been demonstrated. Most of these sensors are 

based on metal oxides and polymers [150]; recently, a combination of the two was 

demonstrated [151]. The transduction is usually electrical with either a resistive or capacitive 

readout [152-154]; however, surface acoustic wave (SAW) resonators represent an interesting 

alternative [155]. 

In the field of organic semiconductors, humidity has been suggested as factor which 

contributes to the mobility degradation of some OSCs, including pentacene [83]; this 

phenomenon is attributed to the diffusion of water molecules into the grain boundaries of a 

semiconductor film. In the case of polythiophenes, P3HT devices are known to increase their 

conductivity in ambient conditions; this was initially attributed to the formation of a charge 

transfer (CT) complex with atmospheric oxygen [156, 157]. However, Hoshino et al. established 

that the effect of atmospheric humidity on the conductivity of P3HT is even stronger [158]. 

Additionally, Leary et al. later performed a theoretical study based on quantum chemical 

computations to shed light on the specific interactions between water and oligothiophene-

containing molecules; they provide a model which explains how water vapour effectively gates 

thiophenes and that the length of the thiophene is crucial for the magnitude of the effects [159]; 

this phenomenon is not commonly observed in other organic semiconductors. 

This specific sensitivity to humidity can induce significant instability issues in thiophene-based 

devices operating in ambient conditions; however, this property can also be harnessed as a 

sensing parameter, effectively enabling such devices to operate as humidity sensors. This is the 

scope of the work presented in this section; two sets of devices based on regioregular-P3HT 

with different morphologies are compared in terms of their sensitivity to humidity. The 

compared morphologies are a conventional spin cast thin film, and a mesh of one-dimensional 

crystals, commonly referred to as nanowires (NW), which are spin cast from an anisole 

suspension [94, 160]; a further discussion on P3HT and P3HT NW is given in section 2.5.4. 

The largely increased semiconductor surface area of the NW-based device, as compared to the 

conventional thin-film one, is suggested as asset for sensitivity enhancement. In the context of 

sensor active surface enhancement,  there are several documented approaches; for instance, 

Nomura et al. have recently demonstrated a ten-fold sensitivity increase in biomolecular 

sensors which were built on porous glass substrates, as compared to a non-perforated control 
[161]. The NW concept can be thought of as the opposite to a porous material, practically having 

the same result. In a noteworthy similar study, Huang et al. have reported that in a comparison 

between a device based on conventional polyaniline (PAni) film to one based on PAni 

nanofibres, which are morphologically very similar to NWs, the electrical resistance of the 

latter responds much more strongly to hydrochloric acid vapour, which acts as a PAni dopant 
[162]. 

Details on device preparation and the test methodology, as well as a discussion on the results 

of these measurements follow. 
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Figure 7-6 – A graphical representation of a P3HT-based sensor under exposure to water vapour (blue spheres). 
Channel length: 10 μm, channel width: 2000 μm. 

7.2.2. Device preparation 

The P3HT nanowires were prepared at the University of Cardiff via a variation of the whisker 

method [94]. P3HT was dissolved in anisole (5.2 mg/mL). The solution was heated to 90 °C until 

fully dissolved and allowed to cool to room temperature. The solutions were kept in sealed 

vials and stored in the dark for 3 days for the nanowires to be formed. The conventional P3HT 

film solution was prepared by dissolving P3HT in chlorobenzene (4.9 mg/mL) at room 

temperature. 

The devices were built on substrates cut from a doped silicon wafer with a 100-nm-thick 

thermally grown oxide layer. An 100-nm-thick layer of aluminium was thermally evaporated 

through shadow masks in a high vacuum of <10-6 Torr; the deposition rate was roughly 0.1 

nm/s. The patterned aluminium stripes were immersed into a 1 mM citric acid solution and 

then anodised by the application of current, with a constant current density of 5 mA/cm2 and a 

voltage limit of 5 V, to form a thin aluminium oxide layer; more details on aluminium oxide 

formation are given in section 2.4.2. 

An octadecyltrichlorosilane (OTS) in cyclohexane solution (10 mg/mL) was prepared in a dry 

nitrogen glove box and the samples were immersed into the solution for 10 minutes so that 

OTS monolayers would self-assemble as a hydrophobic surface treatment, more details on OTS 

treatment of oxides are given in section 2.4.3. 

The solutions were spin cast in a spin coater with nitrogen purge. The substrates with the P3HT 

NW suspension were spun at 6000 rpm for 40 seconds, while the ones with standard P3HT 

solution at 1200 rpm for 40 seconds. Finally, gold was evaporated through shadow masks in 

high vacuum; the deposition rate was 0.01 nm/s and the dimensions of the patterned channels 

were 10 μm (length) and 2 mm (width). 
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The described device architecture allows the application of a gate voltage for field-effect 

transistor operation; however, due the highly-doped electrical behaviour of P3HT, the effect of 

gating was not found to significantly enhance the current flowing through the device, thus the 

gate contact was left disconnected, as discussed in the next section. 

7.2.3. Test methodology 

After conducting preliminary tests with both dry nitrogen and dry synthetic air, the latter was 

selected as the carrier gas for the quantitative humidity exposures; dry air serves as a more 

pragmatic environment for the operation of an actual sensor. The indifference in the electrical 

performance of the devices under either nitrogen or dry air is noteworthy, as the oxygen 

present in the synthetic air mixture was not found to cause any effects. 

Deionised water was kept in a bubbler immersed in a water bath which was thermostatically 

controlled at 25 °C. The carrier gas was fed into the bubbler and injected into the water 

through a PTFE frit. The samples under test were electrically contacted by copper probes on a 

small custom-made stage. This assembly was placed inside the chamber and was connected to 

the I-V converter system, discussed in Chapter 4, by the use of multiple electrical 

feedthroughs. Additionally, a calibrated commercial relative humidity sensor (Honeywell HIH-

4010) was also placed inside the chamber; its readings were used for comparison to the 

nominal mixing ratio. A photograph of this setup is shown in Figure 7-4. 

A zero-offset sinusoidal drive was applied to the one of the top contacts of each DUT; the 

signal frequency was 6 Hz and its maximum voltage was set at 3 V. The gate contact was 

neither connected to the characterisation system nor grounded, i.e. an electrically floating 

gate; this configuration made the devices operate as chemiresistors rather than OFETs. The 

resulting current was fed into the inverting input of a low-bias-current operational amplifier 

and consequently, converted into an output voltage using a fixed-value feedback resistor of 

1MΩ. The input and output voltages were sampled and recorded by an oscilloscope. The tests 

on the NW sensor were conducted before the development of the automated characterisation 

system and thus, all measurements and calculations were carried out manually, by exporting 

the oscilloscope data. The control measurements on the P3HT-film device were taken with the 

aid of the automated characterisation system, described in section 4.3. 

The conductance of the solution-cast P3HT film device in dry conditions, prior to exposure, was 

57 nS , which corresponds to a sheet resistance of 3.5 GΩ/□. The values for the P3HT NW 

chemiresistor were 21 nS and 9.5 GΩ/□, respectively. Considering that these magnitudes of 

conductance are high enough for low-noise electric measurements and that the application of 

a gate voltage was not found to substantially increase the observed current, the following 

measurements were taken in chemiresistor mode. Given that, in this study, the importance of 

the exposed surface area is under the spotlight, simple chemiresistors can serve for this 

purpose; the use of the gate electrode would have introduced more sensing parameters 

which, even being favourable for other experiments (e.g. ethanol vapour detection, discussed 

in section 7.3.4), do not facilitate the drawing of conclusions in this occasion. 
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Figure 7-7 – Atomic-force microscope image of the channel area of a P3HT-film chemiresistor 

 

Figure 7-8 – Atomic-force microscope image of the channel area of a P3HT-nanowire chemiresistor 

7.2.4. Results and discussion 

The morphological differences between the spin-cast film and the nanowires (NW) were 

confirmed by performing atomic-force microscopy (AFM) on their surfaces, as shown in Figure 

7-7 and Figure 7-8; the conventional device had rather low surface roughness, whereas the 

surface of NW sample was formed by a network, or mesh, of interpenetrating P3HT NW. 
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Analysis of the AFM data revealed that the dimensions of the NWs on the examined surface 

are quite uniform; their height varied between 2 and 7 nm, their width was approximately 30 

nm and their length was typically in excess of 5 μm, with some extending far beyond 10 μm. 

Considering that the distance between the top gold electrodes is 10 μm, it is possible for some 

single NWs to bridge the channel; transistors based on a single NW have been previously 

demonstrated [163]. Nevertheless, considering the morphology of the NW mesh, it is more likely 

that several overlapping NW typically serve as the conduction pathways between the contacts. 

 

Figure 7-9 – Conductance behaviour of P3HT NW chemiresistors under exposure/recovery cycles to different 
levels of RH (continuous blue line, scale on the left), shown in a logarithmic metric. Alternating white/shaded 
regions indicate different RH exposure phases. The percentages shown near the top are nominal RHs, i.e. the 
mixing ratios between dry carrier gas, and carrier gas saturated with humidity, as established by mass flow 
controller settings. Also shown are the RH levels measured by a conventional RH meter (dashed red line, scale on 
the right). 

Figure 7-9 illustrates the exposure test of the P3HT NW chemiresistors under 

exposure/recovery cycles to synthetic air with different RH levels; the pre-conditioning period 

is excluded from this graph. Due to the large sensitivity of the sensor to humidity, the ratio of 

conductance at a given time (G(t)) to its pre-exposure value at the beginning of the test (G0), is 

given in a logarithmic metric. In the same graph, the readings of the commercial humidity 

sensor are also shown for comparison. Their values were found to fall a few percent behind 

the nominal RH level; this comes in good agreement with the fact the RH percentage equals 

the defined mixing ratio of the saturated vapour line to the pure carrier gas one, as discussed 

in section 7.1.4.3, and confirms the consistency of the humidity delivery system. 

During the pre-conditioning period, the conductance showed a substantial decrease while the 

dry air purge was drying out the chamber from ambient moisture. This drift carried on during 

the first periods of exposure to a low level of RH (1%). For levels between 10% and 50%, the 

conductance of the NW sensor remained stable; notwithstanding, the commercial sensor gave 

a response even for 10% RH. 
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At 60% RH the NW sensor showed a massive increase in its conductance which was followed 

by a rapid recovery under dry air; in fact, the response of the NW sensor to humidity showed a 

initial lag, however its recovery was found to be even faster than that of the commercial 

sensor. At 70% and 90% RH, the responses of the sensor were even stronger; all values were 

found to have an exponential dependence on the level of RH with a 30% RH change required 

for a decade enhancement in conductance, as shown in the inset of Figure 7-10. The sensor 

recovered from all exposures; however, the recovery time increased with increasing level of 

RH. 

 

Figure 7-10 – Comparison of chemiresistor responses, expressed as ratios of the maximum conductance under 
humidity exposure (Gexposed), over the conductance in dry conditions just before exposure (Gdry), for different 
levels of relative humidity. Left: Response of solution-cast P3HT film. Right: Response of NW ‘mesh’. Both 
responses are shown in a logarithmic metric. Inset: The same figures for the NW ‘mesh’ device plotted in a linear 
scale and a non-linear fit shown in red, which is described by the given exponential equation. 

The same test pattern was applied to a device with P3HT spin-cast film for comparison. The 

comparative results from the two tests are shown in Figure 7-10; the responses of the two 

sensors for different levels of humidity are expressed in a logarithmic metric. It is worth 

mentioning that the limit of detection (LoD) was the same for both sensors; this threshold of 

50% RH was found to be irrelevant to the morphology of the semiconductor and appears to be 

a characteristic of the material itself. Interestingly, the same threshold has been previously 

reported for potassium hydroxide (KOH)-H2O-doped PVA (poly-vinyl alcohol) devices [164].  

For water vapour concentrations above threshold, the NW device outperformed the cast film 

one, in terms of conductivity response. For the highest tested concentration of 90% RH, the 

P3HT-film sensor exhibited a 25% increase in conductance, relative to its pre-exposure value in 

dry conditions; respectively, the P3HT-NW sensor showed a more than 75-fold conductance 

increase. This 300 times stronger response can be attributed to the much larger surface area of 

the NW device as compared to its film counterpart; the larger the area, the higher the 

probability of interactions between the semiconductor and the water vapour taking place. 
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7.2.5. Conclusion 

The work presented in this section demonstrates the importance of material preparation in 

the sensitivity of organic semiconductor sensors. A common organic semiconductor, poly(3-

hexylthiophene) (P3HT) was used for the fabrication of chemiresistors. Two different solutions 

of P3HT were prepared: one of them resulted from simple dissolution of the semiconductor in 

chlorobenzene, whereas for the preparation of the latter, P3HT was first dissolved in anisole 

and then, a special physicochemical treatment cycle was applied; this method led to the 

formation of nanowires in the form of suspension.  

The increase in conductivity of P3HT when exposed to atmospheric humidity has been 

previously reported; however, this study reveals that the much larger surface area of a NW 

structure constitutes a major advantage over the conventional film device. It was found that 

that both types of chemiresistors have a limit of detection at roughly 50% relative humidity. 

Above this threshold, the conductance of both sensors increased. Nevertheless, the response 

of the NW device far exceeded that of the conventional film; as an example, under exposure to 

90% RH, the response of the NW sensor was 300 times stronger than that of the conventional 

film one. 

This finding paves the way for the sensitivity enhancement of other vapour sensors based on 

organic semiconductors; the development and deposition of the semiconductor in the form of 

one-dimensional crystals can be favourable for this purpose. The work presented in this 

section has been published as a research paper in the Sensor Letters journal [165].  
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7.3. PBTTT OFET sensor sensitivity to alcohols 

7.3.1. Introduction 

Polythiophene-derivates have long been used as active materials for OFET vapour sensors [12]. 

R. A. Street et al. have published a remarkable comparative study on the effects of several 

organic and inorganic analytes on multiple parameters of poly(3,3’’’-didodecyl-

quaterthiophene) (PQT-12) transistors [166]. In a recent example, Kettle et al. used planar OFETs 

employing poly(3-hexylthiophene) (P3HT) as sensors of a selection of volatile analytes including 

methanol and isopropyl alcohol (IPA) [167]. Moreover, Torsi et al. demonstrated an OFET sensor 

based on surface-treated SiO2 gate dielectric with a α,ω-poly(sexithiophene) (DHαHT) 

semiconductor [14]; the sensor showed good sensitivity to n-butanol vapours and the effects 

have been attributed to both channel and contact resistance changes. 

In this section, the quantitative exposure of OFET sensors based on either poly(2,5-bis(3-

tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C14) or poly(2,5-bis(3-

hexadecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C16) semiconducting polymers to 

vapours of three different alcohols is discussed. Two different batches of sensors with similar 

architecture were tested: the first of them was based on PBTTT-C14 and was fabricated in the 

laboratories of the University of Bari, Italy; the second was based on PBTTT-C16 and was 

developed in the University of Sheffield, UK. The former was used to conduct n-butanol 

exposure tests, which are discussed in section 7.3.6; the latter was used in the more detailed 

automated measurements under ethanol and n-octanol exposure, which are presented in 

sections 7.3.4 and 7.3.5, respectively. 

Due to the differences in device preparation techniques, experimental methodology and 

equipment used for the tests described in the aforementioned sections, a separate description 

of these topics is given for each device batch and the each test performed on them. A 

comparative discussion of all devices is given in section 7.3.7. 

7.3.2. Device preparation 

The first batch of devices employed an n-doped silicon wafer as a substrate. A thermally-grown 

oxide layer with a thickness of 300 nm served as the gate dielectric material. PBTTT-C14 

semiconductor was dissolved in chlorobenzene (5 mg/mL) and was heated at 75 °C for several 

minutes before being spin cast onto the substrates. The substrates were spun at 3000 rpm for 

120 seconds in a spin coater with nitrogen purge. Gold was evaporated in high vacuum 

through shadow masks to pattern the top source and drain electrodes; the deposition rate was 

set at 0.15 nm/s and the final thickness of the patterned gold electrodes was 100 nm. Each 

substrate had 40 patterned parallel electrodes; the dimensions of OFET channels, i.e. the areas 

between two adjacent electrodes, were 200 μm (length) x 4000 μm (width). The substrates 

were finally annealed at 100 °C for 60 seconds in ambient atmosphere. Devices from this batch 

were used for the n-butanol vapour exposure tests discussed in section 7.3.6.  

The second batch of devices was also built on heavily n-doped Si substrates with a thermally 

grown oxide with a thickness of 300 nm. The substrates were cleaned with an alkaline solution 

and IPA before UV-ozone treatment was applied; these cleaning procedures are described in 
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detail in section 2.2.4. Again, for the sake of reproducibility and simplicity, as well as the 

exclusion of any additional interactions, no surface treatment was applied to the gate oxide. 

PBTTT-C16 was dissolved in dichlorobenzene (7.5 mg/mL) at 100 °C. The solution was spin cast 

onto the substrates in a spin coater with nitrogen purge. The speed was set at 1500 rpm and 

the spin time was 60 seconds for each sample. The substrates were annealed at 95 °C for 45 

minutes in vacuum. Gold was thermally evaporated through shadow masks in high vacuum of 

5 x 10-7 Torr. The deposition rate was roughly 0.03 nm/s. The channel dimensions of the 

devices were 5 μm (length) by 1000 μm (width). Each substrate comprised 20 OFETs. Solution 

preparation and deposition, substrate annealing, gold deposition, as well as all device 

measurements were conducted under either dimmed yellow light or in the dark.  

7.3.3. Saturated vapour pressure calculation 

The saturated vapour pressure (psat) values at room temperature were calculated by the 

application of a simple linear regression fit to the vapour pressure versus temperature data 

taken from the literature [168], as shown in Figure 7-11. The intersection of each fit and the 

room temperature line yields the psat of each analyte. 

 

Figure 7-11 – Arrhenius-like plot of vapour pressure versus T
-1

 for the three alcohols used in quantitative 
exposure measurements. The data points are taken from the literature [168]. The simple linear regression fits to 
each data set are shown with dashed straight lines. The room temperature (20 °C) is indicated by the vertical red 
line.  
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7.3.4. Sensitivity to ethanol 

Ethanol (C2H6O) was the smallest alcohol molecule used for vapour sensing tests on PBTTT 

OFET sensors. Ethanol (EtOH) has a molecular mass of 46.07 g/mol, a boiling point 78 °C, a 

density of 0.789 g/cm3 (at 25 °C) and a vapour pressure of approximately 5.6 KPa, i.e. 55188 

ppm (at 20 °C) [168, 169]. This section describes the test methodology and discusses the results of 

these measurements. 

7.3.4.1. Test methodology 

The devices from the second batch, described in section 7.3.2 (semiconductor: PBTTT-C16, 20 

devices per substrate, channel dimensions: 5 μm x 1 mm), were used for these tests; initially, 

they were electrically characterised in ambient conditions for the extraction of their I-V 

characteristics. The electrical characteristics of the devices of the second batch are discussed 

in section 5.5. Most of the devices were found doped in the initial tests. 

The fully automated characterisation system, discussed in section 4.3, was used to carry out 

the measurements discussed here. Prior to the controlled exposure measurements, the 

sensors were placed in a chamber with constant nitrogen flow for extended periods of time 

while their electrical performance was being monitored. Figure 7-12 and Figure 7-13 show the 

trends of saturated drain current (Ion) and off-state (Ioff) current for 3 days of continuous 

measurements. Doping effects were found to get mitigated over the course of the test as Ioff 

decreased dramatically, showing a drop from 200 nA to 65 nA, i.e. 67.5% decrease, after 37 

hours and remained at this level for the rest of this preconditioning stage. Due to the 

dependence of Ioff on the doping of the semiconductor by extrinsic factors, such as the 

presence of impurities or humidity [165, 166], it can be assumed that doping effects were 

annihilated before the beginning of the exposure tests. 

The analyte and the sensor were kept at room temperature. The saturated vapour delivery line 

was mixed with the pure nitrogen line before being fed into the chamber. The selected mixing 

ratios were 5%, 15% and 45%, which correspond to approximately 2750 ppm, 8250 ppm and 

24750 ppm of ethanol in nitrogen, respectively. 

The sensor was exposed to the lowest concentration for 5 minutes and left to recover under 

nitrogen purge for 25 minutes , then it was exposed to the second concentration for 5 minutes 

and after 20 minutes in nitrogen, it was finally exposed to the highest concentration for 4 

minutes. 

The automated characterisation system, described in Chapter 4, was used for the delivery of 

these measurements. The applied drive was a zero-offset sinusoidal signal with a peak voltage 

of 20 V and a frequency of 6 Hz. Measurement data were acquired every 5 seconds in bursts of 

11 continuous measurements; a median filter was applied to each of those sets, i.e. each data 

point on the graphs represents the median value of 11 consecutive measurements. 
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Figure 7-12 – Maximum drain current for a PBTTT OFET sensor under constant nitrogen flow over the course of 3 
days. Tested with the application of a sinusoidal drive. Datapoints for Vds= Vgs = -20 V.   

 

Figure 7-13 – Off-state drain current (Ioff) for a PBTTT OFET sensor under constant nitrogen flow over the course 
of 3 days. Tested with the application of a sinusoidal drive. Datapoints for Vds= Vgs = =+20 V.   

7.3.4.2. Results and discussion 

The on- and off-state currents exhibited sensitivity to vapour exposure, as it can be seen in 

Figure 7-14 and Figure 7-15. For the two lowest concentration levels, the off-state current 

showed a trivial rise, but remained close to the lowest detectable level; meanwhile, the 

maximum drain current instantaneously decreased by -1.5 % and -5.2 %, respectively. The 
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initial steep drop of drain current was followed by a slow recovery during the exposure period. 

Immediately after the end of exposure, the drain current ramped up to higher level than that it 

was prior to exposure; the possible reasons for this behaviour are discussed below.  

 

Figure 7-14 – Maximum saturated current (at Vds= Vgs = -20 V) versus time. The yellow-shaded regions indicate 
the vapour exposure periods; the respective mixing ratios (given in the graph) were 5% (2750 ppm), 15% (8250 
ppm) and 45% (24750 ppm). 

 

Figure 7-15 – Maximum off-state current (at Vds= Vgs = +20 V) versus time. The yellow-shaded regions indicate 
the vapour exposure periods; the respective mixing ratios (given in the graph) were 5% (2750 ppm), 15% (8250 
ppm) and 45% (24750 ppm). 
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Figure 7-16 – Saturated drain current (Ion, black line - left y-axis) for Vds = Vgs = -20 V and threshold voltage (Vth, 
blue line – right y-axis) for a PBTTT OFET sensor. The yellow-shaded regions indicate periods of exposure to 
ethanol vapour; the respective mixing rations of saturated vapour to pure nitrogen are given on the top of each 
shaded region. White regions indicate periods under nitrogen purge. 

 

Figure 7-17 – Saturated drain current (Ion, black line - left y-axis) for Vds = Vgs = -20 V and charge carrier mobility (μ, 
red line – right y-axis) for a PBTTT OFET sensor. The yellow-shaded regions indicate periods of exposure to 
ethanol vapour; the respective mixing rations of saturated vapour to pure nitrogen are given on the top of each 
shaded region. White regions indicate periods under nitrogen purge. 
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Figure 7-18 – Saturated drain current (black line – left axis) and Vth (blue line – right axis) for a PBTTT OFET sensor 
under exposure to 45% psat (24750 ppm) of ethanol in dry nitrogen. 

 

Figure 7-19 – Drain current (black line – left axis) and μFE (red line – right axis) for a PBTTT OFET sensor under 
exposure to 45% psat (24750 ppm) of ethanol in dry nitrogen. 

In the case of the highest analyte concentration of 24750 ppm, a remarkable behaviour was 

observed; again, an initial steep drop of -19.3% in drain current was recorded, but this change 

was followed by a dramatic increase which quickly surpassed the pre-exposed state. 

Additionally, off-state current increase dramatically, showing an relative change of more than 

700%. When analyte delivery was ceased, off-state current preserved its increased magnitude, 

while on-state current showed a rapid increase from 4 μΑ to 7 μΑ.  
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The case of ethanol constitutes a very good example of the advantages of OFETs over 

chemiresistors in gas sensing; moreover, it highlights the importance of real-time 

multiparametric characterisation. Apparently erratic single parameter, i.e. drain current, 

behaviours, manifested by the ‘zig-zag’ trends discussed above, can be rationalised by a closer 

look at the multiparametric analytical data. The disentanglement of multiple independent 

OFET parameters, such as threshold voltage (Vth) and mobility (μFE), can shed some light on the 

actual interactions that occur under exposure.  

Figure 7-16 and Figure 7-17 clearly show the Vth and μFE changes of the OFET sensor under the 

exposure to the two lowest concentrations of ethanol. Both parameters are affected; the 

modulus of Vth is gradually reduced, while mobility immediately drops to a lower level which is 

preserved throughout the exposure period. According to the saturated drain current (ID,sat) 

notions, as described by eq. (2.3), it can be easily deduced that these trends induce opposite 

results on ID,sat; the change in Vth should result in an increase in ID,sat, whereas drain current 

should fall with μFE due to their proportionality. Consequently, the instant mobility change can 

justify the initial steep drop of drain current. However, the slower change in Vth slowly 

reversed the drain current trend; this resulted in the ID,sat increase, which followed the swift 

initial reduction.  

Upon analyte delivery termination, mobility quickly recovered and returned to a similar level 

to that of its pre-exposed state; on the contrary, Vth only showed a partial recovery. The overall 

result of these two separate changes is the steep increase in drain current which occurred 

immediately after the end of each exposure. 

In the case of the highest analyte concentration exposure, the effects were remarkably 

stronger. Figure 7-18 and Figure 7-19 illustrate these results. Again, mobility showed a step-

like response with a quick drop of roughly 50%. The effects on Vth were particularly striking; 

the calculations indicate a transition from enhancement-mode to depletion-mode, as Vth 

becomes positive. This massive Vth change quickly caught up with the mobility drop and, 

finally, the drain current surpassed its pre-exposed magnitude within seconds under exposure.  

When analyte delivery was terminated, Vth quickly became negative but only partially 

recovered; remarkably, μFE rose to a value which was roughly three times greater than the 

exposed state and double the pre-exposed state magnitudes. As a result, drain current 

increased to a high level which was roughly 230% of its pre-exposed state. Both off-state and 

on-state currents remained at the same level until the end of test, three hours after the end of 

the last exposure. 

It is worth noting that, due to the attributes of the electrical characterisation system, discussed 

in section 4.1, the Vth and μFE calculations are based on saturation region notions, i.e. based on 

the assumption that the OFET under test is a normally-on device (enhancement-mode). If the 

device becomes of depletion-mode, this assumption no longer holds true; this fact may 

introduce some error in the calculations. Moreover, the presence of an ohmic contribution due 

to the doping of the semiconductors, can introduce some small error as no off-state current 

correction was applied to the results. However, regardless of any possible inaccuracies, the 

observed trends of Vth and μFE remain valid. The impact of doping on the calculations of Vth and 

μ is extensively discussed in section 4.2. 
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Figure 7-20 – AFM image of the surface of a PBTTT OFET before exposure to any analyte. Root mean square (RMS) 
roughness: 3.34 nm. 

 

Figure 7-21 – AFM image of the surface of an PBTTT OFET after exposure to ethanol vapour. Root mean square 
(RMS) roughness: 2.95 nm. 

From the effects on Vth, it can be safely deduced that due to their small dimensions, ethanol 

molecules can penetrate through the PBTTT grains and reach the semiconductor-dielectric 

interface. The presence of polar –OH groups on both the SiO2 surface [170], and the ethanol 

molecules can lead to the development of strong hydrogen bonds between them, which can 

result in threshold voltage changes. 
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A previous report on ethanol sensing with pentacene OFETs suggests that the polar molecules 

of the analyte introduce trap sites at the grain boundaries and effectively reduce the mobility 

of carriers by hindering them from hopping between two adjacent semiconductor grains [13].  

This reasoning could explain the observed initial steep drops of μFE under exposure. However, 

the enhanced post-exposure mobility remains to be justified; the irreversibility of this change, 

even after prolonged exposure to a dynamic nitrogen atmosphere, may constitute an 

indication of permanent changes in the semiconductor film. In another study, Hüttner et al. 

have reported mobility enhancement of perylene bisimide acrylate (PPerAcr) polymer films 

after their exposure to chloroform vapour [171]; it was found that the morphology of the film 

was affected by the solvent vapour. This treatment is referred to as solvent vapour annealing 

and in this case, it could provide an explanation of the observed mobility enhancement after 

exposure. In the work presented here, the AFM images of the surfaces of unexposed and 

exposed PBTTT films, shown in Figure 7-20 and Figure 7-21, reveal a small decrease in surface 

roughness after exposure to ethanol vapour, with the root mean square (RMS) value dropping 

from 3.34 nm to 2.96 nm; however, no significant changes in the grain size distribution could 

be measured. Considering that these images visualise only the surface of the films, this small 

change in surface roughness provides and indication of possible solvent annealing, but cannot 

safely confirm any changes in the grain formation due the film exposure to ethanol vapour. 

7.3.4.3. Conclusion 

The selection of ethanol as an analyte for the exposure of PBTTT OFET sensors turned out to 

be a very good example of real-time multiparametric characterisation using the I-V converter 

method, discussed in detail in Chapter 4. The automatically calculated measurement data 

clearly disentangled the trends of individual parameters, i.e. the step-like responses of μ in 

conjunction with the exponential changes of Vth; this provided enough evidence to explain the 

apparently erratic drain current behaviour during the periods of exposure and recovery. 

The limit of detection (LoD) lies below the lowest tested concentration of 2750 ppm. The 

magnitude of the effects increased with increasing analyte concentration. For all the applied 

concentrations, mobility exhibited instantaneous step-like drops to values that were preserved 

throughout each exposure period; this fact justifies the steep initial drop of drain current in all 

cases. Interestingly, the relative change in mobility was found to be proportional to the analyte 

concentration. 

Meanwhile, the modulus of threshold voltage showed an exponential decay which induces the 

opposite effects on drain current; the initial drop in drain current was followed by a slower 

increase. Upon the end of exposure, mobility rapidly increased and reached a new plateau at a 

level slightly higher than its pre-exposure value, while threshold voltage partially recovered; 

the combination of these two separate phenomena resulted in a steep rise of drain current to 

higher levels than the pre-exposure ones. Off-state current (Ioff) was also affected; an increase 

was recorded during each exposure period. Both saturated drain current and off-state current 

showed irreversible changes as they preserved their increased values during all recovery 

periods, even after 3 hours after the last exposure was ceased.  
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7.3.5. Sensitivity to octanol 

The largest alcohol molecule used for vapour sensing tests on PBTTT OFET sensors was n-

octanol (C8H18O). It has a molar mass of 130.23 g/mol, a boiling point 196 °C, a density of 0.827 

g/cm3 (at 25 °C) and a vapour pressure of approximately 12 Pa, i.e. 118 ppm (at 20 °C) [168, 172]. 

This section describes experimental procedure for the vapour exposure tests and presents 

their results. 

 

Figure 7-22 – The n-octanol molecule 

7.3.5.1. Test methodology 

The test methodology was very similar to the one previously described in section 7.3.4.1; a 

substrate from the second batch of OFET sensors, as described in section 7.3.2 

(semiconductor: PBTTT-C16, 20 devices per substrate, channel dimensions: 5 μm x 1 mm), was 

used in the same test rig; the device preparation is described in section 7.3.2 and the gas-

exposure system in section 7.1.1. Three sensors were characterised simultaneously using the 

relay-based multiplexer described in section 7.1.3. 

The pre-conditioning stage was much shorter than that of the ethanol-vapour-exposure tests; 

the devices were measured under nitrogen purge for 30 minutes prior to the first analyte 

exposure. Both the saturated drain current (Ion) and the off-state current (Ioff) decreased during 

this stage; however, Ioff remained at a measurable magnitude. As discussed in section 7.3.4.1, 

in that case of PBTTT OFET sensor pre-conditioning, Ioff was found to get eliminated after 

several hours under nitrogen. 

The analyte and the sensor were kept at a room temperature of 20 °C. The saturated vapour 

delivery line was mixed with the pure nitrogen line before being fed into the chamber. The 

selected mixing ratios were 1%, 10%, 30% and 60%, which correspond to approximately 1.2 

ppm, 12 ppm, 35 and 70 ppm of n-octanol in nitrogen, respectively. 

The sensors were exposed to the three lowest concentrations (1%, 10% and 30%) for 5-minute 

intervals and finally to the highest concentration (60%) for 20 minutes approximately. They 

were left to recover under nitrogen purge overnight. 

The applied drive was a zero-offset sinusoidal signal with a peak voltage of 20 V and a 

frequency of 6 Hz. Measurement data were acquired every 5 seconds in bursts of 11 

continuous measurements; a median filter was automatically applied to each of those sets, i.e. 

each data point on the graphs represents the median value of 11 consecutive measurements. 

7.3.5.2. Results and discussion 

Figure 7-23 and Figure 7-24 show the saturated drain current (Ion) and off-state current (Ioff), 

respectively, of the three sensors versus time.  The Ion of all three sensors showed a steady 

drop during the pre-conditioning stage which carried on even after Ioff values got stabilised. For 

the first three exposure levels (1% to 30% or 1.2 ppm to 35 ppm), both Ion and Ioff appeared 

unaffected; the trend of Ioff remained flat while Ion continued to drop at a steady pace. 
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Figure 7-23 – Saturated drain current (Ion) at Vds = Vgs = -20 V of three PBTTT OFET sensors versus time. The colour-
shaded regions represent periods of exposure to different ethanol vapour concentrations. The respective mixing 
ratios of saturated ethanol vapour to pure nitrogen are given on the top of each region. 

 

Figure 7-24 – Off-state current (Ioff) at Vds = Vgs = +20 V of three PBTTT OFET sensors versus time. The colour-
shaded regions represent periods of exposure to different ethanol vapour concentrations. The respective mixing 
ratios of saturated ethanol vapour to pure nitrogen are given on the top of each region. 
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Figure 7-25 – Saturated drain current (Ion) at Vds = Vgs = -20 V of three PBTTT OFET sensors versus time. The 
yellow-shaded region represents the period of exposure ethanol vapour with a concentration of 60% psat (70 
ppm). The white regions indicate periods under pure nitrogen purge. The recovery trends of the three sensors 
varied significantly. 

 

Figure 7-26 – Off-state drain current (Ioff) at Vds = Vgs = +20 V of three PBTTT OFET sensors versus time. The yellow-
shaded region represents the period of exposure ethanol vapour with a concentration of 60% psat (70 ppm). The 
white regions indicate periods under pure nitrogen purge. The recovery of sensor 2 differed significantly from 
those of the other two sensors. All sensors reached equilibrium after several hours in nitrogen. 
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Doubling the analyte concentration to a 60% psat (70 ppm) had a strong impact on both current 

quantities; Ion exhibited a substantial increase, ranging from +37.0% (sensor 2) to +63.9% 

(sensor 1), while Ioff had showed an even larger change, ranging from +84.4% (sensor 1) to 

+112.1% (sensor 3). 

The sensors were left under nitrogen purge for another 15 hours while their electrical 

characteristics were being calculated and recorded; Figure 7-25 and Figure 7-26 respectively 

show the Ion and Ioff current trends over the exposure periods and this extended recovery 

period. The behaviour of both quantities does not allow for the extraction of straightforward 

conclusions. It was observed that the Ion of all sensors kept rising for several minutes after the 

analyte exposure was ceased; the Ion of sensor 1 reached a maximum after 2 hours. The results 

of Ioff showed an even longer rising trend; the values for all sensors were increasing for 

approximately 7 hours. However, after 9 hours all three Ioff values dropped and remained at 

relatively low level until the end of test. On the contrary, Ion fluctuations carried on for 10 

hours since the beginning of the recovery period, before all three values finally came to 

equilibrium. 

More detailed information on the sensitivity of the sensors can be extracted from Figure 7-27 

and Figure 7-28, which respectively show the evolution of Vth and μ with time. n-octanol 

vapour was not found to induce abrupt drops in μ, which comes in contrast to the effects of 

ethanol vapour, presented in section 7.3.4.2. For the three lowest analyte concentrations of 

1% psat (1.2 ppm), 10% psat (12 ppm) and 30% psat (35 ppm), μ exhibited a steady falling trend 

which, in conjunction with the stable Vth values calculated throughout these periods, explains 

the simultaneous Ion decrease for all sensors.  

For the highest analyte concentration of 60% psat (70 ppm), the μ trend was reversed for all 

three devices; the values increased resulting in an increase in the respective Ion values. Vth was 

also found susceptible to high vapour concentration; two of the sensors showed a moderate 

drop of the modulus of Vth towards a normally-on behaviour, while the value for sensor 3 

dropped to zero. These calculated Vth changes could be thought as artefacts of the automated 

measurement algorithm due to presence of ohmic contribution (doping), which manifests itself 

in the substantial increase of Ioff for this analyte concentration, as previously discussed. A 

detailed discussion on the potential calculation errors introduced by doping is given in section 

4.2. 

7.3.5.3. Conclusion 

The limit of detection (LoD) of n-octanol vapour using PBTTT OFET sensors of the given 

characteristics was found to lie between 35 and 70 ppm. No response was detected for 

exposure to concentrations below 35 ppm, while the charge carrier mobility was found to 

steadily drop during these periods; this fact can be attributed to the relatively short, 30-

minute-long, pre-conditioning period which did not allow for completely drying out the 

chamber and purging any pre-existent dopants in the semiconductor film [49, 156-159, 173]. 
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Figure 7-27 – Saturated drain current (Ion) at Vds = Vgs = -20 V for three PBTTT OFET sensors (top three series, left 
y-axis), and the threshold voltage (Vth) of the same sensors (bottom three series, right y-axis) versus time. Colour-
shaded regions indicate the periods of exposure to n-octanol vapour; the respective concentrations appear on 
the top of each region: 1% psat, 10% psat, 30% psat and 60% psat (70 ppm). In the region between t = 3150 s and t = 
3500 s, the readings from Sensor 3 reached a plateau of -2000 nA; this is a measurement artefact due to fact that 
the converted output voltage (Vout) for the given feedback resistance was out-of-scale. The measurement data 
returned to their actual values when the oscilloscope scale was manually changed, at t = 3500 s. 

 

Figure 7-28 – Saturated drain current (Ion) at Vds = Vgs = -20 V for three PBTTT OFET sensors (top three series, left 
y-axis), and the carrier mobility (μ) of the same sensors (bottom three series, right  y-axis) versus time. Colour-
shaded regions indicate the periods of exposure to n-octanol vapour; the respective mixing ratios appear on the 
top of each region, namely: 1% psat, 10% psat, 30% psat and 60% psat (70 ppm). 
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Under exposure to 70 ppm, carrier mobility increased and, consequently, it induced a rise in 

the saturated drain current. The off-state current was also affected showing a substantial 

increase. Threshold voltage values were also found to change, exhibiting a drift towards a 

normally-on behaviour; however, the accuracy of these calculated values might have slightly 

been compromised by the highly doped profile, which the enhanced off-state current 

indicates. 

As it can be seen in Figure 7-23 to Figure 7-28, the performance and sensing responses of OFET 

sensors fabricated with the same methodology and exposed to the same conditions can vary 

significantly. This fact underscores the need for comparative measurements, which can 

evaluate the consistency and reproducibility of this kind of sensors; this need is satisfied with 

this system as multiple sensors can be exposed to the same conditions and characterised 

simultaneously.  
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7.3.6. Sensitivity to butanol 

The vapour of n-butanol (C4H10O) was used as an analyte on PBTTT OFET sensors. n-butanol 

(BuOH) has a molar mass of 74.12 g/mol, a boiling point of 116-118 °C, a density of 0.81 g/cm3 

(at 25 °C) and a vapour pressure of approximately 665 Pa, i.e.  6560 ppm (at 20 °C) [168, 174]. In 

this section, a description of the experimental procedure for the delivery of quantitative 

measurements on PBTTT OFET sensors exposed to n-butanol vapour is given along with a 

discussion on their results. The device fabrication and the tests described in this section were 

carried out in the laboratories of the Chemistry Department of the University of Bari, Italy. 

Credits to other contributors are given in the  

Acknowledgements. 

 

Figure 7-29 – The n-butanol molecule 

7.3.6.1. Test methodology 

The device under test was a device built on a substrate from the first batch of OFETs, as 

described in section 7.3.2 (semiconductor: PBTTT-C14, channel dimensions: 200 μm x 4 mm). 

The sensor under test was electrically contacted by three Cascade-Microtech PH100 probe 

positioners with tungsten needles. The electrical characterisation was carried out by an Agilent 

4155C semiconductor parameter analyser and the I-V converter system, described in detail in 

Chapter 4. 

All device preparation and measurements took place in either dark or dimmed light conditions. 

The analyte was placed into a bubbler immersed into a thermostatically-controlled bath filled 

with mixture of water with an antifreeze agent. The gas flow and the mixing ratios were 

regulated by two mass-flow controllers (Brooks Instruments 5820s) of different maximum flow 

rates (500 ml/min for the pure gas and 100 ml/min for the analyte line); the controllers were 

connected to a computer via a serial protocol connection. The gas delivery and mixing were 

implemented in a similar fashion as the one described in section 7.1.1; the first of the 

controllers regulated the flow of pure nitrogen, while the second one controlled the flow of 

nitrogen, which was fed into the bubbler and mixed with the saturated vapour of it. The two 

lines were mixed at a T-junction; the final mixture was then delivered onto the surface of the 

substrate through a narrow plastic pipe with an open end. The distance between the open end 

of the pipe and the surface of the substrate was kept to a minimum. The sensor and the 

contacting probes were not enclosed in a gas chamber as in the previously described 

experiments; instead, they were placed on a stage lying on the surface of a fume cupboard. 

The long comparative measurements between the two characterisation systems were 

conducted on the same sensor on different days. From the time of its fabrication and between 

the tests, the substrate was stored in dark ambient conditions. For consistency, the same light 

and temperature conditions, analyte vapour concentration and exposure/recovery pattern 

were chosen for all tests.  For the tests conducted using the semiconductor parameter 

analyser, standard transfer measurements were taken every 3 to 4 minutes; a rising and a 
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falling gate voltage sweep (from +30 V to -30V and then back to +30V) for a constant drain bias 

of -30V were applied. For the tests conducted using the I-V converter system, a zero-offset 

sinusoidal drive with V0 = 30 V and f = 16 Hz was applied. All measurement data were manually 

exported by saving the oscilloscope data in 4-minute-long intervals. 

A pre-conditioning period under nitrogen preceded all exposure tests; the sensor was 

characterised until the drain current came to equilibrium, thus the length of this period was 

not exactly the same for all experiments, but exceeded one hour in all cases. The analyte and 

the room temperature were set at 20 °C. The saturated vapour delivery line was mixed with 

the pure nitrogen; the selected mixing ratio was 30%, which corresponds to approximately 

2000 ppm. The same sequence of long exposure/recovery periods was applied in all tests:  a 

long pre-conditioning period, two sets of 30-minute-long periods of exposure to analyte 

vapour and equally long periods of recovery under nitrogen, and a final 20-minute-long 

exposure followed by another recovery period. 

7.3.6.2. Results and discussion 

The device under test showed similar responses in multiple tests when exposed to the same 

concentration of n-butanol vapour, even several days after their fabrication. Using both the 

semiconductor parameter analyser and the I-V converter system over a period of two weeks, 

the response of the sensor, in terms of saturated drain current (ΔIon/Ion,0), was found to fall 

within a range from -25 % to -34 %. The off-state current (Ioff) was found to be insensitive to 

analyte exposure in all experiments. 

Analysis of the measurement data makes it evident that this drop was the result of two 

different changes; a drop in mobility (μ) and an increase in the modulus of threshold voltage 

(Vth). An example of converted transfer curves indicating the calculated parameters is shown in 

Figure 7-30. It is worth mentioning that the manual conduct of measurements does not allow 

for the analysis of the immediate responses at the onset of the analyte vapour, as it was done 

in sections 7.3.4.2 and 7.3.5.2. 

During the recovery periods, the saturated drain current (Ion) showed a fast recovery. However, 

the ‘recovered’ state was found to be dependent on the characterisation method; the DC 

measurements taken by the Agilent analyser showed enhanced Ion levels during recovery, as 

compared to their respective pre-exposure values. On the contrary, the measurements taken 

under continuous AC operation using the I-V converter system showed a partial recovery of Ion 

under nitrogen. As a control experiment, another set of measurements using the I-V converter 

system was taken; in this case the AC drive was applied for only a few seconds before and after 

the data acquisition process, rather than being applied continuously over the course of the 

test. In this case, the sensor showed a better recovery, as compared to its performance under 

continuous drive; this behaviour applied to all but one instances, as can be seen in the 

comparative Figure 7-31.  

Looking back at Figure 7-30, the fact that, under AC drive, the drain current only partially 

recovers can be explained by the irreversible change in Vth; in fact, the value of Vth was found 

to be slightly greater during recovery, whereas μ recovered almost completely. Considering 

that Vth is largely dependent on the interactions at the semiconductor-interface, the slow 
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responses of Vth can again be attributed to the slow diffusion of the analyte molecules through 

the grains of the semiconductor. 

 

Figure 7-30 – Converted transfer curves from the I-V converter system for a PBTTT-C14 OFET sensor during the 
pre-conditioning period under nitrogen (black curve), under exposure to 30% psat n-butanol vapour and during 
the recovery period under nitrogen (blue curve). 

 

Figure 7-31 – Relative responses (ratio of the change in saturated drain current under exposure to its pre-
exposure value) ΔIon/Ion,0 versus time. A comparative graph of all n-butanol vapour exposure measurements. Due 
to the different pre-conditioning period durations, a time offset has been added to some of the curves so that all 
exposure/recovery periods coincide.  
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Moreover, an explanation of the clear dependence of Ion recovery on the drive signal can be 

sought in the polar nature of n-butanol molecules; it can be assumed that the symmetry of the 

zero-offset sine drive inhibits the removal of analyte molecules from the semiconductor-

dielectric interface during recovery by electrostatically keeping these dipoles in close proximity 

to the interface. Conversely, when no drive was applied, the recovery under nitrogen purge 

was enhanced. Furthermore, in the case of DC measurements, every sweep started with the 

application of a large reverse gate bias (+30V) which can potentially have a twofold impact: to 

induce a positive Vth shift due to dielectric stress [142] and simultaneously, to repel the analyte 

molecules from the semiconductor-dielectric surface [12], which together effectively enhance 

Ion, as discussed above. 

7.3.6.3. Conclusion 

The effects of n-butanol vapour on a PBTTT-C14 OFET sensor were studied. The limit of 

detection (LoD) was found to be lower than the lowest tested concentration of 2000 ppm. 

Multiple measurements of the same exposure/recovery pattern were taken. Two different 

methods of electrical characterisation were used; the first one was the extraction of standard 

transfer characteristics from DC measurements with the aid of a semiconductor parameter 

analyser, and the second one was based on AC measurements carried out with the I-V 

converter system, discussed in Chapter 4. 

Both threshold voltage (Vth) and mobility (μ) were found to get affected by the analyte; both 

changes induced a drop in the saturated drain current (Ion). This decrease in Ion was found to be 

of comparable magnitude for all measurements, regardless of the method used. However, 

during the sensor recovery periods under nitrogen purge, the DC measurements showed that 

Ion fully recovered or even surpassed its pre-exposure state. On the contrary, measurements 

under continuous AC drive revealed that the driving conditions play a role in the recovery 

process; more specifically, while mobility was found to recover to a great extent, Vth remained 

at elevated levels compromising the recovery. The recovery was found to meliorate when 

short AC pulses were used in place of a continuous drive. This phenomenon can be attributed 

to the electrostatic effects of the drive voltage on the polar analyte molecules. 
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7.3.7. Comparison and conclusion on alcohol sensing 

First and foremost, the work presented in this section served for the demonstration of the 

capabilities of the multiparametic characterisation system, discussed in Chapter 4. The 

quantification of multiple sensing parameters in real-time is an added value to vapour sensing 

using OFET transducers. In particular, the example of ethanol exposure clearly showed the 

independent responses of threshold voltage and mobility parametric in time, which both affect 

drain current inducing competing trends. A manuscript describing these experiments has been 

accepted for publication in Sensors and Actuators B journal. 

In detail, the exposure tests on the second batch of PBTTT devices, using ethanol and n-octanol 

vapour as analytes under real-time automated multiparametric measurements, reveal the 

effects of the analyte molecules on separate parameters of these OFET sensors. The limited 

amount of investigated sensors and analytes hinder the extraction of explicit conclusions on 

the weak and largely reversible ethanol-PBTTT interactions; however, a comparison of the 

experimental data and a discussion on the possible mechanisms behind the observed changes 

are given here. 

As a general observation, in each exposure test, the analyte concentration played a role in the 

magnitude of the induced changes; however, when expressed in ppm, the limit of detection 

(LoD) of ethanol was found to be about two orders-of-magnitude larger than that of n-octanol. 

An interesting finding is the fact that mobility showed opposite responses under exposure to 

these two different alcohols. For all exposures, ethanol vapour yielded a step-like μ drop, 

which was found to be roughly proportional to the respective analyte concentration. 

Contrarily, exposure to n-octanol induced a gradual increase in mobility, which carried on even 

after analyte delivery was ceased. 

Regarding threshold voltage, all responses were not immediate but followed an exponential 

decay. However, the Vth sensitivity varied; n-octanol vapour generally caused mild decreases in 

the modulus of Vth, whereas the impact of ethanol was more pronounced. Considering that Vth 

is more likely to be affected by the presence of contaminants in the vicinity of the 

semiconductor-dielectric interface, it can be assumed that the probability of ethanol molecules 

diffusing through the grains of the semiconductor and reaching the interface is higher due to 

their much smaller size compared to the n-octanol ones; this fact can explain the stronger 

effects of ethanol vapour on Vth. Nevertheless, the fact that the concentration of ethanol is 

more than two orders-of-magnitude higher than that of n-octanol can be another contributing 

factor for the strong effects of the former on Vth. 

Finally, the differences between the two batches of sensors (different device dimensions, 

different PBTTT variants, different solvents and deposition conditions, different electrical drive 

conditions, as well as the fact that the fabrication/characterisation were conducted in different 

laboratories) obscure any reliable comparison between the aforementioned tests involving 

ethanol and n-octanol, and the tests with n-butanol. The latter tests mainly served for the 

study of the effects of different drive conditions on the sensing properties of a particular 

sensor, as well as its long-term stability and performance. All results are summarised in Table 

7-I. 

To summarise, the automated vapour sensing system used in this section has strong 

advantages, which include: a. the support of both chemiresistors and OFET sensors, b. the 
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application of a sinusoidal drive that mitigates any bias-stress-related problems, which are 

usually encountered in OFETs, c. the real-time extraction and plotting of all important OFET 

parameters with data points every less than one second, d. the capability of conducting 

simultaneous measurements on multiple sensors, which can serve for comparisons and 

consistency/reproducibility tests, as well as the implementation of ‘electronic nose’ systems, e. 

the control of both the gas-mixing and device characterisation systems from the same 

graphical user interface. Some of the limitations of this system are: a. the support of normally-

off (enhancement mode) OFETs only, b. the maximum operating voltage of ±45 V (for 4 DUT) 

or ±8 V (for 20 DUT), and c. the manual adjustment of the amplifier gain and oscilloscope input 

ranges, which may require re-adjustment during the measurement, if massive drain current 

changes are induced. 

Table 7-I – Comparison of alcohol vapour exposure tests on PBTTT OFET sensors 

OSC Analyte Drive 
LoD 

(ppm) 

Concentration 

(ppm) 

ΔIon 

(%) 

ΔIoff 

(%) 

ΔVth 

(V) 

Δμ 

(%) 

Exposure/Recovery 

comments 

PBTTT-

C16 

ethanol 

AC 

<2750 

2750 -1.5% 0 ~ +0.2 ~ -3.8% 
Exposure: 

Step-like μ responses, 

exponential Vth changes 

Recovery: 

Ion becomes higher than 

before exposure, 

Vth recovers partially, μ 

is higher than before 

8250 

-5.2% 

to 

-1.1% 

~ +10% 

+0.5 

to 

+1.0 

~ -14.2% 

24750 

-19.3% 

to 

+38.9% 

+587% 

+2.5V 

to 

+8.5V 

~ -42.8% 

n-octanol 

Between 

35 

and 

70 

<35 No response 

Exposure: 

μ degradation is the 

same as before 

exposure (under 

nitrogen purge) 

70 

+37% 

to 

+64% 

+84%  

to 

+112% 

+1.1 

to 

+4.0 

+22% 

to 

+44% 

Recovery: 

μ and Ion kept rising for 

several minutes then 

dropped and came to 

equilibrium 

PBTTT-

C14 
n-butanol 

DC 

<1967 1967 

 ~-27% 0 N/A N/A 

Recovery: 

Ion can surpass pre-

exposure value 

AC 

contin. 
~-27% 0 -1.4 ~-11% 

Recovery: 

Partial; μ recovers, 

Vth remains increased 

AC 

interr. 
~-27% 0 -1.4 ~-10% 

Recovery: 

Partial but better than 

that under continuous 

AC drive 
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7.4. Flexible PDI8-CN2 OFETs as amine sensors 

Octylamine has a molar mass of 129.24 g/mol, a boiling point 175-177 °C, a density of 0.782 

g/cm3 (at 25 °C) and a vapour pressure of approximately 133 Pa, i.e. ~1300 ppm (at 20 °C) [175]. 

Amines are of great interest in food spoilage detection research, mainly due to their 

occurrence in the breakdown of proteins, as in meat, fish and dairy products [176]. 

Recently, Hague et al. demonstrated a comparative study between a pentacene and a PDI8-

CN2 OFET sensors, both exposed to octylamine vapour [114]. In this work, the n-type 

semiconductor (PDI8-CN2) is suggested as a better candidate material for amine sensing than 

its p-type (pentacene) counterpart. This conclusion is based upon experimental data which 

confirm that a Lewis-base, such as octylamine, acts as an electron-donating agent, which 

practically dopes an n-type semiconductor; whereas, in the case of a p-type semiconductor, 

such analyte traps charge carriers, reducing its conductivity. The effects on the drain current of 

OFETs based on PDI8-CN2 were found to be much stronger than those on pentacene-based 

OFETs. 

 

Figure 7-32 – A schematic representation of the octylamine molecule 

Additionally, flexible transistors have been demonstrated by several research groups [51, 177-179], 

and the effects of mechanical stress on their electrical characteristics have been modelled and 

experimentally tested in some research papers [180]. As of September 2013, there is no 

published work on either the effects of bending on the sensitivity of flexible OFET sensors, or 

the real-time multiparametric characterisation of OFETs during deformation. 

In the work presented in this section, a flexible PDI8-CN2 OFET based on LDPE-coated AlOx 

dielectric was tested under mechanical stress and exposure to octylamine vapour. Its substrate 

was deformed so that tensile stress was applied to the length axis of its channel, effectively 

elongating it. The use of a servo-motorised stage, in conjunction with the I-V converter system, 

provided for real-time measurements which were taken during the deformation/relaxation 

cycles. Non-quantitative exposure to octylamine vapour was applied to the sensor in stressed 

and relaxed conditions.  

7.4.1.1. Test methodology 

A set of four PDI8-CN2 OFETs was built on a flexible transparent substrate. The procedure of 

device preparation was identical to the one described in section 5.3.4, except for the size of 

the substrate; in this case, the selected dimensions were 40 mm x 40 mm and special care was 

taken during all mask alignments so that the induced deformation stress would later be tensile 

and transverse to the length of the OFET channel. The gate, source and drain contacts were 

wire-bonded to flexible tinned copper wires using a special carbon compound (Fluka Leit-C, 

product number: 09929); the ends of the three wires were soldered to a PCB, through which 

they were electrically connected to the I-V converter system described in Chapter 4. 
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Figure 7-33 – Illustration of the deformation tests on flexible OFETs. 

A bespoke test rig based on a programmable syringe pump (New Era Pump Systems Inc., 

model: NE-300) was built. The PCB was attached to the chassis of the pump and the flexible 

substrate was placed onto the two steel rails which are intended for providing support to a 

syringe. One side of the substrate was placed against the fixed bracket of the pump, whilst the 

moving bracket was brought in contact with the opposite side of the substrate, as shown in 

Figure 7-3. The syringe-diameter and flow-rate settings of the pump were adjusted so that the 

resulting constant linear speed of the moving bracket would roughly be 0.5 mm/s. During the 

deformation tests, the bracket compressed the substrate and consequently forced it to bend 

upwards; given that the OFET was grown on the top surface of the substrate and was properly 

aligned, the bending induced a tensile stress to the length of the channel by effectively 

elongating it. The maximum tested deformation was 20 mm (50%). 

 

Figure 7-34 – A screenshot of the user interface of the automated real-time characterisation system during 
deformation of a flexible PDI8-CN2 OFET. Bottom-right: A video screenshot of the actual deformed OFET lying on 
the bespoke test rig taken at the same moment. 

Qualitative vapour sensitivity tests were performed by bringing a wooden toothpick, which 

was previously impregnated with octylamine, in close proximity to the channel of the OFET. 
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The sensor was exposed twice; once under deformation and once after relaxation to its initial 

shape. 

A zero-offset sinusoidal drive with a peak voltage of 3 V and a frequency of 6 Hz was applied to 

the device under test. The raw data were acquired in sets of 11 consecutive measurements 

every 3 seconds and a median filter was applied to all calculated parameters in each of those 

sets; the median value of each parameter was extracted as a data point. More details on the 

automated characterisation system are given in section 4.3. All measurements were taken in 

ambient conditions, at room temperature of 23 °C and under artificial white light. 

7.4.1.2. Results and discussion 

In a preliminary test, the device under test showed a very stable performance during the 

measurements in ambient conditions for several minutes. Following that, two runs of 

deformation/ relaxation tests were applied; the substrate was bent twice up to a point that its 

arc had a width of 20 mm, as depicted by the red curve in Figure 7-33; then, it was returned to 

its relaxed shape. 

Both the saturated drain current (Ion) and the off-state current Ioff showed a drop under 

deformation. Assuming that Ioff is a purely ohmic current and Ion is the sum of the saturated 

transistor current and an ohmic contribution due to doping, as described by eq. (4.8), both 

drops can be partly attributed to the elongation of the channel, i.e. the channel length 

increases and this results in an increase in channel resistance.  

Nevertheless, the automated characterisation system calculated a simultaneous mobility (μ) 

drop under deformation; the precision of this result can be challenged due to the fact that the 

algorithm for μ calculation takes a constant channel length into account, as eq. (4.10) 

describes, and the fact that length changes as mentioned above. However, according to the 

same equation, the elongation of the channel length while its width remains intact should 

have resulted in an erroneously calculated increase in μ, rather than a drop. This fact alone 

connotes that deformation actually has a stronger impact on μ than what the calculated data 

suggest. It can be assumed that the induced tensile stress increases the intergrain distances in 

the semiconductor film, effectively inhibiting charge carrier hopping between the grains and 

resulting in a reduction of the overall mobility. 

Figure 7-35 shows the Ion and μ behaviours during the first 20 minutes of measurements. The 

initial Ion was found to be 700 nA, approximately. The first deformation resulted in an Ion 

decrease of ~120 nA; however, the value of Ion recovered completely after the first relaxation. 

During the second cycle, a larger drop of roughly 140 nA was recorded at maximum 

deformation and this was followed by a recovery of ~120 nA when the substrate returned to 

its relaxed shape; as a result, Ion finally rested at a lower level than its initial one. The third 

deformation again yielded an 120 nA drop after an initial overshoot; the Ion value stabilised at 

560 nA. Mobility was found to be the main factor of the Ion change as the trends of μ under 

mechanical stress were very similar to the ones of Ion. Threshold voltage showed negligible 

sensitivity to any deformation. 
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Figure 7-35 – Saturated drain current (top black curve, left y-axis) and charge carrier mobility (bottom red curve, 
right y-axis) versus time, for a flexible PDI8-CN2 OFET based on AlOx-LDPE dielectric. Colour-shaded regions 
represent periods of deformation (yellow), relaxation (cyan) and exposure to octylamine vapour (green). 

 

Figure 7-36 – 20-hour-long measurements of saturated drain current (top black curve, left y-axis) and charge 
carrier mobility (bottom red curve, right y-axis) versus time, for a flexible PDI8-CN2 OFET based on AlOx-LDPE 
dielectric. Colour-shaded regions represent periods of deformation (yellow), relaxation (cyan) and exposure to 
octylamine vapour (green). 

After the third deformation, the sensor was exposed to octylamine vapour. The response to 

this brief vapour exposure was immediate; Ion increased dramatically to 950 nA, showing a 
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relative response (ΔIon/Ion,0) of ~ 70%. Then, Ion exhibited a very slow exponential decrease and 

after some 15 hours, it returned to its pre-exposure levels, as shown in Figure 7-36. Next, the 

substrate was returned to its initial shape; Ion was found significantly decreased, compared to 

its initial performance. Interestingly, a second vapour exposure elevated the Ion to exactly the 

same level of 950 nA. The device under test was left in ambient conditions and another 

exponential decay of Ion was recorded until the end of the test. 

7.4.1.3. Conclusion 

It is worth underlining that the main purpose of this test was to serve as a proof-of-concept 

demonstration of the potentials of low-voltage flexible OFETs as vapour sensors, rather than 

providing quantitative results on octylamine sensing; the effects of controlled octylamine 

vapour exposure on rigid PDI8-CN2 OFETs have already been demonstrated [114]. 

Here, it was shown that OFETs can be deformed to a large extent and reshaped without 

significant compromising their electrical performance. The decrease in drain current under 

deformation can be explained by both the elongation of the conduction path, i.e. the OFET 

channel length, and the alterations in the intergrain distances of the semiconductor film due to 

tensile stress; the latter is undoubtedly the main contributing factor. Analyte exposures with 

no control of the analyte concentration interestingly bore exactly the same elevated value of 

saturated drain current.  

Further investigation of the sensitivity of OFET sensors under deformation is suggested as 

future work. The effects of other kinds of mechanical stress, such us compressive stress on the 

length-axis of the OFET channel, can serve for comparisons with the channel elongation tests 

shown here. Expanding this study using other semiconductor/analyte combinations can 

generalise the observations of this demonstration and lead to comprehensive conclusions. 

 

 

 

 



Organic Semiconductor Devices: Fabrication, Characterisation and Sensing Applications 2013 

 

P a g e  | 195 
 

Overall conclusion and proposed future research work 

The work presented in the previous chapters covers a wide range of experimental work which 

was conducted following three major objectives, i.e. the optimisation of the fabrication 

process of organic semiconductor devices with an emphasis on the field of organic field-effect 

transistor (OFETs), the development of novel methods for the efficient electrical 

characterisation of OFETs used as gas sensing transducers and finally, the use of the fabricated 

semiconductor devices as sensing transducers in real vapour exposure experiments with the 

aid of the characterisation methods developed. 

Regarding device fabrication, organic thin-film devices with several material combinations and 

various architectures were developed and characterised. Devices were built on both rigid and 

plastic flexible substrates. Both low-molecular weight and polymer organic semiconductors 

(OSCs) were processed and deposited using vacuum and wet methods, respectively. Organic 

nanowires were used for the development of vapour sensors with remarkably high sensitivity. 

Both inorganic oxide and polymer dielectrics were used; the recently introduced method of 

thermally evaporated low-density polyethylene (LDPE) was adopted, optimised and 

successfully employed for the fabrication of OFETs with material combinations that have not 

been demonstrated in the literature.  

Regarding device characterisation, the cornerstone of this work was the development of a 

real-time multiparametric characterisation system, specially designed for measurements on 

OFETs. Most of the vapour sensing measurements were performed with the aid of this system. 

Moreover, an entire chapter is dedicated to the study of the light sensitivity of OFETs, 

providing detailed information on the effects of illumination on multiple device parameters 

and their evolution with time; the importance of the gate dielectric surface treatment was 

highlighted by these measurements. The importance of the gate dielectric surface was also 

studied by a correlation of the electrical characteristics and the air stability of the fabricated 

devices with the morphology of their semiconductor films using AFM imaging. 

Regarding vapour sensing measurements, a complete test rig for the controlled exposure of 

the fabricated devices to the various analytes was developed; this included an upgrade of the 

automated characterisation system for the support of multiple sensors. Chemiresistors and 

OFETs employing a selection of OSCs were used as sensing transducers for the detection of 

analytes, such as water vapour, alcohols and octylamine. The measurements conducted by the 

use of the real-time characterisation system provided detailed information on the effects of 

the analyte vapour on different independent parameters of the OFET transducers, 

exemplifying their advantages over conventional chemiresistors. 

The work presented here was also communicated in a series of presentations and journal 

publications which are enlisted in the homonymous paragraph below.  The most important 

innovations are summarised here: 
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a. The development of a novel system for the real-time multiparametric characterisation of 

OFETs made of various materials, including water-gated devices based on organic 

nanowires [62]. The operation of this system is described in Chapter 4. 

b. The fabrication of OFETs with material combinations which, as of October 2013, have not 

been reported in the literature. For instance, top-gold-contact pentacene OFETs, gated 

exclusively by an evaporated LDPE layer were successfully developed; these devices also 

gave interesting indications of ambipolar charge transport. A summary of the fabricated 

devices is given in section 5.6. 

c. The discovery of photocapacitance, i.e. an unexpected permittivity change of anodised 

aluminium oxide, which was measured in parallel-plate capacitors exposed to visible light 

illumination; as of October 2013, this behaviour has never been reported in the literature 

and needs further attention. These findings are discussed in section 6.2. 

d. A detailed investigation of the effects of illumination on multiple OFET parameters, their 

evolution with time and the great importance of the gate oxide surface treatment in the 

light-sensitivity of the fabricated OFETs. This study can be found in section 6.3. 

e. A demonstration of organic semiconductor sensor sensitivity enhancement with the use 

of OSCs in the form of nanowires [49]. This work is presented in section 7.2. 

f. A demonstration of the capabilities of the real-time characterisation system by the 

detection and disentanglement of the complex effects of alcohol vapour on different 

independent parameters of PBTTT OFET sensors. This is given in section 7.3. 

g. A proof-of-concept of the operation of flexible OFET gas sensors under mechanical 

deformation and under exposure to octylamine vapour. This study is presented in section 

7.4. 

In addition, motivated by the aforementioned findings, as well as other interesting 

observations, further research work on the following concepts is proposed here: 

i. The confirmation of the ambipolar behaviour of commonly either hole- or electron-

transporting OSCs by the development of OFETs exclusively gated with evaporated LDPE. 

This study is motivated by the results discussed in section 5.2.3. 

ii. The successful development of organic CMOS inverters on plastic substrates by 

appropriately tuning the mobility and threshold voltage of the p- and n-type constituent 

OFETs using appropriate gate dielectric surface treatments. Such an attempt is presented 

in section 5.6. 

iii. The thorough investigation of the phenomenon of photocapacitance. The observation of a 

dielectric permittivity change under visible light illumination in a wide bandgap insulator 

has been a very interesting finding, as discussed in section 6.2. Nevertheless, this 

observation cannot easily be given an adequate explanation. Light-sensitivity tests on 

capacitors based on untreated aluminium oxide, as well as other oxide dielectrics and 

especially, sputtered alumina can serve for meaningful comparisons. It is very important 

to confirm whether this behaviour is unique to aluminium oxide, anodised aluminium 

oxide in particular or anodised metal oxides in general. Moreover, the study of the 

relation between the observed photocapacitance and the incident photon flux is equally 

important. Further control experiments have already been planned.  
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iv. The use of alternative dielectric and OSC combinations for a comparison with the findings 

of the OFET light-sensitivity study. It is believed that an all polymer dielectric can 

effectively enhance the light stability of an OFET, as the devices with LDPE-coated gate 

oxide have indicated. More details are given in section 6.3. 

v. The study of the peculiar behaviour of tetracene under illumination. These phenomena 

were explained only in part by an apparent reduction of the density of traps in the bulk of 

the semiconductor due to the illumination. However, the observed response of a 

tetracene MSM photodetector to illumination, discussed in section 6.4, cannot be 

adequately explained and needs further investigation. 

vi. The preparation of various OSCs in the form of nanowires and their exploitation in the 

development of sensing transducers. The findings from the tests on P3HT nanowire 

devices, discussed in section 7.2, suggest that the sensitivity of a sensor can dramatically 

be enhanced when the OSC is prepared in this form. 

vii. A further investigation of the impact of mechanical deformation on the performance and 

the sensitivity of OFETs built on plastic substrates and used as sensing transducers. A 

demonstration of this concept is given in section 7.4. 
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Appendices 

Appendix I  Sinusoidal integration method derivations 

Appendix I.1. Integration method for (π/4, 3π/4)  

Integrating (4.15) over this time range yields: 
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Substituting (4.14) into (8.15): 
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Also, at the peak of the output waveform, eq. (4.13) writes: 
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where Vm is the maximum output voltage 

Substituting (8.18) into (8.16) yields: 
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Finally: 
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where V0 is the amplitude of the sinusoidal drive, Vm the peak of the output voltage, A the area 

between the output curve and x axis for the range  
 

 
 
  

 
  and T the period of the input signal. 
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Appendix I.2. Integration method for (π/4, π/2) 

Integrating (4.15) over this time range: 
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From the exported measurement data, we also have: 
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where A is the Area between the output voltage curve and the x axis, and Rf the feedback 

resistance.  

Substituting: 
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Substituting (4.14) into (8.46): 
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Also, at the peak of the output waveform, eq. (4.13) writes: 
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where Vm is the peak of the output voltage. 

Substituting (8.49) into (8.47): 
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Finally: 
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where V0 is the amplitude of the sinusoidal drive, A is the area between the output curve and x 

axis for the range  
 

 
 
 

 
  and T the period of the input signal. 
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Appendix II  Printed Circuit Board (PCB) design 

Appendix II.1. The I-V converter main board 

Appendix II.1.1. Schematic 

 

Fig. 1 – The circuit schematic of the last (MK5) version of the I-V converter system including fixed-value feedback 
resistors  
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Appendix II.1.2. PCB layout overview 

 

 

Fig. 2 – Overview of the layout of the PCB in the last version (MK5) I-V converter. Top and Bottom layers are not 
shown.  

 

Fig. 3 – A photograph of the top side of the prototype PCB. 
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Appendix II.2. Gas exposure system: OFET probing board (four OFET 

mask) 

Appendix II.2.1. Schematic 

 

 

Fig. 4 – The circuit schematic of the OFET probing board for the 4-DUT mask  
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Appendix II.2.2. PCB layout overview 

 

Fig. 5 – The PCB layout of the OFET probing board for the 4-DUT mask 
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Fig. 6 – A photograph of the bottom side of the OFET probing board for the 4-DUT mask 

 

Fig. 7 – A photograph of the top side of the OFET probing board for the 4-DUT mask  
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Appendix II.3. Gas exposure system: OFET contacting board (twenty 

OFET mask) 

Appendix II.3.1. Schematic 

 

Fig. 8 – The circuit schematic of the OFET contacting board for the 20-DUT mask 
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Appendix II.3.2. PCB layout overview 

 

Fig. 9 – The PCB layout of the OFET contacting board for the 20-DUT mask 
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Fig. 10 – A photograph of the bottom side of the OFET contacting board for the 20-DUT mask 

 

Fig. 11 – A photograph of the bottom side of the OFET contacting board for the 20-DUT mask 
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Appendix II.4. Gas exposure system: Multiplexing and signal 

distribution board (manual four OFET system) 

Appendix II.4.1. Schematic 

 

Fig. 12 – The circuit schematic of the manual multiplexing and signal distribution board designed for the 4-DUT 
mask 

 

  



224 | P a g e  
 

Appendix II.4.2. PCB layout 

 

Fig. 13 – The PCB layout of the manual multiplexing and signal distribution board designed for the 4-DUT mask 

 

Fig. 14 – A photograph of the top side of the manual multiplexing and signal distribution board designed for the 
4-DUT mask  



Organic Semiconductor Devices: Fabrication, Characterisation and Sensing Applications 2013 

 

P a g e  | 225 
 

Appendix II.5. Gas exposure system: Multiplexing and signal 

distribution board (relay-based four OFET system) 

Appendix II.5.1. Schematic 

 

Fig. 15 – The circuit schematic of the relay-based multiplexing and signal distribution board designed for the 4-
DUT mask 
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Appendix II.5.2. PCB layout overview 

 

 

Fig. 16 – The PCB layout of the relay-based multiplexing and signal distribution board designed for the 4-DUT 
mask 

 

Fig. 17 – A photograph of the top side of the relay-based multiplexing and signal distribution board designed for 
the 4-DUT mask 
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Appendix II.5.3. Pinout 

 

 

  

Pin # Wire colour Signal Wire colour Signal

1 white 5 VDC white 5 VDC

2 white /black Humidity white/black Humidity

3 white / brown BLS red/black BLS

4 white / red TLS red/white TLS

5 white / orange GATE orange/black GATE

6 white / yellow TRS green/white TRS

7 red BRD red BRD

8 orange GND orange GND

9 grey Temperature 2 blue/white Temperature 2

10 purple GND black/white Temperature 3

11 blue BLD blue BLD

12 brown TLD blue/black TLD

13 black BRS black BRS

14 green TRD green TRD

15 yellow Temperature 1 green/black Temperature 1

Automatic System Manual System
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Appendix II.6. Gas exposure system: Multiplexing and signal 

distribution board (twenty OFET system) 

Appendix II.6.1. Schematic 

 

Fig. 18 – The circuit schematic of the solid-state, microcontroller-based multiplexing and signal distribution board 
designed for the 20-DUT mask. 
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Appendix II.6.2. PCB layout 

 

Fig. 19 – The PCB layout of the solid-state, microcontroller-based multiplexing and signal distribution board 
designed for the 20-DUT mask. 

 

Fig. 20 – A photograph of the top-side of the solid-state, microcontroller-based multiplexing and signal 
distribution board designed for the 20-DUT mask. 
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Fig. 21 – A photograph of the bottom side of the solid-state, microcontroller-based multiplexing and signal 
distribution board designed for the 20-DUT mask. 

 

Fig. 22 – A photograph of the front side of the solid-state, microcontroller-based multiplexing and signal 
distribution board designed for the 20-DUT mask. 

 

Fig. 23 – A photograph of the rear side of the solid-state, microcontroller-based multiplexing and signal 
distribution board designed for the 20-DUT mask. 
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Appendix II.6.3. Pinout and remote commands 

  

Socket Pin Design DUT Actual DUT Pin Design DUT Actual DUT PC Command

A 19 S1 S16 18 D1 D16 A

A 7 S2 S17 6 D2 D17 B

A 8 S3 S18 21 D3 D18 C

A 9 S4 S19 23 D4 D19 D

A 22 S5 S20 11 D5 D20 E

A 17 S6 S11 16 D6 D11 F

A 5 S7 S12 4 D7 D12 G

A 20 S8 S13 3 D8 D13 H

A 24 S9 S14 25 D9 D14 I

A 12 S10 S15 13 D10 D15 J

B 11 S11 S6 10 D11 D6 K

B 23 S12 S7 22 D12 D7 L

B 1 S13 S8 7 D13 D8 M

B 2 S14 S9 3 D14 D9 N

B 14 S15 S10 15 D15 D10 O

B 9 S16 S1 21 D16 D1 P

B 8 S17 S2 20 D17 D2 Q

B 6 S18 S3 19 D18 D3 R

B 5 S19 S4 18 D19 D4 S

B 16 S20 S5 17 D20 D5 T

XALL DISCONNECTED
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Appendix II.7. Gas exposure system: Solenoid valve and mass-flow 

controller driving board 

Appendix II.7.1. Schematic 

 

Fig. 24 – The circuit schematic of the solenoid valve and mass-flow controller driving board 
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Appendix II.7.2. PCB layout 

 

Fig. 25 – The PCB layout of the solenoid valve and mass-flow controller driving board 

 

Fig. 26 – A photograph of the solenoid valve and mass-flow controller driving board including the NI USB-6008 
unit. The board is connected to two Tylan FC-260 mass-flow controllers and two 24 V DC solenoid valves. 
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Appendix II.8. Handheld automatic OFET characterisation embedded 

system 

Appendix II.8.1. Schematic 

 

Fig. 27 – The circuit schematic of the handheld automatic OFET characterisation embedded system 

Appendix II.8.2. Prototype 

 

Fig. 28 – A photograph of one of the prototypes of the handheld automatic OFET characterisation embedded 
system. In this photograph, a dummy resistor is being used in the place of an OFET, as seen in the blue IC socket. 
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Abbreviations, acronyms and symbols 

 

Abbreviation Meaning 

ADC Analogue-to-Digital Converter 

Ci Capacitance per unit area 

DAC Digital-to-Analogue Converter 

DIP Dual In-line Package 

DUT Device Under Test 

EMI ElectroMagnetic Interference 

FET Field-Effect Transistor 

FET Field-Effect Transistor 

IC Integrated Circuit 

Ioff Off-state drain current 

Ion Saturated drain current (on-state current) 

IVC Current-to-Voltage Converter 

L Channel Length 

LCD Liquid Crystal Display 

LDPE Low-Density Poly(Ethylene) 

LED Light-Emitting Diode 

LHS Left-Hand-Side 

LoD Limit of Detection 

MCU Microcontroller Unit 

NW NanoWire 

OFET Organic Field-Effect Transistor 

OLED Organic Light-Emitting Diode 

OLET Organic Light-Emitting Transistor 

op-amp Operational amplifier 

OSC Organic Semiconductor 

OTFT Organic Thin-Film Transistor 

OTS OctadecylTrichloroSilane 

P3HT Poly(3-HexylThiophene) 

PCB Printed-Circuit Board 

ppm parts per million 

PTFE Poly(TetraFluoroEthylene) 

RH Relative Humidity 

RHS Right-Hand-Side 

RISC Reduced Instruction Set Computing 

RT Room temperature 

SAM Self-Assembled Monolayer 

SMD Surface Mount Device 

TFT Thin-Film Transistor 

UV Ultraviolet (light, radiation) 

Vth Threshold Voltage 

W Channel Width 

μ Charge carrier mobility 
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