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Abstract 

The bacterium Staphylococcus aureus only synthesises peptidoglycan during cell 

division at the septum using a complex protein biosynthetic apparatus called the 

divisome. It divides sequentially in three orthogonal planes, using heritable features 

within the peptidoglycan architecture to maintain this process over generations. The 

‘rib’ features that form this ‘memory’ are remnants of a large belt of peptidoglycan 

called the ‘piecrust’ that is formed at the initiation of septation and before the septal 

plate. After division, the ribs remain as orthogonal features, which are bisected by 

further ‘piecrust’ features from ensuing division cycles. This results in a characteristic 

pattern of different age peptidoglycan sectors, delineated by ribs of a different 

architecture.  

As well as maintaining cellular viability and shape the peptidoglycan layer also acts as a 

scaffold for many other polymers, including wall teichoic acid (WTA). WTA is known to 

direct and modulate cell wall hydrolase activity. There has been recent debate as to its 

subcellular localisation. In this study, using the bacterial two-hybrid assay, four 

putative WTA biosynthesis enzymes were found to interact with numerous members 

of the divisome. Microscopy techniques localised WTA across the entire cell surface 

except on the piecrust and rib features. It was hypothesised that WTA blocks the rest 

of the peptidoglycan thereby directing the localisation of hydrolases and other 

proteins.  

The localisation of peptidoglycan hydrolases was studied.  Those found to localise to 

the rib and piecrust features (Atl(glucosaminidase), Atl(amidase), SagB and ScaH) 

showed a distinct pattern which was completely disrupted in a strain missing WTA. 

Conversely those (SceD) not associated with rib/piecrust showed no difference to 

localisation with loss of WTA. The processed forms of Atl (glucosaminidase and 

amidase) demonstrated different binding properties during the cell cycle and a model 

to illustrate the cell cycle dependent binding is proposed.  
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CHAPTER 1 

Introduction 

3.1 Staphylococcus aureus 

Staphylococcus aureus is a gram-positive spherical bacterium with a diameter between 

0.5-1.5μm. Cell division occurs sequentially in three perpendicular planes with the 

daughter cells not completely separating, resulting in irregular grape like clusters 

(Tzagoloff and Novick, 1977). It is frommin this cellular arrangement that the genus 

gets its name, staphylo- describes the clustered arrangement and –coccus refers to the 

sphere-like shape. The species name, ‘aureus’  is Latin for golden, referring to the 

colour of many colonies of this bacterium (Lowy, 1998). This golden colour is due to 

the production of carotenoids including staphyloxanthin in stationary phase cells 

(Marshall and Wilmoth, 1981). Of the 32 species and 8 subspecies of staphylococcus 

(Kloos and Bannerman, 1994), S.aureus and S.epidermis are the best studied. The 

staphylococci, are non-spore forming, non-motile facultative anaerobe that grow by 

aerobic respiration or fermentation. Furthermore S.aureus can survive outside the 

body and is resistant to temperatures as high as 50˚C and most disinfectants (Novick et 

al., 1993). Members of this genus are catalase positive and oxidase negative but can be 

either coagulase positive or negative. S.aureus produces coagulase, an enzyme which 

clots fibrinogen in mammalian blood, it is also the most prominent pathogen of man 

(Tortora, P.J. et al., 1997). Coagulase negative species are also capable of causing 

disease however this is often linked to prosthetic devices such as pacemakers and 

indwelling catheters (Lowy, 1998). S.aureus  is also deoxyribonuclease positive, which 

allows it to degrade DNA (Lowy, 1998).  

The first S.aureus genomes to be sequenced were those of the methicillin resistant 

strain N315 and vancomycin insensitive strain Mu50, both isolated from Japanese 

patients (Kuroda et al., 2001). This revealed a low G+C content, 2.8MB genome 

encoding approximately 2500 genes (Baba et al., 2002; Kuroda et al., 2001). 

Subsequently a number of strains, such as S.aureus COL (The Institute for genomic 

Research, TIGR database; www.tigr.org/tdb) and S.aureus NCTC8325 (Oklahoma 

university; www.genome.ou.edu/staph.html) have been sequenced and annotated.  

http://www.tigr.org/tdb
http://www.genome.ou.edu/staph.html
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1.2. Pathogenesis of Staphylococcus aureus. 

S.aureus is a commensal, that is carried transiently in up to 60%, and permanently in 

up to 20%, of the population (Lowy, 1998). It is usually found within the anterior nares 

or on the skin and transmission is most commonly via hands but can be airborne 

(Lowy, 1998; Whitt and Salyers, 2001). The presence of S.aureus doesn’t necessarily 

indicate infection but does indicate a higher risk of one developing (Peacock et al., 

2001).  It causes a wide range of diseases which have been separated into three 

categories; firstly the superficial lesions such as wound infections and skin abscesses, 

secondly systemic and life threatening conditions such as ostemyelitis, endocarditis 

and septicaemia and lastly toxin related disease such as toxic shock syndrome or food 

poisoning (Novick R. P., 2000; Sivaraman et al., 2009). Given that it is a commensal 

organism, it has a remarkable array of virulence factors which work in concert with its 

adaptive physiology to cause this wide variety of infections. These virulence factors can 

be grouped into three categories: firstly, attachment factors involved in attaching the 

bacteria to cells or extracellular matrices; secondly, evasion of host defence factors 

that prevent or reduce phagocytosis, that interfere with the function of specific anti-

staphylococcal host-defence mechanisms or antibodies, or both; and lastly, tissue 

penetration factors that specifically attack host cells and factors that specifically 

degrade components of extracellular matrices (Projan, S. J. and Novick, R. P., 1997). 

S.aureus  has the ability to grow well under high osmotic conditions and low moisture, 

which allows it adapt to three distinct environments: freely outside the host, as an 

external colonizer, and living within tissues (Novick R. P., 2000). Furthermore, it has 

been shown that the risk of infection is increased where an individual is 

immunocomprimised, a surgical patient or has an indwelling device such as a catheter 

(Lowy, 1998). Adding another facet to the infection process, it is possible for local 

infections to cause specific systemic syndromes, such as scalded skin syndrome or food 

borne gastroenteritis, even though the bacteria do not invade the bloodstream. The 

reverse is also true where dissemination from the blood stream can cause particular 

infections such as septic arthritis or epidural abscess (Archer, 1998). Pathogenicity of 

S.aureus is multifactorial in the majority of the diseases and is still poorly understood.  
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Though initially an organism associated with hospital acquired infections (nosocomial), 

in the 1990’s community acquired methicillin resistant S.aureus began to emerge. The 

emergence of multidrug resistant strains and the spread of hypervirulence within both 

hospital and community settings (Sivaraman et al., 2009) has made the study of 

S.aureus important as alternative therapies are required.  

3.2.1. Treatment and antibiotic resistance 

In recent years S.aureus has received much interest from the research community due 

to its position as one of the most important pathogens of man (Tortora, P.J. et al., 

1997).  Similarly to other bacteria, S.aureus develops its resistance to antibiotics by 

selection of chromosomal mutations and acquisition of resistance genes on 

extrachromosomal plasmids, transducing particles, transposons or other types of DNA 

inserts.  

The first, front line, drug to combat S.aureus infection was Penicillin G, however 

within 3 years of its introduction resistance had developed (Schito, 2006).  Resistance 

was due to the production of β-lactamase, a serine protease that hydrolases β-lactam 

rings rendering the antibiotic inactive. The enzymes is encoded by the blaZ gene, 

located on a transposable element carried by a plasmid (Lowy, 2003; Richmond, 

1966). The first semi-synthetic penicillin, methicillin, was introduced in 1961 to 

combat this problem but resistance rapidly emerged again (Schito, 2006). Here, 

resistance is due to the production of an additional penicillin binding protein (PBP2a) 

which has a low affinity for β-lactams, allowing it to catalyze the otherwise blocked 

transpeptidation reaction (Berger-Bächi, 1994; Ghuysen, 1994). PBP2a is encoded by 

mecA, part of a chromosomal cassette (Woodford, 2005).  This resistance mechanism 

is crucial as it confers resistance to all available β-lactams (Lowy, 2003).  

The glycopeptide vancomycin was introduced in 1958 to combat the emergence of β-

lactam resistance. It remained viable until 1996 when a vancomycin intermediate 

S.aureus strain (VISA) was identified (Hiramatsu et al., 1997; Schito, 2006) and a fully 

resistant (VRSA) strain was reported in 2002 (Chang et al., 2003). Worryingly all VISA 

strains were noted as being MRSA (Lowy, 2003). The reduced susceptibility seen in 

VISA isolates is thought to result from changes in peptidoglycan biosynthesis, which 
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has been seen as irregular shape, thicker cell walls, poorly separated cells, decreased 

cross-linking in the peptidoglycan, changes in structure and/or metabolism of teichoic 

acids, reduced rates of cell wall turnover and autolysis (Hiramatsu and Hanaki, 1998; 

Sieradzki and Tomasz, 2006, 2003).  Sieradzki and Tomasz (1999) proposed that a 

decrease in peptidoglycan cross-linking traps the drug and thus reducing the efficacy. 

VRSA isolates gain their resistance from the conjugal transfer of the vanA operon, 

originally from vancomycin resistant E.faecalis (Noble et al., 1992). This allows the 

synthesis of a cell wall precursor that ends in D-Ala-D-Lac instead of D-Ala-D-Ala which 

has a reduced affinity for vancomycin (Murray, 2000). In 2005 a compound which 

blocked the action of the DltA enzyme (a D-alanyl carrier protein ligase which is 

involved in the tailoring of Wall Teichoic Acid) was found to enhance the susceptibility 

of vancomycin against B.subtilis (May et al., 2005).  

While research into the discovery of a new antimicrobial targets is ongoing focus has 

been shifted into other defensive methods. There have been a variety of attempts to 

make a S.aureus vaccine. StaphVAX (Nabi pharmaceuticals) is a bivalent polysaccharide 

and protein conjugated vaccine. Although based on the two most prevalent serotype 

antigens (CP5 and CP8) which have been shown to successfully raise opsonising 

antibodies, StaphVAX was found to offer no significant protection in phase III trials 

(Fattom et al., 1990; García-Lara and Foster, 2009; Jones, 2002). In vivo actively 

replicating S.aureus are capsular whilst lab strains do not have a capsule, which offers 

an explanation for the failure of StaphVAX (Poehlmann-Dietze et al., 2000; O’Riordan 

et al., 2004). Similarly, a vaccine based on iron-regulated surface determinant B (IsdB), 

being developed by Merck and Intercell, was halted due to safety concerns and the 

suggestion that significant protection would not be obtained (Harro et al., 2012). 

Furthermore, passive immunisation strategies, such as Aurexis (Inhibitex) a humanised 

monoclonal antibody targeting the surface protein clumping factor A (ClfA), failed to 

obtain significant protection in phase II trials (Spellberg et al., 2010).  

Clearly it is essential that other ways of combating S.aureus and other antibiotic 

resistant microbes need to be developed, and to do this an understanding of the 

complex nature of S.aureus virulence, its life cycle and structure are required. 
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3.3 Bacterial cell division 

In prokaryotes cell division is performed by a process known as binary fission. This is a 

type of asexual reproduction that results in the formation of two daughter cells from a 

parent cell without the formation of spindles. The single chromosomal DNA molecule is 

replicated and separated. Membrane invagination, growth of a cell cross wall and 

cytokenesis complete replication (Errington et al., 2003) (Figure 1.6 shows cell division 

in rod, ovicocci and cocci). The whole process is performed with high fidelity, both 

spatially and temporally regulated so that complete copies of genetic information can 

be passed over to the next generation.  It is worth noting that some species use 

alternative methods of cell division either as its normal propagation or conditionally 

e.g. under stress. Examples of this are; multiple offspring formation as seen for 

Metabacterium polyspora which forms multiple endospores routinely (Angert and 

Losick, 1998); the hyphal growth shown by Streptomycetes which contains many 

nucleoids but few septa (Xu et al., 2008); or budding seen in Hyphomonas and other α-

proteobacteria where swarmer cells differentiate to stalked cells, which produce 

budded progeny (Angert, 2005). 

Cell division and growth need to be coordinated so that cells are the appropriate size 

before division occurs. It appears that either a constant cell volume, as shown in 

Streptococcus faecium (Gibson et al., 1983), or a critical cell length, as shown in E.coli 

and B.subtilis (Donachie and Begg, 1989; Sharpe et al., 1998), needs to be achieved 

before chromosome segregation. Cell growth rate regulates the timing of division (Den 

Blaauwen et al., 1999; Weart and Levin, 2003) and in at least B.subtilis, the metabolic 

sensor coordinating cell size and growth rate with division has been identified as the 

glucolipid pathway (Weart et al., 2007). The pathway transduces nutritional 

information directly to the divisome through an effector (UgtP), which inhibits in vitro 

and regulates in vivo septum formation. Although the direct mechanism of inhibition is 

still unknown, division is delayed until the critical mass is achieved and cytokenesis can 

be initiated. Interestingly, the glucolipid pathway synthesises uridine -5’-

diphosphoglucose (UDP-Glc), which is in turn involved in the production of teichoic 

acids (Lu and Kleckner, 1994). 
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The first stage in bacterial cell division is represented by the formation of the Z ring. All 

other division proteins require FtsZ for correct localisation, and thus Z ring formation 

must be spatially controlled. For the localisation to occur at the high accuracy it does, 

the standard deviation for central Z ring position is 2.2% in B.subtilis and 2.6% in E.coli, 

two systems are employed. In E.coli, the Min system is composed of 3 components, 

MinC, MinD and MinE, which prevent cell division at the cell poles by oscillating 

between them (outlined in Figure 1.1A). In B.subtilis homologues of MinCD are present 

but not MinE; DivIVA fulfils this role (Figure 1.1B). Interestingly the Min system is not 

employed by gram positive cocci and when present does not have set members, 

indeed certain Clostridia possess both MinE and DivIVA (Errington et al., 2003; Hu et 

al., 2003; Margolin, 2001). In the nucleoid occlusion model, division is inhibited in the 

vicinity of nucleoids, providing temporal and spacial regulation of cell division (Figure 

1.1C). In B.subtilis, Noc, a DNA-binding protein, co-localises with the nucleoid by 

binding consensus Noc-binding DNA sequences thus preventing assembly of the 

division machinery in the vicinity of the nucleoid (Wu et al., 2009). SlmA has been 

identified as the division inhibitor in E.coli and although functionally analogous, they 

share no sequence similarity (Bernhardt and Boer, 2005). Division site selection within 

cocci is more complex because they have the potential to divide in an infinite number 

of planes. Nevertheless, S.aureus deleted of nucleoid occlusion factor (Noc) have been 

shown to form multiple Z rings which are no longer placed in perpendicular planes, 

indicating nucleoid occlusion may play a role in determining the plane of septum 

placement (Veiga et al., 2011). It has been suggested that the epigenetic information 

encoded within the cell wall, potentially in combination with nucleoid occlusion,  is 

used to select the division plane (Turner et al., 2010). This will be discussed further in 

section 1.5. 

3.4 The divisome 

Components of the divisome have been identified within model organisms, however, 

not all are conserved across species, have been shown to be essential or have even 

been assigned functions. B.subtilis, E.coli and Caulobacter crescentus each have ten 

genes which have been shown to be essential (Figure 1.2 A and B show schematic 

representations of B.subtilis and E.coli)  
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Figure 1.1 Division site selection in rod-shaped bacteria. 

A) In E.coli; MinD dimerises and binds the lipid bilayer in an ATP-dependent manner. MinD 

recruits MinC to the bilayer; activating MinC. Together the MinCD acts as a regulator of FtsZ 

ring formation and polymerises in a helical pattern. MinD-ATP recruits MinE displacing MinC 

from the MinCD-bilayer complex in an ATP-independent reaction; inactivating MinC. MinE 

stimulates MinD ATPase resulting in release of MinD and MinE from the membrane (P. A. de 

Boer et al., 1992; de Boer et al., 1991; Hu and Lutkenhaus, 2000).  
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B) In B.subtilis; DivIVA is recruited permanently to the division site at a late stage of septation 

and is retained at the newly formed cell poles. DivIVA has an affinity for phospholipids and 

preferably binds strongly curved membranes.  The MinCD complexes forms static filaments 

restricted to the cell pole due to denucleation by DivIVA (Cha and Stewart, 1997; Marston et 

al., 1998). 

 

C) The divisome is prevented from forming through a nucleoid by the binding of a nucleoid 

occlusion effector to binding sites on the chromosome and direct or indirect interaction with 

FtsZ. It does not set the septum localisation by positioning the nucleoid. In rod-cells there 

remain three available places for Z ring formation where DNA is absent; midcell and at either 

pole 

 

D) Division at the cell poles is prevented by the Min system leaving the midcell as the only 

DNA-free site for Z ring formation.   
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A 
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Figure 1.2 Divisome of E.coli, B.Subitlis and S.aureus. 

A) Schematic representation of the E.coli divisome (reproduced from (Bottomley, 2011). 

B) Schematic representation of the B.subtilis divisome (reproduced from Bottomley, 2011). 

C) Interaction map of the S.aureus cell division proteins as determined by two-hybrid analysis. 

Positive interactions are shown by a solid line and putative interactions with a dashed line. 

Homodimerisation is indicated by a curved circular arrow (reproduced from Steele et al., 

2011). 

D) Schematic representation of the S.aureus divisome (reproduced from Bottomley, 2011). 
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(Buddelmeijer and Beckwith, 2004; Goley et al., 2011; Kobayashi et al., 2003) whilst six 

are essential in Streptococcus pneumonia for cell divsion. However, many other 

nonessential proteins with divisome roles have been characterised. The most 

comprehensive map of the S.aureus divisome was built on the basis of homology with 

cell division components of B.subtilis. This study revealed a complex web of sixty-two 

interactions between thirteen proteins, with nearly all proteins interacting with 

multiple partners (Steele et al., 2011) (Figure 1.2 C and D). While 29 interactions were 

novel to S.aureus, most of the interactions had been previously characterised in 

B.subtilis, E.coli and/or S.pneumoniae further suggesting a conserved core of division 

proteins (Bottomley, 2011). The key components of the cell divisome, such as FtsZ, are 

faithfully conserved throughout bacterial species, whilst others have diverged 

significantly (Angert, 2005).  

1.4.1 FtsZ 

FtsZ is a GTPase which forms a ring found on the leading edge of cell constriction (de 

Boer et al., 1992a). In E.coli, single molecule-based super-resolution microscopy 

showed that the Z ’ring’ is composed of randomly overlapping bundles of FtsZ 

protofilaments (Anderson et al., 2004; Fu et al., 2010). Time lapse microscopy showed 

that when not involved in cell division FtsZ forms dynamic membrane bound spots 

throughout the cell (Thanedar and Margolin, 2004; Peters et al., 2007). In fact 

quantitative fluorescence imaging showed in E.coli and B.subtilis the proportion of FtsZ 

that formed a ring structure was 30% whilst the remaining 70% was diffuse (Anderson 

et al., 2004). FtsZ is a GTPase that utilises GTP to vertically assemble into 

protofilaments which, in vitro, are one subunit thick and 30-50 subunits long (Chen and 

Erickson, 2005; Huecas et al., 2008, 2007). Binding of GTP activates FtsZ, which then 

acts as its own GTPase-activating protein (Scheffers and Driessen, 2001; Scheffers et 

al., 2002). However, using GTP analogues and FtsZ mutants it was shown that GTP is 

not required for binding but rather facilitates the constant recycling of FtsZ subunits by 

destabilizing FtsZ polymers (Huecas and Andreu, 2004; Mateos-Gil et al., 2012). 

Bramhill (1997) reviewed the three most favoured models of Z ring constriction: short 

protofilaments of FtsZ, aided by an unknown motor, slide relative to one another 

causing a reduction in Z ring circumference; secondly, depolymerisation of the Z ring at 
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membrane anchor points causes constriction; or lastly, protofilaments may bend. 

Although no model has been definitively proven, straight filaments favour bound GTP 

and curved filaments favour GDP supporting the last model and suggesting GTP 

hydrolysis as a motor (Lu et al., 2000). However, the second model also received 

support by the observation that the Z ring disassembles during constriction (Den 

Blaauwen et al., 1999; Monahan et al., 2009; Sun and Margolin, 1998).  

EM studies, immunoflourescence and GFP fusions have all shown that FtsZ is the first 

protein to localise to the midcell (Addinall et al., 1996; Bi and Lutkenhaus, 1991; 

Errington et al., 2003; Ma et al., 1996) with all other division proteins requiring 

interaction with FtsZ, usually via the conserved C terminus (Din et al., 1998), for 

correct localisation. It is therefore unsurprising that FtsZ is strongly conserved across 

prokaryotes, most archea and the organelles of eukaryotes (Beech et al., 2000; 

Erickson et al., 2010; Osteryoung et al., 1998). Indeed temperature sensitive and 

conditional mutants in E.coli and B.subtilis undergo normal cell elongation, DNA 

replication and chromosome segregation but fail to divide (Beall and Lutkenhaus, 

1989; Dai and Lutkenhaus, 1991). Thus, it is thought that FtsZ is a prokaryotic 

cytoskeleton element, essential for cell division (Dai and Lutkenhaus, 1991) and critical 

for septum formation in S.aureus (Pinho and Errington, 2003).  

1.4.2 FtsZ interacting partners 

Apart from FtsZ, FtsA is the only other essential cytoplasmic cell division protein, 

although it is thought to associate with the membrane. FtsA is a member of the 

actin/Hsp70/sugar kinase ATPase superfamily and directly interacts with FtsZ, 

indicating the early localisation later confirmed by yeast two hybrid analysis (Bork et 

al., 1992; Erickson, 2001; Ma and Margolin, 1999; Wang et al., 1997; Yan et al., 2000). 

The cellular ratio of FtsA to FtsZ appears to be important for correct division; in E.coli 

the cellular ratio of FtsA:FtsZ is 1:100 (Dai and Lutkenhaus, 1991) whilst in B.subtilis the 

ratio is 1:5 (Feucht et al., 2001). Despite this evidence, the exact mechanism of how 

FtsA helps FtsZ in cell division is unclear. However FtsA does directly interact with a 

number of other proteins and together they may tether FtsZ to the membrane (Di Lallo 

et al., 2003; Karimova et al., 2005; Maggi et al., 2008). Furthermore, FtsA may utilise 
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energy from ATP hydrolysis to either drive assembly or help control cell constriction 

(Errington et al., 2003). It is well conserved in most bacteria, although is not found in 

mycobacteria, cyanobacteria and mycoplasma (Margolin, 2000).  

ZipA was found in E.coli by affinity blotting for FtsZ-interacting proteins (Hale and de 

Boer, 1997). It is recruited early to the Z-ring in an FtsZ-dependent FtsA-independent 

manner (Hale and de Boer, 1999). The Z ring is formed in the presence of either FtsA or 

ZipA but not in the absence of both proteins, however both are required for septal 

constriction (Pichoff and Lutkenhaus, 2002). As with FtsA, ZipA binds to the C terminus 

of FtsZ and it is thought to enhance and stabilise the formation of FtsZ bundles 

(RayChaudhuri, 1999). It is predicted to be an integral membrane protein and is 

essential in E.coli, with the only other obvious homologue in Haemophilus influenzae 

(RayChaudhuri, 1999). ZapA (FtsZ-associated protein) is thought to have a similar role 

in cell division to ZipA, interacting directly with FtsZ to promote bundle formation 

(Gueiros-Filho and Losick, 2002). It is predicted to be cytoplasmic (like FtsZ and FtsA); 

however it is not essential for septum formation (Gueiros-Filho and Losick, 2002). ZipA 

is present in B.subtilis, and is widely conserved in other bacteria, including S.aureus.  

 EzrA , has a similar membrane topology to ZipA but no significant sequence homology 

(Errington et al., 2003). Indeed, evidence indicates the opposite role to ZipA as a 

negative regulator in B.subtilis by destabilising FtsZ filaments (Levin et al., 1999). EzrA 

also binds to the C terminus of FtsZ, and so may compete with the positive regulators 

FtsA and ZipA (Singh et al., 2007). In contrast, EzrA has also been shown to be required 

for efficient division in B.subtilis and mutants have a reduced diameter, suggesting 

involvement in elongation. Within S.aureus, EzrA is essential for cell growth and the 

absence results in delocalisation of cell division machinery and a block in peptidoglycan 

synthesis (Steele et al., 2011). Furthermore, in B.subtilis EzrA and GpsB may help with 

the localisation of PBP1, with the former ensuring midcell localisation and the latter 

promoting removal from the completed cell pole. It is conserved amongst the low G+C 

Gram positive bacteria, but is not essential in B.subtilis (Levin et al., 1999).  

In B.subtilis SepF has also been shown to interact directly with FtsZ, by affinity 

chromatography and yeast two hybrid, at an early stage (Hamoen et al., 2006; 
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Ishikawa et al., 2006). EM has shown that SepF forms large ring structures, 

approximately 50nm in diameter, which cause bundling of the FtsZ protofilaments into 

long tubular structures presumably by co-polymerisation (Gündoğdu et al., 2011). SepF 

is well conserved throughout gram positive bacteria but is often non essential, with 

deletion mutants exhibiting aberrant septum formation or altered cell morphology 

(Fadda et al., 2003; Hamoen et al., 2006; Ishikawa et al., 2006). 

ZapB localises to the midcell in an FtsZ- and ZapA- dependent, FtsA-, ZipA- and FtsI 

(PBP3)- independent, manner polymerising into large filaments that have been shown 

to constrict slightly ahead of the Z ring (Ebersbach et al., 2008; Galli and Gerdes, 2010). 

It is thought that ZapB mediates stabilisation of the lateral interactions between FtsZ 

protofilaments, by cross-linking ZapA molecules bound to the FtsZ polymers (Galli and 

Gerdes, 2010). Indeed deletion in E.coli results in filamentous cells, suggesting the 

involvement of ZapB in cell division (Ebersbach et al., 2008).  

A further FtsZ regulator in E.coli has been found in ZapC, which suppresses FtsZ GTPase 

activity and increases FtsZ protofilament bundling (Durand-Heredia et al., 2011; Hale et 

al., 2011). ZapC localisation to the midcell was FtsZ dependent but independent of 

FtsA, ZipA, ZapA and ZapB (Durand-Heredia et al., 2011; Hale et al., 2011). 

1.4.3 Septal biosynthesis machinery 

The remaining identified divisome proteins are all membrane-bound proteins with 

roles in synthesis, remodelling and degradation of peptidoglycan. FtsK is a large 

protein highly conserved in most bacteria. The N-terminal membrane domain is poorly 

conserved but responsible for midcell targeting (Draper et al., 1998; Yu et al., 1998). 

The C-terminal domain is required for ATP-dependent chromosome segregation (Yu et 

al., 1998). Therefore it is thought that FtsK is involved in actively transporting DNA 

away from the closing septum to prevent chromosome cleavage  (Yu et al., 1998; 

Pease et al., 2005).   

FtsW is a division specific lipid II flippase and as a member of the shape, elongation, 

division and sporulation (SEDS) family has a strong association with class B penicillin-

binding proteins (PBP’s) (Boyle et al., 1997; Gérard et al., 2002; Lara and Ayala, 2002). 
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Indeed in E.coli there is a perfect presence-absence correlation between FtsI (PBP3) 

and FtsW (Henriques et al., 1998) and direct interaction has been shown using 

numerous techniques (Datta et al., 2006; Di Lallo et al., 2003; Fraipont et al., 2011; 

Karimova et al., 2005). Furthermore FtsW is essential for FtsI recruitment to the 

division site (Mercer and Weiss, 2002) and both have been shown to interact with the 

monofunctional glycosyltransferase, MtgA (Derouaux et al., 2008). E.coli, B.subtilis and 

also curiously S.aureus, encode a SEDS protein apparently involved in cell wall 

elongation (RodA). It is thought that the staphylococcal RodA has a minor role and 

functions with the non-essential class B PBP3 (Zapun et al., 2008b). 

The formation of a trimeric complex of FtsQ/DivIB, FtsB/DivIC and FtsL is conserved in 

all species for which division protein interactions have been investigated (Buddelmeijer 

and Beckwith, 2004; D’Ulisse et al., 2007; Daniel et al., 2006; Noirclerc-Savoye et al., 

2005). FtsQ in E.coli, and its homologue DivIB in B.subtilis, have similar membrane 

topology to FtsL, FtsN and FtsI and appears to be essential for cell division (Carson et 

al., 1991). It is thought that this trimer acts as a scaffold for other division proteins, 

which is stabilised and regulated by FtsQ/DivIB (Daniel and Errington, 2000). 

Nevertheless the observation that FtsQ/DivIB is often found in operons with genes 

involved in peptidoglycan precursor synthesis and the abnormal cell wall phenotypes 

of mutants, has implied a further role in cell wall mechanics (Bottomley, 2011; Le 

Gouëllec et al., 2008; Thompson et al., 2006; Zapun et al., 2008b). FtsL is a small 

transmembrane protein that has been shown to interact with many division proteins 

(Daniel et al., 2006; Di Lallo et al., 2003; Karimova et al., 2005; Maggi et al., 2008) and 

is required for the assembly of DivIB, DivIC and FtsI at midcell (Weiss et al., 1999). FtsL 

is very unstable and unfolded and degraded in the absence of other divisome proteins. 

Overexpression has the ability to recover ezrA mutant phenotypes, indicating that FtsL 

has a regulatory role and acts synergistically with EzrA to regulate Z ring constriction. 

FtsB, and its B.subtilis homologue DivIC (Errington et al., 2003), are small essential 

transmembrane protein that like FtsL are intrinsically unstable (Buddelmeijer and 

Beckwith, 2004; Buddelmeijer et al., 2002). DivIC/FtsB and FtsL are dependent on one 

another for correct septal localisation and stability in both B.subtilis and E.coli 

(Buddelmeijer et al., 2002; Gonzalez and Beckwith, 2009).Work within this lab has 
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shown that all three are peptidoglycan binding proteins, FtsL showing the lowest 

affinity, and although cell division proteins they apparently localise away from the 

septum (Bottomley, 2011) 

FtsN is an essential division protein, first thought to be conserved only in enteric 

bacteria but since shown to be present throughout proteobacteria in varying amounts 

of sequence similarity (Dai et al., 1993; Möll and Thanbichler, 2009). It has been 

suggested to have a number of functions; stabilising the divisome through direct 

interaction with peptidoglycan (Arends et al., 2010; Möll and Thanbichler, 2009; Müller 

et al., 2007; Ursinus et al., 2004); regulating activity of enzymes involved in 

peptidoglycan turnover or cell separation (Derouaux et al., 2008; Gerding et al., 2009; 

Karimova et al., 2005; Müller et al., 2007); and globally influencing the cell division 

machinery (Dai et al., 1993). FtsEX, is an ABC transporter; with FtsX being the intergral 

membrane anchor protein and FtsE the associated cytoplasmic ATPase (de Leeuw et 

al., 1999; Yang et al., 2011). In E.coli, FtsEX localises to the division site, with FtsX 

localisation requiring FtsZ, FtsA and ZipA (Schmidt et al., 2004). FtsE has shown direct 

interactions with FtsA and FtsQ, through BATCH (Karimova et al., 2005), and FtsZ, 

through co-immunoprecipitation (Corbin et al., 2007). FtsE improves assembly or 

stability of the septal ring (Schmidt et al., 2004) and mutations of FtsE ATP-binding 

have implied that FtsEX utilises ATP to facilitate Z ring constriction (Arends et al., 

2009). 

GpsB (also known as YpsA) is a paralogue of the B.subtilis DivIVA, with homologues 

present in several gram positive bacteria (Tavares et al., 2008). Midcell localisation of 

GpsB is dependent upon FtsZ, FtsA, DivIC and PBP2b; and, unlike DivIVA, GpsB is not 

retained at newly formed cell poles, indicating a different function. Direct interactions 

have been seen with PBP1, MreC and EzrA (Tavares et al., 2008). GpsB, in concert with 

EzrA, is thought to co-ordinate division and elongation in B.subtilis (Claessen et al., 

2008).   

1.4.4  Penicillin binding proteins 

Peptidoglycan synthesis requires the family of PBPs for cell wall synthesis through the 

glycerol transferase, transpeptidase, endopeptidases and carboxypeptidase activity 
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catalysed by these acyl serine transferases (Ghuysen, 1991). PBP’s are classed as high 

molecular weight (HMW) and low molecular weight (LMW) PBPs, with each class being 

further subdivided. HMW-PBPs have a cytoplasmic tail with a hydrophobic 

transmembrane region and two domains located on the outer surface of the 

cytoplasmic membrane where peptidoglycan synthesis occurs (Sauvage et al., 2008). 

This class is then subcategorised depending on the catalytic activity of their N-terminal 

domain. Class A HMW-PBP’s are bifunctional enzymes; the N-terminal domain has 

transglycosylase activity, while the C-terminal domain has transpeptidase activity 

(Sauvage et al., 2008).  Class B HMW-PBPs are monofunctional enzymes with C-

terminal transpeptidase activity and an apparently inactive N-terminal, although it has 

been suggested that it may function as an intramolecular chaperone for folding of the 

catalytic domain or play a role in cell morphogenesis (Goffin et al., 1996; Höltje, 1998; 

Sauvage et al., 2008). It follows that, Class A PBPs are capable of elongation of glycan 

strands and formation of cross-links within peptidoglycan (the two enzymatic activites 

required for peptidoglycan polymerisation), whilst Class B PBPs only perform the 

latter. Monofunctional transglycosylases lack a penicillin binding domain but may also 

carry out transglycosylation.   

LMW-PBP’s typically have a cleavable amino-terminal signal peptide and are typically 

anchored to the membrane via the C-terminus, although they can be loosely 

associated with the membrane via hydrophobic or electrostatic interactions or be 

soluble (Fonzé et al., 1999; Harris et al., 1998; Pratt, 2008).  This class again can be 

subcategorised into three classes, labelled from A-C and separated primarily by amino 

acid sequence. All three classes are DD-carboxypeptidases but class C occasionally 

possess DD-endopeptidase activity (Sauvage et al., 2008).  

PBPs can be associated with a specific mode of cell wall synthesis; elongation (in rod 

shaped organisms) or septal (indicating potential divisome interaction). However the 

precise role of specific PBPs is often difficult to identify due to the variable number and 

redundancy shown in many organisms. The number of PBP’s within bacteria varies 

greatly; E.coli has 12, B.subtilis has 16 while cocci have between 4-7 (Zapun et al., 

2008a) and the deletion of different combinations of these PBPs results in many 

different mutant phenotypes which reflects their participation in multienzyme 



17 
 

complexes (Pratt, 2008). S.aureus has four PBP’s; one HMW-PBP Class A (PBP2), two 

HMW-PBP Class B (PBP1 and PBP3) and one LMW-PBP (PBP4) (Sauvage et al., 2008). As 

a coccus, it does not undergo elongation and PBP2, which we would expect to perform 

elongation, localises at the septum. Unusually there is only one LMW-PBP which 

exhibits activity sufficient enough to achieve the high degree of cross-linking seen in 

S.aureus peptidoglycan (Atilano et al., 2010; Wyke et al., 1981). A monofunctional 

transglycosylase can also be found on the genome and in β-lactam resistant strains an 

additional PBP,PBP2a, is expressed (Sauvage et al., 2008; Zapun et al., 2008a).  

1.5 S.aureus cell wall.  

The cell wall serves as the interface between the bacterium and its environment, and 

thus is essential to a cell’s survival from both internal and external conditions.  The cell 

wall has an extensive list of functions including, withstanding the internal turgor 

pressure, preserving cell integrity, maintaining cell shape, acting as a physical barrier 

and protein scaffold (Osborn and Rothfield, 2007; Pichoff and Lutkenhaus, 2002; Scott 

and Barnett, 2006).  Peptidoglycan is the major component of the cell wall and unique 

to the bacterial kingdom, its biosynthesis is therefore the site of action of some of the 

most clinically important antibiotics (e.g. penicillin and vancomycin) (Park and 

Strongminger, 1957; Courvalin, 2006). As a gram- positive, S.aureus is surrounded by a 

characteristic thick layer of peptidoglycan without an outer lipid membrane 

(descriptions of gram positive and gram negative cell walls are shown in Figure 1.3) 

(Höltje, 1998; Scott and Barnett, 2006). This layer is approximately 20 to 35 nm thick, 

in gram positives, forming up to 90% of the cell dry weight (Vollmer, 2008). 

Peptidoglycan is made of a polysaccharide backbone consisting of alternating N-

acetylglucosamine and N-acetylmuramic acid residues joined via a β 1,4 glycoside 

linkage (Cabeen and Jacobs-Wagner, 2005; Hiramatsu, 2001; Lugtenberg and Van 

Alphen, 1983). Each muramic acid has a covalently attached short amino acid chain 

consisting of alternating L- and D-isoform amino acids. D- amino acids are a defining 

characteristic of peptidoglycan because, apart from in a low abundance in teichoic 

acids (section 1.9.1), and they are not present in any other biomolecule. These peptide 

stems become highly crosslinked, in S.aureus via a pentaglycine interbridge, resulting 

in a strong 3D mesh-like layer (Wiedel et al., 1960). Almost 85-90% of S.aureus  
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Figure 1.3 General structure of the Gram-negative and Gram-positive cell walls.  

A) Gram negative; The cytoplasmic membrane is the inner most layer and acts as the major 

hydrophobic barrier between cytoplasm and external environment. The outer membrane is 

mainly Lipopolysaccharide (LPS), and interspersed with trimeric porin proteins which allow the 

passage of low molecular solutes. The periplasm is protein rich and contains a thin layer, 2-

6nm, of peptidoglycan (Matias and Beveridge, 2008; Scott and Barnett, 2006; Silhavy et al., 

2010; Vollmer and Seligman, 2010). 

B) Gram positive; There is no outer membrane but a much thicker, 20-35nm, layer of 

peptidoglycan surrounds the cell. Anionic polymers and proteins dot the surface and 

lipoteichoic acids are the major component of a narrow periplasm-like region (Matias and 

Beveridge, 2008, 2007, 2006, 2005). 

A 

B 
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Figure 1.4 Chemical structure of Peptidoglycan (adapted from (Madigan M.T et al., 2002)) 

The backbone of peptidoglycan is made up of alternating sugar residues. Short peptide arms 

are attached to MurNAc residues. The presence of a diamino acid (DA) at position 3 is 

necessary for cross-linking and the structures of two diamino acids, meso-diaminopimelic acid 

(m-DAP) and L-lysine are shown. During cross-linking via a pentabridge the second D-Ala is 

removed (*). 

  

* 
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While the

 

Figure 1.5 Peptidoglycan arrangement models 

A) Scaffold model; The glycan chains are orientated perpendicular to the plasma membrane. 

The peptidoglycan would be maximally cross-linked close to the cytoplasmic membrane 

(Vollmer and Höltje, 2004). 

B) Planar model; The glycan chains are orientated parallel to the lipid membrane. The thick 

wall of Gram-positive organisms would compromise multiple planar layers. In a rod shaped 

organism, the glycan strands would be arranged circumferentially providing the mechanical 

strength (the lateral force acting on a cylinder is twice that of the longitudinal direction) to 

maintain a rod shape under turgor pressure (Vollmer and Höltje, 2004).  

C) B.subtilis model; Bundles of glycan strands form a ‘rope’ of approximately 25nm wide  which 

is coiled into a ~50nm wide cable which is then attached to the existing cell wall (Hayhurst et 

al., 2008). 

A B 

C 
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peptidoglycan is crosslinked (Wilkinson, 1997). Cross-linking between adjacent stems 

occurs via linkage of the ε-amino group of the dibasic amino acid to the α-carboxyl 

group of the terminal D-alanine of tetrapeptides. Although rarely, a 3-3 cross-linkage 

can occur between two dibasic amino acids. The chemical structure of peptidoglycan is 

outlined in Figure 1.4. 

The glycan chain length varies between organisms,  S.aureus have relatively short 

chains at approximately 6 disaccharides long (Boneca et al., 2000). The C6 group of the 

MurNAc may be modified by O-acetylation, N-glycosylation or de-N-acetylation 

(Vollmer, 2008)in varying degrees and combinations depending on species. These 

modifications have been shown to provide resistance to lysozyme and other 

autolysins, and in the case of O-acetylation is associated with pathogenesis and 

modulation of the host immune response. The arrangement of the glycan strands has 

undergone much debate and two possible models exist; the glycan strands are 

arranged in the plane of the cytoplasmic membrane (de Pedro et al., 1997; Koch, 

1998), or the glycan strands are arranged perpendicular to the cytoplasmic membrane 

(Dmitriev et al., 2004, 2003) (both models are addressed in figure 1.5). The glycan 

chain lengths of S.aureus are short enough to permit either configuration (disaccharide 

length ~6 at 1.03nm per disaccharide (Carlstrom, 1957); Peptidoglycan layer width 20-

35nm). However, recent publications have suggested a poorly ordered planar 

orientation is adopted by the Gram-negative organisms E.coli and C.cresentus, as 

shown by electron microscopy, neutron scattering and atomic force microscopy (Gan 

et al., 2008; Vollmer and Höltje, 2004; Wang et al., 2012). Furthermore, the rod-

shaped Gram-positive B.subtilis exhibits a more complicated architecture of 

peptidoglycan cables wrapping around the cell cylinder (Figure 1.5C) (Hayhurst et al., 

2008).  

1.6  Peptidoglycan synthesis. 

Peptidoglycan is synthesised in three key stages: synthesis in the cytoplasm of a 

monosaccharide pentapeptide; assembly of the disaccharide-pentapeptide monomer 

unit on the inner surface of the cytoplasmic membrane and translocation of the 

monomer to the periplasm; and finally transglycosylation of the monomer unit into a 
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glycan polymer, and transpeptidation into the sacculus (Typas et al., 2012).  Rod-

shaped organisms alternate between two modes of cell wall synthesis; elongation, 

where peptidoglycan occurs in a potential helical pattern along the lateral cell wall 

(Daniel and Errington, 2003); and septal growth, where synthesis occurs at the septum 

leading to the formation of the septal disc (Pinho and Errington, 2003). Cocci offer a 

simpler model of cell wall synthesis, because the FtsZ-dependent cell wall synthesis is 

predominant and can account for the synthesis of the entire new hemisphere of each 

daughter cell.  It is important to note the difference between the two types of cocci: 

true cocci, such as staphylococci, which are truly round; and ovococci, such as 

enterococci, which are elongated ellipsoids. Ovococci and true cocci do not have the 

same mechanisms of cell wall synthesis during the cell cycle (discussed in Figure 1.6, 

alongside rod-shaped organisms).   

The enlargement of the multilayered sacculus has been proposed to occur via a three-

for-one mechanism of ‘inside-to-outside’ growth (Höltje and Heidrich, 2001; Höltje, 

1998). An inside-to-outside model for the flux of cell wall material suggests that the 

cell wall inner layer contains newly synthesized peptidoglycan. This peptidoglycan is 

introduced in a ‘three-for-one’ manner, where one glycan strand in the sacculus is 

replaced by a nascent triplet of cross-linked glycan strands and pulled into plane of the 

sacculus under turgor pressure. As the cells grow, the new cell wall passes outwards 

and stretches, becoming the middle stress bearing zone. The outer zone consists of 

old, partially hydrolyzed peptidoglycan awaiting solubilisation (Höltje and Heidrich, 

2001; Höltje, 1998; Pooley et al., 1978). As S.aureus grows exclusively by division, they 

have a single peptidoglycan synthesis machinery, which is coordinated by FtsZ during 

division (Atilano et al., 2010; Pereira et al., 2007; Pinho and Errington, 2005, 2003).  

AFM has identified that S.aureus forms a thick band of material, which exhibits a 

corrugated ‘piecrust’ texture, around the cell in the plane of division (described 

through the cell cycle in Figure 1.7A) (Turner et al., 2010). This ‘piecrust’ rib forms 

before the centripetal synthesis of the septal disc. Once the septal disc is complete the 

cell splits and produces two pseudo-hemispherical cells. The thick ‘piecrust’ splits into 

two ribs which serve to brace the cell, preventing collapse to a smaller energetically  
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Figure 1.6 Peptidoglycan dynamics in cocci and ovococci 

A Rod-shaped. Most rod-shaped organisms elongate by dispersed helical insertion of 

peptidoglycan (MreB-directed in E.coli and Mbl-directed in B.subtilis). A short phase of FtsZ 

driven elongation precedes division. Divsision occurs rapidly by constriction or septum 

formation. Daughter cells separate and initiate elongation again. 

B True cocci. Peptidoglycan synthesis occurs at septation. The division ring is initiated. The 

septum then closes centripetally, like the iris of a camera. A complete cross-wall forms, 

dividing the cell into two hemispherical daughter cell compartments. Daughter cells separate, 

the septal cross-wall becomes the new cell wall hemisphere and division is initiated on the 

next orthogonal plane.  

C  Ovococci. An annular outgrowth of the cell wall termed an equatorial ring, demarks the 

initiation site of the new cell wall. Synthesis of an invaginating cross-wall is initiated and the 

equatorial ring is split in two and the rings are driven apart by peripheral wall synthesis. The 

equatorial rings approach the mid-cell of the forming daughter cells. Peripheral extension 

switches to constriction. The annular cross-wall closes forming a new cell pole. Peripheral 

growth initiates in the daughter cells.   
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favourable shape, and forcing the new cell wall to stretch as the cell grows in size. To 

allow this growth the peptidoglycan is remodelled by irreversible autolysis of covalent 

bonds (observed by AFM as a transition from centric ring architecture to a knobbly 

architecture) within long glycan strands. This makes the cell wall more elastic by 

sharing the stress bearing function between the glycan strands and more flexible 

peptide stems and allowing the expansion from hemisphere to spherical (Figure 1.7B) 

(Wheeler R., 2012). The ‘piecrust’ ribs are retained after division and have been 

proposed to encode enough information for the cell to ‘remember’ previous division 

planes (Figure 1.7A). The most recent division plane will be seen as a whole rib, the 

division before as a half rib and the third most recent division as a quarter rib. This rib 

is uniquely bounded by two T junctions which may allow the cell to mark this plane for 

the next division (Turner et al., 2010). The question of how the division machinery are 

recruited to this nascent septal ring is still not understood but has been hypothesised 

as a function of membrane distortion due to the ‘piecrust’ ribs (Wheeler R., 2012) 

which may be recognised by DivIB (Bottomley, 2011).  

1.7  Peptidoglycan hydrolysis 

For a cell to continue growing and dividing peptidoglycan must be remodelled and 

hydrolysed at specific times and specific sites. This hydrolysis of either the glycan or 

peptide chain is carried out by a group of enzymes known as peptidoglycan hydrolases 

(Vollmer et al., 2008). Some of the physiological roles of peptidoglycan hydrolysis 

include cell growth, cell-wall turnover, peptidoglycan maturation, cell division, 

separation and pathogenicity (Foster, 1995; Stapleton et al., 2007; Vollmer et al., 

2008). It is also involved in more specialised functions; differentiation to endospores 

(Errington, 2003), assembly of macromolecular trans-envelope complexes (Hirano et 

al., 2001; Koraimann, 2003), cross-species and inter-species competition (Ellermeier et 

al., 2006; Russell et al., 2011), competence (Ahn and Burne, 2006; Eldholm et al., 2010) 

and biofilm formation (Vollmer et al., 2008). In addition, peptidoglycan hydrolysis 

releases turnover products which serve as signalling molecules for recognition of 

bacteria by other organisms and, in some bacteria, for the induction of β-lactamase 

(Jacobs et al., 1997; Vollmer et al., 2008). 
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Figure 1.7 Growth of peptidoglycan and structural inheritance of division planes in S.aureus 

A) Location and remodelling of piecrust and rib features through the division cycle, resulting in 

T junctions and cross sections. The quarter rib is a distinctive feature (i) and a new piecrust is 

formed in this plane (ii), it is then split in two as the cell divides (iii). This leads to a revised rib 

pattern that specifies the next round of division (Taken from Turner et al., 2010).  

B) The thick piecrust braces the hemisphere and long, glycan strands predominate in the new 

cross-wall, preventing expansion or collapse. Hydrolysis of the ring architecture reduces the 

chain length and increases the elasticity of the wall permitting increase to a spherical shape 

(Wheeler R., 2012). 
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1.8   Peptidoglycan hydrolases 

A bacterial species may have a variety of peptidoglycan hydrolases which often have 

more than one physical function and exhibit redundancy, thus the specific roles of a 

hydrolase are difficult to assign (Heidrich et al., 2002, 2001; Höltje and Tuomanen, 

1991; Smith et al., 2000; Vollmer et al., 2008). Indeed, E.coli has a complement of 21 

known hydrolases and remains viable despite inactivation of apparently whole families 

of enzymes (Heidrich et al., 2002). Recently, Singh et al., (2012) showed redundant 

essentiality of three hydrolases (Spr, YdhO and YebA) where a conditional mutant of all 

three was unable to incorporate new murein and underwent rapid lysis at restrictive 

conditions. Despite their obvious roles in cell separation hydrolases can participate in 

host-pathogen interactions and be involved in immune evasion through alteration of 

the cell wall (Amieva and El-Omar, 2008; Dziarski and Gupta, 2010, 2005; Girardin and 

Philpott, 2004). Furthermore, hydrolases are also found in higher organisms as a 

defence against bacterial pathogens, and in phage for infiltration and escape from the 

bacterial host (Vollmer et al., 2008).  

There are peptidoglycan hydrolases to act upon each of the four bond classes, which 

results in the disruption of the cross linked structure of peptidoglycan. The cleavage 

sites of the different hydrolase classes are shown in Fig 1.8. N-Acetylmuramyl-L-alanine 

amidases hydrolyse the amide bond between MurNAc and L-alanine, separating the 

glycan strand from the peptide. They carry signal peptides in their N-termini and a 

non-catalytic region (cell wall-binding domain), which is responsible for the binding of 

the protein to the cell wall. The cleavage of the amide bond between amino acids is 

carried out by peptidases. Endopeptidases cleave all bonds within the peptide stem, 

while carboxypeptidases specifically cleave the bond required to release the C-

terminal amino acid. They can both be prefixed with DD-, LD- or DL- depending on the 

isoforms of amino acids involved (Shockman G. D. and Holtje J.-V., 1994; Smith et al., 

2000; Vollmer et al., 2008). N-acetyl muramidases (muramidases) cleave the β- 1-4 

chain that links N-acetlymuramic acid and N-acetylglucosamine. This bond can be 

cleaved in two different ways; lysozymes produce a terminal reducing MurNAc residue 

and lytic transglycosylases result in the formation of a 1,6-anhydro ring at the MurNAc  
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Figure 1.8 The specificity of peptidoglycan hydrolases 

Structure of peptidoglycan showing major chemical bonds targeted by peptidoglycan 

hydrolases. Three classes of hydrolases. Ami, N-acetylmuramyl-L-alanine amidase; DD-CPase, 

DL-CPase, LD-CPase, Carboxypeptidases; DD-EPase, DL-EPase, LD-EPase, Endopeptidase. 

(Adapted from (Vollmer et al., 2008) 
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residue. N-acetlyglucosaminidases (glucosaminidases) hydrolyse the bond between N-

acetyl-β-D-glucosamine residues and adjacent monosaccharides (Karamanos, 1997). 

Several classes of enzyme have been assigned specific functions. For instance, the 

tightly crosslinked peptidoglycan of S.aureus is a product of the relatively low activity 

of DD-carboxypeptidase. DD-carboxypeptidases trim pentapeptide stems to 

tetrapeptides, which can only accept bonds during transpeptidation, their low activity 

leaves many donor/acceptor stems and thus increases the extent of cross-linking (Atrih 

et al., 1999; Markiewicz et al., 1983; Vollmer et al., 2008). In fact, hydrolases have 

been suggested as having a role in coordinating Z-ring placement;  disruption of certain 

hydrolases in S.pneumoniae (PBP3) and L.monocytogenes (PBP5-homologue) results in 

aberrant septum placement (Guinane et al., 2006; Schuster et al., 1990) and mutants 

in E.coli PBP5, along with other LMW PBPs, display perturbed shape and branched 

morphology (Nelson and Young, 2001; Potluri et al., 2010). It is well established that 

hydrolases are responsible for the splitting of the septum, with positive correlation 

having been reported between a lack of PG hydrolase activity and a failure in cell 

separation. In S.aureus the enzymes involved have been identified as Atl, Sle1, IsaA, 

SceD and SA1825 (Foster, 1995; Kajimura et al., 2005; Stapleton et al., 2007). A list of 

all known and putative S.aureus hydrolases is shown in Chapter 6. 

Hydrolases aid peptidoglycan maturation and wall turnover (needed for the inside-to-

outside model of sacculi enlargement). Glucosaminidase produces an N-acetyl 

muramic acid at the non-reducing terminus of peptidoglycan. Atrih et al., (1999) 

demonstrated its presence in B.subtilis after peptidoglycan was modified to its mature 

form, LytD and LytG were identified as the two glucosaminidases responsible (Margot 

et al., 1994; Rashid et al., 1995). Furthermore, in B.subtilis inactivation of lytC 

(encoding the major amidase) results in cell wall and septal thickening and a significant 

decrease in the rate of turnover, (Blackman et al., 1998) and turnover retardation was 

enhanced in a lytClytD background (Smith et al., 2000). Boneca et al., (2000) saw minor 

satellite peaks when using Reverse Phase High performance Liquid Chromatography 

(RP-HPLC) to analyse S.aureus glycan strands, again suggesting the role of 

glucosaminidases in peptidoglycan maturation. Wheeler (2012) worked to confirm this 

suggestion and was able to suggest a hypothesis where the hydrolysis of peptidoglycan 
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through the action of glucosaminidases (SagA, SagB, ScaH and Atl(glu)) allows cell 

growth, which has implications for both S.aureus peptidoglycan architecture and cell 

physiology. Additionally, Δatl and Δsle1 exhibit altered wall turnover in S.aureus, 

shown by electron microscopy as rougher outer surfaces when compared to those of 

the parent (Foster, 1995; Kajimura et al., 2005).  

Hydrolases are also thought to play a role in competence, the ability of bacteria to take 

up DNA from its extracellular environment, and competition. AtlA-deficient 

Streptococcus mutans fail to develop competence, whilst liberation of DNA is almost 

completely abolished in a S.pneumoniae lytA lytC mutant (Ahn and Burne, 2006; 

Moscoso and Claverys, 2004). This is due to fratricidal lysis; a subset of cells develop 

competence and lyse non-competent sister cells or closely related species leaving a 

rich pool of genetic material, which enhances the uptake of genetic material by 

competent cells (Eldholm et al., 2010). Similarly, bacteria can secrete hydrolases to 

cannibalise competitors for nutrients (Singh, 1947; Vollmer et al., 2008). P. aeruginosa 

directly deliver an amidase, Tse1,and lysozyme, Tse3, into the periplasm of competing 

cells (Russell et al., 2011) and Myxococcus xanthus produce several peptidoglycan 

hydrolases that can participate in this type of predatory lysis (Sudo and Dworkin, 

1972). In B.subtilis, lysis of vegetative cells by the hydrolytic killing factor SpdC provides 

a pool of nutrients, preceding sporulation (Ellermeier et al., 2006; González-Pastor et 

al., 2003). Indeed, Staphylococcal Atl endo-β-N-acetylglucosaminidase inhibits 

mitogen-induced DNA synthesis of human leukocytes as well as the formation of 

cytoplasmic immunoglobulin-containing cells by β lymphocytes in vitro (Valisena et al., 

1991). However atl null mutants did not cause an alteration in acute infection in a 

mouse sepsis model (Takahashi et al., 2002) even though a sle1 mutant showed less 

pathogenesis in the same model (Kajimura et al., 2005).   

1.8.1  Regulation of peptidoglycan hydrolases 

Most cell wall growth models predict a system where cell growth ceases when the 

activity of peptidoglycan hydrolases is inhibited. Multienzyme complexes consisting of 

both hydrolases and synthesis machinery help to suggest this prediction (Nelson and 

Young, 2001; Takahashi et al., 2002). Peptidoglycan hydrolases can be potentially 
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lethal to a cell if activity is incorrectly timed and thus regulation must be tightly 

controlled. It is therefore unsurprising that regulation has been seen at the 

transcription level, post-transcriptionally, by proteolytic cleavage, via secondary wall 

polymers and substrate modification.   

Most of the hydrolytic enzymes involved in sporulation and germination are controlled 

by the sporulation-specific cascade of sigma factors at the transcriptional level 

(Vollmer et al., 2008). B.subtilis coregulates autolysins and motility to allow dechaining 

of cells and thus effective chemotaxis. The alternate flagellar chemotaxis and motility 

sigma factor, sigD, the major housekeeping factor, sigA, and the late mother-cell 

specific sigma factor, sigK, regulate up to 8 hydrolases (LytD, LytC, LytF, LytG, LytH, 

CwlC, CwlH and LytE) allowing expression to be coordinated with life cycle stage  

(Blackman et al., 1998; Horsburgh et al., 2003; Lazarevic et al., 1992; Margot et al., 

1994). Furthermore, dual regulation allows for differential coordination of a single 

enzyme and another level of regulation. B.subtilis endopeptidase lytE is regulated by 

SigA but upregulated as an emergency response by SigI (Tseng et al., 2011; Zuber et al., 

2001).  

Peptidoglycan hydrolase activity can be regulated in response to environmental signals 

via a two component signal transduction system. The WalKR (also called YycFG, VicRK 

and MicAB) is an example of this and thought to be essential in B.subtilis, E.faecalis, 

L.monocytogenes, S.aureus, S.pneumoniae and S.mutans (Dubrac et al., 2007; Hancock 

and Perego, 2004; Kallipolitis and Ingmer, 2001; Martin et al., 1999; Ng et al., 2003). In 

B.subtilis the regulon includes four peptidoglycan hydrolases and has been shown to 

localise to the septum, suggesting that it acts as a sensor for initiation of cell division 

(Fukushima et al., 2008). S.aureus also has a WalKR regulon, which includes nine 

hydrolases. S.aureus contains a second two component signal transduction system, the 

LytSR system which regulates autolysin expression. Zymogram analysis showed 

increased expression of HMW peptidoglycan hydrolases and decreased expression of 

LMW peptidoglycan hydrolases, indicating both positive and negative regulation. Also 

lytS mutants form cell aggregates with a rough wall phenotype and increased rate of 

autolysis (Brunskill and Bayles, 1996).  
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Direct protein-protein interaction has been shown to coordinate the activity of 

hydrolases as well as their localisation. Mycobacteria have been shown to have a 

delicate model in which PBP1B inhibits the activity of the endopeptidase, RipA, until 

the septum has completely formed when RipA interacts synergistically with RpfB, a 

putative lytic transglycosylase, to efficiently separate daughter cells (Hett et al., 2007, 

2008, 2010). Protein-Protein interaction can be used to colocalise peptidoglycan 

hydrolysis and synthesis. Yeast two-hybrid analysis in B.subtilis showed LytE interaction 

with, the cytoskeletal elements, MreBH and in S.pneumoniae, putative peptidoglycan 

hydrolase PcsB interacts with FtsX, an FtsZ-dependent division component (Sham et 

al., 2011). In E.coli the lytic transglycosylase MltA, was used as bait in affinity 

chromatography revealing interactions with five PBPs and SPR revealed a trimeric 

complex with  PBP1B and a scaffold protein, MipA (MltA interacting protein)  (Vollmer 

et al., 1999).  

Proteolytic processing is required for activation and stabilisation of peptidoglycan 

hydrolase activity. The best studied example of proteolytic processing on 

peptidoglycan hydrolases is the major bifunctional S.aureus autolysin Atl. It is 

synthesised as a 138kDa proenzyme which undergoes multiple rounds of proteolytic 

cleaving to remove the propeptide and targeting sequences, yielding two mature 

hydrolases 62kDa amidase and 51kDa glucosaminidases (discussed further in Chapter 

6) (Foster, 1995; Oshida et al., 1995). Similarly, in E.coli MltB is degraded to release a 

soluble lytic transglycosylase, Slt35 (Engel et al., 1992; Ehlert et al., 1995). Bublitz et 

al., (2009) have shown that proteolytic cleaving of L.monocytogenes Auto releases a 

self-inhibitory N-terminal α-helix from the catalytic domain. Furthermore, the 

unilateral localisation of B.subtilis LytF has been shown by mutant studies to be due to 

the action of the extracellular proteases WprA and Epr (Yamamoto et al., 2003). 

Recently, the protease/chaperone HtrA in S.pneumoniae has been suggested to 

regulate the balance of secreted peptidoglycan hydrolases  via the SecA transport, to 

which it is associated (Tsui et al., 2011). 

Extracellular components, for example teichoic acids (TAs) have also been shown to 

have a role in the localisation and action of peptidoglycan hydrolases. Teichoic acids 

are discussed in detail in 1.9.1, and have been shown to target hydrolase activity either 
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by acting as a scaffold or through an avoidance mechanism. In L.monocytogenes the 

autolysins Auto and EnlA, along with other virulence factors like InlB, localise to the 

inner periplasmic surface via binding modular repeats to LTAs (Dramsi et al., 1995). 

The phosphorylcholines within TAs in S.pneumoniae are used as a scaffold for the 

targeting of many gram-positive proteins via their choline binding domains 

(ChBD)(Fernández-Tornero et al., 2001). S.pneumoniae offers several examples of this 

localisation with its autolysins LytA, LytB, LytC, CbpD and Pce (Lopez and Garcia., 2004; 

Eldholm et al., 2010) and in the case of LytA choline binding serves a dual function by 

converting the low activity monomer to the highly active homodimer C-form (Romero 

et al., 2007) at the appropriate subcellular localisation. Repeat regions have been 

identified in the major autolysins of S.aureus and S.epidermidis, Alt and AtlE 

respectively, which are required for septal binding, potentially through a WTA 

avoidance mechanism (section 1.9.1) (Baba and Schneewind, 1998; Schlag et al., 2010). 

Similarly, S.aureus Sle1 and LytN could not bind peptidoglycan in the presence of WTA 

but bound uniformly across the cell wall in the absence of WTAs (Frankel and 

Schneewind, 2012).   

Glycan strands themselves can be sufficient for accurate targeting. LysM domains have 

been identified as the binding domain in the peptidoglycan hydrolases of several 

species. The LysM of L.lactis AcmA bound TA extracted cells but did not bind regions 

containing LTAs (Steen et al., 2003). Vollmer has suggested that ‘smart autolysins’ are 

directed to sites where peptidoglycan bonds are stretched, like the long glycan within 

the S.aureus septal disc (Vollmer et al., 2008). Although modifications of the glycan 

strands often confer resistance to autolytic action, the activity of L.plantarum LytH is 

enhanced by the O-acetylation of MurNAc. The covalent modifications of 

peptidoglycan also allows bacterial cells to differentiate into endospores, by permitting 

germination specific cortex-lytic enzymes to specifically hydrolyse the spore cortex 

(Atrih et al., 1996; Popham et al 1996; Smith et al., 2000).  

1.9  Cell surface glycopolymers  

As discussed the gram-positive cell wall is thicker than that of the gram-negative and 

lacks an outer membrane. This wider layer of peptidoglycan is studded with 
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carbohydrate-based anionic polymers that are believed to play an important part in 

maintaining the cell. They help perform a number of functions similar to the outer 

membrane in gram negative bacteria; influencing membrane permeability, mediating 

extracellular interactions, providing additional stability to the plasma membrane. Most 

importantly for the purposes of this study they act as scaffolds for extracytoplasmic 

enzymes required for cell-wall growth and degradation, touched upon in section 1.8.1. 

1.9.1  Teichoic acids 

A major class of the cell surface glycopolymers are the teichoic acids (TAs), which are 

phosphate rich molecules found in a wide variety of Gram-positive bacteria. There are 

two types of TAs, wall teichoic acids (WTA) and lipoteichoic acids (LTA) shown in figure 

1.9. In S.aureus LTAs have a backbone of glycerol phosphate which is anchored to the 

plasma membrane via  a glycolipid anchor of a diglucosyl diayclgylcerol and extends 

from the cell surface into the peptidoglycan layer (Figure 1.9B) (Xia et al., 2010a). More 

complex LTAs are present in Lactococcus garviae, Clostridium innocum and 

Streptococcus pneumonia (Reichmann and Gründling, 2011). WTA  are much more 

abundant than LTA accounting for 70-90% of the TA content in B.subtilis, and 

collectively they make up to 60% of the dry mass of the cell wall (Dramsi et al., 1995; 

Silhavy et al., 2010; Swoboda et al., 2010). The composition of WTA varies within and 

between species. In the case of S.aureus the main backbone is most commonly ribitol 

phosphate and ~40 residues long. This glycopolymer chain is linked to two glycerol 

phosphates and connected to the peptidoglycan via a phosphodiester linker of N-

acetylglucosamine-1-P and N-acetlymannosamine (Figure 1.9B) (Xia et al., 2010a). The 

hydroxyls on the ribitol phosphate repeats are tailored with  D-alanyl esters and 

monosaccharides, such as glucose or N-acetylglucosamine (Mirelman et al., 1970; Xia 

et al., 2010b; Yokoyama et al., 1989). The extent to which these modifications occur is 

again strain dependent and can be environment dependent (Swoboda et al., 2010). 

Within S.aureus, and conserved across several Gram-positive bacteria, the WTA 

GlcNAc-transferase activity has been shown to be mediated by TarM (Xia et al., 

2010b). These modifications have profound impact on the physiology of the organism, 

from antibiotic susceptibility to survival within a host, indeed glycosylation of WTA is 

required for methicillin resistance in S.aureus (Brown et al., 2012). 
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Figure 1.9 Schematic diagrams of WTA and LTA (adapted from (Xia et al., 2010a))  

P, phosphate; D-ala, D-alanine; GlcNAc, N-acetylglucosamine; ManNAc, N-acetylmannosamine; 

Mur-NAc, N-acetylmuramic acid; Glc, Glucose. 

A) Schematic localisation in the cell wall and cell envelope of WTA and LTA. 

B) Schematic of the chemical structure of WTA and LTA, showing the linking to the cell wall and 

cell envelope respectively. 

 

 

 

 

 

 

 

A B 
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D-alanylation, a tailoring modification which introduces positively charged amines of 

WTAs alters the net charge of the otherwise very negative polymer by adding 

positively charged amines. This reduces the electrostatic repulsion between TA chains 

and may allow the stabilising formation of ion-pairs between anionic phosphates and 

cationic esters (Wickham et al., 2009). The D-alanine modification itself regulates the 

interaction between the cell envelope and the environment and has been implicated in 

many scaffold/receptor functions (Gross et al., 2001; Neuhaus and Baddiley, 2003). 

The absence of D-alanyl esters increases susceptibility to cationic antimicrobial 

peptides (possibly by increasing the negative charge density on the cell surface 

(Kristian et al., 2003; Peschel et al., 1999), increases sensitivity to glycopeptide 

antibiotics and to lytic activity of some host  enzymes (Collins et al., 2002; Peschel et 

al., 2000). Conversely the activity of autolytic enzymes is decreased and the binding of 

S.aureus to surfaces is attenuated (Gross et al., 2001; Peschel et al., 2000). These 

observations and animal studies have lead to the D-alanine modification as a putative 

target for novel antimicrobials that function by attenuating virulence (Brown et al., 

2012; May et al., 2005). The glycosylation modification, which involves the addition of 

N-acteylglucosamine as the carbohydrate in S.aureus, is much less understood but 

known to be ubiquitous (Neuhaus and Baddiley, 2003). 

The functions of TA in bacterial physiology are also not fully understood. TAs form a 

‘continuum of negative charge’ which allows the cell to bind cationic groups, further 

alleviating any repulsive interactions between neighbouring phosphates. Networks of 

WTA-coordinated cations affect the overall structure of the polymers, and this in turn 

influences the porosity and rigidity of the cell envelope (Hughes et al., 1973; Lambert 

et al., 1977; Marquis et al., 1976; Swoboda et al., 2010). Furthermore, WTAs help 

maintain a pool of ions close to the surface that might be required for enzyme activity 

or can help ease osmotic pressure (Ellwood and Tempest, 1972). As previously stated 

D-alanylation modulates this, indeed lack of D-alanyl esters allows cells to bind up to 

60% more Mg2+ ions, while in B.subtilis TA production is unregulated in low Mg2+ 

conditions (Ellwood, 1970; Heptinstall et al., 1970).  

Further to binding cations WTAs serve to act as scaffolds or receptors for a wide range 

of other molecules. They function as receptors that are required for phage infection in 
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S.aureus (Chatterjee, 1969), anchors for cell surface proteins (Navarre and 

Schneewind, 1999) and as previously discussed thought to serve as scaffolds for 

autolysins (Calamita and Doyle, 2002; Peschel et al., 2000; Schlag et al., 2010). WTA 

have also been shown through localisation studies to associate with the machinery 

involved in elongation and LTA to associate with septation and cell division machinery 

(Formstone et al., 2008; Schirner et al., 2009). Indeed B.subtilis WTA null mutants 

produce spherical, severely defective progeny and LTA mutants show defects in 

septation and cell separation (Pollack and Neuhaus, 1994; Schirner et al., 2009; Soldo 

et al., 2002). Although preventing WTA production in S.aureus leads to less 

pronounced defects, it has been suggested that they have a role in directing several 

hydrolases through an avoidance mechanism (as previously described and further 

addressed in Chapter 6.1). Whilst S.aureus strains devoid of LTA show major defects in 

septal formation, separation and have restrictive growth conditions (Oku et al., 2009). 

S.aureus WTA mutants display reduced adherence to artificial surfaces (Gross et al., 

2001) and have also been shown to be impaired in host tissue adhesion (Weidenmaier 

et al., 2005, 2004). Further still they exhibit an impaired ability to produce biofilms 

despite no reduction in the production of the major biofilm formation factor (PNAG) 

(Vergara-Irigaray et al., 2008).  

The biosynthetic pathway of S.aureus WTA is separate from LTA, requiring at least 12 

genes for biosynthesis while LTA biosynthesis requires only 3 (Xia et al., 2010a). It has 

been identified as very similar to B.subtilis W23 WTA pathway and outlined in Figure 

1.10 (Swoboda et al., 2010). S.aureus synthesise poly-Rbo-P and therefore have been 

assigned the gene acronym ‘tar’ within this study, however many of these genes are 

conserved in poly-Gro-P biosynthesis and can be known as ‘tag’.  Although previous 

work had been performed on uncharacterised WTA null mutants, Peschel and co-

workers were the first to characterize a WTA mutant as ΔtarO, lacking the first gene in 

the WTA biosynthetic pathway (Weidenmaier et al., 2004). It has since been reported 

that tarA can also be deleted and produce viable cells however many genes 

downstream of tarA cannot be deleted unless tarO is also deleted (D’Elia et al., 2006). 

This mixed gene dispensability pattern has two possible explanations. Firstly 

sequestration of the undecaprenyl phosphate-linked peptidoglycan precursor used  
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Figure 1.10 Pathway of S.aureus WTA biosynthesis. (Adapted from ((Xia et al., 2010a)).  

CDP-Gro, cytidyldiphosphate-glycerol; CDP-Rbo, cytidyldiphosphate-ribitol; Glc, Glucose; 

GlcNAc, N-acetylglucosamine; Gro, glycerol; Gro-P, glycerolphosphate; ManNAc, N-

acetlymannosamine; MurNAc, N-acetyl muramic acid; Rbo-P, ribitol phosphate; Rib-P, 

ribulose-5-phosphate; UDP-Glc, uridine-5-diphosphate-glucose; UDP-GlcNAc, uridine-5-

diphosphate-N-acetyl-glucosamine; UDP-ManNAc, uridine-5’ diphosphate-N-acetyl-

mannosamine. 

S.aureus synthesis poly-Rbo-P and therefore have been assigned the gene acronym ‘tar’ 

however many of these genes are conserved in poly-Gro-P biosynthesis and can be known as 

‘tag’. TarO transfers GlcNAc and TarA transfers ManNAc consecutively to the 

undecaprenylphosphate (C55-P) lipid carrier. TarD synthesizes activated precursor Gro-P 

molecules. The TarB primase adds the first glycerolphosphate unit and TarF the second. TarIJ 

synthesize the precursor CDP-ribitol units which are subsequently attached by the polymerase 

TarL. The completed unit is then translocated via TarG and TarH, an ABC transporter, to the 

outer membrane leaflet and attached to the 6-OH group of MurNAc in the PG by the LCP 

proteins, MsrR, SA0908 and SA2103 (discussed in detail in chapter 3.2.1). 

 

Cell Wall  

Cell membrane 
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from the first step of the pathway, may block the peptidoglycan biosynthetic pathway. 

In fact this has been proposed as the mechanism for toxicity in B.subtilis (D’Elia et al., 

2009). Secondly, blocking of nonessential bactroprenol-dependent pathways leads to 

an accumulation of bactoprenol-linked intermediates that themselves are directly 

harmful to the cell (Danese et al., 1998). It is important to note that it is not possible to 

prevent both WTA and LTA expression, suggesting that they have overlapping 

functions and can potentially partially compensate for one another (Oku et al., 2009).  

Their roles have not been unequivocally proven but both mutants are temperature 

sensitive and exhibit growth defects (Oku et al., 2009; Swoboda et al., 2010). Although 

they have different biosynthetic pathways, D-alanylation of the similar phosphate-

linked repeat units is performed by the same machinery (Swoboda et al., 2010).  

1.10  Surface Proteins 

Further to TAs the surface of S.aureus is decorated with a variety of proteins. The first 

surface protein to be characterised in S.aureus was Protein A (Spa), which is a virulence 

factor and has been shown to bind non-specifically to IgG reducing phagocytosis. This 

binding can occur via the effector region (Fcγ) halting recognition by the Fc receptor; 

by interacting with the antigen recognition Fab region of IgG; or through interaction 

with the heavy chain independent of hypervariable regions (Forsgen et al., 1966; Vidal 

et al, 1985; Graille et al, 2000). The roles of bacterial surface proteins are varied; 

protection of  bacteria from the environment, including toxic conditions or host 

immune defence system proteins; nutrient acquisition; bacterial attachment to 

environmental components; interaction between bacteria, like biofilms; facilitating 

competition between bacteria; and those required for cell growth, like cell wall 

maintenance and division. The expressed protein complement is highly influenced by 

life cycle stage, environment and critical in determining the success of a bacterium, it is 

therefore unsurprising that they are strongly regulated at a transcriptional level (Scott 

and Barnett, 2006). The staphylococcal accessory gene regulator locus (sar) and the 

accessory gene regulator locus (agr) are the best characterised. The S.aureus 

exoprotein expression locus (sae), sigma factors and the ferric uptake repressor have 

also been identified as controllers. Furthermore, post translational modifications can 

also play a role in regulation. The most common types of post-translational 
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modification are; phosphorylation, the reversible addition of a phosphate group to a 

protein by a kinase, acetylation (Hu et al., 2010) and glycosylation, which forms a 

glycoprotein.  

Surface proteins can again vary, by the methods they are retained to the cell surface. 

They can contain membrane-spanning helices, be attached to lipid anchors, bind 

teichoic acids, be ionically or covalently bound. Proteins that bind teichoic acids usually 

do so through repeats present in the C-terminal domain (Scott and Barnett, 2006). 

Choline binding repeats bind the choline present in the LTA of some species, and the 

longer GW repeat modules bind an unknown ligand. In the case of proteins covalently 

attached to the peptidoglycan, they contain a C-terminal sorting LPXTG signal 

recognised by the transpeptidase ‘sortase’ (SrtA) (Schnnewind et al., 1992; Navarre et 

al., 1994). This enzyme cleaves between the threonine and glycine of the LPTXG motif 

and lipid II acts as a carrier to link the C terminus of the protein to the free amino 

group of the peptidoglycan cross bridges. 21 S.aureus proteins are covalently anchored 

via SrtA and one (IsdC) via a different, iron-regulated sortase (SrtB). This sortase 

recognises and cleaves a NPQTN motif although IsdC is the only known SrtB substrate 

(Mazmanian et al., 2002).  

1.11 Project aims 

 To investigate whether the WTA biosynthetic components are associated with 

the divisome, thereby suggesting the site of WTA production in S.aureus. 

 To localise mature WTA across the cell wall. 

 Characterise the influence WTA have on the localisation of peptidoglycan 

hydrolases.  

 Identify differences in localisation of hydrolases.  

 Further develop the model of how S.aureus is able to faithfully divide in 

orthogonal planes.  
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CHAPTER 2 

Materials and methods 

2.1 Media 

All media was prepared using distilled water and sterilised, in detergent washed and 

rinsed  glassware, by autoclaving for 20 mins at 121⁰C, 15 lb per square inch. 1.5% 

(w/v) Oxoid agar was added to liquid media recipes before autoclaving to make solid 

mediad. 

2.1.1 Tryptone Soya Broth (TSB) 

Tryptone soya broth (Oxoid)  30g l-1 

2.1.2 Luria-Bertani (LB) 

Tryptone (Oxoid)   10g l-1 

Yeast extract (Oxoid)   5g l-1 

NaCl     10g l-1 

2.1.3 Buffered Luria-Bertani (LB) 

Tryptone (Oxoid)   10g l-1 

Yeast extract (Oxoid)   5g l-1 

NaCl     10g l-1 

KH2PO4                                                      1.5g l-1 

Na2HPO4                                                   3.5g l-1 

Media was pH-ed to 7.5 with NaOH prior to autoclaving.  

2.1.4 LK 

Tryptone (Oxoid)                                     10g l-1 

Yeast extract (Oxoid)                              5g l-1 

KCl                                                              7g l-1 

For LK bottom agar 1.5% (w/v) Oxoid agar was added 

For LK top agar 0.7% (w/v) Oxoid agar was added. 
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2.1.5 Nutrient Broth 

Nutrient broth                                        13g l-1 

2.1.6 Minimal Media (Daniel et al., 2006) 

NH4Cl     10mM 

NH4NO3     1.2mM 

MgSO4       1mM 

Na2SO3       0.75mM 

KH2PO4      0.5mM 

MnCl2       0.1mM 

FeCl3       4μM 

The pH was adjusted to 7 with sodium hydroxide and the solution autoclaved. Once 

the solution was cooled, the following was then added: 

Glucose      0.8% (w/v) 

Casamino acids     0.4% (w/v)  

Thiamine                   3μM 

Ampicillin                  100μg ml-1 

Kanamycin       50μg ml-1 

IPTG       0.5mM 

1% (w/v) Oxoid agar and 150μg ml-1 X-Gal were added to make minimal medium agar 

(pre-cooled to 50⁰C) before pouring plates. 

2.1.7 Phage agar 

Casamino acids (Oxoid)                           3g l-1 

Yeast extract (Oxoid)                               3g l-1 

NaCl                                                            5.9g l-1 

For phage bottom agar 1.0% (w/v) Oxoid agar was added. 

For phage top agar 0.33% (w/v) Oxoid agar was added. 

2.1.8 Nutrient agar 

Nutrient agar                                            28g l-1 
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2.2 Antibiotics (Table 2.1) 

Stock solutions of antibiotics were filter-sterilized, using a 0.2μm pore size and stored 

at -20⁰C.  For use in agar plates, antibiotics were thawed on ice and added only when 

media had cooled to below 50⁰C. For use in liquid media, antibiotics were again 

thawed on ice and added just before use.  

Antibiotic Stock concentration 
(mg ml-1) 

Working 
concentration (μg ml-

1) 

Dissolved in: 

Ampicillin (Amp) 100 100 dH2O 

Kanamycin (Kan) 50 50 dH2O 

Neomycin (Neo) 50 50 dH2O 

Tetracycline (Tet) 5 5 50% (v/v) ethanol 

Erythromycin (Ery) 5 5 100% (v/v) ethanol 

Chloramphenicol (Cm) 10 10 100% (v/v) ethanol 

Vancomycin (Vanc) 0.1 1 dH2O 

Table 2.1 Antibiotic stock solutions and concentrations. 

2.3 Enzymes and chemicals (Table 2.2) 

All chemicals and enzymes were of analytical grade and purchased from Sigma-Aldrich, 

Thermo-Fisher Scientific or Roche unless otherwise stated. All restriction enzymes, 

DNase, T4 ligase and buffers for DNA manipulation were purchased from Promega, 

New England Biolabs, Fermentas, Thermo-Fisher Scientific or Roche. 

Stock Solution Stock Solution concentration Storage conditions 

Lysostaphin  5mg ml-1 In 20mM sodium acetate, -
20⁰C 

Formaldehyde 15% (w/v) 4⁰C 

Glutaraldehyde 25% (w/v) -20⁰C 

Poly-L-Lysine 0.01% (w/v) 4⁰C 

GTE 100mM R.T. 

Trypsin 0.2mg ml-1 PBS, 4°C short term storage 

Phenylmethylsulfonayl  
flouride (PMSF) 

0.1 M 100% (v/v) isopropanol, R.T. 
short term. 

IPTG (isopropyl-β-D-
thiogalactopyranoside) 

0.84M -20⁰C 

MUG (4-methylumbelliferyl-β-
D-galactopyranoside)  

4 mg ml-1 In DMSO, -20⁰C, wrapped in 
foil 

MU (4-methylumbelliferone) 1mM IN DMSO, -20⁰C 

X-Gal (5-bromo-4-chloro-3-
indolyl-β-D-galactopyranoside) 

20mg ml-1 In DMSO, 4⁰C, wrapped in 
foil 

Table 2.2 Stock solutions and concentrations. 
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2.4  Buffers and stock solutions. 

Buffers were prepared using dH2O and stored at room temperature unless otherwise 

stated. Buffers required for microbiology work and in vitro manipulation were 

sterilised by autoclaving (15min, 121°C, 15 psi). 

2.4.1 Phosphate buffered saline (PBS) 

NaCl                                                            8g l-1 

Na2HPO4                                                    1.4g l-1 

KCl                                                              0.2g l-1 

KH2PO4                                                       0.2g l-1 

The pH was adjusted to 7.4, using NaOH 

 

2.4.2 Tris buffered saline (TBS) 

Tris-HCl pH7.5                                          50mM 

NaCl                                                           100mM 

 

2.4.3 TAE (50x) 

Trisma Base                                              242g l-1 

Glacial acetic acid                                    0.57% (v/v) 

Na2EDTA pH 8.0                                       0.05M 

Before use, 50x stock was diluted 1:50 with dH2O to produce a working TAE 

concentration. 

 

2.4.4 Phage Buffer 

MgSO4                                                        1mM 

CaCl2                                                           4mM 

Tris-HCl pH 7.8                                          50mM 

NaCl                                                            0.6% (w/v) 

Gelatin                                                       0.1% (w/v) 
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2.4.5 DNA loading buffer (6x) 

Bromophenol blue                                  0.25% (w/v) 

Glycerol                                                     30% (v/v) 

2.4.6 QIAGEN buffers 

2.4.6.1 P1 

Tris-HCL, pH 8                                          50mM 

EDTA                                                          10mM 

RNase A                                                     100μg ml-1 

 

2.4.6.2 P2 

NaOH                                                         200mM 

SDS                                                             1% (w/v) 

 

2.4.6.3 P3 

Potassium acetate, pH 5.5                     3.0M 

 

2.4.6.4 EB 

Tris-HCl, pH 8.5                                       10mM 

 

2.4.6.5 N3, PB and PE 

Supplied with QIAquick kit, details not provided. 

2.4.7 β-galactosidase liquid assay solutions 

2.4.7.1 ABT 

NaCl 5.88g l-1 

K2HPO4 10.51g l-1 

KH2PO4 5.44g l-1 

2.4.7.2 Stopping Solution 

Na2CO3 42.39g l-1 
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2.4.7.3 ABTN 

ABT  500ml 

Stopping Solution 500ml 

 

2.4.8 SDS PAGE solutions 

2.4.8.1 SDS PAGE loading buffer (2x) 

Tris HCl pH 6.8                                          0.62M 

SDS                                                             10% (w/v) 

Glycerol                                                     20% (v/v) 

Bromophenol blue                                   0.1% (w/v) 

10% (v/v) β-mercaptoethanol was added just before use.                              

 

2.4.8.2 SDS PAGE reservoir buffer (10x) 

Glycine                                                      144g l-1  

Tris base                                                    30.3g l-1 

SDS                                                             10g l-1 

Before use the 10x solution was diluted 1:10 with dH2O to a working concentration 

SDS PAGE reservoir buffer. 

 

2.4.8.3 Coomassie Brilliant Blue stain 

Brilliant blue                                             0.1% (w/v) 

Methanol                                                  5% (v/v) 

Glacial acetic acid                                   10% (v/v) 

 

2.4.8.4 Coomassie destain 

Methanol                                                   5% (v/v)  

Glacial acetic acid                                    10% (v/v) 

 

2.4.8.5 Transfer buffer 

Tris-HCl pH 7.5                                          20mM 

Glycine                                                        0.15M 

Methanol                                                   20% (v/v) 
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2.4.9 Western blotting buffers 

2.4.9.1 Blotting buffer 

Trisma base                                               2.4g l-1 

Glycine                                                      11.26g l-1 

Methanol                                                  20% (v/v) 

 

2.4.9.2 TBST (20x) 

Trisma base                                              48g l-1 

NaCl                                                           120g l-1 

Tween-20                                                  2% (v/v) 

The pH was adjusted to 7.6. Before use the 20x solution was diluted 1:20 with dH2O to 

a working TBST concentration. 

 

2.4.9.3 Blocking solution 

Dried skimmed milk powder                  5% (w/v) 

In 1xTBST 

 

2.4.10 Zymogram solutions 

2.4.10.1 Renaturing solution 

Triton X-100                                                       0.1 %( v/v) 

MgCl2                                                                  10mM 

Tris HCl (pH 7.5)/ Sodium citrate (pH5)        25mM 

 

2.4.10.2 Renaturing gel stain (10x) 

Methylene Blue                                       2g 

KOH (2M)                                                  1.79ml  

dH2O                                                          up to 200ml 

For use renaturing gel stain was diluted to 1x with dH2O 

 

2.4.11 Nickel affinity purification buffers 

2.4.11.1 Buffer A (START buffer) 

NaH2PO4                                                     0.015M 
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Na2HPO4                                                     0.0045M 

NaCl                                                             0.5M 

The pH was adjusted to 7.4. 8M urea was added when purifying insoluble proteins. 

 

2.4.11.2 Buffer B (elution buffer) 

Buffer A containing 0.5M imidazole. 

8M urea was added when purifying insoluble proteins 

  

2.5    Bacterial strains and growth conditions used (Table 2.3) 

S.aureus strains were taken from glycerol stocks in Microbank storage beads (Pro-lab 

diagnostics) and streaked for single colonies onto TSB agar plates containing 

antibiotics, where appropriate. Plates were incubated at 37°C overnight and 

subsequently stored at 4°C for upto 2 weeks. Long term storage of strains was 

achieved by adding 1ml of liquid overnight culture to a Microbank tube containing 

glycerol beads, shaking to mix and removing most of the liquid before storing at -80°C. 

Liquid cultures were generally inoculated with a single colony into TSB and grown 

overnight at 37°C with shaking at 250rpm unless otherwise stated.  

E.coli strains were grown on LB agar at 37°C overnight and stored the same as S.aureus 

strains. Liquid cultures of LB were inoculated with single colony and grown as S.aureus 

strains.  

Strain (reference) Genotype Source Growth media, 
Resistances 

SH1000 (s682) rsbU+ Horsburgh et al., 
2002 

TSB 

RN4220 Restriction deficient 
transformation recipient  

Kreiswirth et al., 
1983 

TSB 

SH1000 (s2978) spa::kan G.Buist TSB, Kanr 

SA113 (s2206) tarO::Ery A.Peschel TSB, Eryr 

SA113 tarO::ermB, pRB473-tarO A.Peschel TSB, Eryr, Cmr 

SA113  tarO::ermB, spa::kan This study TSB, Eryr, Kanr 

SRC110 (s2223) ΔsrtA S. Clarke TSB 

SRC110 ΔsrtA, spa::kan This study TSB, Kanr 

ALB1  SH1000 spa::kan atl::lacZ A. Bottomley, 
2011 

TSB, Eryr 

SHKM06 (s3430) SH1000 gtfAB::kan 
clfA2::Tn917 

K.McAulay TSB, Eryr, Kanr 

SHRM09 (s2511) SH1000 gtfAgtfB::kan  R.Mohammed TSB, Kanr 

SRC018(2) (s2193) SH1000 clfA2::Tn917 S.Clarke TSB, Eryr 
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SA18SM (s2117) sa1825::kan S.A.S Mohamad  TSB, Kanr 

SA182SM sa1825::kan, spa::tet This study TSB, Kanr, Tetr 

SA26SM (s2115) scaH::tet S.A.S Mohamad TSB, Tetr 

SA26SM  scaH::tet, spa::kan This study TSB, Kanr, Tetr 

MS026 sceD::tet R. Hussain TSB, Tetr 

MS026 sceD::tet, spa::kan This study TSB, Kanr, Tetr 

MS001 IsdA::ery A. Hurd TSB, Eryr 

MS001 IsdA::ery, spa::kan This study TSB, Eryr, Kanr 

BTH101 E.Coli 
(s1953) 

F-, cya-99, araD139, galE15, 
galK16, rpsL1 (Strr), hsdR2, 
mcrA1, McrB1 

L.Cooper LB 

Top10 E.coli 
(s2257) 

F- mcr Δ (mrr-hsdRMS-mcrBC) 
ϕ 80 lacZ ΔM15 ΔlacX74 recA1 
deoR araD139 Δ(ara-leu) 7697 
galK rpsL (Strr) endA1 nupG  

Invitrogen LB 

BL21 (s2195) 
E.coli 

F- ompT hsdSB (rB- mB-) gal 
dcm lacY1 (DE3)  

Novogen LB 

Table 2.3 Bacterial strains used in this study. 

 

2.6 Plasmids used (Table 2.4) 

Plasmid DNA was isolated using QIAGEN mini plasmid purification kits according to the 

manufacturer’s instructions (Section 2.9.2) and stored EB buffer at -20°C.  

Plasmid Genotype Selection Source 

pSRC002 atl amidase domain in pET21a 100μg ml-1 
ampicillin 

Clarke et al., 2006 

pSRC003 atl glucosaminidase domain in pET24d 100μg ml-1 
ampicillin 

Clarke et al., 2006 

pKT25 Encodes the T25 fragment of B.subtilis 
adenylate cyclase (1-224 amino acids 
of CyaA). 

50μg ml-1 
kanamycin 

Karimova et al., 
1998 

pUT18C Encodes the T18 fragment of B.subtilis 
adenylate cyclase (225-399 amino 
acids of CyaA) 

100μg ml-1 
ampicillin 

Karimova et al., 
1998 

pKT25-zip A derivative of pKT25 in which the 
leucine zipper of GCN4 is genetically 
fused in frame to the T25 fragment 

50μg ml-1 
Kanamycin 

Karimova et al., 
1998 

pUT18c-
zip 

A derivative of pUT18c in which the 
leucine zipper of GCN4 is genetically 
fused to the T18 fragment   

100μg ml-1 
ampicillin 

Karimova et al., 
1998 

pGL540 divIB coding region in PstI/KpnI site of 
pKT25 

50μg ml-1 
Kanamycin 

J. Kasturiarachchi, 
unpublished 

pGL541 ftsA coding region in PstI/KpnI site of 
pKT25 

50μg ml-1 
Kanamycin 

J. Kasturiarachchi, 
unpublished 

pGL542 ftsL coding region in PstI/KpnI site of 
pKT25 

50μg ml-1 
Kanamycin 

J. Kasturiarachchi, 
unpublished 

pGL543 pbp2 coding region in PstI/KpnI site of 50μg ml-1 J. Kasturiarachchi, 
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pKT25  Kanamycin unpublished 

pGL544 divIB coding region in PstI/KpnI site of 
pUT18C 

100μg ml-1 
ampicillin 

J. Kasturiarachchi, 
unpublished 

pGL545 ftsA coding region in PstI/KpnI site of 
pUT18C 

100μg ml-1 
ampicillin 

J. Kasturiarachchi, 
unpublished 

pGL546 ftsL coding region in PstI/KpnI site of 
pUT18C 

100μg ml-1 
ampicillin 

J. Kasturiarachchi, 
unpublished 

pGL547 pbp2 coding region in PstI/KpnI site of 
pUT18C 

100μg ml-1 
ampicillin 

J. Kasturiarachchi, 
unpublished 

pGL548 ftsW coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1 
Kanamycin 

J. Kasturiarachchi, 
unpublished 

pGL549 ftsZ coding region in BamHI/EcoRI site 
of pKT25 

50μg ml-1 
Kanamycin 

J. Kasturiarachchi, 
unpublished 

pGL550 pbpA coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1 
Kanamycin 

J. Kasturiarachchi, 
unpublished 

pGL551 divIC coding region in BamHI/EcoRI 
site of pKT25  

50μg ml-1  
Kanamycin 

J. Kasturiarachchi, 
unpublished 

pGL552 ezrA coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1 
Kanamycin 

J. Kasturiarachchi, 
unpublished 

pGL553 parC coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1 
Kanamycin 

J. Kasturiarachchi, 
unpublished 

pGL554 parE coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1 
Kanamycin 

J. Kasturiarachchi, 
unpublished 

pGL555 yneS coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1 
Kanamycin 

J. Kasturiarachchi, 
unpublished 

pGL556 pbp3 coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1 
Kanamycin 

J. Kasturiarachchi, 
unpublished 

pGL557 ypsB coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1  
Kanamycin 

J. Kasturiarachchi, 
unpublished 

pGL558 ypsA coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1 
Kanamycin 

J. Kasturiarachchi, 
unpublished 

pGL559 ylmF coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1 
Kanamycin 

J. Kasturiarachchi, 
unpublished 

pGL560 yyaA coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1  
Kanamycin 

J. Kasturiarachchi, 
unpublished 

pGL561 ftsW coding region in BamHI/EcoRI 
site of pUT18C 

100μg ml-1 
Ampicillin 

J. Kasturiarachchi, 
unpublished 

pGL562 ftsZ coding region in BamHI/EcoRI site 
of pUT18C 

100μg ml-1 
Ampicillin 

J. Kasturiarachchi, 
unpublished 

pGL564 divIC coding region in BamHI/EcoRI 
site of pUT18C  

100μg ml-1 
Ampicillin 

J. Kasturiarachchi, 
unpublished 

pGL565 ezrA coding region in BamHI/EcoRI 
site of pUT18C 

100μg ml-1 
Ampicillin 

J. Kasturiarachchi, 
unpublished 

pGL566 parC coding region in BamHI/EcoRI 
site of pUT18C 

100μg ml-1 
Ampicillin 

J. Kasturiarachchi, 
unpublished 

pGL568 yneS coding region in BamHI/EcoRI 
site of pUT18C 

100μg ml-1 
Ampicillin 

J. Kasturiarachchi, 
unpublished 

pGL570 ypsB coding region in BamHI/EcoRI 
site of pUT18C 

100μg ml-1 
Ampicillin 

J. Kasturiarachchi, 
unpublished 

pGL571 ypsA coding region in BamHI/EcoRI 100μg ml-1 J. Kasturiarachchi, 
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site of pUT18C Ampicillin unpublished 

pGL572 ylmF coding region in BamHI/EcoRI 
site of pUT18C 

100μg ml-1 
Ampicillin 

J. Kasturiarachchi, 
unpublished 

pGL573 yyaA coding region in BamHI/EcoRI 
site of pUT18C 

100μg ml-1 
Ampicillin 

J. Kasturiarachchi, 
unpublished 

pGL574 zapA coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1 
Kanamycin 

J. Kasturiarachchi, 
unpublished 

pGL575 zapA coding region in BamHI/EcoRI 
site of pUT18C 

100μg ml-1 
Ampicillin 

J. Kasturiarachchi, 
unpublished 

pALB3 ftsW coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1 
Kanamycin 

A. Bottomley, 
unpublished 

pALB4 mreC coding region in BamHI/EcoRI 
site of pUT18C 

100μg ml-1 
Ampicillin 

A. Bottomley, 
unpublished 

pALB5 mreC coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1 
Kanamycin 

A. Bottomley, 
unpublished 

pALB6 ftsW coding region in BamHI/EcoRI 
site of pUT18C 

100μg ml-1 
Ampicillin 

A. Bottomley, 
unpublished 

pALB7 mreD coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1  
Kanamycin 

A. Bottomley, 
unpublished 

pALB8 rodA coding region in BamHI/EcoRI 
site ofpKT25 

50μg ml-1 
Kanamycin 

A. Bottomley, 
unpublished 

pALB11 mreD coding region in BamHI/EcoRI 
site of pUT18C 

100μg ml-1 
Ampicillin 

A. Bottomley, 
unpublished 

pALB12 pbp2 coding region in BamHI/EcoRI 
site of pUT18C  

50μg ml-1 
Kanamycin 

A. Bottomley, 
unpublished 

pALB13 divIB coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1 
Kanamycin 

A. Bottomley, 
unpublished 

pALB14 rodA coding region in BamHI/EcoRI 
site of pUT18C 

100μg ml-1 
Ampicillin 

A. Bottomley, 
unpublished 

pALB15 divIB coding region in BamHI/EcoRI 
site of pUT18C 

100 μg ml-1  
Ampicillin 

A. Bottomley, 
unpublished 

pVF29 ftsZ coding region in BamHI/EcoRI site 
of pKT25N 

50μg ml-1 
Kanamycin 

(Steele et al., 
2011) 

pVF30 ezrA coding region in BamHI/EcoRI 
site of pKT25N 

50μg ml-1 
Kanamycin 

(Steele et al., 
2011) 

pVF31 ftsZ coding region in BamHI/EcoRI site 
of pUT18 

100μg ml-1  
Ampicillin 

(Steele et al., 
2011) 

pVF32 ezrA coding region in BamHI/EcoRI 
site of pUT18 

100μg ml-1 
Ampicillin 

(Steele et al., 
2011) 

pALB50 divIVA coding region in BamHI/EcoRI 
site of pKT25N 

50μg ml-1 
Kanamycin 

A.Bottomley, 
unpublished 

pATL1 dnaK coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1 
Kanamycin 

A.Bottomley, 
unpublished 

pALB30 ltaS coding region in BamHI/EcoRI site 
of pUT18C 

100μg ml-1 
Ampicillin 

Larke, 
unpublisshed 

pALB32 ltaS coding region in BamHI/EcoRI site 
of pKT25 

50μg ml-1 
Kanamycin 

Larke, 
unpublished 

 ltaA coding region in BamHI/EcoRi site 
of pUT18 

100μg ml-1 
Ampicillin 

A. Gründling, 
unpublished 

 ltaA coding region in BamHI/EcoRI 100μg ml-1  A. Gründling, 
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site of pUT18C Ampicillin unpublished 

 ltaA coding region in BamHI/EcoRI 
site of pKNT25 

50μg ml-1 
Kanamycin 

A. Gründling, 
unpublished 

 ltaA coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1 
Kanamycin 

A. Gründling, 
unpublished 

 ypfP coding region in BamHI/EcoRI 
site of pUT18 

100μg ml-1 
Ampicillin 

A. Gründling, 
unpublished 

 ypfP coding region in BamHI/EcoRI 
site of pUT18C 

100μg ml-1 
Ampicillin 

A.Gründling, 
unpublished 

 ypfP coding region in BamHI/EcoRI 
site of pKNT25 

50μg ml-1 
Kanamycin 

A. Gründling, 
unpublished 

 ypfP cdoing region in BamHI/EcoRI 
site of pKT25  

50μg ml-1 
Kanamycin 

A.Gründling, 
unpublished 

pVLK1 tarO coding region in BamHI/EcoRI 
site of pUT18C 

100μg ml-1 
Ampicillin 

This Study. 

pVLK2 tarO coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1 
Kanamycin 

This Study. 

pVLK3 sa2103 coding region in BamHI/EcoRi 
site of pUT18C 

100μg ml-1 
Ampicillin 

This Study. 

pVLK4 sa2103 coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1 
Kanamycin 

This Study. 

pVLK5 sa1195coding region in BamHI/EcoRI 
site of pUT18C 

100μg ml-1 
Ampicillin 

This Study. 

pVLK6  sa1195 coding region in BamHI/EcoRI 
site of pKT25  

50μg ml-1  
Kanamycin 

This Study. 

pVLK7 sa0908 coding region in BamHI/EcoRI 
site of pUT18C 

100μg ml-1 
Ampicillin 

This Study. 

pVLK8 sa0908 coding region in BamHI/EcoRI 
site of pKT25 

50μg ml-1 
Kanamycin 

This Study. 

Table 2.4 Plasmids used in this study.  

Plasmid DNA was purified from overnight cultures using QIAGEN kits according to 

altered manufacturer’s instructions (see section 2.10). All plasmid DNA was stored in 

dH2O at -20⁰C.  

 

2.7 Centrifugation 

A number of different centrifuges were used during this study, these were; 

(a) Eppendorf microfuge 5415D (max volume 2ml; max speed 13,200rpm, 

10,000xg) 

(b) Sigma centrifuge 4K15C (max volume 50ml; max speed 5,100rpm, 5525xg) 

(c) Jouan centrifuge JAC50.10 (max volume 50ml; max speed 13,000rpm, 

10,000xg) 
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2.8 Determining bacterial cell density 

2.8.1 Spectrophotomeric measurement (OD600) 

For quantification of a culture’s bacterial yield, spectrophotomeric measurements at 

600nm (OD600) were taken. Where necessary culture samples were diluted 1:10 in the 

appropriate sterile culture media, this media was also used as the blank. These 

measurements were taken using a Jenway 6100 spectrophotometer.  

 

2.8.2 Direct cell counts (cfu ml-1) 

For quantification of a culture’s viable cell number direct cell counts were performed. 

Bacterial samples were serially diluted 1:10 in PBS in triplicate. 10μl samples of each 

dilution were spotted onto the appropriate media agar plate containing any necessary 

antibiotics. After overnight incubation at 37⁰C, the numbers of colonies were 

calculated and the number of colony forming units (cfu) determined.    

2.9 DNA purification techniques. 

2.9.1 Genomic DNA extraction 

A 1ml aliquot of a 5ml overnight culture was centrifuged at 1200rpm (300xg) for 10 

min. The resulting supernatant was discarded and the pellet resuspended in 180μl 

sdH2O. 5μl of 5mg ml-1 Lysostaphin was added and incubated at 37⁰C until the culture 

was clear. The DNA was extracted using a Qiagen DNeasy blood and tissue kit following 

the manufacturer’s instructions.  

 

2.9.2 Small scale plasmid purification from E.coli 

QIAGEN QIAprepTM Spin column kit was used to purify plasmids from E.coli on a small 

scale. The cells from a 5ml overnight culture of E.coli were centrifuged at 5100rpm 

(5525xg) at 4⁰C for 10min. The resulting pellet was resuspended in 250μl of Buffer P1 

with RNase and transferred to a microcentrifuge tube. 250μl of Buffer P2 was added 

and the tube mixed by inversion 4-6 times. 350μl of Buffer N3 was added and the tube 

mixed thoroughly by inverting until the precipitation was evenly dispersed. The 

solution was centrifuged for 10min at 13000rpm (10000xg) and the supernatant 

applied to a QIAprep spin column. The spin column was centrifuged for 30s and the 
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flow through discarded. To wash the column, 0.5ml of Buffer PB was added the column 

centrifuged for 30s and the flow through discarded. This was repeated with 0.75ml 

Buffer PE and again the flow through discarded. The column was spun for an additional 

3min to remove residual buffer and transferred to a clean microcentrifuge tube. To 

elute DNA, 50μl of Buffer EB was added to the centre of the column and left to stand 

for 1min and then centrifuged at 13000rpm (10000xg) for 1min. The flow through was 

reapplied to the column and centrifuged for 1min. The presence of the plasmid DNA in 

the flow through was checked by separation on a 1% (w/v) agarose gel at 120v for 

40min and viewed using a transilluminator.   

 

2.9.3 Gel extraction of DNA using QIAquick spin column 

DNA was separated in a 1% (w/v) TAE agarose gel, stained with ethidium bromide, the 

required band was excised using a sterile scalpel blade. The DNA was extracted from 

the agarose slice using a QIAGEN QAIquick gel extraction kit. To a universal containing 

the gel slice 3 times the gel volume (weight) of Buffer QG was added. This was 

incubated at 50⁰C, swirling occasionally, until the gel slice had dissolved. To improve 

purification of smaller DNA molecules, 1 gel volume of isopropanol was added to the 

sample. To bind the DNA, the solution was added to a QIAquick spin column in 800μl 

samples with centrifugation for 1min at 13000rpm (10000xg) and discarding the flow 

through. To remove traces of agarose, 0.5ml of Buffer QG was added to the QIAquick 

column centrifuged and the flow through was discarded. 0.75ml of Buffer PE was 

added to the QIAquick spin column, the flow through discarded and the column spun 

for an additional 3min. The QIAquick spin column was placed in a clean micro 

centrifuge tube and 50μl Buffer EB applied to the centre of the column and left to 

stand for 1min. The column was centrifuged at 13000rpm (10000xg) for 1min. The flow 

through was reapplied to the column and centrifuged again. To confirm presence of 

DNA in the flow through, 5μl of sample was loaded onto a 1% (w/v) agarose gel, 

separated at 120v for 40min and viewed using a transilluminator.  

 

2.9.4 Purification of PCR products using QIAquick spin column 

To purify products from PCR reactions, 5 times the PCR sample volume of buffer PB 

was added and mixed. The solution was placed into a QIAquick spin column and 
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centrifuged at 13000rpm (10000xg) for 1min. The flow through was discarded and the 

column was washed with 750μl of buffer PE, and then centrifuged. The flow through 

was again discarded and the column centrifuged for a further 3min before transferring 

to a fresh microcentrifuge tube. The DNA was eluted by placing 50μl buffer EB into the 

centre of the column, incubating for 1min and centrifuging at 13000rpm (10000xg) for 

1min. The flow through was reapplied to the column and centrifuged again. To confirm 

the presence of DNA in the flow through, 5μl of sample was loaded onto a 1% (w/v) 

agarose gel separated at 120v for 40min and viewed using a transilluminator.  

 

2.10 In vitro DNA manipulation techniques 

2.10.1 Primers (Table 2.5) 

Primers were used for PCR amplification, they are short (maximum 30nt) 

oligonucleotide sequences based on S.aureus 8325 genome. Restriction sites were 

introduced at the 5’or 3’ ends of primers to enable cloning and where necessary 

additional bases were added to allow efficient use. ‘Net primer’ was used to design the 

primers; to identify potential secondary structures, dimers or cross-dimers and to 

predict annealing temperatures. Primers were synthesised by Eurofin and stored in 

sdH2O at -20⁰C as a 100μM stock or a 10μM working solution.  

Primer Restriction 
enzyme 

Sequence (5’-> 3’) Use 

5’KT25 n/a ATTCGGTGACCGATTACCTG 

Amplification of genes 
inserted into pKT25 
plasmid, forward primer 

3’KT25 n/a AGTCACGACGTTGTAAAACGACG 

Amplification of genes 
inserted into pKT25 
plasmid, reverse primer 

5’UT18C n/a GAAAAGCCTGTTCGACGATG 

Amplification of genes 
inserted into pUT18C 
plasmid, forward primer 

3’UT18C n/a ATCAGAGCAGATTGTACTGAGAGTG 

Amplification of genes 
inserted into pUT18C 
plasmid, reverse primer 

vk1 BamHI  
aaaaaaggatccaATGGTTACATTATTACTAGTT
GCAGTA 

TagO Forward ligation into 
pKT25 or pUT18C 

vk2 EcoR1 
aaaaaagaattcaaCTATTCCTCTTTATGAGATGA
CTTAC 

Tago Reverse ligation into 
pKT25 or pUT18C 

vk3 BamHI  
aaaaaaggatccaATGAGCCTACCGAAAAAAAT
AT 

SA2103 Forward Ligation 
into pKT25 or pUT18C  

vk4 EcoR1 
aaaaaagaattcaaCTACTCTAGATTATCTTTTAA
TAACTTAGTACT 

SA2103 Reverse Ligation 
into pKT25 or pUT18C  
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vk5 BamHI  
aaaaaaggatccaATGGATAAAGAAACTAATGA
CAACG 

SA1195 Forward Ligation 
into pKT25 of pUT18C  

vk6 EcoR1 
aaaaaagaattcaaTTAATCTTCATCTAAAAGTCT
TTAATAGCT 

SA1195 Reverse Ligation 
into pKT25 or pUT18C  

vk7 BamHI  
aaaaaaggatccaTCCAATGAATAAATTTTTAAA
ATACTTTTTG 

SA0908 Forward Ligation 
into pKT25 or pUT18C  

vk8 EcoR1 
aaaaaagaattcaaTTATTTACAACAACTTTTGGT
TAT 

SA0908 Reverse Ligation 
into pKT25 or pUT18C  

ALB67 BamHI 
AATTAAGGATCCAATGAAAAATTTAATATCTA
TTATCATCA 

spa Forward ligation into 
pKT25 or pUT18C 

ALB68 EcoRI 
AATTAAGAATTCAATTTTCTTTTTCTAAATAAA
CGATT 

spa Reverse ligation into 
pKT25 or pUT18C 

Table 2.5 Primers used in this study 

 

2.10.2 PCR amplification 

PCR amplification reactions were performed using high-fidelity Extensor PCR 

ReddyMixTM (ThermoScientific). The working reaction concentration in 25μl of each 

component is: 

DNA polymerase                                     1.25 U 

MgCl2                                                         2.25mM 

dNTPs                                                         0.5mM 

Precipitant and red dye added for electrophoresis 

 

To a sterile 0.5ml PCR tube the following components were added, to give a reaction 

mixture containing 1x PCR ReddyMix : 

High-fidelity Extensor ReddyMix          12.5μl 

Template DNA  100ng 

Forward primer                                        200nM 

Reverse primer                                         200nM 

sdH2O                                                         9.5μl 

PCR reactions were carried out in a Techgene PCR machine (Techne). The reaction 

cycle was as follows: 

1 cycle        Initial denaturation             94⁰C            2min 

30 cycles    Denaturation                        94⁰C           15s 

                    Annealing                              49-55⁰C      30s 

                    Extension                               72⁰C           1min per kb 
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1 cycle        Final extension                     72⁰C            4min 

The reaction products were stored at -20⁰C. 

 

2.10.3 Colony PCR screening of E.coli 

The reaction mixture was made in a PCR reaction tube as described in Section 2.10.2 

without the addition of template DNA. Using a sterile pipette tip, a single colony was 

patched onto a selective antibiotic agar plate and then introduced into the PCR 

reaction tube. The PCR reaction was carried out as described above. 

 

2.10.4 Colony PCR screening of S.aureus 

The reaction mixture was made in a PCR reaction tube as described in Section 2.10.2 

without the addition of the template DNA. As described in Section 2.10.3 using a 

sterile pipette tip, a single colony was patched onto a selective agar plate and then 

introduced into the PCR reaction tube. To disrupt the cells, the reaction steps were as 

follows: 

37°C    15min 

99°C    20min 

4°C       1min 

99°C     2min 

4°C       1min 

The PCR reaction was then carried out as described in Section 2.10.2. 

  

2.10.5 Restriction endonuclease digestion 

Restriction enzymes were purchased from Promega, New England Biolabs or Sigma. 

Digestion of DNA was performed according to the manufacturer’s instructions, with 

the buffers supplied. The reaction mixture was incubated for 3hr at 37⁰C. If digested 

products are to be used in subsequent reactions they were purified using a QIAquick 

PCR purification kit as described in section 2.9.4. 

 

2.10.6 Phosphotase treatment of vector DNA. 

To decrease self-ligation, digested vector DNA was treated with calf intestinal alkaline 

phosphatase (CIP) removing the 5’PO4 from the DNA. Phosphatase was added to the 
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digested vector along with the provided buffer, according to the manufacturer’s 

instructions, and incubated at 55⁰C. After 30min a further 1μl CIP was added and 

incubated for a further 1hr30. The CIP was removed, using the QIAquick PCR 

purification kit (as described in section 2.9.4). The dephosphorylated vector was stored 

at -20⁰C. 

 

2.10.7 DNA ligation and ethanol precipitation. 

Plasmid DNA and insert were ligated at different ratios, with 1μl T4 DNA ligase and 1μl 

T4 DNA ligase buffer added to each and incubated overnight at 15⁰C. 40μl dH2O was 

added to the ligation mixture, mixed and transferred to a clean labelled Eppendorf 

tube. As a negative control linerised vector was ligated under the same conditions in 

the absence of insert DNA. To improve efficacy of transformation, 0.1 volumes 3M 

sodium citrate pH 5.2, 2.5 volumes 100% (v/v) ethanol and 0.05 volumes glycogen 

were added, the mixture vortexed and incubated overnight at -20⁰C. The mixture was 

centrifuged at 13000rpm (10000xg) for 20min at 4⁰C. The pellet was washed twice 

with 500μl 70% (v/v) ethanol. The supernatant was discarded and the pellet air dried 

next to a flame, then resuspended in 10μl dH2O.  

 

2.10.8 Agarose gel electrophoresis 

DNA samples were routinely separated in 1% (w/v) agarose gels in 1X TAE buffer. 

Horizontally submerged agarose gels were poured and run using various size horizontal 

electrophoresis tanks (Life Technologies). For the visualisation of DNA, 5-15μl of 

ethidium bromide (10mg ml-1; BioRad), dependent on the gel size was added to the 

molten gel before pouring.  

DNA samples were mixed with one fifth their volume of DNA loading buffer and loaded 

into wells of the gel. Gels were resolved for 40min to 1hr30 at 100-120V, at room 

temperature, before being viewed on an UV transilluminator at 260nm and 

photographed using the UVi Tec Digital camera and UVi Doc Gel documentation 

system. The size of DNA fragments was estimated by comparison to a 10μl Quick-Load 

1kb DNA ladder  
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Marker DNA fragment size Mass (ng) 

1Kb DNA Ladder (New 
England Biolabs) 

10.0 42 

8.0 42 

6.0 50 

5.0 42 

4.0 33 

3.0 125 

2.0 48 

1.5 36 

1.0 42 

0.5 42 

500bp DNA markers 
(gbiosciences) 

5.0 40 

4.5 40 

4.0 40 

3.5 40 

3.0 40 

2.5 100 

2.0 40 

1.5 40 

1.0 40 

0.5 40 

50bp DNA markers 
(Qiagen) 

0.5 86 

0.4 86 

0.35 86 

0.3 166 

0.25 86 

0.2 86 

0.15 86 

0.1 86 

0.05 86 

Table 2.6 DNA markers 

 

2.10.9 Plasmid sequencing  

Plasmids were purified using a QIAquick spin column as shown in Section 2.9.2 and 

sequenced by the Core Genomics Facility, University of Sheffield. Sequencing traces 

were analysed using FinchTV software (Geospiza). 

 

2.11 Transformation techniques 

2.11.1 Transformation of E.coli 

2.11.1.1 Preparation of electrocompetent E.coli BTH101 cells. 
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An overnight culture was diluted in 400ml LB and grown at 37⁰C, 250rpm (15xg) until 

OD600nm between 0.5-0.7. Cultures were kept on ice-slurry for 15min, aliquoted into 4x 

50ml falcon tubes and centrifuged at 4⁰C for 10min at 5500rpm (6000xg). 50ml of 

culture was added to each pellet and the centrifugation repeated. Pellets were washed 

with ice-cold sdH2O three times, with the pellets only being vortexed to resuspend in 

wash 1. The supernatant was discarded and the pellet resuspended in the remaining 

liquid. The aliquots were combined and ice-cold glycerol was added to a final 

concentration of 10% (v/v). The culture was split into 50μl aliquots, snap frozen and 

stored at -80⁰C. 

 

2.11.1.2 Electroporation into E.coli. 

The ethanol precipitated ligation mixture or ~1ng of purified plasmid DNA was added 

to 50μl of ice- thawed E.coli electrocompetent cells and mixed well. The cells were 

transferred to an ice-cold Bio-Rad 0.1cm cuvette and electroporation was carried out 

using a Bio-Rad Genepulser at 200Ω, 25μF, 1.75kV. 400μl of LB was added to the 

cuvette, the mixture transferred to an Eppendorf tube and incubated at 37⁰C, 250rpm 

(15xg) for 60min to allow the cells the recover. 100μl samples were spread onto 

antibiotic LB plates and incubated overnight at 37⁰C to select tramsformed colonies.  

 

2.11.2 Transformation of S.aureus 

2.11.2.1 Preparation of electrocompetent S.aureus RN4220 cells. 

An overnight culture was set up by inoculating 400ml TSB with a single colony from a 

fresh RN4220 plate and grown at 37⁰C at 250rpm. The following day this was used to 

inoculate 400ml prewarmed TSB to an OD600 0.1 and grown at 37⁰C, 250rpm until 

OD600 0.4-0.6. Keeping the culture at room temperature, cells were aliquoted into 4x 

50ml Falcon tubes and centrifuged for 10 min at 5000rpm (5525xg). 50ml of culture 

was a added to each pellet and the centrifugation repeated. Pellets were gently 

washed in 25ml sterile, room temperature sdH2O three times. After the final wash the 

pellets were resuspended in 20ml sterile 10% (v/v) glycerol and recovered by 

centrifugation. The pellets were then resuspended in 10ml sterile, room temperature 

10% (v/v) glycerol and incubated for 30min. After centrifugation the supernatant was 

discarded and the pellet resuspended in the remaining liquid; the cells were aliquoted 
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into 50μl volume. Competent cells were used immediately or snap frozen and stored at 

-80⁰C before use.  

 

2.11.2.2 Electroporation into S.aureus. 

An appropriate amount of plasmid DNA was added to room temperature thawed 

competent cells and transferred to a 0.1cm electroporation cuvette. Electroporation 

was carried out at 100Ω, 2.3kV, 25μF and 1ml pre-warmed was immediately added and 

the mixture transferred to 25ml universal tubes. Cells were recovered for 3hr at 37⁰C, 

250rpm (15xg) and then 5x 200μl aliquots were spread on reduced concentration 

selective antibiotic plates. 

 

2.12 Phage transformation techniques 

2.12.1 Bacteriophage 

In this study, bacteriophage Ф11 (Mani et al., 1993) was used due to its S.aureus 

specific nature. It is a temperature sensitive, transducing phage of serological group B, 

requiring Ca2+ ions for a maintenance of infection and has an approximate genome size 

of 45kb (Novick, 1991). 

 

2.12.2 Preparation of Phage lysate 

The donor strain was grown overnight at 37⁰C in 5ml BHI containing appropriate 

antibiotics. Cells were inoculated to an OD600 of 0.2 in 5ml TSB in a universal tube. 5ml 

of phage buffer and 100μl of stock phage lysate (Ф11) were added and the mixture 

incubated at 30⁰C for 4-6hr on a rotary shaker at 30rpm. Once cleared, the lysate was 

filter sterilized (0.2μm pore size) and stored at 4⁰C. 

 

2.12.3 Determination of phage titre 

SH1000 strain was grown in 5ml BHI to OD600~0.5. The phage lysate was serially diluted 

in phage buffer and 100μl of diluted phage added to 400μl of culture with 50μl of 1M 

CaCl2. The mixture was allowed to sit at room temperature for 10min before adding 

5ml phage top agar and overlaying a phage bottom agar plate. Plates were incubated 

at 37⁰C for 48hr, and the number of plaques counted. A successful phage lysate 

resulted in 10-7 to 10-10 plaque forming units per ml. 
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2.12.4 Phage transduction 

A culture of the recipient bacteria was grown in 20ml LK overnight, harvested at 5000 

rpm for 10min and resuspended in 1ml LK. 500μl of recipient cells were mixed with 

500μl of phage lysate and 1ml of LK 10mM CaCl2. A control mixture containing no 

phage lysate was also prepared. The mixture was incubated stationary at 37⁰C for 

25min followed by rotary shaking at 250rpm (15xg) for 15min at the same 

temperature. 1μl of ice-cold 0.02M sodium citrate was added and incubated on ice for 

1hr. Aliquots were spread onto LK plates containing 0.05% (w/v) sodium citrate. Plates 

were incubated at 37⁰C for 2hr then overlaid with 5ml LK top agar containing 3x 

concentration of selective antibiotics. Plates were incubated for 36-48hr at 37⁰C. 

Colonies were picked and streaked onto LB with appropriate antibiotic plates.  

 

2.13 Protein analysis 

2.13.1 SDS PAGE 

Resolving gels were prepared using the following recipe, adding the APS and TEMED 

immediately before pouring; 

12% (w/v) Resolving Gel 

30% (w/v) acrylamide/Bis (37. 5:1, BioRad)                  4ml 

1.5M Tris-HCl (pH8.8)                                                        2.5ml 

dH2O                                                                                     3.35ml 

10% (w/v) SDS                                                                     100μl 

10% (w/v) ammonium persulphate (APS)                      100μl 

TEMED                                                                                   15μl 

 

10% (w/v) Resolving Gel 

30% (w/v) acrylamide/Bis (37.5:1, BioRad)                   3.3ml 

1.5M Tris-HCl (pH 8.8)                                                       2.5ml 

dH2O                                                                                     4ml 

10% (w/v) SDS                                                                    100μl 

10% ammonium per sulphate (APS)                               100μl 

TEMED                                                                                 15μl 
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A layer of isopropanol was applied on top of the gel to exclude bubbles, level out the 

surface and isolate it from the air until the gel was set when it was removed and the 

surface dried. A stacking gel was applied on top of this, a comb being placed into the 

gel immediately to create loading wells. As before the recipe is as follows and the APS 

and TEMED were added immediately before pouring; 

30% (w/v) acrylamide/Bis (37.5:1, BioRad)                   0.83ml 

dH2O                                                                                     2.5ml 

1M Tris-HCl (pH 6.8)                                                          0.62ml 

10% (w/v) SDS                                                                    50μl 

10% (w/v) APS                                                                    50μl 

TEMED                                                                                 5μl 

After the stacking gel had solidified, the gel was transferred to a Protean II (BioRad) 

gel-running tank and submerged in 1x SDS PAGE running buffer reservoir. The comb 

was removed and the wells washed out with 1X SDS PAGE running buffer. Appropriate 

volumes of samples (5-20μl) were loaded into the wells and run alongside 10μl of 

Dalton Mark VII-L (Sigma) or prestained SDS-PAGE Low Range (BioRad) protein size 

markers (Table 2.8). The gels were run at 150V until the blue dye front of the sample 

buffer was at the base of the gel plate.  

Marker Protein Molecular mass (kDa) 

Dalton Mark VII-L 
(Sigma) 

Bovine serum albumin 66.0 

Ovalbumin 45.0 

Glycerldehyde-3-phosphate dehydrogenase 36.0 

Carbonic anhydrase 29.0 

Trypsinogen 24.0 

Soybean trypsin inhibitor 20.1 

α-Lactalbumin 14.2 

Prestained SDS-PAGE 
Low Range 
(BioRad) 

Phosphorylase B 104.4 

Bovine serum albumin 81.2 

Ovalbumin 47.3 

Carbonic anhydrase 36.2 

Soybean trypsin inhibitor 26.9 

Lysozyme 19.1 

Table 2.7 Protein size standards 
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2.13.2 Coomassie staining  

To visualise proteins, SDS-PAGE gels were placed in Coomassie blue stain for 30min. 

They were then destained in enough destain to cover overnight until the background 

was clear. Molecular masses were determined by comparison to the protein standards 

of known sizes. 

 

2.13.3 Western blot 

Immunoblot nitrocellulose membrane (Biorad) was cut to the same size as the SDS 

PAGE gel. The membrane was wet briefly in 20% (v/v) methanol, washed with dH2O 

and then equilibrated in blotting buffer for 10min. Protein was transferred from the 

gel to the PVDF membrane by electroblotting in cold blotting buffer using a Mini Trans-

Blot apparatus (BioRad) at 70 V for 1hr. The nitrocellulose membrane was dried on 

blotting paper for 5min. The blot was blocked in blocking buffer overnight at 4⁰C with 

gentle agitation. The blot was washed every 5-7min for 30min with TBST and then 

incubated with blocking buffer containing primary antibody at an appropriate dilution 

for 2hr at room temperature with gentle agitation. The blot was washed every 6x 5min 

with TBST and then incubated in 10ml blocking solution containing 1:20000 

Horseradish peroxidise (HRP) conjugated goat anti-rabbit or anti-mouse secondary 

antibody (Sigma) for 1hr at room temperature with gentle agitation. The blot was 

washed as before with TBST for 30min. In the dark room, 1ml of enhanced 

chemiluminescent (ECL) substrate reagent 1 was combined with 1ml of ECL substrate 

reagent 2 and the mixture spread over the membrane. It was ensured that at least 

0.125ml was used per cm2 of membrane.  This was incubated for 1min, excess reagent 

removed with blotting paper and then sealed within clingfilm. Air pockets were gently 

smoothed out and Kodak Scientific Imaging film was placed on top of the membrane. 

The film was exposed for 30s, placed in developer until the bands appeared, rinsed 

with water and placed in fixer and rinsed again. The exposure was repeated, varying 

the exposure time as needed for optimal detection. Developed films were air dried.   

 

2.13.4 Zymogram  

To determine whether a protein is a hydrolase or peptidoglycan binding protein, a 

zymogram can be performed. An SDS-PAGE gel containing 0.05% (w/v) non HF stripped 
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peptidoglycan in the separating gel was made. Samples were loaded and the gel run as 

described above (Section 2.13.1). The gel was washed in dH2O to remove SDS, the gel 

was then incubated in renaturing solution gentle shacking at room temperature for 

30min. The renaturing solution was exchanged for fresh and the gel incubated 

overnight at 370C gentle shaking. The gel was rinsed with dH2O and incubated in 1x 

renaturing stain for 3hr at RT, gently shaking. The gel was then destained with 

repeated washes of dH2O until zones of clearing were seen. The gel was dried using gel 

drying sheets pre-soaked in 10% (v/v) glycerol. 

 

2.13.5 Mini scale protein extraction of S.aureus 

A single colony was used to inoculate a 5ml TSB overnight culture, this was used to 

reinoculate the desired volume at OD600 0.05 +/- IPTG +antibiotics. This was grown to 

exponential (O.D. ~0.5). The culture was centrifuged at 4⁰C for 10min at 5000rpm 

(5525xg), the pellet was resuspended in 500μl of PBS per 5ml. 500μl fractions were 

transferred to FastPrep tubes containing lysing matrix B (MP Biomedicals). Cells were 

broken using the FastPrep instrument (MP Biomedicals) set at speed 6 for 40s for 5 

runs with incubations on ice between each run. The FastPrep beads were allowed to 

settle before the supernatant was transferred to a clean Eppendorf tube and 

centrifuged at 4⁰C for 5min at 13000rpm (10000xg). The supernatant was transferred 

to a clean Eppendorf tube and kept as the soluble fraction. The pellet was resuspended 

in 1ml PBS kept as the insoluble fraction. A 10μl sample of each was run on an SDS gel.   

 

2.13.6 Whole cell lystae 

 A single colony was used to inoculate a 5ml TSB overnight culture, this was used to 

reinoculate 10ml at OD600 0.05 +/- IPTG +antibiotics. This was grown to exponential 

(OD600 ~0.5) and the culture treated with lysostaphin rotating at 37°C until clear. The 

appropriate amount was mixed with sample buffer, boiled for 10min and centrifuged 

at RT for 3min at 13000rpm (10000xg). A 10μl sample was run on an SDS gel.  

 

2.13.7 Bradford estimation of protein concentration 

To determine protein concentration, 10μl of sample was added to 800μl dH2O in a 

cuvette. 200μl of BioRad Protean assay dye was added and mixed by inversion. After 
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incubation for 5min at room temperature the OD595 was measured. Protein 

concentrations were calculated using the following equation; 

Protein Concentration (mgml-1) = 
       

  
 

 

2.14 Production of recombinant protein 

2.14.1 Expression in E.coli BL21 

A single colony of freshly streaked E.coli BL21 containing pET21d with the desired 

insert was used to inoculate 5ml LB containing the appropriate antibiotic  and 

incubated overnight at 37⁰C with shaking at 250rpm (15xg). This culture was used to 

inoculate 100ml (small scale purification) or 1L (large scale purification) to an 

absorbance of 0.05 at a reading of OD600 and was incubated at 37⁰C with shaking until 

the absorbance reached 0.4-0.6. 1mM IPTG was then added and the culture incubated 

for a further 3hr. Cells were harvested by centrifugation at 5100rpm (5525xg) for 

10min at 4⁰C and the supernatant discarded. The resulting pellet was stored at -20⁰C. 

 

2.14.2 Analysis of recombinant protein stability  

During the preparation of cells in section 2.17.1, 1ml of culture was removed before 

the addition of IPTG (uninduced sample), and 2 samples of 1ml of culture was removed 

following the 3hr incubation after the addition of IPTG (induced sample). The cultures 

were centrifuged at 13000rpm (10000xg) for 5min at room temperature to harvest the 

cells, and the supernatant was discarded. The uninduced sample was resuspended in 

100μl SDS loading buffer and one of the induced samples was resuspended in 250μl 

SDS loading buffer. The samples were boiled for 5min and then centrifuged at 

13000rpm (10000xg) for 3min to sediment any insoluble material. 15μl of each sample 

were analysed by SDS-PAGE to confirm overexpression of the recombinant protein. 

To determine the solubility of the recombinant protein, the second induced sample 

was resuspended in 250μl START buffer and lysozyme was added to a final 

concentration of 1mg ml-1. The sample was incubated at room temperature for 60min 

and then sonicated for 3 x 10s using a Sanyo soniprep 150. The sample was then 

centrifuged at 13000rpm (10000xg) for 10min allowing the separatation of soluble and 

insoluble material. The supernatant, containing soluble proteins, was transfered into a 
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fresh eppendorf and 250μl SDS loading buffer was added. The pellet, containing 

insoluble material, was resuspended in 250μl START buffer 8M urea and 250μl SDS 

loading buffer was added. Both samples were boiled for 5min, centrifuged at 

13000rpm (10000xg) for 3min and 15μl of each sample was analysed by SDS-PAGE. 

 

2.14.3 Separation of insoluble and soluble proteins. 

Cells from section 2.17.1 were resuspended in 5ml START buffer without urea. The 

suspension was then freeze-thawed three times by placing the sample at -80⁰C for 

10min and then allowing it to thaw completely on ice. The cells were then broken by 

sonicating (using a Sanyo soniprep 150) ten times for 10s with 1min rest on ice in 

between each run. The suspension was centrifuged at 10000rpm (25000xg) for 25min 

at 4⁰C. The supernatant containing soluble proteins was removed, filtered using a 

0.45μm pore size, and stored at 4⁰C. If the recombinant protein had been determined 

to be insoluble (Section 2.12.2), the pellet was resuspended thoroughly in 5ml (small 

scale purification) or 30 ml (large scale purification) START buffer 8M urea and 

incubated overnight at 4⁰C. The sample was then centrifuged (10000rpm (25000xg), 

25min, 4oC) to remove any unbroken cells and the resulting supernatant containing the 

solubilised proteins was filtered using a 0.45μm pore size and stored at 4⁰C. 

 

2.14.4 HiTrap purification  

A 5ml HiTrap column (GE Healthcare) was prepared by washing with 10ml sdH2O, and 

then charged with 10ml 50 mM NiSO4. The column was washed with 10ml sdH2O to 

remove excess NiSO4. The BioRad Econo Gradient pump and Fraction Collector was 

flushed with START buffer at a flow rate of 1.5ml min-1. When purifying insoluble 

proteins as determined in Section 2.17.3, 8M urea was added to both the START and 

elution buffer. The charged HiTrap column was attached to the BioRad Econo Gradient 

pump and equilibrated by washing with 5ml START buffer. The supernatant containing 

recombinant protein was applied to the column at a flow rate of 1ml min-1 and any 

non-specific proteins were removed by washing with 5% elution buffer until the 

absorbance returned to zero. The his-tagged proteins were eluted from the column 

using a gradient of 5-100% elution buffer (containing 0.5 M imidazole) at a flow rate of 

1ml min-1, with 1ml fractions being collected. Imidazole has a higher affinity for the 
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nickel than the His-tag displacing recombinant protein. The eluted fractions were then 

analysed by SDS-PAGE. After elution of the recombinant protein, the HiTrap column 

was washed with 10ml 50mM EDTA to remove NiSO4, followed by 10ml sterile water. 

10ml 20% (v/v) ethanol was washed through the column before storage at 4oC. 

 

2.14.5 Protein dialysis  

2.14.5.1 Preparation of dialysis membrane  

Size 2 dialysis membrane tubing (Medicell International) was used, which allows 

selection of proteins larger than 12kDa. Before use, the dialysis tubing was boiled in 

2mM EDTA for 20min and washed thoroughly in sdH2O. For long term storage, the 

EDTA-boiled dialysis tubing was placed in 50% (v/v) ethanol and stored at 4oC.  

 

2.14.5.2 Dialysis of recombinant protein  

Fractions containing recombinant protein (Section 2.12.4) were placed in dialysis 

membrane tubing and dialysed in either START buffer, 20mM Tris-HCl pH7.5 plus 

0.15M NaCl for 12hr at 4oC. This dialysis step was repeated twice more, replacing the 

dialysis solution with fresh appropriate buffer each time. If the protein was insoluble, 4 

M urea was added to the dialysis solution during the first dialysis. The solution was 

then replaced by the appropriate buffer containing 2M urea and dialysis carried out for 

12hr at 4oC. This was repeated three times using the appropriate buffer containing 1M, 

0.5M and 0M urea. After dialysis, the protein fractions were removed from the dialysis 

tubing and glycerol was added to a final concentration of 10% (v/v). 200μl aliquots of 

recombinant protein were stored at -70oC.  

 

2.15 Generation of Antibodies  

Polyclonal antibodies were raised in rabbits and affinity purified by BioServ (University 

of Sheffield). 

 

2.16 Bacterial two-hybrid assay (BACTH)  

The method was adapted from Karimova et al. (1998). Electrocompetent E.coli BTH101 

which had previously been transformed with one plasmid construct were co-

transformed with the opposite plasmid fusion (T25 with T18) following the 
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electroporation protocol. The successful co-transformations were maintained on LB 

plates with 100μg ml-1 ampicillin and 50μg ml-1 kanamycin. There are two halves of the 

assay, a solid assay to identify interactions and a liquid assay to quantify the 

interactions. 

 

2.16.1 BATCH solid assay 

To visualise β-galactosidase activity, strains were spotted onto minimal media plates 

containing the chromogenic substrate X-gal and IPTG to induce expression of the 

hybrid proteins (protocol optimised by Victoria Fairclough, 2009). Cells were grown 

overnight in a 5ml LB containing appropriate antibiotics and washed three times by 

centrifugation (5100rpm (6000xg) at 4⁰C for 10min) and resuspended in sdH2O to 

remove media. After the final wash cells were resuspended in the remaining liquid and 

diluted 10 fold. 10μl aliquots were spotted onto fresh minimal media plates and 

allowed to dry. The plates were incubated at 30⁰C for 18hr. A positive control strain 

carrying plasmids encoding T25 and T18 fused to the leucine zipper domain of GCN4 

(pKT25-zip and pUT18C-zip) (Karimova et al., 1998) and a negative control strain 

carrying unfused T18 and T25 fragments were included. Additional controls were also 

included: each T18 and T25 fragments were tested against unfused T25 and T18 

fragments respectively.  

 

2.16.2 BACTH liquid culture assay 

To visualise the strength of protein interactions, liquid cultures were assayed for β-

galactosidase activity with MUG (4-methylumbelliferyl-β-D-galactopyranoside). One 

colony of each E.coli co-transformant was inoculated into 5ml minimal medium and 

incubated at 30⁰C, 250rpm overnight. Triplicate 100μl culture samples were collected 

and centrifuged at 13000rpm (10000xg) for 5min, the OD600 was also recorded. The cell 

pellets were resuspended in 0.5ml ABT, 50μl freshly prepared MUG was added and the 

tubes were mixed. The reactions were immediately incubated at 25⁰C for exactly 

60mins. During this time MUG is hydrolysed by β-galactosidase to β-D-

galactopyranoside and 4-methylumbelliferone (MU). MU is a fluorescent compound 

and so is a quantifiable measure of β-galactosidase activity. The reaction was stopped 

by adding 0.5ml stopping solution and vortexing the tubes.  
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Into the top well of a 96-well microtitre plate, 250μl of each sample was pipetted, and 

225μl of ABTN was added to the remaining wells to be used. A 1:10 dilution was made 

by removing 25μl sample from the top well and mixing it with the 225μl ABTN in the 

next well. Serial 1:100 and 1:1000 dilutions were also made. 25μl was removed from 

the final well (1:1000 dilution) to keep a constant well volume of 225μl.  

A flourimeter (Victor2
TM, Wallac) was used to measure the fluorescence of each sample 

(355/460nm,0.1s). The relationship between fluorescence and pmol of MU can be 

determined using a calibration curve, allowing the amount of MU in 225μl to be 

calculated. The amount of MU can be related to β-galactosidase activity using the 

following equation; 

MUG units = 
           

 

 
  

                 
  

Where: 

pmoles= p moles MU 

A = volume of assay (1.05 = 0.5ml ABT +0.5ml stopping solution + 0.05ml MUG) 

B =volume of assay read in plate (0.225ml) 

60 = number of minutes incubation 

OD600 = OD600 of culture when cells were harvested 

0.1ml = volume of culture sampled 

Thus, 1 MUG unit is defined as the amount of β-galactosidase that catalyses the 

hydrolysis of 1pmol of MUG per min, per ml of culture, per unit of optical density at 

600nm.  

 

2.16.3 β-galactosidase liquid assay calibration curve  

A calibration curve was prepared using known concentrations of the fluorescent 

product MU (0, 0.5, 1, 2.5, 5, 10, 20, 50, 100, 250, 500, 750 pM). The gradient of the 

calibration curve was then used to calculate pmol of MU present in culture samples 

that had been incubated with MUG. 

 



70 
 

 

 

2.17 Preparation of samples for fluorescence microscopy. 

Cells were treated differently depending on what was the subject of study. After any 

treatment cells were attached to slides as described in 2.15.1. 

 

2.17.1 Attachment of cells. 

For all microscopy, cells were attached to labelled Poly-L-Lysine slides. Cell pellets were 

resuspended in dH2O or buffer GTE to an appropriate concentration, this was judged 

by eye. A 10μl drop was spotted onto the slide, spread to a circle roughly 1cm2 and 

allowed to dry. Slides were washed 3 times by deposition of 500μl of dH2O onto the 

sample and removal by aspiration. The cover slip was mounted in 5μl of Slow Fade 

Gold (Invitrogen), gentle pressure applied and sealed with DPX mountant (BDH). 

 

2.17.2 Live cell treatment. 

A 5ml overnight of the appropriate strain was used to inoculate a 50ml secondary 

culture at 0.1 OD600 which was grown until 0.5 ± 0.1. Cells were harvested by 

centrifugation at 5100rpm (5000xg) for 10min at 4⁰C. They were washed in 30ml of 

dH2O three times. Cells were then harvested and attached to slides as described in 

2.15.1.  
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2.17.3 Fixing cells. 

For fixation, a pellet of cells (grown as described in 2.15.2) and was resuspended in 

0.5ml of PBS. 0.5ml of fresh fixation solution was added and the solution incubated on 

a rotary wheel for 30min at RT. Fixation solution was made by adding 0.42ml 15% 

(w/v) formaldehyde and 0.5μl of 25% (w/v) glutaraledehyde to 2.08ml PBS. 0.5ml. The 

cells were washed three times with dH2O and either viewed immediately or kept as a 

pellet at -20⁰C. Only live cells were fixed.  

 

2.17.4 Removal of Lipoteichoic acid (LTA) 

The cells were bathed in 30ml of 5% (w/v) SDS at 37⁰C for 30min. Keeping the cells on 

ice where possible they were washed 5 times with ice cold dH2O, recovering cells by 

centrifugation at 5100rpm (5000xg) for 10min at 4⁰C between each wash. Cells were 

immediately viewed or kept as a pellet at -20⁰C. 

 

2.17.5 Removal of surface proteins    

To remove the surface protein cells were treated with pronase. The harvested cells 

were resuspended in an appropriate amount of 50mM Tris pH 7.5 and 10μl of 20mg 

ml-1 pronase was added per 1ml of suspension. This was incubated for 30min at 37⁰C; 

the cells were recovered by centrifugation at 5100rpm (5000xg) for 10min at 4⁰C. The 

cells were resuspended in 5% (w/v) SDS and incubated at 50⁰C for 10min, to inactivate 

the pronase. The sample was washed 5 times in dH2O; cells were either immediately 

viewed or kept as a pellet at -20⁰C. 

 

2.17.6 Removal of Wall Teichoic Acids (WTA) 

Hydrofluoric acid has been shown to remove WTA and was used within this study. The 

appropriate amounts of cells were resuspended in 250μl HF and this was incubated 

overnight at 4⁰C. The samples were washed, using disposable Pasteur pipettes, with 

0.5ml dH2O 5 times followed by once with 50mM Tris pH7.5 and then by water 

another time. Between each wash cells were recovered by centrifugation at 5100rpm 

(5000xg) for 10min at RT. The pH of the supernatant was checked and if it was still not 

above 6 further washes were performed. The cells were either viewed immediately or 

kept as a pellet at -20⁰C.  
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2.17.7 Cell breakage 

To break S.aureus a FastPrep machine was used (MP Biomedicals Fastprep 24 

Homogeniser). One ml of cell sample was added to a FastPrep tubes containing lysing 

matrix B (MP Biomedicals) and run at speed 6 for 40s for 5 runs with incubations on ice 

in between each run to prevent protein denaturation. The FastPrep beads were 

allowed to settle before the supernatant was transferred to a clean Eppendorf tube. 

The FastPrep tube was then centrifuged at 13000rpm (5000xg) for 1min and any extra 

supernatant removed to another Eppendorf tube.  

 

2.17.8 Trypsination 

50ml of exponential culture was harvested and washed twice with 10ml PBS and 

suspended in 5ml PBS containing 0.2mg ml-1 trypsin. Cells were incubated at 37°C for 

1hr, washed twice with 10ml PBS and suspended in 5ml of TSB containing 1mM PMSF. 

500µl aliquots were taken and immediately fixed (section 2.15.3) and washed 3 times. 

The remaining cells were incubated at 37°C and 500µl aliquots removed and fixed after 

5, 10, 15, 20, 30 and 60mins.  

 

2.17.9 In vitro staining 

Cell membrane and DNA were stained in vitro with FM4-64 and Hoechst33342, 

respectively. Following cell fixation and subsequent wash steps, cells were 

resuspended in 0.5ml dH2O containing 1.5μl of Hoechst33342 stock solution and 1.2μl 

FM4-64 stock solution was added. Samples were incubated at room temperature for 

15min on a rotary shaker. Cells were harvested by centrifugation at 13000rpm 

(5000xg) for 1min and washed three times by resuspension in 1ml dH2O and 

centrifugation. Cells were mounted onto slides as described in 2.15.1. 

 

2.17.10 Lectin Labelling  

Fluorescently labelled lectins are sugar binding proteins that are highly specific for 

their sugar moieties and used to label cells. Concanavalin A and Wheat germ agglutinin 

were used to label branched α-mannose structures and N-acetylglucosamine 

respectively.  
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Cells were grown and treated as required; an appropriate sample was taken and 

harvested. For ConA labelling, 25μl of 10mM MnCl2, 25μl of 10mM CaCl2 and 25μl of 

fluorescent ConA were added and the volume made up to 250μl with sdH2O. For WGA 

labelling, 25μl of fluorescent WGA and 25μl of 10mM MnCl2 were added and the 

volume made up to 250μl with sdH2O. Cells were incubated for 30mins at RT rotating, 

following incubation they were harvested and washed 3 times in sdH2O before being 

fixed (if needed) according to 2.15.3 and mounted as described in 2.15.1. 

 

2.17.11 Vancomycin labelling 

Fluorescently labelled vancomycin binds and preferentially labels the nascent 

peptidoglycan. Vancomycin binds the terminal D-ala D-ala residues present on 

peptidoglycan pentapeptides not yet cross-linked. Cell pellets were transferred to a 

micro centrifuge tube containing 10μl of 100μg ml-1 1:1 Vancomycin: fluorescently-

labelled Vancomycin (at a final concentration of 1μg ml-1) and incubated at 37⁰C, 

rotating for 5min. Cells were harvested by centrifugation at 13000rpm (5000xg) for 

5min and washed 3 times in sdH2O. Cells were fixed (if needed) according to 2.15.3 

and mounted as described in 2.15.1. 

 

2.17.12 Immunofluoresence  

Cells were grown, harvested and treated as required. Cells were dried onto a Poly-L-

Lysine slide, washed once with PBS, air dried and rehydrated with PBS. They were 

blocked with 2% BSA in PBS for 15min. Cells were then incubated overnight at 4°C with 

the primary antibody (concentration stated with each experiment) in 2% (w/v) BSA in 

PBS. No primary antibody was added to control slides. Cells were washed eight times 

by addition of 0.5ml of PBS and air aspiration. The secondary antibody (stated with 

each experiment along with concentration) was diluted in 2% (w/v) BSA in PBS and 

applied for 2hr at RT. Cells were again washed eight times with PBS and then a cover 

slip was mounted in 5μl Slow fade gold, gentle pressure applied and sealed with DPX 

mountant (BDH).  
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2.18 Fluorescence Microscopy 

Fluorescence images were acquired using an Olympus IX70 deconvolution microscope 

and SoftWoRx 3.5.0 software (Applied Precision). Appropriate filters were used for 

visualisation of each fluorophore (Table 2.8). Samples were prepared in the dark to 

prevent fluorophore bleaching and mounted in Slow Fade Gold to prolong the life of 

the fluorophore. 

Filter Compatible 
fluorophore 

Excitation 
filter/bandpass 
(nm) 

Excitation 
filter/bandpass 
(nm) 

DAPI Alexafluor 350 360/40 457/50 

FITC/YFP Alexafluor 488, 
VancFL 

490/20 528/38 

mRFP Alexafluor 594 580/20 630/60 

Table 2.8 DeltaVision filter set. 

2.19 Preparation of samples for AFM. 

2.19.1 Extraction of cell walls for AFM. 

 An exponential phase culture was harvested by centrifugation (5100rpm for 10min at 

RT) and supernatant discarded. The pellet was immediately resuspended in 20ml 

boiling dH2O and boiled in a water bath for 10min to kill the cells and inactivate 

autolysins. Cells were broken and purfiied by FastPrep (as described in Section 

2.15.7.1). Cells were resuspended in 10ml pre-heated 5% (w/v) SDS and boiled for 

25min for removal of non-covalently bound cell wall components. The cell suspension 

was transferred in 1ml aliquots to Eppendrof tubes, centrifuged (for 10min at RT) and 

then resuspended in pre-heated 4% (w/v) SDS and boiled for 15min. Material was then 

washed six times by centrifugation in dH2O to remove SDS. For hydrolysis of covalently 

bound proteins, pellets were resuspended in 1ml 50mM Tris-HCl (pH 7.5) containing 

2mg ml-1 pronase and incubated at 60°C for 90min. If HF treatment was required, this 

was preformed as described in 2.15.6. The resulting cell walls were harvested by 

centrifugation and washed once with water. 

 

2.19.2 Preparation of cell walls. 

Frozen purified cell walls were thawed and washed by centrifugation (13000rpm 

(5000xg) for 5min) in LC-MS CHROMASOLV® grade water (Fluka) at room temperature. 



75 
 

Sacculi were prepared at an appropriate working concentration for imaging of the cell 

walls and sonicated gently with a Sanyo Soniprep 150 for 10-20s to disperse cell wall 

aggregates. Around 5µl was transferred to a freshly cleaved mica sheet attached to a 

magnetic stub, and dried gently under nitrogen gas. 

 

2.20 AFM microscopy 

Sacculi were imaged using a multimode AFM with and Enxtended Nanoscope IIIa 

controller (Veeco Instruments). Imaging was carried out in tapping mode using silicon 

tips (Olympus) under ambient conditions. Post-processing of images was performed 

using Gwyddeon v2.19 software. All AFM imaging and processing was carried out by Dr 

Emma Ratcliffe. 

 

2.21 Preparation of samples for STORM  

Within this study immunofluorescence was performed with STORM. Cells were grown, 

harvested and treated as required. A 10µl spot of 1:10 gold nano particles was evenly 

dried onto a poly-L-lysine slide into a 1cm2 area using nitrogen gas. A 10µl spot of cells 

was dried into the slide again using nitrogen gas. The slide was blocked in 2% (w/v) BSA 

in PBS for 15min and then incubated with an appropriate concentration primary 

antibody overnight at 4°C. The slide was washed 6-8 times in PBS and incubated with 

anti-rabbit Alexafluor 532, which is compatible with the STORM laser, at 3:1000 for 1-

2hr at RT. Cells were washed in PBS 6-8 times, air dried and mounted in 5µl 10mM 

cyestamine in PBS. Slides were completely sealed with DPX. 

 

2.22 STORM microscopy (Turner et al., 2013). 

Direct STORM imaging was used (Heilemann et al., 2008). Samples were viewed using 

a 100-mW, 532-nm diode laser (Laser 2000) which was filtered through a 552-nm 

longpass dichoric filter (Semrock FF552-DI02) and a 565(24)-nm bandpass emission 

filter (Semrock Brightline 565/24). Laser power was adjusted by pulse-width 

modulation to maximise signal without saturating the charge-coupled device. An oil 

immersion objective mounted in an Olympus IX71 inverted optical microscope and a 

piezoelectric motor (Physik Instrumente) used to adjust focus. Images were expanded 

using a 35-nm and a 100-nm lens and captured using a Hammatsu ImagEM camera. 
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Focus was maintained by repeatedly localising a gold particle as images were taken. 

Images of planes where the gold particles were not in focus were obtained by moving 

the objective to the desired plane, acquiring a series of images and then returning to 

the original plane to refocus. Image processing was conducted using photoactivation 

microscopy/STORM methodology as described by others (Betzig et al., 2006; Huang et 

al., 2008). Data was fitted to a Gaussian functions to individual molecule fluorescence, 

identified by clear intrinsic blinks, using Matlab. Super-resolution images were 

rendered by creating an image of desired pixel size and marking each pixel to which a 

blink event was localised bright. All STORM imaging and processing was carried out by 

Dr. Robert Turner. 
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CHAPTER 3 

Identification of interactions between cell division proteins and the cell wall polymer 

synthetic machinery 

 

3.1 Introduction 

Most proteins do not exist as separate entities within a cell but instead form dynamic 

complexes composed of many components that work cooperatively in a wide range of 

biological processes. There are a wide variety of techniques employed to investigate 

protein-protein interactions, both biochemical and biophysical; in vitro and in vivo. 

Here, a number of the techniques that have helped to build up a map of the division 

machinery are discussed. Affinity chromatography is arguably one of the most 

extensively used techniques when investigating protein-protein interactions. It allows 

the investigation of interacting partners from in vitro mixtures, or potential discovery 

of novel components from in vivo samples, using matrix-bound ligands that capture a 

bait protein engineered with an attached tag (Chepelev et al., 2008; Voet and Voet, 

1995). Following removal of non-specifically bound proteins, interacting proteins are 

retained on the matrix via specific interactions with the bait proteins, they can then be 

eluted using competitive molecules, such as imidozole or glutathione, and analysed. 

There are a number of tags that can be attached to the bait protein ranging from 

genetically made hexa-histidine (his) and glutathione-S-tranferase (GST) to 

commercially available tags or antibodies against the bait protein itself (Chepelev et 

al., 2008). Of the commercially available tags FLAGTM, myc and GFP are good examples; 

FLAGTM is an immunogenic, hydrophilic synthetic eight amino acid tag; similarily the 10 

amino acid long myc tag is a short artificial peptide, derived from the C-terminal amino 

acids of the human c-myc protein. Both synthetic tags and GFP can be attached to 

either C-terminus or N-terminus of a protein and not potentially interfere with its 

function, although expression yields may be more variable at the C-terminal end 

(Chepelev et al., 2008; Einhauer and Jungbauer, 2001).   

Indeed His-tagged E.coli PBP3 was used to show an interaction with PBP1B (Bertsche et 

al., 2006) and also His-tagged FtsX showed an interaction with FtsE during cobalt 
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affinity purification (de Leeuw et al., 1999). GST tags have been used to demonstrate 

that S.pneumoniae DivIVB co-purifies with a His-tagged FtsL/DivIC complex using both 

glutathione and cobalt affinity purification (Noirclerc-Savoye et al., 2005). Both 

techniques were combined by Datta et al. (2006) to show an interaction between 

FtsW, FtsZ and PBP3 in mycobacteria. FLAG fusion has also been valuable in the 

investigation of divisome components; in E.coli FLAG-FtsE and FtsZ were shown to 

interact (Corbin et al., 2007) and FtsL, Myc-tagged FtsQ and FLAG-tagged FtsB interact 

(Buddelmeijer and Beckwith, 2004). Furthermore, again in E.coli, ParC, ParE and the 

FLAG-tagged FtsK  where isolated together using anti-FLAG antibodies (Espeli et al., 

2003) and Corbin et al. (2007) revealing a direct interaction between FtsZ and FtsE and 

that this interaction was independent of FtsA and ZipA.  

The main drawback of affinity chromatography is that it requires the interacting 

proteins to bind tightly through the washing steps and is therefore unable to identify 

transient interactions. One way of overcoming this is to ‘fix’ the protein interactions; 

DSP (dithiobis[succinimidyl propionate]) and its water soluble counterpart DTSSP (3,3’ 

–dithiobis[sulfosuccinimidyl propionate]) are able to do this by forming a stable bond 

between primary amines. The presence of a reducible thiol bond allows for the 

crosslinking to be reversed and the detection of weak and transient protein 

interactions. This technique was utilised  to show an interaction between B.subtilis FtsZ 

with both his-tagged and thioredoxin fused EzrA (Chung et al., 2007; Haeusser et al., 

2004) and in E.coli, to show an interaction between PBP3 and FtsN (Müller et al., 

2007).   

Surface Plasmon Resonance and two hybrid systems are often used in conjunction with 

affinity purification to confirm interactions. All three methodologies were used to 

confirm the interactions of FtsW and PBP1B (Müller et al., 2007) and PBP3 and PBP1B 

(Bertsche et al., 2006). Surface plasmon resonance is the most common label-free 

technique for the measurement of protein interactions; it measures the change in the 

refractive index of light reflected from a metal biosensor when molecules bind to the 

surface. One binding partner is immobilized on the biosensor and a solution with 

potential binding partners is passed over this surface, the change in refractive index is 

proportional to the mass added to the sensor (Liedberg et al., 1983). Mass 
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spectrometry can also be used to validate an interaction detected by affinity 

chromatography and was used to confirm the members of a B.subtilis complex 

consisting of EzrA, FtsZ, ZapA, FtsA and the novel YlmF (SepF), all first identified using 

his-tagging and nickel affinity purification (Ishikawa et al., 2006). Gel filtration, 

sometimes known as size exclusion chromatography, has been employed to show an 

interaction between B.subtilis EzrA and FtsA, and the dissociation constant was 

calculated based on binding studies using fluorescently labelled EzrA (Singh et al., 

2007). The same group used the technique to establish SepF as an FtsZ-interacting 

protein in B.subtilis (Singh et al., 2008). 

Many other methods are also used to confirm or elucidate protein-protein 

interactions. Sucrose gradient ultracentrifugation consists of adding the proteins of 

interest to the top of a sucrose density gradient and centrifuging to separate out the 

components, and has been used to demonstrate interactions between ZapA and ZapB 

directly and the formation of a complex with FtsZ (Galli and Gerdes, 2010). Similarly 

sedimentation assays followed by 90°-angle light scattering analysis have identified 

ZapA as an FtsZ-interacting protein (Hale et al., 2011). Typically used to validate 

protein interactions, bimolecular fluorescence complementation has been used to 

analyse the core cell cycle proteins of Arabidopsis, identifying novel active kinase 

complexes (Boruc et al., 2010). Proteins are fused to complementary fragments of a 

fluorescent reporter protein and when the two fragments interact a fluorescent signal 

is emitted. Beneficially the interacting proteins are not required at large or 

stochiometric proportions. Phage display is another high-throughput technique that 

can be used for the screening of protein interactions. The DNA encoding the protein of 

interest is ligated to the pIII or pVIII gene, which encodes the minor pIII coat protein or 

the major pVIII coat protein resepectively. The phage and insert DNA hybrid are then 

inserted into E.coli, where mature virions are assembled with the relevant protein 

fragment as part of their outer coat. The phage particles are washed over wells 

containing immobilised protein; those that interact remain attached while others are 

removed by washing (Smith, 1985). This technique was exploited in 2003 to suggest 

the homodimerisation of FtsA (Carettoni et al., 2003).   

Fluorescence can also be used to demonstrate protein-protein interactions; Förster 
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resonance energy transfer uses the energy transfer between two fluorophores within 

less than 10nm of one another. A donor fluorophore, initially in its electronic excited 

state, transfers energy to an acceptor resulting in emission at a different wavelength. It 

has been used to demonstrate homodimerisation of PBP3 and the formation of an 

FtsW-PBP3 complex in E.coli (Fraipont et al., 2011) and interactions between Cy3-

labelled MinC and Cy5-labelled FtsZ(Okuno et al., 2009). Furthermore, a SepF 

homologue in the cyanoobacterium Synechocystis, fused with a His-GFP tag, was 

shown to physically interact with FtsZ polymers in vitro using fluorescence microscopy 

(Marbouty et al., 2009). Fluorescence recovering after photobleaching (FRAP) 

describes a technique capable of quantifying the two dimensional lateral diffusion of 

fluorescently labelled molecules and was used to demonstrate that the Z ring short 

overlapping filaments have a rapid turnover (Erickson et al., 2010).   

Immunoblotting involves binding a protein onto a nitrocellulose membrane and 

visualising interactions by probing either directly with antibody or with antibodies 

against the fusion tag of a fused protein. This technique has been used to corroborate 

the interaction between ParC and FtsK in E.coli (Espeli et al., 2003). Non-denaturing 

PAGE and Western blotting are common place lab techniques that can be used to 

detect protein-protein interactions as done by Sievers and Errington (2000) to detect 

the formation of an FtsL and DivIC complex.  Premature targeting manipulates the 

linear protein recruitment seen in E.coli to indentify the individual contributions of 

upstream proteins to specific recruitment steps. The proteins of interest can be fused 

to ZapA, which binds to FtsZ early within the division process. FtsA also binds early in 

the division process and is required for the recruitment and therefore localisation of 

downstream proteins. When the fusion protein is expressed within an ftsA mutant, 

proteins downstream of the protein of interest will have their localisation restored to 

midcell. Goerhring et al. (2005) fused FtsQ to ZapA fully restoring the localisation of 

FtsK, FtsL, FtsB, FtsW and FtsI, when expressed within the ftsA mutant, demonstrating 

the ability of FtsQ to interact and recruit downstream proteins independently of FtsA. 

This methodology was further used to display interactions of B.subtilis DivIC with FtsL 

and B.subtilis DivIB with PBP2B within E.coli host cells, which showed that interactions 

were independent of other B.subtilis division proteins (Robichon et al., 2008). 
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A sensitive low-tech, scalable technique is the yeast two hybrid system (Fields and 

Song, 1989). The yeast transcription factors Gla4 and Gen4 have been shown to be 

comprised of two separable domains; a DNA binding domain and an acidic 

transcription activation domain (Hope and Struhl 1986; Keegan et al 1986). By fusing 

proteins of interest to each of these domains, interactions can be seen as the 

reconstitution of a functional transcriptional activator.  Interactions can be detected by 

transcriptional activation of an adjacent reporter gene such as lacZ, and numerous 

interactions have been shown during yeast two hybrid screens (Bertsche et al., 2006; 

Espeli et al., 2003; Hale et al., 2011; Hamoen et al., 2006; Ishikawa et al., 2006; Sievers 

and Errington, 2000). The yeast tri-hybrid assay uses the same principle but with the 

addition of a hybrid RNA molecule as a linker between the separated transcription 

domains (Young, 1998). The ability of B.subtilis DivIB, DivIC and FtsL to form a ternary 

structure in yeast was established using this method (Daniel et al., 2006). The 

interactions seen within the yeast two hybrid system are restrained to the nucleus 

making it unsuitable for the investigation of large proteins, those that are membrane 

bound or those requiring post-translational modifications.  Non-specific interactions of 

the separated domains have also been reported and could result in false positives 

(Deane et al., 2002). 

To overcome some of the restrictions seen within yeast two hybrid Di Lallo et al. 

(2001) developed a two-hybrid based on the dimerisation of λ repressors. A chimeric 

operator, constructed of two hemi-sites from phage P22 and phage 434 operators, can 

be recognised and bound by a hybrid repressor, again made of P22 and 434 repressors. 

The proteins of interest are fused to the two repressors, and thus if the proteins 

interact, the hybrid repressor binds to the hybrid operator and blocks the transcription 

of downstream reporter genes, such as lacZ. This method has been used to reveal large 

networks of interactions for division proteins in E.coli and S.pneumoniae (Di Lallo et al., 

2003; Fadda et al., 2007; Maggi et al., 2008). This technique has been further adapted 

to be based on the reconstitution of adenylate cyclase activity in E.coli (Karimova et al., 

1998). The catalytic domain of the Bordetella pertussis adenylate cyclase can be 

separated from the calmodulin-binding domain, into two complementary fragments 

T25 (residues 1-224) and T18 (residues 225-399)(Glaser et al., 1988). These domains 
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are then fused to the proteins of interest and should an interaction occur the catalytic 

domain is reconstituted. The active enzyme is able to catalyse the hydrolysis of ATP to 

cAMP within the cytosol, which in turn can bind the transcriptional activator CAP 

(catabolite activator protein). The cAMP/CAP complex is a promiscuous regulator and 

drives the expression of a large number of genes including those involved in the 

catabolism of lactose and maltose. By using lactose or maltose as the unique carbon 

source, interactions can be easily distinguished on indicator or selective media. The 

use of a cytosolic regulatory molecule makes this method particularly suitable for the 

study of division proteins and it has been used to establish networks in a number of 

organisms (Claessen et al., 2008; Daniel et al., 2006; Datta et al., 2006; Ebersbach et 

al., 2008; Fraipont et al., 2011; Galli and Gerdes, 2010; Karimova et al., 2005; Marbouty 

et al., 2009a; Mazouni et al., 2004; Müller et al., 2007; Patrick and Kearns, 2008). Of 

particular note is its use in the establishment of an S.aureus interaction map including 

both the cytoplasmic components of the division machinery and the peptidoglycan 

biosynthetic apparatus (Refer to Chapter 1, Figure 1.2) (Steele et al., 2011).  

3.1.1 Aims of this chapter 

 Bioinformatic identification of putative proteins involved in S.aureus WTA cell 

wall attachment. 

 Identification of protein-protein interactions of WTA biosynthetic proteins and 

cell division proteins.   
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3.2 Results  

3.2.1 Genes chosen for investigation 

At the time that this investigation was undertaken a WTA biosynthetic pathway was 

well established (Swoboda et al., 2010) with all steps having been assigned their 

proteins (Refer to Chapter 1.9.1, Figure 1.10).  However the final step in WTA 

synthesis, the transfer of the cell wall polymer from their lipid-linker precursor to the 

cell wall peptidoglycan remained uncharacterised. It was suggested that the proteins 

responsible for this step were the uncharacterised LytR-CpsA-Psr (LCP) proteins, 

SA2103, SA1195 (MsrR) and SA0908, in personal communications with R. Daniel and 

the B. Bergi-Bächi group. This was later supported by evidence within B.subtilis that 

LCP proteins carried out the linkage to the peptidoglycan (Kawai et al., 2011) and they 

were subsequently published as the hypothetical WTA ligases (Dengler et al., 2012; 

Over et al., 2011). These proteins along with TarO, the first step of the WTA 

biosynthetic pathway, were chosen to be investigated. In B.subtilis the WTA 

biosynthetic machinery has been shown to form a complex network of interactions 

through yeast and bacterial two hybrids (Formstone et al., 2008), thus these four 

proteins were felt to be adequate to suggest if the WTA biosynthesis proteins interact 

with the divisome.  

The topology of the LCP proteins was unknown so their protein sequences were 

obtained from NCBI and the topology predicted using ConPred II (Arai et al., 2004). 

S.aureus TarO, SA1195 and SA0908 were all predicted to have at least one 

transmembrane helix with an Nin-Cout topology. SA0908 was predicted to be soluble 

(Table 3.1). As members of the LCP family, SA2103, SA1195 and SA0908 were expected 

to have a short intracellular, a transmembrane domain and a large extracellular region 

containing the LCP domain (Hübscher et al., 2008; Kawai et al., 2011). Therefore N-

terminal fusions of each protein are necessary to position the adenylate cyclase 

fragments in the cytosol. 

Penicillin binding protein 4 (PBP4) is required for the synthesis of the characteristic 

highly cross-linked peptidoglycan of S.aureus and localises to the septum, however in 

the absence of WTA synthesis it becomes dispersed throughout the entire cell 
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membrane and is unable to function normally (Atilano et al., 2010). This interesting 

observation suggests an interaction between PBP4 and the WTA biosynthetic 

machinery, despite a negative result previously seen between PBP4 and TarO (Atilano 

et al., 2010), and therefore was included within this investigation. The crystal structure 

of PBP4 has shown that it consists of two domains; an N-terminal domain containing 

its transpeptidase domain and an all β-sheet C terminal domain that is adjacent to the 

trans side of the cytoplasmic membrane (Atilano et al., 2010; Navratna et al., 2010; 

Scheffers and Pinho, 2005).  

To fully investigate the interactions between the proteins of interest and the cell 

division machinery, a list of 22 S.aureus proteins were chosen. The list encompasses all 

aspects of the division process, from DNA segregation and correct septum placement, 

through to late division proteins involved in septum biosynthesis and synthesis of 

peptidoglycan-associated components. Homologues of proteins involved in B.subtilis 

elongation were also included, since S.aureus does not undergo any cell elongation, 

these proteins may play an alternative role in division of cocci (Steele et al., 2011). 

3.2.2 Construction of BACTH plasmids 

The genes of interest were amplified by PCR and cloned into pKT25 and pUT18C to 

create in-frame protein fusions to the C-terminus of T25 and T18 (Figure 3.1). Ligation 

products were used to transform electrocompetent E.coli TOP10 with selection on LB 

kan 50μg ml-1 or amp 100 μg ml-1. Positive clones were identified by colony PCR using 

the same primers used to amplify the genes of interest (section 2.9.3, data not shown) 

and by plasmid extraction, restriction digestion with EcoRI and BamHI, and 

electrophoresis on a 1% (w/v) agarose gel (Figure 3.2). DNA bands of the correct size 

were seen for each plasmid (Table 3.2). Plasmids were sequenced by the University of 

Sheffield Core Genomics Facility to exclude the possibility of errors having been 

introduced during PCR (data not shown). The translated plasmid sequences showed 

100% identity to predicted amino acid sequences, although a synonymous mutation 

was seen in the third position of the codon in the case of T25-TarO twice and T25-

SA0908 once. 
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GENE Putative 
Function  

Nucleotide  
Length (bp) 

Amino acid 
length 

Mass 
(kDa) 

Predicted Topology 

TarO UDP-N-GlcNAc: 
UDP-P GlcNAc 
1-P transferase 

1056 351 38.5 

                                      
SA2103 Putative LCP; 

cell envelope-
related 

transcriptional 
attenuator 

domain 

948 316 34.7 

                     
SA1195  
(MsrR) 

Peptide 
methionine 

sulfoxide 
reductase 
regulator;  

Influences lytic 
behaviour(Deng
ler et al., 2011) 

984 327 37.0 

                           
SA0908 Putative LytR; 

transcriptional 
regulator 

1218 405 45.7 Predicted as soluble 

Table 3.1 Results obtained from bioinformatic search of proteins of interest. 
Table showing the results obtained from an NCBI search of TarO, the first protein in the WTA biosynthetic pathway, and proteins suggested to be involved in the 
attachment of WTA, the final step in the biosynthesis of WTA. Putative function, nucleotide length and amino acid length were all obtained from NCBI 
(http://www.ncbi.nlm.nih.gov/). Weight was predicted using Expasy tool Compute pI/Mw. Topology was predicted using ConPred II.    
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3.2.3 E.coli BTH101 as a reporter strain for the detection of protein-protein 

interactions 

E.coli BTH101 is a non-reverting adenylate cyclase deficient reporter strain with high 

complementation efficiency. The frequency of spontaneous Lac+ revertants due to 

cAMP/CAP independent promoter mutations is 10-8, making BTH101 a suitable strain 

for detection of protein-protein interactions seen by the reconstruction of the 

separated adenylate cyclase (Karimova et al. 1998). E.coli BTH101 was transformed 

with one of the constructed plasmids and made electrocompetent. Plasmids carrying 

fusions of T25 or T18 to a number of S.aureus cell division and other proteins (FtsZ, 

DivIB, DivIC, EzrA, FtsA, FtsL, FtsW, PBP1, PBP2, PBP3, PBP4, ParC, ParE, YneS, YpsA, 

GpsB, SepF, ZapA, Noc, RodA, MreC, MreD, ypfP, LtaA, LtaA, DivIA, DnaK) were then 

transformed into the electrocompetent BTH101 containing one of the T18- or T25- 

constructed plasmid. 

3.2.4 Investigating physical interactions with S.aureus WTA biosynthesis proteins of 

interest 

3.2.4.1   Solid assay 

To investigate positive interactions between the proteins of interest and members of 

the divisome, co-transformed strains were selectively grown overnight in LB with both 

ampicillin and kanamycin. The cells were washed three times in sdH2O to remove 

media and resuspended in 5ml sdH2O before 10µl aliquots were spotted onto minimal 

media agar containing 150µg ml-1 X-Gal (Steele et al., 2011), allowed to dry and 

incubated at 30°C for 26-30 hrs. The positive control strain carrying plasmids encoding 

T25 and T18 fused to the leucine zipper domain of GCN4 (pKT25-leucine zip or pUT18c-

leucine zip)(Karimova et al., 1998) and the negative control strain carrying unfused T18 

and T25 fragments (pUT18c or pKT25) were also co-transformed with the opposing 

unfused adenylate cyclase fragment. If either negative control gave a positive result 

the experiment was discarded and repeated. 

The WTA biosynthetic proteins will be considered first; Positive interactions were seen 

with many S.aureus division proteins (as displayed colorimetrically in Table 3.3; plates 

are shown in appendix I). YpfP and LtaA were constructed as both C terminal and  
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Figure 3.1 Construction of BACTH plasmids carrying C-terminal fusions 

Diagrammatic representation of gene fusions of the encoding regions for the C-termius of T18 

and T25 fragments to the N-terminus of genes of interest (goi). 
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Figure 3.2 Restriction enzyme digests of BACTH plasmids 

Restriction digests of BACTH plasmids with BamHI and EcoRI carrying C-terminal fusions to a) 

pUT18C and b) pKT25. Bands correspond to the expected size are indicted with a black arrow. 

Sizes of DNA ladder shown in kb.  
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Gene 

inserted 

pUT18C pKT25 

Plasmid name Expected band size 

(bp) 

Plasmid name Expected band size 

(bp) 

tarO pVK1 1056, 3017 pVK2 1056, 3442 

SA2103 pVK3 948, 3017 pVK4 948, 3442 

SA1195 pVK5 984, 3017 pVK6 984, 3442 

SA0908 pVK7 1218, 3017 pVK8 1218, 3442 

pbp4 pVK9 1296, 3017 pVK10 1296, 3442 

 

Table 3.1 Expected band sizes (bp) of restriction fragments of BACTH plasmids digested with 

EcoRI and BamHI 
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N terminal fusions (Bottomley, unpublished) and where interactions were seen one 

orientation appeared stronger than the other. The strongest orientation varied 

between proteins and between orientations. Of proteins that showed interactions, 

results could be detected with both T18 and T25 fusions (where available) for most 

cases. However there were some discrepancies, the T25-TarO fusion showed no 

interaction with many proteins that were positive with the T18-TarO, despite showing 

positive interactions with T18-LtaS, T18-YpfP, T18-SA2103 and T18-SA0908. T25-

SA2103 gave positive interactions for T18-DivIB, T18-DivIC, T18-FtsW, T18-EzrA, T18-

LtaA, T18-YpfP, T18-SA2103, T18-SA1195 and T18-SA0908 where T18-SA2103 did not. 

T18-SA2103 did result in a positive with T25-PBP2 where the reversed plasmids did not 

and with T25-PBP1, T25-PBP3 and T25-DivIA where no reciprocals were available. Both 

the T18 and T25-SA1195 (MsrR) were highly interactive fusions with T18-DivIB, T25-

GpsB, T25-Noc, T25-ZapA, T25-MreC, T25-MreD, T25-RodA, T25-LtaA, T25-TarO and 

T25-SA2103 giving positive interactions where the reverse did not. T18-SA1195 also 

gave positive interactions with T25-PBP1, T25-ParC and T25-ParE, where reciprocal 

plasmids were unavailable. Finally T18-SA0908 gave positive interactions with T25-

FtsA, T25-PBP1, T25-PBP3, T25-LtaA, T25-DivIVA, T25-DnaK and T25-SA2103 which 

were not confirmed by the T25 fusions (where available). Conversely the T25 fusion 

showed a positive interaction with T18-PlsY and T18-ZapA where T18-SA2103 did not. 

These results show that the LCP proteins; SA2103, SA1195, SA0908, and TarO do 

interact with divisome components and that fusion to T18 and T25 may result in only a 

partially functional hybrid protein.  

3.2.4.2   Liquid assay 

To further quantify the observed protein-protein interactions, the efficiencies of 

functional complementation between fusion proteins in liquid culture were examined 

by measuring β-galactosidase activity using MUG as a substrate. Strains were grown to 

mid-exponential phase (OD600 ~0.5) in minimal medium at 37°C in the presence of IPTG 

to induce expression of fusion proteins at 150µg ml-1. Positive interactions were 

assigned if the level of β-galactosidase was at least four times higher than the negative 

control (BTH101 co-transformed with pKT25 and pUT18C)(Karimova et al., 2005) and 

proved statistically significant by the students T-Test. The threshold was determined as 
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87.6 MUG units. 

Figure 3.3 shows the interactions observed and the statistical significance of each. 

Almost all positive interactions seen in the solid assay with T18-TarO gave positive 

readings in liquid, there were however a few exceptions. T18-TarO~pKT25-YpfP gave a 

positive reading on the solid assay but a negative in the liquid, however as pKNT25-

YpfP gave a strong positive in both solid and liquid, the interaction was determined as 

occurring. T18-TarO~T25-EzrA gave a positive reading on solid and its liquid reading 

was above the threshold but not statistically significant. The interaction with the 

reversed plasmids gave nothing in solid or liquid but due to the strength of the blue 

seen on solid medium, this was still considered a positive interaction. T18-SA2103 gave 

negative readings with T25-FtsZ, T25-FtsA, T25-FtsL, T25-PBP3, however the majority 

gave readings 3 times the negative control, performed with this experiment, with only 

1 (T25-FtsL) giving just double. FtsA, and FtsL both showed positive interactions with 

their reciprocal fusions in both solid and liquid. Of the remaining positive interactions 

(PBP1, PBP2, SepF, PBP4 and DivIVA) all gave positive interactions but only T25-PBP1 

and T25-PBP4 were considered statistically significant. All positive interactions seen on 

solid medium for T18-SA1195 also gave statistically significant positive results in liquid 

medium. For T18-SA0908, despite giving positive readings on solid medium, T25-LtaS 

and T25-YpfP both gave negative readings. T18-SA0908~T25-FtsA gave a positive 

reading but was not statistically significant. 

When examining the T25-TarO (shown in Figure 3.4), of the 6 positive interactions 

seen in the solid medium only T18-SA2103 and T18-SA0908 gave positive readings and 

neither were considered statistically significant. In the case of T25-SA2103 only T18-

PBP4 did not register the positive seen on the solid medium and a statistically 

significant interaction was seen with T18-GpsB, which was not observed in the solid 

medium. Like its reciprocal, T25- SA1195 showed positive readings for all positive 

interactions seen in the solid medium. T25-SA0908 gave no positive readings with 

either of the T18-YpfG fusions or the T18-SA2103 despite producing a positive within 

the solid assay. 
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TarO 
T18 

TarO 
T25 

SA2103 
T18 

SA2103 
T25 

SA1195 
T18 

SA1195 
T25 

SA0908 
T18 

SA0908 
T25 

FtsZ(pKT25N)(pUT18)                 

DivIB(pKT25)(pUT18C)                 

FtsA(pKT25)(pUT18C)                 

FtsL(pKT25)(pUT18C)                 

DivIC(pKT25)(pUT18C)                 

FtsW(pKT25)(pUT18C)                 

EzrA(pKT25N)(pUT18)                 

PBP1(pKT25)(pUT18C)                 

ParC(pKT25)(pUT18C)                 

ParE(pKT25)(pUT18C)                 

YneS(pKT25)(pUT18C)                 

PBP2(pKT25)(pUT18C)                 

GpsB(pKT25)(pUT18C)                 

YpsA(pKT25)(pUT18C)                 

SepF(pKT25)(pUT18C)                 

Noc(pKT25)(pUT18C)                 

PBP3(pKT25)(pUT18C)                 

ZapA(pKT25)(pUT18C)                 

MreC(pKT25)(pUT18C)                 

MreD(pKT25)(pUT18C)                 

RodA(pKT25)(pUT18C)                 

PBP4(pKT25)(pUT18C)                 

LtaA (pKT25N)(pUT18)                 

LtaA (pKT25)(pUT18C)                 

LtaS (pKT25)(pUT18C)                 

YpfP (pKT25N)(pUT18)                 

YpfP (pKT25)(pUT18C)                 

DivIA(pKT25N)                 

DnaK(pKT25)                 

TagO(pKT25)(pUT18C)                 

SA2103(pKT25)(pUT18C)                 

SA1195(pKT25)(pUT18C)                 

SA0908(pKT25)(pUT18C)                 

T25/T18                 

 

 

Table 3.3 Summary of β-galactosidase activity of bacterial WTA biosynthesis two hybrid 
fusions on solid media 

Activity was determined by the colour of colonies grown on minimal media plates containing 
150µg ml-1 X-gal. Green cells represent positive interactions whilst red cells represent negative 
interactions. 

An example of a positive 

interaction 

An example of a negative 

interaction 
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Figure 3.3 β-Galactosidase activity of T18 fused proteins of interest with T25 division 

proteins 

Interactions of the proteins of interest fused to T18 were quantified by measuring β-

galactosidase activity of E.coli BTH101 cells expressing complementary fusion proteins. Activity 

is displayed as the mean of three independent measurements of β-galactosidase activity for 

each co-transformant. Error bars represent the standard deviation. Values that are significantly 

different from the negative control, as determined by a student’s T-test, are indicated by 

asterisks. ** denotes p< 0.01, * denotes 0.01 <p< 0.05. Positive interactions are considered to 

be at least four times higher than the activity level for the negative control and this cut-off 

level (87.6 MUG units) is represented by the red line in each bar chart.   

 

 

 



95 
 

      

     

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 
Ft

sZ
 

D
iv

IB
 

Ft
sA

 

Ft
sL

 

D
iv

IC
 

Ft
sW

 

Ez
rA

 

P
ls

Y 

P
B

P
2

 

G
p

sB
 

Yp
sA

 

Se
p

F 

N
o

c 

Za
p

A
 

M
re

C
 

M
re

D
 

R
o

d
A

 

P
B

P
4

 

Lt
aA

  

Lt
aA

  

Lt
aS

 

yp
fP

 

yp
fP

 

Ta
rO

 

SA
2

10
3 

SA
1

19
5 

SA
0

90
8 

T1
8 

T25- TarO 

M
U

G
 U

n
it

s 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

Ft
sZ

 

D
iv

IB
 

Ft
sA

 

Ft
sL

 

D
iv

IC
 

Ft
sW

 

Ez
rA

 

P
ls

Y 

P
B

P
2

 

G
p

sB
 

Yp
sA

 

Se
p

F 

N
o

c 

Za
p

A
 

M
re

C
 

M
re

D
 

R
o

d
A

 

P
B

P
4

 

Lt
aA

 …
 

Lt
aA

 …
 

Lt
aS

 …
 

yp
fP

 …
 

yp
fP

 …
 

Ta
rO

 

SA
2

10
3 

SA
1

19
5 

SA
0

90
8 

T1
8 

** 

** 

* 

** ** 

** 

* 
* 

** 

* 

** 

** 

* 

M
U

G
 U

n
it

s 

T25- SA2103 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

Ft
sZ

 

D
iv

IB
 

Ft
sA

 

Ft
sL

 

D
iv

IC
 

Ft
sW

 

Ez
rA

 

P
ls

Y 

P
B

P
2

 

G
p

sB
 

Yp
sA

 

Se
p

F 

N
o

c 

Za
p

A
 

M
re

C
 

M
re

D
 

R
o

d
A

 

P
B

P
4

 

Lt
aA

 

Lt
aA

  

Lt
aS

  

yp
fP

  

yp
fP

  

Ta
rO

 

SA
2

10
3 

SA
1

19
5 

SA
0

90
8 

T1
8 

* 

** * 

** 

* 
* 

** *

* 
** 

* 

M
U

G
 U

n
it

s 

T25-  SA1195 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

Ft
sZ

 

D
iv

IB
 

Ft
sA

 

Ft
sL

 

D
iv

IC
 

Ft
sW

 

Ez
rA

 

P
ls

Y 

P
B

P
2

 

G
p

sB
 

Yp
sA

 

Se
p

F 

N
o

c 

Za
p

A
 

M
re

C
 

M
re

D
 

R
o

d
A

 

P
B

P
4

 

Lt
aA

  

Lt
aA

  

Lt
aS

  

yp
fP

 

yp
fP

  

Ta
rO

 

SA
2

10
3 

SA
1

19
5 

SA
0

90
8 

T1
8 

* 
* 

** * 

** 
* 

* 

M
U

G
 U

n
it

s 

T25- SA0908 



96 
 

Figure 3.4 β-galactosidase activity of T25 fused proteins of interest with T18 division proteins 

Interactions of the proteins of interest fused to T25 were quantified by measuring β-

galactosidase activity of E.coli BTH101 cells expressing complementary fusions. Activity is 

displayed as the mean of three independent measurements of β-galactosidase activity for each 

co-transformant. Error bars represent the standard deviation. Values that are significantly 

different from the negative control, as determined by a student’s T-test, are indicated by 

asterisks. ** denotes p< 0.01, * denotes 0.01 <p< 0.05. Positive interactions are considered to 

be at least four times higher than the activity level for the negative control and this cut-off 

level (87.6 MUG units) is represented by the red line in each bar chart.   
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PBP4 
T18 

PBP4 
T25 

FtsZ(pKT25N)(pUT18)     

DivIB(pKT25)(pUT18C)     

FtsA(pKT25)(pUT18C)     

FtsL(pKT25)(pUT18C)     

DivIC(pKT25)(pUT18C)     

FtsW(pKT25)(pUT18C)     

EzrA(pKT25N)(pUT18)     

PBP1(pKT25)(pUT18C)     

ParC(pKT25)(pUT18C)     

ParE(pKT25)(pUT18C)     

YneS(pKT25)(pUT18C)     

PBP2(pKT25)(pUT18C)     

GpsB(pKT25)(pUT18C)     

YpsA(pKT25)(pUT18C)     

SepF(pKT25)(pUT18C)     

Noc(pKT25)(pUT18C)     

PBP3(pKT25)(pUT18C)     

ZapA(pKT25)(pUT18C)     

MreC(pKT25)(pUT18C)     

MreD(pKT25)(pUT18C)     

RodA(pKT25)(pUT18C)     

PBP4(pKT25)(pUT18C)     

LtaA (pKT25N)(pUT18)     

LtaA (pKT25)(pUT18C)     

LtaS (pKT25)(pUT18C)     

YpfP (pKT25N)(pUT18)     

YpfP (pKT25)(pUT18C)     

DivIA(pKT25N)     

DnaK(pKT25)     

TagO(pKT25)(pUT18C)     

SA2103(pKT25)(pUT18C)     

SA1195(pKT25)(pUT18C)     

SA0908(pKT25)(pUT18C)     

T25/T18     

 

Table 3.4 Summary of β-galactosidase activity of PBP4 two hybrid fusions on solid media 

Activity was determined by the colour of colonies on minimal media plates containing 150µg 

ml-1 X-gal. Green cells represent positive interactions whilst red cells represent negative 

interactions. 
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Figure 3.5 β-Galactosidase activities of T18 and T25 fused S.aureus PBP4 with T25 and T18 division proteins, respectively 

Interactions of the PBP4 fused to T18 and T25 were quantified by measuring β-galactosidase activity of E.coli BTH101 cells expressing complementary fusion 

proteins. Activity is displayed as the mean of three independent measurements of β-galactosidase activity for each co-transformant. Error bars represent 

the standard deviation. Values that are significantly different from the negative control, as determined by a student’s T-test, are indicated by asterisks. ** 

denotes p< 0.01, * denotes 0.01 <p< 0.05. Positive interactions are considered to be at least four times higher than the activity level for the negative control 

and this cut-off level (87.6 MUG units) is represented by the red line in each bar chart.   
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3.2.5 Investigating physical interactions with S.aureus PBP4 

3.2.5.1  Solid assay 

Table 3.4 shows the PBP4 interactions on solid medium; the T25-PBP4 interacted with 

nearly all T18 divisome fusions only giving negative results with T18-PBP2, T18-MreD and 

T18-TarO. The T18-PBP4 fusion gave a negative reading with T25-FtsL, T25-DivIVC, T25-

FtsW, T25-PlsY, T25-YpsA, T25-Noc, T25-SA2103, T25-SA1195 and T25-SA0908 when the 

reciprocal plasmid gave a positive. T18-PBP4~T25-MreD gave a positive reading which was 

not present in the T25-PBP4 screen. T18-PBP4 also gave a positive interaction with T25-

PBP1, T25-ParC, T25-PBP3, T25-DivIVA and T25-DnaK, where no reciprocal plasmid was 

available. 

3.2.5.2  Liquid assay 

Almost all the interactions seen on the solid media gave matching readings in the liquid 

media (shown in Figure 3.5); however T18-PBP4 with T25-ParC, T25-PBP3, T25-ZapA, T25-

MreC, T25-MreD, T25-RodA and one of the T25-LtaA fusions gave positive interactions but 

were not considered statistically significant. T25-ZapA, T25-MreC and T25-RodA gave 

positive interactions in the reversed screen.  A positive reading was seen with T18-

PBP4~T25-YpsA despite it registering negative in solid medium. The T25-PBP4 gave positive 

solid interactions for all fusions that gave positive interactions on the solid medium. 

However T18-FtsW, T18-ZapA, T18-YpfP, T18-SA2103 and one of the T18-LtaA were not 

considered statistically significant.   
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3.3 Discussion 

Bacterial two-hybrid analysis has been used extensively for the investigation of protein-

protein interactions in a wide variety of organisms; for example Pseudomonas (Goodman et 

al., 2009), Bacillus (Szurmant et al., 2007), Streptomyces (Hudson and Nodwell, 2004), 

Mycobacteria (Pearce et al., 2008), human cells (Yamada et al., 2003) and viruses (Dautin et 

al., 2003). A range of cellular processes have been examined from cell wall synthesis (White 

et al., 2010) to virulence factors involved in invasion of eukaryotic cells (Darwin et al., 

2001). Within S.aureus the bacterial two hybrid has allowed the development of a complex  

interaction map of cell division proteins (Steele et al., 2011; A.Bottomley, 2012). The 

S.aureus studies confirmed a total of 29 interactions which had been previously detected in 

E.coli, S.pneumoniae and B.subtilis and showed several novel interactions, building up a 

core of 16 proteins involved in the divisome.  

The work performed by Steele and Bottomley (Steele et al., 2011) generated a list of 22 cell 

division proteins that were believed to be involved in cell division and were used to screen 

the proteins of interest for interactions with the divisome. This list of proteins includes 

those involved at each step of the division process, ranging from chromosome segregation 

and septum placement to peptidoglycan and cell surface protein synthesis (Figure 3.6c). 

Results of this study identified that all 4 proteins showed multiple partners with which they 

interacted, suggesting a strong presence in the division complex. The weight of interaction 

lines has been selected to indicate the number of confirmations this interaction has seen 

from the four possibilities; T25 or T18 orientations and liquid or solid assays 

TarO showed many interactions across all stages of the division cycle but notably little 

interaction with proteins involved in Z-ring formation or nucleoid placement. The protein 

TarO (TagO) has not been extensively studied within S.aureus, the only direct interaction 

that has been investigated is between TarO and PBP4 which was negative (Atilano et al., 

2010). Within this screen T18-TarO and T25-PBP4 gave a strong positive interaction in both 

liquid and solid media however, the reciprocal fusion (T25-TarO~T18-PBP4) was negative 

suggesting a true interaction but that it might be affected by the orientation of the fusion. 

Preventing the expression of WTA, with a ΔtagO mutant, results in the production of round, 

severely defective progeny in B.subtilis (Pollack and Neuhaus, 1994).  
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Figure 3.6 Interaction maps of POI’s 

a ) Interactions between POI’s and cell division proteins as determined by BACTH are shown. b) 

Weight of line represents how many positives each interaction gave, either from the T18, T25, solid 

assay or liquid assay. c) The cell division proteins are separated into their functions. 
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The link between TagO and elongation machinery has been further confirmed by 

interactions seen between Tag proteins and MreB, an actin like protein that is suggested to 

be involved in synthesis and insertion of new peptidoglycan thereby controlling the width 

of rod-shaped cells (Kawai et al., 2011). It is therefore unsurprising that there were many 

interactions seen with homologues of B.subtilis elongation. The conserved presence of 

these proteins in the divisome of a cocci, which does not undergo elongation suggests that 

they may have a further role (Steele et al., 2011). The defects of a TarO mutant in S.aureus 

are less pronounced, with no change in morphology bar a slight increase in diameter, which 

suggests no specific roles in cell growth and division (Swoboda et al., 2010). Therefore this 

implies that the many interactions seen with PBP’s and essential division components 

indicate the site of WTA biosynthesis. Furthermore, Formstone et al. ( 2008) have shown in 

B.subtilis that the Tag proteins form a complex network of interactions which suggests that 

this entire pathway is linked to the divisome. My study has also shown that TarO interacts 

with the three putative ligases, proposing that insertion of these polymers happens at the 

same site as synthesis. Interactions were also seen with LTA synthetic machinery suggesting 

that this occurs in juxtaposition to WTA biosynthesis. 

The LCP proteins have only recently been characterised in S.aureus and their interactions 

not yet studied. Within B.subtilis bacterial two hybrid analysis of members of the LCP 

family, TagT (previously known as YwtF) and TagU (LytR), have been confirmed to interact 

with MreB. Localisation of GFP fusions with TagT and TagU has also showed a distribution 

reminiscent of MreB (Kawai et al., 2011). It is therefore unsurprising that SA1195 (MsrR) 

interacts with the homologues of elongation proteins and GpsB, which in B.subtilis is 

involved in the shuttling of PBP’s between elongation and division. Interestingly though, 

there was only an interaction with one PBP (PBP1). SA1195 appeared to show interactions 

with proteins involved in all other stages of the division process. In S.aureus, the expression 

of msrR  has been shown to peak in early exponential growth phase which further supports 

the divisome interactions seen here (Rossi et al., 2003). Contrary to SA1195, SA2103 shows 

interactions with none of the elongation homologues but all the PBP’s. SA0908 also showed 

interactions with 3 (MreD, RodA and GpsB) of the 4 elongation related homologues. 

Interactions between these proteins thought to be elongation specific and the ligases again 

suggesting that they may have another role. Indeed MreC and MreD have been researched 
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extensively and shown to be involved in organisation of peptidoglycan, control of cell 

division and morphology in S.aureus (Ma, unpublished).  

ParC and ParE are subunits of the DNA topisomerase IV which mediates chromosome 

segregation and only revealed interactions with SA1195. Noc is a nucleoid exclusion 

effector and like ParC and ParE only showed an interaction with SA1195. DivIA has no role 

in S.aureus (Pinho and Errington, 2004) but still interestingly showed interactions with two 

LCP proteins in B.subtilis. This suggests that the LCP proteins, alongwith the Tar’s, are 

present at with the divisome from an early stage and that perhaps SA1195 is the first to 

arrive. All three LCP proteins and TarO showed interactions with at least one protein 

involved in Z-ring formation and late division (in this case SA0908 was an exception), 

suggesting that the LCP ligases maintain their presence at the divisome. Furthermore 

interactions were seen with LtaS by all of my proteins except SA1195 and with YpfP by all of 

my proteins, this could suggest that the LTA synthesis occurs alongside that of WTA. 

Furthermore PBP interactions were seen with all my proteins and there was a strong link 

with PlsY, which is involved in membrane lipid synthesis. Taken together we can suggest 

that WTA biosynthesis occurs at the septum alongside peptidoglycan incorporation and LTA 

synthesis.  

The LCP proteins are members of the cell wall stress stimulon (CWSS), which is activated in 

response to the inhibition of cell wall synthesis, cell damage or depletion of essential cell 

wall biosynthesis enzymes (Belcheva and Golemi-Kotra, 2008; Campbell et al., 2012; 

Dengler et al., 2011). The stimulon contains genes encoding enzymes involved with the 

synthesis of the cell wall, such as PBP2 a bifunctional, transpeptidase and transglycosylase 

enzyme and  FmtA, which plays a part in cell wall biosynthesis and may modulate the 

activity of the major autolysin (AtlA) (Qamar and Golemi-Kotra, 2012; Reed et al., 2011). It 

is therefore unsurprising that the LCP proteins studied here show interactions with PBP’s 

and other cell wall biosynthetic machinery components.  

A link between WTA biosynthesis and PGN biosynthesis has been established with the 

study of WTA and PBP4, a LMW transpeptidase with little D,D-carboxypeptidase activity 

(Atilano et al., 2010; Navratna et al., 2010). PBP4 was therefore included within the BACTH 

screen and revealed multiple interactions with cell division components. PBP4 interactions 
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within S.aureus have not been thoroughly investigated, although the protein itself is fairly 

well characterised in laboratory and clinical strains alike. PBP4 is a β-lactamase ubiquitously 

expressed across strains, it is non essential but the knockout mutant shows a marked 

reduction in cross-linked muropeptides and increased vancomycin resistance (Navratna et 

al., 2010). It has been shown to be present on a staphylococcal chromosome cassette 

(SCCpbp4) alongside the tagF gene (Mongkolrattanothai et al., 2004), supporting a link 

between PBP4 action and WTA biosynthesis. Using immunolabelling and GFP fusions PBP5, 

the PBP4 homologue in E.coli, has shown localisation to sites of ongoing peptidoglycan 

synthesis in a substrate dependent manner and that it requires membrane attachment 

(Harris et al., 1998; Potluri et al., 2010). This link has been suggested as acting through FtsZ 

(Potluri et al., 2010, 2012; Yang et al., 2011). Within S.aureus, the only study of PBP4 

interactions has been by Atliano et al., where they looked at PBP4 interactions with TarO 

and showed no interactions (2010). However the other 3 PBP’s of S.aureus have been 

studied, and they each showed a high number of interactions with the division machinery 

demonstrating that they have a role within the divisome (Steele et al., 2011; Bottomley, 

2012). PBP4 was shown to interact with almost all of the divisome proteins tested (Figure 

3.7), except TarO, ParE, PBP2 and PBP3, suggesting that it too is involved with the divisome. 

Although an interaction was not seen with ParE a weak one was with ParC, which suggests 

that PBP4 can be found loosely associated with the early divisome. ParC and ParE have also 

been tested for interactions with one other PBP, PBP2, and none were seen (Steele et al., 

2011). PBPs have been shown to participate in dynamic multienzyme complexes (Sauvage 

et al., 2008) so it is possible that interactions occur through other PBPs. No interaction was 

seen with TarO, supporting the work of Atilano et al., but contradicting what this study saw 

with T18-TarO and T25-PBP4.  

The bacterial two hybrid is not without flaws and therefore there is the possibility of false 

positives. Endogenous levels of S.aureus proteins are much lower than the expression levels 

of the hybrid proteins in E.coli, which can be as many as several thousand copies per cell 

versus a much more reserved ~150 copies per cell in the case of PBP1 (Karimova et al., 

2005; Pucci and Dougherty, 2002). This difference in expression level allows for the 

detection of weak interactions that would not necessarily be seen at lower protein 

concentrations. The protein concentration at the division septum is likely to be higher 
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which will also facilitate transient and weak interactions too. There have also been 

examples of heterologous interactions, seen between S.pneumoniae and E.coli division 

proteins, which could result in false positives (Maggi et al., 2008).  However the lower 

expression levels of E.coli native proteins and the use of unfused T18 or T25 plasmids 

means that the interactions seen are likely to be valid direct S.aureus interactions. All 

fusions made were tested with reciprocal empty plasmids which gave negative results 

thereby allowing us to be fairly confident in the truth of the positive interactions seen. With 

this it is possible to adapt previous division models to show the interactions of the WTA 

biosynthetic machinery (Figure 3.8). This BACTH only gives an indication of the possible 

interactions and verification with other methods would be preferred. Indeed this may 

elucidate other interactions not seen here.   
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Figure 3.7 Interaction maps of PBP4 

a ) Interactions between PBP4 and cell division proteins as determined by BACTH are shown. b) 

Weight of line represents how many positives each interaction gave, either from the T18, T25, solid 

assay or liquid assay. c) The cell division proteins are separated into their functions. 
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Figure 3.8 Schematic representation of the S.aureus divisome 

Interacting components of the S.aureus divisome were identified using the BACTH assay, both 

previously and within this study (Steele et al., 2011;  Bottomley, 2011). This complex is dynamic 

thus not all divisome interactions are represented. 
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 CHAPTER 4 

The localisation of wall teichoic acids in S.aureus 

4.1 Introduction 

Several early studies of wall teichoic acid (WTA) localisation have been performed in 

B.subtilis (Clarke-Sturman et al., 1989; Pooley et al., 1978; Schlaeppi and Karamata, 1982; 

Schlaeppi et al., 1985). These suggested that WTA localise at the division septa and either in 

patches or uniformly along the cell cylinder but none were conclusive. Subsequently, the 

primase TagB was localised to the cytoplasmic membrane in a dispersed manner (Bhavsar 

et al., 2005) which led Formstone et al.,(2008) to systematically analyse functional GFP 

fusions WTA biosynthesis components (TagO, TagB, TagF, TagG and TagH). These fusions 

were all seen to localise at division septa and in apparent helical patterns along the cylinder 

consistent with the insertion of nascent peptidoglycan. This localisation was further 

supported by interactions seen between the elongation proteins MreD and MreC within 

two hybrid screens. Yeast two hybrid revealed interactions between MreD/TagH and 

MreD/ TagO and Bacterial two hybrid revealed interactions between both MreC and MreD 

with each of TagH, -O, -A, -B and –F (Formstone et al., 2008) thereby further suggesting 

that WTA are produced alongside peptidoglycan biosynthesis. In contrast to this, in 

S.aureus Schlag et al., (2010) performed binding studies using ConA-FITC, a lectin that has 

been shown to bind teichoic acids (Doyle and Birdsell, 1972). They observed dividing cells 

as two facing crescents with a free crosswall, deducing that this region was inaccessible to 

ConA either because WTA is not present or it is not yet fully polymerized. This conclusion 

seemed contradictory to the localisation and biosynthetic mechanism seen in other 

organisms and the results seen with the BACTH analysis. 

Fluorescence microscopy has been widely used in bacterial cell biology. In particular wide 

field, although limited by optical resolution (approximately 0.2 µm), remains a powerful 

tool (Leung and Chou, 2011; Petty, 2007). To increase image resolution, the signal-to-noise 

ratio can be improved by applying deconvolution to captured images.  This computational 

post-processing uses the point-spread-function (PSF) (how a point-like object becomes 

spread out in the image) to assign out-of–focus intensity back to its originating position in 

space, thus restoring the most probable object. Deconvolution typically requires a series of 
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z-stacks, images taken at 200nm steps in the z-direction (the resolution in the z-plane of 

standard light microscopy) extending from the top of the cell to the bottom, examples are 

shown in figures 4.9 and 4.10. The z-stack itself is useful to analyse how the fluorescence 

extends around the surface of a cell; for example an incomplete septal ring (doughnut 

shape) is viewed as two dots on either side of the cell when the centre of the cell is in focus, 

however when able to scroll up/down the cell the true ring shape is seen. With 

deconvolution the limit of resolution for wide field microscopy is 180nm-250nm in the X-Y 

plane and 500-700nm in the Z dimension (Schermelleh et al., 2010; Wallace et al., 2001).  

The advent of super-resolution fluorescence microscopy techniques such as; 3D-structured 

illumination microscopy (3D-SIM); stimulated emission depletion microscopy ( STED) and 

photoactivated localisation microscopy (PALM)/stochastic optical reconstruction 

microscopy (STORM) have improved this limit by up to a factor of 10 (Binnig et al., 1986; 

Huang et al., 2010). SIM measures the pattern of interference (known as a moiré pattern) 

created by the overlaying of two patterned light grids with different angles, one known and 

one unknown. The known pattern is typically generated by laser light passing through a 

movable optical grating and projected via the objective as a bar-code like pattern onto the 

sample. If this lined known pattern has a higher spatial frequency, more details can be 

obtained from the specimen (Figure 4.1 A) (Leung and Chou, 2011). The spatial frequencies 

that can be created are limited by diffraction therefore SIM can only improve resolution by 

a factor of 2 (Gustafsson, 2000; Leung and Chou, 2011). However, multicoloured 3D-SIM 

illuminates the sample with three interference patterns in all three planes and remains the 

easiest super-resolution technique to be expanded to three or more colours. STED acquires 

images point-by point, scanning the specimen with a small focal point, allowing an easy 

reconstruction of a complex 3D object. STED selectively deactivates the fluorescence of the 

sample, leaving a central focal spot active which emits red shifted fluorescence that is easily 

distinguished from any incidental fluorescence (Figure 4.1 B). The resolution capable with 

STED depends on the intensity of the depletion beam, as the intensity increases the 

resolution improves. In practice, photodamage of the sample sets the intensity limit and a 

lateral spatial resolution of 50nm appears to be the minimum (with axial spatial resolution 

receiving no improvement from the doughnut depletion beam) (Leung and Chou, 2011; 

Willig et al., 2006). PALM and STORM both work on the principle that the position of a 
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spatially isolated fluorophore can be determined with accuracy higher than the width of the 

PSF, if the fluorescence is known to come from a single molecule. In biological samples 

proteins have a high density so to achieve this spatial distinction photoactivatable 

fluorescent labels are used. These labels allow a controlled activation of a very small subset 

of the fluorescent molecules, thus the chance of having two or more located within the 

diffraction limit is low (Figure 4.1C). A statistical fit is used to determine precise lateral 

localisation and the complete image can then be built up by adding a series of images 

together. PALM uses specific irradiation wavelengths to optically convert the fluorescent 

particles from one wavelength to another. When the number of converted proteins is 

small, spatial distinction is capable and as this subset is photobleached another subset can 

be converted (Leung and Chou, 2011). A resolution of ~30nm laterally is commonly 

achieved, and when combined with a beam-splitter to form two detection planes  ~75nm 

axially can also be achieved (Juette et al., 2008). Furthermore in 2009 interferometric PALM 

(iPALM) was introduced and provided sub-20nm 3D protein localisation (Shtengel et al., 

2009). STORM uses a fluorophore which can be reversibly switched between a fluorescent 

and dark state in a controlled manner by differing light wavelengths. This ‘optical on-off 

switch’ can be cycled many hundred or thousand times before the fluorophore is 

permanently photobleached (Leung and Chou, 2011). Three-dimensional STORM reached a 

laterally resolution of ~30nm and axially resolution of ~50nm with an incredibly fast time 

resolution of 1-2 s/image (Jones et al., 2011). Direct STORM (dSTORM) does not require 

special fluorophore pairs but rather conventional photoswitchable fluorescent dyes and in 

2008 used to reach resolution of approximately 20nm (Heilemann et al., 2008). Figure 4.1 

outlines the key principles and differences of SIM, STED and PALM/STORM (Schermelleh et 

al., 2010). 

As well as fluorescence microscopy the non-optical atomic force microscopy (AFM) has also 

yielded important insights into bacterial structure and function (a schematic describing 

AFM imaging is shown in Figure 4.2)(Dorobantu and Gray, 2010). The AFM can generate 

two types of image, height or phase. The tip can remain in constant contact with the 

sample, known as ‘scanning mode’ or oscillated at a high frequency, known as ‘tapping 

mode’. To generate a ‘height image’ a cantilever with a very sharp tip (~10nm across) scans 

back and forth, known as a rastor scan, across the sample surface. The deflection of the tip 
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by the surface is recorded by a laser beam reflected from the cantilever to a photodector 

which translates the deflection into a topographical image. To create a ‘phase image’ weak 

or strong interactions between the tip and sample surface cause the tip to move out of 

phase with the motor and this shift is converted into an image (Zlatanova et al., 2000). 

Phase images are excellent at highlighting topographical features and is the only mode 

shown within this study.  

4.1.1 Aim of this chapter  

 Localisation of WTA in S.aureus using fluorescent molecules and AFM. 

 

 

 

 

 

 

 

 

 

 

 

  



112 
 

 

 

 

 

 

 

 

 

 

 

 



113 
 

Figure 4.1 Super resolution imaging principles (Schermelleh et al., 2010). 

(A) In SIM the sample is exicted by a striped pattern which combines with the sample information 

originating from structures below the diffraction limit to generate moiré pattern (shown in inset; 

left image shows a known structured pattern; middle shows an unknown pattern; right shows the 

moiré pattern of interference revealing extra sample details. A mathematical reconstruction allows, 

from a series of raw images a high resolution with doubled xy resolution compared with wide-field 

resolution. 

(B) In STED the focal plane is scanned with time delayed overlapping laser beams. The first excites 

the fluorophores and the second depletes fluorophores in a doughnut shape, leaving only a small 

volume from which light can be emitted and detected.  

(C) In STORM/PALM a relatively low number of fluorophores are in the emitting state. These 

molecules are detected on a CCD camera as diffraction-limited spots, whose lateral position is 

determined with a very high accuracy by a fit. Single molecule positions from thousands of images, 

each with a different subset of emitting molecules, then generate a density map.  
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Figure 4.2 Schematic representative of Atomic Force Microscopy (AFM)  

The AFM tip is moved back and forth across the sample surface (as shown by the arrows) either in 

contact or tapping, both to give a height or phase image.  
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4.2 Results 

4.2.1  Identification of the localisation of WTA using AFM. 

This part of the study was carried out with Dr Emma Ratcliffe.  

Previous work has shown it is necessary to purify cell walls to allow pertinent features to be 

observed by AFM. This is due to cell contents limiting the utility of AFM due to their height 

and non-covalently bound materials obscuring other features (Turner et al., 2010). Cells are 

gently broken to release the cytoplasmic contents, allowing imaging of flattened sacculi. 

Non-covalently bound components are then extracted by boiling cells in SDS and covalently 

bound proteins removed by a cocktail of proteases (pronase). Extracted cell walls are dried 

onto a freshly cut mica sheet and imaged in ‘tapping mode’ using silicon tips (Olympus) 

under ambient conditions (Sections 2.17-2.18). Sacculi were further purified to remove wall 

polymers covalently anchored to the C6 group of MurNAc, namely teichoic acids. This was 

achieved by weak acid treatment with hydrofluoric acid (HF), a compound used to 

hydrolyse the phosphodiester linkage (as described in chapter 2.15.6; Atrih et al., 1999). 

This method of peptidoglycan purification is generally accepted to leave the unstressed 

peptidoglycan chemically unaffected, whilst removing all polymers. 

Extracted cell walls retained the overall morphological characteristics of the cell (Figure 4.3 

and Figure 4.4). Septal bands are seen as thick bands of material in circular arcs (labelled in 

Figure 4.3), and have been reported in S.aureus (as ‘piecrusts’), E.coli and P.aeruginosa (Yao 

et al., 1999; Turner et al., 2010). SH1000 sacculi are shown in Figure 4.3, pre HF cell walls 

are completely covered with a ‘furry layer’. This layer extends right up to and over the 

septal band with no apparent breaks. Cell walls post HF treatment and ΔtarO cell walls 

(Figure 4.4), which no longer produce WTA, did not have this layer and therefore we can 

assume it is WTA. Cell walls without WTA allow the peptidoglycan architecture to be 

distinguished. As previously reported, the concentric rings seen (Figure 4.3 post HF; Figure 

4.4) are associated with nascent peptidoglycan which becomes the ‘knobbled’ as it is 

hydrolysed to maturity. Both peptidoglycan architectures are seen here and clearly labelled 

(Amako and Umeda, 1978; Giesbrecht et al., 1998; Turner et al., 2010).  
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Figure 4.3 AFM images of purified sacculi from exponentially growing S.aureus SH1000. 

AFM phase images showing broken sacculi of S.aureus before HF treatment (left) and after HF 

treatment (right). Septal rings are indicated by arrows. Pre HF treatment sacculi show a ‘fuzzy’ layer 

over the entire surface, including the septum. Post HF treatment sacculi, the removal of the WTA 

allows the peptidoglycan architecture to be distinguished. Concentric rings (top right image) are 

associated with nascent peptidoglycan. Knobbles (bottom right image) are associated with mature 

peptidoglycan. Images were taken by Dr. Emma Ratcliffe. 
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Figure 4.4 AFM images of purified sacculi from exponentially growing S.aureus ΔtarO. 

AFM images showing broken sacculi of S.aureus ΔtarO before HF treatment (left) and after HF 

treatment (right). ΔtarO mutants do not produce WTA. No difference is seen between pre HF and 

post HF sacculi, with no WTA the peptidoglycan architecture can be clearly distinguished in both. 

Concentric rings (labelled) are associated with nascent peptidoglycan. Knobbles (labelled) are 

associated with remodelled mature peptidoglycan. Images were taken by Dr. Emma Ratcliffe.   
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4.2.2 Analysis of the binding of ConA 

ConcanavalinA (ConA) is isolated from Jack bean (Canavalina ensiformis) (Agrawal and 

Goldstein, 1967). It selectively binds polysaccharides containing α-mannopyranosyl or α-

glucopyranosyl substituents in which hydroxyl groups at position 3, 4 and 6 are 

unsubstituted (Archibald and Coapes, 1971; So and Goldstein, 1969). ConA binding to 

carbohydrate requires CaCl2 and MnCl2 and results in a conformational change (Hardman 

and Ainsworth, 1976). It exists as a dimer of 52kDa but becomes primarily a tetramer above 

pH 7, however neither configuration alters the carbohydrate binding specificity (Gunther et 

al., 1973; Mandal and Brewer, 1993). Archibald and Coapes (1971) demonstrated that ConA 

interacts with the α-D-N-acetylglucosaminyl residues (which have the free hydroxyl groups 

at position 3, 4 and 6) present in S.aureus teichoic acids and ConA has previously been used 

to localise WTA on S.aureus (Schlag et al., 2010). SDS extraction was performed on all 

samples to remove any ionically bound surface proteins (Chapter 2.15.4). The cells were 

then subjected to a range of conditions; pronase treatment (to remove surface exposed 

proteins), HF (to remove WTA) and both (to remove both surface proteins and WTA) 

(sections 2.15.5-2.15.6). Cells were then labelled with a ConA Alexaflour 594 conjugate. 

Wheat Germ Agglutinin (WGA) binds to GlcNAc residues and will bind peptidoglycan 

ubiquitously, therefore a WGA Alexaflour 488 conjugate was used as a secondary stain to 

highlight the presence of bacterial cell wall (section 2.15.10, describes labelling with 

lectins). Samples were visualised and processed as described in Chapter 2.16.   

4.2.2.1  Lectin labelling of S.aureus SH1000 

WGA was found to bind uniformly around the cell wall and less across the septum (Figure 

4.5),as has previously been observed (Endl et al., 1983; Pinho and Errington, 2003). Some 

cells are seen to label poorly with WGA, which can be explained if they are in a different 

plane or by the bleaching effect very well labelled cells have (a well labelled cell is saturated 

in fluorescence which means that the surrounding cells appear poorly labelled by 

comparison). In ‘untreated’ samples (Fig 4.5A) ConA bound strongly across the cell surface, 

in an almost ‘fuzzy’ texture, with no specific binding seen within the cell. Binding was 

absent or much weaker across the septum of some cells, seen as two facing crescents in the 

fluorescence pattern. However it was seen at the septum of others, in contradiction with 

previous reports (Schlag et al., 2010). Where cells were pronase treated leaving only WTA 
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present (Fig 4.5B), binding of ConA became comparably weaker and slightly more punctate 

although there still remained a high degree of binding. Again binding was seen at the 

septum in a number of cases. Where cells were HF treated (Fig 4.5C), unexpectedly binding 

was seen. The binding was again weaker than the ‘untreated’ sample and highly punctate. 

As expected when WTA and proteins were both removed (Fig 4.5D), no ConA binding was 

seen. Similar binding was seen in an SA113 wild type background, data not shown.  

4.2.2.2  Lectin labelling of S.aureus ΔtarO 

To confirm that the unexpected binding seen in an SH1000 background was not due to 

insufficient treatment or damage to the cells, labelling was performed in a ΔtarO mutant 

background (Figure 4.6), which no longer produces WTA. It was found that the ΔtarO cells 

had a slightly larger diameter than SH1000 (ΔtarO: 0.749µm ± 0.08; SH1000: 0.709µm ± 

0.07), in agreement with previous reports (Schlag et al., 2010).  In ‘untreated’ samples (Fig 

4.6A), binding was seen across the whole cell surface. Binding was seen at the septum in 

some cells while in others gaps were seen. In pronase treated samples (Fig 4.6B), proteins 

were removed and WTA no longer produced, no binding was seen. Where surface proteins 

were present only (Fig 4.6C), the binding was in a punctate pattern. This punctate pattern 

was similar to that seen in the HF treated SH1000 sample, but slightly hazier. Binding was 

again absent from the sample missing both WTA and surface protein (Fig 4.6D). 

4.2.2.3 Lectin labelling in S.aureus ΔsrtA 

To confirm that the unexpected binding seen in the SH1000 and ΔtarO samples was due to 

surface protein, labelling was performed in a ΔsrtA mutant background (Figure 4.7), which 

no longer produces sortase A. Sortase A is the extracellular transpeptidase which catalyses 

the covalent attachment of proteins to the cell wall envelope (Chapter 1.10). The second 

sortase, Sortase B, is responsible for the attachment of only one protein, isdB (Chapter 

1.10). The mutant no longer performs this transpeptidation and so surface proteins are 

unattached (Ton-That et al., 2004). The ΔsrtA cells had a slightly smaller diameter than 

SH1000 (ΔsrtA: 0.569µm ±0.08; SH1000: 0.709µm ±0.07). Where WTA are present in the 

‘untreated’ (Fig 4.7A) and pronase treated (Fig 4.7B) samples, a hazy punctuate pattern can 

be seen, as expected in samples (Fig 4.7C) and (Fig 4.7D) where WTA has been removed 

and surface proteins aren’t attached no binding was seen.   
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S.aureus SH1000  

Untreated: WTA and surface proteins present 

Protease treated: WTA present 

HF treated: Surface proteins present 

Pronase and HF treated: Nothing attached to PGN 
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Figure 4.5 Lectin labelling of S.aureus SH1000 

SH1000 cells were treated so that surface proteins and WTA (A), only WTA (B), only surface proteins 

(C) and neither (D) remained present on the cell surface. Brightfield light and fluorescence images 

show that whilst all the cells are strongly labelled with WGA, the labelling of ConA is absent (D) or 

weaker and patterned (B) and (C) when compared to ‘untreated’ (A). This labelling pattern suggests 

that ConA binds surface proteins on the cell surface aswell as the expected WTA. Each row of 

images represents a different sample; Scale bars represent 2µm. 

Enlarged cells (inset boxes)show differences in ConA labelling: (A) has a complete cell binding in a 

hazy punctate pattern with; (B) binding of WTA is weaker in a hazy slightly punctate pattern; (C) 

binding of surface proteins is weaker in a clearly punctate pattern. Scale bar represents 1µm. 
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S.aureus ΔtarO 

Untreated: Surface proteins present 

Pronase treated: No surface proteins or WTA present 

HF treated: Surface proteins present 

Pronase and HF treated: Nothing attached to PGN 
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Figure 4.6 Lectin labelling of S.aureus ΔtarO 

ΔtarO cells no longer produce WTA. They were treated so that surface proteins, (A) and (C), or 

nothing, (B) and (D), was present on the cell surface. Brightfield light and fluorescence images show 

that whilst all the cells are strongly labelled with WGA, the labelling of ConA is absent (D) and (B) or 

weaker (A) and (C) when compared to ‘untreated’ SH1000. This labelling pattern suggests that ConA 

does not exclusively bind WTA but surface proteins as well. Each row of images represents a 

different sample; Scale bars represent 2µm. 

Enlarged cells (inset boxes) show that binding to surface proteins when the cells are untreated (A) is 

still hazy and that treatment of the cells (C) removes this blur. The punctate binding is similar to the 

pattern seen in SH1000 samples containing only surface proteins. Scale bar represents 1µm. 
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S.aureus ΔsrtA 

Untreated: WTA present 

Pronase treated: WTA present 

HF treated: Nothing aattached to PGN 

Pronase and HF treated: Nothing attached to PGN 
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Figure 4.7 Lectin labelling of S.aureus ΔsrtA 

ΔsrtA cells can no longer attach surface proteins to the cell wall. They were treated so that only 

WTA, (A) and (B), or nothing (C) and (D) was present on the cell surface. Brightfield light and 

fluorescence images show that whilst all the cells are strongly labelled with WGA, the labelling of 

ConA is absent in (C) and (D) or weaker in (B) when compared to ‘untreated’ (A). This labelling 

pattern supports the observation that ConA binds surface proteins as well as WTA. Each row of 

images represents a different sample; Scale bars represent 2µm. 

Enlarged cells (inset boxes) show the same hazy punctate pattern seen in SH1000 samples 

containing WTA. Scale bar represents 1µm. 
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4.2.3 Is WTA present at the septum? 

Schlag et al (2010) used ConA to localise WTA and reported no binding at septal regions. In 

my study binding of ConA has been seen at the septum and across some cell walls, although 

examples of binding aberration were seen. It is suspected that the high cross-linking of the 

nascent peptidoglycan at the septum causes an access problem for lectin preventing 

binding to WTA. Therefore cells were broken, SDS and pronase treated and half HF treated 

prior to labelling and viewing as before (Figure 4.8). Binding was seen across the septum in 

broken pre HF samples. 

4.2.4 Analysis of ConA binding patterns 

So that the localisation of both WTA and surface protein could be examined more closely, Z 

stack images were taken of the specific ConA binding to the different substrates. Figure 4.9 

shows the binding patterns seen specifically with WTA. WTA appears to localise in a hazy 

punctate pattern, foci of strong labelling with weaker labelling in between. The Z stacks 

show that this binding is across the entire surface in this pattern. The pattern was less 

distinct in Δsrt ‘untreated’. When examining surface protein binding (Figure 4.10) there is a 

difference in patterning. Surface proteins appear to localise in a distinct punctate pattern. 

This pattern was less distinct in ΔtarO pre HF. In both Figures, SH1000 ‘untreated’ samples 

have a binding which is noticeably hazier and reminiscent of the ‘furry’ layer seen with 

AFM. 

4.2.4.1 Investigation into surface protein binding of ConA 

Within our laboratory SH1000 cell lysates have been applied to a ConA sepharose column 

and eluted using-D-glucopyranoside. Proteins purified from the eluted fragments were 

identified, using Mass spectrometry, as SdrC, SdrD, ClfB and ClfA (McAulay, 2011). ClfA and 

ClfB are high molecular-mass fibrinogen-binding proteins that are anchored to the cell 

surface of S.aureus (McDevitt et al., 1994). They are members of the MSCRAMM family of 

virulence factors and mediate bacterial attachment to indwelling devices or damaged tissue 

coated in fibrinogen (McDevitt et al., 1994; Ní Eidhin et al., 1998). SdrC and SdrD, along 

with SdrE, were found to be tandemly arrayed and to show both organisational and 

sequence similarity to ClfA and ClfB (Josefsson et al., 1998). All five proteins contain  
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Figure 4.8 ConA labelling of S.aureus sacculi 

Broken SH1000 cells were treated with SDS and pronase, to remove LTA and surface proteins. (A) 

cells were not treated with HF leaving WTA on the surface, while (B) cells were HF treated leaving 

nothing present on the surface. Fluorescence images show that binding can be seen at the septum 

of the broken cells where WTA are present and access is now no longer an issue. Light images have 

been merged with fluorescence because the collapsed cells are difficult to see. Scale bars represent 

1µm. 

 

 

 

 

 

Pronase treated; WTA present 

Pronase and HF treated; Nothing attached to the PGN 



128 
 

 

Figure 4.9 ConA binding pattern to S.aureus WTA  

(A) SH1000 Z-stack images showing the binding of ConA to both WTA and surface proteins. (B) Z-

stack images showing the binding of ConA to WTA only.  



129 
 

 

Figure 4.10 ConA binding pattern to S.aureus surface proteins 

(A) SH1000 Z-stack images showing the binding of ConA to both WTA and surface proteins. (B) Z-

stack images showing the binding of ConA to surface proteins only.   



130 
 

serine-aspartate repeats which have been shown to span the cell wall allowing functional 

expression of the protein (Hartford et al., 1997). Further work within our lab identified that 

ClfA was the major glycoprotein of S.aureus, and its loss resulted in the loss of most 

glycoproteins detectable via Schiff staining. However, results suggested that in the absence 

of ClfA , the other minor surface proteins ClfB, SdrC and SdrD are glycosylated (McAulay, 

2011). GtfA and GtfB are the glycosyltransferase enzymes responsible for the glycosylation 

of these proteins (McAulay, 2011). They have also been shown to be essential for 

glycosylation of a S.aureus homolog of GpsB, SraP (Takamatsu et al., 2004). A knockout 

mutant in which both gtfA and gtfB are replaced by a kanamycin resistance gene was 

available (Mohamed, 2007).  

To examine the role glycoproteins played in the binding of ConA seen in Figures 4.5-4.7, 

cells were SDS extracted as before and then treated under a range of conditions. Samples 

were prepared as described in section 2.14.4- 2.14.6    

4.2.4.2 Lectin labelling in S.aureus ΔclfA2 

To investigate whether ClfA was responsible for the punctate binding of surface proteins 

seen in Figure 4.11, a ΔclfA2 strain was used.  In ‘untreated’ samples (Fig 4.11A) a low level 

of ConA binding was seen across the cell surface, which can be seen in enlarged cells, to 

maintain the diffuse punctate pattern previously pictured (Figure 4.5A and 4.7A). In 

pronase treated samples (Fig 4.11B), binding was seen across the cell surface much the 

same as the WTA patterns seen before. In HF treated samples (Fig 4.11C), binding was still 

observed but at a lower level and much less specifically (binding not just to the 

peptidoglycan but within the cell was seen in several examples). The low levels of 

background fluorescence indicate that this is still true binding and suggests that although it 

plays a large part ClfA is not the only protein binding ConA. No specific binding was 

observed where cells had been both HF and pronase treated (Fig 4.11D).  

4.2.4.3 Lectin labelling in S.aureus ΔgtfAB 

Specific binding to protein was still seen within the ClfA mutant, which indicates that other 

proteins are likely labelled. As ClfB, SdrC and SdrD were successfully purified with ConA 

(McAulay, 2011) and been suggested as being glycosylated a ΔgtfAB strain was examined 
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(Figure 4.12). In both ‘untreated’ (Fig 4.12A) and pronase treated (Fig 4.12B), where WTA 

was still present, binding was seen across the surface. Background levels of binding were 

seen in (Fig 4.12C), which suggests that glycosylation is required for ConA binding. As 

expected no binding is seen when both protein and WTA are removed (Fig 4.12D). 

4.2.4.4 Lectin labelling in S.aureus ΔgtfAB ΔclfA2 

A strain with both gtfAB and clfA mutation was examined (Figure 4.13). As was to be 

expected, binding was seen where WTA was still present, (Fig 4.13A) and (Fig 4.13B) while 

background levels (Fig 4.13C) or no binding (Fig 4.13D) was seen where WTA were not 

present.  

This series suggests that the binding of ConA to surface proteins is dependant on them 

being glycosylated and that ClfA is the largest but not the only glycosylated surface protein.     
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S.aureus ΔclfA 

Untreated: WTA and surface proteins present 

Protease treated: WTA present  

HF treated: Surface proteins present 

Pronase and HF treated: Nothing attached to the PGN 
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Figure 4.11 Lectin labelling of S.aureus ΔclfA 

ΔclfA cells were treated so that surface proteins and WTA (A), only WTA (B), only surface proteins 

(C) and neither (D) remained present on the cell surface. Brightfield light and fluorescence images 

show that whilst all the cells are strongly labelled with WGA, the labelling of ConA is weaker in all 

when compared to ‘untreated’ SH1000. The binding in (A) and (B) had a hazy punctate pattern and 

a weaker similar pattern was observed in (C). This labelling pattern suggests that the major surface 

glycoprotein ClfA is not the only surface protein ConA binds. Each row of images represents a 

different sample; Scale bars represent 2µm. 

Enlarged cells (inset boxes) show that the binding pattern observed in (C) is hazier than previously 

observed for surface proteins. Scale bar represents 1µm. 
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S.aureus ΔgtfAB 

Untreated: WTA and Surface proteins present 

Pronase treated: WTA present  

HF treated: Surface proteins present  

Pronase and HF treated: Nothing attached to the PGN 
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Figure 4.12 Lectin labelling of S.aureus ΔgtfAB 

ΔgtfAB cells were treated so that non-glycosylated surface proteins and WTA (A), only WTA (B), only 

non-glycosylated surface proteins (C) and neither (D) remained present on the cell surface. 

Brightfield light and fluorescence images show that whilst all the cells are strongly labelled with 

WGA, the labelling of ConA is absent (C) and (D). This labelling pattern suggests that ConA binds to 

proteins glycosylated by GtfA and/or GtfB. Each row of images represents a different sample; Scale 

bars represent 2µm. 

Enlarged cells (inset boxes) (A) and (B) show the hazy punctate pattern seen previously and 

associated with WTA. Scale bar represents 1µm. 
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S.aureus ΔclfA ΔgtfAB 

Untreated: WTA and surface proteins present  

Pronase treated: WTA present 

HF treated: Surface proteins present  

Pronase and HF treated: Nothing attached to the PGN 
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Figure 4.13 Lectin labelling in S.aureus ΔclfAΔgtfAB  

ΔclfA ΔgtfAB cells were treated so that surface proteins un-glycosylated and WTA (A), only WTA (B), 

only surface proteins un-glycosylated (C) and neither (D) remained present on the cell surface. 

Brightfield light and fluorescence images show that whilst all the cells are strongly labelled with 

WGA, the labelling of ConA is absent (C) and (D) when compared to ‘untreated’ (A) and (B) where 

cells are still exhibiting WTA. This labelling pattern confirms that ConA binds to proteins 

glycosylated by GtfA and/or GtfB. Each row of images represents a different sample; Scale bars 

represent 2µm. 

Enlarged cells (inset boxes) show the same hazy punctate pattern associated with WTA in (A) and 

(B). Scale bar represents 1µm. 
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4.3 Discussion 

Although the localisation of WTA hasn’t been extensively studied it is fairly well established 

that it is present across the entire peptidoglycan moiety (Swoboda et al., 2010; Umeda et 

al., 1992; Wheeler R., 2012; Xia et al., 2010a). The recent suggestion that it is not present at 

the septum or that if present it is not yet fully polymerised (Schlag et al., 2010) is 

controversial. My work has suggested that WTA biosynthesis machinery is associated with 

the divisome (Chapter 3). Upon AFM microscopy it was seen that the WTA appear to form a 

‘furry’ layer across the entire cell surface including the ‘piecrust’ ribs that dictate the 

septum (Turner et al., 2010). Indeed Umeda et al ( 1987) have described a ‘fuzzy coat that 

consists of fine fibres or an electron dense mass’ on the S.aureus surface that they 

identified as being made of teichoic acids and proteins. This layer was also been seen in 

L.lactis, E.faecalis and S.pneumoniae and had to be removed by weak HF treatment to more 

clearly observe the peptidoglycan structure and annular features (septa and equatorial 

rings) (Wheeler et al., 2011). Furthermore AFM images and interaction maps using ConA 

functionalised tips, showed that the cylinder of Lactobacillus plantarum was abundant in 

WTAs and ‘rough’, whilst cell poles were much poorer in WTA and had a smooth 

architecture (Andre et al., 2011).     

As ConA has been shown to bind the WTA backbone it was possible that a ConA-

fluorophore conjugate could be used to detect WTA on the surface of S.aureus cells. 

Microscopy of SH1000 indicated that ConA binds both wall teichoic acids and surface 

proteins, with HF stripped and pronase treated cells acting as suitable controls. This 

observation was confirmed by using ΔsrtA and ΔtarO which respectively exhibit no 

covalently bound surface proteins and WTA. Schlag et al. (2010) showed that ConA binds 

only to cells expressing tarO, whereas this study only observed abrogation of binding where 

both teichoic acids and proteins were removed; this may be due to a higher level of 

sensitivity in my study.  

The absence of binding at the septum seen in several cells within this study and reported in 

S.aureus by Schlag et al (2010), could be explained either by a lack of sensitivity of the 

fluorescent probe, the presence of immature WTA or because it has no access to its binding 

partner. My study has shown that enzymes involved with the final step (in which fully 
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polymerised WTA are linked to the peptidoglycan), interact with the divisome suggesting 

that mature WTA are present at the septum. The latter offers a likely explanation because 

peptidoglycan is more cross linked at the septum, reducing ConA access. Peptidoglycan 

then undergoes processing and remodelling after cell division (Turner et al., 2010).  Cells 

were broken, allowing the fluorophore access to the septum, and then stained for WTA. 

Binding was seen at the cross-wall which confirms the hypothesis that absence of binding 

was due to access. Similar binding aberration is seen with WGA, both within this study and 

previously  (Endl et al., 1983; Pinho and Errington, 2003), and again most likely explained by 

nascent peptidoglycan having tight cross linking and this decreases permeability.  

The binding pattern to ConA of both surface proteins and WTA was analysed. A hazy 

punctate pattern was seen with the binding of WTA, this pattern was seen across all 

conditions where only WTA was present on the cell surface (SH1000, pronase; Δsrt, 

‘untreated’; Δsrt pronase). The patterning was seen to extend around the entire cell 

surface. In ΔsrtA ,the ‘untreated’ sample binding was slightly hazier, than seen with either 

SH1000 pronase or Δsrt pronase. This could be explained by unglycosylated surface 

proteins or surface proteins which although aren’t covalently attached to the surface are 

still associated with the cell wall and not be fully extracted by SDS interfering with clear 

binding. Once treated with pronase, all proteinacious material is degraded and therefore 

only WTA binds. Surface protein binding was in a different pattern to WTA; it was seen as a 

distinct punctate pattern across the entire cell surface. The number of dots did not appear 

to be uniform although it was not seen to exceed 6, when the cells were in focus. Once 

again where ΔtarO, displaying only surface protein, was left ‘untreated’ the binding pattern 

seen was slightly hazier when compared to ‘treated’ samples.  

The data gathered from the microscopy of treated SH1000 cells and mutant cells allowed 

the development of a schematic representation of the localisation of surface proteins and 

wall teichoic acids (Figure 4.11). This schematic shows that when compared with each 

other, WTA forms a complete layer across the entire cell with denser patches whilst surface 

proteins (proven to be glycoprotein) produce distinct foci.  

A ‘line and dot’ pattern was described for DivIB localisation and used to help suggest its 

localisation to piecrust and rib features (Bottomley, 2011) (Chapter 1.6; Figure 1.8B for 
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Figure 4.15 Peptidoglycan patterning models 

A) Line and Dot model (Bottomley, 2011). Location of piecrust and rib features in x, y and z sections 

of cells, showing potential ‘line and dot’ patterns. Half ribs (red) and quarter (orange) are remnants 

of piecrusts from previous divisions that occurred in an orthogonal plane, whilst whole ribs (blue) 

represent the most recent plane of divison. A new piecrust (green) is then formed in the plane of 

the quarter rib  

B) Sector model (Wheeler R., 2012). Ageing of peptidoglycan by inheritance of cell wall sectors over 

multiple generations. Two hemispheres represent the entire cell. Age is shown as number of 

generations. One eighth of the cell is at least three generations old (red). Black lines indicate the 

peptidoglycan ribs which divide each segment.  
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piecrust and rib features) (Figure 4.15A). Although the WTA pattern seen here is non- 

uniform (the brighter spots within the complete binding are not uniform), large unlabelled 

segments cannot be seen in the binding to fit it to ‘line and dot’ model. However it could be 

that the peptidoglycan features distort the WTA distribution, resulting in areas of bright 

binding and regions of little binding. The sectoring model describes the age distribution of 

peptidoglycan within S.aureus resulting from its sequential division in three planes (Figure 

4.15B). The cell wall is divided into: a half segment (green), representing nascent 

peptidoglycan of age 0; a quarter (yellow) representing  age 1 peptidoglycan from the 

previous generation; an eighth (blue) dating from 2 generation previous; and the final 

eighth (red) must be 3 or more generations old (Turner et al., 2010). There does not appear 

to be clear sectors within WTA binding and therefore a pure sector model does not explain 

the observed pattern. However WTA binding may appear brightest in mature peptidoglycan 

sectors when the action of hydrolases has allowed the lectin more access. As the 

peptidoglycan ages and becomes more hydrolysed the amount of WTA is decreased. The 

binding pattern observed could be the result of this sectoring model which is bisected by 

‘piecrusts’ rib features.    

The binding of ConA to surface proteins has been previously reported(McAulay, 2011). A 

ConA sepharose column was able to purify surface glycoproteins from S.aureus. When the 

elute was tested against a panel of lectins with varying carbohydrate specificities, only ClfA 

was shown to bind to ConA (McAulay, 2011). Therefore binding seen in a ΔclfA mutant was 

surprising but supports the conclusion, drawn by McAulay (2011), that in the absence of 

ClfA other surface proteins such as SdrCD and ClfB are glycosylated to a greater extenet. 

This is supported by reduced binding in ΔgtfAB and ΔgtfABΔclfA2 backgrounds and shows 

that ConA binding is due to glycosylated surface proteins. A logical further step to confirm 

that the binding seen in HF stripped cells is due to ClfA and the binding in ΔclfA is due to the 

glycosylation of other surface proteins would be to co-localise ConA binding with specific 

antibodies raised against the proteins. DeDent et al. (2008) used antibodies against ClfA, 

SdrC and SdrD to show a ring-like distribution across the cell surface in a similar pattern to 

what is observed here (DeDent et al., 2008, 2007). The pattern was suggested to be due to 

a YSIRK/GS motif within their signal peptides which directs the protein to the cross wall 

where massive peptidoglycan synthesis ensures that assembly sites for surface protein 
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deposition are mobile within the peptidoglycan as the sacculus expands (DeDent et al., 

2008). The surface protein pattern observed in my study is uniformly punctate with no 

significantly greater binding at septal regions contrary to the DeDent model. However this 

patterning cannot be accounted for with either the ‘line and dot’ model’ (no lines of 

binding) or the sector model (no differing in binding intensity in any segment), which 

supports the DeDent model. In all glycosylated proteins are labelled and it is likely that the 

overlap between ClfA, SdrCD and others led to a uniform punctate pattern. Furthermore in 

a ClfA mutant the localisation of glycosylated proteins was very similar to that observed by 

DeDent. This suggests there are a range of localisation patterns dependent on the 

individual surface proteins, however together they form a characteristic protein array. 

Overall it appears as though the WTA are not associated with the piecrust, it is important 

now to establish the location of cell wall hydrolases.    
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CHAPTER 5 

Localisation of peptidoglycan hydrolases in S.aureus 

5.1 Introduction 

Peptidoglycan hydrolases are required to remodel the bacterial cell wall during growth and 

division. The S.aureus COL genome has been shown through bioinformatics to contain at 

least 20 putative peptidoglycan hydrolases. There are a variety of bond cleavage targets 

however, no putative lysozymes were detected and only two putative lytic 

transglycosylases were identified (Table 5.1) (Stapleton et al., 2007; Wheeler, 2012).  

5.1.1 Atl  

The Atl autolysin is the major peptidoglycan hydrolase in both S.aureus and S.epidermidis; 

respectively AtlA and AtlE, they share a high degree of sequence similarity and are 

functionally interchangeable (Biswas et al., 2006). Atl has been identified as a bifunctional 

enzyme tandemly encoded by the atl gene. This gene has an open reading frame of 

3768bp, encoding a deduced protein of 1256 amino acids and molecular size of 137,381 

kDa (Foster, 1995; Oshida et al., 1995). This polypeptide undergoes processing steps to 

yield a 62 kDa N-acetylmuramyl-l-alanine amidase and a 51kDa endo-β-

acetylglucosaminidase. The amidase (ami) domain extends from 2588bp to 4300bp or from 

Ala199 to Lys775 in the polypeptide, while glucosaminidase (glu) stretches from 4031bp to 

5743bp or from Ala776 to Lys1256 in the polypeptide (Oshida et al., 1995). The two catalytic 

domains are separated by three direct repeats, which show 31% identity between the three 

repeats (Foster, 1995). Repeat regions 1 and 2 remain attached to the C-terminal of 

Atl(ami) and repeat 3 is found at the N-terminal of Atl(glu). When sequence aligned each 

repeat can be further subdivided into an a-type and a b-type subunit, however both subunit 

types contain a highly conserved glycine-tryptophan (GW) motif (Marino et al., 2002). Both 

S.aureus and S.epidermidis have the same modular organisation which is shown alongside 

the cleavage steps in Figure 5.1. The atl mutant forms large clusters of improperly 

separated cells in which individual cells appear to be interlinked with others. The outer 

surface of mutant cells appears much rougher than parent cells, indicating the vital role of 

Atl in cell separation (Foster, 1995).  
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Table 5.1 List of putative peptidoglycan hydrolases identified by an in silico screen of the S.aureus 

COL genome  

Putative peptidoglycan hydrolase class is indicated based on highest homology scores to 

characterised autolysins. (†) Putative activity based on homology to the stated autolysin of known 

activity. Table adapted from (Hayhurst, 2006; Mohamed, 2007; Wheeler, 2012).  

Protein TIGR Locus 

Name 

Putative 

identification 

Gene 

length 

(bp) 

Molecular 

weight 

(kDa) 

pI % GC References 

Atl SACOL1062 Bifunctional 
autolysin 

3771 137.3 10.1 35 (Foster, 1995; Oshida et al., 

1995) 

SagA SACOL2298 Putative 
Glucosaminidase 

779 29.7 9.6 32 (Murray, 2001) 

SagB SACOL1825 Putative 
Glucosaminidase 

855 32.5 9.3 31 (Mohamed S.A.S, 2007) 

ScaA 
(Sle1/Aaa) 

SACOL0507 Amidase, CHAP 
domain 

1005 35.8 9.7 37 (Heilmann et al., 2005; 

Pourmand et al., 2006) 

ScaB SACOL0723 CHAP domain 798 28.2 6.1 38 (Pourmand et al., 2006) 

ScaC SACOL2581 CHAP domain 768 27.6 7.8 37 (Pourmand et al., 2006) 

ScaD SACOL2291 CHAP domain 804 29.3 8.9 39 (Pourmand et al., 2006) 

ScaE SACOL0820 CHAP domain 840 30.2 10.0 35 (Pourmand et al., 2006) 

ScaF SACOL0270 CHAP domain 894 33.0 5.9 37 (Pourmand et al., 2006) 

ScaG SACOL2557 CHAP domain 432 16.8 10.2 35 (Pourmand et al., 2006) 

ScaH SACOL2666 Putative 
glucosaminidase, 
CHAP domain 

1860 69.3 6.0 33 (Mohamed, 2007; Pourmand 
et al., 2006) 

ScaI SACOL1576 CHAP domain 1047 70.3 9.4 35 (Pourmand et al., 2006) 

ScaJ SACOL2295 CHAP domain 501 17.4 5.6 38 (Pourmand et al., 2006) 

IsaA SACOL2584 Putative lytic 
transglycosylase 

702 24.2 6.1 42 (Stapleton et al., 2007) 

LytM SACOL0263 Lysostaphin 969 35.0 6.0 40 (Ramadurai and 
Jayaswal, 1997) 

LytN SACOL1264 Amidase/Endopepti
dase 

1152 43.2 9.5 29 (Sugai et al., 1998; 
Frankel et al., 2011) 

SceD SACOL2088 Putative lytic 
transglycosylase 

696 24.0 5.5 39 (Stapleton et al., 2007) 

SA0191 SACOL0191 Putative lysostaphin 579 21.9 9.1 36 (Wheeler et al., 2012) 

SA1687 SACOL1687 Putative amidase 876 32.7 7.8 33 (Wheeler et al., 2012) 

SA2195 SACOL2195 Putative lysostaphin 855 32.8 7.1 31 (Wheeler et al., 2012) 
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Figure 5.1 Domain structure of Atl of S.aureus 

 (Adapted from (Komatsuzawa et al., 1997; Zoll et al., 2012)) 

A, The translated Atl gene product; B, During secretion via the Sec pathway, the signal peptide is 

removed leaving the 138kDa pro-Atl; C, 115kDa (top) and 85kDa (bottom) intermediates; D, Fully 

processed products, 62kDa amidase and 51kDa glucosaminidase.  

 SP, Signal peptide; PP, pro-peptide of unknown function; R(1/2/3)a/ R(1/2/3)b; a-type and b-type 

of the R? Module; L, Linker.  
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Anti-immunoglobulin G (IgG) generated against purified Atl amidase or glucosaminidases 

each inhibited cell separation forming  giant cell clusters, indicating that both enzymes have 

a function (Sugai et al., 1995). Interestingly an AtlA mutant did not significantly affect the 

ability of S.aureus to provoke an acute infection in a mouse sepsis model(Takahashi et al., 

2002) but AtlE mutants had an attenuated virulence in a rat-catheter-associated infection 

model (Rupp et al., 2001). Levels of atl expression remained consistent during growth 

phase and when oxygen availability, KCL concentration or growth medium changes were 

studied. However atl gene expression was threefold higher at 37°C compared to 25°C and 

increased by twofold in the presence of NaCl (Foster, 1995).  

Both Atl gene products were shown, by immunoelectron microscopy, to localise to the 

equatorial ring on the cell surface at septal regions of the future cell division site (Yamada 

et al., 1996). Pro-Atl, amidase and glucosaminidase have all been confirmed to localise to 

the cell surface (Baba and Schneewind, 1998). Targeting of Pro-Atl was shown to occur 

prior to proteolytic cleaving and the three repeat regions have been shown to be necessary 

and sufficient for correct localisation (Baba and Schneewind, 1998). The repeat regions 

exhibit a higher affinity for peptidoglycan than the catalytic amidase domain itself (Biswas 

et al., 2006). WTA has been shown to prevent binding of the repeats, which was proposed 

to direct Atl(ami) away from old cell wall material, and suggests the repeats have a strong 

role in targeting (Schlag et al., 2010). Indeed synthetic peptides based upon the amino acid 

sequence of R1 were capable of inhibiting and/or inducing autolysis which may be the 

result of the modification of S.aureus autolysin activities (Takano et al., 2000). Recently, the 

crystal structure of R2 has been determined, revealing that each repeat folds into two half-

open β-barrel subunits and has the ability to bind both LTA and peptidoglycan (Zoll et al., 

2012). It was suggested that LTA act as a receptor for the repeats allowing Atl to rebind as it 

hydrolyses peptidoglycan (Zoll et al., 2012). This supports the observation that LTA 

prevents penicillin-induced autolysis in S.aureus (Suginaka et al., 1979) and that the 

majority of autolytic enzymes were not attached to the cell wall in an LTA mutant (Corrigan 

et al., 2011). Small-angle X-ray scattering identified the linker regions between repeats as 

differing in flexibility and allowed a model where Atl amidase is anchored to LTA in the 

septum via repeats, here it would be able to assume several conformational states that 

would facilitate cell wall cleavage at a large number of sites (Zoll et al., 2012). Further to 



147 
 

repelling Atl, WTA has been shown to create a ‘cation-exchanger like mesh’ that is required 

to create a local acidified pool around the Gram-positive cell envelope (Biswas et al., 2012). 

This governs the pH-dependent activity of autolysins, in particular Atl whose activity is 

known to decline at acidic pH values (Biswas et al., 2012; Lützner et al., 2009). 

5.1.2 Amidases (Sle1/Aaa (ScaA) and SA1687) 

SA1687 has been labelled a putative amidase based on homology with the B.subtilis 

amidase, LytC (Wheeler, 2012). Sle1/Aaa is the only other known amidase of S.aureus and 

has been shown to be involved in cell separation (Heilmann et al., 2005; Kajimura et al., 

2005). It is homologous to the S.epidermidis autolysin Aae, with both possessing 

bacteriolytic activity and adhesive properties (Heilmann et al., 2005, 2003). The aaa gene 

encodes a deduced protein of 334 amino acids with a predicted molecular mass of 35.8 kDa 

(Heilmann et al., 2005). Sle1 was purified from the atl mutant as a 32 kDa lytic band and 

identified as identical to Aaa (Kajimura et al., 2005). Characterisation of the enzyme has 

shown that it is an N-acetylmuramyl-L-alanine amidase, which preferentially cleaves 

dipeptide cross-bridges that interlink the two murein strands in peptidoglycan (Kajimura et 

al., 2005). The enzyme lacks a C-terminal LPTXG anchor region, typical of gram-positive 

surface proteins (Schneewind et al., 1993), but instead contains an N-terminal signal 

peptide that is followed by three peptidoglycan-binding LysM domains (Heilmann et al., 

2005). It also contains a C-terminal CHAP domain which has the bacteriolytic activity and 

recently been shown to have a novel adhesive function to ECM (Extracellular matrix) 

proteins (Hirschhausen et al., 2012; Zou and Hou, 2010). Sle1 (Aaa) interacts with 

fibrinogen, fibronectin and victronectin, and knockout mutants showed reduced adherence 

to surface-absorbed fibrinogen and fibronectin (Heilmann et al., 2005).  A sle1 (aaa) 

insertional mutant impaired cell separation and induced the formation of clusters (Kajimura 

et al., 2005). Furthermore there was a significant decrease in mutant strain pathogenesis in 

an acute infection mouse model (Kajimura et al., 2005). Immunofluorescence microscopy 

revealed a cell surface localisation and like Atl a staphylococcal tarO mutant abolished 

localisation to the cross wall (Frankel and Schneewind, 2012; Heilmann et al., 2005). 

Recently a model has been proposed in which the LysM domain ensures septal localisation 

followed by cleavage of peptidoglycan, thereby exposing new LysM binding sites in the 

cross-wall of separating bacterial cells (Frankel and Schneewind, 2012).  
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5.1.3 The CHAP family 

Members of the CHAP family have been found in a wide variety of bacteria and have also 

been detected in bacteriophage, archaea and the Trypanosomatidae family of eukaryotes 

(Rigden et al., 2003). The CHAP domain is named after the acronym cysteine, histidine-

dependent amidohydrolases/peptidases. It has been suggested to have amidase activity 

and is the invariant cysteine and histidine residues which form the putative active site 

(Bateman and Rawlings., 2003; Rigden et al., 2003). The domain is between 110 and 140 

amino acids and structural predictions have shown the N-terminal as largely alpha helices 

and the C-terminal comprised mainly of beta strands, putting it into the α+β structural class 

(Rigden et al., 2003). It is commonly associated with other domains that cleave 

peptidoglycan and it has been suggested that this indicates a cooperative manner of action 

to cleave specialised substrates (Bateman and Rawlings., 2003).  

5.1.4 Glucosaminidases (SagA, SagB and ScaH) 

 Atl(glu) plus three additional putative glucosaminidases, SagA, SagB and ScaH, has been 

identified via bioinformatics of S.aureus COL (Mohamed, 2007; Wheeler, 2012). All four 

glucosaminidases have been found to be maximally expressed in exponential phase, 

however they are under the influence of different gene regulator mechanisms (Mohamed, 

2007). They also differ in modular structure. Unlike Atl, ScaH contains two domains, an N-

terminal glucosaminidase domain and a C-terminal CHAP domain (which designates ScaH as 

a member of the Sca family) (Bateman and Rawlings, 2003; Rigden et al., 2003). SagA and 

SagB have both been shown to have hydrolase activity (Wheeler, 2012) but their modular 

arrangement has not been determined. All four enzymes have a function in cell separation, 

with SagB having the major role (Mohamed, 2007). Evidence that N-acetylglucosaminidase 

activity is involved in S.aureus glycan chain length determination was observed using RP-

HPLC (reverse phase high pressure chromatography) (Boneca et al., 2000) and SagB mutant 

studies (Wheeler, 2012). Further mutant studies indicated that the archetypal short glycan 

strands of S.aureus are the product of glucosaminidase activity, primarily mediated by 

SagB. The remodelling of the nascent long glycan stands to the short strands of mature 

peptidoglycan is vital to allow the cells to expand and growth (Wheeler, 2012). 
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Halotolerance appears to be another function of glucosaminidases, with SagB activity again 

proving critical for survival under high salt concentrations (Wheeler, 2012). 

5.1.5 Lytic transglycosylases (IsaA and SceD) 

Lytic transglycosylases are a further class of autolysins, whose role is largely unknown. They 

have been proposed to play a role in cell wall turnover and subsequent β-lactamase 

induction in E.coli (Kraft et al., 1999), in cell division and induction of the inflammatory 

immune response via release of peptidoglycan fragments in N.gonorrhoeae (Cloud and 

Dillard, 2004, 2002), and in facilitating the assembly of pili and flagella of C.cresentus (Roure 

et al., 2012; Viollier and Shapiro, 2003).Two putative lytic transglycosylases have been 

characterised in S.aureus, IsaA and SceD. IsaA and SceD are translated into ionically bound 

proteins of 24.2kDa and 24kDa respectively,  with the lytic transglycosylase domains found 

in the C-terminal region (Stapleton et al., 2007). IsaA (Immunodominant staphylococcal 

antigen A) has been identified as a major antigen of S.aureus and was found to be highly 

detectable in serum from patients with staphylococcal infections (Clarke et al., 2006; 

Pourmand et al., 2006). A mouse model has also been used to confirm that the presence of 

IsaA antibodies augments a host immune response (Lorenz et al., 2011). Similarily, an 

elevated titer of SceD antibodies has been associated with non-carriage of S.aureus (Clarke 

et al., 2006), explained when SceD was found to be essential for nasal colonisation in 

cotton rats (Burian et al., 2010; Stapleton et al., 2007). It is also regulated by SaeRS, a two-

component sensor involved in the regulation of multiple virulence factors (Goerke et al., 

2005; Liang et al., 2006), suggesting a role in pathogenicity (Stapleton et al., 2007). SceD 

and IsaA can be mutually compensatory when they behave differently. SceD upregulation 

has been noted in an isaA mutant but not the reverse, which indicates overlapping but 

distinct roles (Stapleton et al., 2007). Cell separation was also impaired in a sceD mutant 

and was exacerbated in an isaAsceD double mutant (Stapleton et al., 2007). Localisation of 

IsaA, using immunoelectron microscopy, showed distribution mainly at the septal region 

(Sakata et al., 2005).  

5.1.6 Lysostaphins (LytM, SA0191 and SA2195) 

LytM is the only confirmed lysostaphin of S.aureus. Both SA0191 and SA2195 have been 

assigned as putative lysostaphins based on a 46% or 36% identity, respectively, with LytM 



150 
 

(Wheeler, 2012). LytM is a glycylglycine endopeptidase which is expressed during 

exponential growth phase (Ramadurai et al., 1999).  It is 948bp that encodes a polypeptide 

of 316 amino acids and calculated molecular mass of 34.4kDa (Ramadurai and Jayaswal, 

1997). Doubt has been cast on the peptidoglycan hydrolyzing activity of the full length 

LytM, with suggestions that the N-terminus occludes the active site (Odintsov et al., 2004; 

Singh et al., 2010). Nevertheless, the C-terminal catalytic fragment has been clearly 

confirmed as cleaving the pentaglycine crossbridges (Firczuk et al., 2005; Odintsov et al., 

2004). It remains unclear as to whether the catalytic domain can be released as only full 

length inactive LytM was identified in the cell wall envelope (Pieper et al., 2006; Sabala et 

al., 2012). LytM is under the control of the two component system WalKR, which is thought 

to play a role in virulence and cell wall metabolism (Dubrac and Msadek, 2004). Localisation 

studies using LytM antibodies showed no specific pattern across the cell surface, suggesting 

that LytM may play a role in actively growing and dividing cells (Ramadurai et al., 1999) 

LytN is only produced by certain strains of staphylcocci and specifically digests the gly-gly 

bond in interpeptide chains of S.aureus (Sugai et al., 1997a, 1997b). LytN is 1152 amino 

acids which fold into two domains, a C-terminal active domain and an N-terminal binding 

domain, which contains both LysM and CHAP domains (Frankel et al., 2011; Sugai et al., 

1998). The LytN precursor is secreted via a YSIRK(G/S) motif signal peptide (DeDent et al., 

2008), which directs the protein into the cross-wall compartment separating the 

peptidoglycan from the inside (Frankel et al., 2011). The LysM domain, like in Sle1, is WTA 

dependent for septal localisation with tagO mutants showing all over binding (Frankel and 

Schneewind, 2012). Although originally reported to have no discernible defects (Sugai et al., 

1998), lytN mutants have since been shown to have structurally damaged cross-walls and 

altered growth (rate and yield). Overexpression of lytN also affects growth rate and triggers 

rupture of the cross-wall (Frankel et al., 2011). LytN producing strains are resistant to its 

own action, by altering the amino acid composition of their interpeptide chains (increasing 

serine content and decreasing glycine content). The gene involved in this alteration, eprh, is 

tandemly encoded with lytN (Sugai et al., 1997a). 
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5.1.7 Aims of this investigation 

 Localise Atl amidase and glucosaminidase using antibodies and identify their 

dynamics 

 Investigate the role of WTA in Atl localisation 

 Map the localisation of other hydrolases 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



152 
 

5.2 Results 

5.2.1 Atl amidase 

5.2.1.1 Generation of recombinant Atl amidase 

An E.coli overexpression construct, pSRC002 (Chapter 2; Table 2.5) was previously 

developed within our laboratory (Clarke et al., 2006).  The pSRC002 plasmid contains a 

pET21a overexpression vector with a His-tagged Atl amidase domain inserted under the 

control of an IPTG inducible promoter (Clarke et al., 2006). Previous characterisation work 

showed that the purified recombinant protein was capable of hydrolysis of B.subtilis and 

ovoccoid peptidoglycan (Hayhurst et al., 2008; Wheeler et al., 2011). 

5.2.1.2 Overexpression and purification of Atl amidase 

As described in Chapter 2.14.2 overexpression of Atl was carried out by IPTG induction. 

Successful overexpression of the recombinant protein was indicated by the presence of a 

high yield protein band at approximately 62 kDa four hours after induction (Figure 5.2A). 

This band was absent in the pre-IPTG induction sample and solubility was determined as 

described in 2.14.2 using SDS-PAGE. Overexpressed Atl amidase (Atl(ami)) was deduced as 

being soluble (Chapter 2.14.2; Figure 5.2A). However attempts to purify the soluble protein 

were unsuccessful and it was necessary to purify Atl(ami) under denaturing conditions. This 

property has been observed previously by Hayhurst and Wheeler, and it was suggested that 

Atl(ami) becomes insoluble when overexpressed (Hayhurst et al., 2008; Wheeler et al., 

2011). The insoluble fraction was separated (Chapter 2.14.3) and the protein purified by 

nickel-affinity chromatography using the HiTrap system (Chapter 2.14.4). Proteins were 

purified in the presence of urea and eluted using an imidazole gradient. Fractions 

containing protein were indicated by UV detection at 280nm and pooled. The fractions 

were dialysed with stepwise (2M-0.5M) decreases in urea concentrations, from 8 to 0 M 

over a 24 hour period (Chapter 2.14.5). Decreasing urea concentrations incrementally helps 

to prevent the recombinant protein precipitating. The final Atl(ami) concentration was 

determined, using the BioRad protein concentration assay (Chapter 2.13.6), as 0.38 mg/ml 

(Figure 5.2B). Protein was concentrated in further experiments for consistency with other 

samples using a Millipore column. 
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Figure 5.2 Recombinant Atl amidase protein production 

(A) Overexpression of Atl(ami) and its solubility. Lane 1, pre-IPTG induction sample; lane 2, post-

IPTG induction sample; lane 3, souble sample; lane 4, insoluble sample.  

(B) Purification of insoluble recombinant Atl(ami) after dialysis. Lane 1, Atl(ami)  

(C) Coomassie and zymograms of Atl(ami). Lane 1, Atl(glu) 0.5 µg/ml; Lane 2, Atl(ami) 0.5 µg/ml; 

Lane 3, DivIB 0.5 µg/ml. Gels were incubated in the renaturing conditions listed below each gel 

overnight, stained for 3 hours and then destained for ~5hrs. Recombinant Atl(ami) and Atl(glu) both 

retain their hydrolytic activity. 

Standards at sizes indicated in kDa (Sigma, Dalton Mark VII-L). 
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5.2.1.3  Confirmation of Atl amidase activity 

Previous work within our laboratory has demonstrated that the overexpression of 

recombinant C-terminal His tagged proteins does not affect their autolysin activity. This was 

shown by zymogram for SagA, SagB and ScaH (Hayhurst, 2006; Mohamed, 2007; Murray, 

2001). Zymogram analysis detects digestion of substrate by enzymes under non-reducing 

conditions, and has been shown to detect subpicogram amounts of activity (Gogly et al., 

1998; Kleiner and Stetler-Stevenson, 1994). The zymograms use purified cell walls stripped 

of teichoic acids incorporated into the resolving gel, as a substrate. The gel is incubated in 

renaturing solution, renaturing gel stain (containing Methylene Blue) and destained until 

zones of clearing are seen where hydrolase activity has occurred (as described in 2.13.4). 

Figure 5.2C shows the purified Atl(ami) protein tested by zymogram using S.aureus SH1000 

cell wall as a substrate. A negative control (DivIB) and a positive control (Atl(glu)) (Wheeler, 

2012) for hydrolase activity were used. Atl(ami) and Atl(glu) gave distinct zones of clearing 

both with and without MgCl2. A slight zone of clearing was seen in the negative control in 

the presence of MgCl2, this is due to the protein binding peptidoglycan, but not hydrolysing, 

therefore blocking the dye and has previously been reported for DivIB (Bottomley, 2011).  

5.2.1.4  Generation of antibodies 

Pure recombinant protein was provided to Bioserv and antibodies were generated. The 

final serum was tested for specificity against whole cell lysate, mutant lysate and 

recombinant Atl(ami) (Figure 5.3). The Western blot revealed significant non-specific 

binding so the serum was affinity purified and tested again. A band of specific binding was 

seen at the correct size (amidase; 62kDa) in both lanes 1-2, containing pure recombinant 

protein, and lane 4, containing whole cell lysate. 

5.2.1.5 Localisation of Atl amidase in SH1000 spa::kan 

Immunolocalisation was performed in a strain where the gene encoding Protein A was 

replaced with a kanamycin resistance cassette (Girbe Buist, unpublished), SH1000 spa::kan 

(s2978), thus preventing non-specific binding of Atl(ami) antibodies to S.aureus Protein A. 

Protein A is a (Chapter 1.10) surface protein that is well characterised for its ability to bind 

immunoglobulin (DeDent et al., 2007; Sjodahl, 1977). Cells were grown to exponential 
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Figure 5.3 Purification of Atl amidase  

Lane 1, 0.02mg ml-1 amidase; Lane 2, 0.04mg ml-1 amidase; Lane 3, Δatl whole cell lysate; Lane 4, 

SH1000 whole cell lysate.  

A) Western blot using affinity purified α-Atl(ami) (antibodies). Binding is seen specifically to Atl(ami) 

in lanes 1-2 and lane 4. (1° antibody 1:5000; 2°antibody 1:20000). 

B) Standards at sizes indicated in kDa (Sigma, Dalton Mark VII-L). 
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phase and stained with vancomycin (in tube staining was determined to give the best 

results) (2.17.11), to allow cells to be assigned growth stages. Cells were dried onto poly-L-

lysine and immunostained as described in 2.17.12. A range of α-Atl(ami) concentrations 

were tested, with optimum results observed at 1:1000 dilution. The secondary antibody 

used was Alexa-Fluor 594-conjugated α-rabbit IgG (Invitrogen) at a dilution of 3:1000. 

No fluorescence was observed in controls without primary antibody (Figure 5.4A) or in an 

Δatl mutant (Figure 5.4B). Specific binding was seen on the surface of SH1000 spa::kan cells 

(Figure 5.4C and Figure 5.4D). Where septal plates had completely formed, a ring of binding 

was most often seen (75% of cells) (Figure 5.5A). As the cells began to separate strong 

binding was seen associated with the dividing septum, as expected. This was observed as a 

Y shape at the start (Figure 5.5B) and a deep V or a double ring towards the completion of 

cytokenesis (Figure 5.5C and D). When looking at the Z-stack images the ‘double-ring’ 

binding seen was in fact a V shape imaged mid way through (Figure 5.5D and Figure 5.5F). 

Only rarely were ‘double-rings’ seen but these were always still touching at one point. X 

shape binding, which would indicate separation occurring simultaneously from both sides 

of the cell, was not seen. There was no bulk labelling of the newly exposed cell surface 

instead binding remained on marginal regions of the split. In many cases Atl(ami) was seen 

to localise at sites where peptidoglycan synthesis had started to occur but a complete 

septal disc had not yet formed (Figure 5.5E). There was minimal binding not linked to sites 

of peptidoglycan synthesis and this can be attributed to Atl(ami) still bound from previous 

rounds of division.    

Cells were assigned a cell cycle stage according to vancomycin labelling (Turner et al., 

2010). Atl(ami) binding was then characterised in current or different plane and shape; as a 

ring, Y, X or different plane (Figure 5.6A shows the cell plane and vancomycin stages). 382 

cells from 3 different fields of vision in two separate experiments were analysed (Figure 

5.6B). The statistics were used to develop a schematic model of Atl(ami) localisation 

throughout the cell cycle (Figure 5.7). When the septum is incomplete Atl(ami) is present at 

both the current plane of synthesis and the previous plane. As the septal plate forms 

Atl(ami) forms a ring around the cell in the current plane and becomes Y shaped as  the 

cells begin to split. This Y becomes a deep V as the cell proceeds through its cell cycle. As 

orthogonal growth commences, small amounts of Atl(ami) begin to appear at the new 
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division plane. Although in most cases an indentation was seen opposite splitting, the cell 

separation always appeared at one side. 

5.2.1.6 Re-emergence of Atl amidase after trypsination 

To reveal where Atl(ami) first localises and how quickly this occurs, all existing proteins, 

including existing Atl(ami), were removed. SH1000 spa::kan cells were incubated with 

trypsin for 60mins, washed with PBS and resuspended in media containing protease 

inhibitor to quench all further proteolysis (as described in chapter 2.17.8). At time intervals, 

staphylococci were fixed and labelled with vancomycin prior to revealing localisation of 

Atl(ami) by immunofluorescence (2.17.11-2.17.12). Primary and secondary antibodies were 

at the same concentration as before (1°, 1:1000; 2°, 3:1000). Any binding seen was 

characterised into dot, ring, Y/V in the same plane as peptidoglycan synthesis, binding in 

two planes (current and different) or binding in different plane than peptidoglycan 

synthesis. 382 cells were characterised from 2 separate experiments (Figure 5.8 shows a 

graph of the cell binding and examples of cells at each stage).  

At 0 min no binding was seen which showed that all protein had been removed by 

trypsination. Atl(ami) was not seen to reappear until 10 min after treatment when 71% of 

cells showed binding. The binding appeared as a single dot on the cell (30%) or as a ring in 

the plane of synthesis (29%). When dots appeared they were often in planes that were not 

actively synthesising peptidoglycan. By 15 min 93% of cells showed binding and were seen 

as predominantly rings. At 20 min 94% of cells had produced Atl(ami) and the ring 

remained the predominant binding pattern seen. At 30 min a greater amount of cells had 

Atl(ami) in both the plane of peptidoglycan synthesis and another plane. By 60 min 39% of 

cells had Atl(ami) at a different plane of peptidoglycan synthesis. It appears as though 

Atl(ami) is produced rapidly by the cell and localises to peptidoglycan ribs (see below, 

Figure 5.9) from previous divisions or new sites of peptidoglycan synthesis. From here as 

the cells continue to grow Atl(ami) localises with growth, is left behind and gradually falls 

off.  

5.2.1.7 Does Atl amidase localise to cell surface features? 

The piercrust (as discussed in Chapter 1.6; Figure 1.7) is laid down in the plane of division  
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Figure 5.4 Localisation of Atl amidase 

(A) SH1000 spa::kan with no primary antibody, no binding is seen; (B) Δatl no Atl(ami), no binding is 

seen; (C) SH1000 spa::kan, binding is seen at sights of new peptidoglycan incorporation; (D) 

Enlarged SH1000 spa::kan cells from separate experiments show binding at sights of new 

peptidoglycan synthesis and where cells are splitting. Scale bar represents 4µm. 
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Figure 5.5 Expanded images showing SH1000 spa::kan  Atl amidase localisation 

Ring shape can be seen with complete septal disc (A); Y shape is seen as the cell splits (B); the Y 

shape becomes a deep V as the cells split (C); when seen from above the V shape can appear as a 

‘double-ring’ (D); as orthogonal growth begins in the next plane Atl(ami) appears in two planes (E). Z 

stack of deep V (F). A-E scale bar represents 1µm; F scale bar represents 2µm. 
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Figure 5.6 Analysis of Atl amidase localisation  

(A) Schematic of vancomycin labelling throughout the cell cycle and classification of main plane at 

each stage. (B) Percentage of Atl amidase localisation at each stage of the cell cycle. 
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Figure 5.7 Schematic model of Atl amidase throughout the cell cycle  

Green indicates vancomycin. Red indicates Atl(ami) localisation. 

A deep V of binding is seen where two cells have split and as they commence their next cycle of 

division (1). As the septal plate is formed Atl(ami) is produced and bound in a ring around the 

current plane (2). Atl(ami) from the previous planes is lost (3). When a complete septum is formed 

the Atl(ami) ring (4) splits at one side forming a Y shape (5). This allows peptidoglycan growth to 

continue (6 and 7). Atl(ami) splits further into a deep V (8). Peptidoglycan synthesis continues as the 

cells splits (9) and orthogonal growth begins (10). Indentations are seen into the septum at the base 

of the V but the shape does not change from a V to X. 
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Figure 5.8 Re-emergence of Atl amidase after trypsination of cells 

Each panel shows the time post-trypsination, 0-60 min from top left to bottom. Row A, shows cells 

beginning septal growth; Row B, shows cells with complete septal plates and Row C shows cells 

beginning orthogonal growth (where found). Distribution patterns were assigned one of five 

classes. Scale bar represents 2µm. 

Atl(ami) reappears after 10 min, predominantly as a dot(s) or ring pattern. By 60 min cells are 

beginning show localisation in planes different from current growth.  
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before the septal plate has completely formed. It remains in place and is divided between 

the two cells as they split forming ribs (Turner et al., 2010). Atl(ami) appears to remain on 

the outside of the cell in a ring either side of the splitting cells, therefore it seemed likely 

that Atl(ami) could bind ribs. During division, older ribs are dissected by the new piecrust 

placement and subsequent division, resulting in cells containing whole ribs, half ribs and 

quarter ribs. Z-stacks of cells where analysed in detail and quarter ribs were able to be 

distinguished in numerous cells. Figure 5.9A shows two cells with incomplete septal plates 

(orthogonal growth) still splitting from the previous division. Atl(ami) is still bound in a deep 

V (point facing towards the viewer) from the previous division, but can also be seen in the 

left hand cell as a quarter line. This binding is highly reminiscent of the piecrust pattern 

suggesting that Atl(ami) is indeed binding this feature (Figure 1.7A). This is the current 

plane so a new piecrust would be expected to form, however the binding is distinctly in the 

old peptidoglycan. Figure 5.9B shows a cell with a complete septal disc and ring of Atl(ami). 

There is faint binding also seen perpendicular to the current plane, which only appears half 

way through the Z stack. This suggests binding to the old quarter rib.  

Analysis of the dot patterns seen at 10mins after trypsination as Atl(ami) started to appear 

on the cell surface further suggested binding to the peptidoglycan piecrusts. As discussed in 

chapter 4.3, a ‘dot and line’ model has been used to suggest localisation to piecrust and rib 

features (‘dot and line’ model Figure 4.13B). It is important to note that not all cells 

displayed a dot pattern upon re-emergence. Those that did were cells undergoing active 

septal growth, which is the plane of the quarter rib, and so only half and whole ribs could 

be seen. Figure 5.9C i and ii show binding in the old peptidoglycan segment, vancomycin 

labelling was aligned with the new piecrust of the model and dots suggested binding to half 

and whole ribs from previous divisions. In Figure 5.9C iii Atl(ami) is seen at the current 

plane but also with the half rib from the previous division.   

5.2.1.8 Colocalisation of peptidoglycan features and immunofluoresence  

It was hoped to combine STORM and AFM technologies to align immunofluorescence and 

peptidoglycan features but time restraints for this thesis meant that this was not possible 

(both microscopy techniques are discussed in Chapter 4.1). In preparation for work with 

STORMforce (STORM and AFM) the immunofluorescene protocol was adapted for work 
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with the STORM microscope. To facilitate focusing and allow correction of drift, gold nano-

particles were dried to the slide using nitrogen gas. Cells were applied on top and also dried 

to the slide using nitrogen gas. The primary antibody was applied at a range of 

concentrations (5:1000- 1:20000) overnight and the secondary antibody of Alexafluor 532 

also at a range of concentrations (1:1000- 10:1000) for 2hrs. Cells were mounted in 

cysteamine in PBS, to increase the length of time fluorescent molecules were in the ‘off’ 

state, and completely sealed to prevent drying (Chapter 2.21 and 2.22). Unfortunately, 

despite several attempts only one usable image was obtained (Figure 5.10). There was a 

high level of background binding, which all attempts to lower removed significant specific 

binding. Low levels of Atl(ami) binding across the entire cell surface was seen. The patterns 

seen with fluorescence were similar to those observed with deltavision, however when 

switched to STORM they became more difficult to distinguish. This is most likely due to 

further protocol refinement needed. Nevertheless some details were able to be examined 

and one cell in particular (Figure 5.10). It appears as if the Atl(ami) is localised in a line, 

which appears to be one or two layers of peptidoglycan thick. This line is also not uniform 

and appears to be beginning to split from one side.    

5.2.1.9 Atl amidase localisation in SH1000 ΔtarO 

A relationship between WTA and Atl localisation has been previously reported (Schlag et 

al., 2010). Atl(ami) was shown to accumulate at the septal region of SH1000 spa::kan cells, 

while in WTA deficient cells the amidase is evenly distributed across the cell surface. To 

examine this relationship, a protein A negative strain of ΔtarO had to be made. A spa::kan 

transduction into ΔtarO cells was not possible as WTAs are the phage (ɸ) attachment sites. 

A strain containing a tarO complementation plasmid (S.aureus SA113ΔtarO::ermB pRB473-

tarO) was used to make a ɸ lysate (donated by A.Peschel). This ɸ lysate was used to 

transduce SH1000 spa::kan, the resulting cells were plated onto erythromycin and 

kanamycin plates for selection. Cells that grew were also patched onto plates containing 

chloramphenicol (pRB473-tarO) and those that did not grow on this plate were selected. 

Selected strains were verified by Western blot using α-protein A (appendix II). 

Immunolocalisation was performed on SH1000ΔtarO::ermB spa::kan cells and similar 

results to those previously reported (Schlag et al., 2010) were seen (Figure 5.11B and C). 

Atl(ami) distribution was completely disrupted in ΔtarO cells and was seen to be uniformly 
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Figure 5.9 Atl amidase binds piecrust 

(A) and (B) Z stacks of cells show Atl(ami) binding to a quarter 

rib indicated by the arrow. Scale bar represents 2µm. 

(C) After trypsination Atl(ami) binds in a dot pattern that 

indicates binding to previous ribs. Interpretative diagrams 

are shown to the right of cells and an overall diagram shown 

in (D). Refer to text for in depth description. Scale bar 

represents 2µm. 
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Figure 5.10 Atl amidase localisation viewed by STORM microscopy  

Immunolocalisation of Atl(ami) viewed with STORM microscopy. Epifluorescence image shows 
similar binding patterns as seen with DeltaVision. STORM and brightfield were overlayed because 
structures were difficult to distinguish due to the high level of background. Enlarged cell shows a 
ring of Atl (ami) across the septum of the cell that appears to be 1-2 layers of peptidoglycan thick. 
Scale bar represents 2µm. 

 

 

 

 



168 
 

            

          

Figure 5.11 Localisation of Atl amidase in ΔtarO  

(A) SH1000 tarO::ermB spa::kan with no primary antibody, no binding is seen; (B) SH1000 
tarO::ermB spa::kan, Atll(ami) binding is across the entire cell surface; (C) Expanded images of 
SH1000 cells from separate experiments show binding across the cell surface with several cells 
showing bright foci. Faint cross-wall binding can be seen, indicated by arrows. Scale bar represents 
4µm. 
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bound across the cell surface. Occasionally foci of strong binding were seen at the edges of 

complete septal discs but not in all cases. Examples of faint crosswall binding were also 

seen. No fluorescence was observed in controls without primary antibody (Figure 5.11A). 

5.2.1.9. Colocalisation of Atl amidase and ConA 

Data here suggests that Atl(ami) binds to the peptidoglycan rib features and that the WTA 

inhibits binding to the rest of the wall. It was hypothesised that labelling WTA and Atl(ami) 

might help to further examine the relationship between WTA and Atl. This study has 

already proven that ConA binds both WTA and surface proteins (chapter 4) and therefore 

the experiment was performed in a SH1000 ΔsrtA background. SH1000 ΔsrtA was 

transduced with a spa::kan lysate and the resultant strain tested by Western blotting 

(appendix II). For labelling, cells were grown to exponential phase and stained with 

vancomycin (2.17.11), before being dried to slides and immunostained (2.17.12). Primary 

antibody was applied at 1:1000 dilution, washed 8 times and the secondary was applied at 

3:1000 dilution along with ConA at 1:4 dilution. The final cell wash was only repeated three 

times, to limit the loss of ConA.  

No Atl(ami) signal was seen in controls not containing primary antibody (Figure 5.12A). 

Following the above protocol SH1000 ΔsrtA spa::kan cells were labelled with only Atl(ami) 

and with only ConA, similar patterns were seen to those within Chapter 5 (Figure 5.4) and 

Chapter  4 (Figure 4.8) respectively. However when cells were also labelled with 

vancomycin and/or antibody, the ConA observed binding pattern was different (Figure 

5.12); there was strong crosswall binding (no apparent access issue as seen in Chapter 

4)(Figure 5.12B and C); smooth binding across the cell surface (Figure 5.12B , C and D); and 

bright foci which often aligned with antibody binding (Figure B and D). When cells were 

probed with antibodies against a protein found across the whole cell surface, SceD (shown 

later in section 5.2.5), foci were not seen. Together this suggested that ConA was binding 

both vancomycin (cross wall binding and smooth cell surface) and antibody (aligned bright 

foci) in favour/aswell as its desired target WTA.  

 

 

 



170 
 

 

Figure 5.12 Binding of ConA to antibodies and vancomycin 

(A) SH1000 Δsrt spa::kan cells with no primary antibody show no binding and expected 
binding patterns of conA. (B) ConA binding pattern is altered by vancomycin and 
antibodies. White arrows show foci of conA binding that align with antibodies. Green 
arrows show cross wall binding that aligns with vancomycin labelled septal growth. (C) 
ConA shows fewer foci when antibody binding is all over. (D) ConA shows foci that align 
with antibody binding. Scale bar represents 6µm. 
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5.2.2. Atl glucosaminidase 

5.2.2.1. Generation of Atl glucosaminidase antibodies 

An E.coli overexpression construct, pSRC003 (Chapter 2; Table 2.5) was previously 

developed within our laboratory.  The pSRC003 plasmid contains a pET24d overexpression 

vector with a His-tagged Atl glucosaminidase domain inserted under the control of an IPTG 

inducible promoter (Clarke et al., 2006). Purified Atl(glu) generated using this vector was 

obtained from Wheeler (2012) and shown to be active by zymogram (Chapter 2.13.4) 

(Figure 5.2C). Pure recombinant protein was provided to Bioserv and antibodies were 

generated. The final serum was tested for specificity against whole cell lysate, mutant 

lysate and recombinant Atl(glu) (Figure 5.13A). The Western blot revealed significant non-

specific binding so the serum was affinity purified and tested again (Figure 5.13B). A band 

of specific binding was seen at the correct size (glucosaminidase; 51kDa) in both lanes 1-2, 

containing pure recombinant protein, and lane 4, containing whole cell lysate. Breakdown 

products were also observed in lanes 1-2.  

5.2.3.2 Localisation of Atl glucosaminidase in SH1000 spa::kan 

Immunolocalisation was again performed in SH1000 spa::kan, grown to exponential and 

stained with vancomycin (2.17.11) prior to immunostaining (2.17.18). A range of α-Atl(glu) 

concentrations were tested and again 1:1000 found to be the best. The secondary antibody 

used was Alexa-Fluor 594-conjugated α-rabbit IgG (Invitrogen) at a dilution of 3:1000. 

No fluorescence was observed in controls without primary antibodies (Figure 5.14A) or in 

an Δatl mutant (Figure 5.14B). Specific binding was seen on the surface of SH1000 spa::kan 

cells (Figure 5.14C and D). The same binding patterns seen for Atl(ami) were observed for 

Atl(glu) but they did not appear to occur at the same cell cycle stages or within the same 

time frames. As before, no bulk labelling was seen on the nascent peptidoglycan and no X 

structures were found. Unlike Atl(ami), cells in early division most commonly showed 

binding only associated with the previous division cycle. Furthermore, the ring structure 

appeared more transient with Atl(glu) binding rarely found without binding in another 

plane. Y and V shapes were more common and binding in multiple planes was seen at all 

stages. It was also noted that V shapes did often take on an almost double ring shape 

however in all cases examined the two rings maintained contact at one point.  
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Figure 5.13 Purification of Atl glucosaminidase  

Lane 1, 0.02mg ml-1 glucosaminidase; Lane 2, 0.04mg ml-1 glucosaminidase; Lane 3, Δatl whole cell 

lysate; Lane 4; SH1000 whole cell lysate.  

Western blot using affinity purified α-Atl(glu). Binding is seen to Atl(glu) and breakdown products in 

lanes 1-2 and to Atl(glu) in lane 4 .  

Standards at sizes indicated in kDa (Sigma, Dalton Mark VII-L). 
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Figure 5.14 Localisation of Atl glucosaminidase  

(A) SH1000 spa::kan with no primary antibody, no binding is seen; (B) Δatl no longer produce 

Atl(glu), no binding is seen; (C) SH1000 spa::kan, binding is seen at sights of new peptidoglycan 

incorporation and on the outside of cell splits; (D) Enlarged SH1000 spa::kan cells from separate 

experiments show binding at sights of new peptidoglycan synthesis and where cells are splitting. 

Localisation appears less specific than Atl(ami).  
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Figure 5.15 Analysis of Atl glucosaminidase localisation  

(A) Schematic of vancomycin labelling throughout the cell cycle and classification of main plane at 

each stage. (B) Percentage graph of Atl glucosaminidase localisation at each stage of the cell cycle. 

 

 

 

N = 290 
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Figure 5.16 Schematic model of Atl glucosaminidase throughout the cell cycle 

Green indicates vancomycin labelling; Red indicates Atl(glu) binding. 

 As cells commence division Atl(glu) remains associated with the previous round (1). A few cells may 

have Atl(glu) attached in both planes. As the septal disc completes the majority of binding is still 

associated with the previous round of division or with both rounds (2). As the cells begin to split, 

Atl(glu) is found in  a Y shape alongside the new cell wall synthesis (3 and 4). Atl(glu) is still found 

associated with previous division cycles. As the cell continues growth the Y shape deepens to a V 

and localisation associated with previous rounds is not found (5 and 6). As orthogonal growth 

begins Atl(glu) remains in line with the previous round (7).  
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Cells were again assigned a cell cycle stage according to vancomycin labelling (Turner et al., 

2010) and the Atl(glu) binding characterised (Figure 5.15A shows the cell plane and 

vancomycin stages). 290 cells from 3 different fields of vision in two separate experiments 

were analysed (Figure 5.15B). This again allowed the development of a model of Atl(glu) 

localisation throughout the cell cycle (Figure 5.16). When the septum is incomplete Atl(glu) 

was found most often in the previous plane and only rarely to associate with both planes of 

division. Binding is not found mainly at the current plane until the cell begins to split. As the 

cell continues growth (seen as X vancomycin labelling) Y and deep V shapes predominate 

with only 15.6% of cells showing the ring structure and only 9% of cells still also localised in 

the previous plane. The amount of cells showing two planes of localisation started to 

increase with the beginning of orthogonal growth. The predominant shape present with 

orthogonal growth is the deep V, as with Atl(ami).  

5.2.3.3 Re-emergence of Atl glucosaminidase after trypsination 

Initial localisation of Atl(glu) and how quickly this occurs were also analysed. The cells were 

trypsinated as before and the reappearance of Atl(glu) analysed at specific timepoints 

(2.17.8 for trypsination and 2.17.11-2.17.12  for immunofluorescence). 290 cells were 

characterised from 2 separate experiments (Figure 5.17). At 0 min no binding was seen 

which showed that all Atl(glu) had been removed by trypsin treatment. Atl(glu) began to 

reappear at low levels at 10 min but did not fully reappear until 20 min. As with Atl(ami) the 

reappearance was mainly as (a) dot/s (41% cells). At 20 min 94% of cells showed binding 

and by 30 min 100% Atl(glu). The ring binding pattern was clearly seen at 20, 30 and 60 min 

stages. There was also less Atl(glu) found in different planes to active growth than 

previously observed which again implies that Atl(glu) left behind after division remains 

attached.  

5.2.3.4 Does Atl glucosaminidase localise to peptidoglycan features? 

Half and quarter rib binding is seen frequently with Atl(ami) (Chapter 5; Figure 5.9) 

however Atl(glu) appears more frequently in multiple planes and therefore these structures 

were much harder to see. A few examples of half ribs were found but quarter ribs were not 

observed. Figure 5.18A -B show examples of half ribs. Figure 5.18A shows a faint line of 

Atl(glu) perpendicular to septal growth which is most clearlyviewed at the apex of the cell.  
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Figure 5.17 Re-emergence of Atl glucosmaminidase after trypsination  

Each panel shows a trypsination time point, 0-60 min from top left to bottom. Row A, shows cells 

beginning septal growth; Row B, shows cells with complete septal plates and Row C shows cells 

beginning orthogonal growth (where found). Distribution patterns were assigned one of five 

classes. Scale bar represents 2µm. 

Atl(glu) reappears after 20 min and shows an array of patterns. It does not reappear in the dot/ring 

pattern seen with Atl(ami) but can be seen in the Y/V of later stage and in different planes of 

growth as soon as it begins to reappear after trypsination. 
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Figure 5.18 Atl glucosaminidase binds piecrusts 

Atl(glu) shows half rib binding at the apex of the cell cluster (A) 

while in (B) a new rib of Atl(glu) binding is seen in line with new 

septal growth. Rib features are indicated by arrows.(C) Distinct 

dot patterning after trypsination is associated with one side of 

peptidoglycan rib features. Interpretative diagrams of the cells 

is shown to the right of each image and an overall diagram of 

the theoretical location of rib features is shown in (D).  
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Figure 5.18B shows the most recent plane of division as a ring of Atl(glu) around the cell, 

septal growth has begun in the next plane and a rib of Atl(glu) is forming starting with old 

peptidoglycan. By examining cells recovering from trypsination it was hypothesised that 

more evidence could be found however dot structures were not prevalent. As Atl(glu) 

began to re-emerge it formed structures in the plane of peptidoglycan synthesis and 

nowhere else, and dot patterns indicating piecrust localisation were not often found. Those 

that were seen were difficult to fit to the ‘line and dot’ model.  When three dots were seen, 

two were associated with new septal growth and the third was potentially bound to one 

side of a whole rib (Figure 5.18C). 

5.2.3.5 Atl glucosaminidase localisation in SH1000 ΔtarO 

The delocalisation of Atl(ami) in WTA deficient cells has previously been reported and this 

study saw similar results (Schlag et al., 2010). However the relationship between Atl(glu) 

and WTA has not previously been examined. It is likely to respond in a similar way to 

Atl(ami) because the absence of WTA disrupted exogenous R1-2 septal localisation. R3 of 

Atl(glu) shares 31% identity and ligand binding specificity (Foster, 1995; Zoll et al., 2012). 

Immunolocalisation was performed in the constructed strain SH1000ΔtarO::ermB spa::kan 

and similar results were seen as with Atl(ami). No fluorescence was seen in controls (Figure 

5.19A) and distribution was completely disrupted in the absence of WTA (Figure 5.19B and 

C). Atl(glu) was seen to bind across the entire cell surface however the patterning appeared 

hazier than in Atl(ami). No evidence of crosswall binding was seen.  

5.2.4 Co-localisation of Atl amidase and Atl glucosaminidase  

Whilst performing immunolocalisation of Atl(ami) and Atl(glu) it became apparent that 

their localisation throughout the cell cycle varies. This was reflected when comparing the 

statistics and models built for each enzyme (Figure 5.7 and Figure 5.16). Dual labelling of 

cells for both Atl(ami) and Atl(glu) would be useful to further analyse this difference. To do 

this monoclonal α-Atl(glu) raised in mouse were kindly donated by the Schwarz group 

(Varrone et al., 2011).  

5.2.4.1  Co-localisation in SH1000 spa::kan 

Cells were prepared the same as in prior immunolocalisation experiments (2.17.11-  
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Figure 5.19 Localisation of Atl glucosaminidase in ΔtarO  

(A) SH1000 tarO::ermB spa::kan with no primary antibody, no binding is seen; (B) SH1000 

tarO::ermB spa::kan, binding is across the entire cell surface; (C) Expanded images of SH1000 cells 

from separate experiments show binding across the cell surface with bright foci. Scale bar 

represents 4µm. 
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2.17.12) with primary antibodies being applied together at 1:1000 concentration. 

Secondary antibodies of anti-mouse Alexa-Fluor 594 conjugate and anti-rabbit Alexa-Fluor 

350 conjugate were also applied together each at a concentration of 3:1000. Merged 

images show Atl(ami) as blue and Atl(glu) as red, however Atl(ami) alone was saved in 

greyscale because the images were easier to view.   

Dual labelling was not seen to affect the localisation of either antibody. Although much of 

the antibody localisation overlaps (seen as purple in merged images), there are still clear 

areas in which a specific antibody is localised (Figure 5.20B). Enlarged cells show the 

difference in localisation throughout the cell cycle previously observed. Figure 5.20C i 

shows cells with incomplete septa, Atl(glu) is seen to localise solely at the previous site of 

division whilst Atl(ami) is also forming rings around the current plane. When septa have 

completely formed (Figure 5.20C ii) Atl(glu) is found in line with current growth however 

Atl(ami) still has a greater presence in the current plane. Interestingly, it was observed that 

as cells split (Figure 5.20C iii-v) Atl(ami) appears to be on the inside of Atl(glu).  Figure 5.20C 

iii and iv show cells splitting with both antibodies in a Y/V shape, however the binding of 

Atl(ami) appears narrower. Figure 5.20C v again shows cells splitting yet to commence 

orthogonal growth however in this instance Atl(ami) is seen as complete rings in a Y/V 

shape whilst Atl(glu) appears as ‘double-rings’ and to bind outside of Atl(ami).  

Combining the previous models for each a schematic representation of the localisation of 

both Atl(ami) and Atl(glu) was established (Figure 5.21). As cells begin to form septa, both 

Atl(ami) and Atl(glu) are found predominately in the previous division plane. Atl(ami) forms 

a complete ring in line with the completing septa while still being found in line with 

previous division alongwith Atl(glu). Upon completion of the septal plate, Atl(ami) is found 

only in a ring at the current plane and Atl(glu) still being found in the previous plane. As 

Atl(ami) begins to split into a Y shape Atl(glu) is found as a ring around the septal plate. 

When cells move to the Y shape growth pattern, both antibodies are found in the Y shape. 

Atl(ami) again precedes Atl(glu) forming a V shape. As the cells then begin to further grow 

in preparation for splitting Atl(glu) joins Atl(ami) in a deep V shape. When the new cells 

begin orthogonal growth both Atls remain at the most recent plane of growth in a deep V, 

and as before Atl(ami) is seen at the new plane prior to Atl(glu). It is important to note that  
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Figure 5.20 Co-localisation of Atl(ami) and Atl(glu) in SH1000 cells 

(A) SH1000 spa::kan with no primary antibody, no binding is seen; (B) SH1000 spa::kan, Atl(ami) and 

Atl(glu) binding is seen at sites of new peptidoglycan incorporation and on the outside of cell splits; 

Boxes enlarged in (C). SH1000 spa::kan cells from separate experiments show binding of Atl(ami) 

and Atl(glu) in different patterns at sites of new peptidoglycan synthesis and where cells are 

splitting. Scale bars represent 4µm in A-B and 2µm in C.  
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Figure 5.21 Schematic model of Atl(ami) and Atl(glu) localisation throughout the cell cycle 

Atl(ami) is represented in blue; Atl(glu) is represented in red; Atl(ami) and Atl(glu) co-localisation is 
represented in purple. Atl(ami) is found to precede Atl(glu) localisation throughout cell growth. 
However both follow the same localisation pattern. Atl(ami) is found at the current plane of growth 
before the septal plate has completed (1-2). When the septal plate is complete, Atl(glu) forms a ring 
and Atl(ami) splits to form a Y shape (3-4). Atl(ami) and Atl(glu) both show Y shape localisation at 
the same time the cell shows Y shape growth (5). Atl(ami) forms a deep V before Atl(glu) or cell 
growth has progressed (6). As cell growth does progress Atl(glu) forms a deep V (7-8). Atl(ami) does 
not localise with orthogonal growth but its delayed (9-10). 
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Figure 5.22 Co-localistion of Atl(ami) and Atl(glu) in ΔtarO 

(A) SH1000 tarO::ermB spa::kan with no primary antibody, no binding is seen; (B) SH1000 

tarO::ermB spa::kan, Atl(ami) and Atl(glu) binding is seen across the entire cell surface; (C) Enlarged 

cells from separate experiments show binding of Atl(ami) and Atl(glu) across the cell surface with 

Atl(glu) binding being more patchy. Arrows indicate foci where Atl(ami) and Atl(glu) binding overlap. 

Scale bars represent 4µm in A-B and 2µm in C. 

 

 

 

 

 

 

C 

A 

B 



186 
 

both Atl(ami) and Atl(glu) can be found associated with the previous plane of growth 

throughout the life cycle, however the amount of Atl(glu) was much greater than Atl(ami). 

5.2.4.2 Co-localisation in SH1000 ΔtarO 

The delocalisation of both Atl(ami) and Atl(glu) in the absence of WTA was further analysed 

to determine if the location of bright foci revealed any details. SH1000ΔtarO::ermB spa::kan 

cells were prepared for immunoflourescence as described in section 5.2.3.1. Atl(glu) was 

seen to contain more foci than Atl(ami) which shows a nearly completely smooth binding 

(Figure 5.22). The Atl(glu) patterning was patchy across the cell surface as previously seen 

and clearly differed from the smooth binding of Atl(ami). The few instances of Atl(ami) 

binding showing foci were found to be at the same site as foci in Atl(glu) binding (Figure 

5.22C; white arrows indicate foci).  

5.2.5 Other hydrolases (SagB, ScaH and SceD) 

Similar localisation experiments were performed on other hydrolases to highlight any 

similarities between their localisation and that of Atl(ami) and Atl(glu), to further our 

understandings of specific functions.  

SagB and ScaH are both glucosaminidases and SceD is a lytic transglycosylase. Within our 

lab antibodies against each of these had previously been raised in rabbit and mutant strains 

created. They were therefore were deemed to be appropriate proteins to study. Mutant 

strains scaH::tet and sceD::tet were transduced with ɸ spa::kan lysate and sa1825::kan 

(SagB) was transduced with ɸ spa::tet lysate to make them compatible with 

immunofluorescence as negative controls. Transduced strains were checked with antibiotic 

selection and Western blots using α-protein A antibodies (shown in appendix II) and shown 

to be successful.  

5.2.4.1   SagB localisation 

Cells were prepared the same as prior immunolocalisation experiments (2.17.11- 2.17.12) 

with primary antibody applied at 1:1000 concentration and secondary antibody of anti-

rabbit Alexa-Fluor 594 conjugate applied at 3:1000.  

No fluorescence was seen in negative controls with no primary antibody (not shown) and 

sagB::kan spa::tet (Figure 5.23A).  SH1000 spa::kan showed a punctate patterning of SagB 
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across the cell surface (Figure 5.23B and Figure 5.23A). In most cases this punctate pattern 

was regimented and extended across the entire surface. Cross-wall binding was not seen 

although strong foci in line with active peptidoglycan synthesis suggest SagB encircles 

active growth. Several clear ribs were found and T junctions (Figure 5.24Biii) could be seen, 

which to our knowledge are unique to peptidoglycan ribs. In many cases the dot patterning 

was reminiscent of the ‘line and dot’ model, used to imply association with rib features, 

and several cells could be fitted to this (Figure 5.24B). However the basic model allows a 

maximum of four dots and this was not the case in most cells, suggesting that they bind 

elsewhere also. No difference in localisation or patterning was seen in the absence of Atl 

(Figure 5.23C and E). However ΔtarO cells showed complete disruption of patterning with 

binding seen smoothly across the whole cell surface (Figure 5.23D and E). This suggests that 

SagB binds in a similar manner to Atl however this binding pattern is not dependent on Atl. 

As with Atl(ami) and Atl(glu) cells were trypsinated to remove existing SagB and allowed to 

recover, timepoints taken, fixed and stained (2.17.8 for trypsination and 2.17.11-2.17.12  

for immunofluorescence) (Figure 5.25). SagB began to reappear at 10 min but only 29% 

showed binding and it wasn’t until 20 min when 88% were labelled. It emerged most often 

in line with active peptidoglycan synthesis either as a single dot or a ring. Rarely, SagB was 

seen perpendicular to the active plane of growth in dots.  

5.2.4.2 ScaH localisation 

Cells were prepared the same as in prior immunolocalisation experiments (2.17.11- 

2.17.12) with primary antibody applied at 1:1000 concentration and secondary antibody of 

anti-rabbit Alexa-Fluor 594 conjugate applied at 3:1000.  

No fluorescence was seen when no primary antibody was added (not shown) or in scaH::tet 

spa::kan cells (Figure 5.26A). SH1000 spa::kan cells showed a punctate pattern of binding 

across the entire cell surface which looked to be similar to that of SagB (Figure 5.26B and 

Figure 5.27). However the punctate pattern was less regimented with strong foci unequally 

distributed across the surface. Furthermore unlike SagB, cross-wall binding was seen in 

many cases (Figure 5.27A) and the ‘line and dot’ model could not be easily assigned to cells. 

However ribs were distinguished in a number of cases (Figure 5.27B). Localisation was 

slightly disrupted in Δatl spa::kan cells, with binding appearing slightly clearer and slightly 
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Figure 5.23 Localisation of SagB  

(A) sagB::kan spa::tet no longer produces SagB, no binding is seen (B) SH1000 spa::kan, binding is 

seen in a punctate pattern across the entire cell surface; (C) Δatl spa::kan cells show similar binding 

patterns to WT cells. (D)  ΔtarO spa::kan cells show complete disruption of the binding patterns. (E) 

Enlargements of SagB localisation in each strain show differences in binding patterns. Scale bar 

indicates 4µm 

E 
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Figure 5.24 SagB localisation pattern 

(A) Expaneded images of SagB localisation in SH1000 

spa::kan show the punctate patterning, reminiscent of 

‘line and dot’ model but more disordered. No cross-wall 

binding is seen but strong foci are seen in line with 

peptidoglycan synthesis. (B) Z stacks of cells showing 

matched line and dot model schematics. (Biii) shows a 

clear rib and T junction Matched models are shown to the 

right of images and an overall diagram of the location of 

rib features is shown in (C). Note in this case vancomycin 

labelling was not used to guide the ‘line and dot’ model 

because quarter ribs were seen.  
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Figure 5.25 Re-emergence of SagB after trypsination 

Each panel shows a trypsination time point, 0-60 min from top left to bottom. Row A, shows cells 

beginning septal growth; Row B, shows cells with complete septal plates and Row C shows cells 

beginning orthogonal growth (where found). Distribution patterns were assigned one of three 

classes. Scale bar represents 2µm. 

SagB began to reappear after 10 min, primarily at the septum or as a dot. Cells are very quickly 

show SagB localisation across the entire cell surface.  
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more extensive across the cell surface.  

When cells were trypsinated and labelled for ScaH re-emergence (2.17.8 for trypsination 

and 2.17.11-2.17.12 for immunofluorescence), it was seen to emerge more rapidly than 

SagB (Figure 5.28). At 10 min 11% of cells showed labelling and by 15 min 100% of cells 

were labelled whilst in SagB 29% showed labelling at 10 min but all cells were not labelled 

until 60 min. Furthermore very few cells showed dot labelling and only slightly more 

showed septal labelling, cells appeared to express ScaH across the entire cell surface.  

5.2.4.3  SceD localisation 

Cells were prepared the same as in prior immunolocalisation experiments (2.17.11- 

2.17.12) with primary antibody applied at 1:1000 concentration and secondary antibody of 

anti-rabbit Alexa-Fluor 594 conjugate applied at 3:1000. No fluorescence was seen when no 

primary antibody was added (not shown) or in sceD::tet spa::kan cells (Figure 5.29A). 

SH1000 spa::kan cells showed binding across the entire cell surface in a hazy pattern, with 

irregular bright foci within the binding and very few gaps (Figure 5.29B and Figure 5.30A). 

The bright foci were often in line with new peptidoglycan synthesis but not in all case and 

cross-wall binding was seen (Figure 5.30). Localisation was not disrupted in Δatl spa::kan 

cells and was very similar to that of WT cells (Figure 5.29C). The absence of WTA only had a 

mild effect, making the binding smoother (Figure 5.29D).  

As before cells were trypsinated to observe SceD re-emergence (2.17.8 for trypsination and 

2.17.11-2.17.12 for immunofluorescence)(Figure 5.31). Unfortunately trypsination was not 

complete in this experiment as 18% of cells at 0mins still showed binding however several 

inferences can still be drawn. Labelled cells at 0mins showed septal or dot labelling which 

suggests that cells were aggregated during the incubation and contact surface remained 

un-trypsinated. Cells are vortexed before dried onto slides revealing the un-trypsinated 

surfaces.  Re-emergence of SceD was more rapid than all other hydrolases studied as only 

2% of cells remained unlabelled after 5mins and all cells were labelled by 10mins. The 

majority of cells showed all over binding, however septal localisation and dot labelling were 

both seen at early as well as late timepoints. 



193 
 

 

              

Figure 5.26 Localisation of ScaH 

(A) ΔscaH spa::kan no longer produces ScaH, no binding is seen (B) SH1000 spa::kan, binding is seen 

in a punctate pattern across the entire cell surface similar to that of SagB; (C) Δatl spa::kan cells 

show similar binding patterns to WT cells. (D)  ΔtarO spa::kan cells show complete disruption of the 

binding patterns. (E) Enlargements of ScaH localisation in each strain showing differences. Scale bar 

indicates 4µm. 
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Figure 5.27 ScaH localisation pattern 

(A) Expanded images show binding reminiscent of the ‘line and dot’ model but more disordered. No 

cross-wall binding is seen but strong foci are seen in line with peptidoglycan synthesis (arrows); (B) 

Z stacks of cells show the presence of ribs (indicated with arrows); (Bi) shows a T junction; (Bii) 

shows a quarter rib; (Biii) shows a quarter rib and shows a clearly defined punctate pattern.  
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Figure 5.28 Re-emergence of ScaH after trypsination 

Each panel shows a trypsination time point, 0-60 min from top left to bottom. Row A, shows cells 

beginning septal growth; Row B, shows cells with complete septal plates and Row C shows cells 

beginning orthogonal growth (where found). Distribution patterns were assigned one of three 

classes. Scale bar represents 2µm. 

ScaH begins to reappear at 10mins and all cells are labelled by 15mins.Very few cells showed dot 

patterning (1.5%) and only at 10mins. Spetal localisation was seen at 10, 15 and 20 min but only in 

small amounts. The majority of labelling was all over the cell surface.  
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Figure 5.29 Localisation of SceD 

(A) sceD::kan spa::tet no longer produces SceD, no binding is seen (B) SH1000 spa::kan, binding is 

seen across the entire cell surface with irregular bright foci; (C) Δatl spa::kan cells show similar 

binding patterns to WT cells but slightly hazier. (D)  ΔtarO spa::kan cells show complete binding to 

the entire cell surface which is smoother than WT cells. (E) Enlargements of SagB localisation in 

each strain show the differences in binding patterns. Scale bar indicates 4µm. 
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Figure 5.30 SceD localisation patterns  

(A) Enlarged images show hazy binding which covers the entire cell surface. Cross-wall binding is 

seen in a number of cases (arrows) and strong foci are often in line with peptidoglycan synthesis; (B) 

Z stacks of cells from bottom to top showing binding around the entire cell; (Bi) Strong foci are in 

line with peptidoglycan synthesis; (Bii) Clear cross-wall binding; (Biii) Strong foci are not always in 

line with peptidoglycan synthesis.   
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Figure 5.31 Re-emergence of SceD after trypsination 

Each panel shows a trypsination time point, 0-60 min from top left to bottom. Row A, shows cells 

beginning septal growth; Row B, shows cells with complete septal plates and Row C shows cells 

beginning orthogonal growth (where found). Distribution patterns were assigned one of three 

classes. Scale bar represents 2µm. 

SceD trypsination was incomplete as binding is seen at 0 min. However almost all cells (97.6%) 

showed labelling at 5mins and predominantely across the whole cell surface.  
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5.3 Discussion 

Yamada et al., (1996) extensively studied the localisation of Atl amidase and 

glucosaminidase using immunoelectron microscopy. They described a ‘double-ring-like’ 

structure forming prior to complete septum formation and division. This double-ring was 

seen to split into two as the cells divide ending as mirror images at the marginal regions of 

two adjacent cells. They described a ‘ribbon-like’ arrangement from former cell divisions 

and proposed a cell-cell separation model (Figure 5.32) (Yamada et al., 1996). Both Atl(ami) 

and Atl(glu) have been confirmed as binding staphylococcal cell wall (Komatsuzawa et al., 

1997; Schlag et al., 2010) and the specific septal localisation of Atl(ami) studied by Schlag et 

al., (2010). Here we also observed septal localisation of Atl(ami) and Atl(glu) as rings. We 

observed that as cells split the rings of Atl split to a Y and then to a V shape. We did not 

observe two completely separate rings as the cells were splitting. On occasion Atl(glu) 

showed an almost ‘double-ring’ however they remained in contact at one side of the 

splitting cells at all times. It is possible that the rings seen surrounding the septum are 

double width and that limitations in the resolution of the deltavision microscope is unable 

to detect this. However when using the higher resolution STORM microscope the Atl(ami) 

line of binding appeared to only be a single fluorophore wide. It is therefore more likely 

that more Atl is produced as the cell and its site of attachment splits. The cell-cell 

separation model also implies that cell separation occurs simultaneously from both sides of 

the dividing cells. An X shaped binding pattern would indicate this and was not observed at 

any point with either antibody. It is likely that pits are made into the completed septum by 

Atl(ami) and Atl(glu) leading to instability and physical splitting from a single point of 

weakness.  

What are the sites of attachment? Yamada et al., (1996) noted that the gold particles used 

to detect Atl(glu) were not attached directly to the dense rim of the cell wall. The particles 

were an average distance of 20-50nm from the cell rim and appeared to be associated with 

fibrous material extending from the cells. Although they found colocalisation difficult, a 

potential candidate of LTA was proposed (Yamada et al., 1996). This has been supported by 

evidence that R1 and R2 can bind LTA, which lead to a model whereby Atl(ami) is 

readsorbed by LTA as it hydrolyses through the septum (Zoll et al., 2012). This model does 

not account for the ring structures which remain at marginal regions. Work within our lab  
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Figure 5.32 Cell-Cell separation model (adapted from Yamada et al., 1996) 

Yamada et al., (1996) propose the atl gene products form a ring structure on the cell surface at a 

potential septal site where processing of the Atl protein presumably takes place. Following the 

completion of the septum formation, mature forms of Atl(ami) and Atl(glu) start to digest the 

peripheral peptidoglycan connecting the daughter cells. Completion of separation produces two 

daughter cells which have already started to align the atl gene products at the site of of the new 

septum formation (Yamada et al., 1996).  

 

 

 

 

 

Atl(ami) 

New septum formation 
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has established that S.aureus lays down a thick piecrust (Chapter 1.6; Figure 1.7) before 

completion of the septal plate.  As the cells divide this piecrust is split in two and half is 

inherited by each daughter (Turner et al., 2010). This concurs with Atl(ami) localisation and 

to a lesser extent Atl(glu). Indeed when looking at Z stacks of Atl localisation, examples of 

rib and piecrust features can be found. Furthermore when analysing dot patterns seen as 

either Atl re-emerged after trypsination they could often be fitted to the ‘line and dot’ 

model, which has been used to show piecrust localisation (Bottomley, 2011). Binding was 

seen as a quarter rib in line with new peptidoglycan growth in cases of both Atl(ami) and 

Atl(glu) (Figure 5.9A and Figure 5.18Aii). As a current plane, a new piecrust would have 

formed however the binding is seen in old peptidoglycan. It is unlikely that the Atl has 

remained attached for the previous three generations and indeed this is not seen. Thus Atl 

is likely newly binding the quarter rib from previous generations made more prominent by 

the formation of the new piecrust underneath.  

In this study cells were labelled with vancomycin so that cell cycle stages could be assigned 

to binding patterns. This allowed us to build up models of how both Atl(ami) and Atl(glu) 

localise throughout the cell cycle (Figure 5.7 and Figure 5.16 respectively). Comparison of 

these models and colocalisation studies allowed us to distinguish a slight shift in localisation 

of the two hydrolases throughout the cell cycle (Figure 5.21). It appears as though Atl(glu) 

localises later than Atl(ami) to septal regions. Furthermore comparison of the re-

emergence of each hydrolase after complete trypsination showed that they have different 

timings. Atl(ami) took 10 min to reappear whilst Atl(glu) took 20 min. This difference in re-

emergence and cell cycle timing is surprising as both hydrolases are expressed together as a 

propeptide before their joint signal sequence is cleaved and further external processing 

forms the enzymes, Ami-R1-R2 and R3-Glu (Heilmann et al., 2003, 1997). Studies have 

shown that the repeat regions are responsible and sufficient for the targeting of the 

enzymes to the septal region (Baba and Schneewind, 1998; Schlag et al., 2010; Zoll et al., 

2012). Atl(glu) only has one repeat region it is therefore possible that it is less sensitive to 

the piecrust than Atl(ami).  

Colocalisation of Atl with the peptidoglycan rib features using STORMForce was hampered 

by time constraints for this thesis. However preparatory work for this new microscope 

began with STORM protocol refinement. Unfortunately efforts to get images were largely 
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unsuccessful, primarily due to a high background level which attempts to resolve resulted 

in no significant binding.  

More Atl and differently processed Atl forms were observed to bind the cell wall in 

SA113ΔtarO strains (Schlag et al., 2010). This leads to the observation that Atl(ami) loses its 

septal localisation in the absence of WTA (Schlag et al., 2010). This localisation has been 

attributed to the repeat regions and they too were observed to be better recruited in a 

ΔtarO strain (Schlag et al., 2010). Furthermore externally applied Atl repeat regions were 

shown to localise separately to WTA and bind uniformly in a WTA deficient mutant (Biswas 

et al., 2012; Schlag et al., 2010; Zoll et al., 2012). We also observed complete delocalisation 

of Atl(ami) and also Alt(glu) in the absence of WTA. Bright foci were seen with both 

antibodies in line with septal growth in a number of cases which could be attributed to rib 

‘bulges’ in the cell wall. Work performed within Chapter 4 showed that in a ΔsrtA strain 

WTA can be specifically labelled and it was hoped that dual labelling with antibody and 

lectin would show differences in localisation. This was not possible because ConA appears 

to be very ‘sticky’ and bound both vancomycin and antibody, creating artefacts in its 

binding pattern. However work within Chapter 4 suggested that the hazy punctate/dotty 

pattern of WTA localisation could be due to the piecrust features intersecting its binding. 

This suggests that the piecrust peptidoglycan is unmodified by WTA, although we have no 

biochemical data to support this.  

Interestingly when studying the glucosaminidases ScaH and SagB, we found their 

localisation to be very similar. Although more disordered, the binding was reminiscent of 

Atl binding and septal/rib binding was commonly seen. Although no crosswall binding was 

seen, exposed nascent peptidoglycan was bound. Furthermore bright foci were commonly 

seen at the septum. These obseravations support the recent discovery that 

glucosaminidases are responsible for peptidoglycan maturation and therefore expected to 

localise with sites of synthesis and bind nascent peptidoglycan. Quarter rib binding suggests 

that glucosaminidases are present before new piecrusts have formed, however both 

showed a low level of binding across the cell surface. Binding was fully delocalised in WTA 

deficient mutants. Other S.aureus hydrolases, Sle1 and LytN, have also been shown to be 

unable to bind peptidoglycan in the presence of WTA and to bind uniformly across the cell 
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surface in the absence of WTAs (Frankel and Schneewind, 2012). This further supports our 

hypothesis that ribs do not contain WTA.  

The lytic transglycosylase SceD was seen to localise uniformly across the entire cell surface. 

Lytic transglycosylases have been proposed as having a role in cell wall turnover and this 

localisation pattern supports this (Kraft et al., 1999). However, the only other lytic 

transglycosylase in S.aureus, IsaA, localises predominately to the septal region (Sakata et 

al., 2005). SceD was the fastest of the studied hydrolases, taking only 5 mins to reappear 

after trypsination. Faint cross-wall binding was seen in a number of cases. SceD’s role in 

peptidoglycan maturation is vital for cell growth and therefore it is unsurprisng that it 

rapidly reappears. Cross-wall localisation suggests that it has the ability to bind nascent 

peptidoglycan or that it is delivered directly to the cross-wall compartment. Several other 

known hydrolases, LytN and Sle1, have been shown to be produced here via their LysM 

domains (Frankel and Schneewind, 2012). 
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CHAPTER 6 

General discussion 

The understanding of cellular functions requires detailed knowledge of all factors, the 

specific interactions and modifications as well as their distribution in the cell and the 

dynamic cell cycle changes thereof. From the very beginning, microscopy has played a key 

role in cell biology. However early attempts to characterise the architecture of the 

peptidoglycan network and the distribution of associated surface proteins were hampered 

by the limitations of the available technology. This led to the general view of a simplistic, 

homogenous network of peptidoglycan studded with uniform surface proteins. However, 

thanks to the development and application of nanometre resolution imaging technologies it 

has begun to be possible to overcome this barrier, and has led to rapid developments in our 

understanding.  

6.1 S.aureus peptidoglycan architecture  

Although relatively early studies showed that the sacculus of S.aureus was heterogeneous 

in thickness (Giesbrecht et al., 1998; Gilbo et al., 1967; Touhami et al., 2004), only recently 

has this been closely examined. The sacculus architecture has been found to transition 

from ring-like to knobbly as it ages, and to be dissected by thicker equatorial bands of 

piecrust peptidoglycan as well as the orthogonal ribs left from previous piecrust features 

(Turner et al., 2010; Wheeler, 2012; observed in Chapter 4). The ring architecture itself is 

not new and has been observed in the septa of gram-positive rods, cocci and ovococci 

(Amako and Umeda, 1978; Andre et al., 2011; Hayhurst et al., 2008; Turner et al., 2010; 

Wheeler et al., 2011). It is known to be associated with nascent cell wall, and was shown in 

S.aureus by scanning electron imaging of daughter cells (Giesbrecht et al., 1998). To 

account for the changing architecture of peptidoglycan a novel growth by hydrolysis model 

was recently proposed (Turner et al., 2010; Section 1.6; Figure 1.7B). When combined with 

piecrust features, the model of growth is as follows and schematically shown in Figure 6.1. 

The plane of division selected contains the quarter rib where the cell lays down a new belt 

of thick peptidoglycan (piecrust) before septal plate formation. Long, inelastic, glycan 

strands are centripetal orientated to make the septal plate and the cell is split by the  
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Figure 6.1 Division plane growth choice through peptidoglycan ribs and growth by 

hydrolysis and piecrust (Wheeler R., 2012) 

Black lines indicate the orientation of peptidoglycan ribs and the two peptidoglycan 

architectures, ring and knobbles, are schematically represented. (A) A mature spherical 

S.aureus has knobbled peptidoglycan architecture. S.aureus synthesises a septal cross-wall 

in the plane of the quarter rib (indicated). (B) The cell divides into two daughter cells, 

exposing a flat cross-wall with ring architecture. (C) The densely packed glycan strands are 

quickly cleaved by glucosaminidases, observed as a transitioning from ring to knobbly 

texture, and turgor pressure causes the cell to expand. (D) The ring architecture is lost as 

the cell wall matures.   
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action of hydrolases. The centripetal glycan strands radially constrain the cross-wall and 

prevents volume increase of daughter cells. The peptidoglycan band braces the cell and 

prevents collapse to a more energetically favourable smaller sphere, resulting in a brief 

period as a hemispherical cell. As the glycan chains are hydrolysed by glucosaminidases the 

stress bearing function is shared with more flexible peptide stems and the cell can expand 

under turgor pressure (Turner et al., 2010). AFM work performed here has confirmed these 

peptidoglycan architectures and features (Chapter 4). 

6.2 How does a sphere divide faithfully in three planes?  

Unlike rod-shaped organisms, S.aureus does not use either the oscillating mechanism or the 

stable polar-localisation of the Min system to prevent cell division at the poles. Despite the 

gram-negative coccus Neisseria gonorrhoeae hypothesised to use a putative oscillatory 

mechanism to divide on two orthogonal planes (Ramirez-Arcos et al., 2002), no Min 

homologues have been identified in S.aureus and a divIVA mutant had no effect (Pinho and 

Errington, 2004). However, it has been shown that depletion of S.aureus nucleoid occlusion 

factor, Noc results in the formation of multiple Z rings which are no longer perpendicular 

(Veiga et al., 2011). Thus although S.aureus can use Noc to determine division plane and 

prevent Z-ring formation over the bacterial chromosome, this only accounts for two 

orthogonal planes. The characterisation of the peptidoglycan ‘piecrust’ features and the 

intersecting ribs left from previous divisions offers a means of recording previous divisions, 

as discussed in Section 1.6 (Figure 1.7). Together, a model in which chromosome 

segregation occurs parallel to the quarter rib can be established allowing orthogonal 

growth on three planes (Figure 6.2) (Turner et al., 2010; Veiga et al., 2011). It has been 

hypothesised that DivIB plays an important role as the link between the two processes, 

recognising the piecrust features and coordinating the divisome accordingly (Bottomley, 

2011). However it still remains unclear whether coordination of division is driven by the 

division machinery, chromosome segregation machinery or both.  

6.3 How are the ‘piecrust’ features recognised?  

Several mechanisms of how piecrust features are ‘sensed’ by proteins have been 

suggested. Firstly, the ribs could be furnished during synthesis with an anchoring protein 

that recruits others. However with successive divisions the rib gets shorter and thus the 
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most recent rib would contain the most anchoring protein. Secondly, the ribs could 

physically impose local membrane curvature which is recognised by a protein sensor. 

Although several protein domains, Bar and ALPS, have been identified as capable of this 

none of the proteins showing ‘piecrust’ localisation have been shown to contain these 

domains (Antonny, 2011). It is also possible that the ribs are close enough to the cell 

membrane to encourage the binding of membrane anchored proteins and/or it could 

potentially displace LTAs which may be inhibiting protein localisation. However this does 

not account for external proteins that localise in a ‘piecrust’ pattern. Finally the 

peptidoglycan chemistry of the ribs themselves could be distinct and direct recognition for 

protein binding. Work within this study has suggested that the peptidoglycan architectural 

features are devoid of WTA, thereby directing certain proteins to them. Indeed the 

membrane protein DivIB has shown ‘piecrust’ localisation and a decrease in affinity for 

peptidoglycan containing WTA (Bottomley, 2011). Whilst the external Atl has been shown 

to localise to piecrust features (chapter 5), to delocalise in a ΔtarO mutant (chapter 5) and 

WTA have been shown to modulate Atl autolytic activity (Biswas et al., 2006).  

6.4 Where are WTAs localised? 

 AFM studies showed WTA as a ‘fluffy’ or ‘furry’ layer that extends across the entire cell 

surface (Chapter 4). Immunoelectron microscopy has also suggested that WTA are 

uniformly expressed across the cell wall of  S.aureus (Umeda et al., 1992). Furthermore, EM 

studies showed that S.aureus cells have a continuous electron-dense layer at the cell 

surface that continues down the centre of the division plane as separation occurs and that 

this layer is composed of WTA-rich peptidoglycan (Matias and Beveridge, 2007). However, 

using the more sensitive technique of cryo-EM, it was found that the septum is comprised 

of two electron-dense layers separated by a less dense midzone layer (Matias and 

Beveridge, 2007), implying WTAs may not be uniformly localised throughout the 

peptidoglycan, at least during septum formation. Labelling of WTA with ConA has also 

shown a lack of septal binding (Schlag et al., 2010). However TarO(TagO) has previously 

been localised at the septum in S.aureus (Atilano et al., 2010) and my work has shown that 

TarO, along with three other WTA biosynthesis proteins (MsrR, SA2103 and SA0908), 

interact with a number of cell division proteins. This suggests that WTA biosynthesis 

machinery interacts with, and therefore likely localises with, the divisome of S.aureus. 
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Interestingly, both Schlag et al., (2010) and Atilano et al., (2010) have suggested that WTA 

are not present at the septum in their fully polymerised mature form. However work here 

has shown that the LCP proteins, (MsrR, SA2103 and SA0908) involved in the final ligation 

step of WTA synthesis (Dengler et al., 2012; Over et al., 2011), interact with many divisome 

components and thus suggesting that fully polymerised WTA are indeed produced at the 

septum.  

Direct visualisation of WTA localisation was performed using the lectin ConA under the 

identified appropriate conditions for specific labelling (ΔsrtA, pronase treated WT cells). 

The binding was not the reported uniform layer and that it was found at the septum 

although it did not extend into the crosswall. It has been noted that large molecules cannot 

access the cross-wall compartment (DeDent et al., 2008; Pinho and Errington, 2003) and, 

although not witnessed here, may not penetrate the nascent cross-wall even after daughter 

cell separation (Wheeler, 2012). The gaps within the layer of WTA are proposed as being 

caused by piecrust and rib features intersecting the binding and we suggest that WTA are 

not present on the piecrust features (Figure 6.3A-B). AFM imaging of wild type sacculi did 

not show gaps in the WTA ‘furry’ layer across the piecrust features. It is likely that during 

preparation of the samples the long WTA have folded down across the piecrust features, 

obscuring a narrow bare channel. It is likely that older segments of cell wall may contain 

less WTA as the cell wall is hydrolysed (Figure 6.3A-B).  

6.5 Which cellular processes do WTA influence? 

There is much evidence linking WTA to growth, cell division, and morphogenesis. 

Simultaneous inhibition of TarO and native transpeptidases was synthetically lethal 

(Campbell et al., 2011) and a S.aureus ΔtarO displayed defective septation, with multiple 

septa frequently initiated at non-orthogonal angles. This links division and WTA and 

suggests that the biosynthetic machinery involved is unregulated in the ΔtarO mutant 

(Campbell et al., 2011). The aforementioned protein DivIB has been suggested as the 

potential division link with depletion mutants showing multiple deregulated septa 

(Bottomley, 2011). A functional link between elongation machinery and WTA biosynthesis 

has been  indicated by deletion mutants of tagO in B.subtilis leading to the rounding of cells 

(Soldo et al., 2002). The localisation of PBP4, the transpeptidase responsible for 
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Figure 6.2 The localisation of WTA and how it directs proteins localisation 

(A) The three plane orthogonal division of S.aureus results in a patchwork of different age 

peptidoglycan segment, bisected by peptidoglycan ‘piecrusts’ and ribs from previous 

divisions. Coloured segments differ in age; Green, no generations old, Yellow, one 

generation old; Blue, 2 generations old; Red, three+ generations old. Black lines, piecrust 

and rib features. (B) WTA is not present at the piecrust or ribs features. Red, WTA 

localisation; Thick black, piecrust and rib features (C) The lack of WTA exposes the piecrust 

peptidoglycan to binding by hydrolases. Red lines, binding sites of hydrolases.  
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the characteristic high cross-linking of S.aureus peptidoglycan (Memmi et al., 2008), was 

shown to be spatially dependent on WTA (Atilano et al., 2010). Furthermore, it was 

suggested that TagO (TarO) acted as a temporal indicator of completion of initial 

peptidoglycan synthesis, controlling the activity of PBP4 which leads to an increase in cross-

linking (Atilano et al., 2010). WTA has been shown to modulate the activity of autolysins by 

binding protons and maintaining an acidic pH in which hydrolases, largely Atl, decline in 

function thus protecting the cell from autolysis (Biswas et al., 2012). In addition work, both 

within this study and by others, has also indicated that WTA are responsible for the 

localisation of several hydrolases required for cell separation; SagB (Chapter 5), Atl (Schlag 

et al., 2010; Chapter 5), ScaH (Chapter 5) and Sle1 (Heilmann et al., 2005). Such a diverse 

number of proteins are unlikely to have a common domain involved in localisation that is 

affected by WTA. Indeed if we look at the hydrolases involved in septum cleavage which 

are delocalised in a tarO mutant; Atl contains the three repeat regions for localisation (Baba 

and Schneewind, 1998; Biswas et al., 2006; Schlag et al., 2010; Chapter 5); Sle1 contains a 

LysM domains (Heilmann et al., 2005) and ScaH a CHAP domain (Bateman and Rawlings, 

2003; Rigden et al., 2003; Chapter 5). This variety of binding domains supports a non-

specific model of steric hindrance, where WTA block all available binding sites except the 

piecrust peptidoglycan (Figure 6.3C). However, we have also shown that SceD is not WTA 

dependant and present across the entire cell surface (Chapter 5).  

6.6 How is the active division plane differentiated from others? 

How are proteins directed to the septum and not all ‘piecrust’ features? How do hydrolases 

know which ‘piecrust’ rib feature is in the current plane of growth? It seems reasonable 

that in older segments there may be less WTA as peptidoglycan is hydrolysed and lost with 

its binding partners. Thus in older segments a loss of density and/or height may allow for 

the oldest piecrust, the quarter rib, to be uncovered and the correct plane of division 

selected for growth. As this growth commences, the newest piecrust is formed under the 

old piecrust, as the ‘inside-to-outside’ model would suggest, and could make the old 

piecrust quarter section more prominent (Figure 6.4). It is here that Atl binds first and then 

the rest of the new piecrust. If it does indeed bind this quarter rib section first then this 

receives hydrolysis for the longest periods and could be the point of weakness from which 

the cell splits. Atl binds the new piecrust preferentially because it is the largest, as all other 
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Figure 6.4 Cells split from one side only 

The quarter rib section of the new piecrust has been available for action of the hydrolases 

for the longest and as a new piecrust forms underneath is prominent from the outside. It 

could therefore have received the longest and the most hydrolytic action. This section 

could therefore be the point of weakness from which the cell splits. Continued hydrolysis 

thins the quarter rib section of the new piecrust. Blue, whole rib; Red, half rib; Orange, 

quarter rib; Black, new piecrust; Green, peptidoglycan synthesis. 
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piecrusts have undergone a degree of hydrolysis. Additonally, Atl(ami), and to a much 

lesser extent Atl(glu), show septal localisation early on in the division process (before the 

completion of the septal plate) which further indicates that the piecrust peptidoglycan is 

produced without WTA as oppose to it being displaced. However this current plane specific 

localisation is not seen with hydrolases such as SagB and ScaH. This could be that they are 

less modulated by WTA than Atl and so able to attach and function despite WTA 

encroachment and the localised acidic pH, or that their LysM binding domains are less 

sensitive than the repeat regions. Furthermore differences in observed foci size could be 

explained by difference in rib thickness due to the peptidoglycan turnover with each 

generation’s growth.   

6.7 Future work 

Further work with STORM would help to refine the Atl cell cycle model and its localisation 

patterns (Does Atl(glu) form a ‘double-ring’?). Indeed video-rate SIM capable of super-

resolution imaging in the tens of milliseconds time-frame could be applied for visualisation 

of Atl cell cycle dynamics in vivo (Lefman et al., 2011). Both techniques could also be used 

to study the movements of ScaH and SagB, here we have shown that they are produced 

primarily at the septum is this how they arrive at all piecrusts? Although we are suggesting 

that the peptidoglycan ‘piecrust’ and rib features have a different composition to the rest 

of the sacculus, there is no chemical proof or direct visualisation of this. It has proven 

difficult to resolve individual glycan strands or peptide stems from the surrounding 

peptidoglycan using non-differential techniques such as AFM and EM (Elliott et al., 1975; 

Giesbrecht et al., 1998; Hayhurst et al., 2008; Touhami et al., 2004; Turner et al., 2010). 

Theoretically single glycan strands could be found by observing hydrolysis with lysostaphin 

however the peptidoglycan network has proven too complex to examine its chemistry 

(Francius et al., 2008). Simultaneous AFM and fluorescence imaging in S.aureus would show 

direct localisation of the Atl, SagB and ScaH to specific peptidoglycan features. The 

technology to do this is in the early stages of development; STORMForce combines AFM 

and STORM technologies and has been used to observe new growth with vancomycin 

alongside peptidoglycan architecture so far (Foster, unpublished). Sadly, time constraints 

for this thesis prevented use of this technique within my study.  
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As well as increased resolution microscopy, localisation studies could be addressed 

biologically. Cell wall synthesis is dispersed across the entire cell wall when S.aureus is 

depleted of FtsZ causing formation of enlarged spherical cells (Pinho and Errington, 2003). 

In such cells, it is likely that the rib architecture is disrupted and thus immunolocalisation of 

piecrust localising proteins would also show a dispersed pattern. In addition to disrupting 

the piecrust features, their generation could be observed. By creating S.aureus protoplasts 

previous ribs are erased as the cells regenerate their cell wall and re-establish orthogonal 

division, the hydrolase localisation can be studied. It is worth noting that regenerating 

protoplasts have abnormal cell division (Gruss and Novick, 1986) and the cell physiology is 

greatly perturbed in regenerating protoplasts (Elliott et al., 1975) making the interpretation 

of these results very difficult.  

Overall, my work provides a further insight into the localisation of WTA and a mechanism 

which controls the pattern of display of surface proteins. This study offers a refinement on 

how a spherical bacterium can faithfully divide in three orthogonal planes. The study of 

fundamental processes like cell division is vital to our understanding of a clinically relevant 

pathogen and the prokaryote specific structure peptidoglycan.  
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Figure A.1 BACTH analysis of S.aureus cell division proteins against T18-POIs  

Pairwise interactions of T18-POIs  with T25 fused S.aureus cell division proteins. 10µl 

samples of a 1:100 dilution of overnight culture of co-transformed BTH101 were spotted 

onto minimal medium containing 150µg ml-1 X-gal and incubated at 30°C for a minimum of 

18hrs. +ve, T25-zip~T18-zip; -ve, pKT25~pUT18C. 
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Figure A.1 BACTH analysis of S.aureus cell division proteins against T25-POIs  

Pairwise interactions of T25-POIs  with T18 fused S.aureus cell division proteins. 10µl 

samples of a 1:100 dilution of overnight culture of co-transformed BTH101 were spotted 

onto minimal medium containing 150µg ml-1 X-gal and incubated at 30°C for a minimum of 

18hrs. +ve, T25-zip~T18-zip; -ve, pKT25~pUT18C. 
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Appendix II 

 

Figure B.1 α-protein A western blots 

Strains were transformed with spa::kan lysates and tested with α-protein A; 1° antibody 

1:5000; 2° antibody 1:20000. Lane 1, SH1000 lysate; Lane 2, ΔsrtA spa::kan lysate; Lane 3 

ΔsceD spa::kan lysate; Lane4 ΔscaH spa::kan lysate; Lane 5 ΔisdA spa::kan lysate.   

 

 

Figure B.2 α-protein A western blots 

Strains were transformed with spa::tet lysates and 

tested with α-protein A; 1° antibody 1:5000; 2° 

antibody 1:20000. Lane 1, SH1000 lysate; Lane 2, 

ΔsagB spa::tet lysate. 

 

 

Figure B.3 α-protein A western blots 

Strains were transformed with spa::kan 

lysates and tested with α-protein A; 1° 

antibody 1:5000; 2° antibody 1:20000. Lane 1, 

ΔtarO spa::kan lysate (colony 1); Lane 2 ΔtarO 

spa::kan lysate (colony 2); Lane 3 ΔtarO 

lysate. 

 


