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Abstract 

Abstract 

A relational database has been devised as a tool for the digitization of features 

relating to the sedimentary and geomorphic architecture of modern rivers and 

ancient fluvial successions, as derived from either original field studies or published 

examples. The system has been designed in a way that permits the inclusion of 

hard and soft data – comprising geometries and spatial and hierarchical 

relationships – referring to classified genetic units belonging to 3 different 

hierarchical levels, and assigned to stratigraphic volumes that are categorized in 

terms of deposystem boundary conditions and descriptive parameters. 

Several applications of the quantitative information generated through database 

interrogation have been explored, with the scope to demonstrate how a database 

methodology for the storage of sedimentary architecture data can be of use for both 

pure and applied sedimentary research. 

Firstly, an account is given of how the system can been employed for the creation 

of quantitative fluvial facies models, which summarize information on architectural 

styles associated with classes of depositional systems. The value of the approach 

is shown by contrasting results with traditional qualitative models. 

Secondly, database output on large-scale fluvial architecture has been used in the 

context of a comparative study aiming to investigate the role of basin-wide 

aggradation rates as predictors of fluvial architectural styles. The results contrast 

with what might be expected by commonly considered stratigraphic models; the 

main implication is the necessity to reconsider continental sequence stratigraphy 

models or their domain of applicability. This application further provides an example 

of how the methodology could be generalized to the study of the sensitivity of 

architecture to its controls. 

Thirdly, database output has been used to conduct a re-evaluation of previously-

proposed approaches to the guidance of well-to-well correlations of subsurface 

fluvial channel bodies, applied in earlier studies. Making use of the same analogue 

information, a new probabilistic approach has been proposed as a way to inform or 

rank correlation panels of channel bodies across equally-spaced wells. 

Finally, the value of the system as an instrument for constraining object- and pixel-

based stochastic structure-imitating models of fluvial sedimentary architecture is 

collectively demonstrated through a range of example applications employing 

database output. 



v 

Contents 

Contents 

Acknowledgements ............................................................................................. iii 

Abstract ................................................................................................................ iv 

Contents ............................................................................................................... iv 

List of tables ......................................................................................................... ix 

List of figures ....................................................................................................... xi 

Abbreviations ....................................................................................................xxvi 

1 Introduction .................................................................................................. 1 

1.1 Rationale ............................................................................................... 1 

1.2 Aims and Objectives .............................................................................. 2 

1.3 Thesis outline ........................................................................................ 3 

2 A relational database for the digitization of fluvial architecture: 

concepts and example applications ........................................................... 7 

2.1 Summary ............................................................................................... 7 

2.2 Introduction ............................................................................................ 7 

2.3 FAKTS: approach and implementation ................................................ 10 

2.3.1 Approach .................................................................................... 10 

2.3.2 Data definition and standardization ............................................. 11 

2.3.3 Implementation ........................................................................... 15 

2.4 Applications ......................................................................................... 21 

2.4.1 Example output 1: genetic-unit proportions ................................. 23 

2.4.2 Example output 2: transition statistics ......................................... 24 

2.4.3 Example output 3: object dimensions .......................................... 25 

2.5 Future developments ........................................................................... 28 

2.6 Conclusions ......................................................................................... 29 

3 A quantitative approach to fluvial facies models: methods and 

example results .......................................................................................... 31 

3.1 Summary ............................................................................................. 31 

3.2 Introduction .......................................................................................... 32 

3.2.1 Background................................................................................. 32 

3.2.2 Aims............................................................................................ 35 

3.3 Database and method ......................................................................... 35 

3.3.1 Database structure and building blocks ....................................... 35 

3.3.1.1 Overview of FAKTS database schema ......................... 35 



vi 

Contents 

3.3.1.2 Classification of bounding surfaces ............................... 37 

3.3.1.3 Classification of depositional elements .......................... 37 

 3.3.1.3.1   Channel complex ................................................ 38 

 3.3.1.3.2   Floodplain .......................................................... 38 

3.3.1.4 Classification of architectural elements ......................... 39 

3.3.1.5 Classification of facies units .......................................... 44 

3.3.2 An approach to building quantitative facies models: practical 

considerations ............................................................................. 47 

3.4 Results: example models ..................................................................... 51 

3.4.1 Large-scale architecture .............................................................. 51 

3.4.2 Intermediate-scale architecture ................................................... 53 

3.4.3 Small-scale architecture .............................................................. 67 

3.4.4 Spatial and temporal evolution .................................................... 83 

3.5 Discussion ........................................................................................... 83 

3.6 Conclusions ......................................................................................... 88 

4 Testing alluvial architecture models through a comparative study: 

implications for sequence stratigraphy .................................................... 91 

4.1 Summary ............................................................................................. 91 

4.2 Introduction .......................................................................................... 91 

4.3 Methods ............................................................................................... 99 

4.4 Results ............................................................................................... 101 

4.5 Discussion ......................................................................................... 111 

4.6 Conclusions ....................................................................................... 113 

5 Models for guiding and ranking well-to-well correlations: example 

applications to fluvial reservoirs ............................................................. 115 

5.1 Summary ........................................................................................... 115 

5.2 Introduction ........................................................................................ 116 

5.3 Database ........................................................................................... 118 

5.4 Assessing past approaches to channel-body width prediction and 

introducing a new probabilistic method .............................................. 118 

5.5 Correlability models ........................................................................... 122 

5.5.1 Total probability of penetration of a randomly selected 

channel-complex ....................................................................... 122 

5.5.2 Total probability of correlation of a randomly selected 

channel-complex ....................................................................... 128 

5.5.3 Comparison between probability-based models and 

subsurface interpretations: a quality check ................................ 131 



vii 

Contents 

5.5.4 Case study example application: ranking alternative 

correlation panels for the subsurface Travis Peak Formation 

(Texas, USA) ............................................................................ 133 

5.5.5 A general probabilistic model based on channel-deposit 

proportions ................................................................................ 138 

5.6 Conclusions ....................................................................................... 143 

6 A database approach for constraining stochastic simulations of 

the sedimentary heterogeneity of fluvial reservoirs .............................. 145 

6.1 Summary ........................................................................................... 145 

6.2 Introduction ........................................................................................ 146 

6.3 Database architecture and use .......................................................... 149 

6.4 Field to database ............................................................................... 153 

6.5 Database to simulation ...................................................................... 155 

6.5.1 Data filtering.............................................................................. 155 

6.5.2 Conditioning object-based models ............................................ 156 

6.5.3 Conditioning pixel-based models .............................................. 161 

6.5.3.1 Derivation and use of indicator auto-variograms: 

Sequential Indicator Simulation ........................................ 163 

6.5.3.2 Determination and use of indicator cross-

variograms and transition rates: Plurigaussian 

simulations and T-PROGS ............................................... 168 

6.6 Case study example application: generating training images for 

MPS modelling of the Walloon Subgroup (Surat Basin, Australia) ..... 177 

6.6.1 Overview ................................................................................... 177 

6.6.2 Fluvial sedimentary units........................................................... 178 

6.6.3 Obtaining quantitative constraints from the sedimentary 

architecture of analogue fluvial systems .................................... 178 

6.6.4 Constructing training images through object-based modelling .. 180 

6.7 Informing variogram-based simulations of fluvial architecture 

through empirical relationships linking channel-complex 

geometries and proportions ............................................................... 188 

6.8 Conclusions ....................................................................................... 191 

7 Conclusions ............................................................................................. 195 

7.1 Summary ........................................................................................... 195 

7.2 Future research ................................................................................. 200 



viii 

Contents 

References ......................................................................................................... 205 

Appendix A: schematic guidelines to the definition of channel 

complexes ................................................................................................. 229 

Appendix B: example SQL queries for database interrogation ..................... 231 

Appendix C: summary of FAKTS case studies ............................................... 263 

List of digital appendices ................................................................................. 271 

 



ix 

List of tables 

List of tables 

Table 2.1: Architectural element type classification adopted in FAKTS; codes 

are modified after Miall (1996). ..................................................................... 14 

Table 2.2: Lithofacies classification adopted in FAKTS; modified after Miall 

(1996). ......................................................................................................... 15 

Table 3.1: Summary of the fundamental diagnostic characteristics and 

environmental significance of the 14 interpretative architectural-element 

types employed in the FAKTS database. ..................................................... 39 

Table 3.2: Summary of the fundamental textural and structural characteristics 

of the 25 facies-unit types employed in the FAKTS database. ...................... 46 

Table 6.1: Architectural element type classification adopted in FAKTS; 

modified after Miall (1996). ......................................................................... 151 

Table 6.2: Lithofacies classification adopted in FAKTS; modified after Miall 

(1996). ....................................................................................................... 152 

Table 6.3: FAKTS-derived indicator auto-variogram parameters for channel-

complex and floodplain depositional elements, classified according to 

the interpreted basin climate regime. ......................................................... 167 

Table 6.4: FAKTS-derived indicator auto-variogram parameters for material 

units corresponding to 15 selected facies unit types (see table 6.2 for 

classification) that account for almost the entire facies unit types in the 

database. The rest of the lithofacies types have been excluded due to 

the little amount of data on their lateral extension (mean and coefficient 

of variation) on the basis of which to confidently derive a model and a 

range; however, as the overall proportion of the remainder of lithofacies 

types is small, their inclusion would have little effect on the variogram 

sills of the units presented here. ................................................................. 167 

Table 6.5: FAKTS-derived indicator cross-variogram parameters for material 

units corresponding to five selected facies unit types, referring to the 

cross-valley direction; range corrected in excess of 10% of calculated 

tangent/sill intersection lag value. ............................................................... 171 

Table 6.6: FAKTS-derived indicator cross-variogram parameters for material 

units corresponding to five selected facies unit types, referring to the 

along-valley direction; range corrected in excess of 10% of calculated 

tangent/sill intersection lag value. ............................................................... 172 

Table 6.7: FAKTS-derived transition-probability matrix for material units (no 

embedded self-transitions) based on 15 selected facies unit types, 

referring to the vertical (upwards) direction; lower units in rows and 

upper units in columns; values based on 6562 embedded transitions. ....... 174 

Table 6.8: FAKTS-derived transition-probability matrix for material units (no 

embedded self-transitions) based on 15 selected facies unit types, 

referring to the lateral (right) direction; left-hand units in rows and right-

hand units in columns; values based on 629 embedded transitions. .......... 175 



x 

List of tables 

Table 6.9: FAKTS-derived transition-probability matrix for material units (no 

embedded self-transitions) based on 15 selected facies unit types, 

referring to the dip (upstream) direction; downstream units in rows and 

upstream units in columns; values based on 436 embedded transitions. .... 176 

 



xi 

List of figures 

List of figures 

Figure 1.1: flowchart depicting the relationships between original field- and 

literature-derived data or database output information and the use made 

of data and information in each chapter. ........................................................ 4 

Figure 2.1: flow chart illustrating the data acquisition-entry-query-analysis-use 

workflow described in this work. The cartoon for the ‘database 

interrogation’ stage (modified after Baas et al. 2005) depicts how the 

application of multiple data filters leads to the extraction of the most 

relevant data. ............................................................................................... 10 

Figure 2.2: hypothetical example showing object indexing of subsets, 

depositional elements, architectural elements and facies units and 

illustrating how the nested containment of each order of objects is 

implemented in the tables by making use of the unique indices. Facies 

types follow Miall’s (1996) classification; architectural element types 

follow a classification that is purposely defined for FAKTS database, 

and derives from Miall’s (1996) scheme. ...................................................... 13 

Figure 2.3: database structure, with constituent tables and selected attributes; 

yellow: primary keys, light blue: foreign keys. The (MV) abbreviation 

denotes attributes with multi-valued fields (e.g. different lithotypes 

included in the same entry for contributing basin lithologies attribute). ......... 19 

Figure 2.4: hypothetical example illustrating how transitions between 

neighbouring architectural elements are stored within the database; the 

same procedure applies to depositional elements and facies units. 

Transitions between subsets need not be stored as they are 

conventionally ordered from bottom to top (ancient systems) and in 

downstream direction (modern systems). Bounding surface orders 

follow the classification proposed by Miall (1996). ........................................ 20 

Figure 2.5: terminology of length types according to Geehan & Underwood 

(1993). ......................................................................................................... 21 

Figure 2.6: a) Pie charts showing proportions of architectural elements in 

channel-complex and floodplain depositional elements computed as 

summed thicknesses. b) Pie charts showing proportions of facies units 

in CH (channel-fill), LA (laterally-accreted barform) and FF (overbank 

fines) architectural elements computed as summed thicknesses. Refer 

to table 2.1 and table 2.2 for architectural element and lithofacies 

coding. ......................................................................................................... 24 



xii 

List of figures 

Figure 2.7: left: representation of facies transition filtering based on 

architectural element type (only CH – channel-fill element – included) 

and bounding surface order (4th and higher-order surfaces excluded). 

Right: bar-chart showing the result of this type of filtering as transition 

percentages in the vertical direction, computed performing a random 

selection of singular transition per facies unit in order to derive 1D 

information from 2D/3D datasets also. Refer to table 2.2 for lithofacies 

coding. The number of readings for each facies transition is reported in 

the bars (total N = 337). ................................................................................ 26 

Figure 2.8: scatter-plot of width:thickness aspect ratios for channel-complexes 

classified according to dimension completeness class (sensu Geehan & 

Underwood 1993); the number of observations for each class is 

reported in legend......................................................................................... 27 

Figure 2.9: a) box-plots of cross-valley width distribution for a selection of 

architectural elements, constructed including total, apparent, partial and 

unlimited (sensu Geehan & Underwood 1993) widths. Refer to table 2.1 

for architectural element coding. The number of readings is reported 

next to the element code. b,c) probability density function (b) and 

cumulative distribution function (c) of CH (channel-fill) architectural 

element width including total, apparent, partial and unlimited width 

classes, and assuming a normal distribution. ................................................ 27 

Figure 3.1: representation of the main scales of observation and types of 

sedimentary genetic units included in the FAKTS database. Refer to 

table 3.1 for architectural-element codes and to table 3.2 for facies-unit 

codes (modified from Colombera et al. 2012a, Chapter 2). ........................... 36 

Figure 3.2: example application of three different methods for computing 

model architectural-element proportions (see text); as no filter has been 

applied on either system parameters or sedimentological properties, the 

results refer to an ideal model of a “generic” fluvial environment derived 

from and constrained by the entire knowledge base. .................................... 49 

Figure 3.3: quantitative information regarding the proportion and geometry 

(width and thickness) of channel-complexes, constituting large-scale 

facies models for perennial sub-humid meandering systems and 

systems associated with intermediate filtering steps. In this case, as in 

all models presented here, the term ‘basin climate type’ only refers to 

the observed/inferred humidity-based climate class at the locus of 

deposition; a catchment climate classification is also stored, but it 

applies mostly to modern systems and may refer to average conditions. ...... 52 



xiii 

List of figures 

Figure 3.4: quantitative information referring to large-scale facies models for 

single-thread and braided river systems: a) boxplots describing the 

distribution of channel-complex proportions within different stratigraphic 

volumes (subsets) used to include information about the variability in 

depositional-element proportions in the models; b) log-normal 

probability density functions describing the distribution of channel-

complex thickness; c) cross-plots of channel-complex thickness and 

width, classified as complete (real or apparent widths) or incomplete 

(partial or unlimited widths). Idealized cross-sections comparable to 

traditional models and informed on such quantitative information are 

depicted in (d) to highlight architectural differences between the two 

models……………………………………………………………………… .......... 54 

Figure 3.5: quantitative information regarding the proportion and vertical 

transition statistics of architectural elements, constituting intermediate-

scale facies models for arid/semiarid ephemeral braided systems and 

systems associated with intermediate filtering steps. Idealized block-

diagrams comparable to traditional models and informed on such 

quantitative information are depicted in the left-hand column; model 

architectural-element proportions, presented as pie-charts in the central 

column, are derived as the sum of the thickness of all elements from 

adequate subsets (method 1 in figure 3.2 and in the text); vertical 

transition statistics are presented in the right-hand column as bar charts 

quantifying the percentage of types of ‘upper’ elements (colour-coded 

and labelled in the bars) stacked on top of a given type of ‘lower’ 

element (labels on the vertical axis). ............................................................ 57 

Figure 3.6: continuation of figure 3.5. Information on architectural-element 

horizontal spatial relationships, in the form of cross-gradient and up-

gradient transition statistics. Results are presented in the central and 

right-hand column as bar charts quantifying the percentage of ‘cross-

gradient’ or ‘up-gradient’ element types (colour-coded and labelled in 

the bars) juxtaposed to element types labelled on the vertical axis. ............. 59 

Figure 3.7: description of architectural-element geometries for different 

models. Box-plots in the right-hand column include information on the 

thickness of the different architectural-element types, for facies models 

of arid/semiarid ephemeral braided systems and systems associated 

with intermediate filtering. ............................................................................. 61 

Figure 3.8: continuation of figure 3.7. Cross-plots in the right-hand column 

include information on the relationship between width and thickness of 

different architectural-element types for facies models of arid/semiarid 

ephemeral braided systems and systems associated with intermediate 

filtering steps. ............................................................................................... 63 



xiv 

List of figures 

Figure 3.9: Models of architectural-element spatial relationships, in the form of 

pie-charts depicting transition counts between architectural-element 

types in the upwards, downwards, up-gradient, cross-gradient and 

down-gradient directions. a) transition statistics referring to downstream-

accreting barforms; b) transition statistics referring to lateral-accretion 

barforms; cross-stream transitions conventionally refer to the right-hand 

direction, regardless of the dip-direction of accretion surfaces or 

migration direction of the barform; c) transition statistics referring to 

crevasse splays; lateral, upstream and downstream transitions have 

been grouped into horizontal transitions for convenience. ............................ 65 

Figure 3.10: comparison between the Miall’s (1996) facies model for sandy 

meandering systems presented in the form of a vertical profile, on the 

left, and a corresponding FAKTS model, on the right. The FAKTS model 

has been built filtering the database on both a system parameter 

(meandering channel pattern) and a sedimentological feature 

(proportion of sandy facies units within subsets higher than 50% by 

thickness); lithofacies-type proportions are represented as a pie-chart, 

and were derived as the sum of the thickness of all facies units from 

adequate subsets (method 1 in figure 3.2 and in the text); vertical 

transition statistics are presented in the bar chart, quantifying the 

percentage of types of ‘upper’ facies units (colour-coded and labelled in 

the bars) stacked on top of a given type of ‘lower’ lithofacies (labels on 

the horizontal axis). In this case, results include ‘undefined’ lithofacies 

types, i.e. facies units (e.g. non-fluvial aeolian facies) that cannot be 

classified according to the adopted classification scheme (table 3.2)............ 68 

Figure 3.11: example quantitative information that can be incorporated into a 

small-scale facies model referring to the entire knowledge base (no filter 

applied). Overall facies-unit proportions are presented as pie-charts of 

textural classes and of ‘texture + structure’ facies-unit classes, and are 

compared with the facies organization of channel deposits, described by 

facies unit proportions within channel-complexes. The geometry of 

different facies-unit types is quantified by box-plots of their thickness 

distribution, summary descriptive statistics of their lateral extent, and 

probability density functions of the width/thickness aspect ratio of 

selected types. Upwards, cross-gradient and up-gradient transition 

statistics are presented as bar charts quantifying the percentage of 

types of facies units (colour-coded and labelled in the bars) juxtaposed 

to a given type of facies unit (labels on the vertical axis). In addition, the 

facies-unit-scale block diagram has been built based on database-

derived information relating to the facies organization and geometry of 

individual architectural-element types. .......................................................... 71 

Figure 3.12: example quantitative information that can be incorporated into a 

small-scale facies model referring to braided systems, filtering the 

knowledge-base on the channel-pattern type. Results are presented as 

in figure 3.11, to render the models comparable. .......................................... 73 

Figure 3.13: example quantitative information that can be incorporated into a 

small-scale facies model referring to dryland braided systems, filtering 

braided systems on the basin climate type. Results are presented as in 

figures 3.11 and 3.12, to render the models comparable. ............................. 75 



xv 

List of figures 

Figure 3.14: example quantitative information that can be incorporated into a 

small-scale facies model referring to ephemeral dryland braided 

systems, filtering dryland braided systems on the water-discharge 

regime. Results are presented as in figures 3.11, 3.12 and 3.13, to 

render the models comparable. .................................................................... 77 

Figure 3.15: partial quantitative information constituting a small-scale facies 

model of aggradational channel fills (CH architectural elements). The 

model facies association of the element is described by overall 

lithofacies-type proportions, presented as pie-charts of textural classes 

and of ‘texture + structure’ facies-unit classes; proportions of facies 

types observed at the base of channel-fills are also given. Example 

cumulative grain-size distributions for facies units within CH elements 

are presented for different lithofacies types; the thickness and width of 

classified facies units within aggradational channel fills is represented in 

the cross-plot; upwards, cross-gradient and up-gradient transition 

statistics are presented as bar charts quantifying the percentage of 

types of facies units (colour-coded and labelled in the bars) juxtaposed 

to a given type of facies unit (labels on the vertical axis) within CH 

elements. Legend and colour code are given in figure 3.16. ......................... 79 

Figure 3.16: partial quantitative information constituting a small-scale facies 

model of aggradational sheetflood-dominated sandy floodplain elements 

(SF architectural elements). As in figure 3.15, the model facies 

association of the element is described by overall lithofacies-type 

proportions, presented as pie-charts of textural classes and of ‘texture + 

structure’ facies-unit classes; proportions of facies types observed at the 

base of channel-fills are also given. Example cumulative grain-size 

distributions for facies units within SF elements are presented for 

different lithofacies types; the thickness and width of classified facies 

units within sandy aggradational floodplain elements is represented in 

the cross-plot; upwards and horizontal (cross-gradient + up-gradient) 

transition statistics are presented as bar charts quantifying the 

percentage of types of facies units (colour-coded and labelled in the 

bars) juxtaposed to a given type of facies unit (labels on the vertical 

axis) within SF elements. ............................................................................. 81 

Figure 3.17: graphs quantifying the downstream variations in the proportion of 

textural classes (left-hand graph) and example facies-unit types (right-

hand graphs), for two different depositional systems (Parkash et al. 

1983; Cain 2009, cf. Cain & Mountney 2009; 2011) classified as 

“terminal fans”. Note that the length scales over which the variations are 

observed are different for the two systems, to make the results referable 

to a tripartite subdivision of the systems into ‘proximal’, ‘medial’ and 

‘distal’ zones and comparable with existing models; similar results could 

be derived for absolute-distance scales. ...................................................... 84 



xvi 

List of figures 

Figure 3.18: example facies associations for ‘downstream- and lateral-

accretion barforms’ (DLA architectural elements) and ‘channel-complex’ 

depositional elements, as derived by separately considering data from 

ancient systems preserved in the rock record and modern river systems; 

results are presented as pie-charts quantifying facies-unit proportions 

derived as the sum of the thickness of all facies units from adequate 

subsets (method 1 in figure 3.2 and in the text). ........................................... 86 

Figure 3.19: comparison between the model facies association of ‘lateral 

accretion barforms’ (LA architectural elements) represented by the pie-

chart, which quantifies facies-unit proportions derived as the sum of 

facies-unit thickness (method 1 in figure 3.2 and in the text), and the 

partial result of a query returning the proportion of facies-unit types 

within each individual LA architectural element, in tabulated form (e.g. 

‘St/0.11’ means 11% of St facies unit within the given element). The 

possibility to individually store and retrieve each depositional system or 

genetic unit renders the FAKTS database system a reference for 

comparison that is richer and more flexible than traditional facies 

models. ......................................................................................................... 88 

Figure 4.1: alluvial architecture models from Allen (1978), representing the 

distribution of fluvial channel sand bodies within stratigraphic volumes 

developed under different aggradation rates keeping pace with 

subsidence rates (subsidence rate = 4.43*10-3 m/a for the lower model; 

subsidence rate = 2.46*10-4 m/a for the upper model). Whereas these 

models directly relate architectural style to the controlling factor of 

subsidence rate, other models show similar styles to be controlled 

simply by aggradation rate (e.g. Bridge & Ledeer 1979). Figure modified 

after Allen (1978). ......................................................................................... 92 

Figure 4.2: measure of channel-body interconnectedness and density as a 

function of floodplain aggradation rate for a suite of alluvial architecture 

models by Bridge & Ledeer (1979) with variable avulsion period (given 

in years by numbers on the curves). Figure modified after Bridge & 

Ledeer (1979). .............................................................................................. 93 

Figure 4.3: ideal fluvial sequence stratigraphic model proposed by Wright and 

Marriott (1993) for a third-order sea-level fall-rise cycle. This model 

incorporates the assumption that higher rates of floodplain aggradation 

determine lower channel density by reducing floodplain reworking, and 

vice versa; the rate of creation of accommodation is implied to be 

governed by sea level and to reach its maximum during the period 

represented by the Transgressive Systems Tract (TST). Figure modified 

after Wright and Marriott (1993). ................................................................... 94 



xvii 

List of figures 

Figure 4.4: idealized alluvial architecture models from Bryant et al. (1995), 

depicting variations in the distribution of fluvial channel bodies (in black) 

under different conditions defined by the exponent β in the power-law 

relationship between avulsion frequency and aggradation rate. For case 

3 (β>1), an increase in channel-deposit proportions is observed for 

increasing floodplain aggradation rate. The right-hand diagram by Heller 

& Paola (1996) synthesizes the possible relationships between 

aggradation rate and avulsion frequency, with reference to the three 

scenarios represented on the left. Figure modified after Bryant et al. 

(1995) and Heller & Paola (1996). ................................................................ 95 

Figure 4.5: schematic diagram that synthesizes the effects of channel-belt 

aggradation, lateral migration and avulsion on preserved channel-body 

morphology (modified after Bristow & Best 1993). ........................................ 96 

Figure 4.6: hypothetical scenario whereby a temporal evolution in fluvial 

architecture characterized by an increase in channel amalgamation is 

generated by a set of controls that determine a corresponding increase 

in aggradation rate (see text for explanation); channel deposits are 

represented in light yellow and floodplain deposits in grey, in the ideal 

cross-sectional sketch. The example shows how the attribution of 

standard terrestrial systems tracts as based on the recognition of 

increasing channel density following recommendations by Catunenanu 

et al. (2009) would be mistaken. (Qs = rate of sediment supply; Q = 

water discharge; LAST = low-accommodation systems tract; HAST = 

high-accommodation systems tract). ............................................................ 97 

Figure 4.7: cross-gradient section through an experimental stratigraphy of a 

braided fluvial fan delta in which the interval with the slowest 

aggradation rates (stage 3) is characterized by the lowest density of 

channelized features (Strong 2006). ............................................................ 98 

Figure 4.8: cross-plot of channel proportion and mean aggradation rate for 

different stratigraphic volumes. Data from the same system are joined 

by arrowed lines to indicate temporal evolution, and by dotted lines to 

indicate downstream evolution. Case studies are coded as follows: 3: 

Po Basin (Amorosi et al. 2008); 28: Caspe Fm. (Cuevas Martínez et al. 

2010); 52: Omingonde Fm. (Holzförster et al. 1999); 67: Chinji Fm. 

(McRae 1990); 69: Price River Fm. and North Horn Fm. (Olsen 1995); 

78/79: Tortola system (Martinius & Nieuwenhuijs 1995; Martinius 2000); 

109: Kaiparowits Fm. (Roberts 2007); 113: Ferris Fm. (Hajek et al. 

2010);  115: Blackhawk Fm. (Hampson et al. 2012); 117: Sariñena Fm. 

(Hirst 1991). ............................................................................................... 105 

Figure 4.9: modified box plots representing channel-complex thickness (A) 

and width (B) distributions for 19 studied stratigraphic volumes, in 

ascending order of mean aggradation rate. Width distributions also 

incorporate uncorrected values of apparent (i.e. oblique with respect to 

palaeoflow) and incomplete observations. .................................................. 107 



xviii 

List of figures 

Figure 4.10: cross-plots of mean channel-complex thickness (A) and width (B) 

against mean aggradation rate for different stratigraphic volumes. The 

same results are also presented for normalized values of thickness and 

width, expressed as the ratio between channel-complex mean thickness 

and proportion (C) and between the base-ten logarithm of channel-

complex width and channel proportion (D); see text for explanation. 

Data from the same system are joined by arrowed lines to indicate 

temporal evolution of channel-complex geometry. Mean widths have 

been computed including apparent (i.e. oblique with respect to 

palaeoflow) and incomplete observations. Case studies are coded as 

follows: 67: Chinji Fm. (McRae 1990); 69: Price River Fm. and North 

Horn Fm. (Olsen 1995); 78/79: Tortola system (Martinius & 

Nieuwenhuijs 1995; Martinius 2000); 109: Kaiparowits Fm. (Roberts 

2007); 113: Ferris Fm. (Hajek et al. 2010);  115: Blackhawk Fm. 

(Hampson et al. 2012); 117: Sariñena Fm. (Hirst 1991). ............................. 108 

Figure 4.11: cross-plots of mean channel-complex thickness against width for 

different stratigraphic volumes within three systems characterized by 

temporal changes in aggradation rate, and within two systems 

interpreted as being characterized by temporal changes in aggradation 

rate. Relative changes in aggradation rate are represented by the plus 

(increase) or minus (decrease) signs; data from the same system are 

joined by arrowed lines to indicate temporal evolution of channel-

complex geometry. Case studies are coded as follows: 51: Escanilla 

Fm. (Labourdette 2011); 65: Morrison Fm. (Kjemperud et al. 2008); 67: 

Chinji Fm. (McRae 1990); 69: Price River Fm. and North Horn Fm. 

(Olsen 1995); 115: Blackhawk Fm. (Hampson et al. 2012). ........................ 109 

Figure 4.12: cross-plots of minimum and mean channel-complex thickness 

and mean and maximum channel-complex ‘connected’ thickness 

against mean aggradation rate for different stratigraphic volumes. 

Values of mean connected thickness from the same system are joined 

by dotted arrowed lines to indicate temporal evolution of channel vertical 

connectivity. See text for explanation.......................................................... 110 

Figure 5.1: scatterplot of channel-complex width against formative-channel 

bankfull depth based on all suitable data contained in the FAKTS 

database, including data published by Fielding & Crane (1987), Jordan 

& Pryor (1992), Fielding et al. (1993), Friend & Sinha (1993), and Tye 

(2004). The power-regression curve is plotted as a continuous line, 

whereas the equation given by Collinson (1978) – included for 

comparison – is represented as a dashed line. ........................................... 120 

Figure 5.2: scatterplot of channel-complex thickness against formative-

channel bankfull depth or architectural-element thickness based on all 

suitable data contained in the database. Architectural elements 

represent lower-scale units contained within channel complexes and 

that are interpretable as the preserved product of geomorphic units, 

such as barforms; geomorphic elements whose thickness appears to be 

completely preserved and which are considered reasonable and useful 

indicators of channel bankfull depth are depicted as filled data-point 

markers. ..................................................................................................... 120 



xix 

List of figures 

Figure 5.3: scatterplot of channel-complex width against channel-complex 

thickness; apparent widths refer to measurements made from 

exposures that are oblique with respect to the channel-belt-scale flow 

axis or from situations where palaeoflow was uncertain; real widths refer 

to the entire body lateral extent along a direction normal to the flow axis; 

following the terminology by Geehan & Underwood (1993), partial 

widths refer to measurements of channel complexes for which one 

lateral termination is not exposed, whereas unlimited widths refer to 

bodies for which both lateral terminations are not exposed. The curve 

expressing the “most-likely scenario” of Fielding & Crane (1987) is also 

plotted, for comparison with a power-regression curve obtained from all 

FAKTS channel-complexes for which real-width data are available. ........... 121 

Figure 5.4: sketch representing the problem treated in this work and the 

terminology adopted; the approach employed refers to a situation in 

which a well array penetrates orthogonally through a fluvial succession 

composed of channel complexes in a floodplain background; for the 

method to be applicable, well-spacing S needs to be constant; different 

basin portions with different inter-well spacings need to be considered 

separately. The method introduced in this study is based on analysis of 

analogue-derived knowledge of channel-complex width distribution; if 

the correlation panel runs at an angle to the cross-gradient direction, a 

distribution of channel-complex apparent widths can be considered. 

Channel complexes whose width is smaller than the inter-well spacing 

are non correlatable between two wells; channel complexes whose 

width is larger than the inter-well spacing are potentially correlatable or 

actually correlatable: the method illustrated here is based on the 

recognition of the probability of a channel complex with width narrower 

than twice the inter-well spacing being both penetrated and correlatable. .. 123 

Figure 5.5: probability of a random channel complex to be penetrated by a 

well-array with spacing S as a function of channel-complex width; these 

functions are employed to describe conditional probability of penetration 

given channel-complex width. .................................................................... 124 

Figure 5.6: ideal example in which a total probability of channel-complex 

penetration is derived by assuming that the well-array has spacing S 

and the channel-complex width distribution follows a normal probability 

density function with mode/mean at channel-complex width equal to S; 

the total probability of channel-complex penetration (i.e. the proportion 

of penetrated channel-complexes) is given by the area underlying the 

product between the width probability density function and the 

conditional probability of penetration as a function of channel-complex 

width. ......................................................................................................... 125 



xx 

List of figures 

Figure 5.7: channel-complex width distributions obtained from the FAKTS 

database: (a) for all suitable case studies; (b) for systems classified on 

an interpretation of braided river pattern. Results include all types of 

width observation (real, apparent, partial, and unlimited; cf. figure 5.3). 

Only the 0 to 6000 m width range is shown although some maximum 

widths do exceed 6000 m. Best-fit log-normal probability density 

functions are derived from MINITAB software. N refers to the number of 

readings; μ and σ respectively refer to the location and scale 

parameters of the log-normal distributions). ................................................ 126 

Figure 5.8: curves that quantify the total probability of channel-complex 

penetration as a function of well-array spacing for two different channel-

complex width probability density functions; the different width 

distributions are respectively based on synthetic analogues made of all 

FAKTS case studies (figure 5.7a) and systems classified on an 

interpreted braided river pattern (figure 5.7b). Total probability 

corresponds to the proportion of channel-complexes that are penetrated 

for a given well spacing; proportions are not volumetric, but instead 

represent the fractional number of channel-complexes. .............................. 127 

Figure 5.9: ideal example in which a total probability of channel-complex 

correlation between two-wells is derived by assuming that the well-array 

has spacing S and the channel-complex width distribution follows a 

normal probability density function with mode/mean at channel-complex 

width equal to S; the total probability of channel-complex correlation (i.e. 

the proportion of channel-complexes correlatable between two wells) is 

given by the area underlying the product between the width probability 

density function and the conditional probability of correlation as a 

function of channel-complex width. ............................................................. 129 

Figure 5.10: curves that quantify the total probability of channel-complex 

correlation between two wells as a function of correlation distance for 

two different channel-complex width probability density functions; the 

different width distributions are respectively based on synthetic 

analogues made of all FAKTS case studies (figure 5.7a) and systems 

classified on an interpreted braided river pattern (figure 5.7b). Total 

probability corresponds to the proportion of channel-complexes that are 

correlated over a given distance; proportions are not volumetric, but 

instead represent the fractional number of channel-complexes. ................. 130 



xxi 

List of figures 

Figure 5.11: ideal example in which several subsurface interpretations based 

on well-to-well correlation are compared with a correlability model. This 

example assumes well spacing S = 1000 m. Thus, a value of total 

probability of channel-complex penetration for S is drawn from the curve 

of total probability of penetration based on all FAKTS analogues (a); 

then, also values of total probability of correlation are drawn from the 

relative curve (b) for S and values that are whole multiples of S. The 

ratio between values of total probability of correlation and penetration 

are then plotted against the correlation distance (c), to obtain the 

correlability model used to test interpretations. Afterwards, values of the 

ratio between the number of correlated channel complexes (dependent 

on the correlation distance) and the total number of penetrated channel 

complexes (66 in this idealized example) are plotted for each 

interpretation on the same graph, to reveal whether interpretations 

resulting from well-to-well correlations display correlation patterns that 

do (d) or do not (e) match with what is expected from the synthetic 

analogue. ................................................................................................... 132 

Figure 5.12: three alternative interpretations of the same subsurface fluvial 

succession in the Lower Cretaceous Travis Peak Formation (east 

Texas, USA). Correlation panels by (a) Tye (1991), (b) Bridge & Tye 

(2000), and (c) Miall (2006). Although well spacing is actually variable, 

an equal inter-well distance as represented in these panels is assumed 

for ranking the geological realism of the interpretations. In similar cases 

of variable well spacing, the quality-check method presented here could 

either be separately applied for adjacent stratigraphic portions with 

comparable spacing or replicated for maximum and minimum well 

spacing in order to identify a confidence interval – rather than a 

correlability curve – against which discrepancies could be evaluated. ........ 133 

Figure 5.13: comparison between the three subsurface interpretations of the 

Travis Peak Formation and the correlability models based on all FAKTS 

outcrop analogues and on interpreted braided river systems only. The 

ratios between the number of correlated channel complexes and the 

number of penetrated channel complexes are plotted (a) together with 

the ratio between total probabilities of correlation and penetration for 

multiple of well spacing (1540 m); this demonstrates that the 

interpretation by Tye (1991) is the least realistic. The difference 

between ratios obtained from the interpretations and the models are 

plotted separately for the two models, in (b) and (c), for well spacing 

between S and 4S (as no channel-complex is correlated for a distance 

larger than 3S); summing the absolute values of all discrepancies 

observed between subsurface interpretations and correlability models 

for all correlation distances, the interpretation by Miall (2006) returns the 

lowest total discrepancy for both models………………………………. ........ 136  



xxii 

List of figures 

Figure 5.14: comparison between the geometry of channel complexes 

represented in the three panels depicting proposed channel-complex 

architectures for the Travis Peak Formation for (a) Tye (1991), (b) 

Bridge & Tye (2000), and (c) Miall (2006), and the geometry of channel 

complexes included in the FAKTS database, in the form of width-to-

thickness scatterplots. The widths in the graphs consider the positions 

of lateral channel-body pinch-out as represented in the panels. See 

figure 5.3 for width nomenclature in legend. ............................................... 137 

Figure 5.15: (a) descriptive statistics including mean, minimum and maximum 

channel-complex width, in ordinate values, from stratigraphic volumes 

with variable proportions of channel deposits, in abscissa values; (b) 

mean channel-complex width from highest-quality datasets, plotted 

against the proportion of channel deposits in the relative stratigraphic 

volumes; an exponential regression curve is fitted to the data; (c) 

standard deviation in channel-complex width from highest-quality 

datasets, plotted against the proportion of channel deposits in the 

relative stratigraphic volumes; an exponential regression curve is fitted 

to the data………………………………………………………………… .......... 141  

Figure 5.16: curves that quantify the total probability of channel-complex 

penetration by a well array (a) and of correlation between two wells (b) 

as a function of well spacing/correlation distance, for different channel-

complex width probability density functions (all log-normal) associated 

with variable proportions of channel deposits (10% to 90%, in 10% 

increments). ................................................................................................ 142 

Figure 6.1: representation of the main scales of observation and types of 

geological genetic units translated into the database in the form of 

tables (genetic unit types) and entries (genetic units). Refer to table 6.1 

for architectural-element codes and to table 6.2 for facies-unit codes. ........ 153 

Figure 6.2: (A) field-work table reporting the properties of facies units, 

including: facies unit unique numeric identifier (FU nr), unique identifier 

of the architectural element each facies unit belongs to (AE nr), 

dimensional parameters (thickness, cross-stream width, downstream 

length) classified according to a scheme of completeness (app = 

apparent, part = partial, unltd = unlimited) partly based on Geehan & 

Underwood (1993); (B) transition diagram representing spatial 

relationships between facies units (circles coded according to facies unit 

code) by storing strike- (L), dip- (D), and vertical-directed (V) transitions 

(arrows), including information about the order of the bounding surface 

(scheme by Miall 1996) across which the transition occurs: for example, 

facies unit 25 passes vertically into facies unit 26 across a 5th-order 

bounding surface. No scale, directionality, temporal or spatial 

significance is attached to the spatial distribution of the circles on the 

diagram. ..................................................................................................... 154 

Figure 6.3: frequency distribution of all FAKTS channel-complex thicknesses 

and best-fit probability density function. ...................................................... 158 



xxiii 

List of figures 

Figure 6.4: (A) scatter-plot of all FAKTS channel-complex width vs. thickness 

(W/T), classified according to observation completeness classes by 

Geehan & Underwood (1993); (B) scatter-plot of 5th order-bounded 

FAKTS channel-belt width vs. thickness; (C) scatter-plot of 4th order 

FAKTS channel-fill (CH) architectural elements. ........................................ 159 

Figure 6.5: example FLUVSIM realizations modelling the distribution of 

channelized bodies in a floodplain background; the simulations were 

conditioned on geometrical data from (left to right): FAKTS channel-

complexes, channel-complexes bounded by 5th-order lower bounding 

surfaces (5th-order channels), and CH architectural elements (channel-

fills). ........................................................................................................... 160 

Figure 6.6: (A) representation of example query returning relative dimensional 

parameters: the thicknesses of all juxtaposed 4th order CH and CS 

architectural elements are obtained and a frequency distribution of the 

thickness ratio derived, ready to be input in the simulation. As FAKTS 

transitions are directional (left-to-right, upstream-to-downstream), 

FAKTS space needs to be sampled in both directions to ensure a 

successful query;(B) representation of example query returning relative 

thicknesses of all laterally neighbouring juxtaposed channel-complex 

depositional elements and CS architectural elements and derived 

thickness ratio triangular distribution…………………………………… ......... 162 

Figure 6.7: conceptual depiction of the translation of genetic units into 

material units according to a given categorical variable (or discretized 

continuous variable); letters indicate categorical types (e.g. genetic unit 

type): through this process we are able to obtain the lateral and vertical 

extent of a continuous volume belonging to the same categorical type. ..... 164 

Figure 6.8: representation of an ideal example of sequential queries 

performed in order to obtain width data of a given type of material unit 

(characterized by category value ‘A’) from the widths of genetic units; if 

N is the largest number of consecutively laterally-juxtaposed genetic 

units in the strike direction, N queries are required. This example 

illustrates an approach that is equally applicable in all directions (strike-

lateral for material unit widths, downstream for dip lengths, vertical for 

thicknesses). .............................................................................................. 165 

Figure 6.9: example SISIM realizations derived by constraining unconditional 

(no direct data) simulations based on FAKTS’ depositional-element 

data, filtered according to basin climate type (variograms in table 6.3). 

At this scale (hundred-meter lateral extent), the effect of different 

univariate statistics describing lateral dimensional parameters on 

indicator variogram ranges translates into more complexly interbedded 

channel and floodplain deposits for dryland fluvial systems in 

comparison to more humid systems, which show more laterally 

continuous depositional elements. ............................................................. 168 



xxiv 

List of figures 

Figure 6.10: (A) example spatial transition probability between categories j 

and k as a function of lag h (tjk(h)) in a given direction, and 

corresponding cross-variogram (γjk(h)): the tangents to the curves at lag 

zero, the sills and their intersections are represented; the lag value at 

the sill-tangent intersection constrains the minimum value of cross 

variogram range; (B) analytical cross-variogram obtained from the sill 

and estimated range values derived from category proportions and 

transition rates; (C) the sampling of the analytical cross-variogram at 

given lag spacing yields cross-variogram values that can be used as 

input in plurigaussian simulations. .............................................................. 171 

Figure 6.11: schematic WSG cross-section depicting the persistent nature of 

coal-seam and seam-split geometries (bold lines); stippled units 

represent large channelized features (modified after Fielding 1987). The 

proposed training images do not include composite heterogeneous coal 

seams as discrete unit types, and do not include seam-split geometries. ... 180 

Figure 6.12: training images F1 to F5, including analogue knowledge from 

classified FAKTS systems. See main text for further explanation. .............. 183 

Figure 6.13: training images W1 to W5, including analogue knowledge from 

classified FAKTS systems combined with geometrical information about 

WSG coal bodies by Morris & Martin (2012). See main text for further 

explanation. ................................................................................................ 185 

Figure 6.14: comparison between training images F1 and W1; legend, volume 

size and vertical exaggeration are as in figure 6.12 and figure 6.13, 

floodplain fines are transparent. Above: training image F1, including 

analogue knowledge from all FAKTS systems. Below: training image 

W1, including analogue knowledge from all FAKTS systems combined 

with coal-body geometries as given by Morris & Martin (2012) for the 

WSG. The larger average horizontal extent of the coal-bodies (light-blue 

units) as compared to training image F1 is evident. .................................... 187 

Figure 6.15: indicator auto-variograms for channel-complex units referring to 

volumes with variable proportions of channel deposits (‘CC proportion’ 

in labels); the variograms are based on model types, sill values and 

range values derived from channel-complex proportions and empirical 

relationships describing channel-complex descriptive statistics (mean, 

standard deviation, and coefficient of variation) as functions of channel 

proportion. .................................................................................................. 188 

Figure 6.16: ideal cross-gradient-oriented cross-sections representing large-

scale fluvial sedimentary architecture for variable proportions of channel 

deposits; these geostatistical simulations have been obtained by SIS 

conditioned by indicator variograms informed by empirical relationships 

linking channel-complex lateral extent to their proportion within 

stratigraphic volumes. ................................................................................. 190 



xxv 

List of figures 

Figure 6.17: comparison between the distribution of channel-complex width 

(expressed in metres) derived from the cross-section obtained by SIS 

simulation of an ideal system with 10% channel deposits and the 

distribution of channel-complex width derived from all stratigraphic 

volumes included in FAKTS and displaying a proportion of channel 

deposits of 10% ± 1.5%. Best-fit lognormal distribution functions have 

been also included, and their location and scale parameters have been 

reported in the upper-right box. .................................................................. 191 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



xxvi 

Abbreviations 

Abbreviations 

 

1D   one-dimensional 

2D   two-dimensional 

3D   three-dimensional 

DMAKS  Deep-Marine Architecture Knowledge Store 

DQI   Data Quality Index 

DWAKB  Deep-Water Architecture Knowledge Base 

FAKTS   Fluvial Architecture Knowledge Transfer System 

GSLIB   Geostatistical Software Library 

HAST   High-accommodation systems tract 

LAB   Leeder-Allen-Bridge 

LAST   Low-accommodation systems tract 

MPS   Multiple-point statistics 

SIS   Sequential Indicator Simulation 

SQL   Structured Query Language 

T-PROGS  Transition-Probability Geostatistical Software 

UK   United Kingdom 

USA   United States of America 

WSG   Walloon Subgroup 

 

 

 

 

 

 



1 

Chapter 1 

1 Introduction 

 

1.1 Rationale 

Fluvial sedimentary successions are important both scientifically and economically, 

since they represent sensitive recorders of environmental conditions in continental 

settings at the time of deposition and accumulation, and act as hosts for important 

natural resources including water, metals and hydrocarbons. Hence, 

sedimentological studies have been extensively carried out on modern rivers and 

ancient successions to enhance understanding of the facies architecture of fluvial 

systems, with either the aim of developing new techniques and knowledge with 

which to decipher the geological record or of establishing predictive models that 

describe the distribution of sedimentary heterogeneities, which themselves are key 

fundamental controls that dictate the distribution of natural resources. Key 

architectural properties targeted by sedimentological studies comprise the 

proportion, the external and internal geometries, the hierarchical relationships and 

the spatial arrangement of sedimentary units present in fluvial systems and their 

preserved successions at a variety of scales. A vast amount of such architectural 

data have been collected in the last four decades, especially in outcrop studies, and 

typically rendered available in published form. As the amount of sedimentological 

and architectural data available has increased over time, so a fundamental issue 

has become ever more important and significant: the need to ensure that different 

datasets collected in different ways by different geologists (e.g. 1D vertical 

graphical log profiles, 2D architectural panels, plan-form morphological information) 

are somehow stored in a format such that direct comparisons between 

fundamentally different types of data that were originally collected in different ways 

can be made in a sensible and informative manner, without requiring extensive 

literature search and re-processing each time the analyses of given families of data 

are attempted. This problem is not trivial, though the benefits of developing a 

solution are potentially considerable: if this problem were overcome the usefulness 

of the primary data for research would be enhanced, for example through facilitation 

of synthesis or comparison. Since the solution to this problem requires datasets to 

converge in a common medium, one approach to tackling this issue is to devise a 

method to effectively store and retrieve sedimentological data and interpretations. A 

database-oriented technique that largely fulfils this task has previously been 

developed for deep-marine depositional systems by Baas et al. (2005), from whose 
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work inspiration has been drawn for this project. The underlying drive of the current 

work is to demonstrate how a relational database can practically be employed as a 

means for the collation of fluvial architecture data, with the aim of ensuring the 

continuing value of the data for pure and applied science. 

 

1.2 Aims and Objectives 

The fundamental aim of this Thesis is to demonstrate how a database system for 

the digitization of fluvial sedimentary and geomorphological architecture can be 

applied to the wider scope of sedimentary research to address a series of 

recognized research questions, which those working on problems in fluvial 

sedimentology and stratigraphy have hitherto not been able to address due to the 

lack of an appropriate tool for sophisticated data analysis. Ultimately, this is 

achieved in the current work by employing a novel and innovative database system 

in example applications relevant to both pure and applied fluvial research, which 

demonstrates how such a methodology has the potential to advance scientific 

knowledge and refine subsurface-related practices. In achieving this overarching 

aim, each illustrative application represents a stand-alone piece of research (a sub-

project), which itself attempts to answer a series of specific research questions. 

Many of the research targets pursued in the context of each sub-project are 

included in the following list and these represent the specific objectives of this 

Thesis: 

 Identify what architectural characteristics of fluvial depositional systems 

need to be considered and are deemed appropriate and suitable for 

inclusion in a database. Devise efficient ways to standardize the related 

forms of data and encapsulate them in a suitable and versatile digitized 

format. 

 Develop novel and innovative approaches to the quantitative 

characterization of the depositional architecture of specific classes of fluvial 

depositional systems, typified by facies models (sensu Walker 1984). 

Refined approaches to the development of quantitative facies models could 

help identify and tackle related research questions, to which some 

consideration is given in this work; in particular, attention is given to broad 

research objectives concerning for example the recognition of classes of 

fluvial systems that are the most appropriate for facies model categorization 

and which yield the greatest predictive power or the validation of rock-record 

interpretations by comparison with the facies organization of modern 

systems for which system and unit classifications are straightforward. 
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 Improve understanding of the preserved architectural signature arising from 

both autogenic and allogenic factors that act to control depositional 

architecture, which can be explored through quantitative comparative 

studies. Particular focus is given to the investigation of the role of 

aggradation rate as a predictor of large-scale fluvial architecture by testing 

whether consistent relationships between changes in rates of basin-wide 

aggradation and architectural styles are shown across different systems 

regardless of the different controls determining changes in aggradation rate. 

One of the main aims of the work is to test the validity of current 

assumptions that are implicitly embedded in popular sequence stratigraphic 

models involving the notion that changes in channel-deposit density and 

geometry are a diagnostic indicator of changes in rates of creation of 

accommodation space. 

 Test the predictive value of empirical relationships that are commonly 

referred to for forecasting the lateral extent of fluvial-channel sandstone 

bodies in subsurface successions of economic interest; an additional related 

objective is to present alternative empirical relationships to further constrain 

deterministic models of large-scale fluvial architecture in the subsurface. 

 Devise a method for quantitatively ranking the geological realism of 

alternative interpretations of well-to-well correlation panels involving the 

lateral tracing of fluvial channel complexes across a constantly-spaced well 

array, by comparing the correlation panels with ideal models incorporating 

likelihood of channel-complex penetration and correlation based on 

database geometrical information. 

 Set up a database practice that provides straightforward constraints to 

stochastic models of subsurface fluvial sedimentary architecture at various 

scales. Specific objectives of this work relate to the establishment of 

procedures that permit (i) obtaining constraints to object-based models that 

consider hierarchical and spatial relationships, and (ii) the exploitation of an 

object-oriented database for the derivation of parameters for conditioning 

pixel-based simulations. 

 

1.3 Thesis outline 

This Thesis commences with a discussion of how best to capture and record data 

relating to sedimentary architecture in the digital form of a relational database. This 

involves an overview of the devised database structure and of the form and 

geological significance of its output (Chapter 2). Different fields of application of the 
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database output are then explored in the following four chapters. Necessarily, there 

are connections between the applications; for example, the practice related to the 

compilation of a quantitative fluvial facies model (Chapter 3) is inherently linked with 

subsurface-related practices (Chapters 5 and 6), as the database facies modelling 

approach may find direct application to the generation of a synthetic analogue with 

which to inform deterministic or stochastic hydrocarbon reservoir models. 

Significantly, each chapter represents a self-contained piece of research and was 

therefore conceived as an independent published or publishable work; as a result, 

the Thesis lacks general introductory and discussion sections that have traditionally 

been present in works of this type; instead, the scientific background, aims and 

objective and discussion of each sub-project are given separately in each chapter. 

Importantly, the content of the chapters are the result of work that was not carried 

out in a temporal order that corresponds with the numbering order of the chapters. 

Furthermore, the database was populated progressively and incrementally while the 

different applications that comprise the various chapters were being explored; for 

example, results from Chapter 3 incorporate more data than most of the results in 

Chapter 6. 

An overview of each single chapter is given in the following paragraphs, and 

relationships involving data and information presented or used in each of them are 

summarized graphically in figure 1.1. 

 

 

Figure 1.1: flowchart depicting the relationships between original field- and literature-

derived data or database output information and the use made of data and 

information in each chapter. 
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Chapter 2 concentrates on the description of the process of digitization of fluvial 

sedimentary architecture and its storage within the framework of a relational 

database. This chapter first focuses on the database structure and on the process 

of standardization needed to ensure that the recorded case studies are 

comparable; it then considers a range of example output and discusses possible 

applications. The chapter provides an account on how the system captures and 

quantifies basic architectural attributes like genetic unit types, geometries, 

reciprocal spatial and hierarchical relationships, and on how it tackles problems 

connected to data standards; some of these problems arise especially from the 

need to include interpretative classes, as does, for example, the fact that adopted 

classifications inevitably reflect only current understanding. The chapter concludes 

by giving an insight into the potential applications of database output, which are 

treated in greater detail in the following chapters. 

In Chapter 3 attention is given to a practice involving the use of the architectural 

database in the compilation of fluvial facies models. The generation of 

quantitatively-justified fluvial facies models is demonstrated through a series of 

example models based on the synthesis of database-derived information from sets 

of relevant depositional systems. The methodology finds application to various 

research problems: it can be used, for example, to determine what classes of 

depositional systems are most suitable for facies modelling, or to answer the need 

for provision of sedimentological ‘general summaries’ that constitute more flexible 

references than traditional idealized sedimentary graphic logs or block diagrams. 

The value of these database-derived facies models as quantitative synthetic 

analogues to subsurface systems is considered in greater detail in Chapters 5 and 

6. 

The development of quantitative fluvial facies models as obtained by following the 

procedure outlined in Chapter 3 also permits the quantitative appreciation and 

definition of the type of architectural characteristics that may be associated with 

given system boundary conditions. Architectural differences across models cannot 

necessarily be taken as diagnostic of the specific controls on which the models are 

categorized, as many different allogenic factors typically interplay with autogenic 

dynamics in a complex manner, resulting in a wide variety of architectural styles; 

however, distinctive architectural styles and trends emerging from the generalized 

models can be used to address certain specific research hypotheses. The 

application of the architectural knowledge base to study the importance of rates of 

creation of accommodation as a factor with predictive value is presented in Chapter 

4, within which a comparative study is carried out between several case histories 
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for which both sedimentary architecture and rates of floodplain aggradation are 

constrained. A primary outcome of this work is, in effect, a test of common physical 

stratigraphy models relating architectural properties to accommodation; as such, 

emphasis is given to the implications that results of this study may have for 

continental sequence stratigraphy. 

In Chapters 5 and 6 attention is turned to the use of the architectural database as a 

predictive tool in subsurface-related practices. 

In Chapter 5, the analogy concept is applied to the derivation of probability-based 

models that can be used to assess the likelihood of well correlation panels in which 

fluvial channel complexes are traced laterally across wells. The chapter explains, 

from first principles, how the method allows a quality-check of subsurface 

deterministic models to be performed by comparing correlation patterns with the 

ones expected for an analogue system on a probabilistic basis; results highlight 

how this approach has implications concerning the possibility to better predict the 

distribution, size and static connectivity of reservoir-quality genetic units. 

In Chapter 6, methodologies are outlined that employ the database output to 

variably condition object- and pixel-based structure-imitating stochastic simulations 

of fluvial sedimentary architecture. Outcrop-analogue databases have long been 

applied to derive simple geometrical constraints to object-based models; this 

chapter deals with the improvements in conditioning determined by the database 

capacity to provide information about spatial and hierarchical relationships, object 

connectivity and stacking patterns, resulting in a wider variety of constraints to 

object- (or event-) and pixel-oriented simulations. 

Finally, Chapter 7 firstly provides a brief summary of the work, presenting 

conclusions in response to the Thesis aims stated above. Possible further 

improvements of the method and areas of future research are also discussed; in 

particular, this concluding chapter highlights the portability of the database 

applications treated in this Thesis to other clastic (and arguably carbonate) 

depositional systems, which makes this work valuable as a point of reference for a 

possible generalization of the approach. 
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2 A relational database for the digitization of fluvial 

architecture: concepts and example applications 

 

 

2.1 Summary 

Depositional facies models of fluvial architecture permit straightforward 

categorization of deposits, but are necessarily simplistic.  Here a complementary 

database methodology is described, which is designed to encapsulate the inherent 

complexity of fluvial systems and their preserved deposits. The database is 

implemented as a series of tables (characterising qualitative and quantitative 

architectural and geomorphological properties and system attributes) populated 

with data derived from peer-reviewed studies of both modern rivers and ancient 

fluvial successions, and from other reliable sources. Architectural properties 

(geometries, internal organization, spatial distribution and reciprocal relationships of 

lithosomes) are assigned to 3 different orders of genetic bodies organized in a 

hierarchical framework, ultimately belonging to stratigraphic volumes that are 

homogeneous in terms of their controlling factors and internal parameters. 

Interrogation of the database generates a varied suite of quantitative information, 

whose principal applications include: (i) the quantitative comparison of fluvial 

architecture to evaluate the relative importance of intrinsic and extrinsic controls; (ii) 

development of quantitatively justified fluvial depositional models through the 

integration of data from multiple sources; (iii) development of better constraints on 

the workflows used to infer borehole correlations and to condition stochastic models 

of subsurface architecture; (iv) identification of appropriate modern and ancient 

analogues for hydrocarbon reservoirs. 

 

2.2 Introduction 

Fluvial architecture can be defined as the ensemble of geometries, internal 

organization, proportions, spatial distribution and reciprocal relationships of genetic 

bodies within fluvial successions (Allen 1978; Miall 1996). These features are 

expressed over a wide range of scales, and an intimate relationship exists between 

fluvial forms and the associated sediment deposits generated as a product of their 

migration and accumulation (Bridge 2006).  From an applied perspective, 
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characterizing and predicting subsurface fluvial architecture is important because it 

aids determination of heterogeneity and interconnectedness of reservoir-quality 

rocks. As a result, many conceptual models that attempt to account for complexity 

in fluvial stratigraphic architecture based on both autogenic fluvial system behaviour 

and response to allogenic controls have been proposed as reference points to 

guide interpretation and prediction (e.g. Walker & James 1992; Bridge 2006). 

The architecture of fluvial systems is controlled by a number of intrinsic 

(intrabasinal) factors that are ultimately linked through a series of dependent 

variables to extrinsic (extrabasinal) controls that are themselves commonly 

considered in terms of climate, tectonics, eustatically-driven base-level changes 

(Miall 1996; Bridge 2006 and references therein), and hinterland geology . Although 

field-based models relating changes in fluvial architecture to changes in boundary 

conditions have been developed (e.g. fluvial sequence models of Shanley & 

McCabe 1993 and Wright & Marriot 1993), fluvial architecture is known to record 

complex interactions between allogenic and autogenic controls. Recognizing the 

relative importance of the different factors is not straightforward, and suggestions of 

control-response relationships of supposed general applicability and validity from 

single field studies can be misleading. For this reason, numerical models (e.g. 

Leeder 1978; Allen 1978; Bridge & Leeder 1979; Mackey & Bridge 1995; Heller & 

Paola 1996), and physical laboratory models (e.g. Peakall et al. 1996; Ashworth et 

al. 1999; Sheets et al. 2002; Hickson et al. 2005) have become popular instruments 

for enhancing understanding of relations between controls on fluvial systems and 

their preserved architecture, since the role of individual factors can be isolated. 

However, these techniques also have limitations, for example due to conditioning 

and scaling problems. 

Schemes based on planform channel/river pattern, type of dominant sediment load, 

and dominant grain size (e.g. Orton & Reading 1993) have been proposed for the 

classification of fluvial systems. Although such schemes have been used as 

conceptual frameworks for subsurface interpretations (Allen 1965a; Galloway 

1981), their descriptive value is limited given the wide range of natural variability 

known for fluvial systems (Miall 1985), and their predictive power is therefore 

relatively poor. End-member styles of fluvial geomorphology have been used as a 

basis for classifying facies models, which attempt to summarize the types of facies, 

facies associations, and facies relationships that tend to occur in a particular 

environment. The development of such facies models results from a process of 

distillation of many real-world examples; a facies model ideally acts as a norm for 

comparison, a basis for interpretation, a guide for future observations and a 

predictor for new geological situations (Walker 1984). Examples of popular fluvial 
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facies models include the ones proposed by Miall (1985; 1996) for different fluvial 

environments, each with its own architectural style. However, the usefulness of 

such facies models is restricted by their qualitative nature (North 1996), which 

renders them of limited use in quantitative subsurface prediction. 

Ancient outcrop and modern river analogues considered closely comparable to 

subsurface depositional systems are commonly chosen on the basis of similar 

environmental characteristics and controlling parameters, and these are commonly 

investigated with the aim of providing quantitative information regarding reservoir 

character. However, the analogue approach has serious shortcomings (Bridge 

2006), most notably the difficulty in reliably and confidently matching outcrop or 

surface interpretations to subsurface models. 

An innovative method for overcoming the existing limitations of depositional models, 

facies models and the analogy concept has been proposed by Baas et al. (2005) for 

deep-marine clastic sedimentary systems. The approach involves the collation, 

within a relational database, of literature-derived data and information regarding the 

architecture of these depositional systems and their internal and external 

parameters. Quantitative analysis of data stored in the database allows objective 

comparisons between systems to be made (which can be especially helpful in the 

choice of appropriate analogues and in the assessment of the importance of 

controlling factors) and the creation of synthetic idealized depositional models for 

ranges of external controls and internal parameters. 

A significant amount of data on fluvial architecture has been gathered and made 

available in peer-reviewed publications over the past four decades, with primary 

data available in different forms, including sedimentological logs, architectural 

panels, and plots of dimensional parameters. However, many studies focus on just 

a single aspect of fluvial architecture and are centred on a narrow range of physical 

or conceptual scales. 

 

The aim of this chapter is to introduce a methodology for the incorporation of 

available data relating to modern and ancient fluvial systems into a relational 

database, named the Fluvial Architecture Knowledge Transfer System (FAKTS). 

Through the development of this tool, we aim to devise a system capable of 

combining partial information derived from many individual studies in order to gain 

insight into the nature of recurring controls that act to dictate fluvial architecture 

(Figure 2.1). Specific objectives of this work are: (i) to outline the conceptual and 

logical schemes of the database, providing a brief explanation of its main 

components; (ii) to show in which form we can obtain quantitative information by 
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querying the database; (iii) to demonstrate how this quantitative information can be 

useful for both research and applied interests. 

 

 

Figure 2.1: flow chart illustrating the data acquisition-entry-query-analysis-use workflow 

described in this work. The cartoon for the ‘database interrogation’ stage (modified 

after Baas et al. 2005) depicts how the application of multiple data filters leads to the 

extraction of the most relevant data. 

 

2.3 FAKTS: approach and implementation 

2.3.1 Approach 

The use of databases as instruments for the collection, storage and analysis of data 

and information on sedimentary architecture has demonstrated their potential use in 

a range of pure and applied sedimentary research applications (Dreyer et al. 1993; 

Baas et al. 2005; Gibling 2006). In contrast to other databases holding content on 

sedimentary architecture (Dreyer et al. 1993; Baas et al. 2005), the database 

approach discussed herein (FAKTS) allows the digitization of all the architectural 

properties of individual features (depositional elements, architectural elements, 

facies units) of fluvial architecture, instead of just storing quantitative summary data. 

The scales commonly recognized in fluvial stratigraphy are particularly suited to 

description in a hierarchical way (Miall 1985; 1996; Leeder 1993; Bridge 2003). 

Thus, in FAKTS, the stratigraphy of preserved ancient successions and the 

geomorphic and sedimentary architecture of modern rivers are translated into the 

database schema by subdividing them into geological objects that are common to 

both the stratigraphic and geomorphic realms and which belong to different scales 
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of observation nested in a hierarchical fashion. Each single dataset is split into a 

series of stratigraphic windows or planform segments (named subsets) 

characterized by having the same attribute values, with attributes describing 

internal features of the systems and their external controls. Each subset is broken 

down at the largest scale into depositional elements defined as channel-complexes 

and floodplain segments with distinct geometrical properties. Each depositional 

element can be subdivided into a suite of architectural elements, which in turn can 

be further subdivided into the depositional facies from which they are constructed. 

The spatial relationships between these elements are stored as transitions along 

the vertical, cross-gradient and down-gradient directions. So, all significant aspects 

of fluvial architecture – genetic packages, geometries, relative proportions, 

relationships and internal properties – are accounted for in the database conceptual 

model (entities and relationships; Chen 1976) and resulting logical model (tables, 

attributes and relationships). The approach adopted for feature definition and 

representation is summarized below. 

 

2.3.2 Data definition and standardization 

One of the key aspects of FAKTS is the classification of each case study example 

and parts thereof on the basis of traditional classification schemes (e.g. dominant 

transport mechanism, channel/river pattern), external controlling factors (e.g. 

description of climatic and tectonic context), and associated dependent variables 

(e.g. basin vegetation type and density, suspended sediment load component). 

This context-descriptive information is linked to combinations of quantitative (hard) 

and qualitative (soft) data which describe fluvial architecture. Soft data stemming 

from interpretations (typically acquired from the published literature, though also 

from direct outcrop study) are used for defining the types of constituent units that 

build sedimentary architecture (assigned to predefined sets of classes; e.g. facies 

type) and some of their features (e.g. bounding surface order). These soft data are 

related to hard data, which are derived from measurement or observation (e.g. 

dimensional parameters, spatial relationships, grain size).  Since we rely on 

interpretations, a standardization of fluvial architecture is required for consistency: 

common classifications are used, and a set of rules and criteria that define a 

procedure for translating the source data into FAKTS has been established to keep 

both data definition and data entry practice as objective and coherent as possible. 

Fluvial systems are subdivided at the largest scale into subsets that have no given 

geological meaning, but are instead defined according to the two following types of 

criteria. 
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Each representation of data about a geological subject (e.g. outcrop sketch, cross-

section, log, correlation panel) that is named/numbered separately in the source 

work, is assigned a single subset. If data about one subject are originally split in the 

source work (e.g. sedimentological logs and architectural panels in separate figures 

but covering the same outcrop), the original datasets are merged into one single 

subset, and the associated type of spatial observation is the result of their 

composition. 

Each dataset that is characterized by demonstrated or inferred changes in some of 

the attributes is split to obtain subsets with homogeneous attributes, thereby 

defining subsets as stratigraphic windows or planform segments with homogeneous 

attributes and no given scale. For example, outcrop panel stratigraphy can be 

subdivided into subsets on the basis of inferred basinal climate type. An alternative 

example is the distinction of modern river planform subsets on the basis of channel 

pattern. 

These two criteria are not mutually exclusive and can be combined, for example 

where many outcrop profiles are considered, each being subdivided into several 

subsets on the basis of inferred changes in external parameters and controls. 

Depositional elements are simply classified as channel-complex or floodplain 

elements. Channel-complexes represent channel-bodies (and their infills) that are 

defined on the basis of flexible but unambiguous geometrical criteria (see appendix 

A), and are not related to any particular genetic significance or spatial or temporal 

scale (cf. Dalrymple 2001; Gibling 2006); they range from the infills of individual 

channels cutting through the floodplain to compound, multi-storey valley-fills. This 

definition facilitates the inclusion of datasets that are poorly characterized in terms 

of the geological meaning of these objects and their bounding surfaces, and this is 

especially the case for most subsurface datasets. Floodplain depositional elements 

are also defined on the basis of unambiguous geometrical criteria, and their 

segmentation is subsequent to channel-complex definition, as floodplain deposits 

are subdivided according to the lateral arrangement of channel-complexes (see the 

hypothetical example in figure 2.2).  
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Figure 2.2: hypothetical example showing object indexing of subsets, depositional 

elements, architectural elements and facies units and illustrating how the nested 

containment of each order of objects is implemented in the tables by making use of 

the unique indices. Facies types follow Miall’s (1996) classification; architectural 

element types follow a classification that is purposely defined for FAKTS database, 

and derives from Miall’s (1996) scheme. 

 

Following Miall’s (1985; 1996) concepts, architectural elements are defined as 

components of a fluvial depositional system with the characteristic facies 

associations that compose individual elements interpretable in terms of sub-

environments. FAKTS is designed for storing architectural element types classified 

according to both Miall’s (1996) classification and also to a classification derived by 

modifying some Miall’s classes (table 2.1) in order to make them more consistent in 

terms of their geomorphological expression, so that working with datasets from 

modern rivers is easier. Architectural elements described according to any other 

alternative scheme are translated into both classifications following the criteria 

outlined by Miall (1996) for their definition. 
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Table 2.1: Architectural element type classification adopted in FAKTS; codes are modified 

after Miall (1996). 

Code Architectural element type – geomorphic significance 

CH Vertically accreting (aggradational) channel (fill) 

DA Downstream accreting macroform 

LA Laterally accreting macroform 

DLA 
Downstream + laterally accreting macroform and undefined accretion direction 
macroform 

SG Sediment gravity flow body 

HO Scour hollow fill 

LV Levee 

AC Abandoned channel (fill) 

FF Overbank fines 

SF Sandy unconfined sheetflood dominated floodplain 

CR Crevasse channel 

CS Crevasse splay 

LC Floodplain lake 

C Coal body 

 

 

In FAKTS, facies units are defined as genetic bodies characterized by 

homogeneous lithofacies type down to the centimetre-scale, bounded by second- or 

higher-order (Miall 1996) bounding surfaces. Lithofacies types are based on textural 

and structural characters; facies classification follows Miall’s (1996) scheme, with 

minor additions (e.g. texture-only classes – gravel to boulder, sand, fines – for 

cases where information regarding sedimentary structures is not provided) (table 

2.2). Both facies type and architectural element type classifications can be 

expanded and edited at any time: classes can be added as they are recognized, 

and others deleted in order to keep the new classes mutually exclusive. 

 

 

 

 

 



15 

Chapter 2 

Table 2.2: Lithofacies classification adopted in FAKTS; modified after Miall (1996). 

Code Characteristics 

G- 

Gravel deposits with undefined structure and undefined additional textural 
characteristics. Gravel-grade sediment (granule to boulder) usually constitutes the 
majority of the unit by volume, as the graded or massive structure of bi- or pluri-
modal matrix-supported conglomerates/gravels is very likely to be recognized. 

Gmm Matrix-supported, massive or crudely-bedded gravel. 

Gmg Matrix-supported, graded gravel. 

Gcm Clast-supported, massive gravel.  

Gci Clast-supported, inversely-graded gravel. 

Gh Clast-supported, horizontally- or crudely-bedded gravel; possibly imbricated. 

Gt Trough cross-stratified gravel. 

Gp Planar cross-stratified gravel. 

S- 
Sand deposits with undefined structure. Sand-grade sediment must constitute the 
majority of the package by volume. 

St Trough cross-stratified sand. 

Sp Planar cross-stratified sand. 

Sr Current ripple cross-laminated sand. 

Sh Horizontally-bedded sand. 

Sl Low-angle (<15˚) cross-bedded sand. 

Ss Faintly laminated/cross-bedded, massive or graded sandy fill of a shallow scour. 

Sm Massive sand; possibly locally graded or faintly laminated. 

Sd Soft-sediment deformed sand. 

Sw Symmetrical ripple cross-laminated sand. 

F- 
Fine-grained (silt/clay) deposits with undefined structure. Fine-grained sediment 
must constitute the majority of the package by volume. 

Fl 
Interlaminated very-fine sand, silt and clay; thin cross-laminated sandy lenses may 
be included into these heterolitic packages. 

Fsm Laminated to massive silt and clay. 

Fm Massive clay. 

Fr Fine-grained root bed. 

P Pedogenic carbonate. 

C Coal or highly carbonaceous mud. 

 

 

2.3.3 Implementation 

FAKTS is implemented in the open source MySQL database management system, 

with HeidiSQL software being used as a front-end tool for managing database 

editing, data entry and interrogation. In a manner similar to that employed in the 

sister database for deep marine depositional systems (DWAKB in Baas et al. 2005), 
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each entity type (e.g., a facies unit) is assigned a table containing a set of 

predefined attributes (fields) having numerical domain (e.g. dimensional 

parameters), predefined class domain (e.g. facies type) or text domain (e.g. original 

naming of facies unit). 

FAKTS is made of nine tables, each hierarchically related to others by one-to-many 

relationships in a way that approximately corresponds to a hierarchy of scales. In 

the following, a concise description of each entity type (table) and of some of their 

attributes (columns and associated domains) is provided (cf. figure 2.3). 

Table DATA SOURCE. This table contains all the basic metadata that refers to 

whole datasets, describing the original source of the data and information for each 

case study. Among its attributes, this table includes the type of work from where the 

data have been derived (e.g. peer-reviewed literature, unpublished academic 

works, technical reports), the methods of acquisition employed (e.g. outcrop 

observations, GPR profiles, aerial photos), the chronostratigraphic stages 

corresponding to lower and upper age limits of the studied interval, the geographic 

location, the names of the basin and river or lithostratigraphic unit, and a dataset 

data quality index (DQI, see below). In addition, all the associated literature that has 

been used to constrain the case study boundary conditions is included in this table 

in the form of bibliographic references. 

Table SUBSETS. This table holds all the data about subsets. Some of its attributes 

contain metadata: original subset coding (figure, table or entry naming or 

numbering in the source work), descriptors of subset spatial, vertical and horizontal 

extension, type of spatial observation and sampling (1D vertical, 1D horizontal, 2D 

cross-section, 2D planform, pseudo-3D, full-3D), fields about the main scales of 

observation investigated by the authors (original target scale) and chosen for the 

database by the operators (subset target scale – whose importance for properly 

characterizing fluvial architecture is clarified later). The remainder of the attributes 

store all the constraints on external and internal controls and variables that 

contribute to define the subsets themselves (e.g. tectonic setting, subsidence rates, 

basin climate type, sediment load dominance type, river pattern). Some of these 

fields are only expressed as relative change across subsets in a given variable (e.g. 

relative regional base level change, relative distality between subsets showing 

proximal to distal relationships within the same time-span), and their domain 

comprises ‘increase’, ‘decrease’ and ‘no change’ classes, that refer to change 

either over time or space, depending on the relationships between the subsets. This 

table is made of a total of 61 attributes; new attributes can be added at any time 

depending on the external and internal controls recognized and being considered 

for investigation in order to accommodate all the available constraints. A note field 
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(with a text domain) is assigned to every subset for the inclusion of information that 

cannot be stored in the existing thematic attributes: this note field is used to store 

information on attributes that relate to single case studies to limit table size. 

Subsets can be reassigned at any time, as new constraints on the categorical or 

numerical variables used for distinguishing them in a dataset emerge. 

Table DEPOSITIONAL ELEMENTS. This table contains attributes about 

depositional elements including original numbering and naming convention, 

element type (channel-complex or floodplain), the hierarchical order of the channel-

complex lower bounding surface (according to Miall 1996), dimensional parameters 

(e.g. thickness, width), net-to-gross ratio, and descriptors of the planform 

morphology of the channels contained within channel-complex elements. 

Table ARCHITECTURAL ELEMENTS. This table contains attributes about 

architectural elements including original numbering and naming convention, 

element type classifications, dimensional parameters, net-to-gross ratio and 

descriptors of reach morphology (depth and width) for CH architectural elements. 

Table FACIES. This table contains attributes about facies units including original 

numbering and naming convention, lithofacies classifications, dimensional 

parameters and percentage proportions of textural classes. 

Tables DEPOSITIONAL ELEMENTS-, ARCHITECTURAL ELEMENTS-, and 

FACIES-TRANSITIONS. These tables store the transitions between objects 

belonging to the same scale (depositional elements, architectural elements and 

facies units) in the right-lateral, up-dip and upwards vertical directions, expressed 

using object identifiers. The two tables for facies units and architectural elements 

transitions also permit specification of bounding surface order (according to Miall 

1996) across which the transition occurs. 

Table SUBSET STATISTICS. This table holds all the statistical data arising from 

statistical summaries that cannot be treated using attributes relating to individual 

objects. The statistics refer to the entire subset and the table allows for the storage 

of data about object dimensions and transitions only. 

All the metadata attributes storing original coding allow the tracking of data from the 

original dataset. For example, original depositional element numberings are 

retained within the database, allowing cross-reference back to the original literature. 

In fact, this field is not strictly required since the unique identifiers that are assigned 

to each object at the time of data entry are also used to track them graphically. 

Attributes containing original types are fundamental because they communicate the 

original object classifications (e.g. original facies type): retaining original 

classifications ensures that it remains possible to reassign object types at a later 
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time, in the event of a change being made to the domain of the relative attribute 

(e.g. inclusion of a new class of facies). 

A series of data quality indices (DQI’s) have been included as a threefold ranking 

system (rating datasets and attributes as A, B or C level, in order of decreasing 

quality). This provides a mechanism for the ranking of perceived data quality and 

reliability following established criteria (Baas et al. 2005), and to filter it accordingly 

when querying the database. Although dataset DQI is meant to rate the entire case 

study quality, other similar DQI’s are used for ranking class domain attribute 

assignment for each entry (e.g. ranking the reliability of attribution of architectural 

element type). For every table containing descriptive data, notes fields with text 

domain are provided for the inclusion of additional information. 

Every entry in a table is given a unique numerical identifier; these numerical indices 

are used to relate the tables (working as primary keys, used to unequivocally 

identify each record, and foreign keys, used to link the entries in the table to other 

tables through primary keys), so that not only is it possible to track relationships to a 

specific case study but also the nature of the containment (nesting) of each object 

within its higher-scale parent object can be reproduced in the database 

(depositional elements within subsets, architectural elements within depositional 

elements, facies units within architectural elements; figures 2.2 and 2.3). 

Skipping scales is always possible by leaving object types undefined (e.g. facies 

belonging to an undefined architectural element, which in turn belongs to an 

undefined depositional element). The same numerical indices that are used for 

representing cross-scale containment relationships are also used in the three tables 

for transitions with the purpose of re-creating neighbouring relationships between 

objects contained at the same scale (figure 2.4). 
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Figure 2.3: database structure, with constituent tables and selected attributes; yellow: 

primary keys, light blue: foreign keys. The (MV) abbreviation denotes attributes with 

multi-valued fields (e.g. different lithotypes included in the same entry for contributing 

basin lithologies attribute). 
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Figure 2.4: hypothetical example illustrating how transitions between neighbouring 

architectural elements are stored within the database; the same procedure applies to 

depositional elements and facies units. Transitions between subsets need not be 

stored as they are conventionally ordered from bottom to top (ancient systems) and in 

downstream direction (modern systems). Bounding surface orders follow the 

classification proposed by Miall (1996). 

 

In the same way as for subsets, the implemented indexing allows depositional, 

architectural and facies elements to be deleted, edited or added at any time, 

making all the stored fluvial architectural data entirely editable, for example as new 

interpretations emerge after original data entry. 

The dimensional parameters of each depositional element, architectural element 

and facies unit can be stored in their respective tables as representative 

thicknesses, cross-valley widths, downstream lengths, cross-sectional areas, and 

planform areas. Widths and lengths are classified according to the completeness of 

observations into complete, partial or unlimited categories (figure 2.5), as proposed 

by Geehan & Underwood (1993). Apparent widths are stored whenever only 

oblique observations with respect to palaeoflow are available. Where derived from 

borehole correlations, widths and lengths are always stored as ‘unlimited’. 

Dimensions are obtained from graphical representations employing ImageJ image 

analysis software, which is used for measuring manually digitized vector 

geometries. 
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Figure 2.5: terminology of length types according to Geehan & Underwood (1993). 

 

2.4 Applications 

FAKTS can be interrogated through SQL queries (see appendix B) in order to 

generate quantitative information on fluvial architecture; this information can be 

exported to spreadsheets, analysed and represented in a variety of forms. In its 

fundamental form, the database is a means for the quantitative characterization of 

fluvial architecture. The internal organization of genetic packages can be 

characterized in terms of the objects belonging to lower-order scales (e.g. subsets 

corresponding to correlative systems tracts characterized in terms of depositional 

elements; depositional elements corresponding to channel-belts characterized in 

terms of architectural elements). Information on the relative proportion of the 

building blocks and on the trends in their spatial distribution in the investigated 

packages can be obtained. To characterize the internal composition of genetic 

bodies, proportions can be obtained from object occurrences only (e.g. number of 

facies units), or by combining occurrences and dimensions in several ways (e.g. 

relative proportion of facies unit thicknesses). Trends in spatial distributions are 

described by trends in object transitions: data on transition occurrences can be 

filtered so that only transitions observed within the type of element being 

investigated and across given bounding surface orders are taken into account. In 

effect, this means that transitions across erosional surfaces can be discarded (cf. 

Godin 1991) when searching for patterns. 

In order to gain a fuller understanding of fluvial architecture in its broader context, 

information derived about the internal organization of any type of geological object 

can be coupled with information about its external geometry and dimensions. 

Since subsets do not belong to a given scale, it must be born in mind that the types 

of object that are most suitable for characterizing a subset are only the ones stated 
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in the subset target scale attribute, whose choice depends on both data availability 

and subset spatial extension (for example, we can define subsets that are smaller 

than a channel-complex, in which case the depositional element type would be left 

undefined and only architectural elements and facies units would be properly 

defined. The subset target scale would then be set as: II + III, where II denotes the 

architectural element scale and III the facies unit scale). 

The most general application of FAKTS output is the quantitative comparison of 

fluvial depositional systems, which – assuming the collation of a statistically 

significant amount of data – can be conducted by applying data-filters. Subsets are 

the basic entities for this type of analysis, but even individual geological objects can 

be investigated (e.g. comparison of the internal and geometrical features of 

channels in different settings). Since a standard procedure has been devised for the 

digitization of fluvial architecture, more objective comparisons between case studies 

or subsets can be made. One of the far reaching objectives is to exploit this 

capability for determining the sensitivity of fluvial architecture to its controlling 

factors, ultimately enhancing understanding of the relative importance of intra- and 

extra-basinal controls in different settings and at different time-scales (given by 

subset temporal duration), and testing multiple cases of field data against existing 

models in order to understand the limits of a model’s applicability. The exploitation 

of databases for assessing the role of controlling factors on particular features of 

sedimentary architecture has already proven to be useful (Baas et al. 2005; Gibling 

2006). 

In a manner similar to D-MAKS (DWAKB in Baas et al. 2005), the application of 

multiple filters to the data enables the generation – for every set of parameters – of 

synthetic models of fluvial depositional systems, which are represented by 

distinctive stacking patterns and lithosome geometries, modes of internal 

organization and reciprocal relationships. Synthetic models can be constructed by 

integrating data from modern and ancient fluvial systems; modern case histories 

are used as a primary source of data for the geometrical characterization of 

geological objects (especially for planform geometries; Tye 2004), although 

information on their internal organization can also be obtained (Brierley 1996). The 

value of inferences made regarding the long-term preserved stratigraphic 

architecture of fluvial systems based on the geomorphic organization of modern 

rivers is debatable (Shanley 2004; Miall 2006). Since the modern and ancient 

domains are kept distinct within FAKTS, the database output may offer information 

on the suitability of modern analogues to ancient systems and their applicability to 

subsurface studies, by making effective comparisons. These synthetic models may 

span all scales and object types or be focussed on a particular aspect of fluvial 
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architecture; for example, it is possible to derive a quantitative depositional model 

for braid bars by synthesizing information from: (a) studies on their internal 

organization in modern and ancient systems, (b) studies on their preserved 

geometry in the stratigraphic record, (c) studies on their relationships with other 

geomorphic elements and associated lithosomes. 

Other than its descriptive functions, the database also operates as a source of 

quantitative information that can be used for aiding predictions of subsurface fluvial 

architecture. As far as FAKTS applications to reservoir characterization are 

concerned, not only is it possible to determine the most suitable ancient and 

modern analogues to subsurface systems through quantitative analysis and 

statistical comparison of their architectural features, but additionally this approach 

also overcomes the limitations of the analogue approach by generating composite 

systems with particular internal and external properties (cf. Baas et al. 2005), which 

would represent case-study-defined conceptual frameworks for subsurface 

reconstructions. Furthermore, the database output can also provide input 

parameters to constrain geostatistical models of reservoir architecture. 

Some example outputs are considered in the following discussion, with a more 

detailed explanation of certain applications. 

 

2.4.1 Example output 1: genetic-unit proportions 

It is possible to obtain information on the internal organization of genetic packages 

in terms of proportions of lower-order objects: architectural elements can be 

described in terms of proportions of facies units (figure 6a), channel-complexes or 

floodplains can be described in terms of proportions of architectural elements 

(figure 6b), and so on. Depending on the scale of interest, scales can be skipped 

(e.g. subsets can be characterized in terms of facies proportions). 

Although net:gross data may sometimes be provided by the source datasets, 

becoming part of FAKTS input, the techniques for characterizing the internal 

organization of genetic packages leads automatically to the calculation of net:gross 

ratios for each object, with different levels of refinement depending on the 

completeness of volumetric data (e.g. ranging from only thicknesses being 

available, to full 3D dimensional data) and the type of objects employed (e.g. 

subsets with net:gross determined only as channel-complex/floodplain ratios, 

subsets with net:gross estimated from facies-based analysis of sand and shale 

ratios). For a full account of the internal organization of genetic packages, it is 

possible to combine object proportions with statistics about object spatial 

arrangement, described by transitions statistics. 
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Figure 2.6: a) Pie charts showing proportions of architectural elements in channel-complex 

and floodplain depositional elements computed as summed thicknesses. b) Pie charts 

showing proportions of facies units in CH (channel-fill), LA (laterally-accreted barform) 

and FF (overbank fines) architectural elements computed as summed thicknesses. 

Refer to table 2.1 and table 2.2 for architectural element and lithofacies coding. 

 

 

2.4.2 Example output 2: transition statistics 

Transitions derived from 1D, 2D and 3D datasets can be merged to obtain only 1D 

transition counts (and thereby probabilities) provided that they are filtered in a way 

that forces the transition data to be one-dimensional. Thus, a sorting of 2D and 3D 

data can be accomplished by running a query that performs a random selection 

through the objects so that only one transition per direction is chosen for each 

element. The output of this query can then be corrected to take into account typical 

object dimensions along any direction, in order to derive more realistic 1D transition 

statistics (even though – since every subset is classified according to the type of 

spatial observation – it is possible to obtain operable transition probabilities through 
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selection of originally-1D data only). Also, manipulating transition data using 

dimension statistics could make transition statistics applicable to a discretized 

space. 

Especially during the 1970s, several authors working on the facies analysis of 

ancient and modern fluvial systems and their successions (e.g. Allen 1970; Miall 

1973; Cant & Walker 1976; McDonnell 1978; Brierley 1989) used Markov Chain 

analysis as an instrument for detecting and describing significant relationships 

between geological objects, notably lithofacies, mainly working on single case study 

datasets. Although Miall (1996, pg. 325) states the inadequacy of such a technique 

to test cyclicity in fluvial contexts, FAKTS offers the opportunity to investigate the 

existence of spatial trends in the vertical, cross-valley and along-valley directions, 

by taking bounding surface information into account (cf. Godin 1991), allowing 

transitions between the same object type to be included (cf. Carr 1982), and 

working with multiple classified case histories (figure 2.7). Moreover, transition 

probability matrices to be used as input to transition probability-based techniques 

for the stochastic modelling of fluvial architecture (Carle & Fogg 1997; Elfeki & 

Dekking 2001) can be tailored to suit the subsurface case study by applying 

appropriate data-filters. 

 

2.4.3 Example output 3: object dimensions 

Compilations of cross-plots of fluvial channel sand-body width:thickness aspect 

ratios have become increasingly popular (e.g. Fielding & Crane 1987; Cowan 1991; 

Robinson & McCabe 1997; Shanley 2004; Gibling 2006; Rittersbacher et al. 2013), 

since they are useful for subsurface sand-body width estimations when only 

thickness data are available, and in borehole correlation, especially for the definition 

of maximum correlation distances. Moreover, sand-body dimensions and 

geometries are intimately linked to a series of controls (cf. Reynolds 1999; Gibling 

2006), whose relationships can be inferred by filtering FAKTS subsets appropriately 

and by analysing the results. Despite being unattached to any particular scale and 

not being classified qualitatively (their lower bounding surfaces are tentatively 

classified according to Miall’s (1996) classes, but a genetic classification of 

channel-complexes – for example into channels, channel-belts and valley-fills – is 

not attempted), FAKTS channel-complexes are particularly suitable for these 

applications (figure 2.8). 
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Figure 2.7: left: representation of facies transition filtering based on architectural element 

type (only CH – channel-fill element – included) and bounding surface order (4
th
 and 

higher-order surfaces excluded). Right: bar-chart showing the result of this type of 

filtering as transition percentages in the vertical direction, computed performing a 

random selection of singular transition per facies unit in order to derive 1D information 

from 2D/3D datasets also. Refer to table 2.2 for lithofacies coding. The number of 

readings for each facies transition is reported in the bars (total N = 337). 
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Figure 2.8: scatter-plot of width:thickness aspect ratios for channel-complexes classified 

according to dimension completeness class (sensu Geehan & Underwood 1993); the 

number of observations for each class is reported in legend. 

 

 

Figure 2.9: a) box-plots of cross-valley width distribution for a selection of architectural 

elements, constructed including total, apparent, partial and unlimited (sensu Geehan 

& Underwood 1993) widths. Refer to table 2.1 for architectural element coding. The 

number of readings is reported next to the element code. b,c) probability density 

function (b) and cumulative distribution function (c) of CH (channel-fill) architectural 

element width including total, apparent, partial and unlimited width classes, and 

assuming a normal distribution. 
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Frequency distribution of architectural dimensions of any type of 

lithosome/geomorphic-element (e.g. crevasse-splay width) can be obtained (figure 

9a). Especially if filtered according to measurable classes (e.g. thickness), such 

results may result in useful subsurface prediction refinement, as a frame of 

reference for comparing the statistical distributions of dimensional parameters with 

the subsurface interpretation outcome, and as constraints for conditioning 

stochastic models (e.g. in form of probability density functions and cumulative 

distribution functions, figures 9b and 9c; cf. Hirst et al. 1993). 

 

2.5 Future developments 

The FAKTS database schema has been devised as a flexible structure that can be 

amended at any time, to optimize its potential in describing fluvial architecture and 

its boundary conditions. Future development will involve the addition of new 

attributes, relating to subsets or genetic units, and the refinement of the existing 

ones. For example, the implementation of descriptors of object shape for genetic 

bodies is practicable, either by linking these objects to 2D/3D vector graphics and 

making use of their unique identifiers, or by adding table attributes (columns) 

relating to cross-sectional, planform and/or 3D shape types. The inclusion of 

additional columns containing meta-attributes that relate to some specific subset 

attributes (e.g. subset time-scale specification or literature citation of the source for 

each constraint) could be also useful. The addition of non-fluvial genetic units 

(presently unclassified), within their attribute domains, might result valuable for 

encapsulation of interactions with other environments and evaluating the 

importance of local geomorphic controls on fluvial architecture, while the inclusion 

of particle-scale properties and/or diagenetic properties could widen the range of 

potential database applications, as both particle size and diagenetic properties play 

an important role in controlling reservoir quality, and are strongly influenced by 

controlling factors already included in the database (e.g. climate, basin type), 

whose importance could be examined quantitatively (cf. Duller et al. 2010), and by 

feedbacks between these properties and the associated fluvial architecture. 

Furthermore, the database could be exploited for the objective evaluation of the 

influence of one-dimensional data (e.g. borehole) sampling density on observations 

(e.g. thickness distributions) and interpretations (e.g. correlated width distributions). 

This would be achieved by replicating the FAKTS structure, modifying it by 

implementing the specification of subset sampling spacing, and using that structure 

for accommodating several possible realizations for each case study. Working with 

outcrop and subsurface datasets, by comparing all the possible outcomes for each 
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sampling spacing interval, it will be possible, for example, to determine thresholds 

of sampling density over which the quantitative description of fluvial architecture 

properties (especially sand-body geometries and connectivity) remains substantially 

constant, in different settings. This implies that it might be possible to estimate the 

likelihood that, in a given fluvial depositional system, well sampling interval 

confidently captures major heterogeneities. 

 

2.6 Conclusions  

A relational database for the digitization of fluvial architecture has been devised, 

developed and populated with literature-derived data, from studies of both modern 

rivers and their ancient counterparts in the stratigraphic record. The database 

scheme has been structured in a manner capable of encapsulating all the major 

characteristics of fluvial architecture, including geometries, style of internal 

organization, spatial distribution of elements, and reciprocal relationships of genetic 

bodies. Further, the database allows for the integration of both quantitative (hard) 

and qualitative (soft) data, and it is also sufficiently flexible to allow the 

consideration of case studies either in whole or in part, according to which types of 

controlling factors and internal characteristics are being considered. 

Database output allows the quantitative characterization of fluvial architecture 

associated with either single or multiple case studies, with results filtered according 

to a range of specified parameters, which permits objective comparisons to be 

carried out. Three main general fields of application for database output are: (i) the 

quantitative evaluation of the sensitivity of fluvial architecture to changes in its 

controlling factors; (ii) the compilation of synthetic fluvial depositional models; (iii) 

guidance for the prediction of subsurface fluvial architecture by providing relational 

data in a format suitable for input into deterministic and stochastic models. 

Perhaps the major shortcoming of a database-approach to fluvial characterization is 

the reliance on literature-derived interpretations of fluvial successions; such 

qualitative interpretations are by their very nature subjective and biased by existing 

depositional (facies) models and the research trends in vogue at the time of original 

publication. Retaining original genetic unit classifications and extending or changing 

the classification schemes in common (tables 2.1 and 2.2), ensure that the 

database has the flexibility that is needed to follow scientific trends influencing 

interpretations. The option to keep objects undefined and to rank the quality of their 

interpretation/attribution (via the DQI rating) is valuable for determining which fluvial 

contexts require additional research. 
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The correspondence between the scales of observations considered and the main 

scales of heterogeneity which need to be recognized within subsurface fluvial 

successions for applied purposes makes the database a powerful source of 

information for the characterization, modelling and simulation of fluvial hydrocarbon 

reservoirs and for the quantitative determination of their most suitable modern or 

ancient analogues. 
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3 A quantitative approach to fluvial facies models: methods 

and example results 

 
 

3.1 Summary 

Traditional facies models lack quantitative information concerning sedimentological 

features: this significantly limits their value as references for comparison and guides 

to interpretation and subsurface prediction. This chapter aims to demonstrate how a 

relational-database methodology can be used to generate quantitative facies 

models for fluvial depositional systems.  This approach is employed to generate a 

range of models, comprising sets of quantitative information on proportions, 

geometries, spatial relationships and grain sizes of genetic units belonging to three 

different scales of observation (depositional elements, architectural elements and 

facies units). The method involves a sequential application of filters to the 

knowledge base that allows only database case studies that developed under 

appropriate boundary conditions to contribute to any particular model. Specific 

example facies models are presented for fluvial environmental types categorized on 

channel pattern, basin climatic regime and water-discharge regime; the common 

adoption of these environmental types allows a straightforward comparison with 

existing qualitative models. The models presented here relate to: (i) the large-scale 

architecture of single-thread and braided river systems; (ii) meandering sub-humid 

perennial systems; (iii) the intermediate- and small-scale architecture of dryland, 

braided ephemeral systems; (iv) the small-scale architecture of sandy meandering 

systems, and (v) individual architectural features of a specific sedimentary 

environment (a terminal fluvial system) and its sub-environments (architectural 

elements). Although the quantification of architectural properties represents the 

main advantage over qualitative facies models, other improvements include the 

capacity: (i) to model on different scales of interest; (ii) to categorize the model on a 

variety of environmental classes; (iii) to perform an objective synthesis of many 

real-world case studies; (iv) to include variability- and knowledge-related uncertainty 

in the model; (v) to assess the role of preservation potential by comparing ancient- 

and modern-system data input to the model. 
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3.2 Introduction 

3.2.1 Background 

The primary purpose of facies models is to provide a "general summary of a 

specific sedimentary environment" (Walker 1984), in terms of its characteristic 

sedimentary features. The descriptive characteristics of facies models are obtained 

by combining results from studies of both modern systems and ancient successions 

preserved in the rock record. The general validity of a facies model stems from the 

process of “distillation” by which the sedimentary features observed in many real-

world examples are synthesized to develop the model; the expected generality of a 

facies model makes it suitable to be considered as a norm for comparison, a basis 

for interpretation, a guide for future observations and a predictor in new geological 

situations (Walker 1984). 

The commonly applied approach to facies modelling involves representing the 

archetypal sedimentary architecture of classified systems representative of a 

particular depositional environment in the form of ideal logs, cross-sections or 

block-diagrams that exemplify the ideal geometry, internal organization, and spatial 

relationships of a hierarchy of sedimentary units. The sedimentary architecture of 

modelled systems is typically conceptually described in terms of lithofacies,  defined 

as sedimentary units with descriptive and objective characters, such as sediment 

composition, texture, structure and geometry (Anderton 1985; Bates & Jackson 

1987; Bridge 1993; Reading & Levell 1996). However, the preservation in the 

stratigraphic record of surfaces that bound sedimentary bodies and whose origins 

can be accounted for in terms of the evolution and behaviour of specific landforms 

within a depositional system has long been recognized as a justification on which to 

base the genetic categorization of sedimentary units according to their geomorphic 

significance (Potter 1967). Thus, sedimentary units are also commonly classified 

according to interpretations of facies associations interpretable as geomorphic sub-

environments and such an approach is routinely used to constitute the building 

blocks of fluvial depositional and facies models (Walker & Cant 1984; Miall 1985; 

1996; Collinson 1996; Bridge 2003; 2006; and references therein). Published fluvial 

facies models characterize systems at different scales of observation, ranging from 

the basin-fill scale to the lithofacies scale. Depositional facies models focussing on 

the architecture of single sedimentary sub-environments (e.g. point bars, crevasse 

splays) are commonly proposed (e.g. Allen 1970; Bridge 2003; Fisher et al. 2008) 

to provide reference for the interpretation of individual genetic packages. The 

classification of types of fluvial facies models can be based on several 

environmental categories based on parameters such as planform morphology, 

grain-size, discharge regime, climate type, dominant transport mechanism, or on a 
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combination of such parameters; some examples of facies models for a range of 

fluvial environments are presented in works by Cant (1982), Walker & Cant (1984), 

Miall (1985; 1996), Nadon (1994) Kelly & Olsen (1993), Bridge (2003; 2006), 

Nichols & Fisher (2007), Fielding et al. (2009), among others. 

Given that most river systems evolve in a variable and complex manner 

downstream, facies models for fluvial systems are usually not set in any spatial 

framework, instead they describe the sedimentary architecture of a generic 

segment of a system, although the recognized regularity in the downstream change 

of some of the parameters on which fluvial facies models are classified allows for 

the derivation of a possible paradigmatic description of the downstream evolution of 

fluvial systems (cf. Orton & Reading 1993). Typically, information concerning the 

spatial evolution of a fluvial system type is included in a model only when it is 

considered one of its diagnostic characteristics, for example when a recurrent 

proximal-to-distal organization is recognized, as is the case for fan-like alluvial 

systems (e.g. Miall 1977; Kelly & Olsen 1993; Nichols & Fisher 2007). Although this 

study focuses discussion on the descriptive characters of “environmental facies 

models” (sensu Reading 2001), the idealized temporal evolution of the system 

under the effect of dynamic controls is also taken into account by some models 

such as those that encapsulate concepts in sequence stratigraphy, although the 

effects of such controls are not the primary subject of this study. It is commonly 

argued that the possible value of the facies modelling approach for the purposes 

claimed by Walker (1984) appears to be limited by a number of shortcomings 

(Hickin 1993; North 1996; Miall 1999; Reading 2001). Firstly, facies models are 

often based on data derived from very few or single case studies (cf. models of 

Miall 1996; Lunt et al. 2004; Fielding et al. 2009; Horn et al. 2012), and as such 

might be biased in the sense that they reflect the limited experience of individuals or 

research groups, whose work is often concentrated on particular geographical 

areas (Reading 2001). Furthermore, there exists a tendency to derive models for 

single field examples or for very specific categories of fluvial system such that the 

resultant model is excessively specialized to the extent that it is of little use as a 

predictive tool beyond the scope of the original study example; in such cases, the 

proposed model may obscure the underlying unity of the systems in order to 

preserve their uniqueness (Dott & Bourgeois 1983; Miall 1999). A major limitation of 

traditional facies models is that the degree of generality of such models in their 

current form is not adjustable to the particular needs of a geologist attempting to 

apply the model to a new situation or dataset. Another problem relates to how the 

process of distillation is actually carried out: given that the process of synthesis is 

expected to be subjective, how can it be possible to ensure that different authors 

equally and objectively include the fundamental patterns and exclude accessory 
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detail in developing their models? Also, the inclusion of some form of mechanism 

for the evaluation of the uncertainty (“any departure from the unachievable ideal of 

complete determinism” according to Walker et al. 2003) associated with developed 

models has not been attempted to date (Hickin 1993); it can be argued that the 

proliferation of categories on which facies models are classified is an endeavour to 

ensure that the variability between systems can be perceived. It is therefore 

important to devise a way to consider uncertainty (i) by measuring the variability 

between different systems that are classified on the basis of development under 

similar conditions and are therefore represented by the same model, and (ii) by 

assessing the limitations and deficiencies in our knowledge of those systems. 

However, the most notable drawback of traditional facies models lies in their 

qualitative nature, as the lack of quantitative information seriously limits their 

predictive value (North 1996). In subsurface prediction problems it is common to 

combine qualitative, conceptual information about the type of sedimentary 

heterogeneities and their distribution with quantitative geometrical information 

derived from supposed outcropping analogues. 

Quantitative information on the geometry of sedimentary units is commonly stored 

in quantitative databases that serve to provide input to deterministic and stochastic 

subsurface models (e.g. Bryant & Flint 1993; Cuevas Gozalo & Martinius 1993; 

Dreyer et al. 1993; Robinson & McCabe 1997; Reynolds 1999; Eschard et al. 2002; 

Tye 2004); the collation of such geometrical data – as derived from a variety of 

case histories – combined with the classification of system parameters, permits the 

derivation of sets of quantitative information through a process of synthesis, as 

advocated by Walker (1984). One approach of this kind has been applied to fluvial 

systems for obtaining descriptions of channel geometries by Gibling (2006). 

However, facies models are not merely geometrical descriptions of a depositional 

system; thus, some databases have been designed to better describe spatial 

relationships between genetic units, for example by including summary transition 

statistics for deep-water genetic-unit types (Baas et al. 2005), by specifying patterns 

of spatial distribution for carbonate genetic-unit types (Jung & Aigner 2012), or by 

digitizing the spatial relationships between individual fluvial genetic units 

(Colombera et al. 2012a, chapter 2). Also, efforts have been made to implement 

such systems to variably investigate the internal organization of sedimentary units 

(Baas et al. 2005; Colombera et al. 2012a, chapter 2; Jung & Aigner 2012). 
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3.2.2 Aims 

The aim of this study is to demonstrate how a database approach to the description 

and classification of fluvial sedimentary systems can be used to improve facies 

models as a benchmark for research purposes and as a tool for subsurface 

prediction. Whereas some techniques adopted in the study of sedimentary geology 

are inherently quantitative (e.g. numerical and physical modelling, sandbody-

geometry quantification), facies modelling is still typically qualitative in nature. The 

aim is to show how the innovation in the approach lies essentially in the systematic 

quantification of observations and interpretations, which permits a more rigorous 

description and classification of architectural styles of fluvial systems. An important, 

broad-reaching implication for the understanding of the stratigraphic record is that 

the proposed approach, if used to carry out comparative studies, can be applied to 

deduce the relative influence of boundary conditions and potential overriding 

controls for given depositional contexts. Specific objectives of this chapter are as 

follows: (i) to discuss the process of synthesis by which partial information from 

individual case studies is merged into a model and how this process is implemented 

in practical terms for different types of information, which concern the geometry, 

internal organization and spatial relationships and distribution of genetic units; (ii) to 

illustrate, through a range of example database-derived quantitative depositional 

models for different fluvial systems, that this database-driven quantitative approach 

to the development of facies models can assist in overcoming the above-mentioned 

problems inherent in traditional qualitative approaches. 

 

3.3 Database and method 

3.3.1 Database structure and building blocks 

3.3.1.1 Overview of FAKTS database schema 

The Fluvial Architecture Knowledge Transfer System (FAKTS) is a database 

comprising field- and literature-derived (see appendix C) quantitative and qualitative 

data relating to the architecture of both modern rivers and ancient successions 

(Colombera et al. 2012a, chapter 2). Genetic units included in the database are 

equally recognizable in both the stratigraphic and geomorphic realms and belong to 

three hierarchies of observation (figure 3.1): depositional elements, architectural 

elements and facies units, in order of descending scale. The geometry of the 

genetic units is characterized by dimensional parameters describing their extent in 

the vertical, strike-lateral and downstream directions, relative to the channel-belt-

scale (palaeo-) flow direction (thickness, width and length). The relations between 
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genetic units are stored by recording and tracking (i) the containment of each unit 

within its higher-scale parent unit (e.g. facies unit within architectural elements) and 

(ii) the spatial relationships between genetic units at the same scale, recorded as 

transitions along the vertical, cross-gradient and downstream directions. Additional 

attributes are defined to improve the description of specific units (e.g. braiding 

index, sinuosity value, bank-full depth and width for channel complexes, grain-size 

curves for facies units), whereas accessory information (e.g. ichnological or 

pedological characters) can also be stored for every unit within open fields. The 

database also stores statistical parameters referring to genetic-unit types, as 

literature data are often presented in this form. Each genetic unit or set of statistical 

parameters belongs to a stratigraphic volume called a subset; each subset is a 

portion of the total dataset characterized by given attribute values, such as system 

controls (e.g. subsidence rate, basin type, climate type) and system-descriptive 

parameters (e.g. river pattern, distality relative to other subsets). For each case 

study of fluvial architecture, FAKTS also stores metadata describing, for example, 

the methods of data-acquisition employed, the chronostratigraphy of the studied 

interval and the geographical location. A threefold data-quality ranking system is 

also implemented with the purpose of rating datasets and genetic units (as A, B or 

C level, in order of decreasing quality). A more detailed description of the FAKTS 

database schema is given in Colombera et al. (2012a, Chapter 2); for the purposes 

of this work, the key focus is on the adopted classifications of geological entities, 

described in the following paragraphs, as they are the building blocks of the 

quantitative facies models being developed. 

 

 

Figure 3.1: representation of the main scales of observation and types of sedimentary 

genetic units included in the FAKTS database. Refer to table 3.1 for architectural-

element codes and to table 3.2 for facies-unit codes (modified from Colombera et al. 

2012a, Chapter 2). 
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3.3.1.2 Classification of bounding surfaces 

The subdivision of fluvial successions into genetic packages through recognition, 

classification and numbering of hierarchically-ordered sets of bounding surfaces is 

a common sedimentological practice (Allen 1983; Miall 1988a; 1996; Holbrook 

2001). FAKTS permits specification of the order of bounding surfaces 

corresponding to the basal surface of depositional elements (highest order in case 

of composite surfaces) and the order of surfaces across which architectural-

element or facies-unit transitions occur. FAKTS classifies bounding surfaces 

according to the popular hierarchical classification scheme proposed by Miall 

(1988a; 1996), whereby surface-orders are assigned on the basis of observable 

characters (e.g. lateral extension, erosional or accretionary character), but are also 

interpretative in nature. Attribution of order (i.e. rank) to bounding surfaces is 

difficult in many real-world situations (Bridge 1993) and therefore has uncertainty 

associated with it; however, it is worthwhile to tentatively rank bounding surfaces 

according to a series of hierarchical orders, so as to be able to capture architectural 

features and changes associated to surfaces with genetic significance and often 

temporal and spatial relevance. Whenever observable elements on which to base 

the attribution of a given bounding-surface order are lacking, corresponding 

database fields are left undefined. 

 

3.3.1.3 Classification of depositional elements 

The general approach to the segmentation of alluvial architecture at the largest 

scale involves picking and indexing channel bodies, then dividing the remaining 

non-channelized floodplain bodies into discrete objects that are juxtaposed to the 

channel bodies in a spatially coherent way. Large-scale depositional elements are 

then classified as channel-complexes or floodplain segments on the basis of the 

origin of their deposits, and are distinguished on the basis of geometrical rules (see 

appendix A). The application of these rules is generally flexible, as the criteria 

devised for the definition of these objects may sometimes be difficult to apply due to 

limitations brought about by the possible lack of data of either a geometrical or 

geological nature (e.g. 3D channel-body geometries, recognizable internal 

bounding surfaces): such difficulties are recorded by data-ranking, data-type and 

target-scale attributes. In addition, the geometrical criteria cannot be followed 

altogether for cases where data are derived from published works presenting only 

summary results (e.g. from works presenting plots of dimensional parameters of 

channelized bodies and no reproduction of the original 2D or 3D dataset from 
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where the data were originally derived); this form of uncertainty is recorded by a 

data-ranking attribute. 

General criteria followed for depositional-element subdivision are presented below. 

The choice of interpretative units at this scale is justified by the fact that the 

recognition of channel and floodplain segments is possible for virtually any 

depositional system interpreted as being fluvial in origin (cf. Miall 1996; Bridge 

2006; and references therein). 

3.3.1.3.1 Channel complex 

Each stratigraphic volume that can be characterized at the depositional-element 

scale is firstly segmented into channel-complexes; the aforementioned set of 

geometrical criteria needs to be followed to distinguish individual units among 

channelized deposits that are complexly juxtaposed and/or interfingered with 

floodplain deposits. Such criteria consider geometrical change across the channel-

cluster vertical extension, taking into account the interdigitation of floodplain 

deposits, mode and rate of change in the lateral extension of contiguous channel 

deposits along the vertical direction, and existence of lateral offsets where channel-

bodies are vertically stacked (cf. Cuevas Gozalo & Martinius 1993). Whenever 

geological knowledge permits the lateral tracing of important erosional surfaces 

(possibly associated with high palaeo-relief), it is possible to adopt such surfaces as 

depositional-element bounding surfaces. When dealing with subsurface case 

studies, the approach is usually purely geometrical. Due to the way they are 

defined, channel complexes simply represent genetic bodies interpreted as having 

been deposited in a channelized context and encased by floodplain deposits: in 

geological terms they could still span a rather wide range of hierarchical orders (e.g. 

distributary channel-fills, channel-belts, valley-fills); definition in this way attempts to 

minimize interpretation, thereby still ensuring the possibility for the analysis of 

channel clustering in different depositional settings. 

3.3.1.3.2 Floodplain 

The subdivision of floodplain segments takes place subsequent to channel-complex 

assignment, such that the remainder of the stratigraphic volume is broken down into 

floodplain packages that are referable as neighbouring bodies (either lateral or 

vertical) to each channel-complex. Thus, floodplain depositional elements simply 

represent geometrical genetic bodies interpreted as deposited by out-of-channel 

floods (cf. Miall 1996; Bridge 2006). 
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3.3.1.4 Classification of architectural elements 

FAKTS’ architectural elements are defined as components of a fluvial depositional 

system with characteristic facies associations that are interpretable as sub-

environments. Also for these genetic units, it is not possible to separate 

descriptions from interpretations, as unit types are fundamentally interpretative. The 

attribution of a particular element type follows the criteria proposed by Miall (1985; 

1996): the elements are interpreted on the basis of the character of their bounding 

surfaces, their geometry, scale, and internal organization. However, FAKTS’ 

architectural element types differ significantly from the ones included in Miall’s 

(1985; 1996) schemes: additions and deductions strive to provide a more 

interpretative classification scheme containing mutually-exclusive classes that are 

consistent in terms of geomorphological expression, in order to make it easier to 

include datasets from modern rivers; an analogous attempt to define the basic 

geomorphic building blocks of fluvial systems was proposed by Brierley (1996). 

Importantly, FAKTS’ architectural-element types correspond to classes of sub-

environments that are commonly recognized in both the stratigraphic record and in 

modern rivers alike (cf. Bridge 2006), and are conveniently chosen to represent 

variability in sedimentary architecture. 

Architectural-element types may differ from each other on just 

geometrical/geomorphological characters (e.g. downstream-accreting barforms 

from laterally-accreting barforms, crevasse splays from levees) or interpreted 

dominant processes (e.g. sandy aggradational floodplain from floodplain fines, 

abandoned channel-fill from aggradational channel-fill). The essential diagnostic 

characteristics of each interpretative architectural-element type are included in table 

3.1. In addition to the features summarized in table 3.1, other characteristics 

concerning the geometry, internal organization, and reciprocal spatial relationships 

may have also been considered by the authors whose studies were incorporated 

into FAKTS to reach their interpretations. 

 

Table 3.1: Summary of the fundamental diagnostic characteristics and environmental 

significance of the 14 interpretative architectural-element types employed in the 

FAKTS database. 

Code/Type Key characteristics Interpreted sub-environment 

CH 

aggradational 
channel-fill 

These elements are characterized 
by downstream-elongated incisional 
concave-upward bases, on which 
depositional increments – recorded 
in the database in the form of facies 
units – are overall vertically stacked, 
either concentrically (sensu Hopkins 

These elements generally 
represent the overall 
aggradational infill of active 
channel forms. 
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1985; Gibling 2006) or onlapping the 
channel margin, resulting in the 
dominantly horizontal orientation of 
planar, undulating or scour-like 
internal 2

nd
- and 3

rd
-order bounding 

surfaces (cf. Schumm 1960; Allen 
1965a; Friend 1983; Miall 1985; 
1996; Holbrook 2001; Bridge 2003; 
2006; and references therein). 
Although CH elements may be 
locally composed of small-scale 
downstream-, oblique-, lateral- or 
upstream-accretion increments, they 
significantly lack the laterally-
persistent bedding grown through 
inclined accretion that is typical of 
barform deposits. 

LA 

lateral-
accretion 
barform 

These elements are characterized 
by sharp, subhorizontal to slightly 
concave-upward, and often erosional 
bases, on which depositional 
increments are laterally stacked, with 
dip direction at high angle with 
respect to the palaeoflow direction, 
and dip angle up to 25° (cf. Miall 
1979; 1996), generally showing 
offlapped upper terminations (cf. 
Allen 1965a; Miall 1985; 1996; 
Thomas et al. 1987; Willis 1993a; 
Collinson 1996; Bridge 2003; 2006; 
and references therein).  

These elements represent the 
infill of active channel-belts by 
laterally-migrating bars, most 
commonly typified by meander 
point bars. 

DA 

downstream-
accretion 
barform 

These elements are characterized 
by subhorizontal to slightly concave-
upward and often erosional bases, 
on which depositional increments 
are stacked at low angle with respect 
to palaeoflow, determining a 
dominance of low-angle (generally 
<10°; Miall 1996) downstream-
dipping 2

nd
- and 3

rd
-order bounding 

surfaces (cf. Banks 1973; 
Haszeldine 1983; Miall 1985; 1996; 
Wizevich 1992; Bridge 2003; 2006; 
and references therein). DA 
elements may be locally composed 
of oblique-, lateral- or upstream-
accretion increments, but the overall 
preponderance of downstream 
growth is their key character.  

These elements represent the 
infill of active channel-belts by 
downstream-migrating bars. 

DLA 

downstream- 
and lateral-
accretion 
barform 

These elements differ from pure LA 
and DA elements in that bedding 
geometries demonstrate dominantly 
oblique accretion, embodied by a 
combination of dowsntream 
accretion at their downstream ends 
and cross-bar accretion along their 
flanks (cf. Cant & Walker 1978; Kirk 
1983; Bristow 1987; 1993; Miall 

These elements represent the 
infill of active channel-belts by the 
migration of compound bars that 
accrete both downstream and 
laterally in comparable 
proportions; barforms whose 
accretion direction is uncertain 
are classified as DLA, and the 
uncertainty in the attribution of the 
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1996; Bridge 2003; 2006; Best et al. 
2003; Skelly et al. 2003; and 
references therein). Upstream- and 
vertical-accretion increments are 
often observed but are volumetrically 
minor (Cant 1978; 14% of upstream 
accretion in bar examined by Bristow 
1987; Best et al. 2003; Skelly et al. 
2003).  

element type is recorded by a 
data-ranking attribute. 

HO 

scour-hollow fill 

This element type encompasses 
major scour-hollow fills, 
characterized by incisional concave-
upward scoop-shaped bases, and by 
infill through accretion on inclined or 
horizontal surfaces or on a 
combination of both (cf. Cowan 
1991; Bristow et al. 1993; Salter 
1993; Miall 1996; Miall & Jones 
2003).  

These elements represent the 
infill of deeply-incised trough-
shaped scours within channel-
belts, for example by the 
migration of mouth-bars into deep 
confluence scours (Best 1988; 
Bristow et al. 1993) or by infilling 
of flood-related scours during 
waning-flood stage (Salter 1993). 

SG 

sediment 
gravity-flow 
body 

These elements are characterized 
by irregular and sharp – but often 
non-erosional – bases, and form 
lobes, ribbons or sheets (cf. Miall 
1985; 1996; Blair & McPherson 
1992; 1994; Bridge 2006). The 
associated facies assemblages 
testify to the activity of debris flows 
and related sediment gravity flows 
as formative mechanisms.  

These elements may represent 
gravity-flow sheets/lobes, the 
genetically related levees, or 
possibly a complex association of 
them. 

AC 

abandoned 
channel-fill 

Similarly to aggradational channel-
fills, abandoned-channel fills are 
channelized units dominated by 
vertical accretion; however, the 
associated facies assemblages 
demonstrate that deposition occured 
in the lower-energy conditions of an 
abandoned reach, where the 
importance of suspension settling 
and organic accumulation in ponded 
waters increases relative to stream-
flow processes, which tend to 
become intermittent (cf. Allen 1965a; 
Collinson 1996; Miall 1996; Hornung 
& Aigner 1999; Bridge 2003; 2006; 
Lewin et al. 2005). In modern case 
studies, the recognition of these 
elements can be based on purely 
geomorphological observations, as 
they typically form ponded water 
bodies with channelized planforms. 

These elements represent the 
infill of ponded water bodies 
developed in abandoned reaches. 

LV 

levee 

Levee elements typically take the 
form of tapering wedges that thin 
away from channel-belt margins, 
demonstrating superelevation on the 
rest of the floodplain (cf. Allen 
1965a; Coleman 1969; Collinson 
1996; Miall 1996; Brierley et al. 

Although levees may develop at 
smaller-scales (e.g. crevasse-
channel levees), LV elements 
usually represent the sedimentary 
and geomorphic expression of the 
most proximal overbank 
deposition next to channel-belt 
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1997; Bridge 2003; 2006; North & 
Davidson 2012; and references 
therein); their base may be poorly 
defined (cf. Brierley et al. 1997), and 
internal accretion surfaces may 
offlap and/or downlap (Fielding et al. 
1993), showing dip angles up to 10° 
(Bown & Kraus 1987), although 2° to 
5° are more common (Miall 1996; 
Brierley et al. 1997), associated with 
the sloping topography bordering 
channels; (palaeo)flow direction is 
usually oriented at high-angle with 
the channel border (Miall 1996).  

margins. 

CR 

crevasse 
channel 

Similarly to most aggradational and 
abandoned channel-fills, crevasse 
channels are channelized units with 
concave-upward bases and usually 
forming ribbon-like bodies; the 
intimate association with other 
floodplain deposits (e.g. levees, 
crevasse splays) is a key feature for 
their recognition (cf. Allen 1965a; 
Miall 1996; Bridge 2003; 2006; and 
references therein). No distinction is 
operated on the modes of channel-
fill accretion.  

These elements represent the 
infill of channels emanating from 
the river into the adjacent 
floodplain and active during 
floods. 

CS 

crevasse splay 
or lacustrine 
delta 

These elements are tongue-shaped 
bodies bordering channel-belt 
margins (cf. Allen 1965a; Brierley 
1996; Collinson 1996; Miall 1996; 
Bristow et al. 1999; Bridge 2003; 
2006; North & Davidson 2012; and 
references therein). These bodies 
thin away from the channel margins, 
as they interfinger or grade laterally 
into other elements, and they tend to 
have flat, sharp and slightly erosive 
bases (Mjøs et al. 1993; Jones et al. 
1995; Bristow et al. 1999); although 
tabular bedding is common, internal 
accretion surfaces usually downlap, 
dipping at low angle to angle-of-
repose, as they record the 
progradation of the splay onto the 
floodplain or into standing bodies of 
water (Miall 1996; Bristow et al. 
1999; Bridge 2006). They are 
distinguishable from levees when 
there is no amalgamation of thin 
coalescing splays (cf. Coleman 
1969; Jordan & Pryor 1992), but 
when they form instead recognizable 
fans or lobes, which tend to be 
coarser and thicker (Brierley 1996; 
Bridge 2006); as crevasse splays 
and lacustrine deltas are difficult to 
distinguish in the rock record (Miall 
1996), they are classified under the 

These elements represent the 
sedimentary and geomorphic 
product of splay progradation and 
aggradation through the periodic 
unconfined flow from crevasse 
channels tapping channel-belts 
during floods. 



43 

Chapter 3 

same type.  

SF 

sandy 
sheetflood-
dominated 
aggradational 
floodplain 

These elements are characterized 
by having lower bounding surfaces 
that are sharp, planar to irregular, 
and ranging from non-erosive to 
slightly erosive in nature; they 
usually form tabular or lenticular 
sandstone bodies, in which 
depositional increments tend to be 
vertically stacked and bounded by 
subplanar surfaces, demonstrating 
an overall aggradational character 
(cf. Olsen 1989; Miall 1996; 
Sánchez-Moya et al. 1996; Miall & 
Jones 2003; Nichols 2005; Hampton 
& Horton 2007; Cain & Mountney 
2009; and references therein). As no 
agreement exists on the definition of 
sheetflood (Hogg 1982; North & 
Davidson 2012), there is need to 
remark that here sheetfloods are 
referred to as unconfined subaerial 
flows (cf. Fisher et al. 2007). Since 
LV and CS elements represent also 
sand-dominated deposits produced 
by unconfined flows in floodplain 
settings, the geomorphic expression 
(in modern systems) and the internal 
geometrical organization of the 
lithosomes are fundamental to 
distinguish SF elements from LV and 
CS elements; instead, SF elements 
are differentiated from FF elements 
on grain-size because the proportion 
of sand-grade deposits 
demonstrates that traction-current 
deposition is dominant over 
suspension settling.  

These elements represent 
vertically aggrading areas 
controlled by bedload deposition 
from unconfined flows; they could 
encompass the sedimentary 
sheets forming proximal terminal 
splays (Nichols & Fisher 2007; 
Fisher et al. 2008). 

FF 

overbank fines 

These elements consist in usually 
tabular or prismatic fine-grained 
bodies in which laterally-persistent 
depositional increments tend to be 
vertically stacked and bounded by 
planar surfaces, demonstrating an 
overall aggradational character; 
pedogenic alteration is relatively 
common (cf. Miall 1985; 1996; Platt 
& Keller 1992; Ghazi & Mountney 
2009; and references therein).  

These elements are the 
sedimentary expression of 
vertically aggrading floodbasins, 
in which suspension settling from 
subaerial unconfined flows is the 
dominant process (Allen 1965a; 
Miall 1985; 1996; Bridge 2003; 
2006; North & Davidson 2012; 
and references therein); bedload 
deposition of mud aggregates on 
the floodplain can also produce 
fine-grained floodplain units 
(Müller et al. 2004, Wakelin-King 
& Webb 2007; and references 
therein). 

LC 

floodplain lake 

These elements are typically 
characterized by having non-erosive 
bases, tabular shapes and laterally-
persistent, vertically-stacked sheet-
like depositional increments; they 

These elements represent the 
infill of ephemeral or perennial 
floodplain lakes. 
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may have a wide lithological variety, 
including clastic, organic and 
chemical deposits testifying to 
deposition in a lacustrine setting (cf. 
Gore 1989; Platt & Keller 1992; 
Hornung & Aigner 1999; Bridge 
2006; Hampton & Horton 2007; 
Ghazi & Mountney 2009; and 
references therein). They are 
distinguishable from abandoned 
channels as they lack a channelized 
base; in the rock record they are 
distinguishable from overbank fines 
by the evidence of subaqueous 
conditions, either ephemeral or 
perennial.  

C 

coalbody 

These elements consist in packages 
of coal/peat or carbonaceous 
mudstones, typically having irregular 
sheet-like geometry, possibly 
associated with thin clastic partings 
(cf. Fielding 1984; McCabe 1984; 
1987; Kirschbaum & McCabe 1992; 
Jorgensen & Fielding 1996; Miall 
1996; and references therein). Coal 
seams deposited in floodplain lakes 
(Cabrera & Saez 1987) or 
abandoned channels (Horne et al. 
1978) would rather be included as C 
facies units within LC or AC 
elements, wherever the distinctive 
facies associations and geometries 
of these elements are recognized.  

These elements are the 
sedimentary expression of 
floodplain swamps/mires 
dominated by organic 
accumulation. 

 

3.3.1.5 Classification of facies units 

According to the classification of bounding surfaces proposed by Miall (1985; 1996) 

and adopted in the FAKTS database, 2nd-order surfaces can be traced where a 

change in lithofacies or palaeocurrent are observed; on this basis, facies units 

represent genetic packages that are bounded by second- or higher-order bounding 

surfaces and are characterized by given textural and structural properties. Such 

genetic units are considered as corresponding to the 2nd-order units of Miall (1985; 

1996) and to the microscale to mesoscale stratasets of Bridge (1993). These units 

are based on observable characteristics and are thus more objectively defined than 

depositional and architectural elements. 

As each unit is primarily classified according to the codes provided in the original 

works, a detailed description of grain size is optionally stored for each unit in the 

database field containing the original coding. The grain-size characterization given 

by the FAKTS’ facies-unit classes is instead very limited, as the FAKTS’ facies 
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classification scheme largely follows the scheme proposed by Miall (1977; 1978; 

1996), although with some additions. The adoption of this scheme has some 

advantages. Firstly, the use of few mutually exclusive classes simplifies database 

use, as a more detailed description of grain size in the code could generate a high 

number of classes to account for all possible grain-size modalities and tails, so that 

description of textures that are originally less detailed (e.g. following Miall’s 

scheme) would not be easily translated. Secondly, as many authors have adopted 

the Miall scheme (1977; 1978; 1996), use of this scheme (albeit in a slightly 

modified form) negates the requirement to translate similar facies codes described 

in many case studies as they are incorporated into the database. So, although 

FAKTS’ lithofacies coding – as well as the original facies codes of Miall (1978; 

1996) – could be improved to better account for textural and structural variability, 

the use of a classification scheme that is well established in the scientific 

community is especially well-suited for database use, because for many published 

case examples, lithology classifications do not need to be re-coded. Nevertheless, 

caution must be exercised when translating original lithology data. For example, 

there is no consensus on the definition of matrix: the American Geological Institute 

defined the matrix as the "finer-grained, continuous material enclosing, or filling the 

interstices between the larger grains or particles of a sediment or sedimentary rock" 

(Gary et al. 1974). Thus, gravel-grade sediment acting as matrix could still be 

consistent with this definition. However, the inclusion of clean sand- or gravel-grade 

deposits (cf. Shultz 1984; Sohn et al. 1999; for alluvial examples) into the definition 

of matrix precludes the differentiation of lithofacies associated to fundamentally 

different formative processes: therefore, for data entry into the FAKTS database, 

matrix is defined as being dominantly fine grained (clay + silt), possibly partially 

sandy, roughly in agreement with Miall (1996). Thus, care must be taken as the 

same code could be used by different authors to designate deposits that would be 

classified differently in the FAKTS database system. 

In contrast to the approach taken to the classification of architectural elements, 

properties concerning the geometry or the bounding surfaces of facies units are 

only occasionally important for their definition (e.g. facies type Ss): facies-unit types 

are usually only designated on the textural and structural characteristics of the 

deposits. There is no scope for provision of a rich and detailed description of each 

facies-unit type here, as their accessory sedimentological characteristics may vary 

widely among the different fluvial systems included in the database. Instead, only a 

summary of the essential features of each of the 25 types is given, in table 3.2. 

Each facies-unit type may be associated with more than one genetic process, with 

more than one bedform type, and with variable flow regime: see Miall (1978; 1996) 
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and Bridge (1993) for explanations of the genetic significance of these lithofacies 

types. It should be noted that the FAKTS scheme is sufficiently flexible to allow 

implementation of alternative classification schemes in addition to those of the 

original authors’ and FAKTS’ facies codes, possibly separating textural and 

structural data in different fields. 

 

Table 3.2: Summary of the fundamental textural and structural characteristics of the 25 

facies-unit types employed in the FAKTS database. 

Code Characteristics 

G- 

Gravel deposits with undefined structure and undefined additional textural 
characteristics. Gravel-grade sediment (granule to boulder) usually constitutes the 
majority of the unit by volume, as the graded or massive structure of bi- or pluri-
modal matrix-supported conglomerates/gravels is very likely to be recognized. 

Gmm Matrix-supported, massive or crudely-bedded gravel. 

Gmg Matrix-supported, graded gravel. 

Gcm Clast-supported, massive gravel.  

Gci Clast-supported, inversely-graded gravel. 

Gh Clast-supported, horizontally- or crudely-bedded gravel; possibly imbricated. 

Gt Trough cross-stratified gravel. 

Gp Planar cross-stratified gravel. 

S- 
Sand deposits with undefined structure. Sand-grade sediment must constitute the 
majority of the package by volume. 

St Trough cross-stratified sand. 

Sp Planar cross-stratified sand. 

Sr Current ripple cross-laminated sand. 

Sh Horizontally-bedded sand. 

Sl Low-angle (<15˚) cross-bedded sand. 

Ss Faintly laminated/cross-bedded, massive or graded sandy fill of a shallow scour. 

Sm Massive sand; possibly locally graded or faintly laminated. 

Sd Soft-sediment deformed sand. 

Sw Symmetrical ripple cross-laminated sand. 

F- 
Fine-grained (silt/clay) deposits with undefined structure. Fine-grained sediment 
must constitute the majority of the package by volume. 

Fl 
Interlaminated very-fine sand, silt and clay; thin cross-laminated sandy lenses may 
be included into these heterolitic packages. 

Fsm Laminated to massive silt and clay. 

Fm Massive clay. 

Fr Fine-grained root bed. 

P Pedogenic carbonate. 

C Coal or highly carbonaceous mud. 
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3.3.2 An approach to building quantitative facies models: 

practical considerations 

As of September 2012, FAKTS comprised 111 case histories – defined as 

individual sedimentological studies on a particular river or succession, by specific 

authors – and included data referring to 4285 classified depositional elements, 3446 

classified architectural elements, and 20101 classified facies units, as well as 

additional statistical summaries referring to architectural properties of groups of 

genetic units. Summaries of the case studies included in the database and of the 

published literature considered for derivation of primary data and for system 

classification are given in Appendix C and as a digital appendix (D2). 

Through interrogation of the database, it is possible to obtain a multi-scale 

quantitative characterization of the sedimentary architecture of fluvial systems 

primarily consisting of three types of information (Colombera et al. 2012a, Chapter 

2), respectively concerning: (i) the internal organization of genetic units and 

stratigraphic volumes; (ii) the geometry of genetic units; (iii) the spatial relationships 

between genetic units. This section discusses some issues on how to best 

incorporate such information within quantitative facies models by synthesizing 

different case studies; in particular, it is important to identify which (if any) data 

types might be biased, for example by under-sampling, and to specify how the 

integration of data from multiple scales can be achieved in practice. 

At the outset, subsets should be filtered according to their suitability to given 

queries; this information is contained within metadata fields that specify: (i) what 

scales of observation (and relative orders of genetic units) each subset is focussed 

on; (ii) the type(s) of output that it is possible to derive from a subset (i.e. 

proportions and/or dimensional parameters and/or transition statistics and/or grain-

size information). 

A first-order description of the internal organization of genetic units or stratigraphic 

volumes is given by the proportion of lower-order genetic units forming them. Here, 

three approaches to compute such proportions are outlined. 

A first approach involves computing genetic-unit-type proportions as based on the 

sum of all occurrences, or thicknesses, or products of dimensional parameters (e.g. 

thickness times width) of genetic units (cf. figure 3.2); a drawback of this approach 

is that case studies that have been studied more extensively and for which more 

genetic units are recorded (e.g. datasets derived from the study of more extensive 

outcrops) are over-represented, resulting in a biased output that is unbalanced in 

favour of some case studies. 
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An alternative second approach is to compute genetic-unit-type proportions as 

based on the sum of genetic-unit percentage proportions (obtained as above) within 

each suitable subset, thereby obtaining corrected proportions that account for the 

fact that some case studies may have been studied less extensively than others (cf. 

figure 3.2); the principal drawback of this approach is that case studies that have 

been studied in only modest detail for which relatively few genetic units have been 

classified (e.g. datasets derived from the study of less extensive outcrops) are over-

represented, resulting in a biased output in which some genetic-unit types are 

under-sampled. 

Thirdly, in cases where the aim is to obtain unit-type proportions within genetic units 

that do not belong to the immediately higher scale (i.e. to derive proportions of 

facies-unit types composing depositional elements, or proportions of architectural-

element or facies-unit types within stratigraphic volumes), it is possible to compute 

proportions that are weighted according to the proportions of the intermediate-scale 

units (cf. figure 3.2). For instance, an abundance of facies-unit types composing 

channel-complexes can be achieved based on a combination of facies-unit 

proportions forming each architectural element type with architectural-element 

proportions forming channel-complexes. As a specific example, if CH 

(aggradational channel-fill) architectural elements represent 50% of all channel-

complexes and 20% of all CH elements are represented by facies unit St, it is 

straightforward to compute 10% as a contribution of CH to the model proportion of 

St within channel-complexes. Given that some case studies are focused on specific 

features of fluvial architecture, this approach would return more accurate 

proportions when scales are skipped. For example, if a case study is focussed on 

the facies architecture of LA (laterally-accreting barform) architectural elements, the 

relative facies-unit type proportions will not be an accurate description of the entire 

fluvial system, but of LA architecture only. Practically, constraining genetic-unit 

proportions to higher-scale genetic-unit proportions would result in a more effective 

integration of observations at different scales. However, when obtaining proportions 

according to such an approach, it must be borne in mind that the result may be 

biased by not incorporating genetic relationships between different unit types. For 

example, if the aim is to derive the overall CS (crevasse splay) proportion for a 

model by integrating architectural-element-scale information from a case study in 

which the proportion of floodplain depositional element is 25% and in which CS 

elements constitute 20% of the floodplain (and therefore 5% of total volume), with 

depositional-element-scale information from a case study in which the proportion of 

floodplain is 50%, we would derive a proportion of CS within the model stratigraphic 

volume equal to 10%. In practical terms, this may not be realistic as the proportion 

of crevasse-splay deposits may actually decrease with a decreasing proportion of 
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channel-belt deposits, with which they are genetically related, instead of simply 

scaling with the proportion of floodplain depositional elements within which they are 

contained. 

 

 

Figure 3.2: example application of three different methods for computing model 

architectural-element proportions (see text); as no filter has been applied on either 

system parameters or sedimentological properties, the results refer to an ideal model 

of a “generic” fluvial environment derived from and constrained by the entire 

knowledge base. 

 

The uncertainty associated with quantitative descriptions of dimensional parameters 

of genetic units is partially intrinsic to the way dimensional data and metadata are 

stored: the width and length of a genetic unit are classified using categories of 

completeness of observation (complete, partial, or unlimited), as proposed by 

Geehan & Underwood (1993), whereas widths are classified as apparent when 

derived from sections oriented oblique to palaeocurrent directions; in addition, 



50 

Chapter 3 

metadata qualifying the type of observations are included (e.g. outcrop extension, 

type of observations from which dimensional parameters are drawn). Inclusion of 

geometrical information in a model can lead to problems concerning over- or under-

representation of specific case studies, which might also need to be confronted. 

Database-informed quantitative facies models describe the spatial relationships 

between genetic units in each of the three directions (vertical, cross-stream, and 

upstream) by employing embedded transition statistics, with self-transitions (i.e. 

transitions between likewise-classified genetic units) considered admissible. When 

obtaining transition statistics, issues that are analogous to the ones related to the 

computation of proportions may be encountered, such as the integration of facies-

unit transitions mapped from different architectural elements into a model of facies-

unit transition statistics that refer to an ideal stratigraphic volume. Such problems 

could be tackled in a way that is entirely analogous to the approaches proposed for 

deriving proportions. It is also important to note that a system that allows filtering of 

transitions both on the bounding-surface order across which the transition occurs 

and on the genetic-unit type in which the transition occurs, permits the derivation of 

genetic-unit transitions referring to a variety of genetically-related stratigraphic 

packages (e.g. architectural-element transitions within channel-complexes, facies-

unit transitions within 3rd-order packages contained in LA barforms), as envisioned 

by Godin (1991). 

If Markov-chain analysis is attempted, two notable advantages are provided by the 

method the database employs to store the transition data. Firstly, because self-

transitions are admissible they can be included in the Markov-chain analysis (cf. 

multistory lithologies of Carr et al. 1966), resulting in improved independent random 

matrices (cf. Selley 1970; Schwarzacher 1975); this is a methodological advance 

over many previously-published transition matrices containing predefined diagonal 

zeros (i.e. matrices that do not allow self-transitions; e.g. Gingerich 1969; Allen 

1970; Miall 1973; Cant & Walker 1976), which cannot result from independent 

random processes (Goodman 1968; Schwarzacher 1975; Carr 1982). Secondly, the 

inclusion of bounding-surface information in Markov-chain analysis was advocated 

by Cant & Walker (1976) and Godin (1991): sorting on bounding-surface order it is 

possible to filter transitions on the likelihood of their genetic significance, for 

example by excluding erosional transitions between lithofacies (i.e. across 

bounding surfaces of a specified order).  

The necessity to incorporate variability-related uncertainty in a model can be 

partially tackled by quantifying the variability of architectural properties in each 

facies model, possibly exemplifying extreme values within the range of each 

property (e.g. maximum channel-complex thickness, maximum LA proportion within 
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any systems) by referring to real-world case studies. In addition, the implementation 

of a ranking system (Data Quality Index or DQI; cf. Baas et al. 2005; Colombera et 

al. 2012a, Chapter 2) is employed to evaluate the quality and reliability of (i) 

datasets, for example by considering the type of data available; (ii) genetic-unit 

classification, by considering the type of observable attributes on which a class is 

attributed to a unit; (iii) system classification, for example by considering the 

reliability of proxies on which a class is attributed to a subset. Thus, uncertainty 

related to inadequate knowledge (rather than to the inherent variability of the 

system) can also be taken into account by associating to the model a measure of 

value that is proportional to the DQI’s of the systems or units, and to the amount of 

data (number of systems and units) on which the model is based. 

The process of synthesis (or distillation in the terminology of Walker 1984) of the 

model, to which the issues presented above relate, is actually implemented only 

after performing the selection of the case studies or individual subsets whose 

parameters match with the ones chosen for the classification of the quantitative 

depositional model. Such a process of filtering may be performed on architectural 

features (e.g. choice of systems in which the thickness of gravel deposits exceed 

50% of all measured thickness), descriptive-parameters (e.g. choice of systems 

classified as meandering), boundary conditions (e.g. choice of dryland systems), or 

on a combination of each (figure 3.3). 

 

3.4 Results: example models 

3.4.1 Large-scale architecture 

The importance of including large-scale information in conceptual models of fluvial 

architecture has long been recognized, and such information has been included in 

models summarizing the distribution of channel and floodplain deposits in 

stratigraphic volumes (e.g. Allen 1965a; Friend 1983). However, contrasting views 

have been expressed regarding the type of system parameters (external controls, 

frequency/velocity of autogenic processes, descriptive parameters) on which the 

categorization of the models should be based; for example, as to whether channel-

pattern can actually be considered as a good predictor for large-scale organization 

(cf. Allen 1965a; Bridge 1993). Here, large-scale models based on channel pattern 

are presented for single-thread and braided systems (figure 3.4). It is not the 

purpose of this study to assess what type of controls or control-dependent system 

parameters are most suitable for the categorization of models of large-scale fluvial 
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architecture (cf. Miall 1980), but one aim is to explain how this approach can be 

potentially applied to solve this issue, as explained below. 

 

 

Figure 3.3: quantitative information regarding the proportion and geometry (width and 

thickness) of channel-complexes, constituting large-scale facies models for perennial 

sub-humid meandering systems and systems associated with intermediate filtering 

steps. In this case, as in all models presented here, the term ‘basin climate type’ only 

refers to the observed/inferred humidity-based climate class at the locus of 

deposition; a catchment climate classification is also stored, but it applies mostly to 

modern systems and may refer to average conditions. 

 

More generally, the main scope of this study is to show how the use of such 

database systems permit the generation of facies models through an objective 
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process of synthesis, even though this does not mean that such models will 

necessarily be unbiased, as they will still be associated with uncertainty related to 

the interpretations of the systems from which the data were originally derived. 

These database-derived facies models describe large-scale fluvial architecture in 

terms of the proportions and geometries of channel-complex and floodplain 

depositional elements (figure 3.3 and 3.4). 

Separately computing genetic-unit type proportions for each stratigraphic volume 

(subset) is a sensible choice if the subset is large and few categories are included. 

As this is the case for subsets suitable for computing depositional-element 

proportions, it is then possible to quantify how proportions vary between volumes 

(figure 3.4a). Thus, it is possible, for example, to include information on the 

observed variability in channel density and geometry in the same end-member 

model: variability becomes part of the model, and there is no need to advocate 

alternative models to represent it. This also means that, ideally, the approach could 

be used for determining what classifications are most suitable for categorizing the 

models, by recognizing ensembles of categories that ensure maximum inter-type 

variability and minimum intra-type variability in quantities describing architectural 

styles. 

 

3.4.2 Intermediate-scale architecture 

Many traditional fluvial facies models provide a relatively detailed characterization 

of sedimentary architecture in terms of building blocks interpretable as sub-

environments, reflecting their recognition in modern systems and the interpretation 

of preserved ancient facies assemblages (e.g. Galloway & Hobday 1983; Walker & 

Cant 1984; Miall 1985; 1996; Nadon 1994). FAKTS’ architectural elements broadly 

match this level of detail: by querying the database, it is possible to derive 

quantitative information to be included in facies models describing intermediate-

scale fluvial architecture in terms of the proportions, geometries and 3D spatial 

relationships of architectural elements (figure 3.5 to 3.9). The results presented in 

figure 3.5 to 3.8 illustrate the generation of a facies model for dryland ephemeral 

braided systems by the application of multiple filters (based on categories of basin 

climate type, stream discharge regime and channel pattern type), as well as all the 

models resulting from intermediate filtering steps. 
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Figure 3.4 (previous page): quantitative information referring to large-scale facies models 

for single-thread and braided river systems: a) boxplots describing the distribution of 

channel-complex proportions within different stratigraphic volumes (subsets) used to 

include information about the variability in depositional-element proportions in the 

models; b) log-normal probability density functions describing the distribution of 

channel-complex thickness; c) cross-plots of channel-complex thickness and width, 

classified as complete (real or apparent widths) or incomplete (partial or unlimited 

widths). Idealized cross-sections comparable to traditional models and informed on 

such quantitative information are depicted in (d) to highlight architectural differences 

between the two models. 

 

In this case, because of the level of detail in model categorization (i.e. the number 

of filters), the ephemeral-river model (step 4) is built upon a limited number of 

systems and genetic units, thereby resulting in scant general value. Instead, the 

“arid to semiarid braided system” model (step 3) proposed here incorporates a far 

larger knowledge base, lending itself better to a discussion of its intermediate-scale 

architectural features. Mainly, ancient sandy systems were considered for the 

database-assisted creation of this model, including data from the Jurassic Kayenta 

Formation, USA (authors’ field data; Miall 1988a; Bromley 1991; Luttrell 1993; 

Stephens 1994; Sanabria 2001), from the Jurassic Morrison Formation, USA (Miall 

& Turner-Peterson 1989; Robinson & McCabe 1997; Kjemperud et al. 2008), from 

the Triassic Moenave Formation, USA (Olsen 1989), from the Triassic Sherwood 

Sandstone Group, UK (Steel & Thompson 1983; Cowan 1993), from the Miocene 

Vinchina Formation, Argentina (Limarino et al. 2001), from the Triassic Omingonde 

Formation, Namibia (Holzförster et al. 1999), and from the Permo-Triassic Balfour 

Formation, South Africa (Catuneanu & Elango 2001). 

In agreement with other existing braided-river models (e.g. Allen 1965a; Miall 1977; 

1978; Cant 1982; Walker & Cant 1984; Nanson & Croke 1992), the resulting ideal 

braided dryland system is dominated by channel deposits because in-channel 

architectural elements represent over 75% by volume of the model, if only fluvial 

elements are considered (as in figure 3.5). As these architectural-element 

proportions are solely based on ancient-system data, it can be observed that the 

most frequently preserved product of in-channel deposition is represented by 

aggradational channel-fills, rather than horizontally-migrating barforms. It must be 

considered that this observation may not be indicative of the original geomorphic 

organization of channel-belts, as observed abundances may relate to channel-fills 

having a higher preservation potential than barforms, to channel-deposit accretion 

directions not being discernable in all cases (for example because of inappropriate 

outcrop exposure and orientation, especially if surfaces dip at very low angle, cf. 

Bristow 1987), or to accretion surfaces not always being preserved in barform 

deposits (cf. Jackson 1978; Kraus & Middleton 1987) potentially resulting in 
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deposits categorized as CH that include the product of the horizontal migration of 

barforms. Within the model, non-channelized deposits of high-energy sandy 

aggradational-floodplain elements (SF) appear to dominate over floodplain-fine 

elements (FF), with the former more often tending to stack on top of channel-fills 

and downstream-accreting barforms, and the latter more frequently developed on 

top of laterally-accreting barform elements. However, FF elements display the 

largest observed lateral extent among floodplain elements, some examples 

exceeding 1000 m in maximum observed width. Crevasse channels, splays, 

abandoned channels and levees represent only a volumetrically minor portion of the 

model floodplain, and the available transition statistics suggest a tendency for these 

elements to be associated with FF, rather than SF, floodplain elements. However, 

the model lacks features that are likely to be included in a qualitative model of a 

dryland braided system, such as dryland floodplain lakes, suggesting that the data 

employed to generate the model do not yet fully account for natural variability. 
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Figure 3.5: quantitative information regarding the proportion and 

vertical transition statistics of architectural elements, constituting 

intermediate-scale facies models for arid/semiarid ephemeral 

braided systems and systems associated with intermediate 

filtering steps. Idealized block-diagrams comparable to traditional 

models and informed on such quantitative information are 

depicted in the left-hand column; model architectural-element 

proportions, presented as pie-charts in the central column, are 

derived as the sum of the thickness of all elements from adequate 

subsets (method 1 in figure 3.2 and in the text); vertical transition 

statistics are presented in the right-hand column as bar charts 

quantifying the percentage of types of ‘upper’ elements (colour-

coded and labelled in the bars) stacked on top of a given type of 

‘lower’ element (labels on the vertical axis). 
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Figure 3.6: continuation of figure 3.5. Information on 

architectural-element horizontal spatial relationships, in the 

form of cross-gradient and up-gradient transition statistics. 

Results are presented in the central and right-hand column 

as bar charts quantifying the percentage of ‘cross-gradient’ 

or ‘up-gradient’ element types (colour-coded and labelled in 

the bars) juxtaposed to element types labelled on the 

vertical axis. 
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Figure 3.7: description of architectural-element geometries for different 

models. Box-plots in the right-hand column include information on the 

thickness of the different architectural-element types, for facies models of 

arid/semiarid ephemeral braided systems and systems associated with 

intermediate filtering. 
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Figure 3.8: continuation of figure 3.7. 

Cross-plots in the right-hand column 

include information on the relationship 

between width and thickness of different 

architectural-element types for facies 

models of arid/semiarid ephemeral 

braided systems and systems associated 

with intermediate filtering steps. 
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Figure 3.9: Models of architectural-element spatial relationships, in the form of pie-charts depicting transition counts between architectural-element types in the upwards, downwards, up-gradient, cross-gradient and down-

gradient directions. a) transition statistics referring to downstream-accreting barforms; b) transition statistics referring to lateral-accretion barforms; cross-stream transitions conventionally refer to the right-hand 

direction, regardless of the dip-direction of accretion surfaces or migration direction of the barform; c) transition statistics referring to crevasse splays; lateral, upstream and downstream transitions have been grouped 

into horizontal transitions for convenience. 
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3.4.3 Small-scale architecture 

Some facies models widely used for interpreting ancient systems are represented 

by vertical profiles summarizing fluvial styles – related to environmental categories 

– in terms of lithofacies occurrences, proportions, typical thicknesses and vertical 

stacking (cf. Miall 1977; 1978; 1996). FAKTS permits the derivation of similar one-

dimensional models, represented by proportions, thickness and vertical 

juxtapositional trends of facies units within system types, by performing an objective 

distillation of different case studies, as illustrated in figure 3.10: the inclusion of 

quantitative information relating to facies units may aid the interpretation of 1D 

subsurface data by making model comparison more objective.  

The approach can be generalized to include three-dimensional information: 

example results (figures 3.11 to 3.14) are again associated with the “dryland 

ephemeral braided system” model and with the models related to its intermediate 

filtering steps, to demonstrate the capability to generate multi-scale models. 

As the “dryland ephemeral braided system” model currently comprises one fifth of 

all facies units included in the knowledge base (represented by the model at step 

1), the model is richer in data than its intermediate-scale architectural-element-

based counterpart, reflecting the fact that the database currently includes more data 

from lithofacies-scale-oriented studies than from architectural-element-scale 

studies, for this set of system boundary conditions. The proposed “braided dryland 

ephemeral” model is based on categories relying on concurrent interpretations of 

planform type, which requires recognition of contemporaneity of in-channel activity 

for the braided category, and of basin climate type and discharge regime, which 

require proxies and may refer to average conditions through time; although the 

quality of data and interpretations can be ranked, the possibility of including data 

from case studies whose environmental interpretations are incorrect increases with 

the number of filters applied and results must therefore be considered with care. 
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Figure 3.10: comparison between the Miall’s (1996) facies model for sandy meandering 

systems presented in the form of a vertical profile, on the left, and a corresponding 

FAKTS model, on the right. The FAKTS model has been built filtering the database on 

both a system parameter (meandering channel pattern) and a sedimentological 

feature (proportion of sandy facies units within subsets higher than 50% by 

thickness); lithofacies-type proportions are represented as a pie-chart, and were 

derived as the sum of the thickness of all facies units from adequate subsets (method 

1 in figure 3.2 and in the text); vertical transition statistics are presented in the bar 

chart, quantifying the percentage of types of ‘upper’ facies units (colour-coded and 

labelled in the bars) stacked on top of a given type of ‘lower’ lithofacies (labels on the 

horizontal axis). In this case, results include ‘undefined’ lithofacies types, i.e. facies 

units (e.g. non-fluvial aeolian facies) that cannot be classified according to the 

adopted classification scheme (table 3.2). 

 

 



69 

Chapter 3 

However, the possibility to contrast this model with the ones resulting from 

intermediate-stage filtering serves the aim of demonstrating the capabilities of the 

database system in highlighting the peculiarities of the different models, in 

quantitative terms. For example, the “dryland ephemeral braided system” model 

includes case studies that collectively show a high abundance of sand-grade 

deposits, making this model comparable to Miall’s (1985; 1996) sandy-river models 

11 and 12. Compared to its intermediate-step models, the “dryland ephemeral 

braided system” model presented here does not show any significant increase in 

the proportion of Sh (horizontally bedded sandstone) and Sl (low-angle cross-

bedded sandstone) lithofacies, which are often considered a diagnostic 

architectural feature of such systems, supposedly in relation to the influence of 

upper-flow regime processes associated with flash floods (Miall 1985; 1996). 

Instead, a comparison between the facies-unit proportions of the braided-system 

model (figure 3.12), and of the sandy meandering-system model (figure 3.10) 

reveals that the proportion of Sh and Sl facies-units among sandy deposits are 

significantly higher in the former compared to the latter. 

Facies models often contain information on individual genetic packages: models of 

this sort represent a tool for guiding the interpretation of lithosomes with 

characteristic facies associations as sub-environments, such as point bars (e.g. 

Allen 1970) or crevasse splays (e.g. Bridge 2003), which can be variably arranged 

in the rock record, thereby representing a reference to interpretations that can be 

flexibly applied to different fluvial environmental types. The facies architecture of 

lithosomes corresponding to FAKTS’ depositional and architectural elements can 

be investigated to derive model proportions, geometries, grain-size and spatial 

relationships of facies units within them, as illustrated in figures 3.15 and 3.16. The 

examples shown demonstrate how basic features relating to the internal 

architecture of the lithosomes – such as the lack of conglomeratic beds, the 

dominance by flat-bedded sandstone, and the on average higher horizontal extent 

of the formative facies units characterizing sandy aggradational floodplain elements 

(figure 3.16) – can be highlighted through quantification. 
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Figure 3.11: example quantitative information that can be incorporated into a small-scale facies model referring to the entire knowledge base (no filter applied). Overall facies-unit proportions are presented as pie-charts of 

textural classes and of ‘texture + structure’ facies-unit classes, and are compared with the facies organization of channel deposits, described by facies unit proportions within channel-complexes. The geometry of 

different facies-unit types is quantified by box-plots of their thickness distribution, summary descriptive statistics of their lateral extent, and probability density functions of the width/thickness aspect ratio of selected 

types. Upwards, cross-gradient and up-gradient transition statistics are presented as bar charts quantifying the percentage of types of facies units (colour-coded and labelled in the bars) juxtaposed to a given type of 

facies unit (labels on the vertical axis). In addition, the facies-unit-scale block diagram has been built based on database-derived information relating to the facies organization and geometry of individual architectural-

element types. 
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Figure 3.12: example quantitative information that can be incorporated into a small-scale facies model referring to braided systems, filtering the knowledge-base on the channel-pattern type. Results are presented as in 

figure 3.11, to render the models comparable. 
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Figure 3.13: example quantitative information that can be incorporated into a small-scale facies model referring to dryland braided systems, filtering braided systems on the basin climate type. Results are presented as in 

figures 3.11 and 3.12, to render the models comparable. 
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Figure 3.14: example quantitative information that can be incorporated into a small-scale facies model referring to ephemeral dryland braided systems, filtering dryland braided systems on the water-discharge regime. 

Results are presented as in figures 3.11, 3.12 and 3.13, to render the models comparable. 
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Figure 3.15: partial quantitative information constituting a small-scale facies model of aggradational channel fills (CH architectural elements). The model facies association of the element is described by overall lithofacies-

type proportions, presented as pie-charts of textural classes and of ‘texture + structure’ facies-unit classes; proportions of facies types observed at the base of channel-fills are also given. Example cumulative grain-

size distributions for facies units within CH elements are presented for different lithofacies types; the thickness and width of classified facies units within aggradational channel fills is represented in the cross-plot; 

upwards, cross-gradient and up-gradient transition statistics are presented as bar charts quantifying the percentage of types of facies units (colour-coded and labelled in the bars) juxtaposed to a given type of facies 

unit (labels on the vertical axis) within CH elements. Legend and colour code are given in figure 3.16. 
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Figure 3.16: partial quantitative information constituting a small-scale facies model of aggradational sheetflood-dominated sandy floodplain elements (SF architectural elements). As in figure 3.15, the model facies 

association of the element is described by overall lithofacies-type proportions, presented as pie-charts of textural classes and of ‘texture + structure’ facies-unit classes; proportions of facies types observed at the base 

of channel-fills are also given. Example cumulative grain-size distributions for facies units within SF elements are presented for different lithofacies types; the thickness and width of classified facies units within sandy 

aggradational floodplain elements is represented in the cross-plot; upwards and horizontal (cross-gradient + up-gradient) transition statistics are presented as bar charts quantifying the percentage of types of facies 

units (colour-coded and labelled in the bars) juxtaposed to a given type of facies unit (labels on the vertical axis) within SF elements. 
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3.4.4 Spatial and temporal evolution 

Given that FAKTS stores architectural information relating to stratigraphic volumes 

that can be arranged in relative temporal and spatial frameworks, information on the 

temporal and spatial evolution of architectural features from individual case studies 

can be derived and included in quantitative facies models of fluvial systems. 

Quantitative comparative studies can be performed between different systems to 

investigate spatial and temporal trends with the aim being to derive models of 

architectural change, in terms of space and/or time. Figure 3.17 presents 

downstream changes in facies-unit proportions (cf. Miall 1977) for a modern system 

and an ancient system, both of which are believed to represent terminal fluvial fans, 

for which the identification of proximal, medial and distal fan zones is justifiable, 

although arbitrary rather than objective. 

 

3.5 Discussion 

A database-driven method for the creation of quantitative fluvial facies models such 

as the one presented here has several advantages, as listed below. 

Most importantly, this approach satisfies the long-recognized need for inclusion of 

quantitative information in facies models (North 1996; Anderson et al. 1999; Lunt et 

al. 2004), improving the value of facies models as a reference for comparison, 

interpretation and subsurface prediction. For example, database-derived models 

can be used as quantitative synthetic analogues to subsurface systems with which 

to better inform stochastic structure-imitating simulations of sedimentary 

architecture (Colombera et al. 2012b, Chapter 6). 

Although several alternative procedures can be followed for obtaining the same 

type of information, the process of synthesis by which information from the 

individual case studies is distilled into the model can be carried out objectively, and 

permits the preservation of local detail through incorporation of features with limited 

occurrence. The number of case studies and genetic units included will justify and 

quantify the model generality. 
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Figure 3.17: graphs quantifying the downstream variations in the proportion of textural 

classes (left-hand graph) and example facies-unit types (right-hand graphs), for two 

different depositional systems (Parkash et al. 1983; Cain 2009, cf. Cain & Mountney 

2009; 2011) classified as “terminal fans”. Note that the length scales over which the 

variations are observed are different for the two systems, to make the results 

referable to a tripartite subdivision of the systems into ‘proximal’, ‘medial’ and ‘distal’ 

zones and comparable with existing models; similar results could be derived for 

absolute-distance scales. 
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Quantitative facies models generated by a database approach can be flexibly 

tailored on any system parameters and/or concurrent architectural properties (e.g. 

gravel-bed braided system), and any of the scales of observation considered can 

be included in the model (e.g. channel-complex distribution in an ideal alluvial 

basin, architectural-element distribution in a meandering-system model; lithofacies 

distribution in a model of a crevasse splay element), either individually or in the 

form of hierarchically-nested depositional products. 

As metadata concerning the quality of observations and interpretations can be 

stored in such a database, it is possible to include information about the uncertainty 

related to variability in data quality and data deficiency in the model. If all – or at 

least all the most significant – studies on the sedimentology of fluvial systems were 

included, the database could help identify gaps in current knowledge, in a way 

similar to the original intention of facies models (cf. Walker 1984). 

The use of a database system permits inclusion of architectural variability as a 

characteristic of the model, in contrast to traditional facies models. For example, 

Miall’s models 11 and 12 (Miall 1985; 1996) are solely differentiated on the basis of 

architectural style, with the scope of including information on the variability of facies 

assemblages, despite the two model systems being categorized on mutually non-

exclusive classes. Instead, this database approach allows inclusion of information 

on the variability in sedimentary architecture into models classified on mutually-

exclusive categories. This has implications for the recognition of the environmental 

categories that, by maximizing architectural variability between types and 

minimizing variability within types, are most suitable for facies-model classification. 

The inclusion of information that refers to interpretative system types and unit types 

(depositional elements, and, especially, architectural elements) permits comparison 

of facies associations from ancient and modern systems (cf. figure 3.18), thereby 

providing the possibility to validate interpretations of environments or sub-

environments in ancient fluvial systems. For example, the principle of comparative 

sedimentology can be applied to test planform-based interpretations of the rock 

record against observations on the facies organization of modern rivers, for which 

planform types are known. Additionally, as information from ancient and modern 

systems can be derived separately, this method overcomes the limitation of 

assuming that modern systems are closely analogous to ancient systems and 

provides the opportunity to assess the role of differential preservation potential for 

various types of fluvial deposits (cf. Jackson 1978; Hickin 1993; Miall 2006). 

 



86 

Chapter 3 

 

 

Figure 3.18: example facies associations for ‘downstream- and lateral-accretion barforms’ 

(DLA architectural elements) and ‘channel-complex’ depositional elements, as derived 

by separately considering data from ancient systems preserved in the rock record and 

modern river systems; results are presented as pie-charts quantifying facies-unit 

proportions derived as the sum of the thickness of all facies units from adequate 

subsets (method 1 in figure 3.2 and in the text). 

 

Perhaps, the most important strength of this database approach is its capability to 

overcome the end-member classification mentality in general; for example, the 

tendency to classify fluvial systems as braided or meandering – embodied by some 

of the example models presented herein – may tend to ignore the range of natural 

variability and may convey the idea that sedimentary systems must obey the ideal 

conditions of the end-members. A database of this kind can effectively be used to 

highlight the uniqueness of depositional systems, since each one is stored 

individually in the database and can be individually retrieved for comparison (cf. 

figure 3.19), thereby providing a more flexible benchmark for reference. This 

system can therefore reconcile the “facies model” school-of-thought (as commonly 

taught, if not as originally conceived) in which there exists a discrete number of 

sedimentary environments, with the view that sedimentary environments tend to 

grade into each other (cf. Galloway & Hobday 1983; Anderton 1985; Miall 1985). 
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In addition, it should be apparent that, apart from generating quantitative fluvial 

facies models, whose scope is solely capturing patterns of sedimentary 

organization for environmental classes, a similar database provides the possibility 

to test the validity of theories concerning the genetic significance of architectural 

characteristics of fluvial systems and their occurrence within environmental types. 

However, it must be borne in mind that the approach of utilizing a database for the 

generation of quantitative fluvial facies models suffers from several limitations, 

principally inherent in the source-to-database workflow (cf. Saunders et al. 1995) 

and with the adoption of closed classification schemes, some of which include 

classes of purely interpretative nature: systems or genetic units may simply not fit in 

the existing classes, and interpretations may not be correct, may be uncertain, or 

may be mistakenly translated into the database system. Therefore, some 

precautions were taken at the database-design stage to avoid uncritical use of the 

system presented here. For example, to ensure consistency with original 

classifications and flexibility in categorization, open classification fields and multiple 

editable classification schemes are adopted, while the quality of interpretations and 

the resulting reliability of system and genetic-unit classifications is quantified by 

data-quality ranking (cf. Baas et al. 2005; Colombera et al. 2012a, Chapter 2). 

Additionally, in cases where data do not fit in the existing classes, the relative 

attribute values are left undefined, signifying a lack of data or understanding on 

which to base the interpretation. 

Notwithstanding such precautions, limitations in the approach must always be 

borne in mind and the application of such a system should never be conceived as a 

black-box technique. For example, creation of database-informed facies models 

requires that careful consideration be given to assessing uncertainty associated 

with the difficulty in constraining boundary conditions or system parameters for the 

rock record: this information could be integrated qualitatively in the model. Also, the 

specific database presented here could be significantly improved in the way it 

describes architectural styles. For example, this system currently lacks descriptors 

of genetic-unit shape (e.g. wedge, sheet), descriptors of geometrical style of 

transition (e.g. onlap, offlap), and genetic-unit porosity and permeability data. 
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Figure 3.19: comparison between the model facies association of ‘lateral accretion 

barforms’ (LA architectural elements) represented by the pie-chart, which quantifies 

facies-unit proportions derived as the sum of facies-unit thickness (method 1 in figure 

3.2 and in the text), and the partial result of a query returning the proportion of facies-

unit types within each individual LA architectural element, in tabulated form (e.g. 

‘St/0.11’ means 11% of St facies unit within the given element). The possibility to 

individually store and retrieve each depositional system or genetic unit renders the 

FAKTS database system a reference for comparison that is richer and more flexible 

than traditional facies models. 

 

3.6 Conclusions 

This work demonstrates how a relational database created for the digitization of 

fluvial sedimentary architecture can be employed for the objective generation of 

facies models that are quantitative in nature and are customizable both in terms of 

system parameters on which they are categorized and type and scale of 

sedimentary units by which they are built. The type of information such models 

include is entirely analogous to what is traditionally presented in the form of 

idealized vertical logs or block diagrams, as they quantify genetic-unit abundances, 
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geometries, spatial relationships and grain size. Data-input into the system is on-

going: it is therefore still not possible to provide an exhaustive range of models 

spanning all environmental types and including all studied systems, and even the 

models presented here are only partially characterized in that they still lack 

information available from numerous published case studies. Nevertheless, the 

example models presented herein demonstrate the value of the approach, 

especially in relation to its quantitative nature, its flexibility of application, and its 

capacity to incorporate information concerning model uncertainty and variability. 

The proposed models may also serve as reference, as they provide insight into the 

sedimentary architecture of specific environmental types by quantifying the 

signature of basin climate regime, discharge regime and channel pattern – or of 

conditions conducive to the development of a channel-pattern type – on the large- 

to small-scale architecture of fluvial systems. Although the systems are only 

partially characterized in terms of their boundary conditions, future analysis of 

multiple case studies can be applied to the investigation of the role of a range of 

autogenic and allogenic controls on fluvial architecture. The method could be 

potentially applied to other depositional systems. 
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4 Testing alluvial architecture models through a 

comparative study: implications for sequence 

stratigraphy 

 

4.1 Summary 

A quantitative comparative investigation of literature-derived case studies of fluvial 

sedimentary systems has been undertaken to test the validity of assumptions made 

in previously published models of alluvial architecture concerning (i) inverse 

proportionality between channel-deposit density and basin-wide aggradation rates, 

and (ii) resulting characteristics of channel-body geometry and connectedness. This 

work makes use of architectural data from ancient fluvial successions to determine 

relationships between aggradation rate, or its relative variations, and quantities 

describing proportion, geometry and vertical connectivity of channel deposits in 

depositional systems or parts thereof. It has been observed that systems 

undergoing changes in aggradation rates are most often characterized by an 

increase in channel density with increasing sedimentation rates, whereas no 

relationship between aggradation rate and channel-body abundance is observed as 

evaluated across all stratigraphic volumes. In addition, positive trends have mostly 

been observed between changes in mean aggradation rates and variations in mean 

channel-complex thickness, width and vertical connectivity. Thus, results bear little 

correspondence with relationships predicted by earlier stratigraphy models: this 

highlights the necessity to reconsider fluvial sequence stratigraphy models and 

practice, which are partly based on concepts that still need to be better tested 

through incorporation of primary data from a wider range of outcrop successions. 

 

4.2 Introduction 

The proportion, geometry and spatial distribution of sedimentary lithosomes 

interpreted as the product of deposition within channels in fluvial systems are 

commonly cited to be dependent on floodplain-wide aggradation rate, whereby a 

general assumption exists that slower rates of aggradation facilitate floodplain 

reworking by migrating and avulsing channels (Allen 1978; Bridge and Leeder 

1979). Consequently, channel density is commonly expected to inversely correlate 

with aggradation rate, thereby also affecting the geometry and connectedness of 
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channel clusters; this result is predicted by a suite of numerical models collectively 

known as the Leeder-Allen-Bridge (LAB; Bryant et al. 1995) models of alluvial 

architecture (Leeder 1978; Allen 1978; Bridge and Leeder 1979 – figures 4.1 and 

4.2, below).  

 

 

 

Figure 4.1: alluvial architecture models from Allen (1978), representing the distribution of 

fluvial channel sand bodies within stratigraphic volumes developed under different 

aggradation rates keeping pace with subsidence rates (subsidence rate = 4.43*10
-3

 

m/a for the lower model; subsidence rate = 2.46*10
-4

 m/a for the upper model). 

Whereas these models directly relate architectural style to the controlling factor of 

subsidence rate, other models show similar styles to be controlled simply by 

aggradation rate (e.g. Bridge & Leeder 1979). Figure modified after Allen (1978). 

 

This tenet still dominates current thinking in fluvial sequence stratigraphy such that 

results from the largely conceptual LAB models have been incorporated into, and 

form an underpinning basis for, most continental sequence-stratigraphy models 

(e.g. Wright and Marriott 1993 – see figure 4.3, below; Shanley and McCabe 1994; 

Dalrymple et al. 1998; Martinsen et al. 1999). There exists a wide-held assumption 



93 

Chapter 4 

that changes in aggradation rates in alluvial coastal plain systems are indicative of 

variable rates of creation of accommodation space driven by relative-sea level 

changes. Also, on the basis of the same conceptual framework, the recognition of 

‘low-accommodation’ versus ‘high-accommodation’ systems tracts in continental 

fluvial successions is now routinely undertaken on the sole basis of recognition of 

the degree of channel amalgamation (Catuneanu et al. 2009); this is now widely 

accepted practice. 

 

 

Figure 4.2: measure of channel-body interconnectedness and density as a function of 

floodplain aggradation rate for a suite of alluvial architecture models by Bridge & 

Ledeer (1979) with variable avulsion period (given in years by numbers on the 

curves). Figure modified after Bridge & Leeder (1979). 

 

However, as pointed out by Bryant et al. (1995) and Heller and Paola (1996), the 

LAB models are limited, for example, by not accounting for the effect of the 

relationship between aggradation rates and avulsion frequency. As sedimentation 

rates are higher closer to the channel belt than further away from it in the floodplain 

(Pizzuto 1987), a gradient advantage for the establishment of avulsion pathways – 

quantifiable by the cross-system to down-system slope ratio – is generated by 

channel-belt aggradation. Avulsion frequency likely depends on the rate of 

generation of channel-belt super-elevation, which is driven by differential 

sedimentation between channel belts and the adjacent floodplain, which in turn 
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appears to be scaled to overall aggradation rate (Heller & Paola 1996). This 

ultimately means that avulsion frequency is likely to increase with increasing 

aggradation rate. Current understanding (Bryant et al. 1995; Heller & Paola 1996) 

suggests that if a change of avulsion rate in relation to aggradation rate follows a 

power-law relationship of the type favulsion α rb (where r is aggradation rate and b>1; 

Bryant et al. 1995; Heller & Paola 1996; case 3 in figure 4.4 below), then an 

increase in channel density would be expected in response to an increase in 

aggradation rate, as opposed to the simple control by aggradation rate predicted by 

the LAB models. 

 

 

Figure 4.3: ideal fluvial sequence stratigraphic model proposed by Wright and Marriott 

(1993) for a third-order sea-level fall-rise cycle. This model incorporates the 

assumption that higher rates of floodplain aggradation determine lower channel 

density by reducing floodplain reworking, and vice versa; the rate of creation of 

accommodation is implied to be governed by sea level and to reach its maximum 

during the period represented by the Transgressive Systems Tract (TST). Figure 

modified after Wright and Marriott (1993). 

 

Nevertheless, observations from the Holocene records of the Rhine-Meuse delta 

(Stouthamer and Berendsen 2007) – probably the highest-quality dataset 

documenting an avulsion history linked with aggradation rates – and of the 

Mississippi River (Aslan et al. 2005) point to more complex relationships between 

aggradation rates, gradient advantages and avulsion frequency, especially by 

demonstrating that differential aggradation between channel belt and floodplain 

may not scale to overall aggradation rates and that gradient advantages may be 

overridden by other controls that act to drive avulsion. 

Furthermore, the relative proportion of channel and floodplain deposits in a given 

stratigraphic volume and the sheet- or ribbon-like geometry of channel bodies will 
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also depend on channel size and velocity of lateral migration (Bristow & Best 1993 

– see figure 4.5, below). 

 

 

Figure 4.4: idealized alluvial architecture models from Bryant et al. (1995), depicting 

variations in the distribution of fluvial channel bodies (in black) under different 

conditions defined by the exponent β in the power-law relationship between avulsion 

frequency and aggradation rate. For case 3 (β>1), an increase in channel-deposit 

proportions is observed for increasing floodplain aggradation rate. The right-hand 

diagram by Heller & Paola (1996) synthesizes the possible relationships between 

aggradation rate and avulsion frequency, with reference to the three scenarios 

represented on the left. Figure modified after Bryant et al. (1995) and Heller & Paola 

(1996). 

 

So, depending on the relative dominance of the different drivers for the generation 

of accommodation, different scenarios could be envisaged. For example, if 

increasing aggradation is driven by an increase in sediment supply and water 

discharge such that the ratio between the two is allowed to increase, it would be 

sensible to foresee a situation whereby channel hydraulic geometry (Leopold & 

Maddock 1953) increased together with avulsion frequency (cf. Stouthamer & 

Berendsen 2007) and channel mobility (cf. Church 2006), which could be enhanced 

by higher erosive power (cf. Nanson & Hickin 1986), faster in-channel deposition 

(cf. Howard 1992; Wickert et al. 2013) and decreased bank stability as coarser 

grain-size belts migrated downstream (i.e. a grain-size increase was seen at any 

given point due to reduced rates of downstream fining; cf. Paola et al. 1992; 

Robinson & Slingerland 1998). 
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Figure 4.5: schematic diagram that synthesizes the effects of channel-belt aggradation, 

lateral migration and avulsion on preserved channel-body morphology (modified after 

Bristow & Best 1993). 

 

This could ultimately result in an increase in channel proportion concomitant with 

the increase in rate of aggradation (figure 4.6). If an analogous situation of a 

supply-driven increase in aggradation was observed in the context of a prograding 

deltaic plain, possibly even during an episode of slow relative sea-level rise, one 

outcome to be expected would be the observation, for a given point in space, of a 

temporal evolution of widening channel-bodies as the area is brought out of the 

river backwater length, i.e. the distal reach of a river where the streambed drops 

below sea level resulting in river-flow deceleration on approach to the static water 

body (cf. Lamb et al. 2012, and references therein). This example situation would 

be explained by distal backwater zones being characterized by avulsive, laterally-

stable, and mostly incisional distributary channels (cf. Jerolmack 2009; Nittrouer et 

al. 2012). Considering the Mississippi system as an example, a ca. factor 2 

reduction in channel-belt width-to-thickness aspect ratio could be observed with a 

shift in backwater length of ca. 40 km in some areas (Blum et al. 2013). These 

situations are merely illustrative of possible scenarios by which a given stratigraphic 

organization of fluvial deposits could be generated to incorporate patterns that 

could be mistakenly interpreted in terms of the mentioned LAB model prediction, 

but actually resulting from the interplay of factors that determine opposite 

relationships between channel-body density and rates of aggradation. 
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Figure 4.6: hypothetical scenario whereby a temporal evolution in fluvial architecture 

characterized by an increase in channel amalgamation is generated by a set of 

controls that determine a corresponding increase in aggradation rate (see text for 

explanation); channel deposits are represented in light yellow and floodplain deposits 

in grey, in the ideal cross-sectional sketch. The example shows how the attribution of 

standard terrestrial systems tracts as based on the recognition of increasing channel 

density following recommendations by Catunenanu et al. (2009) would be mistaken. 

(Qs = rate of sediment supply; Q = water discharge; LAST = low-accommodation 

systems tract; HAST = high-accommodation systems tract). 

 

These considerations illustrate the complexity of the problem arising – as it is widely 

recognized – from the fact that fluvial systems respond in a complex manner to 

changes in a number of key controlling parameters, most of which are not 

accounted for by the relatively simplistic LAB models. 

Experimental investigations of the problem benefit from the possibility of isolating 

the effect of individual parameters. Under different experimental designs, 

contrasting results have been obtained from physical models aiming to test the 

validity of the LAB models, displaying evidence that either disproves (Bryant et al. 

1995; Hickson et al. 2005/Strong et al. 2005, figure 4.7 below) or supports 

(Ashworth et al. 2004) the prediction of channel density as a function of aggradation 

rate. Yet, whereas numerical models, such as the LAB models, are limited by the 

choice of the boundary conditions that are thought to control system evolution, likely 

resulting in biased results, physical models aiming to simulate analogous situations 

are subject to scaling problems (Hickson et al. 2005; Strong et al. 2005; Paola et al. 

2009). Thus, it is important to test the validity of the basic prediction of the LAB 

models as to how temporal variations in aggradation rate relate to changes in 

channel density, geometry and stacking pattern against real-world datasets of 

fluvial sedimentary architecture from the rock record. Suitable real-world datasets of 

fluvial sedimentary architecture are not straight-forward to collect since they 

demand both constraint of aggradation rates and the collation of large architectural 

datasets in a quantitative form. Hence, few individual tests of this kind have ever 

been attempted, and those that have been reveal examples that do (e.g. Shuster & 
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Steidtmann 1987) and do not (e.g. Willis 1993b) conform to the relationship 

predicted by the LAB models. So, there is scope to widen the range of field 

examples and to compare them under a unifying framework to be able to better 

assess whether LAB-model responses are effectively the norm in the stratigraphic 

record. 

 

 

Figure 4.7: cross-gradient section through an experimental stratigraphy of a braided fluvial 

fan delta in which the interval with the slowest aggradation rates (stage 3) is 

characterized by the lowest density of channelized features (Strong 2006). 

 

This analysis presents results from a meta-study of real-world architectural data 

obtained from several ancient fluvial successions and uses these to test LAB-model 

predictions regarding temporal evolution of fluvial systems. The aim of this study is 

to verify the existence of relationships between overall aggradation rates (and 

temporal variations thereof) and fluvial sedimentary architecture (and its change 

through a succession). Specific objectives are as follows: 

 to compare the proportion of channel deposits for stratigraphic volumes from 

systems with different average aggradation rates, and to evaluate the 

change in channel-deposit proportions in systems undergoing temporal 

variations in aggradation rate; 

 to compare channel-body dimensional parameters from different systems 

with different average aggradation rates, and to evaluate the change in 

channel-body geometry in systems undergoing temporal variations in 

aggradation rate; 
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 to compare vertical connectivity of channel deposits from systems with 

different average aggradation rates, and to evaluate the change in channel 

connectivity in systems undergoing temporal variations in aggradation rate. 

Testing these fundamental relationships by comparing real-world case studies from 

various contexts is a step toward assessing the limits within which the LAB-model 

predictions are valid, which has important implications concerning sequence-

stratigraphy practice and, more generally, the interpretation of fluvial sedimentary 

architecture. 

 

4.3 Methods 

This work involves a comparative study based on literature-derived architectural 

data collated from several ancient fluvial depositional systems into a relational 

database, named the Fluvial Architecture Knowledge Transfer System (FAKTS), 

which digitizes sedimentary units in a hierarchical scheme (Colombera et al. 2012a, 

Chapter 2). At the largest scale of observation, the system characterizes fluvial 

architecture in terms of units termed as ‘depositional elements’ and classified as 

‘channel complex’ or ‘floodplain’ units, depending on the origin of their deposits. 

Geometrical attributes are used to characterize each individual depositional 

element, and the spatial relationships between each of them are stored in the form 

of transitions (e.g. unit 2 vertically stacked on unit 1; unit 3 laterally neighbouring 

unit 4 in the cross-gradient direction). The subdivision of stratigraphic volumes into 

these units follows in part the application of geometrical criteria (see appendix A), 

which aims to achieve an objective distinction of complexly clustered channel 

bodies. Such criteria consider the following: (i) the style of interdigitation of 

floodplain deposits; (ii) geometrical change across the channel-cluster lateral 

extension (e.g. two juxtaposed channel bodies with base or top in common are 

distinguished if sudden thickness changes occur across a geological surface and 

overcome a 0.5 threshold of relative thickness, defined as the ratio between 

smallest and largest thickness); (iii) geometrical change across the channel-cluster 

vertical extension (e.g. two non-offset stacked units are distinguished if sudden 

width changes overcome a 0.5 threshold of relative width, defined as the ratio 

between smallest and largest width); (iv) the existence of vertical superposition and 

lateral offsets where channel-bodies are vertically stacked (e.g. two offset stacked 

units are distinguished if the ratio between the vertical extent of their overlap and 

the thickness of the thinner unit is less than 0.5, or two offset stacked units are 

distinguished if the ratio between the cross-stream extent of their overlap and the 

width of the narrower unit is less than 0.5). One of the reasons why criteria for 
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channel-complex definition have been established lies in the necessity to include 

subsurface datasets of limited resolution and/or quality, as the same system is 

designed to be employed for other applications (e.g. Colombera et al. 2012b, 

Chapter 6) for which criteria have not been planned with a specific application in 

mind. These criteria – although partly based on clearly defined values – are meant 

to be applied flexibly and with consideration of limitations in the quality of 

observations. For example, whenever geological knowledge permits the lateral 

tracing of important erosional surfaces, such surfaces may be adopted as 

depositional-element bounding surfaces. The advantage of this geometrical 

approach lies in its objectivity: channel complexes as defined here are simple 

stratigraphic packages interpreted as being deposited in a fluvial-channel context: 

they are not attached to more specific genetic significance, so they cannot be 

regarded as, for example, the sedimentary expression of inter-avulsion channel 

belts. After the definition of channel complexes is carried out, the subdivision of the 

floodplain domain into geometrical packages is achieved by defining objects that 

are vertically and laterally adjacent to the recognized channel complexes. Then, in 

the database, stratigraphic volumes to which depositional elements belong are 

classified on a range of attributes, including their average aggradation rate or the 

relative change in aggradation rate as compared to vertically-neighbouring 

volumes; aggradation-rate attributes are again compiled from literature review. The 

database includes a variety of types of datasets, but the results presented here are 

derived mainly from outcrop and 3D seismic data types. Two-dimensional or 

pseudo-3D architectural panels depicting the cross-gradient sedimentary 

architecture of fluvial systems as composed of ‘channel’ versus ‘floodplain’ deposits 

are the most common type of dataset included; for these datasets depositional-

element proportions are based on cross-sectional areas estimated as the product of 

the lateral and vertical extent of the depositional-elements. Thickness-based 

proportions are derived from 1D datasets. 

This approach is subject to several limitations. Notably, unlike the procedure 

adopted for experimental methods, it lacks full control on spatial (down- and cross-

stream) variability of architectural products and boundary conditions. For example, 

although we are aware of systems for which important lateral changes in 

subsidence are likely to control channel clustering (e.g. half-graben systems subject 

to syn-sedimentary tilting), some datasets may represent preserved portions of 

systems subject to subsidence patterns characterized by lateral variability in 

subsidence rates and possibly inversions in cross-stream gradients in subsidence 

rates. Also, it is impossible to establish a way to refer observations of a fragmentary 

record spatially in a way that enables full comparison of different case studies, as 

done for example in laboratory conditions by referring data to a mass-extraction 
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parameter (i.e. by considering proximality at any point as described by the fraction 

of all sediment fed to the system that is deposited upstream of that point; Strong et 

al. 2005). Only qualitative classifications (e.g. proximal vs. distal) or case-specific 

quantitative relationships (e.g. downstream distance between two volumes) can be 

considered. Another limitation is associated with the inclusion of geometrical data 

from published summary datasets in the form of channel-body width/thickness 

aspect-ratio cross-plots, as for these datasets the geometrical criteria cannot be 

checked, making comparisons with other systems less reliable. In addition, stored 

aggradation rates may just represent average values of rates changing at high 

frequency through time, and such values may have been averaged over different 

time scales for different stratigraphic volumes. As a general reference, however, 

stratigraphic volumes considered in this study appear to be the product of 

deposition at the 10-1-101 Ma timescale, and are typically tens of metres thick. The 

choice of this spatial/temporal scale makes our results directly comparable with 

volumes simulated by the LAB models. Further limitations are inherent as a function 

of variability in the dataset quality, relating for example to restricted continuity of 

exposure, 3D control, reliability of interpretations, and choice of a minimum cut-off 

size for mappable units by the original authors of the source work. Thus, applying 

this approach, care must be exercised in the choice of the systems included in the 

analysis as well as in the interpretation of the results. In this analysis, neither 

average aggradation rates nor channel-complex dimensional parameters have 

been corrected to account for the effects of sediment compaction. 

 

4.4 Results 

The method has been employed to compare the evolution of different depositional 

systems that underwent vertical changes in channel-deposit proportions combined 

with temporal changes in overall aggradation rates; variations within individual 

systems are also compared with variations between different systems (figure 4.8). 

On the basis of the assumption that aggradation rate provides an approximation of 

the rate of creation of accommodation space, this methodology can be of use to 

assess whether accommodation itself represents an overriding control with general 

predictive value that determines architectural differences observable between 

different systems and potentially also between different basins (cf. distinction 

between high- and low-accommodation ‘settings’; Catuneanu 2006, p. 253, and 

references therein). 

The systems that provide data of a type suitable for investigation of the temporal 

evolution (i.e. for which changes in aggradation rates through time are documented) 
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cover different tectonic and physiographic settings and typify different scenarios of 

accommodation generation and architectural evolution; these literature-derived 

datasets consist of architectural data mapped from the Blackhawk Formation 

(Hampson et al. 2012), from the Chinji Formation (McRae 1990), from the 

Omingonde Formation (Holzförster et al. 1999), and from the Price River and North 

Horn Formations (Olsen 1995). 

From these case studies, only the Triassic Omingonde Fm. (Namibia) developed in 

an extensional tectonic setting, representing the infill of a half-graben (the 

Waterberg Basin). For the scope of this work, this is the lowest-quality dataset, 

being based on relatively sparse 1D data (Holzförster et al. 1999) and having poor 

constraints on aggradation rate; in particular, there exists no agreement regarding 

the duration of sedimentation recorded by the Upper Omingonde Formation and the 

duration of the hiatus associated with its upper limit in the Waterberg-Erongo area 

(cf. Wanke 2000; Smith & Swart 2002; Catuneanu et al. 2005; Zerfass et al. 2005; 

Abdala et al. 2013), thereby placing some uncertainty on inferences made on the 

evolution represented in figure 4.8 for the Middle to Upper Omingonde system. 

Depositional-element variations observed within the Omingonde Formation are not 

representative of basin-wide changes and are not suitable for examining the LAB 

prediction on temporal variations for systems with uniform subsidence distribution: 

the existence of spatial variations in subsidence impedes the evaluation of LAB 

predictions of temporal evolution made for settings in which accommodation is 

created uniformly. However, this case study does allow evaluation of another 

prediction based on LAB models (Bridge & Leeder 1979; Alexander & Leeder 

1987), pertaining to the temporal evolution of fluvial infills of half-graben 

depocentres subject to variable subsidence through time. In accordance with the 

models, the observed positive relationship between changes in channel proportion 

and changes in aggradation rates (figure 4.8) in a portion of the basin bordering the 

Waterberg-Omaruru Fault is thought to represent local drainage reorganization – 

and therefore a change in channel-belt clustering – in response to temporal 

variations in cross-stream gradients of subsidence associated with variable rates of 

crustal extension, whereby the topography built by the lateral increase in 

subsidence rate “draws” channels toward the depocentre. Other controls on 

accommodation – notably climatic changes during deposition of the Omingonde 

Formation as demonstrated by indicators of a progressive temporal increase in 

aridity punctuated by short-lived intervals characterized by relatively more humid 

conditions, and tectonically-driven supply variations – were believed to be overriden 

by basin tectonics (cf. Holzförster et al. 1999; Smith & Swart 2002). This dataset is 

not used in the successive analysis on channel-complex geometries and 
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connectivity, as no information on channel-complex geometries and spatial 

relationships is available. 

The Miocene Chinji Fm. (Siwalik Group, Pakistan) is a well-studied fluvial-megafan 

succession (McRae 1990; Willis 1993b; Willis & Behrensmeyer 1994; Zaleha 

1997a; 1997b; Friend et al. 2001) that developed under the convergent tectonic 

regime of the Himalaya peripheral foreland basin, in an inland setting, several 

hundreds of kilometres upstream of the coast (Jain & Sinha 2003), and in which 

sediment aggradation rates are known to be directly related to thrust activity (Meigs 

et al. 1995). The dataset of McRae (1990) is based on an architectural panel that 

records a ca. 11 km-wide, 200 m-high part of the succession in which constraints 

on aggradation rates are provided by palaeomagnetic isochrons. Variations in 

thickness for packages bounded by the isochrons suggest non-uniform aggradation 

rates in space; yet, differently from what can be observed in the Omingonde 

Formation, thickness changes do not occur at fixed positions through time, 

indicating the absence of a stable depocentre across the considered section. Thus, 

this dataset appears to be suitable for evaluating the validity of LAB predictions on 

the temporal evolution of systems undergoing variations in aggradation rates. 

Overall, the relationships between aggradation rate and architectural data from this 

system do not match LAB model predictions. A progressive decrease in 

aggradation rates is recorded and the considered stratigraphic volumes evolved by 

exhibiting a decrease, followed by an increase, in channel-complex abundance and 

density (figure 4.8); in addition, the post-Chinji evolution of the succession is known 

to be characterized by an increase in channel-body proportions and sizes 

associated with an overall increase in aggradation rate (Nagri Formation – not 

documented in FAKTS database; cf. Zaleha et al. 1997b). 

The Upper Cretaceous Blackhawk Formation (Mesaverde Group, USA) records 

deposition in an alluvial to coastal plain setting in the Western Interior Foreland 

Basin. The sedimentary architecture of this system has been studied extensively 

(e.g. Van Wagoner 1995; Yoshida 2000); the data we present were originally 

presented as part of a dataset collected by Hampson et al. (2012), which consists 

of a set of architectural panels covering the entire unit thickness over an horizontal 

extension of more than 70 km in the Wasatch Plateau (Utah); constraints on 

aggradation rates inferred on durations based on regional correlations permit the 

recognition of four stratigraphic volumes. In general, in marine-influenced paralic 

coastal plain contexts such as this, the contribution of eustatic changes in affecting 

accommodation would favour uniformity in the cross-gradient distribution of 

accommodation variations, making the associated architectural data very suitable 

for the scope of this study. However, even though two third-order eustatic cycles 
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partially cover the episode of time represented by the Blackhawk Formation (Haq et 

al. 1988), flexural subsidence is probably the dominant component in determining 

the variable accumulation rates observed for stratigraphic volumes of the duration 

of the ones discussed here (Hampson et al. 2012). Nevertheless, important cross-

gradient variations in the rate of creation of accommodation are not documented. In 

spite of significant variations in average aggradation rates, temporal changes do not 

display dramatic variations in channel-deposit proportions (see also Hampson et al. 

2013), but rather demonstrate a consistent positive relationship between 

aggradation rate and channel abundance. 

Within the same basin, the Price River and North Horn Formations (Upper 

Cretaceous to Paleocene; Mesaverde Group, USA) record the transition towards a 

tectonic regime characterized by the uplift of basement-cored blocks (Laramide-

style deformation; Cross 1986); notably, the upwarping of one of these domes – the 

San Rafael Swell – began during deposition of the Price River Fm. (Lawton 1983; 

Franczyk & Pitman 1991; Guiseppe & Heller 1998). The sedimentary architecture of 

these units has been studied by several authors (Olsen 1995; Olsen et al. 1995; 

Guiseppe & Heller 1998); the data presented here were originally depicted in the 

form of 2D architectural panels mapped along a 6 km-wide, several hundreds 

metres-high exposure at Price Canyon (Olsen 1995). Mean aggradation rates have 

been separately estimated for the two formations, but uncertainty in estimation is 

determined by an unconformity between the two units (whose importance at Price 

Canyon is debated; cf. Dickinson et al. 1986; Olsen et al. 1995; Guiseppe & Heller 

1998; Horton et al. 2004). Furthermore, determination of the significance of these 

values is hampered because sedimentation appears to have been interrupted by a 

significant hiatus during accumulation of the North Horn Formation (Yi & Cross 

1997). Basin tectonics represents the main control on accommodation: aggradation 

rates are considerably slower than the estimated uplift rates for the San Rafael 

Swell (0.07-0.36 m/Ka; Lawton 1983) and accommodation was not uniformly 

generated across the basin, resulting in topographically-driven channel clustering in 

the Price Canyon area (Guiseppe & Heller 1998), to which the data presented here 

refer. Thus, the overall decrease in channel-deposit proportions (figure 4.8) in the 

more slowly aggrading North Horn Formation may relate to either continued growth 

of the San Rafael Swell, which would have driven the position of the channel-belts 

further away from the upwarp (and from the sampled area to which the available 

data refer), or to a deceleration in uplift rates, which would permit channels to be 

more aerally distributed during episodes when the palaeo-relief was being buried 

under the onlapping floodplain deposits (cf. Franczyk & Pitman 1991; Sitaula & 

Aschoff 2012). Crucially, the inability to investigate shorter-time-scale changes, the 
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non-uniformity of subsidence patterns, and the relatively small observation window 

make this case study only partially suitable for the scope of this study. 

Information from systems for which a temporal evolution constrained to 

accumulation rates could not be reconstructed was drawn from the Tortola fluvial 

sytem (Loranca Basin, Spain; Martinius & Nieuwenhuijs 1995; Martinius 2000), from 

the Sariñena Formation (Ebro Basin, Spain; Hirst 1991), from the Caspe Formation 

(Ebro Basin, Spain; Cuevas Martínez et al. 2010), from the Po Basin (Amorosi et al. 

2008), from the Kaiparowits Formation (Western Interior Basin, USA; Roberts 

2007), and from the Ferris Formation (Hanna Basin, USA; Hajek et al. 2010). Based 

on evaluation across stratigraphic volumes from all systems, a trend of increasing 

channel proportion with increasing aggradation rate is seen; although this 

relationship is not statistically significant, it nevertheless contradicts results that 

would be expected if the relative proportion of channel and floodplain deposits was 

actually diagnostic of low- or high-accommodation settings (cf. Catuneanu 2006). 

 

 

Figure 4.8: cross-plot of channel proportion and mean aggradation rate for different 

stratigraphic volumes. Data from the same system are joined by arrowed lines to 

indicate temporal evolution, and by dotted lines to indicate downstream evolution. 

Case studies are coded as follows: 3: Po Basin (Amorosi et al. 2008); 28: Caspe Fm. 

(Cuevas Martínez et al. 2010); 52: Omingonde Fm. (Holzförster et al. 1999); 67: Chinji 

Fm. (McRae 1990); 69: Price River Fm. and North Horn Fm. (Olsen 1995); 78/79: 

Tortola system (Martinius & Nieuwenhuijs 1995; Martinius 2000); 109: Kaiparowits 

Fm. (Roberts 2007); 113: Ferris Fm. (Hajek et al. 2010);  115: Blackhawk Fm. 

(Hampson et al. 2012); 117: Sariñena Fm. (Hirst 1991). 



106 

Chapter 4 

 

The distributions of channel-complex thicknesses and widths from 19 stratigraphic 

volumes for which mean aggradation rates could be constrained are presented in 

figure 4.9. In addition to most of the above-mentioned case studies, other systems 

that allowed evaluation of channel-complex geometries include the Muda Formation 

(West Natuna Basin, South China Sea; Darmadi et al. 2007), the Olson Member of 

the Escanilla Formation (Ainsa Basin, Spain; Labourdette 2011), the Durham Coal 

Measures (Pennine Basin, UK; Fielding 1986), and the Joggins Formation 

(Cumberland Basin, Canada; Rygel & Gibling 2006). The maximum thickness of the 

channel-complex across its exposure has been considered, whereas width 

distributions have been constructed from data that provide estimates of real cross-

stream widths, uncorrected apparent widths and incompletely observed widths. No 

clear trend is observed between the central tendency or dispersion of channel-

complex thickness and the mean aggradation rates of the volumes within which 

they are contained; although a positive trend between channel-complex median 

width and mean aggradation rate is indicated, this is not statistically significant. 

Values of mean channel-complex thickness and width from stratigraphic volumes 

within the systems for which temporal changes in aggradation rates are 

documented demonstrate a consistent positive relationship between changes in 

thickness and changes in width (figures 4.10a and 4.10b). More significantly, from 

the same systems, five out of six temporal changes show a positive relationship 

between changes in thickness and width, and changes in average aggradation rate. 

Comparison with figure 4.8 reveals that variations in channel-complex geometrical 

parameters have the same sign as variations in channel-complex proportion; it is 

therefore reasonable to consider that this trend in the evolution of channel-complex 

geometries may partly reflect the effect of variable channel clustering. Since the 

analysis of a larger number of case studies – also based on other systems included 

in the same database – has permitted the determination of relationships of linear 

proportionality between (i) the mean thickness of channel complexes and their 

overall proportion in a volume, and (ii) the logarithm in base 10 of the mean width of 

channel complexes and their overall proportion in a volume (cf. Chapter 5), an 

attempt has been made to normalize observations regarding geometrical 

parameters on the proportion of channel deposits of the same volumes. It must be 

noted that this normalization is entirely empirical and results must be treated with 

care. However, results presented in figures 4.10c and 4.10d show the lack of any 

significant relationship between aggradation rates and channel-complex normalized 

geometrical parameters, when these two parameters are considered together. A 

weak positive trend is observed between aggradation rates and normalized width 

as assessed between all volumes, but a negative correlation between changes in 
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aggradation rates and changes in normalized width appears to be dominant within 

systems subject to variable aggradation rates. 

 

 

Figure 4.9: modified box plots representing channel-complex thickness (A) and width (B) 

distributions for 19 studied stratigraphic volumes, in ascending order of mean 

aggradation rate. Width distributions also incorporate uncorrected values of apparent 

(i.e. oblique with respect to palaeoflow) and incomplete observations. 
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Figure 4.10: cross-plots of mean channel-complex thickness (A) and width (B) against 

mean aggradation rate for different stratigraphic volumes. The same results are also 

presented for normalized values of thickness and width, expressed as the ratio 

between channel-complex mean thickness and proportion (C) and between the base-

ten logarithm of channel-complex width and channel proportion (D); see text for 

explanation. Data from the same system are joined by arrowed lines to indicate 

temporal evolution of channel-complex geometry. Mean widths have been computed 

including apparent (i.e. oblique with respect to palaeoflow) and incomplete 

observations. Case studies are coded as follows: 67: Chinji Fm. (McRae 1990); 69: 

Price River Fm. and North Horn Fm. (Olsen 1995); 78/79: Tortola system (Martinius & 

Nieuwenhuijs 1995; Martinius 2000); 109: Kaiparowits Fm. (Roberts 2007); 113: 

Ferris Fm. (Hajek et al. 2010);  115: Blackhawk Fm. (Hampson et al. 2012); 117: 

Sariñena Fm. (Hirst 1991). 
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The analysis of channel-complex geometrical variations observed within evolving 

systems has then been extended by comparing the same results with high-quality 

datasets from two more systems for which sequence stratigraphic frameworks were 

established by identifying low- and high-accommodation systems tracts on the 

basis of the proportion and geometries of channel bodies (figure 4.11). This has 

been attempted for the Olson Member of the Escanilla Formation (primary data 

from Labourdette 2011) and the Morrison Formation (USA; primary data from 

Kjemperud et al. 2008). Increase in width/thickness aspect ratios of channel bodies 

concurrent with increase in channel density is often advocated as an architectural 

indicator of reducing accommodation; however, trends of decrease in channel-

complex width/thickness aspect ratios with decrease in aggradation rate have been 

observed in datasets for which aggradation rate was constrained. 

 

 

Figure 4.11: cross-plots of mean channel-complex thickness against width for different 

stratigraphic volumes within three systems characterized by temporal changes in 

aggradation rate, and within two systems interpreted as being characterized by 

temporal changes in aggradation rate. Relative changes in aggradation rate are 

represented by the plus (increase) or minus (decrease) signs; data from the same 

system are joined by arrowed lines to indicate temporal evolution of channel-complex 

geometry. Case studies are coded as follows: 51: Escanilla Fm. (Labourdette 2011); 

65: Morrison Fm. (Kjemperud et al. 2008); 67: Chinji Fm. (McRae 1990); 69: Price 

River Fm. and North Horn Fm. (Olsen 1995); 115: Blackhawk Fm. (Hampson et al. 

2012). 
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Finally, data relating to the spatial arrangement of the channel complexes within the 

stratigraphic volumes have been used to derive information concerning the degree 

of channel clustering and its influence on vertical channel connectivity. This 

information is provided by values of channel-complex ‘connected thickness’ – 

defined as the sum of the thicknesses of vertically-stacked channel complexes, with 

the admissible condition of channel complexes being included in more than one 

stack. No particular relationship is seen between the mean or maximum connected 

thickness and the mean aggradation rate, when evaluated across different systems 

(figure 4.12). Instead, a positive relationship between variations in mean connected 

thickness and mean aggradation rate are observed within systems for which 

evolution is tracked, although this is not matched by a similar relationship between 

the increase in vertical connectivity (quantified by the difference between mean 

connected thickness and channel-complex thickness) and the mean aggradation 

rate. 

 

 

Figure 4.12: cross-plots of minimum and mean channel-complex thickness and mean and 

maximum channel-complex ‘connected’ thickness against mean aggradation rate for 

different stratigraphic volumes. Values of mean connected thickness from the same 

system are joined by dotted arrowed lines to indicate temporal evolution of channel 

vertical connectivity. See text for explanation. 
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4.5 Discussion 

Terminology problems persist in continental sequence stratigraphy; a particularly 

important issue relates to the lack of agreement on a standardized definition of the 

concept of “subaerial accommodation” (cf. Jervey 1988; Posamentier & Vail 1988; 

Catuneanu 2006). Since the term has become part of a common geological 

vocabulary, the lack of rigour in the definition of “accommodation” presents some 

problems with its use, such as the recognition of its three-dimensional character, or 

the consideration of it as a pure control on stratal organization (Muto & Steel 2000; 

Blum & Törnqvist 2000). The following discussion refers to accommodation as the 

volume within the elevation difference between the long-term river equilibrium 

profile and the topography, largely in agreement with Posamentier & Vail (1988), so 

that, consistently with respect to the geomorphological perspective, the equilibrium 

profile is controlled by sediment supply. However, in agreement with most authors, 

we practically quantify accommodation as a vertical distance, and we infer rates of 

creation of accommodation on the basis of aggradation rates, in agreement with the 

definition of accommodation by Muto & Steel (2000; cf. ‘realized accommodation’, 

Cross 1988). 

With this in mind, the main implications drawn from the results presented above are 

as follows. 

 Within the considered fluvial systems, temporal variations in aggradation 

rates do not serve as good predictors of changes in channel-deposit 

proportions through an inverse relationship, as implied by the LAB models: 

on the contrary, positive relationships emerge, even in conditions of 

uniformly-distributed accommodation. Furthermore, increases in channel-

complex thickness and widths are observed with concurrent increases in 

channel proportion, and vice versa. Accordingly, positive relationships 

between mean aggradation rate and average values of estimates of 

channel-complex vertical connectivity also contradict those predicted by the 

LAB models. These considerations suggest that sequence stratigraphic 

models interpreting temporal changes in channel proportions and geometry 

in terms of changes in the rate of creation of accommodation need to be re-

evaluated. 

 The data presented here refer to volumes for which mean aggradation rates 

collectively span almost two orders of magnitude. When variations in 

channel proportions as a function of aggradation rates are considered for 

stratigraphic volumes from nine different systems, a weak positive 

correlation is observed. Moreover, no particular trend is observed in the 
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distributions of channel-complex thickness and width, on the basis of 

analysis of data from eleven different systems (19 stratigraphic volumes) 

subject to variable aggradation rates. This provides evidence against the 

practicability of inferring low- or high-accommodation settings from channel-

deposit proportions and geometries. 

The use of terms such as ‘high-‘ or ‘low-accommodation systems tracts’ (Olsen et 

al. 1995; Catuneanu 2006; Catuneanu et al. 2009; Labourdette 2011) was 

previously criticized because of the intrinsic difficulty posed by the model in tracing 

a bounding surface within portions of depositional systems undergoing progressive 

increase in accommodation (Embry et al. 2007). Here we demonstrate that the 

recognition of such systems tracts as solely based on channel-body amalgamation 

may also be misleading for interpretations of basin evolution, as floodplain 

cannibalization by slowly aggrading systems does not seem to be the norm in 

determining high channel density and channel-body sheet-like geometries, at least 

when evaluated at the spatial and temporal scales to which the LAB models refer. 

Equally, the possibility to infer the ratio between accommodation and sediment 

supply (A/S) on the basis of channel proportions (Ramón & Cross 1997; Martinsen 

et al. 1999; Kjemperud et al. 2008; Nádor & Sztanó 2011) requires discussion, 

especially in view of the fact that terrestrial accommodation rate depends on 

sediment supply rate, in contrast to contexts where the concept of sea-level-based 

accommodation is applicable. This discussion is complicated further because the 

terms ‘accommodation’ and ‘A/S’ (accommodation/sediment supply ratio) have 

been used interchangeably in the same works (Martinsen et al. 1999; Kjemperud et 

al. 2008). Overall, results support the claim made by Gibling et al. (2011) that it is 

dangerous to infer accommodation conditions from degree of channel 

amalgamation, and provide evidence to recommend against the use of terms such 

as high- or low-accommodation systems tracts based exclusively on observed 

channel density. Instead, the use of non-genetic terms (e.g. channel-dominated 

interval, low channel-amalgamation tract) in absence of temporal constraints or 

evidence of specific controls should be favoured. While acknowledging the difficulty 

in constraining the controls on fluvial-system evolution, it appears evident that the 

interpretation of continental stratigraphy requires careful consideration of the full 

suite of system boundary conditions, as obtained from independent constraints on 

palaeoenvironment and basin evolution. Results presented here highlight the 

necessity to include more case studies so that (i) results can be better 

substantiated, and (ii) it becomes possible to concentrate on the direct 

investigations of architectural response to the controls that determine variations in 

aggradation rate. It is important to understand how fluvial systems respond to the 

different drivers of changes in aggradation and the relative importance of each 
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factor. Thus, future work involving similar quantitative comparative studies should 

focus on the analysis of how sedimentary architecture and its temporal evolution 

are controlled by various factors, possibly combining information from different 

scales of observations by including genetic units that are diagnostic of fluvial 

processes and subenvironments. 

 

4.6 Conclusions 

Real-world data from ancient fluvial sedimentary successions suggest that the 

evolution of systems subject to variable aggradation rates may not regularly follow 

the path expected by the LAB models of alluvial architecture, whereby a negative 

relationship between aggradation rate and channel-deposit density is expected; 

therefore, rates of aggradation cannot be employed as reliable predictors of 

architectural evolution. This exposes limitations in popular fluvial sequence 

stratigraphy models that draw heavily upon the LAB-model principles and it 

demonstrates the inadequacy of the established practice in continental sequence 

stratigraphy of defining accommodation-based stratigraphic packages exclusively 

on the basis of variations in channel-body density and geometry. More generally, 

results presented herein may give an insight into the fact that different architectural 

effects stem from different factors controlling accommodation: sedimentological 

works should focus on assessing which of such control-response situations may be 

dominant in fluvial systems developed in various settings, rather than fitting 

observations into models based on predictors of supposed general validity. 
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5 Models for guiding and ranking well-to-well correlations: 

example applications to fluvial reservoirs 

 

5.1 Summary 

A method based on a set of probabilistic tools has been devised to assess the 

geological realism of subsurface well-to-well correlations that entail the lateral 

tracing of geological bodies across a well array with constant spacing. Models 

quantifying the likelihood of well correlation of geobodies (here termed ‘correlability’ 

models and based on the ratio between correlatable and penetrated geobodies) are 

obtained from total probabilities of penetration and correlation, which are 

themselves dependent on the distribution of lateral extent of the geobody type. 

Employing outcrop-analogue data to constrain the width distribution of the 

geobodies, it is possible to generate a model that describes realistic well-to-well 

correlation patterns for given types of depositional systems. The correlability 

models can be applied for checking the quality of correlation-based subsurface 

interpretations, by assessing their geological realism as compared with one or more 

suitable outcrop analogues. The flexibility of the approach in terms of analogue 

selection is illustrated by generating total-probability curves that refer to fluvial 

channel complexes and that are categorized on the basis of outcrop-analogue 

classification (e.g. a model braided river system, or a model system with 20% 

channel deposits), making use of information from a database for the quantification 

of fluvial sedimentary architecture. From these total-probability functions, values 

can be drawn to adapt the correlability models to any well-array spacing. The 

method has been specifically applied to rank three published alternative 

interpretations of a stratigraphic interval of the Travis Peak Formation (Texas, USA) 

that was previously interpreted as a braided fluvial deposystem; the ranking is 

based on quantified geological realism of correlation patterns as compared to (i) all 

analogues recorded in the FAKTS fluvial architecture database and considered 

suitable for large-scale architectural characterization, and (ii) a subset of them 

including only systems interpreted as braided. 
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5.2 Introduction 

For hydrocarbon reservoirs or aquifers that are composed principally of fluvial 

channel lithosomes, it is desirable to be able to realistically forecast the lateral 

continuity of sedimentary architectural elements when attempting well-to-well 

correlations. For this reason several predictive techniques have been proposed in 

past decades to improve the realism of models of subsurface fluvial sedimentary 

heterogeneity based on well-to-well correlation panels. Commonly, empirical 

quantitative relationships are used for this purpose. For example, a popular 

approach is the one proposed by Collinson (1978), who used previously published 

empirical relationships obtained from modern systems linking meander-belt width, 

mean annual discharge, formative-channel bankfull depth and bankfull width 

(equations by Leopold & Wolman 1960; Carlston 1965; Leeder 1973), to derive a 

relationship to permit estimation of the likely cross-gradient extent of channel 

sandbodies produced by meandering rivers as a function of channel depth. 

Similarly, Lorenz et al. (1985) inferred a range of likely meandering-channel 

sandstone-body widths on the basis of estimated formative-channel bankfull width, 

which is in turn estimated from point-bar cross-stream width, employing empirical 

relationships by Leopold & Wolman (1960) and Allen (1965b), respectively. 

Additional constraints to facilitate the application of approaches based on palaeo-

hydrological interpretations have been adopted, specifically in the form of relations 

linking thickness of cross-stratified sets, dune height and flow depth (Bridge & Tye 

2000), or bar-scale macroform thickness and channel depth (e.g. Bhattacharya & 

Tye 2004). Extending Collinson’s (1978) results, Fielding & Crane (1987) produced 

a set of similar relationships for a wider range of fluvial planform types, as well as 

relationships expressing likely formative-channel depths as a function of channel 

sandbody thickness, which would ideally permit the application of those 

relationships to datasets that record channel sandstone thickness only. These 

relationships were then combined by Fielding & Crane (1987) to derive a 

relationship for the most likely width of a channel sandbody of known thickness, 

which could be applied without requiring knowledge of palaeo-hydrological 

parameters. Analogous curves have also been directly derived from geometrical 

data obtained from the systematic measurement of fluvial channel sandstone 

thickness and width from various ancient successions (e.g. Dreyer 1993; Robinson 

& McCabe 1997). More generally, a large amount of rock-record data has been 

included in cross-plots of channel sandstone thickness and width, with the aim of 

establishing general guides for achieving realistic well correlations (e.g. Mjøs & 

Prestholm 1993; Reynolds 1999); in a similar fashion and for the same scope, 

information about the cross-gradient extent of channel belts in modern fluvial 
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environments has been distilled into width distributions, by taking advantage of the 

full lateral control and knowledge about flow direction and environmental conditions 

that are ensured only by study of modern systems (e.g. Tye 2004). 

One of the underlying themes of all these approaches is a desire to inform 

deterministic models by variably making use of architectural data drawn from 

outcrop or modern analogues, i.e. ancient or modern sedimentary systems 

displaying sedimentary architecture that is thought to be comparable with the 

interpreted subsurface system. Another fundamental characteristic shared by these 

methods is that the information they provide is useful for assessing whether 

correlation of an individual channel lithosome results in a realistic reconstruction of 

likely lateral extension: likelihood is independently considered for each single 

channel unit, but no information is provided to guide correlations by quantifying the 

realism of heterogeneity patterns of the sedimentary succession as a whole. In 

other words, whereas these approaches inform the lateral tracing of a channel body 

so that it results in a plausible lateral extent, they do not tell us whether the 

correlations carried out for all channel bodies in a succession result in a realistic 

distribution of channel-body lateral extent. 

In view of the limitations associated with such past approaches, the aim of this 

study is to illustrate a new method for guiding well-to-well correlations of fluvial 

channel bodies.  Specific objectives are as follows: 

 to employ a large outcrop-analogue database to further evaluate the 

usefulness and limitations of previously-proposed approaches to the 

deterministic modelling of fluvial hydrocarbon reservoirs or aquifers; 

 to present a new probabilistic method to guide the development of well-to-

well correlation panels and to appraise their quality, using descriptors of 

sedimentary architecture derived from analysis of whole depositional 

systems or stratigraphic volumes rather than individual channel bodies; 

 to demonstrate the utility of the approach by ranking the geological realism 

of three different interpretations of the same system based on the 

employment of different techniques for the correlation of the same well 

array.  

In terms of the generic application of this type of approach to elucidate subsurface 

architecture, it is worth noting that, although the approach proposed here 

specifically refers to well correlation of fluvial channel complexes, the method can 

be generalized to any genetic-unit type (e.g. deep-water sand sheets) provided that 

an appropriate database of their lateral extent, as measured from reservoir 

analogues, is available.  
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5.3 Database 

Given that established approaches to guiding subsurface correlations of fluvial 

channel bodies are based on the derivation of an expected value of width for each 

individual channel element by using relationships based on either geometry 

(channel-body thickness) or palaeo-hydrology (the inferred depth or width of 

associated formative channels), this study intends to further test the applicability of 

such methods using a large architectural knowledge base: the Fluvial Architecture 

Knowledge Transfer System (FAKTS; Colombera et al. 2012a, Chapter 2).  Among 

other things FAKTS includes geometrical and (palaeo-) hydrological data of 

depositional elements that are defined on geometrical rules and classified as 

channel complexes or floodplain units. As of February 2013, the database includes 

3345 channel complexes to which geometrical information is associated, obtained 

from 40 different case histories, representing mostly studies from the published 

literature. FAKTS channel complexes are objects whose geometry is effectively 

described by thickness and width.  Therefore, it is appropriate to use data derived 

from these geo-bodies to construct numerical instruments to guide well-to-well 

correlations.  Such instruments are employed in this study to implement a new 

assessment of likelihood of correlation (here termed correlability) by making use of 

data that collectively refer to entire successions or parts thereof, rather than to 

single channel bodies. 

 

5.4 Assessing past approaches to channel-body width 

prediction and introducing a new probabilistic method 

Firstly, this study re-considers past approaches to inform correlation panels by 

guiding the lateral tracing of each individual channel element, in the light of 

information derived from the large architectural knowledge base (FAKTS) that is 

now available. It is not within the scope of this work to provide a full account of the 

drawbacks of analogue-based or palaeohydrology-based approaches, and neither 

is this necessary since these pitfalls have already been discussed in detail by 

Bridge & Mackey (1993), Bridge & Tye (2000) and Miall (2006). Instead, this work 

further highlights the inadequacy of approaches based on the correlation of each 

single channel body by focusing once more on the wide architectural variability that 

might stem from adopting such methods without checking for the geological realism 

of the modelled succession. This problem is emphasized by the considerable 
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scatter observed in the architectural data presented here, which highlights the 

difficulty of reliably inferring channel-body width from the formative-channel bankfull 

depth, of inferring formative-channel bankfull depth from the thickness of a channel 

sandstone body, or of inferring channel-body width directly from its thickness. For 

example, considering bankfull depths observed in the 7 to 23 m range, FAKTS 

channel-complex widths cover as much as four orders of magnitude (figure 5.1); 

overall the two variables yield a Pearson correlation coefficient of 0.341. The 

architectural database stores both the inferred/measured bankfull depth of channels 

and the geometry of lower-scale units (architectural elements) contained within the 

channel complexes; since architectural-element thickness, in some cases, may 

relate to formative channel bankfull depth, some architectural elements whose 

thickness was interpretable as the entirely preserved thickness of the associated in-

channel geomorphic element (barform) were therefore considered to estimate 

bankfull depth (cf. Bhattacharya & Tye 2004). With regard to the relationship 

between measured or inferred bankfull depths and channel-complex thickness 

(figure 5.2), FAKTS data do not fit well with the relationship given by Fielding & 

Crane (1987) in the form of channel depth = 0.55 sandstone thickness, or with a 

linear relationship altogether (application of a linear best fit to the FAKTS dataset 

returns R2 = 0.0656). The FAKTS channel-complex width-to-thickness scatterplot 

(figure 5.3) displays substantial scatter, even if only real widths are considered, with 

three to four order of magnitudes in width are possibly associated with any given 

value of thickness; importantly, the power-regression best fit of all FAKTS channel-

complex real-width data shows a significant discrepancy with the most-likely case 

predicted by Fielding & Crane (1987), especially for channel complexes that are 

thicker than 8 m. 

Consequently, the strict application of quantitative relationships clearly entails 

significant risk; even a flexible application of analogue information, based on the 

range of natural variability in architectural characteristics would still potentially lead 

to many correlation panels that are architecturally very different but equally 

acceptable, given that they would honour geometrical constraints. Although it is 

important to recognize that there is value in basing such models on geometrical 

information, and that it is useful to synthesize such information into empirical 

relationships, in this study a different set of constraints are used – again derived by 

outcrop or modern analogues – to better inform or rank well-to-well correlation 

frameworks of subsurface fluvial architecture.  
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Figure 5.1: scatterplot of channel-complex width against formative-channel bankfull depth 

based on all suitable data contained in the FAKTS database, including data published 

by Fielding & Crane (1987), Jordan & Pryor (1992), Fielding et al. (1993), Friend & 

Sinha (1993), and Tye (2004). The power-regression curve is plotted as a continuous 

line, whereas the equation given by Collinson (1978) – included for comparison – is 

represented as a dashed line.  

 

 

Figure 5.2: scatterplot of channel-complex thickness against formative-channel bankfull 

depth or architectural-element thickness based on all suitable data contained in the 

database. Architectural elements represent lower-scale units contained within channel 

complexes and that are interpretable as the preserved product of geomorphic units, 

such as barforms; geomorphic elements whose thickness appears to be completely 

preserved and which are considered reasonable and useful indicators of channel 

bankfull depth are depicted as filled data-point markers. 
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Figure 5.3: scatterplot of channel-complex width against channel-complex thickness; 

apparent widths refer to measurements made from exposures that are oblique with 

respect to the channel-belt-scale flow axis or from situations where palaeoflow was 

uncertain; real widths refer to the entire body lateral extent along a direction normal to 

the flow axis; following the terminology by Geehan & Underwood (1993), partial 

widths refer to measurements of channel complexes for which one lateral termination 

is not exposed, whereas unlimited widths refer to bodies for which both lateral 

terminations are not exposed. The curve expressing the “most-likely scenario” of 

Fielding & Crane (1987) is also plotted, for comparison with a power-regression curve 

obtained from all FAKTS channel-complexes for which real-width data are available. 

 

Specifically, in the approach taken in this study we do not consider relationships 

that refer to individual elements that need to be correlated over several wells; 

instead we consider relationships that refer to either the sedimentary succession as 

a whole, or to specific portions thereof. In particular, we provide probabilistic tools 

that can be employed to check the realism of a given fluvial reservoir/aquifer model, 

so that the interpretation can be iteratively adjusted to match with a target quantity 

describing the correlability of channel bodies over a given inter-well distance for an 

ideal synthetic analogue made of architectural data obtained from several real-

world case studies (cf. Colombera et al. in press, Chapter 3). Analogue data on 

which estimates of target system correlability are based can be customized to fit 

interpreted palaeo-environmental or system-descriptive parameters (e.g. bankfull 

discharge, channel pattern), but the use of this approach does not require palaeo-

environmental or palaeo-hydrological interpretation, as it potentially only involves 

the use of relationships describing associated architectural properties of the 

preserved record (e.g. geometry and proportions as shown in a specific model 

later). Clearly, the method can be used in conjunction with expressions for 

estimating the lateral extent of individual bodies; for example, relationships linking 
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channel body thickness with range in width can be flexibly used to inform the lateral 

extent of any given sandstone body, provided that the width distributions are such 

that they match the target correlability given by the model presented below. The 

approach can be used either to guide or validate/evaluate a model in cases where 

well spacing is fixed; later in this work a set of previously-interpreted correlation 

panels are used to perform an example quality check. 

 

5.5 Correlability models 

5.5.1 Total probability of penetration of a randomly selected 

channel-complex 

The procedure employed herein to guide or rank a correlation framework is based 

on knowledge of the following: (1) the proportion of channel complexes that are 

likely to be penetrated (or equivalently the total probability of penetration of a 

randomly-chosen channel complex) by a well array with given spacing S, for any 

channel-complex width distribution; (2) the proportion of channel complexes that 

are correlatable (or equivalently the total probability of correlation of a random 

channel complex) over variable inter-well distance (i.e. S, 2S, 3S…), for any 

channel-complex width distribution. Thus, the adopted approach first obtains the 

expression for the total probability of channel-complex penetration for a known 

channel-complex width distribution. Width distributions represent the analogue data 

with which correlation panels need to be compared. 

The conditional probability of penetration of a channel-complex of width W for 

penetration angle θ and well spacing S (figure 5.4) can be described by the relation 

given by McCammon (1977) for parallel-line search of a dike by geophysical 

surveys; for    :  

 (   )  (
 

 
)      

the unconditional probability can be written as: 

 ( )  (   )(   )∫       
   

 

 

For the sake of simplicity this study only considers penetration in an orientation that 

is orthogonal to floodplain palaeo-surfaces, in which case θ = π/2: 
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Figure 5.4: sketch representing the problem treated in this work and the terminology 

adopted; the approach employed refers to a situation in which a well array penetrates 

orthogonally through a fluvial succession composed of channel complexes in a 

floodplain background; for the method to be applicable, well-spacing S needs to be 

constant; different basin portions with different inter-well spacings need to be 

considered separately. The method introduced in this study is based on analysis of 

analogue-derived knowledge of channel-complex width distribution; if the correlation 

panel runs at an angle to the cross-gradient direction, a distribution of channel-

complex apparent widths can be considered. Channel complexes whose width is 

smaller than the inter-well spacing are non correlatable between two wells; channel 

complexes whose width is larger than the inter-well spacing are potentially 

correlatable or actually correlatable: the method illustrated here is based on the 

recognition of the probability of a channel complex with width narrower than twice the 

inter-well spacing being both penetrated and correlatable. 

 

So, the conditional probability of channel-complex penetration for width W can be 

expressed as follows (cf. figure 5.5): 

 (   )  {(
 

 
)           

                    

    

Now, the method requires determination of a value of total probability of penetration 

by a well array of spacing S of a fluvial reservoir with channel-complexes that follow 

a width distribution with a probability density function P(w); the total probability 

theorem is then applied: 

 ( )  ∫ (   ) ( )  

 

 ̅
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So, the total probability of penetration of a randomly chosen channel-complex 

(equivalent to the non-volumetric proportion of channel-complexes penetrated) is 

given by (cf. figure 5.6): 

 ( )  ∫ (
 

 
) ( )  

 

 

 ∫  ( )   
    

 

 

 

 

Figure 5.5: probability of a random channel complex to be penetrated by a well-array with 

spacing S as a function of channel-complex width; these functions are employed to 

describe conditional probability of penetration given channel-complex width. 

 

Database analysis (e.g. figure 5.7) reveals that for channel-complexes  ( ) is 

typically adequately described by log-normal probability density functions, which 

take the form: 

 ( )  (
 

  √  
) 
 
(     ) 

    

where μ is the location parameter and σ is the scale parameter of the channel-

complex width distribution (parameters μ and σ represent the mean and standard 

deviation of the natural logarithm of the width, respectively).  
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Figure 5.6: ideal example in which a total probability of channel-complex penetration is 

derived by assuming that the well-array has spacing S and the channel-complex width 

distribution follows a normal probability density function with mode/mean at channel-

complex width equal to S; the total probability of channel-complex penetration (i.e. the 

proportion of penetrated channel-complexes) is given by the area underlying the 

product between the width probability density function and the conditional probability 

of penetration as a function of channel-complex width. 
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For such width distributions the total probability of channel-complex penetration 

P(p) is given by: 

 ( )  ∫ (
 

 
) (

 

  √  
) 
 
(     ) 

     
 

 

 ∫ (
 

  √  
) 
 
(     ) 

     
    

 

 

By operating the definite integral, it is then possible to obtain relationships 

describing the total probability of penetration for channel complexes belonging to 

specific fluvial types (i.e. characterized by specific probability density functions) as a 

function of well spacing S. 

 

 

Figure 5.7: channel-complex width distributions obtained from the FAKTS database: (a) for 

all suitable case studies; (b) for systems classified on an interpretation of braided river 

pattern. Results include all types of width observation (real, apparent, partial, and 

unlimited; cf. figure 5.3). Only the 0 to 6000 m width range is shown although some 

maximum widths do exceed 6000 m. Best-fit log-normal probability density functions 

are derived from MINITAB software. N refers to the number of readings; μ and σ 

respectively refer to the location and scale parameters of the log-normal distributions). 
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From the example given in figures 5.7 and 5.8, it is apparent how the choice of the 

type of synthetic analogue (in this particular case, a generic non-categorized fluvial 

system that includes all FAKTS data, figure 5.7a, or an ideal fluvial facies model 

based on FAKTS systems classified as braided, figure 5.7b) will eventually affect 

the model describing the total probability of penetration as a function of well spacing 

(figure 5.8). It is important to note that the total probability is not representative of a 

volumetric proportion, but only of the ratio between the number of geometrically 

defined fluvial channel bodies that are penetrated and the total number of bodies 

along the section. 

 

 

Figure 5.8: curves that quantify the total probability of channel-complex penetration as a 

function of well-array spacing for two different channel-complex width probability 

density functions; the different width distributions are respectively based on synthetic 

analogues made of all FAKTS case studies (figure 5.7a) and systems classified on an 

interpreted braided river pattern (figure 5.7b). Total probability corresponds to the 

proportion of channel-complexes that are penetrated for a given well spacing; 

proportions are not volumetric, but instead represent the fractional number of 

channel-complexes. 
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5.5.2 Total probability of correlation of a randomly selected 

channel-complex 

Just as the expected proportion of channel complexes penetrated by the well array 

can be quantified by the total probability of penetration, the proportion of channel 

complexes that are correlatable between two wells is also quantified by a measure 

of total probability. To obtain the total probability of correlation of a randomly 

selected channel complex, a method is first employed to obtain the expression for 

the conditional probability of channel-complex correlation between two adjacent 

wells for channel-complex width W. Relations by McCammon (1977) are used to 

obtain the following:  

for    
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for    
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for    
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where θ remains the penetration angle and S the distance between two wells. 

So, the conditional probability of channel-complex correlation for width W can be 

expressed as follows (orange curve in figure 5.9): 
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Again, to obtain a value of total probability of channel-complex correlation (i.e. 

proportion of correlatable channel complexes) between two wells of spacing S in a 

fluvial reservoir with channel-complexes following a width distribution with 

probability density function P(w), the total probability theorem is applied: 

 ( )  ∫ (   ) ( )   
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So, the total probability of correlation between a pair of wells spacing S of a 

randomly chosen channel-complex (i.e. the non-volumetric proportion of channel-

complexes correlatable) is given by (hatched area in figure 5.9): 
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Then: 
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Figure 5.9: ideal example in which a total probability of channel-complex correlation 

between two-wells is derived by assuming that the well-array has spacing S and the 

channel-complex width distribution follows a normal probability density function with 

mode/mean at channel-complex width equal to S; the total probability of channel-

complex correlation (i.e. the proportion of channel-complexes correlatable between 

two wells) is given by the area underlying the product between the width probability 

density function and the conditional probability of correlation as a function of channel-

complex width. 
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For a fluvial reservoir with channel-complex widths following a log-normal 

distribution the total probability of channel-complex correlation between two wells of 

spacing S is given by: 

 ( )  ∫ (
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By operating the definite integral, it is then possible to obtain relationships 

describing the total probability of correlation for channel complexes belonging to 

specific fluvial types (i.e. characterized by specific probability density functions) as a 

function of correlation distance S. 

 

  

Figure 5.10: curves that quantify the total probability of channel-complex correlation 

between two wells as a function of correlation distance for two different channel-

complex width probability density functions; the different width distributions are 

respectively based on synthetic analogues made of all FAKTS case studies (figure 

5.7a) and systems classified on an interpreted braided river pattern (figure 5.7b). 

Total probability corresponds to the proportion of channel-complexes that are 

correlated over a given distance; proportions are not volumetric, but instead represent 

the fractional number of channel-complexes. 
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Again, it is evident how differing width distributions, associated with different types 

of synthetic analogues, will determine the models that describe the total probability 

of correlation as a function of inter-well correlation distance (figure 5.10). 

 

5.5.3 Comparison between probability-based models and 

subsurface interpretations: a quality check 

Once knowledge of total probability of penetration and correlation is obtained for a 

suitable field analogue or database-informed synthetic analogue, it is possible to 

draw from the curves (i) values of total probability of penetration for the given well 

spacing and (ii) total probability of correlation for each integer multiple of the well-

spacing (figure 5.11a, b). Then, operating the ratio between the values of total 

probability of correlation and the total probability of penetration (figure 5.11c) it is 

possible to obtain values that quantify the proportion of penetrated channel 

complexes that are correlatable over a given distance. If these values are plotted as 

a function of inter-well distance (figure 5.11c) a curve describing the proportion of 

penetrated channel bodies that are likely to be correlatable as a function of 

correlation distance is obtained: this curve is here termed ‘correlability’ model and 

represents the model against which to test interpretations. The actual process of 

comparison between the correlability model and the subsurface interpretation can 

be carried out graphically, allowing for recognition of the degree of approximation of 

the interpretation to the model and whether the interpretation is too conservative or 

excessively confident (figure 5.11d, e). 
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Figure 5.11: ideal example in which several subsurface interpretations based on well-to-

well correlation are compared with a correlability model. This example assumes well 

spacing S = 1000 m. Thus, a value of total probability of channel-complex penetration 

for S is drawn from the curve of total probability of penetration based on all FAKTS 

analogues (a); then, also values of total probability of correlation are drawn from the 

relative curve (b) for S and values that are whole multiples of S. The ratio between 

values of total probability of correlation and penetration are then plotted against the 

correlation distance (c), to obtain the correlability model used to test interpretations. 

Afterwards, values of the ratio between the number of correlated channel complexes 

(dependent on the correlation distance) and the total number of penetrated channel 

complexes (66 in this idealized example) are plotted for each interpretation on the 

same graph, to reveal whether interpretations resulting from well-to-well correlations 

display correlation patterns that do (d) or do not (e) match with what is expected from 

the synthetic analogue. 
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5.5.4 Case study example application: ranking alternative 

correlation panels for the subsurface Travis Peak 

Formation (Texas, USA) 

To illustrate an application of this method, it is here used to rank the likelihood of 

three alternative architectural interpretations proposed by Tye (1991), Bridge & Tye 

(2000) and Miall (2006) for the same well array, through a stratigraphic interval 

(Zone 1) of the Lower Cretaceous Travis Peak Formation, East Texas (figure 5.12).  

 

 

Figure 5.12: three alternative interpretations of the same subsurface fluvial succession in 

the Lower Cretaceous Travis Peak Formation (east Texas, USA). Correlation panels 

by (a) Tye (1991), (b) Bridge & Tye (2000), and (c) Miall (2006). Although well 

spacing is actually variable, an equal inter-well distance as represented in these 

panels is assumed for ranking the geological realism of the interpretations. In similar 

cases of variable well spacing, the quality-check method presented here could either 

be separately applied for adjacent stratigraphic portions with comparable spacing or 

replicated for maximum and minimum well spacing in order to identify a confidence 

interval – rather than a correlability curve – against which discrepancies could be 

evaluated. 
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In this area, the Travis Peak Formation comprises fluvial and paralic depositional 

systems (Tye et al. 1989; Dutton et al. 1991; Davies et al. 1993); variable 

architectural styles of the fluvial systems have been recognized and related to 

planform evolution; both high-sinuosity and braided planform types have been 

interpreted. The interval to which the three correlation panels refer has been 

interpreted as a dominantly braided fluvial deposystem (cf. Tye 1991; Davies et al. 

1993). This dataset was chosen because it is a good published example of different 

models of fluvial subsurface architecture based on the adoption of different sets of 

assumptions. However, it is not necessarily the most suitable dataset for the 

method because the channel/floodplain interpretation of the logs differs slightly for 

the different panels. In addition, it is necessary to assume that the wells were 

equally spaced (spacing = 1.54 km) as depicted in figure 5.12 even though they are 

not in reality (the actual spacing varies between 0.8 and 2.2 km); this shortcoming 

has been ignored in the following discussion as this dataset is used merely to 

illustrate a potential application of the method. 

The correlability technique described above is applied to this dataset in order to 

rank the deterministic models by identifying which of these panels represents the 

most realistic subsurface fluvial architecture by comparison with an ideal channel-

complex width distribution obtained by (1) all FAKTS analogues or (2) a synthetic 

analogue based on many systems matching the dataset in terms of interpreted 

planform type (i.e. braided river), so that discrepancies between the results 

obtained from assuming each of the two types of analogy can also be assessed. 

Thus, probability density functions describing channel-complex width have been 

obtained as follows: 

 extracted from all analogues contained in the FAKTS database and 

considered suitable for deriving geometrical output (figure 5.7a); 

 extracted from all FAKTS analogues interpreted as representing braided 

fluvial systems and considered suitable for derivation of required 

geometrical output (figure 5.7b). 

Curves describing the total probability of penetration (figure 5.8) and correlation 

(figure 5.10) have been obtained for the two types of synthetic analogues, and from 

these values of total probability of penetration for S = 1540 m and total probability of 

correlation for S and multiples of S were derived. This enables a correlability model 

based on total probabilities to be plotted as the ratio between total probability of 

correlation and total probability of penetration for S and its multiples. 

The definition of subsurface units must match with the definition of outcrop-

analogue units. So, the channel bodies depicted in the panels (figure 5.12) have 
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been subdivided geometrically in agreement with the definition of a channel-

complex adopted for the FAKTS database (cf. Colombera et al. 2012a, Chapter 2), 

to ensure that results are comparable with correlability models based on width 

probability density functions derived from the database. Next, the ratio between the 

number of correlated channel-complexes and the number of channel-complexes in 

each panel was computed for multiples of S (up to 7S = 10780 m, for which no 

channel-complex is correlatable in any of the three panels). Resulting ratios relating 

to the subsurface interpretations were plotted together with the total-probability-

based correlability model based on FAKTS analogues for graphical comparison 

against correlation distance (figure 5.13a). It is immediately evident how, compared 

to either of the other two models, the interpretation by Tye (1991) consisted of 

lateral correlations that were considerably too optimistic. To facilitate comparison 

and quantification of the discrepancy between the subsurface interpretations and 

each of the two correlability models (i.e. all analogues vs. braided systems), the 

difference between the ratio of correlated and penetrated channel complexes for 

the interpretation and for the model was also plotted independently for the two 

models (figure 5.13b, c). The total discrepancy can then be measured as the sum of 

the absolute values of the discrepancy at each correlation distance (S to 7S, in this 

example) to rank the subsurface interpretations in terms or geological realism. The 

interpretation panels by Bridge & Tye (2000) and Miall (2006) show comparable 

results: they both appear to be overly optimistic with well correlations, especially 

over a single well spacing (i.e. between adjacent wells), and have similar values of 

discrepancy; the interpretation panel by Miall (2006) has the lowest total 

discrepancy value and ranks highest when compared with both correlability models. 

The same results that have been used here to illustrate the method of quality-

checking could be used to inform the deterministic model through iterative 

adjustment of the interpretation panel until it matches realistic correlation patterns. 

Further insight into the realism of the subsurface reconstructions is offered by 

channel-complex width-to-thickness scatterplots (figure 5.14), which permit 

comparison of the dimensions of subsurface channel bodies with the geometry of 

FAKTS’ outcrop analogues. However, because the thickness values associated 

with well data are obtained from one-dimensional sampling the significance of the 

comparison is limited, chiefly because channel-complex thicknesses recorded in the 

FAKTS database refer to maximum thickness, and the thickness of these bodies 

can be highly variable laterally. Nevertheless, these plots can be useful for 

qualitatively adjusting the likely position of pinch-out of channel bodies between two 

wells. 
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Figure 5.13 (previous page): comparison between the three subsurface interpretations of 

the Travis Peak Formation and the correlability models based on all FAKTS outcrop 

analogues and on interpreted braided river systems only. The ratios between the 

number of correlated channel complexes and the number of penetrated channel 

complexes are plotted (a) together with the ratio between total probabilities of 

correlation and penetration for multiple of well spacing (1540 m); this demonstrates 

that the interpretation by Tye (1991) is the least realistic. The difference between 

ratios obtained from the interpretations and the models are plotted separately for the 

two models, in (b) and (c), for well spacing between S and 4S (as no channel-

complex is correlated for a distance larger than 3S); summing the absolute values of 

all discrepancies observed between subsurface interpretations and correlability 

models for all correlation distances, the interpretation by Miall (2006) returns the 

lowest total discrepancy for both models. 

 

 

 

Figure 5.14: comparison between the geometry of channel complexes represented in the 

three panels depicting proposed channel-complex architectures for the Travis Peak 

Formation for (a) Tye (1991), (b) Bridge & Tye (2000), and (c) Miall (2006), and the 

geometry of channel complexes included in the FAKTS database, in the form of 

width-to-thickness scatterplots. The widths in the graphs consider the positions of 

lateral channel-body pinch-out as represented in the panels. See figure 5.3 for width 

nomenclature in legend. 

 

If the approach is followed to guide interpretations, additional attributes that can be 

inferred in subsurface correlation-based reconstructions are: 
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 the percentage (as fractional number) of channel-complexes that are not yet 

penetrated by the array of wells, which coincides with ‘1 - total probability of 

penetration’; 

 the expected width distribution of those channel complexes, given by the 

difference between the analogue channel-complex width probability density 

function and the curve obtained as the product between the same 

probability density function and the conditional probability of penetration.  

From this information volumetric proportions of non-penetrated channel complexes 

can then be estimated by relating widths to likely thickness, for example by 

following previously documented empirical relationships (e.g. Collinson 1978; 

Fielding & Crane 1987). 

Well configurations characterized by constant inter-well distance are common (e.g. 

He et al. 2013), making this approach of direct use for such situations. Whenever 

the condition of constant well spacing is not applicable, if there exist adjacent 

stratigraphic portions within which inter-well distance is roughly constant, the 

quality-check method presented here could be applied separately for different 

segments. Instead, if the well spacing is randomly distributed, correlability models 

could be obtained for the maximum and minimum values of well spacing, in order to 

identify a confidence interval – rather than a single correlability curve – with which 

subsurface interpretations could be compared, for example in terms of discrepancy 

between the underlying area and the curve given by the ratio between correlated 

and penetrated units plotted for the average spacing, or even just graphically. 

 

5.5.5 A general probabilistic model based on channel-deposit 

proportions 

Total-probability-based models of channel-complex correlability such as the ones 

presented for braided systems (figure 5.13a, c) can be customized on any fluvial 

environmental type (e.g. fluvial coastal plain meandering system developed under 

the influence of a sub-humid climatic regime; cf. Colombera et al. in press, Chapter 

3), provided that a channel-complex width distribution is available. Furthermore, 

these models can be constructed on architectural properties that are distinctively 

associated with a given distribution of channel-complex width; it is thus useful to be 

able to generate models categorized on properties that can directly be derived from 

interpreted well data, such as the relative proportion of channel and floodplain 

deposits. 

In the FAKTS database, stratigraphic volumes within a succession are 

distinguished whenever different classifications of system descriptive parameters or 
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boundary conditions can be assigned (Colombera et al. 2012a, Chapter 2). These 

volumes do not refer to a standard spatial or temporal scale, but they are typically 

tens of metres thick for case studies that are considered suitable for investigation at 

the channel-complex scale. So, for each volume for which at least two-dimensional 

information is available, both descriptive statistics (figure 5.15) of channel-complex 

width and the proportion of channel complexes, as based on the product of their 

thickness and lateral extent have been computed. Such information is useful per se 

as a general constraint to inform well-to-well correlations for adjacent stratigraphic 

zones with variable channel proportions, but has greater predictive potential if it is 

incorporated into a correlability model. 

By considering only the highest-quality datasets (well exposed outcrop analogues 

for which comprehensive datasets captured as a product of direct observation are 

available), empirical relationships linking the mean and standard deviation of 

channel-complex width with the proportion of channel deposits within each volume 

can be obtained (figure 5.15b, c). As would be expected, the average lateral extent 

of the channel complexes shows a positive relationship with channel-complex 

proportion, since FAKTS channel complexes are geometrically defined channel 

clusters, and clustering increases with channel-deposit proportion. It is important to 

note that some high-quality datasets derived from studies of outcrop analogues with 

great lateral extent and continuity of exposure (of which channel-complex mean 

widths are included in figure 5.15a) are not accounted for by the equations in figure 

5.15b-c, and that the inclusion of all suitable analogues would return a relationship 

that would predict higher mean widths, especially for low channel-deposit 

proportions, ultimately suggesting overly optimistic well-penetration and correlation 

total probabilities. 

The empirical relationships derived from exponential regression of the highest-

quality datasets are given by:  

                

                 

where P refers to the proportion of channel deposits and W to the channel-complex 

width. 

Assuming that a log-normal distribution adequately describes channel-complex 

width distribution for any proportion in the range 10/90%, it is possible to express 

location and scale parameters as a function of proportions, since these parameters 

are related to width mean and standard deviation: 
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These values have been used to obtain probability density functions that are 

employed for calculating total probabilities of channel-complex penetration (figure 

5.16a) and correlation (figure 5.16b) by a well array in stratigraphic volumes with 

channel-deposit proportions variable between 10% and 90%. The resulting models 

are limited by the assumption of width distributions being log-normal for any value 

of proportions; however, groups of stratigraphic volumes with variable channel-

deposit proportions can be separately analysed to gain insight into the type of 

distributions that best describe channel-complex widths in any range of proportions, 

thereby allowing for a refinement of the total probability curves. Nonetheless, a 

FAKTS stratigraphic volume containing 32 channel complexes composing 86% of 

its volume returned a channel-complex width distribution satisfactorily described by 

a log-normal curve, suggesting that the assumption is reasonable even for high net-

to-gross successions. These curves can then be used to generate, for a given well-

spacing, a correlability model similar to the ones presented above (i.e. by operating 

ratios of proportions of correlated and penetrated channel-complexes, as drawn 

from the curves). The resultant correlability model can then be used as a target 

correlation pattern for cases in which only channel-deposit proportion and well-array 

spacing are known. 

 

 

 

 

 

 

 

 

 

Figure 5.15 (following page): (a) descriptive statistics including mean, minimum and 

maximum channel-complex width, in ordinate values, from stratigraphic volumes with 

variable proportions of channel deposits, in abscissa values; (b) mean channel-

complex width from highest-quality datasets, plotted against the proportion of channel 

deposits in the relative stratigraphic volumes; an exponential regression curve is fitted 

to the data; (c) standard deviation in channel-complex width from highest-quality 

datasets, plotted against the proportion of channel deposits in the relative 

stratigraphic volumes; an exponential regression curve is fitted to the data. 
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Figure 5.16: curves that quantify the total probability of channel-complex penetration by a 

well array (a) and of correlation between two wells (b) as a function of well 

spacing/correlation distance, for different channel-complex width probability density 

functions (all log-normal) associated with variable proportions of channel deposits 

(10% to 90%, in 10% increments). 

 

It is important to reiterate, once again, that the values in figure 5.16b refer to 

channel-complexes defined on a set of geometrical rules and can be variably 

stacked; for example vertically-juxtaposed channel complexes may be solely 
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distinguished on the recognition of discontinuously-interfingered floodplain deposits: 

the curve of total probability of correlation as a function of distance cannot therefore 

be simply considered in terms of lateral connectivity. In practice, it may be deemed 

useful to consider dimensional attributes that describe the geometry of 

interconnected reservoir-quality rocks; using the same database this could be done 

by quantifying the effect of the juxtaposition of units of the same type on the 

dimension of the composite bodies (cf. material units of Colombera et al. 2012b, 

Chapter 6). Also, in this specific example, a more easily applicable – and arguably 

more useful – quality check for subsurface interpretations of systems characterized 

by a very high proportion of channel deposits would be given by correlability models 

for fine-grained floodplain units. 

 

5.6 Conclusions 

The difficulty in developing readily applicable methods to realistically capture the 

lateral extent of sedimentary bodies when applying deterministic well correlations is 

still perceived as a major limiting factor for better constraining models of reservoir 

characterization (cf. Borgomano et al. 2008). The method presented here makes 

use of total probabilities of well penetration and correlation for guiding and quality-

checking subsurface interpretations based on well-to-well correlations of fluvial 

channel lithosomes, given a priori knowledge of a realistic distribution of their lateral 

extent and a well array with constant spacing. The likelihood of the subsurface 

interpretation is assessed by comparison with dimensional parameters obtained by 

outcrop analogues not just by considering the most likely width of individual 

geological units, but by ensuring geological realism for the whole succession. Thus, 

the approach is not necessarily alternative to, but rather integrative with previous 

methods based on the use of empirical relationships for deriving channel sandstone 

body widths from palaeo-hydrological interpretations or measured thicknesses.  

The approach illustrated here for channel complexes has general value: it can be 

applied to the correlation of any geological units (e.g. deep-water channels, sand 

sheets, carbonate shoals), provided that a realistic description of their lateral extent 

can be obtained in the form of a probability density function. This consideration has 

implications concerning the need for extensive and good-quality outcrop-analogue 

data that are essential for the practical application of this sort of correlability model 

to subsurface reservoir prediction.  

Ranking interpretations by comparing geological-body correlations with reference 

patterns expressed as ‘correlability’ models can be especially useful if different 
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correlation frameworks equally reproduce geologically-sensible scenarios in terms 

of depositional features (e.g. distribution of interpreted sub-environments, palaeo-

surface gradients); in addition,  the method can be used to independently rank 

stochastic well correlations that involve the lateral tracing of geological bodies (cf. 

Lallier et al. 2012), and computer-assisted correlations in general. 

The usefulness of the method can be enhanced by generalizing it through 

reformulation of the expressions of total probabilities of penetration and correlation 

to account for different angles of well penetration, and by implementing the method 

as a software-based predictive tool. 
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6 A database approach for constraining stochastic 
simulations of the sedimentary heterogeneity of fluvial 

reservoirs 

 

6.1 Summary 

Quantitative databases storing analogue data describing the geometry of 

sedimentological features are often used to derive input for geostatistical 

simulations of reservoir sedimentary architecture; however, geometrical information 

alone is inadequate for the detailed characterization of sedimentary heterogeneity. 

A relational database storing fluvial architecture data has been developed and 

populated with literature- and field-derived data from modern rivers and ancient 

successions. The database scheme characterizes fluvial architecture at three 

different scales of observation, recording style of internal organization, geometries 

and spatial relationships of genetic units, classifying datasets according to 

controlling factors (e.g. climate type) and context-descriptive characteristics (e.g. 

river pattern). The database can therefore be filtered on both architectural features 

and boundary conditions to yield outputs tailored on the system being modelled, in 

order to generate input to object- and pixel-based stochastic simulations of 

reservoir architecture. 

When modelling heterogeneity with stochastic simulations, the choice of input 

parameters quantifying spatial variation is problematic because of the paucity of 

primary data and the partial characterization of supposed analogues. This 

database-driven approach permits the definition of various constraints referring to 

either genetic units (e.g. architectural elements) or material units (i.e. contiguous 

volumes of sediment characterized by the same value of a given categorical or 

discretized variable; e.g. same lithofacies type, clay + silt content, etc.), which 

permit realistic description of fluvial architecture heterogeneity. Applications of this 

database approach include the computation of relative dimensional parameters and 

the generation of auto- and cross-variograms and transition probability matrices, 

which are necessary to effectively model spatial complexity.  
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6.2 Introduction 

Fluvial architecture refers to the geometries, internal organization, spatial 

distribution and reciprocal relationships of genetic bodies within fluvial sedimentary 

successions (Allen 1978; Miall 1996). Different types of fluvial genetic bodies are 

commonly recognizable over a wide range of scales, often in a hierarchically-nested 

fashion (Miall 1988b; 1996; Robinson & McCabe 1997; Bridge 2003; 2006), and the 

arrangement of these genetic bodies gives rise to a broad range of scales of 

sedimentary heterogeneity from basin-fill scale, to channel-belt scale, to channel 

scale, to bed-set scale, and to pore framework scale. As fluvial genetic bodies 

typically have distinctive petrophysical properties, sedimentary heterogeneity is 

closely correlated with petrophysical heterogeneity at all the above-mentioned 

scales (cf. Weber 1982; 1986; Koltermann & Gorelick 1996; Heinz & Aigner 2003; 

Ringrose et al. 2008). Knowledge of the spatial distribution of fluvial genetic bodies 

enables constraints to be placed on the spatial distribution of ranges of variability in 

porosity and permeability. Thus, it is imperative to properly characterize and predict 

those heterogeneities that are inherent in the subsurface architecture of fluvial 

hydrocarbon reservoirs, in order to determine the interconnectedness of reservoir-

quality rocks, which itself serves as a major control on hydrocarbon production. 

In industry scenarios, the typical paucity of data relating to sedimentary 

heterogeneity at a resolution finer than the seismic and interwell-spacing scales, 

together with the need to undertake uncertainty analysis for the assessment of risk, 

has resulted in the need for the development and implementation of stochastic 

methods for modelling reservoir sedimentary architecture by simulating a number of 

different equiprobable architectural realizations. Structure-imitating stochastic 

reservoir modelling aims at simulating sedimentary architecture without considering 

depositional/erosional processes; two types of fundamentally different approaches 

are commonly adopted: object-based and pixel-based techniques (for reviews of 

these approaches see: Haldorsen & Damsleth 1990; Bryant & Flint 1993; 

Srivastava 1994; North 1996; Koltermann & Gorelick 1996; Galli & Beucher 1997; 

Dubrule 1998; Deutsch 2002). 

Object-based techniques, otherwise known as Boolean models, simulate the 

distribution in the reservoir space of geological features that are discrete in nature 

(i.e. form geo-bodies with pre-defined geometrical properties). Simulations 

generated by object-based algorithms are conditioned to parameters that describe 

the geometry of the building blocks (dimensions, shapes, orientations – typically in 

form of probability distributions) and their density in the space (proportions). In 

fluvial depositional contexts, admissible discrete objects could be channel, point bar 

or crevasse splay elements. Several examples of the application of object-based 
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techniques to the modelling of fluvial reservoirs are cited in Haldorsen & Damsleth 

(1990) and Keogh et al. (2007). 

By contrast, pixel-based techniques employ a 3D discretization of the reservoir 

volume, with each node of the resulting grid being assigned a single value of the 

categorical variable that describes the sedimentary architecture (e.g. a facies 

class). The variable value at any grid point depends on the values at the 

neighbouring sites and on input descriptors of spatial correlation. These techniques 

are well suited to modelling either continuous (e.g. porosity) or categorical (e.g. 

lithofacies type) variables; categorical variables are generally represented by 

indicators: 

1=(x)Ia  

if the categorical variable takes value a at position x, otherwise the indicator takes 

value 

0=(x)Ia  

(Goovaerts 1994; after concepts from: Journel 1983). There exist a variety of pixel-

based algorithms applicable to stochastic reservoir modelling; their typical input 

includes the marginal probability of each category to be modelled and descriptors of 

their spatial (cross-)correlation such as indicator (cross-)variograms (e.g. used in 

Sequential Indicator Simulation – Journel & Alabert 1990, in Truncated Gaussian 

simulation – Matheron et al. 1987 – and in Truncated Plurigaussian Simulation – Le 

Loc’h & Galli 1997) and transition probabilities (e.g. used in different forms in 

algorithms by Carle & Fogg 1997, and Elfeki & Dekking 2001). Instead of working 

with two-point statistic variograms, other pixel-based methods work with multiple-

point statistics borrowed from 3D training images that describe the typical 

geometrical characteristics and the spatial relationships of the geological building 

blocks (Guardiano & Srivastava 1993; Caers 2001; Strebelle & Journel 2001; 

Strebelle 2002; Liu 2006); these methods generally permit the reproduction of 

geological features with well-defined shapes, as captured from the training image. 

However, training images for Multiple-Point Statistics simulation (MPS) are usually 

obtained from simulation realizations generated by object- or process-based 

methods and conditioned on analogue data (e.g. Pyrcz et al. 2008; Strebelle & Levy 

2008; Maharaja 2008) or directly from 2D or pseudo-3D representations of 

supposed analogues (Caers & Zhang 2004). 

Although object-based techniques may be deemed as better suited to model fluvial 

contexts because of their ability to easily model channel-belts, individual channels 

or other genetic units as discrete objects with sharp boundaries and well-defined 

shapes (Deutsch 2002; Keogh et al. 2007), pixel-based techniques may be more 
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flexible, allowing a better representation of irregular and variable features (cf. 

Seifert & Jensen 1999), and still being able to reproduce curvilinear shapes when 

capturing multiple-point statistics from a training image (cf. Liu et al. 2004). Each of 

these methods has its own relative merits and pitfalls when applied to the 

simulation of the architecture of fluvial reservoirs (cf. comparative studies in: 

Journel et al. 1998; Seifert & Jensen 2000), and in some circumstances the 

integration of both object- and pixel-based techniques (e.g. Seifert & Jensen 2000) 

may be advisable. 

Crucially, a valid and appropriate application of these modelling methods depends 

on input data that describe sedimentological features in a quantitative way: it is 

common to derive such data from other better-documented depositional systems 

with comparable boundary conditions, i.e. from analogues (cf. Alexander 1993). 

The derived quantitative parameters and geological information is often compiled 

into databases, including data derived either from outcrop successions or modern 

depositional systems (e.g. Bryant & Flint 1993; Cuevas Gozalo & Martinius 1993; 

Dreyer et al. 1993; Robinson & McCabe 1997; Dalrymple 2001; Eschard et al. 

2002; Tye 2004), and many oil and gas companies now have their own quantitative 

databases of geometrical data (Dubrule & Damsleth 2001). The possibility to 

selectively use quantitative data (i.e. better focusing on the type of genetic units and 

the type of depositional context being modelled) is an important requirement for 

generating improved reservoir modelling results (Bryant & Flint 1993). For this 

reason, a large amount of geometry data relating to the sedimentological features 

present in fluvial systems that have become available through publications in the 

past decades have been incorporated into compilations that classify depositional 

systems on some of their boundary conditions (e.g. Gibling 2006; Kelly 2006). 

However, these approaches do not typically provide a full characterization of fluvial 

architecture, as only geometrical features and relationships are characterized. 

Other features of fluvial architecture (e.g. styles of internal organization, spatial 

distribution and reciprocal relationships of genetic units) are typically summarized 

as facies models but the usefulness of such models for reservoir modelling is 

restricted by their qualitative nature (North 1996). Thus, there exists a clear need 

for the generation of versatile quantitative facies models, the development of which 

should be based on a new method for constructing a catalog that encapsulates 

worldwide examples of facies geometry and properties, classified according to the 

boundary conditions of the sedimentary systems, and based on the assumption that 

similar sets of controls will generate similar deposits (de Marsily et al. 2005). A 

significant advance in this direction was given by the method proposed by Baas et 

al. (2005) for deepwater clastic systems, which involved the development of a 

relational database for the quantitative description of sedimentary architecture 
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(architectural element dimensions and transition statistics, and lithofacies 

proportions) from several published case histories classified according to their 

controls and environmental parameters. However, despite utilizing an architectural 

database of considerable size, not even this method has been capable of fully 

capturing all significant architectural features and it has not been possible to obtain 

certain types of quantitative information required to appropriately constrain 

stochastic simulations of sedimentary architecture. For example, a major problem 

that is commonly encountered when working with pixel-based methods is how to 

define the indicator variogram parameters and the transition probability matrices for 

lateral directions (Bridge 2006). Dubrule & Damsleth (2001) argue that a common 

mistake is to identify the indicator variogram range with the size of the 

heterogeneity (cf. Journel et al. 1998), although the range of the indicator variogram 

model should additionally take into account dimension variance and category 

proportions (Ritzi 2000). When working with object-based methods, users routinely 

need to choose dimensional parameters expressed as relative dimensions (e.g. 

channel-fill thickness/levee thickness), but data are ordinarily drawn from databases 

from which relative dimensional parameters cannot be derived, as they simply store 

dimension distributions of individual objects. 

The aim of this study is to demonstrate how a new and novel database approach 

has the potential to provide sufficient quantitative data, derived from several 

classified case studies of fluvial sedimentary architecture, to fully constrain 

stochastic fluvial reservoir models, thereby overcoming the main problems 

encountered when relying on traditional databases. Specific objectives of this study 

are: (i) to illustrate an ideal outcrop-to-database-to-simulation workflow; (ii) to 

demonstrate database versatility in terms of system filtering and choice of 

appropriate modelling-category; (iii) to demonstrate how to derive input parameters 

to both object- and pixel-based simulations, including relative dimensional 

parameters, indicator auto- and cross-variograms, and transition probability/rate 

matrices. This last point is particularly important in a practical perspective, as the 

inference of parameters quantifying lateral variation is always very difficult (Dubrule 

& Damsleth 2001). This database approach attempts to bridge the gap between 

sedimentology and geostatistics. 

 

6.3 Database architecture and use 

The Fluvial Architecture Knowledge Transfer System (FAKTS) is a relational 

database that has been designed as a tool for translating numeric and descriptive 

data relating to fluvial architecture derived from both modern rivers and their ancient 
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counterparts in the stratigraphic record and is populated with field- and literature-

derived examples (Colombera et al. 2012a, Chapter 2). The FAKTS database 

currently includes 64 case studies from 38 lithostratigraphic units and 14 rivers, and 

currently stores more than 20,000 classified genetic units (as of March 2012). 

Population of the database with additional data is ongoing. The stratigraphy of 

preserved ancient fluvial successions and the geomorphology of modern rivers are 

translated into the database schema by subdividing them into genetic units that are 

in common between the stratigraphic and geomorphic realms and which belong to 

different scales of observation, nested in a hierarchical fashion (figure 6.1). Each 

order of genetic unit is assigned a different table and each unit within a table is 

given a unique numeric identifier that is used to track relationships between the 

different objects, both at the same scale (transitions between units) and across 

different scales (containment of units within larger-scale units). To allow for the 

classification not only of each depositional system but also of parts thereof, each 

single dataset is split into a series of stratigraphic windows or geomorphic 

segments called subsets: each subset is characterized by homogeneous attributes, 

such as system controls (e.g. subsidence rate) and system-descriptive parameters 

(e.g. river pattern). The subsets are broken down at the largest scale into 

depositional elements defined as channel-complexes and floodplain segments on 

the basis of flexible but unambiguous geometrical criteria (see appendix A), so that 

they are not related to any particular genetic significance or spatial or temporal 

scale (cf. Dalrymple 2001; Gibling 2006). Each depositional element can be 

subdivided into a suite of architectural elements, defined, following Miall’s (1985; 

1996) concepts, as components of a fluvial depositional system with characteristic 

facies associations that are interpretable in terms of sub-environments; architectural 

elements are classified according to a scheme derived from the modification of 

some of Miall’s (1985; 1996) classes (table 6.1). Architectural elements can be in 

turn further subdivided into the facies units from which they are constructed; facies 

units are here defined as genetic bodies characterized by homogeneous lithofacies 

type and bounded by second- or higher-order bounding surfaces (sensu Miall 1985; 

1996); such facies units are classified on textural and structural characters 

according to a classification that is largely based on Miall’s (1977; 1996) scheme 

(table 6.2). 
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Table 6.1: Architectural element type classification adopted in FAKTS; modified after Miall 

(1996). 

Code Architectural element type – geomorphic significance 

CH Vertically accreting (aggradational) channel (fill) 

DA Downstream accreting macroform 

LA Laterally accreting macroform 

DLA 
Downstream + laterally accreting macroform and undefined accretion direction 
macroform 

SG Sediment gravity flow body 

HO Scour hollow fill 

LV Levee 

AC Abandoned channel (fill) 

FF Overbank fines 

SF Sandy unconfined sheetflood dominated floodplain 

CR Crevasse channel 

CS Crevasse splay 

LC Floodplain lake 

C Coal body 

 

A description of the implementation of the database conceptual model and a full 

account of the numeric and categorical attributes of genetic units and subsets are 

provided in Colombera et al. (2012a; Chapter 2). 

The database is intended for use as an instrument for the quantitative description of 

the geometry and internal organization of geological objects and of their reciprocal 

relationships. Each genetic unit, at any given scale, can be geometrically 

characterized in terms of dimensional parameters describing their extent in the 

vertical, strike-lateral, and downstream directions, relative to overall flow direction of 

the system recorded at the channel-belt-scale. Unit widths and lengths are 

classified according to the completeness of observations into complete, partial or 

unlimited categories, as proposed by Geehan & Underwood (1993), whereas 

apparent widths are stored in cases where observations were made only from 

sections oriented oblique to palaeoflow. The internal organization of genetic units 

can be characterized in terms of the proportions and spatial distribution of objects 

belonging to lower-order scales. The spatial relationships between the units are 
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described by the transition statistics relating juxtapositional trends along the 

vertical, cross-stream and along-stream directions. 

 

 

Table 6.2: Lithofacies classification adopted in FAKTS; modified after Miall (1996). 

Code Characteristics 

G- 

Gravel deposits with undefined structure and undefined additional textural 
characteristics. Gravel-grade sediment (granule to boulder) usually constitutes the 
majority of the unit by volume, as the graded or massive structure of bi- or pluri-
modal matrix-supported conglomerates/gravels is very likely to be recognized. 

Gmm Matrix-supported, massive or crudely-bedded gravel. 

Gmg Matrix-supported, graded gravel. 

Gcm Clast-supported, massive gravel.  

Gci Clast-supported, inversely-graded gravel. 

Gh Clast-supported, horizontally- or crudely-bedded gravel; possibly imbricated. 

Gt Trough cross-stratified gravel. 

Gp Planar cross-stratified gravel. 

S- 
Sand deposits with undefined structure. Sand-grade sediment must constitute the 
majority of the package by volume. 

St Trough cross-stratified sand. 

Sp Planar cross-stratified sand. 

Sr Current ripple cross-laminated sand. 

Sh Horizontally-bedded sand. 

Sl Low-angle (<15˚) cross-bedded sand. 

Ss Faintly laminated/cross-bedded, massive or graded sandy fill of a shallow scour. 

Sm Massive sand; possibly locally graded or faintly laminated. 

Sd Soft-sediment deformed sand. 

Sw Symmetrical ripple cross-laminated sand. 

F- 
Fine-grained (silt/clay) deposits with undefined structure. Fine-grained sediment 
must constitute the majority of the package by volume. 

Fl 
Interlaminated very-fine sand, silt and clay; thin cross-laminated sandy lenses may 
be included into these heterolitic packages. 

Fsm Laminated to massive silt and clay. 

Fm Massive clay. 

Fr Fine-grained root bed. 

P Pedogenic carbonate. 
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Figure 6.1: representation of the main scales of observation and types of geological genetic 

units translated into the database in the form of tables (genetic unit types) and entries 

(genetic units). Refer to table 6.1 for architectural-element codes and to table 6.2 for 

facies-unit codes.  

 

6.4 Field to database 

Although a large part of the database content is derived from published literature 

studies, it is important to present a best-practice field technique to be employed in 

an ideal ‘field-to-database-to-simulation’ workflow, to establish an efficient method 

by which to derive data from a supposed ancient analogue in a format that best 

suits the database design. 

This database-oriented field technique was developed and tested during field data 

collection in SE Utah (USA – Sevenmile Canyon, Dewey Bridge, Newspaper Rock 

and Potash Road areas), mapping the sedimentary architecture of the Lower 

Jurassic Kayenta Formation, a continental succession dominantly consisting of 

coarse- to fine-grained fluvial sandstone elements, with minor occurrences of 

associated argillaceous fluvial and aeolian elements, developed in the overall 

arid/semiarid climatic context of the Glen Canyon Group (Miall 1988a; Bromley 

1991; Luttrell 1993). Interpreted architectural elements were indexed by numeric 

identifiers, some of their properties (element type and dimensional parameters) 

were tabulated, and their spatial arrangement was sketched – in form of cross-

sectional and planform sketches – including bounding surface order (scheme by 

Miall 1996) and palaeocurrent information. Facies units were also indexed and their 

properties (facies type, dimensional parameters and identifier of the parent 

architectural element within which they occur) tabulated (figure 6.2a). As the 

number of facies units per outcrop is far larger than the number of architectural 

elements, the reciprocal relationships between facies units were not drawn as 

sketches but were instead depicted in transition diagrams, storing strike-, dip-, and 
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vertical-directed transitions between facies units, including bounding surface order 

information (figure 6.2b).  

 

 

Figure 6.2: (A) field-work table reporting the properties of facies units, including: facies unit 

unique numeric identifier (FU nr), unique identifier of the architectural element each 

facies unit belongs to (AE nr), dimensional parameters (thickness, cross-stream 

width, downstream length) classified according to a scheme of completeness (app = 

apparent, part = partial, unltd = unlimited) partly based on Geehan & Underwood 

(1993); (B) transition diagram representing spatial relationships between facies units 

(circles coded according to facies unit code) by storing strike- (L), dip- (D), and 

vertical-directed (V) transitions (arrows), including information about the order of the 

bounding surface (scheme by Miall 1996) across which the transition occurs: for 

example, facies unit 25 passes vertically into facies unit 26 across a 5th-order 

bounding surface. No scale, directionality, temporal or spatial significance is attached 

to the spatial distribution of the circles on the diagram. 

 

Any additional information associated with each genetic unit (e.g. occurrence of 

bioturbation) can be stored in a table column for general notes, as done in the 

database itself. No scale or spatial significance is attached to the spatial distribution 

of the units – represented by circles coded according to the facies unit numeric 

identifiers – on the transition diagram in figure 6.2b; the spatial relationships are 

exclusively expressed by means of arrows representing transitions along the 

indicated direction. So, similarly to what is done in the database itself, the unique 

numeric identifiers were used to keep track of the transitions between facies units 

and of the containment of facies units in architectural elements. The same type of 
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transition diagram is applicable to the architectural element scale, and the ‘table-

and-diagram’ approach is also applicable at the depositional element scale. In 

contrast to sedimentary logging or the construction of drawn architectural panels, 

this field technique does not generate standalone representations, such as those 

commonly expressed as drawn architectural panels. Rather, all the data required 

for database use are acquired in a more time-efficient manner in comparison to 

such traditional methods, with data recorded in a format that is well suited for 

coding into the database structure. 

 

6.5 Database to simulation 

The FAKTS database can be interrogated by means of SQL scripting language 

queries, in order to generate quantitative output (dimensional parameters, 

proportions and transition statistics of genetic units) that represents the basic 

source of information for constraining stochastic simulations of fluvial architecture. 

The following database-to-simulation workflow demonstrates how an extensive 

dataset can be filtered to yield a refined dataset that is relevant to the subsurface 

case study that needs to be simulated, and how to tailor the output on the 

simulation input requirements. 

 

6.5.1 Data filtering 

The analogue approach is still widely used for constraining stochastic models of 

sedimentary architecture. With FAKTS, it is possible to generate ‘synthetic 

analogues’, which are ideally based on all the case studies that can be considered 

closely comparable, in terms of environmental characteristics and controlling 

factors, to the subsurface depositional system to be modelled. This is achieved by 

exclusively selecting genetic units belonging to subsets having appropriate attribute 

values. 

Additionally, subsets are filtered according to their suitability for the scope of the 

query. This is achieved firstly by selecting only subsets that are characterized at the 

same scale chosen for the simulation (e.g. through inclusion of only those subsets 

that are properly characterized at the depositional-element scale if this type of unit 

is chosen for the simulation). These subsets should be additionally filtered by 

selecting only the ones that permit computation of genetic unit proportions and/or 

dimensions and/or transitions depending on the aim of the query (e.g. through 

exclusion of subsets derived from scatter-plots of depositional-element dimensional 



156 

Chapter 6 

parameters when computing depositional-element proportions, since such subsets 

would return results suitable for computing dimension statistics only). 

 

6.5.2 Conditioning object-based models 

To demonstrate the potential value of FAKTS as a tool for constraining object-

based techniques, example work has been carried out with FLUVSIM v. 2.900 

(Deutsch & Tran 2002), a public-domain object-based algorithm that was purposely 

developed for simulating the sedimentary architecture of fluvial systems. FLUVSIM 

generates stochastic channel centerlines and fits stochastic channel, levee and 

crevasse splay geometries to these centerlines in a floodplain background (Deutsch 

& Tran 2002; Deutsch & Wang 1996). FLUVSIM simulations are run by a 

FORTRAN program that is conditioned by parameters stored in GSLIB 

(Geostatistical Software Library) parameter files (Deutsch & Tran 2002). 

Although the Boolean objects that are simulated by the FLUVSIM program are 

designated as facies types (Deutsch & Tran 2002) or architectural elements (Pyrcz 

et al. 2008), FAKTS’ depositional elements and architectural elements would both 

be suitable genetic-unit types for providing input to FLUVSIM simulations (cf. 

Deutsch & Tran 2002). At the FAKTS’ depositional-element scale, channel-complex 

and floodplain-segment data can be used to generate FLUVSIM simulations that 

would simply model the distribution of channel-complexes (possibly filtered in order 

to correspond with 5th and/or 6th order channel-belts) in a floodplain matrix. 

Alternatively, to include in the simulations all the FLUVSIM facies types comprising 

levee and crevasse splay objects, object constraints can be derived by either of the 

following methods: 

1) working at the FAKTS’ architectural-element scale whereby it would be 

appropriate to consider FLUVSIM channels as properly described by either FAKTS 

CH elements or by material units (see below) themselves composed of 

neighbouring FAKTS’ in-channel elements (CH, DA, LA, DLA, HO; see table 6.1 for 

code explanation) and to identify FLUVSIM levees with FAKTS’ LV elements and 

FLUVSIM crevasse splays with either FAKTS’ CS elements or combinations of 

stacked CS and CR elements; FLUVSIM floodplain proportions would be derived by 

either FAKTS’ FF element proportions or cumulative FF+SF proportions; 

2) combining depositional-element information, which is used to constrain the 

dimensional and geometrical properties of the FLUVSIM channel facies type, with 

architectural-element information, which is used to constrain all FLUVSIM facies 

type proportions as well as the dimensional parameters of the levee and crevasse 

splay FLUVSIM facies types. 
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In the first instance, database-derived architectural-element proportions results are 

useful for determining what type of fluvial depositional contexts can be properly 

modelled by using all the facies types available for the FLUVSIM code (i.e. 

employing FAKTS’ information derived at the architectural-element scale or 

combined architectural- and depositional-element scale). Secondly, both 

depositional- and architectural-element proportions can be used to condition 

FLUVSIM facies type proportions, working at the depositional- or architectural-

element scale respectively.  

Thus, working at the depositional-element scale, modelling the distribution of 

channel-complexes in a floodplain background, the simulation would be 

satisfactorily conditioned by specifying proportions of channel and floodplain 

deposits and channel-complex geometrical parameters, as derived from FAKTS. 

Ideally, it would be desirable to obtain volumetric proportions of genetic units, but in 

practice, only very rarely are data recording 3D geometries available, as most of 

FAKTS’ data originates from 2D architectural panels, 2D/pseudo-3D borehole- or 

log-correlation diagrams, and 1D logs. Using an architectural panel dataset 

purposely acquired from a 300-m-wide section of the Kayenta Formation and 

characterized at the facies-unit scale, it has been possible to test the sensitivity of 

FAKTS’ genetic-unit proportions to the method of estimation, whose choice 

depends on available data types and dataset completeness. Where there exists 

high palaeocurrent variability, proportions based on cross-sectional areal extents 

can be considered as good estimators of volumetric proportions, as the sizes of the 

genetic bodies intersected by the cross-section (e.g. lateral extent of architectural 

element cropping out along an architectural panel) are expected to be 

representative of their anisotropy. By comparison with cross-sectional areal 

proportions, we have observed that, the sum of unit thicknesses corrected 

according to average lateral dimensions (product of individual-unit thickness, mean 

unit-type width and mean unit-type length) also return accurate estimations of 

volumetric proportions, when working with 2D or pseudo-3D datasets. Proportions 

computed as summed thicknesses would be used when working with datasets 

based on 1D logs. The FAKTS-derived proportion of channel deposits would then 

be entered in the FLUVSIM parameter file at line 22 (Deutsch & Tran 2002). 

Dimensional parameters of FLUVSIM channels are specified in the form of 

triangular distributions – defined by minimum, mode, and maximum values – of 

channel thickness and width/thickness ratios, with along-channel variability in 

thickness and width optionally expressed by undulation parameters and by the 

correlation length of such undulation (Deutsch & Tran 2002). FAKTS provides 

channel-complex thickness (figure 6.3) and width/thickness ratio (figure 6.4a) 
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information that can be straightforwardly input in FLUVSIM parameter file (lines 33 

and 36). When values are assigned for the undulation-parameter, FAKTS-derived 

minimum and maximum values for triangular distributions of dimensional 

parameters should be corrected in order to account for the maximum undulation; in 

such cases at least maximum thickness input values should always be corrected to 

account for channel-complex thicknesses being generally entered in the FAKTS 

database with values representative of their maximum thickness. 

 

 

 

Figure 6.3: frequency distribution of all FAKTS channel-complex thicknesses and best-fit 

probability density function. 

 

Channel sinuosity is not a direct input to FLUVSIM simulations; however 

geometrical input parameters related to channel sinuosity are the channel deviation 

from its axis (departure) and the correlation length of the sinusoidal departure. 

Thus, FAKTS-derived channel-complex sinuosity values can be used to obtain 

departure and length scale values, for example by referring to the relation depicted 

in Pyrcz et al. (2008, their figure 7). Additionally, the triangular distribution function 

that describes the orientation of FLUVSIM channels (line 30 of parameter file) can 

be informed by FAKTS channel-complex palaeocurrent variability within subsets, 

qualitatively assigned as ‘High’, ‘Intermediate’, or ‘Low’. 

As FAKTS channel-complexes represent channel-clusters defined on the basis of 

clearly defined geometrical rules, FLUVSIM channels – which can stack on each 

other themselves generating channel-clusters – would more appropriately embody 

5th and/or 6th order (sensu Miall 1996) channel-belts. Since FAKTS allows storing 

information on the order of the lower bounding surface of depositional elements, it 
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is possible, for example, to filter the database in order to obtain parameters relating 

to the geometry of 5th-order surface bounded channel-clusters (figure 6.4b) with 

which to constrain the object-based simulation.  A visual depiction of the sensitivity 

of FLUVSIM realizations to the choice of the type of channelized genetic units is 

offered in figure 6.5. 

 

 

Figure 6.4: (A) scatter-plot of all FAKTS channel-complex width vs. thickness (W/T), 

classified according to observation completeness classes by Geehan & Underwood 

(1993); (B) scatter-plot of 5th order-bounded FAKTS channel-belt width vs. thickness; 

(C) scatter-plot of 4th order FAKTS channel-fill (CH) architectural elements. 

 

 

Working at the architectural-element scale (i.e. including levee and crevasse splay 

objects in the FLUVSIM simulations), FLUVSIM channels can be described by 

FAKTS 5th-order channel-complexes, FAKTS 4th order CH architectural elements 

(cf. figure 6.4b for width/thickness ratios), or by material units (see below) 

composed of neighbouring FAKTS in-channel elements (CH, DA, LA, DLA, HO). 

Levee and crevasse splay proportions can be constrained by FAKTS-derived 

proportions as outlined above. The FLUVSIM levee and crevasse splay 

dimensional parameters are partly specified as triangular distribution functions 

(levee width and splay planform area), which can be readily derived from FAKTS 

output, and partly entered as a relative dimension (levee height and depth and 

splay thickness), expressed as a fraction relative to the thickness of the adjacent 

channel (Deutsch & Tran 2002). 
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Figure 6.5: example FLUVSIM realizations modelling the distribution of channelized bodies 

in a floodplain background; the simulations were conditioned on geometrical data 

from (left to right): FAKTS channel-complexes, channel-complexes bounded by 5th-

order lower bounding surfaces (5th-order channels), and CH architectural elements 

(channel-fills). 
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As the FAKTS database allows a full storage of the relationships of spatial 

adjacency between genetic units belonging to the same scale (Colombera et al. 

2012a; Chapter 2), it is possible to query the database to derive dimensional 

parameters of laterally juxtaposed units, thereby yielding the relative dimensional 

parameters required by FLUVSIM (but also employed by widely used commercial 

software with programs for object-based simulations of fluvial depositional systems; 

e.g. PETREL by Schlumberger). An example of this type of query is presented in 

figure 6.6a, where the interrogation that returns the thicknesses of juxtaposed 4th 

order CH and CS architectural elements is shown. Since the containment of genetic 

units within larger-scale genetic units is also properly represented in FAKTS, it is 

also possible to derive relative dimensional parameters associated to genetic units 

belonging to different scales (figure 6.6b); for example it is possible to submit a 

query to return the thickness of all the crevasse splay architectural elements (CS) 

neighbouring 5th-order channel-cluster depositional elements (channel-complexes 

bounded by 5th-order lower bounding surfaces) and the thickness of the channel-

clusters themselves in order to derive their relative thicknesses, in cases where 

FLUVSIM channels are described by FAKTS’ 5th-order channel-complexes. 

In a similar fashion, the same type of FAKTS output (proportions, absolute and 

relative dimensional parameters) can be used to constrain mixed object/process-

based simulation methods of fluvial architecture, like ALLUVSIM (Pyrcz et al. 2008). 

 

 

6.5.3 Conditioning pixel-based models 

Although any database that quantifies sedimentary architecture is potentially a 

valuable instrument for conditioning object-based simulations, FAKTS also has 

utility for constraining pixel-based simulations of fluvial architecture, though, in 

comparison to when working with object-based techniques, its use is less direct and 

requires additional data processing to obtain simulation inputs for variogram-based 

algorithms. However, whenever the traditional empirical curve-fitting approach is 

not practicable, auto-variogram parameters can be derived from database 

knowledge of sedimentological attributes (Ritzi 2000). The discussion below 

demonstrates how FAKTS can inform simulation techniques that are based either 

on variograms (e.g. sequential indicator simulations and plurigaussian simulations) 

or transition probabilities. 

 



162 

Chapter 6 

 



163 

Chapter 6 

Figure 6.6 (previous page): (A) representation of example query returning relative 

dimensional parameters: the thicknesses of all juxtaposed 4th order CH and CS 

architectural elements are obtained and a frequency distribution of the thickness ratio 

derived, ready to be input in the simulation. As FAKTS transitions are directional (left-

to-right, upstream-to-downstream), FAKTS space needs to be sampled in both 

directions to ensure a successful query;(B) representation of example query returning 

relative thicknesses of all laterally neighbouring juxtaposed channel-complex 

depositional elements and CS architectural elements and derived thickness ratio 

triangular distribution. 

 

6.5.3.1 Derivation and use of indicator auto-variograms: Sequential 

Indicator Simulation 

FAKTS’ three-dimensional space is not discretized into cells, but only into 

embedded genetic units that are vertically and laterally (in both strike- and dip-

direction) juxtaposed. Moreover, a genetic unit belonging to a given type may be 

neighbouring a genetic unit that is likewise classified (e.g. two vertically-stacked CH 

architectural elements). Therefore, to derive indicator variogram parameters for a 

given genetic-unit type from their relationships with genetic-unit proportion and 

extension, as formulated in Ritzi (2000), it is necessary to take into account the 

occurrence of genetic-unit self-transitions and their effect on the lateral and vertical 

extent of a continuous volume belonging to the same genetic-unit type. This volume 

is hereafter called the material unit, as it is formed by multiple likewise-classified 

genetic units (figure 6.7): in effect, the indicator auto-variograms derived via this 

process would measure the spatial continuity of these material units, instead of the 

original FAKTS’ genetic units. Generating material units from genetic units is always 

possible since vertical and lateral juxtapositional relationships are stored in FAKTS 

in the form of genetic unit transitions. Therefore, FAKTS must be interrogated by 

means of a series of N queries in order to obtain dimensional parameters 

describing the extent of a certain material unit type in a given direction, where N is 

the largest number of consecutively juxtaposed genetic units in that direction (figure 

6.8). Performing N + 1 queries ensures the determination of N, as the (N + 1)th 

query would return no result. For every direction, descriptive statistics (mean and 

coefficient of variation) of the dimensional parameters of material units can then be 

used in conjunction with their proportions to derive the ranges ( a ) of their indicator 

variograms according to: 

xkkxk lpa ,, )1(   (Ritzi 2000), 

where, referring to a material unit k, kp  is its proportion and xkl , is its mean size 

along direction x, whereas  = 1.5 or 3 for spherical or exponential models, 

respectively (Ritzi 2000). 

Indicator variogram sills can be calculated from material-unit proportions as: 
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)1( kk pp   (Ritzi 2000),  

whereas the variogram model can be inferred from the coefficient of variation of the 

dimensional parameters, as illustrated by Ritzi (2000). This means that FAKTS 

provides a wealth of data with which to constrain indicator variogram model 

parameters, whenever the scarcity of directly-derived primary data precludes 

employment of the typical curve-fitting procedure; for hydrocarbon reservoirs this is 

routinely the case in the horizontal directions as the majority of boreholes are 

vertically oriented. 

 

 

 

Figure 6.7: conceptual depiction of the translation of genetic units into material units 

according to a given categorical variable (or discretized continuous variable); letters 

indicate categorical types (e.g. genetic unit type): through this process we are able to 

obtain the lateral and vertical extent of a continuous volume belonging to the same 

categorical type. 

 

Some example FAKTS-derived anisotropic indicator variogram parameters are 

presented here for material units consisting of floodplain and channel depositional 

elements (table 6.3) and for a selection of 15 facies unit types (table 6.4). In the 

computation of the variogram model parameters, FAKTS’ partial and unlimited 

(sensu Geehan & Underwood 1993) dimensional parameters should be also 

included; their exact values should be used to estimate volumetric proportions 

whereas an excess correction of their values should be used to determine 
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dimension distributions, as their values provide minimum figures on the maximum 

lateral extension of genetic units. Since subset lateral extension is also stored in 

FAKTS, the correction of partial dimensions could be carried out according to the 

method proposed by Visser & Chessa (2000a; 2000b). It is important to note that 

material units do not necessarily have to be defined on the basis of genetic-unit 

classes: material units can be defined on any categorical variable, on any 

discretized continuous variable, or on a combination thereof; for example FAKTS 

could be used to derive variogram parameters referring to all the facies units 

classified as sand facies, yet having a fine (clay and silt) content higher than a 

given percent threshold. This allows for flexibility through the definition of several 

possible reservoir and non-reservoir categories with which to populate variogram-

based simulations. 

 

 

Figure 6.8: representation of an ideal example of sequential queries performed in order to 

obtain width data of a given type of material unit (characterized by category value ‘A’) 

from the widths of genetic units; if N is the largest number of consecutively laterally-

juxtaposed genetic units in the strike direction, N queries are required. This example 

illustrates an approach that is equally applicable in all directions (strike-lateral for 

material unit widths, downstream for dip lengths, vertical for thicknesses). 

 

The indicator variograms of categorical variables whose distribution needs to be 

simulated represent, together with their proportions, the basic input to the 

Sequential Indicator Simulation (SIS) method (Journel & Alabert 1990). SIS is a 
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simulation algorithm that describes each category through an indicator variable 

(which takes the value 1 if the category is encountered at a given location, 0 if it is 

not) and that builds a categorical image within a 3D grid by simulating individual 

voxels by drawing from the local probability distributions of the categories, updating 

probability distributions to account for categories that have already been simulated 

at neighbouring voxels (Alabert 1987; Journel & Alabert 1990; Deutsch & Journel 

1998). To test the ideas presented in this chapter, the GSLIB code SISIM (Deutsch 

& Journel 1998) has been used, with the source code being run through the open-

source software SGeMS (Remy et al. 2009; see Bianchi & Zheng 2008, for review). 

Given that SISIM does not account for cross-correlation between categories (e.g. 

by including indicator cross-variograms), working with more than two categorical 

variables is not recommended as category interactions corresponding to 

juxtapositional tendencies would not be simulated. Thus, FAKTS’ depositional 

element classes, being binary in nature (channel-complex or floodplain), represent 

a material description of fluvial architecture that is entirely appropriate to be used as 

SIS indicator categories. Moreover, working with depositional elements requires 

little database querying for obtaining cumulative widths or dip lengths of material 

units corresponding to depositional-element types, as floodplain depositional 

elements may be vertically stacked but not laterally juxtaposed. This means that 

SIS’ input marginal probabilities for the indicators would consist of in-channel-

deposit and floodplain-deposit proportions as obtained from FAKTS, whereas 

indicator variograms would be computed for material units corresponding to FAKTS 

channel-complex and floodplain depositional element classes (see table 6.3 for 

variogram parameters associated with channel and floodplain material units derived 

from (i) the entire FAKTS knowledgebase, (ii) from arid/semiarid-climate basins and 

(iii) from subhumid/humid-climate basins). 

However SIS, like other pixel-based techniques in general, fails to represent some 

topological features of the objects it seeks to model: if channel-complexes comprise 

sinuous channels or channel-belts, it would not be possible to model their sinuosity. 

In addition, because depositional elements are the largest-scale genetic units in 

FAKTS, the size distribution of some of the dimensional parameters associated to 

their material units could be unrealistic due to size underestimation (e.g. including 

partial and unlimited measurements) when working with data assigned a low-quality 

ranking (Colombera et al. 2012a, Chapter 2), and this could affect the resulting 

indicator variogram. For instance, if the observation windows of several case 

studies are too narrow to include a significant number of complete measurements 

of channel-complex dip lengths, the resulting dip-directed range could be 

significantly underestimated (see table 6.3, arid/semiarid channel-complex ranges);  
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Table 6.3: FAKTS-derived indicator auto-variogram parameters for channel-complex and 

floodplain depositional elements, classified according to the interpreted basin climate 

regime. 

 
INDICATOR VARIOGRAM 

PARAMETERS 

BASIN CLIMATE 
TYPE 

DEPOSITIONAL 
ELEMENT TYPE 

MODEL 

RANGE (m) 

SILL 

X Y Z 

Any climate 
Channel-complex Exponential 815 1358 5.3 0.177 

Floodplain Exponential 2641 1290 21.5 0.177 

Arid/semiarid 
Channel-complex Exponential 619 562 1.9 0.171 

Floodplain Exponential 414 166 21.3 0.171 

Subhumid/humid 
Channel-complex Exponential 2469 5990 11.0 0.193 

Floodplain Exponential 7169 3819 23.1 0.193 

 
 

Table 6.4: FAKTS-derived indicator auto-variogram parameters for material units 

corresponding to 15 selected facies unit types (see table 6.2 for classification) that 

account for almost the entire facies unit types in the database. The rest of the 

lithofacies types have been excluded due to the little amount of data on their lateral 

extension (mean and coefficient of variation) on the basis of which to confidently 

derive a model and a range; however, as the overall proportion of the remainder of 

lithofacies types is small, their inclusion would have little effect on the variogram sills 

of the units presented here. 

 INDICATOR VARIOGRAM PARAMETERS 

FACIES UNIT TYPE MODEL 

RANGE (m) 

SILL 

X Y Z 

Gmm Exponential 8.1 19.8 2.5 0.0009 

Gcm Exponential 21.9 40.0 2.3 0.0047 

Gh Spherical 12.5 27.4 1.2 0.0042 

Gt Spherical 13.5 82.4 1.5 0.0017 

St Exponential 35.7 34.6 3.7 0.1460 

Sp Exponential 34.6 50.2 3.0 0.0272 

Sr Exponential 49.9 52.6 1.3 0.0797 

Sh Exponential 91.6 43.8 2.0 0.2394 

Sm Exponential 66.8 39.6 3.6 0.1005 

Sl Exponential 42.5 43.3 3.3 0.0959 

Sd Spherical 7.4 9.9 1.7 0.0032 

Ss Exponential 22.0 30.5 1.9 0.0480 

Fl Spherical 24.5 22.9 0.9 0.0181 

Fm Spherical 34.1 23.9 0.41 0.0053 

P Exponential 24.0 24.0 1.8 0.0003 
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in such cases the range value should be corrected, for example by filtering high-

quality-ranked FAKTS’ studies in order to either re-compute the length distribution 

or use preserved-width/length ratios to derive a more realistic range. 

Example SIS realizations constraining unconditional simulations on FAKTS’ 

depositional-element data classified according to basin climate regimes are 

presented in figure 6.9. 

 

 

Figure 6.9: example SISIM realizations derived by constraining unconditional (no direct 

data) simulations based on FAKTS’ depositional-element data, filtered according to 

basin climate type (variograms in table 6.3). At this scale (hundred-meter lateral 

extent), the effect of different univariate statistics describing lateral dimensional 

parameters on indicator variogram ranges translates into more complexly interbedded 

channel and floodplain deposits for dryland fluvial systems in comparison to more 

humid systems, which show more laterally continuous depositional elements.  

 
 

6.5.3.2 Determination and use of indicator cross-variograms and 

transition rates: Plurigaussian simulations and T-PROGS 

FAKTS-derived indicator variograms can also find application for the conditioning of 

another popular pixel-based method: plurigaussian simulations. The principle 
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behind the method involves the generation of two or more Gaussian fields and their 

truncation at a specified number of thresholds in order to attribute discrete values 

representing the categories (Le Loc’h & Galli 1997; Dowd et al. 2003; Xu et al. 

2006; Armstrong et al. 2011). Unlike the SIS method, the plurigaussian method 

permits consideration of the juxtapositional tendencies of the modelled categories: 

contact relations among the categories, which describe juxtapositional trends, can 

be specified by using pre-defined contact templates (lithotype rules in: Armstrong et 

al. 2011; Dowd et al. 2003) or user-defined contact matrices (dynamic contact 

matrix in Xu et al. 2006). The inputs to this method consist of the proportions of the 

chosen categorical variables, their experimental indicator auto- and cross-

variograms, a model of their spatial relations and the Gaussian correlation 

coefficients. FAKTS can be used to obtain proportions as explained above, in case 

of sparse or no data (e.g unconditional simulations of fluvial architecture). In 

addition, instead of inputting experimental (cross-)variogram values, it is possible to 

derive indicator (cross-)variogram values from sampling at a given lag-spacing 

(cross-)variogram models generated using FAKTS data for each categorical 

variable (or each pair of categorical variables) (figure 6.10). FAKTS can be used to 

generate models of indicator auto-variograms for material units as explained above. 

Also, since FAKTS stores data about the spatial relationships between genetic 

units, the database can be used to derive models of indicator cross-variograms for 

each pair of indicators. This would be done by exploiting the relationship between 

indicator-cross variograms of a pair of categories and their continuous-lag transition 

probability (Carle & Fogg 1996). The sill of the indicator cross-variogram model can 

be computed from category proportions, as it approaches –pjpk (Carle & Fogg 

1996), where the j and k subscripts denote the two categories and p their 

proportion. As an approximation (downward) of the range of the model indicator 

cross-variogram for two categories, it is possible to assume the lag value at the 

intersection between the sill (pk) of the continuous-lag transition probability for the 

same categories and the tangent (s) to the same transition probability at lag zero. 

The lag value at this intersection is given by: 

xjk
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k
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p
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,
)(  .  

The slope of the transition probability approaching lag zero corresponds to the 

transition rate rjk,x (Carle & Fogg 1997), which can be estimated from mean 

dimensions ( L ) and embedded transition frequencies ( f ) or probabilities ( ) 

(Carle 1997a; 1999) as: 
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Notably, working with embedded categories means considering self-transitions as 

unobservable: this is consistent with switching from genetic units to material units 

(see above). A problem arises because tjk,x(h) may be significantly different from 

tkj,x(h), as transition probability, unlike cross-variograms, considers asymmetry, i.e. 

transition probability takes into account direction-specific patterns (Carle & Fogg 

1996). Therefore, it could be possible to derive a reference value of range for the 

cross-variograms from transition rates computed from bidirectionally-averaged 

transition probabilities, obtained by sampling FAKTS’ space in both directions for 

each axis (e.g. upwards and downwards along the vertical axis); this would be 

simply done by obtaining corrected transition count values as: 

xkj,xjk,xkj,xjk, c+c=*c=*c .  

From xjk,*c  we can derive xjk ,* , then xjkr ,*  with which to estimate a single value 

of range. Assuming the coincidence in transition counts in both directions, given by  

x kj,x jk, *c*c    

means deriving coincident transition probabilities:  

)()( htht kjjk    

then: )()( htht jkjk  . 

Assuming this, the relationship between indicator cross-variogram and transition 

probability given by: 

  2/)()()0()( hthttph jkjkjkjjk   (Carle & Fogg 1996) 

can be reduced to: )()( htph jkjjk  . 

Thus, the tangent of the cross-variogram at lag zero is equal to: hrp jkj  

This means that the lag value at the intersection between the sill of the indicator 

cross-variogram for the same categories and the tangent (q) to the same cross-

variogram at lag zero is:  )( kj ppqh
xjk

xk

r

p

,

,
 (figure 6.10a). 

The cross-variogram range can be estimated by correcting in excess this value, 

since: 

xjk

xk

xjk
r

p
range

,

,

, )(  . 

This approach only generates approximate models of cross-variograms, but it 

would only be used whenever lack of direct data precludes the calculation of cross-

variograms (e.g. actual lack of data or need to generate a training image). An 

example application whereby FAKTS is used to derive indicator cross-variogram 
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parameters for material units defined on facies unit types, referring to horizontal 

directions, is presented in tables 6.5 and 6.6. 

 

 

 

Figure 6.10: (A) example spatial transition probability between categories j and k as a 

function of lag h (tjk(h)) in a given direction, and corresponding cross-variogram 

(γjk(h)): the tangents to the curves at lag zero, the sills and their intersections are 

represented; the lag value at the sill-tangent intersection constrains the minimum 

value of cross variogram range; (B) analytical cross-variogram obtained from the sill 

and estimated range values derived from category proportions and transition rates; 

(C) the sampling of the analytical cross-variogram at given lag spacing yields cross-

variogram values that can be used as input in plurigaussian simulations. 

 
 

Table 6.5: FAKTS-derived indicator cross-variogram parameters for material units 

corresponding to five selected facies unit types, referring to the cross-valley direction; 

range corrected in excess of 10% of calculated tangent/sill intersection lag value. 

 INDICATOR CROSS-VARIOGRAM parameters –  

direction X (cross-valley/ strike) 

St Sp Sr Sh 

Range Sill Range Sill Range Sill Range Sill 

St Tab. 6.4    

Sp 33 -0.0050 Tab. 6.4 

Sr 18 -0.0155 15 -0.0024 Tab. 6.4 

Sh 17 -0.0705 1.5 -0.011 3.5 -0.0347 Tab. 6.4 

Fl 138 -0.0033 4.1 -0.0005 22 -0.0016 66 -0.0073 
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Table 6.6: FAKTS-derived indicator cross-variogram parameters for material units 

corresponding to five selected facies unit types, referring to the along-valley direction; 

range corrected in excess of 10% of calculated tangent/sill intersection lag value. 

 INDICATOR CROSS-VARIOGRAM parameters –  

direction Y (along-valley/dip) 

St Sp Sr Sh 

Range Sill Range Sill Range Sill Range Sill 

St Tab. 6.4    

Sp 12 -0.0050 Tab. 6.4 

Sr 18 -0.0155 7.8 -0.0024 Tab. 6.4 

Sh 24 -0.0705 3.0 -0.011 7.8 -0.0347 Tab. 6.4 

Fl 169 -0.0033 - -0.0005 10 -0.0016 74 -0.0073 

 

 
 

To fully constrain a plurigaussian simulation, it is necessary to choose a model that 

describes the spatial relationships between the categories. Given that FAKTS 

describes the spatial relationships between genetic units in terms of transitions, 

transition frequency matrices can be derived from the database for every type of 

genetic unit (and can be related to material units by setting diagonal values as zero) 

in order to obtain a quantitative description of spatial relationships (e.g. transition 

patterns from Markov analysis) with which to inform the choice of an appropriate 

model of contact relations. 

Other pixel-based methods that consider the spatial cross-correlation between the 

categories that need to be modelled describe the spatial structure by using Markov 

chains, quantifying spatial relationships using transition probabilities (Carle 1997a; 

1999; Elfeki & Dekking 2001). A popular transition-probability/Markov-chain 

geostatistical simulation method is implemented in the software T-PROGS (Carle 

1999). The T-PROGS package allows the calculation of three-dimensional Markov-

chain models of spatial variability that can be used in sequential indicator 

simulations (SIS) that are iteratively adjusted – in terms of matching simulated and 

modelled transition probabilities – by applying a simulated quenching (zero-

temperature annealing) algorithm (Carle 1996; 1997b) to generate a geostatistical 

realization of categorical variables. In comparison to variogram-based geostatistical 

methods, this transition-probability approach simplifies the link between observable 

attributes and model parameters. T-PROGS simulations are easily constrained by 
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proportions, mean dimensions and juxtapositional tendencies; the creation of 

variograms through either curve-fitting or modelling on FAKTS-derived data (as 

above) is not needed. In this method, spatial variability is incorporated in form of 

transition probability instead of indicator cross-variogram, thereby permitting the 

representation of asymmetrical correlation structures (e.g., fining-upward trends) 

(Carle & Fogg 1996). T-PROGS allows the generation of each 1D Markov chain 

following five different possible approaches, each of them leading to a transition 

rate matrix that defines the matrix exponential form of the Markov chain model 

(Carle 1999). After querying FAKTS in order to obtain mean dimensional 

parameters and transition counts (and then converting output into embedded 

transition frequencies or probabilities) for a given direction, the entries of the 

transition rate matrix for that direction can be derived by prescribing off-diagonal 

(cross-) transition rates by dividing embedded transition probability/frequency 

values by mean dimension and diagonal (auto-) transition rates by mean dimension 

(since: 
xj

xjj
L

r
,

,

1
 ). Further constraint is given by the proportions of all the 

categories, which can again be derived from FAKTS. Due to transition rate matrix 

properties, there is no need to specify row and column entries for one of the 

categories in the rate matrix: it is convenient to consider this “background” category 

as the material that “fills in the space” not occupied by other categories (e.g. low-

energy fine-grained floodplain sediments). 

Given (i) that direct data from which spatial transition probabilities can be computed 

are often lacking in the horizontal (strike and dip) directions, and (ii) that the 

advocation of Walther’s law (cf. Carle & Fogg 1997) is not advisable in fluvial 

depositional contexts (e.g. discrepancies in vertical and lateral transition 

probabilities testify to a tendency of vertical stacking of abandoned channel-fills on 

aggradational channel-fills that has no counterpart in the lateral directions), FAKTS 

can provide important quantitative information with which to condition the Markov 

models of lateral spatial variability. Examples of FAKTS-derived transition 

probability matrices for material units defined on facies unit types, referring to 

vertical and horizontal directions are presented in tables 6.7, 6.8 and 6.9. 

 

In contrast to the SIS approach, plurigaussian simulations and T-PROGS take into 

account spatial relationships: this means that it is possible to reliably simulate more 

than two indicators, making it possible to work more confidently with material units 

defined on the basis of FAKTS’ architectural elements and facies units. 
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Table 6.7: FAKTS-derived transition-probability matrix for material units (no embedded self-

transitions) based on 15 selected facies unit types, referring to the vertical (upwards) 

direction; lower units in rows and upper units in columns; values based on 6562 

embedded transitions. 

Z Fl Fm Gcm Gh Gmm Gt P Sd Sh Sl Sm Sp Sr Ss St 

Fl - 0.02 0.03 0.00 0.00 0.00 0.03 0.01 0.19 0.06 0.15 0.13 0.17 0.07 0.14 

Fm 0.00 - 0.03 0.00 0.00 0.00 0.04 0.03 0.23 0.02 0.20 0.07 0.24 0.01 0.13 

Gcm 0.02 0.02 - 0.01 0.00 0.05 0.01 0.03 0.18 0.07 0.18 0.17 0.02 0.06 0.22 

Gh 0.04 0.00 0.00 - 0.00 0.00 0.00 0.00 0.20 0.20 0.08 0.00 0.00 0.16 0.32 

Gmm 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.18 0.18 0.09 0.09 0.00 0.18 0.27 

Gt 0.00 0.00 0.12 0.00 0.04 - 0.00 0.00 0.15 0.12 0.23 0.08 0.00 0.08 0.19 

P 0.04 0.14 0.01 0.00 0.00 0.00 - 0.13 0.14 0.00 0.25 0.06 0.07 0.00 0.17 

Sd 0.02 0.05 0.00 0.00 0.00 0.00 0.10 - 0.17 0.15 0.25 0.13 0.05 0.02 0.08 

Sh 0.05 0.08 0.02 0.01 0.00 0.00 0.02 0.04 - 0.10 0.18 0.12 0.18 0.05 0.14 

Sl 0.03 0.01 0.02 0.00 0.00 0.00 0.00 0.07 0.19 - 0.24 0.14 0.04 0.05 0.19 

Sm 0.06 0.11 0.03 0.00 0.00 0.00 0.03 0.05 0.23 0.15 - 0.13 0.05 0.03 0.11 

Sp 0.05 0.04 0.04 0.00 0.00 0.00 0.01 0.05 0.20 0.12 0.15 - 0.08 0.03 0.22 

Sr 0.14 0.21 0.01 0.00 0.00 0.00 0.02 0.02 0.27 0.03 0.09 0.07 - 0.01 0.14 

Ss 0.03 0.00 0.02 0.00 0.00 0.01 0.00 0.04 0.27 0.22 0.06 0.08 0.03 - 0.23 

St 0.02 0.05 0.05 0.01 0.00 0.00 0.01 0.04 0.22 0.16 0.13 0.15 0.11 0.05 - 
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Table 6.8: FAKTS-derived transition-probability matrix for material units (no embedded self-

transitions) based on 15 selected facies unit types, referring to the lateral (right) 

direction; left-hand units in rows and right-hand units in columns; values based on 629 

embedded transitions. 

X Fl Fm Gcm Gh Gmm Gt P Sd Sh Sl Sm Sp Sr Ss St 

Fl - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.14 0.10 0.19 0.19 0.05 0.14 

Fm 0.00 - 0.00 0.00 0.00 0.00 0.06 0.00 0.19 0.19 0.06 0.13 0.13 0.19 0.06 

Gcm 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.13 0.13 0.13 0.00 0.00 0.19 0.44 

Gh 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.20 0.40 

Gmm 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.67 

Gt 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

P 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Sd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.40 0.20 0.00 0.00 0.40 

Sh 0.05 0.05 0.06 0.00 0.00 0.00 0.00 0.00 - 0.08 0.19 0.06 0.20 0.15 0.17 

Sl 0.06 0.01 0.01 0.00 0.00 0.01 0.01 0.02 0.06 - 0.23 0.10 0.03 0.18 0.28 

Sm 0.02 0.02 0.02 0.00 0.02 0.00 0.00 0.02 0.21 0.14 - 0.07 0.13 0.14 0.21 

Sp 0.02 0.00 0.02 0.02 0.02 0.00 0.00 0.02 0.13 0.16 0.10 - 0.15 0.18 0.20 

Sr 0.05 0.00 0.02 0.00 0.00 0.00 0.00 0.02 0.36 0.08 0.09 0.02 - 0.05 0.33 

Ss 0.03 0.02 0.05 0.02 0.00 0.00 0.00 0.02 0.15 0.20 0.08 0.14 0.07 - 0.22 

St 0.02 0.01 0.06 0.02 0.00 0.00 0.00 0.03 0.19 0.23 0.10 0.07 0.14 0.14 - 
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Table 6.9: FAKTS-derived transition-probability matrix for material units (no embedded self-

transitions) based on 15 selected facies unit types, referring to the dip (upstream) 

direction; downstream units in rows and upstream units in columns; values based on 

436 embedded transitions. 

Y Fl Fm Gcm Gh Gmm Gt P Sd Sh Sl Sm Sp Sr Ss St 

Fl - 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.13 0.25 0.25 0.00 0.13 0.00 0.13 

Fm 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

Gcm 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.00 0.33 0.22 

Gh 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.00 0.00 0.00 0.33 

Gmm 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.50 

Gt 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

P 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Sd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.02 0.31 0.17 0.17 0.00 0.02 0.31 

Sh 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 - 0.34 0.00 0.22 0.00 0.06 0.31 

Sl 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.11 0.12 - 0.38 0.15 0.04 0.04 0.15 

Sm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.02 0.57 - 0.15 0.00 0.00 0.09 

Sp 0.00 0.02 0.02 0.00 0.02 0.00 0.00 0.11 0.10 0.18 0.15 - 0.05 0.03 0.34 

Sr 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.07 0.04 0.04 - 0.07 0.56 

Ss 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.09 0.18 0.09 0.09 0.00 - 0.45 

St 0.02 0.00 0.06 0.01 0.01 0.00 0.00 0.03 0.11 0.27 0.08 0.23 0.13 0.04 - 
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6.6 Case study example application: generating training 

images for MPS modelling of the Walloon Subgroup 

(Surat Basin, Australia) 

6.6.1 Overview 

The application of database output to the production of training images for multiple-

point statistics (MPS) simulation of sedimentary architecture is here exemplified by 

work carried out with the purpose of generating training images suitable for 

modelling the subsurface architecture of the Walloon Coal Measures (Walloon 

Subgroup, WSG), a Middle Jurassic lithostratigraphic unit of the Surat Basin 

(eastern Australia). 

The WSG, which attains a thickness of up to ca. 450 m, is a heterogeneous 

succession of sandstones, siltstones, claystones, carbonaceous mudstones and 

coals, sporadically interbedded with ashfall tuffs, all interpreted to have 

accumulated in an alluvial plain setting (Clark & Cooper 1982; Fielding 1993; Martin 

et al. 2013) in the thermal-subsidence-controlled Surat Basin (Totterdell al. 2009). 

Different formations are distinguished within the Subgroup, and these tend to be 

characterized by variable proportions of the same types of sedimentary units (cf. 

Scott et al. 2007); however, the training images presented in this work consider the 

WSG as a whole, as stratigraphic variations (including the occurrence of major 

composite coal seams) are meant to be implemented in the MPS simulation by 

using so-called facies proportions curves rather than alternative training images for 

each interval. 

The drive to develop database-informed training images specifically for modelling 

this succession stems from the necessity to predict the subsurface sedimentary 

heterogeneity that determines the distribution and connectivity of aquifer units that 

are hosted in the WSG and which are locally connected with superficial alluvium 

forming an unconfined aquifer. A model describing subsurface stratigraphic 

architecture is needed in order to inform plans for sustainable groundwater 

management in the region to best reconcile the competing needs of (i) the coal-

seam gas industry who need to pump water as a by-product of gas production, and 

(ii) farmers of the Great Artesian Basin, who require groundwater for irrigation. 

In the following paragraphs, a description is given of the approach taken for the 

creation of candidate training images based on the application of FAKTS analogue 

knowledge. This piece of work serves as an example practice of database-informed 

MPS training-image generation. 

Since MPS modelling algorithms capture patterns of heterogeneity from training 

images, it is crucial to incorporate realistic sedimentary architecture into such 
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training images. The approach adopted to ensure that the training images represent 

geologically realistic fluvial facies models makes use of object-based modelling 

techniques constrained by geometrical information referring to fluvial sedimentary 

units derived from a suite of ancient and modern fluvial systems that can be, to 

various degrees, considered as potential analogues to the Walloon Subgroup. 

 

6.6.2 Fluvial sedimentary units 

The building blocks composing the training images are sedimentary units 

categorized on fluvial sub-environments recognized in the WSG on the basis of 

original well (geophysical logs and cores or cuttings) interpretations and work done 

by other authors (Clark & Cooper 1982; Fielding 1993; Martin et al. 2013). The 

chosen categories include: 

 fluvial channel-belt deposits 

 proximal sandy floodplain deposits 

 distal fine-grained floodplain/lake deposits 

 coal bodies. 

The choice of a limited number of modelling categories ensures that (i) only the 

sedimentary units that are most significant in the WSG hydrostratigraphic context 

are included, and that (ii) it is possible to limit the uncertainty associated with the 

interpretation of wells used for model conditioning for which core data are not 

available, i.e. for which discriminating levee deposits from crevasse splay deposits 

would carry uncertainty, for example. 

 

6.6.3 Obtaining quantitative constraints from the sedimentary 

architecture of analogue fluvial systems 

Modern-system and outcrop information on the sedimentary architecture of 

potential analogues has been derived from FAKTS on the assumption that, by 

filtering the database on any user-defined combination of system parameters or 

architectural properties, it is possible to obtain information that effectively 

represents a quantitative fluvial facies model (cf. Chapter 3) that can be employed 

as a synthetic analogue to inform training images that will be representative of that 

fluvial system type. An obvious limitation of the method is brought about by the 

progressively smaller amount of data – and number of analogues – that are 

included in the model as filters are successively added: if only a modest amount of 

architectural data are available for a set of filters, the resulting model will fail to 
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embody the natural variability associated with that system type. It was not possible 

to contemporaneously guarantee the incorporation of many data-rich systems and 

the choice of a single synthetic analogue that would match all available WSG 

environmental interpretations; instead the approach taken was to derive alternative 

sets of architectural information representing different fluvial classes that at least 

partially match with interpretations proposed by several authors concerning 

planform type (dominantly meandering; cf. Clark & Cooper 1982) and basin climate 

regime (humid; cf. Turner et al. 2009). 

A total of five alternative synthetic facies models have been derived from FAKTS 

(April 2013) to variably inform the training images and these models are defined as 

follows: 

1) a generic model fluvial system including information from the entire FAKTS 

analogue knowledge base concerning channel complexes, levees and 

crevasse splays; 

2) a model based on channel-complex data from FAKTS for meandering 

systems, and proximal floodplain (levee and crevasse splay) data from all 

FAKTS systems; 

3) a model based on FAKTS analogue information relating to systems placed 

in humid/sub-humid settings; 

4) a model based on channel-complex data from FAKTS systems in 

humid/sub-humid settings in the 45˚-75˚ palaeo-latitude range, integrated 

with proximal floodplain (levee and crevasse splay) data from systems 

placed in humid/sub-humid settings at any latitude; 

5) a model based on parameters drawn from empirical relationships derived 

from all FAKTS systems and relating descriptive statistics (mean and 

standard deviation) of channel-complex geometries (thickness and width) to 

proportions (cf. Chapter 5), with reference to corehole-derived WSG 

channel-complex proportions, integrated with proximal floodplain (levee and 

crevasse splay) data from all FAKTS systems. 

This information has been independently combined with two alternative sets of 

information concerning the geometry of coal bodies, as respectively derived from 

the entire FAKTS knowledge base on coal-bearing systems or from the correlation 

of densely-spaced wells in the WSG by Morris & Martin (2012). Thus, a total of ten 

alternative sets of quantitative parameters have been considered for conditioning 

training images associated with different models of fluvial systems. Each set of 

information – and related training image – is identified by a letter (F if FAKTS coal-

body data is included; W if WSG coal-body data by Morris & Martin 2012 is 
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included) followed by a number (1 to 5, referring to one of the five FAKTS facies 

models, as numbered above). Notably, the training images incorporate analogue 

information referring to individual coal bodies, rather than composite heterogeneous 

coal seams; convergent coal-seam split geometries associated with interburden 

pinch-out, as recognized in the WSG (Fielding 1987; figure 6.11), are not 

reproduced by the training images. 

 

 

Figure 6.11: schematic WSG cross-section depicting the persistent nature of coal-seam 

and seam-split geometries (bold lines); stippled units represent large channelized 

features (modified after Fielding 1987). The proposed training images do not include 

composite heterogeneous coal seams as discrete unit types, and do not include 

seam-split geometries. 

 

6.6.4 Constructing training images through object-based 

modelling 

Object-based methods for stochastic structure-imitating modelling of geological 

media have been employed for generating training images based on the combined 

use of corehole-derived genetic-unit proportions and database-derived genetic-unit 

geometrical constraints. Ultimately, the training images are representative models 

of fluvial successions composed of fluvial channel-complexes, frequently 

transitional to proximal floodplain sandy units, dispersed in a fine-grained floodplain 

background in which several coal-bodies are distributed. 

Two alternative approaches have been attempted to generate candidate training 

images, which differ in the way they allow for honouring different types of available 

constraints. 

A first set of candidate training images was obtained through a combination of the 

use of the FLUVSIM algorithm (Deutsch & Tran 2002), which permits modelling of 

the distribution of channel complexes, levees and crevasse splays in a distal 

floodplain background, with another object-based software called TiGenerator 
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(Maharaja 2008), which has instead been used for simulating coal bodies in the 

distal floodplain region, by modelling the bodies as lenses with circular planform 

shapes. Both steps are conditioned by assigning triangular distributions describing 

the geometry of the genetic units; the main advantage of employing FLUVSIM to 

model channel complexes lies in the possibility to prescribe width-to-thickness 

aspect ratios for constraining channel-complex geometries. The choice of a suitable 

FLUVSIM model required visual inspection of the resulting realization, as no rules 

can be assigned to ensure that the stacking of the channel units are consistent with 

the geometrical definition of FAKTS channel complexes. 

A second trial set of training images was generated by using a different object-

based program for training-image generation called TETRIS (Boucher et al. 2010). 

TETRIS permits the assignment of lognormal distributions to the geometrical 

parameters of the genetic units, thereby allowing for the reproduction of more 

realistic distributions of channel-complex and coal-bodies widths and thicknesses 

(cf. Chapter 5). In addition, rules describing the style of stacking of channel-

complexes can also be specified, facilitating the generation of realizations including 

channel-complexes that honour FAKTS geometry-based definitions; spatial 

relationships between different types of objects can also be established, so that 

levee and crevasse-splay objects can be attached to channel-complexes. The 

major drawback to the scope of this work is that it is not possible to condition the 

model on genetic-unit width-to-thickness aspect ratios. 

Overall, the first set of training images is characterized by a perceived higher 

realism in the reproduction of geological features, mainly due to the inclusion of 

constraints on object shape aspect ratios. In consideration of this fact, the first set 

of training images (figure 6.12 and 6.13) has only been considered for MPS 

simulation use, taking into account both groups based on alternative coal-body 

geometries (figure 6.14). 

These training images can find application to the MPS modelling of other fluvial 

coal-bearing successions, although a major limitation to their applicability is given 

by the choice of a limited number of unit types, which is related to their project-

specific nature. 
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Figure 6.12: training images F1 to F5, including analogue knowledge from classified FAKTS systems. See main text for further explanation. 
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Figure 6.13: training images W1 to W5, including analogue knowledge from classified FAKTS systems combined with geometrical information about WSG coal bodies by Morris & Martin (2012). See main text for further explanation. 
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Figure 6.14: comparison between training images F1 and W1; legend, volume size and 

vertical exaggeration are as in figure 6.12 and figure 6.13, floodplain fines are 

transparent. Above: training image F1, including analogue knowledge from all FAKTS 

systems. Below: training image W1, including analogue knowledge from all FAKTS 

systems combined with coal-body geometries as given by Morris & Martin (2012) for 

the WSG. The larger average horizontal extent of the coal-bodies (light-blue units) as 

compared to training image F1 is evident. 
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6.7 Informing variogram-based simulations of fluvial 

architecture through empirical relationships linking 

channel-complex geometries and proportions 

In Chapter 5, empirical relationships linking channel-complex depositional-element 

width descriptive statistics (mean, and standard deviation) with proportions were 

presented as means to guide the prediction of the lateral extent of channel 

sandstones as a function of net-to-gross within stratigraphic volumes. The same 

relationships have been employed here to derive range, sill and model for indicator 

auto-variograms for the horizontal cross-stream direction for channel-complexes 

(figure 6.15), whereas corresponding relationships (cf. digital appendix D4) have 

been used to derive the same indicator-variogram parameters for floodplain 

depositional elements, following the methodology based on the work by Ritzi 

(2000). These horizontal indicator variogram models could be employed in real-

world situations by coupling them with indicator variograms for the vertical direction, 

which could be readily derived through the common curve-fitting approach applied 

to well data. 

 

 

Figure 6.15: indicator auto-variograms for channel-complex units referring to volumes with 

variable proportions of channel deposits (‘CC proportion’ in labels); the variograms 

are based on model types, sill values and range values derived from channel-complex 

proportions and empirical relationships describing channel-complex descriptive 

statistics (mean, standard deviation and coefficient of variation) as functions of 

channel proportion. 
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Here, this approach has been used to simulate the sedimentary architecture of ideal 

fluvial systems with variable proportion of channel deposits with a SIS algorithm 

(SISIM; Deutsch & Journel 1998). The same work undertaken to obtain horizontal 

variograms has been performed for the vertical direction for material units built from 

channel complexes, by employing relationships linking channel-complex connected 

thickness with proportion (cf. digital appendix D4), and the same vertical range 

value has been applied to floodplain depositional elements for sake of simplicity. 

Results are presented in the form of simulated (2 km wide x 0.3 km high) cross 

sections for 20% channel-proportion increments in the 10/90% range of channel 

abundance (figure 6.16). This approach to guiding SIS modelling of fluvial 

architecture could be applied to cases of aquifer/reservoir modelling for which only 

well-derived information about thickness and proportion is available. For the cases 

of high channel-deposit proportion, the same approach to the generation of 

unconditional SIS simulations would be more appropriately informed by making use 

of indicator variograms based on empirical relationships linking the connected 

thickness of floodplain depositional elements to their proportion. The validity of the 

approach has been tested for the modelled stratigraphic section with 10% channel 

deposits: the simulated section has been segmented into channel complexes, 

following the definition given by the FAKTS standard, and the distribution in cross-

stream width of the modelled channel complexes has been compared with the 

distribution in channel-complex width derived from all FAKTS stratigraphic volumes 

characterized by channel-deposit proportion in the 8.5/11.5% range. Results of the 

validation (figure 6.17) demonstrate that there is a good match between the best-fit 

lognormal distributions of channel-complex width from the model and the real-world 

data, suggesting the value of this empirical method for uncertainty quantification of 

poorly-characterized subsurface fluvial successions. 
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Figure 6.16: ideal cross-gradient-oriented cross-sections representing large-scale fluvial 

sedimentary architecture for variable proportions of channel deposits; these 

geostatistical simulations have been obtained by SIS conditioned by indicator 

variograms informed by empirical relationships linking channel-complex lateral extent 

to their proportion within stratigraphic volumes. 
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Figure 6.17: comparison between the distribution of channel-complex width (expressed in 

metres) derived from the cross-section obtained by SIS simulation of an ideal system 

with 10% channel deposits and the distribution of channel-complex width derived from 

all stratigraphic volumes included in FAKTS and displaying a proportion of channel 

deposits of 10% ± 1.5%. Best-fit lognormal distribution functions have been also 

included, and their location and scale parameters have been reported in the upper-

right box. 

 

6.8 Conclusions 

A new approach is proposed for conditioning stochastic simulations of the 

sedimentary heterogeneity of fluvial reservoirs: it makes use of a relational 

database that includes literature- and field-derived fluvial architectural data from 

studies of both modern rivers and ancient successions, recording every 

fundamental architectural feature (style of internal organization, geometry, spatial 

distribution and reciprocal relationships of genetic units), and classifying datasets – 

or parts thereof – according to both controls and context-descriptive characteristics. 



192 

Chapter 6 

The novel features embedded in the database conceptual model and design give 

rise to important advantages over traditional databases describing sedimentary 

architecture, making it a valuable tool for providing tightly constrained input 

parameters for use in the development of fluvial reservoir models. The major 

advantages are as follows: 

 

 it is possible to apply a variety of filters with which to sort the fluvial data into 

synthetic analogues having boundary conditions corresponding with the 

depositional system to be modelled; 

 sedimentary architecture is represented by means of genetic units 

corresponding to different scales nested in a hierarchical fashion. This 

permits (i) the choice of different modelling categories corresponding to 

different scales of heterogeneity, and (ii) the adoption of a hierarchical 

approach to simulation according to which smaller-scale features are 

sequentially simulated within larger-scale features (e.g. lithofacies within 

channel-fills distributed within channel-complexes; cf. Deutsch 2002); 

 it is possible to build any type of material unit (defined as contiguous 

volumes of sediment characterized by given values of any categorical 

and/or continuous variable) to be used as modelling categories and to 

derive associated proportion, dimension and transition statistics; 

 it is possible to derive relative dimensional parameters (i.e. dimensions of a 

given object expressed as a fraction relative to the dimension of an adjacent 

object) with which to condition object-based simulations; this is done by 

querying the database for dimensions of genetic units whose juxtaposition is 

tracked in the form of transitions in the vertical, dip and strike directions; 

 it is possible to generate models of indicator auto- and cross-variograms – 

from data on material unit dimensions, proportions and transitions – with 

which to constrain variogram-based simulations whenever empirical curve-

fitting is not applicable (this is most useful in horizontal directions); 

 it is possible to obtain embedded transition frequency/probability matrices 

for material/genetic units (vertical, strike and dip directions) with which to 

constrain Markov chain-based simulations or with which to derive transition 

patterns that can be used to establish lithotype rules or contact matrices for 

plurigaussian simulations; 

 it is possible to employ database-derived output with which to fully constrain 

unconditional simulations (i.e. simulations that are not conditioned to direct 
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data) of fluvial architecture and to use the resulting realizations as 3D 

training images for multiple-point statistics simulations; 

 database-derived empirical relationships relating descriptive statistics of the 

geometry of material units to their proportion in a stratigraphic volume can 

be used to inform indicator auto-variograms, which can then be used to 

condition pixel-based simulations of fluvial architecture in poorly-

characterized subsurface contexts. 
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7 Conclusions 

 

This Thesis has provided an account of a research initiative that has an overarching 

aim to demonstrate how a relational database can practically be employed as a 

means for the digital storage of fluvial sedimentary architectural data, and how such 

a database can be useful for addressing topical issues in both pure and applied 

sedimentological research by employing database-derived information in a series of 

applications. Specifically, as shown throughout Chapters 3-6, different database-

oriented lines of research have been undertaken with regard to (i) fluvial facies 

models, (ii) fluvial physical stratigraphy models, (iii) well-to-well correlation of fluvial 

geobodies, and (iv) stochastic structure-imitating simulations of fluvial sedimentary 

architecture. The applications presented all make use of database output and often 

share part of a common work-flow, but results are necessarily independent and are 

therefore summarized separately in the following paragraphs. 

 

7.1 Summary 

Chapter 2 described the database methodology for the digitization of fluvial 

sedimentary architecture. The focus was on how the database design permits the 

reproduction of the natural complexity of fluvial depositional architecture through a 

series of related tables, and on the range of information that can be obtained from 

this type of database through interrogation. Thus, the database design was 

presented as a potential reference for the development of similar systems (cf. 

Naumann 2012) – even for other depositional contexts – and was explained by 

presenting the way features in the conceptual scheme of the database (e.g. 

hierarchical relationships between geological units) were implemented in the logical 

scheme (e.g. relationships between tables reproducing geological hierarchical 

relationships). The FAKTS database, has built on data obtained by studies 

consisting of both original fieldwork carried out by the author (or colleagues working 

in the Fluvial Research Group) and published peer-reviewed articles of both 

modern rivers and ancient successions. The database has been designed to 

capture geometries, bounding-surface information, style of internal organization, 

spatial distribution and reciprocal relationships of genetic units. In order of 

descending scale, the three orders of reciprocally-nested database building blocks 

that are recorded consist of (i) ‘depositional elements’ and (ii) ‘architectural 
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elements’, which are both interpretative in nature, and (iii) ‘facies units’, which form 

more objective lithology-based entities. The database design allows for the 

inclusion of both quantitative and qualitative data, and permits the classification of 

case studies or of any part thereof on the basis of context-descriptive parameters 

(e.g. channel-pattern type) or boundary conditions (e.g. subsidence rate). A major 

strength of the database lies in its flexibility to deal with both system and genetic-

unit classifications: assignment of units to classified stratigraphic volumes can be 

edited to reflect improved understanding and multiple classifications can be 

adopted contemporaneously, although the segmentation of the architecture into 

interpretative units (especially architectural elements) still relies on the recognition 

of bounding surfaces marking a transition in interpreted preserved sub-

environment, which may not be trivial. The adoption of a practical geometrical 

approach for the distinction of depositional elements in the FAKTS database serves 

as an example of how architecture definition can be considered to facilitate the 

inclusion of subsurface case studies (well and seismic data). The chapter finally 

provided an overview of the most general output that can be obtained through 

database queries and that can be employed in several applications, as discussed in 

the subsequent chapters. 

Chapter 3 focussed on how to employ the database to generate quantitative multi-

scale fluvial facies models, consisting of sets of information concerning proportions, 

geometries, hierarchical organization, spatial relations and grain sizes of FAKTS’ 

genetic units. Information is synthesized into the models from a range of suitable 

FAKTS case studies, selected by filtering the database on the parameters on which 

the models need to be categorized. The approach was demonstrated by presenting 

example models classified on dominant grain size, channel pattern, basin humidity 

and water-discharge regime, as well as facies models relating to individual sub-

environments. Collectively, these examples showed the main improvements over 

traditional qualitative facies models. Such advantages and improvements include: 

(i) the quantification of architectural characteristics, (ii) the more objective nature of 

the process of distillation of sedimentological information into the model, (iii) the 

possibility to include variability- and knowledge-related uncertainty in the model, (iv) 

the capacity to discriminate modern- and ancient-system input to each model, and 

(v) the possibility to retrieve original model-forming information associated with 

each individual system or genetic unit. The models presented can act as references 

for comparison, interpretation and subsurface prediction for those particular 

environmental types, similar to any other facies model. However, the chapter mainly 

used the example models to stress the significance of the approach for related 

research purposes. For example, the system can be employed to define the types 

of models with the highest predictive power. In the published literature it is common 
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to encounter a tendency to force interpretations of fluvial successions in terms of 

dominant channel/river pattern, even though objective elements on which to base 

interpretations may be scarce, especially in subsurface datasets. This widespread 

practice stems from the implicit assumption that channel-pattern categories are 

associated with the most distinctive suites of architectural styles; in other words, it is 

commonly implied that channel pattern-based facies models incorporate the largest 

architectural variability between different types and the minimum architectural 

variability within types, making them the most suitable models to be used as 

predictive tools. As shown in the chapter through a comparison between ‘single-

thread’ and ‘braided’ models, database-derived facies models permit the inclusion 

of quantified architectural variability within the model itself, therefore potentially 

enabling the recognition of environmental classes that are most suitable for model 

classification, as well as allowing uncertainty quantification. Furthermore, this has 

implications concerning the need to overcome the excessive proliferation of facies 

models, as resulting models do not require advocating equally-classified alternative 

models to account for architectural variability. The system is evidently also 

applicable to other problems, such as the identification of gaps in the 

characterization of specific system types or the assessment of the possible role 

played by preservation potential in the facies organization of specific fluvial 

sedimentary units. 

Chapter 4 described the use made of FAKTS in a comparative study of the 

architectural organization of various systems with the aim to investigate the value of 

system-wide aggradation rate as a predictor of fluvial architecture. In effect, the 

work is a test of commonly considered physical stratigraphy models predicting an 

inverse relationship between the rate of basin-wide aggradation and the density of 

channel bodies in a fluvial succession, on the basis of the recognition of floodplain 

reworking by mobile and avulsive channels as the main process controlling channel 

amalgamation. In a broader context, this served as an example of a way in which 

the database could be employed to study relationships between architectural 

products and controls (in-as-much-as aggradation rate can be considered as 

indicative of the rate of generation of subaerial accommodation, and subaerial 

accommodation can be considered as a pure control – which is debatable). The 

analysis included architectural data consisting of depositional-element proportions, 

geometries and vertical connectivity as obtained from stratigraphic volumes 

deposited over a 10-1-101 Ma timescale, drawn from a series of large-scale 

architecture studies for which temporal constraints were available. Results showed 

that for the depositional systems considered, temporal variations in aggradation 

rates and channel-deposit proportions do not regularly follow inverse 

proportionality; instead, increases in aggradation rate are dominantly associated 
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with increases in channel density – and vice versa. Quantities describing changes 

in channel-complex geometries and vertical connectivity within systems undergoing 

temporal variations in aggradation rates also contradict predictions expected by 

common fluvial architecture models. These results only relate to relatively few case 

studies from a limited number of depositional settings, and therefore clearly need to 

be substantiated by incorporation of additional primary data. However, on the basis 

of these findings it is possible to claim that existing fluvial architecture models may 

be the exception rather than the rule, and that there is thus need for reconsideration 

of sequence stratigraphy models and practice (such as the definition of 

accommodation-based stratigraphic packages based on variations in channel-body 

density or geometry) that currently rely heavily upon unproven assumptions. 

In Chapter 5 the focus shifted to subsurface applications of the FAKTS database. 

The use of outcrop analogues as natural templates for informing subsurface 

predictions is a well established practice, and so is the creation of outcrop analogue 

databases, typically storing geometrical information; thus, in this chapter and in the 

subsequent Chapter 6, the main scope was to propose new ways in which the 

FAKTS architectural database could be employed in workflows for forecasting 

fluvial reservoir or aquifer sedimentary architecture. Chapter 5 specifically dealt with 

the use of analogue data as a means to guide well-to-well correlations of fluvial 

channel bodies, therefore restricting its scope to large-scale sedimentary 

architecture. First, database output concerning channel complexes was used to test 

the predictive value of previously-published empirical relationships meant to be 

used to predict the likely lateral extent of individual fluvial channel bodies, on the 

basis of inferred palaeo-hydrological information or observed geometrical data. 

Results showed the considerable uncertainty associated with the use of such 

relationships as a guide to well correlation, therefore highlighting the need for a way 

to quantify the realism of the resulting correlation panels, rather than the likely size 

of each of the individual sandstone bodies. To fulfil this necessity, in the rest of this 

chapter a novel probabilistic method was introduced to assess the geological 

realism of subsurface deterministic models constructed on correlations across well 

arrays with constant spacing, demonstrating from first principles how outcrop 

analogue data are incorporated into models that quantify the correlability of fluvial 

channel complexes. Such ‘correlability models’ are expressed as the ratio between 

expected correlatable and penetrated bodies as a function of correlation distance, 

and are obtained from total probabilities of penetration and correlation, which are 

themselves dependent on the distribution of lateral extent of the channel 

complexes. Thus, employing outcrop-analogue data to constrain the width 

distribution of the bodies, it is possible to generate a model that describes realistic 

well-to-well correlation patterns for a given type of depositional system and well-



199 

Chapter 7 

array spacing. Correlability models can be used for checking the quality of 

correlation-based subsurface interpretations, by assessing their geological realism 

as compared with one or more suitable outcrop analogues. The flexibility of the 

approach was illustrated by generating total-probability curves that refer to channel 

complexes and that are categorized on different classifications (e.g. braided river 

system, system with 20% channel deposits). The method was specifically applied to 

rank three published alternative interpretations of a stratigraphic interval of the 

Cretaceous Travis Peak Formation (Texas, USA), in terms of realism of correlation 

outcomes as compared to (i) all analogues recorded in the database and 

considered suitable for large-scale architectural characterization, and (ii) analogues 

interpreted exclusively as the sedimentary expression of braided systems. 

Chapter 6 focussed on the application of the database to inform stochastic 

structure-imitating simulations of subsurface fluvial sedimentary architecture at 

different scales. Database output was employed to define a range of different 

parameters that collectively demonstrated how the system is able to provide more 

sophisticated constraints than solely descriptive statistics of genetic-unit 

geometries, which is the typical information offered by outcrop-analogue databases. 

This capability is related to database design: an important implication is that the 

system can be used for conditioning both object- and pixel-based modelling 

methods, again making use of filtered information to define synthetic analogues that 

match the subsurface in terms of boundary conditions, context-descriptive 

parameters and/or architectural properties. Object-based simulations can be 

constrained by database-derived absolute dimensional parameters, exemplified in 

the chapter by information referring to the thickness and width-to-thickness aspect 

ratio of different orders of channelized units, and relative dimensional parameters, 

expressed as the fractional dimension of a given genetic unit relative to the 

dimension of another adjacent and genetically-related genetic unit, even belonging 

to a different scale, as shown in the chapter by the relative thickness of crevasse-

splay elements and channel-fill elements or complexes. FAKTS’ capability of 

keeping track of unit spatial relationships was used to derive information regarding 

‘material units’, defined as rock volumes characterized by given values of any 

categorical and/or continuous variable. Such information was then employed to the 

generation of indicator auto- and cross-variograms (model, range and sill) for the 

vertical, strike and dip directions, referring to material units based on depositional-

element and facies-unit types; variogram-based geostatistical methods can thereby 

be conditioned without requiring the empirical curve fitting of well data. 

Furthermore, database output referring to transition statistics of facies units was 

presented as information with which to directly inform Markov chain-based 

simulations or with which to define spatial patterns to be used to generate lithotype 
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rules or contact matrices for plurigaussian simulations. To illustrate the use of 

FAKTS as a tool for informing multi-point statistical (MPS) simulations, database-

derived information from variably defined synthetic analogues was used to generate 

a set of stochastic realizations representing alternative training images that – 

together with facies-proportion curves – are meant to be utilized for MPS modelling 

of the large-scale subsurface architecture of the Jurassic Walloon Coal Measures 

(Surat Basin, Australia). Finally, a set of empirical relationships (presented 

previously in Chapter 5) relating descriptive statistics of the geometry of 

depositional elements to their proportion in a stratigraphic volume were used to 

inform indicator auto-variograms, which were then used to condition sequential 

indicator simulations of ideal fluvial architecture, to exemplify the application of such 

relationships to the simulation of the large-scale architecture of subsurface fluvial 

systems for which only well-derived channel-deposit proportion is known. 

 

7.2 Future research 

The work presented in this Thesis has set the stage for further progress in the 

application of a database-approach to the characterization of fluvial sedimentary 

architecture and in its use to pursue both pure and applied forms of research. 

The value of a relational database as a means for the digitization of sedimentary 

architecture would certainly benefit from several improvements in the database 

design, and several such modifications could be easily implemented in the FAKTS 

database itself. Some possible improvements are listed below, and how the 

approach would benefit from their inclusion is also elucidated. 

 The inclusion of descriptors of the 2D/3D shape of genetic units, relating to 

cross-sectional, planform and/or 3D types, would permit a fuller 

characterization of architectural styles and would therefore enhance 

database-derived facies models and provide additional information for 

stochastic models that attempt to simulate subsurface complexity. 

 The addition of non-fluvial genetic-unit types (e.g. aeolian architectural-

element types) to the FAKTS classification schemes would allow for 

quantitative investigations of the relationships of interaction between such 

units and fluvial/alluvial units. 

 The inclusion of attributes describing petrophysical (essentially porosity and 

permeability) and diagenetic properties could find several applications; 

importantly, it would be possible to further improve the quantitative 

characterization of aquifer or reservoir analogues, to tentatively assess the 
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role of external and architectural controls on small-scale reservoir quality, 

and to employ the information in dynamic modelling of fluid flow in fluvial 

porous media that could serve various purposes (e.g. assess architectural 

controls on water-flood performance, generate models of dynamic 

connectivity for classified fluvial system types). 

 The inclusion of additional metadata that could be used for improving the 

way the database links additional bibliography to depositional-system 

classifications would be useful to inform choices about possible system 

reclassification once additional evidence becomes available. 

 A significant improvement would be given by the redefinition of stratigraphic 

volumes into several orders of volume types, so that each type would 

embody a different time scale, in a way that would permit the same genetic 

unit to be contained within different volumes. This would effectively allow 

users to be able to investigate architecture at different timescales, so that 

database output could potentially be used to identify the effects of 

timescale-dependent controls. Attributes referring to each order of 

stratigraphic volume could then be considered as averaged over that given 

timescale. Although this modification would ideally broaden the database 

capabilities, the common lack of temporal constraints on sedimentary 

succession at different scales would currently make this functionality of only 

limited use. 

Even with the database in its current form, most of FAKTS applications explored in 

this Thesis demonstrate the need for more architectural data, as well as additional 

soft data with which to further constrain the classification of included depositional 

systems. In particular, the progressive inclusion of additional primary data to the 

database is required to permit the generation (or update) of deliverables of the type 

presented here (e.g. facies models, relationships and models for subsurface 

application). Additionally, in the current state, depositional systems are only partially 

characterized in terms of boundary conditions controlling their architecture and 

relevant information has variable quality: this considerably hinders database 

applications, especially with regard to comparative studies aiming to determine the 

sensitivity of sedimentary architecture to its controls or to assess the value of 

possible architectural predictors. 

As the database grows, some future results will consist in the refinement and 

further development of several of the outcomes presented in this work. For 

example, it will be possible to obtain facies models referring to other types of 

depositional systems or sub-environments than the ones presented in this Thesis. It 

ought to be possible to develop more sophisticated correlability models associated 
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with different deposystem classes or relating to different genetic/material units (e.g. 

channel-levee-splay sandstones). However, additionally the database approach to 

architectural characterization could also find several applications that have not been 

treated in this Thesis. 

The assessment of architectural sensitivity to given controls – only marginally 

treated in this work – could be a far-reaching objective if the project was taken 

further; this is the type of application that crucially requires more of both the hard 

and soft data mentioned above. Future work in this direction could possibly make 

use of multivariate analysis that simultaneously involves several dependent and 

independent variables as a means to test the effect of different controls. Yet, to 

attempt this, it is first imperative to overcome the current deficiency of knowledge 

on the characteristics on which depositional systems are classified. 

From a more applied perspective, the sets of quantitative information associated 

with database-derived facies models could be employed to constrain unconditional 

stochastic simulations of the sedimentary architecture of fluvial system types at 

several scales, so that the resulting realizations could be investigated in terms of 

the static connectivity of their formative genetic units that are deemed as being of 

appropriate reservoir or aquifer quality. It would thereby be possible to derive a 

suite of scenarios that quantify static connectivity for various types of fluvial 

depositional systems, possibly offering the opportunity to assess the sensitivity of 

static connectivity to system boundary conditions, to architectural characteristics 

and to the inclusion of several scales of heterogeneity (cf. Larue & Hovadik 2006). 

The same stochastic architectural realizations could be subjected to dynamic flow 

modelling, involving mono- and multi-phase fluids, provided that information about 

typical genetic-unit porosity and permeability is available. Results could be used to 

generate models characterizing dynamic reservoir behaviour during hydrocarbon 

production for different types of fluvial depositional systems, thereby providing likely 

scenarios of reservoir performance to be used as predictive templates. Database-

informed water-flood simulations could find application to general research 

questions concerning enhanced oil recovery (cf. Larue & Friedmann 2005): by 

varying architectural and petrophysical properties within realistic ranges dictated by 

database output, it ought to be possible to assess the role played by these 

properties in controlling reservoir behaviour (cf. Howell et al. 2008; Enge & Howell 

2010; for non-fluvial outcrop-informed examples). For example, it is imperative to 

understand what types of fluvial sedimentary features consisting of genetic units or 

associations of genetic units generate “thief zones” (highly permeable zones 

through which the injection water is preferentially channelled) that cause early water 

breakthrough in high net-to-gross contexts with significant permeability 
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heterogeneity. Such an approach will enable assessment of the types of 

depositional systems in which such features and processes are likely to occur. 

Furthermore, an important part of future research could be represented by the 

generalization of the database approach presented in this work through its 

application to other clastic (and possibly non-clastic) depositional contexts. The 

same types of applications presented here could then be extended, for instance, to 

the deep- and shallow-marine realms. However, the FAKTS database design may 

not necessarily be directly transferable (portable) to other sedimentary 

environments, and the development of different conceptual and logical schemes is 

likely to be required. For example, if a similar database system was created for the 

digitization of the sedimentary architecture of deep-water depositional systems, it 

would be necessary to take into account issues such as the lack of consensus as to 

how to assign genetic units to a hierarchical scheme, or as to whether sedimentary 

units are organized in a fractal rather than hierarchical manner (cf. Straub & Pyles 

2012). Thus, although it is clear that the system would equally need to reproduce 

geometries, bounding-surface information, internal organization, spatial and 

reciprocal relationships of genetic units, and spatial and temporal relationships of 

stratigraphic volumes, it would still be necessary to devise new ways to best 

implement such features for the different sedimentary environments. 

 

 

 

 

 

 

 

 

 

 

  



204 

Chapter 7 

 

 

 

 

 

 

 



205 

References 

References 

 

Abdala, F., Marsicano, C.A., Smith, R.M.H. and Swart, R. (2013) Strengthening 
Western Gondwanan correlations: a Brazilian Dicynodont (Synapsida, 
Anomodontia) in the Middle Triassic of Namibia. Gondw. Res., 23, 1151-1162. 
 
Abdullatif, O.M. (1989) Channel-fill and sheet-flood facies sequences in the 
ephemeral terminal River Gash, Kassala, Sudan. Sed. Geol., 63, 171-184. 
 
Alabert, F. (1987) Stochastic imaging of spatial distributions using hard and soft 
information. Master Thesis, Stanford University, Stanford (USA), 198 pp. 
 
Alexander, J. (1993) A discussion on the use of analogues for reservoir geology. 
In: Advances in reservoir geology (Ed. M. Ashton). Geol. Soc. London Spec. Publ., 
69, 175-194. 
 
Alexander, J. and Leeder, M.R. (1987) Active tectonic control on alluvial 
architecture. In: Recent developments in fluvial sedimentology (Ed. F.G. Ethridge). 
SEPM Spec. Publ., 39, 243-252. 
 
Allen, J.R.L. (1965a) A review of the origin and characteristics of recent alluvial 
sediments. Sedimentology, 5, 89-191. 
 
Allen, J.R.L. (1965b) The sedimentation and palaeogeography of the Old Red 
Sandstone of Anglesey, north Wales. Proc. Yorks. Geol. Soc., 35, 139-185. 
 
Allen, J.R.L. (1970) Studies in fluviatile sedimentation: a comparison of fining 
upwards cyclothems, with particular reference to coarse member composition and 
interpretation. J. Sed. Petrol., 40, 298-323. 
 
Allen, J.R.L. (1978) Studies in fluviatile sedimentation: an exploratory quantitative 
model for the architecture of avulsion-controlled alluvial suites Sed. Geol., 21, 129-
147. 
 
Allen, J.R.L. (1983) Studies in fluviatile sedimentation: bars, bar-complexes and 
sandstone sheets (low-sinuosity braided streams) in the Brownstones (L. 
Devonian), Welsh Borders. Sed. Geol., 33, 237-293. 
 
Amorosi, A., Pavesi, M., Ricci Lucchi, M., Sarti, G. and Piccin, A. (2008) 
Climatic signature of cyclic fluvial architecture from the Quaternary of the central Po 
Plain, Italy. Sed. Geol., 209, 58-68. 
 
Anderson, M.P., Aiken, J.S., Webb, E.K. and Mickelson, D.M. (1999) 
Sedimentology and hydrogeology of two braided stream deposits. Sed. Geol., 129, 
187-199. 
 
Anderton, R. (1985) Clastic facies models and facies analysis. In: Sedimentology: 
recent developments and applied aspects (Eds. P.J. Brenchley and B.P.J. 
Williams). 21-48. The Geological Society, Blackwell, Oxford (UK). 
 



206 

References 

Armstrong, M., Galli, A.G., Beucher, H., Le Loc’h, G., Renard, D., Eschard, R. 
and Geoffroy, F. (2011) Plurigaussian Simulations in Geosciences, 2nd edn. 
Springer, Berlin (Germany), 176 pp. 
 
Ashworth, P.J., Best, J.L., Peakall, J.L. and Lorsong, J.A. (1999) The influence 
of aggradation rate on braided alluvial architecture: field study and physical scale 
modelling of the Ashburton River gravels, Canterbury Plains, New Zealand. In: 
Fluvial sedimentology VI (Eds. N.D. Smith and J. Rogers). Int. Assoc. Sedimentol. 
Spec. Publ., 28, 333-346. 
 
Ashworth, P.J., Best, J.L. and Jones, M. (2004) Relationship between sediment 
supply and avulsion frequency in braided rivers. Geology, 32, 21-24. 
 
Aslan, A., Autin, W.J. and Blum, M.D (2005) Causes of river avulsion: insights 
from the late Holocene avulsion history of the Mississippi River, USA. J. Sed. Res., 
75, 650-664. 
 
Baas, J.H., McCaffrey, W.D. and Knipe, R.J. (2005) The Deep-Water Architecture 
Knowledge Base: towards an objective comparison of deep-marine sedimentary 
systems. Petrol. Geosci., 11, 309-320. 
 
Banks, N.L. (1973) The origin and significance of some downcurrent dipping cross-
stratified sets. J. Sed. Petrol., 43, 423-427. 
 
Bates, R.L. and Jackson, J.A. (1987) Glossary of geology, 3rd edn. American 
Geological Institute, Alexandria (USA), 788 pp. 
 
Best, J.L. (1988) Sediment transport and bed morphology at river channel 
confluences. Sedimentology, 35, 481-498. 
 
Best, J.L., Ashworth, P.J., Bristow, C.S. and Roden, J. (2003) Three-
dimensional sedimentary architecture of a large, mid-channel sand braid bar, 
Jamuna River, Bangladesh. J. Sed. Res., 73, 516-530. 
 
Bhattacharya, J.P. and Tye, R.S. (2004) Searching for modern Ferron analogs 
and application to subsurface interpretation. In: Regional to wellbore analog for 
fluvial-deltaic reservoir modeling: the Ferron Sandstone of Utah (Eds. T.C. Chidsey 
Jr., R.D. Adams and T.H. Morris). AAPG Stud. Geol., 50, 39-57. 
 
Bianchi, M. and Zheng, C.M. (2009) SGeMS: a free and versatile tool for three-
dimensional geostatistical applications. Groundwater, 47, 8-12. 
 
Blair, T.C. and McPherson, J.G. (1992) The Trollheim alluvial fan and facies 
model revisited. Geol. Soc. Am. Bull., 104, 762-769. 
 
Blair, T.C. and McPherson, J.G. (1994) Alluvial fans and their natural distinction 
from rivers based on morphology, hydraulic processes, sedimentary processes, and 
facies assemblages: J. Sed. Res., A64, 450-489. 
 
Blum, M., Martin, J., Milliken, K. and Garvin, M. (2013) Paleovalley systems: 
insights from Quaternary analogs and experiments. Earth-Sci. Rev., 116, 128-169. 
 
Blum, M.D. and Törnqvist, T.E. (2000) Fluvial responses to climate and sea‐level 
change: a review and look forward. Sedimentology, 47, 2-48. 
 



207 

References 

Borgomano, J.R., Fournier, F., Viseur, S. and Rijkels, L. (2008) Stratigraphic 
well correlations for 3-D static modeling of carbonate reservoirs. AAPG Bull., 92, 
789-824. 
 
Boucher, A., Gupta, R., Caers, J. and Satija, A. (2010) Tetris: a training image 
generator for SGeMS. Stanford Center for Reservoir Forecasting, Stanford (USA), 
25 pp. 
 
Bown, T.M. and Kraus, M.J. (1987) Integration of channel and floodplain suites, I. 
Developmental sequence and lateral relations of alluvial paleosols. J. Sed. Petrol., 
57, 587-601. 
 
Bridge, J.S. (1993) Description and interpretation of fluvial deposits: a critical 
perspective. Sedimentology, 40, 801-810. 
 
Bridge, J.S. (2003) Rivers and floodplains: forms, processes, and sedimentary 
record. Blackwell, Oxford (UK), 491 pp. 
 
Bridge, J.S. (2006) Fluvial facies models: recent developments. In: Facies models 
revisited (Eds. H. Posamentier and R.G.Walker). SEPM Spec. Publ., 84, 85-170. 
 
Bridge, J.S. and Leeder, M.R. (1979) A simulation model of alluvial stratigraphy. 
Sedimentology, 26, 617-644. 
 
Bridge, J.S. and Mackey, S.D. (1993) A theoretical study of fluvial sandstone body 
dimensions. In: Geological modeling of hydrocarbon reservoirs (Eds. S.S. Flint and 
I.D. Bryant). Int. Assoc. Sedimentol. Spec. Publ., 15, 213-236. 
 
Bridge, J.S. and Tye, R.S. (2000) Interpreting the dimensions of ancient fluvial 
channel bars, channels, and channel belts from wireline-logs and cores. AAPG 
Bull., 84, 1205-1228. 
  
Brierley, G.J. (1989) River planform facies models: the sedimentology of braided, 
wandering and meandering reaches of the Squamish River, British Columbia. Sed. 
Geol., 61, 17-35. 
 
Brierley, G.J. (1996) Channel morphology and element assemblages: a 
constructivist approach to facies modelling. In: Advances in fluvial dynamics and 
stratigraphy (Eds. P.A. Carling and M.R. Dawson). 263-298. Wiley, Chichester 
(UK). 
 
Brierley, G.J., Ferguson, R.J. and Woolfe, K.J. (1997) What is a fluvial levee? 
Sed. Geol., 114, 1-9. 
 
Bristow, C.S. (1987) Brahmaputra River: channel migration and deposition. In: 
Recent developments in fluvial sedimentology (Eds. E.G. Ethridge, R.M. Flores and 
M.D. Harvey). SEPM Spec. Publ., 39, 63-74. 
 
Bristow, C.S. and Best, J.L. (1993) Braided rivers: perspectives and problems. In: 
Braided rivers (Eds. J.L. Best and C.S. Bristow). Geol. Soc. London Spec. Publ., 
75, 1-11. 
 
Bristow, C.S., Best, J.L. and Roy, A.G. (1993) Morphology and facies models of 
channel confluences. In: Alluvial sedimentation (Eds. M. Marzo and C. 
Puigdefábregas). Int. Assoc. Sedimentol. Spec. Publ., 17, 91-100. 
 



208 

References 

Bristow, C.S., Skelly, R.L. and Ethridge, F.G. (1999) Crevasse splays from the 
rapidly aggrading, sand-bed, braided Niobrara River, Nebraska: effect of base-level 
rise. Sedimentology, 46, 1029-1049. 
 
Bromley, M.H. (1991) Architectural features of the Kayenta Formation (Lower 
Jurassic), Colorado Plateau, USA: relationship to salt tectonics in the Paradox 
Basin. Sed. Geol., 73, 77-99. 
 
Bryant, I.D. and Flint, S.S. (1993) Quantitative clastic reservoir geological 
modeling: problems and perspectives. In: The geologic modelling of hydrocarbon 
reservoirs and outcrop analogs (Eds. S.S. Flint and I.D. Bryant). Int. Assoc. 
Sedimentol. Spec. Publ., 15, 3-20. 
 
Bryant, M., Falk, P. and Paola, C. (1995) Experimental study of avulsion frequency 
and rate of deposition. Geology, 23, 365-368. 
 
Cabrera, L.I. and  Saez, A. (1987) Coal deposition in carbonate-rich shallow 
lacustrine systems: the Calaf and Mequinenza sequences (Oligocene, eastern Ebro 
Basin, NE Spain). J. Geol. Soc. London, 144, 451-461. 
 
Caers, J. (2001) Geostatistical reservoir modelling using statistical pattern 
recognition. J. Petrol. Sci. Eng., 29, 177-188. 
 
Caers, J. and Zhang, T. (2004) Multiple-point geostatistics: a quantitative vehicle 
for integrating geologic analogs into multiple reservoir models. In: Integration of 
outcrop and modern analogs in reservoir modeling (Eds. G.M. Grammer, P.M. 
Harris and G.P. Eberli). AAPG Mem., 80, 384-394. 
 
Cain, S.A. (2009) Sedimentology and stratigraphy of a terminal fluvial fan system: 
the Permian Organ Rock Formation, South East Utah. PhD dissertation, Keele 
University, Keele (UK), 461 pp. 
 
Cain, S.A. and Mountney, N.P. (2009) Spatial and temporal evolution of a terminal 
fluvial fan system: the Permian Organ Rock Formation, south east Utah, USA. 
Sedimentology, 56, 1774-1800. 
 
Cain, S.A. and Mountney, N.P. (2011) Downstream changes and associated 
fluvial-aeolian interactions in an ancient terminal fluvial fan system: the Permian 
Organ Rock Formation, SE Utah. In: From river to rock record: the preservation of 
fluvial sediments and their subsequent interpretation (Eds. S. Davidson, S. Leleu 
and C. North). SEPM Spec. Publ., 97, 165-187. 
 
Cant, D.J. (1978) Bedforms and bar types in the South Saskatchewan River. J. 
Sed. Petrol., 48, 1321-1330. 
 
Cant, D.J. (1982) Fluvial facies models and their application. In: Sandstone 
depositional environments (Eds. P.A. Scholle and D. Spearing). AAPG Mem., 31, 
115-137. 
 
Cant, D.J. and Walker, R.G. (1976) Development of a braided-fluvial facies model 
for the Devonian Battery Point sandstone, Quebec. Can. J. Earth Sci., 13, 102-119. 
 
Cant, D.J. and Walker, R.G. (1978) Fluvial processes and facies sequences in the 
sandy braided South Saskatchewan River, Canada. Sedimentology, 25, 625-648. 
 



209 

References 

Carle, S.F. (1996) A transition probability-based approach to geostatistical 
characterization of hydrostratigraphic architecture. PhD dissertation, University of 
California, Davis (USA), 248 pp. 
 
Carle, S.F. (1997a) Integration of geologic interpretation into geostatistical 
simulation. In: IAMG ’97: IAMG, Proceedings of the 3rd Annual Conference of the 
International Association for Mathematical Geology (Ed. V. Pawlowsky Glahn). 711-
716. International Association for Mathematical Geology, Barcelona (Spain).  
 
Carle, S.F. (1997b) Implementation schemes for avoiding artifact discontinuities in 
simulated annealing. Math. Geol., 29, 231-244. 
 
Carle, S.F. (1999) T-PROGS, Transition Probability Geostatistical Software, 
Version 2.1 User’s Guide. University of California, Davis (USA), 83 pp. 
 
Carle, S.F. and Fogg, G.E. (1996) Transition probability-based indicator 
geostatistics. Math. Geol., 28, 453-476.  
 
Carle, S.F. and Fogg, G.E. (1997) Modeling spatial variability with one and multi-
dimensional continuous Markov chains. Math. Geol., 29, 891-917. 
 
Carlston, C.W. (1965) The relation of free meander geometry to stream discharge 
and its geomorphic implications. Am. J. Sci., 263, 864-885. 
 
Carr, D.D., Horowitz, A., Hrabar, S.V., Ridge, K.F., Rooney, R., Straw, W.T., 
Webb, W. and Potter, P.E.  (1966) Stratigraphic sections, bedding sequences and 
random processes. Science, 154, 1162-1164. 
 
Carr, T.R. (1982) Log-linear models, Markov chains and cyclic sedimentation. J. 
Sed. Petrol., 52, 905-912. 
 
Catuneanu, O. (2006) Principles of Sequence Stratigraphy. Elsevier, Amsterdam 
(The Netherlands), 375 pp.  
 
Catuneanu, O. and Elango, H.N. (2001) Tectonic control on fluvial styles: the 
Balfour Formation of the Karoo Basin, South Africa. Sed. Geol., 140, 291-313. 
 
Catuneanu, O., Wopfner, H., Eriksson, P.G., Cairncross, B., Rubidge, B.S., 
Smith, R.M.H. and Hancox, P.J. (2005) The Karoo basins of south-central Africa. 
J. Afr. Earth. Sci., 43, 211-253. 
 
Catuneanu, O., Abreu, V., Bhattacharya, J.P., Blum, M.D., Dalrymple, R.W., 
Eriksson, P.G., Fielding, C.R., Fisher, W.L., Galloway, W.E., Gibling, M.R., 
Giles, K.A., Holbrook, J.M., Jordan, R., Kendall, C.G.St.C., Macurda, B., 
Martinsen, O.J., Miall, A.D., Neal, J.E., Nummedal, D., Pomar, L., Posamentier, 
H.W., Pratt, B.R., Sarg, J.F., Shanley, K.W., Steel, R.J., Strasser, A., Tucker, 
M.E. and Winker, C. (2009) Towards the standardization of sequence stratigraphy. 
Earth-Sci. Rev., 92, 1-33. 
 
Chen, P.P.S. (1976) The entity-relationship model – toward a unified view of data. 
ACM T. Database Syst., 1, 9-36. 
 
Church, M. (2006). Bed material transport and the morphology of alluvial river 
channels. Annu. Rev. Earth Planet. Sci., 34, 325-354. 
 



210 

References 

Clark, W.J. and Cooper, D.M. (1982) Surat Basin, core picture book (Hutton SS, 
Walloon Coal Measures, Springbok SS). Queensland Digital Exploration Report 
10122. Available online from: https://qdexguest.deedi.qld.gov.au 
 
Coleman, J.M. (1969) Brahmaputra River: channel processes and sedimentation. 
Sed. Geol., 3, 129-239. 
 
Collinson, J.D. (1978) Vertical sequence and sand body shape in alluvial 
sequences. In: Fluvial Sedimentology (Ed. A.D. Miall). Can. Soc. Petrol. Geol. 
Mem., 5, 577-586. 
 
Collinson, J.D. (1996) Alluvial sediments. In: Sedimentary environments: 
processes, facies and stratigraphy (Ed. H.G. Reading). 3rd edn, 37-82. Blackwell, 
Oxford (UK). 
 
Colombera, L., Mountney, N.P. and McCaffrey, W.D. (2012a) A relational 
database for the digitization of fluvial architecture: concepts and example 
applications. Petrol. Geosci., 18, 129-140. 
 
Colombera, L., Felletti, F., Mountney, N.P. and McCaffrey, W.D. (2012b) A 
database approach for constraining stochastic simulations of the sedimentary 
heterogeneity of fluvial reservoirs. AAPG Bull., 96, 2143-2166. 
 
Colombera, L., Mountney, N.P. and McCaffrey, W.D. (in press) A quantitative 
approach to fluvial facies models: methods and example results. Sedimentology, 
doi: 10.1111/sed.12050. 
 
Cowan, E.J. (1991) The large-scale architecture of the fluvial Westwater Canyon 
Member, Morrison Formation (Jurassic), San Juan Basin, New Mexico. In: The 
three-dimensional facies architecture of terrigenous clastic sediments, and its 
implications for hydrocarbon discovery and recovery (Eds. A.D. Miall and N. Tyler). 
SEPM Conc. Sed. Pal., 3, 80-93. 
 
Cowan, G. (1993) Identification and significance of aeolian deposits within the 
dominantly fluvial Sherwood Sandstone Group of the East Irish Sea Basin UK. In: 
Characterization of fluvial and eolian reservoirs (Eds. C.P. North and D.J. Prosser). 
Geol. Soc. London Spec. Publ., 73, 231-245. 
 
Cross, T.A. (1986) Tectonic controls of foreland basin subsidence and Laramide 
style deformation, western United States. In: Foreland basins (Eds. P.A. Allen and 
P. Homewood). Int. Assoc. Sedimentol. Spec. Publ., 8, 15-40. 
 
Cross, T.A. (1988) Controls on coal distribution in transgressive–regressive cycles, 
Upper Cretaceous Western Interior, U.S.A. In: Sea level changes: an integrated 
approach (Eds. C.K. Wilgus, B.S. Hastings, C.G.St.C. Kendall, H.W. Posamentier, 
C.A. Ross and J.C. Van Wagoner). SEPM Spec. Publ., 42, 371- 380. 
 
Cuevas Gozalo, M.C. and Martinius, A.W. (1993) Outcrop database for the 
geological characterization of fluvial reservoirs: an example from distal fluvial-fan 
deposits in the Loranca Basin, Spain. In: Characterization of fluvial and eolian 
reservoirs (Eds. C.P. North and D.J. Prosser). Geol. Soc. London Spec. Publ., 73, 
79-94. 
 
Cuevas Martínez, J.L., Cabrera Pérez, L., Marcuello, A., Arbués Cazo, P., 
Marzo Carpio, M. and Bellmunt, F. (2010) Exhumed channel sandstone networks 



211 

References 

within fluvial fan deposits from the Oligo-Miocene Caspe Formation, South-east 
Ebro Basin (North-east Spain). Sedimentology, 57, 162-189. 
 
Dalrymple, M. (2001) Fluvial reservoir architecture in the Statfjord Formation 
(northern North Sea) augmented by outcrop analogue statistics. Petrol. Geosci., 7, 
115-122. 
 
Dalrymple, M., Prosser, D.J. and Williams, B. (1998) A dynamic systems 
approach to the regional controls on deposition and architecture of alluvial 
sequences, illustrated in the Statfjord Formation (United Kingdom, northern North 
Sea). In: Relative role of eustasy, climate, and tectonism in continental rocks (Eds. 
K.W. Shanley and P.J. McCabe). SEPM Spec. Publ., 59, 65-82. 
 
Darmadi, Y., Willis, B.J. and Dorobek, S.L. (2007) Three-dimensional seismic 
architecture of fluvial sequences on the low-gradient Sunda Shelf, offshore 
Indonesia. J. Sed. Res., 77, 225-238. 
 
Davies, D.K., Williams, B.P.J. and Vessell, R.K. (1993) Dimensions and quality of 
reservoirs originating in low and high sinuosity channel systems, Lower Cretaceous 
Travis Peak Formation, east Texas, USA. In: Characterization of fluvial and aeolian 
reservoirs (Eds. C.P. North and D.J. Prosser). Geol. Soc. London Spec. Publ., 73, 
95-121. 
 
de Marsily, G., Delay, F., Goncalves, J., Renard, P., Teles, V. and Violette, S. 
(2005) Dealing with spatial heterogeneity. Hydrogeol. J., 13, 161-183. 
 
Deutsch, C.V. (2002) Geostatistical Reservoir Modeling. Applied Geostatistics 
Series, Oxford University Press, New York (USA), 376 pp. 
 
Deutsch, C.V. and Journel, A.G. (1998) GSLIB: Geostatistical Software Library 
and User’s Guide. 2nd edn. Oxford University Press, New York (USA), 369 pp. 
 
Deutsch, C.V. and Tran, T. (2002) Fluvsim: a program for object-based stochastic 
modeling of fluvial depositional systems. Comput. Geosci., 28, 525-535. 
 
Deutsch, C.V. and Wang, L. (1996) Hierarchical object-based stochastic modelling 
of fluvial reservoirs. Math. Geol., 28, 857-880. 
 
Dickinson, W.R., Lawton, T.F. and Inman, K.F. (1986) Sandstone detrital modes, 
central Utah foreland region: stratigraphic record of Cretaceous-Paleogene tectonic 
evolution. J. Sed. Petrol., 56, 276-293. 
 
Dott, R.H., Jr., and Bourgeois, J. (1983) Hummocky stratification: significance of 
its variable bedding sequences: reply to discussion by R.G. Walker et al. Geol. Soc. 
Am. Bull., 94, 1245-1251. 
 
Dowd, P.A., Pardo-Iguzquiza, E. and Xu, C. (2003) Plurigau: a computer program 
for simulating spatial facies using the truncated plurigaussian method. Comput. 
Geosci., 29, 123-141. 
 
Dreyer, T., Fält, L., Høy, T., Knarud, R., Steel, R. and Cuevas, J.-L. (1993) 
Sedimentary architecture of field analogues for reservoir information (SAFARI): A 
case study of the fluvial Escanilla Formation, Spanish Pyrenees. In: The geologic 
modelling of hydrocarbon reservoirs and outcrop analogs (Eds. S.S. Flint and I.D. 
Bryant). Int. Assoc. Sedimentol. Spec. Publ., 15, 57-80. 
 



212 

References 

Dubrule, O. (1998) Geostatistics in Petroleum Geology. AAPG Continuing 
Education Course Note, Series 38, Tulsa (USA), 250 pp. 
 
Dubrule, O. and Damsleth, E. (2001) Achievements and challenges in petroleum 
geostatistics. Petrol. Geosci., 7, S1-S7. 
 
Duller, R.A., Whittaker, A.C., Fedele, J.J., Whitchurch, A.L., Springett, J., 
Smithells, R., Fordyce, S. and Allen, P.A. (2010) From grain size to tectonics. J. 
Geophys. Res., F03022. 
 
Dutton, S.P., Laubach, S.E. and Tye, R.S. (1991) Depositional, diagenetic, and 
structural controls on reservoir properties of low-permeability sandstone, Travis 
Peak Formation, east Texas. Trans. Gulf Coast Assoc. Geol. Soc., 41, 209-220. 
 
Ebanks, W.J., Jr. (1987) Flow unit concept – integrated approach to reservoir 
description for engineering projects. AAPG Bull., 75, 551-552. 
 
Elfeki, A. and Dekking, M. (2001) A Markov chain model for subsurface 
characterization: theory and applications. Math. Geol., 33, 569-589. 
 
Embry, A.F., Johannessen, E., Owen, D., Beauchamp, B. and Gianolla, P. 
(2007)  Sequence stratigraphy as a “concrete” stratigraphic discipline. Report of the 
ISSC Task Group on Sequence Stratigraphy, ISSC, 104 pp. 
 
Enge, H.D. and Howell, J.A. (2010) Impact of deltaic clinothems on reservoir 
performance: dynamic studies of reservoir analogs from the Ferron Sandstone 
Member and Panther Tongue, Utah. AAPG Bull., 94, 139-161. 
 
Eschard, R., Doligez, B. and Beucher, H. (2002) Using quantitative outcrop 
databases as a guide for geological reservoir modeling. In: Geostatistics Rio 2000 
v. 1 (Eds. M. Armstrong, C. Bettini, N. Champigny, A. Galli and A. Remacre). 7-17. 
Kluwer, Dordrecht (The Netherlands). 
 
Fielding, C.R. (1984) A coal depositional model for the Durham Coal Measures of 
NE England. J. Geol. Soc. London, 141, 919-931. 
 
Fielding, C.R. (1986) Fluvial channel and overbank deposits from the Westphalian 
of the Durham coalfield, NE England. Sedimentology, 33, 119-140. 
 
Fielding, C.R. (1987) Coal depositional models for deltaic and alluvial plain 
sequences. Geology, 15, 661-664. 
 
Fielding, C.R. (1993) The Middle Jurassic Walloon Coal Measures in the type area, 
the Rosewood-Walloon Coalfield, SE Queensland. Aust. Coal Geol., 9, 4-16.  
 
Fielding, C.R., Allen, J.P., Alexander, J. and Gibling, M.R. (2009) A facies model 
for fluvial systems in the seasonal tropics and subtropics. Geology, 37, 623-626. 
 
Fielding, C.R. and Crane, R.C. (1987) An application of statistical modelling to the 
prediction of hydrocarbon recovery factors in fluvial reservoir sequences. In: Recent 
developments in fluvial sedimentology (Eds. E.G. Ethridge, R.M. Flores and M.D. 
Harvey). SEPM Spec. Publ., 39, 321-327. 
 
Fielding, C.R., Falkner, A.J. and Scott, S.G. (1993) Fluvial response to foreland 
basin overfilling; the Late Permian Rangal Coal Measures in the Bowen Basin, 
Queensland, Australia. Sed. Geol., 85, 475-497. 



213 

References 

 
Fisher, J.A., Krapf, C.B.E., Lang, S.C., Nichols, G.J. and Payenberg, T.D. (2008) 
Sedimentology and architecture of the Douglas Creek terminal splay, Lake Eyre, 
central Australia. Sedimentology, 55, 1915-1930. 
 
Fisher, J.A., Nichols, G.J. and Waltham, D.A. (2007) Unconfined flow deposits in 
distal sectors of fluvial distributary systems: examples from the Miocene Luna and 
Huesca Systems, northern Spain. Sed. Geol., 195, 55-73. 
 
Franczyk, K.J. and Pitman, J.K. (1991) Latest Cretaceous nonmarine depositional 
systems in the Wasatch Plateau area: reflections of foreland to intermontane basin 
transition. In: Geology of east-central Utah (Ed. T.C. Chidsey Jr.). Utah Geol. 
Assoc. Publ., 19, 77-93. 
 
Friend, P.F. (1983) Towards the field classification of alluvial architecture or 
sequence. In: Modern and ancient fluvial systems (Eds. J.D Collinson and J. 
Lewin). Int. Assoc. Sedimentol. Spec. Publ., 6, 345-354. 
 
Friend, P.F., Raza, S.M., Geehan G. and Sheikh, K.A. (2001) Intra- and 
extrabasinal controls on fluvial deposition in the Miocene Indo-Gangetic foreland 
basin, northern Pakistan. J. Geol. Soc. London, 158, 163-177. 
 
Friend, P.F. and Sinha, R. (1993) Braiding and meandering parameters. In: 
Braided rivers (Eds. J.L. Best and C.S. Bristow). Geol. Soc. London Spec. Publ., 
75, 105-111. 
 
Galli, A. and Beucher, H. (1997) Stochastic models for reservoir characterization: 
a user-friendly review. Paper SPE 38999 presented at the 5th Latin American and 
Caribbean Petroleum Engineering Conference, 3 September 1997, Rio de Janeiro 
(Brazil), 1-11. 
 
Galloway, W.E. (1981) Depositional architecture of cenozoic gulf coastal plain 
fluvial systems. In: Recent and ancient nonmarine depositional systems (Eds. F.G. 
Ethridge and S.M. Flores). SEPM Spec. Publ., 31, 127-155. 
 
Galloway, W.E. and Hobday, D.K. (1983) Terrigenous clastic depositional 
systems. Springer, New York (USA), 423 pp. 
 
Gary, M., McAfee, R., Jr. and Wolf, C.L. (1974) Glossary of Geology. American 
Geological Institute, Washington (USA), 805 pp. 
 
Geehan, G. and Underwood, J. (1993) The use of length distributions in geological 
modeling. In: The geologic modelling of hydrocarbon reservoirs and outcrop 
analogs (Eds. S.S. Flint and I.D. Bryant). Int. Assoc. Sedimentol. Spec. Publ., 15, 
205-212. 
 
Ghazi, S. and Mountney, N.P. (2009) Facies and architectural element analysis of 
a meandering fluvial succession: the Permian Warchha Sandstone, Salt Range, 
Pakistan. Sed. Geol., 221, 99-126. 
 
Gibling, M.R. (2006) Width and thickness of fluvial channel bodies and valley fills in 
the geological record: a literature compilation and classification. J. Sed. Res., 76, 
731-770. 
 
Gibling, M.R., Fielding, C.R. and Sinha, R. (2011) Alluvial valleys and alluvial 
sequences: towards a geomorphic assessment. In: From river to rock record: the 



214 

References 

preservation of fluvial sediments and their subsequent interpretation (Eds. S.K. 
Davidson, S. Leleu, and C.P. North). SEPM Spec. Publ., 97, 423-447. 
 
Gingerich, P.D. (1969) Markov analysis of cyclic alluvial sediments. J. Sed. Petrol., 
39, 330-332. 
 
Godin, P.D. (1991) Fining-upward cycles in the sandy braided-river deposits of the 
Westwater Canyon Member (Upper Jurassic), Morrison Formation, New Mexico. 
Sed. Geol., 70, 61-82. 
 
Goodman, L.A. (1968) The analysis of cross-classified data: independence, quasi-
independence, and interactions in contingency tables with or without missing 
entries. J. Am. Statist. Assoc., 63, 1091-1131. 
 
Goovaerts, P. (1994) Comparison of colK, IK, and talK performances for modeling 
conditional probabilities of categorical variables. In:  Geostatistics for the next 
Century (Ed. R. Dimitrakopoulos). 18-29. Kluwer, Dordrecht (The Netherlands). 
 
Gore, P.J. (1989) Toward a model for open-and closed-basin deposition in ancient 
lacustrine sequences: the Newark Supergroup (Triassic-Jurassic), eastern North 
America. Palaeogeogr. Palaeoclimatol. Palaeoecol., 70, 29-51. 
 
Guardiano, F. and Srivastava, R.M. (1993) Multivariate geostatistics: beyond 
bivariate moments. In: Geostatistics-Troia, v. 1 (Ed. A. Soares). 133-144. Kluwer, 
Dordrecht (The Netherlands). 
 
Guiseppe, A.C. and Heller, P.L. (1998) Long-term river response to regional 
doming in the Price River Formation, central Utah. Geology, 26, 239-242. 
  
Hajek, E.A., Heller, P.L. and Sheets, B.A. (2010) Significance of channel-belt 
clustering in alluvial basins. Geology, 38, 535-538. 
 
Haldorsen, H.H. and Damsleth, E. (1990) Stochastic modeling. J. Petrol. Technol., 
42, 404-412. 
 
Hampson, G.J., Gani, M.R., Sahoo, H., Rittersbacher, A., Irfan, N., Ranson, A., 
Jewell, T.O., Gani, N.D.S., Howell, J.A., Buckley, S.J. and Bracken, B. (2012) 

Controls on large‐scale patterns of fluvial sandbody distribution in alluvial to coastal 
plain strata: Upper Cretaceous Blackhawk Formation, Wasatch Plateau, Central 
Utah, USA. Sedimentology, 59, 2226-2258. 
 
Hampson, G.J., Jewell, T.O., Irfan, N., Gani, M.R. and Bracken, B. (2013) 
Modest change in fluvial style with varying accommodation in regressive alluvial-to-
coastal-plain wedge: Upper Cretaceous Blackhawk Formation, Wasatch Plateau, 
Central Utah, USA. J. Sed. Res., 83, 145-169. 
 
Hampton, B.A. and Horton, B.K. (2007) Sheetflow fluvial processes in a rapidly 
subsiding basin, Altiplano plateau, Bolivia. Sedimentology, 54, 1121-1148. 
 
Haq, B.U., Hardenbol, J. and Vail, P.R. (1988) Mesozoic and Cenozoic 
chronostratigraphy and cycles of sea-level change. In: Sea level changes: an 
integrated approach (Eds. C.K. Wilgus, B.S. Hastings, C.G.St.C. Kendall, H.W. 
Posamentier, C. A. Ross and J.C. Van Wagoner). SEPM Spec. Publ., 42, 71-108.  
 
Haszeldine, R.S. (1983) Descending tabular cross-bed sets and bounding surfaces 
from a fluvial channel in the Upper Carboniferous coalfield of north-east England. 



215 

References 

In: Modern and ancient fluvial systems (Eds. J.D Collinson and J. Lewin). Int. 
Assoc. Sedimentol. Spec. Publ., 6, 449-456. 
 
He, D., Jia, A., Ji, G., Wei, Y. and Tang, H. (2013) Well type and pattern 
optimization technology for large scale tight sand gas, Sulige gas field, NW China. 
Petrol. Expl. Dev., 40, 84-95. 
 
Heinz, J. and Aigner, T. (2003) Hierarchical dynamic stratigraphy in various 
Quaternary gravel deposits, Rhine glacier area (SW Germany): implications for 
hydrostratigraphy. Int. J. Earth Sci., 92, 923-938. 
 
Heller, P.L. and Paola, C. (1996) Downstream changes in alluvial architecture; an 
exploration of controls on channel-stacking patterns. J. Sed. Res., 66, 297-306. 

 
Hickin, E.J. (1993) Fluvial facies models: a review of Canadian research. Prog. 
Phys. Geogr., 17, 205-222. 
 
Hickson, T.A., Sheets, B.A., Paola, C. and Kelberer, M. (2005) Experimental test 
of tectonic controls on three-dimensional alluvial facies architecture. J. Sed. Res., 
75, 710-722. 

 
Hirst, J.P.P. (1991) Variations in alluvial architecture across the Oligo-Miocene 
Huesca fluvial system, Ebro Basin, Spain. In: The three-dimensional facies 
architecture of terrigenous clastic sediments and its implications for hydrocarbon 
discovery and recovery (Eds. A.D. Miall and N. Tyler). SEPM Conc. Sed. Paleo., 3, 
111-121. 

 
Hirst, P., Blackstock, C. and Tyson, S. (1993) Stochastic modelling of fluvial 
sandstone bodies. In: The geological modelling of hydrocarbon reservoirs and 
outcrop analogues (Eds. S.S. Flint and I.D. Bryant). Int. Assoc. Sedimentol. Spec. 
Publ., 15, 237-251. 
 
Hogg, S.E. (1982) Sheetfloods, sheetwash, sheetflow, or … ? Earth-Sci. Rev., 18, 
59-76. 
 
Holbrook, J. (2001) Origin, genetic interrelationships, and stratigraphy over the 
continuum of fluvial channel-form bounding surfaces:  an illustration from middle 
Cretaceous strata, southeastern Colorado.  Sed. Geol., 124, 202-246. 
 
Holzförster, F., Stollhofen, H. and Stanistreet, I.G. (1999) Lithostratigraphy and 
depositional environments in the Waterberg-Erongo area, central Namibia, and 
correlation with the main Karoo Basin, South Africa. J. Afr. Earth. Sci., 29, 105-123. 
 
Hopkins, J.C. (1985) Channel-fill deposits formed by aggradation in deeply 
scoured superimposed distributaries of the Lower Kootenai Formation 
(Cretaceous). J. Sed. Petrol., 55, 42-52. 
 
Horn, J.D., Fielding, C.R. and Joeckel, R. (2012) Revision of Platte River alluvial 
facies model through observations of extant channels and barforms, and 
subsurface alluvial valley fills. J. Sed. Res., 82, 72-91. 
 
Horne, J.C., Ferm, J.C., Caruccio, F.T. and Baganz, B.P. (1978) Depositional 
models in coal exploration and mine planning in Appalachian region. AAPG Bull., 
62, 2379-2411. 
 



216 

References 

Hornung, J. and Aigner, T. (1999) Reservoir and aquifer characterization of fluvial 
architectural elements: Stubensandstein, Upper Triassic, southwest Germany. Sed. 
Geol., 129, 215-280. 
 
Horton, B.K., Constenius, K.N. and DeCelles, P.G. (2004) Tectonic control on 
coarse-grained foreland-basin sequences: An example from the Cordilleran 
foreland basin, Utah. Geology, 32, 637-640. 
 
Howard, A.D. (1992) Modeling channel migration and floodplain sedimentation in 
meandering streams. In: Lowland floodplain rivers: geomorphological perspectives 
(Eds. P.A. Carling and G.E. Petts). 1-41. John Wiley, New York (USA). 
 
Howell, J., Vassel, Å. and Aune, T. (2008) Modelling of dipping clinoform barriers 
within deltaic outcrop analogues from the Cretaceous Western Interior Basin, USA. 
In: The future of geological modelling in hydrocarbon development (Eds. A. 
Robinson, P. Griffiths, S. Price, J. Hegre, A. Muggeridge). Geol. Soc. London Spec. 
Publ., 309, 99-121. 
 
Jackson, R.G. II (1978) Preliminary evaluation of lithofacies models for meandering 
alluvial streams. In: Fluvial sedimentology (Ed. A.D. Miall). Can. Soc. Petrol. Geol. 
Mem., 5, 543-576. 
 
Jain, V. and Sinha, R. (2003) River systems in the Gangetic plains and their 
comparison with the Siwaliks: a review. Curr. Sci., 84, 1025– 1103. 
 
Jerolmack, D.J. (2009) Conceptual framework for assessing the response of delta 
channel networks to Holocene sea level rise. Quatern. Sci. Rev., 28, 1786-1800. 
 
Jervey, M.T. (1988) Quantitative geological modeling of siliciclastic rock sequences 
and their seismic expression. In: Sea level changes: an integrated approach (Eds. 
C.K. Wilgus, B.S. Hastings, C.G.St.C. Kendall, H.W. Posamentier, C.A. Ross and 
J.C. Van Wagoner). SEPM Spec. Publ., 42, 47-69. 
 
Jones, N.S., Guion, P.D. and Fulton, I.M. (1995) Sedimentology and its 
application within the UK opencast coal mining industry. In: European coal geology 
(Eds. M.K.G. Whateley and D.A. Spears). Geol. Soc. London Spec. Publ., 82, 115-
136. 
 
Jordan, D.W. and Pryor, W.A. (1992) Hierarchical levels of heterogeneity in a 
Mississippi River meander belt and application to reservoir systems. AAPG Bull., 
76, 1601-1624. 
 
Jorgensen, P.J. and Fielding, C.R. (1996) Facies architecture of alluvial 

floodbasin deposits: three‐dimensional data from the Upper Triassic Callide Coal 
Measures of east‐central Queensland, Australia. Sedimentology, 43, 479-495. 
 
Journel, A.G. (1983) Non-parametric estimation of spatial distribution. Math. Geol., 
15, 445-468. 
 
Journel, A.G. and Alabert, F.G. (1990) New method for reservoir mapping. J. 
Petrol. Technol., 42, 212-218. 
 
Journel, A.G., Gundeso, R., Gringarten, E. and Yao, T. (1998) Stochastic 
modeling of a fluvial reservoir: a comparative review of algorithms. J. Petrol. Sci. 
Eng., 21, 95-121. 
  



217 

References 

Jung, A. and Aigner, T. (2012) Carbonate geobodies: hierarchical classification 
and database – a new workflow for 3D reservoir modeling. J. Petrol. Geol., 35, 49-
65. 
 
Kelly, S. (2006) Scaling and hierarchy in braided rivers and their deposits: 
examples and implications for reservoir modelling. In: Braided rivers: process, 
deposits, ecology and management (Eds. G.H. Sambrook Smith, J.L. Best, C.S. 
Bristow and G.E. Petts). Int. Assoc. Sedimentol. Spec. Publ., 36, 75-106. 
 
Kelly, S.B. and Olsen, H. (1993) Terminal fans – a review with reference to 
Devonian examples. In: Current research in fluvial sedimentology (Ed. C.R. 
Fielding). Sed. Geol., 85, 339-374. 
 
Keogh, K.J., Martinius, A.W. and Osland, R. (2007) The development of fluvial 
stochastic modelling in the Norwegian oil industry: a historical review, subsurface 
implementation and future directions. Sed. Geol., 202, 249-268. 
 
Kirk, M. (1983) Bar developments in a fluvial sandstone (Westphalian "A"), 
Scotland. Sedimentology, 30, 727-742. 
 
Kirschbaum, M.A. and McCabe, P.J. (1992) Controls on the accumulation of coal 
and on the development of anastomosed fluvial systems in the Cretaceous Dakota 
Formation of southern Utah. Sedimentology, 39, 581-598. 
 
Kjemperud, A.V., Schomacker, E.R. and Cross, T.A. (2008) Architecture and 
stratigraphy of alluvial deposits, Morrison Formation (Upper Jurassic), Utah. AAPG 
Bull., 92, 1055-1076. 
 
Koltermann, C.E. and Gorelick, S.M. (1996) Heterogeneity in sedimentary 
deposits: a review of structure-imitating, process-imitating, and descriptive 
approaches. Water Resour. Res., 32, 2617-2658. 
 
Kraus, M.J. and Middleton, L.T. (1987) Contrasting architecture of two alluvial 
suites in different structural settings. In: Recent developments in fluvial 
sedimentology (Eds. E.G. Ethridge, R.M. Flores and M.D. Harvey). SEPM Spec. 
Publ., 39, 253-262. 
 
Labourdette, R. (2011) Stratigraphy and static connectivity of braided fluvial 
deposits of the lower Escanilla Formation, south central Pyrenees, Spain. AAPG 
Bull., 95, 585-617. 

 
Lallier, F., Caumon, G., Borgomano, J., Viseur, S., Fournier, F., Antoine, C. and 
Gentilhomme, T. (2012) Relevance of the stochastic stratigraphic well correlation 
approach for the study of complex carbonate settings: application to the Malampaya 
buildup (Offshore Palawan, Philippines). In: Advances in carbonate exploration and 
reservoir analysis (Eds. J. Garland, J. Neilson, S.E. Laubach and K. Whidden). 
Geol. Soc. London Spec. Publ., 370, 265-275. 

 
Lamb, M.P., Nittrouer, J.A., Mohrig, D. and Shaw, J. (2012), Backwater and river 
plume controls on scour upstream of river mouths: implications for fluvio-deltaic 
morphodynamics. J. Geophys. Res., 117, F01002. 
 
Larue, D.K. and Hovadik, J. (2006) Connectivity of channelized reservoirs: a 
modelling approach. Petrol. Geosci., 12, 291-308. 
 



218 

References 

Larue, D.K. and Friedmann, F. (2005) The controversy concerning stratigraphic 
architecture of channelized reservoirs and recovery by waterflooding. Petrol. 
Geosci., 11, 131-146. 
 
Lawton, T.F. (1983) Late Cretaceous fluvial systems and the age of foreland uplifts 
in central Utah. In: Rocky Mountain foreland basins and uplifts (Ed. J.D. Lowell). 
181-199. Rocky Mountain Association of Geologists, Denver (USA). 
 
Leeder, M.R. (1973) Sedimentology and palaeogeography of the Upper Old Red 
Sandstone in the Scottish Border Basin. Scot. J. Geol., 9, 117-144. 
 
Leeder, M.R. (1978) A quantitative stratigraphic model for alluvium, with special 
reference to channel deposit density and interconnectedness. Can. Soc. Petrol. 
Geol. Mem., 5, 587-596. 
 
Leeder, M.R. (1993) Tectonic controls upon drainage basin development, river 
channel migration and alluvial architecture: implications for hydrocarbon reservoir 
development and characterization. In: Characterization of fluvial and eolian 
reservoirs (Eds. C.P. North and D.J. Prosser). Geol. Soc. London Spec. Publ., 73, 
7-22. 
 
Le Loc’h, G. and Galli, A. (1997) Truncated plurigaussian method: theoretical 
points of view. In: Geostatistics Wollongong ’96, v. 1 (Eds. E.Y. Baafi and N.A. 
Schofield). 211-222. Kluwer, Dordrecht (The Netherlands). 
 
Leopold, L.B. and Maddock, T. Jr (1953) The hydraulic geometry of stream 
channels and some physiographic implications. US Geol. Surv. Prof. Pap., 252. 
 
Leopold, L.B. and Wolman, M.G. (1960) River meanders. Geol. Soc. Am. Bull., 
71, 769-794. 
 
Lewin, J., Macklin, M.G. and Johnstone, E. (2005) Interpreting alluvial archives: 
sedimentological factors in the British Holocene fluvial record. Quatern. Sci. Rev., 
24, 1873-1889. 
 
Limarino, C., Tripaldi, A., Marenssi S., Net, L., Re, G. and Caselli, A. (2001) 
Tectonic control on the evolution of the fluvial systems of the Vinchina Formation 
(Miocene), northwestern Argentina. J. S. Am. Earth Sci., 14, 751-762. 
 
Liu, Y. (2006) Using the Snesim program for multiple-point statistical simulation 
Comput. Geosci., 32, 1544-1563. 
 
Liu, Y., Harding, A., Abriel, W. and Strebelle, S. (2004) Multiple-point simulation 
integrating wells, 3D seismic data and geology. AAPG Bull., 88, 905-922. 
 
Lorenz, J.C., Heinze, D.M., Clark, J. A. and Searls, C.A. (1985). Determination of 
widths of meander-belt sandstone reservoirs from vertical downhole data, 
Mesaverde Group, Piceance Creek Basin, Colorado. AAPG Bull., 69, 710-721. 
 
Lunt, I.A., Bridge, J.S. and Tye, R.S. (2004) A quantitative, three-dimensional 
depositional model of gravelly braided rivers. Sedimentology, 51, 377-414. 
 
Luttrell, P.R. (1993) Basinwide sedimentation and the continuum of paleoflow in 
ancient river system: Kayenta Formation (Lower Jurassic), central portion Colorado 
Plateau. Sed. Geol., 85, 411-434. 
 



219 

References 

Mackey, S.D. and Bridge, J.S. (1995) Three-dimensional model of alluvial 
stratigraphy; theory and applications. J. Sed. Res., 65, 7-31. 
 
Maharaja, A. (2008) Tigenerator: object-based training image generator. Comput. 
Geosci., 34, 1753-1761. 
 
Martin, M.A., Wakefield, M., MacPhail, M.K., Pearce, T. and Edwards, H.E. 
(2013). Sedimentology and stratigraphy of an intra-cratonic basin coal seam gas 
play: Walloon Subgroup of the Surat Basin, eastern Australia. Petrol. Geosci., 19, 
21-38. 
 
Martinius, A.W. (2000) Labyrinthine facies architecture of the Tortola fluvial system 
and controls on deposition (Late Oligocene-Early Miocene, Loranca Basin, Spain). 
J. Sed. Res., 70, 850-867. 
 
Martinius, A.W. and Nieuwenhuijs, R.A. (1995) Geological description of flow 
units in channel sandstones in a fluvial reservoir analogue (Loranca Basin, Spain). 
Petrol. Geosci., 1, 237-252. 
 
Martinsen, O.J., Ryseth, A., Helland-Hansen, W., Flesche, H., Torkildsen, G. 
and Idil, S. (1999) Stratigraphic base level and fluvial architecture: Ericson 
Sandstone (Campanian), Rock Springs Uplift, SW Wyoming, USA. Sedimentology, 
46, 235-263. 
 
Matheron, G., Beucher, H., Fouquet, C., Galli, A., Guerillot, D. and Ravenne, C. 
(1987) Conditional simulation of the geometry of fluviodeltaic reservoirs. Paper SPE 
16753, presented at the SPE Annual Technical Conference and Exhibition, 27-30 
September 1987, Dallas (USA), 591-599. 

McCabe, P.J. (1984) Depositional environments of coal and coal-bearing strata. In: 
Sedimentology of coal and coal-bearing sequences (Eds. R.A. Rahmani and R.M. 
Flores). Int. Assoc. Sedimentol. Spec. Publ., 7, 13-42.  
 
McCabe, P.J. (1987) Facies studies of coal and coal-bearing strata. In: Coal and 
coal-bearing strata: recent advances. (Ed. A.C. Scott). Geol. Soc. London Spec. 
Publ., 32, 51-66. 
 
McCammon, R.B. (1977) Target intersection probabilities for parallel-line and 
continuous-grid types of search. J. Int. Assoc. Math. Geol., 9, 369-382. 
 
McDonnell, K.L. (1978) Transition matrices and the depositional environments of a 
fluvial sequence. J. Sed. Res., 48, 43-48. 
 
McRae, L.E. (1990) Paleomagnetic isochrons, unsteadiness, and non-uniformity of 
sedimentation in Miocene fluvial strata of the Siwalik Group, Northern Pakistan. J. 
Geol., 98, 433-456. 
 
Meigs, A.J., Burbank, D.W. and Beck, R.A. (1995) Middle-late Miocene (> 10 Ma) 
formation of the Main Boundary thrust in the western Himalaya. Geology, 23, 423-
426. 
  
Miall, A.D. (1973) Markov chain analysis applied to an ancient alluvial plain 
succession. Sedimentology, 20, 347-364. 
 
Miall, A.D. (1977) A review of the braided river depositional environment. Earth-Sci. 
Rev., 13, 1-62. 



220 

References 

 
Miall, A.D. (1978) Lithofacies types and vertical profile models in braided river 
deposits: a summary. In: Fluvial sedimentology (Ed. A.D. Miall). Can. Soc. Petrol. 
Geol. Mem., 5, 597-604. 
 
Miall, A.D. (1979) Tertiary fluvial sediments in the Lake Hazen intermontane basin, 
Ellesmere Island, Arctic Canada. Geol. Surv. Can. Pap., 79-9, 25 pp. 
 
Miall, A.D. (1980) Cyclicity and the facies model concept in fluvial deposits. Bull. 
Can. Petrol. Geol., 28, 59-80. 
 
Miall, A.D. (1985) Architectural-element analysis: a new method of facies analysis 
applied to fluvial deposits. Earth-Sci. Rev., 22, 261-308. 
 
Miall, A.D. (1988a) Architectural elements and bounding surfaces in fluvial 
deposits: anatomy of the Kayenta Formation (Lower Jurassic), Southwest Colorado. 
Sed. Geol., 55, 233-262. 
 
Miall, A.D. (1988b) Reservoir heterogeneities in fluvial sandstones: lessons from 
outcrop studies. AAPG Bull., 72, 682-697. 
 
Miall, A.D. (1996) The geology of fluvial deposits. Springer, Berlin (Germany), 582 
pp. 
 
Miall, A.D. (1999) In defense of facies classifications and models. J. Sed. Res., 69, 
2-5. 
 
Miall, A.D. (2006) Reconstructing the architecture and sequence stratigraphy of the 
preserved fluvial record as a tool for reservoir development: a reality check. AAPG 
Bull., 90, 989-1002. 
 
Miall, A.D. and Jones, B.G. (2003) Fluvial architecture of the Hawkesbury 
Sandstone (Triassic), near Sydney, Australia. J. Sed. Res., 73, 531-545. 
 
Miall, A.D. and Turner-Peterson, C.E. (1989) Variations in fluvial style in the 
Westwater Canyon Member, Morrison Formation (Jurassic), San Juan Basin, 
Colorado Plateau. Sed. Geol., 63, 21-60. 
 
Mjøs, R., Walderhaug, O. and Prestholm, E. (1993) Crevasse splay sandstone 
geometries in the Middle Jurassic Ravenscar Group of Yorkshire, UK. In: Alluvial 
sedimentation (Eds. M. Marzo and C. Puigdefábregas). Int. Assoc. Sedimentol. 
Spec. Publ., 17, 167-184. 
 
Mjøs, R. and Prestholm, E. (1993) The geometry and organization of fluviodeltaic 
channel sandstones in the Jurassic Saltwick Formation, Yorkshire, England. 
Sedimentology, 40, 919-935. 
 
Morris, J. and Martin, M. (2012) High-resolution coal correlation of the Walloon 
Coal Measures, Surat Basin, eastern Australia. Poster presented at the BSRG 
Annual General Meeting, 18-20 December 2012, Dublin (Ireland). 
 
Müller, R., Nystuen, J.P. and Wright, V.P. (2004) Pedogenic mud aggregates and 
paleosol development in ancient dryland river systems: criteria for interpreting 
alluvial mudrock origin and floodplain dynamics. J. Sed. Res., 74, 537-551. 
 



221 

References 

Muto, T. and Steel, R.J. (2000) The accommodation concept in sequence 
stratigraphy: some dimensional problems and possible redefinition. Sed. Geol., 130, 
1-10. 
 
Nadon, G.C. (1994) The genesis and recognition of anastamosed fluvial deposits: 
data from the St. Mary River Formation, southwestern Alberta, Canada. J. Sed. 
Res., B64, 451-463. 
 
Nádor, A. and Sztanó, O. (2011) Lateral and vertical variability of channel belt 
stacking density as a function of subsidence and sediment supply: field evidence 
from the intramountaine Körös Basin, Hungary. In: From river to rock record: the 
preservation of fluvial sediments and their subsequent interpretation (Eds. S. 
Davidson, S. Leleu and C. North). SEPM Spec. Publ., 97, 375-392. 
 
Nanson, G.C. and Croke, J.C. (1992) A genetic classification of floodplains. In: 
Floodplain Evolution (Eds. G.R. Brakenridge and J. Hagedorn). Geomorphology, 4, 
459-486. 
 
Nanson, G.C. and Hickin, E.J. (1986) A statistical analysis of bank erosion and 
channel migration in western Canada. Geol. Soc. Am. Bull., 97, 497-504. 
 
Naumann, N. (2012) SAFARI outcrop database. SAFARI database standard: 
Version 2.0. Uni CIPR, Bergen (Norway), 323 pp. Available online from: 
wikistatic.safaridb.com/SAFARI-2.pdf 
  
Nichols, G.J. (2005) Sedimentary evolution of the Lower Clair Group, Devonian, 
West of Shetland: climate band sediment supply controls on fluvial, aeolian and 
lacustrine deposition. In: Petroleum geology: north-west Europe and global 
perspectives, proceedings of the sixth petroleum geology conference (Eds. A.G. 
Dore and B.A. Vinning). 957-967. Geological Society, London (UK). 
 
Nichols, G.J. and Fisher, J.A. (2007) Processes, facies and architecture of fluvial 
distributary system deposits. Sed. Geol., 195, 75-90. 
 
Nittrouer, J.A., Shaw, J., Lamb, M.P. and Mohrig, D. (2012) Spatial and temporal 
trends for water-flow velocity and bed-material sediment transport in the lower 
Mississippi River. Geol. Soc. Am. Bull., 124, 400-414. 
  
North, C.P. (1996) The prediction and modelling of subsurface fluvial stratigraphy. 
In: Advances in fluvial dynamics and stratigraphy (Eds. P.A. Carling and M.R. 
Dawson). 395-508. Wiley, Chichester (UK). 
 
North, C.P. and Davidson, S.K. (2012) Unconfined alluvial flow processes: 
recognition and interpretation of their deposits, and the significance for 
palaeogeographic reconstructions. Earth-Sci. Rev., 111, 199-223. 
 
North, C.P. and Taylor, K.S. (1996) Ephemeral-fluvial deposits: integrated outcrop 
and simulation studies reveal complexity. AAPG Bull., 80, 811-830. 
 
Olsen, H. (1987) Ancient ephemeral stream deposits: a local terminal fan model 
from the Bunter Sandstone Formation (L. Triassic) in the Tønder-3, -4 and -5 wells, 
Denmark. In: Desert sediments: ancient and modern (Eds. L. Frostick and I. Reid). 
Geol. Soc. London Spec. Publ., 35, 69-86. 
 



222 

References 

Olsen, H. (1989) Sandstone-body structures and ephemeral stream processes in 
the Dinosaur Canyon Member, Moenave Formation (Lower Jurassic), Utah, U.S.A. 
Sed. Geol., 61, 207-221. 
 
Olsen, T. (1995) Sequence stratigraphy, alluvial architecture and potential reservoir 
heterogeneities of fluvial deposits: evidence from outcrop studies in Price Canyon, 
Utah (Upper Cretaceous and Lower Tertiary). In: Sequence Stratigraphy on the 
Northwest European Margin (Eds. R.J. Steel, V.L. Felt, E.P. Johannessen and C. 
Mathieu). Norw. Petrol. Soc. Spec. Publ., 5, 75-96. 
 
Olsen, T., Steel, R., Hogseth, K., Skar, T. and Roe, S.L. (1995) Sequential 
architecture in a fluvial succession: sequence stratigraphy in the Upper Cretaceous 
Mesaverde Group, Price Canyon, Utah. J. Sed. Res., 65, 265-280. 
 
Orton, G.J. and Reading, H.G. (1993) Variability of deltaic processes in terms of 
sediment supply, with particular emphasis on grain size. Sedimentology, 40, 475-
512. 
 
Paola, C., Heller, P.L. and Angevine, C.L. (1992) The large‐scale dynamics of 

grain‐size variation in alluvial basins, 1: theory. Basin Research, 4, 73-90. 
 
Paola, C., Straub, K., Mohrig, D. and Reinhardt, L. (2009). The “unreasonable 
effectiveness” of stratigraphic and geomorphic experiments. Earth-Sci. Rev., 97, 1-
43. 
  
Parkash, B., Awasthi, A.K. and Gohain K. (1983) Lithofacies of the Markanda 
terminal fan, Kurukshetra district, Haryana, India In: Modern and ancient fluvial 
Systems (Eds. J.D Collinson and J. Lewin). Int. Assoc. Sedimentol. Spec. Publ., 6, 
337-344. 
 
Peakall, J.L., Ashworth, P.J. and Best, J.L. (1996) Physical modelling in fluvial 
geomorphology: Principles, applications and unresolved issues. In: The scientific 
nature of geomorphology (Eds. B.L Rhoads and C.E. Thorn). 221-253. Wiley, 
Chichester (UK). 

 
Pizzuto, J.E. (1987) Sediment diffusion during overbank flows. Sedimentology, 34, 
301-317. 
 
Platt, N.H. and Keller, B. (1992) Distal alluvial deposits in a foreland basin setting – 
the lower freshwater Molasse (lower Miocene), Switzerland: sedimentology, 
architecture and palaeosols. Sedimentology, 39, 545-565. 
 
Posamentier, H.W. and Vail, P.R. (1988) Eustatic controls on clastic deposition II 
— sequence and systems tract models. In: Sea level changes: an integrated 
approach (Eds. C.K. Wilgus, B.S. Hastings, C.G.St.C. Kendall, H.W. Posamentier, 
C.A. Ross and J.C. Van Wagoner). SEPM Spec. Publ., 42, 125-154. 
 
Potter, P.E. (1967) Sand bodies and sedimentary environments: a review. AAPG 
Bull., 51, 337-365. 
 
Pyrcz, M.J., Boisvert, J.B. and Deutsch, C.V. (2008) A library of training images 
for fluvial and deepwater reservoirs and associated code. Comput. Geosci., 34, 
542-560. 
 



223 

References 

Ramón, J.C. and Cross, T. (1997) Characterization and prediction of reservoir 
architecture and petrophysical properties in fluvial channel sandstones, middle 
Magdalena Basin, Colombia. CT&F, 1, 19-46. 
 
Reading, H.G. (2001) Clastic facies models, a personal perspective. Bull. Geol. 
Soc. Denmark, 48, 101-115. 
 
Reading, H.G. and Levell, B.K. (1996) Controls on the sedimentary rock record. In: 
Sedimentary environments: processes, facies and stratigraphy (Ed. H.G. Reading) 
3rd edn. 5-36. Blackwell, Oxford (UK). 
 
Remy, N., Boucher, A. and Wu, J. (2009) Applied geostatistics with SGEMS: a 
user's guide. Cambridge University Press, New York (USA), 312 pp. 
 
Reynolds, A.D. (1999) Dimensions of paralic sandstone bodies. AAPG Bull., 83, 
211-229. 
 
Ringrose, P.S., Martinius, A.W. and Alvestad, J. (2008) Multiscale geological 
reservoir modelling in practice. In: The future of geological modelling in 
hydrocarbon development (Eds. A. Robinson, P. Griffiths, S. Price, J. Hegre and A. 
Muggeridge). Geol. Soc. London Spec. Publ., 309, 123-134. 
 
Rittersbacher, A., Buckley, S.J., Howell, J.A., Hampson, G.J. and Vallet, J. 
(2013) Helicopter-based laser scanning: a method for quantitative analysis of large-
scale sedimentary architecture. In: Sediment-body geometry and heterogeneity: 
analogue studies for modelling the subsurface (Eds. A.W. Martinius, J.A.Howell, T. 
Good) Geol. Soc. London Spec. Publ., 387, doi:10.1144/SP387.3. 
 
Ritzi, R.W. (2000) Behavior of indicator variograms and transition probabilities in 
relation to the variance in lengths of hydrofacies. Water Resour. Res., 36, 3375-
3381. 
 
Roberts, E.M. (2007) Facies architecture and depositional environments of the 
Upper Cretaceous Kaiparowits Formation, southern Utah. Sed. Geol., 197, 207-
233. 
 
Robinson, J.W. and McCabe, P.J. (1997) Sandstone-body and shale-body 
dimensions in a braided fluvial system: Salt Wash Sandstone Member (Morrison 
Formation), Garfield County, Utah. AAPG Bull., 81, 1267-1291. 
 
Robinson, R.A. and Slingerland, R.L. (1998) Origin of fluvial grain-size trends in a 
foreland basin: the Pocono Formation on the central Appalachian basin. J. Sed. 
Res., 68, 473-486. 
 
Rygel, M.C. and Gibling, M.R. (2006) Natural geomorphic variability recorded in a 
high-accommodation setting: fluvial architecture of the Pennsylvanian Joggins 
Formation of Atlantic Canada. J. Sed. Res., 76, 1230-1251. 
 
Salter, T. (1993) Fluvial scour and incision: models for their influence on the 
development of realistic reservoir geometries. In: Characterization of fluvial and 
eolian reservoirs (Eds. C.P. North and D.J. Prosser). Geol. Soc. London Spec. 
Publ., 73, 33-51. 
 
Sanabria, D.I. (2001) Sedimentology and sequence stratigraphy of the Lower 
Jurassic Kayenta Formation, Colorado Plateau, U.S.A. PhD dissertation, Rice 
University, Houston, 245 pp. 



224 

References 

 
Sánchez-Moya, Y., Sopeña, A. and Ramos, A. (1996) Infill architecture of a non-
marine half-graben Triassic basin (Central Spain). J. Sed. Res., 66, 1122-1136. 
 
Saunders, M.R., Shields, J.A. and Taylor, M.R. (1995) Improving the value of 
geological data: a standardized data model for industry. In: Geological data 
management (Ed. J.R.A. Giles). Geol. Soc. London Spec. Publ., 97, 41-53. 
 
Schumm, S.A. (1960) The shape of alluvial channels in relation to sediment type. 
Erosion and sedimentation in a semiarid environment. US Geol. Surv. Prof. Pap., 
352-B, 17-30. 
 
Schwarzacher, W. (1975) Sedimentation models and quantitative stratigraphy. 
Dev. Sedimentol., 19. Elsevier, New York (USA), 387 pp. 
 
Scott, S., Anderson, B., Crosdale, P., Dingwall, J. and Leblang, G. (2007) Coal 
petrology and coal seam gas contents of the Walloon Subgroup – Surat Basin, 
Queensland, Australia. Int. J. Coal Geol., 70, 209-222. 
 
Seifert, D. and Jensen, J.L. (1999) Sequential indicator simulation as a tool in 
reservoir description: issues and uncertainties. Math. Geol., 31, 527–550. 
 
Seifert, D. and Jensen, J.L. (2000) Object and pixel-based reservoir modeling of a 
braided fluvial reservoir. Math. Geol., 32, 581-603. 
 
Selley, R.C. (1970) Studies of sequence in sediments using a simple mathematical 
device. Q. J. Geol. Soc. London, 125, 557-581. 
 
Shanley, K.W. (2004) Fluvial reservoir description for a giant, low-permeability gas 
field: Jonah Field, Green River Basin, Wyoming, USA. In: Jonah Field: case study 
of a tight-gas fluvial reservoir (Eds. J.W. Robinson and K.W. Shanley). AAPG Stud. 
Geol., 52, 159-182. 

 
Shanley, K.W. and McCabe, P.J. (1993) Alluvial architecture in a sequence 
stratigraphic framework: a case history from the Upper Cretaceous of southern 
Utah, USA. In: Geological modeling of hydrocarbon reservoirs (Eds. S.S. Flint and 
I.D. Bryant). Int. Assoc. Sedimentol. Spec. Publ., 15, 21-56. 

 
Shanley, K.W. and McCabe, P.J. (1994) Perspectives on the sequence 
stratigraphy of continental strata. AAPG Bull., 78, 544-568. 

 
Sheets, B.A., Hickson, T.A. and Paola, C. (2002) Assembling the stratigraphic 
record: depositional patterns and time-scales in an experimental alluvial basin. 
Basin Res., 14, 287-301. 
 
Shultz, A.W. (1984) Subaerial debris-flow deposition in the Upper Paleozoic Cutler 
Formation, Western Colorado. J. Sed. Petrol., 54, 749-772. 
 
Shuster, M.W. and Steidtmann, J.R. (1987) Fluvial sandstone architecture and 
thrust induced subsidence, northern Green River basin, Wyoming. In: Recent 
developments in fluvial sedimentology (Eds. E.G. Ethridge, R.M. Flores and M.D. 
Harvey). SEPM Spec. Publ., 39, 279-286. 
 
Sitaula, R. and Aschoff, J.L. (2012) Effect of Laramide structures on the regional 
distribution of tight-gas sandstone reservoirs in the Upper Mesaverde Group, Uinta 



225 

References 

Basin, Utah. Search and Discovery, Article #10452. Available online from: 
http://archives.datapages.com/ 
 
Skelly, R.L., Bristow, C.S. and Ethridge, F.G. (2003) Architecture of channel-belt 
deposits in an aggrading shallow sandbed braided river: the lower Niobrara River, 
northeast Nebraska. Sed. Geol., 158, 249-270. 
 
Sohn, Y.K., Rhee, C.W. and Kim, B.C. (1999) Debris Flow and Hyperconcentrated 
Flood-Flow deposits in an alluvial fan, northwestern part of the Cretaceous 
Yongdong basin, central Korea. J. Geol., 107, 111-132. 
 
Smith, R.M.H. and Swart, R. (2002) Changing fluvial environments and vertebrate 
taphonomy in response to climatic drying in a Mid-Triassic rift valley fill: the 
Omingonde Formation (Karoo Supergroup) of central Namibia. Palaios, 17, 249-
267. 
 
Srivastava, R.M. (1994) An overview of stochastic methods for reservoir 
characterization. In: Stochastic modeling and geostatistics: principles, methods and 
case studies (Eds. J.M. Yarus and R.L. Chambers). AAPG Comput. Appl. Geol., 3, 
3-16. 
 
Steel, R.J. and Thompson, D.B. (1983) Structures and textures in Triassic braided 
stream conglomerates (‘Bunter’ Pebble Beds) in the Sherwood Sandstone Group, 
North Staffordshire, England. Sedimentology, 30, 341-367. 
 
Stephens, M. (1994) Architectural element analysis within the Kayenta Formation 
(Lower Jurassic) using ground-probing radar and sedimentological profiling, 
southwestern Colorado. Sed. Geol., 90, 179-211. 
 
Stouthamer, E. and Berendsen, H.J. (2007) Avulsion: the relative roles of 
autogenic and allogenic processes. Sed. Geol., 198, 309-325. 
 
Straub, K.M. and Pyles, D.R. (2012) Quantifying the Hierarchical Organization of 
Compensation In Submarine Fans Using Surface Statistics. J. Sed. Res., 82, 889-
898.  
 
Strebelle, S. (2002) Conditional simulation of complex geological structures using 
Multiple-Point Statistics. Math. Geol., 34, 1-21. 
 
Strebelle, S. and Journel, A. (2001) Reservoir modeling using multiple-point 
statistics. Paper SPE 71324, presented at the SPE Annual Technical Conference 
and Exhibition, 30 September-3 October 2001, New Orleans (USA). 
 
Strebelle, S. and Levy, M. (2008) Using multiple-point statistics to build 
geologically realistic reservoir models: the MPS/FDM workflow. In: The future of 
geological modelling in hydrocarbon development (Eds. A. Robinson, P. Griffiths, S. 
Price, J. Hegre and A. Muggeridge). Geol. Soc. London Spec. Publ., 309, 67-74.  
 
Strong, N. (2006) Mass balance effects in clastic fluvial stratigraphy. PhD 
dissertation, University of Minnesota (USA), 148 pp. 
 
Strong, N., Sheets, B.A., Hickson, T.A. and Paola, C. (2005) A mass-balance 
framework for quantifying downstream changes in fluvial architecture. In: Fluvial 
sedimentology VII (Eds. M. Blum, S. Marriott and S. Leclair). Int. Assoc. 
Sedimentol. Spec. Publ., 35, 243-253. 
 



226 

References 

Thomas, R.G., Smith, D.G., Wood, J.M., Visser, J., Calverley-Range, E.A. and 
Koster, E.H. (1987) Inclined heterolithic stratification – Terminology, description, 
interpretation and significance. Sed. Geol., 53, 123-179. 
 
Totterdell, J.M., Moloney, J., Korsch, R.J. and Krassay, A.A. (2009) Sequence 
stratigraphy of the Bowen-Gunnedah and Surat Basins in New South Wales. Aust. 
J. Earth Sci., 56, 433-459. 
 
Turner, S., Bean, L.B., Dettmann, M., McKellar, J.L., McLoughlin, S. and 
Thulborn, T. (2009) Australian Jurassic sedimentary and fossil successions: 
current work and future prospects for marine and non-marine correlation. GFF, 131, 
49-70. 
 
Tye, R.S. (1991) Fluvial-sandstone reservoirs of the Travis Peak Formation, East 
Texas basin. In: The three-dimensional facies architecture of terrigenous clastic 
sediments, and its implications for hydrocarbon discovery and recovery (Eds. A.D. 
Miall and N. Tyler). SEPM Conc. Sed. Paleo., 3, 172-188. 
 
Tye, R.S. (2004) Geomorphology: an approach to determining subsurface reservoir 
dimensions. AAPG Bull., 88, 1123-1147. 
 
Tye, R.S., Laubach, S.E., Dutton, S.P. and Herrington, K.L. (1989) The role of 
geology in characterizing low-permeability sandstones, North Appleby Field, East 
Texas Basin. Paper SPE 18964 presented at the SPE Joint Rocky Mountain 
Regional/Low Permeability Reservoirs Symposium and Exhibition, 6-8 March 1989, 
Denver (USA), 1-11. 
 
Van Wagoner, J.C. (1995) Sequence stratigraphy and marine to nonmarine facies 
architecture of foreland basin strata, Book Cliffs, Utah, USA. In: Sequence 
stratigraphy of foreland basin deposits, outcrop and subsurface examples from the 
Cretaceous of North America (Eds. J.C. Van Wagoner and G.T. Bertram). AAPG 
Mem., 64, 137-223. 
 
Visser, C.A. and Chessa, A.G. (2000a) A new method for estimating lengths for 
partially exposed features. Math. Geol., 32, 109-126. 
 
Visser, C.A. and Chessa, A.G. (2000b) Estimation of length distributions from 
outcrop datasets – application to the Upper Permian Cutler Formation. Petrol. 
Geosci., 6, 29-36. 
 
Wakelin-King, G.A. and Webb, J.A. (2007) Upper-flow-regime mud floodplains, 
lower-flow-regime sand channels: sediment transport and deposition in a drylands 
mud-aggregate river. J. Sed. Res., 77, 702-712. 
 
Walker, R.G. (1984) General introduction: facies, facies sequences and facies 
models. In: Facies Models (Ed. R.G. Walker) 2nd edn. 1-13. Geological Association 
of Canada Reprint Series, Toronto (Canada). 
 
Walker, R.G. and Cant, D.J. (1984) Sandy fluvial systems. In: Facies Models (Ed. 
R.G. Walker) 2nd edn. 71-90. Geological Association of Canada Reprint Series, 
Toronto (Canada). 
 
Walker, R.G. and James, N.P. (1992) Facies models: response to sea level 
change. Geological Association of Canada, St John's (Canada). 409 pp. 
 



227 

References 

Walker, W.E., Harremoës, P., Rotmans, J., van der Sluijs, J.P., van Asselt, 
M.B.A., Janssen, P. and Krayer von Krauss, M.P. (2003) Defining uncertainty: a 
conceptual basis for uncertainty management in model-based decision support. 
Integr. Assessment, 4, 5-18. 
 
Wanke, A. (2000) Karoo-Etendeka unconformities in NW Namibia and their tectonic 
implications. Ph.D. dissertation, Julius-Maximilians University, Würzburg 
(Germany), 113 pp. 
 
Weber, K.J. (1982) Influence of common sedimentary structures on fluid flow in 
reservoir models. J. Petrol. Technol., 34, 665-672. 
 
Weber, K.J. (1986) How heterogeneity affects oil recovery. In: Reservoir 
characterization (Eds. L.W. Lake and H.B. Carroll Jr.). 487-544. Academic Press, 
Orlando (USA). 
 
Wickert A.D., Martin, J.M., Tal, M., Kim, W., Sheets, B. and Paola, C. (2013) 
River channel lateral mobility: metrics, time scales, and controls. J. Geophys. Res. 
Earth Surf., 118, doi: 10.1029/2012JF002386. 
 
Willis, B.J. (1993a) Interpretation of bedding geometry within ancient point bar 
deposits. In: Alluvial sedimentation (Eds. M. Marzo and C. Puigdefábregas). Int. 
Assoc. Sedimentol. Spec. Publ., 17, 101-114. 
 
Willis, B. (1993b) Evolution of Miocene fluvial systems in the Himalayan foredeep 
through a two kilometer thick succession in northern Pakistan. Sed. Geol., 88, 77-
121. 
 
Willis, B.J. and Behrensmeyer, A.K. (1994) Architecture of Miocene overbank 
deposits in northern Pakistan. J. Sed. Res., B64, 60-67. 
 
Wizevich, M.C. (1992) Sedimentology of Pennsylvanian quartzose sandstones of 
the Lee Formation, central Appalachian Basin: fluvial interpretation based on lateral 
profile analysis. Sed. Geol., 78, 1-47. 
 
Wright, P.V. and Marriott, S.B. (1993) The sequence stratigraphy of fluvial 
depositional systems: the role of floodplain sediment storage. Sed. Geol., 86, 203-
210. 
 
Xu, C., Dowd, P.A., Mardi, K. and Fowler, R. (2006) A flexible true plurigaussian 
code for spatial facies simulations. Comput. Geosci., 32, 1629-1645. 
 
Yi, M.S. and Cross, A.T. (1997) Palynostratigraphy of Upper Cretaceous-Lower 
Tertiary strata, Price Canyon, Utah. Rev. Palaeobot. Palynol., 97, 53-66. 
 
Yoshida, S. (2000) Sequence and facies architecture of the upper Blackhawk 
Formation and the Lower Castlegate Sandstone (Upper Cretaceous), Book Cliffs, 
Utah, USA. Sed. Geol., 136, 239-276. 
 
Zaleha, M.J. (1997a) Fluvial and lacustrine palaeoenvironments of the Miocene 
Siwalik Group, Khaur area, northern Pakistan. Sedimentology, 44, 349-368 
 
Zaleha, M.J. (1997b) Intra‐ and extrabasinal controls on fluvial deposition in the 

Miocene Indo‐Gangetic foreland basin, northern Pakistan. Sedimentology, 44, 369-
390. 
 

http://dx.doi.org/10.1029/2012JF002386


228 

References 

Zerfass, H., Chemale, F. Jr. and Lavina, E. (2005) Tectonic control of the Triassic 
Santa Maria Supersequence of the Paraná Basin, southernmost Brazil, and its 
correlation to the Waterberg Basin, Namibia. Gondw. Res., 8, 163-176. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



229 

Appendix A  

Appendix A: schematic guidelines to the definition of 

channel complexes 

 

To guide the segmentation of fluvial stratigraphy into FAKTS’ large-scale 

depositional elements, a set of geometrical rules have been established. The 

diagram presented in the following page summarizes the criteria that are used for 

subdivision of fluvial-channel deposits into different channel complexes. Rules 

based on cut-off values are meant to be applied to 2D cross-sectional datasets 

ideally oriented orthogonally to the gradient direction. The rules are presented in the 

order they need to be followed. 
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Appendix B: example SQL queries for database interrogation 

 

This appendix contains a series of example SQL queries that can be adopted as 

templates for database interrogation. The queries themselves and brief 

explanations of the output returned by each query are given. The same set of 

queries is also included as a digital appendix (D3), consisting in a compilation of 

SQL files, each of them named as tg_n, where n follows the numbering given in the 

following list. The queries are listed according to the type of output they generate, 

grouped into ‘metadata’, ‘unit dimensions’, ‘unit proportions’, and ‘unit transitions’.  
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Metadata 
 

tq_31 – General metadata: reference, case history, number of genetic units 

create temporary table case_IDs as select distinct 

a_source_data.case_ID,a_source_data.authors,  a_source_data.year, 

a_source_data.lithostrat_unit as 'lithostratigraphic_unit', a_source_data.river 

from a_source_data join b_subsets on a_source_data.case_ID = b_subsets.case_ID; 

create temporary table dep_el_nr select a_source_data.case_ID, 

COUNT(c_1_depositional_elements.dep_el_type) as 'nr_of_depositional_elements' 

from a_source_data join b_subsets on a_source_data.case_ID = b_subsets.case_ID 

join c_1_depositional_elements on b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID 

group by a_source_data.case_ID; 

create temporary table arch_el_nr as select a_source_data.case_ID, 

COUNT(e_2_architectural_elements.arch_el_type) as 'nr_of_architectural_elements' 

from a_source_data join b_subsets on a_source_data.case_ID = b_subsets.case_ID 

join c_1_depositional_elements on b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID join e_2_architectural_elements on 

c_1_depositional_elements.dep_el_ID = e_2_architectural_elements.dep_el_ID 

group by a_source_data.case_ID; 

create temporary table facies_nr as select a_source_data.case_ID, 

COUNT(g_3_facies.facies_ID) as 'nr_of_facies_units' 

from a_source_data join b_subsets on a_source_data.case_ID = b_subsets.case_ID 

join c_1_depositional_elements on b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID join e_2_architectural_elements on 

c_1_depositional_elements.dep_el_ID = e_2_architectural_elements.dep_el_ID 

join g_3_facies on e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID 

group by a_source_data.case_ID; 

create temporary table statistics_nr as select a_source_data.case_ID, 

COUNT(i_subset_statistics.statistic_ID) as 'nr_of_statistical_parameters' 

from a_source_data join b_subsets on a_source_data.case_ID = b_subsets.case_ID 

join i_subset_statistics on b_subsets.subset_ID = i_subset_statistics.subset_ID 

group by a_source_data.case_ID; 

select case_IDs.case_ID, case_IDs.authors, case_IDs.year, 

case_IDs.lithostratigraphic_unit, case_IDs.river, 

dep_el_nr.nr_of_depositional_elements, arch_el_nr.nr_of_architectural_elements, 

facies_nr.nr_of_facies_units, statistics_nr.nr_of_statistical_parameters 

from case_IDs left join dep_el_nr on case_IDs.case_ID = dep_el_nr.case_ID 

left join arch_el_nr on case_IDs.case_ID = arch_el_nr.case_ID 

left join facies_nr on case_IDs.case_ID = facies_nr.case_ID 

left join statistics_nr on case_IDs.case_ID = statistics_nr.case_ID; 

 
For each case study, it returns: authors, year of publication/data-acquisition, the 
lithostratigraphic units or the river where the data come from, the number of not-undefined 
depositional element, the number of not-undefined architectural elements, the number of all 
the facies units, and the number of entries as statistical parameters. 

 

tq_33 – Identifiers of gravel dominated case studies 

create temporary table facies_t as select case_ID, g_3_facies.facies_type, 

g_3_facies.thickness from b_subsets join c_1_depositional_elements on 

b_subsets.subset_ID = c_1_depositional_elements.subset_ID 

join e_2_architectural_elements on c_1_depositional_elements.dep_el_ID = 

e_2_architectural_elements.dep_el_ID join g_3_facies on 

e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID; 

create temporary table facies_t2 as select facies_t.case_ID, facies_t.facies_type, 

sum(thickness) sum from facies_t group by facies_type, case_ID; 

create temporary table facies_t3 as select facies_t2.case_ID, sum(sum) total from 

facies_t2 group by case_ID; 

create temporary table chosen_cases as select facies_t2.case_ID, sum(sum) partial 

from facies_t2 where facies_type like '%G%' group by case_ID; 

select distinct chosen_cases.case_ID from chosen_cases join facies_t3 on 

chosen_cases.case_ID = facies_t3.case_ID where partial/total > 0.5; 

 
It returns the identifiers of the case studies dominated by gravel-size deposits (more than 
50% by thickness). 
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Unit dimensions 
 

tq_05 – Channel-complex thickness and aggradation rates 

SELECT `dep_el_type`, `thickness`, b_subsets.mean_aggradation_rate 

FROM b_subsets JOIN c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID WHERE b_subsets.mean_aggradation_rate IS NOT 

NULL AND thickness IS NOT NULL AND dep_el_type = 'Channel-complex' 

ORDER BY mean_aggradation_rate; 

 
It returns channel-complex thicknesses and subset aggradation rates, ordered by 
aggradation rates. 

 

tq_11 – Channel-complex thickness, width, DQI 

SELECT `dataset_DQI`, `dep_el_type`, `thickness`, `width` 

FROM a_source_data JOIN b_subsets ON a_source_data.case_ID = b_subsets.case_ID 

JOIN c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID WHERE thickness IS NOT NULL AND width IS NOT 

NULL AND dep_el_type = 'Channel-complex' ORDER BY dataset_DQI; 

 
It returns channel-complex thicknesses and widths (where not null) ordered according to 
DQI ranking. 

 

tq_07 – Channel-complex geometries from individual case study 

SELECT `dep_el_type`, `thickness`, `width`, `unlimited_width`, `partial_width`, 

`apparent_width` FROM a_source_data JOIN b_subsets ON a_source_data.case_ID = 

b_subsets.case_ID JOIN c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID WHERE thickness IS NOT NULL AND dep_el_type = 

'Channel-complex' AND a_source_data.case_ID = 23 AND (width IS NOT NULL OR 

apparent_width IS NOT NULL OR partial_width IS NOT NULL OR unlimited_width IS NOT 

NULL); 

 
It returns dimensional parameters (all classes of width + thickness, where not null) for 
channel-complexes belonging to a given case study (here: case_ID = 23). 

 

tq_10 – SF architectural-element geometries from individual case 

SELECT arch_el_type, e_2_architectural_elements.thickness, 

e_2_architectural_elements.width, e_2_architectural_elements.apparent_width, 

e_2_architectural_elements.partial_width, e_2_architectural_elements.unlimited_width 

FROM a_source_data JOIN b_subsets ON a_source_data.case_ID = b_subsets.case_ID 

JOIN c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID JOIN e_2_architectural_elements ON 

c_1_depositional_elements.dep_el_ID = e_2_architectural_elements.dep_el_ID 

WHERE a_source_data.case_ID = 23 and arch_el_type = 'SF'; 

 
It returns dimensional parameters of a given type of architectural element (here: SF), filtered 
according to the case study (here: case_ID = 23). 

 

tq_01 – Architectural-element thicknesses classified on relative distality 

SELECT a_source_data.case_ID, a_source_data.authors, b_subsets.subset_ID, 

b_subsets.relative_distality, arch_el_type, e_2_architectural_elements.thickness 

FROM a_source_data JOIN b_subsets ON a_source_data.case_ID = b_subsets.case_ID 

JOIN c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID JOIN e_2_architectural_elements ON 

c_1_depositional_elements.dep_el_ID = e_2_architectural_elements.dep_el_ID 

WHERE a_source_data.case_ID = 9; 

 
It returns types and thicknesses of architectural elements, classified according to the 
relative distality of the subset they belong to, filtered according to the case study (here: 
case_ID = 9). 
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tq_08 – Facies-unit original classes, FAKTS classes and thicknesses 

SELECT b_subsets.subset_ID, b_subsets.relative_distality, original_facies_type, 

facies_type, g_3_facies.thickness FROM a_source_data JOIN b_subsets ON 

a_source_data.case_ID = b_subsets.case_ID JOIN c_1_depositional_elements ON 

b_subsets.subset_ID = c_1_depositional_elements.subset_ID JOIN 

e_2_architectural_elements ON c_1_depositional_elements.dep_el_ID = 

e_2_architectural_elements.dep_el_ID JOIN g_3_facies ON 

e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID 

WHERE a_source_data.case_ID = 23; 

 
It returns thicknesses for facies units belonging to a given case study (here: case_ID = 23), 
classified according to both the FAKTS classification scheme and the classification scheme 
adopted in the original source work; subset relative distality is also shown. 

 

tq_21 – Widths of laterally-adjacent CH and LV architectural elements 

CREATE TEMPORARY TABLE new_trans_ID AS (SELECT 

e_2_architectural_elements.arch_el_ID, e_2_architectural_elements.width, 

f_2_arch_el_transitions.trans_arch_el_ID, f_2_arch_el_transitions.trans_direction, 

e_2_architectural_elements.arch_el_type, f_2_arch_el_transitions.bound_surf_order 

FROM e_2_architectural_elements JOIN f_2_arch_el_transitions ON 

e_2_architectural_elements.arch_el_ID = f_2_arch_el_transitions.arch_el_ID); 

CREATE TEMPORARY TABLE new_trans_types AS (SELECT new_trans_ID.arch_el_ID, 

new_trans_ID.trans_arch_el_ID, IFNULL (new_trans_ID.arch_el_type, 'Undefined') AS 

arch_el_type, new_trans_ID.width, IFNULL (e_2_architectural_elements.arch_el_type, 

'Undefined') AS transitional_type, e_2_architectural_elements.width AS 

trans_el_width, new_trans_ID.trans_direction, new_trans_ID.bound_surf_order 

FROM e_2_architectural_elements JOIN new_trans_ID ON 

e_2_architectural_elements.arch_el_ID = new_trans_ID.trans_arch_el_ID); 

CREATE TEMPORARY TABLE lateral_trans AS( SELECT new_trans_types.arch_el_type, 

new_trans_types.width, new_trans_types.transitional_type, 

new_trans_types.trans_el_width FROM new_trans_types WHERE trans_direction = 

'Lateral' AND ((arch_el_type = 'LV' AND transitional_type = 'CH') OR (arch_el_type = 

'CH' AND transitional_type = 'LV')) ORDER BY new_trans_types.arch_el_ID); 

SELECT * FROM lateral_trans; 

 
It returns widths of strike-laterally neighbouring architectural elements, selected on their 
element type (here: LV laterally adjacent to CH). 

 

tq_30 – Thicknesses of laterally-adjacent channel-complexes and SF 
architectural elements 

CREATE TEMPORARY TABLE new_trans_ID AS (SELECT c_1_depositional_elements.dep_el_ID, 

c_1_depositional_elements.dep_el_type, e_2_architectural_elements.arch_el_ID, 

c_1_depositional_elements.thickness, f_2_arch_el_transitions.trans_arch_el_ID, 

f_2_arch_el_transitions.trans_direction, e_2_architectural_elements.arch_el_type, 

f_2_arch_el_transitions.bound_surf_order FROM c_1_depositional_elements 

JOIN e_2_architectural_elements ON c_1_depositional_elements.dep_el_ID = 

e_2_architectural_elements.dep_el_ID JOIN f_2_arch_el_transitions ON 

e_2_architectural_elements.arch_el_ID = f_2_arch_el_transitions.arch_el_ID); 

CREATE TEMPORARY TABLE new_trans_types AS (SELECT new_trans_ID.dep_el_ID, 

new_trans_ID.trans_arch_el_ID, IFNULL (new_trans_ID.dep_el_type, 'Undefined') AS 

dep_el_type, new_trans_ID.thickness, IFNULL(e_2_architectural_elements.arch_el_type, 

'Undefined') AS transitional_type, e_2_architectural_elements.thickness AS 

trans_el_thickness, new_trans_ID.trans_direction, new_trans_ID.bound_surf_order 

FROM e_2_architectural_elements JOIN new_trans_ID ON 

e_2_architectural_elements.arch_el_ID = new_trans_ID.trans_arch_el_ID); 

CREATE TEMPORARY TABLE lateral_trans AS(SELECT new_trans_types.dep_el_ID, 

new_trans_types.dep_el_type, new_trans_types.thickness, 

new_trans_types.trans_arch_el_ID, new_trans_types.transitional_type, 

new_trans_types.trans_el_thickness FROM new_trans_types WHERE trans_direction = 

'Lateral' AND dep_el_type = 'Channel-complex' AND transitional_type = 'CS' 

ORDER BY new_trans_types.dep_el_ID);  

SELECT * FROM lateral_trans; 

 

It returns thicknesses of strike-laterally neighbouring depositional and architectural 
elements, selected on their element type (here: Channel-complex laterally adjacent to CS). 
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tq_25 – Widths of 3 laterally-adjacent CH architectural elements 

CREATE TEMPORARY TABLE new_trans_ID AS (SELECT 

e_2_architectural_elements.arch_el_ID, f_2_arch_el_transitions.trans_arch_el_ID, 

f_2_arch_el_transitions.trans_direction, e_2_architectural_elements.arch_el_type 

FROM e_2_architectural_elements JOIN f_2_arch_el_transitions ON 

e_2_architectural_elements.arch_el_ID = f_2_arch_el_transitions.arch_el_ID 

WHERE arch_el_type <> 'CH'); 

CREATE TEMPORARY TABLE new_trans_types AS (SELECT new_trans_ID.arch_el_ID, 

new_trans_ID.trans_arch_el_ID, IFNULL (new_trans_ID.arch_el_type, 'Undefined') AS 

arch_el_type, IFNULL (e_2_architectural_elements.arch_el_type, 'Undefined') AS 

transitional_type, e_2_architectural_elements.unlimited_width, 

e_2_architectural_elements.partial_width, e_2_architectural_elements.width, 

e_2_architectural_elements.apparent_width, new_trans_ID.trans_direction 

FROM e_2_architectural_elements JOIN new_trans_ID ON 

e_2_architectural_elements.arch_el_ID = new_trans_ID.trans_arch_el_ID 

WHERE trans_direction = 'Lateral' AND (e_2_architectural_elements.width IS NOT NULL 

OR e_2_architectural_elements.apparent_width IS NOT NULL OR 

e_2_architectural_elements.partial_width IS NOT NULL OR 

e_2_architectural_elements.unlimited_width IS NOT NULL)); 

CREATE TEMPORARY TABLE new_trans_ID_2 AS (SELECT new_trans_types.trans_arch_el_ID AS 

arch_el_ID, f_2_arch_el_transitions.trans_arch_el_ID, 

f_2_arch_el_transitions.trans_direction, new_trans_types.transitional_type AS 

arch_el_type FROM new_trans_types JOIN f_2_arch_el_transitions ON 

new_trans_types.trans_arch_el_ID = f_2_arch_el_transitions.arch_el_ID 

WHERE f_2_arch_el_transitions.trans_direction = 'Lateral' AND 

new_trans_types.transitional_type = 'CH'); 

CREATE TEMPORARY TABLE new_trans_types_2 AS (SELECT new_trans_ID_2.arch_el_ID, 

new_trans_ID_2.trans_arch_el_ID, IFNULL (new_trans_ID_2.arch_el_type, 'Undefined') 

AS arch_el_type, IFNULL (e_2_architectural_elements.arch_el_type, 'Undefined') AS 

transitional_type, e_2_architectural_elements.width, 

e_2_architectural_elements.apparent_width, new_trans_ID_2.trans_direction 

FROM e_2_architectural_elements JOIN new_trans_ID_2 ON 

e_2_architectural_elements.arch_el_ID = new_trans_ID_2.trans_arch_el_ID 

WHERE e_2_architectural_elements.width IS NOT NULL OR 

e_2_architectural_elements.apparent_width IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_3 AS (SELECT new_trans_types_2.trans_arch_el_ID 

AS arch_el_ID, f_2_arch_el_transitions.trans_arch_el_ID, 

f_2_arch_el_transitions.trans_direction, new_trans_types_2.transitional_type AS 

arch_el_type FROM new_trans_types_2 JOIN f_2_arch_el_transitions ON 

new_trans_types_2.trans_arch_el_ID = f_2_arch_el_transitions.arch_el_ID 

WHERE f_2_arch_el_transitions.trans_direction = 'Lateral' AND 

new_trans_types_2.transitional_type = 'CH'); 

CREATE TEMPORARY TABLE new_trans_types_3 AS (SELECT new_trans_ID_3.arch_el_ID, 

new_trans_ID_3.trans_arch_el_ID, IFNULL (new_trans_ID_3.arch_el_type, 'Undefined') 

AS arch_el_type, IFNULL (e_2_architectural_elements.arch_el_type, 'Undefined') AS 

transitional_type, e_2_architectural_elements.unlimited_width, 

e_2_architectural_elements.partial_width, e_2_architectural_elements.width, 

e_2_architectural_elements.apparent_width, new_trans_ID_3.trans_direction 

FROM e_2_architectural_elements JOIN new_trans_ID_3 ON 

e_2_architectural_elements.arch_el_ID = new_trans_ID_3.trans_arch_el_ID 

WHERE e_2_architectural_elements.width IS NOT NULL OR 

e_2_architectural_elements.apparent_width IS NOT NULL OR 

e_2_architectural_elements.partial_width IS NOT NULL OR 

e_2_architectural_elements.unlimited_width IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_4 AS (SELECT new_trans_types_3.trans_arch_el_ID 

AS arch_el_ID, f_2_arch_el_transitions.trans_arch_el_ID, 

f_2_arch_el_transitions.trans_direction, new_trans_types_3.transitional_type AS 

arch_el_type FROM new_trans_types_3 JOIN f_2_arch_el_transitions ON 

new_trans_types_3.trans_arch_el_ID = f_2_arch_el_transitions.arch_el_ID 

WHERE f_2_arch_el_transitions.trans_direction = 'Lateral' AND 

new_trans_types_3.transitional_type = 'CH'); 

CREATE TEMPORARY TABLE new_trans_types_4 AS (SELECT new_trans_ID_4.arch_el_ID, 

new_trans_ID_4.trans_arch_el_ID, IFNULL (new_trans_ID_4.arch_el_type, 'Undefined') 

AS arch_el_type, IFNULL (e_2_architectural_elements.arch_el_type, 'Undefined') AS 

transitional_type, new_trans_ID_4.trans_direction FROM e_2_architectural_elements 

JOIN new_trans_ID_4 ON e_2_architectural_elements.arch_el_ID = 

new_trans_ID_4.trans_arch_el_ID WHERE e_2_architectural_elements.arch_el_type <> 

'CH'); 

SELECT DISTINCT new_trans_types.trans_arch_el_ID, new_trans_types.transitional_type, 

new_trans_types.unlimited_width, new_trans_types.partial_width, 

new_trans_types.width, new_trans_types.apparent_width, 

new_trans_types_2.trans_arch_el_ID, new_trans_types_2.transitional_type, 

new_trans_types_2.width, new_trans_types_2.apparent_width, 

new_trans_types_3.trans_arch_el_ID, new_trans_types_3.transitional_type, 
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new_trans_types_3.unlimited_width, new_trans_types_3.partial_width, 

new_trans_types_3.width, new_trans_types_3.apparent_width 

FROM new_trans_ID JOIN new_trans_types ON new_trans_ID.arch_el_ID = 

new_trans_types.arch_el_ID JOIN new_trans_types_2 ON 

new_trans_types.trans_arch_el_ID = new_trans_types_2.arch_el_ID 

JOIN new_trans_types_3 ON new_trans_types_2.trans_arch_el_ID = 

new_trans_types_3.arch_el_ID JOIN new_trans_types_4 ON 

new_trans_types_3.trans_arch_el_ID = new_trans_types_4.arch_el_ID 

WHERE new_trans_ID.arch_el_ID <> new_trans_types_2.trans_arch_el_ID AND 

new_trans_types.trans_arch_el_ID <> new_trans_types_3.trans_arch_el_ID AND 

new_trans_types_2.trans_arch_el_ID <> new_trans_types_4.trans_arch_el_ID; 

 

It returns the widths (any type) of a group of a given number (here strictly 3) of architectural 
elements that are laterally juxtaposed and belong to the same element type (here: CH), 
excluding erosive mutual transitions. This type of query is required for obtaining the 
cumulative width of material units from the widths of genetic units. 

 

tq_26 – Thicknesses of 3 vertically-stacked channel-complexes 

CREATE TEMPORARY TABLE new_trans_ID AS (SELECT c_1_depositional_elements.dep_el_ID, 

d_1_dep_el_transitions.trans_dep_el_ID, d_1_dep_el_transitions.trans_direction, 

c_1_depositional_elements.dep_el_type FROM c_1_depositional_elements 

JOIN d_1_dep_el_transitions ON c_1_depositional_elements.dep_el_ID = 

d_1_dep_el_transitions.dep_el_ID WHERE dep_el_type <> 'Channel-complex'); 

CREATE TEMPORARY TABLE new_trans_types AS (SELECT new_trans_ID.dep_el_ID, 

new_trans_ID.trans_dep_el_ID, IFNULL (new_trans_ID.dep_el_type, 'Undefined') AS 

dep_el_type, IFNULL (c_1_depositional_elements.dep_el_type, 'Undefined') AS 

transitional_type, c_1_depositional_elements.thickness, new_trans_ID.trans_direction 

FROM c_1_depositional_elements JOIN new_trans_ID ON 

c_1_depositional_elements.dep_el_ID = new_trans_ID.trans_dep_el_ID 

WHERE trans_direction = 'Vertical' AND c_1_depositional_elements.thickness IS NOT 

NULL); 

CREATE TEMPORARY TABLE new_trans_ID_2 AS (SELECT new_trans_types.trans_dep_el_ID AS 

dep_el_ID, d_1_dep_el_transitions.trans_dep_el_ID, 

d_1_dep_el_transitions.trans_direction, new_trans_types.transitional_type AS 

dep_el_type FROM new_trans_types JOIN d_1_dep_el_transitions ON 

new_trans_types.trans_dep_el_ID = d_1_dep_el_transitions.dep_el_ID 

WHERE d_1_dep_el_transitions.trans_direction = 'Vertical' AND 

new_trans_types.transitional_type = 'Channel-complex'); 

CREATE TEMPORARY TABLE new_trans_types_2 AS (SELECT new_trans_ID_2.dep_el_ID, 

new_trans_ID_2.trans_dep_el_ID, IFNULL (new_trans_ID_2.dep_el_type, 'Undefined') AS 

dep_el_type, IFNULL (c_1_depositional_elements.dep_el_type, 'Undefined') AS 

transitional_type, c_1_depositional_elements.thickness, 

new_trans_ID_2.trans_direction FROM c_1_depositional_elements JOIN new_trans_ID_2 ON 

c_1_depositional_elements.dep_el_ID = new_trans_ID_2.trans_dep_el_ID WHERE 

c_1_depositional_elements.thickness IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_3 AS (SELECT new_trans_types_2.trans_dep_el_ID 

AS dep_el_ID, d_1_dep_el_transitions.trans_dep_el_ID, 

d_1_dep_el_transitions.trans_direction, new_trans_types_2.transitional_type AS 

dep_el_type FROM new_trans_types_2 JOIN d_1_dep_el_transitions ON 

new_trans_types_2.trans_dep_el_ID = d_1_dep_el_transitions.dep_el_ID 

WHERE d_1_dep_el_transitions.trans_direction = 'Vertical' AND 

new_trans_types_2.transitional_type = 'Channel-complex'); 

CREATE TEMPORARY TABLE new_trans_types_3 AS (SELECT new_trans_ID_3.dep_el_ID, 

new_trans_ID_3.trans_dep_el_ID, IFNULL (new_trans_ID_3.dep_el_type, 'Undefined') AS 

dep_el_type, IFNULL (c_1_depositional_elements.dep_el_type, 'Undefined') AS 

transitional_type, c_1_depositional_elements.thickness, 

new_trans_ID_3.trans_direction FROM c_1_depositional_elements 

JOIN new_trans_ID_3 ON c_1_depositional_elements.dep_el_ID = 

new_trans_ID_3.trans_dep_el_ID WHERE c_1_depositional_elements.thickness IS NOT 

NULL); 

CREATE TEMPORARY TABLE new_trans_ID_4 AS (SELECT new_trans_types_3.trans_dep_el_ID 

AS dep_el_ID, d_1_dep_el_transitions.trans_dep_el_ID, 

d_1_dep_el_transitions.trans_direction, new_trans_types_3.transitional_type AS 

dep_el_type FROM new_trans_types_3 JOIN d_1_dep_el_transitions ON 

new_trans_types_3.trans_dep_el_ID = d_1_dep_el_transitions.dep_el_ID 

WHERE d_1_dep_el_transitions.trans_direction = 'Vertical' AND 

new_trans_types_3.transitional_type = 'Channel-complex'); 

CREATE TEMPORARY TABLE new_trans_types_4 AS (SELECT new_trans_ID_4.dep_el_ID, 

new_trans_ID_4.trans_dep_el_ID, IFNULL (new_trans_ID_4.dep_el_type, 'Undefined') AS 

dep_el_type, IFNULL (c_1_depositional_elements.dep_el_type, 'Undefined') AS 

transitional_type, new_trans_ID_4.trans_direction 

FROM c_1_depositional_elements JOIN new_trans_ID_4 ON 

c_1_depositional_elements.dep_el_ID = new_trans_ID_4.trans_dep_el_ID 

WHERE c_1_depositional_elements.dep_el_type <> 'Channel-complex'); 
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SELECT DISTINCT new_trans_types.trans_dep_el_ID, new_trans_types.transitional_type, 

new_trans_types.thickness, new_trans_types_2.trans_dep_el_ID, 

new_trans_types_2.transitional_type, new_trans_types_2.thickness, 

new_trans_types_3.trans_dep_el_ID, new_trans_types_3.transitional_type, 

new_trans_types_3.thickness 

FROM new_trans_ID JOIN new_trans_types ON new_trans_ID.dep_el_ID = 

new_trans_types.dep_el_ID JOIN new_trans_types_2 ON new_trans_types.trans_dep_el_ID 

= new_trans_types_2.dep_el_ID JOIN new_trans_types_3 ON 

new_trans_types_2.trans_dep_el_ID = new_trans_types_3.dep_el_ID 

JOIN new_trans_types_4 ON new_trans_types_3.trans_dep_el_ID = 

new_trans_types_4.dep_el_ID WHERE new_trans_ID.dep_el_ID <> 

new_trans_types_2.trans_dep_el_ID AND new_trans_types.trans_dep_el_ID <> 

new_trans_types_3.trans_dep_el_ID AND new_trans_types_2.trans_dep_el_ID <> 

new_trans_types_4.trans_dep_el_ID; 

 

It returns the thicknesses of a group of a given number (here strictly 3) of channel-complex 

depositional elements that are vertically stacked, excluding duplicate values due to multiple 

transitions occurring in case of complex interfingering. This type of query is required for obtaining 

the cumulative thickness of material units from the thickness of genetic units. 

 

tq_28 – Widths of 5 laterally-adjacent Sr facies units 

CREATE TEMPORARY TABLE new_trans_ID AS (SELECT g_3_facies.facies_ID, 

h_3_facies_transitions.trans_facies_ID, h_3_facies_transitions.trans_direction, 

g_3_facies.facies_type, g_3_facies.width, g_3_facies.apparent_width, 

g_3_facies.partial_width, g_3_facies.unlimited_width 

FROM g_3_facies JOIN h_3_facies_transitions ON g_3_facies.facies_ID = 

h_3_facies_transitions.facies_ID WHERE facies_type = 'Sh'); 

CREATE TEMPORARY TABLE new_trans_types AS (SELECT new_trans_ID.facies_ID, 

new_trans_ID.trans_facies_ID, IFNULL (new_trans_ID.facies_type, 'Undefined') AS 

facies_type, IFNULL (g_3_facies.facies_type, 'Undefined') AS transitional_type, 

g_3_facies.width, g_3_facies.apparent_width, new_trans_ID.trans_direction 

FROM g_3_facies JOIN new_trans_ID ON g_3_facies.facies_ID = 

new_trans_ID.trans_facies_ID WHERE trans_direction = 'Lateral' AND (g_3_facies.width 

IS NOT NULL OR g_3_facies.apparent_width IS NOT NULL)); 

CREATE TEMPORARY TABLE new_trans_ID_2 AS (SELECT new_trans_types.trans_facies_ID AS 

facies_ID, h_3_facies_transitions.trans_facies_ID, 

h_3_facies_transitions.trans_direction, new_trans_types.transitional_type AS 

facies_type FROM new_trans_types JOIN h_3_facies_transitions ON 

new_trans_types.trans_facies_ID = h_3_facies_transitions.facies_ID 

WHERE h_3_facies_transitions.trans_direction = 'Lateral' AND 

new_trans_types.transitional_type = 'Sh'); 

CREATE TEMPORARY TABLE new_trans_types_2 AS (SELECT new_trans_ID_2.facies_ID, 

new_trans_ID_2.trans_facies_ID, IFNULL (new_trans_ID_2.facies_type, 'Undefined') AS 

facies_type, IFNULL (g_3_facies.facies_type, 'Undefined') AS transitional_type, 

g_3_facies.width, g_3_facies.apparent_width, new_trans_ID_2.trans_direction 

FROM g_3_facies JOIN new_trans_ID_2 ON g_3_facies.facies_ID = 

new_trans_ID_2.trans_facies_ID WHERE g_3_facies.width IS NOT NULL OR 

g_3_facies.apparent_width IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_3 AS (SELECT new_trans_types_2.trans_facies_ID 

AS facies_ID, h_3_facies_transitions.trans_facies_ID, 

h_3_facies_transitions.trans_direction, new_trans_types_2.transitional_type AS 

facies_type FROM new_trans_types_2 JOIN h_3_facies_transitions ON 

new_trans_types_2.trans_facies_ID = h_3_facies_transitions.facies_ID 

WHERE h_3_facies_transitions.trans_direction = 'Lateral' AND 

new_trans_types_2.transitional_type = 'Sh'); 

CREATE TEMPORARY TABLE new_trans_types_3 AS (SELECT new_trans_ID_3.facies_ID, 

new_trans_ID_3.trans_facies_ID, IFNULL (new_trans_ID_3.facies_type, 'Undefined') AS 

facies_type, IFNULL (g_3_facies.facies_type, 'Undefined') AS transitional_type, 

g_3_facies.width, g_3_facies.apparent_width, new_trans_ID_3.trans_direction 

FROM g_3_facies JOIN new_trans_ID_3 ON g_3_facies.facies_ID = 

new_trans_ID_3.trans_facies_ID WHERE g_3_facies.width IS NOT NULL OR 

g_3_facies.apparent_width IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_4 AS (SELECT new_trans_types_3.trans_facies_ID 

AS facies_ID, h_3_facies_transitions.trans_facies_ID, 

h_3_facies_transitions.trans_direction, new_trans_types_3.transitional_type AS 

facies_type FROM new_trans_types_3 JOIN h_3_facies_transitions ON 

new_trans_types_3.trans_facies_ID = h_3_facies_transitions.facies_ID 

WHERE h_3_facies_transitions.trans_direction = 'Lateral' AND 

new_trans_types_3.transitional_type = 'Sh'); 

CREATE TEMPORARY TABLE new_trans_types_4 AS (SELECT new_trans_ID_4.facies_ID, 

new_trans_ID_4.trans_facies_ID, IFNULL (new_trans_ID_4.facies_type, 'Undefined') AS 

facies_type, IFNULL (g_3_facies.facies_type, 'Undefined') AS transitional_type, 

new_trans_ID_4.trans_direction, g_3_facies.width, g_3_facies.apparent_width, 

g_3_facies.partial_width, g_3_facies.unlimited_width 
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FROM g_3_facies JOIN new_trans_ID_4 ON g_3_facies.facies_ID = 

new_trans_ID_4.trans_facies_ID WHERE g_3_facies.facies_type = 'Sh'); 

SELECT DISTINCT new_trans_ID.facies_ID, new_trans_ID.facies_type, 

new_trans_ID.width, new_trans_ID.apparent_width, new_trans_ID.partial_width, 

new_trans_ID.unlimited_width, new_trans_types.trans_facies_ID, 

new_trans_types.transitional_type, new_trans_types.width, 

new_trans_types.apparent_width, new_trans_types_2.trans_facies_ID, 

new_trans_types_2.transitional_type, new_trans_types_2.width, 

new_trans_types_2.apparent_width, new_trans_types_3.trans_facies_ID, 

new_trans_types_3.transitional_type, new_trans_types_3.width, 

new_trans_types_3.apparent_width,new_trans_types_4.trans_facies_ID, 

new_trans_types_4.transitional_type, new_trans_types_4.width, 

new_trans_types_4.apparent_width, new_trans_types_4.partial_width, 

new_trans_types_4.unlimited_width FROM new_trans_ID JOIN new_trans_types ON 

new_trans_ID.facies_ID = new_trans_types.facies_ID JOIN new_trans_types_2 ON 

new_trans_types.trans_facies_ID = new_trans_types_2.facies_ID JOIN new_trans_types_3 

ON new_trans_types_2.trans_facies_ID = new_trans_types_3.facies_ID JOIN 

new_trans_types_4 ON new_trans_types_3.trans_facies_ID = new_trans_types_4.facies_ID 

WHERE new_trans_ID.facies_ID <> new_trans_types_2.trans_facies_ID AND 

new_trans_types.trans_facies_ID <> new_trans_types_3.trans_facies_ID AND 

new_trans_types_2.trans_facies_ID <> new_trans_types_4.trans_facies_ID; 

 

It returns the widths (any type) of a group of a given number (here 5) of facies units that are 
laterally juxtaposed and belong to the same facies type (here: Sr), excluding erosive mutual 
transitions. This type of query is required for obtaining the cumulative width of material units 
from the widths of genetic units. 

 

tq_29 – Thicknesses of 10 vertically-stacked Sr facies units 

CREATE TEMPORARY TABLE new_trans_ID AS (SELECT g_3_facies.facies_ID, 

h_3_facies_transitions.trans_facies_ID, h_3_facies_transitions.trans_direction, 

g_3_facies.facies_type FROM g_3_facies JOIN h_3_facies_transitions ON 

g_3_facies.facies_ID = h_3_facies_transitions.facies_ID 

WHERE facies_type <> 'St'); 

CREATE TEMPORARY TABLE new_trans_types AS (SELECT new_trans_ID.facies_ID, 

new_trans_ID.trans_facies_ID, IFNULL (new_trans_ID.facies_type, 'Undefined') AS 

facies_type, IFNULL (g_3_facies.facies_type, 'Undefined') AS transitional_type, 

g_3_facies.thickness, new_trans_ID.trans_direction FROM g_3_facies 

JOIN new_trans_ID ON g_3_facies.facies_ID = new_trans_ID.trans_facies_ID 

WHERE trans_direction = 'Vertical' AND g_3_facies.thickness IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_2 AS (SELECT new_trans_types.trans_facies_ID AS 

facies_ID, h_3_facies_transitions.trans_facies_ID, 

h_3_facies_transitions.trans_direction, new_trans_types.transitional_type AS 

facies_type FROM new_trans_types JOIN h_3_facies_transitions ON 

new_trans_types.trans_facies_ID = h_3_facies_transitions.facies_ID 

WHERE h_3_facies_transitions.trans_direction = 'Vertical' AND 

new_trans_types.transitional_type = 'St'); 

CREATE TEMPORARY TABLE new_trans_types_2 AS (SELECT new_trans_ID_2.facies_ID, 

new_trans_ID_2.trans_facies_ID, IFNULL (new_trans_ID_2.facies_type, 'Undefined') AS 

facies_type, IFNULL (g_3_facies.facies_type, 'Undefined') AS transitional_type, 

g_3_facies.thickness, new_trans_ID_2.trans_direction FROM g_3_facies 

JOIN new_trans_ID_2 ON g_3_facies.facies_ID = new_trans_ID_2.trans_facies_ID 

WHERE g_3_facies.thickness IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_3 AS (SELECT new_trans_types_2.trans_facies_ID 

AS facies_ID, h_3_facies_transitions.trans_facies_ID, 

h_3_facies_transitions.trans_direction, new_trans_types_2.transitional_type AS 

facies_type FROM new_trans_types_2 JOIN h_3_facies_transitions ON 

new_trans_types_2.trans_facies_ID = h_3_facies_transitions.facies_ID 

WHERE h_3_facies_transitions.trans_direction = 'Vertical' AND 

new_trans_types_2.transitional_type = 'St'); 

CREATE TEMPORARY TABLE new_trans_types_3 AS (SELECT new_trans_ID_3.facies_ID, 

new_trans_ID_3.trans_facies_ID, IFNULL (new_trans_ID_3.facies_type, 'Undefined') AS 

facies_type, IFNULL (g_3_facies.facies_type, 'Undefined') AS transitional_type, 

g_3_facies.thickness, new_trans_ID_3.trans_direction FROM g_3_facies 

JOIN new_trans_ID_3 ON g_3_facies.facies_ID = new_trans_ID_3.trans_facies_ID 

WHERE g_3_facies.thickness IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_4 AS (SELECT new_trans_types_3.trans_facies_ID 

AS facies_ID, h_3_facies_transitions.trans_facies_ID, 

h_3_facies_transitions.trans_direction, new_trans_types_3.transitional_type AS 

facies_type FROM new_trans_types_3 JOIN h_3_facies_transitions ON 

new_trans_types_3.trans_facies_ID = h_3_facies_transitions.facies_ID 

WHERE h_3_facies_transitions.trans_direction = 'Vertical' AND 

new_trans_types_3.transitional_type = 'St'); 

CREATE TEMPORARY TABLE new_trans_types_4 AS 

( 
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SELECT new_trans_ID_4.facies_ID, new_trans_ID_4.trans_facies_ID, IFNULL 

(new_trans_ID_4.facies_type, 'Undefined') AS facies_type, IFNULL 

(g_3_facies.facies_type, 'Undefined') AS transitional_type, g_3_facies.thickness, 

g_3_facies.partial_width, g_3_facies.unlimited_width, new_trans_ID_4.trans_direction 

FROM g_3_facies JOIN new_trans_ID_4 ON g_3_facies.facies_ID = 

new_trans_ID_4.trans_facies_ID WHERE g_3_facies.thickness IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_5 AS (SELECT new_trans_types_4.trans_facies_ID 

AS facies_ID, h_3_facies_transitions.trans_facies_ID, 

h_3_facies_transitions.trans_direction, new_trans_types_4.transitional_type AS 

facies_type FROM new_trans_types_4 JOIN h_3_facies_transitions ON 

new_trans_types_4.trans_facies_ID = h_3_facies_transitions.facies_ID 

WHERE h_3_facies_transitions.trans_direction = 'Vertical' AND 

new_trans_types_4.transitional_type = 'St'); 

CREATE TEMPORARY TABLE new_trans_types_5 AS (SELECT new_trans_ID_5.facies_ID, 

new_trans_ID_5.trans_facies_ID, IFNULL (new_trans_ID_5.facies_type, 'Undefined') AS 

facies_type, IFNULL (g_3_facies.facies_type, 'Undefined') AS transitional_type, 

g_3_facies.thickness, g_3_facies.partial_width, g_3_facies.unlimited_width, 

new_trans_ID_5.trans_direction FROM g_3_facies JOIN new_trans_ID_5 ON 

g_3_facies.facies_ID = new_trans_ID_5.trans_facies_ID WHERE g_3_facies.thickness IS 

NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_6 AS(SELECT new_trans_types_5.trans_facies_ID AS 

facies_ID, h_3_facies_transitions.trans_facies_ID, 

h_3_facies_transitions.trans_direction, new_trans_types_5.transitional_type AS 

facies_type FROM new_trans_types_5 JOIN h_3_facies_transitions ON 

new_trans_types_5.trans_facies_ID = h_3_facies_transitions.facies_ID 

WHERE h_3_facies_transitions.trans_direction = 'Vertical' AND 

new_trans_types_5.transitional_type = 'St'); 

CREATE TEMPORARY TABLE new_trans_types_6 AS (SELECT new_trans_ID_6.facies_ID, 

new_trans_ID_6.trans_facies_ID, IFNULL (new_trans_ID_6.facies_type, 'Undefined') AS 

facies_type, IFNULL (g_3_facies.facies_type, 'Undefined') AS transitional_type, 

g_3_facies.thickness, g_3_facies.partial_width, g_3_facies.unlimited_width, 

new_trans_ID_6.trans_direction FROM g_3_facies JOIN new_trans_ID_6 ON 

g_3_facies.facies_ID = new_trans_ID_6.trans_facies_ID 

WHERE g_3_facies.thickness IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_7 AS (SELECT new_trans_types_6.trans_facies_ID 

AS facies_ID, h_3_facies_transitions.trans_facies_ID, 

h_3_facies_transitions.trans_direction, new_trans_types_6.transitional_type AS 

facies_type FROM new_trans_types_6 JOIN h_3_facies_transitions ON 

new_trans_types_6.trans_facies_ID = h_3_facies_transitions.facies_ID 

WHERE h_3_facies_transitions.trans_direction = 'Vertical' AND 

new_trans_types_6.transitional_type = 'St'); 

CREATE TEMPORARY TABLE new_trans_types_7 AS (SELECT new_trans_ID_7.facies_ID, 

new_trans_ID_7.trans_facies_ID, IFNULL (new_trans_ID_7.facies_type, 'Undefined') AS 

facies_type, IFNULL (g_3_facies.facies_type, 'Undefined') AS transitional_type, 

g_3_facies.thickness, new_trans_ID_7.trans_direction FROM g_3_facies JOIN 

new_trans_ID_7 ON g_3_facies.facies_ID = new_trans_ID_7.trans_facies_ID 

WHERE g_3_facies.thickness IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_8 AS (SELECT new_trans_types_7.trans_facies_ID 

AS facies_ID, h_3_facies_transitions.trans_facies_ID, 

h_3_facies_transitions.trans_direction, new_trans_types_7.transitional_type AS 

facies_type FROM new_trans_types_7 JOIN h_3_facies_transitions ON 

new_trans_types_7.trans_facies_ID = h_3_facies_transitions.facies_ID 

WHERE h_3_facies_transitions.trans_direction = 'Vertical' AND 

new_trans_types_7.transitional_type = 'St'); 

CREATE TEMPORARY TABLE new_trans_types_8 AS (SELECT new_trans_ID_8.facies_ID, 

new_trans_ID_8.trans_facies_ID, IFNULL (new_trans_ID_8.facies_type, 'Undefined') AS 

facies_type, IFNULL (g_3_facies.facies_type, 'Undefined') AS transitional_type, 

g_3_facies.thickness, new_trans_ID_8.trans_direction FROM g_3_facies 

JOIN new_trans_ID_8 ON g_3_facies.facies_ID = new_trans_ID_8.trans_facies_ID 

WHERE g_3_facies.thickness IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_9 AS (SELECT new_trans_types_8.trans_facies_ID 

AS facies_ID, h_3_facies_transitions.trans_facies_ID, 

h_3_facies_transitions.trans_direction, new_trans_types_8.transitional_type AS 

facies_type FROM new_trans_types_8 JOIN h_3_facies_transitions ON 

new_trans_types_8.trans_facies_ID = h_3_facies_transitions.facies_ID 

WHERE h_3_facies_transitions.trans_direction = 'Vertical' AND 

new_trans_types_8.transitional_type = 'St'); 

CREATE TEMPORARY TABLE new_trans_types_9 AS (SELECT new_trans_ID_9.facies_ID, 

new_trans_ID_9.trans_facies_ID, IFNULL (new_trans_ID_9.facies_type, 'Undefined') AS 

facies_type, IFNULL (g_3_facies.facies_type, 'Undefined') AS transitional_type, 

g_3_facies.thickness, new_trans_ID_9.trans_direction FROM g_3_facies JOIN 

new_trans_ID_9 ON g_3_facies.facies_ID = new_trans_ID_9.trans_facies_ID 

WHERE g_3_facies.thickness IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_10 AS (SELECT new_trans_types_9.trans_facies_ID 

AS facies_ID, h_3_facies_transitions.trans_facies_ID, 

h_3_facies_transitions.trans_direction, new_trans_types_9.transitional_type AS 

facies_type FROM new_trans_types_9 JOIN h_3_facies_transitions ON 

new_trans_types_9.trans_facies_ID = h_3_facies_transitions.facies_ID 
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WHERE h_3_facies_transitions.trans_direction = 'Vertical' AND 

new_trans_types_9.transitional_type = 'St'); 

CREATE TEMPORARY TABLE new_trans_types_10 AS (SELECT new_trans_ID_10.facies_ID, 

new_trans_ID_10.trans_facies_ID, IFNULL (new_trans_ID_10.facies_type, 'Undefined') 

AS facies_type, IFNULL (g_3_facies.facies_type, 'Undefined') AS transitional_type, 

g_3_facies.thickness, new_trans_ID_10.trans_direction FROM g_3_facies 

JOIN new_trans_ID_10 ON g_3_facies.facies_ID = new_trans_ID_10.trans_facies_ID 

WHERE g_3_facies.thickness IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_11 AS (SELECT new_trans_types_10.trans_facies_ID 

AS facies_ID, h_3_facies_transitions.trans_facies_ID, 

h_3_facies_transitions.trans_direction, new_trans_types_10.transitional_type AS 

facies_type FROM new_trans_types_10 JOIN h_3_facies_transitions ON 

new_trans_types_10.trans_facies_ID = h_3_facies_transitions.facies_ID 

WHERE h_3_facies_transitions.trans_direction = 'Vertical' AND 

new_trans_types_10.transitional_type = 'St'); 

CREATE TEMPORARY TABLE new_trans_types_11 AS (SELECT new_trans_ID_11.facies_ID, 

new_trans_ID_11.trans_facies_ID, IFNULL (new_trans_ID_11.facies_type, 'Undefined') 

AS facies_type, IFNULL (g_3_facies.facies_type, 'Undefined') AS transitional_type, 

new_trans_ID_11.trans_direction FROM g_3_facies JOIN new_trans_ID_11 ON 

g_3_facies.facies_ID = new_trans_ID_11.trans_facies_ID 

WHERE g_3_facies.facies_type <> 'St'); 

SELECT DISTINCT new_trans_types.trans_facies_ID, new_trans_types.thickness, 

new_trans_types_2.trans_facies_ID, new_trans_types_2.thickness, 

new_trans_types_3.trans_facies_ID, new_trans_types_3.thickness, 

new_trans_types_4.trans_facies_ID, new_trans_types_4.thickness, 

new_trans_types_5.trans_facies_ID, new_trans_types_5.thickness, 

new_trans_types_6.trans_facies_ID, new_trans_types_6.thickness, 

new_trans_types_7.trans_facies_ID, new_trans_types_7.thickness, 

new_trans_types_8.trans_facies_ID, new_trans_types_8.thickness, 

new_trans_types_9.trans_facies_ID, new_trans_types_9.thickness, 

new_trans_types_10.trans_facies_ID, new_trans_types_10.thickness 

FROM new_trans_ID JOIN new_trans_types ON new_trans_ID.facies_ID = 

new_trans_types.facies_ID JOIN new_trans_types_2 ON new_trans_types.trans_facies_ID 

= new_trans_types_2.facies_ID JOIN new_trans_types_3 ON 

new_trans_types_2.trans_facies_ID = new_trans_types_3.facies_ID 

JOIN new_trans_types_4 ON new_trans_types_3.trans_facies_ID = 

new_trans_types_4.facies_ID JOIN new_trans_types_5 ON 

new_trans_types_4.trans_facies_ID = new_trans_types_5.facies_ID 

JOIN new_trans_types_6 ON new_trans_types_5.trans_facies_ID = 

new_trans_types_6.facies_ID JOIN new_trans_types_7 ON 

new_trans_types_6.trans_facies_ID = new_trans_types_7.facies_ID 

JOIN new_trans_types_8 ON new_trans_types_7.trans_facies_ID = 

new_trans_types_8.facies_ID JOIN new_trans_types_9 ON 

new_trans_types_8.trans_facies_ID = new_trans_types_9.facies_ID 

JOIN new_trans_types_10 ON new_trans_types_9.trans_facies_ID = 

new_trans_types_10.facies_ID JOIN new_trans_types_11 ON 

new_trans_types_10.trans_facies_ID = new_trans_types_11.facies_ID 

WHERE new_trans_ID.facies_ID <> new_trans_types_2.trans_facies_ID AND 

new_trans_types.trans_facies_ID <> new_trans_types_3.trans_facies_ID AND 

new_trans_types_2.trans_facies_ID <> new_trans_types_4.trans_facies_ID AND 

new_trans_types_3.trans_facies_ID <> new_trans_types_5.trans_facies_ID AND 

new_trans_types_4.trans_facies_ID <> new_trans_types_6.trans_facies_ID AND 

new_trans_types_5.trans_facies_ID <> new_trans_types_7.trans_facies_ID AND 

new_trans_types_6.trans_facies_ID <> new_trans_types_8.trans_facies_ID AND 

new_trans_types_7.trans_facies_ID <> new_trans_types_9.trans_facies_ID AND 

new_trans_types_8.trans_facies_ID <> new_trans_types_10.trans_facies_ID AND 

new_trans_types_9.trans_facies_ID <> new_trans_types_11.trans_facies_ID; 

 
It returns the thicknesses of a group of a given number (here 10) of facies units that are 
vertically stacked and belong to the same facies type (here: Sr), excluding duplicate values 
due to multiple transitions occurring in case of complex interfingering. This type of query is 
required for obtaining the cumulative thickness of material packages from the thicknesses of 
facies units. N.B.: as this query may require a long time to return results when dealing with 
large datasets, it is advisable to make it work with tables instead of temporary tables.  

 

tq_37 – Thickness statistics for all facies types from a case study 

CREATE TEMPORARY TABLE facies_thickness AS SELECT facies_type, g_3_facies.thickness 

FROM b_subsets JOIN c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID JOIN e_2_architectural_elements ON 

c_1_depositional_elements.dep_el_ID = e_2_architectural_elements.dep_el_ID 

JOIN g_3_facies ON e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID 

WHERE case_ID = 23; 

SELECT facies_type, AVG(thickness), MIN(thickness), MAX(thickness), STD(thickness) 
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FROM facies_thickness GROUP BY facies_type; 

 
It returns basic descriptive statistics (mean, maximum, minimum, standard deviation) 
relating to the thickness of all facies types for a given case study. 

 

tq_38 – Average channel-complex thickness and width for aggradation rate 
value 

SELECT mean_aggradation_rate, AVG(thickness), AVG(IF(width IS NOT NULL, width, 

apparent_width)) AS avg_width FROM b_subsets JOIN c_1_depositional_elements ON 

b_subsets.subset_ID = c_1_depositional_elements.subset_ID AND dep_el_type= 'Channel-

complex' AND thickness IS NOT NULL AND (width IS NOT NULL OR partial_width IS NOT 

NULL OR unlimited_width IS NOT NULL OR apparent_width IS NOT NULL) AND 

mean_aggradation_rate IS NOT NULL GROUP BY mean_aggradation_rate ORDER BY 

mean_aggradation_rate; 

 
It returns the mean thickness and complete width (real or apparent) of channel-complexes 
for each given value of mean aggradation rate. 

 

tq_43 – Average channel-complex thickness and width, and proportion within 
subset 

CREATE TEMPORARY TABLE dep_el_xsarea AS SELECT b_subsets.subset_ID, dep_el_type, 

IFNULL((thickness* IF(width IS NOT NULL, width, apparent_width)),0) AS xsarea, 

IFNULL((thickness* IF(partial_width IS NOT NULL, partial_width, unlimited_width)),0) 

AS partial_xsarea FROM b_subsets JOIN c_1_depositional_elements ON 

b_subsets.subset_ID = c_1_depositional_elements.subset_ID 

WHERE 1_suitability LIKE '%proportion%' AND 1_suitability LIKE '%dimension%' 

ORDER BY subset_ID; 

CREATE TEMPORARY TABLE channel_complex_total_area AS SELECT subset_ID, SUM(xsarea)+ 

SUM(partial_xsarea) AS channel_complex_area FROM dep_el_xsarea 

WHERE dep_el_type = 'Channel-complex' GROUP BY subset_ID; 

CREATE TEMPORARY TABLE total_area AS SELECT subset_ID, SUM(xsarea)+ 

SUM(partial_xsarea) AS total_area FROM dep_el_xsarea GROUP BY subset_ID; 

CREATE TEMPORARY TABLE channel_complex_proportions SELECT 

channel_complex_total_area.subset_ID, 

(channel_complex_total_area.channel_complex_area/total_area.total_area) AS 

channel_complex_prop FROM channel_complex_total_area JOIN total_area ON 

channel_complex_total_area.subset_ID = total_area.subset_ID WHERE 

(channel_complex_total_area.channel_complex_area/total_area.total_area) IS NOT NULL; 

CREATE TEMPORARY TABLE channel_complex_dimension_statistics SELECT subset_ID, 

AVG(thickness) AS avg_thickness, AVG(IF(width IS NOT NULL, width, (IF(apparent_width 

IS NOT NULL, apparent_width, IF(partial_width IS NOT NULL, partial_width, 

unlimited_width))))) AS avg_any_width FROM c_1_depositional_elements WHERE 

dep_el_type = 'Channel-complex' GROUP BY subset_ID; 

SELECT channel_complex_proportions.subset_ID, channel_complex_prop, avg_thickness, 

avg_any_width FROM channel_complex_proportions JOIN 

channel_complex_dimension_statistics ON channel_complex_proportions.subset_ID = 

channel_complex_dimension_statistics.subset_ID; 

 
It returns the average thickness and width (any type) of channel-complexes – together with 
their proportion expressed as fraction of 1 – for any subset suitable for the computation of 
proportions and dimensional parameters of depositional elements.   

 

tq_44 – Thicknesses of 3 vertically-stacked Channel-complexes and 
aggradation rate 

CREATE TEMPORARY TABLE dep_el_clim AS (SELECT mean_aggradation_rate, dep_el_ID, 

dep_el_type, thickness FROM b_subsets JOIN c_1_depositional_elements ON 

b_subsets.subset_ID = c_1_depositional_elements.subset_ID 

WHERE mean_aggradation_rate IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID AS (SELECT dep_el_clim.dep_el_ID, 

d_1_dep_el_transitions.trans_dep_el_ID, d_1_dep_el_transitions.trans_direction, 

dep_el_clim.dep_el_type FROM dep_el_clim JOIN d_1_dep_el_transitions ON 

dep_el_clim.dep_el_ID = d_1_dep_el_transitions.dep_el_ID 

WHERE dep_el_type <> 'Channel-complex'); 

CREATE TEMPORARY TABLE new_trans_types AS (SELECT new_trans_ID.dep_el_ID, 

new_trans_ID.trans_dep_el_ID, IFNULL (new_trans_ID.dep_el_type, 'Undefined') AS 
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dep_el_type, IFNULL (dep_el_clim.dep_el_type, 'Undefined') AS transitional_type, 

dep_el_clim.thickness, new_trans_ID.trans_direction FROM dep_el_clim 

JOIN new_trans_ID ON dep_el_clim.dep_el_ID = new_trans_ID.trans_dep_el_ID 

WHERE trans_direction = 'Vertical' AND dep_el_clim.thickness IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_2 AS (SELECT new_trans_types.trans_dep_el_ID AS 

dep_el_ID, d_1_dep_el_transitions.trans_dep_el_ID, 

d_1_dep_el_transitions.trans_direction, new_trans_types.transitional_type AS 

dep_el_type FROM new_trans_types JOIN d_1_dep_el_transitions ON 

new_trans_types.trans_dep_el_ID = d_1_dep_el_transitions.dep_el_ID 

WHERE d_1_dep_el_transitions.trans_direction = 'Vertical' AND 

new_trans_types.transitional_type = 'Channel-complex'); 

CREATE TEMPORARY TABLE new_trans_types_2 AS (SELECT new_trans_ID_2.dep_el_ID, 

new_trans_ID_2.trans_dep_el_ID, IFNULL (new_trans_ID_2.dep_el_type, 'Undefined') AS 

dep_el_type, IFNULL (dep_el_clim.dep_el_type, 'Undefined') AS transitional_type, 

dep_el_clim.thickness, new_trans_ID_2.trans_direction FROM dep_el_clim 

JOIN new_trans_ID_2 ON dep_el_clim.dep_el_ID = new_trans_ID_2.trans_dep_el_ID 

WHERE dep_el_clim.thickness IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_3 AS (SELECT new_trans_types_2.trans_dep_el_ID 

AS dep_el_ID, d_1_dep_el_transitions.trans_dep_el_ID, 

d_1_dep_el_transitions.trans_direction, new_trans_types_2.transitional_type AS 

dep_el_type 

FROM new_trans_types_2 JOIN d_1_dep_el_transitions ON 

new_trans_types_2.trans_dep_el_ID = d_1_dep_el_transitions.dep_el_ID 

WHERE d_1_dep_el_transitions.trans_direction = 'Vertical' AND 

new_trans_types_2.transitional_type = 'Channel-complex'); 

CREATE TEMPORARY TABLE new_trans_types_3 AS (SELECT new_trans_ID_3.dep_el_ID, 

new_trans_ID_3.trans_dep_el_ID, IFNULL (new_trans_ID_3.dep_el_type, 'Undefined') AS 

dep_el_type, IFNULL (dep_el_clim.dep_el_type, 'Undefined') AS transitional_type, 

dep_el_clim.thickness, new_trans_ID_3.trans_direction FROM dep_el_clim 

JOIN new_trans_ID_3 ON dep_el_clim.dep_el_ID = new_trans_ID_3.trans_dep_el_ID 

WHERE dep_el_clim.thickness IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_4 AS (SELECT new_trans_types_3.trans_dep_el_ID 

AS dep_el_ID, d_1_dep_el_transitions.trans_dep_el_ID, 

d_1_dep_el_transitions.trans_direction, new_trans_types_3.transitional_type AS 

dep_el_type FROM new_trans_types_3 JOIN d_1_dep_el_transitions ON 

new_trans_types_3.trans_dep_el_ID = d_1_dep_el_transitions.dep_el_ID 

WHERE d_1_dep_el_transitions.trans_direction = 'Vertical' AND 

new_trans_types_3.transitional_type = 'Channel-complex'); 

CREATE TEMPORARY TABLE new_trans_types_4 AS (SELECT new_trans_ID_4.dep_el_ID, 

new_trans_ID_4.trans_dep_el_ID, IFNULL (new_trans_ID_4.dep_el_type, 'Undefined') AS 

dep_el_type, IFNULL (dep_el_clim.dep_el_type, 'Undefined') AS transitional_type, 

new_trans_ID_4.trans_direction FROM dep_el_clim JOIN new_trans_ID_4 ON 

dep_el_clim.dep_el_ID = new_trans_ID_4.trans_dep_el_ID WHERE dep_el_clim.dep_el_type 

<> 'Channel-complex'); 

CREATE TEMPORARY TABLE stacked_thickness AS SELECT DISTINCT 

new_trans_types.trans_dep_el_ID AS ID_1, new_trans_types.thickness AS T_1, 

new_trans_types_2.trans_dep_el_ID AS ID_2, new_trans_types_2.thickness AS T_2, 

new_trans_types_3.trans_dep_el_ID AS ID_3, new_trans_types_3.thickness AS T_3 

FROM new_trans_ID JOIN new_trans_types ON new_trans_ID.dep_el_ID = 

new_trans_types.dep_el_ID JOIN new_trans_types_2 ON new_trans_types.trans_dep_el_ID 

= new_trans_types_2.dep_el_ID JOIN new_trans_types_3 ON 

new_trans_types_2.trans_dep_el_ID = new_trans_types_3.dep_el_ID JOIN 

new_trans_types_4 ON new_trans_types_3.trans_dep_el_ID = new_trans_types_4.dep_el_ID 

WHERE new_trans_ID.dep_el_ID <> new_trans_types_2.trans_dep_el_ID AND 

new_trans_types.trans_dep_el_ID <> new_trans_types_3.trans_dep_el_ID AND 

new_trans_types_2.trans_dep_el_ID <> new_trans_types_4.trans_dep_el_ID; 

SELECT mean_aggradation_rate, T_1+T_2+T_3 AS 3de_stacked_T FROM b_subsets 

JOIN c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID JOIN stacked_thickness ON 

c_1_depositional_elements.dep_el_ID = stacked_thickness.ID_1; 

 

It returns the thicknesses of a group of a given number (here strictly 3) of channel-complex 
depositional elements that are vertically stacked, excluding duplicate values due to multiple 
transitions occurring in case of complex interfingering, and the value of mean aggradation 
rate of the subset.  

 

tq_51 – Thicknesses of 2 vertically-stacked Channel-complexes in the same 
subset 

CREATE TEMPORARY TABLE z_dep_el_clim AS (SELECT b_subsets.subset_ID, 

mean_aggradation_rate, dep_el_ID, dep_el_type, thickness FROM b_subsets JOIN 

c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID); 

CREATE TEMPORARY TABLE new_trans_ID AS (SELECT subset_ID, z_dep_el_clim.dep_el_ID, 



243 

Appendix B  

d_1_dep_el_transitions.trans_dep_el_ID, d_1_dep_el_transitions.trans_direction, 

z_dep_el_clim.dep_el_type FROM z_dep_el_clim JOIN d_1_dep_el_transitions ON 

z_dep_el_clim.dep_el_ID = d_1_dep_el_transitions.dep_el_ID WHERE dep_el_type <> 

'Channel-complex'); 

CREATE TEMPORARY TABLE new_trans_types AS (SELECT new_trans_ID.subset_ID, 

new_trans_ID.dep_el_ID, new_trans_ID.trans_dep_el_ID, IFNULL 

(new_trans_ID.dep_el_type, 'Undefined') AS dep_el_type, IFNULL 

(z_dep_el_clim.dep_el_type, 'Undefined') AS transitional_type, 

z_dep_el_clim.thickness, new_trans_ID.trans_direction FROM z_dep_el_clim 

JOIN new_trans_ID ON z_dep_el_clim.dep_el_ID = new_trans_ID.trans_dep_el_ID 

WHERE trans_direction = 'Vertical' AND z_dep_el_clim.thickness IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_2 AS (SELECT z_dep_el_clim.subset_ID, 

new_trans_types.trans_dep_el_ID AS dep_el_ID, 

d_1_dep_el_transitions.trans_dep_el_ID, d_1_dep_el_transitions.trans_direction, 

new_trans_types.transitional_type AS dep_el_type FROM z_dep_el_clim 

JOIN new_trans_types ON z_dep_el_clim.dep_el_ID = new_trans_types.trans_dep_el_ID 

JOIN d_1_dep_el_transitions ON new_trans_types.trans_dep_el_ID = 

d_1_dep_el_transitions.dep_el_ID WHERE d_1_dep_el_transitions.trans_direction = 

'Vertical' AND new_trans_types.transitional_type = 'Channel-complex'); 

CREATE TEMPORARY TABLE new_trans_types_2 AS (SELECT new_trans_ID_2.subset_ID, 

new_trans_ID_2.dep_el_ID, new_trans_ID_2.trans_dep_el_ID, IFNULL 

(new_trans_ID_2.dep_el_type, 'Undefined') AS dep_el_type, IFNULL 

(z_dep_el_clim.dep_el_type, 'Undefined') AS transitional_type, 

z_dep_el_clim.thickness, new_trans_ID_2.trans_direction FROM z_dep_el_clim 

JOIN new_trans_ID_2 ON z_dep_el_clim.dep_el_ID = new_trans_ID_2.trans_dep_el_ID 

WHERE z_dep_el_clim.thickness IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_3 AS (SELECT z_dep_el_clim.subset_ID, 

new_trans_types_2.trans_dep_el_ID AS dep_el_ID, 

d_1_dep_el_transitions.trans_dep_el_ID, d_1_dep_el_transitions.trans_direction, 

new_trans_types_2.transitional_type AS dep_el_type FROM z_dep_el_clim 

JOIN new_trans_types_2 ON z_dep_el_clim.dep_el_ID = 

new_trans_types_2.trans_dep_el_ID JOIN d_1_dep_el_transitions ON 

new_trans_types_2.trans_dep_el_ID = d_1_dep_el_transitions.dep_el_ID 

WHERE d_1_dep_el_transitions.trans_direction = 'Vertical' AND 

new_trans_types_2.transitional_type = 'Channel-complex'); 

CREATE TEMPORARY TABLE new_trans_types_3 AS (SELECT new_trans_ID_3.subset_ID, 

new_trans_ID_3.dep_el_ID, new_trans_ID_3.trans_dep_el_ID, IFNULL 

(new_trans_ID_3.dep_el_type, 'Undefined') AS dep_el_type, IFNULL 

(z_dep_el_clim.dep_el_type, 'Undefined') AS transitional_type, 

z_dep_el_clim.thickness, new_trans_ID_3.trans_direction 

FROM z_dep_el_clim JOIN new_trans_ID_3 ON z_dep_el_clim.dep_el_ID = 

new_trans_ID_3.trans_dep_el_ID WHERE z_dep_el_clim.dep_el_type <> 'Channel-

complex'); 

SELECT DISTINCT new_trans_ID_2.subset_ID, new_trans_types.trans_dep_el_ID AS 

channel_complex_ID_1, new_trans_types.thickness AS t_1, 

new_trans_types_2.trans_dep_el_ID AS channel_complex_ID_2, 

new_trans_types_2.thickness AS t_2, (new_trans_types.thickness + 

new_trans_types_2.thickness) AS t_2cc_stack FROM new_trans_types 

JOIN new_trans_ID_2 ON new_trans_types.trans_dep_el_ID = new_trans_ID_2.dep_el_ID 

JOIN new_trans_types_2 ON new_trans_types.trans_dep_el_ID = 

new_trans_types_2.dep_el_ID WHERE new_trans_types.subset_ID = 

new_trans_types_2.subset_ID; 

 

It returns the thicknesses of a group of a given number (here strictly 2) of channel-complex 
depositional elements that are vertically stacked and are strictly contained within the same 
subset.  

 

tq_52 – Thicknesses of 6 vertically-stacked Channel-complexes and subset 
channel proportion  

CREATE TEMPORARY TABLE z_dep_el_clim AS (SELECT b_subsets.subset_ID, dep_el_ID, 

dep_el_type, thickness FROM b_subsets JOIN c_1_depositional_elements ON 

b_subsets.subset_ID = c_1_depositional_elements.subset_ID); 

CREATE TEMPORARY TABLE new_trans_ID AS (SELECT subset_ID, z_dep_el_clim.dep_el_ID, 

d_1_dep_el_transitions.trans_dep_el_ID, d_1_dep_el_transitions.trans_direction, 

z_dep_el_clim.dep_el_type FROM z_dep_el_clim JOIN d_1_dep_el_transitions ON 

z_dep_el_clim.dep_el_ID = d_1_dep_el_transitions.dep_el_ID WHERE dep_el_type <> 

'Channel-complex'); 

CREATE TEMPORARY TABLE new_trans_types AS (SELECT new_trans_ID.subset_ID, 

new_trans_ID.dep_el_ID, new_trans_ID.trans_dep_el_ID, IFNULL 

(new_trans_ID.dep_el_type, 'Undefined') AS dep_el_type, IFNULL 

(z_dep_el_clim.dep_el_type, 'Undefined') AS transitional_type, 

z_dep_el_clim.thickness, new_trans_ID.trans_direction FROM z_dep_el_clim 

JOIN new_trans_ID ON z_dep_el_clim.dep_el_ID = new_trans_ID.trans_dep_el_ID 
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WHERE trans_direction = 'Vertical' AND z_dep_el_clim.thickness IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_2 AS (SELECT z_dep_el_clim.subset_ID, 

new_trans_types.trans_dep_el_ID AS dep_el_ID, 

d_1_dep_el_transitions.trans_dep_el_ID, d_1_dep_el_transitions.trans_direction, 

new_trans_types.transitional_type AS dep_el_type FROM z_dep_el_clim JOIN 

new_trans_types ON z_dep_el_clim.dep_el_ID = new_trans_types.trans_dep_el_ID 

JOIN d_1_dep_el_transitions ON new_trans_types.trans_dep_el_ID = 

d_1_dep_el_transitions.dep_el_ID WHERE d_1_dep_el_transitions.trans_direction = 

'Vertical' AND new_trans_types.transitional_type = 'Channel-complex'); 

CREATE TEMPORARY TABLE new_trans_types_2 AS (SELECT new_trans_ID_2.subset_ID, 

new_trans_ID_2.dep_el_ID, new_trans_ID_2.trans_dep_el_ID, IFNULL 

(new_trans_ID_2.dep_el_type, 'Undefined') AS dep_el_type, IFNULL 

(z_dep_el_clim.dep_el_type, 'Undefined') AS transitional_type, 

z_dep_el_clim.thickness, new_trans_ID_2.trans_direction FROM z_dep_el_clim 

JOIN new_trans_ID_2 ON z_dep_el_clim.dep_el_ID = new_trans_ID_2.trans_dep_el_ID 

WHERE z_dep_el_clim.thickness IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_3 AS (SELECT z_dep_el_clim.subset_ID, 

new_trans_types_2.trans_dep_el_ID AS dep_el_ID, 

d_1_dep_el_transitions.trans_dep_el_ID, d_1_dep_el_transitions.trans_direction, 

new_trans_types_2.transitional_type AS dep_el_type FROM z_dep_el_clim 

JOIN new_trans_types_2 ON z_dep_el_clim.dep_el_ID = 

new_trans_types_2.trans_dep_el_ID JOIN d_1_dep_el_transitions ON 

new_trans_types_2.trans_dep_el_ID = d_1_dep_el_transitions.dep_el_ID 

WHERE d_1_dep_el_transitions.trans_direction = 'Vertical' AND 

new_trans_types_2.transitional_type = 'Channel-complex'); 

CREATE TEMPORARY TABLE new_trans_types_3 AS (SELECT new_trans_ID_3.subset_ID, 

new_trans_ID_3.dep_el_ID, new_trans_ID_3.trans_dep_el_ID, IFNULL 

(new_trans_ID_3.dep_el_type, 'Undefined') AS dep_el_type, IFNULL 

(z_dep_el_clim.dep_el_type, 'Undefined') AS transitional_type, 

z_dep_el_clim.thickness, new_trans_ID_3.trans_direction 

FROM z_dep_el_clim JOIN new_trans_ID_3 ON z_dep_el_clim.dep_el_ID = 

new_trans_ID_3.trans_dep_el_ID WHERE z_dep_el_clim.thickness IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_4 AS (SELECT z_dep_el_clim.subset_ID, 

new_trans_types_3.trans_dep_el_ID AS dep_el_ID, 

d_1_dep_el_transitions.trans_dep_el_ID, d_1_dep_el_transitions.trans_direction, 

new_trans_types_3.transitional_type AS dep_el_type FROM z_dep_el_clim 

JOIN new_trans_types_3 ON z_dep_el_clim.dep_el_ID = 

new_trans_types_3.trans_dep_el_ID JOIN d_1_dep_el_transitions ON 

new_trans_types_3.trans_dep_el_ID = d_1_dep_el_transitions.dep_el_ID 

WHERE d_1_dep_el_transitions.trans_direction = 'Vertical' AND 

new_trans_types_3.transitional_type = 'Channel-complex'); 

CREATE TEMPORARY TABLE new_trans_types_4 AS (SELECT new_trans_ID_4.subset_ID, 

new_trans_ID_4.dep_el_ID, new_trans_ID_4.trans_dep_el_ID, IFNULL 

(new_trans_ID_4.dep_el_type, 'Undefined') AS dep_el_type, IFNULL 

(z_dep_el_clim.dep_el_type, 'Undefined') AS transitional_type, 

z_dep_el_clim.thickness, new_trans_ID_4.trans_direction FROM z_dep_el_clim 

JOIN new_trans_ID_4 ON z_dep_el_clim.dep_el_ID = new_trans_ID_4.trans_dep_el_ID 

WHERE z_dep_el_clim.thickness IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_5 AS (SELECT z_dep_el_clim.subset_ID, 

new_trans_types_4.trans_dep_el_ID AS dep_el_ID, 

d_1_dep_el_transitions.trans_dep_el_ID, d_1_dep_el_transitions.trans_direction, 

new_trans_types_4.transitional_type AS dep_el_type FROM z_dep_el_clim JOIN 

new_trans_types_4 ON z_dep_el_clim.dep_el_ID = new_trans_types_4.trans_dep_el_ID 

JOIN d_1_dep_el_transitions ON new_trans_types_4.trans_dep_el_ID = 

d_1_dep_el_transitions.dep_el_ID WHERE d_1_dep_el_transitions.trans_direction = 

'Vertical' AND new_trans_types_4.transitional_type = 'Channel-complex'); 

CREATE TEMPORARY TABLE new_trans_types_5 AS (SELECT new_trans_ID_5.subset_ID, 

new_trans_ID_5.dep_el_ID, new_trans_ID_5.trans_dep_el_ID, IFNULL 

(new_trans_ID_5.dep_el_type, 'Undefined') AS dep_el_type, IFNULL 

(z_dep_el_clim.dep_el_type, 'Undefined') AS transitional_type, 

z_dep_el_clim.thickness, new_trans_ID_5.trans_direction FROM z_dep_el_clim 

JOIN new_trans_ID_5 ON z_dep_el_clim.dep_el_ID = new_trans_ID_5.trans_dep_el_ID 

WHERE z_dep_el_clim.thickness IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_6 AS (SELECT z_dep_el_clim.subset_ID, 

new_trans_types_5.trans_dep_el_ID AS dep_el_ID, 

d_1_dep_el_transitions.trans_dep_el_ID, d_1_dep_el_transitions.trans_direction, 

new_trans_types_5.transitional_type AS dep_el_type FROM z_dep_el_clim JOIN 

new_trans_types_5 ON z_dep_el_clim.dep_el_ID = new_trans_types_5.trans_dep_el_ID 

JOIN d_1_dep_el_transitions ON new_trans_types_5.trans_dep_el_ID = 

d_1_dep_el_transitions.dep_el_ID WHERE d_1_dep_el_transitions.trans_direction = 

'Vertical' AND new_trans_types_5.transitional_type = 'Channel-complex'); 

CREATE TEMPORARY TABLE new_trans_types_6 AS (SELECT new_trans_ID_6.subset_ID, 

new_trans_ID_6.dep_el_ID, new_trans_ID_6.trans_dep_el_ID, IFNULL 

(new_trans_ID_6.dep_el_type, 'Undefined') AS dep_el_type, IFNULL 

(z_dep_el_clim.dep_el_type, 'Undefined') AS transitional_type, 

z_dep_el_clim.thickness, new_trans_ID_6.trans_direction FROM z_dep_el_clim 

JOIN new_trans_ID_6 ON z_dep_el_clim.dep_el_ID = new_trans_ID_6.trans_dep_el_ID 

WHERE z_dep_el_clim.thickness IS NOT NULL); 
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CREATE TEMPORARY TABLE new_trans_ID_7 AS (SELECT z_dep_el_clim.subset_ID, 

new_trans_types_6.trans_dep_el_ID AS dep_el_ID, 

d_1_dep_el_transitions.trans_dep_el_ID, d_1_dep_el_transitions.trans_direction, 

new_trans_types_6.transitional_type AS dep_el_type FROM z_dep_el_clim 

JOIN new_trans_types_6 ON z_dep_el_clim.dep_el_ID = 

new_trans_types_6.trans_dep_el_ID JOIN d_1_dep_el_transitions ON 

new_trans_types_6.trans_dep_el_ID = d_1_dep_el_transitions.dep_el_ID WHERE 

d_1_dep_el_transitions.trans_direction = 'Vertical' AND 

new_trans_types_6.transitional_type = 'Channel-complex'); 

CREATE TEMPORARY TABLE new_trans_types_7 AS (SELECT new_trans_ID_7.subset_ID, 

new_trans_ID_7.dep_el_ID, new_trans_ID_7.trans_dep_el_ID, IFNULL 

(new_trans_ID_7.dep_el_type, 'Undefined') AS dep_el_type, IFNULL 

(z_dep_el_clim.dep_el_type, 'Undefined') AS transitional_type, 

z_dep_el_clim.thickness, new_trans_ID_7.trans_direction FROM z_dep_el_clim 

JOIN new_trans_ID_7 ON z_dep_el_clim.dep_el_ID = new_trans_ID_7.trans_dep_el_ID 

WHERE z_dep_el_clim.dep_el_type <> 'Channel-complex'); 

CREATE TEMPORARY TABLE synt_new_trans_types AS SELECT trans_dep_el_ID, thickness 

FROM new_trans_types; 

CREATE TEMPORARY TABLE synt_new_trans_types_2 AS SELECT subset_ID, trans_dep_el_ID, 

dep_el_ID, thickness FROM new_trans_types_2; 

CREATE TEMPORARY TABLE synt_new_trans_types_3 AS SELECT trans_dep_el_ID, dep_el_ID, 

thickness FROM new_trans_types_3; 

CREATE TEMPORARY TABLE synt_new_trans_types_4 AS SELECT trans_dep_el_ID, dep_el_ID, 

thickness FROM new_trans_types_4; 

CREATE TEMPORARY TABLE synt_new_trans_types_5 AS SELECT trans_dep_el_ID, dep_el_ID, 

thickness FROM new_trans_types_5; 

CREATE TEMPORARY TABLE synt_new_trans_types_6 AS SELECT subset_ID, trans_dep_el_ID, 

dep_el_ID, thickness FROM new_trans_types_6; 

CREATE TEMPORARY TABLE 6cc_part_1 AS SELECT DISTINCT 

synt_new_trans_types_2.subset_ID, synt_new_trans_types.trans_dep_el_ID AS 

channel_complex_ID_1, synt_new_trans_types.thickness AS t_1, 

synt_new_trans_types_2.trans_dep_el_ID AS channel_complex_ID_2, 

synt_new_trans_types_2.thickness AS t_2, synt_new_trans_types_3.trans_dep_el_ID AS 

channel_complex_ID_3 FROM synt_new_trans_types JOIN synt_new_trans_types_2 ON 

synt_new_trans_types.trans_dep_el_ID = synt_new_trans_types_2.dep_el_ID JOIN 

synt_new_trans_types_3 ON synt_new_trans_types_2.trans_dep_el_ID = 

synt_new_trans_types_3.dep_el_ID; 

CREATE TEMPORARY TABLE 6cc_part_2 AS SELECT DISTINCT 

synt_new_trans_types_3.trans_dep_el_ID AS channel_complex_ID_3, 

synt_new_trans_types_3.thickness AS t_3, synt_new_trans_types_4.trans_dep_el_ID AS 

channel_complex_ID_4, synt_new_trans_types_4.thickness AS t_4, 

synt_new_trans_types_5.trans_dep_el_ID AS channel_complex_ID_5 FROM 

synt_new_trans_types_3 JOIN synt_new_trans_types_4 ON 

synt_new_trans_types_3.trans_dep_el_ID = synt_new_trans_types_4.dep_el_ID JOIN 

synt_new_trans_types_5 ON synt_new_trans_types_4.trans_dep_el_ID = 

synt_new_trans_types_5.dep_el_ID; 

CREATE TEMPORARY TABLE 6cc_part_3 AS SELECT DISTINCT 

synt_new_trans_types_6.subset_ID, synt_new_trans_types_5.trans_dep_el_ID AS 

channel_complex_ID_5, synt_new_trans_types_5.thickness AS t_5, 

synt_new_trans_types_6.trans_dep_el_ID AS channel_complex_ID_6, 

synt_new_trans_types_6.thickness AS t_6 FROM synt_new_trans_types_5 JOIN 

synt_new_trans_types_6 ON synt_new_trans_types_5.trans_dep_el_ID = 

synt_new_trans_types_6.dep_el_ID; 

CREATE TEMPORARY TABLE 6cc_stack AS SELECT 6cc_part_1.subset_ID, (6cc_part_1.t_1 + 

6cc_part_1.t_2 + 6cc_part_2.t_3 + 6cc_part_2.t_4 + 6cc_part_3.t_5 + 6cc_part_3.t_6) 

AS sum_t FROM 6cc_part_1 JOIN 6cc_part_2 ON 6cc_part_1.channel_complex_ID_3 = 

6cc_part_2.channel_complex_ID_3 JOIN 6cc_part_3 ON 6cc_part_2.channel_complex_ID_5 = 

6cc_part_3.channel_complex_ID_5 WHERE 6cc_part_1.subset_ID = 6cc_part_3.subset_ID; 

CREATE TEMPORARY TABLE dep_el_xsarea AS SELECT b_subsets.subset_ID, dep_el_type, 

IFNULL((thickness* IF(width IS NOT NULL, width, apparent_width)),0) AS xsarea, 

IFNULL((thickness* IF(partial_width IS NOT NULL, partial_width, unlimited_width)),0) 

AS partial_xsarea FROM b_subsets JOIN c_1_depositional_elements ON 

b_subsets.subset_ID = c_1_depositional_elements.subset_ID WHERE 1_suitability LIKE 

'%proportion%' AND 1_suitability LIKE '%dimension%' ORDER BY subset_ID; 

CREATE TEMPORARY TABLE channel_complex_total_area AS SELECT subset_ID, SUM(xsarea)+ 

SUM(partial_xsarea) AS channel_complex_area FROM dep_el_xsarea WHERE dep_el_type = 

'Channel-complex' GROUP BY subset_ID; 

CREATE TEMPORARY TABLE total_area AS SELECT subset_ID, SUM(xsarea)+ 

SUM(partial_xsarea) AS total_area FROM dep_el_xsarea GROUP BY subset_ID; 

CREATE TEMPORARY TABLE channel_complex_proportions SELECT 

channel_complex_total_area.subset_ID, 

channel_complex_total_area.channel_complex_area/total_area.total_area) AS 

channel_complex_prop FROM channel_complex_total_area JOIN total_area ON 

channel_complex_total_area.subset_ID = total_area.subset_ID WHERE 

(channel_complex_total_area.channel_complex_area/total_area.total_area) IS NOT NULL; 

CREATE TEMPORARY TABLE channel_complex_dimension_statistics SELECT subset_ID, 

AVG(thickness) AS avg_thickness, AVG(IF(width IS NOT NULL, width, (IF(apparent_width 
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IS NOT NULL, apparent_width, IF(partial_width IS NOT NULL, partial_width, 

unlimited_width))))) AS avg_any_width FROM c_1_depositional_elements 

WHERE dep_el_type = 'Channel-complex' GROUP BY subset_ID; 

SELECT channel_complex_proportions.subset_ID, channel_complex_prop, sum_t FROM 

channel_complex_proportions JOIN 6cc_stack ON channel_complex_proportions.subset_ID 

= 6cc_stack.subset_ID; 

 

It returns the thicknesses of a group of a given number (here strictly 6) of channel-complex 
depositional elements that are vertically stacked and are contained within the same subset, 
and the proportion of channel deposits within the subset.  

 

tq_53 – Channel-complex lateral spacing and proportion within volume 

CREATE TEMPORARY TABLE z_dep_el_clim AS (SELECT b_subsets.subset_ID, 

mean_aggradation_rate, dep_el_ID, dep_el_type, IF(width IS NOT NULL, width, 

apparent_width) AS complete_width FROM b_subsets JOIN c_1_depositional_elements ON 

b_subsets.subset_ID = c_1_depositional_elements.subset_ID); 

CREATE TEMPORARY TABLE new_trans_ID AS (SELECT subset_ID, z_dep_el_clim.dep_el_ID, 

d_1_dep_el_transitions.trans_dep_el_ID, d_1_dep_el_transitions.trans_direction, 

z_dep_el_clim.dep_el_type FROM z_dep_el_clim JOIN d_1_dep_el_transitions ON 

z_dep_el_clim.dep_el_ID = d_1_dep_el_transitions.dep_el_ID WHERE dep_el_type = 

'Channel-complex'); 

CREATE TEMPORARY TABLE new_trans_types AS (SELECT new_trans_ID.subset_ID, 

new_trans_ID.dep_el_ID, new_trans_ID.trans_dep_el_ID, IFNULL 

(new_trans_ID.dep_el_type, 'Undefined') AS dep_el_type, IFNULL 

(z_dep_el_clim.dep_el_type, 'Undefined') AS transitional_type, 

z_dep_el_clim.complete_width, new_trans_ID.trans_direction FROM z_dep_el_clim 

JOIN new_trans_ID ON z_dep_el_clim.dep_el_ID = new_trans_ID.trans_dep_el_ID 

WHERE trans_direction = 'Lateral' AND z_dep_el_clim.complete_width IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_2 AS (SELECT z_dep_el_clim.subset_ID, 

new_trans_types.trans_dep_el_ID AS dep_el_ID, 

d_1_dep_el_transitions.trans_dep_el_ID, d_1_dep_el_transitions.trans_direction, 

new_trans_types.transitional_type AS dep_el_type FROM z_dep_el_clim JOIN 

new_trans_types ON z_dep_el_clim.dep_el_ID = new_trans_types.trans_dep_el_ID 

JOIN d_1_dep_el_transitions ON new_trans_types.trans_dep_el_ID = 

d_1_dep_el_transitions.dep_el_ID WHERE d_1_dep_el_transitions.trans_direction = 

'Lateral' AND new_trans_types.transitional_type = 'Floodplain'); 

CREATE TEMPORARY TABLE new_trans_types_2 AS (SELECT new_trans_ID_2.subset_ID, 

new_trans_ID_2.dep_el_ID, new_trans_ID_2.trans_dep_el_ID, IFNULL 

(new_trans_ID_2.dep_el_type, 'Undefined') AS dep_el_type, IFNULL 

(z_dep_el_clim.dep_el_type, 'Undefined') AS transitional_type, 

z_dep_el_clim.complete_width, new_trans_ID_2.trans_direction FROM z_dep_el_clim 

JOIN new_trans_ID_2 ON z_dep_el_clim.dep_el_ID = new_trans_ID_2.trans_dep_el_ID 

WHERE z_dep_el_clim.complete_width IS NOT NULL); 

CREATE TEMPORARY TABLE new_trans_ID_3 AS (SELECT subset_ID, 

new_trans_types_2.trans_dep_el_ID AS dep_el_ID, 

d_1_dep_el_transitions.trans_dep_el_ID, d_1_dep_el_transitions.trans_direction, 

new_trans_types_2.transitional_type AS dep_el_type FROM new_trans_types_2 JOIN 

d_1_dep_el_transitions ON new_trans_types_2.trans_dep_el_ID = 

d_1_dep_el_transitions.dep_el_ID WHERE d_1_dep_el_transitions.trans_direction = 

'Lateral' AND new_trans_types_2.transitional_type = 'Channel-complex'); 

CREATE TEMPORARY TABLE 1cc AS SELECT DISTINCT new_trans_ID_2.subset_ID, 

new_trans_types.trans_dep_el_ID AS floodplain_ID, new_trans_types.complete_width 

FROM new_trans_types JOIN new_trans_ID_2 ON new_trans_types.trans_dep_el_ID = 

new_trans_ID_2.dep_el_ID; 

CREATE TEMPORARY TABLE dep_el_xsarea AS SELECT b_subsets.subset_ID, dep_el_type, 

IFNULL((thickness* IF(width IS NOT NULL, width, apparent_width)),0) AS xsarea, 

IFNULL((thickness* IF(partial_width IS NOT NULL, partial_width, unlimited_width)),0) 

AS partial_xsarea FROM b_subsets JOIN c_1_depositional_elements ON 

b_subsets.subset_ID = c_1_depositional_elements.subset_ID WHERE 1_suitability LIKE 

'%proportion%' AND 1_suitability LIKE '%dimension%' ORDER BY subset_ID; 

CREATE TEMPORARY TABLE channel_complex_total_area AS SELECT subset_ID, SUM(xsarea)+ 

SUM(partial_xsarea) AS channel_complex_area FROM dep_el_xsarea 

WHERE dep_el_type = 'Channel-complex' GROUP BY subset_ID; 

CREATE TEMPORARY TABLE total_area AS SELECT subset_ID, SUM(xsarea)+ 

SUM(partial_xsarea) AS total_area FROM dep_el_xsarea GROUP BY subset_ID; 

CREATE TEMPORARY TABLE channel_complex_proportions SELECT 

channel_complex_total_area.subset_ID, 

(channel_complex_total_area.channel_complex_area/total_area.total_area) AS 

channel_complex_prop FROM channel_complex_total_area JOIN total_area ON 

channel_complex_total_area.subset_ID = total_area.subset_ID WHERE 

(channel_complex_total_area.channel_complex_area/total_area.total_area) IS NOT NULL; 

CREATE TEMPORARY TABLE channel_complex_dimension_statistics 
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SELECT subset_ID, AVG(thickness) AS avg_thickness, AVG(IF(width IS NOT NULL, width, 

(IF(apparent_width IS NOT NULL, apparent_width, IF(partial_width IS NOT NULL, 

partial_width, unlimited_width))))) AS avg_any_width FROM c_1_depositional_elements 

WHERE dep_el_type = 'Channel-complex' GROUP BY subset_ID; 

SELECT channel_complex_proportions.subset_ID, channel_complex_prop, 

1cc.complete_width AS CC_spacing FROM 1cc JOIN channel_complex_proportions ON 

1cc.subset_ID = channel_complex_proportions.subset_ID; 

 

It returns the lateral cross-gradient spacing of two channel complexes (i.e. width of 
floodplain element laterally transitional to two channel complexes) in a stratigraphic volume 
and channel-complex proportion within the volume.  

 

 

 

Unit proportions 
 

tq_12 – All architectural-element entries and parent depositional elements 

SELECT c_1_depositional_elements.dep_el_type, 

e_2_architectural_elements.arch_el_type FROM c_1_depositional_elements JOIN 

e_2_architectural_elements ON c_1_depositional_elements.dep_el_ID = 

e_2_architectural_elements.dep_el_ID ORDER BY dep_el_type; 

 

It returns all architectural element type entries and the depositional elements they belong to. 

 

tq_17 – Architectural-element entries from floodplain depositional elements 
wider than 100 m 

SELECT c_1_depositional_elements.dep_el_type, _2_architectural_elements.arch_el_type 

FROM c_1_depositional_elements JOIN e_2_architectural_elements ON 

c_1_depositional_elements.dep_el_ID = e_2_architectural_elements.dep_el_ID WHERE 

dep_el_type = 'Floodplain' AND (c_1_depositional_elements.apparent_width >100 OR 

c_1_depositional_elements.partial_width > 100 OR 

c_1_depositional_elements.unlimited_width > 100 OR c_1_depositional_elements.width > 

100); 

 

It returns all architectural element type entries belonging to ‘Floodplain’ depositional element 
whose width is larger than 100 m. 

 

tq_03 – Facies-unit entries and architectural-element type they belong to 
from, semiarid basins 

SELECT e_2_architectural_elements.arch_el_type, g_3_facies.facies_type FROM 

((b_subsets JOIN c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID) JOIN e_2_architectural_elements ON 

c_1_depositional_elements.dep_el_ID = e_2_architectural_elements.dep_el_ID) JOIN 

g_3_facies ON e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID WHERE 

`basin_synthetic_climate_type` = 'Semiarid' ORDER BY arch_el_type; 

 
It returns all the facies units types and all the architectural element types of the elements 
they belong to, filtered according to their basin synthetic climate type (here: Semiarid). 

 

tq_18 – Bounding-surface orders and overlying facies-unit types 

SELECT g_3_facies.facies_ID, h_3_facies_transitions.trans_direction, 

g_3_facies.facies_type, h_3_facies_transitions.bound_surf_order FROM g_3_facies JOIN 

h_3_facies_transitions ON g_3_facies.facies_ID = 

h_3_facies_transitions.trans_facies_ID WHERE trans_direction = 'Vertical'; 

 
It returns all the bounding surface orders underlying facies units and their facies types. 

 

tq_27 – Depositional-element type, thickness and width from subsets suitable 
for proportions 
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SELECT dep_el_type, thickness, width FROM b_subsets JOIN c_1_depositional_elements 

ON b_subsets.subset_ID = c_1_depositional_elements.subset_ID WHERE 1_suitability 

LIKE '%Unit proportions%'; 

 
It returns element types, widths and thickness of all the depositional elements belonging to 
datasets that are suitable for computations of depositional-element type proportions. 

 

tq_32 – Types and thickness of facies-units overlying 4th-order channel-fill 
bases 

CREATE TEMPORARY TABLE facies_bso AS SELECT g_3_facies.arch_el_ID, 

g_3_facies.facies_ID, h_3_facies_transitions.trans_direction, 

g_3_facies.facies_type, h_3_facies_transitions.bound_surf_order, 

g_3_facies.thickness FROM g_3_facies JOIN h_3_facies_transitions ON 

g_3_facies.facies_ID = h_3_facies_transitions.trans_facies_ID WHERE trans_direction 

= 'Vertical' AND bound_surf_order <> '2nd' AND bound_surf_order <> '3rd' AND 

bound_surf_order IS NOT NULL; 

SELECT facies_type, facies_bso.thickness FROM e_2_architectural_elements JOIN 

facies_bso ON e_2_architectural_elements.arch_el_ID = facies_bso.arch_el_ID WHERE 

facies_type IS NOT NULL AND facies_bso.thickness IS NOT NULL AND arch_el_type = 

'CH'; 

 

It returns the thickness of all the facies units belonging to a ‘CH’ architectural element type 
and overlying 4

th
- or higher-order bounding surfaces.  

 

tq_34 – Architectural-element information from case studies with min 20% 
fine-grained facies 

create temporary table facies_t as select case_ID, g_3_facies.facies_type, 

g_3_facies.thickness from b_subsets join c_1_depositional_elements on 

b_subsets.subset_ID = c_1_depositional_elements.subset_ID join 

e_2_architectural_elements on c_1_depositional_elements.dep_el_ID = 

e_2_architectural_elements.dep_el_ID join g_3_facies on 

e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID; 

create temporary table facies_t2 as select facies_t.case_ID, facies_t.facies_type, 

sum(thickness) sum from facies_t group by facies_type, case_ID; 

create temporary table facies_t3 as select facies_t2.case_ID, sum(sum) total from 

facies_t2 group by case_ID; 

create temporary table chosen_cases as select facies_t2.case_ID, sum(sum) partial 

from facies_t2 where facies_type like '%F%' group by case_ID; 

create temporary table suitable_cases as select distinct chosen_cases.case_ID from 

chosen_cases join facies_t3 on chosen_cases.case_ID = facies_t3.case_ID 

where partial/total > 0.2; 

select e_2_architectural_elements.arch_el_type, e_2_architectural_elements.thickness 

from suitable_cases join b_subsets on suitable_cases.case_ID = b_subsets.case_ID 

join c_1_depositional_elements on b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID join e_2_architectural_elements on 

c_1_depositional_elements.dep_el_ID = e_2_architectural_elements.dep_el_ID where 

e_2_architectural_elements.thickness is not null; 

 

It returns the thickness of all the architectural elements belonging to case studies 
characterized by having at least 20% by thickness of fine-grained lithofacies. 

 

tq_35 – Sum of thicknesses for each facies type from a case study 

CREATE TEMPORARY TABLE facies_thickness AS SELECT facies_type, g_3_facies.thickness 

FROM b_subsets JOIN c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID JOIN e_2_architectural_elements ON 

c_1_depositional_elements.dep_el_ID = e_2_architectural_elements.dep_el_ID JOIN 

g_3_facies ON e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID 

WHERE case_ID = 23; 

SELECT facies_type, SUM(thickness) FROM facies_thickness GROUP BY facies_type;  

 
It returns the sum of the thicknesses of all facies types for a given case study.  

 

tq_36 – Proportions of facies types in a case study 
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CREATE TEMPORARY TABLE facies_thickness AS SELECT facies_type, g_3_facies.thickness 

FROM b_subsets JOIN c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID JOIN e_2_architectural_elements ON 

c_1_depositional_elements.dep_el_ID = e_2_architectural_elements.dep_el_ID JOIN 

g_3_facies ON e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID 

WHERE case_ID = 23; 

CREATE TEMPORARY TABLE individual_facies_t AS SELECT facies_type, SUM(thickness) AS 

individual_sum FROM facies_thickness GROUP BY facies_type; 

CREATE TEMPORARY TABLE total_facies_t AS SELECT SUM(thickness) AS total_sum 

FROM facies_thickness; 

SELECT facies_type, individual_sum/total_sum FROM individual_facies_t JOIN 

total_facies_t GROUP BY facies_type;  

 
It returns the proportion – expressed as fraction of 1 – of all facies types for a given case 
study.  

 

tq_39 – Proportions of facies types in modern and ancient DLA architectural 
elements 

CREATE TEMPORARY TABLE DLA_ancient_thickness AS SELECT a_source_data.case_ID, 

g_3_facies.facies_type, SUM(g_3_facies.thickness) AS sum_thickness_ancient FROM 

a_source_data JOIN b_subsets ON a_source_data.case_ID = b_subsets.case_ID JOIN 

c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID JOIN e_2_architectural_elements ON 

c_1_depositional_elements.dep_el_ID = e_2_architectural_elements.dep_el_ID JOIN 

g_3_facies ON e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID WHERE 

arch_el_type = 'DLA' AND g_3_facies.thickness IS NOT NULL AND lithostrat_unit IS NOT 

NULL GROUP BY g_3_facies.facies_type; 

CREATE TEMPORARY TABLE DLA_ancient_total AS SELECT SUM(sum_thickness_ancient) AS 

total_thickness_ancient FROM DLA_ancient_thickness; 

CREATE TEMPORARY TABLE DLA_ancient_proportions AS SELECT facies_type, 

sum_thickness_ancient/total_thickness_ancient AS proportion_ancient FROM 

DLA_ancient_thickness JOIN DLA_ancient_total; 

CREATE TEMPORARY TABLE DLA_modern_thickness AS SELECT a_source_data.case_ID, 

g_3_facies.facies_type, SUM(g_3_facies.thickness) AS sum_thickness_modern FROM 

a_source_data JOIN b_subsets ON a_source_data.case_ID = b_subsets.case_ID JOIN 

c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID JOIN e_2_architectural_elements ON 

c_1_depositional_elements.dep_el_ID = e_2_architectural_elements.dep_el_ID JOIN 

g_3_facies ON e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID WHERE 

arch_el_type = 'DLA' AND g_3_facies.thickness IS NOT NULL AND river IS NOT NULL AND 

age_from = 'Holocene' GROUP BY g_3_facies.facies_type; 

CREATE TEMPORARY TABLE DLA_modern_total AS SELECT SUM(sum_thickness_modern) AS 

total_thickness_modern FROM DLA_modern_thickness; 

CREATE TEMPORARY TABLE DLA_modern_proportions AS SELECT facies_type, 

sum_thickness_modern/total_thickness_modern AS proportion_modern FROM 

DLA_modern_thickness JOIN DLA_modern_total; 

CREATE TEMPORARY TABLE DLA_left_join SELECT DLA_ancient_proportions.facies_type, 

DLA_ancient_proportions.proportion_ancient, DLA_modern_proportions.proportion_modern 

FROM DLA_ancient_proportions LEFT JOIN DLA_modern_proportions ON 

DLA_ancient_proportions.facies_type = DLA_modern_proportions.facies_type; 

CREATE TEMPORARY TABLE DLA_right_join SELECT DLA_modern_proportions.facies_type, 

DLA_ancient_proportions.proportion_ancient, DLA_modern_proportions.proportion_modern 

FROM DLA_ancient_proportions RIGHT JOIN DLA_modern_proportions ON 

DLA_ancient_proportions.facies_type = DLA_modern_proportions.facies_type; 

SELECT * FROM DLA_left_join UNION SELECT * FROM DLA_right_join; 

 
It returns two sets of proportions – expressed as fraction of 1 – of all facies types belonging 
to a ‘DLA’ architectural element type, classified into modern and ancient systems. 

 

tq_40 – Proportions of facies types in individual LA architectural elements 

CREATE TEMPORARY TABLE sum_el_thickness_incnull AS SELECT g_3_facies.arch_el_ID, 

SUM(g_3_facies.thickness) sum_el_thickness FROM b_subsets JOIN 

c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID JOIN e_2_architectural_elements ON 

c_1_depositional_elements.dep_el_ID = e_2_architectural_elements.dep_el_ID JOIN 

g_3_facies ON e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID WHERE 

arch_el_type = 'LA' GROUP BY g_3_facies.arch_el_ID; 

CREATE TEMPORARY TABLE sum_el_thickness AS SELECT * 

FROM sum_el_thickness_incnull WHERE sum_el_thickness IS NOT NULL; 

CREATE TEMPORARY TABLE facies_thickness AS SELECT g_3_facies.arch_el_ID, 

facies_type, g_3_facies.thickness FROM b_subsets JOIN c_1_depositional_elements ON 
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b_subsets.subset_ID = c_1_depositional_elements.subset_ID JOIN 

e_2_architectural_elements ON c_1_depositional_elements.dep_el_ID = 

e_2_architectural_elements.dep_el_ID JOIN g_3_facies ON 

e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID WHERE arch_el_type = 

'LA'; 

CREATE TEMPORARY TABLE individual_facies_t AS SELECT arch_el_ID, facies_type, 

CONCAT(arch_el_ID,'_',facies_type), SUM(thickness) AS individual_sum FROM 

facies_thickness GROUP BY CONCAT(arch_el_ID,'_',facies_type); 

SELECT sum_el_thickness.arch_el_ID, facies_type, individual_sum/sum_el_thickness 

FROM sum_el_thickness JOIN individual_facies_t ON sum_el_thickness.arch_el_ID = 

individual_facies_t.arch_el_ID; 

 
It returns the proportion – expressed as fraction of 1 – of all facies types belonging to each 
individual ‘LA’ architectural element (designated by its numerical identifier). 

 

tq_41 – Facies associations with proportions in individual LA architectural 
elements 

CREATE TEMPORARY TABLE sum_el_thickness_incnull AS SELECT g_3_facies.arch_el_ID, 

SUM(g_3_facies.thickness) sum_el_thickness FROM b_subsets JOIN 

c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID JOIN e_2_architectural_elements ON 

c_1_depositional_elements.dep_el_ID = e_2_architectural_elements.dep_el_ID JOIN 

g_3_facies ON e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID 

WHERE arch_el_type = 'LA' GROUP BY g_3_facies.arch_el_ID; 

CREATE TEMPORARY TABLE sum_el_thickness AS SELECT * FROM sum_el_thickness_incnull 

WHERE sum_el_thickness IS NOT NULL; 

CREATE TEMPORARY TABLE facies_thickness AS SELECT g_3_facies.arch_el_ID, 

facies_type, g_3_facies.thickness FROM b_subsets JOIN c_1_depositional_elements ON 

b_subsets.subset_ID = c_1_depositional_elements.subset_ID JOIN 

e_2_architectural_elements ON c_1_depositional_elements.dep_el_ID = 

e_2_architectural_elements.dep_el_ID JOIN g_3_facies ON 

e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID WHERE arch_el_type = 

'LA'; 

CREATE TEMPORARY TABLE individual_facies_t AS SELECT arch_el_ID, facies_type, 

CONCAT(arch_el_ID,'_',facies_type), SUM(thickness) AS individual_sum FROM 

facies_thickness GROUP BY CONCAT(arch_el_ID,'_',facies_type); 

CREATE TEMPORARY TABLE individual_facies_prop AS SELECT sum_el_thickness.arch_el_ID, 

facies_type, ROUND(individual_sum/sum_el_thickness,2) AS proportion FROM 

sum_el_thickness JOIN individual_facies_t ON sum_el_thickness.arch_el_ID = 

individual_facies_t.arch_el_ID; 

SELECT individual_facies_prop.arch_el_ID, GROUP_CONCAT(facies_type, '/',proportion) 

AS facies_association FROM individual_facies_prop GROUP BY 

individual_facies_prop.arch_el_ID; 

 

It returns the facies association – expressed as a list of facies types and relative proportions 
expressed as fraction of 1 – composing each individual ‘LA’ architectural element 
(designated by its numerical identifier). 

 

tq_42 – Proportions of channel-complexes from subsets suitable for deriving 
dimensions 

CREATE TEMPORARY TABLE dep_el_xsarea AS SELECT b_subsets.subset_ID, dep_el_type, 

IFNULL((thickness* IF(width IS NOT NULL, width, apparent_width)),0) AS xsarea, 

IFNULL((thickness* IF(partial_width IS NOT NULL, partial_width, unlimited_width)),0) 

AS partial_xsarea FROM b_subsets JOIN c_1_depositional_elements ON 

b_subsets.subset_ID = c_1_depositional_elements.subset_ID WHERE 1_suitability LIKE 

'%proportion%' AND 1_suitability LIKE '%dimension%' ORDER BY subset_ID; 

CREATE TEMPORARY TABLE channel_complex_total_area AS SELECT subset_ID, SUM(xsarea)+ 

SUM(partial_xsarea) AS channel_complex_area FROM dep_el_xsarea WHERE dep_el_type = 

'Channel-complex' GROUP BY subset_ID; 

CREATE TEMPORARY TABLE total_area AS SELECT subset_ID, SUM(xsarea)+ 

SUM(partial_xsarea) AS total_area FROM dep_el_xsarea GROUP BY subset_ID; 

SELECT channel_complex_total_area.subset_ID, 

(channel_complex_total_area.channel_complex_area/total_area.total_area) AS 

channel_complex_prop FROM channel_complex_total_area JOIN total_area ON 

channel_complex_total_area.subset_ID = total_area.subset_ID WHERE 

(channel_complex_total_area.channel_complex_area/total_area.total_area) IS NOT NULL; 
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It returns the proportions – expressed as fraction of 1, and based on width and thickness – 
of channel-complexes within subsets that are suitable for deriving proportions and 
dimensional parameters. 

 

tq_45 – Architectural element proportions within individual 1D subsets 

CREATE TEMPORARY TABLE arch_el_sum_t AS SELECT b_subsets.subset_ID, arch_el_ID, 

arch_el_type, SUM(e_2_architectural_elements.thickness) AS sum_t FROM b_subsets JOIN 

c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID JOIN e_2_architectural_elements ON 

c_1_depositional_elements.dep_el_ID = e_2_architectural_elements.dep_el_ID WHERE 

2_suitability LIKE '%roport%' AND spatial_type = '1D vertical' AND arch_el_type IS 

NOT NULL AND e_2_architectural_elements.thickness IS NOT NULL GROUP BY 

arch_el_type,subset_ID; 

CREATE TEMPORARY TABLE arch_el_total_t AS SELECT b_subsets.subset_ID, 

SUM(e_2_architectural_elements.thickness) AS total_t FROM b_subsets JOIN 

c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID JOIN e_2_architectural_elements ON 

c_1_depositional_elements.dep_el_ID = e_2_architectural_elements.dep_el_ID WHERE 

2_suitability LIKE '%roport%' AND spatial_type = '1D vertical' AND arch_el_type IS 

NOT NULL AND e_2_architectural_elements.thickness IS NOT NULL GROUP BY subset_ID; 

SELECT arch_el_sum_t.subset_ID, arch_el_type, sum_t/total_t AS arch_el_proportion 

FROM arch_el_sum_t JOIN arch_el_total_t ON arch_el_sum_t.subset_ID = 

arch_el_total_t.subset_ID GROUP BY arch_el_sum_t.subset_ID, 

arch_el_sum_t.arch_el_type; 

 
It returns the proportion – expressed as fraction of 1 – of all architectural-element types 
within each individual subset, including only ‘1D vertical’ subsets (e.g. logs, cores) suitable 
for computing architectural-element proportions. 

 

tq_46 – Architectural element proportions within individual 2D/3D subsets 

CREATE TEMPORARY TABLE arch_el_sum_a AS SELECT b_subsets.subset_ID, arch_el_ID, 

arch_el_type, SUM(e_2_architectural_elements.thickness* 

IFNULL(IF(e_2_architectural_elements.width IS NOT 

NULL,e_2_architectural_elements.width, IF(e_2_architectural_elements.apparent_width 

IS NOT NULL,e_2_architectural_elements.apparent_width, 

IF(e_2_architectural_elements.partial_width IS NOT NULL, 

e_2_architectural_elements.partial_width, 

IF(e_2_architectural_elements.unlimited_width IS NOT 

NULL,e_2_architectural_elements.unlimited_width, IF( 

e_2_architectural_elements.dip_length IS NOT 

NULL,e_2_architectural_elements.dip_length, 

IF(e_2_architectural_elements.partial_dip_length IS NOT NULL, 

e_2_architectural_elements.partial_dip_length,e_2_architectural_elements.unlimited_d

ip_length)))))),0)) AS sum_a FROM b_subsets JOIN c_1_depositional_elements ON 

b_subsets.subset_ID = c_1_depositional_elements.subset_ID JOIN 

e_2_architectural_elements ON c_1_depositional_elements.dep_el_ID = 

e_2_architectural_elements.dep_el_ID WHERE 2_suitability LIKE '%roport%' AND 

(spatial_type = '2D section' OR spatial_type = 'Pseudo3D') AND arch_el_type IS NOT 

NULL AND e_2_architectural_elements.thickness IS NOT NULL AND 

(e_2_architectural_elements.width IS NOT NULL OR 

e_2_architectural_elements.apparent_width IS NOT NULL OR 

e_2_architectural_elements.partial_width IS NOT NULL OR 

e_2_architectural_elements.unlimited_width IS NOT NULL OR 

e_2_architectural_elements.dip_length IS NOT NULL OR 

e_2_architectural_elements.partial_dip_length IS NOT NULL OR 

e_2_architectural_elements.unlimited_dip_length IS NOT NULL) 

GROUP BY arch_el_type,subset_ID;  

CREATE TEMPORARY TABLE arch_el_total_a AS SELECT b_subsets.subset_ID, 

SUM(e_2_architectural_elements.thickness* IFNULL(IF(e_2_architectural_elements.width 

IS NOT NULL,e_2_architectural_elements.width, 

IF(e_2_architectural_elements.apparent_width IS NOT 

NULL,e_2_architectural_elements.apparent_width, 

IF(e_2_architectural_elements.partial_width IS NOT NULL, 

e_2_architectural_elements.partial_width, 

IF(e_2_architectural_elements.unlimited_width IS NOT 

NULL,e_2_architectural_elements.unlimited_width, IF( 

e_2_architectural_elements.dip_length IS NOT 

NULL,e_2_architectural_elements.dip_length, 

IF(e_2_architectural_elements.partial_dip_length IS NOT NULL, 

e_2_architectural_elements.partial_dip_length,e_2_architectural_elements.unlimited_d

ip_length)))))),0)) AS total_a FROM b_subsets JOIN c_1_depositional_elements ON 
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b_subsets.subset_ID = c_1_depositional_elements.subset_ID JOIN 

e_2_architectural_elements ON c_1_depositional_elements.dep_el_ID = 

e_2_architectural_elements.dep_el_ID WHERE 2_suitability LIKE '%roport%' AND 

(spatial_type = '2D section' OR spatial_type = 'Pseudo3D') AND arch_el_type IS NOT 

NULL AND e_2_architectural_elements.thickness IS NOT NULL AND 

(e_2_architectural_elements.width IS NOT NULL OR 

e_2_architectural_elements.apparent_width IS NOT NULL OR 

e_2_architectural_elements.partial_width IS NOT NULL OR 

e_2_architectural_elements.unlimited_width IS NOT NULL OR 

e_2_architectural_elements.dip_length IS NOT NULL OR 

e_2_architectural_elements.partial_dip_length IS NOT NULL OR 

e_2_architectural_elements.unlimited_dip_length IS NOT NULL) GROUP BY subset_ID; 

SELECT arch_el_sum_a.subset_ID, arch_el_type, sum_a/total_a AS arch_el_proportion 

FROM arch_el_sum_a JOIN arch_el_total_a ON arch_el_sum_a.subset_ID = 

arch_el_total_a.subset_ID GROUP BY arch_el_sum_a.subset_ID, 

arch_el_sum_a.arch_el_type; 

 
It returns the proportion – expressed as fraction of 1 – of all architectural-element types 
within each individual subset, including only ‘2D section’ and ‘Pseudo 3D’ subsets (e.g. 
panels) suitable for computing architectural-element proportions. 

 

tq_50 – User-defined facies-unit-based net-to-gross ratio for CH architectural 
elements 

CREATE TEMPORARY TABLE non_net_T AS SELECT e_2_architectural_elements.arch_el_ID, 

SUM(g_3_facies.thickness) AS non_net_thickness FROM a_source_data JOIN b_subsets ON 

a_source_data.case_ID = b_subsets.case_ID JOIN c_1_depositional_elements ON 

b_subsets.subset_ID = c_1_depositional_elements.subset_ID JOIN 

e_2_architectural_elements ON c_1_depositional_elements.dep_el_ID = 

e_2_architectural_elements.dep_el_ID JOIN g_3_facies ON 

e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID WHERE 3_suitability 

LIKE '%proportion%' AND arch_el_type = 'CH' AND (facies_type LIKE '%F%' OR 

facies_type='Gmm' OR facies_type = 'Gmg') GROUP BY 

e_2_architectural_elements.arch_el_ID; 

CREATE TEMPORARY TABLE all_T AS SELECT e_2_architectural_elements.arch_el_ID, 

SUM(g_3_facies.thickness) AS all_thickness, COUNT(facies_ID) AS nr_facies FROM 

a_source_data JOIN b_subsets ON a_source_data.case_ID = b_subsets.case_ID JOIN 

c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID JOIN e_2_architectural_elements ON 

c_1_depositional_elements.dep_el_ID = e_2_architectural_elements.dep_el_ID 

JOIN g_3_facies ON e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID 

WHERE 3_suitability LIKE '%proportion%' AND arch_el_type = 'CH' GROUP BY 

e_2_architectural_elements.arch_el_ID; 

CREATE TEMPORARY TABLE arch_el_ntg AS SELECT all_T.arch_el_ID, (all_thickness-

non_net_thickness)/all_thickness as NTG, nr_facies FROM all_T JOIN non_net_T ON 

all_T.arch_el_ID = non_net_T.arch_el_ID WHERE all_thickness IS NOT NULL; 

SELECT * FROM arch_el_ntg; 

 
It returns a net-to-gross ratio for each individual ‘CH’ architectural element (designated by 
its numerical identifier), based on a set of non-net facies types, and the number of facies 
units on which the figures are based. 

 

 

 

Unit transitions 
 

 

tq_06_transition_filtering – Filter for deriving one transition per direction for 
each genetic unit 

CREATE TABLE facies_trans_filter_vertical SELECT CONCAT 

(`facies_ID`,`trans_direction`) AS facies_trans_string, `facies_ID`, 

`trans_facies_ID`, `trans_direction`, `bound_surf_order` FROM h_3_facies_transitions 

WHERE `trans_direction`='Vertical';   

ALTER IGNORE TABLE facies_trans_filter_vertical ADD UNIQUE INDEX 

(facies_trans_string); 

 
It returns only one transition per direction (here: vertical) for each facies unit. 
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tq_49 – Show all architectural-element types and transitions 

SELECT b_subsets.subset_ID, e_2_architectural_elements.arch_el_ID, 

e_2_architectural_elements.arch_el_type, 

e_2_architectural_elements_1.arch_el_ID, e_2_architectural_elements_1.arch_el_type, 

f_2_arch_el_transitions.trans_direction FROM (e_2_architectural_elements AS 

e_2_architectural_elements_1 JOIN (f_2_arch_el_transitions JOIN 

e_2_architectural_elements ON 

f_2_arch_el_transitions.arch_el_ID = e_2_architectural_elements.arch_el_ID) ON 

e_2_architectural_elements_1.arch_el_ID = f_2_arch_el_transitions.trans_arch_el_ID) 

JOIN (b_subsets JOIN c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID) ON e_2_architectural_elements.dep_el_ID = 

c_1_depositional_elements.dep_el_ID; 

 
It returns architectural-element types from ID’s, and transition direction. 

 

tq_13 – Count facies-unit transitions for any direction 

CREATE TEMPORARY TABLE facies_trans_ID AS (SELECT g_3_facies.facies_ID, 

h_3_facies_transitions.trans_facies_ID, h_3_facies_transitions.trans_direction, 

g_3_facies.facies_type, h_3_facies_transitions.bound_surf_order FROM g_3_facies JOIN 

h_3_facies_transitions ON g_3_facies.facies_ID = h_3_facies_transitions.facies_ID); 

CREATE TEMPORARY TABLE facies_trans_types AS (SELECT facies_trans_ID.facies_ID, 

facies_trans_ID.trans_facies_ID, IFNULL (facies_trans_ID.facies_type, 'Undefined') 

AS facies_type, IFNULL (g_3_facies.facies_type, 'Undefined') AS transitional_type, 

facies_trans_ID.trans_direction, facies_trans_ID.bound_surf_order FROM g_3_facies 

JOIN facies_trans_ID ON g_3_facies.facies_ID = facies_trans_ID.trans_facies_ID); 

CREATE TEMPORARY TABLE facies_vertical_trans_strings AS(SELECT 

facies_trans_types.facies_type, facies_trans_types.transitional_type, CONCAT 

(facies_trans_types.facies_type, '_', facies_trans_types.transitional_type) AS 

trans_string FROM facies_trans_types); 

CREATE TEMPORARY TABLE facies_vertical_trans_counts SELECT facies_type, 

transitional_type, COUNT(trans_string) FROM facies_vertical_trans_strings 

GROUP BY trans_string; 

SELECT * FROM facies_vertical_trans_counts; 

 
It returns the count of every transition between facies units, regardless of the transition 
direction; undefined (NULL-valued) facies types are included in the query as ‘Undefined’. 

 

tq_48 – Count facies-unit transitions for vertical direction from braided 
systems 

CREATE TEMPORARY TABLE facies_trans_ID AS SELECT g_3_facies.facies_ID, 

h_3_facies_transitions.trans_facies_ID, h_3_facies_transitions.trans_direction, 

g_3_facies.facies_type, h_3_facies_transitions.bound_surf_order FROM b_subsets JOIN 

c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID JOIN e_2_architectural_elements ON 

c_1_depositional_elements.dep_el_ID = e_2_architectural_elements.dep_el_ID JOIN 

g_3_facies ON e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID JOIN 

h_3_facies_transitions ON g_3_facies.facies_ID = h_3_facies_transitions.facies_ID 

WHERE river_pattern_type = 'Braided'; 

CREATE TEMPORARY TABLE facies_trans_types AS SELECT facies_trans_ID.facies_ID, 

facies_trans_ID.trans_facies_ID, IFNULL (facies_trans_ID.facies_type, 'Undefined') 

AS facies_type, IFNULL (g_3_facies.facies_type, 'Undefined') AS transitional_type, 

facies_trans_ID.trans_direction, facies_trans_ID.bound_surf_order FROM g_3_facies 

JOIN facies_trans_ID ON g_3_facies.facies_ID = facies_trans_ID.trans_facies_ID WHERE 

trans_direction='Vertical'; 

CREATE TEMPORARY TABLE facies_vertical_trans_strings AS(SELECT 

facies_trans_types.facies_type, facies_trans_types.transitional_type, CONCAT 

(facies_trans_types.facies_type, '_', facies_trans_types.transitional_type) AS 

trans_string FROM facies_trans_types); 

CREATE TEMPORARY TABLE facies_vertical_trans_counts SELECT facies_type, 

transitional_type, COUNT(trans_string) FROM facies_vertical_trans_strings 

GROUP BY trans_string; 

SELECT * FROM facies_vertical_trans_counts; 

 
It returns the count of vertical transition between facies units from braided systems; 
undefined (NULL-valued) facies types are included in the query as ‘Undefined’. 
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tq_47 – Count facies-unit transitions for vertical direction from sandy 
meandering systems 

CREATE TEMPORARY TEMPORARY TABLE facies_t AS SELECT case_ID, g_3_facies.facies_type, 

g_3_facies.thickness FROM b_subsets JOIN c_1_depositional_elements ON 

b_subsets.subset_ID = c_1_depositional_elements.subset_ID JOIN 

e_2_architectural_elements ON c_1_depositional_elements.dep_el_ID = 

e_2_architectural_elements.dep_el_ID JOIN g_3_facies ON 

e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID; 

CREATE TEMPORARY TABLE facies_t2 AS SELECT facies_t.case_ID, facies_t.facies_type, 

SUM(thickness) SUM FROM facies_t GROUP BY facies_type, case_ID; 

CREATE TEMPORARY TABLE facies_t3 AS SELECT facies_t2.case_ID, SUM(SUM) total FROM 

facies_t2 GROUP BY case_ID; 

CREATE TEMPORARY TABLE chosen_cases AS SELECT facies_t2.case_ID, SUM(SUM) PARTIAL 

FROM facies_t2 WHERE facies_type LIKE '%S%' GROUP BY case_ID; 

CREATE TEMPORARY TABLE suitable_cases AS SELECT DISTINCT chosen_cases.case_ID FROM 

chosen_cases JOIN facies_t3 ON chosen_cases.case_ID = facies_t3.case_ID WHERE 

PARTIAL/total > 0.5; 

CREATE TEMPORARY TABLE selected_facies AS SELECT b_subsets.case_ID, 

g_3_facies.facies_ID, g_3_facies.facies_type FROM suitable_cases JOIN b_subsets ON 

suitable_cases.case_ID = b_subsets.case_ID JOIN c_1_depositional_elements ON 

b_subsets.subset_ID = c_1_depositional_elements.subset_ID JOIN 

e_2_architectural_elements ON c_1_depositional_elements.dep_el_ID = 

e_2_architectural_elements.dep_el_ID JOIN g_3_facies ON 

e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID WHERE 

g_3_facies.thickness IS NOT NULL AND river_pattern_type = 'Meandering'; 

CREATE TEMPORARY TABLE facies_trans_ID AS (SELECT selected_facies.facies_ID, 

h_3_facies_transitions.trans_facies_ID, h_3_facies_transitions.trans_direction, 

selected_facies.facies_type, h_3_facies_transitions.bound_surf_order FROM 

selected_facies JOIN h_3_facies_transitions ON selected_facies.facies_ID = 

h_3_facies_transitions.facies_ID); 

CREATE TEMPORARY TABLE facies_trans_types AS (SELECT facies_trans_ID.facies_ID, 

facies_trans_ID.trans_facies_ID, IFNULL (facies_trans_ID.facies_type, 'Undefined') 

AS facies_type, IFNULL (selected_facies.facies_type, 'Undefined') AS 

transitional_type, facies_trans_ID.trans_direction, facies_trans_ID.bound_surf_order 

FROM selected_facies JOIN facies_trans_ID ON selected_facies.facies_ID = 

facies_trans_ID.trans_facies_ID WHERE facies_trans_ID.trans_direction = 'Vertical'); 

CREATE TEMPORARY TABLE facies_vertical_trans_strings AS(SELECT 

facies_trans_types.facies_type, facies_trans_types.transitional_type, CONCAT 

(facies_trans_types.facies_type, '_', facies_trans_types.transitional_type) AS 

trans_string FROM facies_trans_types); 

CREATE TEMPORARY TABLE facies_vertical_trans_counts SELECT facies_type, 

transitional_type, COUNT(trans_string) FROM facies_vertical_trans_strings 

GROUP BY trans_string; 

SELECT * FROM facies_vertical_trans_counts; 

 

It returns the count of vertical transition between facies units from meandering systems with 
sandy facies representing over 50% of total measured thickness; undefined (NULL-valued) 
facies types are included in the query as ‘Undefined’. 

 

tq_02 – Vertical architectural-element transitions within 6th-order channel-
belts 

CREATE TEMPORARY TABLE new_trans_ID AS (SELECT 

c_1_depositional_elements.dep_el_type, e_2_architectural_elements.arch_el_ID, 

f_2_arch_el_transitions.trans_arch_el_ID, f_2_arch_el_transitions.trans_direction, 

e_2_architectural_elements.arch_el_type, f_2_arch_el_transitions.bound_surf_order 

FROM (c_1_depositional_elements JOIN e_2_architectural_elements ON 

c_1_depositional_elements.dep_el_ID = e_2_architectural_elements.dep_el_ID) JOIN 

f_2_arch_el_transitions ON e_2_architectural_elements.arch_el_ID = 

f_2_arch_el_transitions.arch_el_ID WHERE c_1_depositional_elements.dep_el_type = 

'Channel-complex'); 

CREATE TEMPORARY TABLE new_trans_types AS (SELECT new_trans_ID.dep_el_type, 

new_trans_ID.arch_el_ID, new_trans_ID.trans_arch_el_ID, IFNULL 

(new_trans_ID.arch_el_type, 'Undefined') AS arch_el_type, IFNULL 

(e_2_architectural_elements.arch_el_type, 'Undefined') AS transitional_type, 

new_trans_ID.trans_direction, new_trans_ID.bound_surf_order FROM 

e_2_architectural_elements JOIN new_trans_ID ON 

e_2_architectural_elements.arch_el_ID = new_trans_ID.trans_arch_el_ID) 

ORDER BY dep_el_type; 

CREATE TEMPORARY TABLE vertical_trans_under5 AS(SELECT new_trans_types.dep_el_type, 

new_trans_types.arch_el_type, new_trans_types.transitional_type, CONCAT 

(new_trans_types.arch_el_type, '_', new_trans_types.transitional_type) AS 

trans_string FROM new_trans_types WHERE trans_direction = 'Vertical' AND 
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(new_trans_types.bound_surf_order = '4th' OR new_trans_types.bound_surf_order = ' 

5th') ORDER BY new_trans_types.arch_el_ID); 

CREATE TEMPORARY TABLE vertical_trans_under5_counts SELECT dep_el_type, 

arch_el_type, transitional_type, COUNT(trans_string) FROM vertical_trans_under5 

GROUP BY trans_string; 

SELECT * FROM vertical_trans_under5_counts; 

 
It returns the count of all the architectural elements transitions occurring in a given direction 
(here: Vertical) across determined bounding surface orders (here: 4

th
 and 5

th
), with lower 

elements belonging to channel-complexes; undefined (NULL-valued) facies types are 
included in the query as ‘Undefined’. 

 

tq_04 – Vertical facies-unit transitions within 4th-order channel-fills 

CREATE TEMPORARY TABLE facies_trans_ID AS (SELECT g_3_facies.facies_ID, 

h_3_facies_transitions.trans_facies_ID, e_2_architectural_elements.arch_el_type, 

h_3_facies_transitions.trans_direction, g_3_facies.facies_type, 

h_3_facies_transitions.bound_surf_order FROM (e_2_architectural_elements JOIN 

g_3_facies ON e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID) JOIN 

h_3_facies_transitions ON g_3_facies.facies_ID = h_3_facies_transitions.facies_ID); 

CREATE TEMPORARY TABLE facies_trans_types AS (SELECT facies_trans_ID.facies_ID, 

facies_trans_ID.trans_facies_ID, IFNULL (facies_trans_ID.facies_type, 'Undefined') 

AS facies_type, facies_trans_ID.arch_el_type, IFNULL (g_3_facies.facies_type, 

'Undefined') AS transitional_type, facies_trans_ID.trans_direction, 

facies_trans_ID.bound_surf_order FROM g_3_facies JOIN facies_trans_ID ON 

g_3_facies.facies_ID = facies_trans_ID.trans_facies_ID WHERE (arch_el_type='CH' AND 

trans_direction='Vertical' AND (bound_surf_order='2nd' OR bound_surf_order='3rd'))); 

CREATE TEMPORARY TABLE facies_vertical_trans_strings AS(SELECT 

facies_trans_types.arch_el_type, facies_trans_types.facies_type, 

facies_trans_types.transitional_type, CONCAT (facies_trans_types.facies_type, '_', 

facies_trans_types.transitional_type) AS trans_string FROM facies_trans_types); 

CREATE TEMPORARY TABLE facies_vertical_trans_counts SELECT arch_el_type, 

facies_type, transitional_type, COUNT(trans_string) FROM 

facies_vertical_trans_strings GROUP BY trans_string; 

SELECT * FROM facies_vertical_trans_counts; 

 
It returns the count of all the facies transitions occurring in a given direction (here: Vertical) 
within a given architectural element type (here: CH) across determined bounding surface 
orders (here: 2

nd
 and 3

rd
); undefined (NULL-valued) facies types are included in the query 

as ‘Undefined’. 

 

tq_09 – Vertical facies-unit transitions from 1D subsets from individual case 
study 

CREATE TEMPORARY TABLE facies_trans_ID AS (SELECT a_source_data.case_ID, 

b_subsets.subset_ID, g_3_facies.facies_ID, h_3_facies_transitions.trans_facies_ID, 

e_2_architectural_elements.arch_el_type, h_3_facies_transitions.trans_direction, 

g_3_facies.facies_type, h_3_facies_transitions.bound_surf_order FROM 

((((a_source_data JOIN b_subsets ON a_source_data.case_ID = b_subsets.case_ID) JOIN 

c_1_depositional_elements ON b_subsets.subset_ID = 

c_1_depositional_elements.subset_ID) JOIN e_2_architectural_elements ON 

c_1_depositional_elements.dep_el_ID = e_2_architectural_elements.dep_el_ID) JOIN 

g_3_facies ON e_2_architectural_elements.arch_el_ID = g_3_facies.arch_el_ID) JOIN 

h_3_facies_transitions ON g_3_facies.facies_ID = h_3_facies_transitions.facies_ID 

WHERE b_subsets.case_ID = 23 AND spatial_type = '1D vertical'); 

CREATE TEMPORARY TABLE facies_trans_types AS (SELECT facies_trans_ID.facies_ID, 

facies_trans_ID.trans_facies_ID, IFNULL (facies_trans_ID.facies_type, 'Undefined') 

AS facies_type, IFNULL (g_3_facies.facies_type, 'Undefined') AS transitional_type, 

facies_trans_ID.trans_direction, facies_trans_ID.bound_surf_order FROM g_3_facies 

JOIN facies_trans_ID ON g_3_facies.facies_ID = facies_trans_ID.trans_facies_ID WHERE 

facies_trans_ID.facies_ID IS NOT NULL AND facies_trans_ID.trans_facies_ID IS NOT 

NULL AND trans_direction='Vertical'); 

CREATE TEMPORARY TABLE facies_vertical_trans_strings AS(SELECT 

facies_trans_types.facies_type, facies_trans_types.transitional_type, CONCAT 

(facies_trans_types.facies_type, '_', facies_trans_types.transitional_type) AS 

trans_string FROM facies_trans_types); 

CREATE TEMPORARY TABLE facies_vertical_trans_counts SELECT facies_type, 

transitional_type, COUNT(trans_string) FROM facies_vertical_trans_strings 

GROUP BY trans_string; 

SELECT * FROM facies_vertical_trans_counts; 

 



256 

Appendix B  

It returns the count of all the facies transitions occurring in a given direction (here: Vertical) 
for a given case study (here: 23, i.e. Cain, 2009) for 1D vertical datasets (logs) only; 
undefined (NULL-valued) facies types are included in the query as ‘Undefined’. 

 

tq_14 – Count of architectural elements laterally-adjacent a CH element, 
classified on type 

CREATE TEMPORARY TABLE new_trans_ID AS (SELECT 

c_1_depositional_elements.dep_el_type, e_2_architectural_elements.arch_el_ID, 

e_2_architectural_elements.width, f_2_arch_el_transitions.trans_arch_el_ID, 

f_2_arch_el_transitions.trans_direction, e_2_architectural_elements.arch_el_type, 

f_2_arch_el_transitions.bound_surf_order FROM (c_1_depositional_elements JOIN 

e_2_architectural_elements ON c_1_depositional_elements.dep_el_ID = 

e_2_architectural_elements.dep_el_ID) JOIN f_2_arch_el_transitions ON 

e_2_architectural_elements.arch_el_ID = f_2_arch_el_transitions.arch_el_ID); 

CREATE TEMPORARY TABLE new_trans_types AS (SELECT new_trans_ID.dep_el_type, 

new_trans_ID.arch_el_ID, new_trans_ID.trans_arch_el_ID, IFNULL 

(new_trans_ID.arch_el_type, 'Undefined') AS arch_el_type, new_trans_ID.width, IFNULL 

(e_2_architectural_elements.arch_el_type, 'Undefined') AS transitional_type, 

new_trans_ID.trans_direction, new_trans_ID.bound_surf_order FROM 

e_2_architectural_elements JOIN new_trans_ID ON 

e_2_architectural_elements.arch_el_ID = new_trans_ID.trans_arch_el_ID) ORDER BY 

dep_el_type; 

CREATE TEMPORARY TABLE lateral_trans AS(SELECT new_trans_types.dep_el_type, 

new_trans_types.arch_el_type, new_trans_types.width, 

new_trans_types.transitional_type, CONCAT (new_trans_types.arch_el_type, '_', 

new_trans_types.transitional_type) AS trans_string FROM new_trans_types WHERE 

trans_direction = 'Lateral' AND arch_el_type = 'CH' AND width > 10 ORDER BY 

new_trans_types.arch_el_ID); 

CREATE TEMPORARY TABLE lateral_trans_counts SELECT dep_el_type, arch_el_type, 

transitional_type, COUNT(trans_string) FROM lateral_trans GROUP BY trans_string; 

SELECT * FROM lateral_trans_counts ORDER BY dep_el_type; 

 
It returns the count of all the architectural elements laterally transitional to a given type 
(here: CH) of element, when the width of the latter is larger than a cut-off value (here: 10 m); 
the transitions are classified according to the type of depositional element the CH 
architectural element belongs to; undefined (NULL-valued) facies types are included in the 
query as ‘Undefined’. 

 

tq_15 – Lateral transitions involving 3 architectural elements, conditioned on 
left-element type 

CREATE TEMPORARY TABLE new_trans_ID AS (SELECT 

e_2_architectural_elements.arch_el_ID, f_2_arch_el_transitions.trans_arch_el_ID, 

f_2_arch_el_transitions.trans_direction, e_2_architectural_elements.arch_el_type, 

f_2_arch_el_transitions.bound_surf_order FROM e_2_architectural_elements JOIN 

f_2_arch_el_transitions ON e_2_architectural_elements.arch_el_ID = 

f_2_arch_el_transitions.arch_el_ID); 

CREATE TEMPORARY TABLE new_trans_types AS (SELECT new_trans_ID.arch_el_ID, 

new_trans_ID.trans_arch_el_ID, IFNULL (new_trans_ID.arch_el_type, 'Undefined') AS 

arch_el_type, IFNULL (e_2_architectural_elements.arch_el_type, 'Undefined') AS 

transitional_type, new_trans_ID.trans_direction, new_trans_ID.bound_surf_order FROM 

e_2_architectural_elements JOIN new_trans_ID ON 

e_2_architectural_elements.arch_el_ID = new_trans_ID.trans_arch_el_ID WHERE 

trans_direction = 'Lateral' AND new_trans_ID.arch_el_type = 'CH'); 

CREATE TEMPORARY TABLE new_trans_ID_from_CH AS (SELECT 

new_trans_types.trans_arch_el_ID AS arch_el_ID, 

f_2_arch_el_transitions.trans_arch_el_ID, f_2_arch_el_transitions.trans_direction, 

new_trans_types.transitional_type AS arch_el_type, 

f_2_arch_el_transitions.bound_surf_order FROM new_trans_types JOIN 

f_2_arch_el_transitions ON new_trans_types.trans_arch_el_ID = 

f_2_arch_el_transitions.arch_el_ID WHERE f_2_arch_el_transitions.trans_direction = 

'Lateral'); 

CREATE TEMPORARY TABLE new_trans_types_from_CH AS (SELECT 

new_trans_ID_from_CH.arch_el_ID, new_trans_ID_from_CH.trans_arch_el_ID, 

new_trans_ID_from_CH.arch_el_type, IFNULL (e_2_architectural_elements.arch_el_type, 

'Undefined') AS transitional_type, new_trans_ID_from_CH.trans_direction, 

new_trans_ID_from_CH.bound_surf_order FROM e_2_architectural_elements JOIN 

new_trans_ID_from_CH ON e_2_architectural_elements.arch_el_ID = 

new_trans_ID_from_CH.trans_arch_el_ID); 
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CREATE TEMPORARY TABLE unique_trans_types_from_CH SELECT CONCAT (`arch_el_ID`, 

'_',`trans_arch_el_ID`) AS trans_string, `arch_el_ID`, `trans_arch_el_ID`, 

`arch_el_type`, `transitional_type`, `trans_direction`, `bound_surf_order` FROM 

new_trans_types_from_CH; ALTER IGNORE TABLE unique_trans_types_from_CH ADD UNIQUE 

INDEX (trans_string); 

CREATE TEMPORARY TABLE lateral_trans AS(SELECT unique_trans_types_from_CH 

.arch_el_type, unique_trans_types_from_CH.transitional_type, CONCAT 

(unique_trans_types_from_CH.arch_el_type, '_', unique_trans_types_from_CH 

.transitional_type) AS trans_string FROM unique_trans_types_from_CH 

ORDER BY unique_trans_types_from_CH.arch_el_ID); 

CREATE TEMPORARY TABLE lateral_trans_counts SELECT arch_el_type, transitional_type, 

COUNT(trans_string) FROM lateral_trans GROUP BY trans_string; 

SELECT * FROM lateral_trans_counts; 

 
It returns the count of all right-lateral architectural element transitions involving elements 
that are neighbouring, in the left-lateral direction, a given type (here: CH) of element: (CH 
) XX  XX. Undefined (NULL-valued) facies types are included in the query as 
‘Undefined’. 

 

tq_16 – Lateral transitions involving 3 architectural elements, conditioned on 
right-element type 

CREATE TEMPORARY TABLE new_trans_ID AS (SELECT 

e_2_architectural_elements.arch_el_ID, f_2_arch_el_transitions.trans_arch_el_ID, 

f_2_arch_el_transitions.trans_direction, e_2_architectural_elements.arch_el_type, 

f_2_arch_el_transitions.bound_surf_order FROM e_2_architectural_elements JOIN 

f_2_arch_el_transitions ON e_2_architectural_elements.arch_el_ID = 

f_2_arch_el_transitions.arch_el_ID); 

CREATE TEMPORARY TABLE new_trans_types AS (SELECT new_trans_ID.arch_el_ID, 

new_trans_ID.trans_arch_el_ID, IFNULL (new_trans_ID.arch_el_type, 'Undefined') AS 

arch_el_type, IFNULL (e_2_architectural_elements.arch_el_type, 'Undefined') AS 

transitional_type, new_trans_ID.trans_direction, new_trans_ID.bound_surf_order FROM 

e_2_architectural_elements JOIN new_trans_ID ON 

e_2_architectural_elements.arch_el_ID = new_trans_ID.trans_arch_el_ID WHERE 

trans_direction = 'Lateral' AND e_2_architectural_elements.arch_el_type = 'CH'); 

CREATE TEMPORARY TABLE new_trans_ID_from_CH AS (SELECT new_trans_types.arch_el_ID, 

f_2_arch_el_transitions.arch_el_ID AS trans_arch_el_ID, 

f_2_arch_el_transitions.trans_direction, new_trans_types.arch_el_type, 

f_2_arch_el_transitions.bound_surf_order FROM new_trans_types JOIN 

f_2_arch_el_transitions ON new_trans_types.arch_el_ID = 

f_2_arch_el_transitions.trans_arch_el_ID WHERE 

f_2_arch_el_transitions.trans_direction = 'Lateral'); 

CREATE TEMPORARY TABLE new_trans_types_from_CH AS (SELECT 

new_trans_ID_from_CH.arch_el_ID, new_trans_ID_from_CH.trans_arch_el_ID, 

new_trans_ID_from_CH.arch_el_type, IFNULL (e_2_architectural_elements.arch_el_type, 

'Undefined') AS transitional_type, new_trans_ID_from_CH.trans_direction, 

new_trans_ID_from_CH.bound_surf_order FROM e_2_architectural_elements JOIN 

new_trans_ID_from_CH ON e_2_architectural_elements.arch_el_ID = 

new_trans_ID_from_CH.trans_arch_el_ID); 

CREATE TEMPORARY TABLE unique_trans_types_from_CH SELECT CONCAT (`arch_el_ID`, 

'_',`trans_arch_el_ID`) AS trans_string, `arch_el_ID`, `trans_arch_el_ID`, 

`arch_el_type`, `transitional_type`, `trans_direction`, `bound_surf_order` FROM 

new_trans_types_from_CH; ALTER IGNORE TABLE unique_trans_types_from_CH ADD UNIQUE 

INDEX (trans_string); 

CREATE TEMPORARY TABLE lateral_trans AS(SELECT unique_trans_types_from_CH 

.arch_el_type, unique_trans_types_from_CH.transitional_type, CONCAT 

(unique_trans_types_from_CH.arch_el_type, '_', unique_trans_types_from_CH 

.transitional_type) AS trans_string FROM unique_trans_types_from_CH ORDER BY 

unique_trans_types_from_CH.arch_el_ID); 

CREATE TEMPORARY TABLE lateral_trans_counts SELECT arch_el_type, transitional_type, 

COUNT(trans_string) FROM lateral_trans GROUP BY trans_string; 

SELECT * FROM lateral_trans_counts; 

 
It returns the count of all left-lateral architectural element transitions involving elements that 
are neighbouring, in the right-lateral direction, a given type (here: CH) of element: XX  XX 
( CH). Undefined (NULL-valued) facies types are included in the query as ‘Undefined’. 

 

tq_20 – Count of facies units overlying a given facies types 

CREATE TEMPORARY TABLE new_trans_ID AS ( SELECT g_3_facies.facies_ID, 
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h_3_facies_transitions.trans_facies_ID, h_3_facies_transitions.trans_direction, 

g_3_facies.facies_type, h_3_facies_transitions.bound_surf_order FROM g_3_facies JOIN 

h_3_facies_transitions ON g_3_facies.facies_ID = h_3_facies_transitions.facies_ID); 

CREATE TEMPORARY TABLE new_trans_types AS (SELECT new_trans_ID.facies_ID, 

new_trans_ID.trans_facies_ID, IFNULL (new_trans_ID.facies_type, 'Undefined') AS 

facies_type, IFNULL (g_3_facies.facies_type, 'Undefined') AS transitional_type, 

new_trans_ID.trans_direction, new_trans_ID.bound_surf_order FROM g_3_facies JOIN 

new_trans_ID ON g_3_facies.facies_ID = new_trans_ID.trans_facies_ID); 

CREATE TEMPORARY TABLE vertical_trans AS(SELECT new_trans_types.facies_type, 

new_trans_types.transitional_type, CONCAT (new_trans_types.facies_type, '_', 

new_trans_types.transitional_type) AS trans_string FROM new_trans_types WHERE 

trans_direction = 'Vertical' AND facies_type = 'Sd' ORDER BY 

new_trans_types.facies_ID); 

CREATE TEMPORARY TABLE vertical_trans_counts SELECT facies_type, transitional_type, 

COUNT(trans_string) FROM vertical_trans GROUP BY trans_string; 

SELECT * FROM vertical_trans_counts; 

 
It returns the count of all the facies units overlying a given type (here: Sd) of lithofacies; 
undefined (NULL-valued) facies types are included in the query as ‘Undefined’. 

 

tq_19 – Count of facies units underlying a given facies types 

CREATE TEMPORARY TABLE new_trans_ID AS (SELECT g_3_facies.facies_ID, 

h_3_facies_transitions.trans_facies_ID, h_3_facies_transitions.trans_direction, 

g_3_facies.facies_type, h_3_facies_transitions.bound_surf_order FROM g_3_facies JOIN 

h_3_facies_transitions ON g_3_facies.facies_ID = 

h_3_facies_transitions.facies_ID); 

CREATE TEMPORARY TABLE new_trans_types AS (SELECT new_trans_ID.facies_ID, 

new_trans_ID.trans_facies_ID, IFNULL (new_trans_ID.facies_type, 'Undefined') AS 

facies_type, IFNULL (g_3_facies.facies_type, 'Undefined') AS transitional_type, 

new_trans_ID.trans_direction, new_trans_ID.bound_surf_order FROM g_3_facies JOIN 

new_trans_ID ON g_3_facies.facies_ID = new_trans_ID.trans_facies_ID); 

CREATE TEMPORARY TABLE vertical_trans AS(SELECT new_trans_types.facies_type, 

new_trans_types.transitional_type, CONCAT (new_trans_types.facies_type, '_', 

new_trans_types.transitional_type) AS trans_string FROM new_trans_types WHERE 

trans_direction = 'Vertical' AND transitional_type = 'Sd' ORDER BY 

new_trans_types.facies_ID); 

CREATE TEMPORARY TABLE vertical_trans_counts SELECT facies_type, transitional_type, 

COUNT(trans_string) FROM vertical_trans GROUP BY trans_string; 

SELECT * FROM vertical_trans_counts; 

 
It returns the count of all the facies units underlying a given type (here: Sd) of lithofacies; 
undefined (NULL-valued) facies types are included in the query as ‘Undefined’. 

 

tq_22 – Derivation of groups of 5 laterally-adjacent CH architectural elements 

CREATE TEMPORARY TABLE new_trans_ID AS (SELECT 

e_2_architectural_elements.arch_el_ID, f_2_arch_el_transitions.trans_arch_el_ID, 

f_2_arch_el_transitions.trans_direction, e_2_architectural_elements.arch_el_type 

FROM e_2_architectural_elements JOIN f_2_arch_el_transitions ON 

e_2_architectural_elements.arch_el_ID = f_2_arch_el_transitions.arch_el_ID); CREATE 

TEMPORARY TABLE new_trans_types AS (SELECT new_trans_ID.arch_el_ID, 

new_trans_ID.trans_arch_el_ID, IFNULL (new_trans_ID.arch_el_type, 'Undefined') AS 

arch_el_type, IFNULL (e_2_architectural_elements.arch_el_type, 'Undefined') AS 

transitional_type, new_trans_ID.trans_direction FROM e_2_architectural_elements JOIN 

new_trans_ID ON e_2_architectural_elements.arch_el_ID = 

new_trans_ID.trans_arch_el_ID WHERE trans_direction = 'Lateral' AND 

new_trans_ID.arch_el_type = 'CH'); 

CREATE TEMPORARY TABLE new_trans_ID_2 AS (SELECT new_trans_types.trans_arch_el_ID AS 

arch_el_ID, f_2_arch_el_transitions.trans_arch_el_ID, 

f_2_arch_el_transitions.trans_direction, new_trans_types.transitional_type AS 

arch_el_type FROM new_trans_types JOIN f_2_arch_el_transitions ON 

new_trans_types.trans_arch_el_ID = f_2_arch_el_transitions.arch_el_ID WHERE 

f_2_arch_el_transitions.trans_direction = 'Lateral' AND 

new_trans_types.transitional_type = 'CH'); 

CREATE TEMPORARY TABLE new_trans_types_2 AS (SELECT new_trans_ID_2.arch_el_ID, 

new_trans_ID_2.trans_arch_el_ID, IFNULL (new_trans_ID_2.arch_el_type, 'Undefined') 

AS arch_el_type, IFNULL (e_2_architectural_elements.arch_el_type, 'Undefined') AS 

transitional_type, new_trans_ID_2.trans_direction FROM e_2_architectural_elements 

JOIN new_trans_ID_2 ON e_2_architectural_elements.arch_el_ID = 

new_trans_ID_2.trans_arch_el_ID); 

CREATE TEMPORARY TABLE new_trans_ID_3 AS (SELECT new_trans_types_2.trans_arch_el_ID 

AS arch_el_ID, f_2_arch_el_transitions.trans_arch_el_ID, 
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f_2_arch_el_transitions.trans_direction, new_trans_types_2.transitional_type AS 

arch_el_type FROM new_trans_types_2 JOIN f_2_arch_el_transitions ON 

new_trans_types_2.trans_arch_el_ID = f_2_arch_el_transitions.arch_el_ID WHERE 

f_2_arch_el_transitions.trans_direction = 'Lateral' AND 

new_trans_types_2.transitional_type = 'CH'); 

CREATE TEMPORARY TABLE new_trans_types_3 AS (SELECT new_trans_ID_3.arch_el_ID, 

new_trans_ID_3.trans_arch_el_ID, IFNULL (new_trans_ID_3.arch_el_type, 'Undefined') 

AS arch_el_type, IFNULL (e_2_architectural_elements.arch_el_type, 'Undefined') AS 

transitional_type, new_trans_ID_3.trans_direction FROM e_2_architectural_elements 

JOIN new_trans_ID_3 ON e_2_architectural_elements.arch_el_ID = 

new_trans_ID_3.trans_arch_el_ID); 

CREATE TEMPORARY TABLE new_trans_ID_4 AS (SELECT new_trans_types_3.trans_arch_el_ID 

AS arch_el_ID, f_2_arch_el_transitions.trans_arch_el_ID, 

f_2_arch_el_transitions.trans_direction, new_trans_types_3.transitional_type AS 

arch_el_type FROM new_trans_types_3 JOIN f_2_arch_el_transitions ON 

new_trans_types_3.trans_arch_el_ID = f_2_arch_el_transitions.arch_el_ID WHERE 

f_2_arch_el_transitions.trans_direction = 'Lateral' AND 

new_trans_types_3.transitional_type = 'CH'); 

CREATE TEMPORARY TABLE new_trans_types_4 AS (SELECT new_trans_ID_4.arch_el_ID, 

new_trans_ID_4.trans_arch_el_ID, IFNULL (new_trans_ID_4.arch_el_type, 'Undefined') 

AS arch_el_type, IFNULL (e_2_architectural_elements.arch_el_type, 'Undefined') AS 

transitional_type, new_trans_ID_4.trans_direction FROM e_2_architectural_elements 

JOIN new_trans_ID_4 ON e_2_architectural_elements.arch_el_ID = 

new_trans_ID_4.trans_arch_el_ID WHERE e_2_architectural_elements.arch_el_type = 

'CH'); 

SELECT DISTINCT new_trans_ID.arch_el_ID, new_trans_ID.arch_el_type, 

new_trans_types.trans_arch_el_ID, new_trans_types.transitional_type, 

new_trans_types_2.trans_arch_el_ID, new_trans_types_2.transitional_type, 

new_trans_types_3.trans_arch_el_ID, new_trans_types_3.transitional_type, 

new_trans_types_4.trans_arch_el_ID, new_trans_types_4.transitional_type FROM 

new_trans_ID JOIN new_trans_types ON new_trans_ID.arch_el_ID = 

new_trans_types.arch_el_ID JOIN new_trans_types_2 ON 

new_trans_types.trans_arch_el_ID = new_trans_types_2.arch_el_ID JOIN 

new_trans_types_3 ON new_trans_types_2.trans_arch_el_ID = 

new_trans_types_3.arch_el_ID JOIN new_trans_types_4 ON 

new_trans_types_3.trans_arch_el_ID = new_trans_types_4.arch_el_ID; 

 
It returns a group of a given number (here 5 out of groups of at least 5) of architectural 
elements that are laterally transitional and belong to the same element type (here: CH). 

 

tq_23 – Derivation of groups of 5 laterally-adjacent CH architectural elements 
excluding mutual erosional transitions 

CREATE TEMPORARY TABLE new_trans_ID AS (SELECT 

e_2_architectural_elements.arch_el_ID, f_2_arch_el_transitions.trans_arch_el_ID, 

f_2_arch_el_transitions.trans_direction, e_2_architectural_elements.arch_el_type 

FROM e_2_architectural_elements JOIN f_2_arch_el_transitions ON 

e_2_architectural_elements.arch_el_ID = f_2_arch_el_transitions.arch_el_ID); 

CREATE TEMPORARY TABLE new_trans_types AS (SELECT new_trans_ID.arch_el_ID, 

new_trans_ID.trans_arch_el_ID, IFNULL (new_trans_ID.arch_el_type, 'Undefined') AS 

arch_el_type, IFNULL (e_2_architectural_elements.arch_el_type, 'Undefined') AS 

transitional_type, new_trans_ID.trans_direction FROM e_2_architectural_elements JOIN 

new_trans_ID ON e_2_architectural_elements.arch_el_ID = 

new_trans_ID.trans_arch_el_ID WHERE trans_direction = 'Lateral' AND 

new_trans_ID.arch_el_type = 'CH'); 

CREATE TEMPORARY TABLE new_trans_ID_2 AS (SELECT new_trans_types.trans_arch_el_ID AS 

arch_el_ID, f_2_arch_el_transitions.trans_arch_el_ID, 

f_2_arch_el_transitions.trans_direction, new_trans_types.transitional_type AS 

arch_el_type FROM new_trans_types JOIN f_2_arch_el_transitions ON 

new_trans_types.trans_arch_el_ID = f_2_arch_el_transitions.arch_el_ID WHERE 

f_2_arch_el_transitions.trans_direction = 'Lateral' AND 

new_trans_types.transitional_type = 'CH'); 

CREATE TEMPORARY TABLE new_trans_types_2 AS (SELECT new_trans_ID_2.arch_el_ID, 

new_trans_ID_2.trans_arch_el_ID, IFNULL (new_trans_ID_2.arch_el_type, 'Undefined') 

AS arch_el_type, IFNULL (e_2_architectural_elements.arch_el_type, 'Undefined') AS 

transitional_type, new_trans_ID_2.trans_direction FROM e_2_architectural_elements 

JOIN new_trans_ID_2 ON e_2_architectural_elements.arch_el_ID = 

new_trans_ID_2.trans_arch_el_ID); 

CREATE TEMPORARY TABLE new_trans_ID_3 AS (SELECT new_trans_types_2.trans_arch_el_ID 

AS arch_el_ID, f_2_arch_el_transitions.trans_arch_el_ID, 

f_2_arch_el_transitions.trans_direction, new_trans_types_2.transitional_type AS 

arch_el_type FROM new_trans_types_2 JOIN f_2_arch_el_transitions ON 

new_trans_types_2.trans_arch_el_ID = f_2_arch_el_transitions.arch_el_ID WHERE 

f_2_arch_el_transitions.trans_direction = 'Lateral' AND 

new_trans_types_2.transitional_type = 'CH'); 
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CREATE TEMPORARY TABLE new_trans_types_3 AS (SELECT new_trans_ID_3.arch_el_ID, 

new_trans_ID_3.trans_arch_el_ID, IFNULL (new_trans_ID_3.arch_el_type, 'Undefined') 

AS arch_el_type, IFNULL (e_2_architectural_elements.arch_el_type, 'Undefined') AS 

transitional_type, new_trans_ID_3.trans_direction FROM e_2_architectural_elements 

JOIN new_trans_ID_3 ON e_2_architectural_elements.arch_el_ID = 

new_trans_ID_3.trans_arch_el_ID); 

CREATE TEMPORARY TABLE new_trans_ID_4 AS (SELECT new_trans_types_3.trans_arch_el_ID 

AS arch_el_ID, f_2_arch_el_transitions.trans_arch_el_ID, 

f_2_arch_el_transitions.trans_direction, new_trans_types_3.transitional_type AS 

arch_el_type FROM new_trans_types_3 JOIN f_2_arch_el_transitions ON 

new_trans_types_3.trans_arch_el_ID = f_2_arch_el_transitions.arch_el_ID WHERE 

f_2_arch_el_transitions.trans_direction = 'Lateral' AND 

new_trans_types_3.transitional_type = 'CH'); 

CREATE TEMPORARY TABLE new_trans_types_4 AS (SELECT new_trans_ID_4.arch_el_ID, 

new_trans_ID_4.trans_arch_el_ID, IFNULL (new_trans_ID_4.arch_el_type, 'Undefined') 

AS arch_el_type, IFNULL (e_2_architectural_elements.arch_el_type, 'Undefined') AS 

transitional_type, new_trans_ID_4.trans_direction FROM e_2_architectural_elements 

JOIN new_trans_ID_4 ON e_2_architectural_elements.arch_el_ID = 

new_trans_ID_4.trans_arch_el_ID WHERE e_2_architectural_elements.arch_el_type = 

'CH'); 

SELECT DISTINCT new_trans_ID.arch_el_ID, new_trans_ID.arch_el_type, 

new_trans_types.trans_arch_el_ID, new_trans_types.transitional_type, 

new_trans_types_2.trans_arch_el_ID, new_trans_types_2.transitional_type, 

new_trans_types_3.trans_arch_el_ID, new_trans_types_3.transitional_type, 

new_trans_types_4.trans_arch_el_ID, new_trans_types_4.transitional_type 

FROM new_trans_ID JOIN new_trans_types ON new_trans_ID.arch_el_ID = 

new_trans_types.arch_el_ID JOIN new_trans_types_2 ON 

new_trans_types.trans_arch_el_ID = new_trans_types_2.arch_el_ID JOIN 

new_trans_types_3 ON new_trans_types_2.trans_arch_el_ID = 

new_trans_types_3.arch_el_ID JOIN new_trans_types_4 ON 

new_trans_types_3.trans_arch_el_ID = new_trans_types_4.arch_el_ID WHERE 

(new_trans_ID.arch_el_ID <> new_trans_types_2.trans_arch_el_ID AND 

new_trans_types.trans_arch_el_ID <> new_trans_types_3.trans_arch_el_ID AND 

new_trans_types_2.trans_arch_el_ID <> new_trans_types_4.trans_arch_el_ID); 

 

It returns a group of a given number (here 5 out of groups of at least 5) of architectural 
elements that are laterally transitional and belong to the same element type (here: CH), 
excluding erosive mutual transitions. This type of query is required for obtaining material 
units from genetic units. 

 

tq_24 – Derivation of groups of 3 laterally-adjacent CH architectural elements, 
excluding mutual erosional transitions, ensuring that the group is bounded 
by non-CH elements 

CREATE TEMPORARY TABLE new_trans_ID AS (SELECT 

e_2_architectural_elements.arch_el_ID, f_2_arch_el_transitions.trans_arch_el_ID, 

f_2_arch_el_transitions.trans_direction, e_2_architectural_elements.arch_el_type 

FROM e_2_architectural_elements JOIN f_2_arch_el_transitions ON 

e_2_architectural_elements.arch_el_ID = f_2_arch_el_transitions.arch_el_ID); 

CREATE TEMPORARY TABLE new_trans_types AS (SELECT new_trans_ID.arch_el_ID, 

new_trans_ID.trans_arch_el_ID, IFNULL (new_trans_ID.arch_el_type, 'Undefined') AS 

arch_el_type, IFNULL (e_2_architectural_elements.arch_el_type, 'Undefined') AS 

transitional_type, new_trans_ID.trans_direction FROM e_2_architectural_elements JOIN 

new_trans_ID ON e_2_architectural_elements.arch_el_ID = 

new_trans_ID.trans_arch_el_ID WHERE trans_direction = 'Lateral' AND 

new_trans_ID.arch_el_type <> 'CH'); 

CREATE TEMPORARY TABLE new_trans_ID_2 AS (SELECT new_trans_types.trans_arch_el_ID AS 

arch_el_ID, f_2_arch_el_transitions.trans_arch_el_ID, 

f_2_arch_el_transitions.trans_direction, new_trans_types.transitional_type AS 

arch_el_type FROM new_trans_types JOIN f_2_arch_el_transitions ON 

new_trans_types.trans_arch_el_ID = f_2_arch_el_transitions.arch_el_ID WHERE 

f_2_arch_el_transitions.trans_direction = 'Lateral' AND 

new_trans_types.transitional_type = 'CH'); 

CREATE TEMPORARY TABLE new_trans_types_2 AS (SELECT new_trans_ID_2.arch_el_ID, 

new_trans_ID_2.trans_arch_el_ID, IFNULL (new_trans_ID_2.arch_el_type, 'Undefined') 

AS arch_el_type, IFNULL (e_2_architectural_elements.arch_el_type, 'Undefined') AS 

transitional_type, new_trans_ID_2.trans_direction FROM e_2_architectural_elements 

JOIN new_trans_ID_2 ON e_2_architectural_elements.arch_el_ID = 

new_trans_ID_2.trans_arch_el_ID); 

CREATE TEMPORARY TABLE new_trans_ID_3 AS (SELECT new_trans_types_2.trans_arch_el_ID 

AS arch_el_ID, f_2_arch_el_transitions.trans_arch_el_ID, 

f_2_arch_el_transitions.trans_direction, new_trans_types_2.transitional_type AS 

arch_el_type FROM new_trans_types_2 JOIN f_2_arch_el_transitions ON 

new_trans_types_2.trans_arch_el_ID = f_2_arch_el_transitions.arch_el_ID WHERE 
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f_2_arch_el_transitions.trans_direction = 'Lateral' AND 

new_trans_types_2.transitional_type = 'CH'); 

CREATE TEMPORARY TABLE new_trans_types_3 AS (SELECT new_trans_ID_3.arch_el_ID, 

new_trans_ID_3.trans_arch_el_ID, IFNULL (new_trans_ID_3.arch_el_type, 'Undefined') 

AS arch_el_type, IFNULL (e_2_architectural_elements.arch_el_type, 'Undefined') AS 

transitional_type, new_trans_ID_3.trans_direction FROM e_2_architectural_elements 

JOIN new_trans_ID_3 ON e_2_architectural_elements.arch_el_ID = 

new_trans_ID_3.trans_arch_el_ID); 

CREATE TEMPORARY TABLE new_trans_ID_4 AS (SELECT new_trans_types_3.trans_arch_el_ID 

AS arch_el_ID, f_2_arch_el_transitions.trans_arch_el_ID, 

f_2_arch_el_transitions.trans_direction, new_trans_types_3.transitional_type AS 

arch_el_type FROM new_trans_types_3 JOIN f_2_arch_el_transitions ON 

new_trans_types_3.trans_arch_el_ID = f_2_arch_el_transitions.arch_el_ID WHERE 

f_2_arch_el_transitions.trans_direction = 'Lateral' AND 

new_trans_types_3.transitional_type = 'CH'); 

CREATE TEMPORARY TABLE new_trans_types_4 AS (SELECT new_trans_ID_4.arch_el_ID, 

new_trans_ID_4.trans_arch_el_ID, IFNULL (new_trans_ID_4.arch_el_type, 'Undefined') 

AS arch_el_type, IFNULL (e_2_architectural_elements.arch_el_type, 'Undefined') AS 

transitional_type, new_trans_ID_4.trans_direction FROM e_2_architectural_elements 

JOIN new_trans_ID_4 ON e_2_architectural_elements.arch_el_ID = 

new_trans_ID_4.trans_arch_el_ID WHERE e_2_architectural_elements.arch_el_type <> 

'CH'); 

SELECT DISTINCT new_trans_ID.arch_el_ID, new_trans_ID.arch_el_type, 

new_trans_types.trans_arch_el_ID, new_trans_types.transitional_type, 

new_trans_types_2.trans_arch_el_ID, new_trans_types_2.transitional_type, 

new_trans_types_3.trans_arch_el_ID, new_trans_types_3.transitional_type, 

new_trans_types_4.trans_arch_el_ID, new_trans_types_4.transitional_type 

FROM new_trans_ID JOIN new_trans_types ON new_trans_ID.arch_el_ID = 

new_trans_types.arch_el_ID JOIN new_trans_types_2 ON 

new_trans_types.trans_arch_el_ID = new_trans_types_2.arch_el_ID JOIN 

new_trans_types_3 ON new_trans_types_2.trans_arch_el_ID = 

new_trans_types_3.arch_el_ID JOIN new_trans_types_4 ON 

new_trans_types_3.trans_arch_el_ID = new_trans_types_4.arch_el_ID WHERE 

(new_trans_ID.arch_el_ID <> new_trans_types_2.trans_arch_el_ID AND 

new_trans_types.trans_arch_el_ID <> new_trans_types_3.trans_arch_el_ID AND 

new_trans_types_2.trans_arch_el_ID <> new_trans_types_4.trans_arch_el_ID); 

 

It returns a group of a given number (here strictly 3) of architectural elements that are 
laterally transitional and belong to the same element type (here: CH) and the element types 
bounding the group, excluding erosive mutual transitions. This type of query is required for 
obtaining material units from genetic units. 
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Appendix C: summary of FAKTS case studies 

 

This appendix contains an account of the case studies included in the FAKTS 

database. The table in the following pages lists the studies in chronological order of 

database inclusion. Further, it identifies the sedimentary basin and lithostratigraphic 

unit or river from which the data originate, and includes reference to the data 

source. A fuller account including additional metadata (e.g. data quality indices, 

location) is given in the form of a digital appendix (D2). 
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Case 
ID 

Basin Case study Source 

1 - Kayenta Fm. 
Miall A. D. (1988) Sed. Geol. 55, 233-
262. 

2 Keuper Basin 
Middle-Upper 

Stubensandstein 
Hornung J., Aigner T. (1999) Sed. Geol. 
129, 215-280. 

3 Po Basin Quaternary Po Basin 
Amorosi A., Pavesi M., Ricci Lucchi M., 
Sarti G., Piccin A. (2008) Sed. Geol. 
209, 58-68. 

4 
Kaiparowits 

Basin 
Straight Cliffs Fm. 

Dalrymple M. (2001) Petrol. Geosci., 7, 
115-122. 

5 Asri Basin Talang Akar Fm. 
Carter D. C. (2003) AAPG Bull. 87, 909-
934. 

6 
East Irish Sea 

Basin 
Ormskirk Sandstone Fm., 
Sherwood Sandstone Gp. 

Meadows N. S. (2006) Geol. J. 41, 93-
122. 

7 Piceance Basin Lower Williams Fork Fm. 
Pranter M. J., Cole R. D., Panjaitan H., 
Sommer N. K. (2009) AAPG Bull. 93, 
1379-1401. 

8 
Chuckanut 

Basin 
Bellingham Bay Mb., 

Chuckanut Fm. 
Johnson S. Y. (1984) Sed. Geol. 38, 
361-391. 

9 Ebro Basin Rio Vero Fm. 
Jones S. J., Frostick L. E., Astin T. R. 
(2001) Sed. Geol. 139, 229-260. 

10 
Barents Sea 

Basin 
Seglodden Mb., Båsnæring 

Fm. 
Hjellbakk A. (1997) Sed. Geol. 114, 
131-161. 

11 Bengal Basin Brahmaputra (Jamuna) 
Bristow C. S. (1993) Geol. Soc. London 
Spec Publ. 75, 277-289. 

12 
Henry 

Mountains Basin 
Salt Wash Mb., Morrison Fm. 

Robinson J. W., McCabe P. J. (1997) 
AAPG Bull. 81, 1267-1291. 

13 - Colville 
Tye R. S. (2004) AAPG Bull. 88, 1123-
1147. 

14 - Kuparuk 
Tye R. S. (2004) AAPG Bull. 88, 1123-
1147. 

15 - Sagavanirktok 
Tye R. S. (2004) AAPG Bull. 88, 1123-
1147. 

16 San Jorge Basin Bajo Barreal Fm. 
Bridge J. S., Jalfin G. A., Georgieff S. 
M. (2000) J. Sed. Res. 70, 341-359. 

17 
Mississippi 
Embayment 

Mississippi 
Jordan D. W., Pryor W. A. (1992) AAPG 
Bull. 76, 1601-1624. 

18 - Kayenta Fm. 
Bromley M. H. (1991) Sed. Geol. 73, 
77-99. 

19 - Kayenta Fm. 
Luttrell P. R. (1993) Sed. Geol. 85, 411-
434. 

20 Kyongsang Sindong Gp. Jo H. R. (2003) Sed. Geol. 161, 269-
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Basin 294. 

21 Loranca Basin 
Upper Unit, Tortola fluvial 

system 

Cuevas Gozalo M. C., Martinius A. W. 
(1993) Geol. Soc. London Spec. Publ. 
73, 79-94. 

22 - Kayenta Fm. 
North C. P., Taylor K. S. (1996) AAPG 
Bull. 80, 811-830. 

23 Paradox Basin Organ Rock Fm. 
Cain S. A. (2009) Unpublished PhD 
Thesis, Keele University, Keele (UK). 

24 - Kayenta Fm. 
Sanabria D. I. (2001) Unpublished PhD 
Thesis, Rice University, Houston (USA). 

25 - Kayenta Fm. 
Stephens M. (1994) Sed. Geol. 90, 179-
211. 

26 - Kayenta Fm. FRG in-house fieldwork. 

27 River Atbara Rift Gash 
Abdullatif O. M. (1989) Sed. Geol. 63, 
171-184. 

28 Ebro Basin Caspe Fm. 

Cuevas Martínez J. L., Cabrera Perez 
L., Marcuello A., Arbues Cazo P., Marzo 
Carpio M., Bellmunt F. (2010) 
Sedimentology 57, 162-189. 

29 - Oukaimeden Fm. 
Fabuel-Perez I., Redfern J., Hodgetts D. 
(2009) Sed. Geol. 218, 103-140. 

30 - Markanda 
Parkash B., Awasthi A. K., Gohain K. 
(1983) Int. Assoc. Sedimentol. Spec. 
Publ. 6, 337-344. 

31 - Oukaimeden Fm. 
Fabuel-Perez I., Hodgetts D., Redfern J. 
(2009) AAPG Bull. 93, 795-827. 

32 
North Devon 

Basin 
Trentishoe Fm., Hangman 

Sandstone Gp. 
Tunbridge I. (1984) Sedimentology 31, 
697-715. 

33 Bowen Basin Rangal Coal Measures 
Fielding C. R., Falkner A. J., Scott S. G. 
(1993) Sed. Geol. 85, 475-497. 

34 Bengal Basin Brahmaputra (Jamuna) 
Best J. L., Ashworth P. J., Bristow C. S., 
Roden J. (2003) J. Sed. Res. 73, 516-
530. 

35 - Composite database 
Fielding C. R., Crane R. C. (1987) 
SEPM Spec. Publ. 39, 321-327. 

36 
Ganges 

Foreland Basin 
Gandak 

Friend P. F., Sinha R. (1993) Geol. Soc. 
London Spec Publ. 75, 105-111. 

37 
Ganges 

Foreland Basin 
Burhi Gandak 

Friend P. F., Sinha R. (1993) Geol. Soc. 
London Spec Publ. 75, 105-111. 

38 
Ganges 

Foreland Basin 
Baghmati 

Friend P. F., Sinha R. (1993) Geol. Soc. 
London Spec Publ. 75, 105-111. 

39 Lake Eyre Basin Thomson (Cooper Creek) FRG in-house sat image analysis. 

40 Roer Valley Rhine-Meuse delta Weerts H. J. T., Bierkens M. F. P. 
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Graben (1993) Sed. Geol. 85, 221-232. 

41 Camaquã Basin Guarda Velha Fm. FRG in-house fieldwork. 

42 

Needwood and 
Stafford, 

Eccleshall 
Basins 

Bunter Pebble Beds (Chester 
Pebble Beds Fm. and 
Cannock Chase Fm.) 

Steel R. J., Thompson D. B. (1983) 
Sedimentology 30, 341-367. 

43 
Tugtutoq-

Ilimaussaq zone 
Majût Mb., Eriksfjord Fm. 

Tirsgaard H., Øxnevad I. E. I. (1998) 
Sed. Geol. 120, 295-317. 

44 Piceance Basin Lower Williams Fork Fm. 
Pranter M. J., Ellison A. I., Cole R. D., 
Patterson P. E. (2007) AAPG Bull. 91, 
1025-1051. 

45 Ebro Basin Sariñena Fm. 
Donselaar M. E., Overeem I. (2008) 
AAPG Bull. 92, 1109-1129. 

46 
Western Interior 

Basin 
Ferron Sandstone Mb., 

Mancos Shale 

Corbeanu R. M.,  Wizevich M. C., 
Bhattacharya J. P., Zeng X., McMechan 
G. A. (2004) AAPG Stud. Geol. 50, 427-
449. 

47 
Upper Awash 

Basin 
Melka Kunture Fm. 

Raynal J.-P., Kieffer G., Bardin G. 
(2004) Studies on the Early Paleolithic 
site of Melka Kunture, Ethiopia. 137-
166. 

48 - Plenty 
Tooth S., Nanson G. C. (2004) Geol. 
Soc. Am. Bull. 116, 802-816. 

49 - Marshall 
Tooth S., Nanson G. C. (2004) Geol. 
Soc. Am. Bull. 116, 802-816. 

50 Altiplano Basin Potoco Fm. 
Hampton B. A., Horton B. K. (2007) 
Sedimentology 54, 1121-1147. 

51 Ainsa Basin Olson Mb., Escanilla Fm. 
Labourdette R. (2011) AAPG Bull. 95, 
585-617. 

52 
Waterberg 

Basin 
Omingonde Fm. 

Holzförster F., Stollhofen H., Stanistreet 
I. G. (1999) J. Afr. Earth. Sci. 29, 105-
123. 

53 
Anthracite Coal 

Basin 
Mauch Chunk Fm. 

Fillmore D. L., Lucas S. G., Simpson E. 
L. (2010) Palaeogeogr., Palaeoclim., 
Palaeoecol. 292, 222–244. 

54 
Needwood 

Basin 
Hawksmoor Fm. and 

Hollington Fm. 
FRG in-house fieldwork. 

55 Cheshire Basin 
Wilmslow Sandstone Fm. and 

Helsby Sandstone Fm., 
Sherwood Sandstone Gp. 

FRG in-house fieldwork. 

56 Solway Basin 
Annan Sandstone Fm., 

Sherwood Sandstone Gp. 
Brookfield M. E. (2008) Sed. Geol. 210, 
27-47. 

57 
East Irish Sea 

Basin 
Sherwood Sandstone Gp. 

Cowan G. (1993) Geol. Soc. London 
Spec. Publ. 73, 231-245. 

58 - 
Dinosaur Canyon Mb., 

Moenave Fm. 
Olsen H. (1989) Sed. Geol. 61, 207-
221. 
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59 Karoo Basin Balfour Fm., Beaufort Gp. 
Catuneanu O., Elango H. N. (2001) 
Sed. Geol. 140, 291-313. 

60 Karoo Basin 
Middleton Fm. and Koonap 

Fm., Beaufort Gp. 
Catuneanu O., Bowker D. (2001) J. Afr. 
Earth. Sci. 33, 579-595. 

61 San Juan Basin 
Westwater Canyon Mb. and 
Brushy Basin Mb., Morrison 

Fm. 

Miall A. D., Turner-Peterson C. E. 
(1989) Sed. Geol. 63, 21-60. 

62 Unegt Basin Sainshand Fm. FRG in-house fieldwork. 

63 Unegt Basin Bayanshiree Fm. FRG in-house fieldwork. 

64 - South Saskatchewan FRG in-house sat image analysis. 

65 - Morrison Fm. 
Kjemperud A. V., Schomacker E. R., 
Cross T. A. (2008) AAPG Bull. 92, 
1055-1076. 

66 
West Natuna 

Basin 
Muda Fm. 

Darmadi Y., Willis B. J., Dorobek S. L. 
(2007) J. Sed. Res. 77, 225-238. 

67 
Himalayan 

Foredeep Basin 
Chinji Fm. 

McRae L. E. (1990) J. Geol. 98, 433-
456. 

68 
Himalayan 

Foredeep Basin 
Chinji Fm. 

Friend P. F., Raza S. M., Geehan G., 
Sheikh K. A. (2001) J. Geol. Soc. 158, 
163-177. 

69 
Western Interior 

Basin 
Price River Fm. and North 

Horn Fm. 
Olsen T. (1995) NPF Spec. Publ. 5, 75-
96. 

70 Pennine Basin Durham Coal Measures 
Fielding C. R. (1986) Sedimentology 33, 
119-140. 

71 

Pilsen and 
Kladno-

Rakovník 
Basins 

Kladno Fm. and Týnec Fm. 

Opluštil S., Martínek K., Tasáryová Z. 
(2005) Bull. Geosci. 80, 45-66. 

72 - Composite database 
Reynolds A. D. (1999) AAPG Bull. 83, 
211-229. 

73 Wessex Basin Wessex Fm., Wealden Gp. 
Stewart D. J. (1983) Int. Assoc. 
Sedimentol. Spec. Publ. 6, 369-384.  

74 Weald Basin 
Fairlight Clay and Ashdown 

Beds Fm., Hastings Beds Gp. 
Stewart D. J. (1983) Int. Assoc. 
Sedimentol. Spec. Publ. 6, 369-384. 

75 Paradox Basin Undifferentiated Cutler Fm. FRG in-house fieldwork. 

76 Hamilton Basin Hinuera Fm. 
Hume T. M., Sherwood A. M., Campbell 
S. N. (1975) J. Royal Soc. New Zeal. 5, 
421-462. 

77 Po Basin Reno 
Ori G. G. (1982) Sed. Geol. 31, 231-
248. 

78 Loranca Basin 
Upper Unit, Tortola fluvial 

system 
Martinius A. W., Nieuwenhuijs R. A. 
(1995) Petrol. Geosci. 1, 237-252. 
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79 Loranca Basin 
Upper Unit, Tortola fluvial 

system 
Martinius A. W. (2000) J. Sed. Res. 70, 
850-867.  

80 
Cumberland 

Basin 
Joggins Fm. 

Rygel M. C., Gibling M. R. (2006) J. 
Sed. Res. 76, 1230-1251. 

81 
Ganges 

Foreland Basin 
Ganges 

Singh A., Bhardwaj B. D. (1991) Sed. 
Geol. 72, 135-146. 

82 
Midland Valley 

Basin 
Lower Coal Measures 

Kirk M. (1983) Sedimentology 30, 727-
742. 

83 
Ganges 

Foreland Basin 
Ganges 

Shukla U. K., Singh I. B., Sharma M., 
Sharma S. (2001) Sed. Geol. 144, 243-
262. 

84 Munster Basin 

Templetown Fm. (Brownstown 
Head Mb. and Beenlea Head 
Mb.) and Harrylock Fm., Old 

Red Sandstone 

Ori G. G., Penney S. R. (1982) J. Earth 
Sci. R. Dubl. Soc. 5, 43-59. 

85 
Gulf of Mexico 

Basin 
Pliocene/Miocene Northern 

Gulf of Mexico 
Wood L. J. (2007) J. Sed. Res. 77, 713-
730. 

86 Munster Basin 
Gun Point Fm., Old Red 

Sandstone 
Sadler S. P., Kelly S. B. (1993) Sed. 
Geol. 85, 375-386. 

87 
North Devon 

Basin 
Trentishoe Fm., Hangman 

Sandstone Gp. 
Tunbridge I. (1981) Sed. Geol. 28, 79-
95. 

88 
North German 

Basin 
Upper Bunter Sand, Bunter 
Sandstone Fm., Bacton Gp. 

Olsen H. (1987) Geol. Soc. London 
Spec. Publ. 35, 69-86. 

89 - Bijou Creek 
McKee E. D., Crosby E. J., Berryhill H. 
L. Jr. (1967) J. Sed. Petrol. 37, 829-851. 

90 Lake Eyre Basin Paralana Creek 
Williams G. E. (1971) Sedimentology 
17, 1-40. 

91 Lake Eyre Basin The Wooldridge 
Williams G. E. (1971) Sedimentology 
17, 1-40. 

92 Lake Eyre Basin Goyder Creek 
Williams G. E. (1971) Sedimentology 
17, 1-40. 

93 Lake Eyre Basin Palmer Creek 
Williams G. E. (1971) Sedimentology 
17, 1-40. 

94 Lake Eyre Basin The Finke 
Williams G. E. (1971) Sedimentology 
17, 1-40. 

95 Vindhyan Basin 
Dhandraul Sandstone Fm., 

Kaimur Gp. 
Bhattacharyya A., Morad S. (1993) Sed. 
Geol. 84, 101-114. 

96 
Ganges 

Foreland Basin 
Ganges 

Singh I. B. (1977) J. Sed. Petrol. 47, 
747-752. 

97 Roraima Basin Uairén Fm. 
Long D. G. F. (2002) Int. Assoc. 
Sedimentol. Spec. Publ. 33, 323-338. 

98 
Hekla Sund 

Basin 
Rivieradal Sandstones, 

Rivieradal Gp. 
Sønderholm M., Tirsgaard H. (1998) 
Sed. Geol. 120, 257-274. 
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99 - 
Holmestrand Fm., Ringerike 

Gp. 
Dam G., Andreasen F. (1990) Sed. 
Geol. 66, 197-225. 

101 Datong Basin Yungang Fm. 
Yu X., Ma X., Qing H. (2002) Bull. Can. 
Petrol. Geol. 50, 105-117. 

102 Iberian Trough Buntsandstein 
Sánchez-Moya Y., Sopeña A., Ramos 
A. (1996) J. Sed. Res. 66, 1122-1136. 

100 Guadix Basin Late Pliocene Guadix Basin 

Viseras C., Soria J. M., Durán J. J., Pla 
S., Garrido G., García-García F., 
Arribas A. (2006) Palaeogeogr. 
Palaeoclim. Palaeoecol. 242, 139-168. 

103 Vinchina Basin Vinchina Fm. 
Limarino C., Tripaldi A., Marenssi S., 
Net L., Re G., Caselli A. (2001) J. South 
Am. Earth Sci. 14, 751-762. 

104 - Tuross 
Ferguson R. J., Brierley G. J. (1999) 
Sedimentology 46, 627-648. 

105 - 
Warchha Sandstone Fm., 

Nilawahan Gp. 
Ghazi S., Mountney N. P. (2009) Sed. 
Geol. 221, 99-126. 

106 
Orogrande 

Basin 
Abo Fm. 

Mack G. H., Leeder M., Perez-Arlucea 
M., Bailey B. D. J. (2003) Sed. Geol. 
160, 159-178. 

107 - Columbia 
Adams P. N., Slingerland R. L., Smith 
N. D. (2004) Geomorphology 61, 127-
142. 

108 - Saskatchewan 
Adams P. N., Slingerland R. L., Smith 
N. D. (2004) Geomorphology 61, 127-
142. 

109 
Kaiparowits 

Basin 
Kaiparowits Fm. 

Roberts E. M. (2007) Sed. Geol. 197, 
207-233. 

110 Bighorn Basin Willwood Fm. 
Kraus M. J., Middleton L. T. (1987) 
SEPM Spec. Publ. 39,  253-262. 

111 
Snake River 

Plain 
Glenns Ferry Fm. 

Kraus M. J., Middleton L. T. (1987) 
SEPM Spec. Publ. 39,  253-262. 

112 
Stonehaven 

Basin 
Cowie Fm., Stonehaven Gp. 

FRG in-house fieldwork. 

113 Hanna Basin Ferris Fm. 
Hajek E. A., Heller P. L., Sheets B. A. 
(2010) Geology 38, 535-538. 

114 
Strathmore 

Basin 
Scone Sandstone Fm., 
Arbuthnott-Garvock Gp. 

FRG in-house fieldwork. 

115 
Western Interior 

Basin 
Blackhawk Fm. 

Hampson G. J., Gani M. R., Sahoo H., 
Rittersbacher A., Irfan N., Ranson A., 
Jewell T. O., Gani N. D. S., Howell J. A., 
Buckley S. J., Bracken B. (2012) 
Sedimentology 59, 2226-2258. 

116 
Western 

Canada Basin 
McMurray Fm. 

Jablonski B. V. J. (2012) Unpublished 
PhD Thesis, Queen's University, 
Kingston (Canada). 
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117 Ebro Basin Sariñena Fm. 
Hirst J. P. P. (1991) SEPM Conc. Sed. 
Paleo. 3, 111-121. 

118 - Composite database 
Constantine J. A., Dunne T. (2008) 
Geology 36, 23-26. 
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List of digital appendices 

 

In the attached CD, additional material is included and organized in folders named 

as follows: 

 

 Digital appendix D1: it contains a MySQL dump file of the FAKTS 

database structure; the file includes all the tables but does not include any 

data. 

 

 Digital appendix D2: it contains a Microsoft Excel spreadsheet that details 

the content of the FAKTS database; it reports the source of primary data, 

the lithostratigraphic unit or river to which each case study refers, the 

number of genetic units (depositional elements, architectural elements, 

facies units) or groups of genetic units (associated with statistical 

parameters) for which data is available for each case study, the geographic 

location of each dataset, and a three-fold data quality index ranking the 

dataset quality. 

 

 Digital appendix D3: it contains a series of SQL files corresponding to the 

queries included in appendix B; each file can be loaded to run or edit the 

query. 

 

 Digital appendix D4: it contains seven posters presented at national and 

international conferences; the posters include material that is relevant to the 

FAKTS research project, but that was not included in paper form in the 

Thesis; some of the material is part of work in progress. 

 

 Digital appendix D5: it contains five Microsoft Powerpoint presentations 

presented at national and international conferences; the slides include 

material that is relevant to the FAKTS research project, but that was not 

included in paper form in the Thesis.  
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