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45 A set of rules has been established to keep object definition as

coherent and objective as possible.
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. . . . B Gcm !
5" | Fist of al, nformaion on thei voe || | CONCLUSIONS & FUTURE WORK
mCS composition as a relative EgE;ﬂ 0 \ 1 Pranter etal., 2009
CR . . . . 1 10 100 ) . g . . . .
:LV proportion of their building o T e T Thickness (m) A relational database for the digitization of fluvial architecture has been devised,
u AC blocks can Dbe obtained. For | 235 i developed and populated with literature-derived case studies.
sl example, the internal composition of ‘ Above: probability density function of CH architectural elements width constructed using The early output tests demonstrate the potential impact of this tool on fluvial geology
N =101 Undefined | channel-complexes or floodplains in s only apparent widths (on the left); scatter-plot of channel-complexes width:thickness aspect research, as an instrument that can be used mainly for:
terms of architectural elements, and m Sm ratios classified according to dimension completeness class (on the right).
Floodplains = CH ! : ’ mst J a) improving our understanding of fluvial architecture in different settings and testin
P m FF of architectural elements in terms of mst proving o ng 9 9
LA facies units (as shown in the pie- usl sensitivity to different controlling factors;
| Sr
mDA ; ; mG- fapi i i i . - . .
= sB(CH) charts) can be derived by object " e Semiarid basins = Ut All the data st;)rg_d can be fllc’:_er_(ejd alccorglngt to the b) overcoming depositional and facies models, which are frequently based on few
. Ci . . . . . .
u s occurrences only, or by combining = G - on way case studies —or Individual  subsets are examples that are thought to be representative, but which may in fact be misleading;
- CS occurrences and dimensions in a - Sme LA classified on the basis of their external controls and
= CR variety of ways; net:gross ratios can oE  FF depending variables. Provided that a statistically c) assisting prediction of subsurface reservoir architecture through deterministic or
m mCs . . . . . .
o then be easily computed for each = Fom s significant amount of data is gathered, it will be stochastic models.
A . .
" AC iect. L ossible to exploit the database output to conduct
objec u e i . . . .
N = 63 Undefined Right: proportions of = sm A quantitative comparisons of the architecture of FUTURE DEVELOPMENTS The database will be further developed to make it
facies units in CH, LA :iih’ Lc fluvial depositional systems in different better suitable for these purposes.
Above: proportions of architectural elements in and FF architectural -3 o contexts; this will make it possible to gain insights Several improvements can be putinto practice, among them:
channel-complex and floodplain deposmona[ elements computed " Subhumid basins = Undetes into the effective role of the different controlling - better geometrical representation either through linkage to 2D/3D vector files of
elements computed as frequency x mean thickness. | from frequencies only. mod - DA factors governing the sedimentary architecture of each lithosome object orinclusion of shape parameters;
= Gmg u LA fluvial systems. Moreover, combining all the types - appending of particle-scale and/or diagenetic properties;
Facies transiti ithin CH oo u FF : : . . ) : oy . .
acies transitions within o acs of information herein presented, will enable the - refinement of subset attributes (e.g. addition of meta-attributes for time-scale
100% Trends in =Fm " CR eneration of synthetic models of fluvial specification)
90% . = o v g ) y _ . . : . :
oot "l spatial N =94 - s architecture (cf. Baas et al., 2005), which are Moreover, similarly to what has been done for ancient fluvial systems case histories, a
70% _. | distributions e represented by distinctive stacking patterns and standard data definition and entry procedure must be established for digitizing
; are described by trends in object transitions. lith ' foi | d ' |
60% = 5p _ ‘ _ ithosome geometries, modes of interna modern rivers examples.
50% =s | 10 fur_t_her characterize genetic b_OdleS, dataon Humid basins  Undefined organization and reciprocal relationships. Most of the future work will focus on database population, with more literature and
40% ssn | transition occurrences can b_e flltered so that u CH Furthermore, it will be possible to generate field case studies, and on testing its capabilities, also through numerical modelling
o "* | only transitions observed within the type of - information to be used as input for numerical once enough data is stored.
Oo u [ " ] . .
o "' | element investigated and across given u models of fluvial architecture, such as
0% bounding surface orders are taken into "o distributions of dimensional parameters and
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