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Abstract 

The purpose of this thesis is to explore how useful a classificatory research approach 

can be to researching mortality patterns.  This is conducted through creating an area 

classification of small area mortality patterns for England and Wales (2006 to 2009).  

The resulting area classification is then applied to research the existence of area effects 

on health, to assess how useful it is as an analytical tool. 

To successfully achieve this, the thesis begins through reviewing the literature to 

examine the importance of taking an area perspective to researching mortality.  This 

was extended to assess the extent of which an area classification could build upon past 

research.  Data and methodology issues were discussed, to evaluate the best approach 

required to building a high quality and relevant area classification.  The area 

classification was built and statistical testing was conducted to assess the stability of it. 

The area classification was then interpreted to examine the main mortality patterns that 

dominant England and Wales.  Explanations for the clusters were derived from 

demographic, social and geographical factors.  The area classification was then analysed 

to explore the existence of area effects through a multi-level analysis.  This was 

extended to examine the impact on health as people migrated between the clusters, 

exploring whether area effects were observed.  Benchmarking of these results was 

performed, comparing it to using GORs instead to group the data, to evaluate how 

useful the results were.  
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Chapter 1: Introduction 

 

1.1 Background 

Everybody dies.  Since death is singular and permanent, it provides a useful source of 

information for evaluating and comparing the health of individuals, especially since it 

cannot change.  Age at death provides one option for analysing differences in a 

population, given that it is preferable to maximise length of life.  However what causes 

death is not always the same and this provides an additional means of comparison.  

Cause of death can represent a useful description of an individual’s life, affected by the 

interactions, behaviours and experiences of how an individual chooses to live their life.   

Collecting this information provides both a comprehensive, but ultimately complicated 

data set as common patterns and processes become easily lost in the roughly half a 

million deaths that occur each year in England and Wales.  Furthermore, there are many 

different causes of death.  For example, the latest ‘International Classification of 

Diseases’ has over 14,000 possible causes (WHO, 2004).  Combining all of this 

information is far too much for the human mind to effectively analyse (Everitt et al., 

2001).  Some form of data reduction is required. 

Analysing patterns in mortality is effective for formulating effective policy options.  As 

Williams et al. (2004) argue; “The drive to tackle health inequalities and the move to 

localised policy making have increased interest in small area mortality data.” (p958).  

Previously, one-dimensional measures such as single causes of mortality were used.  

Whilst they offer useful applications, by themselves they are simply linear variables of 

which more complex processes and variations remain hidden.  The health characteristics 

of areas are not understood by just single variables, especially given that causes do not 

operate in isolation.  

Typically we tend to think of mortality as being medically defined.  However research 

over the past 30 years has shown the importance of social factors in determining 

mortality outcomes (Diez-Roux, 2001).  For example, Woolf et al. (2007) found that 

tackling social inequalities in the United States would improve current health (and 

hence subsequent mortality) more than medical advances could.  England and Wales 

has a long tradition of governmental research formulating the role that social 
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inequalities play in segmenting our society (the Black and Acheson reports, the Marmot 

Review).   

Whilst health is socially determined, geographical inequalities persist suggesting the 

importance of the spatial dimension when examining health patterns.  Causes of 

mortality display varying geographical patterns through England and Wales (Shaw et 

al., 2008), following structures of social, economic and spatial factors.  For example, 

Hacking et al. (2011) found that the North of England displays an excess in deaths of 15 

per cent when compared to the South.  Tackling geographical inequalities in mortality is 

a key government aim and therefore producing greater evidence to inform policy 

development is paramount. 

Furthermore, there is evidence showing how geography and particularly 

neighbourhoods exert an independent effect on health (Pickett and Pearl, 2001; Riva et 

al., 2007).  This has been aided through the development of causal mechanisms to 

understand how such processes transpire, for example social relations (Kawachi et al., 

1999) or deprivation amplification (Macintyre et al., 2008).  Research in this area forms 

an important agenda, with policy implications regarding the effectiveness of targeting 

individuals or areas.  However the field is under-investigated and gaps remain for a 

more rigorous testing of the hypothesis, through new directions (for example the effect 

of migration).   

The combination of being able to analyse the interactions of vast amounts of data on 

mortality patterns, whilst maintaining a geographical perspective is therefore an 

important research agenda.  The creation of an area classification represents one option 

to be able to effectively manage both approaches.  This approach takes complex data 

sets across many different variables of interest and simplifies the data into groups 

describing the main patterns across the areas (Everitt et al., 2001; Gordon, 1999).  Areas 

are then assigned to the group which they best represent, allowing a simplification of 

the data through describing the characteristics of the area it generally relates to (Harris 

et al., 2005).  As such, an area classification will bring clarity to the complexities of 

mortality patterns of England and Wales.   

The importance of this approach is linked to the notion that people of similar 

characteristics tend to live together (Harris et al., 2005).  Using areas as the unit of 

analysis is useful since it will represent the individuals living in them, allowing the 

description of geographical characteristics in area types.  This study puts a focus on the 
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importance of the neighbourhood at the end of the life course, as an identifier of the 

type of area a person has lived in throughout. 

As Everitt et al. (2001) note, building an area classification “...is essentially about 

discovering groups in data…” (p6).  Exploring the underlying structure of mortality 

patterns across England and Wales adds new information on the understanding of the 

interaction of causes of mortality, something of which there is little literature on.  

However its benefits are not restricted to just this, as it can also be applied as a research 

tool to analyse other fields.  The simplification of patterns and processes can herald 

greater insight and understanding. 

An area classification of mortality patterns allows for the simplification of these 

patterns through incorporating a multi-dimensional framework.  This is because it 

improves the detail available in a measure by adding value through summarising the 

interactions between variables (Openshaw et al., 1994).  It is not restricted to one 

measure but shows the main patterns and interactions between causes that dominate 

England and Wales.  Knowing and understanding these patterns is paramount to 

targeting policies more effectively. 

This approach has been established in other academic areas for simplifying (large) data 

sets to help our understanding.  Area classifications have been most commonly applied 

in the field of demography, where they represent big business (Harris et al., 2005; 

Vickers, 2006).  For example the ‘People and Places’ classification provides a 

demographic classification of the types of people living in areas, which is useful in 

examining the characteristics of locations.  Yet it has also been applied within the field 

of public health, for example in the targeting of population groups for the uptake of 

colorectal screening (Nnoaham et al., 2010).   

Within health and mortality research, there have been few applications of the 

classification of areas.  Of those that have (for example Shelton et al., 2006; CACI, 

2010), these have been limited in their quality and scope.  This has led to calls from 

both academics (Abbas et al., 2009) and governmental departments (DoH, 2005) for 

greater application of a classificatory approach.  There lies a clear gap for an in-depth 

development of an area classification of mortality patterns for small areas within 

England and Wales. 
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1.2 Aims and objectives 

The thesis seeks to show how a classificatory approach is useful for increasing 

understanding of mortality patterns.  The aims of this thesis have been identified as: 

I. Create a classification of mortality patterns of small areas for England and 

Wales, with a clearly justified open methodology. 

II. Understand the dominant mortality patterns and why this segmentation exists 

across the areas within each cluster. 

III. Assess the extent that the area classification can help understand the existence of 

area effects on health. 

IV. Benchmark the results to traditional ways of grouping the data, to highlight its 

usefulness as a research tool. 

These aims are not mutually exclusive of each other; rather tackling each aim will help 

inform the others. 

The first aim will form the focus of the thesis.  To achieve it, the literature will need to 

be reviewed to understand how best to implement an area classification into this study.  

This includes the concept, the data requirements, the methods available and the relevant 

statistical testing to apply.  Evaluating and applying these clearly is important for 

creating an area classification of high quality. 

The second aim seeks to understand the area classification produced in the first aim.  

This will be conducted through exploring the cluster centres and mapping the area 

classification to show what each cluster represents.  Area statistics will be gathered to 

analyse the characteristics of the areas that make up each clusters, to explain the 

segmentation of patterns to form the area classification. 

The third aim applies the area classification to assess how useful it is for improving our 

understanding of area effects.  The aim will be achieved through two analyses.  Firstly 

the effect on health of individuals living in particular clusters will be tested for to show 

evidence for static area effects.  Then this concept will extended through examining 

whether there is any observed effect on health as individuals move between the clusters. 

The final aim will evaluate the results from the third aim.  This will be achieved through 

repeating each analysis with a comparable means for grouping the same areas, to assess 

whether the area classification has greater discriminatory power in the analyses than 
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equivalent measures.  Governmental Office Regions (GORs) and Wales (hereby 

referred to as a GOR since it is often included in the same statistics) were used since 

they provide a similar number of groups, as well as being used for reporting mortality 

statistics. 

To achieve the aims, the following objectives have been devised.  The aim they tackle is 

given in brackets, although all the objectives complement each aim: 

1. Examine the evidence of how geographical factors can influence health and 

mortality (III). 

2. Critically assess the advantages and disadvantages of creating an area 

classification for researching health and mortality (I). 

3. Review and compile the data available, in preparation for it to be used in 

building the area classification (I). 

4. Evaluate the methods available and select the best method based upon the aims 

and data of the study (I) 

5. Build the classification through detailing, clearly, the steps taken (I). 

6. Statistically test the classification to assess robustness and quality (I). 

7. Interpret the clusters to understand what they represent (II). 

8. Analyse differences in the geographic areas within each cluster to explain why 

they exist (II and IV). 

9. Apply the area classification analytically, within the field of area effects. 

a. Test the impact on health of living in the clusters (III). 

b. Extend the investigation of area effects by incorporating migration 

through analysing the effect on health as individuals move between 

clusters (III). 

10. Benchmark the results using the classification against using GORs instead (IV). 

11. Evaluate the contribution of the research to the literature, critically assess its 

value and suggesting future extensions to build upon its findings (all aims). 

 

1.3 Thesis structure 

To be able to achieve the stated aims and objectives, the thesis is divided up into eight 

chapters.  Table 1.1 presents where each objective will be met across the chapters of the 

thesis. 
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Chapter Title Objectives 

2 Literature review 1 and 2  

3 Data and methodology 3, 4 and 5  

4 Creating an area classification of mortality patterns 5 and 6  

5 Interpreting the area classification 7 and 8  

6 Assessing the area classification 9a and 10  

7 Internal migration, area effects and health 9b and 10  

8 Conclusions 11 

Table 1.1: The thesis structure. 

Chapter two (‘Literature review’) begins by arguing for the importance of taking a 

geographical perspective in researching mortality.  This is achieved through reviewing 

the evidence showing such an approach, as well as the possible causal mechanisms 

through which geography can affect health and mortality.  It briefly touches on common 

methods for researching mortality within a geographical perspective, before critically 

evaluating how an area classification would be an useful approach to analysing health 

and mortality patterns.  It ends by discussing gaps in research of which building an area 

classification would be useful for addressing and building on. 

Chapter three (‘Data and methodology’) discusses the data and methodology involved 

in the creation of the area classification.  It is based upon Milligan and Cooper’s (1987) 

schema for running a cluster analysis (which are often used for building a 

classification), extending it to be relevant for an area classification.  It discusses the data 

and geographical scale used, which represent the inputs to the area classification.  The 

possible methods are discussed and evaluated to assess which is best applied in this 

study.  A discussion is then provided of the important methodological decisions of the 

method requiring addressing, as well as the testing procedures to be employed.  

Chapter four (‘Creating an area classification of mortality patterns’) details the creation 

and testing of the area classification.  It is important to provide a detailed methodology, 

given that particular decisions involved in the process are somewhat subjective.  This 

allows the resulting area classification to be open and hence evaluated fairly.  These 

include the selection of seed points, the choice of the number of clusters in the 

classification and the calculation of cluster centres.  The testing procedures draw upon 

the few literary suggestions available to assess whether the area classification is 

statistically stable.  This includes performing a replication analysis, evaluating the 

impact of outliers and assessing variable sensitivity. 
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Chapter five (‘Interpreting the area classification’) explores the resulting area 

classification to understand what it shows.  It begins by presenting the characteristics of 

the clusters, allowing the naming of them to summarise their profiles.  The rest of the 

chapter focuses on explaining the clusters.  Health related statistics are compiled to help 

understand the segmentation of mortality patterns into the clusters.  Demographic, 

social and geographical explanations of differences between the clusters are analysed to 

help explain the clusters. 

Chapter six (‘Assessing the area classification’) is the first chapter that applies the area 

classification to assess how useful it is.  It is used in a multi-level analysis testing 

whether the clusters had an independent effect upon the health of individuals living 

within those areas.  This provides one way of showing if the clusters are more than just 

statistical clusters of similar mortality rates.  However to be able to fully evaluate how 

useful the area classification is, the analysis was compared to using Governmental 

Office Regions instead since they are often used as a (geographical) grouping tool for 

the reporting of mortality statistics. 

Chapter seven (‘Internal migration, area effects and health’) extends the idea of 

neighbourhood effects developed in the previous chapter.  If neighbourhood effects are 

important, then it would be expected that as individuals move between different area 

types, then there would be an observed effect on health in relation to the change in the 

environment.  The chapter analyses the impact on health of migration between the 

clusters, using an under-utilised methodology to solve past issues ignored in the 

literature.  The relationship is also conceptualised the other way round, with health 

influencing migration between the clusters as well.  Similarly to Chapter 6, the analysis 

is compared to using the GORs instead, to be able to evaluate the results. 

Chapter eight (‘Conclusions’) concludes the thesis.  A summary of the research findings 

is firstly outlined, focusing on how the thesis has successfully tackled each of the aims 

and objectives set out at the start of the thesis.  The limitations of thesis are the 

discussed, to critically evaluate the research findings of this approach.  Future 

extensions of research based upon the findings and the limitations are proposed, to 

develop and extend the ideas discussed throughout this thesis. 

 

 



Chapter 1: Introduction 

pg. 8 

1.4 Outputs 

The area classification produced as part of this thesis will be uploaded onto the ‘Social 

and Spatial Inequalities’ research cluster’s website (www.sasi.group.shef.ac.uk), along 

with a link to the final version of the PhD thesis itself (via the ‘White Rose’ website; 

http://etheses.whiterose.ac.uk/).  This provides an open approach to the dissemination of 

the research tool, encouraging uptake and use of it as an analytical measure.  It also 

presents the decisions and methods used openly, allowing critique and a better 

understanding of the results. 

A paper will be written and submitted to the journal ‘Journal of Epidemiology and 

Community Health’, detailing the construction of the area classification and its 

interpretation (Chapters 3, 4 and 5).  This will reach potential users of the classification 

in academia, local government and the NHS, encouraging its use as a research tool 

through highlighting how useful it is. 

A second paper will focus on the application of the innovative methodological approach 

applied to eliminate selection bias in the analysis migration (Chapter 7).  It is hoped that 

encouraging the approach will not just further the analysis of migration and heath, but 

also the wider geographical field as well.  A subsequent article will then be compiled 

exploring the impact of migration between different area types on health, testing for 

area effects.  The journals ‘Health and Place’ and ‘Social Science and Medicine’ have 

been identified as important target journals for publication. 

 

http://www.sasi.group.shef.ac.uk/
http://etheses.whiterose.ac.uk/
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Chapter 2: Literature review 

 

2.1 Introduction 

This chapter is split into two sections.  The first concentrates upon the theoretical side 

of the thesis, which informs the later analysis.  It begins with a brief introduction 

highlighting the importance of geography in health-based research, as a dimension 

which aids and furthers our understanding of patterns and processes.  However for 

geography to be truly important in this research framework there needs to be a 

theoretical association rather than it simply being a container for processes to occur in.  

Possible causal links are provided, with a focus on the role of the social environment as 

this forms a large part of the analytical framework for this thesis.  A review of the 

evidence for possible area effects is examined to explore whether this framework for 

investigation is useful.  The section concludes through making the theoretical link to a 

different subject, the role of migration on health, to show how this under-utilised area of 

research would help examine the possible existence of area effects.   

The second half of this review concerns the methodological approaches to researching 

the geographies of health.  Firstly, a brief review of the main spatial analytical methods 

which have been useful for researching geography and mortality is presented.  Based 

upon this, a new research framework is proposed for this purpose, involving the 

production of an area classification.  The justification of both this approach to 

researching mortality, as well as for advancing our knowledge of area patterns is 

outlined.  Other possible avenues are also briefly suggested, which could achieve a 

similar result.  Some limitations of this approach are presented, with some brief details 

to address each.  It ends with some conclusions gathered from this review, identifying 

gaps which can be addressed in this thesis. 

 

2.2 A geographical perspective to researching health 

There has been long established evidence within Britain of the inherent geographical 

inequalities in health.  Edwin Chadwick (1842) found not just social class inequalities 

or inequalities based upon place, but that in some places, people of the highest social 
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class had a lower average age of death than the lowest classes in other places (see Table 

2.1).  Although only the limited measure of average age of death was used, it still shows 

early evidence that location was paramount towards influencing health.  These 

differences were also not due to population density (Szreter and Mooney, 1998), instead 

a factor of urban-rural influences. 

  Professional Trades Tradesmen Labourers 

Rutland 52 41 38 

Leeds 33 27 19 

Liverpool 35 22 15 

Manchester 38 20 17 

Bolton 34 23 18 

Table 2.1: Average age of death in 1839 calculated for area and social class (after 

Chadwick, 1842). 

Despite these early indications of the importance of geography, most research until the 

late 20
th

 Century ignored the dimension, merely using it implicitly to display 

information.  As a result, the bulk of health-based research which considered place was 

found in the sub-disciple of „Medical Geography‟ (Bentham et al., 1991).  The focus 

was on aetiology and disease ecology (i.e. just environmental influences), limiting the 

evidence produced for geographical inequalities.  However the 1990s saw the shift away 

from this, with the name for this research changing to „Geography of Health‟ (Kearns 

and Moon, 2002).  Influenced by studies such as the Black Report (DHSS, 1980), this 

evolutionary shift saw the general subject area move away from strictly the biomedical 

model towards introducing place and social influences into its analytical understanding 

of health (Kearns, 1993).  As such, most of the evidence provided here has been 

produced in a short amount of time.  A lot of this has been aided through the greater 

availability of low level data sets and growth in computing power. 

Evidence of the importance of geography can be viewed through focusing on a recent 

study by Hacking et al. (2011) who explored mortality patterns regionally in England.  

Dividing England into the North (composed of the Governmental Office Regions of the 

North East, North West, Yorkshire and Humberside, East Midlands, West Midlands) 

and the South (East of England, London, South East and South West), they found that 

on average, there was an excess of deaths in the North of around 15 per cent for both 

genders (2008; although this figure has remained fairly constant since 1965).  The 
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authors acknowledge that the greater levels of poverty in the North may drive this result 

(a view supported by Woods et al., 2005), however there is evidence discounting this 

indicating the additional effect of geography (Doran et al., 2004; Whynes, 2009).  The 

North-South divide is an important example of spatial gradients in health.  The regional 

divide does not hold for all causes, with evidence of inverse gradients also observed (for 

example lymphatic cancer, prostate cancer; Shaw et al., 2008).   

The considered importance of geography also can be showed through the exploration of 

persistent urban-rural inequalities.  For example, Erskine et al. (2011) focused on just 

alcohol-related mortality patterns by deprivation and an urban-rural classification of 

areas in England and Wales (1999-2003).  Using the relative index of inequality, their 

results showed the continued disadvantage in terms of health in urban areas, with a 

relative risk of 1.35 for males and 1.13 for females, after controlling for both age and 

the deprivation level of each area (a decrease from 2.37 (males) and 1.68 (females) 

without controlling for deprivation).  Although the primary reasons behind these 

inequalities has changed since Chadwick‟s study from the benefit of a rural lifestyle to 

mostly one reflecting social factors, there is a still an effect attributed to geography even 

after accounting for the social dimension. 

The final aspect showing how a geographical perspective can improve our 

understanding of the health patterns, which also underpins the conceptual framework 

for this study, regards the clustering of health and mortality outcomes.  Giggs et al. 

(1988) highlights the importance of this through analysing acute pancreatitis incidence 

in Nottingham.  There was a cluster representing an area of elevated risk of the disease, 

however this remained unexplained by social class or age (i.e. risk factors).  Rather 

examining water supply areas, the Burton Joyce reservoir catchment contained the areas 

of high rates, with the water having high levels of „hard water‟ (i.e. high Calcium 

Carbonate and Magnesium).  This helped further understanding of the causal pathway 

of the disease, tackling the spread of the disease (and hence mortality rates from it).   

It is useful to examine the differences in health between places rather than just assume 

space to be constant or inactive. Assuming that Britain is spatially homogenous would 

ignore the many important geographical variations that exist within the complex array 

of health patterns.  Many diseases vary in relation to a myriad of social, demographic 

and geographical factors, all of which display distinct patterns that imprint on the 

distributions of various diseases (Shaw et al., 2008).  Therefore an ecological 
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perspective within research is important, since analysing individuals alone may ignore 

these patterns (Macintyre and Ellaway, 2000).  It is also paramount in formulating 

policies, as focusing on the correct areas is just as important in addressing individuals. 

 

2.3 Socio-spatial determinants of health 

Whilst there appears to be distinct geographical patterns with regards health, the 

question arises; does the local environment impact upon health, or instead is space a 

container for more important processes?  It follows the argument of context (the area 

individuals are exposed to) or composition (risk factors only applicable to the 

individual) factors as explanations for health patterns (Macintyre and Ellaway, 2000).  

For geography (context) to be truly important, there needs to evidence of possible 

causal pathways to justify this research approach.  For purposes of what is most relevant 

to this study, this section will focus just on the social environment and possible causal 

mechanisms.   

There is considerable evidence that poverty/deprivation has a damaging effect upon 

health.  For example, Gregory (2009) analysed patterns of standardised mortality rates 

across England in 2001 and found the ratio between the 10 percent most and least 

deprived areas to be 1.36 (i.e. mortality rate in the most deprived areas is 36 percent 

higher than in the least).  Interestingly, when this was replicated for equivalent sized 

areas from Census data from 1991 (with a deprivation measure based upon the Carstairs 

index used in 2001), the ratio was 1.39.  Despite medical advances and the improvement 

of the standard of living, geographical inequalities have remained stable.  Particular 

diseases were also associated with deprivation, including respiratory diseases (r = .545, 

p< .001) and lung cancer (r = .584, p< .001).   

A compositional explanation on this would focus on poverty being a lack of resources 

and therefore the poorer health outcomes are a factor of increased numbers of people 

with poor health living together.  There is, however, evidence to show that this is not the 

case, through the observation of additional contextual disadvantage (see Section 2.4).  

Evans and Kim (2007) argue that deprived areas present greater exposure to the local 

population of both physical and social risks, which in turn impact on individual‟s heart 

through increased blood pressure levels and stress.  Understanding these social risks and 

their causal mechanism on health is important for justifying a contextual study. 
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Poverty also leads to knock-on effects through notions such as „deprivation 

amplification‟.  Those areas which are deprived also experience additional 

disadvantages because of their poverty, leading to double jeopardy effects.  For example 

Tudor-Hart‟s (1971) inverse care law states that doctors will generally choose to work 

in less deprived areas, leading to inequalities being reinforced by service provision 

being lower in areas of greater need.  However the evidence for such effects is 

contested, with Macintyre et al. (2008) finding no significant differences for the 

location of GPs or Pharmacies across Glasgow. 

William Julius Wilson‟s (1987) social isolation theory argues that neighbourhoods of 

concentrated poverty can become isolated (both physically and socially) from other 

areas and wider society.  This segregation can lead to localised cultures whereby social 

and cultural norms have changed as a result of being isolated.  These effects upon 

attitudes and socially acceptable behaviours can impact upon health and mortality, for 

example diet, alcohol consumption, smoking and unsafe sex (Berkman and Glass, 

2000).  This highlights how the neighbourhood environment has a structural impact 

upon health, offering a different causal mechanism for the influence of poverty to 

operate with. 

The social cohesion of an area can influence health.  Social cohesion refers to the 

connectedness of an area.  Kawachi and Berkman (2000) identify two main themes for a 

cohesive area; a lack of social conflict (for example polarisation, ethnic tensions, 

income inequality) and strong social bonds.  There has been focused debate surrounding 

the importance of income inequality even within neighbourhoods.  Direct impacts on 

health operate through psychosocial channels including feelings of inferiority, impact 

upon anxiety and stress, possible causing poorer health (Wilkinson and Pickett, 2009).  

Less cohesive (or unequal) areas will also have lower community participation, as well 

as fewer controls on the behaviours of individuals.  However a review of the literature 

by Wilkinson and Pickett (2006) showed mixed evidence of the significant effect of 

inequality on health using smaller geographical areas.  Rather, they argue, this process 

operates at a national level. 

How individuals are integrated into their local areas also can affect their health.  This 

association was long theorised by Émile Durkheim (1897) who proposed that suicide, 

whilst an individual act, was influenced by social phenomena, specifically the social 

integration (or „anomie‟) of individuals into groups.  Peter Congdon (1996) tested this 
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association between anomie and suicide patterns in London.  Anomie was measured 

through an index including one-person households, unmarried people (over 15), 

population mobility and people privately renting, factors previously shown to be limit 

social integration.  Anomie was found to only have a significant effect for females 

(especially those aged over 45), where higher levels of factors associated with less 

integration positively related to suicide rates (Table 2.2).  Deprivation was also 

important with higher rates of suicide in more deprived areas, being a stronger factor for 

males (especially younger males).  The combination of these two factors best 

understood suicide patterns across London. 

  

Males Females 

Parameter t-statistic Parameter t-statistic 

Constant -0.0221 0.9 -0.0321 0.84 

Deprivation 0.1291 7.68** 0.0809 3.07* 

Anomie 0.0071 1.01 0.0424 4.05* 

Log-likelihood -1354.9   -947.2   

Deviance 922.9   859.9   

Table 2.2: Results of a Poisson regression analysing suicide patterns in London wards 

1990-1992 (after Congdon, 1996).   

Note: p<0.05 = *, p<0.01 = **, p<0.001 = ***. 

Another avenue for which the socially isolated are at a higher risk of poor health is that 

they have less access to social support (Kawachi et al., 1999).  Social support will allow 

the diffusion of health advice, as well as providing emotional and instrumental aid and 

also networking may give access to employment, which can indirectly influence health 

(Berkman and Glass, 2000).  Social support and integration may also have a greater 

impact in poorer areas, as these individuals are more likely to be geographically 

restricted to the local area (Kawachi and Berkman, 2000).   

Where deviant behaviours are more socially acceptable, social integration may not 

always be beneficial (Wilson, 1987).  This was observed by Leventhal and Brooks-

Gunn (2004).  As part of the MtO (Moving to Opportunity) study, families were 

randomly chosen and provided the opportunity to relocate from the most deprived areas 

of five US cities to a better environment.  Whilst there were general improvements 

across most health measures (see Section 2.5 for more details), teenagers aged 14 to 18 

reported no improvements in mental health as they maintained contacts from their 
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previous area and were shown to be returning frequently to visit friends allowing their 

previous neighbourhood to still be influential. 

Neighbourhoods not only have stressors that affect health, but also can provide 

resources to help improve it as well, through social capital.  Whilst similar to both 

integration and cohesion, Kawachi and Berkman (2000) define social capital as the 

collective structures that affect relationships within an area, not just the individual ones.  

Areas with lower social capital will have fewer local ties and hence less community 

participation.  This may be due to lower trust of other residents or fewer community 

organisations to offer social integration.  This in turn will have similar effects, with 

slower diffusion of health information and less social support, but also communities will 

be less likely to protest or demand for better services (Kawachi et al., 1999).   

Berkman‟s (1995) review of the evidence of the impact of social capital on (all-cause) 

mortality shows consistent support of its beneficial effects (which were fairly large 

themselves).  However Berkman goes beyond simply summarising past studies, 

exploring the evidence for possible biological causal mechanisms of how such an effect 

can have a direct effect on health and the risk of mortality.  Physical, economic and 

psychological impacts put unnecessary stress on the heart, causing it to increase 

mortality risk.  This has been supported more recently through Muennig et al. (2013) 

who found that increased integration and social capital leads to reduced mortality risk 

(for both all-cause and cardiovascular causes) as well as lower blood pressure levels. 

 

2.4 Evidence of area effects 

With there being possible routes for areal influences to impact upon health, the question 

lies of whether there is evidence of area effects.  Any examples need to be framed 

within the context versus composition debates, controlling for the latter so that the 

former can be tested for.  Previously, this research has been restricted by 

methodological issues, however advances in the field have allow the testing of 

independent area effects resulting in a growing amount of evidence since the late 1990s 

(Diez-Roux, 2001).  As a result, it is worth beginning with two influential and widely 

cited literature reviews; Pickett and Pearl (2001) and its update Riva et al. (2007).  As 

they cover the majority of the literature, they provide a useful means to position 

ourselves in the debates surrounding area effects and health. 
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Pickett and Pearl (2001) produced the first review of the association between area 

effects and health, exploring studies published before June 1998.  Comparing effects 

between various different outcome measures (morbidity, mortality and healthy 

behaviours), the authors report consistent and significant effects.  However, the authors 

appear to downplay the fact that most results tend to only be small, or disappear when 

other results are controlled for (for example Reijneveld, 1998; Sloggett and Joshi, 

1998).  The majority of these studies gave little consideration to their use of areas for 

measuring effects.  Without addressing this, it is difficult to conceptualise areas effects 

and their causal pathways.  There were also issues with small numbers affecting the 

usefulness of results. 

Riva et al. (2007) appears to acknowledge the limitations of Pickett and Pearl‟s 

discussion and is more conservative in its assertions.  It focused on developments in the 

field and whether models were beginning to improve.  More studies were included, 

using the time period of July 1998 to December 2005, reflecting the growth in available 

studies exploring this.  Similar findings were reported with respect to observed effect 

sizes, with consistent but small results for both morbidity and mortality studies 

(although there is still some disagreement; Roos et al., 2004; Veugelers et al., 2001).  

Riva et al. argue that the poor application of methodologies has limited the current 

wealth of results.  As such it is difficult to assess what is the true effect, especially as 

there is a fairly wide range of results.  Furthermore, no studies have addressed the issue 

of meaningful boundaries to measure their areas. 

There has been little change in the general results found since Riva et al.‟s (2007) 

review, with the majority of studies reporting a significant but small observed effect on 

health (for example Maheswaran et al., 2010; Morris et al., 2008; Scarborough et al., 

2012).  However rather than just measure these effects, some studies have refocused 

their efforts to explore and test for possible causal pathways.  Although Section 2.3 

presented many different possible associations which areas could impact upon health, 

these are not always quantifiable.  This is important due to selection bias occurring in 

the data (Bilger and Carrieri, 2013; Riva et al., 2007).  Residents find themselves 

becoming sorted into specific neighbourhoods, which may also be related to their 

health.  As a result, this can result in the mis-specification of the relationship, as effects 

become inflated.  The need for better evidence regarding causal pathways is paramount 

for avoiding this issue. 
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Chaix et al. (2007) found the role of social support between individuals in an area to be 

important for explaining mortality rates.  Controlling for individual and area level 

factors (including health risks such as previous diagnosis of diabetes or hypertension), 

they ran a multi-level model exploring patterns of Ischaemic Heart Disease (Table 2.3).  

Where there was less support or more unstable neighbourhoods (measured through 

population turnover), residential stability was observed as an important factor for 

explaining mortality.  The size of effect between the extremes was equivalent to the size 

of socio-economic inequalities by neighbourhoods.  For incidence, the effect was less 

than conclusive. 

  

Ischaemic Heart Disease 

Incidence Mortality 

HR 95% CI HR 95% CI 

Neighbourhood 

socio-

economic 

position 

High Reference 

Mid-high 1.3 1.08-1.54 1.21 0.92-1.75 

Mid-low 1.35 1.13-1.63 1.36 1.00-2.02 

Low 1.67 1.39-2.03 1.85 1.37-2.72 

Residential 

Stability 

High Reference 

Mid-high 1.01 0.84-1.18 1.28 0.94-1.72 

Mid-low 1.06 0.89-1.25 1.47 1.05-1.98 

Low 1.19 1.00-1.41 1.89 1.39-2.52 

Table 2.3: Hazard ratios for contextual factors in explaining Ischaemic Heart Disease 

patterns1996-2002, after controlling for individual factors (Chaix et al., 2007, p108)   

Subramanian et al. (2008) analysed the concept of the „widowhood‟ effect.  This is the 

well established increased risk of death after an (usually elderly) individual experiences 

a bereavement of a partner (around 50-90 per cent for the first few months after, 

declining to on average an increased risk of 15 per cent overall).  The authors found that 

individuals (after controlling for compositional and contextual risk factors) who lost a 

partner in an area with a low concentration of widowed individuals had an increased 

risk of mortality of 22 per cent for males and 17 per cent for females.  However where 

there were higher concentrations of widowed individuals in a neighbourhood, the odds 

ratios decreased to an increase in the risk of death of 17 and 15 per cent respectively.  

Contextual support can act as a buffer to protect individuals, showing that 

“...neighbourhoods [can] modify the effects of individual risk factors.” (p882).  Reasons 

for this include the greater supply of social support, given that a spouse is typically the 
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most important part of a social network.  Berkman (1995) added to this to note that 

bereavement or loss affects individuals through increased stress on the heart, as well as 

a suppressed immune system. 

Johnson et al. (2012) analysed the health (the reporting of good health) of individuals 

late into the life course (aged over 55) and the subsequent risk factors at two points 

earlier in time (childhood and young adulthood) within an area effects framework.  

They found that the neighbourhood effect was stronger earlier in life.  For example, the 

size of the effect of living in a medium-poverty (coefficient (β ) = -3, p<.001) area than 

compared to a low-poverty area (reference) during young adulthood (aged 20s to 30s) 

was slightly higher than compared to whether a person smoked (β = -2.7, p<.001) 

during this age as well.  For an individual living in a high-poverty area, the effect was 

higher (β = -6.4, p<.001).  Whilst the role of neighbourhoods on health overall was not 

as large as the individual level, it still accounts for a considerable amount of variation, 

especially when individuals are exposed to it over a longer amount of time.  However as 

Keene et al. (2013) found, living in a neighbourhood longer is not completely bad, as it 

allows the gathering of social capital and the formulation of support networks, which 

can positively impact upon health. 

 

2.5 Migration as a possible factor to identify the impact upon health of 

areas  

If area effects are important in influencing our health, then we also need to explore the 

role of migration within this context.  If areas have an effect on health, then migrating to 

an area with different characteristics would also affect the migrant‟s health.  For 

example, if subject A lived in an area with a good mortality profile, then we may expect 

that migration to an area which displays poorer health prospects would be detrimental to 

subject A‟s own health.   

There is little research outside of the international migration context focusing on the 

role of internal migration and health.  Although the theoretical side has been long 

hypothesised (for example Farr, 1864), it was not until a study by Bentham (1988) 

examined the evidence for this.  Bentham compared the reporting of people identifying 

themselves as „permanently sick‟ between internal migrants and those who did not 

migrate between 1980 and 1981.   Those who migrated, especially at younger ages, 
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reported lower proportions of poor health.  However this study was limited through its 

descriptive analytics, focusing less on any migratory effect. 

Brimblecombe et al. (2000) analysed the impact of migration on health between birth 

residence and current residence using the British Household Panel Survey.  Migration 

was split by destination into high and low mortality areas (Local Authorities).  They 

found mixed results with some migrants who migrated from high to low mortality areas 

reporting significantly better health (through mental health, reporting of poor self-rated 

health), but with others showing an insignificant improvement in the health outcome 

measure (SMR, health limits work).  However this was largely explained through social 

characteristics, of which the majority were significantly different, pointing towards 

people of higher social class migrating from high to low mortality areas.  The results for 

migration from low to high mortality areas was less conclusive with fewer significant 

differences, a factor of the smaller sample size as the majority of migrations represent 

an up-scaling.   

What Brimblecombe and colleagues found was evidence of healthy selective migration.  

Migratory patterns act like an internal sorting process, whereby those with the best 

health migrate into the areas with the best health.  It is „selective‟ as these migrations 

are undertaken by certain groups (mainly the young and those of high socio-economic 

status), who in turn have the best health prospects (Bentham, 1988; Boyle, 2004).  At 

the same time, those with poorer health end up „drifting‟ towards similar areas, leading 

to a concentration of ill health in particular areas (Cox, 2007).  This leads to the 

polarisation of health patterns. 

Larson et al. (2004) focused on middle aged females (45-49) in their analysis of the 

association between health and migration (Table 2.4).  For this group of individuals, 

migration was associated with the onset of poor health (not self-rated health, but chronic 

diseases).  Movements were more common over short distances, usually in relation to 

housing insecurity and declining incomes due to the onset of poor health.  Long distance 

migration differed as it was due to individuals being closer to health services. 

The relationship between migration and health is mostly indirect, more a method for 

understanding health differences.  Research in the early 2000s focused on whether 

geographical inequalities in health could be part explained by migration.  The 

consideration of (health-selective) migration was often ignored in most prior papers on 

health inequalities (Boyle, 2004).  Simply comparing the change in mortality over time 
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to explore inequalities is somewhat false, as it assumes that you are comparing the same 

population, which through migratory patterns is not true (Brimblecombe et al., 2000).  It 

is difficult to assess whether health has actually got worse or rather the people living in 

the area has changed. 

Health measure 
Local 

migration 

Migration between 

postcodes 

Rural-to-urban 

migration 

Self-rated good 

health 
0.88 0.93 0.87 

Two or more 

chronic diseases 
1.29** 1.24** 1.34* 

Poor mental 

health 
1.40** 1.32** 1.07 

Current smoker 1.39** 1.35** 1.24 

Three of more 

visits to a 

specialist in the 

previous year 

1.12 1.30** 1.49* 

Table 2.4: Selected odds ratios for migration types (compared to non-migrants) of 

females aged 45-49 accounting for socio-economic and marital status (after Larson et 

al., 2004, p2156).   

Note: *p<0.05, **p<0.01. 

These case studies so far have presented the role area effects on health resulting from 

migration as indirect.  However exploring the US policy „Moving to Opportunity for 

Fair Housing Demonstration‟ (MTO) allows us to see a more direct role.  Families in 

five US cities (Baltimore, Boston, Chicago, Los Angeles and New York) between 1994 

and 1998 who were in small areas with poverty rates above 40 per cent were 

approached to take part in a housing lottery (Ludwig et al., 2012).  Of those who agreed, 

they became part of a randomised control study, where individuals were randomly 

selected to either to received a voucher to enable them to migrate only to an area of low 

poverty (<10 per cent; through subsidising rent), a traditional housing voucher with no 

restrictions on where they can migrate, or a control group with no encouragement to 

migrate (Ludwig et al., 2011).  Families were then followed over time. 

As such, studies have examined the impact of the policy on individual health outcomes, 
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an important consideration for the role of neighbourhood effects.  Ludwig et al. (2011) 

analysed obesity (through BMI) and risk of diabetes (through blood glucose levels) 

variations as part of the study.  Those who were migrated to less deprived areas had 

significantly lower morbid obesity (BMI ≥40; although not for just obese i.e. BMI ≥ 30) 

and blood glucose levels.  There were no significant differences between those who 

were provided the traditional housing voucher and the control group, showing place 

(and where people migrated to, to be paramount).  Ludwig et al. (2012) showed that the 

subjective well-being of those who migrated to a low poverty area was higher than 

compared to the control group.  Leventhal and Brooks-Gunn (2003) also found 

improved mental health for both parents and young children for those migrating to the 

low poverty areas.  Learning from this research design would help frame a useful 

empirical model of analysis. 

The main problem with this small research field is that studies focus on just linear 

relationships between migration and health.  This assumes the relationship to be 

constant across a range of different types of migration (for example from good to bad 

areas and vice versa).  Section 2.1 and 2.2 argued that geography is important for 

explaining patterns in health and therefore ignoring it in this context would be false.  

Those few British studies which have considered geography loosely are presented in 

Table 2.5; however there is much scope for improvement.  Even the MtO studies were 

concerned with policy evaluation, rather than the possible range of different experiences 

by area types for both origin and destination.  There is currently a poor conceptual 

framework in research for introducing geography into any analysis and the link towards 

the neighbourhood effects literature remains poorly developed. 

Study Use of geography Limitations 

Brimblecombe et al., 2000 Low vs high mortality areas 
Binary divide, restricting 

possible experiences 

Popham et al., 2011 
Glasgow vs 'Three Main 

Cities' vs Elsewhere 

Limited to Scotland, large area 

types lose accuracy and detail 

Riva et al., 2011 Rural vs urban Test of specific process 

Wannamethee et al., 2002 North vs South Binary divide, large scale 

Table 2.5: Past research utilising geography in the migratory impact on health. 

Data issues form a large part of the problem which limits the quality of the current 

known evidence.  There is little data which combines both migration and health (Boyle, 
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2004; Larson et al., 2004).  Where it does, sample size is important and many studies 

note that over the course of a year only a fraction will migrate.  This leads to the effects 

either being unobserved or just small.  This becomes further problematic once 

geography is involved, through constraining the sample size further (Brimblecombe et 

al., 2000).  A trade-off ensues, with larger sized areas more likely to give significant 

results but forego some level of accuracy and detail (Popham et al., 2011). 

Data limitations extend to the temporal aspect as well.  For example Brimblecombe et 

al. (2000) compared migration using current area of residence and that at birth to 

explore the role of migration.  However the importance of area effects cannot be drawn 

out along such a long time period, given that many migrations may take place.  This 

format (and others looking using long time periods) are fairly common within this 

research area (Cox et al., 2007; Popham et al., 2011; Wannamethee et al., 2002).  Few 

have looked at patterns over small time units.  Larson et al. (2004) compared data from 

a two year interval, however the study was focused only on females aged 45 to 49, 

restricting the observations that can be drawn out.  As such, there are few studies which 

can really account for the role of the neighbourhood in the migration context. 

 

2.6 Common research methods in health and geography 

With the greater availability of small scale health statistics, there has been an increased 

focus on mapping patterns to explore the spatial variability.  Whilst disease mapping is 

relatively descriptive, it provides a visual exploration of the processes that exist and are 

easily interpreted (Lawson, 2013).  This method provides an effective and easy to 

understand interpretation of spatial patterns and processes, especially since „a picture 

tells a thousand words‟.  This can be seen in a recent atlas (Shaw et al., 2008) which 

shows geographical patterns for most types of mortality.  The importance of mapping as 

a method has been helped by the advances in GIS (Geographical Information System), 

which have allowed spatial data to be displayed quickly.  Map overlay functions have 

made it easier and quicker to compare different patterns, to look for common trends and 

possible influences.  Therefore maps are not just useful for describing the data, but also 

for generating new hypotheses as well (ibid). 

These methods remain mainly descriptive and therefore analytical methods are required 

to fully explore spatial influences upon health.  This is highlighted by the Shaw et al. 
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(2008) atlas, which just maps each mortality pattern rather than analysing trends, 

patterns or interactions between causes of death.  There is little to link together possible 

explanatory factors or analyse interactions.  Ecological analyses begin to bridge this 

gap, although they do not fully consider distinct spatial patterns.  Studies may instead 

use correlation or regression to examine the associations of area level variables and their 

effects.  Within regression, simple dummy variables can be included to represent 

whether a case falls in a certain location/area.  The standardised residuals can also be 

mapped to look for extreme areas, suggesting possible geographical patterns.  However 

the presence of spatial autocorrelation violates the underlying assumptions of regression 

since the residuals are not independent (Rogerson, 2006). 

A method which has grown in use since the late 1990s has been hierarchical linear 

models (also known as multi-level or mixed-effects models, depending upon discipline).  

This method allows for the separation of the effects where there is more than one level 

to the structure of the data (Hox, 2002; Snijders and Bosker, 1999).  This makes it 

useful in this discipline, given that individual level effects can be controlled for, whilst 

testing for whether there are significant differences by areas (Kreft and De Leeuw, 

1998).  As such, all of the evidence for the existence of area effects shown in Section 

2.4 is taken using this methodology. 

Whilst all of these methods analysing the geography of health are useful, there is one 

issue.  All of these methods focus on analysing a singular disease and whilst this is not 

always a problem, it restricts the analysis to comparing patterns for each disease.  

Rather when a particular research project has access to data for many different diseases, 

with varying patterns and co-associated processes, it would be useful to look at how 

these interact with each other.  As such, we can begin to move from a one-dimensional 

form of investigation, towards a multi-dimensional approach which would help provide 

a deeper understanding of new patterns and processes.  However when multiple causes 

are analysed, it may be hard to „see the wood for the trees‟.  Area classification methods 

provide a useful technique to solve these issues and therefore it would be useful to 

explore this further as a means to analyse mortality patterns. 
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2.7 Area classification and health 

At its most basic, classification is the technique of summarising objects through 

defining clusters which are believed to be similar (Everitt, 1979).  Cluster analysis 

represents one branch of possible methods for classifying data.  Cluster analysis itself is 

also a general term for a family of statistical methods used to group a diverse range of 

heterogeneous cases into a smaller number of more homogenous clusters (Gordon, 

1999).  Cases are assigned to clusters based upon their similarities on a number of 

different dimensions (i.e. internal cohesion) and differences with other cases/clusters 

(i.e. external isolation) (Everitt et al., 2001).   

Classificatory methods are different from other methods of analysis.  Rather than test 

hypotheses (for example, as in regression), cluster analysis seeks to analyse how cases 

are related (Luke, 2005).  The analysis is more exploratory, looking to describe the 

structure of the data, albeit in a much simpler way which retains most of the information 

(Cormack, 1971).  As Everitt et al. (2001) note; “Cluster analysis is essentially about 

discovering groups in data…” (p6) and hence it can find new and interesting groups 

within society that can drive future research.  Understanding these hidden and unknown 

clusters with the data can advance our knowledge about particular patterns and 

processes.  The analysis is pre-classificatory, since no pre-conceptions about the number 

or the characteristics of clusters are known beforehand.   

 

2.7.1 Why classify? 

Classifying objects can appear very much a part of human nature (Cormack, 1971; 

Everitt et al., 2001).  We, as a species, seek to bring order to the world that we live in.  

Classifying is very much a means of simplifying the many complexities that exist 

(Singleton and Longley, 2009).  The human mind cannot think of every encountered 

object as unique.  This would be too difficult to make any sense of what the object 

means and any patterns or processes occurring, as well as being very inefficient.  

Classification is therefore required to be able to understand the world around us 

(Clatworthy et al., 2005).  By simplifying the vast array of objects into a number of 

smaller, more manageable clusters based on similarity (and dissimilarities against other 

clusters), we can improve our understanding of what is happening.  Essentially, we are 

transforming reality into something more manageable (Dorling, 2012). 
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At its core, classification provides a method of data reduction.  However, this does not 

mean the method is purely for data organisation, rather the simplification of complex 

data into more homogenous clusters can help analyse similarities and differences within 

the data set that would be hard to otherwise see (Cormack, 1971).  The mortality data 

set used within this thesis contains millions of deaths, spread over 30 years for the 

whole of Scotland, England and Wales (see Chapter three).  This is far too much 

information for the human mind to effectively analyse.  Yet if this complex data set can 

validly be summarised by a smaller range of homogenous clusters, then the clusters may 

improve our understanding of the mortality patterns in Britain (Everitt et al., 2001).  

This approach allows us to „see the wood for the trees‟. 

The ability of the method to process and reduce large quantities of data to a much 

smaller number of clusters has been helped by the recent advances in computing power.  

In the past, powerful computers were needed to produce classifications, one reason why 

classifications used to be mostly found within the private sector (Harris et al., 2005).  

Yet now, not just can more data be incorporated into analyses, but they can also be run 

on personal computers with less technical skill required; it would appear now that just 

about anyone can classify!   

This data reduction does not just apply to the number of cases, but an increasing number 

of variables can also be included.  This is very useful since it allows a multidimensional 

approach, giving a more detailed analysis through larger numbers of variables 

describing the characteristics of clusters.  For example two areas with the same 

standardised mortality rate may suggest that they are similar, but a wider analysis may 

show that the types of mortality causes may be completely different (but just add up to 

the same standardised mortality rate) suggesting that the areas are in fact very 

dissimilar.  As such, we can begin to move away from a uni-dimensional form of 

analysis and understanding.  

The effectiveness of producing a classification to help the understanding of objects can 

be shown by the example of the board game Monopoly (Harris et al, 2005).  Whilst not 

a „true‟ classification, the board game reflects an urban classification of a city of 

interest.  With no prior knowledge of a city, players know that an area that falls within 

the „brown‟ category will have low rental value and development cost, reflecting the 

land value of the area.  This is in comparison to a „dark blue‟ area which has a much 

higher cost.  From this, you can work out that „dark blue‟ areas are more upmarket and 
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make other assumptions (carefully) about the characteristics of the area, especially 

when comparing it to other areas.   

 

2.7.2 Why classify areas? 

Area classifications extend the ideas presented in the previous section by incorporating 

an increased focus on geography.  But why should we consider looking at the health of 

an area?  If we are interested in the patterns concerning human life, then we need to also 

consider place.  Where you live is likely to be a good indicator of your life.  It limits, 

creates and determines your life course (Diez-Roux, 2001).  Sections 2.1 to 2.3 

highlighted how geography can impact upon your health, but it is not just restricted to 

these effects; for example income, employment, lifestyle etc (these all have additional 

effects upon health).  By examining similarities and differences between places, we can 

explore these inter-relationships and their subsequent patterns.  It is these patterns, 

which otherwise may be ignored, which help further our understanding or potentially 

show up new strands of research direction.  It is through place, that the underlying 

structure of society becomes visible and interpretable (Dorling, 2012). 

Place can also hide as much as it reveals.  Through aggregating data, detail is lost.  A 

trade-off ensues, given that through aggregating, the data becomes more useful and can 

be applied (and compared) to much more.  The simplest way to solve this is to use the 

lowest geography possible.  Where larger geographies are used, statistics will begin to 

regress to the mean as variations are lost.  For example if an area is heavily polarized by 

lots of people with high and low life expectancies, the average will not truly reflect the 

area through giving a middle value.  This describes the area as something that it is not 

(Dorling, 2012).  Smaller areas reduce the likelihood of this happening, as areas become 

more distinct and compact.  It becomes less important where the lines are drawn (i.e. the 

geography used).  The underlying structure becomes more visible. 

The classification of areas as a research framework has been mostly utilised within 

„geodemographics‟.  The subject field seeks to explore the types of people who live in 

different areas.  For example we tend to think of areas within a city as containing 

differing groups.  Typically these groups are defined as rich or poor, but having 

different labels such as „Little Italy‟ or „Chinatown‟ helps describe areas much better, 

improving our understanding of the processes occurring (Harris et al., 2005). 
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Using small scale geographies as the building blocks for a classification would provide 

an accurate representation of the geographies of mortality.  Although some data quality 

is lost from aggregating individual level data, at small geographies it is likely that the 

types of people living in each area are quite similar.  Tobler‟s (1971) first law of 

geography states that “Everything is related to everything else, but near things are more 

related than distant things.” (p236).  Whilst people who live in the same area are not 

identical, they are likely to have similar characteristics.  Using small areas as the 

building blocks of a classification will therefore be useful.  This approach assumes that 

population and place are intricately linked together (Vickers, 2006).   

Area classifications also extent the principle of Tobler‟s first law further (Harris et al., 

2005).  People may not just be similar to those closest, but also to others living in the 

same „class‟ or neighbourhood type.  Whilst people living at Land‟s End and John 

O‟Groats are geographically separate, they may share similar characteristics and hence 

be potentially related.  Similar processes may exist in both regions causing a distinct 

health profile.  This could not be easily shown using one-dimensional measure or a 

different methodological approach. 

Socio-spatial classification has a long history within geography itself.  Just before the 

turn of the 20
th

 Century, Charles Booth (1889) published possibly the earliest area 

classification.  Booth produced a socio-economic classification of London, split into 7 

groups based mainly on social class.  Booth‟s actual aim was to prove that poverty in 

London was not as strife as had been claimed, but he actually found it to be higher than 

he had imagined (Harris et al., 2005).  Booth also recognised the importance of place in 

shaping the distribution of poverty, an early insight into area effects.  Another example 

is William Burgess (1925) and his Concentric Zone Model, which sought to classify the 

general structure of cities at the time.  Cities were divided into zones which each had 

different land uses.  Whilst not intended as a socio-economic classification  (it was 

produced to explain the process of urban growth), the model demonstrates spatial 

inequalities, with poorer classes constrained to inner city areas and higher classes able 

to migrate to the outer rings of the city.  Both these examples highlight just how useful 

it can be to classify areas, despite neither being statistically grounded. 

Focusing on place appears theoretically grounded to aid research.  It helps to simplify 

patterns and although some detail is lost, it is much easier to see millions of deaths 

viewed through a few thousand areas.  However, this choice is also partly down to data 
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considerations.  It does not just get around issues of confidentially and ease of handling, 

but can enhance the quality of the study.  Using data recorded at a known spatial level 

allows for comparisons to other sources of information.  Relationships can be examined 

past the initial set of variables used, further improving our interpretation of patterns. 

 

2.7.3 Is it useful for researching mortality? 

The application of area classifications within health-based research has been minimal.  

It is an under-utilised methodology and yet it has the potential to be extremely 

informative.  This is despite calls for increased focus on this approach within 

governmental policy and research (DoH, 2005).  Its use is a relatively new phenomenon 

for researching health and hence most of the existing evidence and knowledge base has 

occurred from different sectors (Abbas et al., 2009).  Nonetheless it might be first useful 

to explore some of the small range of examples of its application in past literature to 

highlight the lack of utilisation of the technique and how this can be improved upon. 

Within health research, classification techniques are mostly used to group together 

individual level data on patients of a specific disease.  Fukouda et al. (2007) classified 

the symptoms presented by elderly cardiac patients with poor recovery after initial 

treatment to improve diagnosis of further treatment options.  Based on a variety of 

symptoms, three clusters were found representing different responses to treatment; 

„weary‟, „diffuse symptoms‟ and „shortness of breath‟.  The weary cluster had the 

poorest recovery, with high levels of shortness of breath, fatigue and sleep disturbance.  

Diabetes and depression were found to be possible explanatory factors for the cluster.  

Diffuse symptoms were characterised by just high levels of fatigue, with little else to 

understand their condition.  The shortness of breath cluster was self-explanatory, 

although it did show worse mental health outcomes.  There were no significant 

demographic differences between the clusters. 

There has also been research into classifying infant mortality.  The use of the 

International Classification of Diseases (ICD) for completing death certificates is only 

limited since the available codes do not relate to cause of death at this period of life, but 

rather the time period of occurrence.   Alberman et al. (1994) attempted to classify 

infant mortalities into meaningful clusters to help our understanding of what is 

happening.  They found eight clusters in producing a neonatal classification for the 
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OPCS (Office for Population, Censuses and Surveys).  Whilst showing the main causes 

of neonatal deaths, the study also highlighted how deaths during the neonatal period 

mainly the result of prenatal conditions.  This contrasted with infant deaths post-

neonatal where environmental hazards were more important.  The Perinatal Society of 

Australia and New Zealand produced two classifications based on perinatal and 

neonatal deaths, with the aim to improve surveillance of infant mortality causes and to 

help improve health care accordingly (Chan et al., 2004). 

These types of use, however, ignore the importance of place due to data restrictions.  

Most previous national low level area classifications have failed to incorporate health 

dimensions into them.  With geodemographic classifications striving to classify the 

different types of people mainly through a socio-economic classification of Britain, 

health variables are often ignored (especially due to an often lack of availability at 

lower levels).  For example the Output Area Classification (Vickers, 2006) only 

included two, albeit subjective, health-related variables („limiting long-term illness‟ and 

„provision of unpaid care‟).  Other commercial classifications have some small function 

of health, although given their commercial nature it is never clear the full extent of this, 

to protect their intellectual property (Harris et al., 2005).  MOSAIC contains a health 

domain but it is less clear what this constitutes (Experian, 2009).  ACORN contains 

information on „smokers‟, „diabetics‟ and „hospital admissions due to heart failure‟, but 

together these appear almost random for their inclusion (CACI, 2013). 

„HealthACORN‟ appears to be the only national classification designed with a focus 

upon health.  Nevertheless the variables included in the process tend to concentrate 

upon health-related behaviours (i.e. surveyed data) rather than actual health outcomes 

(though some are used; CACI, 2010).  This includes variables on exercise routines and 

diet, such as the number of rashers of bacons eaten.  Whilst this may allow researchers 

to analyse what constitutes poor health (i.e. policy targeting) and help tackle future 

problems, it ignores the spatial patterns of health which may be important.  With the 

methodology having not been disclosed to preserve the intellectual property rights, it is 

hard to assess the overall quality of the classification (Harris et al., 2005).  Also as a lot 

of the data comes from modelled survey estimates (collected at a high level), the 

reliability of the low level clusters may be questionable.  Currently, the 

„HealthACORN‟ has been withdrawn from CACI‟s range of products and is unavailable 

for use at all, with no plans to replace it (Thurman, 2013). 
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Although these national classifications mostly ignore health variables, they have still 

been quite useful within research.  A lot of studies have used classifications (rather than 

produce their own) to explore the relationship between population and health, 

specifically the characteristics of people at greatest risk of a disease.  There is growing 

awareness within health research of using classifications as an alternative to indices or 

single explanatory variables to help improve our understanding of the determinants and 

patterns of health (Abbas et al., 2009).   

Nnoaham et al. (2010) highlights this through an exploration of the uptake of colorectal 

screening.  They used the „People and Places‟ classification to help gain a deeper 

understanding of the types of people not using the service, to attempt to improve uptake.  

The geodemographic classification outperformed using deprivation quintiles instead, 

finding greater variation in uptake patterns.  Three area types had lower quantities of 

uptake (see Table 2.6).  Although useful, targeting gender appeared to provide greater 

possibilities for increased uptake.  Nonetheless the classification helped improve the 

understanding of the types of people affected, resulting in public health policy targeting 

being improved.   

Cluster Description 

Multicultural 

centres 

Broad ethnic mix, most renting council or housing 

association property and in the lowest quartile of income 

for the UK 

Disadvantaged 

households 

Single pensioner households, most renting council or 

housing association property, and in the lowest quartile 

of income for the UK 

Urban 

challenge 

Single pensioner households, most renting council or 

housing association property; smokers, long-term 

limiting illness; in the lowest quartile of income for the 

UK 

Table 2.6: Descriptions of the „People and Places‟ clusters of increased non-uptake for 

colorectal testing (Nnoaham et al., 2010, p578). 

These classifications however do not deal directly with the health of areas, rather the 

make-up of who lives there.  It is surprising then that despite the existence of wide 

inequalities within health (for example Thomas et al., 2010), there has been no low level 

classification of these mortality profiles.  Shelton et al.‟s (2006) study comes closest 
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through classifying causes of death within parliamentary districts for England and 

Wales.  The analysis resulted in a ten cluster solution, which are presented in Table 2.7.  

The clusters highlighted the importance of occupational and lifestyle differences in 

creating health inequalities.  Change over time for cluster membership was assessed and 

showed a relative stable underlying structure of mortality patterns (82 per cent of 

districts remained in the same cluster between 1981 and 2000). 

Cluster Geography 
Mortality Patterns 

High Low 

1 London External causes, HIV Influenza, senility 

2 South East 

Air accidents, assault by 

firearms, accident by 

electricity 

Unknown causes 

3 Coastal areas 
Water transport, other 

external causes 

Infectious diseases, 

respiratory diseases 

4 
Former mining 

areas 

Respiratory diseases, 

machinery-related 
External causes 

5 London HIV, external causes 
Machinery-related, 

neurological 

6 London HIV, external causes 
Machinery-related, 

unknown causes 

7 
South East (with 

some Northern) 

Suicide, transport 

accidents 

Infectious diseases, 

external causes 

8 London 
Assault by firearms and 

cutting, HIV 
Senility, respiratory 

9 

Former mining 

areas and areas of 

high deprivation 

Machinery-related, 

railway accidents, 

industrial lung-related 

External causes 

10 
Urban (outside 

London) 

Deaths from cutting, 

respiratory diseases 
External causes 

Table 2.7: Summary of Shelton et al.‟s (2006) classification. 

Shelton et al.‟s (2006) study was limited, affecting the quality of its results.  There was 

little basis for the selection of variables.  For example, there were separate variables for 

both deaths due to air and sea transport accidents, neither of which account for a 

significant or useful number of deaths.  This is reflected in the results, where the choices 
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appear to be having a fairly large impact upon the clusters produced (the coastal cluster 

was strongly driven by the extreme values of deaths due to sea transport accidents).  It 

would have appeared that variable selection was based upon producing a classification 

which emphasized geographical inequalities, rather than actual mortality patterns.  The 

study was also conducted at a fairly large geographical scale, which may have resulted 

in rates approaching the mean (Dorling, 2012).  Smaller areas allow for the capturing of 

greater variation in patterns, which are otherwise lost where larger areas capture a 

heterogeneous population.  As a result of both factors, the classification ends up telling 

a story about a population that does not really exist. 

The Department of Health performed a cluster analysis of survey data on attitudes and 

behaviours to diet and physical activity.  This was then applied to other data sources to 

produce an area based classification to aid policy with regards obesity as part of the 

„Change4Life‟ campaign (NOO, 2009).  It formed the basis for creating population 

profiles of varying sub-groups which could be further targeted based upon their risk to 

obesity (and diabetes).  However, the resulting classification was not robust enough for 

further analysis, limiting its quality and usefulness to just an exploratory introduction 

into policy formation.  The use of six clusters was not justified and hence appears 

arbitrary.  Having been outsourced to CACI (makers of ACORN), whilst further 

explanatory variables were added to the area classification, these were unknown 

limiting any potential gains.  

Whilst not a classification, the Department of Health also recently introduced „Health 

Profiles‟ which are to be released each year (APHO, 2013).  These summarise 

inequalities within key health factors (for example life expectancy, early deaths from 

heart disease and cancers), not just showing local health but also comparisons against 

national averages.  The aims of the reports are to provide greater information on the 

health of the local region to help identify issues that need to be tackled (ibid).  However 

not all the variables included are related to health, for example deprivation, lifestyle 

factors, education.  Although these are included to help local policy, the irrelevance of a 

few variables detracts from the overall aim of assessing the health of the region (for 

example carbon emissions).  These reports are currently produced as low as Local 

Authorities, with the aim to make information available at the MSOA level (not 

currently available).  This example shows the potential for a similar type of study to 

help aid public health and policy research. 
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A lot of the examples analysing health variations tend to focus on one disease.  

Although useful, this approach ignores how diseases are inter-related through 

examining similarities and differences.  Through reducing the data into more 

manageable clusters based on similarity (and dissimilarity with other clusters), this 

makes it easier to understanding the patterns and processes that are occurring.  For 

example Shaw et al. (2008) produced an atlas of mortality, however with over 100 

maps, it is hard to fully take in what is happening.  The construction of a classification 

condenses this vast amount of information into the most useful parts, allowing us to „see 

the wood for the trees‟. 

It also provides a useful framework for investigating the importance of geography and 

neighbourhoods in affecting our health.  Here we get a better understanding of health 

inequalities, both through capturing the dominant patterns, as well as the multi-

dimensional patterns by cause which have resulted or produced these patterns.  This can 

be linked to other social factors, as both explanatory variables, as well as to highlight 

the social inequalities in health that exist.  By knowing the dominant environment 

structures and types through mortality, only then can we examine the impact of areas of 

individuals. 

Finally, the classification acts to improve the statistical robustness of any analysis.  

Investigations of low level mortality patterns are constrained by issues of low numbers.  

When measuring differences by cause of mortality, this is especially important and 

often restricts the observations and detail studies can achieve.  Producing a 

classification from a cluster analysis pools data from across the areal unit to create 

better and more accurate results (Everitt et al., 2001).  This allows the study to keep 

both a good level of detail through an increased number of variables at a low 

geography, without having to sacrifice either (a common limitation of most health-

based research). 

 

2.7.4 Other Directions?  

Producing a classification may not be the best approach at summarising a large amount 

of data into more manageable chunks.  One possibility would be to produce an index of 

mortality.  Rather than classifying areas, an index would measure the different 

characteristics of health and then sort places based upon their rank or scores (Harris et 
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al., 2005).  This involves the selection and amalgamation of several factors into a more 

useful composite variable (Nando et al., 2008).  By using the ranks or scores, areas can 

also be grouped into differing levels of what is being measured.  This allows the relative 

position of areas to be compared on an ordinal scale to examine patterns with higher or 

lower scores or ranks.  Furthermore, this approach allows the comparison of trends over 

time a lot more easily than classifications, which are not comparable other than between 

their own clusters (Vickers, 2011).  Indexes are also more easily updated than 

classifications (Everitt et al., 2001). 

Producing an index also bears some similarities with a classification, which would be 

useful in researching health.   An index, like a classification, could be used as a means 

of data reduction as the process would reduce the visible size of a set of variables 

without dropping the underlying information (Nando et al., 2008).  This in turn allows 

areas to be compared on the same scale, allowing more meaningful comparisons 

between areas.  The summarisation of the data means that both techniques are multi-

dimensional.  This allows both measures to provide a greater understanding of the 

health of areas, through simplifying the complex underlying patterns into an easier to 

interpret visualisation of what is occurring (ibid).  Just analysing the geographies of 

mortality using one indicator (or dimension) will inadequately capture the true patterns 

and processes occurring. 

Although creating an index may be useful, there are some differences to classifications 

which suggest that the latter would be better.  Indices are created to rank areas based 

upon poor or bad health.  This use is different to area classifications which would look 

to explore the unique characteristics of health profiles.  If two areas were just ranked as 

„bad„, this ignores the diversity of health in Britain since not all „bad‟ places are the 

same.  It is also much harder to know if certain variables are having a greater effect on 

certain areas or clusters.  Therefore it may be suggested that indexes oversimplify trends 

within the data (Richardson et al., 2010).  Furthermore what actually characterises „bad‟ 

health?  This would be hard to justify.  Classifications just produce clusters that are 

different, with no suggestion which are better (or can be ranked; ibid).  It would also be 

difficult to interpret what the value of the score actually means and what a one unit 

change would entail.  Thus a classification would be more useful with regards to this 

thesis. 

Performing a principal component analysis could get around these criticisms.  This 
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method also leads to data reduction, however instead of examining how cases are 

related, this analyses how variables interact with each other.  When there are many 

variables (for example causes of death), the analysis examines how variables are 

correlated together.  The process then creates a smaller set of new, unrelated variables 

which reflect the relationships between variables in the data set.  Yet this approach is 

still limited in turns of examining which variables are more important.  Whilst you can 

see the spatial patterning of each component, in areas where two components have 

similar scores it may be difficult to decide which has the greater effect.  Cluster analysis 

does not encounter this issue as areas are assigned one value only. 

 

2.7.5 Limitations of Area Classifications 

Whilst these past few sections have shown that conducting an area classification would 

be useful, the limitations of this approach must be first be taken into consideration.  It is 

questionable whether the clusters produced in an area classification actually reflect 

reality.  Although there may be accuracy issues involved in the methodology, clusters 

may just instead be statistical artefacts since the methodology may force the data into 

clusters (Ketchen and Shook, 1996).  Thus the method will create clusters even if there 

are no actually structure to the data.   

 

Figure 2.1: A classification of random data into three clusters. 

This can be seen by examining Figure 2.1, which shows a three cluster solution of 100 

random data points.  However with random data, there is no relationship between the 
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variables.  Therefore a random and meaningless result will only ever occur.  Real data is 

not like that, so getting such a false result will not happen.  Mortality patterns are not 

random and display strong geographies (Hacking et al., 2010; Shaw et al., 2008).  It will 

not be an issue. 

Most classificatory methods do not to offer a test statistic to check whether the clusters 

found were significant.  This is because clusters are chosen to maximise the between 

cluster differences and hence any significance tests for this aspect will not be valid 

given it has been optimised to give the best result possible (Milligan, 1996).  This limits 

the analytical approach when compared to other methods such as regression, which can 

be used to support or disprove hypotheses.  However as Everitt et al. (2001) argue, a 

classification should be judged upon its usefulness rather than in terms of how „correct‟ 

it is.  It is a product of their application and how they can introduce new understanding 

to society, through a simplified analysis. 

Despite the notion that clusters are produced to maximise differences between each 

cluster, cluster allocation can sometimes be arbitrary.  Areas do not always strongly 

belong to a cluster and may be close to other clusters if they lay on the boundaries of the 

clusters parameters, especially with regards to broader clusters.  Whilst this will always 

be a small issue, where there are large amounts of cases which could be in either cluster, 

this may affect the overall results (for example geographical patterns).  This problem 

was present in Shelton et al.‟s (2006) study with some less distinctive clusters where 

cluster membership rested on a „knife edge‟.  There were four clusters of London areas, 

however these clusters had similar mortality profiles suggesting cluster membership 

could have been arbitrary.  However since areas will be placed in the cluster they are 

most similar to, this should not be seen as false.  When interpreting the clusters, this 

should always be kept in mind to understand the clusters best.  What is of most 

importance is that the clusters represent the main patterns and therefore what they 

describe will not be affected by this. 

An area classification represents an ability to group together data and hence is really a 

„family‟ of (albeit similar) methods.  However the choice of method is largely a 

subjective one which in turn may affect the end product.  Therefore it is important to 

select the correct method, else the findings may not be truly representative results.  Yet 

there is little evidence available that shows one method to be better than the other 

possible ones, rather each has its own benefits and limitations.  There are also further 
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choices within each methodology, for example means of estimating distance between 

cases/clusters, reinforcing this notion of the importance of justifying methodological 

choices.  There is a need to carefully detail these choices when conducting research, 

however as Clatworthy et al. (2005) found, many studies do not disclose this 

information within health psychology.  For example 53 percent of studies failed to 

mention the similarity measure used and incredibly four (out of 59) did not even include 

the method used! 

Another issue with producing a classification is that since the process is pre-

classificatory and no prior knowledge of the clusters exists, there is an issue deciding 

how many clusters is the correct solution.  Too few clusters and results become too 

broad; too many clusters and it becomes complicated and clusters are more likely to be 

affected by „small number effects‟ (Openshaw and Blake, 1995).  Having small sized 

clusters may offer greater detail but tend to represent outliers (Everitt et al., 2001).  It is 

important that this issue is treated carefully.  There exists plenty of test statistics which 

can help inform any decisions (Milligan and Cooper, 1985), however the subjective 

element still plays a key role and hence any choice will need to made carefully (and 

justified). 

The naming of the clusters can also be problematic in creating a useful and applicable 

classification.  Although this issue does not directly affect the data or the method, it can 

cause some issues.  Part of the classification involves naming the clusters based upon 

their characteristics to give a general description of the cases.  Nevertheless this can 

cause labelling issues through stereotyping.  Through labelling areas with „bad‟ 

characteristics, this may cause stigmatisation (Butler and Watt, 2007).  Although 

outdated and unlikely to be repeated, one of Charles Booth„s (1889) groups was named 

„Lowest class, vicious, semi-criminal‟.  Thus areas may not just suffer from structural 

disadvantages but also the perception of areas can also be damaging.  For example 

Lupton (2003) notes areas can suffer from postcode discrimination, especially in 

employment opportunities as employers are less likely to want to employ people from 

„bad‟ areas.  Labelling can also have important negative effects even if the 

characteristics are not truly reflective of the area and can also be linked to ideas 

surrounding ecological fallacies as well.  This will need to be avoided as best possible, 

whilst still accurately depicting their profile. 

There are some issues with comparing different cluster analyses.  Each cluster analysis 
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is an independent analysis of a specific region and data set and therefore slight 

differences means you may not be comparing like for like (Vickers, 2011).  Furthermore 

with such a range of different methods to utilise within the process, it makes comparing 

classifications difficult.  This means that naming clusters can be difficult since two 

clusters with very similar names from two different classifications could easily be 

assumed to represent the same type of area with the same characteristics (Vickers, 

2006).  For example the Output Area Classification and the MOSAIC classification 

contain the clusters „Blue Collar Communities‟ and „Blue Collar Owners‟ respectively.  

Whilst these clusters share similar characteristics and patterns, they are both 

independent clusters and hence not truly comparable.  This will need to be avoided. 

The final issue considered here involves time.  Classifications are static and cannot be 

updated once they have been created.  This is because the results are sensitive to the 

data used and hence through updating the data set this will affect the results, meaning 

the clusters could be quite different.  Thus it would appear that classifications become 

out of date quite quickly.  Nevertheless it is questionable whether areas change their 

characteristics quickly, instead they may be static.  For example Orford et al. (2002) 

found that by comparing poverty between 1896 and 1991 in London, despite absolute 

decreases, places remained relatively the same socially suggesting that areas do not 

change very quickly and thus this temporal issue should not be much of a problem when 

making short term comparisons. 

 

2.8 Conclusions, literary gaps and directions for research 

“Unless we believe that people live in a social vacuum, that physical proximity to others 

has no effect on our own behaviours and that everyone has an entirely unconstrained 

choice about where they live, then geography remains important…” 

(Harris et al., 2005, p17) 

The quote above effectively summarises the theme of this chapter.  When researching 

health and mortality, ignoring the role of geography serves only to restrict any 

understanding of the patterns and processes that exist.  It is only through place that these 

underlying structures which differentiate the health and death of the population become 

visible (Dorling, 2012).  Geography should not be viewed simply as random noise.  The 
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persistence of inequalities in mortality in particular places highlights this (Thomas et al., 

2010).   

Geographical research into health has come a long way in such a short amount of time.  

Despite scholars like Edwin Chadwick and William Farr making the link in the 19
th

 

Century, it was largely forgotten until the past 20 years.  Recent years have witnessed 

an explosion in the focus on the geographies of health.  Not just is it acceptable to 

analyse the inequalities that exist between places and areas, but causal pathways have 

been proposed and tested which strengthen the argument that geography is paramount.  

The role of geography has moved beyond being just a container for social and 

biological processes to occur in. 

Despite all the research currently being conducted focusing on the geographies of 

health, there are clear gaps in the literature which could be exploited.  Research remains 

mostly one-dimensional, looking at specific cause and effects for singular causes of 

mortality (or health outcome).  Ignoring the multitude of experiences restricts our 

understanding of areas; especially in devising effective policies (tackling one disease 

may have knock-on effects on another).  For example it may be found that certain 

causes which dominate the mortality profile of an area limit the propensity of other 

causes expected to be more common.  Quite simply they are killing people off before 

others can get to them.  However there is no past literature which examines these 

interactions of all causes of mortality, let alone how it varies geographically.  It also 

builds upon previous studies, moving research towards a multivariate framework of 

investigation. 

The literature review identified the potential for area classifications to improve our 

understanding of mortality patterns.  As Shelton et al. (2006) argue “Whilst area-based 

geographic inequalities of mortality have been widely analysed and reported… area 

based classifications of mortality profiles have not been derived.” (p558).  Despite the 

popularity and effectiveness in other sectors of research, especially market research 

(Harris et al., 2005) and psychology (Clatworthy et al., 2005), their application in 

health-based research has lagged behind.  This has led to some researchers to call out 

for wider implementation of these techniques and methods to help improve analyses 

where appropriate (Abbas et al., 2009).  It has also been backed up by the government 

with regards policy research (see DoH, 2005; NOO, 2009).  There is a clear gap for a 

detailed analysis using area classifications.  Summarising small areas based upon their 
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mortality is important for targeting resources or locating services.   

One reason why there have been few applications of health-related research and area 

classifications has been a result of data availability.  Data is usually restricted in the 

detail offered, with a trade-off between the number of causes and geographical coverage 

at lower levels.  Studies which contain data with lots of causes tend to be at higher 

levels (for example Shelton et al., 2006) whereas those at lower levels tend to be 

restricted to fewer health variables (for example Eames et al., 1993).  However the 

release of a recent data set under less strict guidelines now allows for this project to be 

achieved.  Further discussion of this will be provided in the next Chapter. 

The production of a classification of mortality would advance our understanding 

through the new conceptualization of mortality patterns.  Understanding the resulting 

clusters will further add to our knowledge surrounding mortality patterns, especially 

given there are few pre-conceptions of the results which would be expected.  Although 

this remains the main focus of this thesis, beyond its interpretation the usefulness of the 

classification also remains a function of its application.  It is important to highlight the 

usefulness of a classificatory approach to researching mortality through applying it to 

analyse some facet of research.  Given the focus on the importance of geography as a 

framework for investigating patterns of health, this appears an appropriate start point.  A 

classification of areas based upon their mortality profiles provides an ideal tool for 

analyzing whether the different types of areas display independent effects upon health.  

It certainly gives a greater attention to the formation and choice of area level measure, a 

more relevant selection to improve our understanding of the processes which exist. 

Although this analysis addresses some issues with regards to the area effects field, the 

literature review has also identified a stronger, new and innovative research gap which 

would better tackle the area effects literature.  If area effects are important, then it 

would be fair to assume that as people migrate between different areas then there should 

be some aspect of this change observed.  Exploring internal migration in this framework 

improves and builds upon past research, producing a new area for investigation.  A 

classification of mortality would be ideal for researching this as well, as migration 

between clusters would also be better designed for explaining possible reasons for 

neighbourhood effects on individuals. 
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Chapter 3: Data and Methodology 

 

3.1 Introduction 

Milligan and Cooper (1987, p331) identified seven critical steps for performing a cluster 

analysis: 

1. “The entities to be clustered must be selected.  The sample of elements should 

be chosen to be representative of the cluster structure in the population. 

2. The variables to be used in the cluster analysis are selected.  Again, the variables 

must contain sufficient information to permit the clustering of the objects. 

3. The researcher must decide whether or not to standardise the data.  If 

standardisation is to be performed, the researcher must select a procedure from 

several different approaches.  

4. A similarity or dissimilarity measure must be selected. 

5. A clustering method must be selected. 

6. The number of clusters must be determined. 

7. The last step in the clustering process is to interpret, test, and replicate the 

resulting cluster analysis.”  

The rest of this chapter is set out to follow and achieve this framework, providing an 

exhaustive understanding of the inputs and processes within the creation of the area 

classification.  Justification of these decisions is important if others are to assess the 

quality of the area classification.  Whilst it was designed for conducting a general 

classification of data, it is not completely applicable to the creation of an area 

classification.  Vickers (2006; 45-46) provides a detailed description of the additional 

gaps requiring and therefore was consulted to ensure a focused and high quality area 

classification. 

 

3.2 Mortality data 

The main data source that is to be used for this study is the „Death Occurrences in 

England and Wales, 1981-2009‟ (DOEW) gathered by the Office for National Statistics 



Chapter 3: Data and methodology 

pg. 42 

(ONS).  Although data can be requested for Scotland as well, due to inconsistencies in 

geographical scales and additional explanatory variables, it was chosen not to be used in 

this study.  Accessibility to the data was approved by the „ONS Microdata Release 

Panel‟ in December 2010, with „Approved Researcher Status‟ also granted.  There are 

two deaths databases; one contains all the information provided about the deceased (i.e. 

the public records) and the other has only the coded details of deaths (Devis and Rooney, 

1999).  The second database will be used in this study. 

The DOEW is compiled through civil registration records and is the only system in 

England and Wales that collects individual level data on every death (Griffiths et al., 

2005).  It is a legal requirement that the General Register Office (GRO) for an area is 

notified of all deaths that occur in the respective area.  Therefore complete coverage for 

England and Wales is captured.   

The DOEW has been under-utilised in research.  This is despite the introduction of the 

„Statistics and Registration Service Act 2007‟ giving greater accessibility to the data set.  

Previously access was only provided to researchers who had received grants to 

investigate relevant topics.  This restriction forced many researchers to use morbidity 

data instead.  

Studies which utilise the DOEW tend to be analysing overall mortality with respect to 

some explanatory factor (for example Coggon et al., 2010) or are exploring the patterns 

and trends of a single cause of mortality (for example Brown et al., 2010).  These 

studies are at higher geographies and ignore the inequalities between places.  Few 

studies analyse many different causes of mortality and whilst Shelton et al. (2006) is the 

exception, other examples such as Shaw et al. (2008) only examine the individual 

patterns of many different causes, ignoring the connections between them.  There is a 

gap to explore the interrelation of the many causes of mortality at a small geography. 

There are, however, other sources of health data that could be useful to this study (i.e. 

available at small geographical scales).  These examples tend to cover current health 

patterns rather than mortality.  For example the ONS regularly produce life expectancy 

estimates at small geographies, although the lower the scale the greater the confidence 

intervals due to smaller sample sizes.  The Association of Public Health Observatories 

released data for both incidence and mortality rates across England and Wales at the 

Local Authority level for a wide variety of cancers.  Hospital Episode Statistics can also 
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be gained which provide morbidity data for a wide range of diseases, however access is 

restricted.  The census also has some health variables („limiting long-term illness‟, 

„provision of health care‟ and „people rating their health as good, fair or not‟).  However 

these variables measure perceived, rather than actual, health.   

One major issue with these other sources of health data (excluding the census data) is 

that the data tends not to be released at low geographies.  This would affect the overall 

quality of the research by restricting the analysis to higher levels, which may not fully 

capture the wide range of patterns.  This is not the case with the DOEW, where the data 

is provided with identifiers for a range of scales including small scales.  The DOEW 

also contains every known cause of death, providing a greater range of data than can be 

gathered overall from other sources (especially for less common causes).  Data on 

current health ignores the fact that poor health can be treated, unlike mortality (!).  

There is also data for nearly the last 30 years provided by the mortality data and a lot of 

other sources only supply more recent years.  Furthermore, as identified by the former 

Health Secretary Frank Dobson, the worst form of inequality is that between the living 

and the dead (Warden, 1998).  Gaining a greater understanding of the similarities and 

differences between places for mortality may help tackle patterns and processes 

surrounding the worst health outcome. 

 

3.2.1 Data collection 

Death registration occurs through two-steps.  Firstly the doctor who treated the deceased 

last completes a „Medical Certificate of Cause of Death‟ (MCCD) (Figure 3.1).  With 

unexpected, sudden and violent deaths or when a doctor was not present (or unable to 

identify the actual cause), this may be carried out by a coroner (nearly 25 percent of 

certificates are now conducted by a coroner; Devis and Rooney, 1999). 

Medical details are provided detailing what caused the death of the individual.  There 

are two parts to this on the form (labelled „A‟ and „B‟ on Figure 3.1).  The part labelled 

„A‟ details the causal chain of events that resulted in death.  The second part („B‟) 

provides any other factors which were of importance in contributing to the death of an 

individual.  This includes diseases which an individual may have been experiencing 

which led to the death of the person but was not part of the causal chain itself (WHO, 
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2004).  The lowest line filled in this section is then taken as the „underlying cause of 

death‟.  All details are coded by a classification of diseases, as also defined by the WHO.   

 

Figure 3.1: The „Medical Certificate of Cause of Death‟. 

The certificate is then taken by an informant (usually a relative or someone who was 

present when the deceased was last alive) when they go to register the death in the GRO 

of the area where the person died (within five days of its occurrence).  Additional 

information is provided about the individual including address of last residence and 

occupation, as well as basic personal information (date of birth, marital status, name etc).  

This information is stored locally, with a copy also sent to the ONS which is entered 

into the DOEW database.   

 

 

 

A 
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3.2.2 Data quality 

It is first worth discussing the possible accuracy issues within the data set which involve 

the cause of death data recorded.  The first ICD was introduced to standardise mortality 

statistics between countries to allow for better comparisons (WHO, 2004), with the 

effects also benefiting statistics within countries as well.  When this was first introduced 

in 1900, there were large differences in the causal information recorded.  The quality 

and reliability of the data sets varied both geographically and temporally (Woods, 2000).  

Mis-specification of cause of death was a common problem, however this was over a 

hundred years ago and much has changed since.    

There were still some evidence of inaccuracies between cause of death recorded and 

actual cause found in studies during the 1970s and 1980s.   For example Hoel et al. 

(1993) found in a large study that the detection of cancers in Japan should have been 18 

per cent higher than were actually reported.  Nevertheless, this gap has been reduced 

through improved technology and diagnosis equipment, as well as better knowledge, 

improved teaching and the discovery of new diseases (Devis and Rooney, 1999).  

Furthermore the latest incarnation of the variable has turned the data set into one of the 

strongest and most reliable available globally (Rooney et al., 2002). 

The most effective means of accounting for causal information errors is to carry out an 

autopsy (Sington and Cottrell, 2002).  This can establish the main cause of death, as 

well as validating the causal chain of events that led to the death.  However to be able to 

test the accuracy of the data set, autopsies would need to be performed on a large 

proportion of deaths.  This would be highly expensive and time consuming to initiate.  

This has led to many studies which aim to test the accuracy of the system having small 

data sets, especially since autopsies are usually only carried out on specific cases (where 

there is an unknown cause, or the cause is thought to be criminally linked or due to an 

accident).  For example Tuffin et al. (2008) questioned the accuracy of junior doctors 

(suggesting that around half were filled in wrongly) and patients who displayed co-

morbidity, despite a sample size of 30 cases.  Furthermore Sington and Cottrell (2002) 

also note that where autopsies are used, the data set becomes over-represented with 

harder cases which may have multiple causes present or cases which were sent for 

review by the coroner as the cause unsure (and the data is later updated).  The number 

of autopsies being conducted is also in decline, providing less feedback on diagnosis 

patterns (Selinger et al., 2007).  This method also assumes that coroners views are 
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correct (Hoel et al., 1993), a similar issue with the inaccuracies of death certification 

and doctors. 

More recent studies which have examined the accuracy of death certificates have found 

that whilst many contain errors, these are likely to be additional information not 

relevant to the study (Selinger et al., 2007).  Most of these issues arise from a lack of 

precision rather than accuracy, whereby a more common name is used or information of 

site are missing on the certificate (Swift and West, 2002).  This is the equivalent of a 

doctor recorded lung cancer but failing to include the specific type or exact location 

within the lung.  These issues will not be much of a problem for the data used, since the 

specific causes will be aggregated to improve interpretation.  Other common errors 

include specific conditions missed from the causal chain of events that led to death, 

even though the main cause is correct (which is most important). 

 

3.3 Variables included in the database 

Seventeen variables are included in the initial data provided by the ONS, which can be 

seen in Table 3.1 (also included are various summary notes about the data).  Most of 

these variables are obvious in what they describe.  However some further details are 

provided for the cause of death and social class domains. 
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Domain Variable Coverage Missing data 

Time 

Year of Death 1981-2009 0.00% 

Month of 

Death 
1981-2009 <0.01% since 2000 

Demographics 

Sex of the 

deceased 
1981-2009 <0.01% 

Age in Years 

of deceased 
1981-2009 0.00% 

Cause of 

Death 

ICD-9 Cause 

of Death 
1981-2000 <0.01% (above age = 0) 

ICD-10 Cause 

of Death 
2001-2009 <0.01% (above age = 0) 

Social Class 

Occupation 

Major Group 
1981-2000 64.50% 

Standard 

Occupation 

Code 1990 

1993-2000 91.30% 

Standard 

Occupation 

Code 2000 

2001-2009 94.10% 

NS-SeC 1 2001-2009 65.90% 

NS-SeC 2 2001-2009 65.90% 

Location 

Tract Number 1981-2009 0.00% 

1981 Ward 

Number 
1981-1990 0.00% 

1991 

Enumeration 

District Code 

1991-2000 0.00% 

2001 Output 

Area Code 
2001-2009 0.00% 

2001 CAS 

Ward/Sector 

Code 

2001-2009 0.00% 

Postcode 1981-2009 0.00% 

Table 3.1: The original set of variables 

 

3.3.1 Cause of death 

There are two variables for cause of death provided.  These are both based upon the 

„International Classification of Diseases‟ (ICD) developed by the World Health 

Organisation.  The classification was originally created by Jacques Bertillon in 1900, 
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based on the works of William Farr, to classify disease based upon organs or body parts 

affected, as well as other general diseases (WHO, 2004).  Its aim was to improve the 

efficiency of medical statistics in countries, as well as providing a standardised means 

for comparing between nations.  The classification is constantly revised and changed to 

incorporate medical advances and the discovery of new diseases (Rooney and Smith, 

2000).  The tenth revision (ICD-10) is the most up-to-date classification and was 

introduced in England and Wales in 2001.  The ninth revision (ICD-9) is also included 

to cover the earlier years in the database.  However back- or forward-mapping is not 

encouraged as each classification is different, making them incomparable (Rooney et al., 

2002; WHO, 2004).  Therefore it was chosen to only use data for the years available 

with the ICD-10 data. 

Data coding through the ICD-10 is based upon a hierarchical classification.  The ICD 

groups together individual causes of mortality into broader ICD chapters which reflect 

their similarities.  These ICD chapters are based on diseases of specific organs, 

pathology, aetiology, as well as more external causes or those related to specific time 

periods (Griffiths et al., 2005).  Although these ICD chapters are based upon similarities 

between types of diseases, their assignments are not always clear cut.  For example 

influenza highlights the complexities involved with group allocation, since it could both 

be an infectious or a respiratory disease (ibid).  Table 3.2 shows the ICD chapters used 

for the ICD-10 variable, along with the size and prevalence of each. 

Over time the way that death is reported by doctors will change through improvements 

in knowledge, technology and teaching (Janssen and Kunst, 2004).  These changes alter 

how certain causes are identified and coded, for example before the discovery of 

HIV/AIDS, deaths under the disease would be coded as something else.  These mistakes 

are not just down to unknown disease, since diagnosis technology may limit what can 

be detected.  Although an issue, these changes cannot be accounted for since they 

represent gradual changes which would be complicated to identify and alter.  This 

misclassification of some deaths also extends to cases like that of Dr Harold Shipman.  

Deaths caused by the infamous doctor are still in the data set, classified as caused by 

„old age‟ (or natural causes), and have not been changed to their actual cause (i.e. 

homicide).  Although a famous example, it also highlights potential errors both known 

and unknown. 
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Chapter  Blocks  Title 

Number 

of causes 

with 

death(s) 

Number 

of deaths 

I  A00-B99  Certain infectious and parasitic diseases 249 31400 

II  C00-D48  Neoplasms 555 621597 

III  D50-D89  

Diseases of the blood and blood-forming 

organs and certain disorders involving 

the immune mechanism 102 4416 

IV  E00-E90  

Endocrine, nutritional and metabolic 

diseases 182 32680 

V  F00-F99  Mental and behavioural disorders 102 80320 

VI  G00-G99  Diseases of the nervous system 181 72451 

VII  H00-H59  Diseases of the eye and adnexa 13 32 

VIII  H60-H95  Diseases of the ear and mastoid process 10 92 

IX  I00-I99  Diseases of the circulatory system 282 744223 

X  J00-J99  Diseases of the respiratory system 185 305869 

XI  K00-K93  Diseases of the digestive system 267 420717 

XII  L00-L99  

Diseases of the skin and subcutaneous 

tissue 77 7941 

XIII  

M00-

M99  

Diseases of the musculoskeletal system 

and connective tissue 191 18404 

XIV  N00-N99  Diseases of the genitourinary system 173 50679 

XV  O00-O99  Pregnancy, childbirth and the puerperium 67 189 

XVI  P00-P96  

Certain conditions originating in the 

perinatal period 113 1362 

XVII  Q00-Q99  

Congenital malformations, deformations 

and chromosomal abnormalities 247 5393 

XVIII  R00-R99  

Symptoms, signs and abnormal clinical 

and laboratory findings, not elsewhere 

classified 66 43528 

XIX  S00-T98  

Injury, poisoning and certain other 

consequences of external causes 0 0 

XX  V01-Y98  

External causes of morbidity and 

mortality 1201 71620 

XXI  Z00-Z99  

Factors influencing health status and 

contact with health services 0 0 

XXII  U00-U99  Codes for special purposes 1 2088 

Table 3.2: ICD-10 Chapters and additional death information (2006-2009). 

Coverage for the cause of death variable was good, with the majority of cases 

containing data.  However when inspecting those that were missing, they were mostly 

for individuals aged zero.  For deaths at age zero, only 30 per cent contained ICD-10 

data.  This is because neonatal and stillbirth deaths use a different death certificate 

(Rooney et al., 2002).  This contains two lines for conditions occurring in the 
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foetus/infant, two for those related to the mother and another for other factors 

contributing to the death (Rooney and Smith, 2000).  This system does not allow for a 

sequence of events like the death certificate (i.e. MCCD) and therefore no single code 

can be input into the data set.  Instead a modified ICD-10 coding system is used based 

upon a classification of the infant mortality types (usually by time period of occurrence; 

Alberman et al., 1994), which is not applicable to this study.  There was only 639 cases 

missing an ICD-10 code over the age of zero and these were found only for the years 

2001 to 2005. 

 

3.3.2 Social class 

With the decision to focus on solely the period covered by the ICD-10, only two social 

class variables are relevant here.  Social class is recorded from the deceased‟s 

occupation, which is provided by a relative when the death is registered.  There is 

however no check on this information required and hence is dependent upon the honesty 

of the individual registering the death. 

„Standard Occupation Code 2000‟ provides data on the exact job the deceased was 

employed in (through 496 unique codes), of which social class can be derived from.  

Codes are grouped similarly to the Registrar General‟s Social Class groupings, based 

upon an updated version compiled after the results of the 1991 Census.  However 

coverage is particularly poor, due to the measure being replaced at the beginning of the 

period by the National Statistics Socio-economic Classification (NS-SeC).   

The NS-SeC gave an updated system for deriving social class, drawing not only on 

occupation but also employment conditions, relationship to other workers and size of 

the company (ONS, 2013a).  The social groupings can be seen in Table 3.3, as well as 

their split into a linear three group system as advised by the ONS (otherwise 

comparisons between groups three and four become difficult as there is not a definite 

hierarchy; ibid).  The group „Not Classified‟ contains full time students, as well as those 

unclassifiable.  Deaths where no NS-SeC value is included are recorded as “0”. 

There are two variables for NS-SeC in the DOEW.  „NS-SeC 1‟ records the social class 

of the deceased and „NS-SeC 2‟ gives the value for the individual‟s spouse.  These 

variables differ for those aged below 16, where „NS-SeC 1‟ gives the class of the 

mother of the deceased and „NS-SeC 2‟ the class for the father.  Unlike „Standard 
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Occupation Code 2000‟, there is greater coverage in the dataset.  However there is still a 

majority of the data which contains missing data.  A closer inspection shows that this is 

age dependent, with only one case missing social class aged below 75.  This is because 

social class data is not recorded if the individual has not worked in the last ten years.  

Whilst the ability to accurately analyse social class variations in premature mortality is 

good and would be useful in this study, the possibilities for understanding patterns for 

the majority of deaths is limited (65.3 per cent of deaths in this period occurred at 75 

and over, of which 0.19 percent of these contained data on social class). 

Social 

Class 
Name 

Occupation 

Categories 

Three Class 

Breakdown 

1 Higher managerial and professional occupations L1, L2, L3 
High 

2 Lower managerial and professional occupations L4, L5, L6 

3 Intermediate Occupations L7 
Intermediate 

4 Small employers and own account workers L8, L9 

5 Lower supervisory and technical occupations L10, L11 

Low 6 Semi-routine occupations L12 

7 Routine occupations L13 

8 Never worked and long-term unemployed L14 
Not used 

9 Not Classified L15, L16, L17 

Table 3.3: NS-SeC groupings (after ONS, 2013a). 

There are some issues with the use of social class by occupation in this data.  An 

approach used in prior studies has been to use father‟s social class and whilst this may 

improve the consistency of the data, it is an unfair reflection when the mother has a 

higher job.  To avoid any problems when used, the highest social class is taken where 

both are provided.  The social class provided may not be a complete reflection of actual 

social class, as it ignores temporal changes throughout the life course.  For example, a 

person who became unemployed may have a lower social class job before death.  Given 

that the data set covers the beginning of the economic recession, this could be 

problematic, although little can be done to solve this.  Finally, some detail is lost 

through not being able to compare those not classified as part of the various measures 

(for example, students).  Although this represents a fairly large group of people, there is 

little basis for incorporating effects into the analysis since they represent a diverse range 

of people. 
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3.3.3 Data considerations and issues 

Before 2006, the DOEW statistics were published in the data year.  This compiles all 

deaths registered in a year, with the 31
st
 of December being the cut off point.  However 

this records all deaths that occur in a year, since late registration would be excluded.  

This design choice was to allow for quicker compilation of statistics.  Since 2006, this 

has been changed to contain all deaths registered as happening in a particular year.  

Nevertheless due to the small numbers involved, this will only have a minimal effect 

overall (ONS, 2010a).  These years in question should not affect the classification itself 

(see Section 3.7.1) 

Not everyone gets the option to die at their home and therefore there are some points 

which need raising about this location data.  A lot of people die whilst in hospital, 

however the death is recorded with the address of their last residence (since all this 

would tell us is that there are disease hotspots where hospitals are!).  This is also the 

same for those people who die whilst at her Majesty‟s pleasure.  Those who die 

overseas, but usually reside in Britain, are not included in the DEOW (Shaw et al., 

2008).  Students who are living away from home are registered back at their home 

address.  For nursing homes, the residency address is only taken if the deceased had 

been living there for at least six months (ibid).  Anything less, the choice of address is 

left to whoever registers the death.  The six months tenancy rule has always applied to 

those living in psychiatric hospitals and hospices. 

 

3.4 What geography? 

Since the raw data is recorded at the individual level, this source is of the highest quality.  

Nonetheless analysing every death at this level would be hard to explain.  Therefore 

aggregation will be necessary to help make sense of the patterns and processes 

occurring.  It is also required due to confidentiality issues, to avoid being able to 

identify specific deaths.  Furthermore aggregating to a geographical level will 

incorporate the analysis of place-based effects by examining similarities and differences 

between areas, as well as the spatial patterning of mortality profiles.  Despite this, there 

are many different geographical scales that exist within Britain, each with their specific 

benefits and disadvantages. 
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Zone Number Mean Population (2001) 

Output Areas 175,434 297 

Lower Super Output Areas 34,378 1500 

Middle Super Output Areas 7194 7200 

Statistical wards 8800 5914 

Census Area Statistics wards 8850 5880 

Table 3.4: Information about possible geographic zones. 

Table 3.4 presents some of the possible geographical scales which could be applied in 

this study to capture small scale variations in mortality.  These are all taken from census 

statistical geographies, to allow for subsequent demographic information compiled by 

various sources to be derived and used with the mortality data.  To decide which level 

would be best for the classification, a balance is needed between maximising both the 

detail (i.e. size) and the number of deaths captured.  The number of deaths needs to be 

big enough to produce a meaningful classification, especially with the large range of 

variables used. 

The smallest geographies would, ideally, be the best option (i.e. OAs or LSOAs).  This 

would preserve greater data quality from the raw data, presenting the intricacies 

between small areas in their mortality profiles.  This is especially the case given that 

they were both designed to be socially homogenous (Martin, 2002).  However, with 

such few people living in these areas, the amount of people dying over the time period 

used would be low.  For example, using LSOAs between 2006 and 2009 would have 

given an average of 58 deaths per area (a range of 1 to 427), smaller than the number of 

variables selected to be used in the classification.  Hence the time period required to 

pool together enough deaths per area would have to be larger, which may miss out 

changing trends and patterns.  Furthermore at the lower levels, issues of confidentiality 

arise due to the problem above, as individual deaths may become easily recognised in 

such small areas.  Therefore a higher level is required. 

Although the ward level would be useful with regards data dissemination, as people 

have a better understanding of electoral boundaries, they would be less useful for 

creating accurate clusters.  MSOAs would improve comparisons between areas since 

they are more similar in terms of population size (ONS, 2011).  This variation creates 

issues with regards contrasting areas, since you are not always comparing like for like.  

Wards are also more unstable, frequently changing unlike the other geographies which 

were designed to alter less often, making them more useful for future research or 

comparisons to other data sets.  Furthermore there is a larger set of data (i.e. for 
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explanatory variables) released at the MSOA level than compared to the ward level for 

each country.  Therefore MSOAs will be used for England and Wales.  The average 

number of deaths in each MSOA between 2006 and 2009 was 275.09 (with a median of 

262, suggesting a slight positively skewed data set).  The number of deaths ranged from 

46 to 1096, with a standard deviation of 105.04. 

 

3.5 Choice of method 

There is no one set methodology for producing an area classification.  Advances in 

modern computing have led to the explosion of possible methods, as newer computers 

allowed more information to be processed (Everitt et al., 2001).  Even within 

established methods, there is variation within them (cluster analysis is itself more a 

„family‟ of methods) and it is not restricted by discipline either (Gordon, 1999).  Each 

potential method has both benefits and problems involved, and thus it is hard to 

recommend a single method.  However most algorithms are relatively similar to each 

other, only changing small parts of the process to refine the methodology.  Therefore it 

is more useful to concentrate on those frequently used research methods.   

It is important to select a robust methodology.  The results found in this study should be 

due to the variations and patterns within the data, not because of the method used.  

Therefore experimental methods will not be considered.  Whilst even the most robust 

methods will produce different solutions, these are likely to be only slight (for example, 

differences in cases found at the edges of clusters).  The selected method needs to be the 

technique which can be implemented best within this study across a range of issues, for 

example outputs, efficiency, producing compact solutions etc (Everitt et al., 2001). 

Supervised classificatory methods (for example discriminant analysis) have not been 

considered since they are not applicable.  Supervised methods work through teaching a 

model how to classify data through rules and examples.  However as the underlying 

structure is not known a priori, an area classification cannot be created to adhere to 

certain rules.  Unsupervised methods instead require no training sets since they group 

together the data without need for human input (Duda and Hart, 1973).  These 

approaches will be more useful since they are data-driven through looking for patterns 

in the data, unlike supervised which are theory-driven (Halpern et al., 2004).  Although 
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this may lead to some error, unsupervised methods allow the study to find „natural 

clusters‟ in the data which may otherwise by ignored. 

It is also important to define what is understood as being a cluster, as this will determine 

which methodology is chosen.  A well-defined cluster within the data would display 

two important characteristics; cohesion and isolation (Gordon, 1999).  Therefore it will 

be defined as a sequence of points in k-dimensional space (where k is the number of 

variables) which lie near to each other and also far from other clusters, separated by 

empty space (Milligan and Cooper, 1987).  The areas in each cluster display similar 

characteristics (mortality rates) to each other, also being distinctly different to other 

clusters and their respective areas (in terms of mortality rates).  Therefore the selected 

methodology will need to take this into consideration and, preferably, emphasise these 

qualities. 

The examples used in the following sections will be drawn from studies which use 

similar data sizes (i.e. within five thousand cases of around seven thousand).  The main 

classificatory approaches will now each be described, along with a general discussion of 

the benefits and issues involved with them to assess which would be best to use.   

 

3.5.1 Hierarchical clustering 

Hierarchical methods (also known as stepwise or top-down methods) are the most 

common cluster analysis method for producing a classification within research (Everitt 

et al., 2001).  Generally these produce non-overlapping clusters of data, which are part 

of a pyramidal structure of clusters.  There are two main types of hierarchical clustering 

approaches; agglomerative and divisive.  Agglomerative methods begin with n clusters 

(where each individual case is its own cluster) and the two most alike clusters are joined 

together.  This process is repeated through a series of steps until there is just one cluster 

(containing all clusters/data), creating a hierarchy (Duda and Hart, 1973).  Divisive 

methods are similar but the process of clustering occurs in reverse, starting with one 

cluster (containing all cases) which is then split into clusters until there are n clusters 

left. 

The choice between these two hierarchical methods may have an impact upon the 

results, even though the process of clustering appears similar for each.  Within the 

literature, agglomerative methods are more commonly used.  Divisive methods tend to 
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be more effective when clustering binary data, but also generally produce more evenly 

sized clusters (Gordon, 1996).  However they also can be more computationally 

demanding when dealing with larger datasets, although agglomerative methods are not 

particularly quick themselves (Everitt et al., 2001).   

Agglomerative clustering also has different methods of determining which 

cases/clusters to join together, each with their own strengths and weaknesses (Cormack, 

1971; Gordon, 1996; Milligan and Cooper, 1987; Everitt et al., 2001).  The most 

common techniques include: 

 Single linkage (or nearest neighbour) method joins together the clusters which 

have the smallest distance between individual cases (between two clusters) 

based upon their explanatory variables.   

 Complete linkage (or furthest neighbour distance) is the opposite of the previous 

method, through considering the largest distances between any two cases when 

comparing clusters (joining together the match which minimises this figure).   

 Centroid clustering method is also similar to single linkage however instead of 

searching for the smallest distance between any cases in clusters, the centroid of 

a cluster (or mean vector for that cluster) is used to calculate distances linking 

clusters.   

 Group average method uses the mean distance of all cases that make up a cluster 

with each other cases in another group to calculate distances.  Median values can 

also be calculated instead of the mean for these previous two methods to give 

equal weighting to each case in a cluster. 

 Ward‟s (1963) method is the most common of all these approaches.  It joins 

together the clusters which minimise the increase in error (using sum of squares) 

within the cluster that they are added to.   

The choice of method is likely to affect the results gained and therefore choosing the 

right measure is important.  Milligan and Cooper (1987) note that throughout the 

literature, Ward‟s method appears to perform best, as well as producing more even sized 

clusters.  This was also shown by Blashfield (1976), though it is difficult to generalise 

these results.  Nevertheless it is sensitive to outliers and may give a spherical structure 

to clusters, when there is not one present (Everitt et al., 2001).  The group average 

method also performs well and is less affected by outliers than the other methods, albeit 

it is occasionally erratic.  Centroid clustering can be affected by large case values within 
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clusters, although median values could be used instead to give equal weighting to the 

cases in the cluster.  Complete linkage and single linkage both ignore the cluster 

structure by selecting just the nearest or furthest away cases.  Furthermore Milligan and 

Cooper (1987) note that single linkage method usually performs least well in sensitivity 

studies, producing the most amount of errors and creating unbalanced clusters. 

The hierarchical nature of these methods allows the process to be viewed through a 

dendogram.  Described by Everitt et al. (2001, p56) as “an evolutionary tree”, the 

dendogram is a diagram which shows a graphical visualisation of the clustering process 

(Ketchen and Shook, 1996).  This shows the order of the joining process (which cases 

were joined together and when), and the subsequent distance between each join (i.e. 

separation).  This is very useful when deciding upon the optimal number of clusters to 

use, as it allows the researcher to make a judgement on which solution would be best, 

through seeing which number of clusters have the greatest distance between them (i.e. 

the most different) (Duda and Hart, 1973; Gordon, 1999).  Nonetheless this can be quite 

subjective, for example Day et al. (2008) proposed a 12 cluster solution to their data set.  

However the dendogram shows that possibly an eight, four or three cluster solution may 

have been better since these solutions each had greater distances between clusters, with 

some clusters of 12 cluster solution being relatively similar. 

The advantage of using this methodology is that it splits the data into a hierarchy.  

Through presenting a range of solutions, you can gain a better understanding of the 

structure of the data (especially through the dendogram).  This means that the method is 

ideal for showing the optimal step or number of clusters that are present in the data 

(Gordon, 1996).  However a focus on finding the ideal scale means less attention is 

given to the quality of the clusters (Everitt et al., 2001).  This makes the chosen solution 

more restrictive unlike other methods which may choose to optimise a solution rather 

than produce the whole range of solutions.  This is because once two objects or clusters 

have been joined together, this cannot be undone.  A case could be assigned to a cluster, 

only to find it closer to a different cluster later in the process and unable to be 

reassigned (Duda and Hart, 1973). 

Other important issues include that the method (or at least many of the algorithms) are 

sensitive to random noise through chaining.  Where outliers or random points lie in 

between two distinct clusters, this may result in the clusters being joined together into 

one larger cluster (Duda and Hart, 1973; Everitt et al., 2001).  The outlier point becomes 

a „bridge‟ to join the two clusters, through reducing the distance between either.  Both 
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distinct clusters then become lost, with the result unrepresentative of the data it 

symbolises.  The results produced can vary when presented with non-spherical data sets 

(Duda and Hart, 1973).  Since the methods produce a multiple solution classification, 

this procedure takes a long time to compute with more than a thousand cases since it 

compiles the range of solutions between 1 and n (Harris et al., 2005).  This is an 

importance issue within this study, however Jensen et al. (2001) produced a hierarchical 

classification with a similar amount of cases, though the amount of time taken to run the 

classification is not noted.  Finally there is an issue regarding how the method chooses 

between two (or more) joins which are just as close, especially since the decision can 

have a large impact on the results (Gordon, 1996). 

Hierarchical methods are quite popular within research and hence have been applied to 

many different topics.  However the majority of these applications only use small 

samples of individual level data, especially in the health literature (c.f. Fitzpatrick et al., 

2011; Franceschini et al., 2012; Raleigh et al., 2012).  Parfitt et al. (2001) used Ward‟s 

method hierarchical cluster analysis to produce a segmentation of waste management 

strategies for Local Authorities (376 large areas) in England and Wales.  An eight 

cluster solution was created, allowing for an evaluation of different combinations of 

policy strategies.  There were significant observations in recycling performance, with 

wheelie bin implementation producing higher recycling rates and lower waste.  As such, 

policy recommendations and areas to tackle could be identified. 

Whilst there is the potential for building an area classification with this method, the 

sample size issue has resulted in researchers often opting for other methods.  However 

there are a few examples using a similar sample size.  For example Jensen et al. (2001) 

classified the biophysical features (for example climate, vegetation, elevation) of the 

American part of the Columbia River Basin to assess ecosystem management.  This saw 

the classification of 7462 areas into 13 clusters, which required different strategies for 

environmental conservation. 
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3.5.2 Partitional clustering 

“In essence, you are groping your way almost blind through an 

unimaginable complex hyper-dimensional space towards (you hope) a 

set of usable results.”  

(Openshaw, 1983, p257) 

Partitional methods (also known as optimisation methods) are also quite common within 

research.  These are different to hierarchical since they are iterative processes which 

seek to refine a set number of clusters (Harris et al., 2005).  Like hierarchical, this is 

also a group of methods, with slightly varying algorithms including; k-means/medians, 

simulated annealing, hill climbing/descending.   

The process generally begins with the specification of a set number of clusters for the 

method to group the data into.  The data is then split into this number of clusters, with 

membership assigned randomly.  Cases are then individually relocated (through random 

sampling, although systematic could also be used) to the cluster which it is closest to 

(compared to the centroids mean).  This move is checked against some measures that 

assess whether there has been an improvement in the model (usually with regards to 

internal homogeneity).  Cases are reassigned to the cluster which experiences the 

greatest improvement, thus optimising the initial „solution‟ suggested.  The 

reassignments of cases are then repeated until no more cases can be moved that result in 

an improvement in the model, suggesting a stable classification (Everitt et al., 2001).  

This approach creates non-overlapping clusters that are not hierarchical, since only one 

partition of the data set is created (Milligan and Cooper, 1987). 

The main benefit of using this method is that since the process only produces one 

partition of the data set (or level of the data structure), this saves computing time (Harris 

et al., 2005).  This does not just mean that the classification is much quicker, but also 

the process can also use additional resources to focus on optimising the specific solution.  

This allows it to produce the ideal cluster solution for the given level, through 

rearranging cases to improve the internal cohesion of clusters and external differences 

between clusters.  It also makes it more stable when handling larger data sets.  It is not 

so restrictive when it comes to the shape of the clusters, such as non-spherical data 

points (Everitt et al., 2001).  Harris et al. (2005) also notes that it retains a higher 
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proportion of the variance from the variables.  The method also tends to produce more 

evenly sized clusters. 

This most important problem with this approach regards the selection of the number of 

clusters.  Since the method only seeks to optimise a solution, a problem is that the 

number of clusters must be specified prior to the analysis.  This number may not be 

known, meaning that the chosen solution may not be correct and could have a large 

impact on the results (Bezdek and Pal, 1998; Everitt et al., 2001).  Some measures and 

approaches exist to estimate what the value to use is but they are relatively ad hoc in 

their creation.  Whilst classificatory approaches as a whole suffer from the problem of 

deciding what the true number of clusters is, other methods such as hierarchical get 

around this issue through producing a solution with all possible levels.  The data used 

can only be continuous (interval or ratio) else other methods should be used (this is not 

an issue with this study however).  Whilst producing evenly sized clusters can be a 

benefit, it could also be a limitation where the true structure is not (Gordon, 1999). 

Similarly to hierarchical methods, all of the applications of the method in the health 

literature have been using individual level data (for example Halpern et al., 2004; 

Rozumalski and Schwartz, 2009; although both have large sample sizes).  There has 

been greater usage of the method for larger data sets when creating an area classification.  

Gould et al. (2012) examined food deserts in Gatineau, Canada.  Using a variety of 

measures of accessibility (in terms of distance, proximity to a wide selection of fruit and 

vegetables etc), they found six clusters.  Although three clusters were of poor 

accessibility, the classification showed that as the level of deprivation for an area 

increased, so did the level of accessibility. 

 

3.5.3 Neural networks 

Artificial neural network studies were originally conducted to study how the brain 

functioned, through modelling a highly connected series of neurons (Everitt et al., 2001).  

Inspired by this, the methodology became increasingly applied to other functions that 

involved a large, interconnected network of phenomena, especially those involving a 

flow of data (for example telecommunications).  There are three parts to a neural 

network; the inputs (i.e. the data), the hidden layers (i.e. the parameters) and the output 

(i.e. clusters).  The hidden layers apply rules and variables to test the inputs and this 
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value is then assigned a cluster depending upon reaching a threshold (Ahmed, 2005).  

The process is iterative, which allows the model to adjust weightings of data and learn 

the best pattern recognition procedure, minimising errors.  This process can be either 

supervised (i.e. learns through training data) or unsupervised (similar to cluster analysis 

methods). 

Waller et al. (1998) found that artificial neural networks performed just as well a k-

means or hierarchical classification (Ward‟s, complete and average linkage models were 

all ran).  Nevertheless there are many problems with this approach and Waller et al. note 

that there is conflicting evidence over its effectiveness compared to other methods 

throughout the literature.  The biggest issue is that it poses a black box issue.  With 

models containing a hidden layer (which also changes as the model learns), it is difficult 

to understand how the classification was produced (Ahmed, 2005).  The more hidden 

layers used, the more complicated the process becomes (though little evidence that more 

than one has many benefits).  Most uses of the method are supervised, requiring prior 

knowledge about the cluster structure which would not be useful here (though not 

restricted to).  Neural networks can also take a long time to compute, due to the large 

amount of calculations and the learning process involved (ibid).  This may be why many 

examples involve small data sets. 

Most examples of neural networks used for classificatory purposes involve small 

amounts of data, although they are capable of handling larger sets.  Openshaw et al. 

(1994) produced an area classification of 1991 Enumeration Districts for Great Britain 

(GB Profiles ‟91).  Despite creating a six cluster solution, the method proved 

computationally intensive.  Otherwise there are few area classifications created using 

the method, other than the classification of remote sensing data (Knorn et al., 2009; 

Melchiorre et al., 2008).  The lack of examples would suggest that it is less useful for 

the creation of an area classification.  Many of the uses of neural networks require 

supervised learning, for the computer to be able to understand and learn from the 

processes. 

 

3.5.4 Fuzzy classification 

Fuzzy classification refers to an increasingly popular methodological type, rather than a 

specific technique and is based upon fuzzy logic.  Mathematics is traditionally based on 
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Boolean logic; either something is true or it is false.  Classifications function with this 

idea as cases can only belong to one cluster (i.e. in or out).  Fuzzy logic extends this 

mathematical principle (and at the same time dismisses many other theories which 

depend upon Boolean logic!) through introducing the idea of partial truths.  Within a 

classification context, cases are no longer assigned to a single cluster, since this is only 

true to a certain extent (Everitt et al., 2001; Voas and Williamson, 2001).  Rather cases 

are assigned a measure which represents the strength of membership to each cluster 

(based upon a distance or similarity index.  With a smooth transition between clusters, 

there are no resulting „knife edge‟ issues, meaning the classification is less affected by 

„noise‟ (Nauck and Kruse, 1999). 

A fuzzy classification can be more effective than a traditional classification.  It could be 

argued that a classification produces an „oversimplification‟ of the data.  Cluster 

membership is unlikely to be black or white.  This is especially the case where case 

membership falls on a „knife edge‟.  Values towards the edge of a cluster may fall more 

into a „grey‟ area rather than be distinctly one value.  This will be more problematic 

where the cluster structure is less distinct.  Therefore it may be more realistic to not 

restrict areas to just one class, rather areas are examined as proportions of each cluster.  

This helps our understanding as if there was another cluster that equally explains what 

is happening for certain areas, then this would be otherwise hidden away (Everitt et al., 

2001).  Although providing greater detail in cluster membership for areas can add to our 

understanding how what is happening, it goes against the aims of producing a 

classification.  Rather than simplifying the data set, to summarise the main patterns and 

relationships between areas, a fuzzy classification would bring added complexity 

(Gordon, 1999).  Cluster membership may not always be clear through including 

competing factors. 

Fuzzy classifications are not as popular as the previous methods.  The method has been 

important within health and medical research.  Nauck and Kruse (1999) notes that due 

to the smooth transition between clusters, cases which lie close to other clusters can be 

assessed to avoid issues of misclassification, making it useful for diagnosis.  However 

its application in producing area classifications or using geographical data is severely 

limited with no real examples past remote sensing studies (Burrough et al., 2001; 

Lorette et al., 2000).  Vickers (2006) created an ad-hoc fuzzy classification of the ONS 

Output Area Classification however this was methodologically limited.  The 
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development and application of this methodology is, however, still very much a 

continuing part of research and as such, many examples are from supervised approaches. 

 

3.5.5 Which method? 

An issue with producing a classification is that no one method can be recommended 

(how do you even attempt to measure which is best?), since each method is different 

and they all have their own applications.  Yet this is not necessarily a bad thing as it 

provides a wealth of choice to hand pick the most effective method for the job.  All 

methods could achieve the aims of this thesis.  However it is important to select the 

method which can be implemented both most effectively and efficiently into building an 

area classification here.  Table 3.5 shows those factors of which the methods were 

judged on.   

  Hierarchical Partitional 
Neural 

Networks 
Fuzzy 

Handle large 

data  

Becomes 

unstable and 

computationally 

intensive as size 

increases 

Yes 
Computer 

intensive 
Yes 

Applied to 

geographic data 

successfully 

Yes Yes Yes 

Yes (but 

difficult to 

visualise) 

Speed Slow Fast Very slow Medium 

Robustness Yes Yes 
Conflicting 

evidence 

Methodology 

still in 

development 

Iterative 

development of 

clusters 

No Yes Yes Mixed 

Specification of 

number of 

clusters prior 

No Yes Mixed Mixed 

Table 3.5: Factors important to building an area classification by method. 

Hierarchical methods were mainly rejected based on their ability to handle large data 

sets.  The hierarchical methodology becomes unstable with larger data sets both in time 

and potential (or probability) for errors through incorrect joins (Milligan, 1996).  Whilst 

in practice, the process was not too long (just over five minutes), the process became 
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unstable when handling this size of data.  This led to outputs taking longer to be 

compiled, with some not even materializing (for example the dendogram).  This 

approach also does not create the optimal solution, as clusters are not refined iteratively.  

This leads to erroneous cluster membership and less accurate clusters (Everitt et al., 

2001). 

There is also the time problem for artificial neural networks and though it was not tested, 

it is an important issue in the literature (Ahmed, 2005).  Since the process allows the 

computer to learn about cluster membership (through a series of rules and processes), 

this iterative step is both time and computer intensive when compared to the other 

methods (Openshaw et al., 1994).  There is also a black box issue, meaning it is difficult 

to interpret the findings as we are unsure about what is happening within the data or 

what will be found by the classification.  Conceptually, it is designed to analyse flows 

of data, making it less relevant in this application. 

A fuzzy classification approach in its entirety was not chosen since as this is just an 

initial investigation into the data set, simplifying the unknown complexities makes more 

sense than providing a more complicated answer at first (Openshaw et al., 1994).  With 

areas being able to belong to more than one cluster, geographical visualisation can be 

problematic, limiting the interpretation of the classification.  The methodology is also 

still being developed and therefore is not always completely robust.   

The partitional methodology shall be used to classify mortality in this study.  With such 

a large data set used within this study, it was important to choose the method that was 

most efficient to save processing time.  With only one partition carried out, there is a 

significant saving in computational power (Harris et al., 2005) which is very important 

when dealing with 7194 objects, across a large range of variables.  Although the number 

of clusters must be specified prior to running the method, this can be investigated 

through various test statistics (see Section 3.8.4) to assess which solution is the best.  As 

such, the method can produce the most optimal solution based upon this. 

 

3.6 More detail of how the partitional methodology works 

Section 3.5.2 provided a brief description of how a partitional clustering method works.  

Here this explanation will be expanded on to provide a little more information as to how 

the methodology operates.  Some detail will be provided, however there are plenty of 
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references which give a better explanation with greater coverage (for example Duda and 

Hart, 1973; Gordon, 1999; Everitt et al., 2001). 

There are two main parts to the partitional process, which affect how the methodology 

works.  One of these is how the clustering criteria are selected.  This is how the method 

assesses the quality of the clusters it has created within the data, during the iterative 

stage of the process (Everitt et al., 2001).  The total variance (for a given solution), T, 

found here as the total sum of squares (i.e. the error) can be found using the following 

equation: 

T = (ΣWi) + (ΣBi)                                                               (1) 

T can be split into W (the within cluster sum of squares) and B (the between cluster sum 

of squares).  It is these variables which represent the concepts of homogeneity (W) and 

separation (B) found within the model.  These are summed individually across each 

variable (i) included in the model, to assess similarity and isolation of data points 

through multivariate dimensions (Duda and Hart, 1973). 

The within cluster sum of squares measures how close the objects in each cluster lie to 

each other (i.e. homogeneity).  Therefore an optimisation methodology looks to mainly 

minimise the value for W (Duda and Hart, 1973).  Everitt et al. (2001) notes three 

common measures of homogeneity.  One index calculates the sum of all squared 

dissimilarities between two objects for a cluster.  Another looks for the maximum value 

between two objects for a cluster (effectively finding the diameter of the cluster).  The 

third („the star index‟) finds the minimum value between all values to a single value in 

the same cluster. 

The between cluster sum of squares measures the difference in distances between each 

cluster (i.e. separation).  Isolated clusters result in a distinct classification and hence the 

methodology looks to maximise B.  Everitt et al. (2001) also gives two examples of 

separation measures.  These either find the sum of the (squared) dissimilarities between 

an object found in a cluster and another outside of it, or the minimum value for this is 

used instead.  These concepts seek to find a clear cluster structure within the data 

through these processes.  Maximising B is less commonly used in research than 

minimising W as the clustering criteria. 

Whilst this equation is only applicable for analyses where one variable is used, it is 

much easier to think about the process like this.  How the equation exists is not clear 
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when the number of variables begins to exceed one, but it still continues to employ the 

same mechanics.  It highlights how the method assesses the partitions created through 

minimising and/or maximising numerical criteria (Everitt et al., 2001).  A multivariate 

perspective only differs through looking at how the data points are scattered in k-

dimensional spaces (Duda and Hart, 1973).  Clusters are formed based upon this 

similarity across many different variables.   

The other major part to the process is the choice of algorithm for running the 

methodology.  This creates the (specified number of) clusters through splitting the data 

up into the best solution possible, through optimising the clustering criteria.  There are 

thousands of algorithms that exist, each performing different techniques to clustering 

the data.  For the analysis in this study, the main types will only be considered.  This is 

because a robust methodology will mean that the findings are more likely to reflect 

variations in the data, rather than issues in the clustering procedure. 

It is inefficient to compare the cluster criteria for all possible cluster combinations.  For 

example Duda and Hart (1973) note that that a data set with 100 objects with five 

clusters would require roughly 6.6 x 10
67

 calculations.  Even with advances in 

computing power, this is still going to be computationally heavy especially with the size 

of data used in this study.  Since global searches of cluster solutions are impracticable, 

algorithms have been developed to perform local searches instead.  These usually work 

by making an initial partition of the data into the specified number of clusters.  Each 

individual object from a cluster is then moved into each other cluster and then the 

change in the solution is assessed against the clustering criteria.  The move which 

results in the best value based upon the criteria becomes permanent (though not if no 

gain).  This process is repeated until no more moves can further improve the clustering 

criterion (Gordon, 1999). 

The most common algorithm used in research is the k-means method.  Objects are 

relocated to the cluster whose mean (i.e. cluster centroid) it is closest to.  This move is 

then assessed against the clustering criteria to see if there was an improvement in the 

model.  If so, the move is kept and the cluster mean is recalculated.  The equation it uses 

is: 

J = ∑
k
j=1 ∑nϵSj ( xn - µj )

2 
                                                  (2) 

Here k is the number of clusters being partitioned, n is the total number of data points, Sj 

is one of the partitions and the data points found within, xn is a data point from all cases 
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and µj is the mean centroid value for Sj (Duda and Hart, 1973).  The equation splits the 

data into clusters with the aim of minimising the clustering criteria (J is the total 

squared error).  This algorithm will be used due to its widespread use, helping ease its 

understanding by other users (Jain, 2010).  As a result of its popularity, it can be found 

in most statistical packages, making the process of creating the classification more 

efficient (Everitt et al., 2001).  Milligan and Cooper (1987) also argue that it is the best 

partitioning algorithm available. 

 

3.6.1 An example of the k-means methodology 

To illustrate how the k-means methodology works in classifying data, a simplified 

example is presented.  Fewer data points are used to improve the visualisation of the 

process, showing the approach clearly.  Data for Governmental Office Region‟s (GORs) 

in England and Wales was collected.  Two variables were used and these were the 

percentage of people who said that their health was „good‟ at the 2001 Census and the 

life expectancy for the region for the period 2000 to 2002.   

 

Figure 3.2: The relationship between people reporting their health as good and life 

expectancy in England and Wales. 

Figure 3.2 presents a scatter plot of the variables, which shows a strong positive 

relationship between the two (a Pearson‟s correlation gives the value 0.8, with p=0.005).  

The pattern makes sense, since if the self-reported variable is taken as a proxy for health 

then those areas with greater health needs are going to be less likely to have people 
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living longer.  To explore if there are clusters within the data, a k-means cluster analysis 

was run on the data for a two cluster solution (to keep things simple). 

First the algorithm selects two data points as „seed points‟.  These represent an initial 

partition into the data, the centres of the first clusters.  From this, data points are 

assigned to their nearest cluster centre (i.e. classifying the data).  The initial starting 

points for determining the clusters were selected as the North East and the South East.  

These have been highlighted on Figure 3.3 as triangles (the seed points remain separate 

from the data point).   

Figure 3.3 also shows the allocation of data points into these first two clusters.  The 

interesting case is the East Midlands value, which lies far away from both initial centres 

but slightly nearer to cluster 2.  Cluster 1 contains Wales, North East, North West, 

Yorkshire and Humberside and West Midlands.  Cluster 2 contains the regions South 

East, South West, London, East and East Midlands.  The clusters are evenly sized.  

Based upon these clusters, the cluster centres are recalculated. 

 

Figure 3.3: The initial classification of the data. 

The next iteration of the model seeks to examine the impact of moving each case into 

the other cluster and looking at the impact on the average distances of cases from the 

cluster centres.  Where there is an improvement in the model, the move is made 

permanent.  In the model, the only change which improves the model is moving the East 

Midlands into cluster 1.  The region is closer to Northern characteristics in terms of 

health, than compared to the South.  The cluster centres are then recalculated.  No more 

moves can further improve the model, therefore the iterations stop and the final solution 
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can be seen in Figure 3.4.  Whilst this example is simpler than trying to think about 

7194 cases across multiple dimensions, it visually shows how the process works. 

 

Figure 3.4: The final classification. 

 

3.7 Creating the inputs of the classification 

With both the data and geographical scale of analysis selected, the variables to be used 

in creating the classification can now be built. 

 

3.7.1 Time periods 

With MSOAs chosen as the geographical unit to use for the analysis, these are fairly 

small.  Therefore using just the latest year of data will not suffice in providing enough 

deaths to produce stable and useful statistics, especially for rarer causes.  Instead the 

individual years of the DOEW will need to be pooled together to avoid any small 

number issues, as well as reducing the effect of fluctuations in a year which would 

otherwise falsely represent a pattern.  However too many years combined will make it 

difficult to accurately present a picture of what is happening, as temporal trends become 

smoothed.  It was chosen that the latest four years (2006-2009) would be used for 

constructing the classification, since this would achieve enough deaths whilst not being 

too wide. 
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3.7.2 Variable selection 

The ICD-10 forms a hierarchical classification of causes of mortality.  Diseases are 

grouped initially into 22 Chapters (see Table 3.2) and within each ICD-Chapter codes 

are further grouped into types of causes.  At its lowest level, which gives the specific 

type or site of a particular cause, there are over 14,000 possible codes.  This is not 

practical for any useful and interpretable form of analysis.  Therefore a useful form of 

data reduction is required, which maintains the differences and detail offered in the data. 

The number of variables chosen is important since it needs to be large to truly capture 

the variation in mortality between places, especially to gain a meaningful separation of 

areas (Cohen et al., 1977).  The chosen method may fail to capture the true underlying 

structure of the data if only a subset is analysed (Everitt et al., 2001).  However more 

does not always result in better.  A larger number of variables can hinder interpretation.  

Selection of irrelevant variables can mask the true underlying structure through 

increasing the effect of random noise which may impose a false cluster structure (Cheng 

and Milligan, 1996).   

It was decided that all deaths should be aimed to be included.  As no other study has 

carried such an investigation out at such a low geography and little is known about how 

a large range of mortality variables truly interact with each other, there is less 

theoretical basis for just focusing on a few (and hence limiting our ability to describe 

areas; Voas and Williamson, 2001).  Whilst principle components analysis may be an 

option for reducing a large set of variables down (Gordon, 1999), this approach used in 

this situation may be problematic through making interpretation more difficult.  It can 

also distort clusters, when reducing a large number of variables (Milligan, 1996).  The 

right balance between the two needs to be found. 

Variable selection was chosen to be grounded by only incorporating causes which 

accounted for at least 0.5 per cent of the total of deaths throughout the study period 

(between 2006 and 2009 there were 1,993,407 deaths).  This choice was due to 

statistical reasons, since it gives a figure greater than the number of areas.  Therefore an 

even distribution would at least provide more than one death in each area, in line with 

recommendations from the literature (Everitt et al., 2001; Gordon, 1999; Milligan and 

Cooper, 1987).  By implementing this cut-off point, the most prevalent diseases are 

selected.  Since a classification of mortality has not been done before, this analysis has 
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decided not to initially focus on specific causes.  This allows for a comprehensive 

analysis, exploring how the main causes of mortality interact and cluster with each other.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Conceptual model for variable selection. 

The ICD-10 codes were first aggregating up one level (i.e. A001 becomes A00) since 

this last digit refers to the specific type or site of a cause and therefore is unnecessary 

for this study.  Nevertheless this resulted in 1136 possible codes and a further means for 

splitting the variables up was needed.  Figure 3.5 shows a flow chart which presents the 

decision making process for variable selection (although there was some flexibility in 

its design; for example where causes accounted for 0.49% of all deaths).  Variables are 

first checked to see if they are prevalent enough and whether they should be kept as they 

are.  For example, some codes were for the “other...” part of a cause of death (i.e. 

usually where there has been insignificant information above the case) and hence were 

not included since their names are somewhat unhelpful.  This first step resulted in 25 

variables, accounting for 49.6 per cent of all deaths. 

The remaining variables were aggregated to their next level.  For example, „Hansen‟s 

disease‟ (leprosy) was aggregated with the other relevant codes into its collective group 
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„Other Bacterial diseases‟.  The prevalence of these groupings was assessed and each 

checked to see if was useful and interpretable in the analysis.  If so, this became a 

variable itself.  Else the process repeated itself, until no further aggregations within a 

chapter could occur.  Even if these did not meet the previous requirements for a variable, 

they were kept so that all deaths could be used.  They were not aggregated further since 

an all-encompassing “other causes” section would be irrelevant since each ICD chapter 

is formed by completely different conditions, with different needs, policy options and 

causes.   

As noted in Section 3.3.1, the ICD-10 data for individuals aged zero is inconsistent, due 

to a different coding system for cases.  With 8979 cases at age zero missing cause of 

death information, this is a fairly large number of deaths to ignore.  Rather all deaths at 

age zero (including those with ICD-10 codes) were combined into one variable to 

represent the infant mortality of an area.  This provides a more interpretable variable 

with better policy relevance and applications.  It is also fairly prevalent, meeting the 

required specification of 0.5 per cent.  The full list of the 67 variables chosen can be 

seen in Table 3.6. 

Although the aim was to use all deaths, not all cases were included in the data set 

produced.  Cases with the code U50 (n=2072) were not included since these refer to 

cases which have been sent to the coroner pending further investigation (Rooney and 

Smith, 2000).  These codes are from cases involved in inquests and therefore the full 

registration of the death is held until the verdict is given (Devis and Rooney, 1999).  

Some of these inquests were still ongoing when the data was released by the ONS (to be 

updated in subsequent versions).  Whilst the ONS suggest that these are most likely 

homicides, due to their unknown state they will not be included.  This meant that there 

were 1,991,335 deaths in the period and variable percentages were adjusted for this.  

 

 

 

 

 

 



Chapter 3: Data and methodology 

pg. 73 

No. Name ICD10 Codes Total Cases Percentage 

4 Cancer of the Gullet C15 26098 1.3% 

5 Stomach Cancer C16 17994 0.9% 

6 Colon Cancer C18 35393 1.8% 

7 Rectum Cancer C20 14328 0.7% 

8 Liver Cancer C22 11507 0.6% 

9 Pancreatic Cancer C25 27390 1.4% 

10 Lung Cancer C34 118885 6.0% 

11 Breast Cancer C50 42824 2.2% 

12 Ovarian Cancer C56 14909 0.8% 

13 Prostate Cancer C61 36811 1.9% 

14 Kidney Cancer C64 12252 0.6% 

15 Bladder Cancer C67 17556 0.9% 

16 Cancer of the Brain C71 12738 0.6% 

17 Leukaemia's C91-95 15588 0.8% 

18 Other Lymphatic Cancers C81-90, 96 26748 1.3% 

19 Other Cancers Rest of C's, D00-48 127490 6.4% 

Table 3.6: Cancer related variables. 

 

No. Name ICD10 Codes Total Cases Percentage 

23 Dementias F00-03 61315 3.1% 

24 
Other Mental and Behavioural 

Disorders 
F04-99 6362 0.3% 

25 Parkinson's Diseases G20-22 18040 0.9% 

26 Alzheimer‟s G30 23015 1.2% 

27 
Other Diseases of the Nervous 

System 

G00-13, 23-

26, 31-99 
24893 1.3% 

Table 3.7 Mental and nervous system causes of death variables. 

 

No. Name ICD10 Codes Total Cases Percentage 

44 Pneumonia J12-18 112279 5.6% 

45 
Chronic Lower Respiratory 

Diseases 
J40-47 103135 5.2% 

46 
Lung Diseases due to External 

Agents 
J60-70 12031 0.6% 

47 
Other Diseases of the Respiratory 

System 

J00-11, 20-

39, 80-99 
48838 2.5% 

Table 3.8: Variables included representing respiratory causes of death. 
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No. Name ICD10 Codes Total Cases Percentage 

30 Hyperintensive Diseases I10-15 17266 0.9% 

31 Acute Myocardial Infarction I21 120378 6.1% 

32 Chronic Ischaemic Heart Disease I25 188496 9.5% 

33 

Pulmonary Heart Disease and 

Diseases of Pulmonary 

Circulation 

I26-28 13852 0.7% 

34 Atrial Fibrillation and Flutter I48 12878 0.7% 

35 Heart Failure I50 33275 1.8% 

36 Other Heart Diseases 

I00-09, 20, 

22-24, 30-47, 

49, 51-2 

40630 2.0% 

37 Intracerebral Haemorrhage I61 17878 0.9% 

38 Cerebral Infarction I63 17917 0.9% 

39 Stroke I64 88897 4.5% 

40 Other Cerebrovascular Diseases I60, 62, 65-69 59867 3.0% 

41 Aortic Aneurysm and Dissection I71 29921 1.5% 

42 

Diseases of Veins, Lymphatic 

Vessels and Lymph Nodes, Not 

Elsewhere Classified 

I80-89 15489 0.8% 

43 Other Circulatory Diseases 
I70, 72-79, 

95-99 
13598 0.7% 

Table 3.9: Heart related causes included as variables.  

 

No. Name ICD10 Codes Total Cases Percentage 

48 Ulcers K25-28 11582 0.6% 

49 
Vascular Disorders of the 

Intestine 
K55 9455 0.5% 

50 
Other Diseases of 

Intestines 
K56-63 19629 1.0% 

51 Alcoholic Liver Disease K70 18270 0.9% 

52 Other Liver Diseases K71-76 11166 0.6% 

53 
Diseases of Gallbladder, 

Binary Tract and Pancreas 
K80-86 10666 0.5% 

54 
Other Diseases of the 

Digestive System 

K00-24, 29-

54, 64-67, 90-

93 

21311 1.1% 

Table 3.10: Variables related to the digestive system. 
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No. Name ICD10 Codes Total Cases Percentage 

1 Infant Mortality 
All cases 

where age = 0 
12909 0.7% 

2 Septicaemia A40-41 8929 0.5% 

3 
Other Infectious and 

Parasitic Diseases 

A00-39, 42-

B99 
18546 0.9% 

20 Diseases of the Blood D50-89 3926 0.2% 

21 Diabetes Mellitus E10-14 21649 1.1% 

22 

Other Endocrine, 

Nutritional and Metabolic 

Diseases 

E00-07, 15-

90 
6993 0.4% 

28 
Diseases of the Eye and 

Adnexa 
H00-59 27 0.0% 

29 
Diseases of the Ear and 

Mastoid Process 
H60-99 77 0.0% 

55 
Diseases of the Skin and 

Subcutaneous Tissue 
L00-99 7359 0.4% 

56 

Diseases of the 

Musculoskeletal System 

and Connective Tissue 

M00-99 16936 0.9% 

57 Renal Failure N17-19 11903 0.6% 

58 
Other Diseases of the 

Genitourinary System 

N00-16, 20-

99 
33912 1.7% 

59 
Causes Related to 

Pregnancy and Childbirth 
O00-99 160 0.0% 

60 
Conditions Originating in 

the Perinatal Period 
P00-99 63 0.0% 

61 

Congenital Malformations, 

Deformation and 

Chromosomal 

Abnormalities 

Q00-99 3887 0.2% 

62 Senility R54 35176 1.8% 

63 
Other Symptoms, Signs 

and Abnormal Findings 

R00-53, 55-

99 
5872 0.3% 

64 Falls W00-19 12801 0.6% 

65 Other Accidents 
V01-99, 

W20-X59 
30352 1.5% 

66 Intentional Self-Harm X60-84 12361 0.6% 

67 Other External Causes X85-Y98 6632 0.3% 

Table 3.11: Other Causes selected. 

The inclusion of variables „Senility‟ and „Other Symptoms, Signs and Abnormal 

Findings‟ could also be questioned.  These are both from ICD-10 chapter XVIII 

„Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere 

classified‟.  This ICD chapter is reserved for cases where there is no consensus over a 
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cause which causes the death of a person.  The chapter accounts for 2.06 per cent of all 

deaths and since it is not much different to ICD-9, it can be seen that rates have been 

starting to rise since the 1980s, especially with regards the use of „old age‟ (Griffiths et 

al., 2005).  Nevertheless, this may just reflect population dynamics, with people living 

much longer now, rather than being a large proportion of wrong cases.  As people get 

older, their body is more likely to just fail through „wear and tear‟ and so their inclusion 

is justified.  However, the issue of deaths recorded as unknown is not just confined to 

these two variables.  For example C80 („malignant neoplasm without specification of 

site‟) accounted for 1.96 per cent of all deaths however as just a variable by itself, it is 

not useful.  Such large numbers of deaths simply coded as this masks the true patterns 

of more specific cancers. 

An issue with this selection process is that choosing the variables solely based on 

numerical reasoning may ignore important distributions.  Whilst some causes are less 

common, they may still feature important social and/or geographical patterning.  For 

example this is especially the case within „Other Accidents‟ variables which contains 

both water transport and air traffic accidents.  These both have opposite social 

distributions, as well as differing spatial patterns (Shaw et al., 2008).  This issue was 

also identified by Griffiths et al. (2005) who found that aggregating accidental mortality 

rates can be problematic.  Whilst most other sections of the ICD-10 have been split up 

to reveal more specific causes, there may still be issues with the aggregation process for 

the broader variables.  These will occur where differing processes relating to causes 

occur, which may hinder the understanding of the classification, as well as future policy 

usage.  However where aggregation has occurred with such small numbers, they are 

unlikely to have a large impact on the overall model. 

 

3.7.3 Geo-referencing the data 

A look-up table compiled by the ONS matched OAs provided in the DOEW to MSOAs, 

allowing each individual case could be assigned to its correct geographical area quickly 

(using ArcView and the „table join‟ function).  This simple process however led to 34 

areas becoming corrupted and these were manually altered.  Next a look-up table was 

created for the variables used to convert the ICD10 codes to each variable to be 

included in the analysis.  This was then exported into SPSS and the data was compiled 

to its geography through using the „aggregate‟ option.  The total was then found for 
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each variable (adding together the values for each MSOA) and this was then compared 

to the totals to validate the process and check for errors (Table 3.12).  Those variables 

which were different from the totals gathered had missing (or erroneous) geographical 

variables. 

Variable no. 1 2 3 4 5 6 7 8 

Sum of 

Variables  12902 8928 18547 26098 17995 35391 14329 11507 

Total of 

database  12902 8929 18546 26098 17994 35393 14328 11507 

Difference 0 -1 1 0 1 -2 1 0 

         Variable no. 9 10 11 12 13 14 15 16 

Sum of 

Variables 27390 118883 42824 14909 36810 12252 17555 12737 

Total of 

database 27390 118885 42824 14909 36811 12252 17556 12738 

Difference 0 -2 0 0 -1 0 -1 -1 

         Variable no. 17 18 19 20 21 22 23 24 

Sum of 

Variables 15588 26746 127492 3926 21649 6993 61315 6362 

Total of 

database 15588 26748 127490 3926 21649 6993 61315 6362 

Difference 0 -2 2 0 0 0 0 0 

         Variable no. 25 26 27 28 29 30 31 32 

Sum of 

Variables 18040 23015 24893 27 77 17266 120378 188493 

Total of 

database 18040 23015 24893 27 77 17266 120378 188496 

Difference 0 0 0 0 0 0 0 -3 

         Variable no. 33 34 35 36 37 38 39 40 

Sum of 

Variables 13852 12878 33275 40667 17878 17917 88896 59867 

Total of 

database 13852 12878 33275 40630 17878 17917 88897 59867 

Difference 0 0 0 37 0 0 -1 0 

         Variable no. 41 42 43 44 45 46 47 48 

Sum of 

Variables 29921 15489 13598 112279 103135 12031 48837 11582 

Total of 

database 29921 15489 13598 112279 103135 12031 48838 11582 

Difference 0 0 0 0 0 0 -1 0 
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Variable no. 49 50 51 52 53 54 55 56 

Sum of 

Variables 9455 19629 18270 11165 10666 21311 7360 16935 

Total of 

database 9455 19629 18270 11166 10666 21311 7359 16936 

Difference 0 0 0 -1 0 0 1 -1 

 
 

        Variable no. 57 58 59 60 61 62 63 64 

Sum of 

Variables 11904 33911 160 63 3887 35177 5872 12801 

Total of 

database 11903 33912 160 63 3887 35176 5872 12801 

Difference 1 -1 0 0 0 1 0 0 

         Variable no. 65 66 67 

     Sum of 

Variables 30372 12359 6632 

     Total of 

database 30352 12361 6632 

     Difference 20 -2 0 

     Table 3.12: Validation check for the variable aggregation process. 

 

3.7.4 Standardisation of mortality 

The aggregation of the total number of deaths by cause for each MSOA tells us very 

little about the mortality of England and Wales.  Since certain causes dominate certain 

types of people (for example Prostate Cancer; Majeed et al., 2000), this is a poor 

measure.  Therefore there is a need to standardise rates to allow for a meaningful data 

set.  The standardised mortality ratio (SMR) was chosen to initially account for the 

different factors that could cause a certain amount of deaths in an area.  This controls 

for the age and sex make-up of each MSOA, therefore not creating a data set which 

shows that the most deaths occur where there are more elderly people for example.  By 

having all variables measured on the same scale, this avoids the results becoming 

misleading.  An indirect approach was chosen to be taken since it provides a more 

stable variable when dealing with small numbers, as for many variables used here.   

Population estimates by age and sex bands for the years after the 2001 Census were 

requested from the ONS.  Whilst these do exist on Neighbourhood Statistics website, 

the age bands at the MSOA level are broader than required.  The requested data gave a 

more accurate and useful set of age bands.  The following bands were used; 0, 1-15, 16-

24, 25-34 and then ten year bands up to 85 and over.  This was chosen as it is what is 
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used throughout the literature (for example Shaw et al., 2008).  The SMR is calculated 

by:  

SMRχ = 100(αχ / Σ(βχγυδγυ))                                            (3) 

χ represents the cause of death variable, α is the number of observed deaths for an area, 

β is the mortality rate for England and Wales, γ is the age band, υ is sex and δ is the 

population size.  The equation calculates the percentage difference in the total number 

of deaths in an area for a particular cause against the expected number of deaths given 

the age and sex make-up of an area‟s population (i.e. based on the mortality rate for the 

whole population). 

Further standardisation could also be employed, to normalise the data, as has been 

conducted in other classifications (for example Vickers, 2006).  There are plenty of 

different standardising techniques, with standardising using the range of a variable often 

viewed as the best (Milligan and Cooper, 1987).  However with all of the variables 

measured on the same scale, it is not as important (Everitt et al., 2001; Gordon, 1999).  

As Milligan and Cooper (1987) argue, standardisation is not always required, as it can 

obscure patterns (through producing false model dependent results) through 

transforming the data (which itself becomes less interpretable than compared to the 

SMR score).  The inputs will not be standardised additionally. 

The variable standardisation process compares the data in each MSOA to the national 

average.  This means that you cannot really directly compare two areas against each 

other, rather only to the national average.  Comparisons between clusters will need to be 

made carefully in response to this.  It may have been better (or more accurate) to 

standardise regionally, to take account of known geographical variations (Hacking et al., 

2010).  This would allow for stronger or unexplained mortality patterns to be visualised.  

However few (if any) past studies have tackled this and instead always choose to 

compare nationally, as it provides easier to understand comparisons. 

SMRs have also been known to be fairly sensitive, with small fluctuations in trends 

having large changes in values.  As a result, this can have a strong effect on the 

classification process.  The aggregation of time periods should help stabilise and reduce 

such errors.  However some variables, such as „Diseases of the Ear and Mastoid 

Process‟, only witnessed few deaths.  Therefore the expected amount of deaths for each 

area is going to be very low and areas with few deaths may skew the distribution.  This 

problem will be addressed in the next section. 
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3.7.5 Weighting the variables 

The process of standardisation has made each cause of death equal.  This does not relate 

to the true geography of mortality as the prevalence of causes is ignored.  For example 

„Conditions Originating in the Perinatal Period‟ caused 63 deaths between 2006 and 

2009, yet it is given equal importance to „Chronic Ischaemic Heart Disease‟, even 

though the latter kills 188,433 more people in the same period.  As the classification 

methodology groups together cases based upon the distribution of data, this will be 

problematic.  For the study to be representative of the true structure of England and 

Wales, this needs to be accounted for.  The SMRs were multiplied by the percentage of 

the total deaths (see Table 3.6) that they make up within the data set.  This method 

retains the structure of the variable (for example a SMR of 100 which has been 

multiplied by 0.5 per cent means that 50 is now the average value).  Other statistical 

weighting procedures are available (Everitt et al., 2001), however this approach is 

theoretically more relevant. 

There may be some issues resulting from this process.  The more prevalent diseases 

may end up dominating the classification, with clusters determined based mainly on 

their patterns only.  As a result, any interactions between variables could become 

obscured.  Where less prevalent diseases contain higher values (or even a cluster 

themselves), this may become lost.  Furthermore, some disease which are fairly 

prevalent but represent amalgamations of ICD-Chapters can be problematic due to this.  

For example, the variable „Other Cancers‟ accounts for 6.4 per cent of all deaths, but 

weighting in its favour is unhelpful to our understanding.  These possible effects can 

only be investigated when interpreting the clusters.  As Sneath and Sokal (1973) argue, 

weighting without a strong and consistent basis is a (subjective) classification itself.  

Therefore the choices of weighting will be kept. 

 

3.7.6 Inter-related variables 

With such a large amount of variables used in the analysis, it is important to decide 

whether all the variables are relevant and not unnecessary.  If there is a strong 

relationship between any two variables, then it could be said that one variable mostly 

predicts the other (Rogerson, 2006).  Therefore one could be dropped, since the 

variation in mortality will be mostly accounted by the other.  It also served to briefly 
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examine any interactions between causes, aiding future interpretation of the 

classification. 

Variables Correlation 

Lung Cancer 0.433*** 

Acute Myocardial Infarction   

Lung Cancer 0.424*** 

Chronic Ischaemic Heart Disease   

Lung Cancer 0.644*** 

Chronic Lower Respiratory Diseases   

Lung Cancer 0.443*** 

Alcoholic Liver Disease   

Dementias 0.510*** 

Alzheimer‟s   

Dementias 0.446*** 

Other Cerebrovascular Diseases   

Alzheimer‟s 0.419*** 

Other Cerebrovascular Diseases   

Acute Myocardial Infarction 0.474*** 

Chronic Lower Respiratory Diseases   

Chronic Ischaemic Heart Disease 0.464*** 

Chronic Lower Respiratory Diseases   

Chronic Lower Respiratory Diseases 0.448*** 

Alcoholic Liver Disease  

Table 3.13: Moderately Correlated Variables. 

Note: Significance levels; * is p<0.05, ** is p<0.01, *** is p<0.001.   

Using a Pearson‟s correlation to examine the relationship between each variable 

combination, the majority of cases were either insignificant or poorly correlated.  Only 

ten relationships (0.44 per cent) could be considered moderately strong and significant 

(i.e. greater or less than ±0.4).  These could present early indications of causes which 

„travel‟ together and are shown in Table 3.13. 

The largest of these was only 0.644 (p<0.001).  This was between the weighted 

variables 10 („Lung Cancer‟) and 45 („Chronic Lower Respiratory Diseases‟).  This may 

be expected, since the diseases are found in variable 45 (Asthma, Bronchitis and 

Emphysema) have similar causes to „Lung Cancer‟ (primarily smoking but also air 

pollution; Cornfield et al., 2009).  The correlations for four other relationships (10 and 

31, 10 and 32, 31 and 45, 45 and 32) may also be linked to smoking.  The negative 

effects of smoking are not just confined to the Lungs, but also are detrimental to the 

heart through the effects of carbon monoxide (Aronow, 1973). 
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The moderate relationship between Lung Cancer and Alcoholic Liver Disease (as well 

as 45 and 51) may suggest that those areas which have people engaging in excessive 

alcohol intake may also contain high numbers of people smoking also.  There is much 

evidence of the strong association between the use of these two substances with 

detrimental effects on health (Room, 2004; Hart et al., 2010), as well as the link 

between their combined usage.  Therefore these two cultural practices may „travel‟ with 

each other.     

The final three associations are linked to brain dysfunctions.  Dementia and Alzheimer‟s 

are similar diseases (of old age), especially since many Dementias eventually turn into 

Alzheimer‟s.  This suggests similar causes, or that the types of people more susceptible 

to it (for example the elderly) live together.  The relationship between „Other 

Cerebrovascular Diseases‟ with these two diseases may also reflect similar conditions 

due to them all being related to the declining quality of the Brain (Rocca et al., 2011).  

As no variable displays a strong relationship (taken here using the rule of thumb of 

greater or less than ±0.7), no variables were dropped from the analysis. 

 

3.7.7 Confidentiality  

Confidentiality is important with the use of the DOEW data set, as each individual death 

is provided within the data set.  This is more of an issue for the least prevalent causes of 

death, which may have sparse counts (mostly where counts are fewer than 5).  Also with 

this study conducted at fine geographical scales (defined by the ONS as local authority 

level or below), individual deaths may become identifiable.  Any disclosure of personal 

information can be punishable under the „Statistics and Registration Service Act 2007‟.  

These issues must be taken into account to avoid any potential harm or distress caused 

by identification of deaths to any living relatives (ONS, 2010a).  Due to the 

methodological approach conducted in this thesis, these confidentiality problems will 

not be an issue.  Since a classification will reduce the data set containing every cause of 

death into a much smaller number of clusters summarising the data, individual records 

will not be able to be identified.  The raw data is also stored on one computer in a 

locked room within the Geography Department at the University of Sheffield, which 

prevents unlawful access. 
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3.8 Choices in the k-means method 

There are various decisions which must be considered when running a k-means 

methodology which may affect the overall results.  These are detailed in the following 

sections. 

 

3.8.1 Software 

Whilst it may not initially seem to be part of the process, this choice is one of the 

earliest decisions made in creating a classification.  There are many different programs 

and applications which could be used to conduct a cluster analysis on the data.  Since 

many pieces of software use varying algorithms and conditions to conduct a cluster 

analysis, it is an important decision to make.  PASW version 18 (formerly SPSS) was 

used due to the author‟s extensive knowledge and experience of working with the 

program.  Whilst this is not suggestive that one piece of software is better than another, 

it is important to note.  This is especially the case for any replication of the analysis in a 

different program as this may yield slightly different results (especially if it is found that 

the classification is particularly unstable).  The program allows for a k-means method to 

be selected.  The seed points can be specified and the analysis can save the distance of 

each object to its cluster centroid.  These last two options are particularly useful for 

applying testing procedures to the classification. 

PASW will not be used for all parts of the analysis.  Although the software can perform 

most of what is proposed, it is limited in the amount of tests that can be run to test for 

the number of clusters to be taken.  Therefore the software „R‟ will be incorporated into 

parts of the thesis which require more specific processes.  Although it could have been 

used for the whole thesis, the author‟s unfamiliarity with it, coupled with the fact it is 

less easy to use than PASW meant it would only be used when necessary. Whilst the k-

mean algorithms between programs may be unlike each other, these should only be 

slight differences which may result in cases on the edge of groups being differently 

classified (i.e. least distinct objects).   

For example, a simplified two cluster solution was run using the final data set compiled 

for this study to illustrate this point.  When the k-means algorithm was run in SPSS, it 

gave clusters with the sizes of 2900 and 4294.  Running the same algorithm in R 

produced clusters containing 2899 and 4295 cases highlighting the similarity of 
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algorithms between programs.  Equivalent cluster membership was equal for all data 

points bar one, which was located near the boundary of the cluster centres in each, the 

reasons for this difference.  As it is being used to specify the underlying cluster 

structure, exact locations of data points are less important than compared to finding the 

optimal solution for the number of clusters.  The results of the classification will be 

driven by the patterns in the data rather than the choice of software. 

 

3.8.2 The starting points for clustering 

As the methodology begins by dividing the data points into k (specified by the user) 

number of clusters which are later refined, how these initial partitions are chosen will 

play a large role in the classification produced (Harris et al., 2005).  A decision is made 

to select the initial cluster centres, for which the k clusters will be clustered around (i.e. 

each case is moved into the cluster which it lies nearest to).  This step can result in the 

production of a classification that achieves local optimum (a small cluster) rather than a 

global optimum (the underlying structure of the data) (Gordon, 1999).  A starting (or 

seed) point may select a case which leads to a small, specific cluster that does not 

accurately reflect a major cluster in the whole data set. 

 

Figure 3.6: A hypothetical three cluster example data set. 

The issue is illustrated by a hypothetical example, using made up data across two 

variables.  Suppose we have identified that we expect the data to display a three cluster 

solution.  Figure 3.6 shows the data and this appears correct visually.  The clusters have 

been emphasised in the data creation process, so that the issue can be better visualised.  
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Real data will not be as well separated, with the cluster analysis required to divide up 

the data into something more interpretable and useful.  Running a cluster analysis on the 

data may, however, find an erroneous solution.   

Figure 3.7 shows a hypothetical scenario where the starting points were erroneous 

selected.  Although three clusters have been identified, it does not reflect what is 

actually happening in the data.  A different problem occurs in Figure 3.8, where outliers 

are present and taken as an independent, yet erroneous, cluster (although not in the eyes 

of the algorithm, as this cluster is very compact).  The effect of outliers will additionally 

be considered later through the statistical testing of the classification (see Section 3.9.2). 

 

Figure 3.7: A hypothetical classification of the data set into three clusters. 

 

Figure 3.8: The possible impact of outliers selected as seed points. 
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The default approach of PASW 18 is to choose the initial cluster centres through 

selecting the first k cases in the data set.  This seems problematic, especially as the data 

is sorted by geography.  Ordering of the cases is important and the classification will be 

sensitive to this possible error.  Instead the initial seed points will need to be specified.  

One approach would be to randomly select k cases (Duda and Hart, 1973; Gordon, 

1999), so that the choice of starting points are fairer as each case has an equal chance of 

being selected.  This could also be altered, to make it more systematic through 

randomly sorting the data and then choosing k cases at even intervals (i.e. every n/k 

case).  These methods, however, still could be affected by the localisation issue.   

An alternative would be to run a hierarchical analysis and then assign the centroid 

values for the chosen solution (Everitt et al., 2001).  The results from the hierarchical 

method would not be the same as a k-means cluster analysis due to the different 

methodologies involved.  Rather this would provide a base of which the k-means 

analysis could later refine to create the optimal solution.  Krieger and Green (1999) note 

that use of random starting points is less effective than this approach.  This problem was 

also found by Milligan (1980) who found that random seed points were much less 

effective than using „rational‟ points (i.e. performing a hierarchical analysis and taking 

the points from that).  However with a large data set, the results may become unstable 

and take a long time to be calculated.  Yet the k-means analysis afterwards would refine 

and improve upon these results, reducing any impact.  This approach is not completely 

safe from the localisation problem either, though it is less likely to occur. 

These two possible methods will be considered in Chapter four to explore which 

produces the more optimal solution. 

 

3.8.3 Measuring „closeness‟ of objects 

There are two ways to measure how close objects are to each other.  Similarity 

(homogeneity) measures look at the proximity of objects, with a high value meaning 

two objects are close together.  Dissimilarity (separation) measures examine the 

distance between objects, meaning that a low value represents two objects close 

together.  Both methods are useful, yet dissimilarity measures are more commonly used.  

The exact choice will also depend upon the data types used.  Since the classification 
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only includes continuous (ratio) data, the relevant measure will be chosen in accordance 

to optimise this.  

There are many different measures for continuous data, however most are similar or are 

irrelevant to this study (Gordon, 1999).  The most commonly used measure is Euclidean 

distance, which is calculated through: 

dij = { ∑ wk
2 

( xik – xjk )
2 

}
1/2                                                                          

(4) 

Here dij represents the distance between objects i and j, with xik being the value x for 

object i of variable k and xjk being the same for object j.  This calculates the straight line 

distance between objects.  wk
2
 is the weight for the variable k.  The classification then 

constructs a n x n matrix of the physical distances of all objects, to see which are closest 

together and where best to join objects.  A variation of this measure is the squared 

Euclidean distance.  The equation is similar, rather you do not square root the sum of 

distances between objects.  There is little difference between the two measures.  

Squared Euclidean distance is used where there are large data sets, since with an 

iterative process the method runs quicker (Everitt et al., 2001).  It also puts increased 

importance on data points which lie further apart. 

Other useful methods that measure the dissimilarity of (continuous) objects include 

Minkowski distance, City Block distance (both provide variations on the Euclidean 

distance) and Canberra distance (this appears more favourable to binary variables than 

continuous) (Everitt et al., 2001; Gordon, 1999).  A modified Pearson‟s correlation 

coefficient can also be used to estimate the similarity of two objects, although this is 

seen as slightly controversial as it ignores size (Gordon, 1999).  Euclidean distance shall 

be used in this study as the software being used to conduct the analysis restricts the 

methodology to this measure. 

 

3.8.4 Selecting the number of clusters 

Most cluster analysis methods do not tell us about the actual number of clusters present 

in the data.  This leaves the researcher with the dilemma of what solution should be 

used.  This issue is even more important when conducting a k-means analysis since 

selecting the number of clusters is a pre-requisite for the cluster analysis to take place.  

It is commonly used as the key criticism of the specific methodology, since it can have a 
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large effect upon the results as other parts of the process are determined by it (Bezdek 

and Pal, 1998; Everitt et al., 2001).   

Selecting the number of clusters to cluster can therefore present two errors; producing a 

solution with either too many or too few clusters.  The latter error is considered more 

problematic since it results in information lost through cluster merges (Milligan and 

Cooper, 1985).  Where two clusters have been combined together into one cluster to 

force a specific solution, the end result is a cluster unrepresentative of the data it is 

supposedly summarising.  Whilst with unsupervised techniques, we can never truly 

know the correct number of clusters present in the data (and cluster structure), we can at 

least test for which solution is best for the model and aid our interpretation of the data. 

One common technique to judge which solution may be better is to compare the average 

distance of each individual case from its cluster centre (Everitt et al., 2001).  This shows 

how compact the clusters are for a particular solution.  This statistic is gathered for a 

range of solutions and then can be compared graphically.  A trade-off ensues, as 

increasing the number of solutions leads to a more detailed classification, but too many 

clusters can make the data reduction confusing and lead to local solutions/clusters 

(Gordon, 1999).  The solution to be used may be the one where there are no large 

reductions in the value afterwards, as the downward trend begins to smooth off.  Scree 

plots are ideal for the former statistic, visually showing where the „natural break‟ occurs.  

The plot will usually decline over range of solutions, with each one improving over the 

previous, until it reaches a point where this decline slows as the clusters have become 

more compact (Duda and Hart, 1973). 

Another test concerns a different aspect of the k-means method, by comparing average 

cluster size.  This is useful, as ideally you are looking for similarly sized clusters.  Small 

clusters may be outliers (Vickers, 2006).  This detracts from the interesting information 

elsewhere, as they become lost in other larger clusters as a result.  For example with 

Figure 3.8, the impact of the outliers results in the variation and split of the two clusters 

on the far right is lost.  Simply looking at average size will always fall since it will 

always be a case of n/k (i.e. n (sample size) remains constant, as k (number of solutions) 

continues to rise).  The average difference from what is expected (i.e. n/k) will be used 

instead to compare the difference for whether the model produced evenly sized clusters 

or not. 



Chapter 3: Data and methodology 

pg. 89 

Nevertheless this approach of comparing these measures through the use of graphs is 

still relatively subjective.  The decision of which solution is still left to human 

judgement (for example „what is a small value?‟) and therefore relatively informal.  It 

may be useful to supplement them with some other statistical measures as well to help 

advise this choice.  Yet there are simply too many different possible measures and 

hence only the most commonly used ones should be considered (Bezdek and Pal, 1998).  

Milligan and Cooper (1985) produced a comparison of 30 possible methods which are 

more formal and this provides a useful point of reference.  Choosing some of the more 

effective measures to apply in this thesis would improve the strength of this subjective 

choice, especially as it moves away from relying on just one or two measures. 

Using measures chosen from this comprehensive study could be problematic.  The data 

sample size is low (50 points), making it less comparable.  The tests are only examined 

for a small range of clusters (up to five) and a larger range of solutions may be wanted 

to be explored here.  The results of simulation studies may not always allow for 

generalised knowledge (Gordon, 1999; Milligan, 1996).  The findings may be 

dependent upon the cluster structures, cluster sizes, number of solutions or chosen 

algorithm, meaning that they may not be as useful for this thesis.  However as Milligan 

and Cooper (1985) argue, it is difficult to justify applying a method which performs 

poorly on well-defined data to test a less structured data set.  It should also always be 

remembered that “Since the stopping rules are heuristic, ad hoc procedures, an applied 

researcher must critically examine the suggested solution provided by any such index.” 

(Everitt et al., 2001, p160).  This also applies to all other tests carried out in this thesis. 

The index which performed the best in Milligan and Cooper‟s (1985) study was the C-

index (Hubert and Levin, 1976).  This displayed excellent cluster recovery, making a 

low amount of errors, especially with regards to producing two few clusters.  Of the few 

errors encountered, these tended to be close to the true solution.  The index looks at the 

homogeneity of clusters.  It is calculated through the equation: 

= dw – min(dw) / max(dw) – min(dw)                                   (5) 

Here dw is the sum of within cluster distances for all the clusters, with min(dw) the 

smallest value for any cluster and max(dw) the largest.  Since a cluster analysis seeks to 

create a solution with compact clusters, a smaller value on the index will indicate a 

better solution.  Similarly with this index, it is not so much about the exact value but 

rather the overall plotted trend and how it changes between values of k. 
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Another variable which performs well in Milligan and Cooper‟s (1985) study is the 

Davies and Bouldin (1979) Validity Index.  Whilst it did not perform as well as the 

previous indicator, Milligan and Cooper still present the index as favourable despite 

producing more solutions with too many clusters.  It examines the similarity of clusters, 

by looking at the ratio of within to between cluster distances.  The index is calculated by: 

  
 

 
∑   
          {

  (  )   (  )

 (     )
}                                            (6) 

Where i and j are individual clusters, Sn is the average distance of cases to the centre of 

cluster Q, Sn(Qi ,Qj) is the distance between the centroids for clusters Qi and Qj and n is 

the number of clusters present in the solution.  The index calculates an average value of 

the largest values involving each cluster.  This finds the ratio of dispersion against 

separation.  A lower value would suggest a better solution. 

These tests however are only a few of many possible tests that could have been chosen.  

Indeed Milligan and Cooper (1985) only consider 30 indices and yet many hundreds 

more exist.  Milligan (1996) notes that until a more complete measure can be developed, 

at least two or three should be used.  If there is only partial agreement, then a larger set 

should be taken.  An issue that arises is for what range of solutions these tests should be 

conducted for.   

There is not much direction provided in the geographical literature as to the maximum 

value which should be tested for.  In the creation of OAC, Vickers (2006) used the 

literature to decide to test between two and 12 possible solutions, before settling on 

seven.  Other area classifications include ACORN (CACI, 2013) and GB Profiles ‟91 

(Openshaw et al., 1994) with six clusters and MOSAIC with 15 (Experian, 2009).  

However there is very little past evidence equivalent research on health and mortality 

classifications.  Shelton et al.‟s (2006) study contained ten clusters whilst 

„HealthACORN‟ (CACI, Unknown Date) only has four.  Measures for displaying 

mortality data for England and Wales include GORs (10), NS-SeC group (seven, with 

the other two often ignored) and Indices of Deprivation (quintiles). 

Bezdek and Pal (1998) suggest an ad hoc test to calculate this: 

 cmax≤√n                                                                 (7) 

cmax represents the highest possible number of clusters which could be used in the 

classification, a function of the square root of the sample size (n).  However applying 
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this to the data set gives a value of 84.82.  This figure presents hardly much of a data 

reduction and certainly makes the process inefficient.  Although it only gives the 

maximum number of clusters to be incorporated into the classification, it does not aid 

our analysis. 

This figure needs to be relatively low to aid interpretation, but also wide enough to 

allow for much variation.  The number must also not be too large so that the 

interpretation of the solution is compromised.  When visualising the classification, too 

many different clusters (and hence colours) can harm our understanding as colours may 

be less distinct from each other.  The eye works through searching for breaks in 

common patterns and therefore the more colours used, means that greater effort is 

required, which makes interpretation confusing (Dorling, 2012).  There are also further 

considerations involving future use of the classification.  If there are too many clusters 

then this may become problematic when applying the classification to statistical tests, 

which may lead to confusing results.  Whilst this figure is arbitrary, the range of two to 

16 was chosen to fully capture the expected range where the true solution lies. 

Another issue that arises through this process is related to Section 3.8.2.  In theory, 

when performing each test for every possible solution value, the seed points should be 

specified more accurately.  Nevertheless this would take far too much time to compute.  

Whilst R uses random seed points, it also allows for multiple runs to be conducted.  

This will ensure that the findings are more robust and not due to localised errors.  The 

average score will be taken from this. 

 

3.9 Testing 

With no prior expectations as to what the classification will find, evaluating the results 

can become difficult (Openshaw and Wymer, 1995).  Given the nature of how the 

classification is constructed, how do you objectively measure how „good‟ it is?  A 

common critique of cluster analysis is that the methodology will always produce an 

answer (Harris et al., 2005).  Thus where there may not be an underlying structure to the 

data, the method will force a structure to it (see Section 2.7.5).  The results should be 

driven by the data, rather than being an artefact of the methodology (Everitt et al., 2001).  

It is straightforward to create a classification, yet it is less simple to actually create 

something that is accurate, representative and, more importantly, useful.   
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Testing is not about identifying how „good‟ the classification is.  Rather it requires 

assessing through statistical testing to check whether the model is robust.  This is all 

that can be done to ensure a high quality set of results (Everitt et al., 2001).  It is less 

about having each area correctly classified in its actual cluster, but that the relationships 

of the clusters overall fit a stable, applicable and useful structure.  As such, accuracy is 

more important here for testing than precision. 

There are many hundreds of possible methods which could be applied here, however 

many are dubious in their application and others are irrelevant.  Most of these tests 

involve making slight changes to the rules and parameters of the process, since a strong 

classification would display similar results when faced with small changes.  This 

represents a clearly structured data set, moving towards the statistical concept of 

„generalisability‟ (Milligan, 1996).  This section will present the most common 

measures which are of most use to the study.  Only once the classification has been fully 

tested can it finally be described and analysed further (Gordon, 1999).   

 

3.9.1 Replication 

A different validation technique for checking whether the clusters found are robust is 

through conducting a replication analysis.  The most common approach is the „split-

sample‟ method which was developed by Blashfield and Macintyre (1980).  The data 

(cases) are split in half and the first sample is clustered.  The centroids gained from this 

are then used to assign the cases in the other sample to determine which each data point 

it is nearest to.  Then a cluster analysis is performed, using exactly the same rules and 

parameters, on the second sample.  These results are then compared to the cluster 

membership produced earlier by applying the centroids from the cluster analysis of the 

first sample. 

Krieger and Green (1999) note that there is much evidence showing that this has been 

successful in evaluating the stability of clusters.  Nevertheless, they also note that there 

are many issues with the approach, especially for unsupervised methods.  The approach 

does not seem to work when clusters lack definition (or are not very unique).  This is 

more problematic if the true number of clusters is unknown.  Everitt et al. (2001) also 

notes there are issues where there exist uneven cluster sizes, especially where there are 

many different variables.  Milligan and Cooper (1987) suggest that the analysis should 
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be able to be replicated with different data.  This is not relevant here as it is harder to 

achieve, especially as this kind of study can only be carried out now that this data is 

available. 

 

3.9.2 Influence of individual points 

This will look at whether certain areas are having more of an impact on certain clusters 

than others.  However the question arises as to how first identify an outlier.  A typical 

approach would be to look at the standard deviation from the mean for the Standardised 

Mortality Ratio values and identify areas which lie outside the bounds of -3<  <3.  

However with 67 variables, does an area which has just one extreme value count as 

extreme?  This is seen in the data, as 2974 areas (41.3 percent) contain at least one 

variable as an outlier. 

Instead Cheng and Milligan‟s (1996) framework will be followed (although it was not 

performed using a k-means method, the approach is still relevant).  They applied a 

different approach by considering the location of cases in relation to their cluster centres.  

These are not outliers in the case of extreme data values but rather outliers in relation to 

cluster membership or in how well the classification fits the data.   

The influence of a data point can be examined by comparing two cluster analyses.  The 

classification is used as a reference point (since the true underlying structure is 

unknown, this is used instead).  Then the classification is re-run (with the same rules 

and parameters) with a (single or series of) data point(s) removed and cluster 

membership of cases is then compared.  Cheng and Milligan also argue in favour of 

using cluster criteria (for example within sum of squares) or more formal measures to 

examine whether the point was beneficial or damaging to the model.  It is likely that 

there will be more influential cases where there is a less well defined underlying cluster 

structure. 

If some points are having a negative impact upon the outcome, should they be deleted?  

This debate is not just found within classification studies but also applies to other forms 

of analysis (for example linear regression and the impact of leverage points).  As Cheng 

and Milligan (1996) argue, common logic would suggest that any points which inhibit 

the overall quality of the classification should be dropped from the final model.  The 

classification is about the exploration of relationships and patterns found between the 
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causes of death.  However it is also a summarisation of mortality patterns across 

England and Wales and therefore excluding data since it has some slight detrimental 

effect on the classification reduces the ability to compare patterns geographically (as 

well as look for possible explanatory spatial factors).  There are also questions as to 

how do we define when a point should be dropped?  What happens when you have 

many points having an effect (is this also independent)?  Testing is about looking at 

how stable the classification is and therefore the exclusion of points should depend on 

this. 

Whilst the previous section looked at the impact of data points on the stability of the 

model, it would be useful to explore the extreme values within each cluster.  Through 

examining the strength of the assignments of cases within each cluster, it is possible to 

evaluate how successful the cluster procedure is.  However how do you define what is 

an extreme value?  Openshaw and Wymer (1995) suggest that any points which lie past 

±3 standard deviations from the cluster centre should be considered.  Cheng and 

Milligan (1996) argue for a stricter cut off, using ±1 standard deviation from the cluster 

centre.  Whilst this would appear false (when compared to the normal distribution), it 

provides a more rigorous testing procedure (especially as cluster analysis do not require 

the assumption that the data is normally distributed; Milligan, 1996).  Both approaches 

will be adopted, removing values in accordance to either and then re-running the 

classification to assess their impact. 

 

3.9.3 Impact of variables 

A sensitivity analysis will be used to explore the individual impact of the variables.  

This will shows the impact each variable has on the formation of the clusters.  It can 

both help understand what is driving the segmentation of the data, as well as identifying 

those variables having little impact in the classification other than adding random noise, 

obscuring patterns (Milligan, 1996).  This approach was useful in the creation of the 

Output Area Classification (OAC) as part of its testing (see Vickers, 2006).    The 

procedure begins by removing each variable individually.  The analysis is then re-run 

with the same rules and parameters as the original classification for each possibility, 

containing all variables bar the one excluded at that stage.  The results of each are then 

compared to the main classification, through statistical measures (see Section 3.8.4) to 
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assess their effect on the segmentation process.  Comparisons can also be made between 

the solutions of cluster membership and subsequent changes in them. 

 

3.9.4 Interpretation 

Where there is data that we do not understand what to expect when a classification 

processes is applied to it, ground truthing is paramount to validating any results (Duda 

and Hart, 1973).  The preceding tests will highlight whether the classification is 

statistically stable, however this tells us very little about whether the classification 

accurately portrays the true underlying structure of mortality patterns across England 

and Wales.  It is very difficult to work out if the clusters found actually make sense or 

have meaning.  Rather a different approach is required. 

Interpreting the classification is the most exciting part of the process.  Here we learn 

about the clusters and what they mean.  However interpreting these clusters also forms 

part of testing, as it allows us to assess whether the results make theoretical sense.  

Since the classification is an exploratory form of analysis, this is required (Gordon, 

1999).  Chapter five will be dedicated to this, analyzing and examining the patterns in 

relation to the literature to ensure that the clusters are not just statistically robust.  It is 

the final stage of testing and its importance is best summarized by Milligan (1996, 

p365):“The bottom line is that any clustering or classification will be useful only if the 

results can be substantively interpreted.” However as Gordon (1999, p183) argues, we 

should not just rely solely on this; “...the human brain is quite capable of providing post 

hoc justifications of results of dubious validity.”   

 

3.10 Conclusion 

This chapter has reviewed and detailed the methodological and data related decisions 

required to build an area classification.  Building a classification does not equate to a 

strict set of rules and procedures, unlike other methodologies.  Rather there is freedom 

to pick and choose different approaches.  Although this allows for greater customization 

to build a classification to a desired specification, it increases the possibility of 

erroneous choices.  This is especially important given that the method is data driven.  

Poor data quality and choices will only produce results of low value. 
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It is important to use a framework to ensure that the correct direction is taken, with each 

choice justified to benefit the model.  These decisions were based upon the approach set 

out by Milligan and Cooper (1987), but also adapted to accommodate the additional 

needs of building an area classification.  The clear structure of development is important 

for any future user or reader to be able to evaluate the quality of the classification 

(Milligan, 1996). 
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Chapter 4: Creating an area classification of 

mortality patterns 

 

4.1 Introduction 

This chapter begins the process of building a classification of mortality patterns across 

England and Wales.  The chapter is split into two main sections, although there is some 

overlap between the two.  It begins through detailing the initial considerations and 

decisions made, which affect how the classification is constructed.  With these rules and 

parameters decided, the initial results will be statistically tested.  This will allow the 

study to examine whether the clusters found are useful, stable and reflective of an 

underlying structure throughout the data.  Based on these findings, the model may be 

modified or improved.  The chapter is informed by the methodological discussion 

throughout Chapter 3. 

It is relatively easy, with the right knowledge and access to software, to build a 

classification.  It is, however, less simple to create a classification that is useful.  

However it is important to note that the processes detailed here are not necessarily about 

making the best classification mathematically.  There are not a series of metrics which 

require optimising, since there is no ‘best’ solution (Everitt et al., 2001).  Rather the 

process of building and testing a classification requires focus to concentrate upon how 

useful it is.  Each stage needs to justify why the approach was taken was valid and the 

most appropriate given the data and objectives (Gordon, 1999).  This is especially the 

case where decisions can impact upon the results, meaning any choices should be 

grounded.  

Given that some choices are subjective (albeit informed decisions), this is important.  

Even with objective measures, there is little indication within the literature as to key 

figures to compare against.  Every classification is different and hence it is not possible 

to make a formal assessment (Everitt et al., 2001).  What we are looking for instead is 

variability, especially relative rather than absolute changes.  The classification needs to 

be shown to be stable, so that the clusters are consistent.  It is about showing that the 

underlying structure of the data found in the analysis exists and hence the analysis is 
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useful.  Detailing each decision clearly, whilst testing for stability in the results is 

paramount for achieving a valid classification. 

 

Building the classification 

 

4.2 Method of selecting seed points 

Seed points refer to the choice of the initial partition (i.e. clusters) made into the data, of 

which the method refines to produce the solution.  This is an important and unavoidable 

part of the start of the k-means methodology and the effect of approaches requires 

evaluating to ensure that the model results are not in part influenced by the method 

chosen.  As such, the resulting classification is more stable and valid. 

 

4.2.1 Random sampling 

As detailed in Chapter 3, the k-means cluster analysis methodology begins by dividing 

the data into k clusters.  These k clusters can be derived by randomly selecting k cases 

from the data set and then using the values of each variable for that case as the initial 

starting cluster centres.  Therefore which cases are selected can lead to varying results 

(Milligan, 1980).  Even when the clusters in the data are well defined and distinct, the 

clustering process may not always refine the solution to define these clusters (i.e. the 

global solution).   

An important issue involves the creation of local clusters (Everitt et al., 2001).  For 

example if these initial starting points were to land on outliers and extreme values (with 

few other cases which are similar), clusters may form of just these cases.  Since the few 

points are very alike and yet much different from the rest of the data, they fulfil the 

clustering processes aims of creating clusters which are separate and compact (Gordon, 

1999).  This means the cluster will not be changed, since separating it or adding other 

values will not lead to an improved classification. 

The first approach proposed in Section 3.8.2 was random sampling (the default setting 

in PASW).  An ad-hoc Monte Carlo approach has been adopted to efficiently assess the 

stability of a classification produced using random seed points.  The classification shall 
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be re-run with different starting points, selected by the same method (Gordon, 1999).  

This will show the sensitivity of the choice of starting point on the classification’s 

clusters (i.e. changes in cluster sizes, cluster membership).  This was done 20 times, 

with the number of clusters set to eight to allow for the possibility of local clusters to 

form. 

Iteration 
Cluster 

1 2 3 4 5 6 7 8 

1 2533 380 3 77 1115 1117 1151 818 

2 653 2014 1108 73 773 1276 1071 226 

3 2492 3 647 968 391 71 1279 1343 

4 1270 71 2081 1403 785 384 254 946 

5 767 835 67 1491 2098 379 1312 245 

6 1078 593 1249 2327 1117 193 69 568 

7 81 775 1387 367 316 1246 962 2060 

8 1481 838 775 1305 2098 71 255 371 

9 368 1368 315 960 1242 2058 88 777 

10 333 403 1276 71 2084 1096 1080 851 

11 2550 1058 3 70 668 1245 410 1190 

12 668 225 71 2038 923 1332 1432 505 

13 316 1251 2058 1390 774 967 70 368 

14 3 81 1124 844 387 2507 1092 1156 

15 2526 958 626 1290 3 68 1326 397 

16 1299 1264 72 2443 3 401 667 1045 

17 564 1290 985 69 545 187 1228 2326 

18 2422 1329 71 707 1035 1213 414 3 

19 1318 2559 1298 390 946 3 611 69 

20 1470 71 855 261 777 369 1292 2099 

Table 4.1: Cluster sizes through multiple iterations using random starting points. 

Note: Cluster number is arbitrary and just the order in the output; they do not have 

equivalent characteristics. 

The results from this analysis (Table 4.1) showed that the choice of using random seed 

points was problematic.  Eight out of the 20 times the classification was re-run, there 

was a cluster created which contained only three cases.  This is a localised solution, 



Chapter 4: Creating a classification of mortality 

pg. 100 

which limits the quality of the classification as this cluster tells us very little of what is 

happening in the mortality patterns throughout England and Wales.  This cluster was 

always made up of the same areas (parts of Wandsworth, Milton Keynes and 

Wrexham).  These cases seemed to be outliers on variables 32 (‘Chronic Ischaemic 

Heart Disease’) and 44 (‘Pneumonia’), though only the former was greater than one 

standard deviation above the rest of the data.  They also had lower than average values 

for the majority of cancer related variables.  Although these would appear statistically 

improbable (the random starting point being one of these areas out of 7194 areas eight 

times), it is likely that the iterative refinement of clusters caused cases to be moved 

elsewhere, only leaving these outliers together. 

This issue was compounded by the fact that there was always a large cluster (usually 

over 2500 cases, much greater than the other clusters and what would be expected).  It is 

likely that since these outliers form their own cluster, a lot of variation is lost from the 

larger cluster which otherwise would have been split up.  Nonetheless in the other 

classifications that did not contain the localised solution, there was still a large cluster 

(above 2000 cases).  There was always a small cluster with around 70 cases in it which 

may also contribute to this problem.  

This use of random seed points appears problematic.  The approach produces an 

unstable and inconsistent set of results.  The classification should be the product of the 

dominant patterns in the data (Milligan, 1980), rather than a product of small 

methodological choices.  The solutions offered are not very even as well, showing large 

differences in the range of cluster sizes.  This is problematic as ideally, the classification 

should have evenly sized clusters which avoid possible local solutions or large clusters 

which are less distinct.  Therefore it should not be used.   

 

4.2.2 Hierarchical cluster analysis 

The alternative approach from Section 3.8.2 was to use a hierarchical methodology.  An 

agglomerative methodological approach was used instead of a divisive one, since the 

latter is mostly used when binary data is involved and all the variables here are 

continuous (Everitt et al., 2001; Gordon, 1999).  Within this cluster, the main 

algorithms have been briefly described in Section 3.5.1.  All these methods have 

different uses and applications, though as Blashfield (1976) notes, Ward’s method 
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appears most effective when using interval or ratio data (like in this study).  It is also the 

most commonly used method (Everitt et al., 2001) and therefore this was used.  All 

other factors were kept as similar as to the process described in Chapter 3 for the k-

means approach where possible (for example Euclidean distance was selected here) to 

maintain a fairer starting point. 

Cluster Size 

1 931 

2 1005 

3 681 

4 1035 

5 746 

6 905 

7 615 

8 1286 

Table 4.2: Differences in cluster sizes through running a hierarchical cluster analysis. 

This method, however, cannot be assessed in the same way.  As each step of the 

clustering process occurs by joining together the closest cases or cluster of cases, this 

approach will always happen in the same order since the values used to measure 

distance (or similarity) will always be the same (Everitt et al., 2001; Gordon, 1999).  

Therefore the initial cluster centres will not vary.  This does not mean that a local 

solution cannot be achieved, however as Table 4.2 shows, this was not the case.  This 

method is the better option for the construction of the classification.   

 

4.3 How many clusters? 

Unlike other classificatory methods, a partitional approach requires the selection of the 

number of clusters to be nominated before the analysis takes place.  Therefore it is 

important to ground this choice through testing a range of solutions to assess which is 

most useful in this study.  However the findings used to inform this decision may be 

slightly misleading as neither potential solution has been optimised (Everitt et al., 2001; 

Milligan and Cooper, 1985).  Instead they provide an indication, rather than the exact 

correct figure, to make an informed decision on which will be the most useful direction 

for this data set. 
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To decide which number of clusters is optimal for the classification, a k-means cluster 

analysis will be run on a series of possible solutions between two and 16 (Section 3.8.4 

provides a discussion for this choice).  It is expected that the true solution will lie 

between these limits, as well as being effective with dissemination of results.  With the 

data gathered from the solutions, each can be assessed through a series of different 

measures to see which is the most appropriate (also detailed in Section 3.8.4). 

The measures are designed in the way that they naturally improve as the number of 

clusters increases.  Therefore the best solution mathematically will always be a 16 

cluster solution.  However assessing the measures purely based on the metric’s value is 

not effective for building a useful classification.  Rather it is important to select the 

solution which balances the extra detail offered by a larger number of clusters and the 

simplification of patterns gained from a smaller number.  Since the point of classifying 

a data set is to simplify patterns to those which dominate the data (Everitt et al., 2001), 

the classification needs to offer depth, without being too confusing. 

To be able to apply this understanding, the results for each measure are plotted 

graphically (Figures 4.1 to 4.4), in an approach similar to Scree plots (Duda and Hart, 

1973).  This improves our visual interpretation of the data.  To be able to assess what is 

efficient for capturing the patterns in the data, the focus is in the change in the gradient 

of the metric.  Where there is a large improvement in the model, which is followed by a 

flattening of the trend (or just smaller changes), this would show that further 

improvements in the number of clusters are not adding much more understanding 

(Milligan and Cooper, 1985).  Where this trend of a large improvement in the metric 

ends, this would suggest that this solution is useful for efficiently capturing patterns in 

the data. 

Whilst this approach may be argued as being subjective since it involves user 

interpretation of changes in the gradient of the graph, as Milligan and Cooper (1985) 

argue there is no theoretical justification (or literary comparisons) for evaluating the 

metric value otherwise.  This is especially the case when comparing between different 

measures, each capturing various parts of the cluster analysis process (Everitt et al., 

2001).  Every classification is different in terms of parameters and data, making this the 

most useful. 
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4.3.1 Analysis 

The first measure assessed is the mean Euclidean distance of each point to its cluster 

centre (Figure 4.1).  The measure shows how compact (or similar) the data in the cluster 

solutions are, by showing the average dispersal of points (Everitt et al., 2001).  Larger 

values will show clusters where points lay further from the centres of the clusters.  With 

the interpretation of clusters derived from their cluster centres (i.e. average 

characteristics of variables for a cluster), these reflect clusters which are less accurate of 

the data contained within them as many points are not representative of the cluster 

centres.  Therefore a minimal score is favourable here. 

 

Figure 4.1: Differences in the mean similarity of cases to their respective clusters. 

Beginning at a two cluster solution, the graph shows a rapid decline (i.e. improvement) 

with each increase in the number of solutions used.  This continues until the fifth 

solution where there is a ‘kink’ in the graph showing a flattening of the curve, 

suggesting fewer gains from solutions.  The line then falls again after the sixth solution 

(albeit at a slower rate), flattening once again at the eighth solution.  The graph begins 

to fall at an even lower rate after this, however there is no noticeable kink in the curve 

for the rest of the possible solutions.  The line begins to level off at the fifteenth 

solution, suggesting that further increases do not gain much in improving the model 

(supporting the decision not to include any more solutions).  In summary, the graph 

would suggest either a five or eight cluster solution as the rate of improvement gained 

from increasing the number of solutions noticeably changes (i.e. slows down) after 

each. 
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Ideally a useful classification would produce clusters that are fairly evenly sized (Everitt 

et al., 2001; Vickers, 2006).  This would indicate a solution which has been not 

influenced by outliers.  For example for a two cluster solution, if the clustering process 

decides to make one cluster of just a few data points and the rest as one huge cluster this 

tells us very little, as most of the variation in the data is lost in the large cluster.  Having 

a solution which captures the dominant patterns in the data is ideal, so that the 

underlying data structure is not lost or mis-specified.  Figure 4.2 examines this issue 

through showing the mean difference in cluster sizes from what would be expected if 

each cluster was evenly sized (i.e. n/k).   

The first two solutions (two and three) are much higher than the rest showing these not 

to be effective choices.  However there is little to distinguish between the rest of the 

solutions which little difference between them.  With the added complexity that comes 

from having increased solutions when interpreting the results, this may suggest that a 

smaller cluster solution may just as useful for capturing patterns in the data.  The 

findings from this measure remain mostly inconclusive. 

 

Figure 4.2: The mean difference in cluster size for different numbers of clusters. 

A similar issue that became apparent when conducting this analysis concerns the 

creation of local solutions.  The probability of this occurring increases as the number of 

partitions in the data also increases.  This was seen when calculating the measure used 

in Figure 4.2, as each cluster after the eighth solution contained a cluster with a single 

digit in total membership.  These small clusters could easily represent outliers, 
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obscuring more important patterns.  This would suggest that the eighth solution may be 

the largest number of clusters which are effective for this measure. 

The next two tests (detailed in Section 3.8.4) give more formal statistics for evaluating 

the most useful cluster solution to use.  Figure 4.3 shows the results of running the C-

index test (Hubert and Levin, 1976).  It examines the homogeneity and compactness of 

clusters, with a lower value showing a better model.  The resulting curve is smoother 

than Figure 4.1, with there being several distinct ‘kinks’ in the graph.  These are found 

at solutions three, five, eight and ten.  The graph evens off after the tenth solution, 

suggesting very little gains in having more clusters. 

 

Figure 4.3: The variation of the C-index for different cluster solutions. 

The final statistic applied is the Davies and Bouldin (1979) validity index (Figure 4.4).  

It analyses the ratio of within cluster distance to the between cluster distance (Section 

3.8.4).  A lower value represents a better solution, with compact and distinct clusters.   

The graph shows a slight rising trend at the early values.  However the values are quite 

unstable at first, before levelling off.  This small difference in the later values would 

suggest little improvement through increasing the number of clusters.  A two cluster 

solution performs the most effective on the metric.  Interestingly, a five cluster solution 

performs the worst on this statistic which contrasts with previous variables which have 

shown it to be favourable.  The graph would suggest a six cluster solution may be the 

most useful, since although it is not the lowest it is much lower than most other values 

and also gains more information from added number of clusters than the other low 

values.  However it should be noted that due to how the statistic is calculated, the lowest 
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value is not always the most useful solution, as other solutions may reveal more 

information (Davies and Bouldin, 1979; Milligan and Cooper, 1985). 

 

Figure 4.4: The change in the Davies-Bouldin validity index across multiple cluster 

solutions. 

 

4.3.2 Which solution? 

As Everitt et al. (2001) note, it is not effective to rely on a single statistic for deciding 

on what number of clusters to use.  It is an important choice that will determine the 

structure of the classification.  The solution needs to perform well across these four 

measures, with each capturing a different aspect of the methodology.  Comparing the 

performance of various solutions will inform which is most useful in this study. 

For most of the measures, the highest number of clusters consistently performed best on 

the metric scale.  However they may be less useful for future analyses, as patterns and 

relationships may become too confusing to find.  This is especially the case where the 

gains in extra information provided by extra clusters do not always present a better 

model across the different measures.  Having a large number of clusters may end up 

hiding more than it reveals (Gordon, 1999; Vickers, 2006).  Therefore a balancing act is 

needed, to choose the most efficient number.   

An eight cluster solution has been chosen for the model.  The solution performs well 

across all measures and it is this consistency which shows that it is the most useful 

application.  In both Figures 4.1 and 4.3, the solution is the last ‘kink’ in the graph, with 
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the curve starting the slightly level off afterwards suggesting limited gains in other 

solutions.  Whilst it did not stand out in Figure 4.2, it does not perform poorly.  It does 

however not perform well through using the Davies-Bouldin index (Figure 4.4).  Higher 

solutions than this were shown across the various measures not to add much more 

detail, showing them to be less useful through their added complexity of larger number 

of clusters (reducing our simplification of the data). 

A five cluster solution also performs well however this was not chosen.  This is shown 

in both Figures 4.1 and 4.3, where there is still considerable information gained by 

having a few more clusters after it.  It also does not perform well for the Davies-Bouldin 

index, showing it to be less consistent than an eight cluster solution. 

 

4.4 Calculating the cluster centres 

There are two commonly used approaches for calculating cluster centres in the k-means 

methodology.  Normally in the methodology, once cases have been split into their initial 

clusters, cluster centres are derived (see Section 3.6.1; Duda and Hart, 1973; Gordon, 

1999; Everitt et al., 2001).  Cases are then moved into the other clusters and these 

moves are assessed to see if they improve the model.  If there is an improvement, then 

the move is made permanent, else it remains where it was.  After all cases have been 

moved and checked, then the cluster centres are re-calculated and the process is 

repeated.   

Running means present an alternative technique to re-calculating cluster centres.  

Instead of waiting until all moves have been completed, running means re-calculate the 

centres after each move has been made (Everitt et al., 2001).  This may produce a more 

accurate decision for moving cases, as the cluster centres are constantly updated 

throughout the process.  However it is sensitive to the ordering of cases, since the means 

are updated after each move. 

A cluster analysis was run using both options to allow a brief comparison of what is the 

most effective approach for this study.  These classifications were compared using two 

measures used in Section 4.3; average distance of cases to their respective cluster 

centres and the mean difference in cluster sizes compared to if they were evenly sized.  

The use of running means gave a classification which was both less compact (average 

distance was 742, being 739 when the standard algorithm was used) and less evenly 
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sized (a mean difference of 447, compared to 367 when not used).  The use of running 

means will not be applied for this study, given that its performance was less suited to 

the aims of the methodology.   

 

4.5 An area classification is born 

With all decisions about the clustering process made, the classification model was run.  

First some initial details concerning the model are provided, to help inform subsequent 

analyses and observations in the testing process.  The initial compilation of the 

classification iterated 67 times to a convergence criterion of 0, before halting at its final 

solution where no changes could be made to further improve the model.  Eight clusters 

were produced, with varying sizes (Table 4.3).  The average distance of cases from their 

cluster centres was 738.7 (Euclidean distance), with the average difference in cluster 

sizes being 367.25. 

Cluster N 

1 1562 

2 1149 

3 1309 

4 854 

5 656 

6 296 

7 322 

8 1046 

Total 7149 

Table 4.3: The number of areas found within each cluster. 

It is not efficient to begin by interpreting the results.  The testing process may end up 

flagging something as problematic and if this requires modification, the time spent 

interpreting becomes wasted.  Instead the rest of this chapter will focus on statistically 

testing the classification to assess whether what is produced is stable and hence useful.  

If these clusters in the data are found to be stable through varying scenarios, then the 

existence of this underlying structure in the data can be said to useful and less likely to 

be due to random chance (Everitt et al., 2001; Gordon, 1999).  Once this has been 

justified (or improvements made), then the classification can be explored. 
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Testing the classification 

 

4.6 Replication analysis 

Replication analysis is important to be conducted when compiling a classification, 

because it provides confidence that the clusters exist and the results can be generalised 

(or at least moving towards this), a key issue in statistics in general (Milligan, 1996).  

Through randomly splitting the data set, we would expect that if the clusters are distinct 

then under the same rules and parameters, we would not get inherently different results.  

As such, we can infer stability in the classification. 

The following procedure was followed (in accordance with Blashfield and Macintyre’s 

(1980) split sample method) to test the classification: 

1. The data set was split in half, with 3597 cases being randomly selected to form 

the first sample and the rest being the second sample. 

2. A k-means cluster analysis was conducted on the first sample of data.  The 

method kept all the same rules and parameters that were used to compile the 

main classification (for example an eight cluster solution was used, a 

hierarchical methodology was used to find the seed points, Euclidean distance 

was used etc). 

3. The final cluster centres of the cluster analysis were then taken and applied to 

the second sample, assigning each point to its nearest cluster (using the ‘classify 

only’ option in PASW). 

4. Step two was then repeated using the second data sample instead. 

5. The output from steps three and four were then compared. 

An issue with this approach is that randomly splitting the data in half may lead to some 

bias in the data found in either subset of data.  It is possible (albeit unlikely) that the 

random selection of data points places one cluster only within one sample.  Although 

extreme, it highlights the uneven selection of data points which may falsely show the 

cluster structure to be chaotic and not replicable, when in fact comparisons are not fair.  

Therefore the first part of Blashfield and Macintyre’s (1980) procedures has been 

modified to solve this.  Random sampling was performed within each cluster, to give a 

fairer set of two samples (i.e. random stratified sampling). 
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When comparing the two solutions for the second sample, each classification produced 

a similar level of compactness, with the average distance of cases to their cluster centres 

being 739.6 (step 3) and 739.8 (step 4).  These were not much different from the value 

for the main classification (738.7).  There were differences in the range of cluster sizes, 

with the third step producing less even clusters (the average difference of cluster sizes 

from what would be expected if they were completely even was 188.1 at step three and 

162.6 at step four).  Yet it would be expected that the solution from the third step may 

produce less even clusters as it has not been iteratively refined.  Comparing these results 

to the value for the main classification (which when halved to account for the fact that 

there are twice as many cases is 183.6) shows neither of these values to be too 

worrying.  There were no clusters of particularly small size. 

Exploring the cluster centres for each variable across the eight clusters allows an 

understanding of the clusters produced.  However, since a full interpretation of the main 

classification has yet to be conducted, comparisons are only limited.  The clusters 

created through the replication analysis were not too dissimilar to those of the main 

classification (results not shown), showing the clusters to be distinct in the data.  There 

was little difference between the results of step three and four in the replication analysis.  

Although they are not exactly the same, this is not what the replication analysis seeks.  

With the overall patterns generally similar, this shows stability of the overall 

patterns/clusters found which is important in showing that the results are useful.   

Table 4.4 shows a cross-tabulation of cluster membership for the cases from the second 

sample for the two classifications.  With the profiles of the clusters produced being 

similar, the numbers represent equivalent clusters to be able to examine stability of the 

results.  The majority of cases are transferred to the equivalent cluster, suggesting the 

same core underlying relationships/patterns exist in the data.  Where there are higher 

numbers of data moving differently, this is likely to represent those cases which lie at 

the edges of clusters.  This is not necessarily bad, as small differences in the clusters 

produced can affect cluster membership (Everitt et al., 2001; Gordon, 1999).  These 

movements are always to other clusters with similar mortality profiles, highlighting this, 

showing stability in the patterns observed (Blashfield and Macintyre, 1980).  Overall, 

stability and replication can be inferred from these results. 
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Step 4 Clusters 
Total 

1 2 3 4 5 6 7 8 

Step 3 

Clusters 

1 587 145 77 0 0 0 0 0 809 

2 0 461 82 50 59 0 0 0 652 

3 0 0 289 7 163 52 0 0 511 

4 45 70 101 363 0 0 0 0 579 

5 0 2 0 57 222 44 0 105 430 

6 0 0 0 0 3 221 4 48 276 

7 0 0 1 112 2 7 117 11 250 

8 0 0 0 0 0 1 55 34 90 

Total 632 678 550 589 449 325 176 198 3597 

Table 4.4: A cross-tabulation of cluster membership in the replication analysis. 

 

4.7 Impact of outliers 

The next testing procedure is to examine the impact of extreme data points (i.e. areas) 

on the classification (see Section 3.9.2 for a discussion).  This is important for 

evaluating stability of clusters to see if they are influenced by extreme data values.  

These affect the results by creating cluster profiles which do not reflect the true 

structure of the data, by skewing the results. 

Cluster 1 S.D. 3 S.D. 

1 1.0 0.1 

2 4.7 0.1 

3 2.4 0.0 

4 15.7 0.6 

5 18.8 0.3 

6 63.5 11.5 

7 66.1 17.7 

8 10.8 1.1 

Total 12.1 1.5 

Table 4.5: The percentage of areas identified as outliers through using one and three 

standard deviations from the mean as the threshold value. 
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Cluster 1     Cluster 2 

 

Cluster 3     Cluster 4 

 

Cluster 5     Cluster 6 

 

Cluster 7     Cluster 8 

Figure 4.5: The distribution of distance of data points for each cluster. 

Table 4.5 shows the percentage of ‘outliers’ as defined in Section 3.9.2 using both 

Cheng and Milligan (1996) test (±1 standard deviations) and a more conventional 
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schema (±3 standard deviations), split by cluster.  Cheng and Milligan’s criteria showed 

12.1 per cent of areas reflecting outliers, which would indicate an issue in the data.  

However data which is normally distributed would be expected to have 32 per cent of 

its values lying one standard deviation further from the mean (Rogerson, 2006).  

Plotting a histogram for each cluster of distance of each case to its cluster centre shows 

that the majority of the clusters appear normally distributed (see Figure 4.5).  The two 

smallest clusters (six and seven) are, however, slightly positively skewed.  Therefore the 

result would suggest that the clusters are fairly compact.  This is shown with the more 

stringent value of using three standard deviations beyond the mean showing only 1.5 

per cent of areas as outliers.     

The number of outliers varied by the clusters as well.  Clusters six and seven have 

higher proportions of areas that could be considered as outliers by either measure.  This 

appears to be related to the size of the clusters (see Table 4.3), where smaller clusters 

have higher proportions.  This shows that these clusters are less compact, with the areas 

contained within less similar.  However further explanation can only be gathered once 

the classification has been fully interpreted, to understand whether this affects stability 

(Section 5.1.1). 

Although this testing procedure may appear problematic, Cheng and Milligan’s 

approach examines the stability of the model.  If the classification was good, then the 

removal of these points should have little effect (even if they are not true ‘outliers’).  By 

using their criteria and hence removing more points (than compared to using three 

standard deviations measure), it also provides a more rigorous test for the classification.  

The outliers were removed from the data set and the analysis was re-run with the same 

parameters and rules.   

There were few changes in the overall cluster profiles captured by the classification, 

indicating stability through little effect of the outliers.  This allowed the examination of 

change in equivalent cluster membership (Table 4.6).  The results show a largely stable 

classification, with 4554 cases (72 percent) remaining in their ‘equivalent’ cluster after 

the outliers were removed.  This was fairly consistent between the clusters, with all 

retained the majority of their data.  Although the two smaller clusters (six and seven) 

retained the highest proportions, they experience the highest number of cases removed, 

leaving just areas which are similar. 
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          "Outliers" removed       

    1 2 3 4 5 6 7 8 Total 

All 

cases 

1 1145 103 156 0 0 0 0 143 1547 

2 0 818 1 123 142 0 2 9 1095 

3 0 29 890 233 0 0 0 125 1277 

4 0 0 0 454 52 151 63 0 720 

5 0 0 0 0 384 123 26 0 533 

6 0 0 0 0 0 104 4 0 108 

7 0 0 0 0 0 0 109 0 109 

8 0 2 0 56 0 0 225 650 933 

Total   1145 952 1047 866 578 378 429 927 6322 

Table 4.6: Change in equivalent cluster membership when the ‘outliers’ (one standard 

deviation above the mean) are removed from the analysis. 

Where there were movements to a different cluster, these were mostly between clusters 

with similar mortality profiles.  This is less problematic, as it will capture those cases 

which lie close to the boundaries of the clusters and therefore slight changes to the 

clustering process lead to them being classified differently (Everitt et al., 2001).  The 

underling pattern of mortality is still captured as patterns remain fairly stable.  Cluster 

eight is of particular interest as it loses and gains a fairly high share of areas for many 

different clusters suggesting a mixture of experiences.  Further interpretation will have 

to consider this carefully. 

The cases which were removed could be argued not to be actual outliers.  Therefore the 

test was also re-run with any cases falling three standard deviations from the mean 

removed instead.  The results are shown in Table 4.7, showing a more stable model, 

with fewer changes.  This shows a set of more distinct clusters, although with much 

fewer data points excluded from the analysis this result was always likely.  Overall, the 

findings of this testing procedure have shown a stable classification, with extreme 

values that have little effect on the clusters produced.  

With the outliers identified and their impact on the model described, the question that 

arises is should these data points be removed from the analysis?  The answer is probably 

not.  Testing the impact of their removal shows that the model remains relatively stable 

with its clusters.  Although there is an improvement on two measures, this should be 

expected since you are removing extreme data points which would otherwise skew these 
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measures.  Leaving them out may also result in lost information or interesting patterns 

lost.  This is important, as it is questionable whether these areas can be defined as 

outliers themselves.  Furthermore Cheng and Milligan’s study is more relevant to 

studies which use sample-based data sets.  This study uses data for all areas in England 

and Wales, rather than a sample.  It is important to keep all areas to show what is 

happening, to remain representative.  It would be a poor classification of England and 

Wales if some areas were missing! 

          Outliers removed       

    1 2 3 4 5 6 7 8 Total 

All 

Cases 

   

  

  

  

1 1428 112 0 0 0 0 0 21 1561 

2 1 819 88 3 232 0 0 5 1148 

3 73 37 1142 3 0 0 0 54 1309 

4 0 0 25 680 102 7 32 3 849 

5 0 0 0 7 464 171 12 0 654 

6 0 0 0 7 0 202 53 0 262 

7 0 0 0 0 0 0 265 0 265 

8 0 14 2 6 25 0 50 938 1035 

Total   1502 982 1257 706 823 380 412 1021 7083 

Table 4.7: Change in cluster membership when the ‘outliers’ (three standard deviations 

above the mean) are removed from the analysis. 

 

4.8 Variable sensitivity 

With 67 variables included in the analysis, it is important to assess the impact of each.  

This is not just important for testing stability of the classification, but also shows what 

is driving the formation of the classification.  The process is detailed in Section 3.9.3, 

but essentially involves the removal of each variable individually and then assessing the 

difference to the main classification.  Variables can be identified on the x-axis by their 

number from Tables 3.6 to 3.11. 

Change in the average distance of cases to their respective cluster centre after the 

removal of a particular variable was first evaluated (Figure 4.6).  The expected value is 

presented by the line, which represents the mean value for the main classification 

multiplied by 0.985 (i.e. 66/67).  This accounts for how Euclidean distance is 
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calculated, since the other results all contain one variable less.  It assumes each variable 

contributes an even amount to the classification.   

 

Figure 4.6: Changes in the average distance of cases from their cluster centres when a 

variable is removed from the classification. 

The majority of variables, when removed, lead to an increase in the mean distance of 

cases to their cluster centres.  Leaving them out of the classification leads to the 

formation of less compact clusters than what would be expected, showing that their 

inclusion is useful in adding value to the classification.  None of these values were 

higher than the mean distance for the main classification (738.7).   

There are fewer variables (12) whose exclusion from the classification leads to a more 

compact set of clusters.  The variable names for those furthest from the expected value 

are shown, however there is no discernible pattern by cause of death.  They are 

important prevalent causes of death across a range of different types of diseases.  Whilst 

they are having a large negative impact on the model, their exclusion from the main 

classification would not be useful.  These are key prevalent cause and ignoring them 

would limit the observations found.  It would lead to a constrained and restricted view 

on the underlying patterns of mortality in England and Wales, representing a reality 

which does not exist. 
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An explanation for the patterns presented concerns the use of weightings.  As Euclidean 

distance is calculated by adding up the differences between the value for each variable 

for an area and the centre of the cluster it belongs to (i.e. the average of all cases), 

weighting has an important effect on impacting on this difference.  Higher weights 

bring a larger range of possible values, as the distribution becomes stretched out 

through multiplying the values.  Removal of variables with larger weights will naturally 

decrease this value, leading to more ‘compact’ clusters. 

Those variables having the largest impact through this test have the highest weightings 

(c.f. Tables 3.6 to 3.11).  Calculating the correlation between the weight of the variable 

removed and the mean distance of cases to their cluster centre (after the removal of that 

variable) was -.957 (p<.001), showing a strong and significant association.  Where the 

size of the weighting increased, the mean distance value was lower (i.e. having a larger 

change compared to the value for the main classification). 

An issue that arises is that it is difficult to infer stability of the classification and the true 

impact from this assessment.  For example, the removal of ‘Chronic Ischaemic Heart 

Disease’ leads to the average distance of cases from their respective cluster centre 

declining by a value of 5.7 per cent of the value for the main classification.  Although 

Figure 4.6 shows that the variable leads to the largest change, the difference is only 

fairly small and hence evaluating the sensitivity analysis is problematic. 

Although the approach was useful in Vickers (2006), it has been shown to be less here.  

This is because the variables used in Vickers classification were all evenly weighted and 

therefore this is not a fair form of testing.  For this classification, the variables were 

weighted differently to account for their different importance, as measured through 

prevalence.  As such, variables are not comparable here, given that they do not have the 

same weightings.  Rather a new approach must be taken to solve this issue, one that has 

not been applied before in the literature.  The size of the individual weightings must be 

accounted for.  This will show whether particular variables are having a larger or 

smaller impact than would be expected. 

To calculate this, the expected change needs to be re-estimated.  Instead of just 

comparing to a standard value, the mean distance of cases to their cluster centres for the 

main classification is multiplied by the weighting for each variable.  This shows the true 

expected change in the mean distance, since weighting has been shown to be important 

for determining the Euclidean value.  To evaluate the performance and impact of each 
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variable once removed from the classification, the relative change can be calculated 

through dividing the actual change in Euclidean distance (from the value for the main 

classification) by the expected change.  Figure 4.7 shows the results from this 

standardised measure. 

Overall, the results show a more stable classification.  For the majority of the variables, 

their removal does not have a large relative change on the model results.  The recorded 

actual change is consistently lower than what we would have expected from their 

weighting.  However there are some variables which have led to a greater change in 

mean distance than would be expected (i.e. a value over one).   

 

Figure 4.7: Relative change in average unweighted distance of cases to their cluster 

centres once variables are removed from the classification. 

Three of these variables (‘Diseases of the Eye and Adnexa’, ‘Diseases of the Ear and 

Mastoid Process’, ‘Conditions Originating in the Perinatal Period’) contain low 

prevalence levels.  These are problematic and their low levels of deaths captured would 

suggest that they adding little to the classification.  These are the three smallest 

variables used in the study, accounting for 0.008 percent (167) of all deaths in the study.  

With such small changes, their inclusion in the classification could be questioned.   

With this study being an initial investigation taking a different approach that has not 

been applied before, it is argued that including all deaths would useful at first.  This 

would create a complete classification of all areas and all possible causes.  Having all 

deaths covered would allow for the most variation to be captured by the classification.  

However this test has shown that it may be beneficial to drop these variables which 
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cover such few deaths.  More is not always better, especially since they could be 

restricting or masking other effects (i.e. adding noise to the model). 

Vickers (2006) offers an explanation of why having such small variables is unhelpful 

when compiling a classification.  For variables to be useful and add to the classification, 

there needs to be enough deaths to allow for variations to occur between the 7194 

MSOAs used in the study.  Applying an eight cluster classification for just these three 

variables combined (into one variable) highlights this problem.  With 167 deaths in the 

three variables in question, only this information can be classified.  Thus would result in 

seven clusters made up by dividing up these 167 deaths.  The final cluster will represent 

areas with no deaths in them, since with this approach you cannot decide how to divide 

areas with nothing in them.   

To avoid the classification containing variables that add little value to the classification, 

it would be useful to drop these variables from the analysis.  Another variable (‘Causes 

Related to Pregnancy and Childbirth’) contains a similar level of deaths (n=160) to 

these variables and was included here as well for the same reason.  Exploring the output 

produced from running the classification without these variables shows absolutely no 

change in the classification (results not shown).  There is no change in cluster 

membership and the cluster profiles remained identical.  This highlights the lack of 

information these variables have added to the model. 

The other two variables shown to be problematic in Figure 4.7 are ‘Dementias’ and 

‘Senility’.  However both of these causes are fairly prevalent (3.08 per cent and 1.77 per 

cent of all deaths between 2006 and 2009 respectively).  Dropping these would 

therefore not be useful for creating a representative classification.  Rather what this 

highlights is that these two variables are driving the classification, being important in 

cluster formation.   

Removing these from the classification and re-running the analysis, showed that the 

results of the main classification were stable.  There is not much difference in the 

mortality profiles of each cluster, with the same overall characteristics prevailing.  

There is some change in cluster membership, however this is only involves small 

numbers, relating to those cases which lie on the edge of the clusters moving to clusters 

with similar profiles.  Therefore whilst they are important in the analysis, the 

classification is not solely capturing their patterns.  Rather they reflect the underlying 
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structure of the data being similar.  Stability through variable selection can be inferred 

through this section. 

 

4.9 Conclusion 

This chapter has focused on the creation of a new type of classification for England and 

Wales, exploring the underlying structure of mortality patterns.  The decisions made in 

creating this have been detailed, with justification of the important steps to ensure that 

the final product is both relevant and of high quality.  These have been made to create 

an efficient tool in terms of the methodology employed, as well as be appropriate to 

achieving the aims of the study.  As such, the procedures have focused on showing the 

classification produced to be valid given the data and objectives available, creating a 

useful tool. 

The resulting classification was tested fully to ensure that what is presented here is 

useful and stable.  Whilst there is no strict testing schedule or metrics to optimise, 

various tests showed the clusters to be stable, showing that the underlying structure of 

the data was captured effectively.  The lack of variability in results shows that the 

classification is useful, warranting further investigation of what it shows in terms of 

mortality patterns.  The testing process also helped inform the interpretation and 

understanding of the clusters found. 

This does not spark the end of the classificatory process.  So far, the emphasis has been 

on creating the classification.  But what is next?   The classification will be explored to 

examine what clusters have been created.  This interpretation will help form further 

analyses to gain a better understanding of how these clusters have come to exist.  Whilst 

the testing conducted in this chapter informs us whether the classification is statistically 

stable, analysing the relationships that form (and explain) the clusters further will aid in 

ground truthing.  Having clusters which relate to the processes and patterns previously 

identified in the literature is paramount to assessing the usefulness of the classification. 
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Chapter 5: Interpreting the area classification 

 

5.1 Introduction 

This chapter seeks to improve the understanding of the clusters which constitute the 

area classification of mortality patterns for England and Wales.  It begins through 

detailing the cluster centres, showing what each cluster captures with regards to the 

inputs to the model (i.e. the causes of mortality).  There is limited literature assessing 

how the different causes of mortality interact together and hence the classification will 

provide an overarching insight into the dominant structure that exists throughout 

England and Wales.  The area classification was then mapped to view the geographical 

spread of the clusters, to see if this could add to the understanding of what the clusters 

represent.  Based upon these findings, the individual clusters were named to improve 

their use as a research tool.  Basic statistics to evaluate the clusters based upon isolation, 

compactness and the impact of variables were calculated to show how useful the area 

classification is. 

To further understand the clusters produced, other statistics were gathered to add value 

to the area classification.  Life expectancy and premature mortality were calculated for 

each cluster to see if this could provide additional information not provided through the 

individual mortality rates for causes.  A social and spatial analysis was then applied to 

the classification to explore the characteristics of the areas which form each cluster.  

The analysis focuses upon demographic, social and geographical factors.  This aids the 

understanding of how the clusters have manifested and developed throughout England 

and Wales.  It helps move towards ground truthing the classification through assessing 

their relevance based upon previous research, as well as showing its use as a research 

tool for further applications.   

 

5.2 The characteristics of the clusters 

Exploring the „cluster centres‟ allows the examination of each cluster to be able to 

understand what they are showing.  The cluster centres show the mean value of each 

input variable (i.e. cause of death) of the areas which make-up each cluster.  These are 

presented across Tables 5.1 to 5.6, with the cluster centres split into different types of 
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causes, serving to highlight interaction effects between causes.  The centres were also 

converted from their weighted scores to SMRs to aid interpretation. 

Conditional formatting was applied to each variable individually (using Excel).  This 

illustrates each variable in relation to the range of values (represented through a colour 

scale), where the lowest value is coloured in green and the highest is red.  The rest of 

the values are automatically coloured proportionally, dependent upon their position in 

relation to the range (where yellow represents the mean).  Using colours simplifies 

patterns, making it easier to understand, given that the human eye is excellent at pattern 

recognition (Dorling, 2012; Everitt et al., 2001).  As such, it allows the visual inspection 

of the dominant patterns, relationships and interactions between the causes of mortality, 

within and between each cluster. 

Variable 
Clusters 

1 2 3 4 5 6 7 8 

Cancer of the Gullet 84 106 96 110 123 130 98 96 

Stomach Cancer 75 109 91 124 146 160 125 90 

Colon Cancer 93 98 98 107 104 114 105 100 

Rectum Cancer 87 100 95 107 122 132 114 97 

Liver Cancer 84 106 92 123 137 161 123 97 

Pancreatic Cancer 96 102 99 106 107 116 98 97 

Lung Cancer 68 113 83 127 173 190 124 83 

Breast Cancer 95 97 100 100 101 106 115 104 

Ovarian Cancer 100 97 102 96 99 93 97 102 

Prostate Cancer 96 96 100 99 100 102 111 106 

Kidney Cancer 89 99 95 107 111 130 112 104 

Bladder Cancer 84 105 96 111 112 135 115 99 

Cancer of the Brain 102 94 98 94 94 95 105 106 

Leukaemia's 99 100 97 100 107 101 99 98 

Other Lymphatic 

Cancers 
98 100 99 102 100 111 101 98 

Other Cancers 84 105 94 112 123 132 111 96 

Table 5.1: The mean SMRs for all cancer-related mortality by cluster. 

Key: Green is a low SMR, red a high SMR, yellow the mean and the other colours 

scaled accordingly to their respective position. 
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Variable 
Clusters 

1 2 3 4 5 6 7 8 

Hyperintensive Diseases 84 107 91 115 119 141 131 108 

Acute Myocardial Infarction 82 132 82 112 169 180 136 102 

Chronic Ischaemic Heart 

Disease 
67 85 107 148 114 169 128 96 

Pulmonary Heart Disease 

and Diseases of Pulmonary 

Circulation 

84 104 97 121 116 134 121 97 

Atrial Fibrillation and Flutter 84 96 90 101 113 120 128 114 

Heart Failure 84 100 92 103 118 138 134 111 

Other Heart Diseases 92 95 102 106 103 113 103 103 

Intracerebral Haemorrhage 90 99 97 112 118 127 110 99 

Cerebral Infarction 76 90 89 110 113 143 148 114 

Stroke 76 92 83 99 106 149 173 128 

Other Cerebrovascular 

Diseases 
70 71 82 100 95 154 210 134 

Aortic Aneurysm and 

Dissection 
86 104 97 116 114 116 111 94 

Diseases of Veins, 

Lymphatic Vessels and 

Lymph Nodes, Not 

Elsewhere Classified 

77 98 99 129 116 129 137 101 

Other Circulatory Diseases 74 94 83 107 122 167 146 112 

Table 5.2: Differences by cluster of average the SMR values for causes related to the 

digestive system. 

Key: Green is a low SMR, red a high SMR, yellow the mean and the other colours 

scaled accordingly to their respective position. 
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Variable 
Clusters 

1 2 3 4 5 6 7 8 

Dementias 57 60 63 87 78 170 349 159 

Other Mental and 

Behavioural Disorders 
56 96 72 138 159 217 147 88 

Parkinson's Diseases 83 71 83 87 70 130 198 145 

Alzheimer‟s 66 62 71 88 79 151 284 157 

Other Diseases of the 

Nervous System 
84 91 90 102 103 139 141 115 

Table 5.3: Variations by average SMR score for mental and nervous system related 

causes of death across the classification. 

Key: Green is a low SMR, red a high SMR, yellow the mean and the other colours 

scaled accordingly to their respective position. 

 

 

Variable 
Clusters 

1 2 3 4 5 6 7 8 

Pneumonia 72 90 85 117 112 165 167 122 

Chronic Lower Respiratory 

Diseases 
61 109 79 134 176 214 138 90 

Lung Diseases due to 

External Agents 
72 97 83 111 141 195 162 100 

Other Diseases of the 

Respiratory System 
73 91 83 107 115 160 176 120 

Table 5.4: Average SMR score for respiratory causes of death by cluster. 

Key: Green is a low SMR, red a high SMR, yellow the mean and the other colours 

scaled accordingly to their respective position. 
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Variable 
Clusters 

1 2 3 4 5 6 7 8 

Ulcers 79 105 90 124 132 158 124 94 

Vascular Disorders of 

the Intestine 
73 101 92 124 140 160 133 98 

Other Diseases of 

Intestines 
82 100 92 118 117 135 132 105 

Alcoholic Liver 

Disease 
58 105 76 143 182 241 140 81 

Other Liver Diseases 71 114 85 131 153 188 131 87 

Diseases of 

Gallbladder, Binary 

Tract and Pancreas 

72 104 95 124 145 173 126 96 

Other Diseases of the 

Digestive System 
81 102 88 112 125 143 135 102 

Table 5.5: The cluster centres for causes related to the digestive system. 

Key: Green is a low SMR, red a high SMR, yellow the mean and the other colours 

scaled accordingly to their respective position. 
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Variable 
Clusters 

1 2 3 4 5 6 7 8 

Infant Mortality 75 103 85 109 123 145 110 84 

Septicaemia 78 100 88 119 130 166 124 103 

Other Infectious and 

Parasitic Diseases 
83 117 90 118 139 152 128 100 

Diseases of the Blood 85 110 84 108 130 143 123 111 

Diabetes Mellitus 66 105 82 117 132 177 178 117 

Other Endocrine, Nutritional 

and Metabolic Diseases 
77 101 93 110 124 150 152 96 

Diseases of the Skin and 

Subcutaneous Tissue 
79 103 88 111 117 134 154 112 

Diseases of the 

Musculoskeletal System and 

Connective Tissue 

86 100 94 101 109 124 133 107 

Renal Failure 80 104 87 105 124 147 149 114 

Other Diseases of the 

Genitourinary System 
76 97 85 117 109 145 169 118 

Congenital Malformations, 

Deformation and 

Chromosomal Abnormalities 

80 105 97 105 126 142 132 105 

Senility 77 62 71 68 75 148 191 156 

Other Symptoms, Signs and 

Abnormal Findings 
65 106 78 136 160 197 149 81 

Falls 76 92 91 128 133 178 122 96 

Other Accidents 83 96 93 109 118 140 116 106 

Intentional Self-Harm 86 100 94 119 117 139 101 94 

Other External Causes 69 106 85 123 127 158 124 92 

Table 5.6: The cluster centres for the rest of the causes that formed the classification. 

Key: Green is a low SMR, red a high SMR, yellow the mean and the other colours 

scaled accordingly to their respective position. 

The tables show varying patterns emerging throughout each cluster, with each capturing 

different profiles of mortality patterns.  The main factor dividing England and Wales 

into the clusters appears to be levels of prevalence.  However variations by cluster are 
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not just dissimilar scales of the SMR scores, rather there are differences by cause as 

well.  For example, clusters six and seven are fairly similar, containing high mortality 

rates across causes.  Yet the causes which dominate clusters are different.   

With the sixth cluster, there are high rates for causes related to unhealthy behaviours 

(for example respiratory, digestive and some heart-related causes; Tables 5.4 and 5.5).   

The seventh cluster is not a function of slightly lower rates, being characterised by 

higher rates for mental and nervous system related causes (Table 5.3).  There are also 

differences by the cancer related diseases between the clusters (Table 5.1).  They are 

capturing different patterns and processes. 

There was no change in cluster size (or group membership) of the figures reported in 

Table 4.3.  There is an uneven spread of cluster sizes, with fairly large differences (both 

absolutely and relatively) in the range of values.  The smaller clusters had the profiles 

which showed higher mortality rates and vice versa.  Poor health appears to be more 

differentiated across England and Wales, with more clusters of these patterns.  This is 

compared to the larger and more homogenous areas of good health characteristics which 

there are fewer clusters of. 

 

5.2.1 Naming the clusters 

With each of the clusters better understood, they can be allocated a name rather than just 

referring to them by individual numbers.  Just as the clusters are summaries of the main 

mortality patterns in England and Wales, each name must articulate them well in a few 

words.  Whilst they are subjective, they also need to be accurate (Harris et al., 2005).  

The names need to be effective to aid with the dissemination of the classification (as 

well as subsequent analyses), improving any outputs produced using it through 

providing a quick reference point. 

Naming the clusters is a difficult (but important) task.  Names need to make sure they 

are not the same to those used in other classifications, to avoid any issues of users 

assuming the clusters were capturing the same types of areas (Vickers, 2006).  

Ecological fallacies could also arise if the names are too detailed (not quite describing 

those cases located on the edges of the clusters), but at the same time they need not be 

too ambiguous (Harris et al., 2005).  Possible stigmatisation of areas is inevitable 
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(Butler and Watt, 2007) and therefore needs to be minimised, especially with the low 

geographies involved.  Areas should not also be insulted by the name attached to them.   

Tables 5.1 to 5.6 provide a wealth of information for which the names are based upon.  

However there has been some influence through the analysis presented later in the 

chapter, helping to shape their names.  The names are presented below, with a short 

summary to highlight why through their main traits: 

Cluster One: “Best Health and Most Desirable” 

 The majority of variables (57) contain the lowest value between clusters, 

showing that it represents good health areas. 

 Two variables have slightly high scores; „Ovarian Cancer‟ and „Cancer of the 

Brain‟ (Table 5.1) although only the latter is above 100 (i.e. average). 

 Within the cluster, rates are highest relatively amongst the cancers, and the 

lowest are found in those variables with the highest variation across the clusters 

(for example neurodegenerative diseases; Table 5.3). 

Cluster Two: “Average Mortality Profiles” 

 The cluster contains low to average rates, with most fluctuating around 100. 

 It has the lowest rates for „Senility‟ and „Cancer of the Brain‟ (Tables 5.1 and 

5.6), with low neurodegenerative disease both between and within (Table 5.3). 

 „Acute Myocardial Infarction‟ is the only variable which could be considered 

slightly high (Table 5.2).  

Cluster Three: “Good Health Areas” 

 This cluster appears to fall in-between „Best Health and Most Desirable‟ and 

„Average Mortality Profiles‟, being mostly low rates.  This is its most distinctive 

trait. 

 Ovarian cancer is the only variable which contrasts the trend, although the SMR 

is only 102 (Table 5.1). 

 Within the cluster, heart-related causes and cancers are quite high, with low 

neurodegenerative diseases (Tables 5.1 to 5.3).  It is similar to „Best Health and 

Most Desirable‟, just the SMRs are slightly higher. 
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Cluster Four: “The Middle” 

 The cluster is dominated by rates found mostly in the middle, when compared to 

the other clusters.  These values are generally just above average. 

 There are higher rates for heart-related diseases, especially „Aortic Aneurysm 

and Dissection‟ (Table 5.2).  Digestion- and accident-related variables also 

display slightly high rates (Tables 5.5 and 5.6). 

 Some cancers and „Senility‟ are quite low, as are neurodegenerative diseases 

(Tables 5.1, 5.3 and 5.6). 

Cluster Five: “Poor Health Experiences” 

 The rates in this cluster are mostly above average, with high values for 

respiratory- and digestive-related causes (Tables 5.4 and 5.5).  Some cancers are 

also high, especially those linked to respiratory and digestive causes (Table 5.1).  

Unhealthy behaviours may be more important in explaining this cluster, an 

important policy consideration. 

 „Parkinson‟s Disease‟ rates are the lowest (the other neurodegenerative diseases 

are low when compared within clusters, but not between) and „Cancer of the 

Brain‟ is also quite low (Tables 5.1 and 5.3). 

Cluster Six: “Poorest Health and Least Desirable” 

 It contains the worst health of all the clusters, containing the highest cluster 

centres for 40 variables. 

 Only two variables fall below 100, „Cancer of the Brain‟ and „Ovarian Cancer‟ 

(Table 5.1).  This contrasts with those clusters which display better mortality 

profiles.   

 Within the cluster, cancers tend to be lower (Table 5.1), with highest rates 

within for respiratory, liver- and accident-related causes (Tables 5.4 to 5.6). 

Cluster Seven: “Poorest Neurodegenerative Health” 

 Mortality rates are consistently high rates across the majority of variables. 

 A few cancer-related causes are low, however never below 97 (Table 5.1). 

 Within the cluster, the rates for neurodegenerative disease are much higher than 

the other means (Table 5.3). 
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Cluster Eight: “Mixed Experiences” 

 The rates mostly fall slightly lower than average, although there are many which 

are just above average as well, shaping a cluster with varied outcomes. 

 Most cancers, as well as digestive- and heart-related causes contain the lower 

values (Tables 5.1, 5.2 and 5.5). 

 Gender specific cancers are slightly high and „Cancer of the Brain‟ is the highest 

value when compared to the other clusters (Table 5.1).  Neurodegenerative 

diseases are also quite high, as is „Senility‟ (Tables 5.3 and 5.6). 

 

5.2.2 Visualising the area classification 

An advantage of producing an area classification is that it allows the mapping of cluster 

membership, to show how the clusters vary over space.  Visualising the classification 

brings it alive, giving meaning to it.  The classification is no longer just a set of (boring) 

tables and text; rather you can begin to see what is happening.  Quite simply put; „a 

picture can say a thousand words‟.  It also helps improve the understanding of the 

classification, through illustrating potential processes which create this structure to the 

data.  The boundaries of the GORs (Governmental Office Regions) have been overlaid 

to aid the interpretation of the maps, providing some reference points. 

The explosion of colours which constitutes the spatial distribution of the classification 

does not appear to present a clear geographical pattern itself (Figure 5.1).  It is difficult 

to see common patterns from just this; however this does not necessarily mean that no 

geographies are present for particular clusters (a dimension which is explored in more 

detail later; Section 5.6.2).  Particular colours dominate the map however this is because 

they tend to be found in MSOAs which are larger in size.  These reflect rural areas and 

therefore rurality is a factor which should be further examined later (see Section 5.6).  

Nonetheless the main urban conurbations also stand out on the map, highlighting wide 

variety of area types within each. 

London was included to give a case study of the area classification within a city.  The 

classification captures the East-West divide of the city (Orford et al., 2002), showing it 

to reflect social patterns rather than geographical variations.  Whilst the more affluent 

West is more homogenous in its pattern of mortality profiles, the deprived East-End of 

London shows a wider range of experiences.  This shows the importance and relevance 
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of the area classification within a policy targeting framework, as assuming the deprived 

area to be similar in health outcomes is false. 

Figure 5.1: The geography of the classification 

 

5.2.3 Compactness and isolation of clusters 

A k-means cluster analysis aims to produce a set of clusters which increase the 

similarity of areas within each cluster, whilst at the same time maximising the 

dissimilarity between each cluster (Everitt et al., 2001; Gordon, 1999).  This is to ensure 

that the clusters are distinct and therefore the classification is useful by capturing 
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different patterns.  Applying this framework is important for evaluating an area 

classification, as well as contributing to its interpretation. 

Examining the compactness of each cluster improves the understanding of the 

classification through highlighting how stable each is internally.  Clusters which are 

homogeneous will have mortality profiles that are more representative of the areas 

contained within (Everitt et al., 2001).  This assesses how precise Tables 5.1 to 5.6 are 

for detailing each cluster.   

The mean Euclidean distance of cases to their respective cluster centre was calculated.  

This shows the similarity of areas within each cluster based upon their location to the 

average for all areas, across every variable.  Where areas are different from the cluster 

centres, they will be located further from it.  A greater range of area types will therefore 

increase this measure, showing a less compact cluster.   

 

Figure 5.2: Mean distance of areas to the centre of each cluster. 

Key: Clusters; 1 = Best Health and Most Desirable, 2 = Average Mortality Profiles, 3 

= Good Health Areas, 4 = The Middle, 5 = Poor Health Experiences, 6 = Poorest 

Health and Least Desirable, 7 = Poorest Neurodegenerative Health, 8 = Mixed 

Experiences. The line gives the mean value for the classification as a whole. 

Figure 5.2 presents a bar chart of the mean distance of areas to their cluster centre by 

cluster.  The line included represents the average distance for all cases.  All of the 

clusters vary from the value for this overall value.  Applying confidence limits shows no 

overlap between any of the values (not shown as too small to see).   

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8

A
v
er

ag
e 

d
is

ta
n
ce

 t
o
 c

lu
st

er
 c

en
tr

e 

Cluster 



Chapter 5: Interpreting the classification 

pg. 133 

The clusters which were most compact were „Best Health and Most Desirable‟ and 

„Good Health Areas‟.  The clusters with the mortality profiles which display better 

health outcomes contain areas that are most similar to each other.  This pattern is 

mirrored at the other end of the distribution.  Those clusters with mortality profiles 

displaying worse health are less concise, with a greater range of experiences in the areas 

contained within them.     

An explanation for this can be derived from exploring the mortality profiles of the 

clusters.  The dissimilar clusters „Poorest Health and Least Desirable‟ and „Poorest 

Neurodegenerative Health‟ consist of higher mortality rates.  Similarity of areas within 

this cluster is restricted, since all causes cannot be high.  This is because if there is a 

higher concentration of deaths for a particular cause, then this limits the ability of other 

causes to also be high as well.  Therefore areas within these clusters will be dissimilar to 

the cluster centres.  It does not mean that they are wrong, as it is their extremities which 

makes them similar (i.e. high rates), even if the distance measure shows otherwise.  The 

clusters with lower mortality rates are less affected by this, given that better health 

cannot be extreme, as the bottom end of the distribution is bounded and cut off at zero. 

The pattern of similarity also appears to be related to the size of the clusters.  To test for 

this possible effect, a Pearson‟s correlation was run.  This will evaluate the strength of 

the association between these two factors and whether this is significantly different 

from random chance (Rogerson, 2006).  The result gave a significant result (r = -.967, p 

< .001), showing a strong negative association.  The clusters which were larger in size 

reported a lower mean distance of cases to their cluster centres (i.e. were more similar). 

Exploring the concept of isolation focuses upon the separation of the clusters.  It 

evaluates how dissimilar each is.  If the clusters are to be distinct and different from 

each other, then each cluster should lie far from each other within the data.  To calculate 

this, the Euclidean distance between each cluster (i.e. based upon their cluster centres) 

was computed.  A larger value shows greater dissimilarity in the cluster centres between 

different clusters.  The results are presented in Table 5.7, which was conditionally 

formatted to improve interpretation (see Section 5.2 for description of interpretation). 

The clusters which are most similar (i.e. located nearest to each other) are „Best Health 

and Most Desirable‟ and „Good Health Areas‟.  Those clusters which displayed good 

health outcomes are all similar to each other.  These clusters are less distinct, reflecting 

only slightly different traits for areas with low rates.  „Mixed Experiences‟ is more 
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similar to these types of areas, compared to the poor health clusters.  Whilst it displays 

varying mortality rates between causes, the cluster is more representative of areas with 

lower mortality rates. 

Cluster 

Best 

Health and 

Most 

Desirable 

Average 

Mortality 

Profiles 

Good 

Health 

Areas 

The 

Middle 

Poor Health 

Experiences 

Poorest 

Health 

and 

Least 

Desirable 

Poorest 

Neuro-

degenerative 

Health 

Mixed 

Experiences 

Best Health 

and Most 

Desirable 

  2138 1237 3756 4601 7682 6685 2958 

Average 

Mortality 

Profiles 

    1482 1915 2523 5629 4674 2288 

Good 

Health 

Areas 

      2532 3389 6477 5487 1996 

The Middle         1771 3958 3548 2539 

Poor Health 

Experiences 
          3123 4083 3377 

Poorest 

Health and 

Least 

Desirable 

            3574 4816 

Poorest 

Neuro-

degenerative 

Health 

              3733 

Mixed 

Experiences 
                

Table 5.7: Euclidean distance between cluster centres. 

Key: Green is a low distance, red a high distance, yellow the mean and the other 

colours scaled accordingly to their respective position. 

The most dissimilar clusters are „Best Health and Most Desirable‟ and „Poorest Health 

and Least Desirable‟, which given their mortality profiles is not surprising.  Both 

„Poorest Health and Least Desirable‟ and „Poorest Neurodegenerative Health‟ are 

isolated from the clusters with good health characteristics, showing them to be distinct 



Chapter 5: Interpreting the classification 

pg. 135 

with this regards.  However these two clusters were shown not be too similar to each 

other.  This is different when compared to the clusters with good health, which are all 

fairly similar to each other.  The poor health clusters (including „Poor Health 

Experiences‟) are dissimilar, showing distinct clusters that capture different patterns in 

the data.  There is greater variation in area types for poor health patterns.   

 

5.2.4 Impact of the variables 

Calculating the range of each input variable across the cluster centres (Tables 5.1 to 5.6) 

allows an assessment to be made regarding the impact of the variables in the 

classification (Table 5.8).  A large difference across a variable would show that the 

variable was more important in driving the clusters through offering greater variation in 

patterns (Everitt et al., 2001).  These variables are more geographically and socially 

determined, being picked up by the classification through similar distributions.  A lack 

of variation would suggest that there is less underlying structure to the data for that 

particular variable. 

17 variables (27 per cent) had a range between the cluster centres of over 100.  Those 

which had the largest range were neurodegenerative diseases, particularly „Dementias‟ 

and „Alzheimer‟s‟ (Table 5.3).  This group of causes are having the largest impact upon 

the classification.  This is in part due to their distinct geographical and social patterning 

(Shaw et al., 2008).  However their extremities are mostly due to the values for the 

clusters „Poorest Health and Least Desirable‟ and „Poorest Neurodegenerative Health‟. 

Table 5.9 also shows patterning in the types of causes with low ranges.  Eight out of the 

bottom ten of these were cancer related diseases.  It shows that these types of cancers 

are less geographically and socially determined, with less distinct patterns throughout 

the data.  Instead, they are more evenly distributed across England and Wales.  This 

suggests that the use of the gender-related cancers and „Cancer of the Brain‟ in the 

descriptions given of the clusters in Section 5.2.2 is less useful.   

Their low values do not mean that they do not add understanding to the area 

classification though. They still provide additional information to the model, capturing 

how they vary within the clusters as well.  Ignoring them would just produce an area 

classification representing social divisions, an artificial result that does not reflect 

reality.   This restrained the quality of Shelton et al.‟s (2006) mortality classification, 
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with variables selected based upon their social variations despite being less important 

for understanding the underlying structure of mortality patterns overall (for example 

water transport deaths had a fairly large impact on one cluster; see Table 2.7).  

Rank Variable Range 

1 Ovarian Cancer 9 

2 Leukaemia‟s 10.1 

3 Cancer of the Brain 12.1 

4 Other Lymphatic cancers 12.5 

5 Prostate Cancer 14.9 

6 Pancreatic Cancer 19.5 

7 Breast Cancer 20.2 

8 Other Heart Diseases 21.1 

9 Colon Cancer 21.2 

10 Aortic Aneurysm and Dissection 30.2 

... ... ... 

53 Lung Disease Due to External Agents 123.3 

54 Parkinson‟s Disease 128.1 

55 Senility 128.7 

56 Other Symptoms, Signs and Abnormal Findings 131.9 

57 Other Cerebrovascular Diseases 139.7 

58 Chronic Lower Respiratory Diseases 152.8 

59 Other Mental and Behavioural Disorders 161.4 

60 Alcoholic Liver Diseases 183.3 

61 Alzheimer‟s 221.9 

62 Dementias 292 

Table 5.8: The ten highest and ten smallest ranges for variables in the classification. 

Section 4.8 highlighted that the weightings had an effect on variable sensitivity.  

Therefore it would appear useful to assess whether the prevalence of the variables was 

associated in accounting for this patterning by the range.  If it is just the more dominant 

causes of death affecting the classification, then this adds little to our understanding and 

the usefulness of the classification.  A Pearson‟s correlation was run to assess this 

association between the total number of deaths by a cause and its reported range in 

values for the cluster centres.  This resulted in a weak correlation, which was 

insignificant (r = .191, p < .134).  Prevalence does not mask geographical variation.  
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Rather social and spatial factors are more important in explaining the structure of the 

data found by the area classification. 

 

5.3 Health-related statistics 

Assigning each individual death to its corresponding cluster allows further health-

related statistics to be compiled.  These extend our understanding of the classification 

through revealing different dimensions and characteristics of the clusters captured.  A 

high mortality rate does not necessarily mean that the health of an area is poor.  Since 

everyone will die, this can stop any misinterpretation of the clusters.  They also offer 

greater comparability and applications outside of this study due to their standardised 

approaches (ONS, 2010b; Thomas et al., 2010).  This allows the evaluation of how 

useful the area classification is at capturing variation in the underlying structure of 

health inequalities for England and Wales as well. 

 

5.3.1 Life expectancy 

Life expectancy estimates at birth were calculated using the Chiang II method (Chiang, 

1972).  The statistic gives the amount of life a person (controlling for age and sex) can 

expect to live on average if a person was born and remained in each cluster (as well as 

the mortality rates remaining the same).  As such, the inequality in terms of life that can 

be expected to live (a key health dimension) can be compared between clusters.  

Estimates are regularly used both for compiling national health measures and within 

academic research (for example ONS, 2010b; Smith et al., 2010), highlighting how 

useful the measure is in this context.  The results are presented in Table 5.9. 

The classification has captured wide variations between areas across England and 

Wales.  Geography is clearly important when researching public health and mortality 

variations, with the classification appearing to be a useful research tool for exploring 

and explaining this.  The observed pattern largely follows the mortality profiles shown 

in across Tables 5.1 to 5.6.  Those areas which displayed better mortality profiles (i.e. 

lower SMRs), have higher life expectancies at birth.  However this may be expected 

given that the measure is derived from current mortality rates (Chiang, 1972), it 

highlights the inequalities captured by the classification.  Nonetheless the gap is fairly 
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large, with a difference of nine years of life on average at birth for males, and eight for 

females between the highest and lowest clusters.  There are considerable injustices in 

which people can expect to live fewer years on average dependent upon where they live 

(Diez-Roux, 2001; Woods et al., 2005). 

Cluster Males Females Difference 

Best Health and Most Desirable 81.3 85.1 3.8 

Average Mortality Profiles 77.9 82.5 4.6 

Good Health Areas 79.4 83.5 4.1 

The Middle 75.9 80.6 4.7 

Poor Health Experiences 74.5 79.7 5.2 

Poorest Health and Least Desirable 72.2 77.2 5 

Poorest Neurodegenerative Health 75 78.6 3.6 

Mixed Experiences 78.5 81.7 3.2 

Total 78 82.1 4.1 

Range 9.1 7.9 
 

Table 5.9: Life expectancy variations by cluster and gender. 

Overall, females overall can expect to live, on average, four more years than males in 

England and Wales.  The classification builds upon this established relationship to show 

how this varies by area type.  The clusters which displayed higher mortality rates and 

poorer health also had a larger difference between males and females in terms of life 

expectancy at birth.  The negative impact of these areas on health has a greater effect on 

the health of males, than compared to females.  This is further shown through the range 

of values between clusters, which is also larger for males.  Males are more susceptible 

to social and spatial processes, reflecting the protective biological characteristics of 

females (see Christensen et al., 2001).  Poor health for males has a stronger impact upon 

explaining the poor health of an area.  However this relationship is not completely 

consistent, as „Poorest Neurodegenerative Health‟ shows.   

To evaluate how useful this result was, the range of values captured using the 

classification was compared to a variety of different area-based measures which have 

been used to analyse life expectancy variations (Table 5.10).  For those measures with a 

small number of categories, the classification captures a wider range of values than 

equivalent measures.  It is a useful tool for analysis, capturing greater information in the 

data.  Although local authorities have a larger range of values, this is not much higher 
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and therefore with the larger number of areas involved, the classification is shown to be 

still useful.   

Measure Deprivation Quintiles 
Governmental 

Office Regions 

Local 

Authorities 

Range for males 8 2.8 10.7 

Range for females 5.6 2.7 9.9 

No. of areas 5 10 347 

Source Smith et al., 2010 ONS, 2010 ONS, 2010 

Table 5.10: Differences in the range of life expectancy values by area measure, 2007-

2009. 

 

5.3.2 Premature mortality 

Premature mortality was also calculated (Table 5.11).  It gives a different aspect of the 

mortality patterns captured, given that like life expectancy, a high mortality rates does 

not necessarily mean a poor outcome since everyone dies.  These were calculated as 

standardised mortality ratios (see Section 3.7.4 for details on method).  It gives the 

percentage of deaths in respect to the expected trend for the total population (i.e. a value 

of 100).  Total deaths under the age of 75 were used since this is both below the life 

expectancy for England and Wales (i.e. premature; see Table 5.10) and is comparable to 

other research (for example Thomas et al., 2010).   

The patterns for premature mortality follow that of life expectancy.  Those clusters 

which displayed higher mortality rates also had higher than expected rate of premature 

mortality.  The range shows wide inequalities in premature mortality captured by the 

classification, indicating it to be a useful research tool.  As with life expectancy, the 

range was greater for males than females, showing males to be greater affected by social 

and geographical factors.   

The difference between males and females varied by cluster as well.  For those clusters 

with better mortality profiles, males performed better.  This pattern reversed for the 

clusters with poorer mortality profiles.  Male health is affected more in those clusters 

which had higher mortality rates, highlighting its greater contribution to the formation 

of these clusters.  Although this pattern reverses in the clusters with better health 

outcomes, the excess of male premature mortality in the other clusters would naturally 
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decrease the SMR elsewhere showing males not to be more susceptible to good 

environments.   

Cluster Males Females Difference 

Best Health and Most Desirable 67 70 3 

Average Mortality Profiles 96 97 1 

Good Health Areas 81 83 2 

The Middle 116 112 4 

Poor Health Experiences 132 127 5 

Poorest Health and Least Desirable 157 151 6 

Poorest Neurodegenerative Health 118 118 0 

Mixed Experiences 84 87 3 

Range 90 81   

Table 5.11: The standardised mortality ratio for premature mortality (deaths under the 

age of 75) split by cluster and gender.   

A comparison of these results to other analyses allows the classification‟s impact to be 

assessed.  In Thomas et al. (2010), the range of SMR for both genders between 

deprivation deciles (of areas) was 65 (a ratio of 1.88), showing it to offer less detail than 

the classification‟s eight clusters (including even as a ratio) albeit only for 2006-2007.  

A recent report by PHE (2013) showed the relative difference between the best and 

worst Local Authorities to be 227 per cent.  Although this was only using the crude rate, 

converting this for the data used here showed a relative difference of 194 per cent for 

males and 176 per cent for females.  However it still performed well considering it uses 

far fewer areas.   

 

5.4 Demographic variations by cluster 

Having focused so far on medical and health based explanations of the clusters, it now 

seems useful to examine the types of areas within each cluster.  This is the benefit of 

creating an area classification, as whilst it is both easier and more useful to cluster 

together areas, their information can be further analysed to gain additional information 

(Harris et al., 2005; Openshaw et al., 1994; Vickers, 2006).  This adds value to the 

clusters, as well as developing further explanations for them. 
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5.4.1 Age 

Age is an important demographic factor for understanding health differences.  Risk of 

mortality and poor health increases throughout the life course (see Lindeboom and van 

Doorslaer, 2004).  This operates at the individual level of analysis and its importance 

was why the input variables controlled for it (see Section 3.7.4).  Rather the 

examination here focuses on improving the understanding of the characteristics of the 

areas captured in each cluster.  This is important in explaining the differences in the 

mortality profiles between the clusters. 

Data was taken from the ONS population estimates by age (2006-2009), as discussed in 

Section 3.7.4.  The focus was on the differences by old age (identified here as the 

percentage of the population aged over 65), a key factor in explaining health (Table 

5.12). 

Cluster Aged 65 and over (%) 

Best Health and Most Desirable 17.67 

Average Mortality Profiles 15.41 

Good Health Areas 17.45 

The Middle 14.27 

Poor Health Experiences 14.03 

Poorest Health and Least Desirable 13.47 

Poorest Neurodegenerative Health 14.23 

Mixed Experiences 17.86 

Total 16.23 

Table 5.12: Variations in people aged 65 and over (2006-2009) between the clusters. 

There is only a small variation in the reported levels of the elderly population captured 

by each cluster.  This is shown by the relative difference in values, with the largest 

value being only 1.33 times larger than the smallest.  The distribution of values across 

the classification reflects the mortality profiles of each cluster, whereby there are fewer 

elderly people in those clusters with higher mortality rates.  However it is not a strict 

linear process, as the cluster „Mixed Experiences‟ contains the largest proportion despite 

not representing the cluster with the best health outcomes.  

A Pearson‟s correlation was run to show the degree of association between this 

explanatory variable and the health statistics calculated in Section 5.3.  This was used to 
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show whether age was a useful addition to the understanding of the area classification.  

The percentage of elderly people was a strong predictor of life expectancy for males (r = 

.916, p = .001) and females (r = .849, p = .008) within the classification, as well as the 

SMR for premature mortality for both sexes (r = -.924, p = .001 and r = -.918, p = .001 

respectively).  Age is a useful variable to explain the differences between clusters. 

 

5.4.2 Communal homes 

When compiling small area estimates of mortality, the effect of communal housing 

needs to be considered.  Nursing homes have been shown to have higher mortality rates 

compared to the rest of the population, even after accounting for age (Raines and Wight, 

2002).  This concentration of frailer members of the population geographically will 

impact upon mortality measures.  For example, Williams et al. (1995) showed that 

nursing homes bias SMR estimates when calculated using electoral wards.  With the 

area classification created using SMRs across MSOAs (which are similarly sized to 

wards), evaluating the impact of this factor is important for understanding the clusters. 

Data for communal homes was collected from the 2011 Census through the 

„Neighbourhood Statistics‟ website.  Communal establishments were defined as 

buildings containing supervised accommodation for its residents (ONS, 2012a).  Those 

identified as „medical or care‟ establishment types were also included to differentiate 

between them, due to their added focus on health.  These included NHS related, local 

authority owned and social housing associations that provided some form of care due to 

health needs.  The mean number of these establishments per area (MSOA) was 

calculated from these statistics for each cluster. 

The results are presented in Table 5.13.  There does not appear to be a common pattern 

which relates to the mortality profiles for all the clusters.  There is little variation 

between the majority of the clusters, with patterns remaining mostly even.  This holds 

for both variables.   

For both „Poorest Neurodegenerative Health‟ and „Mixed Experiences‟, it appears 

useful as an explanatory variable.  Both clusters report higher averages for both 

variables.  The range of values is also relatively wide, being more than twice as large for 

each variable.  
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Cluster 

Mean number 

of communal 

establishments 

Mean number of 

medical or care 

establishments 

Best Health and Most Desirable 7.6 2.6 

Average Mortality Profiles 6.5 2.7 

Good Health Areas 7.9 3.2 

The Middle 8.3 3.3 

Poor Health Experiences 5.6 2.5 

Poorest Health and Least Desirable 11.5 4.2 

Poorest Neurodegenerative Health 11.0 6.2 

Mixed Experiences 10.6 5.4 

Total 8.2 3.4 

Table 5.13: Differences in average number of communal homes per MSOA between the 

clusters. 

The location of these establishments would appear a useful explanatory factor in 

explaining their respective mortality profiles.  For example both of the clusters 

displayed high mortality rates of neurodegenerative diseases; diseases of old age.  It 

supports past research that has shown it to be important with regards small area health 

analysis (Williams et al., 1995; 2004).  Yet it is only a good predictor for these two 

clusters.  For example this is not the case for „Poorest Health and Least Desirable‟, 

which demonstrates high mortality rates for these diseases as well but only a slightly 

increased number of establishments.   

 

5.4.3 Migration 

Areas are not static; rather they constantly evolve and change.  Population change is the 

most important factor in how they change (Champion, 2012).  Migration patterns 

capture this best and therefore form important dimensions of understanding the 

demographic characteristics of areas.  Migration varies by social and demographic 

factors (Boyle, 2004).  This in turn, impacts upon patterns of health and mortality 

(Brimblemcombe et al., 2000; see Section 2.5).   

Migration is typically analysed using socio-economic area measures (Brimblecombe et 

al., 2000; Vickers, 2006).  Applying the classification here will help reveal new 
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dimensions to this analysis.  However since migration is important for understanding 

inequalities in mortality (Bentham, 1988; Brimblemcombe et al., 2000; Section 2.5), it 

can also help explain how the clusters have formed. 

Statistics on population turnover were collected from the „Neighbourhood Statistics‟ 

website for July 2008 to June 2009, the most recent year of the classification.  The focus 

was on the net change (per 1000) of individuals per area.  Migration was also split to 

examine the pattern for just those aged over 65, in accordance to the findings of 

Sections 5.4.1 and 5.4.2.  This provides additional details to those factors which have 

been shown to be important so far.   

Cluster Net change (all) 
Net change of those aged 65 

and over 

Best Health and Most Desirable 1.61 -4.28 

Average Mortality Profiles -1.84 -6.78 

Good Health Areas 1.10 -3.02 

The Middle -2.48 -5.49 

Poor Health Experiences -5.12 -7.33 

Poorest Health and Least Desirable -5.58 1.77 

Poorest Neurodegenerative Health -0.64 17.81 

Mixed Experiences 4.07 10.44 

England and Wales -0.17 -1.49 

Table 5.14: Net change in the population of the clusters (per 1,000) mid-2008 to mid-

2009. 

The pattern for overall net migration rates appears to be useful (Table 5.14).  The 

distribution of this variable relates to each cluster‟s mortality profile, where a cluster 

which displays better health outcomes attracts people to those areas.  A Pearson‟s 

correlation was run for overall net change to analyse the association between it and life 

expectancy (by both sexes).  However there was only partial support for this, with a 

significant positive association for males (r = .811, p = .015), but not for females (r = 

.67, p = .069).  There was stronger support for the association between this factor and 

the SMRs for premature mortality (r = -.872, p = .005 for males, r = -.855, p = .007 for 

females). 

The mortality profile also acts as a proxy for the social desirability of an area (see 

Section 5.5.1), as migration to a different area is not solely based upon health 
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considerations (Boyle, 2004).  However migration does not just reflect the quality of the 

areas which consist of each cluster.  Rather as Popham et al. (2011) argue, population 

instability and particular decline impacts negatively on health through the loss of 

community and social cohesion, as well as the provision of services (due to less 

demand).   

The pattern for the migration of those aged over 65 was less clear.  There was no 

discerning pattern between the clusters.  This was reflected through correlating this to 

both the life expectancy of males and females which gave no significant relationships (p 

= .617 and .286 respectively).  This result was mirrored for premature mortality as well 

(p = .865 for males and p = .787 for females).   

Instead, the measure was more useful for explaining the overall net migration patterns 

for both „Poorest Neurodegenerative Health‟ and „Mixed Experiences‟.  Both clusters 

gave higher than expected overall net changes in the migration trends for the areas 

within them.  This was accounted for by the inflow of elderly people.   

Combining the data from Table 5.14 to Table 5.13 shows that this inflow would partly 

explain the higher rate of communal homes in these clusters.  These clusters are partly 

capturing individuals who are moving to their areas near the end of their lives, requiring 

communal living arrangements to manage their health needs (Williams et al., 2004).  

Calculating the Pearson‟s correlation showed this association between these two factors 

to be both strong and significant (r = .981, p < .001).   

This concentration of people with higher mortality risk has led to their respective 

morality profiles.  Both „Poorest Neurodegenerative Health‟ and „Mixed Experiences‟ 

have higher than expected (as well as compared to the other clusters) mortality rates for 

diseases associated with old age, especially those related to the mental and nervous 

systems.  Migration was useful for explaining these clusters. 

 

5.5 Social patterns across the classification 

There is a wealth of evidence which has shown the detrimental impact of socio-

economic factors on health, both at the individual and area level (Evans and Kim, 2007; 

Gregory, 2009, Riva et al., 2007).  As such, mortality patterns by cause begin to vary by 

social phenomenon, which itself displays sharp divisions geographically across England 
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and Wales (Dorling, 2012).  This, in turn, results in mortality patterns reflecting this 

underlying structure (Shaw et al., 2008; see Section 5.2.4).  Analysing the social 

dimensions of the clusters is important for understanding them. 

 

5.5.1 Poverty 

The first feature considered is the degree of poverty experienced within an area.  Whilst 

it may be argued that this refers to an individual-level process, the literature review 

(especially Section 2.3) showed evidence that neighbourhoods can contain additional 

disadvantage beyond simply reflecting a resource issue (Evans and Kim, 2007).  The 

level of poverty across areas has been shown to be strongly related towards mortality 

rates, through a detrimental effect (Gregory, 2009; Shaw et al., 2008; Yen et al., 2009).  

Therefore it would be useful to explore the level of poverty between the clusters. 

Data was collected on household poverty levels from the „Neighbourhood Statistics‟ 

website.  These were modelled estimates of the percentage of households in an area 

with a combined income of less than 60 per cent of the median income for England and 

Wales (April 2007 to March 2008).  This value has been commonly applied elsewhere 

as a key measure for poverty (Townsend and Kennedy, 2004).  Income had been 

equivalised to account for differences in housing types (for example size, welfare, 

family structure) to improve comparability between households.  The results are shown 

in Table 5.15. 

Cluster Poverty (%) 

Best Health and Most Desirable 15.18 

Average Mortality Profiles 23.20 

Good Health Areas 19.12 

The Middle 27.09 

Poor Health Experiences 30.43 

Poorest Health and Least Desirable 31.97 

Poorest Neurodegenerative Health 24.92 

Mixed Experiences 18.32 

England and Wales 21.56 

Table 5.15: Variations in average household poverty level between clusters. 
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There are large differences in the level of household poverty between the clusters, with 

there being over twice as much poverty found in „Poorest Health and Least Desirable‟ 

than compared to „Best Health and Most Desirable‟.  The classification is useful for 

capturing different types of areas.  The distribution of values reflects each mortality 

profile of their respective cluster, showing the classification to capture social divisions 

throughout its clusters of mortality patterns.  Where there are profiles associated with 

higher mortality rates, there is also a greater concentration of poverty. 

The detrimental effect is further shown through correlating this with the health outcome 

measures from Section 5.3.  Statistically significant associations (at the 99 per cent 

level) were found for both the life expectancy variables, as well as the premature 

mortality measures as well.  The associations were always strong (each above ±0.8), 

showing it to be useful explanatory factor of health.   

The clusters „Poorest Neurodegenerative Health‟ and „Mixed Experiences‟ contain 

lower levels of poverty than their mortality profiles would have suggested.  As shown in 

Sections 5.4.2 and 5.4.3, this is the effect of the elderly migrating into these areas to 

communal homes.  This in turn lowers the level of poverty, leading to this slight 

mismatch.   

 

5.5.2 Social class 

In response to Goldthorpe‟s (2010) call that health research (especially that based 

around inequality) needs to refocus back around the importance of social class, this 

study will explore the influence of this additional factor.   

Social class plays an important role in England and Wales in creating inequality in 

health outcomes.  Research into this field is well established, with the negative effect of 

social class on health being observed throughout the life course (Doran et al., 2004; 

Johnson and Al-Hamad, 2011; Langford and Johnson, 2010; White and Edgar, 2010; 

Young et al., 2010).  High social class limits exposure to health damaging factors 

throughout the life course, influencing how and when people die.  Though research has 

begun to focus on the impact of deprivation instead, social class should not be forgotten, 

especially in England and Wales where society has longstanding structural divisions 

based upon class (Goldthorpe, 2010). 
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The original mortality data included information regarding the social class (using the 

National Statistics Socio-economic Classification; NS-SeC), with near perfect coverage 

under the age of 75 (see Section 3.3.2).  Applying this data allowed the premature 

mortality rate to be calculated, albeit only for individuals aged 16 to 74 due to 

limitations in the population data available (social class at the area level was only 

collected for these years).  The area statistics were gathered from the 2011 Census, to 

allow the standardisation of mortality rates.  The NS-SeC group was collapsed into its 

three group classification (high, intermediate and low; see Table 3.3).  Although some 

quality of data was lost through collapsing to three groups, the other means of 

collapsing or analysing the groupings cannot be assumed to be a direct ordinal scale, 

restricting any comparisons (ONS, 2004). 

Firstly, variation in the proportion of individuals by their social class in the areas 

contained within each cluster is explored (Table 5.16).  There are clear differences by 

the clusters, reflecting similar patterns to previous analyses.  Those clusters which 

displayed worse health outcomes had higher proportions of people with low social class 

living in them and vice versa.  This corresponds to past research, which has shown the 

detrimental impact of low social class on health, as well as the existence of social 

gradients by area types (Doran et al., 2004; White and Edgar, 2010; Young et al., 2010).  

Greater detail was captured at both extremes of the measure, which are more important 

to understanding processes between the clusters. 

Cluster High Intermediate Low 

Best Health and Most Desirable 40.1 24.4 24.3 

Average Mortality Profiles 28.8 21.9 34.3 

Good Health Areas 34.0 24.0 30.0 

The Middle 24.2 19.8 38.1 

Poor Health Experiences 20.0 18.4 42.3 

Poorest Health and Least Desirable 17.7 16.8 42.7 

Poorest Neurodegenerative Health 27.3 20.2 33.9 

Mixed Experiences 34.7 23.7 29.5 

England and Wales 31.1 22.2 32.2 

Range 22.4 7.5 18.5 

Table 5.16: Variations in the percentage of the population by social class groups. 
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The cluster „Mixed Experiences‟ performs particularly well, considering its varied 

mortality profile.  Those areas which may exhibit the best social structures do not 

always display the best health.  „Poorest Neurodegenerative Health‟ also displays better 

social factors than its mortality profile would suggest.  These patterns can be explained 

with the inflow of elderly people to communal homes, which increased the proportion 

of people with high social class in their areas.  „Mixed Experiences‟ had a larger 

percentage of high social class, showing the cluster to be more desirable (and therefore 

attract more elderly people of a higher social class). 

In this context, social class has been used as a proxy of the quality of an area.  However 

this approach may ignore the true mechanisms which affect health.  The impact of 

social class on health is more likely to be at the individual level, having a direct impact 

upon health (Goldthorpe, 2010; Young et al., 2010).  With the mortality database 

containing individual level information on social class, this would be useful in showing 

social effects within and between clusters.  This ability to explore the actual impact of 

social class on premature mortality provides a huge benefit to research, rather than 

relying on solely aggregated (area) statistics.   

Exploring the differences between clusters within the NS-SeC schema shows a divided 

and unequal society (Figure 5.3).  Each cluster displays a social gradient, with those in 

the lower social classes experiencing higher premature mortality.  This follows the 

findings of past research (Johnson and Al-Hamad, 2011; Langford and Johnson, 2010).  

However differences between the clusters results in varying social gradients, showing 

the classification to be useful for discriminating between patterns. 

The gradient for the first cluster „Best Health and Most Desirable‟ is the smallest.  The 

advantages of living in this cluster apply for all social classes, being distinctly lower for 

each social class.  Unlike the other clusters, social class has less influence on those 

individuals within this cluster.  Death is less socially determined here, with other factors 

being more important. 

The opposite is experienced in the cluster „Poorest Health and Least desirable‟.  There is 

a sharp gradient, with the rate almost doubling (196 per cent) between the top and 

bottom classes, showing a higher level of inequality.  Not only does the effects of social 

class on health affect those of low social class greatly, but even impacts on those of high 

social class.  Similarly for „Poor Health Experiences‟ as well, people of high social class 
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have a higher premature rate than compared to those of lowest social class in the cluster 

„Best Health and Most Desirable‟. 

 

Figure 5.3: Differences in the premature mortality rates (16-74 year olds) of each 

cluster across social class. 

Key: Clusters; 1 = Best Health and Most Desirable, 2 = Average Mortality Profiles, 3 

= Good Health Areas, 4 = The Middle, 5 = Poor Health Experiences, 6 = Poorest 

Health and Least Desirable, 7 = Poorest Neurodegenerative Health, 8 = Mixed 

Experiences. 

There is less variation observed amongst the other clusters.  Rather they follow their 

respective mortality profiles in both their position in the graph and the size of their 

social gradients.  The clusters with worse health outcomes and higher mortality rates 

have more distinct social gradients, with greater levels of social inequality in health.  

They are affected more by social class than compared to those areas which have better 

health. 

Whilst the analysis has shown the classification to be useful in this context, it does not 

mean that it is a better tool than the social class measure.  Rather using both measures 

enhances understanding of patterns and processes, complementing each other.  The 

cluster each individual finds themselves in is also influenced by social class itself. 
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5.6 Geographical variation of the clusters 

Visualising the classification earlier (Section 5.2.1) showed a complicated geographical 

pattern.  However this does not necessarily mean that no spatial pattern exists.  Chapter 

2 showed the importance of taking a spatial approach to understanding mortality 

patterns and therefore examining this dimension is important for extending the 

understanding the clusters created. 

 

5.6.1 Rural-urban differences 

Mapping the classification (Figure 5.1) showed that particular clusters dominated the 

map, whereas others appeared less prominent.  However MSOAs are not designed to be 

equal in geographical size, rather reflecting population sizes (Martin, 2002; ONS, 

2011).  As such, rural areas are larger in area size.  Analysing rural and urban 

differences would appear useful for differentiating between the clusters. 

Rural-urban measures have been long established as important for understanding 

differences in health patterns.  For example, both Erskine et al. (2011) and Riva et al. 

(2011) have shown evidence that rural areas have significantly lower risk of mortality 

than compared to urban areas.  This is due to the mixture of a concentration of affluence 

in rural areas, as well as the beneficial environment experienced in these areas also (for 

example lower levels of pollution).  As such, it is an important factor for understanding 

the areas captured by the area classification. 

Cluster Rural Urban 

Best Health and Most Desirable 30.3 69.7 

Average Mortality Profiles 12.2 87.8 

Good Health Areas 29.7 70.3 

The Middle 9.3 90.7 

Poor Health Experiences 3.8 96.2 

Poorest Health and Least Desirable 3.0 97.0 

Poorest Neurodegenerative Health 7.8 92.2 

Mixed Experiences 28.2 71.8 

England and Wales 20.0 80.0 

Table 5.17: Cross-tabulation of the classification with the ONS urban-rural 

classification of MSOAs 



Chapter 5: Interpreting the classification 

pg. 152 

Table 5.17 presents the differences in cluster membership of rural and urban areas.  

Areas were split by using the official ONS classification, grouping areas based mostly 

upon population size (Pateman, 2010/2011).   Supporting past research, the clusters 

which had lower mortality rates and better health had higher proportions of areas 

classified as rural (and vice versa).  A rural-urban divide is observed through the 

classification.  However this is not a strict division in health outcomes.  There is still a 

large proportion of the clusters with good mortality profiles found in urban areas as 

well.  The classification is capturing more than simple geographic divisions. 

Although there are clear spatial differences between the clusters, this does not show 

whether health is better in rural areas.  To test this, life expectancy by sex was 

calculated using the same method as in Section 5.3 (see Chiang, 1972).  Estimates were 

calculated for each cluster, split by the identified rural and urban areas within each.  The 

results are shown in Table 5.18. 

For both rural and urban areas, life expectancy at birth varied similarly to Table 5.10, 

with the clusters which displayed poorer mortality profiles having lower life 

expectancy.  Although life expectancy is higher in rural, the difference between urban 

and rural areas is only small.  This difference is smaller for the clusters with better 

health, however the variation is not particularly large.  Inequalities between sexes offer 

less variation in rural areas between the clusters compared to urban areas.  Variation is 

larger in those disadvantaged clusters, with males particularly affected. 

Cluster 
Male Female 

Urban Rural Urban Rural 

Best Health and Most Desirable 80.2 80.3 82.9 83 

Average Mortality Profiles 77.2 78.2 80.9 81.2 

Good Health Areas 78.6 79.3 81.9 82.2 

The Middle 75.5 76.8 79.7 80.3 

Poor Health Experiences 74.3 76.1 78.8 79.5 

Poorest Health and Least Desirable 72.4 74.3 77.1 78.1 

Poorest Neurodegenerative Health 75.1 77.5 78.8 79.6 

Mixed Experiences 78.1 79 81.1 81.7 

Table 5.18: Life expectancy at birth split both by cluster and gender for urban and rural 

areas. 
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The classification is accounting for the variation in health usually observed by simply 

comparing urban and rural areas.  A similar result was found by Gartner et al. (2011), 

who showed that the effect of rurality was attenuated by social factors.  The 

classification is acting as a useful proxy measure for the social conditions of areas and 

accounting for geographical patterns (albeit not all social patterns; see Section 5.5).   

 

5.6.2 Regional patterns 

The wide social divisions that occur across England and Wales have resulted in a 

distinct geographical patterning of mortality patterns (Hacking et al., 2011; Shaw et al., 

2008; Walters et al., 2011).  The main pattern concerns the North-South divide whereby 

the North experiences poorer health outcomes (Doran et al., 2004; Hacking et al., 2011), 

although variations are found within each region.  This is mostly accounted by spatial 

differences in deprivation (Woods et al., 2005).  Since it is an area classification, it 

would be expected that some artefact of these patterns would persist through the clusters 

(Vickers, 2006).   

Table 5.19 presents a cross tabulation of cluster membership between the 

„Governmental Office Regions‟ (GORs) of England and Wales.  GORs were used to 

analyse regional patterns due to their use in prior research (Doran et al., 2004; Hacking 

et al., 2011), as well as MSOAs being self-contained within them.   

A Chi-squared test was performed on the data to test whether there are significant 

differences across the observed data (by region) compared to if there were no pattern at 

all (Rogerson, 2006). The test gave a highly significant relationship (χ
2
=1363.957, 

p<0.001), indicating the existence of regional patterns across the classification.  

The standardised residuals were calculated from the Chi-squared test to show the degree 

of difference in the observed value compared to the expected value given no pattern 

(Rogerson, 2006).  Absolute values greater than three should be viewed as important, 

where cluster membership is more or less common than expected.  The residuals show a 

geography to the classification, something which is lost in the map (Figure 5.1).  The 

most common pattern appears to be a North-South division.  Those clusters which had 

better mortality profiles are more commonly found in the Southern areas, with the 

opposite found in the North.  This follows past research (Doran et al., 2004; Hacking et 

al., 2011), showing the classification to be useful in capturing spatial patterning.   
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Cluster 

GOR 

NE NW Y EM WM Wales London SE SW 

1 Count 40 98 93 112 142 43 240 366 217 

  Std. Residual -4 -7.2 -4.7 -1.1 -1.4 -4.9 1.8 8.1 5.4 

2 Count 44 154 137 79 151 67 196 131 74 

  Std. Residual -1.4 0.6 2.5 -1.3 3.1 0.1 3.1 -3.4 -3.5 

3 Count 33 92 76 119 90 85 201 256 182 

  Std. Residual -3.7 -5.9 -4.5 1.5 -3.8 1.1 1.6 3.8 4.9 

4 Count 66 132 77 75 72 87 136 100 51 

  Std. Residual 4 2.2 -0.6 0.9 -1.6 5.4 1.8 -2.7 -3.5 

5 Count 87 161 122 32 92 48 66 21 12 

  Std. Residual 10 8.4 7.4 -2.8 3.1 1.7 -2.5 -7.9 -6.4 

6 Count 31 122 57 19 19 24 12 6 3 

  Std. Residual 4.5 13.6 5.3 -0.9 -2.1 1.7 -4.5 -5.9 -4.8 

7 Count 13 55 53 23 34 14 38 41 16 

  Std. Residual -0.6 2.1 3.9 -0.5 0.2 -1 -0.9 -1.2 -2.7 

8 Count 28 108 79 112 135 45 94 185 140 

  Std. Residual -3.1 -2.3 -2.2 3.2 2.7 -1.9 -4.1 1.9 3.9 

Table 5.19: A cross-tabulation of cluster membership and geographical location. 

Key: Clusters; 1 = Best Health and Most Desirable, 2 = Average Mortality Profiles, 3 

= Good Health Areas, 4 = The Middle, 5 = Poor Health Experiences, 6 = Poorest 

Health and Least Desirable, 7 = Poorest Neurodegenerative Health, 8 = Mixed 

Experiences.  GORs; NE = North East, NW = North West, Y = Yorkshire and 

Humberside, EM = East Midlands, WM = West Midlands, W = Wales, E = East, SE = 

South East, SW = South West. 

Not all the clusters display distinct spatial gradients with regards to regional 

membership.  The second cluster „Average Mortality Profiles‟ is less common in the 

South, but does not show a clear pattern for where it is more commonly found.  

Similarly the pattern for „Poorest Neurodegenerative Health‟ does not show any distinct 

patterning other than the „Yorkshire and Humberside‟ GOR.  What these clusters are 

capturing is likely to be independent of spatial factors and consistent across England 

and Wales. 
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Cluster 
GOR 

Range 
NE NW Y EM WM W E L SE SW 

Best Health 

and Most 

Desirable 

80.4 80.2 80.4 80 79.8 79.9 80.2 80.4 80.3 80.4 0.6 

Average 

Mortality 

Profiles 

77.4 77.7 77.8 77.5 76.7 77.1 77.7 77 77.4 77.5 1.1 

Good Health 

Areas 
78.6 79.1 79 78.8 78.2 78.6 79.1 78.3 79.1 78.8 0.9 

The Middle 76.1 75.5 76.1 75.3 74.8 75.9 76.1 75.5 75.5 75.5 1.4 

Poor Health 

Experiences 
74.8 73.9 74.7 74.5 73.8 74.5 75.8 74.4 73.9 74.6 2 

Poorest 

Health and 

Least 

Desirable 

72.2 72.1 72.4 72.3 73.1 73.3 73.5 73.4 72 71.7 1.8 

Poorest 

Neuro-

degenerative 

Health 

74.9 74.3 75 75.3 75.1 74.8 75.9 75 76.3 76.5 2.2 

Mixed 

Experiences 
78.2 78.2 78.4 77.9 77.8 77.6 78.7 78.3 78.9 78.6 1.4 

Range 8.2 8.1 8 7.7 6.7 6.6 6.7 7 8.4 8.7   

Table 5.20: Geographical differences in life expectancy at birth for males by cluster. 

Key: GORs; NE = North East, NW = North West, Y = Yorkshire and Humberside, EM 

= East Midlands, WM = West Midlands, W = Wales, E = East, SE = South East, SW = 

South West. 
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Cluster 
GOR 

Range 
NE NW Y EM WM W E L SE SW 

Best Health 

and Most 

Desirable 

82.8 82.8 83 82.8 82.5 82.8 82.8 83.2 83 83.1 0.7 

Average 

Mortality 

Profiles 

80.8 81 81 80.9 80.5 80.8 81.2 81 81.1 81.1 0.7 

Good Health 

Areas 
81.5 82 81.9 81.7 81.6 81.8 82.1 82 82 82.2 0.7 

The Middle 79.8 79.6 79.9 79.5 79.3 79.7 80.1 80.1 79.9 79.9 0.8 

Poor Health 

Experiences 
78.7 78.5 78.9 78.7 78.8 79 79.6 79.3 78.9 79.7 1.2 

Poorest 

Health and 

Least 

Desirable 

77 76.7 77.1 77 78.1 77.6 78.5 78.6 77.6 78.4 1.9 

Poorest 

Neuro-

degenerative 

Health 

77.8 78 78.8 78.8 78.8 78.5 79.3 79.1 79.6 79.7 1.9 

Mixed 

Experiences 
81.2 81.1 81.3 80.9 81.1 80.9 81.5 81.3 81.6 81.5 0.7 

Range 5.8 6.1 5.9 5.7 4.5 5.3 4.3 4.6 5.4 4.8   

Table 5.21: Geographical differences in life expectancy at birth for females by cluster. 

Key: GORs; NE = North East, NW = North West, Y = Yorkshire and Humberside, EM 

= East Midlands, WM = West Midlands, W = Wales, E = East, SE = South East, SW = 

South West. 

Calculating life expectancy (see Chiang, 1972) at birth for both sexes split by both 

cluster and GOR allows the examination of geographical inequalities across both 

measures (Tables 5.20 and 5.21).  The differences in life expectancy (measured by the 

range) are larger within GORs, rather than between clusters.  Whilst the classification is 

capturing different mortality profiles, there is less spatial variation within these clusters 
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across England and Wales.  Once again the classification has accounted for the majority 

of spatial variation in mortality. 

Spatial inequalities exist but mainly between clusters.  These remain fairly wide within 

each region, for example in „Yorkshire and Humberside‟, males at birth can expect to 

live eight years different based upon which cluster they live in.  The range of 

inequalities by cluster does not vary by region either, as shown by males as the range is 

just as high in the more deprived (the Northern areas) regions as it is in the more 

affluent ones (those in the South).  Compared to the variation within GORs, this is much 

lower although there is some difference by cluster with those with poorer health 

characteristics presenting a greater range of values in a GOR.  Inequalities are also 

smaller for females than males, reflecting previous findings.   The classification adds 

more to our understanding of mortality in England and Wales than by using regions 

alone.   

 

5.7 Conclusion 

Mortality has been shown to vary geographically by cause (Shaw et al., 2008), a factor 

of underlying social processes.  An area classification was built to capture and 

summarise the interactions between the most prevalent causes of death.  This chapter 

has analysed the resulting classification to explain what has been captured, to highlight 

how useful it is.   

The division of mortality patterns into a set of eight clusters initially appears to have 

occurred based upon the degree of mortality rates.  Despite clear (and differing) 

geographies in the causes of mortality throughout the literature (see Chapter 2), this is 

less important with a single level area classification.  However this is not the only factor 

in explaining differences between clusters and cause of death does have some 

importance, especially when comparing „Poorest Health and Least Desirable‟ and 

„Poorest Neurodegenerative Health‟.  Large inequalities exist between the clusters in 

terms of mortality rates and life expectancy, showing that it captures a useful amount of 

detail. 

Neurodegenerative diseases appear to play an important role in the formation and 

understanding of the classification.  The variation in detail captured between the clusters 

was highest for these types of cause of death (Table 5.8).  This was accounted by the 
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location of communal homes and the migration of the elderly, which were important 

factors in explaining two of the clusters.  However it would not be useful to drop these 

deaths or areas from the analysis as it would produce a result that does not reflect the 

true underlying structure of mortality patterns for small areas across England and 

Wales.  

The understanding of the classification was aided through a social and spatial 

investigation of the characteristics of the areas contained within the clusters.  Social and 

demographic explanatory factors were important for explaining patterns between 

clusters, particularly poverty.  Spatial inequalities were better captured through using 

the classification than compared to other standard measures, showing the classification 

to be a useful analytical tool. 
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Chapter 6: Assessing the area classification 

 

6.1 Introduction 

The clusters that make up the classification were explained in the previous chapter.  

Although the divisions in mortality patterns across England and Wales showed 

differences in health and social factors, how useful these clusters are can only be 

inferred descriptively.  Through introducing a focused analytical framework, the 

classification can be evaluated to assess how useful it is as a research tool.   

This chapter will apply the classification to assess the existence of neighbourhood 

effects upon health.  This is an important research area identified in the literature review 

(Chapter 2), with policy implications.  Applying the classification in this context will 

show the degree that the types of areas identified by the clusters can be shown to be 

important, through exhibiting patterns and processes beyond simply being areas of 

similar mortality rates.  It is also important for justifying and introducing future 

analyses set around this theme (Chapter 7). 

Utilising the classification will help explore and extend previous research within this 

theme.  The clusters act as a proxy for the damaging or beneficial impact of that area 

type.  Chapter Five showed how the classification adds value to a traditional analysis 

(Openshaw et al., 1994), through applying a measure which not just divides England 

and Wales by dominant mortality profiles, but also incorporates social and demographic 

correlates as well.  Therefore the analysis allows for a more focused investigation of 

how an area can influence health.  It offers a different and better designed perspective 

than previous studies, which tend to focus on just social and demographic factors (Riva 

et al., 2007). 

To be able to assess the evaluation of the classification, the analysis needs to be 

compared to an equivalent measure.  This will show how useful the results are for the 

performance of the classification under this particular approach.  The nine 

Governmental Office Regions (GORs) of England were chosen for this, along with 

Wales as well (hereby referred to as a GOR, for ease of description since it is usually 

included within them in official statistics).  With ten areas in total, this provides a 

number of categories that allows a fair analytical comparison.  Since it allows the same 
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geographical areas to be grouped differently, hypothetically it could be a classification 

itself with the main ‘clusters’ being the regions themselves.  

The use of GORs was selected since they are often used to display key health and 

mortality information by the ONS (to allow some geographical breakdown of 

variables).  This does not appear appropriate, since the GORs are just arbitrary location-

based categories.  There has been little change in how statistics have been reported since 

William Far advocated using geography to report mortality and morbidity rates (Dorn, 

1956).  If the classification can be shown to improve on these, there would be a strong 

case for releasing the statistics with the clusters as well, since they improve our 

understanding of the processes that exist (than compared to GORs which contain a 

multitude of area types within them; Dorling, 2012; Vickers, 2006).   

This analytical approach was useful for Parfitt et al.’s (2001) classification of waste 

management strategies.  An eight cluster solution was created to analyse how local 

authorities operated through waste collection, with the aim of targeting areas for greater 

implementation of recycling strategies.  The conclusions of the approach showed that 

their classification captured greater variance than compared to a regional categorisation 

of recycling patterns.  Therefore it can be inferred that their classification is a better 

measure for data dissemination and analysis than existing methods. 

This rest of this chapter is set as following: Firstly, details are provided of a new data 

set and methodology for the analysis.  This includes the model inputs, as well as the 

testing of model assumptions.  Next a comparison is carried out between the GORs and 

the classification to examine which is more useful for capturing variations in health.  

This is conducted through a descriptive investigation, as well as fitting competing 

models.  The analytical framework is then developed to incorporate small areas to test 

the existence of area effects, incorporating the classification to further the understanding 

of it as well. 

 

6.2 Data and methodology 

Health is a complex mixture and interaction of individual and area level factors 

(Macintyre and Ellaway, 2000).  To assess the importance of the clusters, then both of 

these levels at which risk factors operate require controlling for.  Otherwise building an 

analytical model for just one of these levels will lead to a falsely specified model.  It is 
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paramount that both ‘Simpson’s paradox’ (analysing individual level data without 

accounting for the true (multi-level) structure of the data) and the ‘ecological fallacy’ 

(assuming the relationships of area level variables are equivalent at the individual level) 

are avoided (Hox, 2002; Rogerson, 2006).   

The importance of this direction is not just theoretical, but also statistical.  If 

relationships differ by cluster, logistic regression techniques will ignore these 

differences leading to statistical issues through a larger sample size, which falsely leads 

to a drop in the variance and hence standard errors (Hox, 2002; Kreft and De Leeuw, 

1998; Snijders and Bosker, 1999).  This could lead to a set of misleading results. 

A multi-level logistic regression model was used to evaluate the usefulness of the 

classification within this context.  The methodology incorporates the above mentioned 

conceptual framework, as well as being commonly used in previous research to analyse 

neighbourhood effects (Riva et al., 2007; Andersson and Musterd, 2010).  This is 

because the method allows for the modelling of the data at multiple levels within the 

same model (Snijders and Bosker, 1999).  This is allowed through ‘nested data’, where 

there are hierarchical levels of data self-contained within other data units (for example 

individuals within areas). 

The method works through fitting multiple regression models, which interact with each 

other (Hox, 2002).  At the lowest level, a simple regression model is fitted to analyse 

the relationship between a set of predictors and an outcome variable.  Then for 

subsequent levels, the model allows the relationship to vary by that particular data unit.  

For example letting the individual level relationship vary by each area, to view if some 

areas are having influential effects through differing relationships.  As such, it captures 

both the between- and within-group variance allowing the understanding of how much 

effect is accounted by a level (Kreft and De Leeuw, 1998).   

Past studies have only shown low levels of variance captured by multi-level models 

investigating neighbourhood effects, with models where areas account for anything over 

five per cent after controlling for covariates deemed impressive (Pickett and Pearl, 

2001; Riva et al., 2007).  It is because the causal link for area effects tends not to be 

direct in their impact upon health (Diez-Roux, 2001), so their effect size will be 

minimised in such an analysis.  Therefore the results of this chapter need to be viewed 

in context to past results.  There are also few studies which apply classifications in a 
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multi-level analysis, showing little expectation of how useful this is as a methodological 

application, as well as benchmarking effect sizes. 

An additional data set is therefore required to analyse individual effects on health.  The 

British Household Panel Survey (BHPS) was chosen, as this contains a wide range of 

social, economic, health and demographic information.  The BHPS was collected 

annually, between 1991 and 2008.  It is a large survey, with 9667 individuals located in 

England and Wales in its most recent year.  For this analysis, the focus is on the most 

recent wave; 2008.  This was because some of the social variables of interest were only 

collected at specific waves, denying the ability to incorporate a longitudinal framework 

into the analysis.   

Special licence access was applied for and approved by the Economic and Social Data 

Service, who provided an additional data set which matched individuals in the data to 

their geographical area through the LSOA (Lower Super Output Area) of where they 

lived.  This allows MSOAs (Middle Super Output Areas) to be joined, since LSOAs are 

nested within MSOAs (ONS, 2011).  Therefore individuals could be assigned to their 

respective cluster, allowing a multi-level modelling approach to be adopted. 

 

6.2.1 Outcome variable 

To analyse the impact of areas on individuals, current health was chosen as the theme to 

focus on.  This was based upon the literature review (Sections 2.3 and 2.4), in which 

evidence was presented to show that areas have an influence on current health.  It was 

important to analyse current health rather than mortality, to avoid any double counting 

of mortality when using the classification as an explanatory factor.  Morbidity and 

mortality are not the same and this is important to stress. 

Using the BHPS, the dependent variable chosen for the analysis was self-reported health 

status.  It was selected since it has been applied in a multi-level analysis frequently (for 

example; Jen et al., 2009; Kondo et al., 2009; Lopez, 2004; Malmström et al., 1999; 

also see Pickett and Pearl, 2001 and Riva et al., 2007), showing it to be a useful measure 

to apply.   Knowing that it has demonstrated a consistent effect of areas on health is 

useful for evaluating the results using the classification. 
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Self-reported health status asks respondents to rate their current health on a Likert scale 

(‘Excellent’, ‘Good’, ‘Fair’, ‘Not Good’ or ‘Not Very Good’).  To allow for a more 

concise analysis, the measure was collapsed into a binary measure of poor health 

(‘Fair’, ‘Not Good’ or ‘Not Very Good’) and good health (‘Excellent’, ‘Good’).  This 

approach has been commonly used elsewhere (Jen et al., 2009; Kondo et al., 2009; 

Lopez, 2004; Malmström et al., 1999).   

Splitting the variable into the binary measure was also useful for improving the 

accuracy of observations.  This is because the categories of the measure become less 

abstract (Jylhä, 2009), making any judgements more reliable (i.e. it is difficult to 

quantify the difference between ‘Fair’ and ‘Not Good’ health, but combined together 

they incorporate poor health which is more important).  The analysis modelled risk of 

poor health, with 30.3% of the dataset reporting this. 

Self-reported health status is, however, a subjective assessment made by the individual 

on their actual health.  Therefore there may be error in the data, if individuals falsely 

record their health.  Nevertheless the application of the self-reported health has been 

shown to be useful for accounting for actual health.  For example, the international 

systematic review conducted by Idler and Benyamini (1997) showed consistent 

evidence of the link between self-reported health and mortality, even after controlling 

for explanatory factors of mortality.  This review has been updated by Jylhä (2009), 

who found the same result across more recent literature, incorporating a greater range of 

health measures as well. 

There are other issues with the measure limiting its usefulness in an analysis of health.  

How it is filled in can vary by different factors not related to an individual’s health 

including age, gender (see Section 6.2.2) and national differences (Dorling and Barford, 

2009).  This is partly because of a lack of a point of ‘reference’ for an individual to be 

able to assess their own health (Jylhä, 2009).  However, this is more important for 

international comparisons using the measure, to account for cultural effects which 

cannot be controlled for.  Roos et al. (2010) also note that self-reported health usually 

gives a stronger association when examining area effects (through multi-level analyses) 

than compared to mortality or actual health variables. 
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6.2.2 Explanatory variables 

The focus of the analysis is whether where an individual lives (context) has an 

independent effect on health beyond who they are (composition).  With strong evidence 

that health is socially determined (for example Congdon, 1996; Gregory, 2009; 

Muennig et al., 2013), it is important to control for the main influential factors to ensure 

that any observed areas effects cannot be otherwise explained.   

The selection of variables to control for the main social processes which affect health 

was dictated by the conceptual framework outlined in the literature review (section 2.3).  

This included social-economic status, poverty, social capital, local support, cohesive 

environments and social integration.  Variables from the BHPS were taken to best 

account for each of these factors.  These operate at both the individual and area levels, 

to account for the varying interacting processes occurring (Macintyre and Ellaway, 

2000).  The variables chosen are summarised in Table 6.1 and were all added as fixed 

effects in the model. 

Name Level Description Type 

Age Individual Age (Years) Continuous 

Male Individual Gender (male or not) Nominal 

Income Individual Annual income (£) Continuous 

Trust Individual Trust of others Nominal 

Civic Individual Civic participation Nominal 

Meet Individual Meeting other people Nominal 

Belong Individual Belong to the local area Nominal 

Advice Individual Get advice from the local area Nominal 

Poverty Area Poverty rate of area Continuous 

Turnover Area Population turnover Continuous 

Table 6.1: Explanatory variables incorporated in the multi-level analyses. 

Age and gender were included to control for personal characteristics.  These were 

important, as both variables have been shown to affect how people report their health.  

Females and the elderly are often found to be more likely to report their health as poorer 

(Idler and Benyamini, 1997).  However, Lindeboom and van Doorslaer (2004) find that 

females and younger people are more likely to give fairer and more accurate 

assessments of their health.  Controlling for these differences is therefore important for 
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allowing fairer comparisons.  Age was included as a continuous variable and gender 

was coded as a binary measure of whether the individual is male or not. 

Social disadvantage is an important factor that operates at both the area and individual 

level.  Individual socio-economic status has a direct effect on health through limiting 

resources that could prevent health damaging processes (for example housing quality 

and location; Jin et al., 2011).  To account for this, annual income was selected as it 

conceptualises the resources issue effectively, as well as being used for the same 

purpose in previous multi-level models (for example Jen et al., 2009). 

Whilst income accounts for compositional factors, social disadvantage can also operate 

through a contextual effect as well.  Concentrated poverty and deprivation can lead to 

additional effects through the exposure to other physical and social risks (for example 

the diffusion of unhealthy behaviours; Evans and Kim, 2007; Wilson, 1987).  The 

poverty rate for an area was therefore introduced as well, using the same measure used 

previously (Section 5.5), which was shown to be important for understanding the 

classification.  Controlling for this risk factor has been shown to be important in past 

multi-level analysis (for example Chaix et al., 2007). 

Social capital is an important factor in influencing health.  It represents the relationships 

between individuals in a community, which has been associated with lower levels of 

stress (Berkman, 1995), better support networks and greater demand for services 

(Kawachi and Berkman, 2000).   Robert Putnam’s seminal works provide the original 

basis for measuring social capital (Putnam et al., 1993, Putnam, 1995).  Putnam defined 

social capital as partly (albeit most importantly) through trust and civic participation.  

Although they were used to evaluate economic success, social capital has also been 

applied within a health setting as well (Kawachi et al., 1999; Muennig et al., 2013).   

For measuring trust, the variable ‘trustworthiness of others’ was converted into a binary 

measure of ‘most people can be trusted’ for a value of one and both ‘can’t be too 

careful’ and ‘depends’ for zero.  The split is more useful for analysis, as well as 

theoretically.  The variable ‘Do unpaid voluntary work’ was used for civic participation, 

recoded as a binary variable between whether an individual had in the past year or not.  

These variables have been applied elsewhere for the same purpose of measuring social 

capital (Li et al., 2005; Snelgrove et al., 2009). 

The level of support provided locally was also identified in Section 2.3 as important for 

the diffusion of advice about health issues, as well as emotional support (Berkman and 



Chapter 6: Assessing the area classification 

pg. 166 

Glass, 2000).  To measure this, the individual level question ‘Advice obtained locally?’ 

was incorporated into the analysis.  The variable is measured using a Likert scale to 

show how much an individual agrees with the question.  It was re-coded to a binary 

response, with respondents answering either ‘Strongly Agree’ or ‘Agree’ coded as one, 

and all other responses zero.  The variable was used by Li et al. (2005) in their analysis 

of social capital, who notes that it also shows behavioural responses to local attachment, 

linking it to social capital as well.  Although not specifically about health, it implies the 

range of advice diffused through communities of which health information will form a 

part of. 

The integration of individuals into society can affect health (Congdon, 1996).  The 

variable ‘frequency of meeting people’ was used to measure how well people are 

integrated through focusing on social interactions.  This was influenced by Muennig et 

al.’s (2013) analysis of the different dimensions of social capital on heart related disease 

incidence and mortality.   

An issue with this variable is how to divide it up to be useful, given that there is not an 

even distribution of responses.  For Muennig et al. (2013), variables should be split to 

cover a meaningful number of visits.  To be integrated, it was decided that a value of 

one was allocated to those meeting people at least once a week, with anything longer 

assigned to be zero. 

The cohesive nature of the local environment an individual resides in can influence 

health both indirectly since social bonds and conflict affect social capital and support 

networks (Kawachi and Berkman, 2000), and also directly through anxiety and stress as 

well (Wilkinson and Pickett, 2009).  The variable ‘do you belong to your 

neighbourhood’ was used to measure the tie to the local area which would reflect a 

cohesive area (Berkman and Glass, 2000).  It was re-coded to a binary response, with 

respondents answering either ‘Strongly Agree’ or ‘Agree’ coded as one, and all other 

responses zero.  The variable was included in Li et al.’s (2005) analysis for a similar 

purpose. 

The final variable included was the population turnover (the net change of the 

population for all ages as a rate per 1000) for an area, which was used in Section 5.4.  It 

was chosen as it was used in Chaix et al. (2007) as a measure for residential stability.  

Those areas which were losing population were denied the ability to build strong social 

bonds, which would impact upon social capital and support within an area.  It was also 
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important in Congdon (1996) in forming part of his anomie index (i.e. barriers to the 

social integration of individuals), also at the area level.  As such, it is a useful addition 

to account for the various social processes detailed previously, albeit this variable 

occurs at the area level instead. 

 

6.2.3 Testing the assumptions of the model 

Three multi-level logistic regression models were run in the analysis.  The assumptions 

of these models were tested prior to presenting the results of the analyses.  As the 

methodology is an extension of multivariate logistic regression, many of the diagnostic 

tests remain the same (Hox, 2002; Kreft and De Leeuw, 1998; Snijders and Bosker, 

1999).   

Checks for linearity and homoscedascity were first performed.  These were conducted 

using the predicted values of y from each of the models (Tables 6.6 to 6.8).  The 

variables included all appeared linear and therefore are fine for inclusion in the model 

(results not shown).  Multi-collinearity was then tested through producing a correlation 

matrix of all the explanatory variables (results not shown).  Associations were mainly 

weak, with the strongest being 0.37.  Therefore this is not an issue within the data. 

The last assumption tested for involves assessing the impact of outliers (i.e. extreme 

values) within the dataset, since these can affect the results gathered (Snijders and 

Berkhof, 2007).  Residuals were created based upon the difference between the 

predicted and actual value of y (from each model).  These were standardised by z-scores 

to assess whether they lie outside of the expected range of values (the rule of thumb 

used is ±3; Rogerson, 2006).  The range of values across all the models was -2.08 to 3.4, 

showing that the extreme data points were only for cases which the model predicted 

poor health when there was not.  Only 0.98 per cent cases were classified as outliers, 

which is lower than would be expected with a normally distributed data set.   

The outliers from their respective models were excluded, with the analysis re-run.  

There was little effect on the all of the models, experiencing a small improvement from 

the loss of data points unrepresentative of the model conditions.  The individual 

estimates also improved slightly both in strength and significance due to a similar 

effect.  Examining the outliers shows that, on average, they were young males with high 

incomes, living in good areas who reported their health as poor.  These are low risk 
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groups (Congdon, 1996) which would not be expected to have poor health.  However, 

the overall model remained stable, showing the results to be useful. 

The issue of centering is also important within multi-level modelling.  Centering is the 

transformation of predictor variables along different scales to improve the 

interpretability of the model, mostly through the understanding of the intercept term 

(Hox, 2002; Snijders and Bosker, 1999).  This can be achieved through two different 

methods based around either using the grand or group mean.   

The grand mean transforms individual observations based upon their relation to overall 

mean, whilst the group mean method uses the mean for all observations by their 

respective level-2 location (Snijders and Bosker, 1999).  The choice depends mostly 

upon theoretical considerations.  However, there is little evidence regarding which is 

better and centering can significantly affect the relationships found unexpectedly, 

making it somewhat a subjective decision (Paccagnello, 2006).  Therefore for this 

analysis, no centering will be applied (making it a ‘raw score model’).   

 

6.2.4 Theoretical considerations on neighbourhood size 

An issue that should be considered is whether the MSOA level is too large to truly 

capture and test for area effects.  As size increases, variables begin to regress to the 

mean and any effects may become less pronounced.  However exploring the number of 

quantitative studies analysing this topic would suggest the contrary.  Pickett and Pearl’s 

(2001) review of neighbourhood effect studies found that evidence of effects was found 

at a variety of geographical scales and sizes.  Andersson and Musterd (2010) found that 

effects were stronger at lower levels, although most tests for every level were 

significant.  Electoral wards have been used most often in the past within similar studies 

(Flowerdew et al., 2008).  These represent similar sized areas to MSOAs (see Section 

3.4), suggesting that MSOAs should not be much of a problem. 

Areas can be too small as well.  Having smaller areas may be more accurate in terms of 

area characteristics and their associated effects.  However it can lead to biased data 

estimates, as there becomes fewer cases per area.  As such, it becomes more important 

where the lines of the area are drawn in the results produced (Flowerdew et al., 2008).  

This use of MSOAs reflects the compromise between scale and data.   
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The use of MSOAs is due to the data used.  The classification was designed and created 

for the MSOA level and hence this is the only choice of areas to use.  It is the only 

means for evaluating its usefulness.  However data limitations often restrict most 

neighbourhood studies analysis, forcing researchers to test hypotheses at levels outside 

of their theoretical framework due to data availability (Flowerdew et al., 2008).   

MSOAs are also less arbitrary geographical levels.  They were designed to be socially 

homogenous, being built from LSOAs (ONS, 2011).  The classification was designed to 

capture the mortality pattern of small areas and therefore using geographic units which 

are fairly socially homogenous is useful in this analysis.  The social and demographic 

patterns captured indirectly through the mortality classification was shown in Chapter 

Five.  The analysis showed the different neighbourhood characteristics and conditions 

captured which will be useful in the analysis. 

 

6.3 Descriptive comparisons between the classification and GORs 

To investigate whether a multilevel analysis of area effects would be useful in this new 

data set, the percentage of people reporting ‘poor’ and ‘good’ health was calculated for 

both the clusters and the GORs (Tables 6.2 and 6.3).  Exploring the initial differences in 

health between the two grouping options allows an initial examination of how effective 

either approach is to discriminating variations in health. 

Table 6.2 shows the split of self-reported health between each cluster.  Clusters which 

displayed worse mortality profiles (i.e. higher mortality rates across the range of causes) 

also had greater proportions of people reporting poor health in them.  This would 

indicate that self-reported health is a useful measure for capturing the geographical 

divisions in mortality patterns.   

Table 6.3 presents the percentage of people reporting either health option split by GOR.  

GORs in Southern areas contain a lower proportion of poor health than compared to 

those Northern areas (with the North East particularly high).  Wales also reports the 

third highest percentage of poor health reported, highlighting the notion that the Welsh 

report their health worse than it actually is (Dorling and Barford, 2009). 
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Cluster Poor Health Good Health 

Best Health and Most Desirable 24 76 

Average Mortality Profiles 33 67 

Good Health Areas 30 70 

The Middle 34 66 

Poor Health Experiences 34 66 

Poorest Health and Least Desirable 40 60 

Poorest Neurodegenerative Health 34 66 

Mixed Experiences 28 72 

Total 31 69 

Range 16 16 

Table 6.2: Differences in the percentages of self-rated health within the classification. 

GOR Poor Health Good Health 

North East 37 63 

North West 30 70 

Yorkshire and The Humber 33 67 

East Midlands 30 70 

West Midlands 31 69 

East of England 26 74 

London 25 75 

South East 25 75 

South West 28 72 

Wales 32 68 

Total 31 69 

Range 12 12 

Table 6.3: Differences in the percentage of people reporting their health as good or 

poor within in the BHPS split by Governmental Office Regions of England and Wales. 

Comparing Tables 6.2 and 6.3 allows an assessment between the two measures.  The 

range shows the distribution of values across each measure, providing a comparable 

statistic of the information captured by each.  The range of values for the percentage of 

poor health across the GORs is 12 percentage points.  However for the classification, 

there is a wider range of values (16 percentage points).  The classification is a more 

discriminating measure, accounting for a third more detail in variations in poor health.   
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The lower amount of variation in health patterns captured by the GORs reflects their 

construction.  GORs are large administrative areas that contain a variety of areas 

(Dorling, 2012; Vickers, 2006).  As such, there is a mixture of both poor and good 

health within each (APHO, 2013; Doran et al., 2004; Woods et al., 2005).  The area 

classification separates out these types of areas, allowing a more accurate analysis 

through capturing the important processes which influence health.  GORs fail to do this, 

only providing a regional description of the data. 

This was reflected in Tables 5.20 and 5.21.  Calculating life expectancy, variation in 

values was higher within GORs than compared to within the clusters.  It highlighted the 

range in types of areas found within each GOR, whereas the classification was more 

evenly spread, in comparison, throughout England and Wales (also see Table 5.19).   

Although this is rather simplistic, given that this is how morbidity and mortality 

statistics are generally reported (i.e. using GORs), the classification is a better fit for this 

purpose to improve understanding of divisions in health. 

The usefulness of the classification is further shown due to the GORs containing two 

more categories.  This should otherwise capture greater variation within the data, 

through being able to distinguish between different groups in the data.  To ensure that 

the comparison is fairer here, the range value for GORs was multiplied by 0.8 to 

account for the two extra categories.  This gave a value of 9.6, showing the 

classification to capture 40 percent more variation in the data.  The classification is 

more useful for discriminating the data in terms of health 

It could be argued that due to the segmentation process, as areas based upon mortality 

are clustered together, this difference may be manufactured by the clustering of certain 

types of people.  As such, it may have artificially higher variation captured.  With 

Chapter 5 showing that the clusters varied in their membership by age distinctly, this 

factor could easily be driving this difference.  Nevertheless this issue also applies to 

GORs, as there are also slight variations in age regionally (Dorling, 2012).   

To account for this, the age and sex standardised expected number of people reporting 

their health as poor for both the clusters and the GORs were calculated individually 

using the BHPS data.  This is similar to the construction of standardised mortality ratios 

(SMRs), where a value of 100 is average and values above and below represent the 

percentage difference from this expected average (see Section 3.7.4). 
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Cluster AS-SP Population in the BHPS (%) 

Best Health and Most Desirable 81.3 20.1 

Average Mortality Profiles 113.6 15.7 

Good Health Areas 101.2 18.2 

The Middle 119.0 13.0 

Poor Health Experiences 127.5 9.5 

Poorest Health and Least Desirable 140.2 5.4 

Poorest Neurodegenerative Health 118.4 3.9 

Mixed Experiences 92.7 14.2 

Range 58.9 16.2 

Table 6.4: The age and sex standardised percentage (AS-SP) of actual against expected 

numbers of people reporting their health as poor between each cluster in the 

classification. 

GOR AS-SP Population in the BHPS(%) 

North East 132.2 3.7 

North West 106.8 10.8 

Yorkshire and The Humber 116.6 8.6 

East Midlands 110.9 7.5 

West Midlands 112.6 7.4 

East of England 92.0 8.7 

London 89.5 6.4 

South East 90.1 12.1 

South West 94.1 8.4 

Wales 106.0 26.5 

Range 42.7 22.8 

Table 6.5: The age and sex standardised percentage (AS-SP) of actual against expected 

numbers of people reporting their health as poor between the GORs. 

Tables 6.4 and 6.5 show the proportion of the total number of people reporting their 

health as poor as a ratio of what is expected given the age and sex make-up of that 

group (i.e. cluster or region).  The general patterns follow those seen in Tables 6.2 and 

6.3, showing that age and sex had little effect on the findings.  The range of values 

captured by the classification is still greater than when the GORs were used, despite 

containing fewer groups.  The classification captures a slightly higher amount of detail 



Chapter 6: Assessing the area classification 

pg. 173 

through the relative difference in the range when the data is no standardised as well (38 

per cent).   Accounting for the extra groups, sees the revised range for the GORs being 

34.16, an increase in the relative difference to 72.4 per cent.  The classification is a 

better discriminating measure even after accounting for age and sex characteristics. 

Population was also included in each table.  Whilst it has been demonstrated that the 

classification has greater discrimination within the data, this could be influenced by the 

smaller cluster sizes, producing biased results through capturing smaller extreme sub-

groups with greater differences in health.  However comparing the two shows that this 

does not appear to be a complete explanation of the pattern, with small sizes in the 

GORs as well (indeed the North east is the smallest category across both measures).  

There is still a fairly large proportion of the sample within the clusters demonstrating 

poor health.  The GORs offer a more even regional spread throughout just England, 

with the larger proportion of Welsh respondents a factor of the region receiving a 

booster data set (and why the range for England and Wales as a whole is larger for the 

GORs).   

 

6.4 A multi-level analysis 

This section extends the current examination of health differences through analysing the 

risk of poor health in a multi-level analysis.  The focus of this approach is to assess 

whether if the area type (cluster) that individuals live in has an independent effect upon 

health.  The existence of area effects using the classification is one direction which 

would show how useful it is as a research tool.  The results are replicated using GORs 

instead to provide a reference set of results to be able to evaluate the performance of the 

classification. 

 

6.4.1 Applying the classification 

Firstly, the clusters were used as the level-2 unit in the multi-level model (with the 

level-1 unit being the individual).  The dependent and independent variables detailed 

previously (Sections 6.2.1 and 6.2.2), which act as controls for the main social 

processes that affect health set out in the literature review (Section 2.3).  As such, a 

logistic regression model was fit for the individual level data, with the intercept being 
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allowed to vary for each cluster (leading it to be a multi-level model).  If the clusters are 

important containers of effects on health, then the model intercept and pattern of the 

data would differ by each cluster.  The model was fitted in stages following the 

analytical framework discussed in both Andersson and Musterd (2010) and Hox (2002). 

The reporting of results from a multi-level analysis begins with the unconditional model 

(Andersson and Musterd, 2010).  Only the intercept is fitted in the model to explain 

self-reported health, allowing it to vary randomly by the level-2 variable (Hox, 2002; 

Kreft and De Leeuw, 1998).  This shows whether the level-2 variable is important for 

explaining differences in self-reported health within the data, without controlling for 

any other covariates. 

With only the intercept fitted, there are few results to present.  The -2 Restricted Log 

Likelihood (-2 RLL) for this model is -5921, showing the pseudo-deviance of the model 

(Snijders and Bosker, 1999).  It gives a value which represents how well the data fits the 

model.  However by itself, it is meaningless (rather it is important for evaluating 

relative changes in a model and hence is stated only for future comparisons).   

Table 6.6b presents the important part of the results from this model, showing the 

between-group variance accounted by the level-2 variable.  This shows the degree of 

difference between the clusters that accounts for variations in health status (Hox, 2002).  

This result was significant, showing that which cluster individuals live in has an effect 

upon their health.  This would indicate that the classification is a useful measure. 

Calculating the ICC (Intra-Class Correlation) shows the percentage of variance 

accounted between groups as a total of all variance (i.e. the total of within and between 

group variance; Hox, 2002).  This gives a percentage figure of how well the clusters 

account for differences in health status.  It shows that only 1.2 per cent of the variance 

in self-reported health is accounted by differences between clusters. 

Compared to past analysis, studies analysing the size of area effects tend to report low 

levels of variance for the level-2 objects as explanatory variables.  The analysis 

presented here shows though that the classification generally accounts for a lower 

proportion of the variance than other studies have shown.  The classification does not 

add much detail of the data based upon this type of analysis.   Nevertheless it does 

display a significant, albeit small, effect on health. 
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(a) Fixed effects model 

Variable 
Model 1 Model 2 

OR SE OR SE 

Age 1.024*** 0.001 1.025*** 0.001 

Male 1.021 0.052 1.021 0.052 

Income 0.99999*** 2.05E-06 0.99999*** 2.05E-06 

Trust 0.689*** 0.038 0.699*** 0.039 

Civic 0.791*** 0.048 0.794*** 0.048 

Meet 0.874* 0.059 0.858* 0.058 

Belong 0.711*** 0.042 0.726*** 0.043 

Advice 0.998 0.055 0.999 0.055 

Poverty     1.029*** 0.004 

Turnover     0.999 0.002 

 

(b) Random effects parameters 

Model Variance SE P ICC 

Unconditional 0.04 0.023 <0.001 0.012 

1 0.027 0.0162 <0.001 0.008 

2 0.001 0.003 >0.999 0 

Table 6.6: Results from the multi-level logistic model using the classification as the 

level-2 unit. 

Key: OR = odds ratios, SE = standard errors, P = significance, ICC = Intra-Class 

Correlation.  Significance levels: p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***.  

The small effect size may be explained by methodological issues.  The classification 

only has eight types of areas within it.  This is fairly small and could be affecting the 

ability for a significant proportion of variance to be significantly captured at the second 

level of analysis (Hox, 2002; Bell et al., 2010).  A lack of level-2 sample size is one of 

the most common reasons why these types of studies fail (Snijders and Bosker, 1999).  

This is especially the case given that both Tables 6.2 and 6.4 showed the classification 

to effectively capture differences within the data.   

This does not mean that a model should not be fitted.  It is important to fit the correct 

model within the specified conceptual and analytical framework.  Health is influenced 
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by both individual and area level risk factors (Macintyre and Ellaway, 2000; Pickett and 

Pearl, 2001; Riva et al., 2007).  Ignoring this multi-level structure to how health is 

affected would falsely account for such relationships between variables.  Furthermore 

there have been examples where multi-level models with a similar number of level-2 

units were used, showing it to be a useful analytical approach.  For example Langford 

and Bentham (1996) used the ACORN classification of Local Authorities in their 

analysis.  They found significant area effects despite only having nine clusters at their 

level-2 unit. 

The individual level fixed effects were then introduced into the analysis (Model 1).  

There are few statistics to assess the quality of a multi-level model.  A statistic to look 

at is the relative change in the -2 RLL figure, to see whether adding certain conditions 

and variables improve the model (Snijders and Bosker, 1999; Hox, 2002).  This allows 

comparisons to be made within model, albeit not to models with different outcome 

variables or level-2 units (and therefore cannot be used to compare to using GORs).  

The -2 RLL value was -5038, a decline of 15 per cent.  The individual level variables 

are a useful addition to understanding the differences in self-rated health.   

The level-1 variables mostly behaved as expected based upon the literature review (see 

Section 2.3; Table 6.6a).  The age variable showed that increasing age was associated 

with a greater probability of poor health.  Gender, however, was not significant, 

producing a result contrary to other research (Lindeboom and van Doorslaer, 2004).  

Income gave a significantly negative result, where those with higher incomes were less 

likely to report their health as poor.   

The majority of the variables representing social interactions showed their beneficial 

effects on health (Kawachi et al., 1999).  The variable for whether an individual got 

advice from the local community was the only one of these variable types to be non-

significant, not being a factor in influencing health directly.  This effect is likely to have 

been accounted for by the other social relations variables.  The result may also be due to 

the variable being poorly defined, as it does not cover only health advice.   

Table 6.6b shows the variance accounted by allowing the clusters to vary randomly.  

Even after controlling for personal risk factors, the area that individuals’ lived in still 

produced a significant impact on health.  However the size of this effect has diminished 

(partly accounted for by the individual variables), being less than one per cent, showing 

its contribution to health to be only small. 
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Kreft and De Leeuw (1998) offer a statistic that can allow a quick evaluation of model 

change.  They suggest calculating the percentage of variance explained at each stage of 

the model through reporting the change in the unexplained variance by the total 

variance reported at the unconditional model.  This shows how each stage has accounted 

for the effect of the level-2 variable.  However, this measure can be problematic, as the 

statistic could show negative variance explained which is not strictly true (ibid).  

Calculating this, gave a figure of 32.5 per cent.  This shows that the introduction of the 

individual level variables decreased the effect that the clusters had on health by just 

under a third of its total effect.  This is a fairly large effect size for accounting for 

between area variance through the introduction of variables largely unrelated to areas 

(i.e. just individual characteristics).  However when the classification is accounting for 

such a small amount of the total variance, this is not particularly insightful (highlighting 

the small effect of individual level factors on area level processes).   

The final model introduced the area level variables covariates the analysis (Model 2).  

The -2 RLL value was -5015, representing only a small model improvement, suggesting 

that they were less useful for explaining the variation in health in the data.  There was 

little change in the individual level variables, with all remaining within their respective 

confidence limits (Table 6.6a).  It is not surprising that the area level variables had little 

impact upon the individual level variables, given that they represent independent 

processes. 

Population turnover was insignificant, a result contrary to that found elsewhere (Chaix 

et al., 2007).  Neither variable which examined social support has shown any significant 

association towards how people view their health.  It would appear that this mechanism 

is indirect (Berkman and Glass, 2000).  The role of social relations on health appears to 

only exist at the individual level.   

The poverty measure was highly significant.  A one per cent increase in the percentage 

of households classed as in poverty also increased the probability of people reporting 

their health as poor by 2.9 per cent.  It shows that similar processes of lack of resources 

captured at both the individual and area levels co-exist, and are independent of each 

other, suggesting different mechanisms (Evans and Kim, 2007). 

Examining the random effects parameters (Table 6.6b) shows that the effect accounted 

by the classification has now become non-significant.  There is little variance left which 

is explained by the classification (the figure is reported to three decimal places).  It 



Chapter 6: Assessing the area classification 

pg. 178 

would appear that poverty accounts for the effect of the classification on health.  This is 

an important finding, showing the poverty is both an important dimension of area 

effects, as well as explaining the segmentation that occurs through the classification. 

 

6.4.2 Introducing GORs as the level-2 unit 

The analysis was re-run using the GORs as the level-2 variable instead.  This is 

important to be able to effectively assess the results from when the classification was 

used.  With the small unit size issue possibly hampering the evaluation of the 

classification, comparing it to a similar sized measure which is used to analyse and 

disseminate mortality statistics is required to assess the importance of the classification 

as a useful analytical measure.  The results are presented in Table 6.7.  Whilst some 

statistics are presented here, they are only used as guidelines since they do not 

(methodologically) apply to comparing models. 

The unconditional model was first run, producing a -2 RLL of -5935.  Table 6.7b shows 

that this model resulted in a significant effect observed for the GORs as the level-2 unit.  

The region of England and Wales that individuals lived in had an effect on their health.  

Similarly to the classification, only a small effect size was reported, with the ICC value 

showing that the between group variance accounted for less than one per cent of the 

total variance in the model.  Region only has a small impact upon health.  Importantly, 

this effect size was smaller than for the classification at the same stage. 

‘Model 1’ and ‘Model 2’ represent the same model stages as described previously 

(Section 6.4.1).  The change in the pseudo deviance measure was relatively the same as 

when the classification as used (declining by 15 per cent for ‘Model 1’ and then a 

further one per cent for ‘Model 2’).  The fixed effects added as control variables also 

display similar odds ratios, with no difference in the conclusions drawn from them.  

This is useful, as the results are less model dependent as they are capturing the main 

patterns in the data.  They are important controls for effects on health for assessing the 

level-2 variable. 

The difference between the use of the GORs and the classification in the analysis lies in 

the random effects parameters.  The introduction of the individual level covariates saw 

the variance captured between GORs increase, with the ICC showing a rise from 0.9 per 
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cent to 1.1 per cent.  This resulted in the GORs capturing a greater proportion of the 

variance than compared to the same stage when the classification was used.   

(a) Fixed effects model 

Variable 
Model 1 Model 2 

OR SE OR SE 

Age 1.024*** 0.001 1.025*** 0.001 

Male 1.021 0.052 1.014 0.052 

Income 0.99999*** 2.05E-06 0.99999*** 2.05E-06 

Trust 0.682*** 0.038 0.698*** 0.038 

Civic 0.775*** 0.047 0.798*** 0.048 

Meet 0.859* 0.058 0.845* 0.057 

Belong 0.692*** 0.041 0.723*** 0.043 

Advice 0.99 0.055 0.988 0.055 

Poverty     1.029*** 0.004 

Turnover     0.999 0.002 

 

(b) Random effect parameters 

Model Variance SE P ICC 

Unconditional 0.03 0.017 <0.001 0.009 

1 0.036 0.021 <0.001 0.011 

2 0.025 0.016 <0.001 0.008 

Table 6.7: Results from the multi-level logistic model using Governmental Office 

Regions as the level-2 unit. 

Key: OR = odds ratios, SE = standard errors, P = significance, ICC = Intra-Class 

Correlation.  Significance levels: p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***.  

This pattern continued once the area level variables were added to the model, with the 

GORs still reporting a significant effect (with the ICC value showing that their 

introduction declined their effect to 0.9 per cent).  The equivalent model using the 

classification gave a non-significant effect on health, showing the GORs to be more 

important here.  Unlike the classification, the regional effects observed through the 

GORs are independent of poverty in this type of analysis. 
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A comparison of the results from this methodological approach shows that the GORs 

appear to be more useful for capturing geographical effects on health.  Even after 

accounting for individual and area risk factors, the region of England and Wales where 

individuals lived had a significant and independent effect on health, unlike the 

classification.  However the absolute difference between the ICC measures at each stage 

of the multi-level models was only ever particularly small.  As such, it may be that the 

results do not really matter much.  This is especially the case since both variables 

account for very small proportions of the variance in health at each stage of the model. 

The significance of the model using the GORs after controlling for individual and area 

level risk factors could be due to methodological differences.  A small sample size of 

level-2 variable is an important factor in determining the significance of a model (Bell 

et al., 2010; Snijders and Bosker, 1999).  The GORs contain two extra groups which aid 

in discriminating a greater level of variance in health of individuals in the data set.  

Although in absolute terms, this does not appear large, due to the small numbers 

involved, the relative difference is 20 per cent showing it is an important factor.  As 

such, the significant effect captured by the classification could be unobserved.  This is 

especially the case given that both Tables 6.2 and 6.4 showed the classification to 

effectively capture differences within the data.  From this methodological approach, a 

comparison of the two factors is not fair. 

 

6.5 MSOAs as containers for neighbourhood effects 

The results so far show only small evidence of area effects from the two measures.  

These are, however, smaller than the evidence shown throughout the literature (Pickett 

and Pearl, 2001; Riva et al., 2007).  Methodological restrictions have limited the ability 

to accurately test the effect, constraining the true impact of neighbourhoods.  Instead it 

would be better to use the areal units themselves (i.e. the MSOAs) as the level-2 unit to 

more effectively explore the impact of areas on health.   

MSOAs are the containers which area effects are proposed to occur in (within in this 

study) and therefore are conceptually better for testing effects.  This falls more in line 

with the majority of multi-level research into this topic (Flowerdew et al., 2008), which 

tend to use the areas themselves, rather than area types, in their analyses.  With a larger 

degree of units at the second level (2257), if there are any area effects observed then this 



Chapter 6: Assessing the area classification 

pg. 181 

approach should capture them (as it will be more statistically robust; Snijders and 

Bosker, 1999; Riva et al., 2007).  

Previously the clusters were included as random effects, however this may have mis-

specified the model specification (possibly a reason in their lack of significant effect on 

health).  The clusters could have been added as fixed effects instead, since they cannot 

be regarded as a random sample from a wider population of units (Kreft and De Leeuw, 

1998; Snijders and Bosker, 1999).  As all the areas of England and Wales were included 

in the classification, using the clusters as fixed factors would be statistically sound 

(Hox, 2002).  It helps to understand what the clusters consist of through exploring the 

effect of controlling for particular factors on the each individual clusters, rather than as 

a whole.  Whether each has an effect on health as a fixed effect can also be explored. 

This approach was applied in Nnoaham et al. (2010), who analysed colorectal cancer 

screening uptake of individuals, with LSOAs as the level-2 unit and the ‘People and 

Places’ geodemographic classification clusters as fixed effects.  Particular area types 

were more or less likely to uptake the service and therefore the analysis was useful for 

the targeting policy (for more detail, see Table 2.6). 

This would also account for the small sample issue regarding the level-2 variable.  The 

results of Andersson and Musterd (2010) and Riva et al. (2007) would appear to 

indicate that where a greater number of areas are used in the analysis, a stronger area 

effect is also observed (beyond a simple function of power size due to low numbers).  

Therefore allowing the unit of analysis to increase will present a fairer analysis of the 

existence of area effects.  This is also important for justifying subsequent analyses 

(Chapter 7). 

The issue with using the MSOAs as the primary focus of analysis is that they are only 

useful in this example.  Since there are 7194 different areas, their application to research 

is limited.  The classification benefits through its simplification of patterns and 

interactions across a multitude of factors (Openshaw et al., 1994).  This allows for a 

better understanding of patterns and processes occurring across England and Wales, 

which would otherwise become confusing if MSOAs were used only.  It is likely that 

the MSOAs will have a larger effect on health simply because there are far more areas, 

which will capture a greater level of detail in the data.  As such, it is better to apply the 

clusters as fixed effects and utilise the MSOAs to explore the concept of area effects as 

well so that each complements the other best. 
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An issue that arises from this change is that as the number of areas increases, the share 

of cases between them will fall as a result.  This was not an issue when both the 

classification and the GORs were used, however the MSOAs have far fewer individuals 

per area.  Where there are many areas which only contain one case (i.e. an individual) in 

them, this can become problematic.  This is because they are adding nothing to the 

variance of the model, since the area effect cannot be prominent or consistent.  Similarly 

low numbers of cases per area also limit the power of the analysis (Bell et al., 2010).  

Investigating the extent this is an issue through a sensitivity analysis will give us an 

indication of whether the results from the analysis are useful.   

 

6.5.1 Analysis 

With the MSOAs used as the level-2 unit, the unconditional model was fitted.  This 

gave a -2 RLL value of -5911.  Table 6.8b shows that the MSOAs displayed a 

significant effect on self-rated health, showing evidence of neighbourhood effects.  The 

area people live in has an effect on health.  The MSOAs also captured a higher level of 

variance, with the ICC value showing that differences between MSOAs accounted for 

eight per cent of the total variance in the model.  It is a useful spatial scale in this 

analytical investigation of area effects. 

The first model fitted with explanatory variables included the clusters as dummy 

variables (Model 1).  The first cluster was used as the reference cluster, since both its 

mortality profile and average score for self-reported health were at one extreme of the 

scale, making it useful for comparisons to other clusters.  The -2 RLL value here is        

-5881, a decline of 0.5 per cent, suggesting that their introduction was not particularly 

useful in explaining patterns in self-rated health of individuals. 

Examination of their odds ratios, however, shows that each dummy is significant.  The 

differences in odds ratios between the clusters follow their respective mortality profiles, 

with larger effects where clusters performed worse.  There are particularly large effect 

sizes across the clusters.  For example those who resided in the ‘Poorest Health and 

Least Desirable’ cluster were more than twice as likely to report their health as poor 

than compared to those who reside in the ‘Best Health and Most Desirable’ cluster.  

Although these represent the two clusters at the extremes of the classification, the 

smallest odds ratio was 1.28, which is still a fairly large effect.  The classification is 
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useful for capturing differences, appearing to operate as fixed effects rather than random 

effects. 

The model also continues to display a significant random effect.  The between group 

variance attributed to letting the MSOAs vary randomly has fallen by 22.4 per cent.  

Whilst the introduction of the classification only reported a small decline in the pseudo-

deviance, it was useful for accounting for differences between MSOAs.  The 

classification was useful for geographical patterns in poor health, as well as an 

individual fixed effect.  As such, the ICC shows that MSOAs now account for 6.3 per 

cent of the differences across the whole data set. 

The next stage of the analysis was to introduce the individual level variables to control 

for their effects (Model 2).  The -2 RLL fell to -5009, 15.3 per cent less than the figure 

for the unconditional model showing that their introduction was useful.  The covariates 

had little change compared to past models, being found in the same direction and of 

similar strength.  None of the significant odds ratios changed greater than their 

confidence intervals from the previous models (Tables 6.6 and 6.7), showing their 

relationships to be distinct in the data.  The classification variables all remained 

significant, showing them to account for greater patterns beyond individual level 

factors.  They lost some strength, a factor of the individual level variables accounting 

for some of their effect. 

The variance accounted between MSOAs has also remained significant.  The figure 

shows that it has decreased by 29.7 per cent since the unconditional model.  This is not 

much more than at the previous stage of the model, although since the variables 

introduced are not measuring area level factors this is not surprising.  The percentage of 

variance accounted for between the MSOAs is still fairly large, at 5.8 per cent 

The final model added the two area variables into the analysis (Model 3).  There was a 

small decrease of the -2 RLL statistic to -4995, suggesting that their introduction was 

not particularly useful.  The two area level variables were found to be similar to the 

previous analysis and there was little change in the personal risk covariates either. 
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   (a) Fixed effects model 

Variable 
Model 1 Model 2 Model 3 

OR SE OR SE OR SE 

 'Best Health and Most Desirable' reference for clusters 

Average Mortality 

Profiles 
1.6*** 0.144 1.491*** 0.144 1.248* 0.126 

Good Health Areas 1.287*** 0.114 1.248* 0.118 1.136 0.108 

The Middle 1.582*** 0.152 1.57*** 0.161 1.202 0.136 

Poor Health 

Experiences 
1.618*** 0.172 1.548*** 0.176 1.131 0.143 

Poorest Health and 

Least Desirable 
2.146*** 0.28 1.869*** 0.258 1.317 0.2 

Poorest Neuro-

degenerative Health 
1.616*** 0.228 1.61** 0.241 1.314 0.202 

Mixed Experiences 1.19*** 0.112 1.236* 0.124 1.136 0.115 

Age     1.026*** 0.001 1.026*** 0.001 

Male     1.022 0.534 1.02 0.053 

Income     0.99999*** 2.11E-06 0.99999*** 2.11E-06 

Trust     0.69*** 0.398 0.698*** 0.04 

Civic     0.797*** 0.05 0.802*** 0.05 

Meet     0.86* 0.06 0.849* 0.06 

Belong     0.703*** 0.432 0.717*** 0.044 

Advice     1.007 0.058 1.002 0.058 

Poverty         1.025*** 0.005 

Turnover         0.999 0.003 

 (b) Random effect parameters 

Model Variance SE P ICC 

Unconditional 0.286 0.049 <0.001 0.08 

1 0.222 0.045 <0.001 0.063 

2 0.201 0.048 <0.001 0.058 

3 0.179 0.046 <0.001 0.052 

Table 6.8 Results from the multi-level logistic model using Middle Super Output Areas 

as the level-2 unit. 

Key: OR = odds ratios, SE = standard errors, P = significance, ICC = Intra-Class 

Correlation.  Significance levels: p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***.  
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Only one of the clusters remained significantly different from ‘Best Health and Most 

Desirable’, after accounting for individual and area level risk factors.  This supports the 

previous models which showed how poverty patterns explained the variations between 

clusters.  Differences between the clusters are mainly a product of disparities in the 

level of poverty, which once accounted for, present no significant differences between 

area types. 

Nevertheless those who lived in the cluster ‘Average Mortality Profiles’ were 24.8 per 

cent more likely to have reported their health as poor than compared to the reference 

cluster.  This is different to the past analysis, where it was assumed that poverty 

attenuated the effect of the classification.  However the effect of poverty is clearly not 

consistent.  The cluster is measuring an effect that we cannot otherwise account for, 

unlike the other clusters.  Clearly, location and area type is important to exploring 

health patterns and inequality. 

Examination of the characteristics of the clusters (‘Best Health and Most Desirable’ and 

‘Average Mortality Profiles’) in Chapter 5 helps to aid the understanding of why this is.  

There are not huge social variations between the clusters.  What is being reported here 

instead are differences in health captured in the data which are beyond what would be 

expected once these social factors are controlled for.  Despite being similar, the 

classification is capturing additional (and different) disadvantage in those areas part of 

the cluster ‘Average Mortality Profiles’ when compared to ‘Best Health and Most 

Desirable’.  The classification is useful, adding value as a research tool.  Furthermore, 

introducing them as fixed effects rather than random effects was important since the 

attenuated effect of poverty is not completely consistent. 

There is still a significant effect captured by MSOAs.  Controlling for individual and 

area risk factors, as well as the classification, only sees a decline of 37.4 per cent in the 

variance from the unconditional model.  This is quite a large decline and since 

population turnover was insignificant, it highlights the importance of poverty in 

explaining patterns.   

The neighbourhoods themselves exhibit a fairly large effect, with the ICC statistic 

showing that MSOAs account for 5.2 per cent of the total variance, after accounting for 

individual and area risk factors.  This level supports past research (Pickett and Pearl, 

2001; Riva eta l., 2007).  Neighbourhoods (measured here through MSOAs) have a 

significant and large impact on health.  Indeed given their large geographical size, the 
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true effect size may be underestimated.  Geography is paramount in health research, 

especially within a policy context as these results highlight the need for co-ordinated 

action between both levels (Chaix et al., 2007; Lupton, 2003).   

 

6.5.2 A (pseudo-) sensitivity analysis 

With MSOAs containing far more areas than compared to the classification and the 

GORs, the issue arises of an uneven spread of cases between areas.  Where there are 

few cases per area, this can affect the performance of the MLM since areas with only 

one individual cannot add anything to the random effects part of the model (Bell et al., 

2010; Hox, 2002).  Few points give poor estimates.  Explaining the impact of this is 

important for the generalisability of the results. 

Figure 6.1 shows the frequency distribution of the number of cases per MSOA.  The 

pattern is strongly positively skewed (a Poisson distribution), which appears 

problematic.  You would expect a higher frequency in the smaller values, as the BHPS 

aims to provide a representative sample and thus is less likely to concentrate in 

collecting data in certain areas. There is a long tail showing a wide range of values, a 

shadow of the sampling strategy employed in the BHPS.   

 

Figure 6.1: The distribution of individuals by MSOAs within the BHPS. 

The mean number of cases per MSOA in the data was 4.3.  However a rule of thumb 

would suggest that you should not have a mean of less than five (Bell et al., 2010), 
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case and 74.7 per cent of areas had fewer than five cases within them.  With this being 

fairly prevalent, any effects observed using this variable are likely to be under-

estimating the actual total effect.  Nevertheless as Bell et al. (2010) find, as long as the 

number of level-2 units is large, a small number of cases per unit should be fine for 

analysis.   

To assess whether the large number of MSOAs containing few data points was having 

an influence on the model and results, a pseudo-sensitivity analysis was performed.  

Two models were run and the subsequent results were compared to that of the final 

model (Table 6.8).  The first model included identifying those areas which only 

contained a single case and removing them (and their respective cases), before re-

running the analysis.  The second was more stringent, excluding the data for those areas 

(and cases) which contained fewer than five cases.  The results are presented in Table 

6.9. 

The removal of all cases that were the only individual within their MSOA saw the mean 

number of cases per MSOA rise to 4.8.  This small improvement reflects the large 

number of cases still lower than the mean (52.1 per cent of the MSOAs contained only 

two to four cases).  The -2 RLL figure for this model was -4734, showing the large 

improvement in the understanding of health status through the removal of those single 

case MSOAs (and their cases as well).  The level of variance captured by the model 

remains fairly similar to the final model, being only slightly smaller. 

All of the individual and area level control variables remained similar, not changing 

beyond the confidence limits of the final model.  The only difference is seen in the 

classification dummy variables.  The dummy variable for the cluster ‘Average Mortality 

Profiles’ has now become insignificant, following the same pattern for the rest of the 

clusters.  This would show that additional information it was capturing as suggested in 

the previous section, is not particular strong.   

The next model removed all data which belonged to a MSOA that contained less than 

five cases within it.  This led to an increase of the mean number of cases per area to 9.7, 

a more useful sample for a multi-level analysis.  Running the model saw a large 

improvement in the -2 RLL value to -3234, although this is not surprising given the 

large amount of data excluded.  There was little change in the explanatory variables, 

although the cluster ‘The Middle’ has become significant, showing that individuals 
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which lived in this cluster compared to the cluster ‘Best Health and Most Desirable’ 

were 35.3 per cent more likely to report their health as poor. 

 (a) Fixed effects model 

Variable 
Cases per MSOA > 1 Cases per MSOA > 4 

OR SE OR SE 

 'Best Health and Most Desirable' reference for clusters 

Average Mortality Profiles 1.172 1.22 1.229 0.158 

Good Health Areas 1.091 0.108 1.26 0.153 

The Middle 1.156 0.14 1.353* 0.192 

Poor Health Experiences 1.124 0.147 1.313 0.204 

Poorest Health and Least Desirable 1.269 0.199 1.399 0.253 

Poorest Neurodegenerative Health 1.257 0.201 1.344 0.263 

Mixed Experiences 1.091 0.113 1.232 0.161 

Age 1.026*** 0.002 1.026*** 0.002 

Male 1.034 0.056 1.02 0.066 

Income 0.99999*** 2.19E-06 0.99998*** 2.96E-06 

Trust 0.689*** 0.041 0.677*** 0.048 

Civic 0.779*** 0.051 0.748*** 0.058 

Meet 0.848* 0.612 0.802* 0.072 

Belong 0.717*** 0.046 0.758*** 0.06 

Advice 0.999 0.059 0.932 0.067 

Poverty 1.027*** 0.005 1.027*** 0.007 

Turnover 0.9996 0.003 0.999 0.004 

 

(b) Random effects parameters 

Model Variance SE P ICC 

Cases per MSOA > 1 0.177 0.045 <0.001 0.051 

Cases per MSOA > 4 0.115 0.038 <0.001 0.034 

Table 6.9: Results from the sensitivity analysis of the multi-level model. 

Key: OR = odds ratios, SE = standard errors, P = significance, ICC = Intra-Class 

Correlation.  Significance levels: p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***.  
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These fixed effects relationships are established in the data and removal of data points 

as part of the sensitivity analysis (since we can assume that the areas with few cases 

within them are random) has little impact on them.  This is different to the patterns for 

the clusters, which are less strong as they have been accounted for by the other variables 

in the analysis.  The significance of ‘The Middle’ in the second model reflects this (but 

the cluster ‘Average Mortality Profiles’ may also apply here); an artefact of the model 

conditions.   

There was greater change in the degree of variance captured between areas.  This fell by 

a larger proportion, with the ICC statistic showing that MSOAs accounted for 3.4 per 

cent of the total variance in the model.  This would suggest that the size of 

neighbourhood effects may not be as large as previously demonstrated.  There is overlap 

for the level of variance reported for both of these models compared to the final model, 

suggesting that this change may not be too important.   

Overall, the sensitivity analysis has shown little variation in the results.  Stability can be 

therefore be inferred. 

 

6.6 Conclusion 

This chapter has applied the classification to evaluate how useful it is as a research tool 

within a particular field of analysis.  The focus was on whether the clusters displayed 

independent effects on health, following the area effects hypothesis.  The results were 

compared to using GORs instead, which provided a fair and relevant measure to assess 

the usefulness of the clusters. 

The analysis showed mixed results.  The final multi-level models showed that the 

classification no longer significantly explained health, unlike GORs.  Although this 

would show the classification to be less useful, the GORs included two extra units.  

Given the methodological limitations of such small sample sizes for the level-2 

measures (Bell et al., 2010), this may be aiding the model through making it significant.  

This is especially the case since descriptive comparisons showed that the classification 

captured greater variations in self-rated health.  With the GORs only accounting for less 

than one percent of the total variance in the model, they are not that more useful than 

the classification. 
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The multi-level model using the classification as the level-2 unit also aided the 

understanding of the classification.  The model remained significant once the individual 

level factors were controlled for, showing the classification to be useful in capturing 

patterns independent of these.  However the introduction of the poverty measure at the 

area level attenuated any effect captured by the classification in terms of between 

cluster variance.  Divisions in mortality patterns found by the classification are largely a 

product of the underlying structure of poverty and deprivation.  However this 

attenuation was not consistent across all clusters, showing it to add value to the analysis. 

The examination of possible area effects was not completely lost.  Rather, changing the 

model specification to use MSOAs as the level-2 unit appears more correct.  Area 

effects were significantly and consistently found, even after accounting for possible 

confounding or explanatory effects.  The size of this effect observed was also fairly 

large.  Geography clearly plays an important role in understanding health. 

A final consideration in posed in Riva et al. (2007), regarding ‘self-selection’.  Over the 

life course, people become ‘sorted’ into various different residential areas (and types) in 

relation to their health.  We can control for certain confounders, but there still exists 

mis-specification, resulting in inflated findings for area effects (which are, themselves, 

an artefact of such processes).  This links to the ‘health selective migration’ literature, of 

which there is sufficient evidence for (for example Bentham, 1988; Brimblecombe et 

al., 2000).  If area effects are to be important, then they should still be observed once 

this is accounted for (i.e. when people migrate between areas).  This issue forms the 

basis for the next chapter. 
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Chapter 7: Internal migration, area effects and 

health 

 

7.1 Introduction 

In the previous chapter, significant neighbourhood effects were identified on individual 

health, independent of both individual and area characteristics.  A natural extension of 

this neighbourhood effects research would be to examine how the role of migration 

between areas alters this association. If areas have an effect upon the health of 

individuals, then as people migrate to a different area type it would be expected that this 

effect would also be observed. 

This chapter is set out as following: It begins through discussing the methodological 

limitations facing a „traditional‟ analysis of migration and health, proposing an 

alternative framework to help improve the accuracy of the findings.  This is then applied 

to the British Household Panel Survey (BHPS), exploring the impact of migration to 

and from different areas on health.  Firstly a demographic and social examination of the 

migration in the data is shown to help inform subsequent analyses.  Then the role of 

migration between different area types is analysed, with the focus on areas as the 

explanatory factor for the impact on health.  The chapter ends through exploring the role 

of health selective migration in explaining inequalities in health.   

Similarly to the previous chapter, the results produced applying the classification are 

compared to using the Governmental Office Regions (GORs) of England and Wales 

(hereby referred to as a GOR).  This allows a fairer evaluation and assessment of how 

useful the classification is when applied in a research setting. 

 

7.2 Employing a pseudo-experimental design 

Research has shown that there are distinct types of people who are more likely to 

migrate (Catney and Simpson, 2010; Champion, 2012; Dorling, 2012; Evandrou et al., 

2010).  Migration is not randomly assigned, rather selective based upon personal 

circumstances.  Therefore the covariate distributions of the data for those who migrate 
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and those who do not (based upon their individual characteristics) will be different.  It is 

not possible to simply fit a regression model to analyse the effect migration has on 

health, as this would break the assumption of the model that there is no selection bias 

present in the data (Ho et al., 2007).  Put simply, results of any comparisons made 

between those who migrate and those who do not may just be an artefact of the 

differences in the group composition (as you are not comparing like-for-like).  However 

this has been ignored in a lot of past migratory research (for example Bradley and van 

Willigen, 2010; Brimblecombe et al., 2000; Cox et al., 2007; Kahlmeier et al., 2001; 

Larson et al., 2004), other than the „Moving to Opportunity‟ studies which were 

randomised control trials (Leventhal and Brooks-Gunn, 2003). 

A new methodological approach is required in this research area to be able to conduct 

accurate analyses which accounts for these differences.  Matching methods offer a 

solution to the issue.  Iacus et al. (2011b) offers a definition of this approach; “Matching 

is a non-parametric method of controlling for the confounding influence of „pre-

treatment‟ control variables in observational data.” (p1).  Essentially you are measuring 

a change in status to a group of individuals through the comparison of a „control group‟.  

Despite the advantages of this approach, the methodology has few applications, 

especially within epidemiological and geographical research. 

The aim of this methodology is to balance a data set to allow for a more accurate level 

of causal inference to be estimated.  Where there is a variable of interest measuring a 

change in status (or participation in a program) within observational data, it allows the 

comparison of differences in a variable between those who changed (referred to as the 

treatment group) and those who did not (Blackwell et al., 2009; Iacus et al., 2011a).   

The method pairs data that experiences a change in status to the rest of the data to create 

an equivalent control group based on a set of confounders (i.e. balancing the data), 

allowing fairer comparisons (King et al., 2011).  The benefit of this approach is that 

selection bias is reduced and the „treatment‟ and control variables become (or very close 

to) identical in relation to individual characteristics (Iacus et al., 2011b; Ho et al., 2007).  

There are fewer assumptions with this approach, therefore any analyses post-matching 

will be less model dependent and hence results will be less affected by any underlying 

assumptions. 

This approach would appear useful here when applied to this study.  Migration 

represents a change in status for individuals that can be tested.  Between two time 
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points, some individuals will migrate.  Therefore what this chapter will focus on is 

whether those who migrate have significantly different health than compared to those 

who did not migrate and whether this effect varies by the type of area of origin and 

destination.  The pairing of individuals is conducted at a time point prior to anyone 

migrating, so that the change in health status after migration has occurred can be 

analysed in comparison to those who remained the same area. 

The effect that this has can be seen in Figure 7.1, which presents a histogram for some 

pseudo data.  This was chosen to emphasis the effect the model has regarding selection 

bias, to better understand this approach.  The distribution of this variable for migrants 

and non-migrants is not equal, meaning that any comparisons between these two groups 

would be unfair.  Essentially the matching process pairs individuals between the two 

groups so that the resulting distributions of the data across the variable are equivalent.  

As such, this allows fairer and stronger comparisons, since it eliminates the effects of 

the variables as the data is matched on to focus on the change in status (i.e. migration).  

This process can occur across multiple variables, matching data to fit a multi-

dimensional distribution of data.   

 

Figure 7.1: A histogram for pseudo data split by migration status. 

There are two approaches to the methodology; „one-to-one‟ or „inexact‟ matching.  

Based upon a set of characteristics, one-to-one matching pairs together data points so 

that the „treatment‟ and „control‟ groups are equal in size, with all other unmatched 

cases discarded (Iacus et al., 2011a).  However this approach involves the loss of much 

information, which can be problematic depending upon sample size (Ho et al., 2007).   

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

F
re

q
u
en

cy
 

Variable 

Migrants

Non-migrants



Chapter 7: Internal migration, area effects and health 

pg. 194 

Inexact matching solves this through attempting to match all of the data.  The method 

remains mostly the same apart from all of the non-treatment data (i.e. those who did not 

migrate) are paired to their most similar case in the treatment group (i.e. the migrants).  

Each data point is then individually weighted based upon how „close‟ it lies to its 

equivalent treatment case (Iacus et al., 2011b).  Where the number of characteristics 

used to match data is greater, this becomes a more effective tool as it becomes difficult 

to find exact matches.  However the matching of the data with this approach can be less 

precise.  Due to the larger sample size involved, all cases are attempted to be matched.  

However this can lead to cases less accurately matched where they lay slightly far away.  

One-to-one matching would otherwise drop these, reducing any slight bias that may 

arise. 

Matching methods represent a family of varying types of methods, all with the same 

aim.  The main methods use „equal per cent bias reducing‟ approaches through 

propensity scores or Mahalanobis matching (Blackwell et al., 2009; Iacus et al., 2011b).  

These rely on measures of similarity to assess how „good‟ matches are in creating a 

useful control group (i.e. how close a data point is to another).  However these methods 

are iterative and user-reliant approaches, resulting in a time laden process.  They must 

be continuously checked to examine how good the matches are in creating a balanced 

data set between the treatment and control groups; with the method refined in 

accordance to improving the pairing of cases and the process re-estimated many times 

in order to effectively match a data set (Blackwell et al., 2009; Caliendo and Kopeinig, 

2008).  The metric to decide how close a match should be must also be decided and 

there is no clear indication in the literature as to what is a useful value.   

Instead, the recently developed Coarsened Exact Matching (CEM) method is utilised 

here (see Iacus et al., 2011a).  The method is more robust than the other available 

methods, requiring less user interaction and iterative steps (it is mostly automated), as 

well as satisfying all assumptions of the method (Blackwell et al., 2009).  This results in 

the method requiring less time and processing power, as well as a reduced likelihood of 

user errors.  Further Iacus et al. (2011b) showed the method leads to a greater reduction 

in the imbalance of matched data sets than other methods (i.e. the creation of a more 

similar control group).  

Figures 7.2 to 7.5 help highlight how the method operates.  A subset from the British 

Household Panel Survey (2006-2008) was taken and is displayed in Figure 7.2 across 

two variables (split by migration status).  Age and income are used as variables to 
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match cases in this example, given that they have been shown to vary by migration 

status (Catney and Simpson, 2010; ONS, 2013).  The sample was kept small to 

highlight the methodological process.   

 

Figure 7.2: A subset of the BHPS data for age and income, split by migration status. 

 

Figure 7.3: Data set coarsened into small groups for matching. 

Rather than using a measure of similarity to assess which individuals to match together, 

variables are temporarily transformed into a series of (meaningful) categorical groups to 

match data more efficiently (Blackwell et al., 2009).  Figure 7.3 shows these groupings, 

with each line representing the boundary of how a variable has been split up (in ten year 

bands for age and £10,000 bands for income).  Due to the nature of this, the method 

works best when using categorical rather than continuous variables (Iacus et al., 2011a).  
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However the method splits up continuous variables into groups to allow them to be 

used.  There is a trade-off between a greater number of groups providing more accurate 

matches, yet also being less likely to get exact matching for all cases (this is, of course, 

more an issue for one-to-one matching).   

 

Figure 7.4: Matching of data (circles showing the joins). 

 

Figure 7.5: The final data set. 

The categories from Figure 7.3 are then used to pair cases through looking at each 

datum of „migrant‟ status, finding an equivalent datum of the opposite status in each 

box (category).  This is shown in Figure 7.4, with the circles highlighting the joins made 

through the method.  The result is that the data set becomes pruned to allow for fairer 

comparisons through the creation of a control group, as shown in Figure 7.5.  When 
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inexact matching is used, the data for non-migrants would be weighted to show their 

importance. 

A drawback of this method is that in its one-to-one matching, the methodology 

randomly prunes observations to choose which exact matches to use when there are 

more than one match that could be assigned (Blackwell, 2012).  This random element 

can lead to slightly different results each time the method is run.  Therefore inexact 

matching is to be used only, especially due to the small sample size involved once 

origin and destination are accounted for.   

As a result, a simple comparison of means cannot be used to test the difference, as often 

used with one-to-one matching (Iacus et al., 2011a; Blackwell et al., 2009).  This is 

because not all the selection bias has been eliminated.  Therefore parametric tests are 

required to find the causal estimate of migration‟s effect on health, which will also help 

control for any low level of bias remaining. 

Most previous research has failed to account for selection bias when analysing 

migration.  Through matching the data, this approach has been shown here to be a more 

robust and relevant method.  Therefore the results from this chapter are useful in 

building upon and furthering research in this area, providing a new and more accurate 

insight into the effect of migration on health. 

 

7.3 Data considerations 

To analyse the influence of migration between areas on health, the British Household 

Panel Survey data set was used.  As Larson et al. (2004) note, there are few data sets 

which combined information on migration, location and health.  The BHPS allows for 

the tracking of individuals over time, with information on both individual social 

characteristics and health.  The classification was assigned to each individual previously 

(Section 6.2) to be able to explore where people were migrating to and from. 

Table 7.1 shows the numbers of people migrating within the BHPS sample.  The 

proportion of migrants remains even for the first two years, before falling in 2008.  This 

drop may show the effect of the recession, which led many households to delay buying 

a house, causing a drop in sales and prices (Campos et al., 2010/2011).  The data here is 

fairly representative to national patterns, for example Randall (2011) reporting on behalf 
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of the ONS (using the English Housing Survey), notes that the number of migrants was 

nine per cent in 2008/09 making the sample fairly representative. 

Wave Number Migrated Percentage 

2006 625 9 

2007 642 9.3 

2008 522 7.5 

Table 7.1: Number of people migrating by wave in the BHPS, 2006-2008. 

The data years 2006 to 2008 were pooled together to improve both the stability and the 

power of analyses.  These years were chosen as they correspond with the classification.  

Data was kept to identify variables for the same individual for both the year prior to 

(referred to as year „A‟) and including the year where migration was taken from (year 

„B‟).  This allowed a more stable and accurate model to be built and tested.  This 

approach has been useful in past migration related studies (Evandrou et al., 2010).   

Through pooling the panel data, individuals interviewed in each wave will appear 

multiple times.  This creates the potential for slight issues to arise in the model, as 

correlation exists within the cases of the data.  For example 76 (4.2 per cent of all 

migrants) people between 2006 and 2008 migrated in each wave, with 529 (29.6 per 

cent) migrating more than once.  However, the small issues this will create are likely to 

be offset by the advantages of having a greater sample size (Evandrou et al., 2010).  

Effectively tripling the data set gives greater power when running models, keeping the 

standard errors lower and providing more accurate results. 

 

7.4 Conceptual approach 

The interpretation of the classification in Chapter 5 showed the varying experiences in 

the types of mortality profiles throughout England and Wales.  This coupled with the 

longstanding evidence of the social and medical inequalities that exist (Thomas et al., 

2010) highlights that not all migrations are equal (at least in terms of area 

characteristics).  If neighbourhood effects and the role of geography to be important, 

then we would expect differences to exist in respect to area type. 

The classification is a useful tool for analysing the effect of migration by area type.  

With each cluster representing a distinct and different mortality profile, it allows for a 
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deeper analysis of differences in area effects, rather than comparing two or three types 

of areas like past research (c.f. Brimblecombe et al., 2000; Popham et al., 2011; Riva et 

al., 2011).  There are eight areas, providing a more focused analysis for health than 

using other determinants such as just rural and urban areas (for example Riva et al., 

2011).  It forms a proxy for the area characteristics, compiled of greater information and 

therefore adding value to the analysis (Openshaw et al., 1994).  If area effects are 

important, then we would expect that migration with an up- or down-scaling in the 

mortality profile of an area to have an observed effect on health.   

To evaluate the usefulness of the classification, the analysis is once again compared to 

applying the GORs.  This will evaluate whether the classification is more discriminating 

as a research tool, showing if it can add more to our understanding than traditional 

measures for analysing health. 

A theoretical issue questions whether neighbourhood effects can exist in this context.  It 

is often theorised that neighbourhood effects occur over a long time frame (Hedman, 

2011; Musterd et al., 2012; Quillian, 2003) and therefore would not occur in this 

context.  Yet analysing and testing such an effect is likely to be difficult once a long 

time scale is involved as it assumes total knowledge of all areas lived in and their 

respective characteristics (as they constantly change).  Furthermore both Briggs and 

Keys (2009) and van Ham and Manley (2012) argue that greater consideration is needed 

to the temporal aspect in the area effects literature. Short term effects on health after 

migration have been shown elsewhere (for example Kahlmeier et al., 2001; Leventhal 

and Brooks-Gunn, 2003; Ludwig et al., 2011; 2012; Sanbonmatsu et al., 2012).   

 

7.5 Migration in England and Wales 

Firstly, geographical migration within the data is first examined.   This will help aid our 

understanding of future analyses by understanding the patterns in the data that may be 

driving processes identified later.  It will also examine the existence of selective 

migration (socially) within the sample as well.   

It is worth starting by drawing out, briefly, patterns from the literature which would be 

expected to be found in this data.  Whilst migration occurs throughout the life course, it 

is more pronounced at earlier ages.  For example, the ONS (2013) reports that 19 is 

median age of all migrants.  This is the result of a variety of factors including the 
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transition to work or going to university, allowing the young to leave the parental home.  

However, as Chapter 5 highlighted, migration is also prominent later in the life course, 

due to changes in economic and health situation (see Evandrou et al., 2010). 

Economic geography also plays an influential role in attracting migrants.  Areas that 

have a greater share of employment opportunities attract migrants (Champion, 2012).  

In England and Wales, the South East is traditionally seen as an escalator region (ibid).  

Being the economic powerhouse of England and Wales, it attracts the young in search 

of employment.  It is used for social mobility to occur, through allowing them to 

accumulate economic resources allowing them to move out later in life (ibid). 

Wealth accumulation drives the housing market through a continued upward spiralling.  

This reflects social desirability, as individuals seek to improve the social standing of 

where they live (Catney and Simpson, 2010).  However the rental market allows those 

with few resources to forego accumulating wealth to access desirable areas (especially 

the young).  This, however, consistently reflects a social gradient, helping to maintain 

inequalities (ibid). 

 

7.5.1 Migration between the clusters 

Table 7.2 presents the pattern of migration in the BHPS, between the clusters.  Any 

combination of migration involving less than 20 individuals were made bold to 

highlight them as any further observations may be problematic and biased due to small 

numbers.   

There is wide variation in the numbers of people migrating between each cluster.  Given 

the varying types of areas, assuming migratory effects to be consistent across space 

would appear false.  Therefore analysing variations between area types appears a useful 

extension of the analysis. 

The total number of migrations within each cluster corresponds to the overall size of 

each cluster.  Coverage across the sample appears representative of our population.  The 

single largest trend in destination and origin of migration was within cluster type, with 

34.9 per cent of all migrations to the same cluster.   
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          Cluster migrated to     

    1 2 3 4 5 6 7 8 Total 

  1 203 51 76 32 30 6 23 84 505 

  2 62 144 54 58 26 27 14 55 440 

  3 74 55 171 42 17 20 19 44 442 

Cluster 4 49 43 67 132 28 22 17 39 397 

migrated 5 27 33 20 19 107 27 11 20 264 

from 6 21 12 16 33 11 48 5 26 172 

  7 20 29 20 15 20 3 22 14 143 

  8 76 38 65 37 25 11 13 140 405 

  Total 532 405 489 368 264 164 124 422   

Table 7.2: A cross tabulation of migration to and from clusters. 

Key: Clusters; 1 = Best Health and Most Desirable, 2 = Average Mortality Profiles, 3 

= Good Health Areas, 4 = The Middle, 5 = Poor Health Experiences, 6 = Poorest 

Health and Least Desirable, 7 = Poorest Neurodegenerative Health, 8 = Mixed 

Experiences. 

Table 7.3 shows the variation in how well each cluster retained the proportion of 

individuals who migrated from the cluster type.  „Poorest Neurodegenerative Health‟ is 

a particularly unstable cluster, retaining fewer than half the proportion otherwise found 

for the other clusters.  Given the mortality and social characteristics of the cluster, it is 

less desirable and thus fails to attract people remain within.  Since migration if usually 

in relation to a social and geographical upgrading (Catney and Simpson, 2010; 

Champion, 2012), migrants are more likely to seek to leave this area type.  This can be 

seen in Table 7.2, where there are higher numbers of migrants moving into areas which 

displayed good mortality profiles rather than poorer profiles. 

It is also influenced by the findings of Chapter 5.  Section 5.4.3 showed the importance 

of the migration of elderly, possibly in search of communal homes at the end of their 

life, in explaining this cluster.  This continued turnover of people in these areas would 

partly help explain the lack of population retained (Evandrou et al., 2010).  It is not 

completely due to the desirability of the area, with both of these negative factors 

combining to keep population retention low. 

Whilst „Poorest Health and Least Desirable‟ also retained a low percentage of migrants, 

the proportion was higher than for „Poorest Neurodegenerative Health‟, despite worse 
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social and mortality characteristics.  It is not completely a linear relationship between 

desirability and migration.  This is further shown by „Poor Health Experiences‟, which 

retains the highest proportion of migrants.  Those with the best mortality profiles also 

perform well, highlighting the influence of their desirability. 

Cluster 
Migrants remaining in 

the same cluster (%) 

Change in 

overall size (%) 

Best Health and Most Desirable 40.2 5.3 

Average Mortality Profiles 32.7 -8.0 

Good Health Areas 38.7 10.6 

The Middle 33.2 -7.3 

Poor Health Experiences 40.5 0 

Poorest Health and Least Desirable 27.9 -4.7 

Poorest Neurodegenerative Health 15.4 -13.3 

Mixed Experiences 34.6 4.2 

Table 7.3: Change in cluster sizes as a result of migration. 

Table 7.3 also presents the overall change in membership of the clusters as a result of 

migration.  Comparing Table 7.3 to Table 5.14 (net migration of the clusters for all 

areas within them) shows that the trends are similar.  Those areas with positive 

population gains in the BHPS, also display the same pattern when using ONS area data.  

Therefore the results are representative and useful. 

The clusters with the best mortality profiles („Best Health and Most Desirable‟ and 

„Good Health Areas‟) also have seen the highest relative growth.  People are migrating 

to those clusters with better health characteristics.  It is not surprising that they are 

viewed as the most attractive areas, given the social characteristics these areas also 

exhibit.   

The higher change of „Good Health Areas‟ reflects this as being an „escalator cluster‟.  

As they are not the most socially desirable but still are good, the areas that consist of the 

cluster are slightly cheaper.  They therefore are more attractive to people first, a 

stepping stone towards getting to the cluster „Best Health and Most Desirable‟ after 

wealth accumulation (see Champion, 2012).  Although past research has focused on 

escalator regions (with the whole region attracting people; ibid; ONS, 2013), this would 

indicate that neighbourhood type is influential, as the whole effect in a region will not 

be consistent. 
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This pattern is not strictly linear, as it does not quite repeat itself at the other end of the 

distribution.  „Average Mortality Profiles‟, whose mortality profile was fairly good, has 

a high population loss.  Examining the destinations of migrants (Table 7.2) would 

suggest that this change may represent people „upgrading‟ (Catney and Simpson, 2010), 

with a large number migrating to those cluster with better mortality profiles.  They are 

less attractive areas, with individuals seeking to migrate from despite not being 

displaying poor health or high poverty characteristics.  This also relates to the „escalator 

cluster‟ concept as well. 

The highest relative decline is found in „Poorest Neurodegenerative Health‟, a factor of 

it being unable to retain its population.  Whilst this makes sense (as they are less 

socially desirable; Catney and Simpson, 2010), the relationship is not consistent with 

the cluster „Poorest Health and Least Desirable‟, who did not report as high a negative 

change.  The destinations of migrants from these two clusters is similar, showing that 

this is not necessarily an up-scaling (although if you live in the worst, migrating to any 

other cluster is still up-scaling even if it is not to a desirable one). 

Given that the majority of the theory surrounding escalator areas and migratory patterns 

are based around regional migrations (Champion, 2012), Table 7.4 presents an 

exploration of retention of individuals through migration by region.  The regions have 

higher retention of individuals, showing them to be less discriminating in discerning 

between differences in migration.  The majority of migrations are within regions, 

although as Table 7.2 shows, they are not necessarily to the same area types, which is 

better captured by the classification.  The idea of an escalator region is less accurate, 

with escalator cluster (or area types) being more useful in understanding patterns and 

processes. 

London differs from this trend, retaining a slightly lower proportion of individuals than 

compared to the other regions.  This follows previous analysis, which has shown 

London to be characterised by the outflow of migrants (ONS, 2013).  Exploring the 

destination of these migrants shows that they are migrating to the GORs East (11 per 

cent) and South East (8.4 per cent).  These are likely to represent people migrating out 

of the city to commuting settlements (Champion, 2012).  Rather, the majority of inflow 

for London is now of international migrants, showing that it is still attractive (ONS, 

2012b). 
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GOR 

Migrants remaining in 

the same cluster (%) 

Change in 

overall size (%) 

North East 86.6 -1.5 

North West 88.9 0.9 

Yorkshire 87.3 3.7 

East Midlands 82.0 -2.3 

West Midlands 85.1 -4.5 

East 86.5 5.4 

London 71.0 -11.6 

South East 82.0 3.8 

South West 84.6 1.7 

Wales 93.9 -0.8 

Table 7.4: Changes in the size of regions due to migration. 

 

7.5.2 Characteristics of migrants 

It would be useful to examine the variations in the characteristics of the people 

migrating between clusters given that migration by area type is not consistent.  This will 

help improve the understanding of processes occurring, which may explain future 

analyses.   

Age and income are examined in Tables 7.4 to 7.5 due to their importance in previous 

research (Bentham, 1988; Catney and Simpson, 2010; Chapter 6).  Also included in 

Table 7.6 is the change in income between years. Given that negative major life events 

are an important determinant of migration (Dorling, 2012) and especially on affecting 

health (Bradley and Van Willigen, 2010), it is a useful addition to our analysis.  

Similarly to Tables 5.1 to 5.6, the results in each table have been conditionally 

formatted to aid interpretation of the results.  The value in each table that is highest is 

coloured red and the lowest is coloured green.  The rest of the values are then coloured 

in respect to their position in the range of values, with yellow representing the mean.  

Those combinations of migrations that were bold in Table 7.2 have been suppressed to 

avoid any misleading associations due to small numbers. 

There were relatively wide variations in the average age of migrants between clusters 

(Table 7.5). The young migrated into clusters of higher mortality rates and vice versa.  

Generally those who migrated within a cluster, rather than to a different destination 

type, had a higher age as well.  These patterns can be explained by the accumulation of 
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resources over the life course, which allows people to migrate to more socially desirable 

areas (i.e. the clusters with better health profiles), which in turn demand higher prices 

(Catney and Simpson, 2010).  Those who migrated, however, were younger on average 

than the underlying populations of the clusters they were migrating to.  This is reflecting 

the higher prevalence of migration at younger ages (ONS, 2013), a factor of the young 

leaving home through the transition to work. 

  

Cluster migrated to 

1 2 3 4 5 6 7 8 Total 

Cluster 

migrated 

from 

1 36.7 34.6 34.7 26.2 33.6   31 37.2 35.1 (49.4) 

2 34.3 34.8 31 31.6 33.7 27.6   36.4 33.4 (47.7) 

3 36.5 30 36.9 30   29.1   33.9 33.9 (48.9) 

4 35.3 31.8 30.1 35.2 26.8 31.8   31.8 32.8 (45.9) 

5 28.9 30 32.9   32.2 30.8   27.6 30.9 (46.4) 

6 27.7     36.6   32.9   38.2 33.1 (48.2) 

7 36 30.1 33.1   27   36.9   32.2 (44.9) 

8 35 31.5 36.2 30.9 28     38.5 35.1 (57) 

Total 
35.2 32.7 34.4 32.6 30.7 31.1 31.2 36.1 33.6   

(50.4) (48.7) (49.9) (46.9) (47.2) (49) (45.9) (48.2)   (48.2) 

Table 7.5: Variations in the average age of migrants between the clusters (mean value 

for all individuals in the cluster given in brackets). 

Key: Clusters; 1 = Best Health and Most Desirable, 2 = Average Mortality Profiles, 3 

= Good Health Areas, 4 = The Middle, 5 = Poor Health Experiences, 6 = Poorest 

Health and Least Desirable, 7 = Poorest Neurodegenerative Health, 8 = Mixed 

Experiences.  Colours; Green is a low SMR, red a high SMR, yellow the mean and the 

other colours scaled accordingly to their respective position 

The clusters which displayed better health characteristics attracted those people with 

higher incomes (Tables 7.6).  The pattern of mean income followed the respective 

mortality profile of each cluster fairly well (and their area characteristics; Chapter 5).  

This was the same for both those leaving a cluster and those arriving to one.  

Furthermore those who migrated from a good to a bad cluster (in terms of mortality) 

had lower income levels, than compared to those making the other direction.  This is 

reflecting the social upgrading of individuals over space (Catney and Simpson, 2010; 

Champion, 2012).  Migrants though had lower incomes than the underlying populations, 

showing migration to be more opportunistic than just a simple function of increasing 

income over time.  It also reflects the greater number of younger people migrating, 

lowering these estimates. 
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Cluster migrated to 

1 2 3 4 5 6 7 8 Total 

Cluster 

migrated 

From 

1 18373 17730 18960 12796 12675   13099 19040 17418 (18555) 

2 20932 13621 14253 13835 11887 14529   17183 15159 (15394) 

3 19095 14854 15847 13239   12351   12471 15154 (16097) 

4 15720 13370 14309 14169 12909 11236   13247 13819 (13929) 

5 12485 15183 9466   11613 12093   13414 12456 (12682) 

6 16157     13349   10761   14131 13610 (12501) 

7 22118 14250 11794   11134   12417   14091 (15503) 

8 20319 13464 13082 12134 11131     17400 15605 (17286) 

Total 
18549 14464 15158 13641 11784 11880 12527 16197 15029   

(19480) (16050) (16191) (14698) (13303) (13249) (16177) (18294)   (16277) 

Table 7.6: The distribution of mean income for migrants, cross-tabulated between the 

cluster of area migrated to and from (mean value for all individuals in the cluster given 

in brackets). 

Key: Clusters; 1 = Best Health and Most Desirable, 2 = Average Mortality Profiles, 3 

= Good Health Areas, 4 = The Middle, 5 = Poor Health Experiences, 6 = Poorest 

Health and Least Desirable, 7 = Poorest Neurodegenerative Health, 8 = Mixed 

Experiences.  Colours; Green is a low SMR, red a high SMR, yellow the mean and the 

other colours scaled accordingly to their respective position 

These patterns were further reflected with the income change variable (Table 7.7).  On 

average, a migration into a cluster with a worse mortality profile was also associated 

with a fall in income.  Those who migrated to the better clusters experienced a rise in 

income.  Clearly this represents social mobility taking place (i.e. the accumulation of 

resources), where improvements in income levels are allowing people to migrate to 

more desirable areas (Champion, 2012), of which they also reap health benefits as well 

(Brimblecombe et al., 2000).   

Those migrating from „Poorest Health and Least Desirable‟ witnessed the largest 

average increase in income, suggesting that higher increases are required to escape the 

cluster with the worst mortality profile (although not necessarily to the best areas).  

Internal migration within clusters show the most interesting pattern, as generally there is 

a rise in income levels facilitating migration.  Rises in income are allowing people to 

migrate, but not all choose to leave their area type (but still may be up-grading within 

the cluster), even amongst the areas with poor health outcomes. 
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Cluster migrated to 

1 2 3 4 5 6 7 8 Total 

Cluster 

migrated 

From 

1 1725 953 491 -931 -4247   633 -3541 -68 (679) 

2 -2717 112 2106 -2786 -2105 -1338   2790 -363 (718) 

3 1395 1231 365 -624   519   -3231 194 (818) 

4 333 -1281 -24 1479 -1639 377   -304 197 (851) 

5 2553 4740 -2108   660 -559   -1496 543 (689) 

6 4355     1280   277   -390 1893 (700) 

7 6984 -702 1056   -916   -806   647 (654) 

8 1995 -3827 -1709 -797 -3677     1766 116 (815) 

Total 
1448 359 383 -117 -972 -475 -238 -310 208   

(781) (681) (816) (908) (661) (642) (708) (687)   (754) 

Table 7.7: The average change in annual income levels of migrants, with cluster origin 

and destination (mean value for all individuals in the cluster given in brackets). 

Key: Clusters; 1 = Best Health and Most Desirable, 2 = Average Mortality Profiles, 3 

= Good Health Areas, 4 = The Middle, 5 = Poor Health Experiences, 6 = Poorest 

Health and Least Desirable, 7 = Poorest Neurodegenerative Health, 8 = Mixed 

Experiences.  Colours; Green is a low SMR, red a high SMR, yellow the mean and the 

other colours scaled accordingly to their respective position 

A multinomial regression was run using these variables to explain whether they differed 

significantly by cluster destination.  This was important for identifying the existence of 

selection bias in the data and hence whether matching is required.  Gender was also 

included to control for this factor as well.  Multicolinearity was first tested for.  With 

the change in income variable constructed from the income variable itself, this might be 

an issue.  However there was only a moderate association between the two variables, 

with a correlation of .366 (p<.001).  The rest of the associations were all weak, meaning 

that this model assumption has been checked for.  The other assumptions (linearity, 

influence of extreme data points, normality etc) were not violated. 

The results of the regression model can be seen in Table 7.8.  The model was 

significantly different from the null model (χ
2
=109.25, p<.001) and the pseudo-r

2
 value 

was 0.01.  Few relationships are significantly different, when compared to migrating to 

the cluster „Best Health and Most Desirable‟ (selected as it displayed the best health 

outcomes, which is useful to make comparisons against).  Any significant relationships 

were made bold to improve the interpretation of the table. 
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Cluster Variable Coefficient Std. Error P 

Reference: Best Health and Most Desirable 

Average Mortality 

Profiles 

Age -0.01 0.005 0.039 

Sex 0.216 0.144 0.133 

Income -2.10E-05 5.91E-06 <0.001 

Income Change 2.07E-06 6.33E-06 0.743 

Constant 0.279 0.192 0.148 

Good Health 

Areas 

Age -0.002 0.004 0.689 

Sex 0.218 0.136 0.11 

Income -1.62E-05 5.14E-06 0.002 

Income Change 1.20E-07 5.37E-06 0.982 

Constant 0.125 0.181 0.49 

The Middle 

Age -0.009 0.005 0.073 

Sex 0.274 0.147 0.062 

Income -2.69E-05 6.32E-06 <0.001 

Income Change 4.60E-07 6.40E-06 0.943 

Constant 0.228 0.196 0.244 

Poor Health 

Experiences 

Age -0.018 0.006 0.002 

Sex 0.478 0.163 0.003 

Income -3.96E-05 7.91E-06 <0.001 

Income Change -1.76E-06 7.22E-06 0.808 

Constant 0.262 0.221 0.236 

Poorest Health and 

Least Desirable 

Age -0.017 0.007 0.017 

Sex 0.166 0.195 0.396 

Income -3.81E-05 9.86E-06 <0.001 

Income Change 2.07E-06 9.62E-06 0.83 

Constant -0.164 0.261 0.53 

Poorest 

Neurodegenerative 

Health 

 

 

Age -0.017 0.008 0.03 

Sex 0.145 0.215 0.501 

Income -3.27E-05 1.06E-05 0.002 

Income Change 2.19E-06 1.06E-05 0.836 

Constant -0.46 0.288 0.11 

Mixed 

Experiences 

 

 

Age 0.003 0.004 0.424 

Sex 0.056 0.142 0.692 

Income -8.20E-06 4.75E-06 0.084 

Income Change -4.16E-06 4.22E-06 0.324 

Constant -0.265 0.187 0.158 

Table 7.8: A multinomial logit regression explaining the characteristics of people 

migrating to each cluster (Coefficients significant at the 95 per cent level are in bold). 
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Only income was consistently significant across the results, with the level of income for 

individuals being significantly lower when individuals migrated to a cluster other than 

„Best Health and Most Desirable‟ (with „Mixed Experiences‟ the only insignificant 

result).  The size of the respective coefficients for income reflects the mortality profile 

of its cluster (in comparison to „Best Health and Most Desirable‟).  Age also was 

significant for four clusters, showing that those who migrated to these clusters (in 

comparison to „Best Health and Most Desirable‟) were younger.  Overall these results 

reflect the previous findings.  The significance of sex for those migrating to „Poor 

Health Experiences‟ is likely a facet of the small numbers involved, given that there is 

little theoretical basis for this.   

The evidence in this section shows the social selection that exists through migration.  

Selective migration occurs between the clusters, across social and demographic 

characteristics (Catney and Simpson, 2010; Champion, 2012; Evandrou et al., 2010).  

Migration allows for social inequalities to become reciprocated and maintained 

geographically.  The reinforced divisions of social groups, which research shows to 

have better health (Gregory, 2009; Woods et al., 2005), impacts on spatial patterns of 

health through polarisation.  It is important that these differences are accounted for in 

subsequent analyses.  Therefore taking a matching methods approach to control for 

selection bias is a useful and necessary approach. 

The analysis was repeated, using regional destination of migrants instead of clusters 

(Table 7.9).  However it was a particularly poor model, with only two coefficients 

statistically significant.  Using the GORs adds little to the understanding of patterns in 

the characteristics of internal migrants.  The classification is more useful for 

discriminating variations in the data. 

 

 

 

 

 

 



Chapter 7: Internal migration, area effects and health 

pg. 210 

Cluster Variable Coefficient Std. Error P 

Reference: North East 

North 

West 

Age 0.01 0.01 0.335 

Sex -0.032 0.313 0.92 

Income -5.72E-06 1.44E-05 0.69 

Income Change -1.03E-05 2.43E-05 0.67 

Constant 1.044 0.419 0.013 

Yorkshire 

Age 0.004 0.011 0.685 

Sex 0.032 0.317 0.92 

Income 4.60E-06 1.43E-05 0.748 

Income Change -1.74E-05 2.43E-05 0.473 

Constant 0.939 0.427 0.028 

East 

Midlands 

Age 0.011 0.011 0.321 

Sex -0.088 0.322 0.785 

Income -2.65E-06 1.47E-05 0.857 

Income Change -2.24E-05 2.46E-05 0.362 

Constant 0.0774 0.432 0.073 

West 

Midlands 

Age 0.006 0.011 0.593 

Sex -0.193 0.328 0.557 

Income 1.96E-05 1.42E-05 0.166 

Income Change -1.63E-05 2.44E-05 0.504 

Constant 0.509 0.442 0.25 

East 

Age 0.017 0.011 0.116 

Sex -0.331 0.32 0.302 

Income 2.18E-05 1.38E-05 0.116 

Income Change -1.96E-05 2.37E-05 0.409 

Constant 0.351 0.43 0.414 

London 

Age -0.012 0.012 0.34 

Sex -1.01 0.346 0.003 

Income 4.54E-05 1.37E-05 0.001 

Income Change -3.67E-05 2.26E-05 0.105 

Constant 0.822 0.459 0.073 

South 

East 

Age 0.005 0.01 0.632 

Sex -0.323 0.307 0.293 

Income 2.43E-05 1.35E-05 0.07 

Income Change -3.83E-05 2.25E-05 0.089 

Constant 1.114 0.413 0.007 

South 

West 

Age 0.005 0.01 0.664 

Sex -0.372 0.309 0.228 

Income 3.72E-06 1.40E-05 0.791 

Income Change -2.38E-05 2.36E-05 0.313 

Constant 1.405 0.413 0.001 
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Wales 

Age 0.013 0.01 0.197 

Sex -0.375 0.299 0.21 

Income -1.38E-05 1.38E-05 0.318 

Income Change -7.43E-06 2.33E-05 0.75 

Constant 1.736 0.399 <0.001 

Table 7.9: A multinomial logit regression explaining the characteristics of people 

migrating to each GOR (Coefficients significant at the 95 per cent level are in bold). 

 

7.6 Intra-cluster migration effects 

This section examines the effects of migrating to and from the clusters and how whether 

the areas involved impact upon health.  Unlike past research (Bentham, 1988; 

Brimblecombe et al., 2000; Larson et al., 2004), migration is not viewed as the same 

effect independent of areas and hence the analysis looks for variations split by origin 

and destination.   

 

7.6.1 Analysing the role of cluster origin 

To explore the role of migration on health between different area types, the analysis 

begins by looking at the effect of migrating out of particular clusters.  As such, 

matching was performed using whether an individual migrated or not.  Subsets of data 

were created, splitting up individuals by cluster location at time point „A‟ (i.e. origin).  

This allowed the pairing of migrants against those which remained in the same area, 

making fairer comparisons by accounting for area types.   

To match individuals, the covariates age, sex and income were used since they 

presented differences in migration patterns earlier (Section 7.5) and also in past research 

(Chaix et al., 2007; Jen et al., 2011).  No further variables were included to minimise 

the amount of noise added to the process, as it becomes more difficult to find exact 

matches across a greater range of variables (Iacus et al., 2011b).  As the methodology 

works through categorising variables, age was split into year bands (16-24, 25-34, 45-

54, 55-64, 65-74, 75-84, 85+) in accordance to previous usage (Section 3.7.4).  Income 

was divided into ten thousand pound bands up to £50,000, where everything above was 

included as a group.  Sex did not need to be altered. 
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Prior to matching the data, it is useful to statistically evaluate how balanced the data is 

(how similar the created control group is to the characteristics of migrants; i.e. internal 

validity), to be able to gauge how effective this approach has been.  This can be 

evaluated using the L1 global statistic developed in Iacus et al. (2011a).  This is the 

difference in the (multivariate) distribution of data.  Data is automatically coarsened to 

examine the initial imbalance exhibited across the data, as well as the individual 

imbalance of each variable.  It is measured on a scale of zero to one, which gives the 

separation of cases from matches (where one is complete separation and zero is perfect 

matching).  For a balanced data set, this should be less than a value of 0.5.  The results 

in Table 7.10 show that matching was effective. 

After matching the data, a logistic regression was run to explore whether there was an 

observed effect of people migrating from each cluster on their health for each of the 

subsets of data.  The results for all these regressions are summarised in Table 7.10. 

Origin Cluster 
CEM Effect of Migration 

L1 Odds ratio Standard Error Significance 

Best Health and Most Desirable 0.372 1.005 0.133 0.97 

Average Mortality Profiles 0.419 1.081 0.143 0.554 

Good Health Areas 0.413 1.516 0.193 <0.001 

The Middle 0.418 1.026 0.143 0.852 

Poor Health Experiences 0.407 1.411 0.242 0.044 

Poorest Health and Least Desirable 0.379 1.104 0.228 0.631 

Poorest Neurodegenerative Health 0.399 0.97 0.227 0.897 

Mixed Experiences 0.355 0.821 0.125 0.195 

Table 7.10: Results of a series of logistic regressions exploring the differential effect of 

migration on health by cluster. 

Migration for only two clusters was found to be significant, showing little existence of 

area effects captured through migration.  The significant relationships were found for 

the clusters „Good Health Areas‟ and „Poor Health Experiences‟, both yielding positive 

relationships.  People who originally resided in either of these clusters were found to 

have greater probability of reporting their health as poor if they had migrated from (or 

within) these areas (as opposed to those who remained).  These effect sizes were large; 

being 52 and 41 per cent more likely to report poor health if they were in clusters „Good 

Health Areas‟ and „Poor Health Experiences‟ respectively.   
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To explore whether these significant effects were possibly neighbourhood effects, their 

respective models were extended further.  Firstly health status prior to migration was 

included in the regression, to control for whether a person had already poor health (prior 

to migrating).  This essentially adds to the model the health selective migration 

hypothesis, testing whether any effect is independent of this.  Although this may be 

suggestive of introducing multicolinearity into the model, correlating the two covariates 

showed this not to be too problematic despite moderate association (r=0.58, p<0.001).  

Results of this model are shown in Table 7.11.  Both of these significant relationships 

for the clusters held after controlling for this effect, with little change in the values. 

Origin Cluster Variable Odds ratio Standard Error Significance 

Good Health 

Areas 

Migration 1.402 0.208 0.023 

Health 11.412 1.018 <0.001 

Poor Health 

Experiences 

Migration 1.581 0.322 0.024 

Health 12.242 1.691 <0.001 

Table 7.11: Controlling for prior health status to migrating on the hypothesised impact 

of migration on health. 

The next stage is to split the migration variable further to include the migratory 

destination (cluster).  As such, this controls for the effect of the area as well.  The results 

of these two models are presented in Tables 7.12 and 7.13.  The reference cluster for 

comparing area types for each model is the cluster „Best Health and Most Desirable‟, 

since it displays the best mortality profile and thus show the effect on health of not 

migrating to area with the best health outcomes.  The results are, however, the same for 

either model.  All of the dummy variables are insignificant, indicating no observable 

variations by area types.   

The absence of significant findings in Tables 7.12 and 7.13 would point towards a lack 

of evidence of area effects between the clusters.  The type of area you migrated to does 

not have a differential effect on your health, at least measurable soon after migrating.  

However, as the literature argues, area effects are not usually direct (Berkman and 

Glass, 2000).  Therefore it is unlikely that any effect would become apparent in the 

short term (Johnson et al., 2012).  Any observable effect would have most likely been 

psychological.  If you suddenly migrated into an area where more people are suffering 

from poor health, then it is plausible that you start seeing your own health more 

critically.   
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Variable Odds ratio Standard Error Significance 

Cluster: ('Best Health and Most Desirable' is the reference) 

  Average Mortality Profiles 1.247 0.696 0.693 

  Good Health Areas 1.16 0.41 0.675 

  The Middle 0.872 0.461 0.795 

  Poor Health Experiences 4.282 3.424 0.069 

  Poorest Health and Least / / / 

/ Desirable 1.754 1.464 0.501 

  Poorest Neurodegenerative / 

/ Health 1.704 1.432 0.526 

  Mixed Experiences 1.338 0.758 0.607 

Health 11.505 1.031 <0.001 

Table 7.12: The analysis of self-rated health variations between individuals who 

migrated from ‘Good Health Areas‟. 

Variable Odds ratio Standard Error Significance 

Cluster: ('Best Health and Most Desirable' is the reference) 

  Average Mortality Profiles 0.218 0.194 0.088 

  Good Health Areas 0.603 0.781 0.696 

  The Middle 0.818 0.803 0.838 

  Poor Health Experiences 0.46 0.324 0.27 

  Poorest Health and Least / / / 

/ Desirable 1.045 0.947 0.961 

  Poorest Neurodegenerative / 

/ Health 0.66 0.762 0.719 

  Mixed Experiences 0.221 0.253 0.187 

Health 12.478 1.736 <0.001 

Table 7.13: The results of the analysis of migrants from ‘Poor Health Experiences‟. 

These results would indicate that the original significant effects (Table 7.10) could be 

migratory effects instead.  Destination of migration is less important, rather it is the 

process of migration which impacts upon health.  Given that they show that migrating 

from these areas increases the probability that an individual reports their health as poor, 

migration is of importance.  With the direction of the effect being the same for either 

cluster, despite different mortality and social profiles, this appears more plausible when 
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combined with the lack of evidence for differences by destination.  Yet such an effect is 

not consistent across all the clusters, showing it is not that dominant as a process. 

As the data becomes split into smaller and smaller subsets, it may not be surprising that 

no significant results were found.  The small sample sizes involved with those who 

migrated between clusters limit our ability to test any relationships.  Migration between 

the extremes is not common (Brimblemcombe et al., 2000; Table 7.2).  Therefore area 

effects should not be completely written off, until more rigorous analysis can be 

conducted.  Given that the few studies which examined a similar approach, found 

varying results by area types (albeit usually only comparing few types), this points 

towards the importance of the neighbourhood (Leventhal and Brooks-Gunn, 2003; 

Popham et al., 2011; Riva et al., 2011). 

This is reflected through the relationships which are approaching an acceptable level of 

significance (i.e. which can be accepted at the 90 per cent level; Tables 7.12 and 7.13).  

They appear to follow expected pathways, with migration from „Good Health Areas‟ to 

„Poor Health Experiences‟ resulting in an increasing probability of reporting poor health 

(and vice versa in the other model, with migration from a poorer health cluster to one 

with a better mortality profile).  It follows the results of the „Moving to Opportunity‟ 

studies, showing how area effects imprint upon the migration process (Leventhal and 

Brooks-Gunn, 2003).  However, with their wide standard errors, these should not be 

applied further and are only commented on to provide an exploratory indication of 

possible avenues requiring a larger sample size. 

 

7.6.2 Accounting for cluster destination 

The analysis was repeated using cluster destination, rather than origin, to compare the 

observed effect of migration to explore if this effect is consistent (using the same 

procedure for matching).  The results can be seen in Table 7.14, with the majority of 

relationships being insignificant.  However there was still a significant effect for the 

cluster „Good Health Areas‟.  People who migrated into the cluster „Good Health Areas‟ 

were 31.5% more likely to report their health as poor than compared to those who did 

not migrate.  Controlling for health status prior to migration into the model however 

results in this effect becoming insignificant (Table 7.15).   
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Cluster Destination 
CEM Effect of Migration 

L1 Odds Ratio Standard Error Significance 

Best Health and Most Desirable 0.377 1.054 0.139 0.693 

Average Mortality Profiles 0.444 1.149 0.157 0.31 

Good Health Areas 0.381 1.29 0.167 0.049 

The Middle 0.466 1.315 0.191 0.06 

Poor Health Experiences 0.427 1.162 0.204 0.392 

Poorest Health and Least Desirable 0.359 1.127 0.245 0.583 

Poorest Neurodegenerative Health 0.329 0.951 0.242 0.842 

Mixed Experiences 0.335 1.083 0.155 0.577 

Table 7.14: Results of logistic regression models assessing the impact of migrating to 

various clusters. 

  Odds ratio Standard Error Significance 

Migrated 1.176 0.176 0.279 

Health Status 11.2 1.019 <0.001 

Table 7.15: Controlling for health status prior to migrating to the cluster ‘Good Health 

Areas’. 

Splitting the migration variable to differentiate by origin however (Table 7.16), provides 

greater detail than the previous analysis (Tables 7.12 and 7.13).  There are two clusters 

which observed significant differences when compared to the cluster with the best 

mortality profile („Best Health and Most Desirable‟).  This shows that there is some 

evidence that area effects exist through migration.  It supports the results of the „Moving 

to Opportunity‟ studies as well (Leventhal and Brooks-Gunn, 2003).  Indeed, the odds 

ratio for „Poorest Health and Least Desirable‟ is particular large, with migrants from 

this cluster to „Good Health Areas‟ over 12 times more likely to have poor health than 

the reference cluster at the other extreme of the classification.  The results highlight the 

inequalities that exist and are observed through migration.  This would indicate the 

possible role of (large) area effects. 

Low sample size also plays a role here, restricting the observations that can be drawn.  

Rather than the lack of significance reflecting the lack of strong relationships, it is also 

partly explained by the low sample size in particular migrations (as shown in Table 7.2).  

This limits the power of the model and such it would be useful for further research with 

larger datasets to explore this possibility further to see if this can explain the results.  
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The standard errors are fairly wide due to this, meaning that the large effect recorded 

may not necessarily be true, possible over-estimating the importance of area. 

Variable Odds ratio Standard Error Significance 

Origin cluster: („Best Health and Most Desirable‟ = reference) 

Average Mortality Profiles 4.828 2.957 0.01 

Good Health Areas 2.154 0.876 0.059 

The Middle 2.81 1.506 0.054 

Poor Health Experiences 3.201 3.637 0.306 

Poorest Health and Least Desirable 12.454 11.359 0.006 

Poorest Neurodegenerative Health 1.708 1.418 0.519 

Mixed Experiences 1.962 1.106 0.232 

Health Status 11.37 1.04 <0.001 

Table 7.16: Exploring the impact of accounting for cluster origin on migrants to the 

cluster ‘Good Health Areas’ on health. 

 

7.6.3 Application of GORs to the analysis 

To be able to put these results in context, GORs were introduced in the same analysis to 

compare whether it can add greater understanding to the impact of migrating between 

areas on health.  This aids the evaluation of the effectiveness of the classification as an 

analytical tool for discriminating between patterns.  The analysis was conducted 

similarly to the previous two sections.  Matching was performed using whether an 

individual migrated or not, pairing them to individuals based upon both region of origin 

(Table 8.19) or destination (Table 8.20).  Individual logistic regressions were then run 

analysing the impact of migration to or from each region upon health. 

The analysis showed little evidence of an impact upon health across the geographical 

regions of England and Wales.  This was independent of whether region of origin and 

destination was used.  The classification was more useful here, presenting more 

significant relationships and greater detail from subsequent investigations.  Applying 

the classification within this analysis is more effective at discriminating differences in 

the data and analysing patterns. 
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GOR Origin 
CEM Effect of Migration 

L1 Odds Ratio Standard Error Significance 

North East 0.467 1.356 0.398 0.299 

North West 0.374 1.062 0.171 0.710 

Yorkshire 0.373 0.978 0.166 0.896 

East Midlands 0.435 1.115 0.194 0.532 

West Midlands 0.404 1.057 0.211 0.783 

East 0.382 1.068 0.195 0.731 

London 0.313 0.887 0.205 0.605 

South East 0.346 1.265 0.191 0.119 

South West 0.296 1.058 0.174 0.733 

Wales 0.437 1.433 0.161 0.001 

Table 7.17: The effect on health after migration from GORs. 

GOR Destination 
CEM Effect of Migration 

L1 Odds Ratio Standard Error Significance 

North East 0.432 1.580 0.463 0.118 

North West 0.358 1.148 0.183 0.388 

Yorkshire 0.372 0.873 0.151 0.433 

East Midlands 0.441 1.066 0.189 0.718 

West Midlands 0.405 1.021 0.207 0.917 

East 0.384 0.942 0.173 0.745 

London 0.292 1.067 0.252 0.782 

South East 0.371 1.130 0.173 0.426 

South West 0.356 1.167 0.190 0.341 

Wales 0.430 1.446 0.163 0.001 

Table 7.18: Migrating to a GOR and the impact upon health. 

Wales is the only GOR to be significant and this is independent of whether origin or 

destination was used.  Individuals who migrated were over 40 per cent more likely to 

have poor health than compared to the underlying population.  This may be accounted 

by the sample size of Wales.  As reported previously (see Table 6.5), Wales contains a 

larger population share in the BHPS through receiving a booster sample.  The greater 

sample size involved, compared to the other GORs, helps it to achieve significance.  
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The result reflects a migratory effect, which is otherwise hidden in the smaller GORs.  

This relationship falls consistent with the previous findings of this chapter. 

An alternative explanation for this effect would be that since the Welsh population rate 

their health as worse than it actually is, it represents a geographical effect (Dorling and 

Barford, 2009).  Geography imprints upon the interaction between health and migration.  

Those who migrated out of Wales carry with them this negative understanding of their 

health, with individuals who migrated inwards being influenced by their geographical 

location in how they view their own health.  Further research to explore this hypothesis 

would be useful to be able to test it. 

Adding self-rated health status prior to migration to control for the effect of unhealthy 

migrants however saw this effect become non-significant, highlighting it not to be 

strong.  Furthermore introducing greater geographical detail to mirror the analyses in 

Tables 7.12, 7.13 and 7.16 gave no significant results either.  Applying the GORs in the 

same analysis is less useful. 

The lack of significant effects once both origin and destination were accounted for in 

the same model was due to the small numbers of migration recorded between GORs.  

For example 6.1 per cent of migrations when destination was used were outside of 

Wales (5.4 per cent when origin was used).  Migration is fairly self-contained.  This is 

because most migrations are at short distances (Larson et al., 2004; Riva et al., 2011).  

Any differences in migration type (at least with regards the area effects hypothesis) are 

lost when GORs are used.  This would support the sample size explanation, rather than 

the Wales effect explanation. 

Geographical and environmental effects will not be captured, especially as there is a 

diversity of social conditions within each GOR (Doran et al., 2004; Vickers, 2006; 

Woods et al., 2005).  They are invisible administrative boundaries which are arbitrary in 

their location.  Using GORs misses out on the more important factors, something the 

classification better captures.  The classification focuses more on the important 

dimensions, capturing differences in social inequalities and divisions in mortality 

patterns (a proxy for the health damaging or beneficial impact of an environment).  This 

is why it captures greater detail in this analysis. 
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7.7 Health selective migration 

So far there has been a lack of consistent evidence surrounding the impact of area 

effects as measured through migration.  However it may be that the relationship has 

been mis-specified in the analysis.  Migrating between different areas does not impact 

upon health; rather the relationship would be the other way round in that health 

influences individuals to migrate.  Given that Section 7.5 showed selective migration by 

social and demographic characteristics, it appears a natural step in the analysis to 

explore whether this is occurring in terms of health as well.  It may also help explain the 

significant relationships found in the previous section. 

The investigation of health selective migration has gained the most attention in England 

and Wales (for example Brimblecombe et al., 2000; Wannamethee et al., 2002).  

However most of this analysis has occurred using simple linear/binary comparisons and 

there are few examinations using a more detailed set of area types.  There are some 

possible mechanisms which could operate for this approach to be useful; for example 

migrating to be nearer to services or family, downsizing through loss of income or the 

ability to work (Larson et al., 2004). 

 

7.7.1 Matching the data  

To examine the existence of health-selective migration, the analysis focuses only on 

those who migrated.  With the relationship reversed, it is no longer fair to match based 

upon migration, as it is now the outcome variable.  Rather matching was conducted 

using health status instead.  Research has shown that self-rated health status varies 

socially and demographically (Lindeboom and van Doorslaer, 2004; Dorling and 

Barford, 2009).  Therefore matching is required to control for selection bias, to be able 

to accurately assess differences by location (measured using location at time point „B‟ 

i.e. the destination).  Matching was employed to allow the correct model specification, 

controlling for age, sex and income.   

Figure 7.6 shows the distribution of data for the matching variables by health status of 

those who migrated between waves. Poor health extends further into the life course, 

being less prevalent in earlier ages than good health.  Income shows a greater 

concentration of poor health in lower incomes.  However the differences by status for 

migrants are not wide.  Sex was not included in the graphs, but instead can be seen in 
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Table 7.19.  There is a clear difference, with females more likely to report poor health 

than males.  This mismatch (since female health is generally better) is because women 

tend to be more concerned with their health and as a result, use health services more 

often (Lindeboom and van Doorslaer, 2004; Young et al., 2010).  Overall, selection bias 

is evident and therefore matching is warranted to reduce its effect on estimates.  

Good health       Poor health 

(a)        (b) 

 

     

(c)        (d) 

  

Figure 7.6: The distribution of people who migrated in year-B of the pooled data split 

by health status across age and annual income. (a) Age and people with good health; 

(b) age by people with poor health; (c) the range of income for those with good health; 

(d) annual income levels of people with poor health. 

Note: Annual Income was cut off at £80,000 for those with good health to improve the 

comparison in the distribution.  There were only eight other cases, of which four were 

below £100,000 and the largest was £470,259. 
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 Good Health Poor Health 

Males 75 25 

Females 69.7 30.3 

Table 7.19: The percentage variation by gender of people reporting poor and good 

health of internal migrants. 

The dataset contained 557 people who reported poor health, with 1459 who reported 

their health as good.  The overall multivariate L1 statistic (.337) showed that matching 

produced a fairly balanced data set.  Table 7.20 shows the improvement in the balance 

of the variables after matching, each declining to become near perfect balanced.  

Although the variables were not particularly imbalanced before, it is less about 

producing a vastly different model, rather about specifying the correct model for 

analysis (Iacus et al., 2011b).  It is also useful in controlling for their effects as well. 

Variable Before matching After matching 

Age 0.164 0.092 

Sex 0.104 <0.001 

Income 0.124 0.051 

Table 7.20: Change in the L1 statistic through the matching process by variable. 

 

7.7.2 Analysis 

To test whether there is evidence of health selective migration, a multi-nomial 

regression was run using the matched data.  Health status prior to migration was used to 

explain cluster membership.  „Best Health and Most Desirable‟ was used as the 

reference cluster, since it displayed the best mortality profile making comparisons 

easier.  The pseudo-r
2
 value of this was 0.005, which may indicate that health status is a 

poor predictor of migratory location by itself.  Yet this matters less, as this is not the 

objective of our analysis.  The model was significantly different from the null model 

(χ
2
=34.63, p<0.001), showing it to be useful.   

The results of the analysis (Table 7.21) showed evidence of health selective migration.  

With the reference cluster being the cluster with the best mortality profile (i.e. lowest 

mortality rates across the majority of the variables), for all bar the cluster „Mixed 

Experiences‟ there was a significant effect found.  The significant coefficients were 

always positive, showing that people with poorer health were more likely to migrate to 

each cluster when compared to the cluster with the best health outcomes.  The strength 
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of each coefficient was generally related to the mortality profile of that cluster, with the 

effect larger where the cluster represented higher mortality rates.  If the analysis 

examines only people who actually migrated to a different cluster (i.e. no intra-cluster 

migration), there is little change in the result showing it to be a strong relationship 

(results not shown). 

The results support the findings of past research (for example Bentham, 1988; 

Brimblecombe et al., 2000; Wannamethee et al., 2002), who found evidence of health 

selective migration across England and Wales.  Unlike the other health selective 

migration literature, this finding is using data over single years rather than comparing 

two points in time separated a long time apart.  These processes are not occurring over 

the life course overall, but play out over the short term.  It is also consistent over more 

area types than compared to a simple binary split of the data as in previous research. 

Cluster Variable Coefficient Std. Error P 

Best Health and Most 

Desirable 
(base outcome) 

Average Mortality 

Profiles 

Health Status 0.660 0.182 <0.001 

Constant -0.563 0.095 <0.001 

Good Health Areas 
Health Status 0.356 0.176 0.043 

Constant -0.215 0.085 0.012 

The Middle 
Health Status 0.652 0.184 <0.001 

Constant -0.603 0.096 <0.001 

Poor Health 

Experiences 

Health Status 0.581 0.206 0.005 

Constant -0.943 0.108 <0.001 

Poorest Health and 

Least Desirable 

Health Status 1.079 0.238 <0.001 

Constant -1.687 0.144 <0.001 

Poorest Neuro- 

degenerative Health 

Health Status 0.685 0.257 0.008 

Constant -1.654 0.142 <0.001 

Mixed Experiences 
Health Status 0.173 0.181 0.341 

Constant -0.198 0.085 0.020 

Table 7.21: Results of the multinomial regression. 

Migration (to an extent) helps reinforce inequalities in health.  With those of good 

health migrating to the better health areas, and those with poor health left „drifting‟ to 

the worst areas (Riva et al., 2011), health patterns begin to polarise.  With the poorer 
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health areas also being more likely to contain higher levels of poverty (and vice versa), 

the resulting polarisation is also indirectly in terms of social conditions as well, with 

those of poorer health ending up in those less socio-economically disadvantaged areas.  

This relationship was shown earlier indirectly though the observed social mobility 

(Section 7.5), helping to explain this process. 

 

7.7.3 A comparison to GORs 

To evaluate how useful the classification is, the analysis was repeated replacing the 

clusters with the GORs.  The same matching procedures were used as detailed in 7.7.1, 

since only the outcome variable has changed. 

To test for health selective migration, a multi-nomial regression model was also fitted 

on the data.  The GOR „North East‟ was selected as the reference region to make 

comparisons to, since it has been shown in both Chapters 5 and 6 to perform worst, 

making it useful as the base outcome.  Although the pseudo-r
2 

was particularly low 

(0.003) suggesting a poor model, it was significantly different (p = 0.008) from the null 

model showing it to add value to the analysis. 

Table 7.22 presents the results from the model.  There are few significant relationships 

across the model.  Only two regions present significant relationships, with people who 

reported their health as poor being less likely to migrate to either the „South East‟ or the 

„South West‟, in comparison to the „North East‟.  The South East and South West 

Regions would reflect a possible escalator region effect (Champion, 2012), attracting 

individuals with better health towards them (although not socially as shown in Table 

7.9).   

Whilst this represents health selective migration, the lack of consistent significant 

relationships across the whole GORs in the analysis (compared to using the 

classification) does not present strong evidence for health selective migration in this 

context.  The insignificant relationship for Wales also shows that this is not an 

explanatory factor for the previous evidence of a regional effect of migration on health. 

This result is contrary to other work such as Wannamethee et al. (2002) who showed 

evidence of health selective migration geographically in England.  This is due to a 

simplified concept of place, using only a North-South split over a long time period.  The 
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analysis presented here fits the correct model specification, showing the hypothesised 

relationships to be less strong. 

GOR Variable Coefficient Std. Error P 

North East (base outcome) 

North 

West 

Health Status -0.412 0.301 0.17 

Constant 1.278 0.176 <0.001 

Yorkshire 
Health Status -0.181 0.301 0.547 

Constant 1.098 0.180 0.012 

East 

Midlands 

Health Status -0.194 0.307 0.528 

Constant 0.967 0.183 <0.001 

West 

Midlands 

Health Status -0.418 0.320 0.191 

Constant 0.878 0.186 <0.001 

East 
Health Status -0.543 0.308 0.078 

Constant 1.194 0.178 <0.001 

London 
Health Status -0.558 0.332 0.093 

Constant 0.781 0.188 <0.001 

South East 
Health Status -0.784 0.299 0.009 

Constant 1.594 0.171 <0.001 

South 

West 

Health Status -0.664 0.301 0.027 

Constant 1.457 0.173 <0.001 

Wales 
Health Status -0.137 0.279 0.622 

Constant 1.827 0.168 <0.001 

Table 7.22: The results of a multinomial regression analysing GOR location of migrants 

by health status. 

Adding greater detail to the analysis shows that there is a less clear definition of the 

pattern of health selective migration.  It is only significantly found at the extremes of 

the country, rather than being a consistent pattern.  This would explain why it was found 

between the North and the South.  More importantly, the lack of significant 

relationships shows the classification to capture greater detail at testing for health 

selective migration than the GORs.  The classification is a more useful tool in 

discriminating patterns in the data. 
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7.8 Conclusion 

The final analytical Chapter of this thesis concerns the role that internal migration plays 

in affecting health.  The conceptual framework used was that if area effects were 

important, then there may be an observed effect as people migrated between different 

area types.  This approach has not been taken before, as the focus of past research has 

been on static neighbourhood environments (Van Ham and Manley, 2012) or just the 

impact upon health of migration itself (Brimblecombe et al., 2000; Larson et al., 2004). 

The analysis has shown no consistent evidence that migration by area type modifies any 

impact upon health.  Table 7.16 showed some evidence of area effects in the likelihood 

of migrants reporting their health as poor, however this was only significant for two 

area types.  These results are contrary to the neighbourhood effects hypothesised, 

supporting other research which argues that neighbourhood effects operate over long 

time scales (Hedman, 2011; Johnson et al., 2012; Musterd et al., 2012; Quillian, 2003). 

Although there are some observational effects found, it appears more plausible that the 

relationship exists in the other direction.  Evidence showing the existence of both health 

and social selective migration was more consistent and stronger, showing it to be the 

more dominant process operating.  These results could quite easily be driving the 

significance of any results suggestive that migration to an area has an effect on health.   

The classification was shown to capture greater detail in the analysis of migratory 

patterns.  The inclusion of GORs showed few significant relationships at all, showing it 

to be less useful.  This is because the GORs represent large geographical regions, in 

which the majority of migration remained within.  The classification adds value to the 

analysis through capturing social and mortality dimensions, whilst maintaining a 

geographical perspective as well. 
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Chapter 8: Conclusions 

 

8.1 Introduction 

The final chapter of this thesis looks to summarise and present the useful contribution of 

this thesis to the fields of research it draws from.  It begins through discussing the 

research findings of the thesis, with respect to the aims and objectives set out at the start 

of thesis.  This will assess the quality of the results produced throughout the study to 

evaluate what it has achieved.  Then the limitations of the research are discussed to 

outline how the thesis could be improved upon.  Next, a series of possible future 

extensions to the research are presented which could build upon the understanding 

introduced through the findings of this thesis.  The chapter ends with a concluding 

statement. 

 

8.2 Research findings 

“The availability of computer packages of classification techniques has 

led to the waste of more valuable scientific time than any other 

“statistical” innovation” 

(Cormack, 1971, p321) 

In a speech to the Royal Statistical Society in 1971, the mathematician Cormack 

attacked the use of classificatory techniques in research, proclaiming them to be nothing 

but a bit of fun.  However much has changed in the 42 years since his talk.  Examples of 

research, particularly area classifications, have increased our understanding of how 

individuals are clustered across populations (Harris et al., 2005; Openshaw et al., 1994; 

Vickers, 2006).  This thesis has shown how such an approach is useful for researching 

health and mortality.  This section evaluates the success of the thesis against the aims 

set out in Chapter 1 (Section 1.2), to show the main findings of the thesis. 
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I. Create a classification of mortality patterns of small areas for England and 

Wales, with a clearly justified open methodology. 

This is the core aim of the thesis.  Achieving the aim began in Chapter 2, where the 

literature was reviewed to assess the advantages and disadvantages of creating an area 

classification for researching health and mortality (Objective 2).  The main methods 

used to analyse the geographical patterning of mortality in the literature were limited.  

They focused on analysing single causes of mortality, restricting comparisons and 

interactions between causes.  This limits the overall understanding of patterns and 

processes. 

An area classification was identified as a response to tackle this gap in research.  It 

allows the development of a multi-dimensional tool through summarising areas by 

defining a structure to the data (Everitt, 1979).  This helps manage the complex patterns 

in the data, to give an efficient understanding of reality that may have remained hidden 

otherwise (Dorling, 2012).  It also maintains a geographical perspective to the 

explorative analysis. 

Despite presenting evidence that showed the importance of a geographical 

understanding of mortality patterns (Section 2.3), there had only been minimal 

applications throughout the literature of the use of area classifications in health and 

mortality research.  Of those that had, they were limited in their quality (CACI, 2010; 

NOO, 2009; Shelton et al., 2006).  This was despite calls from both researchers and the 

Government (Abbas et al., 2009; DoH, 2005).  Rather most evidence showing how they 

could add a useful dimension to research in these fields has been gathered from other 

fields.  A gap existed for a high quality and fine scale application of this approach.   

Other directions were suggested, however these failed to offer the same benefits of an 

area classification (especially the simplification of patterns).  Limitations of the 

approach were outlined to help develop the approach, as well as evaluating if it was 

useful. 

Chapter 3 discussed the data and methodological decisions made in creating the 

classification.  It was based upon Milligan and Cooper’s (1987) schema, which was 

adapted for the creation of an area classification (Section 3.1).  The data were reviewed 

and manipulated to prepare it for inclusion in an area classification (Objective 3).  This 

included outlining the data set used, discussing the variables to be included and how 

they would be useful in building the area classification, and assessing data quality and 
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issues.  The geographical scale of analysis was chosen after evaluating which would be 

best for this study (Section 3.4).  Based upon these steps, the inputs for the classification 

were compiled.  This also included the standardisation and weighting of variables to 

improve the quality of the inputs.  These steps allowed the creation of high quality 

inputs through clear decisions. 

Following this, the methodological options were reviewed and evaluated. Hierarchical 

clustering, partitional clustering, neural networks and fuzzy cluster were all evaluated.  

A partitional k-means methodology was chosen since it would be implemented most 

effectively given the aims and data involved in the study (Section 3.5.5; Objective 4).  

With the large data size, the method would run most efficiently, saving computational 

time (Gordon, 1999).  Furthermore, although the method requires the selection of the 

number of clusters prior to the analysis, it does produce the optimal solution for that 

number and therefore gives a better result than other methods (Everitt et al., 2001; 

Gordon, 1999). 

The steps to running a k-means analysis on the data set were detailed clearly throughout 

both Chapters 3 and 4, including the selection of the number of clusters in the model, 

the calculation of seed points and the choice of measure for measuring similarity.  This 

was important to allow the resulting classification to be evaluated.  Based upon these 

stages, the classification was created (Objective 5). 

The final task to ensure a high quality area classification was to statistically test the 

resulting model, to assess whether it is stable (Objective 6).  There are few methods for 

testing the robustness of an area classification.  It was identified through the literature 

that performing a replication analysis, examining the impact of outliers and assessing 

variable sensitivity were the most important factors to test (Section 3.9).  Each test 

showed relative stability of the main underlying structure of mortality patterns that the 

area classification captures (Chapter 4).   

In summary, an area classification was created based upon observations from the 

literature review showing that it would be a useful.  Data was collected and compiled to 

be entered in the model.  The most relevant methodology was selected and 

implemented, detailing clearly each step in its process.  Testing showed a stable and 

robust classification.  These steps led to the successful creation of an area classification 

analysing mortality patterns for small areas in England and Wales, produced with an 

open and detailed methodology. 
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II. Understand the dominant mortality patterns and why this segmentation exists 

across the areas within each cluster. 

To achieve this aim, firstly the individual clusters were interpreted in Chapter 5 to 

examine what they represent (Objective 7).  The cluster centres were explored, showing 

the average characteristics of each cluster (Tables 5.1 to 5.6).  They summarised the 

main mortality patterns found across England and Wales.  The main differentiation 

between the clusters was in terms of prevalence, each generally showing a different 

degree of mortality rates.  There was little interaction of causes shown through a single 

level classification.   

There was some interaction of causes.  Whilst both ‘Poorest Health and Least Desirable’ 

and ‘Poorest Neurodegenerative Disease’ initially appeared to be very similar (clusters 

with high mortality rates), they were slightly concentrated in different groups of causes.  

This is important with regards policy implementations, as these differences require 

varying approaches to improve the health of an area.  Knowing the health needs is more 

efficient than basing policy on demographic factors, which ignore variations in 

mortality experiences. 

Health related statistics were calculated to extend the understanding of the clusters 

beyond the inputs.  This was because a high mortality rate is not necessarily bad, given 

that everyone dies.  Life expectancy and premature mortality rates were calculated and 

showed wide inequalities captured between the clusters.  For example, there was a gap 

of 9 years in male life expectancy between the highest and lowest cluster values (Table 

5.10).  This was better than compared to equivalent measures for analysing life 

expectancy variations (ONS, 2010; Smith et al., 2010). 

The fifth chapter progressed to analysing the geographic areas that made up each 

cluster, to further the understanding and explanation for why each cluster of areas exists 

(Objective 8).  Beginning with demographic factors, the migration of elderly people to 

communal establishments was useful for explaining the clusters ‘Poorest 

Neurodegenerative Health’ and ‘Mixed Experiences’.  The elderly are gravitating to the 

same areas at the end of life, whether this is to nursing homes, downsizing their home or 

migrating elsewhere (for example retirement villages).  However this is not universal 

and there is slight split between the two clusters, following the social desirability of the 

cluster. 
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Social factors were shown to have a stronger explanation of the other clusters.  Where 

poverty was higher, clusters displayed worse mortality profiles.  This reflected 

observations made in the literature review (Section 2.3).  There were wide relatively 

differences in the measure, showing the classification to have been useful at capturing 

detail in the data.  This pattern was reflected when social class was introduced.  

Furthermore the area classification also showed a varying level of inequality by cluster, 

with the social gradient less prominent where the mortality profile was better. 

Visualising the area classification showed no discernable geographical pattern, showing 

it to be capturing patterns related to mortality and social phenomenon’s (Figure 5.1).  

However there were some geographical differences aiding the understanding of the 

clusters.  Clusters with good health profiles were more commonly found in rural areas 

and Southern regions (and vice versa), highlighting a slight geographical split to the 

area classification.  Nevertheless, calculating life expectancy split by both geographical 

measures and the clusters showed the clusters to negate variation in life expectancy.  

The area classification accounts for more variation in mortality patterns than can be 

attributed to geographical factors.   

Tackling Objectives 7 and 8 have led to a greater understanding of what the individual 

clusters represent and has begun to explain why their differences exist.  As such, this 

has achieved Aim II.  This understanding allowed each cluster to be named accurately, 

to describe its characteristics to aid future applications. 

 

III. Assess the extent that the area classification can help understand the existence 

of area effects. 

As Everitt et al. (2001) argue, to be able to assess how useful an area classification is, it 

needs to be applied to evaluate what it can add to the understanding of a topic.  This aim 

seeks to highlight the usefulness of the area classification through using it to analyse the 

existence of area effects. 

Tackling this aim began in Chapter 1, through reviewing the association between 

geography and health (Objective 1).  Evidence of area effects were evaluated to show 

that the environment individuals live in can have an independent impact upon their 

health.  This was shown to be further extended to migration research, as if area effects 

were to matter, then any effect would be observed as individuals migrate.  However, 
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there was little evidence for this approach being taken in research.  Possible causal 

mechanisms were reviewed, which later informed the individual- and area-level risk 

factors that were controlled for in the subsequent analysis. 

The analysis of area effects began through a multi-level analysis of whether the cluster 

individuals lived within had an effect on health (Objective 9a).  This would show 

whether the clusters were more important than simply areas of similar mortality 

patterns.  A significant effect was observed, which remained after accounting for 

individual covariates.  However the level of variance accounted for by the area 

classification was lower than past research has found for area effects (Pickett and Pearl, 

2001; Riva et al., 2007).  Furthermore, this effect became insignificant once poverty 

was introduced into the model, showing the importance of this factor in explaining the 

area classification.  The low number of clusters however, may have driven this 

insignificance given the variations shown descriptively (see Table 6.2). 

The analysis was then extended to include the clusters as fixed effects, with the Middle 

Super Output Area (MSOA) individuals resided in, left to vary as the random effect.  

This showed stronger evidence for area effects, with MSOAs significantly accounting 

for 5.2 per cent of the total variance in the model after controlling for individual and 

area covariates (Table 6.8).  This represents a similar sized effect to previous research 

(Pickett and Pearl, 2001; Riva et al., 2007).  The level of poverty in an area accounted 

for the effects of the clusters again, bar ‘Average Mortality Profiles’ which remained 

significant, showing the area classification to add extra detail to the analysis. 

Building upon this analysis in relation to gaps identified in the literature review 

(Sections 2.5 and 2.8), the analysis of area effects was extended in Chapter 7 to explore 

the impact on health as individuals moved between clusters (Objective 9b). 

The chapter successfully introduced a new method which has been under-utilised in 

research and applied it to address issues surrounding selection bias, which have 

previously been ignored in past research.  This allowed for a more accurate and 

appropriate set of findings. 

The results did not show consistent evidence of area effects.  Applying the area 

classification mostly resulted in insignificant results.  Moving out of the clusters ‘Good 

Health Areas’ and ‘Poor Health Experiences’ showed significant impacts upon health.  

However once destination was accounted for, this effect disappeared.  Moving into the 

cluster ‘Good Health Areas’ added the most to the model, as introducing cluster origin 
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into the model (Table 7.16) showed the effect of migration varied by cluster.  Moving 

from a cluster with a worse mortality profile resulted in a greater likelihood of poorer 

health.  Whilst only two out of seven origin variables were significant, this is a useful 

exploratory result as the other coefficients made sense even though they were 

insignificant.   

Of the significant relationships found throughout the analysis, each showed that 

migration was associated with an increased likelihood of poor health (as opposed to not 

migrating).  As the direction did not vary, this would show that the findings reflected a 

migratory effect.  Nevertheless, with the results from Table 7.16, this would indicate 

that area type can modify this migration effect on health. 

The patterns were stronger when health selective migration was tested.  Individuals with 

poor health were found to be significantly more likely to migrate into the clusters with 

poorer mortality profiles than compared to moving to the cluster ‘Best Health and Most 

Desirable’.  It highlights how health inequalities are maintained and exacerbated, 

through the social and spatial sorting of the population.  This would appear to be the 

dominant relationship when analysing migration and health, supporting previous 

research on this topic (Brimblecombe et al., 2000; Wannamethee et al., 2002). 

Conducting the analysis for Objectives 9a and 9b achieved Aim III.  Applying the area 

classification has developed the understanding of area effects, particularly with the new 

inclusion of migration into area effects research. 

 

IV. Benchmark the results to a relevant means of grouping the data, to highlight its 

usefulness as a research tool. 

Whilst the area classification improved the understanding of mortality patterns across 

England and Wales (Aim II) and area effects on health (Aim III), this does not show 

how useful it is as a research tool.  Rather it needs to be compared to another approach 

for categorising areas, to be able to assess the importance of the results.   

The area classification needs to be better than the status quo and the GORs were 

selected since they are currently used to report mortality statistics beyond the national 

level.  The results applying the area classification do not need to be perfect, rather they 

need to add further understanding to analysing patterns and processes than compared to 
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using the GORs.  The analyses were repeated, replacing the use of the clusters for 

discriminating variations in the data with GORs instead (Objective 10).   

Table 8.1 shows all of the main analytical results conducted for both the area 

classification and the GORs.  On eight out of nine of the tests, the area classification 

was found to be more useful compared to using the GORs instead.  The difference in 

performance was greatest when the analysis was descriptive (measuring life expectancy, 

health status and change in size of groupings).  This would indicate that it is better for 

displaying data, as it presents greater understanding of patterns and processes. 

Test Evidence Result 

Life 

Expectancy I 
Tables 5.11 

The area classification gave a range of values of 9.1 

(males) and 7.9 (females).  ONS (2010) reported the 

range for the GORs as 2.8 (males) and 2.7 (females). 

Life 

expectancy II 

Tables 5.21 

and 5.22 

The range of values within clusters (0.6 to 2.2) was 

less than within GORs (6.6 to 8.7). 

Health status 
Tables 6.2 

and 6.3 

A wider range of values using the clusters (16) than 

using GORs (12). 

Health status 

standardised 

Tables 6.4 

and 6.5 

Clusters had a greater range of values (58.9) than the 

GORs (42.7). 

Multi-level 

analysis 

Tables 6.6 

and 6.7 

Using the GORs gave a significant effect once 

individual and area level factors were controlled for.  

The area classification was insignificant. 

Change in size 

of groupings 

Tables 7.3 

and 7.4 

Less population retained using the clusters than 

compared to the GORs. 

Characteristics 

of migrants 

Tables 7.8 

and 7.9 

The multinomial regression saw 11 coefficients 

significant using the clusters, compared to the GORs 

where there were only two significant. 

Impact of 

migration by 

area on health 

Tables 7.10, 

7.14, 7.17 

and 7.18 

Three significant relationships using the area 

classification, with two using the GORs. 

Health 

selective 

migration 

Tables 7.21 

and 7.22 

Using the classification resulted in seven out of eight 

of the coefficients being significant, whereas using 

GORs only gave two out of nine significant. 

Table 8.1: Comparative results from the analysis. 

With the more rigorous analytical techniques, the results favoured the area 

classification.  The analysis of the characteristics of migrants showed the area 

classification to capture greater detail in who was moving between area types.  This 

result was further replicated in the analysis of health selective migration.  Whilst the 

comparative result for the analysis of the impact of migration by area type of health 

showed the area classification to be only just better, prior health negated the effect using 
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the GORs and the classification offered detail when both origin and destination were 

measured.  The only analytical comparison where the GORs outperformed the area 

classification was in the multi-level analysis.  Yet with only accounting for 0.8 per cent 

of the total variance, this shows that it is not particularly better than the area 

classification (unlike the other tests). 

The successful application of the area classification is further highlighted since the 

GORs contained two more categories.  Whilst in absolute terms, this may not appear 

much, proportionally the extra categories offer 20 per cent extra detail for helping to 

discriminate patterns in the data.  This may explain why the GORs were significant in 

the multi-level analysis.  It might have been better from the outset to have a ten cluster 

solution to ensure a fairer comparison, however this is not the point of building the area 

classification since it was shown to be less optimal (Chapter 4). 

The GORs are less useful as an approach for grouping areas.  This is because they are 

invisible administrative boundaries representing arbitrary geographical regions.  The 

area classification focuses on drawing out the divisions in mortality patterns.  Greater 

detail is therefore captured as social conditions vary greatly within GORs (Vickers, 

2006; Woods et al., 2005), whereas the area classification groups them together into 

clusters of similar characteristics.  The clusters focus on the factors that matter more for 

understanding patterns and processes. 

Achieving this aim has shown the area classification to be a useful research tool, 

through comparing it to an equivalent measure to benchmark how good the results were.  

However the GORs are still useful.  They offer a different dimension, focusing solely 

on geography.  It is important to examine both measures when researching health and 

mortality to gain the most understanding. 

 

8.3 Limitations 

It is important to identify the main limitations of this thesis, so that future research can 

address and develop these issues.  These are outlined in this section, discussed in 

chronological order to how they arose in the thesis structure. 

The area classification created in this thesis is a static classification.  It presents a 

snapshot of the mortality patterns across England and Wales between 2006 and 2009.  
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As a result, the classification is already out-of-date, remaining only applicable to that 

particular period (Harris et al., 2005; Vickers, 2006).  However this may not be too 

problematic, given that changes in mortality patterns occur slowly, since the main 

causes of mortality operate over a long time period (Musterd et al., 2012).  This is 

highlighted in Figure 8.1, which shows that mortality trends are more affected by 

changes to coding rules, than societal influences, with trends occurring on long time 

scales (Rooney and Smith, 2000).  Whilst there may be changes in the cluster some 

areas lie in, it would not be expected that the patterns captured by the main clusters 

would have changed since its developed, meaning that any application would still be 

useful.     

 

Figure 8.1: The age-standardised mortality rates for women in England and Wales 

1968-99 by cause (ICD-Chapter) (Rooney and Smith, 2000). 

Some decisions made throughout both the creation of the classification and its 

subsequent testing (Chapter 4) could be argued to be subjective.  There are no set 

statistics which can objectively answer each step to building an area classification 

(Milligan and Cooper, 1987).  For example, there is no set approach to deciding the 

number of clusters to include (Milligan and Cooper, 1985).  Whilst a limitation, it is 

also a benefit of the methodology, giving a good level of freedom and variation in how 

an area classification is constructed.  To minimise any issue throughout the study, any 

decision which is not objectively made has been made with clear and justified 

reasoning, based upon a variety of factors.  This ensures that the choices made are 
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shown to be the most useful within the situation, not relying on a single measure.  This 

is, however, a wider criticism of the field (Everitt et al., 2001; Gordon, 1999). 

The testing procedures applied in Chapter 4 are all fairly ad hoc.  This is because they 

are often testing the optimising of a solution (which is thought to be the best).  This 

solution (the rules and parameters) may not apply once a variable has been removed, 

rather you may be comparing a less optimal (or even wrong) solution to the main 

classification to assess the assumed impact (Everitt et al., 2001).  However there are no 

set tests to perform when creating a classification (Gordon, 1999).  Testing is important 

and the literature review of the methodology was important in identifying the few tests 

which could be applied in the study. 

True stability cannot always be achieved (or inferred) with unsupervised approaches 

(Everitt et al., 2001).  The majority of the tests conducted have shown that the results do 

not vary much, especially in terms of scale as well.  Stability can be inferred, albeit with 

some caution.  Yet even with distinct clusters, there is likely to be some change, 

especially in those cases which lie towards the edges of groups.  This is because the 

parameters and conditions that exist in the process change with each test and hence 

something different will always be created.   

The influence of communal homes on the clustering processes was shown and this 

could be problematic in the results produced.  With their higher death rates, they can 

lead to bias in the mortality measures input into the classification (Williams et al., 1995; 

2004).  They were particularly important in explaining both ‘Poorest Neurodegenerative 

Health’ and ‘Mixed Experiences’.  However ignoring them would give a false 

geography which does not reflect reality (Dorling, 2012).  Instead, communal homes 

should be viewed as helping to understand the geographical patterns of mortality 

through the area classification.  They reflect the changing nature of death, as their 

concentrated impact has become more prevalent with an ageing population (Williams et 

al., 2004).  A possible extension of the analysis to tackle this issue is proposed in 

Section 8.4.1. 

The use of self-rated health is also limited in its application within the analyses 

presented.  Whilst the measure usefully captures variations in actual health (Idler and 

Benyamini, 1997; Jylhä, 2009), the issue lies in how it is measured.  As a binary 

measure, the data becomes bounded between ‘good’ and ‘poor’ health.  There is no 

possibility of health improving if it was already ‘good’ (and vice versa).  As such, there 
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is lost variation at both ends of the distribution, which cannot be accounted for in the 

analysis, limiting the results.  It would be useful to extend the analyses using a different 

variable that does not suffer from this problem to truly test any effects.  However this is 

limited by the use of the British Household Panel Survey, which has no other variable 

which would solve this problem.  It has also been used in past research in this form, 

showing that it was a useful measure (Jen et al., 2009; Kondo et al., 2009). 

The lack of significant area effects observed through migration may be due to temporal 

limitations.  For example Johnson et al. (2012) showed that the neighbourhood effect 

was more pronounced later in the life course, a factor of individuals being exposed to 

neighbourhood effects longer.  As such, any effect by migration using yearly data may 

not have been expected to materialise in this analysis.  However, the ‘Moving to 

Opportunity’ studies have shown evidence of the health benefit of migrating away from 

deprived areas within a year of migration (Leventhal and Brooks-Gunn, 2003; Ludwig 

et al., 2011; 2012).  Therefore such an approach does appear warranted and provides 

additional understanding of the process within the short term. 

The matching of individuals to create a comparable control group was largely 

successful.  However not all migrations are equal, as people migrate for different 

reasons (for example employment, health, upgrading to new house).  Furthermore, 

Turnstall et al. (2010) showed that where migration was for negative reasons (such as 

divorce or bereavement), there was a stronger observed effect of migration upon health.  

There is some data for this in the BHPS, however it is patchy and it is not clear how 

best to group together the different reason available as there are many (and even then, 

not all possible reasons are covered).  Since we do not always know why people 

migrate, we do not really have an experimental design.  This is something that future 

research would need to address to improve the quality of the results. 

Finally, there is also an issue with the sample size in the migration analysis.  Table 7.1 

showed that only 8.6 per cent of the total data set migrated.  This limited the power of 

the analyses once origin and destination of movers was considered.  Pooling together 

the data helped the stability of the data set, however the results are limited since there 

may be a significant effect observed that is otherwise hidden by the sample size issue.  

The analysis should be conducted using a large sample size, although there are few 

which measure both migration and health (Larson et al., 2004).  The Understanding 

Society data set would offer a possible solution (40,000 households), although the 

second wave was not available at the time of analysis to be used here. 
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8.4 Future extensions 

In relation to the research findings and limitations identified throughout this chapter, a 

few examples of possible directions for further analysis and investigation are outlined in 

this section.  These are expected to extend the mortality classification and its subsequent 

analysis to further research. 

 

8.4.1 Bayesian modelling 

The classification’s data set was compiled through using indirect Standardised Mortality 

Ratios (SMRs).  This gave the relative risk of mortality for a particular cause in an area 

compared to what would be expected based upon national trends (Section 3.7.4). 

SMRs can be particularly unstable, especially for small area estimates (Williams et al., 

1995).  Since the measure operates as a ratio, where a cause has a low total of deaths 

nationally, its respective expected mortality will be low across a large number of small 

areas.  Therefore small differences in the observed data can easily lead to large SMRs 

(Lawson, 2013). 

Examination of the classification showed that there were not local clusters (i.e. small, 

extreme groups of areas).  However there was some influence of communal homes, 

which partially explained the clusters ‘Poorest Neurodegenerative Health’ and ‘Mixed 

Experiences’.  Extreme data points may have had an impact upon the findings 

(Williams et al., 2004). 

The smoothing of the mortality data would be a useful extension, given that some 

variables selected in the analysis had low prevalence once split into 7194 areas.  

Bayesian modelling (through ‘Markov chain Monte Carlo’ methods) offers a useful 

technique for accounting for extreme data points (Lawson, 2013).  It works through 

calculating the probability of an event occurring in an area (i.e. mortality for a particular 

cause), based upon the distribution of the data observed (Ntzoufras, 2009).  This gives a 

fairer account of the data, being less affected by spurious data.  Spatial correlation can 

be introduced, improving the geographical accuracy of variables. 

This approach has been useful in past research for smoothing SMRs for areas.  For 

example, Strong et al. (2012) used Bayesian modelling to smooth alcohol-related 

mortality in South Yorkshire to reduce the effects of bias with the small counts 
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involved.  The model was not just used to smooth the data, rather it was also used to 

analyse the distribution of data within explanatory factors (i.e. fixed effect covariates).  

This showed that deprivation had a greater impact upon males, than compare to females 

(a finding shown similarly using the classification and life expectancy previously; 

Chapter 5).  Extending the model to incorporate a random effect by electoral ward 

produced a significant area effect on alcohol-related mortality, independent of 

explanatory factors. 

There are limitations involved with introducing such an approach into building a 

classification of mortality.  The main issue regards computational power.  Bayesian 

modelling is an iterative and intensive methodology (Lawson, 2013; Ntzoufras, 2009).  

It is mainly used for the analysis of few variables (although usually only one outcome 

variable) across a relatively small number of areas.  This could be problematic for 7194 

areas, especially when introducing the spatial element of analyses (i.e. allowing for the 

distribution of variables to vary by geography).   

 

8.4.2 Subsequent levels of the area classification 

The area classification summarises the main mortality patterns of England and Wales.  

An extension to this understanding would be to create a second level to the area 

classification, by creating sub-groups for each cluster.  Essentially, an area classification 

is created for each cluster, resulting in a hierarchy.  It shows the area types within each 

cluster. 

As Voas and Williamson (2001) argue, this is important for examining the diversity of 

area types within each cluster.  For example, cause of death was shown to have less 

influence with a single level classification.  By extending the area classification, it 

would examine whether it becomes more important for explaining differences within 

clusters.  Examining the diversity of mortality profiles by social, demographic and 

geographical factors would also be useful for furthering the understanding of patterns 

and processes.  This would improve the usefulness of the area classification to policy 

targeting and planning. 

This extension does not just further the understanding of mortality patterns across 

England and Wales.  A possible explanation of the insignificant result from the multi-

level analysis of area effects was the low number of clusters.  Extending the area 
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classification to a second level would address this issue and allow a fairer analysis to 

examine whether the clusters exhibit an independent effect on health. 

To exploratory test this, a k-means cluster analysis was performed individually on the 

areas within each cluster to create sub-groups for each (following the same 

methodology to the main area classification).  A range of solutions were examined for 

each cluster between 2 and 5 sub-groups, based upon previous area classifications 

(CACI, 2013; Vickers, 2006).  However, a future in depth study might look at a wider 

range of values.  The decision of the number of sub-groups was made based upon Scree 

plots of mean distance of cases to their cluster centers and also cluster sizes (see Section 

3.8.4).  Where clusters did not have a second level, this was because further levels 

produced local clusters (i.e. a few areas as a cluster) and therefore were left as a single 

level to avoid any issues.  The hierarchical structure of the data is shown in Table 8.2. 

Cluster Number of sub-groups 

1 3 

2 4 

3 3 

4 1 

5 5 

6 2 

7 3 

8 1 

Table 8.2: The number of sub-groups found within each cluster. 

The same logistic multi-level regression model was then fitted (as found in Section 

6.4.1), controlling for individual and area level risk factors.  The results are presented in 

Table 8.3.  However there was little difference when compared to the results in Table 

6.6.  The significant random effect of the area classification attenuated once area level 

factors were included (albeit capturing slightly more variance).  A more refined second 

level would not appear to be useful for the analysis of area effects.  Nevertheless, it may 

be that the area classification accounts for any area effects through how it segments the 

population.  However the greater detail captured from this approach and its ability to be 

more discriminating within data would show this extension to be useful. 
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(a) Fixed effects model 

Variable 
Model 1 Model 2 

OR SE OR SE 

Age 1.024*** 0.001 1.025*** 0.001 

Male 1.022 0.052 1.02 0.052 

Income 0.99999*** 2.05E-06 0.99999*** 2.05E-06 

Trust 0.687*** 0.038 0.698*** 0.039 

Civic 0.788*** 0.048 0.794*** 0.048 

Meet 0.878 0.059 0.858* 0.058 

Belong 0.709*** 0.042 0.726*** 0.043 

Advice 1.001 0.055 0.993 0.055 

Poverty     1.029*** 0.004 

Turnover     0.999 0.002 

 

(b) Random effects parameters 

Model Variance SE P ICC 

Null 0.044 0.017 <0.001 0.013 

1 0.035 0.016 <0.001 0.011 

2 0.003 0.005 0.275 0.001 

Table 8.3: Results from the multi-level logistic model using the second level of the area 

classification as the level-2 unit. 

Key: OR = odds ratios, SE = standard errors, P = significance, ICC = Intra-Class 

Correlation.  Significance levels: p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***.  

 

8.4.3 A Scottish area classification 

As part of the mortality database used, there includes all deaths registered in Scotland.  

These were originally dropped from the study because of a lack of a comparable 

geographical scale, as well as few comparable explanatory area-level variables to help 

with understanding the analysis (Section 3.2). 

It would be useful to produce a mortality area classification of Scotland, especially with 

the data available.  Research has shown that Scotland displays different mortality 

patterns, including higher rates of premature mortality when compared to England and 

Wales particularly for lung cancer, ischaemic heart disease, alcohol-related causes, 

stroke and external causes (Griffiths and Fitzpatrick, 2001; Young et al., 2010).  This is 
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referred in the literature as the ‘Scottish effect’, whereby the health of Scotland is 

poorer than England and Wales, independent of social and demographic factors (Hanlon 

et al., 2005).  There are also wide variations within it, with Glasgow accounting for 

most of this poor health (Macintyre et al., 2008). 

An independent area classification would be constructed to explore the geographical 

patterns that dominate Scotland.  The following patterns and socio-economic correlates 

would provide an interesting comparison to the findings of this study, as well as the 

analytical approaches of Chapters 6 and 7 being applied with this new classification to 

explore whether this can add new understanding.  Furthermore, the cluster centres for 

the area classification of England and Wales could be applied to the Scottish data to see 

how well it fits the data and whether this gives a varying result to an independent area 

classification. 

 

8.4.4 Area classifications of affluence and poverty 

The classification summarises the main mortality patterns for small areas within 

England and Wales.  However taking small subsets of the population and classifying 

these would be a useful extension of this thesis through having a greater focus.  This is 

because specific groups in the population may become lost in the area classification, as 

they become joined with other areas (although ones not dissimilar).  Extracting this 

information can enable us to ask and answer concise questions, supplementing the 

results from the area classification of England and Wales.  It would be useful to create 

separate area classifications of the poorest and most affluent areas.   

Although the theme of poverty has been heavily research and is well established, 

research usually considers its effect to be linear (Keene et al., 2013).  Whilst poverty has 

a negative effect on health, it assumes that all poor areas are the same.  This ignores the 

multitude of experiences found in poorer areas (Dorling et al., 2007; Jin et al., 2011).  

Furthermore, often this research examines the direct impact of poverty against one 

cause of mortality, ignoring the interactions of all causes in an area.  With the ability to 

now account for all causes of mortality, these issues can be addressed. 

Whilst the poor represent a commonly researched group, the affluent do not (Hajat et 

al., 2010).  Often forgotten in research, with the focus on tackling the negative effects of 

poverty, it may become easy to forget that the rich die too!  This dominance of research 
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has led to calls that to fully understand the bottom of society, we need to consider what 

is happening at the top (Phillips, 2001).  Although this call occurred over a decade ago, 

little research has addressed this imbalance, especially in health-based research.  Certain 

causes of mortality dominate more affluent areas, for example malignant melanoma 

(Shaw et al., 2008).  Yet whether there is a diversity of health throughout these areas is 

unknown. 

Creating an area classification for each of these two area types would therefore be 

useful.  The dominant mortality patterns within each are not well known and therefore 

this study would be innovative in its findings.  Identifying the varying experiences of 

specific groups is also important for policy targeting and resource allocation.   

An issue that would arise would be how best to measure these two competing factors.  

Although many measures of poverty exist (Townsend and Kennedy, 2004), there has 

been less consideration of affluence.  Affluence is less well defined, consisting of 

different dimensions including income, wealth and social status (Butler and Watt, 2007; 

Dorling et al., 2007; Hajat et al., 2010).  Reviewing and producing a measure to account 

for this would be useful, as well as necessary to producing the area classification. 

 

8.5 Concluding statement 

The fable ‘The Fox and the Cat’ begins with a fox and cat discussing the tricks they 

have learnt.  The fox proclaims that it knows a wide variety of tricks, whereas the cat 

says that it knows only one trick very well.  Upon the arrival of a hunter, the cat darts up 

a tree to safety (its one trick), whereas the fox is eventually caught as it cannot execute 

any of its tricks well enough.  The moral of the story is to focus on being good at one 

skill, rather than spreading yourself too thinly across many different ones. 

Academia has become full of cats, focusing on ever decreasing small areas of study.  

This has led to greater detail in studies and a deeper understanding of patterns and 

processes.  However there is nothing wrong with being a fox.  The classificatory 

approach taken in this thesis chooses to focus on clustering all causes of mortality, 

rather than on a small set of causes.  The result produced a useful area classification, 

showing the interaction of causes and their varying distributions across England and 

Wales.  Its application into the field of neighbourhood effects was useful in extending 

the understanding of patterns and processes.  It highlights that a co-ordinated approach 
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is the only way to effective policy formulation, since causes do not happen in isolation.  

The ideas presented here, as well as the area classification itself, present a useful 

research approach for analysing mortality patterns across England and Wales.  

Hopefully it can spur on the growth of such techniques seen after their introduction into 

the field of geo-demographics. 
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