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Abstract

The aim of this project was to design and evaluate biocompatible and biodegrad-

able membranes. These membranes must be suitable for treating conditions

where two tissues are required to coexist but would normally compete, and

also for conditions where the target tissue must cope with distension. Two

clinical conditions were considered in the design of materials -repair of major

defects of the hard palate and a tissue engineered membrane for repair of the

weakened pelvic floor where this tissue is subject to dynamic distension on a

daily basis.

Cleft palate is a condition that affects one in every 500-700 live births world-

wide. Its current treatment is slow and multi-staged over at least 15 years.

This is due to the difficulty of trying to replace both the fast-growing soft

tissue and the much slower growing hard tissue, in the hard palate in a child.

There are two immediate problems: soft tissue overgrows the area where bone

is required; and the defect in the hard palate expands with the growth of the

child. A scaffold/membrane is required, which supports soft tissue growth and

hard tissue growth, by keeping them segregated, and which can also expand

with the growth of the child.
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The approach undertaken was that of composite membrane production based

on the use of electrospinning. First it was shown that monolayers of microfibres

and nanofibres could be created in random, aligned and pseudo woven layers.

These scaffolds were shown to have mechanical properties suitable for the treat-

ment of a range of conditions, such as pelvic organ prolapse and bladder repair.

These scaffolds were then further processed to produce multi-layered scaffolds,

combining micro and nanofibres to make bi and trilayer membranes. Scaffolds

were characterised by SEM and evaluation of mechanical properties.

Cell culture was then evaluated on these scaffolds. It was demonstrated that

fibroblasts can infiltrate and fill microfibrous scaffolds, while nanofibrous scaf-

folds were shown to act as a barrier to cell entry for up to six weeks, but were

still porous enough to allow nutrients to pass through membranes. Experi-

ments showed that co-cultures of bone forming and soft tissue forming cells

were kept segregated on multi-layered microfibrous/nanofibrous scaffolds.

Novel balloon collectors and fibre orientation were used to make scaffolds with

low Poissons ratios in an attempt to create a scaffold that does not contract

when distended. Finally, it was shown how proof of concept bioreactors can

be used to multi-axially stress cells in culture to induce extracellular matrix

production.

In summary, the techniques developed in this thesis lay the foundations for the

creation of complex multi-layered scaffolds for tissue engineering, with tailored

and novel mechanical properties. Furthermore, the research demonstrates that

cells cultured on these scaffolds will respond well to distension on these scaf-

folds.
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Chapter 1

Introduction

1.1 Biomaterials

Biomaterials show promise as carriers for new tissue and potentially, can be

tailored to specific tissue types. They are also used to provide the mechanical

properties desired of a particular tissue and to ensure that new tissue forms as

it should. These materials must be biocompatible to be successful as invoking

an immune response is undesirable. A desirable quality is for the material to

biodegrade, leaving behind a fully functioning tissue with no evidence of inter-

vention. Biodegradable devices also negate the necessity for a second surgical

operation to remove the implant.1 There are many polymers that can be used

to create a biocompatable and degradable implant (Table 1.1).2,3
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Material Molecular weight /

Da

Melting

point /◦C

Tensile strength

/ MPa

Poly(hydroxy esters)2 21k-500k 57-210 16-50

Poly(ortho-esters)2 99k-130k Amorphous 20-27

Polyanhydrides2 - 66-240 -

Poly(hydroxybutyrates)2 230k-530k 137-171 16-36

Polydioxanones2 48k Amorphous 0.5

Poly(fumarates)2 2.6k-14k 25-40 1-70

Polystyrene4 - - 30-100

PHBV4 - - 40

PLA 101K5 - 704

Poly ǫ-caprolactone 65k5 605 -

PLGA5 40k-240k - -

Titanium 48 - 7006

Steel 316L6 N/a - 10006

Magnesium4 24 649 185-232

Bone N/a N/a 2006

Skin N/a N/a 83±407

Table 1.1: Table of polymers currently used for medical applications with
implant metals and tissues.

Biomaterials come in many different forms and types and can be formed from

natural products such as collagen, synthetic polymers such as PLA or even

biodegradable metals (magnesium alloys).8

Metals have long been used for hard tissue replacement and include the use

of steel, titanium and cobalt alloys. Such materials are used to replace load
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bearing tissues due to their high strength and good corrosion resistance (Ta-

ble 1.1). The major drawback of non-degradable metals is that once the tissue

has sufficiently healed it is necessary to remove such implants, causing extra

distress and risk to a patient via a secondary operation. Biodegradable metal

implants based on magnesium (which is already abundant in the body and has

similar mechanical properties to bone, Table 1.1) are promising but present

a challenge due to the highly corrosive environment of the body decaying the

implant too rapidly. This can lead to rapid evolution of hydrogen gas. Hence,

current research is focusing on the use of Mg alloys incorporating calcium

and zinc (to prevent the creation of a Galvanic circuit and reduce the rate of

corrosion).

With respect to polymers, PLA is an example of a semi-crystalline thermoplas-

tic polymer with high crystallinity (60-70%) and mechanical properties similar

to polystyrene (Table 1.1). Applications outside of biomedicine include food

packaging, envelope windows and floral wrap.

Polyhydroxybutyrate (PHB) is also a melt-processable semi-crystalline ther-

moplastic. The polymer is stiff and brittle with very high crystallinity (Ta-

ble 1.1). When melt processed, PHB degrades quickly.

PHBV copolymers are used over PHB due to their lower melt processing tem-

peratures vs. stiffness and toughness. Polyhydroxyvalerate (PHV) contents

of 5-10% produces a copolymer with properties similar to polyethylene and

polypropylene. Typical uses of PHBV include biodegradable containers such

as shampoo bottles, disposable razors and medically contaminated items.
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Poly ǫ-caprolactone (PCL) is a semi crystalline polymer with mechanical and

physical properties that can be varied with the polymer’s molecular weight

(Table 1.1). PCL has found many uses such as packaging, drug delivery, mi-

croelectronics, adhesives and tissue engineering.9,10 PCL degrades in a similar

fashion to PLA, by ester hydrolysis and its degradation products can be ex-

creted from the bodies of rats.11,12 The degradation time of the bulk polymer

is longer than PLA (30 months compared to 20). However, porosity, crystalin-

ity, surface area and molecular weight all play critical roles in the time required

for the polymer to degrade as discussed later.

1.1.1 Rate and mechanisms of material biodegradation

The rate at which materials breakdown is dictated by a combination of factors.

The first factor is the rate of chemical decay. The mechanism of a material’s

chemical degradation is dependent on each material’s specific chemistry. It can

be as simple as ester hydrolysis by exposure to water and wet environments, or

require a more complicated enzymatic pathway. The second factor is material

processing. This is simply explained by surface area. A highly porous im-

plant will degrade faster than a compressed implant of the same mass. Using

these factors the rate of a material’s decay can be customised and materials

adapted for specific purposes. A material used in a bone screw will need to

last longer than in a resorbable suture, and materials can be selected to suit

these purposes. One example is that PLA screws are noted to last up to 5

years in vivo compared to poly lactic-co-glycolic acid (PLGA) based scaffolds

that can decay in as short a time as 3 weeks.13–15 Finally, the degradation

products of the materials must be known as some materials can degrade into
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toxic metabolites. The degradation of specific polymers used in this project

are discussed in more detail later.

Bulk degradation vs. surface degradation

Figure 1.1: Modes of degradable water insoluble polymer breakdown. A poly-
mer may undergo surface or bulk erosion. The material density is maintained
during surface erosion, thus the particle decreases in volume as it loses mass.
A polymer that undergoes bulk degradation maintains a constant volume, but
decreases in density as it loses mass.

A water insoluble degradable polymer may degrade in a number of ways. Sur-

face degradation is where the polymer loses volume (i.e. gets smaller, Fig-

ure 1.1) but maintains a constant density. Bulk degradation is where the poly-

mer’s density decreases (i.e. the volume stays constant but the material looses

mass, Figure 1.1). A theoretical model was developed by Burkersroda, Schedl

and Göpferich to predict the mechanism of such degradation pathways.16 How

water diffuses through a polymer matrix governs which of these two pathways is

followed, along with other considerations such as dimensions, and degradation

rate of the polymer’s functional groups. Although it is essential to understand

how such polymers degrade with respect to drug release or mechanical stability,

the mechanism of bulk or surface degradation is poorly understood. Polyesters
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(such as PLGA, PLA, PHBV, and PCL) have been traditionally thought to

undergo bulk erosion.17 However, Burkersroda et al. demonstrated that such

polyesters (the poly(α-hydroxy esters) PLA and PLGA in their study), de-

pending on processing, can undergo both of these mechanisms. The cross

over point between these two mechanisms was quantified by dimension of the

polymer granule under investigation. Under a critical dimension bulk erosion

can occur. Above the critical dimension surface erosion predominates. For

poly(α-hydroxy esters) Burkersroda et al. estimated the critical dimension to

be 7.4 cm and in PCL to be 1.3 cm. As electrospun scaffolds consist of fibres

with diameters of µm and smaller, the predominant degradation mechanism

will be bulk erosion. This is due to the ability of water to sufficiently diffuse

and penetrate polymers that are processed into dimensions smaller than their

critical dimension. It must be noted that such estimates are subject to normal

polymer variables such as molecular weight, crystallinity, and polydispersity

which would all affect the diffusion of water.

Enzymatic degradation

Enzymatic degradation is hugely important for materials that may be im-

planted into the body. Polyesters in particular are susceptible to many poly-

merases found in the environment.18 PHBV can be enzymatically degraded.19

This degradation is strongly influenced by comonomer composition and pro-

portion. The degradation of PLA hollow fibres in the body has been well

studied, and enzyme activity characterised.20 PLA invokes a foreign body

response with a minor macrophage and giant cell response. A day after im-

plantation alkaline phosphatase and β-glucuronidase activity was detected.

ATP-ase, acid phosphatase, and esterase activity was noted from day three,
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these enzymes are specifically associated with degradation of PLA into lactic

acid. Finally, lactate dehydrogenase was detected at day 7, this enzyme is

particularly associated with the conversion of lactic acid produced from the

degradation of PLA. PLA does not degrade rapidly in the body, exponential

increase in degradation rate was not observed until after a year, after bulk

degradation reduced the molecular weight of the polymer to around 5000 Da.

Likewise, the in vivo enzymatic degradation of PCL has also been well stud-

ied.12 PCL is noted to have a long degradation period in the body which can be

split into two stages, first is a decrease in molecular weight without deforma-

tion (bulk degradation) followed by rapid surface degradation (PCL capsules

lost strength and broke into pieces). Low molecular weight PCL pieces were

metabolised and then excreted through urine and faeces.

The hydroxyl free radical and degradation

The hydroxyl free radical (•OH) has been cited as important in the degrada-

tion process of both PCL and poly(D,L-lactic acid).11,21 The hydroxyl radical

is produced in vivo during acute inflammatory response to materials. Suitably

stimulated macrophages produce superoxide (•O−

2 radicals) and hydrogen per-

oxide (H2O2).

In the presence of iron or another metal suitable as a catalyst the •O−

2 and

H2O2 react to form the toxic •OH radical. If produced near polymer implants,

the polymer can then be attacked by the •OH radical. This can cause the

polymer chains to break up into smaller segments via homolytic bond fission.

This mechanism preserves the free radical (i.e. it is not terminated), thus this
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reaction can occur repeatedly, leading to the premature decay of a polymer

implant.

1.2 Biomaterials used in this project

Several biodegradeable polymers were selected for investigation in this project,

principally PLA, PCL, and PHBV (a polyhydroxyalkanoate (PHA)). These are

discussed in the following section.

1.2.1 Polyhydroxyalkanoates

Polyhydroxyalkanoates are fatty acid derived polymers produced by microbes

to act as an energy store.22 They are biodegradable and known for their

biocompatibility.23,24 Industrially the bacterium Alcaligene eutrophus is used

due to ease of culture and high polymer yield.25 If these bacteria are cultured

in conditions where phosphorous is limited, they can divide to a point, until

the phosphorus is used up, at which point they attempt to store glucose as

an energy reserve as polyhydroxybutyrate.26 Once 70-80% biomass has been

reached the polymer is extracted using an aqueous based process (Figure 1.2).
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Figure 1.2: Synthesis of PHBV. Stage 1, culture bacteria under phosphate
starved conditions until maximum population achieved. Stage 2, feed bacte-
ria a definied concentration glucose and propanoic acid until 70-80% biomass
achieved. Stage 3, lyse the bacteria and harvest the polymer.

There are reportedly 150 monomers that can form polymers in the PHA fam-

ily.22 Therefore a great variety of structures, chemistries and mechanical prop-

erties are available. In general, PHA polymers are thermoplastic, biodegrad-

able, piezoelectric, chiral, and hydrophobic. The polymers produced are not

restricted statistical copolymers either. Depending on bacterial species and

culture conditions homopolymers and block copolymers can also be synthe-

sised.

PHA polymers can be brittle or elastic with PHB being brittle due to the ready

formation of a crystal lattice. PHA polymers that consist of other monomers

or PHB polymers that include hydroxyvalerate monomer (to form PHBV) are

more elastic as the secondary monomer breaks up the crystal lattice structure

producing a more amorphous material. The extensive in-press review con-

ducted by Laycock et al. considers that the connection between composition

and mechanical properties, in particular for high hydroxyvalerate containing

PHA polymers, is not well understood.27
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PHBV

PHBV is a polymer with a high degree of crystallinity regardless of the hydrox-

yvalerate content (Figure 1.3). Laycock et al. reference PHBV as a example

of isodimorphism, i.e. irrespective of the concentration of hydroxyvalerate in

the PHBV polymer, the degree of crystallinty is in the range of 45% - 65%,

predominantly above 52% and only falling below when the composition of

hydroxyvalerate is between 40% and 60%.

Figure 1.3: Structure of PHBV.

A statistical copolymer of hydroxybutyrate-hydroxyvalerate can be created

by including propanoic acid in the media fed to the bacteria. The ratio of

hydroxyvalerate to hydroxybutyrate can be predictably controlled by changing

the concentration of additional propanoic acid.

Degradation of PHBV occurs naturally in microbially active environments,

with the products being CO2, H2O and humus. This has been profiled over time

in a number of different environments. There are many factors governing the

rate of decay of the polymer, including processing method, polymer processing

melt temperature, porosity, ambient temperature, media composition and most

importantly molecular weight.28,29
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Low molecular weight polymers have shorter degradation times than high

molecular weight polymers, as it takes longer to break a large chain molecule

down. Temperature affects the molecular weight, hence processing at high

temperatures significantly reduces the polymers’ molecular weight, leading to

a decrease in longevity. Processing the polymer in such a way that it has a

high surface area leads to a reduction in decay times. The high surface area

exposes more of the polymer allowing more bacteria to access it at one time,

hence compressed polymer disks have a shorter life than a injection moulded

disk of the same mass.

The environment contributes to the rate of decay. Polymers in a warm wet

environment decay faster than those in a dry environment, or where there is

little microbial life, such as sea water. The polymer composition affects the

crystallinity of the final material, a more crystalline compound is stronger and

requires more energy to break down. PHB is a highly crystalline polymer, the

addition of hydroxyvalerate into the polymer chain decreases this and leads

to a shorter lifespan. However the crystallinity of PHB makes it difficult to

process, requiring a high temperature, which reduces the molecular weight and

hence a shorter decay time. So there is a benefit to including hydroxyvalerate,

although it decreases the lifespan compared to pure PHB. The fact that it can

be processed at lower temperatures allows it to have a longer lifespan than

similarly treated PHB, due to the preservation of higher molecular weights.

Toxicological reviews of the polymer in vitro and in vivo have shown no neg-

ative effects or resultant abnormalities in the physiological and biochemical

nature of single cells or whole lab animals, and it has been patented for use as

bioabsorbable sutures.23,30,31
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1.2.2 Poly lactic acid

PLA (Figure 1.4) is well known as a biomaterial and for being biocompati-

ble.2,32–36 It has been used often in the MacNeil group, and a knowledge base

has been built up, making it a good candidate for initial investigation.15,37

Figure 1.4: Structure of PLA.

The synthesis of PLA is multi-stage. Lactic acid is produced by fermentation of

corn starch. The lactic acid molecules are condensed (ester formation) to form

oligomers. A high molecular weight polymer is not formed at this stage due to

the water liberated during the condensation reversing the reaction. Oligomers

are formed initially to reduce the water formed when high molecular weight

chains are produced. The oligomers are heated to induce a rearrangement and

then form lactide dimers (Figure 1.5). Lactide dimers exhibit isomerism and

have two chiral centres. The most common occurring form is the L-lactide,

followed by the racemic DL-lactide. D-lactide is not naturally occurring, this

makes it expensive so it is not regularly used in research. L-lactide easily

undergoes polymerisation with the use of a metal catalyst such as stannous

octanoate to produce isotactic (crystaline) poly L-lactic acid. This name is

misleading as the polymer itself is a polyester.
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Figure 1.5: Two stage synthesis of PLA. First the lactic acid molecules form
lactide dimers, that then undergo ring opening polymerisation to form PLA.

The degradation of PLA in vivo has been been well studied; no abnormal

response is observed in rats and the polymer completely degrades over a period

of 2 to 5 years.13–15 The degradation times are dependent on molecular weight,

method of polymer processing, surface area, crystalinity and porosity, much

the same as for PHBV.38–40

1.2.3 Poly ε-caprolactone

Figure 1.6: Structure of PCL.

PCL is derived from the ring opening polymerisation of ε-caprolactone (Fig-

ure 1.6). The polymer can be synthesised in a number of ways, including the

use of enzymes, metal catalysts and organic methods.41 Ring opening poly-

merisation is the most common methodology due to the cost and quality of the

produced product. The ε-caprolactone monomer is formed in industry by the
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oxidation of cyclohexanone by peracetic acid via the Baeyer-Villiger oxidation

mechanism (Figure 1.7).

Figure 1.7: Synthesis of PCL. ǫ-caprolactone monomers undergo ring opening
polymerisation to form PCL.

1.2.4 Poly (methylsilsesquioxane)-poly (pentafluroropheny-

lacrylate)

This hybrid inorganic-organic block co-polymer shows promise as a surface

coating for implants based on inorganic materials such as silicon and silicon

oxides. Such surfaces can be very hydrophobic and do not wet well, a coating

agent can be used to overcome this problem (Figure 1.8). Polymethylsilsesquioxane-

polypentafluorophenylacrylate (PMSSQcoPFPA) is able to coat a wide range

of substrates compared to other siloxane based coatings.42 It has been shown

that PMSSQcoPFPA allows the easy functionalisation of substrates in order

to tune how surfaces interact with water and even protein binding.42,43
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Figure 1.8: Structure of PMSSQ-co-PFPA.

Precise control over contact angles with water has been demonstrated by

changing the reacting monomers and their respective ratios, or reacting the

polymer with amines to produce a temperature responsive smart polymer

whose contact angle changes with temperature.42–45 The aspect of this polymer

that interests tissue engineers is the possibility to use it as a protein immobiliser

to encourage the binding of proteins to a scaffold made with/incorporating the

polymer.46

PMSSQcoPFPA is synthesised in a multistage reversible addition fragmen-

tation chain transfer (RAFT) polymerisation mediated process (Figure 1.9).

RAFT polymerisation is a method for the controlled use of free radicals to

synthesise polymers. RAFT is an example of living polymerisation, and as

a result, polymers synthesised via RAFT have low polydispersities, can ac-

cept a great variety of monomers, can be performed at low temperatures (≤60

◦C), and are insensitive to acidic monomers. The general mechanism RAFT

proceeds by is shown in Figure 1.9. The R and Z groups determine how the

reaction proceeds. The RAFT process is subject to the following conditions;

the Z group of the dithioester must activate the carbon - sulphur double bond
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to allow free radical attack. Moieties that form suitable Z groups include aryl

and alkyl groups.47 Attempts at using other groups such as dialkylamino or

alkoxy groups (dithiocarbamates and xanthates for example) have produced

lower transfer constants and as a result are far less effective.47 The presence of

lone electron pairs on Z groups that can conjugate with the carbon - sulphur

double bond are similarly less effective RAFT agents than those that incorpo-

rate electron withdrawing groups that can significantly increase the reactivity

of RAFT agents.48

Figure 1.9: General mechanism reversible addition fragmentation chain-
transfer polymerisation.

The R group facilitates the progression of the polymerisation by functioning

as a leaving group from the dithioester. The R group then proceeds to initiate

the next monomer. To be an effective R group many factors such as polarity,

sterics, and radical stability must be considered.49

First the inorganic poly (methylsilsesquioxane) is produced by polymerising

methyltrimethoxy silane with dithiobenzoic acid benzyl-(4-ethyltrimethoxy-
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silyl) ester (Figure 1.8). This also forms the RAFT agent required to form the

block co−polymer.

The poly (methylsilsesquioxane) is then RAFT polymerised again with the

monomer pentafluorophenyl acrylate. This final step produces the PMSSQ-

coPFPA block copolymer. This second monomer provides the organic compo-

nent of the polymer and is the key to reactions with biological moieties. The

inorganic PMSSQ has been reported to cross link easily, readily forming thin

films. This lends itself to coating technologies. It is hoped that by combining

organic and inorganic polymers the hybrid will not only share the properties

of the components but could also yield new and more interesting properties

through their interaction.

Using RAFT polymerisation near mono-disperse (nearly identical chain length)

polymers can be produced predictably. The mechanism proceeds through the

use of dithioesters, monomer and radical initiator. The dithioester acts as a

RAFT agent, controlling the progress of the free radical polymerisation of the

monomer. The radical initiator (often azobisisobutyronitrile) starts the reac-

tion. These chemicals normally decompose into radical species when heated to

a particular temperature. Free radical polymerisations are susceptible to pre-

mature termination from oxygen in the atmosphere, so they must be performed

under inert atmospheres such as nitrogen or argon.
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1.3 Electrospinning of biodegradable polymers

The polymers used in this project were processed using the technique of elec-

trospinning, into microfibrous and nanofibrous scaffolds.

Electrospinning derives from a phenomenon described in 1914 by Zeleny, ob-

serving electrical discharge through water droplets from points.50 If a syringe

needle is continually fed a solution to which an electric current is supplied, the

resulting droplet will be repelled from the needle and attracted to a grounded

or oppositely charged collector.

The work of Sir Geoffrey Taylor on thunderstorms underpins and explains the

electrospinning phenomenon, and it is his name that is used to describe the

cone formed at the spinning tip.51

When a droplet forms at the end of the spinning needle, surface tension makes

the drop assume a spherical form (lowest surface energy). When an electrical

field of sufficient strength is applied the droplet is deformed, and at a critical

point, disintegrates. At this point the strength of the electric field is greater

than the surface tension, and conical points are formed from which jets of

solution are then projected. The conical points are known as Taylor cones.

The cones form due to the accumulation of surface charge, and a pressure

differential forming between the interior and surface of the droplet. When the

surface of the drop is charge saturated, additional charge is enough to cause

repulsion between other charges and the droplet vibrates. This is known as

Rayleigh instability. Electrospraying occurs when the jets produced from a
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droplet breaks up. If the jet remains stable, fibres are formed. This normally

relies on the solution being viscous and the solvent volatile.

Electrospinning has been patented on a number of occasions throughout the

21st century but has not become a widely commercial process, with few busi-

nesses specialising in it.52,53 Electrospinning has garnered popularity in re-

search labs due to its small scale flexibility and multitude of variables, allowing

the creation of a huge variety of fibres that have potential uses from energy

production to food preparation.54,55 These are the same features which ham-

per the industrial up-scaling of the process, with bulk production of nanofibres

being noted as a particular problem.56,57

Electrospinning can create fine fibrous networks with fibre diameters ranging

from nm to µm and has found uses from filtration to biodegradable scaffolds

for tissue regeneration. Electrospinning is governed by many parameters, in-

cluding potential difference, distance between needle and collector, solution

flow rate, viscosity, solution conductivity, and surface tension (Figure 1.10).

Fibre formation occurs in a narrow window of concentration, viscosity and

electrostatic charge, these parameters are discussed below.
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Figure 1.10: Spinning parameters: 1. Flow rate. 2. Concentration. 3. Poten-
tial difference. 4. Distance to collector. 5. Rotation speed. Temperature and
humidity are also factors.

Voltage

This is the most obvious parameter, the potential difference provides the driv-

ing force and must be sufficient to overcome surface tension and produce a

Taylor cone for fibre formation. The electric field drives the acceleration of

the fibre from the spinner to the collector with fibres reaching velocities of the

order of ms−1. The potential difference applied and solution composition ap-

pear to be the biggest factors in outcome variability.58–60 Too great a potential

difference has been noted to cause beaded fibres.61

Viscosity

Too low a viscosity results in the jet breaking up and electrospraying. Polymer

molecular weight directly impacts electrospinning due to its inextricable link
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with solution viscosity and thus the required solution concentration to produce

fibres. Low molecular weight polymers are more inclined to bead formation.

It also appears that polymer chain entanglement has a role here and a critical

number of entanglements is required for the formation of a stable jet.62–64

Solution concentration also affects viscosity and as a result is closely linked

with fibre diameter (concentrated solutions result in thicker fibres). Too low

a concentration and electrospraying results, too high and the solution will not

spin as its viscosity is too great. This means there is a minimum and maximum

concentration in which electrospinning can occur.58,65

Surface tension

Surface tension has a key role in bead formation. Solutions prefer to adapt

conformations with the lowest surface energy, this happens to be a sphere as it

has the highest volume to surface area ratio.66 Surface tension is predominantly

down to the solvent used.67 Mixing solvents often results in a surface tension

less than the sum of the neat solutions’ surface tensions.

Flow rate

Flow rate is critical in droplet formation, a sufficient rate is required to main-

tain a droplet at the end of the spinner for a continuous fibre to result.67,68
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Conductivity

The permittivity (ǫ) of the solutions is very important in the electrospin-

ning process. A solvent with a low dielectric constant is a poor medium for

electrospinning and can mean the difference between a solution spinning or

not.67,69 The conductivity of the polymers themselves also has an effect on

their electrospin-ability. Polymers with a low permittivity are unable to accu-

mulate sufficient surface charge density to be drawn to, and deposited on, the

collector without fibre break up.70

Temperature and humidity

Humidity and temperature both affect the rate of solvent evaporation and

solution viscosity. This has a marked effect on fibre morphology.71 Ideally an

environmental cabinet that can fix these two variables solves this problem. It

has been shown to improve fibre consistency.72 However, this is not always

available, primarily due to cost.

Access to the rig and surrounding equipment when in an enclosure must also be

considered, especially if it is necessary to produce scaffolds in a sterile environ-

ment. This can be achieved with an enclosed rig, preferably within an aseptic

environment. For experimental purposes currently most electrospinning is con-

ducted in laboratories without fine control of temperature or humidity and this

leads to considerable variability in scaffold production.
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1.3.1 Novel spinnerets for fibre production

One of the major limitations of current electrospinning rigs and an obstacle to

industrial scale up is means of fibre production. Most rigs rely on a syringe

pump and needle. Hence, there is a physical limitation on the number of

syringes that can be used in one spinning session.

This is further hampered by problems with needles blocking up and even ex-

pensive glass syringes seizing after use (due to solvent evaporation). Niu et al.

report the use of a disc, cylinder and spiral coil as a fibre generator. Each are

rotated through a bath of the polymer solution, and fibres, at a critical poten-

tial difference are drawn from the spinneret to the collector.73,74 This technique

has the advantage in that many fibres can be formed at once, greatly reducing

the time required to electrospin a sheet. This technology has a granted US

patent and is sold under the trademark of NanospiderTM.75 If the collector is

motorised such that it’s movements match the rate of fibre production, a “di-

rect write” electrospinning rig may be created allowing very fine and controlled

deposition of fibres.76

1.3.2 Electrospinning of PLA

PLA is well known in the MacNeil group and is normally electrospun as mi-

crofibres (10 wt% in dichloromethane).15,37,77 Nanofibres of PLA can be pro-

duced, as shown by Ball et al., when producing electrospun condoms that

release anti-HIV and spermicidal agents.78 The spinning solution used con-

sisted 10-15 wt% PLA dissolved in a mixed solvent system of chloroform and
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2,2,2,-trifluoroethanol (1:1). Many groups are electrospinning PLA for use as

medical implants and tissue engineering applications.79–82

1.3.3 Electrospinning of PCL

PCL is under great inventigation as a material for tissue engineering appli-

cations.83 Hutmacher et al. are a particular authority on the electrospin-

ning of PCL.76,84–88 Nanofibres of PCL have been produced by using a solu-

tion of 14wt% PCL in a mixed solvent system of 9:1 chloroform:ethanol.89,90

PCL can be readily made into microfibres using a solution of 15wt% PCL in

dichloromethane.83

1.3.4 Electrospinning of PHBV

PHBV has shown promise as a biomaterial, and while less popular as a material

choice than PLA and PCL due to its brittle nature. PHBV has previously been

electrospun as micro and nanofibres using chloroform as the carrier solvent.91–94

Zuo et al. have published work investigating the use of tetrachloromethane,

ethanol (EtOH) and dimethylformamide (DMF) as cosolvents, and also includ-

ing benzyltriethylammonium chloride in dichloromethane (DCM) solutions of

PHBV as a ǫ enhancer.94
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1.4 Using Bioreactors to test cell culture on

scaffolds

Once a biomaterial has been processed into a scaffold, its performance with

cells can be evaluated using a bioreactor.

A bioreactor is defined as a device that tightly controls its internal environ-

ment for the development of specific biological and chemical processes.95 The

environmental conditions used to guide these processes include temperature,

pressure, pH, control of nutrients and waste. Bioreactors are, in one form or

another, used to make useful products such as polymers, alcohol, or cells and

complete organs.

This definition is very broad, and as a result there are many different kinds

of bioreactor, depending on the product that it is designed to produce. Fer-

mentation vessels are bioreactors in their simplest form, essentially a bucket

that is kept warm. The environment of the yeast is tightly controlled and

adjusted for the production of alcohol. Some polymers, such as PHBV, are

created in a similarly fermented fashion as discussed in Section 1.2.1 and nu-

trients controlled to force the Alcaligene eutrophus bacterium to preferentially

produce the polymer. Bioreactors for cell culture are the next step up and can

contain multiple chambers to precondition medium with growth factors from

other kinds of cells.96 Depending whether the cell is adherent or not, reactors

need surfaces for the cell to adhere to.
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Going to the problem of producing tissues or even organs, here the biological

complexity increases again and there are many more variables to be considered.

There are at present very few bioreactors capable of handling complex tissue

production. However, several studies point towards the same thing, that it may

be necessary to induce stimulation of tissue to produce tissue that is fit for

clinical use. Thus for example, corneal cells will be adapted for the conditions

of the eye (where they survive under moist but not wet conditions and are

subject to constant abrasion from blinking) compared to skin cells (where the

upper cells exist in dry, acidic conditions). Also its well established that for

hard tissues such as bone and cartilage it isn’t enough to grow a tissue under

static conditions. These cells need to be cœrced into creating appropriate

extracellular matrix and this has now been shown to only be achieved through

stimulation of the cells. Stimulation can be achieved through a number of

different mediums such as electric pulses or physical mechanical stimulation

through pummelling, stretching, and twisting. The kind of tissue produced

can be greatly influenced depending on the kind of stimulation administered.

This subject has been extensively reviewed.95,97–101

In vitro it is now recognised that bone cells require a mechanical stimulus to

be induced to deposit calcium for bone formation.102–105 Likewise, mechanical

loading has been shown to be essential for cartilage formation.106 It is also well

known that cells are mechanosensitive and literature has shown there is a rela-

tionship between mechanical stimulation and extracellular matrix production,

in particular elastin and collagen for fibroblasts.107–109 This fact is also being

exploited by beauty therapists as a nouveau anti-ageing treatment that can

“instantly” rejuvenate unhealthy fibroblasts and boost elastin production.110
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1.4.1 In vitro mechanically stimulating bioreactors

Most dynamic stimulation of samples in the lab is in 1D and until recently

bioreactors have been custom, purpose built arrangements.111 Commercial

systems are becoming available. The Bose electroforce biodynamic system is

perhaps the best well known system. It houses a sample in a chamber while

administering a pre-prescribed distension or compression regime.112 Other

systems do exist and are gradually being brought to market, for example the

Ebers medical TC-3 bioreactor which while very similar to the Bose system,

does not contain force transducers and runs up to 3 samples at once.

For 2D simulation, the options are even more limited, most systems for ap-

plying 2D distortions (biaxial distension) to samples are custom made such

as those used by Nielsen et al.113–115 However, samples cannot be maintained

in culture once they have been analysed. One commercial system that is

able to maintain samples in culture while applying biaxial distension is the

FlexcellTM tension system that relies on a vacuum pressure to deform an elastic

substrate. The deformation of the elastic substrate applies a biaxial distension

to cell cultured in the system.107,116,117 Unfortunately the FlexcellTM sys-

tem is limited in substrate choice and it not capable of incorporating bespoke

substrates such as electrospun scaffold sheets.
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1.5 Using biomaterials for Tissue Engineering

1.5.1 What is it and what can be done?

The term tissue engineering as defined by Vacanti et. al is “an interdisciplinary

field that applies the principles of engineering and the life sciences toward the

development of biological substitutes that restore, maintain, or improve tissue

function”.118

A broader definition of tissue engineering is as follows: engineering is concerned

with the development and modification of structures, systems and processes

using specialized knowledge.119 Hence, to tissue engineer is to gain knowledge

in developing and modification of complex systems that govern tissue growth,

repair and replacement. The ultimate goal of tissue engineering is to be able

to regenerate or replace degraded tissue and return it to its original healthy

and functioning state.120,121 This will also help alleviate current problems

such as dependence on donor tissue. If the patient has a little healthy tissue

it would be desirable to expand it in the lab for transplantation. A good

example of this was published in 2004.122,123 An adult male with most of

his jaw missing underwent a mandible repair through the use of a “custom

vascularised bone graft”. Ablative tumour surgery left a gap to be bridged,

including his chin. An implant was custom made to bridge the gap. The

implant was constructed out of titanium mesh filled with blocks of BioOss

bovine derived bone mineral. The mineral blocks had been pre-treated using

recombinant human bone morphogenic protein 7 and bovine collagen type 1.

To provide a bone precursor cell, bone marrow as extracted from the iliac
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crest of the patient, mixed with bovine bone mineral and used to fill the gaps

between the BioOss mineral blocks in the titanium mesh.

The implant was surgically implanted into a pocket in the right latissimus dorsi

muscle in his back, in order to allow the implant to become pre-vascularised.

This lead to its successful implantation into the defect region at a later stage.

Initial results were promising, with the patient being able to eat his first solid

meal in 9 years, bread and sausages. It had a pleasing aesthetic appearance,

boosted self confidence, and allowed a return to social interactions. Bone was

observed to be developing via a CT-scan, if unevenly, inside the implant after

7 months. Unfortunately due to a life style of heavy drinking and tobacco use,

he died of cardiac arrest after 15 months.

Instances like these are important in the development of tissue engineering,

demonstrating its successes and illuminating its failures. While the implant

technique was successful, failure to treat the underlying causes ultimately re-

sulted in its failure.

This is the type of direction tissue engineering appears to be taking i.e. current

methods concentrate on using the patient’s own tissues in conjunction with

scaffolds to regenerate the areas in need of repair.124–128

There are still major problems to be overcome. While it is currently possible to

use scaffolds to create a habitat for cells, such as the mandibulectomy above,

or to graft small sections of epithelium onto a well vascularised wound bed, it

has not been possible to construct complete tissues from a small biopsy.129,130

Each tissue has its own peculiar set of conditions to overcome, for example
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liver fabrication has yet to overcome creating the conditions to keep a bulk

amount of hepatocytes in a scaffold alive while transferring from in vitro to in

vivo.124

1.5.2 Guided tissue regeneration

The aim of guided tissue regeneration is to encourage the preferential growth

of one tissue over another, for example bone over epithelium. This is normally

achieved through the use of a barrier membrane to mechanically segregate one

tissue type from another.131–133 This is typically useful in instances where one

tissue grows much faster than another and will invade, preventing the slower

tissue proliferating.

Periodontal defects and gum disease are major causes of tooth loss. Invading

bacteria cause the bone which the tooth is seated in to irreversibly erode,

resulting in the tooth loosening and eventually falling out. Biomaterials can

be used to reverse this damage and yield a stable tooth again. A scaffold to

treat this must be mechanically stable, easy to make, sterilise and handle.133

Whatever material is selected, it is well known that it must biodegrade and

be resorbed by the body. A non-degradable material would require a follow

up procedure to remove it, incurring risks of reinfection and disturbing and

newly formed tissues.134 The materials currently in vogue are collagen based,

as they are resorbable, easy to manufacture and sterilise, and can be handled

with ease during surgery compared to synthetic scaffolds which have been

compared to wet cotton wool.135,136 However, collagen based materials have
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been reported to be less successful as a barrier than non-resorbable scaffolds.137

It is also reported that there is no gain using collagen compared to synthetic

resorbable barriers.138 The main disadvantage to the use of collagen based

materials is from the potential for disease transmission such as Creutzfeldt

Jakob disease.136 Manufacturers of such patches have conducted theoretical

studies and have concluded, with a small amount of experimental evidence,

that their materials are “effectively” protein free.139

1.5.3 Bladder repair

Muscle invasive bladder cancer is a condition where the muscles surrounding

the bladder become cancerous and need to be removed in order to prevent the

cancer from spreading to the rest of the body. The removal normally involves a

radical cystectomy, the complete surgical removal of the bladder. This causes

a number of problems, primarily the need to create a new way of passing urine.

The current methods for doing this all involve the use of bowel tissue to form

a small pouch the ureters can be plumbed into. This is then either fed to

a hole in the abdomen known as a stoma which can drain into a bag (this is

known as a urostomy). Or a valve can sometimes be implanted into the stoma,

preventing the need for a bag, and instead the pouch can be drained at will

through a catheter (continent urinary diversion).

Finally, it may be possible for the bladder to be reconstructed from bowel

tissue (a cystoplasty), this is known as a neobladder. A section of bowel is

formed into a balloon shaped sac with the ureters connected at one end and
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the urethra at the other. The patient is then able to pass urine without the need

for bags or valves, but the technique needs to be relearned from scratch. The

neobladder remains connected to some of the bowel’s nerve endings resulting in

the sensation of having to pass wind when the neobladder is full and urine needs

to be passed.140 The tissue of the bowel is not ideal for bladder replacement,

it is a mucous secreting tissue, and long term complication rates are high

(40.8%).141

Tissue engineering could provide a solution, and research is being conducted on

the use of biodegradable electrospun scaffolds for bladder replacement.142,143

Such scaffolds could be used to fashion a new neobladder, not involving mucous

secreting bowel tissue, and potentially use the bladder’s own nerves. However,

there are significant challenges to be overcome, the bladder must be able to

cyclically fill and empty without putting pressure on the kidneys, nor the ma-

terial fatigue, this makes bladder tissue engineering a very interesting problem.

Atala et al. reported in 2006 treating 7 myelomeningocele (one form of spina

bifida) patients ages between 4-19 years old.144 Spina bifida is the result of a

development fault and leaves a gap in the spinal chord, and is linked to folic

acid deficiency.140 Myelomeningocele is the most severe form, the spinal col-

umn does not fully close and as as a result the baby’s membranes and spinal

chord collect in a sac at the baby’s back. Myelomeningocele affects 1 in ev-

ery 1000 live births in the UK.140 As a result damage occurs to the nervous

system, one of the symptoms that can result includes urinary incontinence.

The bladder may only store a little urine and if treatment is not given kidney

and bladder damage results. If regular treatments fail, a cystoplasty is neces-

sary. However, Atala et al. notes the deficiencies of this procedure including

metabolic disturbances, increased mucous production and malignant disease.
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144 Atala et al. attempted to bypass these problems by creating a tissue en-

gineered bladder from the patient’s own urothelial and muscle cells, obtained

from bladder biopsies. After subculture and expansion these cells were im-

planted onto a range of decellularised bladder submucosa, the most successful

of which was supplemented with polyglycolic acid and wrapped in omentum (a

fold of the peritoneum, the membrane that lines the abdominal cavity covering

the organs). Post implantation a catheter was used to cyclically load the new

bladder for 3 weeks. Post operation no effect on metabolism or mucous pro-

duction was observed, and renal function was maintained. In Atala’s 2001 and

2011 literature reviews he concludes that acellular implanted scaffolds contract

and produce diminished bladder capacities, that “cell-seeded matrices are su-

perior” and that current research is “aimed at developing biologically active

and ‘smart’ biomaterials”.145,146

1.5.4 Pelvic organ prolapse

Pelvic organ prolapse is a condition where the organs such as the uterus, bowel,

and bladder bulge and protrude into the vagina.140 Symptoms can be a sense

of something needing to be pushed back in the vagina, discomfort during sex

and problems passing urine. The condition is not life threatening but can affect

the patient’s quality of life. Prolapse occurs when the vaginal tissues weaken

and can no longer support the surrounding pelvic organs. The vaginal tissues

weaken with age and also from the strain of childbirth, with half of women

suffering from some form of prolapse after having children.147
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Mild cases of the condition can be treated by weight loss and pelvic floor ex-

ercises, more severe conditions may require a vaginal pessary; a device that

is inserted in the vagina to hold a prolapsed organ in place. In the most

severe cases surgery is required to stitch the the vaginal and pelvic organ tis-

sues in place. This can sometime involve the use of polypropylene mesh as

a supporting material. However, long term data on the use of polypropy-

lene meshes show that the repair then later perforates the surrounding tissues

(Figure 1.11).148,149 This is due in part to the mechanical properties of the

implant not matching the surrounding tissues. The stiff implant lacerates the

surrounding soft tissues.
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Figure 1.11: Photograph of bladder perforation caused by use of lower uri-
nary tract polypropylene mesh. Note the “wire fence” arrangement of mesh
filaments that when under tension create a saw tooth edge to the implant.148
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The US food and drug administration have issued a warning on serious com-

plications resulting from these meshes and that they are not rare occurrences.

It is unclear if such repairs are more effective than traditional non-mesh re-

pairs.150 Regardless of this, a better solution is required.

1.5.5 Cleft palate

The formation of the hard palate

The hard palate is formed by the maxilla, the bone found at the roof of the

mouth (Figure 1.12).151,152 The mechanism of the formation is peculiar in

that the palatine processes grow down on either side of the embryonic mam-

malian tongue and then, dramatically “flip up” in a few hours to form the

hard palate.151–153

Figure 1.12: Formation of the hard palate from a 16 day old rat to embryonic
human.151,152

Aetiology and treatment

Cleft palate affects 1 in 700 live births in the UK and 1 in 500-700 world-

wide.140,154 A cleft palate occurs when the processes that govern the palates’

40



formation fail. Clefting can include just cleft lip or cleft palate and can be

unilateral or bilateral. The most severe case being bilateral cleft lip and palate

(Figure 1.13).155

Figure 1.13: Example of unilateral cleft lip and palate in an infant.155

The causes may be genetic or environmental, though these are still under

debate.156–159 Cleft palate can present itself as part of a syndrome or it can

appear on its own (non-syndromic).

Environmental causes are not definitive, but there are strong links between

the heavy use of alcohol, smoking and low folic acid levels.158,159 These studies

can be flawed due to poor separation of factors. Little’s study corrects for

confounding co-factors such as alcohol and the use of multivitamins.

The argument for folic acid being a cause is that cleft palate develops at

approximately the same time as neural tube defects, caused by low folic acid

levels.159,160 However, the evidence here is also flawed due to poor separation

of variables. Studies often use a control of mothers on “multivitamins” without

41



acknowledging most multivitamin products contain folic acid. The majority of

studies find no significant link between folic acid and cleft palate.161–163 The

identification of gene mutations that cause cleft palate is still in its infancy.

There is a link, with 20% of patients having similar genetic deviations.156,157

These are for non-syndromic cases of cleft lip and palate only.

There have been many studies on instances where cleft palate goes untreated

into later life, the findings of which conclude that deviations from normal

growth is greatest just after birth.164–167 As the sufferer ages the deviations

in placement of bones such as the vomer or maxilla reduce. It has also been

noticed that more problems can be caused by corrective surgery, with unoper-

ated cases reporting better speech and quality of voice. Maxillary growth in

unoperated cases is closer to normal adult growth than operated cases, giving

a better facial shape. However, the social difficulties incurred in leaving cleft

palate cases untreated are terrible with the majority of suffers having difficulty

at school because of speech problems.

The tissues required for the repair of the palate are epithelium, specifically

oral mucosa to cover the defect, and bone. The bone needs to provide a hard

surface that can allow for suckling and speech development, but also must be

able to grow and expand with the child allowing for normal growth patterns.

An early repair of the hard palate is desirable to minimise impact on speech

development.

Treatment is protracted and cannot deal with all the problems produced by

the condition. Soft tissue is used to fill defects where hard tissue should be,

fulfilling the aesthetic part of the repair, but this neglects the mechanical
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function that the hard tissues provided. Hard tissue repair is a great challenge,

hard tissues are required for suckling and subsequent speech development.

Bone grafts to fill the hard palate defect are currently not used as an option.

They have actually been found to lead to distortion of the maxilla and the

results can be worse than no surgery.155,168 A bone graft may appear satis-

factory to begin with, but then the bone cells fuse and this tissue does not

grow with the child’s head causing major facial disfigurement. The resulting

complications and distortions to the maxilla are unacceptable and explain why

the hard tissues of the palate are currently mostly left untreated. The NHS

time line for treatment is as follows (Figure 1.14);140

Figure 1.14: The NHS timeline of treatment for cleft lip and palate.140

Three months: surgery is carried out to repair the cleft lip and other soft

tissues.

Six-twelve months: surgery to cover the hard palate is performed. This only

covers the defect with the soft tissues already surrounding the cavity.

Eight-eleven years: a bone graft is used to correct the alveolar ridge if re-

quired. This restores the bony ridge at the front of the mouth allowing

repair of dentition.

Two-fifteen years: orthodontic treatment is given.
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Nothing is done to replace the hard tissues lost in the palate. This causes

immediate and ongoing problems including suckling (managed through the

use of specially designed soft bottles) and later speech development. Novel

teat design helps the child to grasp the bottle, allowing the parent to help by

squeezing, which removes the need for the child to suck (Figure 1.15).

Figure 1.15: Special bottle designs to aid in feeding infants with cleft lip and
palate.
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An obturator (a prosthesis used to make speech and feeding easier) is some-

times used, this is an acrylic plate fitted to the roof of the mouth, which

replaces the hard palate allowing the child to suckle and aiding speech devel-

opment (Figure 1.16).

Figure 1.16: An acrylic obturator.

Without a hard palate it is difficult to form sounds such as K, G, T, L, D, N.

Obturators are not an ideal solution as they require replacing often because

of the very fast rate of child growth. Each obturator has to be specifically

moulded to fit each individual since no two instances of cleft palate are the

same. The hard palate has proven difficult to repair at an early age, primarily

due to the rapid and dramatic rate of growth of a child. Between the ages

of 0 and 3 the skull grows exponentially (Figure 1.17).169 The maxilla under-

goes a similar dramatic change, doubling in volume in the first 5 years of life

(Figure 1.18).170
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Figure 1.17: Change in skull size with age, note the first portion of the graph
is exponential.169,171

Figure 1.18: Change in maxillary volume with age.170
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There has been a lot of debate about how best to treat cleft palate patients in

the literature, the NHS time line is echoed around the world with the general

principles that soft tissues are repaired early and a bone graft to the alveolar

cleft is given much later.155,168,172–178 There are two problems to overcome for

the successful replacement of the hard tissues in cleft palate cases.

First, hard tissues grow at a rate far slower than soft tissue. An implant must

be able to deal with this and prevent fast growing tissue invading the space

where the hard, slow developing, tissues are desired. An aside to this is that

the implant must also allow for the flow of nutrients in order to allow the

separated tissues to flourish.

Second, the implant must allow for the growth of the patient. Cleft palate de-

fects approximately double in volume from birth to the age of 5. Any construct

must have this built in for a procedure to be a single and final solution.169,170

To fulfil this the implant must be biocompatible and biodegradable. It would

be unacceptable to require the removal of the implant at a later stage, disturb-

ing the new tissues and risking the formation of disfiguring scar tissue.

The challenges of cleft palate repair in the context of tissue engi-

neering

The solution to the treatment of cleft palate cases must be an improvement

on current treatments, ideally requiring very minimal follow up. In order to

fulfil this criterion, it must adapt and cope with the dramatic growth a child

experiences, particularly up to the age of five. Currently the cleft defect is only

repaired using surrounding soft tissues, this provides an aesthetically pleasing

but non-functional repair (Figure 1.19, top). A potential solution to creating a
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functional hard palate would be to use barrier membranes. A single operation

could be performed early, inserting a soft tissue barrier above and beneath the

cleft defect, then repairing the soft tissue as normal. The barrier’s role would

be to give bone a chance to develop in the defect, while keeping other soft oral

tissues (such as oral mucosa) out (Figure 1.19).

Figure 1.19: Diagram of current treatment (cross section through upper jaw,
top) and proposed solution (bottom). The repair currently applied to a cleft
defect is to merely fill the void with soft tissues. A better solution would use
a barrier membrane to allow bone to develop within the cleft without being
overrun with soft tissues. This would ideally require a single operation early
on and be able to cope with the dramatic growth of a child.

This would lead to the formation of a normal healthy hard palate, with a

complete shelf of bone (allowing speech and suckling) coated with healthy

oral and nasal mucosa. The material used to construct the barrier must be

biocompatible, and biodegradable at a rate comparable to the rate of bone

growth. This will remove the need for follow up surgery to remove a non-

degradable material. As it is intended to perform this operation as early as
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possible, a mechanism must be included to allow the child’s skull to grow as

normal without the implant affecting facial shape. Essentially the barrier must

be able to cope with and allow for the rapid expansion of the upper jaw.
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1.6 Summary

In summary, in tissue engineering there are often needs (as illustrated by the

condition of cleft palate where soft tissue and bone must be kept separated) to

produce complex composite scaffolds. These scaffolds are often required to be

both load bearing and biodegradable, necessitating the design of multifaceted

composite scaffolds capable of delivering both concepts. For cleft palate the

solution must facilitate the growth of two completely different tissues adjacent

to each other. There are other tissues where cells of different types must

be separated; a further challenge is that in vivo cells in tissues are subject

to biaxial distension. Are soft tissues analogous to hard tissues? Will they

respond to mechanical stimulation? Do they need mechanical stimulation to

form physiologically relevant tissues in the laboratory?

Scaffold design will play an important functional role in tissue engineering.

This is a given, a scaffold for bladder repair requires quite different proper-

ties to that used in periodontal defects or cleft palate treatments. This work

documents the creation and design of scaffolds with multilayers (bilayers and

trilayers) made of microfibres and nanofibres. The object is to create artificial

basement membranes and barriers to allow different, and normally compet-

ing, tissues to develop together in a complementary manner. Further to this

the end, the function of the scaffold is considered and the aforementioned

membranes are adapted to tackle these issues. Including the incorporation of

corrugations and designing of low Poisson’s ratio cross linked scaffolds. These

are meant to cope with uniaxial and biaxial distension. Such distensions are

observed in cleft plate cases, pelvic floor prolapse, and bladder tissue engineer-

ing. An emphasis is placed on how the end scaffold is to handle as it must be
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suitable for implantation, to this regard pseudo-woven scaffolds (hybrid cospun

random-aligned fibre scaffolds) are devised.

What scaffolds do we need to address these issues, and how are we going to

culture cells in the laboratory under relevant mechanical stimulation?

To this end several questions are raised. Is it possible to produce synthetic

scaffolds that prevent cells from penetrating them, but at the same time allow

nutrients to pass through? Is it possible to adapt these scaffolds in order to

culture two different, but viable tissues either side without cell crossover? As

there is not a one size fits all solution, can methods be developed to produce

a range of comparatively complex scaffolds, in different materials, to tackle a

range of different tissue engineering problems?

These are the questions this thesis will address.
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1.7 Aims and objectives

The overall aim of this project was to develop electrospun scaffolds capable of

supporting some of the physiological challenges of tissue engineering not cur-

rently met by simple scaffolds. Thus allowing one to co-culture two different

cell types successfully, to achieve biomechanical properties close to complex

human tissues, and to respond well to culture of cells under dynamic strain.

The clinical applications which guided this research were the challenges of de-

veloping tissue-engineered materials for cleft-palate repair and repair/support

of the weakened pelvic floor

The work is described under 5 related objectives:

1. To use the process of electrospinning to create a range of scaffold archi-

tectures, including microfibres and nanofibres, in a range of well known

biocompatible polymers, preferably from PLA, PHBV, and PCL.

2. To evaluate the effect of the spinning methodology and scaffold architec-

tures on cell viability and penetration of cells into scaffolds. In particular,

do nanofibres prevent cell ingress, and if so maintained over a period of

up to 6 weeks?

3. To produce composite and functional electrospun scaffolds that allow

one to culture two different cell types under segregated conditions, in

particular cells that have been shown to form bone and soft tissue such

as human embryonic stem mesenchymal progenitor cells (hESMPs) and

fibroblasts.
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4. To investigate how scaffold architecture can potentially produce materi-

als with novel mechanical properties e.g. auxetic behaviour under strain.

At least the creation of materials with low Poisson’s ratios should be in-

vestigated through scaffold design.

5. To develop simple bioreactors that can be used to test the effect of mul-

tiaxial distension on cells when growing on a 3D scaffold.
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Chapter 2

Standard methodology, method

creation and optimisation

2.1 Standard methodologies

The following methods were routine procedures used throughout this thesis.

Where methods were developed as part of the thesis these are presented in the

appropriate results chapters. All materials were acquired from Sigma Aldrich

unless otherwise stated.
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2.1.1 Arrangement of the electrospinning rig

All electrospinning was carried out in aseptic cleanroom conditions (pharma-

ceutical grade B. class 100).

Prepared polymer solutions (20 ml) were loaded into 4 × 5 ml syringes, fitted

with blunt-tip needles (0.6 mm ID), and placed onto a single syringe pump set

to deliver 40 µL.min−1 per syringe (Genie Plus, Kent Scientific, Connecticut,

US). A mandrel (597 cm2, radius 63 mm) coated in aluminium foil and rotated

at 300 revolutions per minute (RPM), was used to collect the fibres. A working

distance of 5-25 cm from the needle tip to the mandrel was used. A potential of

+12000 to +30,000 V was applied to the needles (73030P, Genvolt, Shropshire

UK).

2.1.2 SEM of electrospun scaffolds

Scaffold fibre diameter and morphologies were analysed using scanning electron

microscopy (SEM) (Philips XL-20). Cross sections of bilayer scaffolds were

obtained by manually cutting thin (2 mm) slices of scaffold and mounting

them perpendicular to the mounting surface.
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2.1.3 Tensile testing of scaffold

All scaffolds were cut into rectangles (5 mm × 20 mm) and measured for

thickness using a micrometer. These sections were then placed in a Bose

Electroforce 3100 instrument equipped with low-force testing grips, of a clamp

design, with knurled locking screw, and smooth gripping surface for compliant

samples such as biomaterials (8.4 mm maximum sample thickness, 12.5 mm

maximum sample width, 12 mm recommended minimum sample length). A

load of between 0 N and 22 N was then applied up to a distension of 6 mm

at a rate of 1 mm per second. The Young’s modulus (E) and ultimate tensile

strength (UTS) was then calculated.

2.1.4 Fibroblast culture

All cell culture was conducted inside a class II laminar flow hood (Walker

Safety Cabinets, Glossop, UK).

Skin samples were taken from consenting patients undergoing elective ab-

dominoplasty or breast reduction surgery. Tissues were collected and used

on an anonymous basis under Research Tissue Bank Licence 12179 as per

the Human Tissues Act 2004, Part 1, Section 1(9b) which states research on

human tissues may be lawfully conducted if it is;
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“carried out in circumstances such that the person carrying it out is not in

possession, and not likely to come into possession, of information from which

the person from whose body the material has come can be identified.”179

However, donations were typically from females (8̃0%) in the age range 18-

60. All samples were made anonymous before use. Tissue samples (0.5 cm

× 0.5 cm) were incubated in 0.1% w/v trypsin (Difco Laboratories) and 0.1%

glucose in phosphate buffered saline (PBS) (12-18 hours, 4 ◦C). The dermis was

peeled off, minced finely and incubated with 10 ml of collagenase (0.5% w/v

in Dulbecco’s modified Eagle’s medium (DMEM) and 10% fœtal calf serum

(FCS) (eBiosera), 37 ◦C for 18 hours). Following centrifugation of the resulting

cell suspension (400 g for 10 mins), pelleted cells were cultured in DMEM

supplemented with FCS (10% v/v), streptomycin (0.1 mg/ml), penicillin (100

IU/ml) and amphotericin B (0.5 g/ml), and sub-cultured as necessary. Only

fibroblasts of passage 4-9 were used in experiments. This is because primary

fibroblasts have a finite lifetime in vivo and beyond passage 9 are susceptible

to developing altered characteristics. This is well characterised by Hayflick et

al. in 1961 (Figure 2.1).180

Janson et al. note that late passage fibroblasts have enlarged cell bodies and

positive for myofibroblast markers and also greatly decreased matrix deposi-

tion.181 Late passage is defined by Janson et al. as 30 passages. Likewise

Janson et al. also show that donor age impacts fibroblast proliferation and

extracellular matrix (ECM) formation (3 donors, ages 44, 56 and 60 years).

Each experiment using fibroblasts in this thesis was performed in triplicate us-

ing fibroblasts from 3 anonymous donors each time between the ages of 18-60,

therefore some natural variation can be expected.
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Figure 2.1: Diagram showing how fibroblast growth alters with time and pas-
sage. Phase I, or the primary culture, terminates with the formation of the first
confluent sheet. Phase II is characterised by exponential growth necessitating
many passages (subcultivations). Cell alteration can occur at any point during
Phase II. Hence, an alteration may occur at any time giving rise to a cell line
whose potential life is infinite. Phase III, cells in culture rapidly decline after
a finite period of time. Thus, primary fibroblasts used in experiments in this
thesis were between passage 4-9, before entry into Phase II to minimise the
possibility of cell alteration.180

2.1.5 hESMP culture

All cell culture was conducted inside a class II laminar flow hood (Walker

Safety Cabinets, Glossop, UK).
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Mesenchymal progenitor cells (hES-MPTM 002.5) were obtained from Cellatris R©,

Göteborg, Sweden. α-modified Eagles medium (αMEM) was from BioWhit-

taker, Lonza, Switzerland. The hESMPs were seeded into a T75 (EasyFlaskTM,

Nunc, US). αMEM supplemented with penicillin (100 IU/ml), streptomycin

(0.1 mg/ml), β-fibroblast growth factor (βFGF) (4 ng/mL) and L-glutamine

(100 mg/ml) until confluent. Only hESMPs of passage 2-9 were used in ex-

periments.

2.1.6 Keratinocyte culture

All cell culture was conducted inside a class II laminar flow hood (Walker

Safety Cabinets, Glossop, UK).

Keratinocytes were obtained from skin samples obtained from patients as

above, washed with streptomycin and penicillin (100 mg/mL and 100 IU/ml

respectively in PBS). The tissue samples were refrigerated overnight (12 hrs) at

4 ◦C in trypsin and glucose (0.1% w/v and 0.1% w/v respectively in PBS). The

epidermal and dermal layers were separated, and keratinocytes were scraped

off of the lower surface of the epidermis and the upper surface of the dermis

with a scalpel blade. Keratinocytes were then seeded at a density of 2 × 106

per T75 culture flask pre-seeded with 5 × 105 i3T3 cells in Greens medium

(3:1 v/v DMEM and Hams F12 medium supplemented with 10% v/v FCS,

10 ng/mL EGF, 0.4 µg/mL hydrocortisone, 1 × 10−10 mol/mL cholera toxin,

1.8× 10−4 mol/L adenine, 5 µg/mL insulin, 2× 10−3 mol/L glutamine, 0.625

µg/mL amphotericin B, 100 IU/mL penicillin and 10 µg/mL streptomycin).
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Keratinocytes were maintained in culture to passage 2 then used in experi-

ments.

2.1.7 Preparation of cultured cells for seeding

Cell suspensions were prepared for seeded by adding trypsin/ethylenediamine

tetraacetic acid (EDTA) (5 ml, 5 mg/ml trypsin, 2 mg/ml EDTA in saline) and

incubating for 5 minutes at 37 ◦C. The resulting suspension was centrifuged

for 5 minutes (150 g). The cells were re-suspended in 5 ml of cell appropriate

medium and counted using a haemocytometer, and the concentration adjusted

for seeding.

2.1.8 Staining of cells with fluorescent vital dyes

Where required, cells were prelabeled using CellTracker green (CMFDA) and

CellTracker red (CMTPX, Invitrogen) prior to seeding. The cells to be labelled

were washed (3 × 5 ml PBS) and a 10 mM solution of the appropriate Cell-

Tracker was added (CellTracker was dissolved in dimethylsulfoxide (DMSO)

(0.001% v/v) and added to 10 ml serum free cell-appropriate medium). The

cells were subsequently incubated for 45 minutes at 37 ◦C. After incubation, the

cells were washed (3 × 5 ml PBS) following which, they were seeded onto the

appropriate scaffold. An Axon ImageExpress microscope (Molecular Devices,

Sunnyvale, US) set to 570 nm excitation wavelength (λex) 620 nm emission

wavelength (λem) (CellTracker red) and 480 nm λex, 533 nm λem (CellTracker

green) was then used to image samples.
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2.1.9 Cell nuclei staining

Samples to be stained with 4’,6-diamidino-2-phenylindole (DAPI) were fixed

in 1 ml 3.7% formaldehyde in PBS at 37 ◦C for 20 minutes. Samples were then

washed with 3 × 1 ml PBS and incubated in a solution of DAPI (1 µg/ml in

PBS) for 30 minutes. Afterwards the samples were washed with 3 × 1 ml PBS.

The stained samples are then imaged on an Axon ImageExpress fluorescent

microscope using 365 nm λex, 460 nm λem.

2.1.10 Cell cytoplasm staining

Samples to be stained with fluorscein isothiocyanate (FITC) were fixed in 1

ml 3.7% formaldehyde in PBS at 37 ◦C for 20 minutes and then washed with

3 × 1 ml PBS. Samples were then incubated in a solution of FITC (1 µg/ml

in PBS) for 30 minutes. After the samples were washed with 3 × 1 ml PBS,

the stained samples were then imaged on an Axon ImageExpress fluorescent

microscope using 480 nm λex, 533 nm λem.

2.1.11 Elastin staining

Samples to be stained for elastin were fixed in 1 ml 3.7% formaldehyde in PBS

at 37 ◦C for 20 minutes and then washed with 3 × 1 ml PBS. 200 µL of elastin

primary antibodies were added to each sample (5% v/v in PBS, rabbit anti

human alpha elastin, AbDserotec, Kidlington, UK) and incubated at 37 ◦C for
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30 minutes. Samples were then washed with 3 × 1 ml PBS and incubated in

a solution of secondary antibody (0.5% v/v goat anti rabbit IgG (FC):FITC)

in PBS for 30 minutes. After the samples were washed with 3 × 1 ml PBS.

The stained samples were then imaged on an Axon ImageExpress fluorescent

microscope using 480 nm λex, 533 nm λem for the secondary antibody.

2.1.12 Measuring cell viability using the resazurin salt

assay

The resazurin salt assay is a colorimetric growth indicator that detects metabolic

activity. The resazurin dye is a oxidation-reduction indicator. When viable

cells are exposed to blue resazurin dye for a fixed time the cells reduce the dye

to a pink product whose optical absorbance can be read.182 As the product

can permeate the membrane of the cells the culture remains viable and the

assay does not destroy the experiment. If the concentration of the dye is fixed

then a measure of the number of viable cells can be made by recording how

much of the dye is reduced in a given time.

A resazurin stock solution was made in PBS (5 µg/ml). After removal of

residual media, 1 ml of solution was added to each substrate and incubated for

1 hour, following which 150 µL was taken from each sample and the optical

density read (570 nm, Bio-Tek ELx800). The media was then replaced if

required (1 ml per sample).
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2.1.13 Measuring cell viability using the MTT assay

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) as-

say is a colorimetric growth indicator that detects metabolic activity.183 Like

the resazurin salt assay the yellow MTT dye is an oxidation-reduction indica-

tor. When viable cells are exposed to yellow MTT dye for a fixed time the

cells reduce the dye to a blue product that is insoluble in PBS. The cells can

then be lysed, the dye liberated, and dissolved in a known quantity of solvent,

and the mixture’s optical absorbance read. The number of viable cells can be

determined by how much of the dye is reduced in a given time.

0.5 ml of MTT solution (0.05 mg/ml in PBS) was added to each sample and

incubated for 1 hour at 37 ◦C. The solution was removed. 2-Ethoxyethanol

(500 µL) was added to each substrate to lyse the cells and solubilise the dye.

150 µL was pipetted from each sample into a 96 well plate, and the optical

density read (560 nm, Bio-Tek ELx800).

2.1.14 Measuring total DNA using PicoGreen

The picogreen assay was performed by first washing the samples with PBS (3

× 1 ml). A digestion buffer was then added (250 µL) to each sample and left

for 10 minutes. The cells were mechanically separated and lysed from the plate

by scraping with a pipette. The cell lysate was then collected and placed into

0.5 ml Eppendorf tubes and vortexed for 1 minute. The Eppendorfs were then

subjected to 3 rounds of freeze thawing between 37◦C and −80◦C and then

centrifuged for 5 minutes (150 g). Picogreen (180 µL, 1:200 picogreen, 1:20
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trypsin EDTA buffer in distilled water) was added to the supernatent (180 µL)

of each eppendorf and then read on a fluorescence plate reader (485 nm λex,−

528 nm λem).

2.1.15 Statistics

Statistics presented, unless otherwise stated, are calculated using Student’s

unpaired t-test. The significance of the results is denoted using ∗ symbols

where;

∗ Denotes that P<0.05 was recorded and the results are significantly different.

∗∗ Denotes that P<0.01 was recorded and the results are very significantly

different.

∗∗∗ Denotes that P<0.005 was recorded and the results are extremely signif-

icantly different.
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2.2 Methodologies created and optimised in

this thesis

The following methods had to be created and optimised during the course of

this project.

2.2.1 Calculating the RPM of the electrospinning drum

The speed of the electospinning mandrel currently used in the MacNeil labo-

ratory is described using arbitrary units from 0 to 10 displayed on the motor.

0 is not stationary but the minimum speed and 10 is the maximum. In order

to understand the effect of rotational velocity on fibre characteristics this had

to be translated into speed. It has been previously observed that the creation

of aligned vs. randomly oriented fibres is facilitated by accelerating the speed

of the collector.

A plastic splint (2 mm × 5 mm × 50 mm) was taped tangentially to the surface

of the drum, perpendicular to the axis of rotation. The mandrel was then set

to spin at the arbitrary units of 0, 2, 4, 6 and 8. A plastic “shatter proof” ruler

was placed in the path of the plastic splint resulting in a “tick” sound with

every rotation. This sound was recorded as a .wav file using Adobe audition

audio software on a wireless pc for 10 seconds per each setting. The error bars

are calculated from the counts in 1 second ±1 multiplied for every second in 1

minute. Hence readings are ±60 counts. Plotting speed setting vs. measured

RPM gives a linear plot where a setting of 0 results in a mandrel speed of 300
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RPM and a setting of 8 gives a top measured speed of 1700 RPM (Figure 2.2).

Figure 2.2: Graph of rotor setting vs. RPM. Error bars calculated from error
propagation in method.
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Figure 2.3: Peak counting in Audacity to calculate the RPM.

The resulting .wav file was analysed using Audacity 1.2.6, Dominic Mazzoni,

US. This software was used to remove noise from the track and allowed the

RPM to be calculated from the ‘ticks’ per minute counted at each speed setting

(Figure 2.3). Extrapolating for the top predicted speed, at a setting of 10 the

RPM would equal 2300±60.
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y = mx+ c (2.1)

y = (
(1600− 300)

(7.5− 0)
)10 + 300 (2.2)

(Gradient values read directly from Figure 2.2.)

y = 2300 (2.3)

Error in value as calculated via error propagation;184

√

(
60

1600
)2 + (

60

300
)2 +

√
602 = 60.2 (2.4)

This was necessary as the mixer used to rotate the mandrel only defines its

rotational velocity on an arbitrary scale of 0 to 10. It’s interesting to note that

0 isn’t stationary. In the literature it’s been shown that random architectures

are obtained at lower RPM (around 200-300 RPM) and that aligned fibres can

be achieved at 1000 RPM and over.185,186 From this experiment we now know

we are electrospinning in the random range (300 RPM) and also that we have

the ability to spin in a range suitable for aligned fibres.
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2.2.2 Electrospinning of PLA

PLA (Goodfellow, Huntingdon, UK, molecular weight unavailable, please see

data sheets in Appendix A.1) solutions were made by dissolving the bulk poly-

mer in DCM (10 wt%, Sigma Aldrich, Dorset, UK). The polymer solutions

(20 ml) were loaded into 4 × 5 ml syringes, fitted with blunt-tip needles (0.6

mm ID), and placed onto a single syringe pump set to deliver 40 µL.min−1

per syringe (Genie Plus, Kent Scientific, Connecticut, US). A mandrel (597

cm2, radius 63 mm) coated in aluminium foil and rotated at 300 RPM, was

used to collect the fibres. A working distance of 17 cm from the needle tip to

the mandrel was used. A potential of +17,000V was applied to the needles

(73030P, Genvolt, Shropshire UK).

5, 10, and 15 wt% solutions of PLA were made and electrospun under stan-

dard conditions. The resulting scaffolds were then processed for SEM to as-

sess the effect of changing polymer concentration upon fibre morphology (Sec-

tions 2.1.2). At 5 wt% nanofibres were achieved, but also present were bulbous

artefacts (Figures 2.4 & 2.5). At 10 wt% and 15 wt% fibres were achieved

although the fibre diameters reduced with increasing polymer concentration

(Figure 2.6). PLA microfibres can be easily and reproducibly obtained. The

scaffold produced was white and considerably fluffy. This made them difficult

to handle as they easily stuck to anything, and easily deformed. SEM images

showed the fibres to be 3 µm in diameter on average (Figure 2.4).
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Figure 2.4: SEM image of PLA electrospun at A. 5 wt%, B. 10 wt% and 15
wt% concentrations in DCM. Fibre morphology changes as the concentration
of PLA is increased.

Figure 2.5: Close up SEM image of spinning artefacts that occurred when
electrospinning 5 wt% solutions of PLA.
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Figure 2.6: Average fibre diameter of PLA produced from 5 wt%, 10 wt% and
15 wt% solutions. Error bars are ± SD, n=5.

Evaluating Goodfellow PLA vs. Aldrich PLA

This may seem an odd thing to include in this report, but with projects work-

ing to a tight budget seeking economy is necessary. As of 22/7/2012 PLA

bought from Aldrich costs £161 for 10 g. From Goodfellow it costs £151 for a

kilogram! This works out at £16.10 per gram from Aldrich and £0.15 per gram

from Goodfellow. To ensure that this swap could be made it was necessary to

compare the two materials to find any differences before making the transition.

The molecular weight of the Aldrich PLA was 10100 g/mol and the molecular

weight of the Goodfelllow PLA is unavailable (please see data sheets in Ap-

pendix A.1). Sheets of Goodfellow PLA and Aldrich PLA were consecutively
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electrospun (Section 2.2.2). Fibre diameter and morphology were analysed

using SEM (Philips XL-20, Section 2.1.2), tensile strength (Bose electroforce

tensiometer, Sections 2.1.3), and assayed for cell viability (50,000 fibroblasts,

resazurin salt assay, Sections 2.1.4 & 2.1.12).

Figure 2.7 shows SEM photographs taken of electrospun Goodfellow and Aldrich

PLA. Fibre diameter and morphology was the same for the two samples.

Figure 2.7: SEM images of Aldrich (A & B) and Goodfellow (C & D) PLA
electrospun fibres.

E and UTS measurements between the Goodfellow and Aldrich PLA had little

difference between them (Figure 2.8). The E and UTS measurements for both

polymers are not significantly different (P>0.05). Figure 2.9 shows the cell

viability of fibroblasts cultured on Goodfellow and Aldrich PLA compared to

tissue culture plastic (TCP) for one week. Cell populations increased equally
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on all three substrates in this time. Goodfellow PLA was comparable to TCP.

Tensile measurements are identical, and Goodfellow PLA performs as well

as Aldrich’s in regard to cell viability. When electrospun under the same

conditions identical scaffolds were produced with the same morphologies and

fibre diameters. So it makes good financial sense to use the Goodfellow PLA,

purely on grounds of cost.

Figure 2.8: Ultimate tensile strength and Young’s modulus of elasticity (E)
of Goodfellow and Aldrich PLA. Values are expressed as mean ±SEM, n=3.
There is no significant difference between the data recorded.
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Figure 2.9: Attachment of culture of 50,000 fibroblasts to Goodfellow and
Aldrich PLA compared to TCP after 1 week measured by resazurin salt assay.
Values are absorbance at 570 nm expressed as mean ±SEM, n=3.

2.2.3 Electrospinning of PCL

PCL solutions (70-90 kDa) of concentration 5 and 10 wt% in DCM were made.

This solution was then electrospun (17 cm distance, 40 µL per minute flow,

300 RPM, 17 kV) onto a rotating collector (63 mm radius, 597 cm2).

SEM images were taken to assess fibre morphology. Two futher PCL sheets

were spun but methanol (MeOH) (10 wt%) was added as a cosolvent.

PCL micofibres can be reproducibly electrospun. The scaffold is visually iden-

tical to the PLA scaffold and exhibits the same difficulties in handling. There
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was a small reduction in fibre diameter when MeOH was used as a cosolvent

(1500 nm in diameter without cosolvent, 1250 nm in diameter with MeOH

as a cosolvent, Figure 2.10). Both 5 wt% solutions produced pearl necklace

morphologies regardless of the presence of a cosolvent (Figure 2.11). Fibre di-

ameters between “pearls” was the same regardless of solvent system (250 nm,

Figure 2.10). PCL spun with 5 wt% MeOH cosolvent presented an interesting

“pock marked” macro morphology (Figure 2.12).

Figure 2.10: Average fibre diameter of PCL fibres produced from A. 5 wt%
in DCM, B. 10 wt% in DCM and C. 5 wt% in DCM/MeOH, D. 10 wt% in
DCM/MeOH solutions. Error bars are mean ±SD, n=5
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Figure 2.11: SEM images of PCL electrospun using a solely DCM solvent
system (A & B, 5 wt% and 10 wt% respectively) and a DCM/MeOH mixed
solvent system (C & D, 5 wt% and 10 wt% respectively).

Figure 2.12: SEM image showing macro morphology that formed when elec-
trospinning a 5 wt% solution of PCL with 10 wt% of a MeOH cosolvent.
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2.2.4 User friendly electrospinning of PLGA nanofibres

PLGA is a rapidly decomposing polymer and notoriously tedious to electro-

spin. At the time of starting this work the current method produced a great

deal of waste through Taylor cone build up and also the end product adhered

strongly to the collector. It was decided to apply the above methods to PLGA

spinning in order to determine if detachable nanofibres of PLGA could be

easily electrospun with less waste.

A 15 wt% solution of PLGA was created (15 wt% in 10 wt% MeOH and

80 wt%DCM) and then electrospun onto aluminium foil (17 cm needle tip

to collector, 30 kV, 300 RPM, 4 × 5ml syringes pumped at 40 µLmin−1).

The solution was noticeably less viscous than the regular method (20 wt%

in DCM) and the spun polymer produced an even white coverage across the

collector. The resulting scaffold had the texture and durability of tissue paper,

but it could be readily peeled from the backing foil. SEM images were taken

(Section 2.1.2, Figure 2.13) and fibre diameter measured and found to be 1.02

µm ±0.19 SD, n=5.
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Figure 2.13: SEM image showing fibres formed formed when electrospinning a
15 wt% solution of PLGA with 10 wt% of MeOH as a cosolvent.

2.2.5 Electrospinning of PHBV

As PHBV had not been electrospun in the MacNeil laboratory before, tests

were carried out to find the set of conditions from which fibres could be elec-

trospun. The electrospinning conditions normally used for PLA were taken as

a starting point (Section 2.2.2). Upon electrospinning PHBV it became appar-

ent that a much closer working distance was required as the fibres would not

deposit on the collector at 17 cm. A 10 cm working distance was selected as

this was the greatest distance fibre deposition was noted at. Samples were pro-

cessed for scanning electron microscopy (Section 2.1.2). The scaffold produced

was a “pearl necklace” with microfibrous spheres connected by nanofibres (Fig-
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ure 2.14 A). It was decided to enhance to spinning solvent by increasing its

permittivity.

Permittivity is a measure of how much a substance (or nothing in the case of

vacuum permittivity) interacts with an electric field. ǫ is measured in Farads

per meter (Fm−1), essentially the capacitance of the substance over 1 meter.

Naturally solvents with a high ǫ are great for electrospinning as they polarise

when introduced to the electric field, this increased interaction maximises the

chance of a stable spinning jet forming and fibres being deposited. Chloroform

and DCM are poor solvents with regard to ǫ (4.8 Fm−1 and 8.9 Fm−1 respec-

tively).187 Adding a co-solvent with a higher ǫ should increase the interaction

the solution has with the surrounding electric field and make fibre formation

possible. Some common solvents and their ǫ are listed in Table 2.1.187 The ǫ

of a vacuum and water are included for comparison. MeOH, EtOH, and DMF

were selected to be investigated as co-solvents for spinning PHBV because of

their greater ǫ.

Solvent ǫ /Fm−1 Temperature /◦C
Methanol 33.0 20
Ethanol 25.3 20
DMF 38.3 20

Chloroform 4.8 20
DCM 8.9 25
Water 80.0 20
Vacuum 8.85×10−12 N/A

Table 2.1: Permittivity of some common solvents.
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2.2.6 Selection of solvent for spinning PHBV

PHBV (12:1 hydroxybutyrate:hydroxyvalerate, Goodfellow Corporation, U.K.)

solutions of concentration 10 wt% in 80 wt% DCM were created. The addi-

tional 10 wt% was then made up using one of three cosolvents; MeOH, EtOH

or DMF. A PHBV solution (10 wt% in DCM) was also made and spun as a

control for comparison. These solutions were then electrospun (17 kV, 10 cm

from the needle point to the collector, 40 µL per minute solution flow, onto a

collector of area 597 cm2, radius 63 mm, spinning at 300 RPM). Scaffolds were

then assessed for cell viability using the resazurin salt assay, and mechanical

properties determined using a tensile testing machine. Finally samples were

processed for scanning electron microscopy (Sections 2.1.12, 2.1.3 and 2.1.2).

The SEM images show a marked change in morphology when a cosolvent is

used compared to spinning solely with DCM. Electrospinning PHBV in DCM

alone produced a pearl necklace morphology with nanofibres joining larger

globules of polymer in-between 5 µm and 20 µm in diameter. Upon addition

of the cosolvent, fibres were produced without globules (Figure 2.14). SEM

images did not display a significant variation in fibre diameter. All of the sam-

ples measured gave an average fibre diameter in the nanometre range, when

DCM was used, fibre diameters were significantly smaller compared to the

other solvents (Figure 2.15).
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Figure 2.14: Effect of solvent selection on morphology of PHBV fibres pro-
duced. A. No cosolvent, DCM only. B. 10 wt% DMF cosolvent. C. 10 wt%
EtOH cosolvent. D. 10 wt% MeOH cosolvent.

Figure 2.15: Fibre diameter of PHBV fibres resulting from different solvent
systems. Error bars are mean ±SD, n=3.
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The E of the resulting scaffolds did change significantly depending on the

cosolvent, except for MeOH, which was not significantly different to just DCM

(Figure 2.16).

Figure 2.16: Effect of solvent selection on Young’s modulus of PHBV fibres
produced. Error bars are ±SD, n=3.

The addition of EtOH produced a scaffold with half the E of DCM alone or

with MeOH. Using DMF as a cosolvent produced a scaffold with around double

the E compared to DCM alone. All PHBV scaffolds produced were white and

the sheets of fibres were noticeably flatter than PLA or PCL microfibres. None

of the PHBV scaffolds were fluffy (as for PLA) but almost paper like. The

paper-like sheets had radically different handling properties depending on the

cosolvent. The scaffolds produced using EtOH or no cosolvent were very brittle

and difficult to remove from the backing aluminium foil in one piece. When

DMF or MeOH were used the scaffold could be readily peeled off in their
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entirety and they were very easy to handle, much more like a sheet of paper

or a plastic bag.

Fibroblasts were cultured on the scaffolds and cell viability measured (50,000

fibroblasts cultured as per Sections 2.1.4 and 2.1.12). Cells performed best on

PHBV when MeOH was used as a cosolvent (20% better, but not significantly

better, than TCP). When DMF was used the cells performed significantly

worse (80% less metabolic activity than on TCP, Figure 2.17).

Figure 2.17: Recorded cell viability measured by resazurin salt assay on scaf-
folds spun with different cosolvents. The substrate PHBV was electrospun
using DCM only. Values are absorbance at 570 nm, error bars are ±SD, n=3

Scaffolds spun using EtOH as a cosolvent were discarded at this point as their

handling properties were too poor to conduct further experiments on.
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Fibroblasts grown on PHBV (50,000 cells per well, Section 2.1.4) spun with

MeOH as a cosolvent exhibited the same viability as cells cultured on TCP.

Where cells were grown on PHBV spun without a cosolvent, the viability

dropped by one third, and where DMF was used the viability dropped by two

thirds of that seen on TCP alone. MeOH was chosen as a cosolvent with

which to electrospin PHBV due to the good cell viability achieved, retention

of nanofibrous architecture, mechanical properties and ease of handling.

All subsequent PHBV scaffolds were electrospun using a 10wt% cosolvent of

MeOH.

2.2.7 Scaffold porosity determination

Scaffolds were cut into discs (14 mm diameter) and weighed on a balance.

Scaffold thickness was determined by measuring cross section thickness of SEM

images. SEM image cross sectional thickness was chosen as it prevents scaffold

deformation unlike other methods such as using a micrometer, thus allowing

the actual volume of the scaffold to be calculated. The density of each scaffold

was then calculated. This was done by dividing the recorded mass of the

scaffold by the calculated scaffold volume. The volume was calculated using

the SEM determined cross sectional thickness (thickness ×2π72). The scaffold

density was then divided by the bulk polymer density and expressed as a

percentage, giving the bulk porosity of the material.188

Porosity measurements were conducted in order to establish if fibre diameter

impacted on the density of the scaffolds. As fibre diameter decreased so did
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porosity (Figure 2.18). PHBV nanofibrous scaffolds (Section 2.2.6) exhibited

the lowest porosity, significantly less (around 20%) than microfibrous PLA or

PCL.

Figure 2.18: Calcuated percent porosity for nanofibrous PHBV and microfi-
brous PLA and PCL scaffolds. Error bars are mean ±SD, n=3.

2.3 Discussion: Production of a variety of elec-

trospun scaffolds

2.3.1 Determination of the speed of mandrel rotation

It was first necessary to calculate the mandrel’s RPM as the mixer used to

rotate the mandrel only defines its rotational velocity on an arbitrary scale of
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0 to 10. It’s interesting to note that 0 isn’t stationary. In the literature it’s

been shown that random architectures are obtained at lower RPM (around

200-300 RPM) and that aligned fibres can be achieved at 1000 RPM and

over.185,186 Taking the dimensions of their mandrels into account, randomly

oriented fibres were formed at linear surface velocities of around 17000 cm/min

and aligned fibres at 69000 cm/min. The linear surface velocity of the mandrel

used in the experiments presented could be set in the range of 9000 cm/min to

62000 cm/min, adequately matching the velocities achieved in the literature

for the production of both random and aligned fibres. Hence, knowing the

speed of the mandrel is vital for the creation of aligned and random fibres.

The mandrel used in this work was capable of matching reported velocities

required for aligned and random fibre formation.185,186

2.3.2 Electrospinning PLA

Varying the concentration of the PLA solution from 5% to 15% produced a

range of different fibres. 5 wt% PLA in DCM produced a pearl necklace struc-

ture, probably due to the rate of solvent evaporation and solvent permittivity,

as explained above. What was interesting was that the fibre diameter de-

creased when the concentration of polymer was increased from 10 wt% to 15

wt%. The change is small, and not significant, but it is present (Tables 2.2

and 2.3 at the end of this section). This is due to the effects of increasing

viscosity preventing thicker fibre formation.66,189
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Goodfellow PLA vs. Aldrich PLA

The cost saving implications of a switch of polymer suppliers made this a

worthwhile exercise. There was a good correlation of fibre diameter, mor-

phology, E, and cell viability between fibres spun from both polymer sources.

A definitive measure or similarity would be given by the polydispersity in-

dex (how uniform the polymer chain lengths are) and the polymer molecular

weight. However, these were unavailable from Goodfellow (Appendix A.1).

These should be measured in future. While the cell viability appeared lower

on Aldrich’s PLA, the viability rose to that of TCP and Goodfellow PLA over

seven days of incubation.

2.3.3 Electrospinning of PCL

Varying the concentration and solvent system of PCL solutions produced both

micro and nanofibres (Tables 2.2 and 2.3). Nanofibres were produced with a

pearl necklace morphology regardless of the solvent system used. Nanofibres

of PCL have been reported using a mixed DCM (80 wt%) and DMF (20 wt%)

system with 8 wt% of PCL.190 It is not ideal to use DMF as an electrospinning

solvent due to its low vapour pressure, and hence any scaffolds produced would

require an additional solvent removal step such as vacuum drying. Thus all

following scaffolds produced during this project do not include DMF as a

cosolvent.
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2.3.4 Electrospinning of PLGA nanofibres

A mixed solvent solution was once again employed to create nanofibres of

PLGA. While nanofibres of PLGA are not a new phenomenon, this is the first

time a MeOH and DCM mixture has been used in their creation. Also, it is

uncommon for a 50:50 lactic acid:glycolic acid polymer to be used due to its

fast degredation rate (Tables 2.3).191

2.3.5 Electrospinning PHBV

PHBV has previously been electrospun as micro and nanofibres using chloro-

form as the carrier solvent.91–94 DCM was selected as the solvent for spinning

PHBV as it was the common solvent already in use in the MacNeil laboratory.

It also has a higher permittivity than chloroform and hence it should produce

a solution that reacts more intensely to an electric field (9 Fm−1 and 5 Fm−1

respectively).187 However, it is clear from the work presented here that using

DCM alone is insufficient to produce the desired fibres. In the literature a

conductivity enhancing salt (benzyltriethylammonium chloride) is used to im-

prove fibre formation. Using benzyltriethylammonium chloride as an additive

does improve chloroform as a solvent choice. However, this particular salt is

stated to cause skin irritation, serious eye irritation and may cause respiratory

irritation.5 As it is a salt, it is likely that it will remain within the fibres and

potentially be in a scaffold if implanted. This is not desirable, and as shown in

this project the inclusion of a cosolvent such as MeOH can achieve the same

effect, but without the toxicity, as any residual solvent will evaporate.
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Zuo et al. have published work investigating the use of tetrachloromethane,

EtOH and DMF as cosolvents and also including benzyltriethylammonium

chloride in DCM solutions of PHBV.94 Their findings show that EtOH as a

cosolvent produces fibres with no beads or other morphological aberrations.

However, this paper does not investigate any further properties of the scaffold.

In the course of this PhD project EtOH did produce fibres of PHBV but

the scaffold had very poor handling properties compared to those made with

MeOH and DMF, preventing EtOH being a candidate solvent. The Young’s

modulus measurements reflect this. This could be due to inter fibre connections

forming in scaffolds where DMF and MeOH have been used, but not in those

spun with EtOH. This kind of behaviour has been noted in other electrospun

polymer scaffolds, and can also be clearly observed in the SEM presented in

Figure 2.15.192,193

There is a considerable difference in E measurements of the PHBV scaffolds

produced with different solvent systems. Figure 2.14 shows the reason for

this, when DMF is used there is significant inter-fibre adhesion, effectively

cross linking the fibres together. This would produce the greater E observed

compared to the other solvent systems.

With regard to the suitability of these scaffolds for cleft palate repair, the

greatest concern would be the potential for growth disturbances. This could

occur if the implant was too stiff compared to the surrounding tissues. The

E of a child’s skull is around 4-16 MPa.194 As all the scaffolds produced have

a E less than this value it is likely that the scaffolds would not cause growth

disturbances. When used in cleft palate repair, bone grafts taken from the iliac

crest cause major growth disturbances and are no longer used. The clinical

experience as reported by surgeons with experience in using such grafts (Pro-
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fessor Julian Yates, BSc, BDS, PhD, MFDSRCPS, FDSRCPS (Oral Surgery),

FDSRCS, Manchester, UK, and Dr. Kevin S. Hopkins, MD, FACS, Texas,

US) is that initial results are very good but that the implanted bone then fails

to expand with the growth of the child’s mandible, leading to distortion of

the jaw requiring corrective surgery. Indeed for this reason hard palate defects

are often not closed at all in many patients. This may be due to a mismatch

of E. Infant iliac crest E has been reported to be of the order of 17 GPa ±3

GPa, which is considerably stiffer than the observed range for a child’s skull,

explaining why iliac crest bone fails to expand.195

Comparing cell viability on PHBV electrospun scaffolds using different cosol-

vents, it is clear that DMF has a detrimental effect on cell viability. This is

most likely to be due to residual solvent in the scaffold. This would be due

to the very low vapour pressure of DMF (2.7 mmHg) compared to MeOH

(97.68 mmHg) and chloroform (160 mmHg). This means that DMF does not

readily evaporate.5 Cells cultured on scaffolds where MeOH is used as a cosol-

vent exhibit a greater viability than on scaffolds spun using just chloroform.

However, this could also be explained by the increased fibre diameter of the

PHBV spun with MeOH, providing a substrate that is more compatible with

cell attachment (Figure 2.15, Tables 2.2 & 2.3).

91



Polymer Solvent

system

Mandrel

velocity

/ RPM

Voltage

/ kV

Collector

distance

/ cm

Flow rate

/ µLmin−1

Mass of

Polymer

/ wt%

PHBV A.
DCM

/MeOH
300 17 10 40 10

B. DCM 300 17 10 40 10

C.
DCM

/EtOH
300 17 10 40 10

D.
DCM

/DMF
300 17 10 40 10

PCL A. DCM 300 17 17 40 5

B.
DCM

/MeOH
300 17 17 40 5

C. DCM 300 17 17 40 10

D.
DCM

/MeOH
300 17 17 40 10

PLGA
DCM

/MeOH
300 30 17 40 15

PLA A. DCM 300 17 17 40 5

B. DCM 300 17 17 40 10

C. DCM 300 17 17 40 15

Table 2.2: Table of electrospinning parameters used to spin PHBV, PCL,
PLGA and PLA. 92



Polymer

Fibre

diameter

/ nm

Young’s

modulus

/1.0+7 Nm−2

Porosity

/ %

Cell

viability

Cell

migration

PHBV A. 950 1.5 60 +++ −−−

B.
Pearl

Necklace
1.25 N/A ++ −−

C. 700 0.75 N/A N/A N/A

D. 850 2.5 N/A + N/A

PCL A.
Pearl

Necklace
N/A N/A +++ N/A

B.
Pearl

Necklace
N/A N/A N/A N/A

C. 1500 N/A 80 +++ +

D. 1250 N/A N/A N/A N/A

PLGA 1000 N/A N/A N/A N/A

PLA A. 500 N/A N/A N/A N/A

B. 3000 1.2 85 +++ +++

C. 2750 N/A N/A N/A N/A

Table 2.3: Table of scaffold properties resulting from the parameters used in
Table 2.2.
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2.4 Bioreactor enclosure design

This section of the project was devoted to finding an inexpensive, but workable

method to keep cells in culture on a biomaterial, in a bespoke bioreactor,

outside a conventional incubator.

The criteria for this next step was to create a system that could easily ac-

commodate, and apply loading to, multiple replicates simultaneously. It had

to also be easily accessible, adjustable, and not involve a “spaghetti junction”

of tubing. It was very quickly identified that the typical front loading in-

cubators were not suitable or convenient for bioreactor use; both because of

their communal use, and the front loading multi-shelf design. This results in

poor access and added complications of dealing with different height levels and

feeding tubes through ports and between shelves.

This lead to the first question to be answered; can a cheap top loading con-

tainer be sourced that can incubate a potential bioreactor at 37 ◦C contin-

uously? Broadly speaking, cells in culture require three things from their

environment, warmth (37 ◦C), nutrients (provided by their media), and pH

regulation (provided by a buffer system included in the medium).

Warmth is straight forward, through the use of a heating element or radiator

system a constant temperature can be achieved and maintained. Humidity is

also straight forward. If a reactor is sealed then this is not an issue, as no

liquid is lost.
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Open reactors would require a reservoir in the environment to increase the

humidity and reduce net evaporation from the system. However, achieving

a constant pH is a little more difficult, requiring either a CO2 supply for

bicarbonate buffering of media (this is the most common system) or a bespoke

media that uses an entirely different buffer system.

2.4.1 Investigation of the thermal stability of two po-

tential incubator chambers

The aim of this was to create a chamber suitable for housing a bioreactor. The

main requirement for this was that it must be possible to regulate the tem-

perature and allow pumps/rockers to act on the bioreactor without affecting

the temperature, or ruining the equipment. Equipment can be damaged when

placed in an incubator, either by the temperature or humidity. There must

also be provisions ensuring easy access for tubing and other external devices.

A seed propagator (Stewart, Wilkinsons Hardware stores Ltd.) was placed into

a polystyrene box (1 m× 0.5 m× 0.5 m with 5 cm thick walls) with small access

holes (one either side, 1 cm × 1 cm through the box wall) cut into the sides

to allow piping in (Figure 2.19). Distilled water (56 ◦C, in a water bath) was

pumped through tubing into the access holes of the polystyrene box and tubing

coils placed in the propagator to achieve an internal temperature of 37 ◦C.

Extra access holes were made as required to plumb in media circulation tubing.

An R-COM R© King Suro egg incubator (P & T poultry Ltd., Figure 2.20) was

also set to 37 ◦C and allowed to reach temperature.

95



Figure 2.19: (A) The propagator is insulated by using tin foil lagging and
housing inside a thick-walled polystyrene box. The box has access holes cut in
the side to allow tubing to enter and exit (red ring). (B) Inside the propagator,
coiled tubing (green arrow) is perfused with water at 37 ◦C to provide “under-
floor” heating.

Figure 2.20: R-COM King Suro egg incubator. The system promises temper-
ature and humidity control as well as the option to apply a rotation through
90◦every hour.
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The temperature was measured inside the propagator, King Suro egg incu-

bator, and a normal incubator using a temperature data logger (EL-USB-1,

LASCAR electronics, Hong Kong) every 2 minutes for 48 hours.

Monitoring the temperature of a water heated propagator shows that there

was no variation in the temperature, even in the early, coldest, hours of the

morning (Figure 2.21). The average temperature was 34 ◦C and the greatest

deviation, ignoring initial warm up was by 0.5 ◦C. Comparing this to a regular

incubator (Figure 2.21), the average temperature was 36 ◦C and the greatest

deviation was 1 ◦C. The egg incubator oscillated by ± 1-2 ◦C about a mean

temperature of 37 ◦C (Figure 2.21).

Figure 2.21: Thermal stability of an incubator, propagator and R-COM King-
Suro egg incubator over a 24 hour period. Average temperatures were 36.5
◦C, 34 ◦C and 37 ◦C respectively. The dips at 4 hours (propagator) and 8
hours (incubator) are due to the door/lid being opened in order to observe the
temperature drop, and measure how swiftly each would return to operating
temperature.
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In order to understand how mechanical stimulation affects growing cells, a

system that maintains cells in culture for two weeks and allows them to be

continuously exercised is required. The use of a propagator has shown that

for a low cost, a viable, and immensely flexible system can be easily created.

There are no restrictions to the equipment that could be incorporated and there

are no problems with overheating. This set up would also prevent damage of

delicate equipment by humidity.

2.5 Summary and conclusions

This chapter summarises methods for electrospinning a range of different poly-

mers into scaffolds comprising of varying architectures. These range from mi-

crofibres, to nanofibres and pearl necklaces. Culturing cells on these scaffolds

shows the impact of different architectures, solvent choice and dopant on cell

behaviour.

Microfibres allow cells to penetrate and fill a scaffold, whereas nanofibres pre-

vent cell infiltration and act as a barrier. Solvents and the method of spinning

can greatly affect the viability of cells on scaffolds. Care must be taken when

designing spinning methods to remember that such scaffolds are intended to

ultimately be used in patients. This data is summarised in Tables 2.2 and

2.3. Table 2.2 is a summary of the polymers spun and the conditions used.

Table 2.3 summarises the properties of the scaffold produced by using the

conditions given in Table 2.2.
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Finally, the need for a method to keep cells under ideal culture conditions,

while having access to valuable and sensitive equipment is investigated. Such

systems are becoming more important as more control over the environment

of the cell is sought.

The use of a propagator or an egg incubator has shown that for a low cost,

a viable and immensely flexible system can be easily created. Both systems

were capable of holding a constant temperature for at least 24 hours. There are

no restrictions on the equipment that could be incorporated, as access ports

can be readily made. There are no problems with overheating of incubators

from machinery, or delicate equipment being affected by humidity. This allows

experiments that were not feasible in an incubator to be performed. Multi-

ple pieces of sensitive equipment can be readily plumbed in, and a constant

temperature maintained.

99



100



Chapter 3

Post production processing of

electrospun fibres for tissue

engineering

3.1 Introduction

Please see the accompanying video by visiting

www.Jove.com

or

www.youtube.com.

Once biomaterials have been refined into electrospun scaffolds, these can be

processed post production for tissue engineering applications. Described here
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are methods for spinning complex scaffolds (by consecutive spinning), for mak-

ing thicker scaffolds (by multi-layering using heat or vapour annealing), for

achieving sterility (aseptic production or sterilisation post production), and

for achieving appropriate biomechanical properties.

Electrospinning is a commonly used and versatile method to produce scaffolds

(often biodegradable) for 3D tissue engineering.15,36,37 Many tissues in vivo

undergo biaxial distension to varying extents such as skin, bladder, pelvic floor

and even the hard palate as children grow. In producing scaffolds for these

purposes there is a need to develop scaffolds of appropriate biomechanical

properties (whether achieved without or with cells), which are sterile for clin-

ical use. Electrospinning tends to produce thin sheets as the electrospinning

collector becomes coated with insulating fibres it becomes a poor conductor,

such that fibres no longer deposit on it. Hence, described here are approaches

to producing thicker structures by heat or vapour annealing, increasing the

strength of scaffolds, but not necessarily the elasticity. Sequential spinning of

scaffolds of different polymers to achieve complex scaffolds is also described.

Sterilisation methodologies can adversely affect strength and elasticity of scaf-

folds. Three methods are compared for their effects on the biomechanical

properties on electrospun scaffolds of PLGA.

Imaging of cells on scaffolds and assessment of production of ECM proteins

by cells on scaffolds is described. Culturing cells on scaffolds in vitro can

improve scaffold strength and elasticity, but the tissue engineering literature

shows that cells often fail to produce appropriate extracellular matrix when

cultured under static conditions. There are few commercial systems available

that allow the culture of cells on scaffolds under dynamic conditioning regimes.
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One example is the BOSE Electroforce 3100 which can be used to exert a

conditioning programme on cells in scaffolds held using mechanical grips within

a media filled chamber.105 An approach to a budget cell culture bioreactor for

controlled distortion in 2 dimensions is described. This work shows that cells

can be induced to produce elastin under these conditions. Finally, assessment

of the biomechanical properties of processed scaffolds cultured with or without

cells is described.

As introduced in Section 1.5.3, bladder tissue engineering encounters many

similar problems seen in cleft palate and is therefore a good source of literature

for comparison.142,143 Like cleft palate, a bladder must be able to undergo a

plastic deformation biaxially and increase its volume many times in a day. In

contrast the palate must undergo this transformation only once over a few

years, whereas a bladder must be able to do this cyclically. Most literature

examines cell compatibility with a given material and asks if it shrinks under

cell culture. For example, a composite collagen, PLA, and PCL composite

scaffold that does not shrink through cell culture and is “slightly elastic” has

been produced.33 The greater mechanical problems posed are not often looked

at. A bladder is unique in that it must expand to more than 15 times its

deflated volume, while not increasing the pressure of the liquid inside it to

protect the function of the kidneys. It must do this in a water tight and

repeatable fashion. An elastic material is not suitable, it would increase the

pressure on the kidneys causing damage. The material needs to expand and

contract plastically.

Aside from this a bladder expands in 2 dimensions, in the x and y planes. Most

equipment used in mechanical testing only test in a single plane. There are

few examples of literature that have attempted to deal with this problem.196
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Scaffold creation on balloons can circumvent and test some of these problems.

A crinkly scaffold can be synthesised by allowing the balloon to deflate with

the scaffold pre-spun on it.

3.2 Electrospinning of random and aligned fi-

bres

Electrospinning creates fine fibrous networks by using electric potential to

draw a polymer solution towards an earthed collector. Collectors can be in

very many shapes and can be static or, more commonly, rotating. The solvent

evaporates before the solution arrives at the collector and the jet solidifies into

a fibre.

Each polymer requires its own set of conditions to produce a given type of

fibre. The concentration of the polymer, the solvent, the distance between the

pumped solution and the earthed collector, the potential difference between

the two, the velocity of a rotating collector, the flow rate, temperature, and

humidity will all affect electrospinning. There are many studies describing

the selection of electrospinning parameters and how these impact on the scaf-

folds produced (e.g. fibre diameter, morphology, and orientation).58,59,61,197

In these experiments scaffolds were spun based on conditions selected in our

previous studies.37,198 PLGA, PLA and PCL and nanofibrous PHBV scaffold

with micro-sized beads (“pearl necklace” morphology) were electrospun as per

Sections 2.2.2− 2.2.5. In summary:
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1. Coat the rotating mandrel collector with aluminium foil, with the pol-

ished/shiny side facing outwards. Our mandrel was 20 cm wide, and 10

cm in diameter.

2. Prepare polymer solutions; PLA, PCL and PHBV are made up as a 10

wt% solution inDCM. PLGA is made up as a 20 wt% solution in DCM.

3. Place 4 syringes of 5 ml volume on a syringe pump. Syringes are loaded

to contain 5 ml of the polymer each, giving 20 ml in total.

4. For PLA, PCL and PHBV use a flow rate of 40 µLmin−1 per syringe.

5. For PLGA use a flow rate of µLmin−1 per syringe.

6. For PLA, PCL and PLGA use a working distance of 17 cm from needle

tip to mandrel.

7. For PHBV use a working distance of 10 cm from needle tip to mandrel.

8. Charge the syringe needles to +17000 V (73030P, Genvolt, Shropshire,

UK) and electrospin from the appropriate distance onto the aluminium

foil coated mandrel.

9. For random fibres rotate the mandrel at 200 RPM.

10. For aligned fibres rotate the mandrel at 1000 RPM.

11. Scaffolds can be stored on the aluminium foil under dry conditions. Rec-

ommended storage is in a sealed container at 4 ◦C in the presence of

desiccant. In our experience scaffolds remain stable for at least 4 months

(possibly much longer) under these conditions (the MacNeil group was

not aware of any published studies on long term storage conditions for

scaffolds at the time of writing).
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3.3 Production of complex scaffolds by sequen-

tial spinning

Sequential spinning provides a method of combining the properties of different

materials to create a material that has the best of both properties. PHBV

produces a flat, dense, brittle sheet, whereas PLA or PCL spinning produces

low density elastic sheets. Both materials support cell attachment. Consecu-

tively spinning these materials results in a dense cell-impermeable membrane

that is elastic. In summary:

1. Set up the electrospinning rig as per Section 3.2, with PHBV spinning

conditions.

2. Electrospin PHBV as above.

3. Without changing the aluminium foil, electrospin a second polymer on-

top using the parameters and normal conditions for that polymer (e.g. 17

cm drum to needle, 17000 V, 200 RPM for PLA). This additive process

builds up a double layer of scaffold producing a bilayer.

3.4 Production of multilayered scaffolds by an-

nealing several layers together

Scaffolds can be multilayered through the use of heat annealing. To do this

4 sheets of PLGA are placed on top of each other and then heat annealed at
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60 ◦C for 3 hours. Scaffolds can also be annealed by vapour annealing. Here

4 sheets of PLGA are placed on top of each other and suspended 2 cm above

a pool of DCM (10 ml) for 1 hour. This is performed in a sealed container at

room temperature.

3.5 Aseptic production and post production

sterilisation of electrospun scaffolds

Aseptic scaffold production can be achieved by electrospinning in an aseptic

environment of a laminar flow hood, inside a clean room environment. To do

this either sterile polymers of medical grade, or polymers sterilised by incu-

bation in DCM can be used. Once dissolved, polymers are electrospun onto

sterile foil wrapped around a sterilised mandrel. Scaffolds are then handled

aseptically. Sterility is verified by incubating samples of the scaffold in growth

media free from antibiotics for the appropriate period. For ethanol disinfection

(this is of use experimentally but is not a recognised methodology of sterilisa-

tion which could be taken to the clinic) scaffolds are placed briefly (15 min)

in a 70% v/v solution of ethanol in distilled water. For practical experimental

purposes this is usually sufficient to disinfect scaffolds so that they can then

be combined successfully with cultured cells. For peracetic acid sterilisation

scaffolds are immersed in peracetic acid (0.1% v/v in PBS) and incubated for

3 hours at room temperature, as described in Selim et al.198 For gamma ster-

ilisation scaffolds are irradiated with a dose of 3 kGy using a caesium source,

as described in Selim et al.198
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3.6 Biomechanical testing of scaffolds

Scaffolds are cut into rectangles 5 mm × 20 mm, measured for thickness using

a micrometer, and placed into a Bose Electroforce 3100 instrument. This

machine applies a force of 0-22 N up to a displacement of 6 mm and plots the

load vs. displacement as a stress/strain curve. This allows the E and elasticity

to be calculated.

3.7 Visualising cells on scaffolds and assessing

ECM production

Cells can be stained with vital fluorescent dyes which allow one to see cells on

the scaffolds as they attach, migrate and proliferate. Post culture the presence

of cells on scaffolds can be determined by staining for cell nuclei with DAPI.

The production of ECM by cells on the scaffold can be assessed by staining

cells for a range of ECM proteins including elastin as shown in this example.

All scaffolds used were measured to have a thickness of at least 0.2 mm and

cut into squares 1.5 cm × 1.5 cm prior to seeding. In these studies human

dermal fibroblasts are used throughout because of the role they play in soft

tissue reconstruction which is our laboratory’s primary research interest. In

summary:

1. Culture cells as per Sections 2.1.4 − 2.1.6.
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2. If required, prior to seeding cells on the scaffold, cells can be pre-labelled

using CellTracker red or green (Section 2.1.8).

3. Post culture samples are fixed in 1ml 3.7% formaldehyde in PBS at 37

◦C for 20 minutes and then washed with 3 × 1 ml PBS .

4. Cells can be analysed for DAPI and elastin as per Sections 2.1.9 & 2.1.11.

3.8 Subjecting cells on scaffolds to biaxial dy-

namic conditioning

To examine the effect of dynamic conditioning on fibroblast ECM production,

a simple proof-of-concept bioreactor was developed to explore this.

Electrospinning onto liquid filled balloons for use in bioreactors

In order to perform cell culture on balloons a method of sterilising and then

aseptically coating the surface with electrospun scaffolds was required. Bal-

loons (as above) were autoclaved and then filled with sterile PBS (until just

turgid, 30 ml, OXOIDTM 8 g/L NaCl, 0.2 g/L KCl, 1.15 g/L Na2PO2(OH)2

and 0.2 g/L K2PO2(OH)2 in 1 L distilled H2O). The balloon was then hung

in place in a laminar flow hood. An earthing cable was inserted into a branch

pipe containing PBS connected to the flow regulation apparatus (Figure 3.1).

The balloon was then spun onto while being manually rotated (Section 2.2.5).
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Spun fibres adhered to the entire surface of the balloon and gave an even

coating, unlike non-graphite coated air filled balloons where fibres could be

seen deflecting from the surface. Using an earthing cable inserted into the

balloon at a branch pipe on the filling mechanism was essential to ensure that

it would act as a collector.

Figure 3.1: Examples of electrospinning PHBV onto a balloon filled with PBS.

SEM images of PHBV scaffold on balloon pre and post deflation

In order to observe if there was any change in the scaffold fibre arrangement

on the balloon post deflation, two balloons were prepared as described in sec-

tion 3.8. After the PHBV was electrospun onto the balloons, one was imme-

diately processed for SEM. The second balloon was then deflated to half the

surface area and then the scaffold also processed for SEM analysis (Philips

XL-20). Figure 3.2 shows SEM images of the PHBV scaffold electrospun onto

a balloon, before and after the balloon is deflated. The two images contrast
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greatly. The deflation causes the scaffold to ruffle and become visibly denser

than the scaffold before deflation.

Figure 3.2: SEM photographs of PHBV scaffold electrospun onto a balloon.
A. before deflation of balloon and B. post-balloon deflation.

Elastin production on biaxially distended scaffolds

Once methods for creating a sterile, scaffold coated, balloon and an appropriate

distension were calculated, it was then possible to study the effect of multiaxial

distension on cellular production of extracellular matrix. A balloon and flow

regulation apparatus were autoclaved (122 ◦C, 220 mBar for 1 hour). Under

clean room conditions the apparatus was unpacked in a laminar flow hood and

placed in position for electrospinnig.

The balloon was inflated with 28 ml (double the required final surface area)

of PBS, and the apparatus connected to an electrical earth at the branch pipe

on the 3-way tap (a point in the apparatus that does not need to be sterile).

PHBV was then electrospun onto the balloon (8 ml, 17 kV, 40 µL.min−1,

working distance of 10 cm, Section 2.2.5).
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The balloon was then deflated by 14 ml and a second coating of PLA was spun

on (8 ml, 17 kV, working distance of 17 cm, 40 µL.min−1), and the scaffold

allowed to dry for 1 hour. The balloon was then placed into a sterile vessel

(500 ml Schott-Duran bottle) and transported to a laminar flow hood suitable

for seeding the cells prior to culture (Figure 3.9). The balloon was removed

from the vessel and placed onto a sterile surface (Petri-dish), and its surface

basted (1 ml every 20 seconds for 20 minutes) by pipetting a cell suspension

(1 × 106 cells in 5 ml of DMEM) using a Pasteur pipette.

The balloon was placed back into the culture vessel pre-filled with 500 ml of

pre-warmed culture medium (Section 2.1.4). The inflation apparatus was con-

nected to a syringe pump (Kent Scientific, Genie Plus, Connecticut, US) and

the balloon inflated by 14 ml over 5 days (0.0034 ml/min). The culture vessel

was placed in an oil bath heated to 37 ◦C for the duration of the experiment

using a hotplate/stirrer.

A second similar balloon was also prepared using the same method, but not

inflated by the syringe pump. This was used as a static control. Post culture,

each balloon was cut in half (Figure 3.10), one half was stained for elastin and

cell nuclei (DAPI) and the other half assayed with MTT (Sections 2.1.11, 2.1.9

& 2.1.13).

Figure 3.11 shows fibroblasts cultured on a balloon. MTT (left) shows viable

cells are present and coating a large section of the balloon. The presence of

cells is confirmed by DAPI staining (cell nuclei, blue dots). Immunostained

elastin was detected on the exercised balloon (green fibres). No elastin was

detected on the static balloon (no green substances visible, Figure 3.11 C) .
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3.9 Representative Results

The following figures are representative results that can be expected if the

above methods are followed. Electrospinning can be utilised to create scaf-

folds with random and ordered architecture (Figure 3.3), this is repeatable

and the fibres are uniform. Many types of polymers can be electrospun with

characteristics which can vary considerably, as shown in Figure 3.4 for PHBV,

PLA or PCL. Electrospinning can produce light fluffy scaffolds or dense cell

impenetrable membranes (see Figure 3.5).

Figure 3.3: A cartoon of an electrospinning rig, the spinning of random and
parallel fibres, and then layers of fibres placed over each other.
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Figure 3.4: Shows the morphology of random electrospun mats of (A) PLA,
(B) PHBV, (C) PCL and (D) PLGA.

Figure 3.5: Production of a multilayered scaffold. Here the scaffolds were
initially spun using PHBV and then syringes filled with PLA or PCL were
used, which was spun on top of the PHBV scaffold. The figure shows the
appearance of these multilayered scaffolds, (A) PHBV layer, (B) Bilayer cross
section, showing dense PHBV layer and more open PLA layer and (C) PLA
layer.
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All scaffolds shown here facilitated cell attachment and proliferation. For PLA

the average fibre diameter was 3 µm; for PHBV it was 0.3 µm; for PCL it was

3 µm; and for PLGA it was 11 µm.

If thicker scaffolds are required vapour and heat annealing can be employed

to anneal layers of scaffolds together (Figure 3.6). This work shows that

bilayer membranes can be made where cells A and B can each be cultured on

a separate membrane without intermingling (Figure 3.7).

This is demonstrated by using fibroblasts coloured with two different fluores-

cent cell tracker dyes. Such a bilayer membrane would be useful when culturing

cells, for example, to form a hard tissue such as bone or cartilage on one side,

separated from cells designed to form a soft (and usually faster growing) tissue

on the other side.

With respect to the impact of sterilisation on electrospun scaffolds the MacNeil

group have previously reported that the method of sterilisation impacts on the

scaffold.198 This is illustrated in Figure 3.8 which shows the effects of peracetic

acid, gamma irradiation and EtOH on the fibre diameter and UTS and E of a

PLGA (85:15) scaffold.

Gamma irradiation has no significant effect on fibre diameter whereas peracetic

acid and ethanol reduce fibre diameter by approximately 50%. Each of the

methods of sterilisation changed the ultimate tensile strength and the elasticity

of the scaffolds. Culture of cells on these scaffolds further reduced the ultimate

tensile stress, but increased the elasticity.
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Figure 3.6: Thicker scaffolds can be produced by heat annealing and vapour
annealing. (A) and (C) Show a section through a PLA scaffold where initial
fibrous scaffolds of approximately 150 µm have been placed together and heat
or vapour have been used to make much thicker scaffolds of up to 500 µm. In
(B) and (D) one can see that the scaffold consists of layers of much thicker
fibres interspersed with layers of thinner fibres. This approach can be used to
produce scaffolds of complex mechanical properties.
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Figure 3.7: Appearance of cells on a bilayer scaffold. In all cases the cells
present are skin fibroblasts. (A) Fibroblasts on electrospun PLA where the
cells have been fixed and stained with DAPI. (B) DAPI stained cells stained
on PHBV. In (C) the fibroblasts have been pre-stained with a vital dye Cell-
Tracker green and you can see the appearance of them on the PLA side of the
bilayer. (D) A section through the bilayer with red stained fibroblasts on the
lower PHBV surface and green stained fibroblasts on the upper PLA surface.
(E) Fibroblasts pre-stained with CellTracker red grown on the PHBV surface.
The use of vital fluorescent dyes provides a convenient methodology for looking
at the distribution of cells on the scaffold while the cells are still growing. One
can routinely use these dyes for at least 7 days. However, the concentration of
dye becomes diluted as the cells divide. Scale bars are equal to 0.1 mm.
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Figure 3.8: Biomechanical properties of electrospun scaffold obtained using a
Bose electroforce tensiometer device. (A) Stress/strain curves of PLGA scaf-
folds sterilised by gamma irradiation, alcohol, peracetic acid, or aseptically
produced. Three measurements can be obtained from such a graph, the ulti-
mate tensile stress to which the fibre can be subjected before it breaks, the
UTS and the E. The latter gives an indication of the elasticity of the scaf-
fold. (B) The effect of each sterilisation method on PLGA fibre diameter in
µm. Each sterilisation methodology decreased UTS. Both peracetic acid and
Gamma irradiation decreased the E giving a more elastic scaffold, alcohol made
the scaffold particularly brittle.
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Finally, a method of testing the effect of dynamic biaxial distension on cells

cultured on electrospun scaffolds, is presented. This proof-of-concept approach

shows that cells remain viable during dynamic distension but also produce

increased amounts of elastin under these conditions. This contrasts markedly

to the lack of elastin when the same cells on the same scaffold are maintained

under static conditions (Figures 3.9, 3.10, and 3.11).

Figure 3.9: (A) A deflated balloon onto which electrospun fibres, PHBV, have
been deposited. At this stage the balloon is partially covered with fibres. (B)
A balloon fully coated with PHBV and PLA fibres. (C) The balloon is basted
with a cell suspension.
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Figure 3.10: (A) A balloon placed within a bottle of sterile media where the
balloon is connected to a syringe pump, and PBS (used as a conducting elec-
trolyte) is used to gently inflate and allow deflation of the balloon against a
programmed schedule. (B) Cells on scaffolds being removed from the balloon
at the end of the experiment, and analysis undertaken for cell viability shown
in Figure 3.11.

Figure 3.11: A. MTT staining of fibroblasts cultured on a balloon for 1 week.
Purple regions show patches of viable cells on the surface of the scaffold. DAPI
and immunostained elastin stained balloon sections of exercised (B) and static
balloons (C). Cell nuclei (blue) are visible in both, whereas elastin (green) is
only present on the exercised balloon (B). Scale bar is equal to 0.025 mm.
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3.10 Reasoning for the use of, and the devel-

opment of, balloons as bioreactor sub-

strates

A crinkly scaffold should be able to change volume without an increase in

pressure, when inflated and return to its original shape, by the corrugations

unfurling (Figure 3.12). The materials used to create these scaffolds are already

well known for their biocompatibility.

Figure 3.12: A. Flat bilayer. B. Schematic of creation of bilayer capable of
distending with a child. 1. PHBV is electrospun onto a balloon. 2. The
balloon is deflated, and the scaffold ruffles up. 3. PLA is finally spun on top
to create a bilayer.
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A balloon can also overcome the limitations of uniaxial mechanical testing

equipment. When inflated a balloon will expand biaxially, allowing a stress

to be applied in 2 dimensions to a scaffold. An assumption does have to be

made that a balloon will inflate uniformly, a low quality balloon may expand

significantly more in one area than another and this should be investigated.

The first question that arises is how much distension should be applied? In-

evitably this question has different answers depending on the tissue under

culture. If bladder tissues were in culture a cyclic regime of expansions and

contractions would be required. With respect to cleft palate, a healthy maxilla

will double in volume as a child ages from 0-5 years. There isn’t physically

enough time to keep a construct in culture for 5 years, but if the model can be

designed to expand as much as a cleft palate defect in a fortnight, the cells in

culture may respond in an appropriate fashion. A model that can distend to

twice its original surface area is required (Appendix A.2).

A simple way to achieve this is to use a child’s party balloon. Balloons are

cheap, non toxic (they are given to children as toys) and they stretch in 2D

when inflated. The question here is, do they expand equally in all directions

as they are inflated?

3.10.1 Measuring the strain on the surface of an inflat-

ing balloon

How a balloon inflates needed to be characterised in order to understand how

this will impact any scaffold placed onto a balloon’s surface. It cannot be
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assumed balloons are equibiaxial (i.e. expand equally in two dimensions). It

is not known what kind of 2D strain tissues undergo, and most likely this

will vary depending on the tissue under investigation. However, it is useful to

characterise it.

Three unadulterated balloons were pre-filled with distilled water (14 ml) and

purged of air by connecting to a syringe (50 ml, Plastipak Ltd, UK), and a

3-way tap with 3 mm diameter tubing (Figure 3.13). The balloons then had 9

dots drawn on them in a cross-hair pattern (Figure 3.14).

Figure 3.13: Schematic of apparatus used to suspend and inflate balloons with
liquid.
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Each balloon was then inflated by injecting 30 ml of distilled water using a

syringe pump (Genie Plus) in increments of 5 ml and then deflated back to

it’s original starting volume. The distance between sets of points was mea-

sured at each increment. Displacement and strain in x and y were calculated

(Figures 3.14 and 3.15).

Figure 3.14: Balloon undergoing 2D strain analysis. Nine points are drawn on
the balloon in a cross-hair pattern. As the balloon is inflated the change in
distance between the points is recorded.

124



Figure 3.15: A graph to show the change in strain in x and y on the surface
of a balloon as it is inflated from 0 ml to 30 ml. Error bars are equal to the
mean ±SD, n=3.

It can be seen that balloons do not inflate equally in the x and y planes, with

the greatest change occuring in the x axis. The variance between balloons is

also large (Figure 3.15).

When balloons are inflated fully, on deflation, it is often obvious that the

balloon does not return to its original dimensions. In order to determine how

great this change is, the experiment described above was repeated, except the
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three balloons were pre-strained by inflating with air until taut (1 L) and held

for 30 seconds before deflating and then their surface strains analysed. This

was performed 3 times using separate balloons.

A plot of strain in the x axis verses strain in the y axis shows that strain in

both directions increases with inflation up to 30 ml. So balloons do distend

multiaxially (Figure 3.16). When the balloons are pre-inflated the variance is

less, and the difference in strain between the x and y planes narrows. However,

the total strain applied to the surface of the balloon is about 50% less than on

a fresh, unadulterated balloon.

Figure 3.16: A graph to show the change in strain in x and y on the surface
of a balloon as it is inflated from 0 ml to 30 ml. Error bars are equal to the
mean ±SD, n=3.
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The degree of strain in the x axis is not equal to the y axis. The greatest

increases are observed in the x axis (equatorial around the balloon). The

error in taking these measurements is small, around ±0.025 in decimal strain.

However, the variance between balloons is huge, up to ±0.150 decimal strain.

The balloons fresh out of the packet do not return to their original dimensions

on deflation back to the starting volume. This diminishes when the balloon is

pre-strained to within ±0.100 decimal strain. This variation seems to peak at

around 20 ml inflation, it is considerably lower for all balloons below this value

at ±0.03 decimal strain. The pre-strained group do return to their starting

dimensions upon deflation.

Given that this is a proof of concept model, it was decided to use pre-strained

balloons in future models. The strain in x and y may not be equal, likewise

the variance between balloons is significant.

To achieve the doubling in surface area required by this model, a balloon must

be inflated by at least a factor of 2
√
2 (Appendix A.3).

3.10.2 Electrospinning onto balloons

A method was required to fix scaffolds under investigation to the balloon. The

most direct method of achieving this was to electrospin the scaffold directly

onto the surface of the inflated balloon.
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Electrospinning onto air filled balloons

Air filled balloons seemed an obvious starting point, although a couple of

hurdles needed to be overcome. Firstly a method of mounting and earthing

the balloon was required, and secondly overcoming the positive surface charge

that is inherent in balloon latex. The positive surface charge prohibits the

direct electrospinning of scaffold onto the balloon as it repels the positively

charged polymer jet, preventing deposition. Party balloons (mixed bag of 50,

Wilkinsons Hardware Stores Ltd) were inflated with air to the required surface

area (597 cm2). 5 ml of industrially methylated spirits (IMS) (70% v/v in

distilled water) was placed inside and then the balloon tied up. The inflated

balloon was then mounted on a knitting needle (31
4
mm diameter, anodised

aluminium core, Wilkinsons Hardware Stores Ltd) by pushing it through the

surface of the balloon and out the opposite side (Figure 3.17).

Figure 3.17: Inflated balloons mounted on knitting needles.

The knitting needle was then fitted into the chuck of the electrospinning ro-

tator, replacing the normal rotating collector (balloon rotated at 300 RPM).

The IMS acts as an electrolyte, allowing the balloon to act as an earth, and

become a collector suitable for the deposition of fibres. The knitting needle
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provides a stable spindle on which to mount the balloon, a physical earthing

point, and prevents the collector from wobbling.

Graphite coating of air filled balloons

Another method of overcoming the positive surface charge of a balloon is to

coat the surface with a conductor. Graphite was selected due to its non-toxic

and conductive properties. Once mounted on the knitting needle the balloon

was coated with a graphite suspension in IMS (<20 µm particles, 70 wt% IMS

in distilled water), completely covering the surface of the balloon. Once the

IMS had evaporated the graphite was polished until the balloon surface was

lustrous (Figure 3.18). This ensures even and complete coverage.

Without any liquid in, or graphite on, the balloon, the latex would repel the

positively charged polymer jet resulting in a clean balloon and a fibre coated

cabinet. Once the balloon became a conductive, earthed collector, then fibres

evenly coated the surface during spinning. Once a complete coverage of fibres

was achieved and dried, the balloon could be deflated and removed leaving a

ball of scaffold behind (Figure 3.19).
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Figure 3.18: Balloons coated with graphite after polishing.

Figure 3.19: Polymers are spun onto balloons and then the inner balloon was
removed to leave an electrospun sphere. Electrospun spheres from A. Graphite
coated balloon. Graphite staining can be seen on the sphere from the graphite
coated balloon. B. Air inflated balloon with 5 ml of IMS inside.

Electrospinning onto predefined areas on graphite coated balloons

As the balloon latex is repulsive to positively charged streams of polymer, but a

graphite coating can transform this into a collector, tracks can be drawn on the

balloons surface allowing selective deposition of scaffold. Using an 8B pencil

(Staedtler R©), patterns were drawn onto a balloon, areas where deposition was
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required were shaded in with pencil. These areas were then connected up by

pencilling lines to connect them to ground. The balloon was then electrospun

onto (Figure 3.20, Section 2.2.5).

Figure 3.20: Examples of patterns spun onto balloons by shading specific areas
with graphite.

Due to the knitting needle compromising the structure of the balloon, and the

desire to be able to inflate/deflate the balloon post spinning, air filled balloons

were abondoned. Liquid filled balloons do not have these limitations. Hence,

were used for the duration of the project (as per Section 3.8).

3.11 An alternative embodiment of a balloon

based bioreactor: Mechanical stimulation

of scaffolds using Ebers P3D perfusion

chambers

Once a suitable enclosure for a bioreactor had been created attention could

be turned to the system itself (Section 2.4). The goal of this section was to

create a system that avoided an excess of tubing but could also handle multiple
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replicates simultaneously. An emphasis was placed upon user-friendliness of

the system.

Ebers P3D 6 mm (Zaragoza, Spain) perfusion chambers were chosen to be

adapted, to create mini exercising bioreactors, due to their inexpensive nature

and clip-lock design, allowing scaffolds to be easily inserted (Figure 3.21).

Their plastic construction also favoured them for adaptation. The use of Luer

lock ports on either end of the chamber also made them compatible with

most other lab equipment. In order to create a chamber that could distend a

membrane at one end, but also circulate medium, a third port was added using

epoxy resin (Wilkinsons Hardware Stores Ltd, UK) and hypodermic needles

(BD, New Jersey, USA, Figures 3.21 and 3.22).

Eight adapted chambers were connected using branch trees (in order to min-

imise complexity and total tubing). This in turn was connected to a reservoir

of media and a PBS filled syringe to provide the stimulus (Figure 3.23). In

a laminar flow hood, balloon disks (6 mm diameter, autoclaved prior to use)

were placed in the base of the chamber.

PLA-PHBV scaffold disks (6 mm diameter) were then placed inside and any

air bubbles were purged. 10,000 fibroblasts were seeded in DMEM into the

chambers, and then the chambers were sealed. The scaffolds were left overnight

at 37 ◦C for the cells to attach (Section 2.1.4). The chambers were then placed

inside the propagator set up as described in Section 2.4.1.

132



Figure 3.21: An Ebers P3D chamber adapted to accommodate a third port.
Scaffold can be seen at the base, on a section of orange balloon.

Figure 3.22: Diagram of chamber set up. Media flows in and out through the
top two ports, while a mechanical stimulus is applied to the balloon membrane
using the bottom port.
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Figure 3.23: Eight Ebers P3D chambers are connected together using a branch-
ing system. This minimises tubing and requires only two pumps. One to cir-
culate media, and the second to mechanically stimulate the cells. Green and
blue dyed liquid is alternately pumped through to check there is liquid flow
through all 8 chambers.

Media was circulated using a peristaltic pump (90 rpm) and the PBS filled sy-

ringe cyclically infused/withdrew 0.4 mlmin−1 applying 0.05 ml to each cham-

ber. This cyclically inflated each balloon section into a hemisphere, doubling,

then halving the surface area every two minutes. The cells were cultured for

14 days and then the scaffolds assayed using the resazurin salt assay (Sec-

tion 2.1.12).

Following this, the samples were immunostained for elastin and cell nuclei with

DAPI (Sections 2.1.9 and 2.1.11). A second similar reactor was set up where

the samples were not mechanically stimulated. This constituted our static

control.
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Figures 3.24 and 3.25 show the cell viability in the Ebers perfusion chambers

after 2 weeks of culture. The static chambers show a higher absorbance in-

dicating a greater number of viable cells than the dynamic chambers. There

was a high variation (at least 50%) across all chambers, for both static, and

dynamic culture in the number of viable cells.
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Figure 3.24: Viability of cells cultured under static conditions in 8 connected
Ebers P3D chambers for 2 weeks. Viability was assessed by the resazurin salt
assay. The change in readings between systems shows the variability of culture
conditions in the system. Values are absorption at 570 nm expressed as mean
± SE, n=3. The chambers labelled A, B, C, & D correspond to panels A-D of
Figure 3.26

Figure 3.25: Viability of cells cultured under dynamic conditions in 8 connected
Ebers P3D chambers for 2 weeks. Viability was assessed by the resazurin salt
assay. The change in readings between systems shows the variability of culture
conditions in the system.Values are absorption at 570 nm expressed as mean
± SE, n=3. The chambers labelled A, B, C, & D correspond to panels A-D of
Figure 3.27
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Staining the substrates for elastin and DAPI highlights the difference between

static and dynamic cultures (Figures 3.26 and 3.27). Even with the dynamic

culture having fewer viable cells at the end of the culture there is visibly more

elastin (stained “green” in the Figures) than in the static system.

This smaller system, if perfected, should allow for more replicates, especially

inside an inexpensive propagator. It would be possible to have rows of these

each running multiple experiments. This “proof of concept” design does show

the effect of mechanical stimuli on fibroblasts, in spite of the uneven cultures

obtained. Elastin in varying amounts was produced in the dynamic system.
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Figure 3.26: Immunostained elastin (green) and DAPI (blue) stained scaffolds
after 2 weeks of static culture in an Ebers P3D chamber. A-D are images from
4 different chambers. Scale bar is equal to 0.1 mm.

Figure 3.27: Immunostained elastin (green) and DAPI (blue) stained scaffolds
after 2 weeks of dynamic culture in an Ebers P3D chamber. A-D are images
from 4 different chambers. Scale bar is equal to 0.1 mm.
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3.12 Investigation of keratinocyte culture in

non-CO2 perfused systems

While the above described bioreactors and enclosures (Section 2.4) are a step

forward, one parameter had not so far been taken into account: pH buffering.

With the balloon and Ebers systems pH buffering for fibroblasts was not a

problem as there was a great surplus of medium compared to the number of

cells. However, cells that require more precise pH conditions or an expensive

culture medium are a potential problem. A pH regulation system that did not

rely on volume alone needed to be included. This could either be a CO2 gas

perfused system (for bicarbonate buffering) or another, alternative CO2 “free”

system.

3.12.1 Action and kinds of pH buffer systems

Figure 3.28: Chemical structure of sodium bicarbonate.

Sodium bicarbonate is commonly used as a pH buffer in cell culture (Fig-

ure 3.28).199 Its method of action is well known, and it is responsible for

pH regulation in the worlds oceans.200,201 The system works by the following
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chemical equibibria;

H2O(l) + CO2(g) ⇀↽ H2CO3(aq) (3.1)

H2CO3 ⇀↽ HCO−

3 +H+ (3.2)

HCO−

3
⇀↽ CO−2

3 +H+ (3.3)

The result of these equations is a pH buffering effect, where excess acid can be

converted into water and CO2, and excess base converted into the carbonate

ion (HCO−

3 ). The buffer mechanism relies on gaseous CO2 exchange. In the

laboratory this means a CO2 supply is essential, and incubators require CO2

regulation apparatus to effectively buffer the pH.

In some bioreactors this dependence on gaseous CO2 is either impractical

to plumb in or undesirable (if a sealed bioreactor system is required). As

shown earlier a large volume of medium can overcome this issue. However,

in smaller bioreactor systems, where the total medium volume is less than

100 ml, a different buffer system is required. One such system uses 4-(2-

hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) (Figure 3.29).

Figure 3.29: Chemical structure of HEPES.
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HEPES is an example of a zwitterion, that is a molecule that can have a

positve and negative change, but remain neutral overall (the charges cancel

each other out). This lends itself to being a buffer. HEPES was first identified

as a potential buffer by Norman Good in 1966, and is known as one of Good’s

buffers.202 Good designed buffers to meet the following criteria:

1. The molecules’ pH buffer midpoint (the pKa) should lie between 6 and

8, to function correctly in standard pH biological reactions (pH 7.4).

2. The substance must be very water soluble to maximise the ability of the

buffer.

3. The molecule should be poor at, or better still, unable to penetrate the

membrane of a cell so as not to interfere with the cells’ biochemistry.

4. The buffer should not produce a salt upon reaction.

5. Buffer dissociation should be independant of buffer concentration, tem-

perature, and ionic composition of media.

6. The buffer should not form any insoluble products upon dissociation.

7. The buffer should be resistant to enzymatic and chemical degradation,

nor act as an enzyme inhibitor.

8. The buffer should be radio opaque in the UV/vis specturm in order to

avoid interference with spectrophotometric assays.

9. Ideally the buffer should be inexpensive, easily synthesised, and purified.

These points become more important in the environment of a bioreactor.

Should a buffer, for example, precipitate a solid dissociation product there
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would be risk of a reactor’s tubing clogging. HEPES functions as a buffer

because of it’s Zwitterionic nature, it can donate and accept hydrogen and is

thus able to counteract changes in pH as required (as shown by the equilibrium

in Figure 3.29). HEPES meets these requirements and has been shown to be

an effective buffer that does not require external gaseous CO2.

The aim of this section was to determine if keratinocytes can be cultured with-

out the need to perfuse the medium with CO2 to maintain the pH. HEPES does

not need a gas supply to effectively buffer a medium to the correct pH. How-

ever, our (and other) groups’ historical experience with HEPES indicate that

keratinocytes do not like it. Perhaps the normal bicarbonate media buffering

system fulfils a secondary roll. Bicarbonate is used by cells to regulate intra-

cellular pH. If bicarbonate is absent from the medium, then cells that use pH

as a controlling factor in differentiation may be greatly effected. It has been

shown that sodium bicarbonate does form part of keratinocytes pH regula-

tion system.203,204 Perhaps bicarbonate is essential in keratinocyte medium

regardless of the pH regulation system used.

3.12.2 Keratinocyte culture using different buffer sys-

tems

DMEM was made from DMEM powder and dissolved in distilled water (Sigma

Aldrich, 1 L) according to the manufacturers instructions. The mixture was

then split into 3 lots of 333 ml. NaHCO3 (1.47 × 10−2 mol) was added to

one third of the original DMEM solution to make the regular CO2 dependent

medium. HEPES (8 × 10−3 mol) was added to the second third of the original
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DMEM, and finally both NaHCO3 and HEPES (1.47 × 10−2 and 8 × 10−3 mol

respectively) were added to the final, third buffer modified Dulbecco’s modi-

fied Eagle’s medium (BMDMEM). These bespoke DMEMs were then used to

make bicarbonate buffered, HEPES buffered, and BMDMEM buffered Green’s

medium as in section 2.1.6.

Keratiocytes were cultured and then seeded into 24 well plates, pre-seeded

with i3T3 cells (25,000 keratinocytes per well, 100,000 i3T3’s per well, Sec-

tion 2.1.6). The cells were then allowed to attach overnight. Cell viability

was then measured using the resazurin salt assay (Section 2.1.12). One pair of

plates was stored in a regular CO2 gassed incubator. One of the pair of plates

was sealed using parafilm to prevent gas exchange. A second pair of plates was

also placed in a propagator set up as described earlier (Section 2.4.1). One

of the pair of plates was sealed using parafilm to prevent gas exchange. The

medium was then replaced with the three bespoke media (1 ml per well), and

cultured for seven days. The pH and cell viability were recorded on days 1,

3, and 7 (resazurin salt assay), and then the media changed. Total DNA was

measured using picogreen on day 7 (Section 2.1.14).

Three different buffering systems were compared for the culture of keratinocytes

in Green’s medium. When used in a gassed incubator bicarbonate buffered

DMEM is the standard for making Green’s medium. pH measurements over

the course of the cell culture show an initial increase to nearly a pH of 8 on

day 1, then tailing off to 7.25 (Figure 3.30). This was for both gassed and

ungassed samples. Hepes buffered medium exhibited a significant drop in pH

from 7.4 at day zero, to pH 7 at day one, and continued to decrease to pH 6.8,

likewise for both gassed and ungassed samples. The mixed buffered system,

BMDMEM, shows the least deviance from pH 7.4, except for the system sup-
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plied with CO2 which dropped to pH 6.8 at day 7. The ungassed BMDMEM

system’s final pH was 7.4 (Figure 3.30).

When used in a heated propagator with atmospheric gassing only the outcome

was similar but more exaggerated. The mixed buffer systems regulated the pH

most effectively, maintaining a pH of between 7.5 and 8.5 (Figure 3.31). The

bicarbonate systems, sealed and open to atmospheric gas exchange failed to

maintain the pH, which increased to around pH 9. The HEPES only buffered

systems become more acidic dropping to as low as pH 5.5 on the 7th day.
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Figure 3.30: pH change of medium used to culture keratinocytes, buffered with
HEPES, bicarbonante and both HEPES/bicarbonate over 7 days. The plates
were kept inside a CO2 perfused incubator. Ungassed plates were sealed with
parafilm to prevent gas exchange.

Figure 3.31: pH change of medium used to culture keratinocytes, buffered with
HEPES, bicarbonante and both HEPES/bicarbonate over 7 days. The plates
were kept inside a non-CO2 perfused propagator. Ungassed plates were sealed
with parafilm to prevent gas exchange.
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While there was no significant trend observed in cell viability by resazurin salt

assay, the best performing keratinocyte cultures were those using the mixed

HEPES/bicarbonate, or just bicarbonate systems (Figures 3.32 and 3.33).

This was consistent regardless of supply of CO2 or incubation method. Cell

viability recorded in the propagator was lower overall than in the incubator,

particularly for the bicarbonate buffered cultures only. This is most likely due

to the lack of sufficient CO2 for buffering. Cultures buffered by HEPES only

also performed poorly.
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Figure 3.32: Keratinocyte viability in HEPES, bicarbonate, and both HEPES
and bicarbonate buffered culture medium, in a CO2 gassed incubator, over 7
days by resazurin salt assay. Error bars are mean ± SD, n=3.

Figure 3.33: Keratinocyte viability in HEPES, bicarbonate and both HEPES
and bicarbonate, buffered culture medium, in a propagator with only atmo-
spheric gas exchange, over 7 days, by resazurin salt assay. Error bars are
mean±SD, n=3. 147



The total DNA was measured to check if the observed viabilities were directly

connected to the number of cells (Section 2.1.14, Figures 3.34 and 3.35). The

HEPES only buffered systems gave significantly less DNA than the other buffer

systems, regardless of incubation method or CO2 supply. There was no signif-

icant difference between gassed or ungassed samples for bicarbonate buffered

or BMDMEM systems. Cultures kept in an incubator contained more DNA

than those in a propagator. Overall, cultures in mixed HEPES/bicarbonate

medium, or bicarbonate only systems, performed best.
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Figure 3.34: Total DNA assessed by Picogreen assay for keratinocytes cultured
for 7 days, in gassed (G) and ungassed (U) medium, in an incubator. Medium
is buffered using HEPES (H), bicarbonate (B) or both (HB). Error bars are
mean±SD, n=3.

Figure 3.35: Total DNA assessed by Picogreen assay for keratinocytes cultured
for 7 days, in gassed (G) and ungassed (U) medium, in an propagator. Medium
is buffered using HEPES (H), bicarbonate (B) or both (HB). Error bars are
mean±SD, n=3.
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3.13 Discussion

Electrospinning is a very popular technique for producing scaffolds for tissue

engineering.58,59,197 While it is relatively simple to produce basic electrospun

scaffolds for experimental use, there are considerable challenges post produc-

tion to make scaffolds of appropriate architectures and mechanical properties.

Such properties are intended to encourage cells within the scaffolds to make

extracellular proteins to achieve tissue fit for implantation in man. Electro-

spinning is also complex and multifaceted with many variables.61

The aim of this chapter is to describe methods to equip readers to design and

characterise scaffolds for a wide range of purposes. In this work is described

methodologies to make complex and thicker scaffolds, and to sterilise scaffolds

for experimental and clinical use. Imaging cells on the scaffolds and the in-

duction of elastin fibre production by subjecting cells to biaxial distension is

also described. Many of the desired features of scaffolds can be achieved post

production (such as annealing several layers) and sterilisation. However, these

in turn will affect the mechanical properties of scaffolds.

Sterilisation methodologies all tend to change ultimate tensile strength and E

to varying extents. A recent study from our group compared gamma irradia-

tion, peracetic acid, and EtOH for their effects as potential sterilising regimes

for PLGA scaffolds.198 The adverse effects of sterilisation techniques can be

avoided by producing scaffolds under aseptic conditions. The latter requires

the use of a cleanroom. Different users may select different methodologies

but all should be aware that current sterilisation methodologies will impact

negatively on the properties of the scaffolds.
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Culture of cells on scaffolds also affects the scaffold’s mechanical properties.

Induction of ECM production by subjecting cells on scaffolds to biaxial dis-

tension may be used to affect the mechanical properties.

The methodology of spinning one scaffold over another to make a bilayer mem-

brane is easily understood and bilayer scaffolds capable of supporting two di-

verse populations of cells is illustrated in this chapter by relabelling cells with

two vital cell tracker dyes. These were used to illustrate that the bilayer mem-

brane achieved its stated purpose.

Finally, the budget biaxial distension rig described in this study can be used to

deliver a range of regimes. Cyclic, linear, and random regimes can be readily

programmed and applied. This versatility will allow the system to be utilised

for many of the problems faced in tissue engineering such as, cleft palate, pelvic

floor, bladder, and skin.

In the tissue engineering literature the use of uniaxial testing systems for cul-

turing cells on scaffolds has been reported.105 However, at the time of writing

the MacNeil group were unaware of any published literature dealing with how

soft tissues respond to biaxial distension. This simple approach demonstrates

that cells respond to biaxial distension with the production of elastin, a key

component of the ECM which gives soft tissues their elastic recoil. This gives

a clear indication of how conditioning soft tissues as they grow in the labora-

tory offers a route to the production of tissues appropriate for implantation.

Such as for areas of the body where the native tissues have intrinsic elasticity.

This is an area where further development will clearly be merited by the tissue

engineering community and bioreactor manufacturers.
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3.13.1 Change in surface strain as a balloon inflates

This research was necessary to characterise what kind of multiaxial distension a

scaffold on the surface of the balloon would undergo. While these experiments

do show that the strain does not change uniformly as a balloon inflates, or

between balloons, there is no viable culture system available on the market

that can strain a sample multiaxially and maintain the conditions required to

keep cells in culture.

Further work is required in creating such a system, and these experiments

confirm that there is an effect to investigate. The closest commercial product

currently available is the Flexcell R© circular foam culture plate.205 This device

does allow for biaxial strain of cells in culture, but is restricted in the range of

substrates that can be used, preventing its use for scaffolds and other substrates

intended to ultimately be implanted. This restriction is simply due to a lack

of any method to fix a scaffold to the flexible membrane used in the Flexcell R©

system. This means cells can only be cultured on the membranes available for

the Flexcell R© system.

Balloons were selected as they can expand in 2 dimensions as they are in-

flated, and they are children’s toys (hence non-toxic). Balloons are made from

isoprene and have been thoroughly studied for their toxicoloigcal effects. Iso-

prene monomer has been found to have toxic effects in rats when exposed to

>70 ppm for 6 months.206 Free isoprene monomer in balloon latex should be

investigated and quantified. However, as balloons are described as toys and

given to children it can be anticipated that free monomer concentrations are

kept to an absolute minimum.

152



3.13.2 Electrospinning onto graphite coated and non-

graphite coated air filled balloons

Graphite was selected to coat balloons, as it is well known as a conductor, and

because there is evidence that it is non-toxic . Graphite has been used as a

“ DIY” tattoo ink for many years, and is well known in dentistry for causing

oral tattoos (when a young child chews on a pencil and stabs themselves; this

can often leave a permanent graphite stain).207–210 Hence, a balloon coated in

graphite could be electrospun onto and the scaffold produced could be poten-

tially used with cells. One interesting side effect of this was that graphite can

be used to form conductive tracks, and complex patterned mats of electrospun

scaffold created.

However, coating balloons with graphite was abandoned when it was found a

small volume of IMS (5ml) inside the balloon could produce a viable collector

and produce large, clean scaffolds. The main downside to using air filled

balloons to spin on is that a knitting needle is required to stabilised the rotating

balloon. The two punctures this creates renders the balloon useless for further

experimentation (such as observing the effects of inflation on cell culture). The

PBS filled system was developed to keep the balloon intact, and allow it to be

inflated when cells are cultured upon its surface.
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3.13.3 Elastin production on biaxially distended scaf-

folds

It is well known that cells are mechanosensitive, and the literature reports a

relationship between mechanical stimulation and extracellular matrix produc-

tion, in particular elastin and collagen for fibroblasts.107–109 This fact is being

exploited by beauty therapists as a nouveau anti-ageing treatment that can

“instantly” rejuvenate unhealthy fibroblasts and boost elastin production. . . 110

There is little literature on mechanically stimulating cells in two dimensions.

Most is focused on uniaxial stretching.

The balloon bioreactor mechanically stimulates cells in 2D. Elastin staining, af-

ter 2 weeks of mechanically stimulated dynamic culture, reveals how much of a

difference there is compared to static culture. Exercise dramatically stimulates

extracellular matrix production. Though only elastin deposition was examined

in this study, the amount of collagen deposited could also be investigated in

future.

3.13.4 Mechanical stimulation of scaffolds using Ebers

P3D perfusion chambers

This smaller system, if perfected, should allow for more replicates, especially

inside an inexpensive propagator. It is conceivable that rows of these chambers

could be set up, all running multiple experiments. This proof of concept design

does show the effect of mechanical stimuli on fibroblasts in spite of the uneven
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culture obtained. Elastin is produced in the dynamic system, whereas no

observable elastin is produced in the static system.

3.13.5 Investigation of buffering systems in order to per-

form non-CO2 perfused keratinocyte culture

From the results shown in Figures 3.30 and 3.31 it is clear that using a double

buffer system maintains the pH of culture media better than a single buffer

system. HEPES buffered systems tend to become relatively acidic, which

explains the poor cell viability. Bicarbonate buffer systems tend to be more

alkaline overall. The pHs observed in the propagator are quite different to the

incubator, this could be due to the lack of a tight CO2 concentration control

system. CO2 incubators have hardware built in them to tightly manage CO2

levels.

The viability of cells closely match these pH values, HEPES buffered systems

result in poor viabilities, lower than the other systems. This is a good indica-

tion that bicarbonate may be essential for keratinocyte viability, aside from its

role as a pH buffer. In the incubator the viability of cells cultured with bicar-

bonate buffered media, without gas exchange, is comparable with the gassed

bicarbonate system. This could be due to a poor gas seal on the apparatus

used, or perhaps a momentary exposure to air accompanied by media changes

being enough to sustain the cells. In the propagator this is not the case, the

ungassed bicarbonate system fails, and cell viability drops off. In the context

of a bioreactor these findings have interesting implications. A gas tight, sealed

system could be used for long periods (1 week) between media changes as long
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as a binary HEPES/bicarbonate system is used. The two together maintain

the pH more effectively than on their own, and the bicarbonate is essential in

keratinocyte culture.

3.14 Summary

Cells respond to mechano-stimulation by up-regulating production of extracel-

lular matrix. This was determined using proof of concept biaxial bioreactors.

The design of these was based on the estimated worst case expansion ex-

pected for a cleft palate defect (a doubling in surface area). Children’s toy

balloons were selected as they are inexpensive, can be sterilised by autoclave,

and expand multiaxially when inflated. It was shown that balloons expand

anisotropically on inflation, and that the expansion varies between balloons.

Balloons can be used as electrospinning collectors by coating with graphite,

adding a small volume of a conducting liquid (such as IMS), or inflating with

PBS. Sterile balloons filled with PBS could be aseptically coated with a bilayer

scaffold and fibroblasts subsequently cultured on the surface.

A syringe pump was used to administer multiaxial distension. Increased elastin

deposition was observed in the exercised system compared to a static control.

This research highlighted the need to design a better culture system, with more

replicates.
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This necessitated investigations into alternative incubation chambers, that

could be adapted to include equipment to administer multiaxial distension.

It was shown that an inexpensive propagator, or an egg incubator were capa-

ble of maintaining the required temperature for cell culture.

A different proof of concept bioreactor, based on Ebers P3D chambers was in-

vestigated, to attempt to create a system with increased replicates. Although

variability between chambers was high, increased elastin deposition was ob-

served in the exercised system compared to the static system.

Finally, different pH buffer systems were investigated in order to determine if it

was feasible to culture keratinocytes in a sealed bioreactor with no gaseous CO2

exchange. It was shown that bicarbonate is essential in keratinocyte culture

medium, regardless of the pH buffer system used. A double buffer system of

HEPES and bicarbonate was found to be the most effective pH buffer system,

and could be used to create isolated bioreactor systems.
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Chapter 4

Development of bilayer and

trilayer nanofibrous/

microfibrous scaffolds for

regenerative medicine

4.1 Introduction

Many biomaterial scaffolds have been developed for use in tissue engineering,

usually for populating with a single cell-type. This chapter demonstrates the

production of, bilayer and trilayer, nanofibrous/microfibrous, biodegradable

scaffolds suitable for the support, proliferation and yet segregation of different

tissues. These scaffolds are intended to be used to separate soft tissue from
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bone forming tissue, and keratinocytes from fibroblasts. Essentially, described

here is a nanofibre barrier membrane which is permeable to nutrients coupled

with attached microfibres (either on one side or both sides) to support the

proliferation of different cell types either side, but prevents migration of cells

across the barrier. Such membranes would be suitable for guided tissue regen-

eration in areas where one wishes to support both soft and hard tissues but

keep them separated. This chapter describes a sterile bilayer membrane elec-

trospun from PHBV (nanofibres) and PLA or PCL (microfibres), and a trilayer

membrane electrospun in layers of PLA, PHBV, then PLA. These membranes

are biocompatible, biodegradable, and capable of supporting two different cell

populations.

Biomaterial scaffolds are extensively used as carriers for cells, and as 3D scaf-

folds for the regeneration of new tissue. They are commonly tailored to specific

tissue types. Thus, they are designed to have the necessary mechanical prop-

erties for the tissue that they are seeking to repair or replace. To be successful

post implantation, all scaffolds must be biocompatible to avoid provoking an

adverse immune response. The majority of scaffolds (but not all) are designed

to be biodegradable, with the intention that cells introduced to the scaffolds

will form a new tissue and supporting tissue matrix, replacing the implanted

scaffold as it degrades, for a long term and successful repair. Biodegradable

devices also negate the necessity for a second surgical operation to remove the

implant.1 There are many polymers that can be used to create a biocompati-

ble, and degradable implant.2,3

The ultimate goal of tissue engineering is to be able to regenerate, or replace,

diseased or damaged tissues.120,121 Tissue engineering, based on autologous

laboratory expanded cells and scaffolds, is most commonly used but some-
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times scaffolds are designed to promote the ingrowth of the surrounding tissue

in vivo.122,123 Here the approach is essentially to concentrate on using the

patient’s own tissues in conjunction with scaffolds to regenerate the areas in

need of repair.124–128

Thus, in tissue engineering very often the patients own tissues are biopsied,

cells expanded in the laboratory and combined with scaffolds, to regenerate

tissues for repair of damaged areas. However, there are many conditions when

one needs to look at replacing both soft tissues and adjacent hard tissues, or

to introduce a scaffold that could promote the intrinsic repair of soft tissues

and hard tissues.129,130

While it is entirely possible to culture skin cells, or even epithelia, it has been

difficult to make more complex tissues. The last decade has seen a growing re-

alisation that the 3D environment of the extracellular matrix in which cells live

is far from passive. Not only are the cells receiving signals from the extracel-

lular matrix proteins, but the composition of the matrix, and its stiffness, give

major signals which guide the differentiation and performance of cells within

the matrix.211 Thus, bone was originally repaired using metal splints, provid-

ing the structural, and mechanical support while allowing the bone to heal.212

There are now ceramics and osteoinductive materials which can be used to aid

bone repair. Tissue guidance membranes have been developed, for example for

use in periodontal defects, seeking to achieve guided tissue regeneration.131–133

The problem of one tissue growing much faster than another, invading and

preventing the appropriate expansion of the slower growing tissue needs to be

considered.
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As previously described, one area where tissues require segregation is in the

treatment of cleft palate. The current standard treatment is protracted, in-

volving many stages. While soft tissue defects can be readily repaired within a

few months, defects of the hard tissue of the alveolar ridge (which bears teeth)

and the hard palate, are much more challenging.

Bone grafts to fill the hard palate defect are currently not used as an option,

as they have actually been found to lead to distortion of the maxilla, and

the results can be worse than no surgery.155,168 Bone grafts appear to be

satisfactory, immediately after implantation, but then the bone cells fuse and

this tissue does not grow at the rate of the childs head, causing major facial

disfigurement. The subsequent complications and distortions to the maxilla

are unacceptable, and explain why the hard tissues of the palate are currently

mostly left untreated, and an obturator used.

The problem of treating hard tissue defects in the cleft palate is twofold.

Firstly, hard tissues grow at a rate far slower than soft tissue. An implant

must account for this, and prevent the invasion of the much faster growing

soft tissues into regions where the hard tissues are desired. The implant must

also allow for the flow of nutrients in order to allow the separated tissues to

proliferate. Secondly, the implant must be compatible with the growth of the

patient. The area of a cleft defect approximately doubles in volume from birth

to the age of 5, and this must be taken into consideration in developing ma-

terials and procedures for treatment of hard palate defects.169,170 Also for the

reasons discussed previously (undesirable post implantation operations), the

implant must also be biocompatible and biodegradable.
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An ideal solution would be an approach that could treat both soft and hard

palate defects early in the childs life, requiring very minimal follow up. To

achieve an early stage repair for soft and hard palate, the biomaterial to be

introduced must be able to cope with the dramatic growth of the childs palate

up to the age of five. For bone to form, it is highly likely that the bone

forming tissue or cells will need to be introduced into the defect. One common

source for similar surgery are bone chips from the femoral head. It would

be quite possible to culture bone forming cells (bone marrow mesenchymal

stem cells for example) on a scaffold for use in the hard palate. However,

the introduction of soft tissue, such as tissue engineered buccal mucosa, or

the ingrowth of soft tissues from the periphery of the defect, could threaten

the development of hard palate bony tissues. This is due to the fact that

soft tissues will grow throughout such a scaffold, almost certainly forming a

fibrotic scar. Scar tissue can contract extensively, distorting the growth of the

palate. Hence, one requirement in developing materials for treatment of soft

and hard palate defects is a biocompatible and resorbable tissue segregating

membrane, which should separate, and yet still allow the proliferation of soft

tissues on one side, and hard tissues on the other, without allowing ingrowth

of soft tissues into the hard palate area.

A second area where segregation is desirable, is the tissue engineering of skin

for burns or diabetic ulcer repair. A biopsy of healthy skin is taken, cultured,

and expanded in the laboratory on a scaffold ready for implantation back

on the patient. Normally in the laboratory, keratinocytes are cultured under

long-established conditions, using murine fibroblast feeder cells and media with

bovine foetal calf serum.213 However, for use in the clinic, it would be prefer-

able. The MacNeil group has had some success previously, using autologous

fibroblast feeder cells (instead of murine cells), and omitting bovine serum
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in the initial expansion of keratinocytes.214,215 Building on this, a scaffold

designed to provide a synthetic basement membrane would be advantageous,

as it would give the cells a framework around which to start producing the

required extracellular matrix. If the scaffold was designed to be porous, fi-

broblasts cultured on the lower surface could act as a feeder layer, and culture

may be achieved without the need for animal products.

With respect to choice of scaffolds, PHBV was selected for use as a barrier

membrane due to its slow degradation time, and easy synthesis through phos-

phate starving the bacteria Alcaligene eutrophus.25,28,29 Toxicological assess-

ment of the polymer in vitro and in vivo has shown no negative effects or

abnormalities when tested with cultured cells or in animal experiments, and it

has been patented for use as bioresorbable sutures.23,30,31 PLA is well known

as a biodegradable biomaterial with good biocompatibility.2,32–36 As previ-

ously discussed, it has been used for several years in the MacNeil group and a

knowledge base has been established, making it a good candidate for further

investigation.15,37 PCL was included in this study as it has been successfully

used as a scaffold for production of bone, as extensively reviewed by Woodruff

and Hutmacher.216–220 The MacNeil group has experience of culturing autolo-

gous buccal mucosa based on de-epidermised acellular human dermis, and of

taking this to the clinic for replacing scarred tissue of the urethra.129,130,221

The MacNeil group also has previously developed synthetic electrospun scaf-

folds for soft tissue reconstruction.15,198

Against this background, our approach to designing a tissue barrier mem-

brane is to harness electrospinning to produce: bilayer and trilayer, nanofi-

brous/microfibrous, scaffolds suitable for separating, yet promoting, indepen-

dent proliferation of two distinct tissue types. Such tissues could soft tissue on
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one side, and bone tissue on the other side. These scaffolds are designed for

culturing a range of tissues under different situations. Thus, this chapter de-

scribes a bilayer structure made to segregate bone and soft tissues. A trilayer

structure intended to support soft tissue growth either side is also described.

For example, two populations of cells, such as epithelial and stromal cells as

shown here, require an open, porous network (microfibres) to grow into, but

still require segregation (nanofibres). These scaffolds are also designed to be

capable of plastic deformation so that they can grow with the growth of the

child’s skull.222 These scaffolds are the first step towards developing a synthetic

solution to tissue separation.

Once monolayers of scaffolds with differing morphologies had been created,

their compatibility with cells shown, and methods for turning them into cell

impermeable barriers developed, the project turned to utilising these structures

to form more complex scaffold architectures. Unfortunately, most clinical ap-

plications are multifaceted and require several, and often different solutions to

tackle various aspects of them. Taking cleft palate as the primary example

again, it is not enough to simply have a barrier membrane. Tissues must be

encouraged to proliferated either side of it so that regeneration may occur. A

nanofibrous scaffold that only acted as a cell barrier would be poor for this end.

A microfibrous, cell friendly scaffold, would fill this requirement by providing

a structure for cells to grow into and fill. This section of the PhD thus focused

on combining different scaffold structures in order to create composite struc-

tures, that could be used for different purposes, and to check if these qualities

were maintained.
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4.2 Methods

4.2.1 Electrospinning of a PLA/PHBV composite bi-

layer scaffold

The obvious place to start was to create a simple two layer structure, incor-

porating cell permeable and cell impermeable layers (Figure 4.1). Electrospun

nanofibrous PHBV was selected for the barrier layer, due to its long degra-

dation time and ease of use when spun. PLA and PCL were selected for

the microfibrous layers due to the previous experiences of the group and user

base, demonstrating them to be candidates that showed good cell viability and

compatibility.

Figure 4.1: Schematic of proposed bilayer. Nanofibres (red) with a layer of
microfibres (green) on top. The nanofibres will act as a cell barrier restricting
cell A (blue) to one face and cell B (pink) to the opposite face. The microfibres
act as a cell permeable region, encouraging proliferation on the membrane (cell
B, pink).

The method used to create this bilayer was an additive approach. First a

PHBV layer was spun (10 wt%, Section 2.2.5). On completion, PLA or PCL
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was immediately spun on top (10 wt%, Section 2.2.2), to create a two layer

structure.

On handling this scaffold, there was a noticeable difference between the op-

posing faces. One side was dull and velutinous. This gossamer face was much

like the respective flocculant PLA and PCL monolayers. The opposing face

was smooth and glossy. Samples of the scaffold were processed for SEM and

tensile testing (Sections 2.1.2 and 2.1.3).

4.2.2 Cell migration into scaffolds at 7 days

Aseptic electrospun scaffold squares (1.5 cm × 1.5 cm) were fitted into Scaffdex

Cellcrowns24 (Tampere, Finland), in a laminar flow hood, and placed into a 24

well plate. TCP, and PLA-PHBV, PCL-PHBV bilayers were used. The PHBV

face of the scaffold was seeded, with 50,000 hESMPs, and left for 24 hours to

allow attachment (Section 2.1.5). The cell crown was then turned over, and

the opposite face (PCL or PLA) seeded with 50,000 fibroblasts, and left for

7 days, media was replaced after 3 days (αMEM, 37◦C, 5% CO2, Figure 4.2,

Section 2.1.4).
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Figure 4.2: Diagram of how cells were seeded onto bilayer membranes. One
cell type labelled with red cell tracker is placed on one face of the bilayer
membrane. A second cell type labelled with green cell tracker is placed on the
opposing side. The construct is then cultured for 7 days.

CellTracker red (CMTPX) or green (CMFDA) were applied to the hESMPs

and fibroblasts respectively, prior to seeding as per Section 2.1.8. These bi-

layers of PLA/PCL and PHBV were assessed for their ability to maintain cell

segregation.

4.2.3 Sequential electrospinning of a PLA/PHBV/PLA

composite trilayer scaffold

Once a bilayer had been constructed and shown to work, the next logical step

was to create a trilayer (Figure 4.3). This scaffold should have the barrier

function inbuilt, but support cell proliferation on either side.

A bilayer membrane was electrospun (Section 4.2.1). Immediately after this,

the membrane was peeled off from its aluminium foil backing, turned over
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Figure 4.3: Schematic of proposed trilayer. Nanofibres (red) with a layer of
microfibres (green) top and bottom. The nanofibres will act as a cell barrier
and the microfibres as a cell friendly region, encouraging proliferation on both
sides of the membrane.

(PHBV face now facing up), and fixed back on the electrospinning drum using

two 1 cm2 masking tape sections. A further layer of PLA was then electrospun

on top creating a PLA-PHBV-PLA sandwich (Section 2.2.2). The resulting

scaffold felt sturdier than PLA microfibres alone.

4.2.4 Culture of keratinocytes and fibroblasts on the

PLA-PHBV-PLA trilayer

Due to the incorporation of cell-friendly microfibres on both sides of this scaf-

fold, it lends itself for the development of soft, delicate tissues either side. One
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example of this is skin, or at least the creation of an alternative 3D skin model.

The current gold standard is de-epithelised dermis (DED), reconstituted with

fibroblasts and keratinocytes. However, DED is limited in supply because it

relies on use of donor tissue. There is also the risk of disease transmission for

this reason.

PLA-PHBV-PLA trilayers and PLA monolayers (2 cm × 2 cm) were sterilised

in peracetic acid (0.1% v/v in distilled water) for 3 hours and washed three

times in PBS (1 ml). The scaffolds were then placed in 6-well plates. Stainless

steel rings with an internal diameter of 1 cm were placed on top of the scaffolds.

Human dermal fibroblasts (1 × 105 cells), pre-labelled with CellTracker green

(Sections 2.1.4 & 2.1.8), were then seeded inside the steel rings and the medium

topped up to 3 ml. The scaffolds were incubated for 2 days (37◦C, 5% v/v

CO2). Following this, the scaffold was turned over. Human keratinocytes

(3 × 105 cells per scaffold, Section 2.1.6), pre-labelled with CellTracker red

(Section 2.1.8), were seeded on the reverse side of the scaffold. The steel rings

were then removed on the 4th day of incubation. On the 5th day the constructs

were raised to an air liquid interface on stainless steel grids, and incubated for

7 days. Culture medium was replenished twice a week. Cell viability using

resazurin was assessed (Section 2.1.12). Samples were then fixed by incubating

at 37◦C, in formaldehyde (3.7% v/v in PBS), and then labelled with DAPI

(Section 2.1.9).

Fluorescence images were taken following the culture period (365 nm λex 460

nm λem for DAPI, 570 nm λex 620 nm λem for CellTracker red, and 480 nm

λex 533 nm λem for CellTracker green).
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4.3 Results

Figures 4.4 and 4.5 show the fibre diameters that were obtained when a 10 wt%

polymer solution was used. Electrospinning 10 wt% PHBV in DCM/MeOH

produced fibres of 700 nm in diameter. In contrast, a 10 wt% concentration

of PLA and PCL in DCM produced 2.5 µm and 4 µm diameter microfibres

respectively.

Figure 4.4: Scanning electron micrographs (SEMs) of electrospun scaffolds A.
PHBV. B. PLA. C. PCL. D. Representative cross-section of PHBVPLA. The
PHBV region on the left is dense, while the PLA region has a more open
structure. E. Representative cross section of a trilayer of PLAPHBVPLA
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Figure 4.5: Mean fibre diameters for PCL, PLA and PHBV of 4 µm, 2.5 µm
and 700 nm respectively. Values are taken from measurement of SEM images,
presented as average±standard error of the mean, n=5.

Table 4.1 shows porosity and mechanical data for the bulk polymer and elec-

trospun scaffolds. Porosity measurements show a significant difference be-

tween the microfibrous scaffolds of PLA and PCL, compared to the nanofi-

brous PHBV, with the microfibrous scaffolds being around 20% more porous.

The E of the bulk polymer is higher than the measured E of the scaffolds in

all cases. The highest E was recorded for the PLA-PHBV-PLA trilayer and is

approximately 33% more than the next nearest (PHBV). Scaffolds containing

PCL had E values of around 50% of those scaffolds not containing PCL.

172



Scaffold Bulk
E /
GPa

Scaffold E
/ GPa

Bulk
density
/ g.ml−1

Scaffold
density /
g.ml−1

Porosity /
%

PLA 3.6 0.012 ±
0.001

1.25 0.18 85 ± 0.8

PCL 0.3223 0.008 ±
0.003

1.145 0.25 78 ± 0.8

PHBV 0.5 0.015 ±
0.002

1.25 0.50 60 ± 1

PHBV-PLA N/A 0.014 ±
0.008

N/A 0.24 N/A

PHBV-PCL N/A 0.004 ±
6×10−5

N/A 0.30 N/A

PLA-PHBV-PLA N/A 0.0021 ±
0.001

N/A 0.21 N/A

Table 4.1: Mechanical properties and porosity of scaffolds and their bulk poly-
mers. Bulk polymer and porosity data is not available for bilayer and trilayer
structures as these are composite scaffolds. Porosity measurements are the
ratio of scaffold density to bulk density, subtracted from 1, and turned into
a percent. Bulk polymer E data is from the respective manufacturers where
available or referenced. Values are the mean±SEM, n=3
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4.3.1 Cell viability on scaffolds at 7 days

Cell viability on scaffolds was demonstrated using a resazurin salt assay. Fig-

ures 4.6 − 4.11 shows cell viability on the scaffolds after 7 days of culture

compared to the same cells cultured on TCP. With respect to the attach-

ment and expansion of fibroblasts all scaffolds compared reasonably well to

TCP. Cells on PCL performed significantly worse than on TCP, but only by

approximately 30%, while cells on PHBV-PCL did significantly better (by ap-

proximately 20%). Scaffolds were less supportive of hESMPs attachment and

expansion. hESMPs performance on all scaffolds being only approximately

50% as good as on TCP (Figures 4.6 − 4.11).

Figure 4.6: Cell viability of fibroblasts measured by resazurin salt assay on
TCP and a monolayer of PLA. Values are absorbance at 570 nm as a percentage
of control (TCP). Error bars are mean±SD, n=3.
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Figure 4.7: Cell viability of fibroblasts measured by resazurin salt assay on
TCP and a monolayer of PCL. Values are absorbance at 570 nm as a percentage
of control (TCP). Error bars are mean±SD, n=3.

Figure 4.8: Cell viability of fibroblasts measured by resazurin salt assay on
TCP and a monolayer of PHBV. Values are absorbance at 570 nm as a per-
centage of control (TCP). Error bars are mean±SD, n=3.
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Figure 4.9: Cell viability of hESMPs measured by resazurin salt assay on TCP
and a monolayer of PLA. Values are absorbance at 570 nm as a percentage of
control (TCP). Error bars are mean±SD, n=3.

Figure 4.10: Cell viability of hESMPs measured by resazurin salt assay on TCP
and a monolayer of PCL. Values are absorbance at 570 nm as a percentage of
control (TCP). Error bars are mean±SD, n=3.
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Figure 4.11: Cell viability of hESMPs measured by resazurin salt assay on TCP
and a monolayer of PHBV. Values are absorbance at 570 nm as a percentage
of control (TCP). Error bars are mean±SD, n=3.

Figure 4.12 shows fluorescent images of the cells on TCP (Figure 4.12A) and

on scaffolds (Figure 4.12B-F). When seeded together, there is clear mixing

of the cells on TCP, PLA and PCL. On these PLA and PCL scaffolds it is

evident that fibroblasts and hESMPs have migrated through the scaffolds, as

each face of the scaffold shows both cell types. With PHBV, however, there

is a clear segregation of cell types. Even after 7 days of culture of fibroblasts

on one face and culture of hESMPs on the opposite face of the PHBV, the

cells remain segregated (Figure 4.12D for fibroblasts, and Figure 4.12E for

hESMPs). Figure 4.12F is a cross section of the PHBV with the cells on their

respective surfaces. As there was no mixing of the red and green fluorescently

labelled cells it appears that PHBV has been successful at both supporting

cell attachment, and keeping the two cell types segregated for at least 7 days.
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Figure 4.12: Co-culture of CellTracker labelled fibroblasts (green) and hESMPs
(red) on a range of scaffolds. In A hESMPs were seeded on day 1 (red) followed
by an equal ratio of fibroblasts on day 2 (green), and cultured for 7 days on
TCP. In BF hESMPs were seeded on one side of the scaffold on day 1, and
then fibroblasts on the other side on day 2 and these were then cultured for
a further 7 days. The scaffolds used were PLA in B, PCL in C and PHBV in
D, E and F. In A, B and C there is a clear mixture of red and green cells. In
D and E however, cells remain segregated. All fibroblasts (green) are shown
on the surface shown in D and all hESMPs (red) are seen on the opposite side
(E). F shows a cross section of the PHBV scaffold with clear separation of the
hESMPs and fibroblasts. Scale bars are equal to 0.1 mm.
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PHBV-PLA and PHBV-PCL bilayers were assessed for their ability to main-

tain cell segregation. Figures 4.13 A and D show the fibroblasts seeded on the

PLA and PCL faces of the bilayers respectively. It is clear that hESMPs have

not migrated through to this face. Likewise, Figure 4.13 B and E show the

hESMPs seeded onto the PHBV faces of each bilayer respectively. Figure 4.13

C and F show cross sections through both bilayers, with both the hESMPs

and fibroblasts contained on their respective side. The bone forming poten-

tial of hESMPs is demonstrated in Figure 4.14. Continuous culture under

appropriate conditions resulted in the cells differentiating into bone forming

osteoblasts (increased alkaline phosphatase activity with time), and depositing

calcium containing bone mineral (alizarin red staining).
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Figure 4.13: Co-culture of CellTracker labelled fibroblasts (green) and hESMPs
(red) on bilayer membranes of either PHBVPLA or PHBVPCL. hESMPs were
seeded on day 1 (red) onto the PHBV face of each bilayer. Fibroblasts were
seeded on either the PLA or PCL face of the bilayer on day 2 (green) and then
cultured for a further 7 days. In A, fibroblasts (green), are confined to the
PLA face after 7 days with no sign of hESMPs (red). On the opposite face
(B, PHBV), hESMPs (red) are also present once again with no fibroblasts. A
cross section of the PHBVPLA membrane is shown in C showing each cell type
on its respective side after 7 days of culture. In D and E, fibroblasts (green)
and hESMPs (red) are shown on the PCL and PHBV faces respectively, and
there is no mixing across these faces. F shows a cross section of the PHBVPCL
membrane, and clearly shows each cell type still confined to their respective
faces after 7 days of culture. All scale bars are equal to 0.1 mm.
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Figure 4.14: Alkaline phosphatase activity and quantification of alizarin red
staining of hESMPs after 7, 14 and 21 days on TCP. Increasing alkaline phos-
phatase activity indicates cell differentiation towards osteoblastic (bone form-
ing) cells and increasing alizarin red indicates increased calcium (present in
bone mineral) deposition. Values are mean ± SEM, n=3.

The retained barrier properties of the PLA-PHBV-PLA trilayer scaffold are

shown by the fluorescent images in Figure 4.15. DAPI staining of the cell

nuclei (blue) has been added to aid with visualising the cell nuclei. There

are nuclei on either side of the scaffold, showing that both fibroblasts and

keratinocytes adhere and proliferate. The face seeded with fibroblasts (green)

shows no sign of keratinocytes (red) having penetrated through the scaffold.

Likewise on the keratinocyte seeded face, there are no fibroblasts present. The

final image shows a cross section, with both sides well populated by cells, but

the fibroblasts and keratinocytes are confined to their respective sides. The

recorded cell viability on the PLA-PHBV-PLA trilayer scaffold is good (around

50% compared to those on TCP). This is comparable to the bilayer scaffolds.
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Figure 4.15: Co-culture of CellTracker labelled fibroblasts (green) and ker-
atinocyte (red) on trilayer membranes of PLAPHBVPLA. Fibroblasts were
seeded on day 1 (green) onto one face of each trilayer. Keratinocytes were
seeded on the opposite face of the trilayer on day 4 (green) and then cultured
for a further 7 days. In A, fibroblasts (green) are confined to the PLA face
after 7 days with no sign of keratinocytes (red). On the opposite face, ker-
atinocytes (red) are present once again without fibroblasts. A cross section
of the PLAPHBVPLA membrane is shown in C showing each cell type on its
respective side after 7 days of culture. Cell nuclei have been stained using
DAPI (blue). All scale bars are equal to 0.1 mm.

Decreasing the amount of the nanofibrous scaffold to 20% and 5% of the orig-

inal weight does not appear to affect the barrier qualities of these trilayers,

with segregation of fibroblasts and keratinocytes maintained after 7 weeks

(Figure 4.16).
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Figure 4.16: SEM and fluorescence microscopy of PLAPHBVPLA trilayers
with reduced PHBV layer thickness. Panels A and C shows SEM cross sections
of trilayers made using 1 ml and 4 ml of PHBV respectively (5% and 25% of
original volume used in Figures 4.12, fig:BT5 and fig:BT7. Microfibrous PLA
is present on the top and bottom of each scaffold, with a dense nanofibrous
PHBV slither through the middle of each. Panels B and D show fluorescence
microscopy of cross sections with fibroblasts (green) cultured on one face, and
keratinocytes (red) cultured on the opposite face, with separation maintained
after a week (demonstrated by no ‘bleed through” of the colours to opposite
faces).
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4.4 Long term migration of cells into scaffolds

Section 4.3.1 clearly demonstrates that nanofibrous PHBV scaffold are capable

of segregating two different cells type for up to 7 days. While this is promising,

there are few tissue engineering problems that can be repaired in that time

frame. In vitro the scaffold must maintain segregation over a long period of

time. Henceit is important to show that such nanofibrous scaffolds are capable

of segregating cells for a greater period of time. In the 6 week experiment, the

underside of the PHBV scaffold was observed over 6 weeks to see if fibroblasts

managed to squeeze through. A second nanofibrous scaffold, PCL (5 wt% in

DCM) was selected to see if it also had barrier qualities. Cells seeded on TCP

were also observed and counted in order to follow their proliferation.

Aseptic electrospun PHBV and nano-fibrous PCL scaffold squares (1.5 cm

× 1.5 cm) were fitted into Scaffdex CellCrownsTM24 (Tampere, Finland), in

a laminar flow hood, and placed into a 24 well plate. The interior of each

CellCrown was seeded (see Section 2.1.4) with 10,000 or 100,000 fibroblasts

(prelabelled with CellTracker green, Section 2.1.8) in DMEM, and incubated

at 37◦C for 24 hours to allow attachment (Sections 2.1.4 & 2.1.8). Experiments

were performed in triplicate with fibroblasts from 3 different patients (36 sam-

ples in total). The samples were then incubated and imaged once a week, for 6

weeks (Section 2.1.8). Images collected on an Axon ImageExpress fluorescence

microscope were analysed using ImageJ software, in order to count the number

of cells visible on the underside of each scaffold (hence those that had migrated

through). The results are plotted in Figure 4.17.
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Figure 4.17: Number of cells counted on distal side of membrane during 6 week
culture, compared to a layer of cells on TCP. Two initial cell concentrations
are plotted for both 10,000 and 100,000 cells. The least number of cells was
consistently observed on the bottom of the PHBV scaffold. Values are cell
counts expressed as mean ±SEM, n=3.

4.5 Concurrent electrospinning of a PLA/ PHBV-

PLA/ PLA composite trilayer scaffold

The trilayer constructed as described in Section 4.2.3 functioned as a barrier

to cells and encouraged cell proliferation either side. This scaffold would be

suitable as a solution to clinical applications requiring tissue segregation, but

it’s not perfect. The methodology of producing this led to an unbearable 7.5

hours of electrospinning to produce one sheet. Also it was noticed that while a
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conscious effort was required to peel the layers apart, the third and final PLA

layer was less well adhered. To tackle these problems, a concurrent spinning

method was proposed in order to have a nanofibrous barrier, perforated by

microfibres right the way through. This was intended to stitch the three layers

together (Figure 4.18).

Figure 4.18: Schematic of proposed bilayer. Nanofibres (red) with a layer of
microfibres (green) on top. The nanofibres will act as a cell barrier and the
microfibres as a cell friendly region, encouraging proliferation and penetration
into the membrane.

This scaffold was created by using a double electrospinning rig, consisting of

1 earthed collector (63 mm radius, 597 cm2), and two syringe pumps either

side, connected to two independent power supplies that shared the same earth

(Figure 4.19). The right hand pump and power supply was set up for regular

PLA spinning (section 2.2.2). The left hand pump and power supply was set

up for regular PHBV spinning (Section 2.2.5), except only 1ml of solution was

loaded into each of the 4 syringes (4 ml in total).
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Figure 4.19: Schematic of electrospinning rig used to provide concurrent elec-
trospinning. A layer of microfibrous PLA (green) is deposited first, then mi-
crofibrous PLA (green) and nanofibrous PHBV (red) are electrospun together.
Finally more PLA is deposited on top to create a trilayered structure.

Spinning progressed as follows; 8 ml of the PLA (2ml from each syringe) was

electrospun onto the mandrel. Without stopping the rig the PHBV solution

was electrospun consecutively with the PLA (4ml of PHBV and 4ml of PLA).

Once the PHBV had been dispensed the rest of the PLA was electrospun on

top (remaining 8 ml). The production time for this scaffold was a third of

the time required to produce the additive trilayer at 2.5 hours. This reduced

the production time to only the time required to produce a monolayer sheet.

SEM image cross sections of this scaffold show a tri-layered structure with a

dense central region, sandwiched between two open microfibrous layers (Fig-

ure 4.20). Examining the dense central region more closely, microfibres can be

seen poking through with interweaving nanofibres binding them together.
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Figure 4.20: SEM photograph of a PLA-PLA/PHBV-PLA trilayer. PLA and
PHBV are electrospun concurrently, to create a nanofibrous layer with stitching
microfibres, in order to improve layer adhesion and reduce manufacture time.

4.6 User friendly selectively functionalised elec-

trowoven PLA fibres

Given the poor usability of microfibrous PLA it was decided to try to make

a more user friendly form of the same scaffold, and also to possibly design

a method for the selective functionalisation of only some of the fibres in the

scaffold. Such a method is desirable to potentially encourage angiogenesis
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along those functionalised fibres, promoting vascularisation throughout the

construct. In order to achieve this a woven structure was proposed.

To weave is to “form or fabricate a material by interlacing yarns or other

filaments of a particular substance in a continuous web” (Figure 4.21).119

Figure 4.21: Woven fibres, the warp fibres (red) are aligned and run the length
of the fabric. Weft fibres (green) criss-cross the warp fibres and form the weave.

A PLA sheet was electrowoven by using a double electrospinning rig (Fig-

ure 4.22). This consisted of 1 collector with two syringe pumps either side,

connected to two independent power supplies that shared a common earth.
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Figure 4.22: Schematic of electrospinning rig set up for the spinning of woven
mats.

The right hand set up was adjusted for the formation of randomly oriented

fibres (20 ml of solution, 4 syringes, 40 µLmin−1, 12 kV, 17 cm needle tip to

drum). The left hand set up was adjusted to favour the formation of aligned

fibres (5 ml of solution, 1 syringe, 40 µLmin−1, 17 kV, 5 cm needle tip to

drum). In order to ensure an even distribution of aligned fibres across the

electrospinning drum, the left hand pump was mounted on a rapid prototype

LegoTM robot (Figure 4.23).
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Figure 4.23: Photograph of robot used to oscillate electrospinning pump par-
allel to collector.

The robot was programmed to reciprocate at 1
30

Hz in front of the collector,

and its travel set to the collector’s width to ensure even coverage of the aligned

fibres. The drum was set to spin at 650 RPM (only one speed setting for both

the left and right hand set ups is possible). PLA fibres were labelled using

rhodamine and fluorescein fluorophores (0.5 g dissolved in 1 ml of MeOH). 250

µL of rhodamine or fluorescein solution was added to the PLA solutions prior

to spinning in order to allow visualisation of the deposited fibres, by confocal

fluorescent microscopy (Figure 4.24).
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Figure 4.24: Confocal microscopy of fluorescently labelled “electrowoven” PLA
fibres, labelled with FITC and rhodamine. Warp fibre (red) form a grain while
the weft fibres (green) criss-cross the scaffold. Scale bar is equal to 0.1 mm.

Figure 4.25: SEM image of “electrowoven” fibres.
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Scaffolds were assessed for their mechanical properties on a Bose Electroforce

tensiometer, and also processed for SEM (Sections 2.1.3 & 2.1.2, Figure 4.25).

This method produced a white scaffold. It was noticeably flatter compared

to randomly orientated or sandwiched PLA. It could be easily peeled from its

aluminium foil backing. When handled it was more characteristic of a woven

fabric, than randomly oriented PLA fibres. SEM images show some fibres with

a grain, and others randomly orientated (Figure 4.25). There are a mixture of

morphologies, either linear or spiral.

ImageJ was used to measure the angles of fibres in the confocal image relative

to the x axis of the image. The angles of 50 fibres were measured and the

results plotted as histograms for the aligned red warp fibres, random green

weft fibres, and a “best practice” aligned scaffold (Figures 4.26, 4.27, & 4.28

respectively). Of the 50 angles recorded, 43 had angles of less than, or equal

to 15◦ from the horizontal. The average fibre angle was 11◦, and the standard

deviation recorded as 17◦. The data is summarised in box-plots in Figure 4.29.
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Figure 4.26: Histogram of fibre angle recorded from the aligned red warp fibres
of Figure 4.24 with Gaussian distribution superimposed. n=50

Figure 4.27: Histogram of fibre angle recorded from the random green weft
fibres of Figure 4.24 with Gaussian distribution superimposed. n=50

194



Figure 4.28: Histogram of fibre angle recorded from “best practice” aligned
fibres with Gaussian distribution superimposed. n=50

Figure 4.29: Box plot of fibre angles recorded from the random green weft
fibres and aligned red warp fibres of Figure 4.24, with “best practice” aligned
fibres for comparison. n=50

195



4.6.1 Electrospinning of a PLA-(PMSSQcoPFPA) blended

monolayer

Having shown a user friendly pseudo-woven PLA scaffold could be created, a

dopant was then added to either the weft or warp fibres to provide function-

ality. PMSSQcoPFPA was selected as a proof of concept dopant due to its

ability to immobilise proteins as discussed in Section 1.2.4. The protein bind-

ing ability allows the polymer to bind heparin, which can be easily detected,

and quantified using toluidine blue. Here a plain PLA scaffold is doped with

PMSSQcoPFPA to act as a positive control, and ensures the PMSSQcoPFPA

still functions when blended with PLA. A solution of PLA (10 wt%) and

PMSSQcoPFPA (1 wt%) was blended together in DCM (89 wt%) and then

electrospun (Section 2.2.2).

4.6.2 Functionalising PLA and PLA-(PMSSQcoPFPA)

blended fibres for selective binding of heparin

A scaffold was woven as per section 4.6, except that the polymer solution

used for the aligned fibre component was a solution of PLA (10 wt%) and

PMSSQcoPFPA (1 wt%) blended together in DCM (89 wt%). PMSSQcoPFPA

was synthesised as described in the literature.46
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4.6.3 Cell culture on electrowoven, selectively heparin

coated scaffolds

A 4:1 PLA (weft) and PLA-(PMSSQcoPFPA) (warp 1:9 PLA:(PMSSQcoPFPA))

scaffold was created as per section 4.6. PLA, PLA-(PMSSQcoPFPA) and elec-

trowoven PLA/PLA-(PMSSQcoPFPA) (80% PLA weft, 20% PLA-(PMSSQcoPFPA)

warp) scaffolds were cut into 1 cm2 sections. These were then incubated

overnight in a heparin solution (1 mg/ml in PBS) at 4◦C.

Scaffolds were washed three times in 1 ml of PBS. One set of scaffolds was

assayed for bound heparin by soaking the scaffold in 1 ml of toludine blue

solution (1 mg/ml in PBS) overnight. Excess dye was eluted using distilled

water until the diluent ran clear. Scaffolds were allowed to dry overnight,

and then 2-ethoxyethanol was used to de-stain the scaffolds (400 µL). The

absorbance of the eluted dye solution was then read at 562 nm (Figure 4.30).
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Figure 4.30: Toluidine blue eluted from electrospun scaffolds containing
PMSSQ-co-PFPA and bound heparin. The more heparin bound to the scaf-
fold, the more toluidine blue adhered to be eluted. Values are the absorbance
at 562 nm presented as the average of 3 experiments in triplicate. Error bars
are mean±SD, n=3.

Cell culture wells were created by placing steel rings (inner diameter of 1

cm) on the sterile TCP, and heparin coated PLA, PLA-(PMSSQcoPFPA)

and woven PLA/PLA-(PMSSQcoPFPA) scaffolds. Samples were then seeded

with 100,000 fibroblasts and cultured for 1 week (Section 2.1.4). On the 7th

day cell viability was assessed using the resaurin salt assay (Section 2.1.12,

Figure 4.31). Samples were then fixed (3.7% formaldehyde in PBS) and stained

using DAPI and FITC (Sections 2.1.9 & 2.1.10). Samples labelled FITC and

DAPI were then imaged on an Axon imageExpress fluorescence microscope

(Sections 2.1.9 & 2.1.10).
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Figure 4.31: Viabilty of fibroblasts cultured on scaffolds coated with heparin.
Error bars are mean±SD, n=3.

The optical density measurements of the eluted toluidine blue quantitatively

confirmed that scaffolds containing PMSSQcoPFPA bound more heparin than

those without PMSSQcoPFPA. Plotting the results shows that the scaffolds of

PLA only bound 33% of the toludine blue, compared to scaffolds that contain

PMSSQcoPFPA (significantly less, P<0.05, Figure 4.30). There was no dif-

ference between the scaffold that was completely PLA-(PMSSQcoPFPA) and

the scaffold that was only 20% PLA-(PMSSQ) (Figure 4.30).

There was no significant difference in cell viability between cells cultured on

PLA, PLA-(PMSSQcoPFPA) or electrowoven PLA/PLA-(PMSSQcoPFPA).

All three showed good viability. Cells on TCP gave a reading 33% greater than

for cells on electrospun scaffolds (Figure 4.31). Fluorescence microscopy of the

samples show normal looking cells on all substrates (Figure 4.32). TCP pro-
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duced dense, continuous sheets of cells. Cells on PLA are less densely packed,

but grow throughout the scaffold. There was no observable alignment. Fibrob-

lasts can be easily cultured on PLA-(PMSSQcoPFPA) scaffolds and coat the

scaffold’s surface, although visually there appear to be fewer cells when com-

pared to TCP. When cultured on electrowoven PLA/PLA-(PMSSQcoPFPA)

fibroblasts form striations, indicating an alignment with the organised compo-

nent of this scaffold. The cells are elongated and orientated with the grain of

the scaffold (Figure 4.32).

ImageJ was used to measure the angles of the major axis of cell bodies. This

was done to determine if there was a general alignment of the cells cultured

on TCP, PLA, random PLA-(PMSSQcoPFPA) and electrowoven PLA/PLA-

(PMSSQcoPFPA). Angles were measured relative to the x axis of the fluoresce

microscope photographs (Figure 4.32). The angles of the major axis of 50

cells were measured for each image and the results plotted as histograms (Fig-

ures 4.33 − 4.36). No statistically significant alignment was recorded, however,

it is clear from the histograms that the fibroblasts cultured on electrowoven

PLA/PLA-(PMSSQcoPFPA) are more ordered than the random scaffolds of

TCP substrates. The data is summarised in box-plots in Figure 4.37.
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Figure 4.32: Fluorescence microscopy of fibroblasts labelled with DAPI
(cell nuclei, blue) and FITC (cytoplasm, green) grown on heparin coated
scaffolds. A. TCP B. PLA C. PLA-PMSSQ D. Electrowoven PLA/PLA-
(PMSSQcoPFPA). Scale bar is equal to 0.1 mm.

Figure 4.33: Histogram of major cell axis angle on random PLA electrospun
scaffold recorded from Figure 4.32. n=50
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Figure 4.34: Histogram of major cell axis angle on random PLA-
(PMSSQcoPFPA) electrospun scaffold recorded from Figure 4.32. n=50

Figure 4.35: Histogram of major cell axis angle on electrowoven PLA/PLA-
(PMSSQcoPFPA) scaffold recorded from Figure 4.32. n=50
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Figure 4.36: Histogram of major cell axis angle on TCP recorded from Fig-
ure 4.32. n=50

Figure 4.37: Box plots of major cell axis angle on TCP, random PLA, ran-
dom PLA-(PMSSQcoPFPA), and electrowoven PLA/PLA-(PMSSQcoPFPA)
scaffolds recorded from Figure 4.32. n=50
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4.7 Designing low Poisson ratio materials; elec-

trospinning of an aligned-random-aligned

sandwich of PLA fibres

In some situations scaffolds are being designed to provide support to dynamic

tissues, such as the pelvic floor. Materials that would be particularly suitable

would exhibit reduced “necking” under strain. The best solution would be

to create a scaffold that is auxetic under strain. Necking is observed daily in

many materials, when stretched the material thins or “necks”. Plastic carrier

bags are notorious for this.

With respect to medical devices, this behaviour is undesirable, pelvic floor

repair requires a supporting scaffold that can flex with the patient. If the

scaffold were to neck it could eventually become too thin to be supportive,

and even cut into surrounding tissues, much like a cheese-wire. This effect has

already been noted in complications when treating pelvic organ prolapse as

described in Section 1.5.4. Auxetic materials expand when put under tension.

An everyday, but not obvious example, is paper.224

A scaffold created out of such a material would not neck but expand when

under tension, providing extra support when it was required. This is a par-

ticularly challenging design request, and the work presented here does not

produce such a scaffold. However, a cross linked aligned scaffold that exhibits

lower Poisson’s ratios than scaffolds of purely random fibres is produced and

“necks” less than conventional random fibre scaffolds.
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Poisson’s ratio is used to describe such behaviour in materials, it is the ratio

of length to width. Materials that neck have positive Poisson’s ratios, auxetic

materials have negative Poisson’s ratios. Cork is a commonly cited example as

a material that has a Poison’s ratio close to 0. This is why cork is a popular

choice as a bottle stopper, it is easier to hammer into the bottle as it doesn’t

thicken when compressed.225

As electrospun scaffolds have potential as cell carriers, it would be advanta-

geous to be able to design a scaffold with auxetic, or near zero Poison’s ratio

properties. This is the aim of this section. It was proposed to make a trilayer

sandwich of aligned PLA fibres sandwiching random PLA fibres (Figure 4.38).

Figure 4.38: Schematic of aligned-random-aligned PLA sandwich. The inten-
tion is to make a low Poison’s ratio material. As the aligned fibres (red) are put
under tension, it was hoped the random fibres (green) would “squeeze out”.

A PLA sheet was electrospun as in Section 2.2.2, except the speed of the col-

lector was set to 1700 RPM for the first third of deposited fibres (8ml of the

PLA mixture). Following this, the collector speed was reduced to 300 RPM for

the second third, and then raised again to 1700 RPM for the final third. The E

was then measured on a Bose electroforce tensiometer. The aligned component

significantly increased the E compared to random fibres alone (Figure 4.39).
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Figure 4.39: E of a trilayer of aligned-random-aligned PLA (a-r-a) compared
to a PLA monolayer (r). Error bars are mean±SD, n=3.

A sheet of aligned PLA fibres was electrospun as per Section 2.2.2, except the

speed of the collector was set to 1700 RPM for the duration of the spinning.

This acted as a solely aligned control. Varying the speed of the collector as the

PLA fibres are spun produces a white scaffold with a lustre. The alignment

of the fibres makes the scaffold a little easier to use than the comparable

randomly orientated scaffold. SEM images show fibres with a distinct grain

either side, and a cross sections shows a sandwich of aligned-random-aligned

fibres (Figure 4.40). The E of the material is greatly improved compared to

solely randomly spun fibres.
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Figure 4.40: SEM photograph of aligned-random-aligned PLA trilayer. A. Top
face of scaffold showing the aligned component of the scaffold. B. Cross section
of the scaffold, showing aligned fibres above and beneath, with random fibres
sandwiched between.

4.7.1 Calculation of Poison’s ratio of electrospun PLA

aligned-random-aligned sandwiches

A rig was made to fit a syringe pump so that samples of scaffold could be

attached and then distended up to 30 mm (Figure 4.41). Three sections of

each scaffold were cut (aligned PLA, aligned-random-aligned PLA, and ran-

dom PLA, 1 cm × 3 cm, 3 cm side parallel to the direction of the aligned

fibres). These samples were then distended by 30 mm at 0.3 cm/s, and were

photographed once per second for the duration of the distension. ImageJ was

then used to calculate the length and width of the sample, from which their

respective strains were calculated, and from that their Poison’s ratio.

A plot of scaffold width vs. length shows that the a-r-a PLA neck initially, but

then plateaus (Poison’s ratio of 0), compared to random PLA which continues

to neck (Figure 4.42). Aligned PLA necks very little and has a Poisson’s ratio

close to 0 throughout.
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The Poison’s ratio of these materials is not negative, so they are not auxetic

(Figure 4.43). However, for aligned-random-aligned PLA, on distension, it

was observed that as the material necked “wings” of fibres deployed either

side (Figure 4.41 C. and D.). This material has a low Poison’s ratio, and

is lower overall than random PLA fibres. Aligned PLA is better again and

exhibits the lowest Poisons ratio of these three scaffolds.
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Figure 4.41: Distension of monolayers of aligned PLA, random PLA, and
trilayers of aligned-random-aligned PLA. The use of the syringe pump allowed
the samples to be distended by up to 5 cm. A and B are a monolayer of
random PLA before and after distension respectively. C and D are a trilayer
of aligned-random-aligned PLA before, and after distension respectively. E
and F are aligned PLA fibres before, and after distension respectively. The
length and width at the most narrow point was recorded for each sample, to
plot how width changes with distension. The scale bar is equal to 1 cm.
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Figure 4.42: A plot of width vs length as scaffold samples are distended.
Trilayers of aligned-random-aligned PLA (a-r-a) narrow by around 50% less
than random PLA (r) alone, and then reach a plateau, while the random PLA
continues to narrow with distension. Aligned PLA monolayers (PLA a) narrow
the least.

Figure 4.43: A plot of Poisson’s ratio vs. distension for a random PLA mono-
layer (PLA r), an aligned-random-aligned PLA trilayer (PLA a-r-a), and an
aligned PLA monolayer (PLA a).
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4.8 Discussion

This chapter demonstrates that a nanofibrous scaffold can act as a barrier to

cell penetration while providing a scaffold for cell attachment and proliferation.

For cleft palate treatment in the clinic, it would be our intention to culture

autologous buccal mucosa on one face (as previously demonstrated), and au-

tologous periosteal cells as a bone precursor on the opposite face.198 These

are being investigated for their bone forming ability at present. These could

be harvested at the time of a cleft lip repair, expanded in the laboratory, and

then re-introduced on a bilayer membrane to encourage the growth of a native

hard palate.

The concept of segregating tissue for regenerative purposes is not new. It

has been established in dentistry for sometime, where tissue guides have been

developed to segregate soft tissue from bone forming tissue in periodontal re-

pairs.132,133 Commercial materials include collagen-based membranes, biodegrad-

able polymers and Teflon.2,134,135,226 Collagen has a high biodegradation rate,

can be difficult to remove when there are problems, and can introduce the risk

of infection as it is an animal derived tissue (usually bovine). Therefore, one

must be mindful of the source of the collagen to avoid any risk of prion dis-

ease transmission.135 Teflon is a very successful and effective barrier to cells.

However, it cannot be left implanted, and follow up procedures are required

to remove it. This is not ideal as it disturbs the newly repaired tissues, risk-

ing scar formation and infection.226 Current biodegradable polymer solutions

are commonly based on PLA, however, these are not entirely popular with

surgeons as they are difficult to handle.227
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In the current study the nanofibrous component of the bilayer and trilayer

makes the material much more user-friendly. It can be readily picked up,

shaped, and handled without tangling, sticking or loss of shape, unlike mi-

crofibrous electrospun scaffolds.

The methodology of spinning one scaffold on top of another is reproducible

and consistent. Our data show that by using cell tracker labelled cells it is

possible to culture two different cell types on these scaffolds, while maintaining

segregation for at least 7 days.

The cell tracker fluorescent dyes are very successful at labelling cells through

to 7 days, but the intensity of the dye decreases noticeably after longer periods.

In this study fibroblast attachment was examined as a soft tissue model.

hESMPs were selected as a model bone forming cell as they are capable of

forming bone (see Figure 4.14), and are also an appropriate cell type against

which other candidate cells can be compared.228,229 Here hESMP’s bone form-

ing potential is demonstrated on TCP, and other studies have shown similar

bone forming potential on other well known biodegradable polymers, such as

PCL, PLA and PLGA.103,230,231 Similarly, it is confirmed that keratinocytes

and fibroblasts are effectively segregated when cultured on a trilayer membrane

separated by a nanofibrous scaffold layer.
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4.8.1 Electrospinning of a PLA/PHBV composite bi-

layer scaffold

Electrospinning of bilayer materials has been conducted previously, where a

PCL under layer was spun first, followed by a PLA layer, to create a 5 mm outer

diameter tube, with an interior and exterior of different composition.185 This

tube was designed for use in blood vessel tissue engineering, which requires

quite different properties to guided tissue regeneration (GTR) membranes.

This did not have a cell segregation aspect, as it had to be populated through-

out with cells. The pore sizes created with the tube were up to 15 µm and

10 µm in the PCL and PLA layers respectively. This contrasts to the bilayers

synthesised in this project, where pore sizes are much smaller, and allow the

material to segregate cells, while the permeation of nutrients and cell cytokine

signalling was still possible. The scaffolds synthesised in this project are fit

for purpose, the dense PHBV layer has pores to allow the flow of nutrients

and cytokines, but gives a sufficient barrier to cells preventing them traversing

the material. The PLA layer provides a region that is cell friendly and can be

densely populated throughout with cells.

4.8.2 Sequential electrospinning of a PLA/ PHBV/ PLA

composite trilayer scaffold

The next step was to create a membrane with separate regions for cells to pro-

liferate within, while remaining segregated. A barrier membrane sandwiched

between two microfibrous regions would provide this. Cells can proliferate in

the microfibres, but are segregated by the nanofibrous layer. The concept of a

213



trilayer membrane is not new, electrospun multilayer membranes do exist for

periodontal treatment.232–235 However, these are not without their issues, none

of these membranes exhibit a barrier function, and instead rely on a scaffold

density gradient to coerce cells to grow in the right place. Such scaffolds be-

come increasingly dense with depth, this allows cells to migrate in to a certain

point, until the pore size is too small for further migration. Many such scaf-

folds are derived from collagen, with its inherent risk of prion transmission,

or coatings of expensive protein motifs. The trilayer presented here is simple

in it’s manufacture, and exhibits a barrier functionality, without the need for

expensive or natural products.

4.8.3 Concurrent electrospinning of a PLA/ PHBV-PLA/

PLA composite trilayer scaffold

To simplify and improve the adhesion between the layers of this trilayer scaf-

fold, the method was adapted to spin all three layers in one sitting, as opposed

to three separate spinning sessions. A search of the literature shows a sim-

ilar technique was used before. Microfibres have been used in conjunction

with nanofibres, but normally as part of a much more controlled structure, to

specifically mimic certain tissues.236 The other scaffolds created using similar

methodology in the literature are sequential with distinct regions of nanofibres

or microfibres, whereas the scaffold created here was a mixture with microfibres

bound together with nanofibres. One other instance of this is reported in the

literature; Shalumon et al. electrospun PLA microfibres, and intermittently

co-spun PLA nanofibres. However, there is no reference to the proportion of

nano to microfibres. Nor is the technique used to create a layered structure.237
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Equal proportions of microfibres and nanofibres have not been spun together

at the same time. Another similar method to this is for the creation of porous

scaffolds, where sacrificial fibres are co-spun with supporting fibres into a scaf-

fold. The sacrificial fibres are made of a material that is readily soluble. Hence,

when the sacrifical fibres are removed, only the insoluble fibres remain, leaving

a scaffold with increased porosity. The fibres used in this technique are of the

same dimensions, and not a nanofibrous/microfibrous mix.238

4.8.4 Viability of cells on scaffolds

As the scaffolds presented here are intended to be used with soft and hard

tissues, two model cells representing each tissue were selected. Human dermal

fibroblasts were selected as they are the major cell which comprises the hu-

man dermis and are often used as a model cell for methodology development.

HESMPs were selected as they have been shown to be capable of forming

bone.227,228 First, the viability of both these cells types on TCP, and simple

scaffold monolayers, needed to be determined to check they were compatible.

Resazurin (5 µg/ml in PBS) was used to assess cell viability after 7 days of

culture (50,000 fibroblasts and hESMPs respectively, Section 2.1.12). After

removal of residual culture media, 1ml of rezasurin solution was added to

each scaffold and incubated for 1 hour, following which 150µL was taken from

each sample and the absorbance read (570 nm, Bio-Tek ELx800 plate reader,

Figures 4.6 to 4.11). The culture media was then replaced (1ml per sample). It

has been shown that a variety of different cell types can be grown on PLA, PCL,

and PHBV based scaffolds, which agrees with current literature for similar
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scaffolds based on these polymers.239–242 The work completed here agrees with

this, and although, in general, the viability of hESMPs was lower than that

of fibroblasts on the scaffolds, there were no problems culturing cells on these

scaffolds. This may be due to normal hESMPs culture procedure calling for

the cells to be seeded onto a bed of gelatin, whereas the scaffolds were left

uncoated.103,229–231

The mean cell count per field of view increase with time for all substrates,

regardless of the number of cells seeded. Cells were observed on the underside

of the nanofibrous PCL scaffold, but the absorbance is far less than that seen

on TCP. The rest of the cells were either on the opposite face of the scaffold, or

buried within. The cell count was far smaller for PHBV scaffolds regardless of

the number of cells seeded. This simple experiment showed that a single layer

of PHBV was capable of preventing cells passing through for at least 6 weeks.

Total cell populations appeared to peak at 3 weeks for both cell densities.

This could be due to the cells becoming confluent and then senescent. Some

similar instances are investigated in the literature, fibroblasts have been shown

to undergo a form of programmed cell death known as anoikis. Anoikis is

triggered when anchorage dependent cells such as fibroblasts detach from the

surrounding extracellular matrix.243 So, if the cells reached confluence, and

insufficient extracellular matrix deposition had occurred in the time it took

to reach confluence, this could be an explanation of the drop in cell numbers

observed.

Alternatively, decreases in fibroblast proliferation has been observed on poly(ether

imide)/poly(benzimidazole) blended scaffolds after a period of incubation.244

Altankov explains such instances as possibly due to membrane-promoted cel-

lular aggregation, leading to easier cell detachment from the substratum. This
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could mean that after a period of incubation cells may only be weakly attached

to a scaffold, and hence could fall off during media changes etc.

Aside from this fibroblasts have a fixed life time in vitro and cease proliferation

following a number of cell division.245 This occurs through the process of

senescence, which was first described in fibroblasts by Hayflick in 1961.180

Hayflick notes after continuous incubation for 1 month, fibroblast cultures

form sheets of cells that curl up, and peel away from the glass substrate, on

agitation of the culture medium. This time scale is shorter than that attempted

in this experiment, and therefore is perhaps the most compelling reason for

the drop in cell number observed around the 3 week mark.

There is a clear difference between PCL nanofibrous scaffolds and nanofibrous

scaffolds of PHBV. Fibroblasts were able to squeeze through the PCL scaffolds,

although this could be due to the PCL scaffolds being more fragile, and holes

developing when placing them in the cell crowns.

4.8.5 Cell migration into scaffolds up to 6 weeks

Barrier membranes form a big part of the GTR area of dentistry (Section 1.5.2).

Gingivitis is a growing problem, this is a disease where bacteria cause the bone

around teeth to erode, resulting in tooth loss. It is estimated that around

10%-15% of adults worldwide have advanced gingivitis (6 mm or greater pe-

riodontal defects).246 The idea of GTR is to keep fast growing soft tissues at

bay and allow bone to regrow. There is some literature on a collagen bilayer,

designed for this purpose.247 This is able to prevent cell cross over for up to
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3 weeks. However, bovine collagen as a material is disliked by surgeons due

to the possibility of prion disease transmission. This study presents a totally

synthetic, biocompatible, and biodegradable electrospun membrane of PHBV,

which was developed to keep two different cell types separate. On one side

hESMPs (shown to have osteogenic potential) while on the other, fast growing

dermal fibroblasts.227,228

Investigations into cell penetration into nanofibrous scaffolds long term are

promising (Section 4.4). A single layer of electrospun PHBV scaffold is ca-

pable of preventing cells passing through it for at least 6 weeks. Total cell

populations on the scaffold appeared to peak at 3 weeks for both high and low

concentrations of cells, this could be due to the cells becoming confluent or

senescent, as they would in normal culture. There is a clear difference between

performance of cells on a PCL nanofibrous scaffold and on a PHBV scaffold.

Fibroblasts are able to squeeze through the PCL nanofibres due to mechanical

damage, which could be due to the PCL scaffold being more fragile, and holes

developing when placing it in the CellCrownsTM prior to cell seeding.

Penetration of scaffolds by cells has received a lot of attention in the litera-

ture.237,248,249 However, the main focus of these papers is to improve or tailor

cell penetration into the scaffold. This is typically achieved through the use of

sacrificial fibres to increase porosity (as described in Section 4.8.3). One thing

that all these papers agree on is that nanofibrous networks are effective at pre-

venting cell ingress. Shalumon et al. use a co-spun nanofibrous/microfibrous

PLA network and report improved cell infiltration.237 This is a potential prob-

lem for the concurrent electrospun PLA/ PHBV-PLA/ PLA composite trilayer

scaffold reported here. The combination of micro and nano fibres may facil-

itate cell infiltration. However, the proportion of nano to micro fibres used
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by Shalumon et al. is not reported.237 Their method merely states that “mi-

crofibres were continuously electrospun whereas nanofibres were intermittently

depositing on the same target”. If the quantity of nanofibres was sufficently

low, the microfibres may act as supporting beams, and open up the structure,

allowing cell migration into the scaffold. The 50:50 micro:nano fibre network,

reported in this project, appears as a much denser network and should be

proven to be a barrier to cells in the future.

4.8.6 Electroweaving of PLA fibres

To the best of my knowledge the simultaneous deposition of aligned and ran-

dom fibres to create a pseudo woven network has not been reported previously.

PLA was chosen as it readily formed into uniform microfibres, but when spun

as a random network it is notoriously difficult to handle, and an improvement

was required. When produced using this method, the resulting scaffold was

much easier to handle. It had improved E in the direction of the aligned

component, compared to the random form of the same scaffold. The use of

fluorescent dyes to label the weft and warp strands respectively, showed that

the fibres are deposited in the desired manner, with one set of fibres exhibit-

ing a distinct orientation, while the other set randomly whip across creating

a tight interwoven network. This process is ideal for creating scaffolds that

require additional strength in one direction, such as required by pelvic floor

repair.
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4.8.7 Electrospinning and electroweaving of PLA and

PLA-(PMSSQcoPFPA) blended fibres

Another potential use of pseudo-woven scaffolds is for incorporating functional

agents to promote specific cell responses. If the aligned fibres were function-

alised to promote angiogenesis for example, this could be a simple way to

encourage vessel formation through a scaffold. As proof of concept, PMSSQ-

coPFPA was incorporated into the aligned set of PLA fibres, and regular PLA

was electrospun as the random weft fibres. PMSSQcoPFPA was selected as it

can be used as a method to introduce functional peptide motifs on the scaf-

fold, such as heparin and VEGF. This is important in that it may encourage

angiogenesis. To be able to selectively functionalise parts of a scaffold is even

better. Using the technique of electroweaving the PMSSQcoPFPA should only

be incorporated in the aligned component. This is hard to prove in situ in the

scaffold. A second scaffold of just randomly oriented PLA and PMSSQcoPFPA

blended fibres was created to act as a positive control, and regular PLA as a

negative control. Using the toluidine blue assay it was shown that a detectable

amount of heparin was bound to the scaffolds containing PMSSQcoPFPA, in

contrast to the PLA only scaffolds where no heparin was detected.

4.8.8 Cell culture on electrowoven PLA-co-(PLA/PMSSQ-

co-PFPA)

Functionalising scaffolds with heparin is not new. Wang et al. demonstrated

that heparin could be bound to bulk electrospun PCL scaffolds by washing

with an ethylenediamine solution (to aminate the scaffold), and then washing
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for a second time with a solution containing heparin.250 This produced a

scaffold with heparin immobilised on the surface. However, the benefit of

incorporating PMSSQcoPFPA into a scaffold is that only the fibres containing

the dopant are capable of binding heparin. This allows the scaffold to be

selectively functionalised instead of the bulk scaffold, potentially providing

control over how the scaffold forms a vascular network. Culturing cells on

PMSSQcoPFPA doped pseudo-woven scaffolds demonstrated a clear change

in cell morphology. When a woven scaffold was used, the cells elongated and

aligned, but no scaffold out performed any other with regard to cell viability.

There is a question over whether this is just due to the cells aligning with

the aligned component of the scaffold, or if the PMSSQcoPFPA is having an

effect. This should be investigated further.

4.8.9 Electrospinning of an aligned-random-aligned sand-

wich of PLA fibres

There are a number of scenarios where it is desirable to have a scaffold that

will not contract or even expand perpendicular to an applied tension. Such ex-

amples are cleft palate repair and pelvic organ prolapse, where delicate tissues

need to be supported even when under tension, without the device “neck-

ing”. A search of the literature reveals very little work on creating electrospun

scaffolds or biomaterials that are either auxetic, or have a low bulk Poisson’s

ratio. One example applies a pattern to a material imbuing the material with

an extrinsic auxetic ability (Figure 4.44).251 Such methods should definitely

be investigated as one solution to this problem.
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Figure 4.44: A geometric pattern than can be applied to a material to imbue
it with auxetic properties.

Unfortunately, such patterning would render the material unsuitable for a

barrier function, as it would create large holes for tissue to penetrate through,

but it would be ideal for tissue regeneration that does not require a barrier

function. The use of a mixture of aligned and random fibres as a sandwich

creates a material that is not auxetic, but it does have a low Poisson’s ratio.

This behaviour is directly from the aligned component, random scaffolds have

high Poisson’s ratio and become thinner when stretched. Aligned scaffolds

have poor handling properties perpendicular to the axis of the fibres, and are

readily split. Sandwich scaffolds of aligned and random fibres exhibit the best

of both worlds. They retain good mechanical properties parallel to the aligned

component, but also do not fall apart then pulled perpendicular to the aligned

fibres, due to the random component. A side effect is that the material also

maintains a low Poisson’s ratio while under tension, due to the aligned fibres.

Materials with low Poisson’s ratio are ideal for conditions such as pelvic floor,
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as the material will not narrow or neck when under tension. This ensures

support to the surrounding organs is maintained, and prevents the erosion

observed with polypropylene meshes.148–150

4.9 Summary

Described here are simple methods for electrospinning bilayer and trilayer

nanofibrous/microfibrous membranes, capable of supporting the culture of two

very different cell types, while maintaining segregation between the two. It is

hoped that these will prove useful in a range of applications, such as the first

step in developing an approach for tissue engineering of cleft palate, and also

guided tissue regeneration for periodontal disease, and in the production of

tissue engineered skin for treatment of patients with extensive full thickness

burns injuries.
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Chapter 5

Discussion

Most tissues are not simple monolayers, and contain distinct structures and

architectures, which are present for a reason. Designing scaffolds that mirror

these should help achieve good incorporation, and eventual renewal of the

target tissue. There are some significant challenges in creating a scaffold that

can allow two distinct tissues to be cultured, without one tissue over-running

the other, by virtue of it possessing a faster growth rate.

A solution to this problem would be applicable to many tissue engineering

dilemmas, principally repair of a cleft palate, but the work contained here

is also meant to provide a tool kit that can be applied to other situations.

Each tissue engineering problem presents its own particular requirements, and

a range of methods is required to adapt solutions to meet them. Cleft palate

repair requires a barrier to enable slow growing bone tissue to develop pref-

erentially over faster growing soft tissues. This needs to be coupled with a

mechanism to allow for growth and expansion of the implanted tissues. Soft
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tissue grafts and epidermal models require a cell impermeable barrier, and

must be easy to handle. Other problems such as treating pelvic floor prolapse

or stress urinary incontinence, require strength in the scaffold in one direction,

and architectures designed to minimise construct necking when under tension.

Finally, bladder regeneration requires a scaffold that can cyclically inflate and

deflate, without fatigue, or a build up of pressure, to ensure protection of the

kidneys.

The main hypotheses which were investigated in this PhD, and shall be dis-

cussed in turn, are that;

1. Microfibres and nanofibres can be produced in a range of polymers and

architectures, by using the technique of electrospinning.

2. Cells perform differently on different architectures and polymers.

3. The scaffold’s mechanical properties are dependent on architecture, as

well as the polymer’s intrinsic properties.

4. Cells respond to mechano-stimulation by up-regulating production of

extracellular matrix.
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5.1 Microfibres and nanofibres can be produced

in a range of polymers and architectures,

by using the technique of electrospinning

A range of microfibres and nanofibres can be produced from a range of poly-

mers and in a variety of architectures, by using the technique of electrospinning.

The velocity of the electrospinning collector determines if the final scaffold has

a random (collector rotated slowly), or aligned (collector rotated fast) archi-

tecture. PHBV can be electrospun in DCM as a pearl necklace, but by using

mixed solvent systems to increase the permittivity of the solution, nanofibres

can be obtained. The solvent used can impact mechanical properties and scaf-

fold architecture (e.g. DMF caused the PHBV fibres to weld together). PLA

can be electrospun as microfibres, and a nanofibrous pearl necklace in DCM.

A source of inexpensive PLA has been identified, and has been shown to be

identical to that originally used. PCL can be electrospun as microfibres, or a

nanofibrous pearl necklace in DCM, and mixed solvent systems. The nanofi-

brous mixed solvent PCL scaffold produced an interesting “pock” marked ar-

chitecture. PLGA can be electrospun as a nanofibrous scaffold using a mixed

solvent system of DCM and MeOH.

A pseudo-woven architecture can be formed by electrospinning random and

aligned fibres of PLA at the same time. This produces a scaffold that is easy to

handle, and that has anisotropic mechanical properties. Functionality can be

added to these scaffolds by incorporating PMSSQcoPFPA, which allows bind-

ing of proteins. This could be used in future to promote angiogenesis through
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a scaffold. Finally, nanofibres of PHBV and microfibres of PLA can be com-

bined, either in sequence to form scaffolds with bilayer and trilayer structures,

or spun together to produce a trilayer that has microfibres throughout, and a

central barrier where nanofibres bind the microfibres together.

5.2 Cells perform differently on different ar-

chitectures and polymers

Cells perform differently on different scaffold architectures and polymers. Fi-

broblasts and hESMPs penetrate and fill microfibrous PLA scaffolds, but when

cultured on nanofibrous PHBV both cell types form a layer on the surface, and

are unable to penetrate the dense nanofibrous network. The PHBV scaffold is

capable of preventing fibroblast infiltration for at least 6 weeks. Fibroblasts

cultured on pseudo-woven PLA-co-(PLA-PMSSQcoPFPA) align with the grain

of the scaffold, and cell viability is as good as scaffolds not containing PMSSQ-

coPFPA. Finally, it has been shown that hESMPs cultures are viable on PLA,

PCL, and PHBV based scaffolds.
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5.3 The scaffold’s mechanical properties are

dependent on architecture, as well as the

polymer’s intrinsic properties

A scaffold’s mechanical properties is dependent on architecture, as well as

the polymer’s intrinsic properties. It is possible, through the use of designed

architectures, to construct a scaffold with novel mechanical properties. Here,

PLA is electrospun as an aligned-random-aligned trilayer. This produces a

scaffold with low Poisson’s ratio. When the scaffold is placed under tension,

the bulk structure does not neck. Such scaffolds have great potential for the

problem of pelvic floor repair, where scaffolds that narrow can lacerate the

surrounding tissues.

5.4 Cells respond to mechano-stimulation by

up-regulating production of extracellular

matrix

Cells respond to mechano-stimulation by up-regulating production of extra-

cellular matrix. This was determined using a proof of concept biaxial biore-

actors. The design of these were based on the estimated worst case expansion

expected for a cleft palate defect (a doubling in surface area). Children’s toy

balloons were selected as they are inexpensive, can be sterilised by autoclave,

and expand multiaxially when inflated. It was shown that balloons expand
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anisotropically on inflation, and that the expansion varies between balloons.

Balloons can be used as electrospinning collectors by coating with graphite,

adding a small volume of a conducting liquid (such as IMS), or inflating with

PBS. Sterile balloons filled with PBS could be aseptically coated with a bilayer

scaffold, and fibroblasts subsequently cultured on the surface. A syringe pump

was used to administer multiaxial distension. Increased elastin deposition was

observed in the exercised system, compared to a static control.

This research highlighted the need to design a better culture system with

more replicates. This necessitated investigations into alternative incubation

chambers that could be adapted to include equipment to administer multiaxial

distension. It was shown that an inexpensive propagator or an egg incubator

were capable of maintaining the required temperature for cell culture.

A different proof of concept bioreactor (based on Ebers P3D chambers was

investigated), to attempt to create a system with increased replicates. Al-

though variability between chambers was high, increased elastin deposition

was observed in the exercised system, compared to the static system. Finally,

different pH buffer systems were investigated in order to determine if it was

feasible to culture keratinocytes in a sealed bioreactor, with no gaseous CO2

exchange. It was shown that bicarbonate is essential in keratinocyte culture

medium, regardless of the pH buffer system used. A double buffer system of

HEPES and bicarbonate was found to be the most effective pH buffer system,

and could be used to create isolated bioreactor systems.
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5.5 Synopsis

This thesis details a tool kit to create scaffolds. The scaffolds are designed to

overcome the difficulties in treating problems such as cleft palate, and weak-

ened pelvic floor tissues. This was achieved by investigating a number of

hypotheses. Firstly, that microfibres and nanofibres can be produced from

multiple polymers, in a variety of architectures, by using the technique of

electrospinning. This has been achieved with monolayers of microfibres and

nanofibres in a range of polymers. These monolayers can in turn, be combined

together into complex multilayers, combining both nanofibres and microfibres,

to make bilayer and trilayer scaffolds, that retain aspects of the monolayers’

attributes.

The second hypothesis was that that cells perform differently on different ar-

chitectures and polymers. This research has shown that nanofibres act as

barrier membranes and prevent cell ingress, while microfibres encourage the

proliferation of cells. Multilayered scaffolds of micro and nanofibres have been

shown to have cell penetrable, and cell impenetrable regions, inherent in their

design.

The third hypothesis was that a scaffold’s mechanical properties are dependent

on architecture, as well as the intrinsic properties of a given polymer. Combi-

nations of aligned and random fibres have been investigated to create materials

that while not auxetic, have low Poisson’s ratio, to tackle the problem of scaf-

fold contraction when under tension. Other methods, such as electrospinning

onto a balloon to try to make a scaffold that incorporates corrugations, have

been investigated. These furrows can unravel during multi-axial expansion, as

231



a secondary solution to making an implant that can flex with a patient, in

order to minimise growth disturbances. This research shows that a scaffold’s

mechanical properties can be influenced by scaffold architecture.

The final hypothesis (cells respond to mechano-stimulation by up-regulating

production of extracellular matrix), was demonstrated by the creation of proof

of concept bioreactors. These can administer multi-axial distension to cells cul-

tured on expanding constructs, continuously over an extended period of time.

This work necessitated investigations into economical methods of providing

the basic requirements for cell culture. This included maintaining constant

temperature and also pH buffering in systems where it is either impracticable,

or impossible, to change the medium, or gas in the system. At the time of

writing there are no other systems found in the literature that are capable of

completing such a task.
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Chapter 6

Major findings, limitations and

future directions

Through the careful selection and adaptation of key electrospinning parame-

ters, such as concentration and solvent system, a variety of nanofibrous scaf-

folds can be produced in a number of different polymeric biomaterials.

Cells have been successfully cultivated on all of the scaffolds presented. Viabil-

ity measurements have shown there is no great difference between cells cultured

on microfibres compared to nanofibres. Cells tend to “see” nanofibrous scaf-

folds as a flat sheet, compared to microfibrous scaffolds that they proliferate

through. This extends to attachment of cells on the respective scaffolds, there

isn’t a distinct difference between attachment to nanofibres or microfibres.
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The one thing that does change is the intended use for the scaffold. Microfibres

are clearly more suited to problems requiring a space filling aspect, where

cells are required to fill a void. Nanofibres are great at providing sheets of

cells. Nanofibres also lend themselves to the creation of cell impermeable

barriers. When electrospun as dense mats, with demonstrably lower porosity, it

is impossible for cells to squeeze through, instead they treat it as a flat surface.

While the inherently porous structure of such electrospun scaffolds provide

fenestrations not large enough for cells, they are more than large enough for

nutrients and cytokines to permeate through.

It has been shown that two distinct cell populations (hESMPs and fibroblasts)

can be cultured either side of a nanofibrous electrospun scaffold, without either

population meeting by crossing the barrier. One criticism of this work is that

although these barriers are impermeable to cells, they are porous enough for

bacteria to penetrate into. In the context of surgery, this could result in the

scaffold becoming a safe haven where immune surveillance by macrophages

cannot reach the bacterial intruders. This should be investigated further, the

solution may be as simple as determining how thin this barrier can be made,

whilst still being effective as a barrier. An alternative could also be to consider

the inclusion of antimicrobial agents, either immobilised within the nanoporous

layer, or released over time.

This project showed that the microfibrous and nanofibrous scaffolds can be

combined in order to meet more complex tissue engineering problems, that

require a multifaceted solution.

One example is culturing, and encouraging, the proliferation of two distinct

tissues with different rates of growth next to each other. Scaffolds can be elec-
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trospun into bilayers and trilayers, consisting of microfibrous and nanofibrous

regions, and then cells cultured on them. The nanofibrous component pre-

vents the faster growing fibroblast over taking the slower developing hESMPs.

While the microfibrous component provides the space filling element for cells

to proliferate and fill. Ultimately, this is intended to create a substantial tissue

as opposed to a thin sheet of cells.

The mechanical properties of composite multilayered scaffolds also change

when compared to monolayers of the individual components. The individ-

ual scaffolds each contribute a component to the overall mechanical properties

of the composite scaffolds, and produce a synergistic effect. This manifests

itself in a E that is either an average, or greater than that of the E of the

components. The E of the scaffolds produced is appropriate for the tissue

engineering of the hard palate, the lead example in this thesis. While it has

been demonstrated that materials with a low Poisson’s ratio can be created,

architectures that are auxetic have not. This area could be expanded with the

creation of methods to spin intrinsically auxetic scaffolds, or to apply patterns

to the final scaffold, and make an extrinsically auxetic scaffold.

Finally, this project attempted to tackle the issue of how cells could be cul-

tured on scaffolds such as the above and stressed in two dimensions. It also

attempted to determine what the effect would be on cellular extracellular ma-

trix production. This is a complex area and no good solutions are currently

commercially available.

A system was required that could keep samples in culture for long periods of

time, provide replicates, and provide biaxially exercise. A number of proof-

of-concept reactors were created. Practical issues, such as how to supply the
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cells with everything they require (for example, constant temperature and pH

regulation), while working under a strict budget have been discussed, and

working solutions developed. The results of culturing cells while stressing

them in two dimensions is clear. Cellular extracellular matrix production is

up-regulated, as demonstrated in the production of elastin, when compared to

a static control.

One criticism of this work is the use of toy balloons. Balloons do not allow for

full characterisation of the forces a scaffold undergoes. Also, the size of the

forces single cells feel on the scaffolds cannot be easily obtained.

This work is intended as a first step, a proof of concept. It is possible to

create a system that can physically culture cells in a 2D dynamic environ-

ment for an extended period of time, and there is huge potential for further

work in bringing this to maturation. The balloon could be easily substituted

for a more predictable and uniform material. Strain gauges and measuring

methods (whether mechanical or optical) could be incorporated, and should

be investigated. The degree of distension, and regime applied, could be accu-

rately modelled. Finally, the deposition of other extracellular matrix proteins

besides elastin, could be investigated, and tuned, depending on the desired

tissue engineering solution under investigation.

In order to be able to use such techniques, bioreactor technology needs to be

further investigated. It has been shown here that simple designs can maintain

cells in culture for a long period, and apply an exercise regime in 2D, but more

work is required to enable incorporation of equipment such as strain gauges,

and optical measurement devices.
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degradable polymers undergo surface erosion or bulk erosion. Biomate-
rials, 23(21):4221–4231, Nov 2002.

[17] J. A. Tamada and R. Langer. Erosion kinetics of hydrolytically degrad-
able polymers. Proc Natl Acad Sci U S A, 90(2):552–556, Jan 1993.

[18] David J. Walton and J. Phillip Lorimer. Polymers (Oxford Chemistry
Primers). Oxford University Press, USA, 2001. ISBN 019850389X.

[19] Yuuki Hirota, Naoko Yoshie, Nariaki Ishii, Ken-ichi Kasuya, and Yoshio
Inoue. Correlation between solid-state structures and enzymatic degrad-
ability of cocrystallized blends. Macromolecular Bioscience, 5(11):1094–
1100, Nov 2005.

[20] J. M. Schakenraad, M. J. Hardonk, J. Feijen, I. Molenaar, and
P. Nieuwenhuis. Enzymatic activity toward poly(l-lactic acid) implants.
J Biomed Mater Res, 24(5):529–545, May 1990.

238



[21] S. A. Ali, P. J. Doherty, and D. F. Williams. Mechanisms of polymer
degradation in implantable devices. 2. poly(dl-lactic acid). J Biomed
Mater Res, 27(11):1409–1418, Nov 1993.

[22] G.-Q. Chen. Plastics from Bacteria: Natural Functions and Applications
(Microbiology Monographs). Springer, 2010. ISBN 3642032869.

[23] EI Shishatskaya, TG Volova, and II Gitelson. In vivo toxicological eval-
uation of polyhydroxyalkanoates. Doklady Biological Sciences, 383:109–
111, 2001.

[24] S. Rathbone, P. Furrer, J. Lbben, M. Zinn, and S. Cartmell. Biocom-
patibility of polyhydroxyalkanoate as a potential material for ligament
and tendon scaffold material. J Biomed Mater Res A, 93(4):1391–1403,
Jun 2010.

[25] Luzier WD. Materials derived from biomas/biodegradable materials.
Proceeds of the National Academy of sciences, 89:839–842, 1992.

[26] D Byrom. Production of poly-β-hydroxybutyrate: polyhydroxy-β-
hydroxyvalerate copolymers. Microbiology Reviews, 103:247–250, 92.

[27] Bronwyn Laycock, Peter Halley, Steven Pratt, Alan Werker, and Paul
Lant. The chemomechanical properties of microbial polyhydroxyalka-
noates. Progress in Polymer Science, Aug 2013.

[28] SJ Holland, AM Jolly, M Yasin, and BJ Tighe. Polymers for biodegrad-
able medical devices. II. hydroxybutyrate-hydroxyvalerate copolymers:
hydrolytic degradation studies. Biomaterials, 8:289–295, 1987.

[29] M Yasin, SJ Hollands, and BJ Tighe. Polymers for biodegrable med-
ical devices V. hydroxybutyrate-hydroxyvalerate copolymers: effects of
polymer processing on hydrolytic degradation. Biomaterials, 11:451–455,
1990.

[30] H Li, W Zhai, and J Chang. In vitro biocompatibility assessment of
phbv/wollastonite composites. Journal of Material Science: Materials
in Medicine, 19:67–73, 2008.

[31] D’Agnostino and William. Recombinant expressed bioadsorbable poly-
hydroxyalkonate monofilament and multi-filaments self-retaining stu-
tures., 2009.

[32] M Wang. Developing bioactive composite materials for tissue replace-
ment. Biomaterials, 24:2133–2151, 2003.

[33] EM Engelhardt, LA Micol, S Houis, FM Wurm, J Hilborn, JA Hubbell,
and P Frey. A collagen-poly(lactic acid-co-ε-caprolactone) hybrid scaf-
fold for bladder tissue regeneration. Biomaterials, 32:3969–3976, 2011.

239



[34] LJ Suggs and SA Moore. Physical properties of polymers handbook, chap-
ter 55, pages 939–950. Springer, 2 edition, 2007.

[35] TA Telemeco, C Ayres, GL Bowlin, GE Wnek, ED Boland, N Cohen,
CM Baumgarten, J Mathews, and DG Simpson. Regulation of cellular
infiltration into tissue engineering scaffolds composed of submicron diam-
eter fibrils produced by electrospinning. Actabiomaterialia, 1:377–385,
2005.

[36] F Yang, R Maurugan, S Wang, and S Ramakrishna. Electrospinning of
nano/micro scale poly(l-lactic acid) aligned fibers and their potential in
neural tissue engineering. Biomaterials, 26:2603–2610, 2005.

[37] I Canton, R McKean, M Charnley, KA Blackwood, C Fiorica, AJ Ryan,
and SM MacNeil. Development of an ibuprofen-releasing biodegradable
pla/pga electrospun scaffold for tissue regeneration. Biotechnology and
bioengineering, 105:396–408, 2010.

[38] H. Pistner, R. Gutwald, R. Ordung, J. Reuther, and J. Mühling. Poly
(l-lactide): a long-term degradation study in vivo: I. Biological results.
Biomaterials, 14(9):671–677, 1993.

[39] H Pistner, D Bendi, J Muhling, and J Reuther. Poly (l-lactide): a
long-term degradation study in vivo part III. Analytical characterization.
Biomaterials, 14(4):291–298, 1993.

[40] H Pistner, H Stallforth, R Gutwald, J Muhling, J Reuther, and C Michel.
Poly(l-lactide): a long-term degradation study in vivo part II: Physico-
mechanical behaviour of implants. Biomaterials, 15(6):439–450, May
1994.

[41] M. Labet and W. Thielemans. Synthesis of polycaprolactone: a review.
Chem. Soc. Rev., 38(12):3484–3504, 2009.

[42] Daniel Kessler and Patrick Theato. Reactive surface coatings based on
polysilsesquioxanes: defined adjustment of surface wettability. Langmuir,
25(24):14200–14206, Dec 2009.

[43] Daniel Kessler, Peter J Roth, and Patrick Theato. Reactive surface coat-
ings based on polysilsesquioxanes: controlled functionalization for spe-
cific protein immobilization. Langmuir, 25(17):10068–10076, Sep 2009.

[44] Daniel Kessler, Florian D Jochum, Jiyeon Choi, Kookheon Char, and
Patrick Theato. Reactive surface coatings based on polysilsesquioxanes:
universal method toward light-responsive surfaces. ACS Appl Mater In-
terfaces, 3(2):124–128, Feb 2011.

[45] Daniel Kessler, Maria C Lechmann, Seunguk Noh, Rdiger Berger,
Changhee Lee, Jochen S Gutmann, and Patrick Theato. Surface coatings
based on polysilsesquioxanes: solution-processible smooth hole-injection

240



layers for optoelectronic applications. Macromol Rapid Commun, 30(14):
1238–1242, Jul 2009.

[46] Daniel Kessler and Patrick Theato. Synthesis of functional inorganic-
organic hybrid polymers based on poly(silsesquioxanes) and their thin
film properties. Macromolecules, 41(14):5237–5244, 2008.

[47] John Chiefari, Y. K. (Bill) Chong, Frances Ercole, Julia Krstina, Jus-
tine Jeffery, Tam P. T. Le, Roshan T. A. Mayadunne, Gordon F. Meijs,
Catherine L. Moad, Graeme Moad, and et al. Living free-radical poly-
merization by reversible additionfragmentation chain transfer: the raft
process. Macromolecules, 31(16):5559–5562, Aug 1998.

[48] John Chiefari, Roshan T. A. Mayadunne, Catherine L. Moad, Graeme
Moad, Ezio Rizzardo, Almar Postma, , and San H. Thang. Thiocar-
bonylthio compounds (sc(z)sr) in free radical polymerization with re-
versible addition-fragmentation chain transfer (raft polymerization). ef-
fect of the activating group z. Macromolecules, 36(7):2273–2283, 2003.

[49] Y. K. Chong, Julia Krstina, Tam P. T. Le, Graeme Moad, Almar
Postma, Ezio Rizzardo, and San H. Thang. Thiocarbonylthio com-
pounds [sc(ph)sr] in free radical polymerization with reversible addition-
fragmentation chain transfer (raft polymerization). role of the free-
radical leaving group (r). Macromolecules, 36(7):2256–2272, 2003.

[50] J Zeleny. The electrical discharge from liquid points, and a hydrostatic
method of measureing the electric intensity at their surfaces. The Phys-
ical Review, 3:69–91, 1914.

[51] Geoffrey Taylor. Disintegration of water drops in an electric field. Pro-
ceedings of the Royal Society of London. Series A. Mathematical and
Physical Sciences, 280(1382):383–397, 1964.

[52] A Formhals. Process and apparatus for preparing artifical threads, 1934.

[53] AE Martin and ID Cockshott. Fibrillar product of electrostatically spun
organic material, 1977.

[54] R Hans Tromp, Carolien Vink, and Ann C Stijnman. Encapsulation by
electrospinning of live bacteria used in the food industry. Gums and
Stabilisers for the Food Industry Sixteen, 16:247, 2012.

[55] V Thavasi, G Singh, and S Ramakrishna. Electrospun nanofibers in en-
ergy and environmental applications. Energy & Environmental Science,
1(2):205–221, 2008.

[56] Luana Persano, Andrea Camposeo, Cagri Tekmen, and Dario Pisig-
nano. Industrial upscaling of electrospinning and applications of polymer
nanofibers: A review. Macromolecular Materials and Engineering, 2013.

241



[57] CJ Luo, Simeon D Stoyanov, E Stride, E Pelan, and M Edirisinghe. Elec-
trospinning versus fibre production methods: from specifics to techno-
logical convergence. Chemical Society Reviews, 41(13):4708–4735, 2012.

[58] JM Deitzel, J Kleinmeyer, D Harris, and NC Beck Tan. The effect of
processing variables on the morphology of electrospun nanofibres and
textiles. Polymer, 42:261–272, 2001.

[59] SV Fridrikh, JH Yu, MP Brenner, and GC Rutledge. Controlling the
fiber diameter during electrospinning. Physical review letters, 90:1–4,
2003.

[60] T Jarusuwannapoom, W Hongrojjanawiwat, S Jitjaicham, L Wannaton,
M Nithitanakul, C Pattamaprom, P Koombhongse, R Ranghupan, and
P Supaphol. Effect of solvents on electro-spinability of polystyrene solu-
tions and morphological appearance of resulting electrospun polystyrene
fibres. European polymer journal, 41:409–421, 2005.

[61] H Fong, I Chun, and DH Reneker. Beaded nanofibres formed during
electrospinning. Polymer, 40:4585–4592, 1999.

[62] Arkadii Arinstein and Eyal Zussman. Electrospun polymer nanofibers:
mechanical and thermodynamic perspectives. Journal of Polymer Sci-
ence Part B: Polymer Physics, 49(10):691–707, 2011.

[63] Jan Pelipenko, Julijana Kristl, Romana Rošic, Saša Baumgartner, and
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Technical Information - Polyhydroxybutyrate/Polyhydroxyvalerate 12% - Biopolymer

Polyhydroxybutyrate/Polyhydroxyvalerate 12% -
Biopolymer
PHB88/PHV12
Standard products are available in these forms

General Description: General Description : See also PHB. PHB/PHV copolymers are used in
preference to PHB homopolymer for general purposes (e.g. moulding containers)
in order to obtain a better balance of stiffness and toughness. PHV contents of 5 -
20% give a useful range of properties broadly similar to those of the polyolefins
(the polyethylenes and polypropylene). They melt at lower temperatures than the
homopolymer, giving a useful improvement in melt-processability. Their other
properties are similar to those of PHB.

They are being used for biodegradeable containers (of which shampoo bottles are
the most high-profile example) and other articles difficult to recycle e.g.
disposable razors or medically contaminated articles.

  

Chemical Resistance

Acids - dilute Fair
Alcohols Fair
Alkalis Poor
Greases and OilsGood

Electrical Properties

Dielectric constant @1MHz 3.0
Volume resistivity ( Ohmcm )1016

Mechanical Properties

Elongation at break ( % ) 35
Izod impact strength ( J m-1 )200
Tensile modulus ( GPa ) 0.5
Tensile strength ( MPa ) 23

Physical Properties

Density ( g cm-3 ) 1.25
Resistance to Ultra-violetFair

Thermal Properties
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Specific heat ( J K-1 kg-1 ) 1400
Thermal conductivity @23C ( W m-1 K-1 )0.15
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Technical Information - Poly L lactic acid - Biopolymer

Poly L lactic acid - Biopolymer
PLLA
Standard products are available in these forms

General Description: General Description : PLLA is a melt-processable semi-crystalline thermoplastic
made by biological fermentation from renewable carbohydrate feedstocks. PLLA
is quite stable under everyday conditions, although it does degrade slowly in
humid environments at temperatures above its glass transition temperature 55°C.
Therefore, composting is usually carried out in professional facilities over a
number of week, rather than in garden compost.

Its chemical resistance is somewhat limited although it is said to have good
resistance to solvents in general. PLLA is a stiff polymer of high crystallinity
(60-70%), whose mechanical properties are similar to those of polystyrene. It can
be processed as a classic thermoplastic material and has similar processing
characteristics to liquid crystal polymers LCPs.

Applications for PLLA is mostly used in food packaging, envelope windows,
floral wrap. It is also being considered for a range of medical applications, such as
bioresorbable stitches and anchors, although at the time of writing these
applications are very much in the research phase.

  

Mechanical Properties

Elongation at break ( % )2.4
Tensile modulus ( GPa ) 3.6
Tensile strength ( MPa ) 70

Physical Properties

Density ( g cm-3 ) 1.25
Resistance to Ultra-violet Good
Water absorption ( % ) 0.3
Water absorption - equilibrium ( % )0.3

Thermal Properties

Lower working temperature ( C )-10
Upper working temperature ( C ) 50
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SIGMA-ALDRICH sigma-aldrich.com 
SAFETY DATA SHEET 

according to Regulation (EC) No. 1907/2006 
Version 5.0 Revision Date 05.01.2013 

Print Date 10.01.2014 

 

1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 

1.1 Product identifiers 
Product name : Poly(L-lactide) 

 
Product Number : 93578 
Brand : Aldrich 
CAS-No. : 26161-42-2 

1.2 Relevant identified uses of the substance or mixture and uses advised against 

Identified uses : Laboratory chemicals, Manufacture of substances 

1.3 Details of the supplier of the safety data sheet 

Company : Sigma-Aldrich Company Ltd. 
The Old Brickyard 
NEW ROAD, GILLINGHAM 
Dorset 
SP8 4XT 
UNITED KINGDOM 

 
Telephone : +44 (0)1747 833000 
Fax : +44 (0)1747 833313 
E-mail address : eurtechserv@sial.com 

1.4 Emergency telephone number 

Emergency Phone # : +44 (0)1747 833100 
 

2. HAZARDS IDENTIFICATION 

2.1 Classification of the substance or mixture 
 
Not a hazardous substance or mixture according to Regulation (EC) No 1272/2008 
This substance is not classified as dangerous according to Directive 67/548/EEC.  

2.2 Label elements 

Caution - substance not yet tested completely. 

2.3 Other hazards - none 
 

3. COMPOSITION/INFORMATION ON INGREDIENTS 

3.1 Substances 
Synonyms : L-Lactide polymer 

 
Molecular Weight : 10,100 g/mol 
 

 

4. FIRST AID MEASURES 

4.1 Description of first aid measures 

If inhaled 
If breathed in, move person into fresh air. If not breathing, give artificial respiration. 

In case of skin contact 
Wash off with soap and plenty of water. 
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In case of eye contact 
Flush eyes with water as a precaution. 

If swallowed 
Never give anything by mouth to an unconscious person. Rinse mouth with water. 

4.2 Most important symptoms and effects, both acute and delayed 
To the best of our knowledge, the chemical, physical, and toxicological properties have not been 
thoroughly investigated. 

4.3 Indication of any immediate medical attention and special treatment needed 
no data available 

 

5. FIREFIGHTING MEASURES 

5.1 Extinguishing media 

Suitable extinguishing media 
Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide. 

5.2 Special hazards arising from the substance or mixture 
Carbon oxides 

5.3 Advice for firefighters 
Wear self contained breathing apparatus for fire fighting if necessary. 

5.4 Further information 
no data available 

 

6. ACCIDENTAL RELEASE MEASURES 

6.1 Personal precautions, protective equipment and emergency procedures 
Avoid dust formation. Avoid breathing vapors, mist or gas. 

6.2 Environmental precautions 
Do not let product enter drains. 

6.3 Methods and materials for containment and cleaning up 
Sweep up and shovel. Keep in suitable, closed containers for disposal. 

6.4 Reference to other sections 
For disposal see section 13. 

 

7. HANDLING AND STORAGE 

7.1 Precautions for safe handling 
Provide appropriate exhaust ventilation at places where dust is formed.Normal measures for preventive fire 
protection. 

7.2 Conditions for safe storage, including any incompatibilities 
Store in cool place. Keep container tightly closed in a dry and well-ventilated place.  

Handle and store under inert gas. Moisture sensitive.  

7.3 Specific end use(s) 
no data available 

 

8. EXPOSURE CONTROLS/PERSONAL PROTECTION 

8.1 Control parameters 

Components with workplace control parameters 
Contains no substances with occupational exposure limit values. 

8.2 Exposure controls 

Appropriate engineering controls 
General industrial hygiene practice. 
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Personal protective equipment 

Eye/face protection 
Use equipment for eye protection tested and approved under appropriate government standards 
such as NIOSH (US) or EN 166(EU). 

Skin protection 
Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique 
(without touching glove's outer surface) to avoid skin contact with this product. Dispose of 
contaminated gloves after use in accordance with applicable laws and good laboratory practices. 
Wash and dry hands. 
 
The selected protective gloves have to satisfy the specifications of EU Directive 89/686/EEC and 
the standard EN 374 derived from it. 
 
Body Protection 
Choose body protection in relation to its type, to the concentration and amount of dangerous 
substances, and to the specific work-place., The type of protective equipment must be selected 
according to the concentration and amount of the dangerous substance at the specific workplace. 

Respiratory protection 
Respiratory protection is not required. Where protection from nuisance  levels of dusts are desired, 
use type N95 (US) or type P1 (EN 143) dust masks. Use respirators and components tested and 
approved under appropriate government standards such as NIOSH (US) or CEN (EU). 

 

9. PHYSICAL AND CHEMICAL PROPERTIES 

9.1 Information on basic physical and chemical properties 

a) Appearance Form: solid 

b) Odour no data available 

c) Odour Threshold no data available 

d) pH no data available 

e) Melting point/freezing 
point 

no data available 

f) Initial boiling point and 
boiling range 

no data available 

g) Flash point no data available  

h) Evaporation rate no data available 

i) Flammability (solid, gas) no data available 

j) Upper/lower 
flammability or 
explosive limits 

no data available 

k) Vapour pressure no data available 

l) Vapour density no data available 

m) Relative density no data available 

n) Water solubility no data available 

o) Partition coefficient: n-
octanol/water 

no data available 

p) Auto-ignition 
temperature 

no data available 

q) Decomposition 
temperature 

no data available 

r) Viscosity no data available 

s) Explosive properties no data available 
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t) Oxidizing properties no data available 

9.2 Other safety information 
no data available 

 

10. STABILITY AND REACTIVITY 

10.1 Reactivity 
no data available 

10.2 Chemical stability 
no data available 

10.3 Possibility of hazardous reactions 
no data available 

10.4 Conditions to avoid 
no data available 

10.5 Incompatible materials 
acids, Bases 

10.6 Hazardous decomposition products 
Other decomposition products - no data available 

 

11. TOXICOLOGICAL INFORMATION 

11.1 Information on toxicological effects 

Acute toxicity 
no data available 

Skin corrosion/irritation 
no data available 

Serious eye damage/eye irritation 
no data available 

Respiratory or skin sensitization 
no data available 

Germ cell mutagenicity 
no data available 

Carcinogenicity 

IARC: No component of this product present at levels greater than or equal to 0.1% is identified as 
probable, possible or confirmed human carcinogen by IARC. 

Reproductive toxicity 
no data available 

Specific target organ toxicity - single exposure 
no data available 

Specific target organ toxicity - repeated exposure 
no data available 

Aspiration hazard 
no data available 

Potential health effects 

Inhalation May be harmful if inhaled. May cause respiratory tract irritation.  
Ingestion May be harmful if swallowed.  
Skin May be harmful if absorbed through skin. May cause skin irritation.  
Eyes May cause eye irritation.  

Signs and Symptoms of Exposure 
To the best of our knowledge, the chemical, physical, and toxicological properties have not been 
thoroughly investigated. 
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Additional Information 
RTECS: Not available 

 

12. ECOLOGICAL INFORMATION 

12.1 Toxicity 
no data available 

12.2 Persistence and degradability 
no data available 

12.3 Bioaccumulative potential 
no data available 

12.4 Mobility in soil 
no data available 

12.5 Results of PBT and vPvB assessment 
no data available 

12.6 Other adverse effects 
no data available 

 

13. DISPOSAL CONSIDERATIONS 

13.1 Waste treatment methods 

Product 
Offer surplus and non-recyclable solutions to a licensed disposal company.  

Contaminated packaging 
Dispose of as unused product.  

 

14. TRANSPORT INFORMATION 

14.1 UN number 
ADR/RID:  -  IMDG:  -  IATA:  -  

14.2 UN proper shipping name 
ADR/RID:  Not dangerous goods 
IMDG:  Not dangerous goods 
IATA:  Not dangerous goods 

14.3 Transport hazard class(es) 
ADR/RID:  -  IMDG:  -  IATA:  -  

14.4 Packaging group 
ADR/RID:  -  IMDG:  -  IATA:  -  

14.5 Environmental hazards 
ADR/RID: no IMDG Marine Pollutant: no IATA: no 

14.6 Special precautions for user 
no data available 

 

15. REGULATORY INFORMATION 

This safety datasheet complies with the requirements of Regulation (EC) No. 1907/2006. 

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture 
no data available 

15.2 Chemical Safety Assessment 
no data available 

 

16. OTHER INFORMATION 

Further information 
Copyright 2013 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use 
only. 
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The above information is believed to be correct but does not purport to be all inclusive and shall be 
used only as a guide. The information in this document is based on the present state of our knowledge 
and is applicable to the product with regard to appropriate safety precautions. It does not represent any 
guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held 
liable for any damage resulting from handling or from contact with the above product. See www.sigma-
aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale. 
 

 

 



A.2 Estimating the change in surface area of

a growing cleft defect

Approximating the defect to be a cylindrical hole of radius r, it has a surface
area (S.A.) and volume (V ) of

S.A. = 2πr2 + 2πrl (A.1)

V = πr2l (A.2)

As a worst case scenario, we can assume that if all the expansion is taken
up by the two circles top and bottom of the cylinder, then l is constant. In
other words, this assumes there is no thickening of the maxilla, it just expands
outwards, so all the expansion would need to be accommodated by the tissue
engineered solution. We know that by the time the child reaches 3 years the
volume of the defect will have doubled (Figure A.1):169,170

Vfinal = 2Vinitial (A.3)

Both volumes can be defined in terms of π, where r and x are the initial and
final radii as the defect expands:

Vinitial = πr2l (A.4)

Vfinal = πx2l (A.5)

Substituting in these in gives:

Vfinal = 2Vinitial (A.6)

πx2l = 2πr2l (A.7)

We can now solve for x and determine the change in radius:

x2 = 2r2 (A.8)

x =
√
2r (A.9)

Therefore, if the volume doubles, and all of this is expansion solely occurs as
a surface area change in the top and bottom of a cylindrical defect, then the
radius will change by a factor of

√
2. We can now work out the proportional

change in surface area. The initial surface area of the defect (S.A.initial) is
equal to:

S.A.initial = 2πrl + 2πr2 (A.10)
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As the radius increased by a factor of
√
2 then the final surface area of the

defect (S.A.final) is equal to:

S.A.final = 2π
√
2rl + 2π(

√
2r)2 (A.11)

This can be expressed as a factorial change between S.A.initial and S.A.final:

S.A.final = x(S.A.initial) (A.12)

The change in surface area is not equal across the whole cylinder. There are
two components, the change in top and bottom, and then the change in the
cylinder wall. So this equation should be expressed as:

2π
√
2rl + 2π(

√
2r)2 = a(2πrl) + b(2πr2) (A.13)

We are not too interested in the change in height of the defect (a), as this would
occur inside the body, away from the implant interface but for completeness
the height of the defect would change by a factor of:

a =
√
2 (A.14)

The change in the surface area of the top and bottom of the defect would be:

2π(
√
2r)2 = b(2πr2) (A.15)

2π2(r2) = b(2πr2) (A.16)

Hence:
b = 2 (A.17)

From this it can be seen that there is a 2 fold change in surface area in the top
and bottom of the defect, given the assumptions stated above. So the model
will need to be able to produce a doubling in surface area to account for a
worst case scenario. This scenario is that as the child grows, the volume of the
defect doubles, and all this expansion is exhibited with the maximum surface
area change possible.

Figure A.1: What is the relationship between surface area and volume change
as cleft palate defect grows?
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A.3 Required change in balloon volume to give

the same expansion as seen in cleft palate

defects

If, as shown above, the worst case scenario we can expect is a doubling in
surface area, then it is essential to ensure the model distends to the same
degree. This leads to the question “What is the change in volume required to
produce a doubling in surface area of a balloon?”.

Figure A.2: What is the change in volume of a sphere required to give the
same maximum change in surface area as seen in cleft palate cases?

If the surface area increases by a factor of ×2 what change in volume is required
to increase the surface area of a balloon by the same amount (Figure A.2)?

The surface area (S.A.) of a sphere is;

S.A.sphere = 4πr2 (A.18)

If the surface area of a sphere doubles, how does the radius change? Initial
radius (r) and final radius (x)

S.A.1 = 4πr2 (A.19)

S.A.2 = 4πx2 (A.20)
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If the surface area doubles then;

S.A.2 = 2S.A.1 (A.21)

4πx2 = 2(4πr2) (A.22)

x2 =
8πr2

4π
(A.23)

x2 = 2r2 (A.24)

Hence, the radius change required to achieve a doubling in surface area of a
sphere is;

x =
√
2r (A.25)

The volume (V ) of a sphere is calculated as follows;

V =
4

3
πr3 (A.26)

If the radius increases by
√
2 then the volume changes as;

Vinitial =
4

3
πr3 (A.27)

Vfinal =
4

3
π
√
2r3 (A.28)

Vfinal = xVinitial (A.29)

4

3
π(
√
2r)3 = x(

4

3
πr3) (A.30)

Vfinal = 2
√
2Vinitial (A.31)

So, in order to achieve a doubling in surface area, the volume of a sphere needs
to be increased by a factor of 2

√
2.

The approximations used in this calculation are rather extensive, they assume
that the defect is a perfect cylinder, and that it only expands at its ends,
and not at the side. This is an area where clear modelling is required to
establish exactly what the worst case scenario is. However, there is limited
data on what happens as a child grows, and more-so, how this changes given
the current treatment regime. Much of this data is not available as most cleft
cases are either treated early, (the defect is filled with soft tissues only) or
observed at maturation (only in parts of the world with poor availability of
health care). The best data at the present time states that a hard palate
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defect doubles in volume as the child ages. This is the value underpinning
the estimation used here, and is based upon reasonable evidence. The other
assumptions made in the estimate are to ensure this volume change occurs in
the most detrimental manner, with maximum impact on the proposed implant.
This would be observed as a surface area change only, and that an implant
would directly have to cope with that change, i.e. the implant would have to
expand to cope with that change.
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A.4 Published outputs
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Abstract

Electrospinning is a commonly used and versatile method to produce scaffolds (often biodegradable) for 3D tissue engineering.1, 2, 3 Many
tissues in vivo undergo biaxial distension to varying extents such as skin, bladder, pelvic floor and even the hard palate as children grow. In
producing scaffolds for these purposes there is a need to develop scaffolds of appropriate biomechanical properties (whether achieved without
or with cells) and which are sterile for clinical use. The focus of this paper is not how to establish basic electrospinning parameters (as there is
extensive literature on electrospinning) but on how to modify spun scaffolds post production to make them fit for tissue engineering purposes -
here thickness, mechanical properties and sterilisation (required for clinical use) are considered and we also describe how cells can be cultured
on scaffolds and subjected to biaxial strain to condition them for specific applications.

Electrospinning tends to produce thin sheets; as the electrospinning collector becomes coated with insulating fibres it becomes a poor conductor
such that fibres no longer deposit on it. Hence we describe approaches to produce thicker structures by heat or vapour annealing increasing the
strength of scaffolds but not necessarily the elasticity. Sequential spinning of scaffolds of different polymers to achieve complex scaffolds is also
described. Sterilisation methodologies can adversely affect strength and elasticity of scaffolds. We compare three methods for their effects on the
biomechanical properties on electrospun scaffolds of poly lactic-co-glycolic acid (PLGA).

Imaging of cells on scaffolds and assessment of production of extracellular matrix (ECM) proteins by cells on scaffolds is described. Culturing
cells on scaffolds in vitro can improve scaffold strength and elasticity but the tissue engineering literature shows that cells often fail to produce
appropriate ECM when cultured under static conditions. There are few commercial systems available that allow one to culture cells on scaffolds
under dynamic conditioning regimes - one example is the Bose Electroforce 3100 which can be used to exert a conditioning programme on
cells in scaffolds held using mechanical grips within a media filled chamber.4 An approach to a budget cell culture bioreactor for controlled
distortion in 2 dimensions is described. We show that cells can be induced to produce elastin under these conditions. Finally assessment of the
biomechanical properties of processed scaffolds cultured with or without cells is described.

Video Link

The video component of this article can be found at http://www.jove.com/video/4172/

Protocol

1. Electrospinning of Random and Aligned Fibres

Electrospinning creates fine fibrous networks by using electric potential to draw a polymer solution towards an earthed collector. Collectors can
be in very many shapes and can be static or, more commonly, rotating. The solvent evaporates before the solution arrives at the collector and the
jet solidifies into a fibre.

Each polymer requires its own set of conditions to produce a given type of fibre. The concentration of the polymer, the solvent, the distance
between the pumped solution and the earthed collector, the potential difference between the two, the velocity of the rotating collector, the flow
rate, temperature and humidity will all affect electrospinning. There are many studies describing the selection of electrospinning parameters and
how these impact on the scaffolds produced (e.g. fibre diameter, morphology, and orientation).5, 6, 7, 8 In these experiments scaffolds were spun
based on conditions selected in our previous studies.2, 9

The following methods are suitable for the production of electrospun scaffolds from PLGA, poly lactic acid (PLA), poly ε-caprolactone (PCL)
and poly hydroxybutyrate-co-hydroxyvalerate (PHBV) using a rotating collector as shown in Figure 1. Throughout the solvent dichloromethane
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(DCM) is used. The method here produces microfibrous PLGA, PLA and PCL and nanofibrous PHBV scaffold with micro-sized beads ('pearl
necklace' morphology).

1. Coat the rotating mandrel collector with aluminium foil, with the polished/shiny side facing outwards. Our mandrel was 20 cm wide, and 10 cm
in diameter.

2. Prepare polymer solutions; PLA, PCL and PHBV are made up as a 10 wt% solution in DCM. PLGA is made up as a 20 wt% solution in DCM.
3. Place 4 syringes of 5 ml volume on a syringe pump. Syringes are loaded to contain 5 ml of the polymer each, giving 20 ml in total.
4. For PLA, PCL and PHBV use a flow rate of 40 μLmin-1 per syringe.
5. For PLGA use a flow rate of 30 μLmin-1 per syringe.
6. For PLA, PCL and PLGA use a working distance of 17 cm from needle tip to mandrel.
7. For PHBV use a working distance of 10 cm from needle tip to mandrel.
8. Charge the syringe needles to +17000 V (73030 P, Genvolt, Shropshire, UK) and electrospin from the appropriate distance onto the

aluminium foil coated mandrel.
9. For random fibres rotate the mandrel at 200 rpm.
10. For aligned fibres rotate the mandrel at 1000 rpm.
11. Scaffolds can be stored on the aluminium foil under dry conditions. Recommended storage is in a sealed container at 4 °C in the presence of

desiccant. In our experience scaffolds remain stable for at least 4 months (possibly much longer) under these conditions (we are not aware of
any published studies on long term storage conditions for scaffolds).

2. Production of Complex Scaffolds by Sequential Spinning

Sequential spinning provides a method of combining the properties of different materials to create a material that has the best of both properties.
PHBV produces a flat, dense, brittle sheet whereas PLA or PCL spinning produces low density elastic sheets. Both materials support cell
attachment. Consecutively spinning these materials results in a dense cell-impermeable membrane that is elastic.

1. Set up the electrospinning rig as per Section 1, with PHBV spinning conditions.
2. Electrospin PHBV as above.
3. Without changing the aluminium foil, electrospin a second polymer on-top using the parameters and normal conditions for that polymer (e.g.

17 cm drum to needle, 17000 V, 200 rpm for PLA). This additive process builds up a double layer of scaffold producing a bilayer.

3. Production of Multilayered Scaffolds by Annealing Several Layers Together

1. Scaffolds can be multilayered through the use of heat annealing. To do this 4 sheets of PLGA are placed on top of each other and then heat
annealed at 60 °C for 3 hours.

2. Scaffolds can also be annealed by vapour annealing. Here 4 sheets of PLGA are placed on top of each other and suspended 2 cm above a
pool of DCM (10 ml) for 1 hour. This is performed in a sealed container at room temperature.

4. Aseptic Production and Postproduction Sterilisation of Electrospun Scaffolds

1. Aseptic scaffold production can be achieved by electrospinning in an aseptic environment of a laminar flow hood inside a clean room
environment. To do this either sterile polymers of medical grade or polymers sterilised by incubation in DCM can be used. Once dissolved,
polymers are electrospun onto sterile foil wrapped around a sterilised mandrel. Scaffolds are then handled aseptically. Sterility is verified by
incubating samples of the scaffold in antibiotic-free growth media for the appropriate period.

2. For ethanol disinfection (this is of use experimentally but is not a recognised methodology of sterilisation which could be taken to the clinic)
scaffolds are placed briefly (15 min) in a 70% v/v solution of ethanol in distilled water. For practical experimental purposes this is usually
sufficient to disinfect scaffolds so that they can then be combined successfully with cultured cells.

3. For peracetic acid sterilisation scaffolds are immersed in peracetic acid (0.1% v/v in phosphate buffered saline (PBS)) and incubated for 3
hours at room temperature as described in Selim et al.9

4. For gamma sterilisation scaffolds are irradiated with a dose of 3 kGy using a caesium source as described in Selim et al.9

5. Biomechanical Testing of Scaffolds

1. Scaffolds are cut into rectangles 5 mm x 20 mm, measured for thickness using a micrometer, and placed into a Bose Electroforce 3100
instrument. This machine applies a force of 0-22 N up to a displacement of 6mm and plots the load vs. displacement as a stress/strain curve.
This allows the Young's modulus and elasticity to be calculated.

6. Visualising Cells on Scaffolds and Assessing ECM Production

Cells can be stained with vital fluorescent dyes which allow one to see cells on the scaffolds as they attach, migrate and proliferate. Post culture
the presence of cells on scaffolds can be determined by staining for cell nuclei with 4',6-diamidino-2-phenylindole dihydrochloride (DAPI). The
production of ECM by cells on the scaffold can be assessed by staining cells for a range of ECM proteins including elastin as shown in this
example. All scaffolds used were measured to have a thickness of at least 0.2 mm and cut into squares 1.5 cm x 1.5 cm prior to seeding.

In these studies human dermal fibroblasts are used throughout because of the role they play in soft tissue reconstruction which is our
laboratory's primary research interest.
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Cells are obtained from skin samples from patients undergoing elective surgery for breast reduction or abdominoplasty (consent was given
for their tissue to be used for research purposes). Tissues are collected and used anonymously under Research Tissue Bank Licence 12179.
Tissues are washed with PBS containing streptomycin (0.1 mg/ml) and penicillin (100 IU/ml) and amphotericin B (0.5 μg/ml). Tissue samples are
incubated in 0.1% w/v trypsin and 0.1% glucose in PBS (12-18 hours, 4 °C). The dermis is peeled off, minced finely and incubated with 10 ml of
collagenase (0.5% w/v in DMEM and 10% FCS, 37 °C for 18 hours). Centrifugation of the resulting cell suspension (400 g for 10 mins), produces
a pellet of cells that can be cultured and subcultured in DMEM supplemented with fetal calf serum (FCS, 10% v/v), streptomycin (0.1 mg/ml),
penicillin (100 IU/ml) and amphotericin B (0.5 μg/ml). Only fibroblasts of passage 4-9 are used in experiments.

1. Human dermal fibroblasts, once confluent in a T75 (EasyFlask, Nunc, New York, US) are seeded by adding trypsin/EDTA (5 ml, 5 mg/ml
trypsin, 2 mg/ml EDTA in saline), incubating for 5 minutes at 37 °C. The suspension is centrifuged for 10 minutes (150 g). The cells are
resuspended in 5 ml of DMEM (supplemented with FCS (10% v/v), streptomycin (0.1 mg/ml), penicillin (100 IU/ml) and amphotericin B (0.5
μg/ml)) and counted using a haemocytometer, and the concentration is adjusted for seeding. Cells are normally seeded at 50,000 cells per
well.

2. If required, prior to seeding cells on the scaffold, cells can be pre-labelled using CellTracker red or green. The cells are washed with 3 x
5 ml PBS. A solution of 10 mM CellTracker in serum free, cell-appropriate, medium (10 ml) is added and the cells are incubated for 45
minutes at 37 °C. After incubation, the cells are washed in 3 x 5 ml PBS following which they are seeded onto scaffolds. Following this the
surface of the scaffolds can be imaged in an Axon ImageExpress microscope (Molecular Devices, Sunnyvale, US) at 570 nm λex - 620 nm
λem (CellTracker red) and 480 nm λex - 533 nm λem (CellTracker green). To investigate the penetration of cells deeper into scaffolds a
multiphoton confocal microscope can be used. This can achieve around 200 micron penetration into most scaffolds with or without cells.

3. Post culture samples are fixed in 1 ml 3.7% formaldehyde in PBS at 37 °C for 20 minutes and then washed with 3 x 1 ml PBS.
4. 200 μL of elastin primary antibodies are added to each sample (5% v/v in PBS, rabbit anti-human alpha elastin, AbDserotec, Kidlington, UK)

and incubated at 37 °C for 30 minutes.
5. Samples are washed with 3 x 1 ml PBS and then incubated in a solution of secondary antibody (0.5% v/v goat anti-rabbit IgG (FC):FITC) in

PBS containing DAPI (1 μg/ml) for 30 minutes.
6. Following this the samples are washed with 3 x 1 ml PBS.
7. DAPI and secondary antibody stained samples are then imaged on an Axon ImageExpress fluorescent microscope, 365 nm λex - 460 nm

λem for DAPI and 480 nm λex - 533 nm λem for the secondary antibody. DAPI stains the nuclei and allows one to see the distribution of cells
within the fibres very readily.

7. Subjecting Cells on Scaffolds to Biaxial Dynamic Conditioning

To examine the effect of dynamic conditioning on fibroblast ECM production we developed a simple proof-of-concept bioreactor to explore this.

1. Assemble balloon and flow regulation apparatus and prepare system so it can be readily placed into a sterile vessel suitable for cell culture
once it is coated.

2. Autoclave the apparatus including the balloon (122 °C, 220 mBar for 1 hour). We can confirm that balloons survive autoclaving without
adversely affecting their function by inflating and deflating them repeatedly.

3. In a clean room, unpack the apparatus in a laminar flow hood in position to be electrospun onto.
4. Inflate the balloon to the required surface area (remember the balloon still needs to fit into the culture vessel) with phosphate buffered saline

and connect the PBS to an electrical earth at a point in the apparatus that does not need to be sterile (branch pipe on 3-way tap).
5. Electrospin the required polymer onto the balloon using the normal spinning conditions, using a working distance of 10 cm. Allow the scaffold

to dry for 1 hour. The 'wet' fibres are 'sticky' enough to adhere to the surface of the balloon without subsequently detaching.
6. Place the balloon into a sterile vessel and transport it to a laminar flow hood suitable for cell culture.
7. Remove the balloon from the vessel and place onto a sterile surface (Petri dish) and repeatedly (every 20 seconds) pipette a cell suspension

(1 x 106 cells in 5 ml of DMEM) onto the coated balloon for 20 minutes to attempt to distribute cells evenly over the surface.
8. Place balloon into the culture vessel, and add pre-warmed media appropriate to the cell type.
9. Connect the inflation apparatus to a syringe pump (Kent Scientific, Genie Plus, Connecticut, US) and inflate/deflate the balloon as required to

give biaxial distension. A computer controlled syringe pump can be used to achieve a more complex distension regime.

8. Representative Results

The following figures are representative results that can be expected if the above methods are followed.

Electrospinning can be utilised to create scaffolds with random and ordered architectures (Figure 1), this is repeatable and the fibres are
uniform. Many types of polymers can be electrospun with characteristics which can vary considerably as shown in Figure 2 for PHBV, PLA or
PCL. Electrospinning can produce light fluffy scaffolds or dense cell impenetrable membranes (see Figure 3). All scaffolds shown here facilitated
cell attachment and proliferation. Previous work has shown that cells can migrate through these scaffolds up to a depth of at least 500-600 μm.9

For PLA the average fibre diameter is 3 μm; for PHBV it is 0.3μm with pearls ranging from 5-20 μm; for PCL it is 3 μm; and for PLGA it is 11 μm.
Other studies using other solvent systems report that PHBV can be electrospun as fibres without beads or polymer pearls.10,11

If thicker scaffolds are required vapour and heat annealing can be employed to anneal layers of scaffolds together (see Figure 4). These scaffold
layers do not delaminate and it can be very difficult to find the junction between layers.

We show that bilayer membranes can be made where cells A and B can each be cultured on a separate membrane without intermingling as
shown in Figure 5. Here we demonstrate this by using human dermal fibroblasts coloured with two different fluorescent cell tracker dyes. Such
a bilayer membrane would be useful when culturing cells to form a hard tissue such as bone or cartilage on one side separated from cells
designed to form a soft (and usually faster growing) tissue on the other side such as cleft palate repair or reconstructive periodontal surgery.12, 13
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With respect to the impact of sterilisation on electrospun scaffolds we have previously reported that the method of sterilisation impacts on the
scaffold and subsequent cell culture.9 This is illustrated in Figure 6 which shows the effects of peracetic acid, gamma irradiation and ethanol on
the fibre diameter and ultimate tensile strength and Young's modulus of a PLGA scaffold.

Gamma irradiation has no significant effect on fibre diameter whereas peracetic acid and ethanol reduce fibre diameter by approximately 50%.
With respect to ultimate tensile strength each of the methods of sterilisation changed the ultimate tensile strength and the elasticity of the
scaffolds. Culture of cells on these scaffolds further reduced the ultimate tensile stress, but increased the elasticity.

Finally, a method of testing the effect of dynamic biaxial distension on cells cultured on electrospun scaffolds is presented. This proof-of-concept
approach shows that cells remain viable during dynamic distension but also produce increased amounts of elastin under these conditions. This
contrasts markedly to the lack of elastin when the same cells on the same scaffold are maintained under static conditions (see Figure 7).

 
Figure 1.  Shows a cartoon of an electrospinning rig and of the spinning of random and parallel fibres and then layers of fibres placed over
each other. Perpendicular fibres can be created by electrospinning a set of aligned fibres onto aluminium foil, rotating the foil by 90° and then
immediately electrospinning a second set of aligned fibres on top of these.
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Figure 2.  Shows the morphology of random electrospun mats of (A) PLA (scale bar is 100 μm), (B) PHBV (scale bar is 100 μm), (C) PCL (scale
bar is 100 μm) and (D) PLGA (scale bar is 200 μm). Note that PLA, PCL and PLGA are all microfibrous uniform scaffolds. PHBV is spun as a
'pearl necklace' with nanofibres connecting 5-20 μm sized beads.  Click here to view larger figure.

 
Figure 3.  Production of a multilayered scaffold. Here the scaffolds are initially spun using PHBV and then syringes filled with PLA or PCL are
used. These are spun on top of the PHBV scaffold. The figure shows the appearance of these multilayered scaffolds, (A) A single PHBV layer,
(B) A cross section of a PHBV-PLA bilayer, showing the dense nanofibrous, 'pearl necklace' PHBV layer (left) and more open microfibrous PLA
layer (right) and (C) A single PLA layer.  Click here to view larger figure.
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Figure 4.  Thicker scaffolds can be produced by heat annealing and vapour annealing. (A) and (B) show a section through a vapour annealed
PLA scaffold where initial fibrous scaffolds of approximately 150 μm are been placed together and dichloromethane vapour is used to make
much thicker scaffolds of up to 500 μm. In (C) and (D) one can see that the scaffold consists of layers of much thicker fibres interspersed with
layers of thinner fibres created by heat annealing layers of thin and thick fibres together. This approach can be used to produce scaffolds of
complex mechanical properties.  Click here to view larger figure.

 
Figure 5.  Appearance of cells on a bilayer scaffold. In all cases the cells present are human dermal fibroblasts. (A) Fibroblasts on electrospun
PLA where the cells are fixed and stained with DAPI. (B) DAPI stained cells on PHBV. In (C) the fibroblasts are pre-stained with a vital dye,
CellTracker green, and you can see the appearance of them on the PLA side of the bilayer. (D) A section through the bilayer with red stained
fibroblasts on the lower PHBV surface and green stained fibroblasts on the upper PLA surface. (E) Fibroblasts pre-stained with CellTracker red
grown on the PHBV surface. The use of vital fluorescent dyes provides a convenient methodology for looking at the distribution of cells on the
scaffold while the cells are still growing. One can routinely use these dyes for at least 7 days. However the concentration of dye becomes diluted
as the cells divide. Scale bars are equal to 0.1 mm.
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Figure 6.  Biomechanical properties of electrospun scaffold are obtained using a Bose Electroforce tensiometer device (A). (B) Stress/strain
curves of PLGA scaffolds sterilised by gamma irradiation, alcohol, peracetic acid, or aseptically produced. Three measurements can be obtained
from such a graph: the ultimate tensile stress (UTS) to which the fibre can be subjected before it breaks, the ultimate tensile strain and the
Young's modulus. The latter gives an indication of the elasticity of the scaffold. (C) The effect of each sterilisation method on PLGA fibre diameter
in μm. Each sterilisation methodology decreased UTS. Both peracetic acid and gamma irradiation decrease the Young's modulus giving a more
elastic scaffold, alcohol makes the scaffold particularly brittle.  Click here to view larger figure.

 
Figure 7.  This figure shows the use of a simple balloon to provide a biaxial bioreactor on which scaffolds (and cells growing within the scaffolds)
can be subjected to biaxial distension for periods of time. (A) A deflated balloon onto which electrospun fibres, PHBV, have been deposited. At
this stage the balloon is partially covered with fibres. (B) A balloon fully coated with PHBV and PLA fibres. (C) A cell suspension is repeatedly
pipetted onto the balloon. (D) A balloon placed within a bottle of sterile media where the balloon is connected to a syringe pump and PBS (used
as a conducting electrolyte) is used to gently inflate and allow deflation of the balloon against a programmed schedule. (E) Cells on scaffolds
being removed from the balloon at the end of the experiment and analysis undertaken for cell viability shown in (F) where viable cells develop a
dark blue colour using the metabolic indicator 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. (G) Shows that cells (blue) cultured



Journal of Visualized Experiments www.jove.com

Copyright © 2012  Journal of Visualized Experiments August 2012 |  66  | e4172 | Page 8 of 9

on this balloon and subject to biaxial distension develop elastin fibres (green, stained using elastin specific antibodies), whereas the same cells
on an identical scaffold (H) cultured under static conditions have negligible elastin production. Scale bars are equal to 0.025 mm.

Discussion

Electrospinning is a very popular technique for producing scaffolds for tissue engineering.14, 15, 16 While it is relatively simple to produce basic
electrospun scaffolds for experimental use the technique is also complex and multifaceted with many variables.6 There are many studies
describing how the electrospinning parameters determine the scaffold produced. In this study the focus is on the considerable challenges post
production to make scaffolds of appropriate architectures and mechanical properties and to encourage cells within them to make extracellular
proteins to achieve tissue fit for implantation in man.

Our aim in this article is to describe methods to equip readers to design and characterise scaffolds for a wide range of purposes. In this article
we describe methodologies to make complex and thicker scaffolds and to sterilise scaffolds for experimental and clinical use. We also describe
imaging cells on the scaffolds and the induction of elastin fibre production by subjecting cells to biaxial distension.

Many of the desired features of scaffolds can be achieved post production (such as annealing several layers) and sterilisation. However these
in turn will affect the mechanical properties of scaffolds. We report that sterilisation methodologies all tend to change ultimate tensile strength
and Young's modulus to varying extents. A recent study from our group compared gamma irradiation, peracetic acid and ethanol for their effects
as potential sterilising regimes for PLGA scaffolds.9 The adverse effects of sterilisation techniques can be avoided by producing scaffolds under
aseptic conditions - the latter requires the use of a cleanroom. Different users may select different methodologies but all should be aware that
current sterilisation methodologies will impact negatively on the properties of the scaffolds.

Culture of cells on scaffolds also affects the scaffolds' mechanical properties. Induction of ECM production by subjecting cells on scaffolds to
biaxial distension may be used to affect the mechanical properties.

The methodology of spinning one scaffold over another to make a bilayer membrane is easily understood and we describe bilayer scaffolds
capable of supporting two diverse populations of cells illustrated in this paper by pre-labelling cells with two vital cell tracker dyes. These were
used to illustrate that the bilayer membrane achieved its stated purpose.

Finally the budget biaxial distension rig described in this study can be used to deliver a range of regimes. Cyclic, linear, and random regimes can
be readily programmed and applied. This versatility will allow the system to be utilised for many of the problems faced in tissue engineering such
as, cleft palate, pelvic floor, bladder, and skin.

In the tissue engineering literature the use of uniaxial testing systems for culturing cells on scaffolds has been reported.4 However we were
unable to find any published literature dealing with how soft tissues respond to biaxial distension. This simple approach demonstrates that cells
respond to biaxial distension with the production of elastin - a key component of the extracellular matrix which gives soft tissues elastic recoil.
This gives a clear indication of how conditioning soft tissues as they grow in the laboratory offers a route to produce tissues appropriate for
implantation for areas of the body where the native tissues have intrinsic elasticity. This is an area where further development will clearly be
merited by the tissue engineering community and bioreactor manufacturers.
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Many biomaterial scaffolds have been developed for use in tissue engineering usually for populating

with a single cell-type. In this study we demonstrate the production of bilayer and trilayer nanofibrous/

microfibrous biodegradable scaffolds suitable for the support, proliferation and yet segregation of

different tissues – here used to separate soft tissue from bone forming tissue and keratinocytes from

fibroblasts. Essentially we describe a nanofibre barrier membrane which is permeable to nutrients

coupled with attached microfibers (either on one side or both sides) to support the proliferation of

different cell types either side but prevents migration of cells across the barrier. Such membranes would

be suitable for guided tissue regeneration in areas where one wishes to support both soft and hard

tissues but keep them separated. We describe a sterile bilayer membrane electrospun from polyhydroxy-

butyrate-co-hydroxyvalerate (PHBV) (nanofibres) and polylactic acid (PLA) or poly ε-caprolactone (PCL)

(microfibres) and a trilayer membrane electrospun in layers of PLA, PHBV, then PLA. These membranes

are biocompatible, biodegradable and capable of supporting two different cell populations.

Introduction

Biomaterial scaffolds are extensively used as carriers for cells

and as 3D scaffolds for the regeneration of new tissue. They

are commonly tailored to specific tissue types. Thus they are

designed to have the necessary mechanical properties for the

tissue that they are seeking to repair or replace. All scaffolds

must be biocompatible to avoid provoking an adverse immune

response to be successful post-implantation. The majority of

scaffolds (but not all) are designed to be biodegradable with

the intention that cells introduced in the scaffolds will form a

new tissue and supporting tissue matrix, replacing the

implanted scaffold as it degrades, for a long term successful

repair. Biodegradable devices also negate the necessity for a

second surgical operation to remove the implant.1 There are

many polymers that can be used to create a biocompatible and

degradable implant.2,3

The ultimate goal of tissue engineering is to be able to

regenerate or replace diseased or damaged tissues.4,5 Tissue

engineering, based on autologous laboratory expanded cells

and scaffolds, is most commonly used but sometimes

scaffolds are designed to promote the in growth of the sur-

rounding tissue in vivo.6,7 Here the approach is essentially to

concentrate on using the patient’s own tissues in conjunction

with scaffolds to regenerate the areas in need of repair.8–12

Thus in tissue engineering very often the patient’s own

tissues are biopsied, cells expanded in the laboratory and com-

bined with scaffolds to regenerate tissues for repair of

damaged areas. However there are many conditions when one

needs to look at replacing both soft tissues and adjacent hard

tissues or to introduce a scaffold that could promote the

intrinsic repair of soft tissues and hard tissues.13,14

While it is entirely possible to culture skin cells or even

epithelia it has been difficult to make more complex tissues.

The last decade has seen a growing realisation that the 3D

environment of the extracellular matrix in which cells live is

far from passive. Not only are the cells receiving signals from

the extracellular matrix proteins but the composition of the

matrix and it’s stiffness give major signals which guide the

differentiation and performance of cells within this matrix.15

Thus bone was originally repaired using metal splints, provid-

ing the structural and mechanical support while allowing the

bone to heal.16 There are now ceramics and osteoinductive

materials which can be used to aid bone repair. Tissue
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guidance membranes have been developed, for example for

use in periodontal defects seeking to achieve guided tissue

regeneration.17–19 The problem of one tissue growing much

faster than another, invading and preventing the appropriate

expansion of the slower growing tissue needs to be considered.

One area where tissues require segregation is in the treat-

ment of cleft palate. This condition affects 1 in every 500–700

live births worldwide.20 The current standard treatment is pro-

tracted, involving many stages. While soft tissue defects can be

readily repaired within a few months, defects of the hard

tissue of the alveolar ridge (which bears teeth) and the hard

palate are much more challenging. After birth a cleft lip is

repaired at 3 months, and then the defect in the hard palate is

covered with soft tissue at around 1 year. This results in the

child having to use custom made acrylic moulded prosthesis

known as an obturator.

Bone grafts to fill the hard palate defect are currently not

used as an option as they have actually been found to lead to

distortion of the maxilla and the results can be worse than no

surgery.21,22 Bone grafts appear to be satisfactory, immediately

after implantation, but then the bone cells fuse and this tissue

does not grow at the rate of the child’s head causing major

facial disfigurement. The subsequent complications and dis-

tortions to the maxilla are unacceptable and explain why the

hard tissues of the palate are currently mostly left untreated

and an obturator used.

The problem of treating hard tissue defects in the cleft

palate is twofold. Firstly, hard tissues grow at a rate far slower

than soft tissue. An implant must account for this and prevent

the invasion of the much faster growing soft tissues into

regions where the hard tissues are desired. The implant must

also allow for the flow of nutrients in order to allow the sepa-

rated tissues to proliferate. Secondly, the implant must be

compatible with the growth of the patient. The area of a cleft

defect approximately doubles in volume from birth to the age

of 5 and this must be taken into consideration in developing

materials and procedures for treatment of hard palate

defects.23,24 The implant must also be biocompatible and bio-

degradable as it would be undesirable to remove an implant at

a later stage disturbing the new tissues and risking the for-

mation of disfiguring scar tissue.

An ideal solution would be an approach that could treat

both soft and hard palate defects early in the child’s life

requiring very minimal follow up. We emphasise that we are

not aware of any such solution on the horizon at present. To

achieve an early stage repair for soft and hard palate, the bio-

material to be introduced must be able to cope with the dra-

matic growth of the child’s palate up to the age of five. For

bone to form it is highly likely that bone forming tissue or

cells will need to be introduced into the defect; one common

source for similar surgery are bone chips from the femoral

head. It would be quite possible to culture bone forming cells

(bone marrow MSC for example) on a scaffold for use in the

hard palate. However introduction of soft tissue, such as tissue

engineered buccal mucosa or in growth of soft tissues from

the periphery of the defect could threaten the development of

hard palate tissues as soft tissues will grow throughout such a

scaffold almost certainly forming a fibrotic scar. Scar tissue

can contract extensively, distorting the growth of the palate,

hence one requirement in developing materials for treatment

of soft and hard palate defects is a biocompatible and resorb-

able tissue segregating membrane which should separate and

yet still allow the proliferation of soft tissues on one side and

hard tissues on the other without allowing in growth of soft

tissues into the hard palate area.

A second area is tissue engineering of skin for burns or dia-

betic ulcer repair. A biopsy of healthy skin is taken, cultured

and expanded in the laboratory on a scaffold ready for implan-

tation back on the patient. Normally in the laboratory we

culture keratinocytes under long-established conditions using

murine fibroblast feeder cells and media with bovine foetal

calf serum.25 However, for use in the clinic, it would be prefer-

able to achieve keratinocyte culture without the need for any

animal products and the chance of viral or prion infection

they may bring. We have had some success previously, using

autologous fibroblast feeder cells (instead of murine cells) and

omitting bovine serum in the initial expansion of keratino-

cytes.26,27 Building on this a scaffold designed to provide a syn-

thetic basement membrane would be advantageous as it

would give the cells a framework around which to start produ-

cing the required extracellular matrix. If the scaffold was

designed to be porous, fibroblasts cultured on the lower

surface could act as a feeder layer, and culture may be achieved

without the need for animal products.

With respect to choice of scaffolds, PHBV was selected for

use as a barrier membrane due to its slow degradation time

and ease of synthesis through phosphate starving the bacteria

Alcaligene eutrophus.28–30 Toxicological assessment of the

polymer in vitro and in vivo has shown no negative effects or

abnormalities when tested with cultured cells or in animal

experiments and it has been patented for use as bioresorbable

sutures.31–33 Poly L-lactic acid is well known as a biodegradable

biomaterial with good biocompatibility.2,34–38 It has been used

for several years in the MacNeil group and a knowledge base

has been established, making it a good candidate for further

investigation.39,40 PCL was included in this study as it has

been successfully used as a scaffold for production of bone, as

extensively reviewed by Woodruff and Hutmacher.41–45 We

have experience of culturing autologous buccal mucosa based

on de-epidermised acellular human dermis, and of taking this

to the clinic for replacing scarred tissue of the urethra.13,14,46

We also have previously developed synthetic electrospun

scaffolds for soft tissue reconstruction.40,47

Against this background; our approach to designing a

tissue barrier membrane is to harness electrospinning to

produce bilayer and trilayer nanofibrous/microfibrous

scaffolds suitable for separating and independent proliferation

of two distinct tissue types such as soft tissue on one side and

bone tissue on the other side. These scaffolds are designed for

culturing a range of tissues under different situations. Thus

we describe a bilayer structure made to segregate bone and

soft tissues. We describe a trilayer structure intended to
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support soft tissue growth either side. For example two popu-

lations of cells such as epithelial and stromal cells as shown

here, require an open network (microfibers) to grow into but

still require segregation (nanofibres). These scaffolds are also

designed to be capable of plastic deformation so that they can

grow with the growth of the child’s skull.48 These scaffolds are

the first step towards developing a synthetic solution to tissue

separation.

Methods and materials

Electrospinning of PHBV, PCL, and PLA monolayers

All electrospinning was conducted in an aseptic cleanroom

environment.

10 wt% PLA, PCL (Sigma Aldrich, Dorset, UK) solutions

were made by dissolving the bulk polymer in dichloromethane

(DCM, Sigma Aldrich, Dorset, UK). 10 wt% PHBV (12 : 1 PHB–

PHV, Goodfellow, Huntingdon, UK) solutions were made by

dissolving the bulk polymer in a mixed solvent of 10 wt%

methanol and 80 wt% DCM (solvent ratio 88.8 : 11.1 DCM–

MeOH, Sigma Aldrich). These solutions were loaded into 4 ×

5 ml syringes (20 ml in total), fitted with blunt-tip needles

(0.6 mm ID), and placed onto a single syringe pump (40 μL

min−1, Genie Plus, Kent Scientific, Connecticut, USA). A

mandrel, 20 cm wide and 10 cm in diameter, coated in alu-

minium foil and rotated at 200 rpm, was used to collect the

fibres. A working distance of 17 cm from the needle tip to the

mandrel was used for PLA and PCL and 10 cm for PHBV. A

potential of +17 000 V was used (73030P, Genvolt, Shropshire

UK).

Electrospinning of PHBV–PLA and PHBV–PCL bilayers

Bilayer membranes were electrospun by consecutively spinning

a PHBV layer as above and then, without changing the alu-

minium foil, immediately spinning either PCL or PLA on-top

using the conditions appropriate to PCL/PLA.

Electrospinning of PLA–PHBV–PLA trilayers

Trilayer membranes were electrospun by consecutively spin-

ning a PHBV–PLA bilayer as above. The bilayer was peeled off

the backing foil, turned over to reveal the uncoated PHBV side,

and reattached using autoclave tape to the aluminium foil. A

final coating of PLA was spun on the exposed PHBV face using

the conditions above. This method was adopted to ensure a

complete and uniform PHBV layer was produced rather than

sequential electrospinning each layer one on top of the other

and risking the denser PHBV layer being fragmented across

the more open PLA layer. Two further PLA–PHBV–PLA trilayers

were produced with decreasing amounts of PHBV to test the

impermeability of the scaffold with decreasing PHBV content.

This was achieved by loading the syringes with only 4 ml and

1 ml of the PHBV solution (20% and 5% of original volume)

respectively.

Scanning electron micrographs of each scaffold were taken

(Philips XL-20 SEM).

Porosity measurements

Scaffolds were cut into discs (14 mm diameter) and weighed

on a balance. Scaffold thickness was determined by measuring

cross section thickness of SEMs. SEM cross sectional thickness

was chosen as it prevents scaffold deformation unlike other

methods such as using a micrometer, thus allowing the actual

volume of the scaffold to be calculated. The density of each

scaffold was then calculated and the ratio of scaffold density to

bulk polymer density was used calculate the bulk porosity.49

Mechanical testing of scaffolds

All scaffolds were cut into rectangles (5 mm × 20 mm) and

measured for thickness using a micrometer. These sections

were then placed in a Bose Electroforce 3100 instrument. A

load of between 0 and 22 N was then applied up to a disten-

sion of 6 mm. The Young’s modulus (E) was then calculated.

Cell culture and proliferation

Materials were acquired as follows: alizarin red, alkaline phos-

phatase system for ELISA, ammonium hydroxide, amphoteri-

cin B, dexamethasone, Dulbecco’s modified Eagle’s medium

(DMEM), formaldehyde, gelatine type A, L-glutamine, β-glycerol-

phosphate, penicillin and streptomycin, perchloric acid, tris-

HCl, trypsin/EDTA and zinc chloride were all from Sigma

Aldrich, Dorset, UK. Fetal calf serum (FCS) was from Biosera,

Sussex, UK. Trypsin was from Difco Laboratories, Detroit, USA.

Mesenchymal progenitor cells (hES-MP™ 002.5) were obtained

from Cellatris®, Göteborg, Sweden. αMEM was from BioWhit-

taker, Lonza, Switzerland. CellTracker green (CMFDA), Cell-

Tracker red (CMTPX) and fibroblast growth factor (bFGF) were

from Invitrogen, USA. Magnesium chloride hexahydrate and

triton X-100 were from BDH laboratory supplies, Poole, UK.

All experiments unless otherwise stated, were conducted in

a class II laminar flow hood (Walker Safety Cabinets, Glossop,

UK).

Scaffolds were produced under aseptic conditions in a

cleanroom to avoid the detrimental effect that sterilisation

methods have on their mechanical properties.47

Fibroblasts were obtained from skin samples obtained from

patients, undergoing elective surgery for breast reduction or

abdominoplasty, who gave consent for their tissue to be used

for research purposes. Tissues were collected and used on an

anonymous basis under Research Tissue Bank Licence 12179.

Tissues were washed with phosphate buffered saline (PBS) con-

taining streptomycin (0.1 mg ml−1) and penicillin (100 IU

ml−1) and amphotericin B (0.5 μg ml−1). Tissue samples were

incubated in 0.1% w/v trypsin and 0.1% glucose in PBS

(12–18 hours, 4 °C). The dermis was peeled off, minced finely

and incubated with 10 ml of collagenase (0.5% w/v in DMEM

and 10% FCS, 37 °C for 18 hours). Following centrifugation of

the resulting cell suspension (400 g for 10 minutes), pelleted

cells were cultured in DMEM supplemented with FCS (10%

v/v), streptomycin (0.1 mg ml−1), penicillin (100 IU ml−1) and

amphotericin B (0.5 μg ml−1) and subcultured as necessary.

Only fibroblasts of passage 4–9 were used in experiments.
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The hESMPs were seeded into a T75 (EasyFlask™, Nunc,

New York, USA) pre coated with gelatine (5 ml, 0.1% w/w in

distilled water) and cultured in αMEM supplemented with

penicillin (100 IU ml−1), streptomycin (0.1 mg ml−1), bFGF

(4 ng mL−1) and L-glutamine (100 mg ml−1) until confluent.

Keratinocytes were obtained from skin samples obtained

from patients as above, washed with streptomycin and penicil-

lin (100 mg mL−1 and 100 IU ml−1 respectively in PBS). Tissue

samples were incubated overnight (12 hours) in trypsin and

glucose (0.1% w/v and 0.1% w/v respectively) in PBS at 4 °C.

The epidermal and dermal layers were separated, and keratino-

cytes were scraped off of the lower surface of the epidermis

and the upper surface of the dermis with a scalpel blade. Kera-

tinocytes were then seeded at a density of 2 × 106 per T75

culture flask pre-seeded with 5 × 105 i3T3 cells in Greens’

medium (3 : 1 v/v DMEM and Ham’s F12 medium sup-

plemented with 10% v/v FCS, 10 ng mL−1 EGF, 0.4 μg mL−1

hydrocortisone, 1 × 10−10 mol mL−1 cholera toxin, 1.8 × 10−4

mol L−1 adenine, 5 μg mL−1 insulin, 2 × 10−3 mol L−1 gluta-

mine, 0.625 μg mL−1 amphotericin B, 100 IU mL−1 penicillin

and 100 μg mL−1 streptomycin). Keratinocytes were main-

tained in culture and used prior to passage 3 in experiments.

Culture wells (10 mm diameter) were created by placing

aseptic electrospun scaffold squares (1.5 × 1.5 cm) under stain-

less steel rings (internal diameter 10 mm) in a laminar flow

hood and placed into a 12 well plate. Each scaffold was seeded

with either 50 000 hESMPs or fibroblasts and left for 7 days.

Cells were seeded by adding trypsin/EDTA (5 ml, 5 mg ml−1

trypsin, 2 mg ml−1 EDTA in saline) and incubating for

5 minutes at 37 °C. The suspension was centrifuged for

10 minutes (150 g). The cells were resuspended in 5 ml of cell

appropriate medium and counted using a haemocytometer,

and the concentration adjusted for seeding.

Resazurin (5 μg ml−1 in PBS) was used to assess cell viabi-

lity on the 7th day. After removal of residual media, 1 ml of

solution was added to each scaffold and incubated for 1 hour,

following which 150 μL was taken from each sample and the

optical density read (570 nm, Bio-Tek ELx800). The media was

then replaced (1 ml per sample).

Cell migration into scaffolds at 7 days

Aseptic electrospun scaffold squares (1.5 × 1.5 cm) were fitted

into Scaffdex Cellcrowns™24 (Tampere, Finland) in a laminar

flow hood and placed into a 24 well plate. The PHBV face of

the scaffold was seeded, as above, with 50 000 hESMPs, and

left for 24 hours to allow attachment as per normal cell culture

process.39,40,48 The cell crown was then turned over, and the

opposite face (PCL or PLA) seeded with 50 000 fibroblasts and

left for 7 days (αMEM, 37 °C, 5% CO2, media was replaced

after 3 days).

CellTracker red (CMTPX) or green (CMFDA) were applied to

the hESMPs and fibroblasts respectively, prior to seeding. Cells

were washed 3 times with 5 ml PBS then 10 ml of serum free

cell-appropriate medium containing CellTracker (10 mM) was

added and the cells incubated for 45 minutes at 37 °C. After

incubation, the cells were washed 3 times with 5 ml PBS

following which they were seeded onto scaffolds. Scaffolds

could then be imaged in an Axon ImageExpress microscope

(Molecular Devices, Sunnyvale, USA) at 570 nm λex–620 nm λem

(CellTracker red) and 480 nm λex–533 nm λem (CellTracker

green).

Bone forming potential of hESMPs

hESMPs were cultured as above until confluent. And then

seeded, as above, onto tissue culture plastic and PCL scaffolds

(TCP, 6 well plate, 7500 cells per well) in 2 ml of αMEM sup-

plemented with FCS (10% v/v), L-glutamine (10 mM), penicillin

(100 IU ml−1), streptomycin (0.1 mg ml−1), dexamethasone

(10 nM), ascorbic acid (50 μg ml−1) and β-glycerolphosphate

(5 mM). The cells were assessed for alkaline phosphatase

activity by washing 3 times in PBS and adding cell digestion

buffer (tris-HCl (0.15 M), zinc chloride (0.1 mM) and mag-

nesium chloride (0.1 mM) in distilled water). Triton X-100 (1%

v/v in cell digestion buffer) was added and then the samples

incubated (30 minutes, 37 °C). The cell lysate (20 μL) was

added to the alkaline phosphatase substrate (180 μL) and the

solution vortexed. The solution was pipetted out into a 96 well

plate, left for 10 minutes (at room temperature) and then

absorbance readings taken every minute for 5 minutes

(405 nm, Bio-Tek ELx800). (The plate reader was previously

calibrated such that 1 absorbance unit represents 22.5 nM of

product.)

The cells were also assayed for calcium mineral deposition

by alizarin red. The samples were washed 3 times with 2 ml

PBS, fixed with formaldehyde (3.7% in PBS, 10 minutes) and

then washed 3 times with 2 ml PBS. 1 ml of alizarin red

(40 mM in distilled water adjusted to pH 4.1 with ammonium

hydroxide) was added to each sample. The samples were then

agitated at room temperature for 20 minutes. Any residual dye

was removed, and the samples washed with distilled water

(until the water ran clear) and left to dry (4 hours). The bound

alizarin red was solubilised by adding 1 ml of perchloric acid

(50 mM in distilled water) to each well for 30 minutes and agi-

tated. The absorbance of 200 μL samples were read at 405 nm

on a plate reader (Bio-Tek ELx800).

Culture of keratinocytes and fibroblasts on trilayer scaffolds

PLA–PHBV–PLA trilayers and PLA monolayers (2 cm × 2 cm)

were sterilised in peracetic acid (0.1% v/v in distilled water) for

3 hours and washed three times in PBS (1 ml). The scaffolds

were then placed in 6-well plates. Stainless steel rings with an

internal diameter of 1 cm were placed on top of the scaffolds.

Human dermal fibroblasts (1 × 105 cells), pre-labelled with

CellTracker green as above, were then seeded inside the steel

rings and medium topped up to 3 ml. The scaffolds were incu-

bated for 2 days (37 °C, 5% v/v CO2). Following this, the

scaffold was turned over. Human keratinocytes (3 × 105 cells

per scaffold), pre-labelled with CellTracker green, were seeded

on the reverse side of the scaffold. The steel rings were then

removed on the 4th day of incubation. On the 5th day the con-

structs were raised to an air–liquid interface on stainless steel

grids and incubated for 7 days. Culture medium was
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replenished twice a week. Cell viability using resazurin was

taken as above. Samples were then fixed by incubating at

37 °C, in formaldehyde (3.7% v/v in PBS) and then labelled

with DAPI (1 ml of 1 μg ml−1 in PBS, 20 minutes, 37 °C). Fluo-

rescence images at 365 nm λex–460 nm λem for DAPI, 570 nm

λex–620 nm λem for CellTracker red, and 480 nm λex–533 nm

λem for CellTracker green were taken following the culture

period. This was also repeated on PLA–PHBV–PLA trilayers using

4 ml (0.4 g) and 1 ml (0.1 g) of PHBV to form the barrier layer.

Statistics

Student’s unpaired t-test was used to assess the statistical sig-

nificance of differences between different fibre types.

Results

Fig. 1 and 2 show the fibre diameters that were obtained when

a 10 wt% polymer solution was used. Electrospinning 10 wt%

PHBV in DCM–MeOH produced fibres of 700 nm in diameter.

In contrast a 10 wt% concentration of PLA and PCL in DCM

produced 2.5 μm and 4 μm diameter microfibers respectively.

Table 1 shows porosity and mechanical data for the bulk

polymer and electrospun scaffolds. Porosity measurements

show a significant difference between the microfibrous

scaffolds of PLA and PCL compared to the nanofibrous PHBV,

with the microfibrous scaffolds being around 20% more

porous. The Young’s modulus (E) of the bulk polymer is

higher than the measured E of the scaffolds in all cases. The

highest E was recorded for the PLA–PHBV–PLA trilayer and is

approximately 33% more than the next nearest, PHBV.

Scaffolds containing PCL had E values of around 50% of those

scaffolds not containing PCL.

Cell viability on scaffolds was demonstrated using a resa-

zurin salt assay. Fig. 3 shows cell viability on the scaffolds after

7 days of culture compared to the same cells cultured on TCP.

With respect to the attachment and expansion of fibroblasts

Fig. 1 Scanning electron micrographs (SEMs) of electrospun scaffolds A. PHBV. B. PLA. C. PCL. D. Representative cross-section of PHBV–PLA. The PHBV region on the

left is dense while the PLA region has a more open structure. E. Representative cross section of a trilayer of PLA–PHBV–PLA.

Fig. 2 Mean fibre diameters for PCL, PLA and PHBV of 4 μm, 2.5 μm and

700 nm respectively. Values are taken from measurement of SEM images, pres-

ented as average + standard error of the mean (+SEM), n = 5.

Table 1 Mechanical properties and porosity of scaffolds and their bulk poly-

mers. Bulk polymer and porosity data is not available for bilayer and trilayer

structures as these are composite scaffolds. Porosity measurements are the ratio

of scaffold density to bulk density subtracted from 1 and turned into a percent.

Bulk polymer Young’s modulus (E) data is from the respective manufacturers

where available or referenced. Values are the mean ± SEM, n = 3

Scaffold
Bulk
E/GPa

Scaffold
E/GPa

Bulk
density/
g ml−1

Scaffold
density/
g ml−1

Porosity/
%

PLA 3.6 0.012 ± 0.001 1.25 0.18 85 ± 0.8
PCL 0.350 0.008 ± 0.003 1.145 0.25 78 ± 0.8
PHBV 0.5 0.015 ± 0.002 1.25 0.50 60 ± 1
PHBV–PLA N/A 0.014 ± 0.008 N/A 0.24 N/A
PHBV–PCL N/A 0.004 ± 6 × 10−5 N/A 0.30 N/A
PLA–PHBV–PLA N/A 0.021 ± 0.001 N/A 0.21 N/A
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all scaffolds compared reasonably well to TCP. Cells on PCL

performed significantly worse than on TCP but only by

approximately 30%, while cells on PHBV–PCL did significantly

better (by approximately 20%). Scaffolds were less supportive

of hESMP attachment and expansion with cell performance on

all scaffolds being only approximately 50% as good as on TCP

(Fig. 3B).

Fig. 4 shows fluorescent images of the cells on TCP

(Fig. 4A) and on scaffolds (Fig. 4B–F). When seeded together,

there is clear mixing of the cells on TCP, PLA and PCL. On

these PLA and PCL scaffolds it is evident that fibroblasts and

hESMPs have migrated through the scaffolds, as each face of

the scaffold shows both cell types. With PHBV, however, there

is a clear segregation of cell types. Even after 7 days of culture

of fibroblasts on one face of the PHBV and culture of hESMPs

on the opposite face, the cells remain segregated as can be

seen in Fig. 4D (for fibroblasts) and Fig. 4E (for hESMPs).

Fig. 4F is a cross section of the PHBV with the cells on their

respective surfaces. As there was no mixing of the red and

green fluorescently labelled cells it appears that PHBV has

been successful at both supporting cell attachment and

keeping the two cell types segregated for at least 7 days.

PHBV–PLA and PHBV–PCL bilayers were assessed for their

ability to maintain cell segregation. Fig. 5A and D show the

fibroblasts seeded on the PLA and PCL faces of the bilayers

respectively. It is clear that hESMPs have not migrated through

to this face. Likewise, Fig. 5B and E show the hESMPs seeded

onto the PHBV faces of each bilayer respectively. Fig. 5C and F

show cross sections through both bilayers with both the

hESMPs and fibroblasts contained on their respective side.

The bone forming potential of hESMPs is demonstrated in

Fig. 6. Continuous culture under appropriate conditions resulted

in the cells differentiating into bone forming osteoblasts

(increased alkaline phosphatase activity with time) and deposit-

ing calcium containing bone mineral (alizarin red staining).

Fig. 3 A. Cell viability (assessed by the resazurin salt assay) of fibroblasts on

PCL, PLA, PHBV, PHBV–PLA and PHBV–PCL scaffolds after 7 days. All scaffolds

supported cell viability to a similar extent to TCP cells except for PCL on which

cell viability was significantly lower (by approximately 30%) and PHBV–PCL

where cell viability was approximately 40% better than TCP. B. Cell viability

(assessed by the resazurin salt assay) of hESMPs on PCL, PLA, PHBV, PHBV–PLA

and PHBV–PCL scaffolds after 7 days. All scaffolds were significantly less effective

(approximately 50% as effective) at supporting cell growth compared to TCP

except for PHBV–PCL which was only 30% as effective as TCP (significantly lower

than PCL, PHBV and PHBV–PLA). Values are mean + SEM, n = 3.

Fig. 4 Co-culture of CellTracker™ labelled fibroblasts (green) and hESMPs (red) on a range of scaffolds. In A hESMPs were seeded on day 1 (red) followed by an

equal ratio of fibroblasts on day 2 (green) and cultured for 7 days on TCP. In B–F hESMPs were seeded on one side of the scaffold on day 1, and then fibroblasts on

the other side on day 2 and these were then cultured for a further 7 days. The scaffolds used were PLA in B, PCL in C and PHBV in D, E and F. In A, B and C there is a

clear mixture of red and green cells. In D and E however cells remain segregated. All fibroblasts (green) are shown on the surface shown in D and all hESMPs (red)

are seen on the opposite side (E). F shows a cross section of the PHBV scaffold with clear separation of the hESMPs and fibroblasts. Scale bars 0.1 mm.
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The retained barrier properties of the PLA–PHBV–PLA tri-

layer scaffold are shown by the fluorescent images in Fig. 7.

DAPI staining of the cell nuclei (blue) has been added to aid

with visualising the cell nuclei. There are nuclei on either side

of the scaffold, showing that both fibroblasts and keratinocytes

adhere and proliferate. The face seeded with fibroblasts

(green) shows no sign of keratinocytes (red) having penetrated

through the scaffold. Likewise on the keratinocyte seeded face,

there are no fibroblasts present. The final image shows a cross

section, with both sides well populated by cells, but the fibro-

blasts and keratinocytes are confined to their respective sides.

The recorded cell viability on the PLA–PHBV–PLA trilayer

scaffold is good (around 50% compared to those on TCP). This

is comparable to the bilayer scaffolds.

Decreasing the amount of the nanofibrous scaffold to

20% and 5% of the original weight does not appear to

affect the barrier qualities of these trilayers with segregation

of fibroblasts and keratinocytes maintained after 7 days

also (Fig. 8).

Discussion

We demonstrate that a nanofibrous scaffold can act as a

barrier to cell penetration while providing a scaffold for cell

attachment and proliferation. For cleft palate treatment in the

clinic, it would be our intention to culture autologous buccal

mucosa on one face (as we have previously demonstrated) and

autologous periosteal cells as a bone precursor on the opposite

face.47 These are being investigated for their bone forming

ability at present. These could be harvested at the time of a

cleft lip repair, expanded in the laboratory, and then re-intro-

duced on a bilayer membrane to encourage the growth of a

native hard palate.

The concept of segregating tissue for regenerative purposes

is not new. It has been established in dentistry for some time

where tissue guides have been developed to segregate soft

tissue from bone forming tissue in periodontal repairs.18,19

Commercial materials include collagen-based membranes,

biodegradable polymers and Teflon.2,51,52 Collagen has a high

biodegradation rate, can be difficult to remove when there are

problems, and can introduce the risk of infection as it is an

animal derived tissue (usually bovine). Therefore, one must be

mindful of the source of the collagen to avoid any risk of prion

disease transmission.51 Teflon is a very successful and effective

barrier to cells. However, it cannot be left implanted and

follow up procedures are required to remove it. This is not

Fig. 5 Co-culture of CellTracker™ labelled fibroblasts (green) and hESMPs (red) on bilayer membranes of either PHBV–PLA or PHBV–PCL. hESMPs were seeded on

day 1 (red) onto the PHBV face of each bilayer. Fibroblasts were seeded on either the PLA or PCL face of the bilayer on day 2 (green) and then cultured for a further

7 days. In A fibroblasts (green) are confined to the PLA face after 7 days with no sign of hESMPs (red). On the opposite face (B, PHBV), hESMPs (red) are also present

once again with no fibroblasts. A cross section of the PHBV–PLA membrane is shown in C showing each cell type on its respective side after 7 days of culture. In D

and E, fibroblasts (green) and hESMPs (red) are shown on the PCL and PHBV faces respectively and there is no mixing across these faces. F shows a cross section of

the PHBV–PCL membrane and clearly shows each cell type still confined to their respective faces after 7 days of culture. All scale bars are equal to 0.1 mm.

Fig. 6 Alkaline phosphatase activity and quantification of alizarin red staining

of hESMPs after 7, 14 and 21 days on TCP. Increasing alkaline phosphatase

activity indicates cell differentiation towards osteoblastic (bone forming) cells

and increasing alizarin red indicates increased calcium (present in bone mineral)

deposition. Values are mean ± SEM, n = 3.
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ideal as it disturbs the newly repaired tissues risking scar for-

mation and infection.53 Current biodegradable polymer solu-

tions are commonly based on PLA, however, these are not

entirely popular with surgeons as they are difficult to handle.54

In the current study the nanofibrous component of the

bilayer and trilayer makes the material much more user-

friendly, it can be readily picked up, shaped and handled

without tangling, sticking or loss of shape, unlike microfibrous

electrospun scaffolds.

The methodology of spinning one scaffold on top of

another is reproducible and consistent. Our data show that by

using cell tracker labelled cells it is possible to culture two

different cell types on these scaffolds while maintaining segre-

gation for at least 7 days.

The cell tracker fluorescent dyes are very successful at label-

ling cells through to 7 days, but the intensity of the dye

decreases noticeably after longer periods.

In this study we simply examined fibroblast attachment as

a soft tissue model. We selected hESMPs as a model bone

forming cell as they are capable of forming bone (see Fig. 6),

and are also an appropriate cell type against which other can-

didate cells can be compared.55,56 Here we present hESMP

bone forming potential on TCP, and other studies have shown

similar bone forming potential on other well known

Fig. 8 SEM and fluorescence microscopy of PLA–PHBV–PLA trilayers with reduced PHBV layer thickness. Panels A and C shows SEM cross sections of trilayers made

using 1 ml and 4 ml of PHBV respectively (5% and 25% of original volume used in Fig. 4, 5 and 7. Microfibrous PLA is present on the top and bottom of each

scaffold, with a dense nanofibrous PHBV slither through the middle of each. Panels B and D show fluorescence microscopy of cross sections with fibroblasts (green)

cultured on one face and keratinocytes (red) cultured on the opposite face with separation maintained after a week (demonstrated by no ‘bleed though’ of the

colours to opposite faces).

Fig. 7 Co-culture of CellTracker™ labelled fibroblasts (green) and keratinocyte (red) on trilayer membranes of PLA–PHBV–PLA. Fibroblasts were seeded on day 1

(green) onto one face of each trilayer. Keratinocytes were seeded on the opposite face of the trilayer on day 4 (green) and then cultured for a further 7 days. In A,

fibroblasts (green) are confined to the PLA face after 7 days with no sign of keratinocytes (red). On the opposite face, keratinocytes (red) are present once again

without fibroblasts. A cross section of the PLA–PHBV–PLA membrane is shown in C showing each cell type on its respective side after 7 days of culture. Cell nuclei

have been stained using DAPI (blue). All scale bars are equal to 0.1 mm.
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biodegradable polymers such as PCL, PLA and PLGA.57–60

Similarly we confirm that keratinocytes and fibroblasts are

effectively segregated when cultured on a trilayer membrane

separated by a nanofibrous scaffold layer.

Conclusions

In summary, we describe simple methods for electrospinning

bilayer and trilayer nanofibrous/microfibrous membranes

capable of supporting the culture of two very different cell

types, while maintaining segregation between the two. We hope

that these will prove useful in a range of applications such as

the first step in developing an approach for tissue engineering

of cleft palate and also guided tissue regeneration for periodon-

tal disease and in production of tissue engineered skin for treat-

ment of patients with extensive full thickness burns injuries.
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