
i 
 

Abstract 

 

High carbon bloom steel from the continuous casting shop of Tata Steel at 

Scunthorpe has been used in order to investigate the variation in secondary dendrite arm 

spacings (SDAS), and micro-segregation from the surface to centre, and also to assess 

and develop model capability. The average cooling rate during solidification and 

associated heat extraction rate were determined for each nodal position of a macro 

model. However, the thermal conditions for these positions were taken from a macro 

model of bloom/slab solidification which operated under a simple, equilibrium 

solidification condition. 

A new analytical secondary dendrite arm spacing model has been developed 

using Matlab software, which takes into account the effects of multicomponent steels on 

the coarsening dendrite arm factor, geometric factor, local solidification time, and 

peritectic transformation. The predicted results have shown very good agreement with 

experimental results from different references. The effect of carbon and other elements 

on geometric and coarsening dendrite factors are discussed. 

A longitudinal section of high carbon steel bloom was cut off in order to 

measure SDAS; the measured variation from the top surface to centre is discussed, and 

compared with the SDAS model. 

Micro-segregation was calculated according to DICTRA® and an in-house 

model (QSP) from Tata Steel, from liquidus to solidus and continuing in the fully solid 

state down to 1000
 ℃, employing both measured and calculated SDAS. Example 

measurements of micro-segregation were conducted using automated line scans from 

SEM-EDS (on a JEOL6400) through 3 or 4 secondary dendrite arm spacings for each 

bloom-depth, the results do give a peak in micro-segregation around 46mm, but unlike 
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the DICTRA or QSP calculations using the thermal data from TTC macro model, the 

segregation data seem to remain around that peak level from there on into the centre. 

They are more like the measured SDAS variation than the DICTRA and QSP variation, 

again suggesting that the models might not be using accurate thermal data for input. The 

reasons for this and the differences between the model variants are discussed. 

A new micro-segregation model was developed in this study based on the 

Ohnaka model but which extends the limitation of Ohnaka‟s model for constant length 

scale of microstructure. In order to satisfy this requirement, the new micro-segregation 

equation takes into account the coarsening of the dendrite structure. The new micro-

segregation equation is shown to work better than would be expected for the predicted 

peak concentration, solute profile at solidus, and experimental data (Jernkontoret results 

for carbon and low alloy steels 201-216). 
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1.1 Background 

Dendrite arm structures often form during solidification; some of the main 

factors affecting the development of dendrite arm spacings are the solidification rate or 

heat extraction rate, and alloyed elements. The secondary dendrite arm spacing is a 

significant factor that affects the properties of final products, thus it is very important to 

understand what is controlling dendrite arm spacing during solidification. It is well 

known that cooling rate is a primary factor that is affecting the final dendrite arms; 

increasing cooling rate increases productivity and gives faster return investment, but it 

might lead to poor final properties due to formation of cracks and flaws [1]. 

Furthermore, it is difficult to impose solidification conditions that have much effect on 

the cooling rate in the middle of a large cross section of material.  

The effect of cooling rate on micro-segregation levels is important regarding the 

properties of final products. A body of extant literature has studied this effect of cooling 

rate on micro-segregation. Many simple models have assumed a constant cooling rate, 

but in real continuous or ingot casting, the cooling rate varies enormously during 

solidification even at a given position within the casting. The cooling rate will start off 

slowly at low solid fraction, which is the region where the results are fairly insensitive 

to cooling rate, but it will finish with a faster cooling rate, in precisely the region where 

it will affect the results. Also, the simple models in previous studies terminate at the 

solidus, whereas there can be significant sub-solidus homogenization [2]. The thermal 

history, rather than a nominal cooling rate, is the important parameter, down to 

temperatures at which further solute diffusion can be ignored. 

In the present study, simulation using DICTRA and QSP software and new 

SDAS and micro-segregation equations, and experiments with the Scanning Electronic 

Microscopy- Energy Dispersive X-ray Spectroscopy (SEM-EDS) technique were used 

to investigate the degree of micro-segregation of Si and Mn, which develops both 
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during and after solidification. The optical microscopy was also used to measure the 

secondary dendrite arm spacing. 

This thesis focuses on the back-diffusion type models with an assumed simple 

geometry and ignoring the minor undercooling associated with shape/curvature which 

plays an important role in determining the formation of dendritic structures. The new 

micro-segregation equation takes account of the coarsening of the dendrite structure that 

can improve the predicted degree of segregation at the solidus. 

1.2 Aim of research 

This research is the first step towards increasing the efficiency and productivity 

of the steel making process in order to achieve both quality and quantity of slab and 

bloom as-cast steels by the continuous casting process.  

The main aim of this research is to study the effect of cooling rate and the 

thermal history across a commercial, continuously cast bloom during liquid – solid 

transformation and sub-solidus homogenisation. Increased solidification rates (at least 

within the range achievable in large commercial castings) lead to increased micro-

segregation and consequently reduced solidus temperatures.  However, they also lead to 

reduced Secondary Dendrite Arm Spacings (SDAS), which will reduce the required 

diffusion distance for homogenisation during cooling in the solid state. The net result 

can therefore be a balance between these effects. 

This work aims to further develop existing models to improve the capacity to 

predict SDAS and micro-segregation for continuously cast steels on an industrial level. 

An analytical model of SDAS will be developed using Matlab code. This model will 

allow the prediction of SDAS for multi-component steels containing a wide range of 

carbon content from 0.08 to 1.5% wt%. 
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The effect of the chemical composition on the SDAS value of multi-component 

steels has not been extensively investigated in the extant research since this effect is 

typically difficult to examine due to the effect of the cooling rate. The model developed 

in the current study is based on literature data, primarily effects of C, Mn, Si, Cr, Ni, 

Cu, P and N on SDAS value from Jernkontoret (Stockholm) measured SDAS 

experiments but also other previous studies. 

A high carbon bloom has been supplied to this project from the Tata Steel 

Company to investigate and compare the results of the predicted SDAS and the 

variation in segregation and model capability from surface to centre. The thermal model 

conditions for the surface, quarter-thickness and centre positions have been taken from a 

macro model of slab and bloom solidification which employs a simple, equilibrium 

condition for micro-segregation. Meanwhile, micro-segregation has been calculated 

according to DICTRA software and QSP software from Tata Steel, from liquid down to 

1000
0
 C. The interdendritic micro-segregation has been measured by SEM-EDS from 

the surface to centre in order to compare with the prediction from the above-mentioned 

models. 

There are many simple models that have been developed to predict solute in the 

interdendrite region; the Scheil model, Lever-rule model, Clyne-Kurz model and other 

models. There is still need for an improved simple micro-segregation equation that can 

estimate the typical degree of micro-segregation and solute profile at the solidus based 

on the thermal history and which operates far faster than most currently available. 
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During the past 60 years much more experience and information has become 

available on continuous casting. Upon the introduction of continuous casting in the 

1850s (at a very small scale of production), liquid steel was poured via the ladle and 

tundish into a copper mould which is cooled with an external water jacket. In order to 

avoid sticking of the shell to the mould wall the copper mould is oscillated vertically. 

The first solidified shell is formed on the mould wall and it increases in the thickness as 

the steel strand runs through the secondary cooling zone. The solidification ends when 

the steel temperature in the centre falls to the solidus temperature, allowing for any 

depression below the equilibrium value due to micro-segregation. 

Many different types of continuous casting process are used to cast steels, 

aluminum and copper alloys. The three widely used casting process are  shown in figure 

2-1 [3]. Curved machines are used to cast alloyed steels into various shapes and sizes 

such as slabs, blooms and billets.  The fourth, strip casting, is not in large scale 

production but is the most similar to the original process from the 1850s. 

  

Figure 2-1: Continuous casting methods [3] 

There are few studies on the solidification of high carbon steel [4], [5]. Figure 2-

2 shows the solidification of high carbon steel bloom using Thermo-Calc. In contrast to 

delta-ferrite and peritectic transformation whereby low carbon steel undergoes 
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transformation from liquid to delta-ferrite and then it is solidified to austenite, high 

carbon steel is solidified directly as austenite. Solidification for the depicted, example 

alloy typically starts around 1475 ℃ and is completed around 1368 ℃. Below the 

solidus temperature, steel is solidified to austenite. During the solidification process, the 

quality of solidified steel depends on many solidification parameters such as heat 

extraction rate or solidification rate, superheat and steel composition.  

  

Figure 2-2: Phase diagram of high carbon steel 0.72% C, 0.24% Si, 0.63% Mn 

(calculated by Thermol-Calc). 

2.1 Previous study on continuous casting of steel 

The high carbon bloom steel used in this project was produced by the curved-

strand continuous casting method at Tata Steel. Before examining the effect of 

solidification rate on microstructure evolution and micro-segregation during 

solidification, it would be very helpful to provide some general background information 

about the continuous casting process and how the control of solidification can affect the 
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micro-segregation, maro-segregation and microstructure of the bloom to improve the 

quality of steel.  

By eliminating extra steps involved in the production of steel under the ingot 

casting process, the continuous casting method leads to higher yield and manpower 

productivity, more uniform product, better surface condition and internal quality of 

production. By saving labour time, energy and capital it reduces the cost of production. 

[1]. 

The attraction of continuous casting was first recognized by Sellers [6], Laing 

[7], and Bessemer [8] in the 19
th

 century. Continuous methods introduced by these 19
th

 

century pioneers were however mainly applied to non-ferrous materials with low 

melting points, such as the production of glass.  Continuous casting was not applied to 

steel due to many technical problems associated with high melting point involved and 

the low thermal conductivity of steel. Thereafter, additional research was carried out to 

invent and modify continuous casting technology and its application to ferrous and non-

ferrous materials. Today, annually 1,432 million tons of crude steel  are  cast from 

molten metal [9]. 

Another signification improvement to continuous casting technology was the 

introduction of mould oscillation and lubricant addition. Lubrication and oscillation 

overcome two major problems associated with continuous casting, namely sticking of 

the solidified shell to the water-cooled mould, and non-uniform surface condition across 

the strand [10]. 

 The 1950s witnessed rapid technological changes in continuous casting of steel. 

The major technological developments included the introduction of curved-strand 

geometry and electromagnetic stirring, and the replacement of vertical cutting of the 

billet strand by horizontal cutting.  Electromagnetic forces were applied to alter the flow 
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in continuous casting by passing electrical current through coils positioned around the 

mould. The horizontal plane of the strand is stirred by the electromagnetic forces during 

cooling [11].  

 Further improvements in the 1970s and early 1980s included total shrouding of 

steel streams from the tundish to the mould in the form of a Submerged Entry Nozzle. 

The amount of argon injected into the nozzle avoids contact with oxygen and controls 

clogging, resulting in an improvement in the quality of billets, slabs and blooms [11]. 

 Another improvement in the casting was changes to the arc radius in bending 

and straightening process of a vertical bending type continuous caster.   

Since continuously-cast steel is subject to a variety of different surface and subsurface 

cracks arising from hot tears and micro-segregation, changes from horizontal to vertical 

bending [12] minimizes the occurrence of the cracks and increases the quality of the 

billets, slabs and blooms. 

The type of secondary cooling mechanisms have been subjected to many investigations 

[1].  Dynamic control of continuous casters and dynamic spray cooling methods are 

used to control the temperature of the strand in continuous casting (the heat extraction 

rate of the high carbon bloom steel is recorded during continuous casting). In contrast to 

solidification, in spray cooling, water droplets impinge onto the very hot steel surface 

and vaporize instantaneously which prevents the water from wetting the surface [13]. 

Higher cooling rate increases micro-segregation and increases the risk of formation of 

precipitation leading to the poor quality of steel products. 

The type of microstructure developed during the solidification of casting is 

determined by three main factors: (i) The temperature gradient (G), (ii) growth velocity 

(V ), and (iii) The steel composition (C0).Depending on the G/V ratio, three zones in the 

macrostructure of a continuously cast steel semi can be recognized: the microstructure is 
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planar as the G/V ratio gets larger, cellular and then to dendritic, as G/V gets smaller 

[1].  

New technological developments combined with production of steel on large 

scale led to a lower cost of production, improvements in quality and higher return on 

investment. Liquid iron making from larger capacity blast furnaces was transported to 

steelmaking shops where a basic oxygen furnace was used to reduce carbon content and 

after pre-treatment to remove undesired elements like sulphur, silicon or phosphorous. 

Liquid steel was then transferred to the continuous casting machine for casting billets, 

slabs and bloom steel. Various techniques, such as increasing the average sequence 

length, the casting speed, the average section size cast and the strand width were used to 

improve the productivity [1].  

 However, these productivity enhancing methods had their own drawbacks, 

adversely affecting the life of equipment used in the process, production costs and 

desirable properties of the steel. For example while slitting of the width of a wide strand 

was an effective method to increase productivity compared to casting a small width 

section, this method is suitable for the conventional cold-charge process but not for hot 

charging. Billets, slabs and bloom steel usually cools down to room temperature before 

being reheated again to around 1250 ℃ for hot rolling process which increases energy 

consumption and production cost [1] compared to hot charging directly to rolling. 

 After solidification in the mould, the strand undergoes the secondary cooling 

process until its temperature is lowered enough for the steel to be solid and ready for 

cutting with a torch.  Finding the critical cooling rate has been subject to extensive 

research. High cooling rate can result in many technical problems for both the caster 

and the quality of billets, slabs and blooms such as higher degrees of micro-segregation 

and surface cracks. Depending on the product size the cooling rate could be adjusted to 

minimize these problems [1]. 
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2.2 Segregation during Solidification of Steels 

All castings are segregated to some extent because of the way in which the 

solutes in the alloys partition between the solid and the liquid during freezing. 

 Some variation in composition occurs in alloy castings on a microscopic scale between 

dendrite arms, known as micro-segregation, and some variation occurs on a scale larger 

than that of the dendrite arm spacings [14].The various types of segregation, which are 

often encountered in longitudinal sections of actual steel continuous casting slabs are: 

interdendritic segregation or micro-segregation, V segregation, centreline segregation or 

macro-segregation, and white bands [15].  

Micro-segregation results from solute redistribution during the solidification of an 

intercellular or interdendritic liquid during casting (or welding). Interdendritic micro-

segregation can be clearly observed in the columnar zones close to both upper and lower 

surfaces. It is small in size though not necessarily in intensity. Usually, it does not result 

in severe problems by itself alone. Micro-segregation is basically the consequence of 

many factors including the growth and morphology of the dendrites, the nature of the 

solidification phases and precipitation reactions, 'mushy zone' (i.e., the ranges of 

temperature and position within the casting over which solidification occurs) and the 

fractional solidification within that range [16], [17], [5]. 

Macro-segregation refers to non-uniformity of chemical composition over larger 

sections of steel ranging from several millimeters to centimeters or even meters. Most 

macro-segregation is caused by the flow of liquid through the interdendritic spaces in 

the liquid-solid zone and is considered more harmful than micro-segregation which by 

itself generally does not constitute a major quality problem, since micro-segregation can 

be alleviated during subsequent soaking and hot working operations. However, without 

the micro-segregation, its associated solidification microstructure, macro-segregation 

would not develop. 
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White band segregation occurs when the content of solute elements is less than 

average (negative segregation)and is often followed by a larger than average, positive 

segregation, due to sudden and intense liquid flow parallel to the solidification front 

[15]. The negative segregation is usually the more obvious such band but is not as 

harmful as positive segregation. 

 The next section provides a more detailed account of micro-segregation and 

macro-segregation. 

2.2.1 Micro-segregation during solidification 

 
The effects of micro-segregation on the mechanical properties of the final 

product during solidification of steels have extensively been studied during the past 3 

decades. Solute segregation during continuous casting leads to non equilibrium phases, 

cracks, columnar dendrites and coarsening, lowering the mechanical properties of the 

final product [2], as well as being a pre-requisite for macro-segregation [18].  

Micro-segregation refers to differences in concentration between the core of a 

dendrite and the interdendrite arm position, often called coring [19], as shown in the 

following figure 2-3; 

 

 

Figure 2-3: Schematic phase diagram of micro-segregation [19] 
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Figure 2-4: Part of the Fe-C diagram with classification of the segregation 

severity [20]. 

If the carbon content is below 0.09%C (and other elements are present only in 

very small amounts), the solidification goes directly through the  phase without the 

peritectic reaction, effectively avoiding interdendritic segregation because of the very 

high solute diffusivity in the ferrite phase. If carbon content is 0.09% and higher, the 

interdendritic enrichment during the peritectic reaction increases with increasing extent 

of austenitic solidification, with additional micro-segregation effects possible around 

the ferrite/austenite interface. The reaction causes an additional shrinkage due to the 

transformation from delta ferrite to austenite. It is well known that a lower carbon 

content reduces the tendency for segregation [20] and improves several properties of the 

final product, such as the impact energy, the ductility and formability and the ductile-

brittle transition temperature. 

Turkeli and Kirkwood [21] studied manganese micro-segregation in ternary Fe-

1.6%Mn - 0.1 to 0.8%C steels. They measured micro-segregation between secondary 
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arms, primary arms and spot regions. Micro-segregation of carbon increased with 

increasing cooling rate and with higher initial carbon content. The segregation ratio of 

carbon was found to be higher both between secondary arms and primary arms with 

higher carbon content.  There were no effects of cooling rate found on segregation of 

manganese in secondary dendrite arms, but it was found to increase slightly the 

segregation of manganese in the primary dendrite arm when the cooling rate increased. 

Many researchers believe that the peritectic reaction is important for the degree 

of micro-segregation and can also result in unexpected solute distributions in the 

solidified steels [16], [22]. Howe and Kirkwood [23] examined the computer prediction 

of micro-segregation in peritectic alloy systems and calculated peritectic equivalent 

coefficients Ep using partition coefficient k and m liquidus slope with ferrite and 

austenite phase, respectively.  These can help judge whether a particular composition is 

likely to undergo the peritectic transformation. 

2.2.2 Macro-segregation during solidification 

 
 Most steel elements have a higher solubility in the liquid than in the solid phase, 

known as the solute partition. During solidification, the solutes are generally rejected 

into the liquid phase resulting in lower solute concentrations in the primary solid and a 

continual enrichment of solute concentrations in the liquid steel. This is not usually 

serious if the partitioning remains at the micro-scale of the dendrite arms. However, it 

can easily lead to macro-segregation given enough time and driving force for relative 

movement of segregated liquid. The movement or flow of segregated solid and liquid 

during solidification can occur over large distances, whereupon the casting becomes 

macroscopically segregated. In contrast to positive macro-segregation, negative macro-

segregation is caused by solute concentration below the average steel concentration. All 

macro-segregation must add to zero over the entire casting.  Liquid flow and solid 
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movement in casting processes are caused by many factors: (i) Flow that feeds the 

solidification shrinkage and the contractions of the liquid and solid during cooling; (ii) 

buoyancy induced flows due to thermal and solutal gradients in the liquid; (iii) Flows 

due to capillary forces at liquid-gas interfaces; (iv) Residual flows from pouring; (v) 

Flows induced by gas bubbles; (vi) Forced flows due to applied electromagnetic fields, 

stirring, rotation, vibration, etc (vii) Movement of small (equiaxed) grains or solid 

fragments that have heterogeneously nucleated in the melt, separated from a mold wall 

or free surface, or melted off dendrites; (vii) Deformation of the solid network in the 

mushy zone due to thermal and shrinkage stresses, head pressures, or external forces on 

the solid shell [24]. 

 Macro-segregation occurs during solidification due to relative movement or 

flow of segregated liquid and solid. There are numerous causes of fluid flow and solid 

movement in casting processes. One reason for this movement of segregated liquid may 

be density differences of the metal due to temperature or variations in composition [25]. 

 

Figure 2-5: Potentially important interactions in modelling macro-segregation in 

castings [24] 
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Macro-segregation occurs over similar distances to the size of the casting. This 

can be caused by a number of complex processes involving shrinkage effects as the 

casting solidifies, and a variation in the density of the liquid as solute is partitioned. We 

will not discuss these processes further because it is not the subject of this thesis. 

These compositional variations have a detrimental impact on the subsequent 

processing behaviour and properties of cast materials and can lead to rejection of cast 

components or processed products. Macro-segregation is present in virtually all casting 

processes, including continuous, ingot, and shape casting of steel and aluminum alloys, 

iron casting, casting of single-crystal super alloys, semisolid casting, and even growth 

of semiconductor crystals [25]. 

2.3 Previous studies on the effect of cooling rate on micro-

segregation 

Continuous Casting is the process whereby molten metal is solidified into 

„„semi-finished‟‟ billet, bloom, or slab before undergoing the rolling process. The 

process is utilized very often to cast steel and other metals such as copper and 

aluminium. This production process has three main advantages: (i) The near-net shape 

formation of steel during continuous casting and subsequent saving in energy, time and 

labour; (ii) The development of new functional properties brought about by 

microstructure evolution, such as the formation of non-equilibrium phases; and (iii) An 

improvement of mechanical properties resulting from decreased segregation and the 

refinement of grain size [26]. 

Variations in the cooling rate and its influence on microstructure of the final 

product and therefore mechanical and physical properties of casting has been observed 

at three ranges of cooling rate: the low cooling rates (10
-1

 to 10
1
 K/s), the high cooling 

rates (10
3
 to 10

7
 K/s), and the medium cooling rates (10

1
 to 10

3
 K/s). Variations in the 
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cooling rate for different solidification processes are summarized in table 2-1. At the 

low cooling rates which occur in large ingot castings or directional solidification, 

variations in the cooling rate is observed to lead only to small changes in microstructure 

at such low cooling rates and with micro-segregation close to equilibrium partitioning. 

By contrast, the most dramatic changes in microstructure occur at the high cooling rates 

produced by rapid solidification processing or welding techniques [27]. The cooling 

rates in the latter case are far away from the equilibrium rate. At the medium cooling 

rates changes in the cooling rate  leads to  complex microstructure changes and it is 

these which occur  during continuous casting of billets, slab and bloom steel [27]. 

Table 2-1: Estimated cooling rate ranges of various solidification 

processing techniques [28] 

Process Cooling rate (K/s) 

Directional solidification 10
-1

 – 10
1 

Continuous casting 10
-0

 – 10
2
 

Arc welding 10
1
 – 10

3
 

Electron beam welding 10
2
 – 10

4
 

Laser beam welding 10
2
 – 10

6
 

Rapid solidification Processing 10
3
 – 10

7
 

Electron bean or Laser beam surface modification 10
5
 – 10

7
 

Single laser pulse 10
7
 – 10

8
 

 

Two types of techniques are often employed to examine the effect of cooling 

rate on micro-segregation. The first technique uses relatively small isothermal samples 

weighing less than 100 g, which frequently solidified at a constant cooling rate. Using 

this technique, Michael and Bever [29] and Kohn and Philibert [30] studied Al-Cu 
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alloys, Hammar and Grumbaum [31]and Doherty and Melford [32] investigated low-

alloy steels, while Liu and Kang [33] studied Al-Mg alloys. The cooling rate prevailing 

in all these experiments varied from 0.01 K/s to 160 K/s. In this range, a decreasing 

cooling rate was found to be associated with a decrease in micro-segregation.  However, 

some studies found that micro-segregation levels might decrease by increasing the 

cooling rate above a certain threshold value (for medium cooling rates) [34]. In contrast 

to the concentration homogenization, increased solidification rates also lead to reduced 

Secondary Dendrite Arm Spacings (SDAS), which then reduces the required diffusion 

distance for homogenisation during cooling in the solid state. The net result can 

therefore be a balance between these two effects [35]. Faster cooling leads to finer 

dendrite arm spacings: of themselves the shorter distances between the arms (and hence 

positive and negative regions of the coring profile) should encourage homogenisation, 

and this is indeed what is observed during solid state heat treatment. However, just at 

the end of solidification, faster cooling and finer SDAS is associated with increased 

micro-segregation, with the reduced time for homogenisation outweighing the reduced 

distances during solidification. 

The second technique used to study the cooling rate effect on micro-segregation 

uses directionally solidified samples weighing from a few kilograms to 100 kilograms. 

A different cooling rate is found to have a different heat extraction rate depending on 

the location from the surface to centre. It was found that micro-segregation severity 

decreases toward the surface as the cooling rate increases. However, it should be noted 

that the cooling rate for the reported studies is usually less than 200 K/s, which falls 

below the rate associated with a maximum in the micro-segregation severity [34].  
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2.4 Previous studies on the effect of cooling rate on 

microstructure (or previous studies on microstructure) 

The effect of steel microstructure and cracks on mechanical properties of steel 

and its machinability have become a central issue for many researchers since the middle 

of the 20th century. Previous studies have attempted to explain: (i) how the steel 

microstructure is formed during the solidification process; (ii) how the steel 

microstructure affects its mechanical and machinability properties [1]. 

The rapid solidification processing is remarkable in terms of the refinement of 

solidified microstructure, the scale of segregation, formation of metal stable phases and 

morphological changes [36]. In contrast to rapid solidification, conventional 

solidification of billets or blooms as cast usually contains a coarse or non-uniform 

microstructure, more degree of segregation depending on the steel grades and the 

solidification process parameters. Various  methods have been used  to refine and 

homogenize the as-cast steel microstructures: (i) increasing the heat extraction rate (or 

cooling rate), (ii) applying electromagnetic stirring (EMS) fields, (iii) addition of grain 

refining elements, (iv) applying liquid core reduction to break the dendrite arms and 

homogenize the solidification microstructure [37]. 

A considerable amount of literature has examined the relationship between 

additive elements in steel microstructure and its mechanical properties and 

machinability. Adding additive elements to liquid steel can generate inclusions in  the 

solidified structure, and change the defect density during secondary cooling process [1]. 

Howe [38] has developed a model of micro-segregation and inclusion development 

during the casting of steel, in which the enrichment of element in the residual liquid 

during solidification is identified as a major contributing factor to the fitness of the steel 

and as a major influence on the precipitates and oxide inclusions. This model allows 
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prediction of the maximum inclusion size forming in the mushy zone across the 

thickness of the billet or bloom section. 

The formation of microcracks and cracks are more serious than other defects 

occurring during solidification. The  origin of cracks has been classified by 

Brimacombe and Sorimachi [39] into internal and surface cracks. Uneven heating may 

cause  surface cracks leading to  longitudinal and transverse facial cracks [40]. 

Among the potential defects occurring during solidification, microcracks and 

cracks are more serious. The underlying causes of cracks are classified into two main 

categories: internal and external forces. Internal and surface cracks debase the steel 

quality during solidification, these cracks are formed by combination of tensile stress 

and metallurgical embrittlement [1]. 

Surface cracks initiated in the mould can appear near both the corner regions and 

midface [13]. There are various types of surface cracks, such as transverse corner or 

transverse surface, longitudinal midface or longitudinal corner and star cracks, as shown 

in figure [1]. Brimacombe et al., [41] show that transverse surface and corner cracks are 

formed when the surface temperature is within the low ductility range of 700-900 ℃. 

These cracks are formed initially in the mould where axial tensile stresses are induced 

by spray cooling during continuous casting slab. Pelak et al [42] show that longitudinal 

cracks are formed in the mould and they are propagated and elongated in the slab 

surface as a result of thermal and mechanical stress. The contributing factor to 

longitudinal cracks includes the chemical composition and purity of steel, the casting 

flux quality, the mould oscillation frequency and the secondary cooling intensity. 

Internal cracks initiated at the solidification front often appear near the corners, 

at the centreline or diagonally between opposite corners. There are various types of 

internal cracks, such as midway, centreline cracks and centre segregation, as shown in 
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figure 2-6. Brimacombe et al [41] show that midway cracks can be caused by excessive 

spray cooling or insufficient spray length which lead to the heat to transfer backward to 

the surface, generating  tensile stresses beneath the surface and in  the solidification 

front. The small cracks which are formed in the mould can be caused by insufficient 

spray cooling below the mould leading to several defects such as midface cracks, triple 

point cracks, centreline cracks and centre segregation. Triple point cracks occur due to 

the rapid cooling or too low cooling of side surfaces and poor equipment conditions 

[43].The increase in  temperature of the tundish causes an increase in  the length of 

cracks. Cracks in the microstructure of steel can also be caused by  different phase 

transformations during the cooling process [1]. 

 

Figure 2-6: Surface cracks and internal cracks detect in continuous cast steels [1] 

Many studies have shown that the solidification parameters play an important 

role in the characterization of defects. The tundish temperature controls axial porosity of 

the steel [1], where using a low casting speed, gravity accumulates the inclusions 

unevenly making the microstructure vulnerable to fracture by decreasing the energy 

absorbed in the microstructure [44], [45].  The electromagnetic stirring method has 
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widely used during continuous casting of steels, in the mould [46], [47] or in the 

secondary cooling zone [48], [49]. This technique creates a narrow negative segregation 

zone (white band) and temporarily eliminates constitutional supercooling [50]. 

 Various parameters affect the cooling rate, including quenchant type, quenchant 

temperature, agitation velocity, viscosity, agitation type, polymer foaming, polymer 

degradation, grain nature, grain size, geometry, and carbon content  [51]. For the 

purpose of this study, it would be helpful to review the previous work on the several 

important features of cast steel that affect the properties of the product. These features 

include secondary dendrite arm spacing, grain size, inclusions and segregation. The 

single most important feature of the casting process is solidification rate and the 

determination of optimum cooling rate [52] during and after the solidification process. 

 The subject of optimum cooling rate is related to the topic of quenching. 

Quenching allows for the most rapid cooling rate with a quenchant such as water, air, 

oil, salt and other chemical compounds [53]. Liquid quenchants are often used  in the 

industry which supplies the quenching process with homogeneous and easily 

controllable heat transfer from the hot cast body [52]. Much of this technology is not 

appropriate to large scale continuous casting. Also, even if the surface is quenched at a 

high rate, the centre of a large cross-section will still only cool slowly. 

 During the cooling process, the austenite temperature may result in different 

phase transformation sequences such as  ferrite, pearlite, bainite and martensite [54]. A 

large body of literature has discussed various aspects of the solid-solid phase 

transformation. For example, austenite transforms to ferrite at a slow cooling rate and 

ferrite or martensite under high cooling rate [1]. And Miller [55] found that the amount 

of martensite in the final microstructure depends not only on the carbon content but also 

on intercritical phase transformation temperature and the cooling rate. 



23 
 

 The desired solidification structure has been the subject of many previous 

works. Many mathematical models have been developed to simulate solidification 

structure formation in a casting and an ingot. However, the application of the models to 

steel is problematic for two main reasons; First, the continuous casting process often 

applies the electromagnetic stirring, which makes it difficult to model solidification 

structure formation in steel. Second,  the complex phase transformation occuring during 

the solidification process, such as peritectic reaction and subsequent peritectic 

transformation, make it difficult to  model the solidification structure formation in steel 

[1]. In order to avoid the difficulty in modelling peritectic transformation, Yamazaki et 

al., [56] chose an Fe-0.7%C binary alloy without the peritectic reaction. They carried 

out the simulation of solidification structure formation during the continuous casting 

process with and without electromagnetic stirring. In the case without EMS, the 

columnar crystals were grown from the chill zone to the centre of the billet, and a small 

region of equiaxed grains was observed. In the case involving EMS, a solidification 

structure similar to the one observed in a larger equiaxed zone could be simulated. 

 It is well known that rapid solidification (cooling rate in the range of 10
3
 – 10

7
 

K/s) can produce more uniform and refined microstructure as compared to conventional 

solidification. Pryds et al., [57] examined the effect of cooling rate on a low carbon steel 

Fe-Cr alloy. According their experimental results, they found that columnar ferrite 

grains form in the matrix structure over a larger cooling rate variation range. Increasing 

cooling rate resulted in a decrease in the size. 

Choudhary et al., [5] investigated the morphology and segregation in 

continuously cast high carbon steel. A chill zone was found in the macrostructure of 

billet samples, which is a characteristic of rapid solidification of liquid steel at the 

meniscus. Beyond a short distance from the surface, they also observed a rapid 

coarsening of the columnar structure which occurs as a result of a reduced heat 
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extraction. Moreover, they observed a fully equiaxed structure toward the centre due to 

a reduced cooling rate toward the centre. They also found that carbon enrichment of 

liquid may have an influence on the size distribution of the dendrite zone, reducing 

SDAS in the equiaxed zone.  

2.5 Previous studies on secondary dendrite arm spacing 

(SDAS). 

The quality and properties of the as-cast steels are mainly related to the 

microstructure developed during solidification process [58]. Some of the main factors 

affecting the development of the grain size and grain morphology (i.e. columnar, 

equiaxed) are now well known. These include solidification rate or heat extraction rate, 

the amount of alloying elements and solidification conditions. The secondary dendrite 

arm spacing is a significant factor that affects the microstructure. For ingots or castings, 

improvements in mechanical properties of alloys are made by refined SDAS. The SDAS  

affects the industrial semisolid structure during solidification and how to predict the 

SDAS of the alloyed steels could be very useful for optimizing the properties of the 

alloyed steels and for designing new steels [59]. 

There are many models that could be used to predict the SDAS which consider 

the effect of coarsening parameter M and local solidification time 𝑡𝑓  on binary steels 

[60] and multicomponents steels [16], some of which include a geometric factor B 

[61].While  there has been a growing literature on peritectic transformation during 

solidification [18],  there are  few models which allow researchers to predict SDAS with 

larger range of carbon content and alloy addition [62], [2]. However, these models are 

based on an empirical relationship with a best fit for range of carbon content and they 

do not take into account variation in coarsening parameter M and geometric factor B. 

This study aims at developing a new model that takes into account the effect of a 
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varying coarsening parameter M, geometric factor B on SDAS and peritectic 

transformation during solidification with a large range of carbon content of 0.08-1.4 %. 

The following 𝜆2 can be expressed as a function of a geometrical factor B, the 

coarsening parameter M and the local solidification time 𝑡𝑓  for binary steels. 

   λ2 = B*M*tf
1/3

    (2-1) 

The growth of the dendrite morphology or arm spacings depends on the growth 

of the tip region as shown in figure 2-7.  

  

Figure 2-7: Grow of the tip of dendrite [63] 

The planar growth front is unstable. The effects of curvature would be a major factor in 

the final, actual dendritic shape, but minor regarding whether it actually goes dendritic 

or not. If we imagine a pure metal growing into liquid, being at the liquidus temperature 

at the interface but then with a positive temperature gradient, any random perturbation 
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of the growth front will find itself in hotter liquid and melt back; the planar front is 

therefore stable.  However, if it is growing into supercooled liquid (but remembering the 

interface is still at the liquidus / local equilibrium, i.e. with a negative temperature 

gradient into the liquid), any perturbation ahead of the otherwise planar growth front 

would find itself in cooler/sub-liquidus liquid, and would therefore be able to grow 

faster than the rest of the growth front. Therefore the planar front is unstable, and will 

break down into "fingers" of solid shooting out into the liquid and, eventually, dendrites 

will form. 

In the case of an alloy; normally, there will be a positive temperature gradient, so how 

can dendrites form? Why would a planar interface be unstable?  As in figure 2-7we can 

see that, not only is there a temperature gradient but there is also a composition 

gradient. This varying composition will have a varying liquidus temperature 

accordingly. If a random perturbation is in a local liquid which has a 

liquidus temperature above the local temperature, despite the positive temperature 

gradient ahead of the otherwise planar front, i.e. so-called "constitutional supercooling", 

it will grow and hence the planar front will break down, then dendrites will form. 

Suppose steel of composition 𝐶0 is directionally solidified from temperature 𝑇1 and 𝑇2, 

the decreasing liquid composition influences the equilibrium melting temperature, 𝑇𝑙 , 

which is shown by the solid line in the lower, left diagram of figure 2-7. If the actual 

temperature, 𝑇𝑞 , shown by the dotted line, is less than 𝑇𝑙 , therefore the liquid will be 

undercooled, and possibly dendrites will be formed [63] (the dendrites are very hard to 

avoid during continuous casting of steel due to significant levels of impurities). 

In the case of steel, the possibility of kinetic undercooling has not been included 

as steel always exhibits a low entropy of melting, i.e. negligible driving force is needed 

to rearrange the liquid‟s atoms into the simple ferrite or austenite crystal structures. The 
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formation of secondary dendrite arm spacing depends  on solidification rate or local 

solidification time [63], dendrite arm coarsening [64] and geometric factor [61] for both 

columnar and equiaxed zone. The local solidification time is defined as tf, the time taken 

at a given location /depth in a steel bloom, billet and slab, for the temperature to drop 

from the liquidus to the non-equilibrium solidus [60]. The local solidification time is the 

main parameter controlling the SDAS in alloy steels. Many SDAS models assume a 

constant solidus temperature. However, in real continuous or ingot casting, the solidus 

temperature varies between the surface, mid way and centre during solidification, with 

differences in solidus temperature varying with the casting size, and casting conditions. 

SDAS should influence the extent of micro-segregation, and hence change the solidus 

temperature. In this research, we calculate the solidus temperature across the thickness 

using DICTRA software and QSP software.  

 

Figure 2-8: Four different models for isothermal coarsening: (1) radial 

remelting, (2) axial remelting, (3) arm detachment, (4) arm coalescence [65] 
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Figure 2-8 shows four different models for isothermal coarsening at different 

stages of solidification,  beginning, intermediate and  final stages: (i) model 1 shows 

radial remelting of a small arm and thickening of larger ones [66], (ii) model 2 shows 

remelting from tip to root of small arms [66], (iii) model 3 shows remelting of roots of 

small, tear-shaped arms [67], (iv) model 4 shows coalescence between arms [68]. The 

four models are undergoing the same process to minimize the interfacial energy of the 

dendritic microstructures. These models illustrate the overall complexity of dendritic 

microstructures [65, 69].  

Rather than model a comprehensive theory of coarsening of dendrites,  studies 

focus on measuring the secondary dendrite arm spacing, λ2, as it is easier  to measure in 

the laboratory [65]. A relationship exists between the secondary dendrite arm spacing 

and the time evolution of the secondary arm spacing during coarsening [70], [63] 

commonly expressed as: 

  λ2 tf
1/3

     (2-3) 

Factors governing dendrite arm spacing, including competitive growth and 

ripening mechanisms are considered dominant at low solid fractions [71], [72]. Arm 

coalescence may become more effective  at higher solid fractions if a coarsening 

mechanism continues to occur [73], [59], [74]. Some studies  suggest that thinner 

secondary arms would melt, and the primary mechanism for the coarsening process is 

increasing in the diameter of thicker branches [5], [75]. At the  theoretical level, Voller 

and Beckermann [76] showed that coarsening could be included in any micro-

segregation models by adding an additional term to the Fourier number 𝛼𝑖  (where 𝛼𝑖  is 

a Fourier number for solute element i, αi = 
DS ,i tf

X2 ) in a one-dimensional micro-

segregation model αc = 0.1 (where αi
+
 = αi + αc),  the smaller secondary arm spacing 

actually exists during solidification before the coarsening process [2]. The shape of the 
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cooling curve is shown to have an effect on micro-segregation level, with the effect of 

coarsening at the final stage of solidification [77]. Some models have extended the 

coarsening process to  the case of peritectic transformation [78]. 

The effect of coarsening process during solidification on the final as-cast 

structure and the amount of undercooling has been studied by Kattamis and Flemings 

[79]. Using iron and nickel base alloys they concluded that the dendrite structure 

coarsened with time and that the secondary dendrite arm spacing decreased with 

increasing the amount of undercooling, and that λ2 also increased with increasing the 

distance toward the centre (and hence time for coarsening). The dendrite shapes were 

considered to be either cylindrical or spherical in their study, depending on the amount 

of undercooling.  The authors also conducted similar experiments on the effect of 

coarsening mechanism on secondary dendrite arm spacing using  magnesium-zinc 

alloys [80], and aluminium-copper alloys The authors proposed two idealized models  

for coarsening during solidification: (i) A dendritic arm is thinner than the surrounding 

thicker arms, and suggests that the melting of the thinner arm occurs by means of solute 

transport to the thicker arms, which leads to increasing the secondary dendrite arm 

spacing, (ii) a tear-shaped dendritic arm situated between cylindrical arms, which 

suggests the tear-shaped arm is melting off at its roots, by transport of material to its tip, 

and eventually pinches off [65] as shown as figure 2-9.  
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Figure 2-9: Separation of dendrite arm in NH4Cl [65] 

The type of dendritic microstructure is either columnar or equaxed zone,  

depending  on how heat is extracted [69]. Equiaxed grains have a tendency to grow 

dendritically for two reasons; (i) the thermal profile of the equiaxed grains melt at a 

higher temperature than the surrounding melt causing perturbations to grow 

preferentially, (ii) addition of alloying elements help the formation of perturbations 

which grow and form dendrites [59]. 

 

2.6 Modelling dendrite arm growth in multicomponent alloys 

While the prediction of secondary arm dendrite spacing has been much studied 

for binaries using experimental measured data [62], [81], there are fewer studies on 

multicomponent steels. The expression of secondary dendrite arm spacing is a function 

of local solidification time and dendrite arm coarsening parameter [64], [60], [82]. Few 

studies have examined the effect of multicomponents on micro-segregation and dendrite 

arm coarsening in solidified steels that contain elements that cause secondary dendrite 

arm spacing to be different from surface to centre (for big sections).  
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Kirkwood [60] investigated a simple model for dendrite arm coarsening. He 

proposed the following equation of secondary arm spacing in the case of short times: 

   0
3 = −

128DσT

Hm C l (1−k)
t0 = Mt0   (2-4) 

When the eutectic reaction occurs at the end of solidification, and liquid of 

composition C0 is in the interdendrite at tf, the proposed equation of secondary arm 

spacing can be written as [60]. 

   f
3 = −

128DσTln (Ce /Co

Hm Cl 1−k (Ce−C0)
tf = Mtf  (2-5) 

From figure 2-10, we can see that 2 is a function of local solidification time 

plotted versus secondary arm spacing in Al-4.5%C alloys. The theoretical prediction of 

equation (3) follows closely empirical predictions based on the experimental data. 

  

Figure 2-10: Secondary dendrite arm spacings plotted against local solidification 

time [60] 

Beaverstock [64] was first to consider the effect of multicomponents on 

secondary dendrite arm coarsening and micro-segregation, extending the binary model 
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of Kirkwood. Based on the Gibbs-Thomson relationship (dT = KT/H), the 

superheating of the shrinking tip decreases by solute levels (dt =  midCli ). He obtained 

an equation for multicomponent secondary arm coarsening. 

  2
2d2 = B Mi dt      (2-6) 

 where Mi is an isothermal coarsening parameter for solute i 

                      B is a geometric factor which is function of fraction solid 

  t is time 

  Mi =
σTD li

H(ki−1)m i C li
 B =

4

fs
2(1−fs )

 

Beaverstock [64] also found that dendrite arm coarsening was controlled by 

elements having a partition coefficient around unity. In steels, major alloying elements 

are manganese, chromium, and nickel. Other studies also found that carbon has 

significant effect on secondary dendrite arm spacing [2], [62].  

Beaverstock‟s model and Kirkwood‟s model have the same expression for 

dendrite arm coarsening. The main difference between these two models is the 

geometric factor B in Beaverstock‟s model which is a function of solid fraction and it 

has been less studied.  

Pierer and Bernhard [62] studied the influence of carbon on secondary dendrite 

arm spacing in steel. Their model has the expression of 2 = K*𝑡𝑓
1/3  

for steels having a 

larger range of carbon content (0.08-0.7%). Finally, they proposed the following 

empirical relation:  

  2(μm) = (23.7 – 13.1wt.%C
1/3

)tf
1/3

   (2-7) 

The expression of K is made a function of carbon content; equation (2-7) shows 

that increasing carbon content decreases the value of 2, shown as figure 2-11. 
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Figure 2-11: Secondary dendrite arm spacing is function of local solidification 

time [62] 

A comparison of predicted 2 with the measured experimental data indicates a 

high R-squared (0.92-0.98) for a large range of carbon content of 0.08-0.7%. K values 

decrease from 18.2 to 12.4 when carbon content increases. 

2.7 Previous studies on solute diffusion during solidification 

and cooling  

Several attempts have been made to predict the transformation occurring during 

alloy solidification, for example as in the continuous casting process. The modelling of 

micro-segregation has emerged as a  major field in prediction assuming finite or 

complete diffusion in the liquid, incomplete diffusion in the solid phase, dendrite arm 

coarsening and multi-components [83]. Micro-segregation of an alloy during 

solidification is described as the mass diffusion or convection controlled redistribution 

of rejected solute elements at the scale of the solid-liquid interface [83]. Beckermann et 

al. [84] investigated the complex interactions taking place among various physical 

phenomena which occur on different length scales. The microscopic mechanisms to be 
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incorporated in the dendritic solidification include nucleation, back diffusion, growth 

kinetics and the dendrite morphology [85]. 

Such models assume a representative volume element or cell between a 

secondary dendrite arm. This model arises from the conservation of solute at the 

interface advancing: it means that the amount of solute which is rejected from the 

interface must equal the extra solute accommodated between the residual liquid and the 

solid shown as figure 2-12. 

 

 

 Figure 2-12: Schematic concentration/fraction plot showing the key components 

for the solute balance equation [86]. 

The existing solute diffusion models for dendritic solidification are classified 

into three distinctive groups [87]: (i) local-equilibrium models which do not incorporate 

nucleation and undercooling; (ii) solute diffusion models for columnar growth which 

incorporate dendrite tip undercooling; (iii) solute diffusion models for equiaxed growth 
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the interface 
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which focus on coupling the growth kinetic of dendrite tips to the evolution of an 

equiaxed grain. 

Spittle et al. [88] used a Monte Carlo method to develop a computer model for 

simulating dendrite solidification. A cellular automata (CA) coupled with a macroscopic 

calculation of temperature were used by Rappaz and Grandin [89] in order to simulate 

grain structure formation during solidification. Yang et al. [90] investigated the 

measured composition profile by a Monte Carlo simulation approach; in their study, two 

aspects of the method was examined. The first method were associated with the random 

sampling, such as the effect of the random distribution of a limited number of sampling 

points, and the second was the scatter in composition measurement. 

Solute diffusion was studied for the direct simulation of solidification by phase-

field methods and other diffuse interface approaches [91]. By introducing an order 

parameter  (phase field), that may assign a value of  = 0 for the solid phase and  = 1 

for a liquid phase. A continuous variation of the order parameter between the 

equilibrium values represents the transition between the solid and liquid phase. 

Caginalp [92] applied a phase field model which is considered useful to treat 

macroscopic aspects of phase transformation for solidification of pure material [93] and 

later, extended for multi-phase and multicomponent steel by Sakai [93]. 

Beckermann et al [94] proposed a novel diffuse interface model which is 

presented for the direct numerical simulation of microstructure evolution in 

solidification processes. This model involved convection in the liquid phase. Phase-field 

theories are the solidification front treated as a moving interface in the diffuse 

approximation. He investigated two examples which involve solid/liquid phase-change: 

(i) both the interface curvature and the flow permeability evolve the time for coarsening 
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of mush of a binary alloy, and (ii) dendrite growth in the presence of melt convection 

with emphasis on the operating point of the dendrite tip.  

In the case of local equilibrium solidification models (i.e. at the interface), the 

primary objective of modelling is to  investigate the effect of back diffusion in the solid 

while assuming that  the liquid  is solutally well mixed [95], [96], [97]. Depending on 

the extent of solute diffusion in the solid, three  basic analytical equations have been 

obtained; (1) the Lever rule model where complete diffusion to equilibrium of all 

alloying elements in both the liquid and solid phases is assumed; (2) The Scheil 

equation which assumes no solute diffusion in the solid phase, complete solid diffusion 

in the liquid phase, and local equilibrium at the solid-liquid interface; and (3) the Brody-

Flemings model which assumes complete diffusion in the liquid phase and incomplete 

back diffusion in the solid phase as well as a fixed dendrite arm spacing as a plate 

dendrite. 

More specifically, the Lever rule model can be written as: 

CL,i =
C0,i

1−(1−ki )fs
      (2-8) 

Where  

CL,i  denotes the liquid concentration of a given solute element at the solid-liquid 

interface, wt.% 

C0,iis the initial liquid concentration, wt.% 

ki  is the equilibrium partition coefficient for element i, wt.%/wt.% 

fs   is the solid fraction. 

The Lever rule underestimates the degree of micro-segregation, especially for 

the interfacial / slower diffusing elements. The underestimation becomes progressively 

more marked towards the end of solidification [2]. 
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Under the Scheil equation, CL,i is expressed as: 

CL,i =
C0,i

(1−fS )1−k i
       (2-9) 

However, this overestimates the degree of micro-segregation, and the estimation 

of the final solute concentration under this category of models is problematic since CL,i  

becomes infinite at fs   = 1. Sarreal et al., [98] found that the Scheil model [99] is only 

applicable under very rapid solidification processes such as laser welding with the 

cooling rate exceeding 10
2
 k/s [2]. 

Under the Brody-Flemings model CL,i  is expressed as:  

CL,i = C0,i(1 + fS(βiki − 1))(1−ki )/(β i ki−1)   (2-10) 

Where 
i  is known as a back diffusion parameter, which should be restricted to 

values between zero and one depending on the nature of mass diffusion in the solid 

phase [6]. In the Brody-Flemings model [100] 
i  is expressed a function of Fourier 

number of solute element i (αi): 

 
i  = 2αi        (2-11) 

Where αi is in turn specified as:  

 αi = 
DS ,i tf

X2        (2-12) 

where DS,i (m
2
/s) denotes the diffusion coefficient of solute element i in the solid 

phase, tf   (s) the local solidification time from liquidus to solidus temperature and X  

(µm) the half of the secondary dendrite arm spacing or the length scale of the micro-

segregation domain. 

The key feature in the micro-segregation models is the back diffusion parameter, 

which depends on the nature of mass diffusion in the solid phase, this parameter takes 

values between 0 as no mass diffusion in the solid phase and equal 1 as complete mass 
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diffusion in the solid phase [83].The problem with Brody-Flemings model is that for 

large values of α, 
i  exceeds one. 

When discussing the balancing factors for increasing/decreasing micro-

segregation, Brody and Flemings showed that for calculations with a fixed dendrite arm 

spacing, if that spacing was proportional to the square root of time then the degree of 

micro-segregation at the solidus would be the same. More recently, Howe showed that 

with inclusion of dendrite arm coarsening, if the coarsening law was with the square 

root of time, then likewise the degree of micro-segregation would stay the same 

regardless of the heat extraction (cooling) rate. Moreover, the observed increase of 

micro-segregation with increasing cooling rate meant that the coarsening law exponent 

had to be below a half (the typically quoted value of one third) [101]. 

More recently, Ohnaka [102] has modified the Brody-Flemings model by 

rewriting the expression for the back diffusion parameter as follows: 

 i = 2αi /(1+2αi)      (2-13) 

The Ohnaka model uses approximate solutions of the diffusion equation 

applying for plate dendrites, which assumes a quadratic solute concentration profile in 

the solid phase [2]. 

Clyne and Kurz‟s [103] modifies the back diffusion parameter as follows: 

 i = 2αi[1-exp(-1/αi)] – exp(-1/2αi)   (2-14) 

The above models make simplifying assumptions for the back-diffusion term. 

Kobayashi [104] obtained a true solution for micro-segregation which assumes 

incomplete back diffusion in the solid phase, complete diffusion in the liquid phase, 

constant diffusivity, constant partition coefficient, and a parabolic solidification rate. 
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The Kobayashi and Clyne-Kurz or Ohnaka models all assume parabolic growth 

and constant diffusivity. When the value of ki and αi are low, the Kobayashi model 

shows significantly more segregation, implying that the Clyne-Kurz and Ohnaka models 

are seriously wrong. When the values of k and α are high, Kobayashis‟ results are  

similar to those of the Clyne-Kurz or Ohnaka model [86]. 

  

Figure 2-13 : Comparison of Kobayashi‟s result with other equations for the 

evolution of the segregation ratio with fraction solid: phosphorus in ferritic iron, 

k = 0.13, α = 0.4 and D = 4x10
-11

 m2/s [86] 

Figure 2-13 provides a comparison of Kobayashi‟s results with other equations 

for the evolution of the segregation ratio. The Clyne and Kurz‟s results are almost the 

same as the results of Ohnaka. Kobayashi‟ true solution comes close to the Clyne and 

Kurz‟s  result up to about 90% fraction solid, but it rises rapidly to a Cs  /C0   ratio of 4.48 

at fraction of solid equal to 1, as compared to 1.8 in the Clyne and Kurz model [104]. 

Also, regarding the Clyne-Kurz and Ohnaka -v- Kobayashi, debate Howe [86] has 
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shown that if the restriction to parabolic growth is removed, then a simple model based 

on a back-diffusion parameter can then be much closer to the Kobayashi solution. 

However, this does require an iterative solution rather than being represented by a single 

equation. 

Howe [78] has developed a solidification and micro-segregation model that 

operates far faster than others available, which is a fully numerical models but with a 

more accurate basis than the other models available, which use analytical 

approximations. 
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Chapter 3: Experimental Procedure 
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3.1 Materials 

The continuously cast high carbon bloom steel used in this study was supplied 

by Tata Steel Europe from the Scunthorpe steel plant. The bloom steel sample had 

dimensions of 283x230 mm and was cast at a target casting speed of 1.3 m/min. The 

nominal compositions of the as-cast material are given in table 3-1. 

Table 3-1. Chemical composition of high carbon bloom steel (wt.%) 

C Si Mn P S Cr Ni Al Cu N 

0.72 0.24 0.63 0.016 0.018 0.02 0.02 0.001 0.033 0.004 

 

3.2 Secondary dendrite arm spacing measurements 

A longitudinal section from the surface to centre was cut off in order to measure 

secondary dendrite arm spacing. After cutting samples of 10 mm thick from the surface 

toward the centre following the nodal positions of the macro-model results, all samples 

were mounted using a mounting press and were prepared using standard grinding 

procedures beginning with180 grade silicon carbide paper and finishing with 1200 

grade silicon carbide paper. 

Once all the samples were ground, the samples were washed in water followed 

by alcohol and dried before being polished. The polishing process used first 3 and then 

1 micron diamond paste in order to produce a mirror-like finish on the sample without 

any scratches. 

Once all the samples were polished, the samples were washed in alcohol, dried 

and then the samples were left to sit in air for 24 h before being etched..All samples 

were etched with Oberhoffer‟s reagent which had a composition of 500 ml H20, 500 ml 

Ethanol, 1g CuCl2, 30g FeCl3, 50 ml HCl, 0.5g SnCl2. Oberhoffer‟s reagent was used 

because of the excellent results that can be obtained.  
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Figure 3-1: High carbon bloom steel Dimension of 0.72%C, 283x230 mm 

The microstructure of the high carbon steel was then examined and 

photographed with an optical microscope (POLYVAR) in order to measure the 

secondary dendrite arm spacing values at different bloom depths. For the secondary 

dendrite arm spacing standard measurements, the measurements were made close to and 

parallel with the primary dendrite branches. At least four or five secondary arms per 

primary arm were counted within each bloom depth, and at least eight or nine 

measurements were recorded in order to get the average and standard deviation SDAS 

of each position [64] as shown in figure 5-2. The results of the secondary dendrite arm 

spacing measurements are reported in table 5-1. 

3.3 Modelling method 

3.3.1 QSP Introduction  

      QSP software was developed by Howe [105], and is a simple computer model of 

solidification at the micro-scale and the accompanying micro-segregation; this model is 

expected to be operated much more quickly than the available numerical models [105]. 

QSP software is now readily available and is free for Universities collaborating with 
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Tata Steel. QSP software allows prediction of the residual liquid composition and 

temperature as solidification proceeds. It is used for carbon and low alloy steels 

containing C, Si, Mn, P, Cr, Mo, Ni, Nb, V, Ti, O and N. The software has been 

validated up to 1%C and other major alloying elements totalling up to 5% [105].  The 

QSP software is a more user-friendly window version which is now available for use as 

a tool for various calculations such as [105]. 

1. Solidification pathways, notably with respect to peritectic transformation 

2. Temperature range and fraction solid profile across the mushy zone 

3. Extent of micro-segregation during and at the completion of solidification 

4. Solute homogenisation and segregation during cooling 

5. Propensity for TiN inclusion  from the residual liquid 

6. Propensity for NbCN precipitation from the enriched solid 

The software assumes a 1-D representative cell of half the dendrite arm spacing 

(assuming planes of symmetry on either side of this region) for interdendritic 

solidification, as illustrated in figure 2-12) for the case of single phase solidification. 

The key equation for the micro-segregation model is given by the following solute 

balance [106]: 

  .    (3-1) 

where CL is the liquid concentration at a given time, k is the partition coefficient 

(solid concentration/ liquid concentration), r is distance solidified across the cell, the 

cell width being r0, D is the solute diffusivity, dCS/dr is the concentration gradient in the 

solid; a raised dot signifies the time derivative and the subscript Int. signifies at the 

solid/liquid interface. 
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In equation 3-1, the three terms represent: (i) the rate of solute rejection as the 

interface advances, (ii) the rate of solute acceptance by “back diffusion” and (iii) 

enrichment of the residual liquid. 

In QSP software, if a solution is required, it does not require the actual 

calculation of the solute profiles across the solid. Especially, the gradient at the interface 

can be found by re-writing the solute balance as follows: 
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The first term 𝐷. <
𝑑𝐶𝑠

𝑑𝑟
>𝐼𝑛𝑡  is often approximated (Brody/Flemings et al) by the 

second term (D times the change in interface concentration with distance).  

This becomes progressively poorer an approximation the more "back diffusion" there is: 

it is correct for Scheil behaviour, but it is not good for equilibrium behaviour. However, 

where it is good enough, it allows us to progress with an analytical formulation and thus 

to a solution to the solute balance equation. It equals the third term in the string of terms 

covered by equation 3- 2. The third term equals the fourth term, if the fourth term didn't 

have the ( ) underneath. However, by approximating it by what is actually 

written as the fourth term in equation 3-2 (hence the arrow), we avoid the big problem 

caused by the first approximation:  with this second approximation, when D gets very 

large as for approaching equilibrium, this part of the solute balance now tends to 

the correct term again.  So, with this second approximation, it is still accurate enough 

for near-Scheil / low D cases ~ ( ) is essentially 1, and for very high D cases, (

.

.,
.

Int

IntS

dr

dC
D

rr
D

1

rr
D

1
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) tends to 1, which is correct for equilibrium. The remaining two terms are 

straight algebra, i.e. equations, not further approximations, with the definition of A. 

This term is correct for use within the solute balance for both very low and very high D 

solutes, and pending experimental verification, therefore might well be reasonable for 

in-between D cases also.  

For the case of a single phase solidification, the solute balance becomes (by 

substituting equation 3-2 to equation 3-1): 

       LLLL CrAkrCrrCArkrkC   11 0

.

0

.

            (3-3) 

Where A is back diffusion parameter varying from 0 for Scheil, to 1 for the 

Lever Rule behaviour. 

        (3-4) 

In equation 3-4, the value D is 10
-9𝑚2/𝑠, for convenience within the QSP software, 

these are multiplied by 10
12

 to be in units of µ𝑚2/𝑠 for calculation of the A parameters, 

because 𝜆2 is similarly in µm units (see appendix 7). 

For multicomponent steels, each solute has its specific solute balance equation as above, 

but its growth rate is the same, and is controlled by simultaneous solution with the 

thermal balance equation: 

 TfHQ s
    where iLiL CmT ,,

                         (3-5) 

 The heat extraction rate, Q , is imposed by the user, H is the latent heat of 

solidification, fs is the fraction solid, is the heat capacity, T is the temperature in K, 

and mLi is the liquidus slope for the solute i. 

rr
D

rr
D





1

1.0

1.0






rrD

D
A


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The major benefit of this software is its ability to predict micro-segregation in 

peritectic alloy systems [23]. The three phase peritectic reaction is encountered with 

carbon and low alloy steels. The assumption for the rapid solution scheme was that 

carbon dominated the relative velocity between austenite / ferrite and austenite / liquid 

interfaces shown in figures 3 -2 and 3. 

Figure 3-2: Schematic section of a peritectic phase diagram 
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Figure 3-3: Schematic solute balance for carbon during the peritectic, 

maintaining constant concentrations in each phase. 
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Fig . 2 : Schem atic section of a  peritectic phase diagram  
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The QSP model has the ability to handle steels which deal with all or part of the 

peritectic transformation [106]: 

 L  L +   L +  +   L +   ,    (3-6) 

where 𝐿 is liquid,  is ferrite (bbc) and  is austenite (fcc).  

Howe‟s model [106] considers the equilibrium (complete mixing) cases for 

carbon and a “passenger” element, upon a step advance of the austenite phase based on 

both the liquid and ferrite.  The solid lines in figure 3-4 represent “before” and the 

dotted lines represents “after”. The detail for the solute balance was described in 

Howe‟s paper [106].  

 

Figure 3-4: Schematic solute balances with complete mixing / infinite diffusivity 

In the course of the peritectic reaction (the essence is that carbon is dictating what the 

phase proportions are during the peritectic reaction, and the slow-diffusing elements just 

react to this), the passenger element cannot also keep constant phase concentrations 

with the relative interface advance being dictated by another element. Indeed, in the 

“passenger” element case with this element exhibiting lower concentrations in the 

austenite than the ferrite, i.e. being a ferrite stabiliser, it would not of itself exhibit the 

three phase reaction at all [106]. 



49 
 

Once composition and heat extraction rate is entered, the calculation is 

performed, and assumed to start when the liquidus temperature has been reached. Two 

cases will be run with secondary dendrite arm spacing; the first case runs the program 

with a constant dendrite arm spacing, a zero should be entered in the data / text box for 

the arm coarsening coefficient, and final value of secondary dendrite arm spacing in the 

data / text box. The second case runs the program with a coarsening dendrite, and a 

coarsening coefficient M0   (µm/s
1/3

) is entered in the data / text box. 

The expression of secondary dendrite arm spacing is as follows: 

  
𝜆

2
= 𝑀0. 𝑡1/3                                         (3-7) 

Micro-segregation calculation: 

 

Figure 3-5: User interface of the QuikSeg Peritectic (QSP) program 
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In this example, high carbon bloom steel was calculated at the 11.5mm depth. 

The solidus has just been reached, the calculated element concentrations in the liquid, 

core gamma and max solid are displayed in the element concentrations frame. 

Once the concentration of the steel, secondary dendrite arm spacing and heat 

extraction rate are entered into the general “input” frame, clicking the Start button 

results in the software calculating the initial solidification phase as bbc (ferrite) or fcc 

(austenite), the liquidus temperature, equilibrium solidus temperature, and the final 

dendrite arm spacing. The results appear in the data boxes in the general input field. 

Once the results appear in the white data boxes in the general input field, by 

clicking the solidification increment button, each click corresponds an increase in the 

solid fraction of 0.1. The calculated element concentrations in the liquid, core delta, 

core gamma and max solid are displayed in the “Element Concentration” frame. 

General system data including time for solidification, liquidus, current temperature, 

fractions of phase present, and the “Peritectic Equivalent” are displayed to the right of 

the solidification increment button. 

Calculation of sub-solidus homogenisation 

If the user wants to calculate sub-solidus homogenisation which is determining 

the residual micro-segregation after cooling in the solid, the program can continue sub-

solidus which is assuming a single solid phase. Once the software reaches a fraction 

solid of one (completion of solidification at solidus), the user can enter a lower 

temperature, and a modified heat extraction rate in the solid phase that is based on 

cooling curve. Clicking the Homogenise button results in the program calculating the 

corresponding decrease in peak and rise in core concentration and the results are 

displayed in the element concentrations frame. For the carbon and low alloy steels of 

interest, it transforms quite quickly to austenite on further cooling. The program 
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undergoes purely the homogenisation of single phase austenite with the power law 

solute profile [105]. 

 

Figure 3-6: User interface of the QuikSeg Peritectic (QSP) program 

In this example, high carbon bloom steel was calculated at the 11.5mm depth. 

The solidus has just been reached, the calculation sub-solidus homogenisation at 

1000 ℃ has begun. The program calculates the corresponding degree in peak, and rise 

in core, and the results are displayed in the element concentrations frame. 

3.3.2 DICTRA introduction 

DICTRA (Diffusion controlled TRAnsformation) is widely used for simulation 

of diffusion controlled transformation in multicomponent steels. It works linked with 

the Thermo-Calc software, which supplies all the necessary thermodynamic calculations 

[107]. It has been used successfully to simulate complex system, for example, micro-

segregation during solidification and homogenization of AerMet 100 steel [108]. 
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However, the DICTRA software can only handle one dimensional (planar, cylindrical 

and spherical) geometries [107]. 

The DICTRA calculation scheme is described in figure 3-7 and it consists of two 

steps. The diffusion step is called the first step, which is simply a one phase problem 

since all diffusion occurs in a matrix phase. However, the composition change in the 

matrix during the diffusion step and the new equilibrium is then calculated from the 

new average composition using Themo-Calc. The diffusion step is then repeated and 

this provides the new composition profile in the matrix phase, etc. [107].  

  

 .. Figure 3-7: The calculation scheme used in the model for diffusion in dispersed 

systems [109]. 

3.4. Micro-segregation measurements 

Once the SDAS structure had been revealed by the etching process as described 

in section 3-2, the same samples were used to investigate the micro-segregation of 

silicon and manganese using the EDS-SEM technique on a JEOL6400 Scanning 

Electron Microscope 

Example measurements of micro-segregation were conducted using automated 

line scans using EDS-SEM through between 2 and 4 secondary dendrite arm spacings 
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for each bloom-depth. The working conditions of the EDS-SEM setup were an 

accelerating voltage of 20 kV, a working distance of 15mm, a live time of 50 (s) and a 

process time of 3 (s). The dead time was adjusted to around 26% during the automated 

line scan. All EDS-SEM measurements were carried out using these parameters which 

were found to yield more accurate results for this Si and Mn micro-segregation 

investigation. 
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Chapter 4: Secondary Dendrite Arm Spacing Models 
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A strong relationship between the secondary dendrite arm spacing and the 

properties of the final products has been reported in the literature [62], [96], [110], [5]. 

During the solidification, the secondary dendrite arms tend to increase their spacing (in 

order to reduce the curvature and interfacial energy), this increasing spacing is strongly 

dependent on the solidification rate and the time spent in the liquid-solid region called 

the local solidification time. The other important factor to control the secondary 

dendrite arm spacing is the nature of the alloys, but this effect is typically difficult to 

examine due to the effect of the cooling rate. 

4.1 Description of current work 

There are many secondary dendrite models for binary steels; some models have 

been extended for the prediction of dendrite arm coarsening in multicomponent steels. 

So far, however, there has been little discussion about peritectic transformations during 

solidification. 

The expression of λ2 is as follows; 

   λ2 = M0.tf
1/3

      (4-1) 

Where: M0 is the coarsening parameter; tf is the local solidification time. 

Kirkwood and other researchers [60], [111], [72], [112] have extended the 

secondary dendrite models based on the concept of Fick‟s law and the Gibbs-Thompson 

equation. The following λ2 can be expressed as a function of a geometrical factor B, the 

remaining coarsening parameter M and the local solidification time tf   for binary steels. 

   λ2 = B0.M.tf
1/3

     (4-2) 

 𝑀 =
𝜎𝑇𝐷𝐿𝑖

𝐻(𝑘𝑖−1)𝑚 𝑖𝐶𝐿𝑖
  , 𝐵0 =

4

𝑓𝑆
2(1−𝑓𝑆)

     

Where: 𝑀 is coarsening parameter for solute i 

𝑘 is the partition coefficient for solute i, wt.%/wt.% 
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mi   is the liquidus slope, K/wt.% 

B0   is the geometrical factor 

𝐻 is the heat of fusion, kj/mol 

 is the interfacial energy, kj/m
2
 

𝐷 is the diffusivity, m
2
/s 

However, a major problem with the above equation is that it is developed for 

binary steels, but it is not applicable or valid for multicomponent steels. Commercial 

steels, contain more than one solute element which influences the secondary arm 

coarsening during solidification, especially regarding to the solidus temperature, liquid-

solid diffusion and micro-segregation effects to the secondary dendrite arms.  

The original work of Beaverstock [64] considered the effect of secondary arm 

coarsening on the level of micro-segregation in binary alloys in the manner of 

Kirkwood. However, the model has been extended to multicomponent alloys under the 

assumptions of a constant cooling rate and no solid-state diffusion. 

Based on Beaverstock‟ model for one element (using a differentiated version of 

equation 4-2, with modified constant B and M); 

 𝜆2
2𝑑𝜆2 = 𝐵0. 𝑀𝑑𝑡 = 𝐵𝑜

𝜎𝑇𝐷

𝐻 𝑘𝑖−1 𝑚𝐶𝐿𝑖
𝑑𝑡    (4-3) 

Where: 𝑚CL,i   is the liquidus depression 

 ki   is the partition coefficient 

The model has been extended to multicomponet steels as follows; 

 𝜆2
2𝑑𝜆2 = 𝐵𝑜

1

 
𝐻 𝑘𝑖−1 𝑚𝐶𝐿𝑖

𝜎𝑇𝐷

𝑑𝑡      (4-4) 

From the equation 4-4, alternatively this may be written 
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 𝜆2
2𝑑𝜆2 ≈ 𝐵

1

 𝐴 𝑘𝑖−1 𝑚𝐶0
𝑑𝑡       (4-5) 

            where =
𝐻

𝜎𝑇𝐷
 , and is considered approximately constant. 

 Of note, for a single solute which does not segregate (k = 1), the SDAS would 

be infinite (i.e dendrites would not form). The SDAS prediction will be dominated by 

the terms in the summation for those elements which segregate most. 

In order to understand how B (constant) and M affect secondary dendrite arm 

spacing λ2, the integrated equation of 4-5 (with modified constant) for multicomponent 

steels is suggested based on their theory as follows. 

 2 = 𝐵 ∗ 𝑀 ∗ 𝜏1/3 = 𝐵
1

 𝐴𝑖 𝑘𝑖−1 𝑚 𝑖𝐶0𝑖
𝜏1/3    (4-6) 

Different authors have studied B and M in a variety of ways to extend the model 

to muticomponent steels. The semi-model approach was chosen because we could fit 

the geometrical factor as a function of carbon content or for ferritic to austenitic 

solidification for the multicomponent steels undergoing peritectic. Where B could be 

function of carbon content, and multicomponent depending on liquid/, liquid/, and / 

transformation.  

     The Ai factor is called the empirical factor of element i in multicomponent steels, 

using the extra Ai factor we were able to extend the theory from the binary steels to the 

multicomponent steels.  
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4.2 Jernkontoret’s Measured SDAS Experiments 

     The Jernkontoret institute has measured the secondary dendrite arm spacing of 

the most common commercial steels under production solidification conditions, they 

have given a suitable experimental technique to determine the following [113]:  

- The liquidus, solidus temperature and the formation of austenite temperature. 

- A controlled cooling rate which could be varied within wide limits. 

The experiments were set up and carried out on small ingots (35 g) solidified in 

a ceramic crucible. The temperature and cooling rate of the furnace was controlled by 

the power input. The heat of the furnace was controlled by a programmable 

temperature-time regulator. The temperature of the steel sample was measured at its 

centre by means of a thermocouple (Pt/Pt-10% Rh). The output temperature of the steel 

sample was recorded by a digital microvoltmeter. The liquidus, solidus temperature and 

cooling rate were then evaluated from the cooling curve (Fig 6-2). 

Table 4-1: Carbon and low steels, composition (wt, %) [113]. 

Steel  C Mn Si Ni Cr P Mo Al N 

Carbon steel 

201 0.11 1.25 0.12 0.03 0.06 0.04 0.07 0.038 0.012 

202 0.12 1.53 0.27 0.03 0.02 0.01 0.03 0.029 0.011 

203 0.18 1.26 0.44 0.02 0.01 0.016 0.06 0.004 0.007 

204 0.19 1.42 0.4 0.13 0.07 0.012 0.02 0.006 0.005 

205 0.36 0.58 0.27 0.05 0.08 0.015 0.02 0.004 0.007 

206 0.69 0.72 0.23 0.02 0.02 0.02 0.01 0.006 0.002 

207 1.01 0.46 0.25 0.03 0.02 0.012 0.02 0.004 0.002 

Low allow steel 

208 0.1 0.57 0.28 3.3 1.14 0.008 0.14 0.013 0.009 

209 0.2 0.9 0.25 1.05 0.81 0.014 0.06 0.036 0.009 

210 0.27 0.32 0.02 3.5 1.66 0.006 0.42 0.044 0.007 

211 0.29 0.62 0.21 0.15 1.11 0.012 0.21 0.011 0.004 
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212 0.29 0.52 0.22 3.2 1.02 0.009 0.25 0.01 0.005 

213 0.35 0.67 0.24 0.05 0.92 0.01 0.19 0.004 0.008 

214 0.52 0.85 0.22 0.07 1.07 0.01 0.07 0.004 0.008 

215 0.55 0.5 0.27 3 0.99 0.019 0.31 0.011 0.008 

216 1.01 0.33 0.23 0.02 1.55 0.021 0.01 0.011 0.003 

 

The secondary dendrite arm spacings have been measured at a low 

magnification. For each steel specimen, at least four or five secondary arms per primary 

arm were counted and at least ten such measurements were taken with a good statistical 

significance of the mean values. 

Table 4-2: Carbon and low alloy steel, Liquidus, equilibrium solidus, average 

cooling rate, calculated local solidification time and measured SDAS 

Steel 

No type analyses Liquidus 

Equilibrium 

Solidus 

Average 

Cooling.rate 

Local 

Solidi.time 

Measured 

SDAS 

Carbon: 

 

201 

 

0.1%C 

 

1517.6 1459.8 2 28.9 80 

1517.6 1459.8 0.5 115.6 130 

1517.6 1459.8 0.1 578 300 

 

202 0.12%C 

  

1515.3 1472.5 2 21.4 85 

1515.3 1472.5 0.5 85.6 200 

1515.3 1472.5 0.1 428 390 

 

203 0.18%C 

 

1510.1 1463.9 2 23.1 80 

1510.1 1463.9 0.5 92.4 190 

1510.1 1463.9 0.1 462 250 

 

204 

 

0.2%C 

 

1508.5 1465.5 2 21.5 75 

1508.5 1465.5 0.5 86 120 

1508.5 1465.5 0.1 430 230 

 

205 0.4%C 

 

1499.8 1437.8 2 31 85 

1499.8 1437.8 0.5 124 90 

1499.8 1437.8 0.1 620 280 

 0.7%C 1476.2 1370.6 2 52.8 75 
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206  1476.2 1370.6 0.5 211.2 130 

1476.2 1370.6 0.1 1056 160 

 

207 

 

1.0%C 

 

1457.4 1314.8 2 71.3 70 

1457.4 1314.8 0.5 285.2 80 

1457.4 1314.8 0.1 1426 210 

Low alloy: 

 

208 

 

0.1%C Cr Ni 

 

1503.9 1464.6 2 19.65 75 

1503.9 1464.6 0.5 78.6 110 

1503.9 1464.6 0.1 393 250 

 

209 

 

0.2%C Cr Ni 

 

1505.9 1462.9 2 21.5 85 

1505.9 1462.9 0.5 86 110 

1505.9 1462.9 0.1 430 180 

 

210 

 

0.3%C Cr Ni Mo 

 

1491.8 1449.2 2 21.3 70 

1491.8 1449.2 0.5 85.2 90 

1491.8 1449.2 0.1 426 160 

 

211 

 

0.3%C Cr Mo 

 

1504.5 1450.4 2 27.05 70 

1504.5 1450.4 0.5 108.2 90 

1504.5 1450.4 0.1 541 150 

 

212 

 

0.3%C Cr Ni Mo 

 

1490.2 1442.6 2 23.8 75 

1490.2 1442.6 0.5 95.2 110 

1490.2 1442.6 0.1 476 180 

 

213 

 

0.35%C Cr Mo 

 

1499.5 1439.7 2 29.9 80 

1499.5 1439.7 0.5 119.6 100 

1499.5 1439.7 0.1 598 190 

 

214 

 

0.5%C Cr  

 

1484.4 1405.3 2 39.55 75 

1484.4 1405.3 0.5 158.2 90 

1484.4 1405.3 0.1 791 140 

 

215 

 

0.55%C Cr Ni 

Mo 

1473.2 1385.2 2 44 70 

1473.2 1385.2 0.5 176 90 

1473.2 1385.2 0.1 880 130 

 

216 

 

1.0%C Cr  

 

1454.9 1307 2 73.95 75 

1454.9 1307 0.5 295.8 90 

1454.9 1307 0.1 1479 140 
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4.3 Other Previous Measured SDAS Experiments 

Table 4-3 shows the measured SDAS that were collected from other literature 

research studies on steels containing a wide range of carbon content up to 1.48 wt%. 

Steel used by Taha contained very high manganese content (27.7%), which is much 

higher than generally used, but was useful for this study. 

Table 4-3: Other Literature Measured SDAS Experiments [62], [114], [115], [81]. 

Steel % C % Mn % Si % P % Al 2, µm , s 

Jacobi steel A 

 

0.59 1.1 0.03 0.009 0.04 340 1380 

   

  280 690 

280 690 

220 376 

220 376 

210 355 

180 309 

160 181 

120 97 

100 65 

  

Jacobi steel B 

 

1.48 1.14 0.03 0.01 0.2 350 2846 

     330 1879 

280 1423 

210 940 

190 711 

150 451 

130 341 

110 225 
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100 159 

80 91 

70 158 

  

Imagumbai steel 

A 

 

0.62 0.58 0.12 0.006 0.049 316 1173 

     301 659 

257 484 

172 189 

Taha steel 

 

0.64 27.7 0.042 0.007 0.075 152 1440 

     121 900 

114 840 

78 285 

60 299 

52 163 

32 46 

32 53 

52 258 

  

  

Robert steel 

 

0.08 1.32 0.28 0.007  25 3 

     29 4 

36 8 

40 12 

40 13 

0.12 1.32 0.28 0.007  22 3 

     27 6 

     34 9 
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     38 14 

0.16 1.32 0.28 0.007  26 9 

     34 8 

     40 13 

     46 16 

0.3 1.32 0.28 0.007  25 6 

     36 12 

     44 19 

     51 26 

0.5 1.32 0.28 0.007  19 6 

     24 11 

     31 18 

     39 26 

0.7 1.32 0.28 0.007  24 9 

     32 19 

     39 28 

 

4.4 Effect of Carbon Content or Carbon Equivalent on 

Geometric factor 

The expression of SDAS for multicomponent alloys can be written as:  

2 = 𝐵 ∗ 𝑀 ∗ 𝜏1/3 = 𝐵
1

𝐴𝐶 𝑘𝐶−1 𝑚𝐶𝐶𝐶+𝐴𝑀𝑛  𝑘𝑀𝑛 −1 𝑚𝑀𝑛 𝐶𝑀𝑛 +..+𝐴𝑁  𝑘𝑁−1 𝑚𝑁𝐶𝑁
𝜏1/3

                                                                                     (4-7) 

where; B is the geometric factor 

M is the coarsening dendrite arm for multicomponent i.  

 M = 
1

𝐴𝐶 𝑘𝐶−1 𝑚𝐶𝐶𝐶+𝐴𝑀𝑛  𝑘𝑀𝑛 −1 𝑚𝑀𝑛 𝐶𝑀𝑛 +..+𝐴𝑁  𝑘𝑁−1 𝑚𝑁𝐶𝑁
  (4-8) 
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Where; Ai factor is an empirical factor of element of C, Mn, Si, Cr, Ni, Mo, P 

and N in multicomponent steels. These parameters will be solved using Matlab software 

by experimental data from the literature. Aluminium and sulphur are not used because 

dilute aluminium shows no segregation during the ferritic solidification process, and 

sulphur form as MnS at the end of solidification.  

Matlab software is shown to be an appropriate tool to obtain the solutions. The 

expression for SDAS with more experimental data can be rewritten as:  

  
21

.
2𝑚

  = 𝐵  

1

𝐴𝐶 𝑘𝐶−1 𝑚𝐶𝐶𝐶+𝐴𝑀𝑛  𝑘𝑀𝑛 −1 𝑚𝑀𝑛 𝐶𝑀𝑛 +..+𝐴𝑁  𝑘𝑁−1 𝑚𝑁𝐶𝑁
.
1

𝐴𝐶 𝑘𝐶−1 𝑚𝐶𝐶𝐶+𝐴𝑀𝑛  𝑘𝑀𝑛 −1 𝑚𝑀𝑛 𝐶𝑀𝑛 +..+𝐴𝑁  𝑘𝑁−1 𝑚𝑁𝐶𝑁

  

𝜏1

.
𝜏𝑚

  (4-9) 

It can be seem from equation 4-2 that the geometric factor, B, is a variable, 

depending on the fraction solid, and is therefore difficult to use in simple equations. It 

has therefore tended to be used as a constant “effective” geometric factor. 

Few researchers have considered the geometric factor B. Kirkwood [60] found B 

to be equal to  5.04 while Feurer and Feurer [111] found the value  B be 5.48. Kattamis 

and Flemings [79] also found B to be equal to 5.5 using the expression of λ2= 5.5 ∗

(𝑀 ∗ 𝑡)1/3. Ma et al. [82] amended the expression λ2 = 7.5 ∗ (𝑀 ∗ 𝑡)1/3. These 

researchers mostly use alloys with low carbon content. In our mode, we allow for a 

large variation in carbon content (0.08%-1.48%) and consequently different paths 

through the peritectic, figure 4-1. 

Based on the solidification model of figure 4-1, the following values for geometric 

factor B are used: 

 If carbon content < 0.16% then B = 5.05 

 Else if carbon content 0.16% ≤ C < 0.53% then B = 7.25 

Else if carbon content 0.53% ≤C < 0.72% then B = 12.8 

Else if carbon content C ≥ 0.72% then B = 17.8 
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Of note, the changes of geometric factor at ~0.16 and 0.53 could reflect the way 

in which the steel is solidifying, but it might just be a statistical anomaly. The 

results obtained using this methodology were found to be more accurate than using 

a varying function of carbon. 

Table 4-4: Data used in modelling from Howe and Kirkwood [23] 

 

Solute 

m 

delta/liquid 

m 

gamma/liquid 

k 

delta/liquid 

k 

gamma/liquid 

C -83 -62.3 0.17 0.32 

Si -9 -11.9 0.7 0.6 

Mn -5.1 -4.2 0.74 0.78 

P -34 -33.4 0.13 0.06 

Cr -1 -1.8 0.95 0.8 

Mo -2.4 -3.83 0.81 0.67 

Ni -5 -2.9 0.79 0.9 

N -59 -35.4 0.28 0.54 

Solvus slopes m, in degrees Kelvin per weight percent 

Partition coefficient k, in wt-%/wt-% 

  

Figure 4-1: Schematic phase diagram of the peritectic region of carbon steel 

[116] and the key carbon (or carbon equivalent) values. 
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Peritectic reaction and transformation  

Two kind of steels used in this model are the carbon steel and low alloy steel, 

both encompassing the peritectic transformation range. The peritectic reaction affects 

local solidification time and the formation of cracks during continuous casting of steels 

[117], along with „a high degree of micro-segregation and unexpected solute 

distributions in the solidified alloy‟ [23] 

In the case of carbon steels, the solidification path depending on carbon content 

is illustratable in figure 4-1 [116], at carbon content less than 0.16% C, both   ferrite 

and  phase coexist after the end of peritectic solidification. At carbon content higher 

than 0.53% C, only primary austenite form from the liquid. These values are affected by 

the other elements, reflected by their “carbon equivalent” [18] 

A major question for this work is how the peritectic transformation affects 

secondary dendrite arm spacing (SDAS). For this study, we need a simple but adequate 

procedure for characterising a steel composition in relation to the peritectic, either 

through a “carbon equivalent” or a “peritectic equivalent”. The effect of 

multicomponent alloys on the peritectic reaction from ferrite to austenitic during 

solidification has been examined by Howe [16] [23], using QSP (Quick Seg Peritectic) 

software to calculate 𝐸𝑝  (peritectic equivalent as described in the Appendix) for all 

multicomponent steels of experimental data. QSP has been used to calculate 𝐸𝑝  of steels 

201-216, the results are listed in table 4-5, where 𝐸𝑝   1 suggests austenitic 

solidification. 
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Table 4-5: Calculation of Peritectic equivalent coefficient; 𝐸𝑝  

Steel number Ep Steel number Ep 

201 0.3 209 0.54 

202 0.3 210 1 

203 0.34 211 0.46 

204 0.4 212 1 

205 0.67 213 0.58 

206 1.3 214 0.9 

207 1.88 215 1.46 

208 0.7 216 1.75 

Jaco steel with 0.59wt.% C 1.19 

Jaco steel with 1.48wt.% C 2.87 

Imagumbai steel with 0.62wt.% C 1.18 

Taha steel with 0.64wt.% C 3.36 

Robert steel with 0.08wt.% C 0.18 

Robert steel with 0.12wt.% C 0.26 

Robert steel with 0.16wt.% C 0.34 

Robert steel with 0.30wt.% C 0.60 

Robert steel with 0.50wt.% C 0.98 

Robert steel with 0.70wt.% C 1.35 
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This study considers three cases. For 𝐸𝑝  approaching 1, very little of the 

solidification would be ferritic and the peritectic can probably be ignored. It starts with 

ferritic data if:  

- 𝑘𝛿/𝑙  and 𝑚𝛿/𝑙  for 𝐸𝑝  < 1, and 𝑘𝛾/𝑙  and 𝑚𝛾/𝑙  for 𝐸𝑝   1 or 

- 𝑘𝛿/𝑙  and 𝑚𝛿/𝑙  for 𝐸𝑝  < 0.97, and 𝑘𝛾/𝑙  and 𝑚𝛾/𝑙  for 𝐸𝑝   0.97 or 

- 𝑘𝛿/𝑙  and 𝑚𝛿/𝑙  for 𝐸𝑝  < 0.9, and 𝑘𝛾/𝑙  and 𝑚𝛾/𝑙  for 𝐸𝑝   0.9 

4.4.1. Case 1: 𝐤𝛅/𝐥 and 𝐦𝛅/𝐥 for 𝑬𝒑 < 1, and 𝐤𝛄/𝐥 and 𝐦𝛄/𝐥 for 𝑬𝒑 ≥1 

  

  

Figure 4-2: Comparison of SDAS from predicted and measured data 
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Table 4-6: Results from modelling of the empirical factor 𝐴𝑖   

Elements results Elements results 

C AC = 0.0118 Cr ACr = 0.7353 

Mn AMn = 0.0324 P AP = 0.3062 

Si ASi = 0.2240 Mo AMo = -0.4579 

Ni ANi = 0.0182 N AN = -0.4648 

 

From figure 4-2 we can see that the predicted values follow closely the 

experimental values with high R-squared of 0.938. This suggests that the effect of 

geometric factor B on secondary dendrite arm spacing is more important for 

multicomponent steels with larger range of carbon content. The geometric factor 

depends on the solidification model or carbon content, ranging from 5.05 for carbon 

content below 0.16% to 7.27 for carbon between 0.16 and 0.53%, 12.8 for carbon 

content between 0.54 and less than 0.80%, and 17.8 for carbon content above 0.8%. 

(Matlab code and results are described in appendix 1) 

A significant positive correlation was found between the SDAS predictions and 

SDAS measurements and following the ideal line up to 230 µm. Some of the scatter was 

found to belong to steels with a higher peritectic equivalent a bit higher that the value  

of steel number 210, the predicted 𝜆2values are lower than their 𝜆2 measured values 

approximately by 1.2 times. From higher values 230 µm, the results show more scatter, 

this scatter belong to high carbon steels. This result may be explained by the fact that 

measured local solidification time is lower than the real local solidification time at the 

equiaxed zone, and will be explained in chapter 5. 

From table 4-6 we can see the effect of multicomponent alloys on the coarsening 

dendrite arm mechanism. C, Mn, Si, Ni and Cr with positive values cause melting back 
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of the tips of the dendrite arm, while Mo and N with negative values might prevent the 

melting back of the tips of dendrite arm during solidification process, although there is 

no obvious reason for such an effect.  

4.4.2. Case 2: 𝐤𝛅/𝐥 and 𝐦𝛅/𝐥 for 𝑬𝒑 < 0.97, and 𝐤𝛄/𝐥 and 𝐦𝛄/𝐥 for 𝑬𝒑 ≥ 0.97 

 

  

Figure 4-3: Comparision of SDAS from predicted and measured data 

Table 4-7: Results from modelling of the empirical factor 𝐴𝑖  

Elements Results Elements results 

C AC = 0.0121 Cr ACr = 0.7382 

Mn AMn = 0.0323 P AP = 0.2815 

Si ASi = 0.2280 Mo AMo = -0.4575 

Ni ANi = 0.0187 N AN = -0.4645 
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Similar results (figure 4-3) are obtained with slightly decreasing R-squared of 

0.934 when the value of Ep is reduced from 1 to 0.97 which allow us to use k/L and 

m/L. The results (table 4-7) again show that Mo and N with negative values might 

increase secondary dendrite arm spacings while other elements with positive values 

show decreasing 𝜆2 during solidification. (Matlab code and results are described in 

appendix 2). 

4.4.3. Case 3: 𝐤𝛅/𝐥 and 𝐦𝛅/𝐥 for Ep < 0.9, and 𝐤𝛄/𝐥 and 𝐦𝛄/𝐥 for Ep ≥ 0.9 

 

  

Figure 4-4: Comparision of SDAS from predicted and measured data 
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Table 4-8: Results from modelling of the empirical factor 𝐴𝑖   

Elements results Elements results 

C AC = 0.0115 Cr ACr = 0.4556 

Mn AMn = 0.0318 P AP = 0.4408 

Si ASi = 0.1917 Mo AMo = -0.2386 

Ni ANi = 0.0283 N AN = -0.5378 

 

     When the value of 𝐸𝑝  is reduced to 0.9 which allow us to use k/L and m/L. R-

squared also slightly drops to 0.935 in figure 4-4. From table 4-8, we can see that 

the coarsening dendrite parameter is most strongly controlled by those elements 

with large values of the empirical factor 𝐴𝑖  such as Si, Cr, Mo and N. When the 

value of 𝐸𝑝  is reduced from 1 to 0.9 this allows us to use k/L and m/L. It is 

interesting to note that, there were no significant differences in the values of the 

empirical factor of C, Mn, and Ni that is those elements with expanded austenite 

field, but significant differences were found in those elements with expanded ferrite 

field like Si, Cr and Mo. The value of Cr decreases from 0.735 to 0.455, while Mo 

increases from 0.457 to 0.238. (Matlab code and results are described in appendix 

3). 

    It appears that even a temporary appearance of ferrite early on in solidification 

should not be ignored, and seems to control the secondary dendrite arm spacing. 

The choice of 𝐸𝑝  value upon which to change from ferritic to austenitic data does 

not appear to be critical. 
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4.5 Effect of carbon equivalent on full multicomponent 

behaviour 

    The term carbon equivalent content determines various properties of the 

alloys when more than one alloying elements are used, similarly to 𝐸𝑝 . Figure 4-1 

shows a Fe-C phase diagram, when other alloying elements are added, the 

temperature and shape are different is a pseudo-binary manner. Several attempts 

have been made to study carbon and low alloy steels with the ferrite and austenite 

peritectic reaction during solidification. Howe [118], [16] conducted a series of 

carbon and low alloy steels in which he generated the carbon equivalent on full 

multicomponent steels that is used in this chapter. 

Howe‟ carbon equivalent for carbon and low alloy steels with major Si and Mn 

contents [118]. 

  𝐶𝑝   = CC – 0.14CSi + 0.04CMn    (4-10) 

    Of note, similar terms can be obtained from QSP [105], once once the factors 

(k and m) were changed from ferritic to austenitic solidification at 𝐶𝑝   = 0.53 (as in 

the Fe-C binary) rather than at 𝐸𝑝   = 1. Not surprisingly, very similar results were 

obtained, but R-squared showed a very minor improvement (0.941 v 0.938) with 𝐶𝑝   

rather than 𝐸𝑝 .  

Table 4-9: Results from modelling of the empirical factor 𝐴𝑖  

Elements results Elements results 

C AC = 0.0117 Cr ACr = 0.8009 

Mn AMn = 0.0522 P AP = 0.2758 

Si ASi = 0.2049 Mo AMo = -0.4882 

Ni ANi = 0.0184 N AN = -0.4511 
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Figure 4-5: Comparision of SDAS from predicted and measured data 

      As can be seen from figure 4-5 the result with the use of carbon equivalents 

showed slightly increasing R-squared of 0.941 compared with the use of 𝐸𝑝  R-

squared of 0.938 in figure 4-2. The results show that carbon is the main element 

controlling the pseudo-binary manner in these steel, carbon is the only element 

needed to affect to the geometric factor B. Other elements are more strongly 

affected by the coarsening parameter A compared to C content only. So we have a 

balance of the effect of C content and other elements for multicomponent steels on 

the secondary dendrite arm spacing. It is apparent from table 4-9 that very few 

different results of empirical factors 𝐴𝑖   compare with table 4-4. (Matlab code and 

results are described in appendix 4) 

     Howe‟ carbon equivalent [18] for carbon and low alloy steels with full 

multicomponent including Ni and Cr elements is as shown below. 
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 𝐶𝑝  = CC – 0.123CSi + 0.04CMn +0.06CS – 0.018CCr – 0.05CMo + 0.08CNi 

        (4-11) 

  

Figure 4-6: Comparision of SDAS from predicted and measured data 

Figure 4-6 shows the result with the use of full multicomponent steels, the result 

is slightly decreasing R-squared of 0.939 compared with the use of the Fe-C-Si-Mn 

system which gives R-squared of 0.941 in figure 4-6. The extension to full 

multicomponent steels gives a slightly decreasing R-squared but is the extension to 

allow applying the low alloy steels containing other elements such as Cr, Ni and Mo. 

We also can see that in steels studied by Jacobi, Imagumbai, Taha and Pierer the 

correlation between the SDAS measurement and SDAS prediction follows the ideal 

line. Some of the SDAS scatter was found in Jernkontoret‟ steel for those steels 

containing high levels of Cr and Ni (contents higher than 3wt.%) such as numbers 210, 

212 and 215. The reason for this could be that these steels which undergoes ferrite 

followed by interdendritic precipitation of austenite that dendritic structure could result 
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from either a divorced eutectic or peritectic reaction [118]. (Matlab code and results are 

described in appendix 5). 

Table 4-10: Results from modelling of the empirical factor 𝐴𝑖  

Elements results Elements results 

C AC = 0.0102 Cr ACr = 0.5715 

Mn AMn = 0.0512 P AP = 0.5538 

Si ASi = 0.1921 Mo AMo = -0.1668 

Ni ANi = 0.0493 N AN = -0.6290 

 

It is apparent from table 4-10 that we obtain very different results of empirical 

factors of Ni, Cr and Mo compared with table 4-9, so these are rather sensitive to the 

choice of 𝐸𝑝  or 𝐶𝑝  factors. The results again show that Mo and N with negative values 

might increase secondary dendrite arm spacing while other elements with positive 

values show decreasing 𝜆2 during solidification. 
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Chapter 5: Secondary Dendrite Arm Spacing 

Measurements 
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5.1 Results on Secondary dendrite arm spacing measurements 

The microstructure of the high carbon steel was examined and photographed 

with an optical microscope in order to measure the secondary dendrite arm spacing 

values at different bloom depths. For the secondary dendrite arm spacing standard 

measurements, the measurements must be made close to and parallel with the primary 

dendrite branches. At least four or five secondary arms per primary arm were counted 

within each bloom depth, and at least eight or nine measurements have been recorded in 

order to get the average and standard deviation SDAS of each position [64] shown in 

figure 5-2. The results of the secondary dendrite arm spacing measurements were then 

reported in table 5-1. 

  

Figure 5-1: Average SDAS and +/- 2 standard deviation measurements 

Figure 5-1 shows a typical variation of the average secondary dendrite arm 

spacing measurement and standard deviation from top surface to centre. It shows low 

values of dendrite arm spacing at the surface, increasing toward the centre; a maximum 

value has been recorded at the quarter-thickness, and approximately constant toward the 
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centre, but possibly decreasing again. Simple statistical analysis was used to get 

confidence intervals. The 95% confidence intervals show significant scatter beyond 

40mm depth. 

Generally, it was expected that decreasing the cooling rate with the depth would 

lead to increasing the secondary dendrite arm spacing because of the longer 

solidification time in comparison to the surface [119]. From 57 mm depth toward the 

centre, the secondary dendrite arm spacing decreases about 30 µm from 268 µm to 229 

µm at the centre. It shows a half “seagull” 𝜆2 profile, The finding of the current research 

are consistent with those of Ganguly [5] and Howe [120] as shown in figures 5-2 and 5-

3.  

Secondary dendrite arm spacing in Figure 5-1 exhibits scatter beyond 40mm 

depth and a dip at the centre, this scatter and dip in the SDAS corresponds to the 

equiaxed zone. This finding was seen by Howe [120] in examination of previous high 

carbon bloom steel in figure 5-3. 

The expectation from theory is that the SDAS should increase with local 

solidification time, 𝑡𝑓(s), so it would not see the dip of SDAS in figure 5-1. If 𝜆2 = 

M0.tf
1/3

, then the dip would suggest that the local solidification time goes down in the 

middle. 

Ganguly‟s explanation for this result may be, besides the change in solidification 

rate, carbon enrichment of liquid and change in mobility of dendrites having an impact 

of the dendrite size distribution in the equiaxed zone. This possible explanation for the 

decrease of secondary dendrite arm spacing in the equiaxed zone may be inadequate, 

however [5].   
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Figure 5-2: Variation of measured value of average DAS from surface to centre 

of  a high carbon steel billet [5]. 

Howe has a possible explanation for the decrease of SDAS in the equiaxed zone; 

an acceleration in the cooling rate at the centre of the bloom is suggested by this seagull 

𝜆2 profile. The evidence of the macro-model results indeed show this tendency, for both 

the thickness of bloom to the liquidus isotherm and to the solidus isotherm shown in 

figure 5-4 [120].  

Figure 5-4 exhibits the curl round of the bottom of the sump / solidus isotherm, 

the results from Tata Steel / TTC macro-model still have the local solidification time 𝑡𝑓  

(s) that still increases right up to the central region (table 5-2), and therefore would not 

explain the apparent dip / “seagull profile” in figure 5-1. 

However, the TTC model only assumes heat extraction transverse to the casting 

direction (macro model does not include longitudinal heat extraction). For most of the 

cast length, this should be a good approximation: The temperature gradient (and thus 

heat flow rate) will be much steeper through the shell thickness than down in the casting 

direction. But around the sump, heat flow down in the casting direction could become 
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significant, and could maybe reduce the local solidification 𝑡𝑓  (s) in the central region 

which results in a “seagull profile”. 

 

Figure 5-3: Measured secondary dendrite arm spacing across Bloom 750 and 

revised model data [120]. 

Another possible explanation for this is that the submerged entry pouring 

configuration and the effect of argon on the flow pattern lead the hottest region in the 

midway of billets or blooms and the coldest region in the centre near the SEN [121] 

This finding seems to be consistent with the solidus predictions across the thickness 

presented in figure 6-5, the calculated solidus temperatures showed a typical difference 

of about 5K between them. It also might push the liquidus isotherm further down the 

strand than the macro-model predicts [120], increasing the tendency for an accelerated 

solidification in the centre, figure 5-4. 
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Figure 5-4: Schematic solidification profile, showing the curving-round of the 

liquidus and solidus isotherms: an acceleration at the centre of actual 

solidification time for the “double-hump” profile requires the distance between 

these isotherms to reduce [120]. 

From data in figure 5-1, it is apparent that the depth below 40 mm shows the 

average secondary dendrite arm spacing with low standard deviation. Strong evidence 

of this was found in figures 5-5 to 5-8. We can see many secondary dendrite arms in the 

long primary dendrite trunk. The secondary dendrite arm spacing looks to be the same. 

In this columnar structure, the primary dendrite trunks grow parallel to each other. 

Unlike in the equiaxed structure, the spacing between the secondary dendrite arm 

spacing is not the same distance; we can see the evidence from figure 5-9 to 5-14. 

It is worth mentioning at this point the possible sources of error associated with 

measurement of this type. A longitudinal section from the surface to centre was cut off 
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in order to measure secondary dendrite arm spacing. For most steels, we are looking for 

traces of low levels of elements in a structure which is completely different from that 

with which it solidified.  In Al alloys for example, you might have the heavily 

segregated, one phase to look at, and maybe the interdenditic positions also marked by 

eutectic; likewise many Ni alloys or high-alloy stainless steels. But we have a rather 

dilute composition, which undergoes a further, solid-state transformation after 

solidification, so we are looking for relatively small changes in composition in a 

different structure. Therefore the solidification structure is not very clear, which makes 

quantification of SDAS quite difficult. In dilute steels, you are often looking at a poor 

image, with the etch affected by all sorts of other extraneous factors, and not just the 

interdendritic segregation. 

SDAS measurements on metallographic images are never perfectly accurate. Hence, it 

is important make a good estimation of the error.  There are several errors in the 

secondary dendrite arm spacing measurements; 

 The error could come from optical measurements of secondary dendrite arm 

spacing. To avoid this error, more measurements should be carried out to 

minimise the errors. In this project, we followed the Beaverstock‟ technique 

whereby a minimum of eight measurements were taken in order to obtain the 

sample mean and standard deviation SDAS of each depth. 

 The error could also be introduced during specimen sampling. Misalignment of 

the primary dendritic arm can be introduced during the cutting stage of the 

sample preparation. The specimen should be in the right direction of a primary 

arm branch. However, this is not always possible, especially due to some of the 

structures introduced during casting as well as naturally heterogeneity of the 

bloom. This can lead to some errors in the SDAS measurement. 
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 The error could come from sample grinding and polishing. Keeping the sample 

flat can be a problem especially with manual grinding. This can lead to 

misalignment of the primary arm branch and this can result in some errors.  
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Figure 5-5: Secondary dendrite arm spacing measurement at 11.5 mm depth. 

 

   

Figure 5-6: Secondary dendrite arm spacing measurement at 23 mm depth. 
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Figure 5-7: Secondary dendrite arm spacing measurement at 34.5 mm depth. 

 

   

Figure 5-8: Secondary dendrite arm spacing measurement at 46 mm depth. 
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Figure 5-9: Secondary dendrite arm spacing measurement at 57 mm depth. 

 

   

Figure 5-10: Secondary dendrite arm spacing measurement at 69 mm depth. 
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Figure 5-11: Secondary dendrite arm spacing measurement at 80.5 mm depth. 

 

   

Figure 5-12: Secondary dendrite arm spacing measurement at 92 mm depth. 
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Figure 5-13: Secondary dendrite arm spacing measurement at 103.5 mm depth. 

 

  

Figure 5-14: Secondary dendrite arm spacing measurement at 115 mm depth. 
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5.2 Measured and predicted secondary dendrite arm spacing 

comparison 

Tata Steel has developed a model for continuous casting, which employs 

thermal data across the mushy zone corresponding to equilibrium solidification. The 

solidification time was extracted from the TTC model for each node across the cast 

thickness and represented as an average heat extraction rate for use in QSP model. The 

heat extraction rates have been recorded as high at the surface with a significant 

decrease to the centre. From the heat extraction rate, we can calculate the local 

solidification time and average cooling rate as shown in table 5-2. 

The derived heat extraction rates of high carbon bloom steel of CC5 caster 

(283x230mm) are presented in table 5-2. The solidification rates have been recorded 

highest at the surface with a significant decrease to the midway of bloom, from 57mm 

depth it can be seen that the heat extraction rates become rather similar. From 92mm 

depth, the smaller section size of the bloom becomes evident, and a minimum of the 

heat extraction rate during solidification has been recorded at the centre (115mm) of 

0.43 kj/Kg.s. 

Table 5-1: Thermodynamic data of high carbon bloom steel [120] 

Latent heat, Liquid-to-Austenite, kJ/Kg 235.9 

Specific heat capacity: kJ/KgK:  Liquid Austenite 

0.8 0.69 

Reference temperature, pure Fe austenite, 

deg.C 

1526 

Reference diffusivity, Fe in austenite 

D(Fe)=Do.exp(-Q/RT)  m
2
/s 

Do /m
2
/s Q /kJ/mol 

0.7x10-4 286,000 

  

Element Partition coefficient, k, 

wt%/wt% (/L) 

Solvus slope, m, 

K/wt% 

Diffusivity factor 

(xD(Fe)) 

C 0.32 -62.3 10000 

Si 0.6 -11.9 2 

Mn 0.78 -4.2 2 

O 0.045 -57 10000 
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Composition of; 0.72%C, 0.63%Mn, 0.24%Si, 0.016%P and 0.0004%N 

Liquidus temperature = 1475 
0
C and Solidus temperature = 1368.7 

0
C 

The heat extraction rate is given by Ogilvy [122] who studied the heat extraction 

rate, and extended this to a multicomponent system. Howe [118] changed the 

assumption of a constant cooling rate to one of a constant rate of volumetric heat 

extraction, the equation of heat extraction rate is as follows: 

Q = H
dfs

dt
+ Cp

dT

dt
     (5-1)  

where Q is the heat extraction rate, J/m3.s-1 

  H is latent heat, kj/Kg 

  𝐶𝑃 is heat capacity, kJ/m
3
.k

-1
 

  T is temperature, k 

  𝑡 is time, s 

  𝑓𝑠 is fraction of solid 

We then could calculate the local solidification time thought the heat extraction 

equation as follows: 

𝑄 =
(𝐻+𝐶𝑝∆𝑇)

𝑡𝑓
      (5-2) 

            Where ∆T is the different temperature between liquidus and solidus  
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Table 5-2: Thermal data for heat extracted from Tata Steel macro-model and 

SDAS measurements of 0.7% carbon bloom steel. 

Depth 

(mm) 

Thermal Rate 

(KJ/Kg s) 

Local time 

(s) 

Cooling Rate 

(
O

C/s) 

Predicted 

SDAS (µm) 

Measured 

SDAS (µm) 

11.5 20.67 15.27 6.96 68.47 60.056 

23 7.75 40.73 2.61 94.96 120.62 

34.5 3.26 96.82 1.09 126.74 216.35 

46 1.77 178.33 0.59 155.35 233.93 

57.5 1.11 284.36 0.37 181.49 268.82 

69 0.74 426.54 0.25 207.76 261.63 

80.5 0.58 544.21 0.20 225.34 256.71 

92 0.5 631.28 0.17 236.76 237.15 

103.5 0.45 701.42 0.15 245.23 241.48 

115 0.43 734 0.14 248.00 229.20 

 

The analytical secondary dendrite arm spacing models have been introduced in 

the chapter 4. In order to assess these models, high carbon bloom steel has been 

sectioned and the secondary dendrite arm spacing measured, as shown in table 5-2.  

Figure 5-15 shows that the analytical model introduced in chapter 4 (applied 

case 1, SDAS equation 4-7, and 𝐴𝑖  is listed in table 4-6) approximately agrees, even 

though there has been no empirical tuning of the model to the high carbon steel bloom 

data. However, the predicted results continue to increase towards the centre whereas the 

measured results stop doing so from the quarter-depth position. There might be two 

reasons for this difference between the SDAS measured and predicted; First, it could be 

a difference in the thermal conditions during solidification, most of the data used in this 

model are from lab scale, which results in experiments attempting to maintain a 

constant cooling rate, but in commercial casting, the thermal conditions do not lead to 

constant cooling rate and are variable from the surface to centre. This can explain why 
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the secondary arms are shorter then typical of commercial casts of similar compositions: 

Second, during the coarsening process, it might be melting of the thinner secondary 

arms which have studied been by several researchers in the past [75].

  

Figure 5-15: Comparison of SDAS from predicted and measured data 

The secondary dendrite arm spacing was employed, 𝜆2 = 𝐺𝑡1/3 [64], [61], [16], 

[60], A revised equation 𝜆2  was used in order to compare between 𝜆2 predicted and 

measured. G was fixed so as to yield ~ 77 µm near the surface, the local solidification 

time was used from table 5-1. The results of the revised equation 𝜆2 show good 

agreement with results from the measured 𝜆2 up to the depth of 70 mm; this looks linear 

with results from the measured 𝜆2. The revised equation 𝜆2 is cut off from the depth of 

70mm toward the centre. It shows a half “seagull” 𝜆2 profile like the measured 𝜆2. 
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Figure 5-16: Comparison of SDAS for high carbon bloom steel with various 

SDAS models. 

Won-Thomas‟ SDAS model [2] is describled as follows: 

𝝀𝟐𝑺𝑫𝑨𝑺 𝝁𝒎 =  𝟏𝟔𝟗. 𝟏 − 𝟕𝟎𝟐. 𝟗 ∗ 𝑪𝒄 ∗ 𝑪𝑹
−𝟎.𝟒𝟗𝟑𝟓

 

                                            for 0 < Cc  0.15 

𝟏𝟒𝟑. 𝟗 ∗ 𝑪𝑹
𝟎.𝟑𝟔𝟏𝟔 ∗ 𝑪𝒄

(𝟎.𝟓𝟓𝟎𝟏−𝟏.𝟗𝟗𝟔𝑪𝒄)
 

                                for 015 < Cc 

 

 

            (5-3) 

where 𝐶𝑅  is cooling rate (k/s), and 𝐶𝑐  is carbon content (wt%) 

Pierer‟ SDAS model was mentioned in chapter 2 (see equation 2-6) 

The comparison of SDAS from this study and other SDAS models is shown in 

figure 5-16. The Won-Thomas model shows good agreement at 23 mm to 57.5 mm, 

predicted SDAS results beyond quarter-thickness are much higher compared to the 

SDAS measurements. The Pierer model is much lower compared to both the predicted 

results of SDAS for this study and SDAS measurements. This model has been shown to 
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be more accurate than other existing models found in the literature, when applied to this 

particular example. 
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Chapter 6: Solidification and Segregation Modelling 

From QSP and DICTRA Software 
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6.1 QSP and DICTRA simulation method 

The high carbon steel used in the study was supplied from Tata Steel with the 

dimension 283x230 mm & casting speed of 1.3 m/min. For simplicity, only the three 

major elements were considered (Fe-0.72 wt.%C-0.24wt.%Si-0.63 wt.%Mn) as the 

others were at residual levels unlikely to materially affect the results. The thermal 

histories were determined from an in-house Tata Steel macro-model, Figure 6-1.  

 

Figure 6-1: Cooling curves of high carbon steel from top surface to centre. 

The solidification time for each nodal position across the bloom was determined 

from this and presented as an average heat extraction rate for use as presented in Table 

5-2 and Figure 6-2. The thermal conditions during solidification were based on the 

macro-model, although this employed equilibrium solidification assumption. Key 

variables are the liquidus-solidus temperature interval, ∆T (K) and the local 

solidification time, 𝑡𝑓  (s), the latter varying with depth. From these, the cooling rate for 

DICTRA, and the heat extraction rate for QSP were derived, accepting there will be 
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some discrepancies owing to the macro-model‟s equilibrium assumption. The average 

cooling rate (
∆𝑇

𝑡𝑓
) is related to the heat extraction rate by the following equation: 

Q =  
HL +Cp∗∆T

tf
   (6-1) 

where Q  is the average heat extraction rate (kJ/Kg.s), 𝐻𝐿 is the latent heat 

(kJ/Kg), 𝐶𝑃 is the specific heat capacity (kJ/KgK), 𝑡𝑓  is the local solidification time (s) 

and ∆T is the difference in temperature between liquidus and solidus temperature (K). 

The commercial code, DICTRA (calculation of Diffusion Controlled 

TRAnsformations) with the mobility database MOB2 [123], [124] was employed, for 

which assumptions had to be made of a constant SDAS and cooling rate. The cooling 

rate was changed below the solidus based on the cooling curves in figure 6-1, down to 

900 ℃. During solidification, the equilibrium data applied at the interface are free to 

vary according to the associated thermodynamic database, and there is diffusion in both 

the liquid and solid phase. 

 

Figure 6-2: Thermal data, cooling rate and SDAS measured of 0.72%C bloom, 

282x230 mm  
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QSP is a simplified, rapid in-house model from Tata Steel [105] which is used to 

simulate the solidification and subsequent cooling below the solidus controlled by the 

heat extraction rate. This rate can be changed during a run, notably to follow the sub-

solidus cooling curves as in this work. It employs linear multicomponent phase diagram 

data, with finite diffusion in the solid phases, only. This software allows for secondary 

dendrite arm coarsening but in this study, we run with the constant SDAS in order to 

compare with DICTRA simulation. 

6.2 Microsegregation modelling results 

Effect of cooling rate on micro-segregation levels is important to final 

properties. Many attempts have studied the effect of cooling rate on micro-segregation 

employed. Many models have assumed a constant cooling rate, but in real continuous or 

ingot casting, the cooling rate varies enormously during solidification from the liquid to 

solidus temperature. Below the solidus temperature, the solidification rates show 

significant decreases, and by 1100 ℃ to room temperature it can be seen that the 

cooling rate has become rather similar shown in table 6-1, and this could lead to sub-

solidus homogenization. 

Using the terminology from [125] where:  

  (
𝑑𝑇

𝑑𝜏
)𝑚  is the measured cooling rate 

  (
𝑑𝑇

𝑑𝜏
)𝑐 =  

1

𝐶𝑝

𝑑𝑄

𝑑𝜏
 

The difference between the measured cooling rate (
𝑑𝑇

𝑑𝜏
)𝑚  and (

𝑑𝑇

𝑑𝜏
)𝑐  is due to the 

evolution of latent heat in the sample 

  
𝑑𝐿

𝑑𝜏
 = 𝐶𝑝[ 

𝑑𝑇

𝑑𝜏
 
𝑚
− (

𝑑𝑇

𝑑𝜏
)𝑐] 
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Figure 6-3: Derivation of fraction solid phase; a is temperature, b is temperature 

difference, and c is cooling rate profiles [125] 

Figure 6-3c shows the change of cooling rate during solidification and below the 

solidus temperature. At the early stages of solidification, the measured cooling rate 

varies enormously, and is then constant; it starts increasing at the growth temperature of 

dendrites, decreases at the secondary phase precipitation, and then decreases at the 

solidification. 

The cooling rate is the same as that of the furnace (-R) until solidification starts. 

The rate measured in the centre of the sample then decreases to zero as solidification 

proceeds at the liquidus temperature until the solidification front reaches the 

thermocouple. Development of a new solid phase and loss of the liquid phase also affect 

the cooling rate. 
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Solidification simulations were performed with both models at each nodal 

position, an example being presented in Fig 6-4. This traces the Si and Mn liquid 

concentration with increasing solid fraction during solidification. The Si and Mn 

profiles agree reasonably for both the QSP and DICTRA simulation, although the 

DICTRA results can be difficult to read precisely on such a sharp rise at the end of 

solidification. The QSP results show less segregation at 115 than 11.5mm, but DICTRA 

gave more similar results at these positions. 

At 11.5mm, the QSP and DICTRA peak, Mn concentrations are similar, but the 

Si results are not. However, at 115mm, the Si peak values are equal. The discrepancies 

between the models cannot therefore be related to a single cause such as different values 

of partition coefficient k. 
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a)  

 

b)  

Figure 6-4: QSP and DICTRA predictions for trace of liquid composition with 

increasing solid fraction: (a) 11.5 mm and (b) 115 mm depth. 
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6.3 Solidus temperature results 

  

Figure 6-5: Solidus temperature and diffusion multiplier 𝑡𝑓/𝜆2
2 profiles  

The solidus predictions across the thickness are presented in Figure 6-5. The 

calculated solidus temperatures showed a typical difference of about 5K between them, 

though not through a simple off-set. The usual expectation would be that the solidus 

should decrease from the centre to surface, reflecting increasing solidification rate. The 

QSP results show a stronger effect than DICTRA, but qualitatively, both proceed in this 

manner at first, but closer to the surface the trend is reversed, exhibiting a solidus trough 

(and consequent micro-segregation peak) at 34.5 mm for QSP and 46 or 57.5 mm depth 

for DICTRA.  The relative extents of micro-segregation at 11.5 and 115mm depth in 

Figure 6-4 are consistent with QSP still having the solidus at 11.5 lower than at 115mm 

depth, whereas DICTRA has them as very similar. 

In an attempt to understand this behaviour, the results were compared with 

qualitative expectation from diffusion controlled behaviour. A given degree of diffusive 

homogenisation occurs for the same parameter, 𝐷𝑡𝑓/𝑋2where D is the solute 

diffusivity, t is the time and x is the distance (known as half secondary dendrite arm 
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spacing). D is primarily an exponential function of temperature, but there is little 

variation in the current case with all positions undergoing very similar liquidus-solidus 

intervals. Therefore, comparison of the relevant multiplier, 𝑓
𝑓

/𝜆2
2  in this case, should be 

sufficient for comparative purposes. This parameter is included in Figure 6-5 and shows 

a very good agreement between them, but with the minimum value in both 

corresponding to the QSP solidus trough rather than the DICTRA one. 

6.4 Sub-solidus homogenization results 

The effect of cooling below the solidus temperature on micro-segregation has 

been investigated; the results show a significant degree of diffusive homogenization, 

which is a function of the diffusion modulus 𝐷𝑡𝑓/𝑋2. (X here is half of the secondary 

dendrite arm spacing, and the solute diffusivity D is a function of temperature.) 

QSP and DICTRA used the cooling curves in Figure 6-1. The cooling curves 

extend down to 850 ℃ for those bloom-depths. An approximation of a sequence of 

constant cooling rates has been calculated from the cooling curves for the 11.5 mm , 23 

mm, 35.5 mm and 46 mm positions for the temperature ranges down to 1000 ℃. For the 

case of 11.5mm depth, the cooling rate is 3.8 ℃/s from the solidus down to 1250 ℃, 

0.85 ℃/s down to 1000 
0
C, and 0.258 ℃/s down to 900 ℃. For the 46 mm depth, the 

cooling curve just goes to around 1100 ℃ with a cooling rate of 0.092 ℃/s, an 

extrapolation has been made down to 1000 ℃ with cooling rate of 0.055 ℃ which is 

good enough for our purpose to run the DICTRA simulation.  From the above constant 

cooling rates, the heat extraction rates are then calculated (multiplying them by 𝐶𝑃, 

where 𝐶𝑃is the specific heat capacity = 0.69 (kj/KgK for austenite), those heat 

extraction rates are used for the QSP simulation in order to compare the results with 

DICTRA (table 1).  
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Figure 6-6: DICTRA simulation with different cooling rate based on cooling 

curve at bloom depth of 11.5 mm. 

Figure 6-6 shows the case of bloom depth of 11.5 mm, the cooling conditions 

are used in DICTRA based on cooling rate of 6.96 ℃/s  from 1507 ℃ down to solidus, 

3.81 ℃/s from the solidus of 1368.7 ℃ down to 1250 ℃, 0.85 ℃/s down to 1000 ℃, and 

0.258 ℃/s down to 900 ℃. 

The micro-segregation of elements decreases as the temperature decreases 

during continuous cooling; this decrease depends on the cooling conditions. For the 

continuous casting of large cross-sections of steel, this is more complicated, not only 

there being an effect of cooling rate, but also of multicomponent and multiphase alloys 

[22]. Figure 6-7 shows the sub-solidus homogenisation of C, Si and Mn. The micro-

segregation of Si and Mn shows significant decrease during cooling. Carbon diffuses 

sufficiently rapidly to equalise, but interactions with the Si and Mn peaks are evident. 
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a) 1250 ℃ 

 

b) 900 ℃ 

Figure 6-7: Sub-solidus homogenization simulation using DICTRA of a 0.72C-

0.24Si-0.63%Mn at 11.5 mm: (a) temperature down to 1250 ℃, (b) temperature 

down to 900 ℃. 
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Table 1 shows from simulation how Si and Mn solute profiles (Cmax) 

homogenise during cooling below the solidus based on the cooling curve in Fig. 1. At 

the 23 mm position, Si and Mn solutes show higher micro-segregation than the 11.5 mm 

position for both models, despite their different location of the solidus troughs, Figure 

6-5. The 35.5mm position is less segregated than the 23mm position, and the 46 mm 

position is less segregated that the 35.5mm position. Toward the centre, it shows 

homogenization sub-solidus. 

The movement of the peak position away from the solidus trough must reflect 

relative thermal histories during and after solidification, but can be explained through 

the 23 mm position having a SDAS of 120 µm, twice at the 11.5mm position of 60 µm. 

The faster cooling rate nearer the surface itself leads to more micro-segregation / 

depressed solidus temperature, but the smaller length-scale allows more 

homogenization sub-solidus. So the absolute segregation is a balance, this finding will 

be discussed in chapter 7. 

QSP has generally shown more silicon micro-segregation than DICTRA, 

manganese micro-segregation varies from rather similar (near surface) to very different 

(near centre). 
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Table 6-1: Comparison between QSP and DICTRA sub-solidus homogenisation 

simulation 

11.5 mm position QSP, Solidus T = 1352.3 ℃ DICTRA, Solidus T = 1358 ℃ 

Temperature 

(℃) 

Cooling rate 

(℃/s) 

Si Cmax Mn Cmax Si Cmax Mn Cmax 

Solidus 6.96 1.041 1.744 0.714 1.872 

1250 3.81 0.728 1.484 0.4836 1.343 
1000 0.852 0.486 1.222 0.4104 1.209 
900 0.258 0.333 0.981 0.3996 1.200 

23 mm position QSP, Solidus T =1347.3 ℃ DICTRA, Solidus T = 1358 ℃ 

Temperature 

(℃) 

Cooling rate 

(℃/s) 

Si Cmax Mn Cmax Si Cmax Mn Cmax 

Solidus 2.61 1.170 1.855 0.702 1.833 

1200 1.56 0.845 1.609 0.499 1.343 
1100 0.49 0.656 1.436 0.474 1.310 
1000 0.25 0.537 1.306 0.460 1.255 

35.5 mm position QSP, Solidus T =1342.8 ℃ DICTRA, Solidus T = 1350 ℃ 

Temperature 

(℃) 

Cooling rate 

(℃/s) 

Si Cmax Mn Cmax Si Cmax Mn Cmax 

Solidus 1.09 1.259 1.919 0.840 2.262 

1250 0.326 0.866 1.635 0.468 1.267 

1150 0.282 0.806 1.584 0.448 1.249 

1000 0.06 0.515 1.291 0.420 1.210 
46 mm position QSP, Solidus T =1348.9 ℃ DICTRA, Solidus T = 1348.5℃ 

Temperature 

(℃) 

Cooling rate 

(℃/s) 

Si Cmax Mn Cmax Si Cmax Mn Cmax 

Solidus 0.59 1.127 1.823 0.870 2.550 

1250 0.22 0.757 1.528 0.462 1.278 

1100 0.092 0.571 1.336 0.416 1.185 

1000 0.055 0.500 1.256 0.405 1.178 
57.5 mm 

position 

 QSP, Solidus T =1351.5 ℃ DICTRA, Solidus T = 1348 ℃ 

Temperature 

(℃) 

Cooling rate 

(℃/s) 

Si Cmax Mn Cmax Si Cmax Mn Cmax 

solidus 0.37 1.065 1.769 0.864 2.535 

1250 0.16 0.719 1.482 0.449 1.217 

1150 0.098 0.565 1.323 0.410 1.159 

1000 0.061 0.487 1.228 0.396 1.150 
69 mm position  QSP, Solidus T =1356.9 ℃ DICTRA, Solidus T = 1352 ℃ 

Temperature 

(℃) 

Cooling rate 

(℃/s) 

Si Cmax Mn Cmax Si Cmax Mn Cmax 

solidus 0.249 0.936 1.657 0.810 2.418 

1250 0.115 0.611 1.355 0.349 0.994 

1150 0.048 0.481 1.202 0.331 0.993 

1000 0.030 0.417 1.113 0.318 0.970 
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Chapter 7: Si and Mn Micro-segregation Measurements 

In The High Carbon Steel 
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7.1 SEM-EDS experimental results 

Micro-segregation is the chemical inhomogeneity, which develop both during 

and after solidification at the scale of the solidification microstructure, generally that 

between the secondary dendrite arms [105], [108], [126], [127], over a length-scale of 

the order 60 µm. The extent of this segregation depends on the balance between the 

thermodynamics and kinetics, between the cooling rate and length-scale (typically half 

the secondary dendrite arm spacing) [2], [128], [129]. Most of the research in micro-

segregation has been carried out in a small section at a laboratory scale rather than an 

industrial scale.  

The research to date has tended to focus on Si and Mn micro-segregation both 

during solidification and sub-solidus rather than only during solidification at each 

bloom depth (the comparison with experiment requires account of the development 

below solidus).   

Figures 7-1 to 7-40 show EDS-SEM line scans going through 2, 3 or 4 

secondary dendrite arm spacings. The Si and Mn concentration profiles are the rolling 

averages of 3 data points to afford some smoothing. The Si and Mn concentration 

profiles are approximately proportional. The interdendritic peaks are clearer for Mn than 

for Si. 
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 a) 

  

 b) 

 Figure 7-1: EDS-SEM line-scan which through 3 SDAS at the 11.5 mm depth. 

(a) Si and Mn concentration profiles, (b) Dendrite structure 
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Figure 7-1 shows the Si and Mn micro-segregation profiles through 3 SDAS at 

11.5mm, from measurements taken every 3 µm. From the Mn concentration profile we 

can see that the Mn peaks have recorded as 0.8wt% at interdendritic regions; a 

minimum concentration of the Mn was recorded as 0.55wt% at dendrite cores. The Mn 

peaks are variable depending on the distance between the adjacent dendrites. A short 

distance of the dendrite arms results in a lower level of concentration at the same 

solidification conditions and cooling rate. The Mn profile goes around the average 

concentration of 0.64wt%. For the Si concentration profile, the Si peaks has recorded as 

0.34wt%, the minimum concentration of Si has recorded of 0.23wt% at the dendrite 

cores. The Si concentration profile goes around the average concentration of 0.24wt%. 

 

 
Figure 7-2: Correlation between silicon and manganese at the 11.5mm depth 

 

Study of the correlation between silicon and manganese can be used as a tool to 

sort the micro-segregation with different depths. If the solidification proceeded with a 

single-phase, the correlation between silicon and manganese should be monotonic. If a 
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second phase forms in the interdendritic regions in the course of the solidification as in 

the peritectic reaction, there can be peaks or troughs at the dendrite cores to 

interdendritic [126], [75], and the correlation between silicon and manganese is less 

simple. The scatter not only depends on the thermal rate and solute diffusivity but also 

on the secondary dendrite arm spacing, details of the 3D morphology, and measurement 

error. 

Figure 7-2 shows the correlation between silicon and manganese at the 11.5 mm 

position. Some of the EDS scatter for Si and Mn concentrations was smoothed using the 

3 rolling average technique. The correlation follows the ideal line but shows big scatter. 

We can see that, increasing the Mn concentration resulted in an increase of the Si 

concentration. There are some reasons for the scatter; the faster cooling rate near the 

surface itself leads to more micro-segregation, and the tendency for precipitate 

formation could play a role. The different length-scales also lead to variable micro-

segregation at the same thermal rate. The strong evidence of this was found in figure 7-

1b, the spacing of the secondary arm in the middle is longer than at both sides, and it 

resulted in higher micro-segregation. 
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a) 

 

b) 

Figure 7-3: Experimental profile compositions at the 11.5mm depth across a 60 

µm secondary dendrite arm for (a) silicon and (b) manganese. 
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It was not easy to investigate the significant relationships of the micro-

segregation of solutes and each bloom-depth further because the secondary dendrite arm 

spacing was variable. Figure 7-3 shows the silicon and manganese against distance from 

the dendrite core to the interdendrite region by reordering the EDS line scan 

experimental data at the 11.5mm depth position for all the dendrites in figure 7-1 a. The 

3-rolling average technique was again applied to the experimental data in order to 

remove some of the EDS scatters. This alternative method for making the length-scale 

homogenous is used to measure exact micro-segregation of silicon and manganese. 

Silicon goes around the average composition of 0.24 wt.% and tends to segregate to the 

interdendrite region. Manganese also goes around the average composition of 0.63 wt.% 

and tends to segregate to the interdendrite region. 

Figure 7-4 shows the Si and Mn micro-segregation profiles through 4 SDAS at 

23mm, from measurements taken every 6 µm. From the Mn concentration profile we 

can see that the Mn peaks have recorded as 0.82wt% at interdendritic regions, a 

minimum concentration of Mn was recorded as 0.55wt% at the dendrite cores. 

Experimental data from this figure can be compared with the experimental data in figure 

7-1 which shows a slight increasing from 0.8wt% to 0.82wt% toward 23mm. The 

appears to be some misalignment of the Si and Mn peaks and troughs, which will lead 

to scatter on their correlation, figure 7-6. 
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 a) 

  
 b) 

Figure 7-4: EDS-SEM line-scan which goes through 4 SDAS at the 23 mm 

depth. (a) Si and Mn concentration profiles, (b) Dendrite structure 
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 a) 

  
 b) 

Figure 7-5: Another EDS-SEM line-scan which goes through 4 SDAS at the 23 

mm depth. (a) Si and Mn concentration profiles, (b) Dendrite structure 
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Figure 7-6: Correlation between silicon and manganese at the 23 mm depth. 

 

Figure 7-6 shows the correlation between silicon and manganese at the 23 mm 

position of figure 7-5. A positive correlation was found between silicon and manganese, 

following the ideal line, with much less scatter than at 11.5 mm. Some of the scatter was 

found at the dendrite core; ie, low manganese with high silicon.  

 

Figure 7-7 shows the silicon and manganese wt.% against distance from the 

dendrite core to the interdendrite region by reordering the EDS line scan experimental 

data at the 23 mm depth position of figure 7-5. The position with low manganese and 

high silicon as seen in figure 7-5, could be explained by the fact that there might be a 

hole or MnS inclusion which leads to lower manganese concentration than in other 

positions. 
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 a) 

  

 b) 

Figure 7-7: Experimental profile compositions at the 23 mm depth across a 120 

µm secondary dendrite arm for (a) silicon and (b) manganese. 
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 a) 

  

 b) 

Figure 7-8: EDS-SEM line-scan which goes through 3 SDAS at the 34.5 mm 

depth. (a) Si and Mn concentration profiles, (b) Dendrite structure 
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 a) 

  

 b) 

Figure 7-9: Another EDS-SEM line-scan which goes through 4 SDAS at the 

34.5 mm depth. (a) Si and Mn concentration profiles, (b) Dendrite structure 
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Figure 7-8 shows the Si and Mn micro-segregation profiles through 3 SDAS at 

23mm, from measurements taken every 10 µm. From the Mn concentration profile, we 

can see that the Mn peaks have recorded 0.84wt% at the interdendritic regions, a 

minimum concentration of Mn was recorded of 0.6wt% at the dendrite cores. 

Comparison of Mn peaks between the two depth positions of 23mm and 34.5mm shows 

a slight increase from 0.82wt% to 0.84wt% toward 34.5mm. 

Figure 7-9 shows another Si and Mn concentration profile at the same depth of 

34.5 mm, The Si and Mn experimental data are smoother than the results in figure 7-8. 

Si peaks have significantly increased compared to close to the surface. The mean Si 

concentration has increased to 0.3wt% compared with average Si concentration of 

0.24wt%. The position with low manganese and high silicon as seem in figure 7-9, 

could be explained by the fact that there might be a hole or MnS inclusion which leads 

lower manganese concentration than other positions, this is an unexpected experimental 

result. Mn concentration profiles show good agreement; Mn peaks have slightly 

increased compare to back towards the surface. Mn experimental results go around the 

average concentration. 
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Figure 7-10: Correlation between silicon and manganese at the 34.5mm depth 

(extracted from figure 7-9). 

Figure 7-10 exhibits odd behaviour in the Si-Mn correlation. Notably, there are 

several results of very low Mn content that are below the theoretical minimum of 

𝑘𝑀𝑛 ∗ 𝐶0,𝑀𝑛= 0.49% ( where 𝑘𝑀𝑛  = 0.78,  𝐶0,𝑀𝑛= 0.63). Figure 7-11 exhibit the silicon 

and manganese against distance of the dendrite core to the interdendrite region (some 

manganese scatters below the minimum concentration have been removed). 

Figure 7-12 shows the Si and Mn micro-segregation profiles through 2 SDAS at 

46mm, from measurements taken every 10 µm. Both Si and Mn profiles are 

proportional; smooth and increase from the dendrite cores to the interdendritic position; 

Mn peaks have slightly increased compared with the depth of 34.5mm. Again Si mean 

concentration is higher than the average concentration. 
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 a) 

  

 b) 

Figure 7-11: Experimental profile compositions at the 34.5mm depth across a 

216 µm secondary dendrite arm for (a) silicon and (b) manganese. 
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 a) 

  

 b) 

Figure 7-12: EDS-SEM line-scan which goes through 2 SDAS at the 46 mm 

depth. (a) Si and Mn concentration profiles, (b) Dendrite structure 
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Figure 7-13: Correlation between silicon and manganese at the 46mm depth. 

Figure 7-14 exhibits the silicon and manganese concentrations against distance 

of the dendrite core to the interdendrite region. The silicon curve exhibits a very good U 

shape slope with less scatter with the minimum point being the dendrite core and the 

highest at the interdendritic position.  Manganese exhibits a very good V shaped curve 

with the lowest manganese points at 0.56 wt,% (dendrite core) and increasing to the 

highest point at the interdendritic position. The different Si and Mn profiles caused the 

correlation in figure 7-13. 
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 a) 

  

 b) 

Figure 7-14: Experimental profile compositions at the 46mm depth across a 233 

µm secondary dendrite arm for (a) silicon and (b) manganese. 
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 a) 

  

 b) 

Figure 7-15: EDS-SEM line-scan which goes through 3 SDAS at the 57.5 mm 

depth. (a) Si and Mn concentration profiles, (b) Dendrite structure 
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Figure 7-15 shows the Si and Mn micro-segregation profiles through 2 SDAS at 

57.5mm, from measurements taken every 10 µm. The highest Mn peak was recorded at 

position 14, it was a MnS inclusion within the chosen line scan; the strong evidence of 

this MnS was found in figure 7-16, a strong peak of S was found at point 14.  

 

 

 

Figure 7-16: Evidence of MnS on a chosen EDS-SEM line-scan at the 57.5 mm 

depth. 
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Figure 7-17: Correlation between silicon and manganese at the 57.5mm depth. 

 

Figure 7-18 shows the silicon and manganese against distance of the dendrite 

core to the interdendrite region. Silicon exhibits a very good U shaped curve with the 

lowest point at the dendrite core and increasing to the highest point at the interdendritic 

position. Manganese exhibits a very good V shaped curve with the lowest manganese 

points at 0.56 wt,% and increasing to the highest point at the interdendritic postion. The 

different Si and Mn profiles caused the correlation in figure 7-17. 

 

 

 

 



131 
 

 

 a) 

  

 b) 

Figure 7-18: Experimental profile compositions at the 57.5mm depth across a 

268 µm secondary dendrite arm for (a) silicon and (b) manganese. 
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 a) 

  

 b) 

Figure 7-19: EDS-SEM line-scan which goes through 3 SDAS at the 69 mm 

depth. (a) Si and Mn concentration profiles, (b) Dendrite structure 
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 a) 

  

 b) 

Figure 7-20: Another EDS-SEM line-scan which goes through 3 SDAS at the 69 

mm depth. (a) Si and Mn concentration profiles, (b) Dendrite structure 
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Figure 7-21: Correlation between silicon and manganese at the 69mm depth 

(extracted from figure 7-20). 

Figure 7-19 shows the Si and Mn micro-segregation profiles through 3 SDAS at 

69 mm, from measurements taken every 10 µm. Si and Mn concentration profiles are 

not smooth, but it still shows the Si and Mn peaks at the interdendritic positions. At this 

depth, both Si and Mn peaks show higher values than back towards the surface and 

toward the centre. The experimental work was repeated at this depth at another position 

in order to get a smoother Si and Mn concentration profile shown as figure 7-20. Si 

mean concentration was again confirmed higher than the average concentration. 

Figure 7-21 exhibits odd behaviour in the Si-Mn correlation as compared to 

figure 7-20. It shows a “tail” on the correction plot. Figure 7-22 shows the silicon and 

manganese against distance of the dendrite core to the interdendrite region. The Mn 

profile was less scattered as compared to the Si profile. The latter included two suspect 

points of very low Si content, and possibly a “tail” on the correction plot heading 

towards them; suggesting an unexpected trough in Si at the dendrite core. 
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 a) 

  

 b) 

Figure 7-22: Experimental profile compositions at the 69mm depth (extracted 

from figure 7-20) across a 261 µm secondary dendrite arm for (a) silicon and (b) 

manganese. 
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 a) 

  

 b) 

Figure 7-23: Experimental profile compositions at the 69mm depth across a 261 

µm secondary dendrite arm for (a) silicon and (b) manganese. 
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Figure 7-24: Correlation between silicon and manganese at the 69mm depth. 

Figure 7-23 shows the Si and Mn micro-segregation profiles through 2 SDAS at 

69mm, from measurements taken every 10 µm. The Mn profile is smooth and exhibits a 

“saw-tooth”. Figure 7-23 exhibits the peak drifting between silicon and manganese 

profiles, where the silicon peak is not ideally aligned with the manganese and it is 

believed that the solute peaks slightly displace apart after solidification [126]. The Si 

concentration profile exhibits encompasses two separate peaks, and not aligned with the 

manganese concentration. This is caused by some scatter shown as figure 7-24 as well 

as lower silicon and higher manganese. 

Figure 7-25 exhibits the silicon and manganese against distance of the dendrite 

core to the interdendrite region. The silicon and manganese exhibit a very good U 

shaped profile with the lowest point at the dendrite core and the highest point at the 

interdendritic position. The silicon profile exhibits the steeper initial slope of the Si 

profile. 
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 a) 

  

 b) 

Figure 7-25: Experimental profile compositions at the 69mm depth across a 261 

µm secondary dendrite arm for (a) silicon and (b) manganese. 
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From observation under the microscope, the depths of 57.5mm and 69mm show 

more inclusion particles than other depth positions. From the experimental results, Si 

and Mn showed the highest micro-segregation levels at the interdendrite region at the 

depths of 57.5mm and 69mm. 

It is interesting to examine Si and Mn micro-segregation at the depths of 

57.5mm and 69mm, the secondary dendrite arm spacing were reported highest at the 

depth of 57.5mm and decreased toward the centre as shown in figure 5-1. From figure 

7-18 and 7-25 we can see that, both Si and Mn micro-segregation degree at the depth 

57.5mm show the same as the depth 69mm. 

  

Figure 7-26: Evidence of MnS on a chosen EDS-SEM line-scan at the 69 mm 

depth (extracted from figure 7-19). 
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 a) 

  

 b) 

Figure 7-27: EDS-SEM line-scan which goes through 3 SDAS at the 80.5 mm 

depth. (a) Si and Mn concentration profiles, (b) Dendrite structure 
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Figure 7-27 shows the Si and Mn micro-segregation profiles through 3 SDAS at 

80.5mm, from measurements taken every 10 µm. Si and Mn concentration profiles are 

smooth and proportional. Both Si and Mn concentration profiles were slightly depressed 

in comparison to the 69mm depth. The Mn peak at the centre dendrite is higher 

compared to either side. From figure 7-27b, we can see that, the dendrite distance at the 

centre is longer than the other. The correlation between segregation and dendrite arm 

distance was mentioned; the longer dendrite distance results in high levels of 

segregation at the same thermal rate conditions. 

  

Figure 7-28: Correlation between silicon and manganese at the 80.5mm depth. 

Figure 7-28 shows very good positive correlation between Si and Mn. Both Si 

and Mn profiles was less scattered than those back towards the surface as shown as 

figure 7-29. 
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 a) 

  

 b) 

Figure 7-29: Experimental profile compositions at the 80.5mm depth across a 

256 µm secondary dendrite arm for (a) silicon and (b) manganese. 
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 a) 

  

 b) 

Figure 7-30: EDS-SEM line-scan which goes through 5 SDAS at the 92 mm 

depth. (a) Si and Mn concentration profiles, (b) Dendrite structure 
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The standard expectation is for silicon and manganese solutes to exhibit peaks of 

concentration at the same position at the final solidification. However, in some cases, 

silicon and manganese solute peaks are not coincident, and appear to slightly drift apart 

as sub-solidus homogenization occurred [126]. Figure 7-30 exhibits the peak drifting 

between silicon and manganese profiles, where the silicon peak is not ideally aligned 

with the manganese and it is believed that the solute peaks slightly drifted apart after 

solidification [126]. The slightly silicon drifting apart is caused by some suspected point 

of very low manganese content and high silicon content shown in figure 7-31. 

In alloyed steels, solutes have a widely differing diffusivity, a rapid diffuser 

could exhibit a single, merged peak, and a sluggish diffuser could exhibits encompasses 

two separate peaks. Silicon and manganese diffuse much less than carbon, however, 

silicon diffuses less than manganese [126]. It also caused two unexpected troughs in 

silicon, shown in figure 7-32a. The manganese profile shows good agreement with the 

lowest value at the dendrite core and the highest value at the interdendritic positions as 

shown in figure 7-32b. 

  

Figure 7-31: Correlation between silicon and manganese at the 92mm depth 

(extracted from figure 7-30) 
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 a) 

  

 b) 

Figure 7-32: Experimental profile compositions at the 92mm depth across a 237 

µm secondary dendrite arm for (a) silicon and (b) manganese. 
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 a) 

  

 b) 

Figure 7-33: EDS-SEM line-scan goes through 3 SDAS at the 103.5 mm depth. 

(a) Si and Mn concentration profiles, (b) Dendrite structure 
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Figure 7-33 shows the Si and Mn micro-segregation profiles through 3 SDAS at 

103mm, from measurements taken every 10 µm. Both Si and Mn profiles are 

proportional; smooth and increase from the dendrite cores to the interdendritic 

positions. Both Mn and Si concentration profiles oscillate around the average 

concentration. 

 

 

Figure 7-34: Correlation between silicon and manganese at the 103.5mm depth. 

Figure 7-34 shows the correlation between silicon and manganese at the 103 mm 

position. A positive correlation was found between silicon and manganese which 

followed the ideal line with high R-squared of 0.68. The correlation between silicon and 

manganese is better than at the other positions. Both silicon and manganese profiles 

were less scattered, the manganese profile exhibits a better shape compared with the 

silicon profile as shown in figure 7-35. 
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 a) 

  

 b) 

Figure 7-35: Experimental profile compositions at the 103.5mm depth across a 

241 µm secondary dendrite arm for (a) silicon and (b) manganese. 
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 a) 

  

 b) 

Figure 7-36: EDS-SEM line-scan which goes through 4 SDAS at the 115 mm 

depth. (a) Si and Mn concentration profiles, (b) Dendrite structure 

 



150 
 

     Figure 7-36 shows the Si and Mn micro-segregation profiles through 4 SDAS at 

115mm, from measurements taken every 10 µm. Both Si and Mn profiles are 

proportional, and increase from the dendrite cores to the interdendritic positions. Silicon 

concentration profile was better than that of manganese. It is also better than the other 

depths. Both Mn and Si concentration profiles go around the average concentration. 

 

  

Figure 7-37: Correlation between silicon and manganese at the 115mm depth. 

Figure 7-37 shows the correlation between silicon and manganese at the 115 mm 

position. A positive correlation was found between silicon and manganese and they 

were both close to the ideal line with a high R-squared value of 0.64. The correlation 

between silicon and manganese was better than at other depths, slightly decreasing as 

compared to the 103mm position. There are three points of high Si content with medium 

Mn content, this is caused by silicon slightly drifting apart, and is not ideally aligned 

with the manganese (last silicon peak in figure 7-36a). 
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 a) 

  

 b) 

Figure 7-38: Experimental profile compositions at the 115mm depth across a 

230 µm secondary dendrite arm for (a) silicon and (b) manganese. 
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Figure 7-39 shows the silicon and manganese wt.% against proportion of the 

dendrite cores to the interdendrite regions. Both Si and Mn concentration profiles follow 

the ideal line and oscillate around the average composition.  

Figure 7-29 to 7-38 show that from the depth of 57.5mm toward the centre, the 

Si and Mn concentration profiles are smooth and approximately proportional; the Si 

concentration profiles look smoother than back towards to the surface, both Si and Mn 

peaks are clearer.  This finding has important implications for developing the micro-

segregation model for industrial scale which could predict the micro-segregation degree 

for big sections such as slab and bloom steels. The experiments were successful as it 

was able to identify the Si and Mn micro-segregation degree from the surface, mid-way 

and toward the centre. The present results are significant in that at least it could identify 

the effect of cooling rate or heat extraction rate, solidification microstructure and solute 

diffusion on micro-segregation both during and after solidification. 

However, some EDS scatter was found at around the dendrite cores, a possible 

explanation for this was given by other researchers as discussed above, but it is still 

difficult to explain in these ways, further studies on the EDS scatter is therefore 

recommended. 
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7.2 Summary of Si and Mn concentrations at the dendrite core 

and interdendritic positions 

Table 7-1: Si and Mn concentrations at the dendrite core and interdendritic 

positions from EDS-SEM measurements 

Depth, mm Min Si, 

wt.% 

Max Si, 

wt.% 

Min Mn, 

wt.% 

Max Mn, 

wt.% 

11.5 0.23 0.32 0.57 0.77 

23 0.24 0.35 0.58 0.78 

34.5 0.24 0.37 0.57 0.81 

46 0.29 0.37 0.59 0.85 

57.5 0.27 0.37 0.58 0.84 

69 0.26 0.37 0.63 0.84 

80.5 0.22 0.35 0.55 0.83 

92 0.23 0.38 0.55 0.84 

103.5 0.22 0.37 0.58 0.82 

115 0.23 0.37 0.57 0.85 

 

Micro-segregation of Si and Mn were measured by EDS-SEM line scan going 

through 2-4 SDAS from the surface to centre. Table 7-1 shows summarized Si and Mn 

concentrations at the dendritic cores and Si and Mn peaks at the interdendrite positions. 

The minimum concentration of Si averages 0.24 wt%. At quarter-thickness, the 

minimum concentration of Si is generally higher than the average concentration of 0.24 

wt%. Further toward the centre, the minimum concentration of Si gets lower compared 

to the average concentration. The minimum concentration of Mn is lower compared to 

the average concentration of 0.63 wt% with the exception of the depth of 69mm. 

The experimental results of manganese peak profile increases from the surface 

to the depth of 46 mm, but scatter around that level to the centre as shown in figure 7-

39. The manganese peak profile did not conform to the local solidification time which 

was extracted from the TTC model. This profile conformed to the measured results of 
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SDAS (figure 5 -1). The experimental results of the silicon peak profile increased from 

the surface to the depth of 35.5 mm, and reached a constant value of 0.37 wt.%  further 

toward the centre. Silicon peaks alternates between two depths of 80.5 and 92 mm 

around the constant value of 0.37 wt.% as shown in figure 7-40. 
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Figure 7-39: Mn peak profile at different depths of high carbon bloom steel 

 

Figure 7-40: Si peak profile at different depths of high carbon bloom steel 

 

 

 



156 
 

 

 

 

 

 

 

 

 

 

 

Chapter 8: Micro-segregation Model 
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8.1 Micro-segregation models 

There are some selected analytical non-equilibrium micro-segregation models as 

listed in table 8.1. These micro-segregation models with different assumptions and 

simplifications have been developed to predict solute redistribution. The Scheil model 

[99] assumes the state with complete diffusion in liquid phase and no diffusion in solid 

phase; this model does not adequately estimate the final solute concentration, because 

liquid solute becomes infinite at solid fraction equal to 1. The Brody-Flemings model 

[100] was the first to assume complete diffusion in liquid phase and incomplete “back 

diffusion” in the solid. These authors have introduced  as a back diffusion parameter, 

which has been modified by many researchers in different ways.   

Micro-segregation equation description 

Many micro-segregation models with different assumptions have been 

developed to predict solute element distribution during solidification. The present 

simple micro-segregation equation developed in this study is based on the Ohnaka 

model [102] for each solute element. The Ohnaka model considered an approximate 

solution of the diffusion for the plate like columnar dendrite, assuming a quadratic 

solute profile in the solid phase, from which he derived: 

  CS = KC01-(1-K)fS
(k-1)/(1-k) 

   (8-1) 

  𝛽𝑖 =
2𝛼𝑖

1+2𝛼𝑖
    (8-2) 

 where 𝛽𝑖  is the back diffusion parameter developed similar to that by Brody-

Flemings 2𝛼𝑖  term, and 𝛼𝑖  is a Fourier number for solute element i, 

 As mentioned in the literature survey, the original Brody-Flemings 𝛽𝑖  was 2𝛼𝑖  , 

but this gave very poor prediction with high diffusivity. 
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                  𝛼𝑖 =
𝐷𝑠,𝑖𝑡𝑓

𝜆2
                                            (8-3) 

Effect of dendrite arm coarsening 

 During solidification, micro scale mechanisms in addition to the back diffusion 

parameter control the distribution of solute in both the liquid and solid phases, in 

particular the dendrite coarsening. Mortensen [72] showed that arm coarsening reduced 

the extent of micro-segregation, even avoiding the infinite result at 𝑓𝑠 = 1 for zero solid 

diffusion (Scheil model). One limitation of Ohnaka‟s model is that the length scale of 

the microstructure is constant; in general, this assumption is not correct [76]. In order to 

satisfy this requirement, a new micro-segregation equation in proposed here that would 

account for the coarsening of the dendrite structure, measured by the secondary dendrite 

arm spacings, such that the equation 8-2 is rewritten, as follows:  

  𝛽𝑖 =
2𝛼𝑖

+

1+2𝛼𝑖
+    (8-4) 

 The previous chapter (4), introduced the new secondary dendrite arm spacing 

model for multicomponent steels. The secondary dendrite arm spacing is a function of 

local solidification time which has a coarsening exponent of n =1/3 (a time 𝑡𝑓
1/3

 

dependence) [60], as follows: 

  𝜆2 = 𝐵.𝑀. 𝑡𝑓
1/3

    (8-5) 

 In this study, we still considered the system to be of constant dendrite arm 

spacing of the final value (at solidus). In other models without the effect of coarsening, 

that leads to very high degree of segregation at the solidus. From theoretical arguments, 

Voller and Beckermann [76] argued that introducing an additional back diffusion term 

𝛼𝑐 = 0.1 (𝛼+ = 𝛼 + 𝛼𝑐) approximates to the homogenising effect of coarsening which 

would lead to a reduced degree of segregation at the solidus. An alternative was adopted 
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of modifying the Fourier number to the back diffusion factor (see equation 8-4) in 

account with coarsening exponent of 1/3 (see equation 8-5), as follows: 

  𝛼𝑖
+ =  𝛼1/3                                           (8-6) 

 Equation 8-6 is very important because the effect of dendrite coarsening can be 

included in our micro-segregation model which, just by replacing the Fourier number in 

the back diffusion parameter, accounts for the reduced the degree of micro-segregation 

expected from coarsening.   

Solute profile across the solid 

 The models in Table 8-1 do not provide an estimate of the solute profile, but 

only the concentration at the solid/liquid interface, the new equation in this study also 

seeks a quick approach to calculation of solute profile across the solid. The solute 

profile must lie between the limit of the Scheil case and equilibrium (lever rule) case, 

and also satisfy the requirement to conserve solute [105]. 

 In his quick micro-segregation model, Howe [106] proposed an equation to 

estimate the solute concentration at the dendrite core, in addition to the usual prediction 

of composition at the solid/liquid interface, as follows: 

 𝐶𝑐𝑜𝑟𝑒 ,𝑖 = 𝐶0,𝑖 ∗ 𝑘𝑖
(1−𝛽𝑖)                                       (8-7) 

where 𝑘𝑖  is partition confident of element i and 𝛽𝑖  is the back diffusion parameter 

ranging from 0 (Scheil) to 1 (lever Rule). 

The solute profile that conserves solute was devised by Howe [106], for a power law: 

 𝐶𝑠,𝑖 = 𝐶𝑐𝑜𝑟𝑒 ,𝑖 +  𝐶𝑝𝑒𝑎𝑘 ,𝑖 − 𝐶𝑐𝑜𝑟𝑒 ,𝑖 . 𝑓𝑠
𝑛                (8-8) 

 where 𝐶𝑝𝑒𝑎𝑘 ,𝑖  is maximum concentration of i at solidus, provided by the micro-

segregation model. 

and the exponent, n is given, as follow: 
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 𝑛 =

𝐶𝑝𝑒𝑎𝑘 ,𝑖

𝐶0,𝑖
−1

1−
𝐶𝑐𝑜𝑟𝑒 ,𝑖

𝐶0,𝑖

                                                          (8-9) 

Table 8-1: Selected analytical microsegregation models 

Model Equation Expression of  back diffusion 

Scheil CS = KC0(1-fS)
k-1 

 

Brody-Flemings CS = KC01-(1-K)fS
(k-1)/(1-k)

  = 2α = 2DStf / (λ/2)
2
 

Clyne-Kurz CS = KC01-(1-K)fS
(k-1)/(1-k)

  = 2α1-exp(-1/α)-exp(-1/2α) 

Ohnaka 1 

(linear) 
CS = KC01-(1-K)fS

(k-1)/(1-k)
  = 2α/(1+2α) 

Ohnaka 2 

(Parabolic) 
CS = KC01-(1-K)fS

(k-1)/(1-k)
  = 4α/(1+4α) 

Won-Thomas CS = KC01-(1-K)fS
(k-1)/(1-k)

 

 = 2α
+
1-exp(-1/α

+
-exp(-1/2α

+
) 

Where α
+
 = 2(α + α

c
) 

And α
c
 = 0.1 (effect of coarsening) 

This study CS = KC01-(1-K)fS
(k-1)/(1-k)

  = 2α
1/3

/(1+2α
1/3

) 

 

8.2 Effect of back diffusion factor 

Table 8-2 shows the equilibrium partition coefficient and diffusion coefficient of 

-phase for calculations. For high carbon steel in this study, the solidification goes 

directly to the -phase during the solidification process. Complete mixing is assumed in 

each phase for carbon 

Table 8-2: Mn and Si data for equilibrium partition coefficients, diffusion 

coefficients, and liquidus line slopes [2] 

Element 𝒌𝜸/𝑳(cm
2
/s) 𝑫𝜸(cm

2
/s) 

Si 0.60 0.3*exp(-60100/RT) 

Mn 0.78 0.055*exp(-59600/RT) 
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where R is the gas constant, 1.987 cal/mol K, and T is temperature in Kelvin 

Table 8-3 shows the predicted results of back diffusion  for Mn and Si 

according to the micro-segregation models from table 8-1. The local solidification time 

is calculated from equation 6-1, and secondary dendrite arm spacing measurements are 

shown in table 5-2. The back diffusion  for Mn and Si is calculated from the top 

surface to centre, it shows that the back diffusion  for Mn and Si decreases with 

decreasing cooling rate in the columnar dendritic structure (from top surface to 

34.5mm) for models of Brody-Flemings, Clyne Kurz, Ohnaka 1 and 2, and starts 

increasing toward the centre where the dendritic structure is fully equiaxed. The model 

of Brody-Flemings and Clyne Kurz predict the same value  for the same cooling rate, 

the Ohnaka 1 predicts slightly lower value of  compared to the Brody-Flemings and 

Clyne Kurz. 

Won-Thomas‟ results of back diffusion differ because the Won-Thomas model 

applies the effect of dendritic coarsening during solidification by adding the value 0.1 

into the back diffusion . If the Won-Thomas model is not adding the value 0.1 into the 

back diffusion , the back diffusion results are the same with the Brody-Fleming model. 

For this study, the predicted results of back diffusion for Mn and Si also slightly differ 

with the different cooling rate. Both this study and the Won-Thomas model show much 

higher back diffusion values compared to other models, so the effect of dendritic 

coarsening on solute diffusion appears to be strong during the solidification process. 
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Table 8-3: Calculated values of back diffusion  according to different models 

Depth 

(mm) 

𝑡𝑓(s) CR 

(℃/s) 

Brody-

Flemings 

Clyne-

Kurz 

Ohnaka 

1 

Ohnaka 

2 

Won-

Thomas 

This 

study 

Silicon 

11.5 15.3 6.96 1.38*10
-2 

1.38*10
-2

 1.36*10
-2

 2.68*10
-2

 4.24*10
-1

 2.76*10
-1

 

23 40.7 2.61 6.69*10
-3

 6.69*10
-3

 6.65*10
-3

 1.32*10
-2

 4.10*10
-1

 2.30*10
-1

 

34.5 96.8 1.09 4.95*10
-3

 4.95*10
-3

 4.93*10
-3

 9.80*10
-3

 4.07*10
-1

 2.13*10
-1

 

46 178.3 0.59 7.79*10
-3

 7.79*10
-3

 7.73*10
-3

 1.53*10
-2

 3.22*10
-1

 2.39*10
-1

 

57.5 284.4 0.37 9.40*10
-3

 9.40*10
-3

 9.31*10
-3

 1.84*10
-2

 4.15*10
-1

 2.51*10
-1

 

69 426.5 0.25 1.49*10
-2

 1.49*10
-2

 1.46*10
-2

 2.89*10
-2

 4.26*10
-1

 2.81*10
-1

 

80.5 544.2 0.19 1.55*10
-2

 1.55*10
-2

 1.52*10
-2

 3.00*10
-2

 4.27*10
-1

 2.83*10
-1

 

92 631.3 0.17 1.81*10
-2

 1.81*10
-2

 1.78*10
-2

 3.50*10
-2

 4.42*10
-1

 2.94*10
-1

 

103.5 701.4 0.152 1.75*10
-2

 1.75*10
-2

 1.72*10
-2

 3.38*10
-2

 4.31*10
-1

 2.92*10
-1

 

115 734 0.145 2.85*10
-2

 2.85*10
-2

 2.77*10
-2

 5.39*10
-2

 4.52*10
-1

 3.26*10
-1

 

Manganese 

11.5 15.3 6.96 2.95*10
-3

 2.95*10
-3

 2.94*10
-3

 5.86*10
-3

 3.18*10
-1

 1.85*10
-1

 

23 40.7 2.61 1.43*10
-3

 1.43*10
-3

 1.43*10
-3

 2.85*10
-3

 4.00*10
-1

 1.52*10
-1

 

34.5 96.8 1.09 1.06*10
-3

 1.06*10
-3

 1.06*10
-3

 2.11*10
-3

 4.00*10
-1

 1.39*10
-1

 

46 178.3 0.59 1.66*10
-3

 1.66*10
-3

 1.66*10
-3

 3.32*10
-3

 3.17*10
-1

 1.58*10
-1

 

57.5 284.4 0.37 2.00*10
-3

 2.00*10
-3

 2.00*10
-3

 4.00*10
-3

 4.01*10
-1

 1.67*10
-1

 

69 426.5 0.25 3.18*10
-3

 3.18*10
-3

 3.17*10
-3

 6.33*10
-3

 4.04*10
-1

 1.89*10
-1

 

80.5 544.2 0.19 3.30*10
-3

 3.30*10
-3

 3.29*10
-3

 6.57*10
-3

 4.03*10
-1

 1.91*10
-1

 

92 631.3 0.17 3.87*10
-3

 3.87*10
-3

 3.86*10
-3

 7.69*10
-3

 4.05*10
-1

 1.99*10
-1

 

103.5 701.4 0.152 3.74*10
-3

 3.74*10
-3

 3.72*10
-3

 7.42*10
-3

 4.04*10
-1

 1.97*10
-1

 

115 734 0.145 6.14*10
-3

 6.14*10
-3

 6.11*10
-3

 1.21*10
-2

 4.09*10
-1

 2.25*10
-1
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Figure 8-1: Comparison of back diffusion  parameters across a wide range of 

Brody-Flemings 2α for the different models. 

Figure 8-1 shows the comparison of back diffusion  across a wide range of 

Brody-Flemings 2α values of 0.0001 to 2000. Increasing Brody-Flemings 2α is 

increasing the back diffusion, but it should stop at the equilibrium solution ( = 1). It 

shows that the Ohnaka 1 factor is almost identical to the Clyne-Kurz factor, the back 

diffusion  and Brody-Flemings 2α follow the ideal line from very low value of 0.0001 

to around 0.01, then the back diffusion  gets limited to a maximum of 1 for a wide 

range of Brody-Flemings 2α values up to 2000. The Won-Thomas factor yields higher 

solute diffusivity compared to the Ohnaka 1&2, and Clyne-Kurz model, and also has the 

limitation to a maximum of 1. The coarsening factor 𝛼𝑐  = 0.1 leads to higher diffusivity 

compared to those models without dendritic coarsening. A good example is given by the 

Ohnaka 1 model normalised with the coarsening factor 𝛼𝑐  = 0.1 shown as equation 8-
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10, the result shows much higher diffusivity for very low values of Brody-Flemings 2α, 

although not as much as by the Won-Thomas equation. 

 𝛽 =  
2(𝛼+0.1)

1+2(𝛼+0.1)
      (8-10) 

This study with normalised dendritic coarsening shows much higher diffusivity 

compared to the Ohnaka 1&2, and Clyne-Kurz model, and shows the limitation to a 

maximum of 1 for a wide range of Brody-Flemings 2α values up to 2000. It is logical to 

expect a more complete micro-segregation model for multicomponent alloy 

solidification to include the effects of both coarsening secondary arm spacing and back 

diffusion [76]. 
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Table 8-4: Predicted values of C max of Si and Mn when solid fraction 𝑓𝑠 = 1 

according to different models 

Depth 

(mm) 

𝑡𝑓  (s) CR 

(℃/s) 

Brody-

Flemings 

Clyne-

Kurz 

Ohnaka 

1 

Ohnaka 

2 

Won-

Thomas 

This 

study 

Silicon 

11.5 15.3 6.96 1.36 1.36 1.36 0.99 0.32 0.37 

23 40.7 2.61 1.90 1.90 1.91 1.38 0.32 0.39 

34.5 96.8 1.09 2.19 2.19 2.2 1.59 0.32 0.41 

46 178.3 0.59 1.77 1.77 1.78 1.29 0.35 0.39 

57.5 284.4 0.37 1.62 1.62 1.63 1.18 0.32 0.38 

69 426.5 0.25 1.31 1.31 1.32 0.96 0.32 0.37 

80.5 544.2 0.19 1.29 1.29 1.29 0.95 0.32 0.37 

92 631.3 0.17 1.19 1.19 1.20 0.88 0.31 0.36 

103.5 701.4 0.152 1.21 1.21 1.22 0.89 0.31 0.36 

115 734 0.145 0.97 0.97 0.98 0.73 0.31 0.35 

Manganese 

11.5 15.3 6.96 1.87 1.87 1.87 1.62 0.74 0.81 

23 40.7 2.61 2.19 2.19 2.19 1.88 0.71 0.84 

34.5 96.8 1.09 2.34 2.34 2.34 2.02 0.71 0.85 

46 178.3 0.59 2.12 2.12 2.12 1.82 0.74 0.83 

57.5 284.4 0.37 2.04 2.04 2.04 1.75 0.71 0.82 

69 426.5 0.25 1.84 1.31 1.84 1.58 0.71 0.80 

80.5 544.2 0.19 1.83 1.83 1.83 1.58 0.71 0.80 

92 631.3 0.17 1.77 1.76 1.77 1.52 0.71 0.80 

103.5 701.4 0.152 1.78 1.78 1.78 1.54 0.71 0.80 

115 734 0.145 1.59 1.59 1.60 1.38 0.71 0.78 

 

Table 8-4 shows the predicted results of Cmax of Si and Mn when solid fraction 

𝑓𝑠 = 1 according to the micro-segregation models from table 8-1. As expected severity 

of micro-segregation reflects the difference in . The Cmax for Mn and Si are 

calculated from the top surface down to the centre. The models of Brody-Flemings and 
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Clyne Kurz predict the same value Cmax of Si and Mn for the same cooling rate, 

Ohnaka 1 predicts a slightly higher value of Cmax of Si and Mn compared to Brody-

Flemings and Clyne Kurz. All micro-segregation models show the highest micro-

segregation degree of Si and Mn at the depth of 34.5mm, and the predicted results show 

a higher micro-segregation degree at mid-way compared to the surface and centre, the 

predicted micro-segregation degree at the surface were found to be higher compared to 

the centre. 

The predicted results of Cmax of Si and Mn for this study and Won-Thomas 

were much lower compared to other micro-segregation models; both models apply the 

effect of coarsening process on the course of solidification which is the reason for the 

reduced degree of micro-segregation. The Won-Thomas model prediction for Cmax, Si 

and Mn show almost the same values of micro-segregation except for the depth of 

46mm. This is despite the solidification rate being much high at the surface and quickly 

decreasing at the centre. The predicted results of this study shows higher micro-

segregation of Si and Mn compared to the Won-Thomas model. 
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Table 8-5: Predicted values of C core of Si and Mn when solid fraction 𝑓𝑠 = 1 

according to different models 

Depth 

(mm) 

𝑡𝑓  (s) CR 

(℃/s) 

Brody-

Flemings 

Clyne-

Kurz 

Ohnaka 

1 

Ohnaka 

2 

Won-

Thomas 

This 

study 

Silicon 

11.5 15.3 6.96 0.145 0.145 0.145 0.146 0.179 0.166 

23 40.7 2.61 0.144 0.144 0.144 0.144 0.178 0.162 

34.5 96.8 1.09 0.144 0.144 0.144 0.145 0.177 0.161 

46 178.3 0.59 0.144 0.144 0.144 0.145 0.169 0.163 

57.5 284.4 0.37 0.145 0.145 0.145 0.145 0.178 0.164 

69 426.5 0.25 0.145 0.145 0.146 0.146 0.179 0.166 

80.5 544.2 0.19 0.145 0.145 0.145 0.146 0.179 0.166 

92 631.3 0.17 0.145 0.145 0.145 0.147 0.180 0.167 

103.5 701.4 0.152 0.145 0.145 0.145 0.147 0.179 0.167 

115 734 0.145 0.145 0.145 0.146 0.148 0.181 0.170 

Manganese 

11.5 15.3 6.96 0.493 0.493 0.492 0.492 0.532 0.515 

23 40.7 2.61 0.492 0.492 0.492 0.492 0.543 0.510 

34.5 96.8 1.09 0.492 0.492 0.492 0.492 0.543 0.508 

46 178.3 0.59 0.492 0.492 0.492 0.492 0.532 0.511 

57.5 284.4 0.37 0.492 0.492 0.492 0.492 0.543 0.512 

69 426.5 0.25 0.492 0.492 0.492 0.492 0.543 0.515 

80.5 544.2 0.19 0.492 0.492 0.492 0.492 0.543 0.515 

92 631.3 0.17 0.492 0.492 0.492 0.492 0.543 0.516 

103.5 701.4 0.152 0.492 0.492 0.492 0.543 0.543 0.516 

115 734 0.145 0.492 0.492 0.492 0.544 0.544 0.519 
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Table 8-5 shows the predicted results of CCore concentration of Si and Mn based 

on Howe‟s solute core equation [106] (Equation 8-7) when solid fraction 𝑓𝑠 = 1 

according to the micro-segregation models from table 8-1. The CCore concentrationd for 

Mn and Si are calculated from the top surface down to centre. The model of Brody-

Flemings, Clyne-Kurz, and Ohnaka 1&2 predict the same value Ccore of Si and Mn for 

the same cooling rate and different depths from the surface to centre. The explanation 

for the above results; Ohnaka‟ back diffusion factor is almost identical to the Clyne-

Kurz‟ factor. 

The predicted results of CCore of Si and Mn for this study and Won-Thomas were 

higher compared to other micro-segregation models; both models apply the effect of the 

coarsening process on the course of solidification which is the reason for the decrease in 

the degree of micro-segregation. The Won-Thomas model predicts for Ccore Si and Mn 

are shown almost the same values of micro-segregation degree except for the depth at 

46mm. Both models show lower predicted results of CCore Si and Mn at the quarter 

thickness compared to the surface and centre, and the predicted results of CCore of Si and 

Mn at the centre are higher compared to the surface. These differences must reflect the 

balance of solidification time and arm spacing. 
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Figure 8-2: Comparison between predicted Cmax and measured Cmax from 

Jernkontoret 201-216. 

From figure 8-2 we can see that the predicted values follow closely the 

experimental values with high R-squared of 0.93. The two worst results are for 

chromium, which relate to the higher carbon steels. It is known from theory of 

solidification that increasing carbon leads to the reduction of the partition coefficient k 

of chromium which leads to increased degree of segregation as evident in figure 8-2 but 

this interaction is not included in the model. The new micro-segregation equation in this 

study appears to work better than would be expected for such an analytical model as 

compared with the Jernkontoret results [113]. It is difficult for an analytical model to 

show much better agreement with experimental results in view of the degree of 

experimental variability and error [105]. 
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8.3 Comparison of the new equation with experimental results 

This study adopts Howe‟ micro-segregation model [106] for the power-law 

profile in order to calculate silicon and manganese profiles across the secondary 

dendrite arms (see equation 8-8). The silicon and manganese peaks (final concentration 

at fraction solid = 1) are listed in table 8-4, which assume finite diffusivity in the solid 

phase and constant k values [105]. During solidification, at the solidus, the degree of 

micro-segregation across the depths depends on the accumulated modulus, 𝐷𝑡/𝜆2 (for 

constant D and secondary dendrite arm spacing). 

Table 8-6: DICTRA and QSP diffusion multiplier 𝑡𝑓/𝜆2 predicted by given 

depths 

Depth 

(mm) 

Local time 

(s) 

Measured SDAS 

(µm) 

DICTRA diffusion 

multiplier 

QSP diffusion 

multiplier 

11.5 15.27 60.056 0.00466 0.00423 

23 40.73 120.62 0.00308 0.0028 

34.5 96.82 216.35 0.00243 0.00207 

46 178.33 233.93 0.00388 0.00326 

57.5 284.36 268.82 0.0047 0.00394 

69 426.54 261.63 0.00721 0.00622 

80.5 544.21 256.71 0.00951 0.00826 

92 631.28 237.15 0.01277 0.01123 

103.5 701.42 241.48 0.01358 0.01204 

115 734 229.20 0.01558 0.01394 

 

Table 8-6 show the calculated diffusion multiplier 𝑡𝑓/𝜆2 (extracted from figure 

6-7), it shows that the diffusion multiplier value at the depth 34.5mm is lowest 

compared to the surface and centre, the diffusion multiplier value at the surface is 2 

times higher compared to the depth 34.5mm. The diffusion multiplier value at the 
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34.5mm is 3 times lower compared to the depth of 69mm, and 7 times lower compared 

to the centre.  

Figures 8-3 to 4 show the comparison between experimental and predicted 

results for silicon and manganese profiles across secondary dendrite arms at the 11.5mm 

to 34.5mm depth. Manganese profiles show very good agreement with experimental 

results, it goes parallel with the EDS scatter and a little bit lower compared to 

experimental results, because there is some degree of diffusive homogenisation of the 

solute profile during the cooling below solidus, while predicted silicon profiles are 

lower in the core regions compared to experimental results. The core concentrations of 

silicon are lower than experimental results, and the core concentrations of manganese 

show good agreement with experimental results. 

From the depth 34.5 toward 57.5mm, the predicted results of manganese profiles 

show good agreement with experimental results as shown in figures 8-5 to 9, it goes 

parallel with the EDS scatter and is lower compared to experimental results, because 

there is some degree of diffusive homogenisation of solute profile during the cooling 

below solidus. The strong evidence is listed in table 8-6, in these depths, the diffusion 

multipliers are lower compared to the surface, it means that manganese diffuses slower 

compared to the surface. Silicon profiles show agreement with experimental results but 

are lower at the quarter thickness regions. 

From the depth of 80.5mm toward the centre, both silicon and manganese 

profile predictions show excellent agreement with experimental results. In these depths, 

the diffusion multipliers are much higher compared to the quarter thickness and surface 

as shown in table 8-6, it means that both silicon and manganese are strongly diffusing 

up to the end of the solidification process, however silicon concentration at the dendritic 

cores is a little lower than experimental results. 
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Overall, the new micro-segregation appears to work better than would be 

expected for the predicted Si and Mn peak concentrations. Indeed, the results show very 

good agreement with the experimental results, albeit without considering the effect of 

solid-state diffusive homogenisation below solidus. 

Generally, Mn and Si are a bit less segregated in practice, and Si more 

segregated than Mn. Quantitatively, this is as expected from sub-solidus 

homogenisation. 
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  (a) 

 

  (b) 

Figure 8-3: Experimental and predicted line profile compositions for high 

carbon bloom steel across 60 µm secondary dendrite arms at the depth 11.5mm 

for (a) silicon and (b) manganese 



174 
 

 

 (a) 

 

 (b) 

Figure 8-4: Experimental and predicted line profile compositions for high 

carbon bloom steel across 120 µm secondary dendrite arms at the depth 23mm 

for (a) silicon and (b) manganese 
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 (a)  

 

 (b) 

Figure 8-5: Experimental and predicted line profile compositions for high 

carbon bloom steel across 216 µm secondary dendrite arms at the depth 34.5mm 

for (a) silicon and (b) manganese 
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 (a) 

 

 (b) 

Figure 8-6: Experimental and predicted line profile compositions for high 

carbon bloom steel across 234 µm secondary dendrite arms at the depth 46mm 

for (a) silicon and (b) manganese 
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 (a) 

 

 (b) 

Figure 8-7: Experimental and predicted line profile compositions for high 

carbon bloom steel across 269 µm secondary dendrite arms at the depth 57.5mm 

for (a) silicon and (b) manganese 
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 (a) 

 

 (b) 

Figure 8-8: Experimental and predicted line profile compositions for high 

carbon bloom steel across 262 µm secondary dendrite arms at the depth 69mm 

for (a) silicon and (b) manganese 
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 (a) 

 

 (b) 

Figure 8-9: Experimental and predicted line profile compositions for high 

carbon bloom steel across 257 µm secondary dendrite arms at the depth 80.5mm 

for (a) silicon and (b) manganese 
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 (a) 

 

 (b) 

Figure 8-10: Experimental and predicted line profile compositions for high 

carbon bloom steel across 237 µm secondary dendrite arms at the depth 92mm 

for (a) silicon and (b) manganese 
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 (a) 

 

 (b) 

Figure 8-11: Experimental and predicted line profile compositions for high 

carbon bloom steel across 242 µm secondary dendrite arms at the depth 

103.5mm for (a) silicon and (b) manganese 
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 (a) 

 

 (b) 

Figure 8-12: Experimental and predicted line profile compositions for high 

carbon bloom steel across 229 µm secondary dendrite arms at the depth 115mm 

for (a) silicon and (b) manganese 
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The rapid equation for the prediction of micro-segregation developed from the 

Ohnaka 1 model assumes finite diffusivity and coarsening.  The prediction results show 

very good agreement with experimental results for high carbon bloom steel as-cast from 

the industrial scale; it also shows excellent agreement with Jernkontoret results for 

steels 201-216. 
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Chapter 9: Overall Summary Chapter 
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The effect of thermal history across a bloom, slab or billet during liquid–solid 

transformation and sub-solidus homogenisation was studied in this thesis. During the 

solidification process, the cooling rate varied from the surface to centre depending on 

the size of cast and casting speed. Increasing the casting speed leads to higher 

productivity and affects the quality of the product by introducing defects such as surface 

cracks, transverse cracks and internal cracks. However, higher speed also leads to 

increased micro-segregation and reduced secondary dendrite arm spacing (which in turn 

reduces the required diffusion distance for homogenisation during secondary cooling 

process). 

 

9.1 Secondary dendrite arm spacing model 

This model addresses a major question: How does the peritectic transformation affect 

secondary dendrite arm spacing? This research focused on two pathways; “peritectic 

equivalent” and “carbon equivalent”. In the case of peritectic equivalent, the results 

show that similar results are obtained with slightly decreasing R-squared when the value 

of 𝐸𝑝  is reduced from 1 to 0.9 allowing the use of𝑘𝛾/𝐿and𝑚𝛾/𝐿. The geometric factor 

was found to vary with carbon content. The results also show that the coarsening 

dendrite parameter is strongly controlled by those elements with large values of the 

empirical factor 𝐴𝑖  such as Si, Cr, Mo and N. Moreover, when the value of 𝐸𝑝was 

reduced from 1 to 0.9, there were no significant differences in the values of those 

elements with expanded austenite fields like C, Mn and Ni. A possible explanation for 

this finding is that when the temperature is below the peritectic temperature, the 

dendrite arms are formed and become stable. However, there were significant 

differences in the values of those elements with expended ferrite fields like Si, Cr and 
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Mo, which may be explained by the fact that the first ferrite formed at an earlier stage of 

solidification changes by the diffusion process or coarsening process. 

When the term carbon content was changed to carbon equivalent, once the factors (k 

and m) were changed from ferritic to austenitic solidification at 𝐶𝑝= 0.53 (as in the Fe-C 

binary) rather than at 𝐸𝑝  = 1. Not surprisingly, the results show slightly increasing R-

squared of 0.941 (figure 4-5) compared with the use of  𝐸𝑝 , where the R-squared value 

was 0.938 (figure 4-2). 

 

9.2 Secondary dendrite arm spacing measurements  

The results of the secondary dendrite arm spacing measurements indicated a typical 

variation of the average secondary dendrite arm spacing measurement and standard 

deviation from top surface to centre. Decreasing the cooling rate with the depth 

increased the secondary dendrite arm spacing, which can be explained by the fact that 

the surface has less solidification time in comparison to the centre. 

Dendrite arm spacing measurement shows a half “seagull” 𝜆2 (µm) profile, with 

maximum values of dendrite arm measurement at the quarter-thickness. There are 

several possible explanations for this result. First, this finding corroborates the findings 

of Howe [120], who showed  that an acceleration in the cooling rate at the centre of the 

bloom is induced by this seagull 𝜆2 profile. Second, t in the TTC model only assumes 

heat extraction transverse to the casting direction (the macro model does not include 

longitudinal heat extraction). Thus, the heat flow rate is steeper through the shell 

thickness than in the casting direction, and could reduce the local solidification time 𝑡𝑓  

(s) in the central region, resulting in a half “seagull” 𝜆2 profile.However, the dendrite 

arm spacing profile exhibits scatter beyond 40mm depth and a dip at the centre. Third, 
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Ganguly [5] provides  another possible explanation for this result. In addition to the 

change in solidification rate, carbon enrichment of liquid and change in mobility of 

dendrites also have an impact on the dendrite size distribution in the equiaxed zone. 

From the observations beyond 40mm depth, the dendrite structure corresponds to the 

equiaxed zone. 

In order to assess the analytical secondary dendrite arm spacing models (chapter 4), 

high carbon bloom steel was sectioned and the secondary dendrite arm spacing was 

measured. The results indicated that the SDAS predicted values were close to their 

actual values. However, the SDAS results continue to increase from surface and stop 

doing so from the quarter-thickness position whereas the SDAS predicted results 

continue to increase towards the centre. A possible explanation for the difference 

between the measured and predicted values is that most of the SDAS data used in this 

model are from the lab scale, which maintains a constant cooling rate, but in high 

carbon bloom steel production, which uses the thermal rate instead of the cooling rate. 

The thermal rate extracted from the macro model, which uses a 2D model (not a 3D 

model) and assumes heat extraction transverse to the casting direction. 

 

9.3 Solidification and segregation modelling from QSP and 

DICTRA software 

In order to study micro-segregation behaviour across the bloom thickness, QSP and 

DICTRA software were used to predict the solidus temperature across the thickness of 

the bloom. It was initially expected that the solidus decreases from the centre to surface, 

reflecting the increasing solidification rate. However the calculated solidus temperatures 

showed a typical difference of about 5K between them, exhibiting a solidus trough at 
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34.5 mm depth for QSP and 57.5 mm depth for DICTRA shown as figure 6-5. The QSP 

results show a stronger effect than the DICTRA ones. 

Interestingly, the solidus temperature profile was found to be related to the SDAS 

measurement profile, the higher SDAS value at the quarter-thickness the lower the 

solidus temperature is. It is known that solidus temperature is related to the micro-

segregation degree, with the lower solidus temperature being associated with a higher 

micro-segregation degree. 

Sub-solidus homogenization was investigated in this research using QSP and DICTRA 

software. The micro-segregation of elements decreased as the temperature decreased 

during the continuous cooling process, with the size of decrease being dependent on the 

cooling conditions. For large cross sections of steel the sub-solidus homogenization is 

more complicated due to multicomponent and multiphase alloys. An example of micro-

segregation of Si and Mn showed significant decrease after solidification. 

QSP and DICTRA simulation of how Si and Mn solute profiles homogenise during the 

cooling process below the solidus temperature indicated that both Si and Mn solutes 

show significant decrease as the temperature decreases. However, both models indicated 

higher micro-segregation of Si and Mn at the 23 mm position, and homogenization sub-

solidus toward the centre. 

 

9.4 Si and Mn micro-segregation measurements 

Si and Mn micro-segregation measurements were carried out using line scans with 

EDS-SEM technique. EDS-SEM line scans going through 2, 3 or 4 secondary dendrite 

arm spacings were selected. The 3 rolling averages technique was used on the Si and 

Mn concentration profiles in order to obtain some smoothing. 
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It was found that both Si and Mn concentration profiles were proportional, smooth and 

increased from the dendrite cores to the interdendritic position. However, in some cases, 

silicon and manganese solute peaks were not coincident. Instead, they exhibited peaks 

drifting between silicon and manganese profiles, where the manganese was not ideally 

aligned with the manganese and it is believed that the solute peaks slightly drifted apart 

as sub-solidus homogenization occurred. In another case, the manganese profile was 

smooth and exhibited a “saw-tooth”. The silicon profile was not ideally aligned with the 

manganese and it was believed that the solute peaks slightly drifted apart after 

solidification. 

The correlation between silicon and manganese followed the ideal line but showed large 

scatter at the surface toward the quarter-thickness. Toward the centre, a positive 

correlation was found between silicon and manganese which followed the ideal line 

with a high R-Squared value of 0.68.  There are some possible reasons for this scatter;  

 The faster cooling rate near the surface itself leads to more micro-segregation, 

and the tendency for precipitate formation could play a role 

 When sub-solidus homogenization occurred during the cooling process, 

The manganese concentration profile went around the average composition of 0.63 

wt.% (with the exception of the depth of 69mm) and tended to segregate to the 

interdendritic region. At quarter-thickness, the minimum concentration of Si was 

generally higher than the average concentration of 0.24 wt.%. Further toward the centre, 

the minimum concentration of Mn was lower compared to the average concentration 

 

 



190 
 

 

Figure 9-1: Correlation between Mn Max and SDAS measurement across the 

thickness of bloom 

Figure 9-1 shows the correlation between Mn max and SDAS measurement across the 

thickness. It is clear that increasing the SDAS measurement resulted in an increase of 

the Mn max concentration. However, at SDAS ranging between 230 and 270 µm, Mn 

segregation (circled) was much higher. It was believed that manganese segregated more 

at the quarter-thickness. From the solidification theory, the faster cooling rate near the 

surface itself leads to more micro-segregation. However, they also lead to reduced 

SDAS, which will reduce the required diffusion distance for homogenisation during 

cooling in the solid state. This means that the SDAS value plays an important role in 

terms of segregation compared with the cooling rate. 



191 
 

 

Figure 9-2: Correlation between Si Max and SDAS measurement across the 

thickness of bloom 

Figure 9-2 shows the correlation between Si max and SDAS measurement across the 

thickness. The correlation follows the ideal line, however, the points circled between 

230 µm and 270 µm clearly shows that segregation is much higher in this region as 

compared to any of the other regions.  Hence, we can conclude that silicon segregation 

was more concentrated at the quarter-thickness from the centre. This trend was found to 

be similar to manganese segregation previously shown in figure 9-1. 

 

9.5 Micro-segregation model 

The present simple micro-segregation model developed in this thesis is based on the 

Ohnaka model [102]. This model resolved the limitation of the Ohnaka model that the 

length scale of the microstructure is constant. This new micro-segregation model takes 

into account the coarsening of the dendrite structure, measured by the secondary 
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dendrite arm spacings. The advantage of this approach was an additional back diffusion 

term which leads to a reduced degree of segregation at the solidus. 

The back diffusion  results of this model were compared to other models in table 8-1. 

In general, excellent agreement was obtained between the model of Brody-Flemings and 

Clyne Kurz for the value  with the same cooling rate. Both this study and the Won-

Thomas model applied the effect of dendritic coarsening during solidification and they 

both showed much higher back diffusion  values compared to other models. The 

comparison of back diffusion  across a wide range of Brody-Flemings 2α of 0.0001 to 

2000 for the different models was also studied in this thesis. The back diffusion  

results agree well with theory, which suggests that it lies between the limit of the Scheil 

case of 0 and equilibrium (Lever rule) case of 1. The results obtained here, are therefore 

believed to be applicable to a more complete micro-segregation model for 

multicomponent alloys, which includes the effect of both dendritic coarsening and back 

diffusion. 

The comparison between the predicted Si and Mn profiles and Si and Mn measured 

profiles across the depths was studied in this project. Manganese profiles showed very 

good agreement with measured results; it goes parallel with the EDS scatter. Silicon 

profiles also showed very good agreement with measured results, however, silicon 

concentration at the dendritic cores was a little lower than the measured results. It 

believed that there is some degree of diffusive homogenisation of solute profile during 

the cooling below the solidus. 
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Chapter 10: Conclusions 
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In this thesis studies have been carried out in four major areas: 

(i) Development of an analytical secondary dendrite arm spacing model for 

multicomponent steels; effect of peritectic transformation from ferrite to austenitic 

during solidification, effect of carbon equivalent. 

(ii) Secondary dendrite arm spacing measurements. 

(iii) Solidification and micro-segregation modelling from QSP and DICTRA software; 

effect of heat extraction rate on micro-segregation level of silicon, manganese, 

including sub-solidus homogenization. 

(iv) Si and Mn micro-segregation measurements 

(v) Develop a new micro-segregation model; effect of back-diffusion (with an assumed 

simple geometry and ignoring the minor undercoolings associated with curvature) and 

coarsening on micro-segregation level of silicon and manganese. 

 

10.1 Development of an analytical secondary dendrite arm spacing model 

for multicomponent steels; effect of peritectic transformation from ferrite 

to austenitic during solidification, effect of carbon equivalent. 

1. A simple analytical dendrite arm spacing model has been developed using 

Matlab software which takes into account the peritectic transformation affecting 

SDAS. The study was successful as it was able to provide a simple model but 

adequate procedure for characterising a steel composition in relation to the 

peritectic, either through a “peritectic equivalent” or a “carbon equivalent”. The 

predicted results show very good agreement with Jernkontoret results and other 

experimental results. 
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2. When the value of the peritectic equivalent 𝐸𝑝whereupon the calculation change 

from ferritic to austenitic data, is reduced from 1 to 0.97 and 0.9 respectively, it 

appears that even a temporary appearance of ferrite early on in solidification 

should not be ignored, and seems to control the secondary dendrite arm spacing. 

3. In the case of the effect of multicomponent alloy elements, the results show that 

carbon is the only element affecting the geometric factor B in the proposed 

model; other elements are more strongly affecting the coarsening parameters A. 

4. The new analytical SDAS model appears to work better than would be expected 

for the predicted SDAS. Indeed, the results show good agreement with the 

experimental results for Scunthorpe high carbon steel bloom. It also shows 

excellent agreement with Jernkontoret results for steels 201-216 and other 

previous SDAS studies. 

 

10.2 Secondary dendrite arm spacing measurements. 

1. The secondary dendrite arm spacing measurements show a typical variation 

from the top surface to the centre. It shows low values of dendrite arm spacing at 

the surface, increasing toward the centre; a maximum value was recorded at the 

quarter-thickness, and approximately constant (with much scatter), although 

indicating a slight decrease further toward the centre. 

2. The SDAS measurements thus exhibit a “seagull profile”. It would be expected 

that for a given steel, SDAS should increase with the local solidification time. 

The reason for this profile is suspected to be that 𝑡𝑓  (s) actually decreases 

beyond the quarter-thickness position unlike in the TTC model which only 

assumes heat extraction transverse to the casting direction; the temperature 

gradient (and thus heat flow rate) will be much steeper through the shell 

thickness than down in the casting direction. But around the sump, heat flow 
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down in the casting direction could become significant, and could maybe reduce 

the local solidification 𝑡𝑓  (s) in the central region (figure 9-1) which results in a 

“seagull profile”. 

 

Figure 10-1: expectation between local solidification time (s) and bloom depth 

(mm) for 2D / TTC model and 3D model. 

 

3. Another possible explanation for a SDAS “seagull profile” is that the submerged 

entry pouring configuration and the effect of argon on the flow pattern could 

move the liquidus isotherm relative to the macro model‟ prediction. It could be 

reduce the local solidification 𝑡𝑓  (s) in the central region. 

4. The analytical secondary dendrite arm spacing model agrees well with 

experimental results at the surface and centre. However, it shows big differences 

at the quarter-thickness. The reason for this is that it could involve limitations of 

the thermal model employed; the local solidification time beyond the quarter-
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thickness might be lower compared to results from the TTC model, as shown 

schematically in figure 9-1. 

 

10.3 Solidification and micro-segregation modelling from QSP and 

DICTRA software; effect of heat extraction rate on micro-segregation level 

of silicon, manganese including sub-solidus homogenization. 

1. The solidus predictions across the thickness of the bloom are simulated by 

DICTRA and QSP: the calculated solidus temperatures showed a typical 

difference of only about 5k between them, the QSP results showing a stronger 

effect (solidus variation) than DICTRA. Unexpectedly, the results show solidus 

troughs (maximum micro-segregation at solidus) in the quarter-thickness of 

bloom, reflecting a balance of secondary dendrite arm spacing and local 

solidification time. 

2. Both experimental results and model predictions show the quarter-thickness 

profiles are less homogeneous than the surface profiles, but the models showed 

highest micro-segregation at 23mm. QSP generally shows more silicon micro-

segregation than DICTRA, manganese micro-segregation varies from rather 

similar (near surface) to very different (near centre). 

 

10.4 Si and Mn micro-segregation measurements 

1. Micro-segregation measurements show that from the depth of 57.5mm toward 

the centre, the Si and Mn concentration profiles are smooth and approximately 

proportional; the Si concentration profiles look smoother than back towards to 

the surface, both Si and Mn peaks are clearer. 
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2. The experimental results of the manganese peak profile increased from the 

surface to the depth of 46 mm. The silicon peak profile increased from surface to 

the depth of 35.5 mm, but scattered around that level to the centre. They 

compared very well to the measured SDAS than the DICTRA and QSP 

variations. 

3. The experiments were successful as they were able to identify the Si and Mn 

micro-segregation degree from the surface, mid-way and toward the centre. The 

present results are significant in that at least they could identify the effect of 

cooling rate or heat extraction rate, solidification microstructure and solute 

diffusion on micro-segregation both during and after solidification, and support 

the queries regarding the macro-model thermal data. 

 

10.5 Development of a new micro-segregation model; effect of back-

diffusion (with an assumed simple geometry and ignoring the minor 

undercoolings associated with curvature) and coarsening on micro-

segregation level of silicon and manganese. 

1. The new micro-segregation equation with normalised dendritic coarsening 

shows much more diffusive homogenisation compared to the Ohnaka 1&2, and 

Clyne-Kurz models. All these models tend to the equilibrium limit (back-

diffusion parameter equalling unity) for very high Brody-Flemings 2α values but 

the proposed model approaches this limit sooner. 

2. The new micro-segregation equation shows that the predicted results of back 

diffusion for silicon and manganese slightly differ with cooling rate. Both this 

study and the Won-Thomas model which also accounts for SDAS coarsening, 

show much higher back diffusion values compared to other models, so the effect 
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of dendritic coarsening on solute diffusion is a very strong effect during the 

solidification process. 

3. The new micro-segregation equation appears to work better than would be 

expected for the predicted peak concentration of silicon and manganese. Indeed, 

the results show very good agreement with the experimental results, albeit 

without considering the effect of solid-state diffusive homogenisation below the 

solidus. It also shows excellent agreement with Jernkontoret results for steels 

201-216. 
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Chapter 11: Further Work 
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     During the course of this research work, a number of areas were identified that 

required future work. This final chapter discusses these areas of possible future work 

which would help to develop a better understanding of the effect of cooling rate or heat 

extraction rate on the micro-segregation and SDAS for multicomponent steels. 

1. Work is needed to obtain updated thermal input data from a 3D model, for the 

full 3D heat flow around the sump / solidus isotherm, and preferably also the 

effect of the liquid pouring streams on the position of the liquidus isotherm. 

2. Micro-segregation measurements show some scatter around the dendrite cores, 

so further studies on the WDS-SEM are recommended in order to get even 

clearer Si and Mn micro-segregation profiles. 

3. Further work may need in order to obtain information regarding the liquidus and 

solidus temperatures during and after the solidification processes across the 

thickness of typical slab, billet and bloom geometries. This information would 

be very helpful for SDAS and calculations of the degree of micro-segregation. 

Future work could also be carried out to develop a model which allows 

prediction of the liquidus and solidus temperature. 

4. Further work could be carried out to develop a model which could predict the 

SDAS for stainless steels and other highly alloyed steels. 

5. With a growing demand for new steel products with higher quality and optimum 

production rate, one area of future work could be in developing a model which 

allows prediction of crack formation during the continuous casting process. 

6. Finally development of a micro-segregation model that would account for solute 

diffusion during and after solidification would increase our understanding in this 

important area. 

 

 



202 
 

References 

[1] M. R. Allazadeh, "The effect of cooling rate on the microstructure configuration 

of continuous cast steel slabs," Ph.D. thesis, University of Pittsburgh, 2009. 

[2] Y.-M. Won and B. Thomas, "Simple model of microsegregation during 

solidification of steels," Metallurgical and Materials Transactions A, vol. 32, 

pp. 1755-1767, 2001. 

[3] B. G. Thomas, "Continuous Casting," in Encyclopedia of Materials: Science and 

Technology (Second Edition), ed: Elsevier, 2001, pp. 1595-1598. 

[4] S. Luo, et al., "Numerical Simulation of Solidification Structure of High Carbon 

Steel in Continuous Casting Using Cellular Automaton Method," ISIJ 

International, vol. 52, pp. 823-830, 2012. 

[5] S. K. Choudhary and S. Ganguly, "Quantification of the Solidification 

Microstructure in Continuously-Cast High-Carbon Steel Billets," Metallurgical 

and Materials Transactions B, vol. 40, pp. 397-404, 2009. 

[6] G. E. Sellers, "First patent granted for continuous casting lead tubing," USA 

Patent, 1840. 

[7] J. Laing, US patent Patent No. 3023, 1843. 

[8] H. Bessemer, "On the manufacture of Continuous Sheets of Malleable Iron and 

Steel Direct from Fluid Metal," in The Iron and Steel Institute Meeting, 1891, 

pp. 1189-1191. 

[9] W. S. Association, "World steel in figures 2012," E. Basson, Ed., ed, 2012. 

[10] A. K. Bhattacharya and D. Sambasivam, "Optimization Of Oscillation 

Parameters In Continuous Casting Process Of Steel Manufacturing: Genetic 

Algorithms Versus Differential Evolution ", 2011. 

[11] G. J. D. Wet, "CFD Modelling and mathematical optimisation of a continuous 

caster submerged entry nozzle," Master thesis, University of Pretoria, 2005. 

[12] B. Kozak and J. Dzierzawski. Continuous Casting of Steel: Basic Principles 

[Online].  

[13] J. Sengupta, et al., "Understanding the Role Water-cooling Plays during 

Continuous Casting of Steel and Aluminum Alloys," in Materials Science and 

Technology Conference Proceedings. 

[14] M. C. Flemings and T. Koseki, Chapter 6 Solidification of steel, The Making, 

Shaping and Treating of Steel, vol. 11th Edition Casting AISE Steel Foundation. 

[15] G. Lesoult, "Macrosegregation in steel strands and ingots: Characterisation, 

formation and consequences," Materials Science and Engineering: A, vol. 413–

414, pp. 19-29, 2005. 

[16] A. A. Howe, "Development of a computer model of dendritic microsegregation 

for use with multicomponent steels," Applied Scientific Research, vol. 44, pp. 

51-59, 1987. 

[17] A. Ghosh, "Segregation in cast products," Sadhana, vol. 26, pp. 5-24, 

2001/02/01 2001. 

[18] A. A. Howe, "Micro-segregation in multicomponent steels involving the 

peritectic reaction," Ph.D. thesis, The University of Sheffield, Sheffield, 1993. 

[19] P. Tsakiropoulos, "Solidification lecture notes," ed: Sheffield University, 2010. 

[20] K. Hulka, et al., "High Temperature Thermomechanical Processing of Pipe Steel 

– Technical Basis and Production Experience," in Pipeline Technology, Brügge, 

Belgium, 2000, pp. 291-306. 

[21] A. Turkeli and D. H. Kirkwood, "Microsegregation in manganese steels," in 

Solidification Processing, 1997. 



203 
 

[22] A. A. Howe, "Micro-Segregation: Issues of Growth Rate and the Peritectic," 

Materials Science Forum, vol. 649, pp. 419-424, 2011. 

[23] A. A. Howe and D. H. Kirkwood, "Computer prediction of microsegregation in 

peritectic alloy systems," Materials Science and Technology, vol. 16, pp. 961-

967, 2000. 

[24] C. Beckermann, "Modelling of macrosegregation: applications and future 

needs," International Materials Reviews, vol. 47, pp. 243-261, 2002. 

[25] C. Beckermann, "Macrosegregation," 2001. 

[26] M. Sadat, et al., "The effects of casting speed on steel continuous casting 

process," Heat and Mass Transfer, vol. 47, pp. 1601-1609, 2011/12/01 2011. 

[27] J. W. Elmer, et al., "Microstructural development during solidification of 

stainless steel alloys," Metallurgical Transactions A, vol. 20, pp. 2117-2131, 

1989/10/01 1989. 

[28] J. W. Elmer, "The Influence of Cooling Rate on the Microstructure of Stainless 

Steel Alloys," PhD thesis, University of California, California, 1988. 

[29] A. B. Michael and M. B. Bever, Transactions of the Metallurgical Society of 

AIME,, vol. 200, pp. 47-56, 1954. 

[30] A. Kohn and J. Philibert, Mem. Sci. Rev. Mét, vol. 57, pp. 291-312, 1960. 

[31] O. Hammar and G. Grümbaum, Scandinavian Journal of Metallurgy, vol. 3, 

1974. 

[32] R. D. Doherty and D. A. Melford, Iron Steel Institute, vol. 204, 1966. 

[33] Y. L. Liu and S. B. Kang, Materials Science Technology, vol. 13, 1997. 

[34] M. Martorano and J. Capocchi, "Effects of processing variables on the 

microsegregation of directionally cast samples," Metallurgical and Materials 

Transactions A, vol. 31, pp. 3137-3148, 2000. 

[35] T. A. Tran and a. R. P. Thackray, "Simulated and Experimental Study of 

Segregation in Continuously Cast High Carbon Bloom Steel," presented at the 

Association for Iron and Steel Technology 2012, Atlanta, USA, 2012. 

[36] M. Zuo, et al., "Effect of rapid solidification on the microstructure and refining 

performance of an Al–Si–P master alloy," Journal of Materials Processing 

Technology, vol. 209, pp. 5504-5508, 2009. 

[37] T. Zhou, "Control of microstructure during solidification & homogenization of 

thin slab cast direct rolling (TSCDR) microalloyed steels," PhD thesis, 

McMaster University, 2010. 

[38] A. Howe, "Microsegregation and inclusion development during the casting of 

steel," presented at the Solidification processing, 2007. 

[39] J. Brimacomb and K. Sorimachi, "Crack formation in the continuous cast 

products," Metallurgical Transactions B, vol. 8, 1977. 

[40] J. K. Brimacombe, "Defect Problem in Continuous casting," in 33rd electric 

furnace conference, texas, 1975. 

[41] J. K. Brimacombe, et al. (1984) Heat Flow, Solidification and Crack Formation.  

[42] S. Peľák, et al., "Between the dendrite structure quality, the casting technology 

and defects in countinuously cast slabs," Materials Engineering, vol. 16, 2009. 

[43] Continuous casting of steel 1985: A second study. Brussels: International Iron 

and Steel Institute, Committee on Technology, 1986. 

[44] M. A. Shtremel, "Problems of the metallurgical quality of steel (nonmetallic 

inclusions)," Metal Science and Heat Treatment, vol. 22, pp. 539-544, 1980. 

[45] W. F. Pontius and C. R. Taylor, presented at the Proceedings of the Electric 

Furnace Conference, 1967. 

[46] R. Alberny, et al., "Irisid process of magetorotative continuous casing for round 

and square products " Revue De Metallurgie-Cahiers D Informations 

Techniques, vol. 76, pp. 235-251, 1979. 



204 
 

[47] Poppmeie.W, et al., "Alternating electromegnetic fields in continuous casing of 

steel," Journal of Metals, vol. 18, pp. 1109-&, 1966 1966. 

[48] A. A. Tzavaras, "Stude of segregation phonomena in steel solidification 

strucutres grown under fluid flow," Journal of Crystal Growth, vol. 24, pp. 471-

476, 1974. 

[49] D. J. Hurtuk and A. A. Tzavaras, "Some effects of electromagnetically induced 

fluid-flow on macrosegregation in continuously cast steel," Metallurgical 

Transactions B, vol. 8, pp. 243-251, 1977. 

[50] S. Mizoguchi, et al., "Continuous casting of steel," Annual Review of Materials 

Science, vol. 11, pp. 151-169, 1981. 

[51] A. S. Varde, et al., "The QuenchMinerTM Expert System for Quenching and 

Distotion Control," presented at the Heat Treating and Surface Engineering-

Chemistry of Quenching, Indiana, 2003. 

[52] V. Stahleisen, "Casting and Solidification of Steel," Luxembourg, 1977. 

[53] D. S. MacKenzie and D. Lambert, "Effect of Quenching Variables on Distortion 

and Residual Stresses," presented at the Heat Treating and Surface Engineering, 

Indiana, 2003. 

[54] G. Thewlis, "Classification and quantification of microstructures in steels," 

Materials Science and Technology, vol. 20, pp. 143-160, 2004. 

[55] D. R. Speich and R. L. Miller, "Hardenability of austenite after intercritical 

annealing of dual-phase steels," presented at the ASM Phase Transformations 

Committee, Pittsburgh, U.S.A, 1981. 

[56] M. Yamazaki, et al., "Numerical simulation of solidification structure formation 

during continuous casting in Fe-0.7mass%C alloy using cellular automaton 

method," ISIJ International, vol. 46, pp. 903-908, 2006. 

[57] N. H. Pryds and X. Huang, "The effect of cooling rate on the microstructures 

formed during solidification of ferritic steel," Metallurgical and Materials 

Transactions A, vol. 31, pp. 3155-3166, 2000. 

[58] M. Allizadeh, "Correlation between the continuous casting parameters and 

secondary dendrite arm spacing in the mold region," Materials Letters, vol. 91, 

pp. 146-149, 2013. 

[59] M. Easton, et al., "Effect of Alloy Composition on the Dendrite Arm Spacing of 

Multicomponent Aluminum Alloys," Metallurgical and Materials Transactions 

A, vol. 41, pp. 1528-1538, 2010. 

[60] D. H. Kirkwood, "A simple model for dendrite arm coarsening during 

solidification," Materials Science and Engineering, vol. 73, pp. L1-L4, 1985. 

[61] A. Roósz, et al., "Numerical calculation of microsegregation in coarsened 

dendritic microstructures," Materials Science and Technology, vol. 2, pp. 1149-

1155, 1986. 

[62] R. Pierer and C. Bernhard, "On the influence of carbon on secondary dendrite 

arm spacing in steel," Journal of Materials Science, vol. 43, pp. 6938-6943, 

2008. 

[63] R. Mendoza, "Morphological and Topological Characterization of Coarsened 

Dendritic Microstructures," Ph.D thesis, Northwestern University, June 2004. 

[64] R. C. Beaverstock, "Secondary dendrite arm coarsening and microsegregation in 

multicomponent alloys," in Solidification Processing, 1997, pp. 321-324. 

[65] D. Kammer, "Three-Dimensional Analysis and Morphological Characterization 

of Coarsened Dendritic Microstructures," Ph.D thesis, Northwestern University 

2006. 

[66] T.Z. Kattamis, et al., "Influence of coarsening on dendrite arm spacing of Al-Cu 

alloys," Transactions of the Metallurgical Society of AIME, pp. 1504–1511, 

1967. 



205 
 

[67] M. Kahlweit, Scripta Metallurgica et Materialia, p. 251, 1968. 

[68] S. C. Huang and M. E. Gliksman, Acta Materialia, p. 717, 1981. 

[69] L. K. Aagesen, "Phase-Field Simulation of Solidication and Coarsening in 

Dendritic Microstructures," Ph.D. thesis, Royal Institute of Technology, 2010. 

[70] T. F. Bower, et al., "Measurements of Solute Redistribution in Dendritic 

Solidification," Transactions of the Metallurgical Society of AIME, vol. 236, p. 

624, 1966. 

[71] H. J. Diepers, et al., "Simulation of convection and ripening in a binary alloy 

mush using the phase-field method," Acta Materialia, vol. 47, pp. 3663-3678, 

1999. 

[72] A. Mortensen, "On the rate of dendrite arm coarsening," Metallurgical 

Transactions A, vol. 22, pp. 569-574, 1991. 

[73] Z. Fan, "Semisolid metal processing," International Materials Reviews, vol. 47, 

pp. 49-85, 2002. 

[74] S. Terzi, et al., "Coarsening mechanisms during isothermal holding of a 

dendritic Al-10wt%Cu alloy," Transactions of the Indian Institute of Metals, vol. 

62, pp. 447-449, 2009/10/01 2009. 

[75] M. C. Flemings. (1974). Solidification Processing.  

[76] V. R. Voller and C. Beckermann, "A unified model of microsegregation and 

coarsening," Metallurgical and Materials Transactions A, vol. 30, pp. 2183-

2189, 1999. 

[77] R. Sasikumar, et al., "Influence of the shape of the cooling curves on 

microsegregation," Scripta Metallurgica et Materialia, vol. 28, pp. 235-240, 

1993. 

[78] A. Howe, "Novel equations for use in rapid software for solidification " Corus 

RD&T Swinden Technology Centre. 

[79] T. Z. Kattamis and M. C. Flemings, 1965. 

[80] T.Z. Kattamis, et al., "Influence of coarsening on dendrite arm spacing and grain 

size of magnesium-zinc alloys," Journal of Institute of Metals, pp. 343–347, 

1967. 

[81] M. Imagumbai, "Relationship between Primary- and Secondary-dendrite Arm 

Spacing of C-Mn Steel Uni-directionally Solidified in Steady State," ISIJ 

International, vol. 34, pp. 986-991, 1994. 

[82] D. Ma, et al., "On secondary dendrite arm coarsening in peritectic 

solidification," Materials Science and Engineering: A, vol. 390, pp. 52-62, 2005. 

[83] V. R. Voller, "On a general back-diffusion parameter," Journal of Crystal 

Growth, vol. 226, pp. 562-568, 2001. 

[84] C. Beckermann and R. Viskanta, "Mathematical Modeling of Transport 

Phenomena During Alloy Solidification," Applied Mechanics Reviews, vol. 46, 

pp. 1-27, 1993. 

[85] H. Yoo and C.-J. Kim, "A solute diffusion model for micro-macroscopic 

analysis of columnar dendritic alloy solidification," KSME International 

Journal, vol. 11, pp. 319-330, 1997. 

[86] A. Howe, "Implication for solidification models of Kobayashi's exact analytical 

solution," ed: Corus RD&T Swinden Technology Centre, 2001. 

[87] M. Rappaz, "Modelling of microstructure formation in solidification processes," 

International Materials Reviews, vol. 34, pp. 93-124, 1989. 

[88] J. A. Spittle and S. G. R. Brown, "Computer simulation of the effects of alloy 

variables on the grain structures of castings," Acta Metallurgica, vol. 37, pp. 

1803-1810, 1989. 



206 
 

[89] M. Rappaz and C. A. Gandin, "Probabilistic modelling of microstructure 

formation in solidification processes," Acta Metallurgica et Materialia, vol. 41, 

pp. 345-360, 1993. 

[90] W. Yang, et al., "Monte carlo sampling for microsegregation measurements in 

cast structures," Metallurgical and Materials Transactions A, vol. 31, pp. 2569-

2574, 2000. 

[91] Y. Sun and C. Beckermann, "Phase field simulation of solidification with 

density change," presented at the International Mechanical Engineering 

Congress and Exposition, 2004. 

[92] G. Caginalp and J. Jones, "A derivation of a phase field model with fluid 

properties," Applied Mathematics Letters, vol. 4, pp. 97-100, 1991. 

[93] K. Sakai, "Phase field model for phase transformations of multi-phase and multi-

component alloys," Journal of Crystal Growth, vol. 237–239, Part 1, pp. 144-

148, 2002. 

[94] C. Beckermann, et al., "Modeling Melt Convection in Phase-Field Simulations 

of Solidification," Journal of Computational Physics, vol. 154, pp. 468-496, 

1999. 

[95] S. Sundarraj and V. R. Voller, "Development of a microsegregation model for 

application in a micro-macro model," 1992, pp. 35-42. 

[96] C. Y. Wang and C. Beckermann, "A multiphase solute diffusion model for 

dendritic alloy solidification," Metallurgical Transactions A, vol. 24, pp. 2787-

2802, 1993. 

[97] T. Battle and R. Pehlke, "Mathematical modeling of microsegregation in binary 

metallic alloys," Metallurgical Transactions B, vol. 21, pp. 357-375, 1990. 

[98] J. A. Sarreal and G. J. Abbaschian, "The effect of solidification rate on 

microsegregation," Metallurgical Transactions A, vol. 17, pp. 2063-2073, Nov 

1986. 

[99] E. Scheil, Zeitschrift fur Metallkunde, vol. 34, pp. 70-72, 1942. 

[100] H. D. Brody and a. M. C. Flemings, "Solute redistribution in dendritic 

solidification," Transactions of the Metallurgical Society of AIME, , vol. 263, 

1966. 

[101] A. Howe, "Computatinal investigation of the effects of diffustion modelus and 

secondary dendrite arm coarsening parameters on micro-segregation in C-Mn 

steels," presented at the Solidification processing 1997. 

[102] I. Ohnaka, "Mathematical Analysis of Solute Redistribution Solidification with 

Diffusion in Solid Phase*," Transactions of the Iron and Steel Institute of Japan, 

vol. 26, 1986. 

[103] T. W. Clyne and W. Kurz, "Solute redistribution during solidification with rapid 

solid state diffusion," Metallurgical Transactions A, vol. 12, pp. 965-971, 1981. 

[104] S. Kobayashi, "Solute redistribution during solidification with diffusion in solid 

phase: A theoretical analysis," Journal of Crystal Growth, vol. 88, pp. 87-96, 

1988. 

[105] A. Howe, "Rapid modelling of solidification and micro-segregation: The 

QuickSeg Peritectic V1 Software," ed: Corus RD&T, Swinden Technology 

Centre, private communication, 2007. 

[106] A. Howe, "Micro-Segregation: Issues of Growth Rate and the Peritectic," 

Materials Science Forum, vol. 649, 2010. 

[107] J. O. Andersson, et al., "Thermo-Calc & DICTRA, computational tools for 

materials science," Calphad, vol. 26, pp. 273-312, 2002. 

[108] H. E. Lippard, et al., "Microsegregation behavior during solidification and 

homogenization of AerMet100 steel," Metallurgical and Materials Transactions 

B, vol. 29, pp. 205-210, 1998. 



207 
 

[109] A. Engstrom, Division of Physical Metallurgy, Royal Institute of Technology, 

Stockholm, 1996. 

[110] W. Löser, et al., "Solidification modelling of microstructures in near-net-shape 

casting of steels," Materials Science and Engineering: A, vol. 173, pp. 323-326, 

1993. 

[111] U. Feurer and R. Wunderlin, Gesellschaft für Metallkunde, Oberursel  

1977. 

[112] R. C. Beaverstock, "Secondary dendrite arm coarsening and microsegregation in 

multicomponent alloys," in Solidification Processing SP97, Sheffield, 1997, pp. 

321-324. 

[113] S. Jernkontoret, "Guide to the solidification of steels," ed, 1977. 

[114] H. Jacobi and K. Schwerdtfeger, "Dendrite morphology of steady state 

unidirectionally solidified steel," Metallurgical and Materials Transactions A, 

vol. 7, pp. 811-820, 1976. 

[115] M. Taha, et al., "Dendrite morphology of several steady state unidirectionally 

solidified iron base alloys," Metallurgical and Materials Transactions A, vol. 

13, pp. 2131-2141, 1982. 

[116] D. Stefanescu, "Peritectic solidification," in Science and Engineering of Casting 

Solidification, Second Edition, ed: Springer US, 2009, pp. 1-17. 

[117] B. K. Dhindaw, et al., "Characterization of the peritectic reaction in medium-

alloy steel through microsegregation and heat-of-transformation studies," 

Metallurgical and Materials Transactions A, vol. 35, pp. 2869-2879, 2004. 

[118] A. Howe, "Segregation and Phase Distribution During Solidification of Carbon, 

Alloy and Stainless Steels," in European Communities ed, 1991. 

[119] J. Pavlovic-Krstic, "Impact of casting parameters and chemical composition on 

the solidification behaviour of Al-Si-Cu hypoeutectic alloy," Ph.D thesis, 

University of Magdeburg, 2009. 

[120] A. A. Howe, Tata Steel research report2010. 

[121] B. G. Thomas, "Chapter 15 in Modeling for Casting and Solidification 

Processing," 2003. 

[122] A. J. W. Ogilvy, "PhD Thesis," Sheffield University, 1983. 

[123] "DICTRA, version 24," ed. Stockholm: Royal Institute of Technology, 2004. 

[124] "MOB2 mobility database," ed. Stockholm: Royal Institute of Technology, 

2005. 

[125] Jernkontoret, A Guide to the Solidification of Steels: Jernkontoret, 1977. 

[126] J. Lacaze, et al., "Some Issues Concerning Experiments and Models for Alloy 

Microsegregation," Advanced Engineering Materials, vol. 5, pp. 37-46, 2003. 

[127] C. Selig and A. Lacaze, "Study of microsegregation buildup during solidification 

of spheroidal graphite cast iron," Metallurgical and Materials Transactions B, 

vol. 31, pp. 827-836, 2000. 

[128] G. R. Purdy and J. S. Kirkaldy, "Homogenization by diffusion," Metallurgical 

Transactions, vol. 2, pp. 371-378, 1971. 

[129] A. Howe, "Simple approaches for solidification and diffusive homogenisation," 

Ironmaking & Steelmaking, vol. 38, pp. 534-539, 2011. 

 

 

 



208 
 

Appendix: The Attached Compact Disc 

 

The enclosed compact disc contains both Matlab codes and data as follows: 

Appendix 1: Case 1: kδ/l and mδ/l for Ep < 1, and kγ/l and mγ/l for Ep ≥1 

Appendix 2: Case 2: kδ/l and mδ/l for Ep < 0.97, and kγ/l and mγ/l for Ep 

≥ 0.97 

Appendix 3: Case 3: kδ/l and mδ/l for Ep < 0.9, and kγ/l and mγ/l for Ep ≥ 

0.9 

Appendix 4: Howe‟ carbon equivalent for carbon and low alloy steels with 

major Si and Mn contents 

Appendix 5: Howe‟ carbon equivalent for carbon and low alloy steels with 

full multicomponent including Ni and Cr elements 

Appendix 6: Peritectic equivalent  

Appendix 7: Diffusivity data employed in this work 

 

 

 

 

 

 


