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Abstract

This thesis concerns a novel coarse graining method for the simulation of the glob-

ular proteins. Conventional simulation methods such as molecular dynamics cannot

generate sufficient times to reach the important timescales that govern the biology of

large biological systems like molecular motors. To address this, I have developed a

new coarse graining algorithm drawing on the techniques of continuum mechanics and

finite element analysis to build a new simulation technique. The novel part of this

algorithm is that the fluctuation dissipation relation for the system can be derived and

solved locally. This avoids the need to invert a global resistance matrix to solve for

the thermal noise component of the system and reduces the computational expense of

the algorithm per time step. I have validated this coarse grained model by performing

a variety of tests on the numerical code including spatial and temporal convergence

tests using Fourier analysis and beam bending theory. In addition compliance with the

equipartition theorem has been confirmed.

One key advantage of this method over atomistic techniques is that the coarse

grained method does not require any atomic information ab intio. Thus, this method

can interface with low resolution imaging techniques such as Small Angle X-Ray Scat-

tering and Cryo-Electron Microscopy. In this thesis, I show how to construct a finite

element mesh from both of these sources and run simulations to replicate the results

from Small Angle X-Ray Scattering and Cryo-Electron Microscopy experiments. In

more detail, I have taken a structure obtained using Small Angle X-ray Scattering,

ran simulations and checked that the dynamics do not affect the average X-Ray scat-

tering curve. Furthermore, using experimentally obtained structures and dynamics of

the molecular motor dynein I have run simulations to find the elastic parameters that

match the experimental data to map the overall dynamics of the dynein motor.
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Chapter 1

Introduction

In this chapter, I will introduce the state of the art of biological simulations across a

variety of length and time scales. In doing so, I highlight a length and time scale gap

in the current state of the art. There are well established simulation techniques for

small biomolecules of sizes up to 10Å that can reach biologically relevant time scales,

of order 1ms, such as molecular dynamics (MD)[2]. At long length and time scales,

where thermal fluctuations are negligible, there are macroscopic simulation techniques

such as finite volume and finite element methods[3]. However, there are relatively few

techniques that are capable of simulating the thermal fluctuations of biomolecules with

sizes greater than 10nm such as molecular motors and large protein assemblies like the

ribosome[4] for long periods of time on the scale of 1µs[5]. The purpose of this thesis

is to address this mesoscale simulation gap by employing a new simulation strategy

that extends traditional continuum mechanics and finite element analysis down into

the mesoscale. I will present a brief summary of the important physics at different

length scales and a summary of the relevant simulation techniques in Section 1.1 before

discussing the Langevin equation in Section 1.2 and finite element analysis in Section

1.3.
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Figure 1.1: The current state of the art in biological simulation showing the length and
time scale gap in green.

1.1 The Physics of Biology

Biology exploits different length and time scales as well as different physics ranging from

quantum mechanics[6], thermodynamics[7] and fluid mechanics[8] to achieve functional-

ity. In order to explain these phenomena different computational techniques have been

developed. In this section, I will discuss the different physics and simulation methods

used in the nanoscale in Sections (1.1.1) and (1.1.2), the macroscale in Sections (1.1.3)

and (1.1.4) and the mesoscale in Sections (1.1.5) and (1.1.6). In order, to try to un-

derstand these length and time scales, Figure 1.1 approximately gives the appropriate

ranges of different regimes of physics and the computational techniques used to study

them.

1.1.1 The Nanoscale

The nanoscale loosely refers to systems with typical length scales between an angstrom

and a nanometer or with time scales less than a nanosecond. In this regime, the

properties of individual atoms are important and can be described either by quan-

tum mechanics[9] or classical atomistic physics[10]. This regime contains a variety of

physics vital to life including enzyme catalysis[11], molecular recognition[12] and pro-
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tein folding[13]. Of these systems, enzyme catalysis is a truly quantum problem as it

involves the transfer of electrons whereas the remaining problems can be tackled using

classical physics.

1.1.2 Nanoscale Simulation Techniques

In order to understand problems in the nanoscale, a variety of simulation techniques

have been developed. These include Molecular Dynamics (MD)[14] and Quantum

Chemistry[15]. However, these methods are both computationally expensive and it is of-

ten impractical to simulate large macromolecules[16]. As a consequence, coarse grained

methods have been developed such as Go-Models[17] and Elastic Network Models[18]

to extend the range of lengths and times accessible to simulation.

Quantum Chemistry

Quantum chemical methods look at electronic structure within small fragments of

biomolecules or crystal structures. These techniques look at the smallest length and

time scales in biophysics. Quantum mechanics in biology has been shown to be relevant

in the study of photosynthesis[19] and stacking interactions in DNA[20]. There are a

variety of software that apply the techniques of density functional theory[21] to solve

these sort of problems such as Gaussian[15]. These computational techniques are also

used to parametrise molecular dynamics forcefields[22].

Molecular Dynamics

Molecular Dynamics is a classical technique that resolves the forces on every atom in

a system. The forces on each atom are calculated through the use of a forcefield that

includes forces related to the bond angles and lengths between specific atoms, coulombic

interactions between charged particles and the Lennard-Jones potential[23]. The solvent

that a protein is immersed in can be treated explicitly using the TIP3P[24] water

model that includes both electrostatic interactions and the Lennard-Jones potential or

11



implicitly where the external water is treated as a continuum[25].

While molecular dynamics provides a detailed view of biological matter, this tech-

nique is computationally expensive for large molecules[16]. This is a consequence of

the range of time scales that molecular dynamics resolves from the bond frequency of

hydrogen atoms with a period 1fs[5] to protein folding that can be on the order of

1ms[26]. As a consequence the time step for a molecular dynamics simulation has to

be of order 1fs. Molecular dynamics is also computationally expensive because the

interactions between all possible pairings of atoms must be included. Thus, even with

modern supercomputers it is not possible to simulate the longer biologically relevant

time scales. An additional restriction is that MD requires the entire atomic structure

of the molecule to be known.

Molecular dynamics has been used to study protein folding, DNA topology[27],

drug design[28] and membrane proteins[29]. Today, molecular dynamics is a widely

used as shown by the number of different molecular dynamics software packages such

as Gromacs[30], Amber[31] and NAMD[32]. There are also a number of coarse grained

molecular dynamics methods that I will discuss next.

Coarse Grained Molecular Dynamics

To extend the accessible length and time scales accessible to MD a variety of coarse

grained methods have been developed. One approach is to coarse grain every individual

atom in the system into a group of atoms to form virtual particles and resolve the

forces between the virtual particles[33]. This method of coarse graining is exemplified

by the Martini forcefield[33] for molecular dynamics. This reduces the total size of the

computational loop and thus extends the system sizes that one can probe with molecular

dynamics. This technique has been applied widely applied to lipid membranes[34].

Alternative schemes for coarse graining molecular dynamics also include manipu-

lating the forcefield by placing a guiding potential into the forcefield. For example,

proteins will have a native state and then a variety of different folded states. A protein

12



will take a long period of time to go from one folded state to another often well beyond

the time scale accessible to conventional molecular dynamics. However, if one places an

attractive potential that guides the dynamics in a particular direction then this reduces

the necessary simulation time. This method is known as Go-Model[35] and has been

widely used to study protein folding using fully atomistic molecular dynamics[36].

Elastic Network Models

Elastic network models[37] are divided into two broad categories Anisotropic Network

Models (ANM) and Gaussian Network Models (GNM). Both methods utilise a series

of nodes connected by springs, the difference being between the two methods being the

potential chosen to represent the spring. The nodes are selected to be positioned at

key residues within the structure of a protein such as the location of carbon atoms. In

the ANM all nodes within a certain distance of one another are connected together by

Hookean springs but with potentially different spring constants. In the GNM the nodes

are positioned in the same manner as an ANM but with the spring potential that may

be a function of direction as well as distance between the nodes.

In order to generate the overall motion of either an ANM or a GNM normal mode

analysis can be performed in order to extract the bulk motions of network. Thus,

elastic network models can eliminate the time scale problems associated with MD and

obtain the longest time scale motions of a biomolecule without the need for extensive

simulation. However, by removing all the physics except for the elastic potentials it

is impossible for an elastic network to either simulate effects due to hydrophobicity,

electrostatic interactions or multiple body systems.

Currently elastic network models have been applied to a wide variety of proteins

and there are many online servers that will now predict and visualise the the motions of

molecules within the Protein Data Bank (PDB)[38] on request[39] [40]. Elastic network

models have also been used to steer molecular dynamics simulations[37].
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1.1.3 The Macroscale

The macroscale refers to systems with length scales greater than a millimetre and time

scales greater than a millisecond. The dominant physics in this regime is given by

continuum mechanics as there are sufficiently many atoms that atomic detail can be

ignored. The physics of the macroscale governs how entire organs and tissues work such

as the heart pumping blood around the body.

1.1.4 Macroscale Simulation Methods

In the macroscale, materials are modelled using continuum models that average over

the molecular detail and represent the solution in terms of continuously differentiable

fields. The governing physics is incorporated into a series of partial differential equa-

tions that describe the evolution of the system called the continuum equations. There

are a range of well established numerical algorithms for solving these systems, including

finite difference, finite volume and finite element methods.

Finite Difference

The finite difference method discretises the domain of a continuum equation into a series

of nodes and uses finite difference between values on these nodes to approximate deriva-

tives. This method is easy to implement and typically uses a structured grid across the

domain of the continuum equation[41]. A major disadvantage of this solution method is

that the distances between nodes must be much smaller than the smallest length scale

of the system being studied. When the continuum equation has a complex domain

that evolves with time, as is the case with blood vessels or the human heart, or sharp

changes in the fluid flow[42] the finite difference method can become computationally

expensive as a new grid might have to be found to maintain the accuracy of the solution.

Finite Volume

The finite volume method[43] is related to the finite difference method in that the do-
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main of the continuum equation is resolved on a grid. However, in the finite volume

method the grid is not required to be structured. Around each node in the grid, a

volume is defined and the continuum equation converted into a surface integral across

the surfaces that connect the volumes in the grid. The solution can then be time

stepped by computing the flux across each surface and updating the solution of the

continuum equation on each node. The advantage of this method is that the solution is

forced to conserve material flowing between elements and thus replicates fluid dynam-

ics. Thus, this method can model fluid flow very efficiently in complicated geometries.

This method has been applied to biological flows such as blood flow[44].

Finite Elements

The finite element method will be discussed in more detail in Section 1.3 as it forms the

basis for the numerical algorithm presented in this thesis. At the macroscale, the finite

element method has been applied to the study of blood flow in the human heart[3] and

muscles[45].

1.1.5 The Mesoscale

For the purpose of this thesis, we shall consider the mesoscale to involve time scales

greater than a nanosecond and less than a microsecond as well as length scales greater

than a nanometer but less than a micrometer. The physics encountered in this region

is diverse, ranging from low Reynolds number fluids[46], polymer physics[47], thermal

physics[48] and atomistic physics[49]. The problem of the mesoscale is that in this

regime, there is not one singular piece of physics that is important, this regime is

driven by the connections between different realms of physics. For this reason, we will

divide the mesoscale into two sections, upper and lower, as shown in Figure 1.1. The

difference between these realms is length scale and its relation to the importance of

thermal noise. The lower mesoscale includes systems such as cytoplasmic crowding[50],

molecular motors and refers to systems with lengths on the order of nanometers, in
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this regime thermal noise is important. The upper mesoscale refers to systems with

lengths on the order one micrometer where thermal noise is not important describing

such biological systems as individual cells and micro swimmers[51] like sperm. In this

thesis, we are concerned primarily with the lower mesoscale and systems where thermal

noise is important.

1.1.6 Mesoscale Simulation Techniques

One approach to simulation in the mesoscale is to extend the range of the continuum

methods encountered in the macroscale into the mesoscale. In order to go to smaller

length scales it is necessary to incorporate thermal noise into the model. Thermal

noise can be incorporated into the continuum equations[52]. This replaces the system

of continuum equations with a system of stochastic partial differential equations. This

technique has been used to study the dynamics of particle suspensions[53], deformation

of vesicles dragged by molecular motors[54] and the effect of shape on adhesion by

including the thermal fluctuations as well as the mean flow in the background fluid[55].

An alternative to solutions of the continuum equations (using finite element or

finite volume schemes) are methods that use simulations of systems of virtual parti-

cles to reproduce the continuum equations. Such methods include lattice Boltzmann

methods[56], and lattice free methods such as dissipative particle dynamics[57], where

the fluid motion is obtained from a simulation of collisions between soft particles. Even

less sophisticated methods are available in Brownian Dynamics[58] where hydrodynam-

ics is ignored entirely.

In these simulations the particles do not represent the underlying microstructure,

but provide a means for transporting momentum. They are particularly suited to stud-

ies of suspensions where the suspended objects can be formed by joining together lattice

sites of Dissipative Particle Dynamics (DPD) particles. This has led to their application

to the simulation of blood flow in micro channels[59].
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Lattice Boltzmann Method

The lattice Boltzmann method[56] is derived by consideration of the Boltzmann equa-

tion. The method uses a lattice wherein for each node of the lattice a velocity probability

distribution function is defined. In each time step of the simulation, the probability

distribution function on each node is updated using a collision operator that describes

how the probability distributions of various nodes interact with one another. The col-

lision operator conserves momentum and energy between time steps. Thus, at long

length scales many times the distance between nodes on the lattice hydrodynamics is

recovered. This technique has been applied to deformable particle suspensions such as

blood cells, turbulence and microfluidics[56].

Dissipative Particle Dynamics

DPD[57] is a variant of the Brownian Dynamics method where momentum is conserved

locally. In general, there is a lot of similarity between Brownian Dynamics and DPD.

They are both particle based methods that might be connected by some conservative

potential but the difference comes in the way the viscosity is calculated and the corre-

sponding random force. The force on the ith particle in dissipative particle dynamics

is:

fi =
∑

i 6=j

(FD
ij + FC

ij + FT
ij ). (1.1)

where FD
ij is the dissipative force, FC

ij is the conservative force and FT
ij is the thermal

force.

What makes DPD unique is that all the forces FD
ij , F

C
ij and FT

ij are all antisymmetric

under permutation of i and j. Thus, the total force between two particles in the DPD

system is always equal and opposite. As the forces are antisymmetric, momentum is

conserved locally. To demonstrate this, we will consider the viscous force FD
ij given by:

FD
ij = −γw(r̂ij · vij)r̂ij. (1.2)
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Equation (1.2) is antisymmetric under permutation of i and j because:

vij = vi − vj. (1.3)

Conservation of momentum locally is important because this gives rise to fluid me-

chanics without the need to solve the continuum fluid equations. Therefore, DPD

does include hydrodynamic interactions, unlike Brownian Dynamics. DPD has been

applied to red blood cells[60], polymers[61], surfactants[62] and suspensions of DNA

under flow[63].

Brownian Dynamics

Brownian dynamics[58][64] is a simulation method wherein a series of point particles

are subject to the Langevin equation (discussed in more detail in Section 1.2) plus an

interaction potential such that the equation of motion for each particle is given by:

m
d2x

dt2
= −λdx

dt
+ E(t) + f(t). (1.4)

Where E(t) is derived from a conservative interaction potential, a typical example being

the Lennard Jones potential, f(t) is a stochastic force vector with statistics chosen to

conserve classical thermodynamics and λ is a drag coefficient.

The viscosity present in Brownian dynamics comes from the particle dragging against

a viscous background medium, not from particle interaction. Thus, the momentum in a

Brownian dynamics simulation is not conserved. The consequence of this is that there

is no hydrodynamics in a Brownian dynamics model, the Brownian particles merely

interact with one another through the conservative potential E(t).

Brownian dynamics is ideal for the simulation of colloids wherein the important

effect is the interaction between the colloids that might give rise to a phase transition

or aggregation of the colloids[65]. More recently, McGuffee and Elcock[66] have applied

Brownian dynamics to model cytoplasmic crowding. These simulations were performed
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by using the crystal structures of proteins found in the bacterial cytoplasm and mod-

elling them as rigid Brownian particles. To date this is the most accurate simulation

ever produced of the cytoplasm.

1.1.7 Length Time Scale Gap

From this overview, in the mesoscale we can see that there are techniques that can

tackle problems such as small scale blood flow problems or deformation of blood cells

at the upper end of the mesoscale. Similarly, at the lower end of the mesoscale there

are techniques such as elastic network models that can reveal the normal modes of large

macromolecules. However, there are very few techniques that can tackle problems in

the middle of the mesoscale where the workings of large proteins and cellular machinery

such as organelles and molecular motors are important. This thesis addresses this issue

by building a technique that can model the thermal fluctuations of large biomolecules for

biologically relevant time scales by extending the functional range of the finite element

method into the mesoscale. The closest competing method is that of the Immersed

Finite Element Method[67] where thermal fluctuations are input into the model through

a background fluid, but this has been used to model only rigid nano particles under

the influence of flow[55] [68]. In the next two sections (1.2 and 1.3), I will develop the

necessary background material for understanding this thesis by discussing the Langevin

equation (Section 1.2) and the finite element method in (Section 1.3).

1.2 The Langevin Equation and Brownian Motion

Brownian motion is the random motion that microscopic particles undergo due to ther-

mal collisions. The trajectory of a particle undergoing Brownian motion is described

by a Langevin equation. This equation incorporates the physics underlying thermo-

dynamic principles such as the Stokes-Einstein relation and the fluctuation dissipation

relation (Section 1.2.1 and 1.2.2). These principles connect the properties of the thermal
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noise in a non trivial manner to the dissipation of the system. This forms the theo-

retical basis for the statistical physics of the finite element model discussed in chapter

2. Therefore, it is prudent to discuss the physics of the Langevin equation as an intro-

duction before moving onto the more complicated discussion. Thus, in this section I

discuss the Langevin equation (Section 1.2.1), the derivation of fluctuation dissipation

relation (Section 1.2.2) and the Einstein relation in (Section 1.2.3).

1.2.1 The Langevin Equation

The simplest form of Langevin equation[47] is for an isolated particle subject to thermal

noise and viscous drag due to a background medium. Thus, by using Newton’s second

law the one dimensional Langevin equation is given by:

m
d2x

dt2
= −λdx

dt
+ ν(t), (1.5)

where λ is a friction coefficient and ν is a stochastic force.

In this model of an isolated Brownian particle, hydrodynamic interactions are not

considered, and for a spherical particle of radius R the friction coefficient is given by

Stokes’ law[69]:

λ = 6πµR, (1.6)

where µ is the fluid viscosity.

The random force vector ν(t) applies random kicks to the particle. The statistics of

the random force vector ν(t) must be selected so that the system equilibrates correctly.

Specifically, every quadratic degree of freedom the particle possesses must possess an

average kinetic energy of kBT
2
. This determines the statistics of ν(t). In one dimension,

a Langevin particle cannot distinguish between left and right because the particle is

equally likely to be hit from the left or the right by a thermal force, thus:
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〈ν(t)〉 = 0 (1.7)

where 〈...〉 denotes the ensemble average of a large number of realisations.

The second moment 〈ν(t)ν(t′)〉 is non-zero and it will be shown in the next section

that:

〈ν(t)ν(t′)〉 = 2λkBTδ(t− t′), (1.8)

where δ(t) is the Dirac delta function.

Equation (1.8) is the fluctuation dissipation relation[70]. The fluctuation dissipation

relation introduces the energy scale kBT and couples the thermal noise explicitly to the

viscosity. In other words, the more viscous the medium, the stronger the kicks from the

random force vector ν(t). One way in which we can interpret equation (1.8) is through

energy balance. At equilibrium, the average energy in each degree of freedom will be

kBT
2
, and therefore the effect of the thermal fluctuations is to restore the kinetic energy

lost through viscosity.

1.2.2 Derivation of the Fluctuation Dissipation Relation

In chapter 2, we will be required to derive the fluctuation dissipation relation for a more

complicated system of equations. In order to show how one can approach the derivation

and the key principles to consider I will derive the fluctuation dissipation relation for

equation (1.5). To begin, we shall consider the kinetic energy of a Langevin particle:

E =
mv2

2
. (1.9)

Where v = dx
dt

is the particle velocity.

At thermal equilibrium, because the kinetic energy is a quadratic degree of freedom

of the system, the time average of the kinetic energy must be:
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〈E〉 = kBT

2
. (1.10)

To begin the derivation of the fluctuation dissipation relation, we shall define Q

such that:

Q = 〈v(t)v(t)〉, (1.11)

Then, from equation (1.10), it follows that:

Q =
kBT

m
. (1.12)

The derivation proceeds by considering fluctuations of the energy variable Q in a

small time step ∆t. The change in Q is given by:

∆Q = 〈v(t)∆v(t) + ∆v(t)v(t) + ∆v(t)∆v(t)〉 = 0, (1.13)

where ∆v = v(t+∆t)− v(t).

In this derivation, we assume that the noise is delta correlated such that 〈ν(t)ν(t′)〉 =

0. Such an assumption is reasonable because the collision times are short. More rigor-

ously, the dissipation term is frequency-independent[70]. So there can be no frequency-

dependence of the noise. This corresponds to white noise that is equivalent to a delta

correlation in time.

The terms v(t)∆v(t) and ∆v(t)∆v(t) can be evaluated by integrating equation (1.5)

with respect to a finite time step ∆t such that:

v(t)∆v(t) =
∆t

m
(−λv(t)v(t) + v(t)ν(t)), (1.14)

and,
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∆v(t)∆v(t) =
∆t2

m2
(λ2v(t)v(t)− λv(t)ν(t)− λv(t)ν(t) + ν(t)ν(t)). (1.15)

We must now consider the effect of averaging equations (1.14), and (1.15) to order

∆t on the understanding we will eventually take the limit ∆t tending to 0. The thermal

forces are delta correlated and so:

〈v(t)ν(t)〉 = 〈v(t)〉〈ν(t)〉, (1.16)

but since 〈v(t)〉 = 0 from equation (1.15). So, equation (1.16) is simplified to:

〈v(t)ν(t)〉 = 0. (1.17)

Equations (1.14), and (1.15) are then reduced to:

〈v(t)∆v(t)〉 = −λ∆t
m

〈v(t)v(t)〉, (1.18)

and,

〈∆v(t)∆v(t)〉 = ∆t2

m2
〈ν(t)ν(t)〉. (1.19)

Equation (1.19) holds because because the average of the first three terms of equation

(1.15) are of order ∆t2 while the average of the noise correlation term is of order ∆t.

The reason for this is that the noise is delta correlated in time so that 〈ν(t)ν(t′)〉 =

δ(t− t′). In the discrete time framework, used throughout this derivation, this becomes

〈ν(t)ν(t′)〉 =
δtt′

∆t
, where δtt′ is the Kronecker delta function. Consequently, equation

(1.19) is true to order ∆t and in the limit ∆t tending to 0 only the noise correlation term

need be retained. We can then safely drop the second order terms in ∆t as negligible.

We can now substitute equations (1.18) and (1.19) into (1.13) while using the delta

time correlation property of the thermal noise to yield:
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〈ν(t)ν(t)〉 = 2λkBT

∆t
. (1.20)

We now reintroduce the delta time correlation into equation (1.20) so that:

〈ν(t)ν(t′)〉 = 2λkBTδtt′

∆t
. (1.21)

We can now take the the limit of ∆t tending to 0 such that:

〈ν(t)ν(t′)〉 = 2λkBTδ(t− t′). (1.22)

This completes the derivation of the fluctuation dissipation relation[70]. We will

return to this style of proof in chapter 2 in order to derive the fluctuation dissipation

relation for the finite element model of a globular macromolecule.

1.2.3 Stokes Einstein Relation

Along with the fluctuation dissipation relation, the Stokes Einstein relation is the other

important statistical result that arises from the Langevin equation. The Stokes Einstein

relation was first reported in Einstein’s 1905 paper[71] on Brownian motion and then

independently discovered by both Smoluchowski[72] and by Sutherland[73] in the same

year. The Stokes Einstein relation is as follows:

〈∆x2〉 = 2kBT

λ
t, (1.23)

where ∆x is defined as x = ∆x + x(0) for an initial particle position x(0) and t much

longer than the collision time scale.

Equation (1.23) describes the diffusion of a particle in one dimension in this formu-

lation. This result states that the diffusion of a Langevin particle is coupled to the drag

coefficient λ and grows linearly in time. Thus, for a particle that is being hit randomly

by forces that have statistical correlations described by the fluctuation dissipation re-

24



lation, there is a simple result that describes the average position of the particle due to

the time evolution if the random force ν(t).

We will now turn our attention to the derivation of the Stokes Einstein relation

using Langevin’s approach[74]. This derivation begins by re-arranging the Langevin

equation (1.5) as a function of d(x2)
dt

:

λ

2

d(x2)

dt
= xν(t)−mx

d2x

dt2
. (1.24)

The last term in equation (1.24) can be simplified by using the following relation:

x
d2x

dt2
=

d

dt

(
x
dx

dt

)
−
(
dx

dt

)2

. (1.25)

Thus, equation (1.24) can be simplified by substitution such that:

λ

2

dx2

dt
= xν(t)−m

d

dt

(
x
dx

dt

)
+m

(
dx

dt

)2

. (1.26)

The final step is to take an ensemble average of equation (1.26). Since the position

of the Langevin particle at time t is uncorrelated with both its velocity and the random

force vector, it follows that both:

〈xν〉 = 0, and (1.27)

〈xdx
dt

〉 = 0. (1.28)

We can then apply the equipartition theorem on the final term in equation (1.26)

to result in the time derivative of the Stokes Einstein relation:

d〈x2〉
dt

=
2kBT

λ
. (1.29)

The right hand side of equation (1.29) is a constant and thus the time integral is

trivial so that:
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〈x2〉 = 2kBT

λ
t+ 〈x2(0)〉, (1.30)

where we have also implemented the boundary condition at t = 0, x(t) = x(0).

Equation (1.30) can then be simplified by considering the average of x2 = (∆x +

x(0))2 given by:

〈∆x2〉 = 〈x2〉 − 〈x(0)2〉. (1.31)

Equation (1.31) is true because 〈∆x〉 = 0 as there is no propensity for a one dimensional

Brownian particle to prefer leftward or rightward drift. Hence we can now re-arrange

equation (1.30) to yield:

〈∆x2〉 = 2kBT

λ
t, (1.32)

which is the Stokes Einstein relation.

The Stokes Einstein relation will be used in validating the implementation of the

background drag in Chapter 2.

1.3 Finite Element Analysis

Finite element analysis is the solution scheme that I will use to solve the partial dif-

ferential equation that describes the continuum model of a globular protein. In this

section, I will introduce the mathematical concepts behind finite element analysis in

order to demonstrate how the method works for a simple example system[75]. Finite

element analysis has been widely used for structural mechanics and fluid mechanics and

has more recently been applied to study macroscopic biological systems such as blood

flow in the heart[3]. The key advantage of finite element analysis over finite difference

methods is that finite element analysis is more easily able to handle complex geometries.

The mathematical foundations of finite element analysis[75] are presented in Section
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1.3.1, the Galerkin method[75][76] in Section 1.3.2, finite elements[75] in Section 1.3.3

and finally higher dimensions[75] in Section 1.3.3.

1.3.1 Weighted Integral Method and the Weak Formulation

Here we shall discuss the mathematical foundations of finite element analysis. In order

to do this, I shall introduce a differential equation that we shall aim to solve using

the finite element method[75]. From this, we shall see the general mechanism of the

finite element approach[77] and how the finite element method builds an approximate

solution to our partial differential equation. The example differential equation we seek

a solution for is:

− d

dx

(
a
du

dx

)
− cu+ x2 = 0. (1.33)

Where the function u is defined between 0 < x < 1 with the boundary conditions

u(0) = 0 and adu
dx

= 1 at x = 1. The finite element method works by finding an approx-

imate solution of equation (1.33) within a restricted subspace of functions, typically

piecewise polynomials. For any function u we define the residue function R(u) as the

result of applying the differential operator on the left hand side of equation (1.33) such

that:

− d

dx

(
a
du

dx

)
− cu+ x2 = R(u). (1.34)

We must now define the space in which we will seek an approximate solution of

(1.34). In general, we shall define the solution space as that spanned by a series of

basis functions φ1(x), ..., φn(x). The functions φj(x) are chosen to satisfy the Dirichlet

boundary conditions so that φj(0) = 0. We define a function u of the form:

u =
n∑

i=1

ciφi, (1.35)

where ci are coefficients.
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The next step is to find the function in the space defined by equation (1.35) that

ensures the residue R(u) is close to zero. Clearly, the residue R(u) will not be 0 unless

the space spanned by equation (1.35) includes the actual solution. Instead, we seek

solutions for which the weighted integral:

∫ 1

0

w(x)R(u)dx = 0. (1.36)

Here w(x) are some suitable set of functions that we choose. Equation (1.36) is an

inner product so an interpretation of this process is that we seek to make the residue

orthogonal to the weight functions w(x). We now construct a weak form of equation

(1.34) by substitution into equation (1.36) so that:

∫ 1

0

(
w
d

dx

(
−adu

dx

)
− cuw + wx2

)
dx = 0. (1.37)

Equation (1.37) can be simplified by integrating by parts and applying the boundary

conditions to yield:

∫ 1

0

(
a
dw

dx

du

dx
− cuw + wx2

)
dx− w(1) = 0. (1.38)

Equation (1.38) is described as being the weak form of equation (1.33). Clearly,

any solution of equation (1.33) must satisfy equation (1.38). Furthermore, it can be

shown that if equation (1.38) is satisfied for all functions w(x), then u satisfies equation

(1.33). The proof is non-trivial and requires the use of Sobolev spaces and thus will be

omitted[77] [76].

We must now choose a suitable solution space and corresponding choices for the

weight functions w(x). Since equation (1.37) involves first derivatives of both u and w,

these functions should lie in the Sobolev space H1
0 (0, 1) (i.e. functions on the interval

(0,1), whose first derivatives are square integrable on the interval (0,1)). Note that the

original equation (1.33) requires second order derivatives of u to exist, but this is not

required for solutions of the weak form. Furthermore if the solution space has dimension
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n, then n independent weight functions are required to obtain a unique solution for the

coefficients ci.

1.3.2 The Galerkin Formulation

The Galerkin formulation[75][76] of finite element analysis provides a convenient means

of choosing the n weight functions. We simply use the basis functions φi as the weight

functions such that equation (1.36) becomes:

∫ 1

0

φi(x)R(u)dx = 0 (1.39)

We can now substitute u =
∑n

j=1 cjφj into equation (1.38) and set w to equal each

of the basis functions φi in turn, to give:

n∑

j=1

cj

(∫ 1

0

a
dφi

dx

dφj

dx
− cφiφjdx

)
= φi(1)−

∫ 1

0

φix
2dx. (1.40)

Equation (1.40) is a set of n linear equations of the form:

Aijcj = fi, (1.41)

where Aij, and fi are defined as follows:

Aij =

(∫ 1

0

a
dφi

dx

dφj

dx
− cφiφjdx

)
, and (1.42)

fi = φi(1)−
∫ 1

0

φix
2dx. (1.43)

We have now reduced equation (1.33) to a set of linear equations that can be solved

for the coefficients cj.
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Figure 1.2: Finite element discretisation of a 1D unit line.

1.3.3 Finite Elements

In the finite element method, the solution space is obtained by dividing the solution do-

main into elements called finite elements that are geometrically simple[75][78]. We then

define the solution space from the union of simple functions ψe
i (typically polynomials)

over each element so that:

φi = ∪ψe
i . (1.44)

In our simple one dimensional example, we divide the domain of the differential

equation 0 < x < 1 into sub domains such that each finite element describes an interval

[xi−1, xi], as shown in Figure 1.2. Since we require the functions to be in H1
0 (1, 0), we

need the functions to be continuous between elements and so the simplest polynomial

functions that can be used are linear functions as shown in Figure 1.3. Note that it is

possible to use discontinuous functions, but this requires taking account of the discon-

tinuities at element boundaries and is called the Discontinuous Galerkin method[79].

The basis of the solution space φi(x) can then, for example, be defined by piecewise

linear functions φi(xj) satisfying,

φi(xj) = δij . (1.45)

ψi is zero except in the elements i and i+ 1 where it is given by:

ψe
i =

x− xi−1

xi − xi−1
, (1.46)
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Figure 1.3: Shape functions for an element of a unit line.

where x ∈ (xi−1, xi) and

ψe
i =

x− xi+1

xi − xi+1
, (1.47)

where x ∈ (xi, xi+1).

Thus, equation (1.40) becomes:

n∑

j=1

cj

(∫ xe

xe−1

a
dψe

i

dx

dψe
j

dx
− cψe

iψ
e
jdx

)
= ψe

i (1)−
∫ xe

xe−1

ψe
i x

2dx. (1.48)

We then evaluate this integral over all elements and then sum the contribution from

each element to produce the matrix Aij and the vector fi. We can then solve the linear

system for the coefficients cj that define the value of u on each of the nodes and thus

complete the construction of the solution.

Thus, we have obtained the contributions from a general element to the matrix Aij

and vector fi in terms of the shape functions ψe
i . To complete this problem one would

evaluate these entities and then invert the matrix Aij to solve the coefficients cj. From

31



these coefficients the finite element solution to equation (1.33) is easy to calculate.

1.3.4 Higher dimensions

The detailed example that we have gone through up to now shows the mechanics of finite

element analysis at its most basic. In general, the main advantages of this method are in

higher dimensions[77] where the domain of our differential equation may be complicated,

as in the case for a globular macromolecule. In chapter 2, we will be concerned with

solving a 3 dimensional problem over a complex domain. In three dimensions, the

volume of the solution domain is divided into polygons. Although other shapes can be

used for 3D finite elements, the tetrahedron is the most versatile because it is generally

straightforward to divide a volume into tetrahedra. A linear right angled tetrahedron

is shown in Figure 1.4 with the nodes identified.

The space of linear functions on each element has four dimensions, therefore it is

convenient to use four vertices as nodes with shape functions defined as:

ψ1 = 1− s− t− u, (1.49)

ψ2 = s, (1.50)

ψ3 = t, and (1.51)

ψ4 = u, (1.52)

where s, t, and u are coordinates along the edges of the tetrahedron connected to node

1 with 0 ≤ s, t, u ≤ 1. Linear elements are the simplest finite element for solving

partial differential equations up to second order. However, such elements are only

first order accurate in space, and so in order to provide a more accurate solution,
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Figure 1.4: Right angled tetrahedron with sides of unit length.
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Figure 1.5: Second Order Tetrahedron with sides of unit length.

higher order polynomials are sometimes preferred. Quadratic interpolation requires ten

shape functions[80] which can be accommodated by introducing additional nodes at the

centres of each edge of the tetrahedron shown in Figure 1.5. Cubic and higher order

interpolations can also be obtained in principle.

This completes our overview of finite element analysis; more details will be added

in Chapter 2.
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1.4 Conclusion

In this chapter, I have presented an overview of the current simulation methods for

biomolecules. Currently, there is a lack of simulation capacity at the length and time

scale that governs the functionality of the molecular machinery within our cells (Section

1.1). Consequently, there is a need to develop alternative techniques that are capable

of exploring the biophysics within this regime. In order to develop such a technique, I

will use the tools of statistical physics developed by exploring the Langevin equation

(Section 1.2) and the Finite Element Method (Section 1.3). This simulation method

will use continuum methods and not be based on the intrinsic atomistic structure of

a particular biomolecule but instead the overall shape of the biomolecule. This will

allow the method to interface with the wide array of low resolution structures available

through Small Angle X-ray scattering of Cryo-EM. Currently, the EMDB[81] (Electron

Microscopy Database) contains low resolution data of very large biological systems such

as the axoneme[82]. A technique that could use this information to drive simulations

would be a great asset and open up the lower mesoscale to simulation.
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Chapter 2

Mathematical Background

2.1 The Continuum Model

In this thesis I will model a globular macromolecule as a continuous medium of density

ρ subject to thermal noise, viscous dissipation and elasticity. I will focus first on

describing the internal hydrodynamics, elasticity and thermal noise, with the effects

of external solvent added to the problem in Section (2.4). The equation of motion

connecting the velocity ui to the stress σij at all points in the material can be represented

by continuum fields. Using index notation together with summation convention the

equation of motion is then:

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=

∂σij
∂xj

, (2.1)

where
(

∂ui

∂t
+ uj

∂ui

∂xj

)
is the total time derivative of the velocity vector field in the La-

grangian frame of the material. The stress σij can be subdivided into three contribu-

tions:

σij = σv
ij + σe

ij + σt
ij (2.2)
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σv
ij , σ

e
ij and σt

ij are the stresses due to non-conservative friction, conservative elastic

forces and thermal fluctuations respectively. The material model for the macromolecule

is therefore a Kelvin-Voigt[83] model in which the elastic stresses and viscous stresses

act in parallel. In principle, different material models could be considered such as

those with fading material memory, although this would not change the manner in

which the derivations presented in this Section would proceed. A more complicated

material model would only make the derivation more difficult due to the inclusion of

new physics such as memory effects. The Kelvin-Voigt material model provides the

simplest continuum model for which the thermal noise can be derived, as the stress in

the system is dependent only upon the instantaneous deformation and the velocity field.

The form of the three stress terms that are used are introduced in Section 2.1.1-2.1.3.

The solution scheme employed and the nature of the finite element approximation is

discussed in Section 2.2. In Section 2.3 additional details of the thermal noise term σt
ij

are provided and demonstrate the compliance of the fluctuating finite element scheme

with the fluctuation-dissipation theorem. Finally, in Section 2.4 an external solvent is

added to the problem.

2.1.1 Viscous Stress

The material is assumed to have an linear viscous stress[84] σv
ij , which can be written

as:

σv
ij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ

∂um
∂xm

δij, (2.3)

where µ is the shear viscosity and λ is the second coefficient of viscosity, giving a bulk

viscosity µbulk = λ+ 2
3
µ.
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2.1.2 Elastic Stress

In the model, we consider the simple case where material elasticity is hyperelastic, so

that the elastic stress σe
ij can be derived from a strain energy density functional[85].

This is written in terms of the deformation gradient tensor Fij (defined as Fij = ∂xi

∂Xj

where x(X, t)) is the current position of material initially located at X. Hence the local

volume change is given by V
V0

= det(F ). We use a formulation which includes classical

rubber elasticity and a volumetric spring that acts as a source of pressure. The strain

energy density per unit current volume is written as:

W =
G

2det(F )
(FαβFαβ) +

B

2det(F )
(det(F )− α)2

− 3G

2det(F )
− B

2det(F )

(
G

B

)2

. (2.4)

Here G is the shear modulus, K = B− G
3
is the bulk modulus and α is a constant used

to impose zero isotropic stress at zero deformation, requiring that α = 1+ G
B
. From the

bulk and shear moduli, the Young’s Modulus of the material is given by E = 9KG
3K+G

.

Equation (2.4) is effectively a second order expansion of the elastic energy in terms

of the deformation gradient tensor Fij about an elastic energy minimum. Thus, this

expansion is only valid for small strains about this elastic energy minimum. For large

strains additional terms in the expansion would have to be retained. Thus, the elas-

ticity derived in this model cannot be used to model large conformational changes of a

particular biomolecule as this would involve large strains. Instead, the elasticity used is

only valid for the small scale thermal fluctuations experienced about an elastic energy

miniumum or rest state of a protein. In general, proteins have many elastic energy

minima and transitions between these minima cannot be modelled directly using this

elastic energy expansion. However, one can model different minima independently as

seen in Chapter 6.

The stress can be calculated by considering the the change in energy when a small
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strain ǫij , defined in terms of the deformation gradient tensor as F̃ij = (δiα + ǫiα)Fαj,

is applied to a portion of material and taking the limit where ǫij = 0, giving the stress

tensor:

σe
ij =

1

det(F̃ )

∂(Wdet(F̃ ))

∂ǫij

=
G

det(F )
FikF

T
kj +B(det(F )− α)δij . (2.5)

We have assumed that the effect of the thermal noise on the elasticity of the material

is small compared to the uncertainty in the known elastic moduli for biomaterials

(see Section 4.2). In general, small length scale thermal fluctuations will affect the

effective elasticity over larger length scales in the non-linear elastic regime. In principle,

this effect should be accounted for when coarse-graining if the dimensions of the finite

elements are significantly increased.

2.1.3 Thermal Stress

In particle based simulation, techniques such as Molecular Dynamics[86] or Brownian

Dynamics[64] thermal fluctuations are included by adding a random force to each par-

ticle in the simulation. In the present method, thermal forces are introduced via a

fluctuating stress tensor σt
ij . Unlike the elastic and viscous contributions, this thermal

stress term is stochastic in both space and time, with statistics chosen to balance the

viscous energy dissipation. The advantage of this approach is that within a finite el-

ement approximation the fluctuating stress can be calculated entirely locally for the

viscous stress and still yield the correct thermal physics. In Section 2.3 we derive the

fluctuation dissipation relation for this model and show that at equilibrium the input

of energy into the system by the noise and the reduction of energy from the viscous

terms balance appropriately, and consequently that the fluctuation dissipation theorem

is satisfied.
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2.2 Finite Element Approximation

In order to construct a finite element discretisation, we seek a weak form of Equation

(2.1) by performing a volume integral with the weight function w(x) to give:

∫

V

ρw(x)
∂ui
∂t
dV = −

∫

V

∂w(x)

∂xj
σijdV +

∫

S

fiw(x)dS. (2.6)

where fi are the external surface forces. This corresponds to the standard application

of the finite element method[76]. The second integral in Equation (2.6) can now be

evaluated by substituting in the components of the stress.

∫

V

∂w(x)

∂xj
σijdV =

∫

V

(
µ
∂w(x)

∂xj

∂ui
∂xj

+ µ
∂w(x)

∂xj

∂uj
∂xi

+ λ
∂w(x)

∂xi

∂uj
∂xj

)
dV

+

∫

V

∂w(x)

∂xj
σe
ijdV

+

∫

V

∂w(x)

∂xj
σt
ijdV. (2.7)

Equation (2.7) contains first order derivatives of both the velocity vector ui and the

the weight function w(x). Thus, both the functions ui and w(x) must be differentiable

over the domain of the differential equation and square integrable. Therefore, a suitable

space is such that ui, w(x) ∈ H1
0 (ω) where ω is the domain of the differential equation

in 3-space, while the tensors σe
ij and σ

t
ij can be defined as σe

ij , σ
t
ij ∈ L2.

With the solution space now defined, we subdivide the domain ω of the differential

equation into finite elements with nodes that are fixed in the Lagrangian frame of the

material so that the velocity is expressed in the form ui =
∑

α viαφα where φα are base

vectors that span the subspace of H1
0 (ω) so that,

Dui
Dt

=
∑

α

∂viα
∂t

φα. (2.8)
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Thus, with this discretisation Equation(2.6) becomes the following system of ordinary

differential equations:

Mpq

∂vq
∂t

+Kpqvq = Ep +Np, (2.9)

where Mp(i,β)q(j,α), Kp(i,β)q(j,α), Ep(i,β) and Np(i,β) are defined below. This treatment

corresponds to the Galerkin formulation[76] of finite element analysis where the weight

functions w(x) are chosen to be the same as the basis functions φα. We have also

introduced the indices p and q that run over the full dimension of the finite element

system such that p can be written as p(i, β) and q can be written as q(j, α). This gives:

Mp(i,β)q(j,α) = δij

(∫

V

ρφαφβdV

)
, (2.10)

Kp(i,β)q(j,α) =

∫

V

µ
∂φβ

∂xc

∂φα

∂xc
δij + µ

∂φβ

∂xj

∂φα

∂xi
+ λ

∂φβ

∂xi

∂φα

∂xj
dV , (2.11)

Ep(i,β) = −
∫

V

∂φβ

∂xj
σe
ijdV , (2.12)

Np(i,β) = −
∫

V

∂φβ

∂xj
σt
ijdV . (2.13)

Equation (2.9) describes a linear system of Langevin equations that can be solved for

∂vq
∂t

by inverting the the mass matrix Mpq. Physically, the different matrices presented

in Equation (2.9) describe each of the particular processes that govern the behaviour

of a macromolecule in the algorithm. The mass matrix Mpq (2.10) describes how mass

is distributed throughout the finite elements, Kpq (2.11) describes how the model dis-

sipates energy through viscosities, Ep (2.12) is an elastic force vector and Np (2.13) is

a thermal force vector.
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2.3 Thermal Noise

The remaining undefined quantity in Equation (2.9) is the fluctuating stress tensor σt
ij .

To derive the form of σt
ij we must first derive the fluctuation dissipation relation for

this system under the assumption that the system as at constant temperature.

For the case of a Kelvin-Voigt material, the derivation of the fluctuation-dissipation

theorem is simplified because the elastic stress in the model is derived from a strain

energy that depends only upon the instantaneous deformation of the system. Conse-

quently, the elastic terms in this model are conservative and the energy stored during

a structural distortion is fully recovered when the material returns to equilibrium. By

contrast, in material models with fading memory (such as the Maxwell model), the

viscoelastic stress is dependent on the strain history of the material. In such cases,

there will be additional dissipation of energy due to the fading memory within the ma-

terial, and the derivation of the corresponding fluctuation-dissipation theorem is less

straightforward.

The constant temperature assumption means that biological events that involve en-

dothermic or exothermic reactions cannot be modeled explicitly. This is valid assump-

tion for situations where biomolecules are in thermal equilibrium with their surround-

ing environment, for example proteins undergoing thermal fluctuations in a particular

solvent. However, this approximation is not valid when biomolecules are undergoing

chemical reactions with their environment. This issue could be addressed by associating

the temperature with a particular finite element as oppose the the whole system and

then modelling heat flow between the finite elements using a heat equation.

2.3.1 Fluctuation Dissipation Theorem

The overall equation of motion of the macromolecule comprises a linear system of

Langevin equations. Deriving the fluctuation dissipation relation for this specific system

is necessary to provide the statistics of Np. We can re-write Equation (2.9) as:
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Mpα

∂vα
∂t

= Np −Kpγvγ −∇pU(x), (2.14)

where the elastic force vector Ep has been re-written in the form Ep = −∇pU(x), where

the potential U is the strain energy. We have relabelled the dummy indices from q to

α and γ for clarity.

The derivation of the fluctuation dissipation theorem first considers the total kinetic

energy E of the discretised system. given by:

E =
vαMαβvβ

2
. (2.15)

Equation (2.15) is exact within the discretised finite element framework though only

true since the mass matrix matrix is a constant. This corresponds to assuming that the

total mass within each element is conserved for all possible deformations. In practise for

3D linear finite elements, discussed in Section 1.3.4, a constant mass matrix means that

mass is distributed uniformly throughout a distinct finite element and that the density

of that element changes as the volume of that finite element increases or decreases.

In general for globular proteins, the density at any particular point within the pro-

tein will be a function of both position and time. For example, spatially proteins are

known to be inhomogenous and thus regions rich in secondary structure will have higher

densities than surface regions. This introduces a limitation within the current model

that density gradients within proteins are difficult to model and can only be approxi-

mated through the relative densities between neighboring finite elements. Though this

could in principle be taken care of during coarse graining and parametrisation, it would

introduce a maximum element size in order to preserve the density gradient to some

tolerable level.

Temporal variation in density would correspond to binding of new molecules to

a particular globular protein. While this can be modeled by recalculating the mass

matrix with a new set of starting densities given there are no changes to the structure

43



of the globular protein and the new mass distribution does not introduce high density

gradients. In general, one would have to recalculate the the finite element mesh to

represent the new bound structure. An example of this sort of problem is given in

Chapter 6 where the dynamics of two different biochemical states of the molecular motor

dynein are modelled at thermal equilibrium. However, dynamic switching between the

two states of the biomolecule would not be possible in the current method because the

temperature of the system would change and the difficulty of relating the properties of

the two finite element meshes.

From equation (2.15), the probability[87] of finding the system with a given given

kinetic energy is therefore proportional to:

P ∼ exp(−vαMαβvβ
2kBT

). (2.16)

Since this is a generalised normal distribution, it follows that the second moment average

of the node velocities, at equilibrium, must be:

Qpq = 〈vpvq〉 = kbTM
−1
pq , (2.17)

which is the equipartition theorem for this system. Equation (2.17) is exact within the

discretised finite element framework, so the fluctuation dissipation theorem derived from

it is also exact. However, in practice numerical errors will occur due to the numerical

integration of equation (2.9), and is discussed in Section 3.2.1 The derivation of the

fluctuation dissipation relation for this system follows by analyzing fluctuations in the

energy variable Qpq, considering its change ∆Qpq during a small time step ∆t (that will

become infinitesimally small) such that:

∆Qpq = 〈∆vpvq + vp∆vq +∆vp∆vq〉 = 0, (2.18)

where from Equation (2.14):
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∆vp = ∆tM−1
pα (Nα −Kαγvγ +∇αU(x)). (2.19)

Thus, the terms on the right hand side of Equation (2.18) are given by:

∆vpvq = ∆tM−1
pα (Nα −Kαγvγ +∇αU(x))vq, (2.20)

vp∆vq = vp∆tM
−1
qδ (Nδ −Kδǫvǫ +∇δU(x)), (2.21)

and finally:

∆vp∆vq = ∆t2M−1
pα (Nα −Kαγvγ +∇αU(x))M

−1
qδ (Nδ −Kδǫvǫ +∇δU(x)). (2.22)

To evaluate the ensemble averages of Equations (2.20), (2.21) and (2.22) to order

∆t we note 〈vp〉 = 0, and that:

〈M−1
pα ∇αUvq +M−1

qδ ∇δUvp〉 = 0. (2.23)

Because at equilibrium the total energy of the system is simply the sum of the kinetic

and potential energies, the probability of finding the system in any given microstate is

also the product of the probability distributions describing the range of the potential

and kinetic energies the system can adopt. Therefore, the potential and velocity terms

are uncorrelated at equilibrium. Since the kinetic energy contains only terms quadratic

in vp, it follows that 〈vp〉 = 0, so Equation (2.23) must hold. Equations (2.20)-(2.22)

then simplify to:

〈∆vpvq〉 = −∆tM−1
pα Kαγ〈vγvq〉

= −∆tkBTM
−1
pαM

−1
γq Kαγ , (2.24)
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〈vp∆vq〉 = −∆tM−1
pδ Kδǫ〈vpvǫ〉

= −∆tkBTM
−1
qδ M

−1
pǫ Kδǫ, (2.25)

〈∆vp∆vq〉 = ∆t2M−1
pαM

−1
qδ 〈NαNδ〉. (2.26)

Direct substitution of Equations (2.24)-(2.26) into (2.18) leads to the following,

∆t2〈M−1
pα NαM

−1
qδ Nδ〉 = ∆tkBT (M

−1
pαKαγM

−1
γq +M−1

qδ KδǫM
−1
pǫ ). (2.27)

Multiplying through by the mass matrix gives:

∆t2〈δpαNαδqδNδ〉 = ∆tkBT (δpαδγqKαγ + δqδδpǫKδǫ), (2.28)

and so it follows that,

〈NpNq〉 =
kBT

∆t
(Kpq +Kqp) (2.29)

which is the fluctuation dissipation relation for the equation of motion in Equation

(2.14).

As a further check on this result, we note that equation (2.14) can be cast as a

stochastic differential equation:

dvp = −M−1
pαKαβvβdt−M−1

pα ∇αU (x) dt+BpαdWα (2.30)
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where the dWα are increments in a set of independent Wiener processes. Our derived

fluctuation dissipation relation (2.29) is equivalent to a velocity space diffusivity of

Dpq = BpαB
T
αq = kBTM

−1
pαM

−1
qβ (Kαβ +Kβα) . (2.31)

Furthermore, the node positions are coupled to the node velocities via

dxp = vpdt. (2.32)

It can be shown from the general theory of stochastic equations ([88], equation

3.79) that the system of coupled stochastic differential equations (2.30) and (2.32) are

equivalent to the Fokker-Planck equation in (x,v) space for evolution of the probability

distribution ψ (x,v) of the position and velocity vectors:

∂ψ

∂t
=

∂

∂vp

[(
M−1

pαKαβvβ +M−1
pα

∂U (x)

∂xα

)
ψ

]
− ∂

∂xp
(vpψ) +

1

2

∂

∂vp

∂

∂vq
(Dpqψ) . (2.33)

It is a straightforward, if lengthy, exercise to verify that the steady state of equation

(2.33) is

ψ (x,v) = A exp

(
−U (x)

kBT
− vpMpqvq

2kBT

)
(2.34)

which is the expected Boltzmann distribution. For more detail on this derivation see

Appendix 1.

2.3.2 Fluctuation Dissipation Relation for Linear Elements

In order to solve Equation (2.29) and derive the nature of the thermal stress tensor σt
ij ,

we must choose a set of basis functions φα. The simplest choice of basis functions are

those of a linear tetrahedron (See Section 1.3.4). Equation (2.11) provides an explicit

expression for the viscous matrix Kpq:
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Kpq =

∫

V

µ
∂φβ

∂xc

∂φα

∂xc
δij + µ

∂φβ

∂xj

∂φα

∂xi
+ λ

∂φβ

∂xi

∂φα

∂xj
dV. (2.35)

In the case of linear elements the derivatives of the basis functions are constants and

Equation (2.29) can easily be simplified. In order to satisfy the fluctuation dissipation

relation, we must assign an appropriate form to the fluctuating stress tensor σt
ij that

is δ-correlated in space and time. Firstly, σt
ij must be symmetric such that σt

ij = σt
ji

and must consist of at least 6 independent stochastic processes as there are 6 degrees

of freedom per element discussed in more detail in Chapter 3. The solution we have

found has a total of 7 distinct stochastic processes and is of the following form:

σt
ij =

(
2kBT

V∆t

) 1

2
(
µ

1

2Xij + λ
1

2X0δij

)
. (2.36)

where Xij is a stochastic tensor containing 6 independent stochastic processes such that

Xij = Xji and X
0 is a stochastic variable independent of any variable in Xij such that:

〈Xij〉 = 0, (2.37)

〈X0〉 = 0, (2.38)

〈XijXkl〉 = δikδjl + δilδjk, (2.39)

〈X0X0〉 = 1, (2.40)

〈X0Xij〉 = 0. (2.41)

Note that the correlation function for the shear noise in Equation (2.39) is equivalent

to that used by Sharma and Patankar[53].

The thermal stress tensor is δ-correlated in both space and time. The spatial δ-

correlation is ensured by the finite element discretisation of the system, which guaran-

tees that each element is independent of all the others. Since the viscous dissipation
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within a single element depends only upon the instantaneous deformation rate, there is

no dependence on history of deformation and the fluctuations must also be δ-correlated

in time.

We now show that this choice satisfies Equation (2.29) and thus verify that for this

Kelvin-Voigt material model the fluctuation dissipation theorem is obeyed. Note that

we also convert from the p and q notation back to i, β and j, α so that the resulting

matrices from Equation (2.29) can be directly compared.

〈Np(i,β)Nq(j,α)〉 =
〈∫

V

∂φβ

∂xc
σt
icdV

∫

V

∂φα

∂xd
σt
jddV

〉
(2.42)

= V 2∂φβ

∂xc

∂φα

∂xd
〈σt

icσ
t
jd〉 (2.43)

We now substitute Equation (2.36) into Equation (2.43), also using Equations (2.37)-

(2.41), to yield the following:

〈NpNq〉 =

(
2kBTV

∆t

)(
µ
∂φβ

∂xc

∂φα

∂xc
δij + µ

∂φβ

∂xj

∂φα

∂xi
+ λ

∂φβ

∂xi

∂φα

∂xj

)

=

(
kBT

∆t

)∫

V

2µ
∂φβ

∂xc

∂φα

∂xc
δij + 2µ

∂φβ

∂xj

∂φα

∂xi
+ 2λ

∂φβ

∂xi

∂φα

∂xj
dV

=

(
kBT

∆t

)
(Kpq +Kqp) (2.44)

where the factor of two arises from the symmetry of the viscosity matrix Kpq. This

simple solution for the thermal stress tensor is valid only for linear elements because it

assumes that the compression across an element is uniform.

For second (and higher) order elements, it is significantly less straightforward to

obtain fluctuating stress terms that satisfy the fluctuation dissipation relation. The

difficulty arises because the derivatives of the basis functions are no longer constant, so

the simple rearrangements in Equation (2.42) to (2.44), where the integrals are trivial,

are no longer possible. In general, the fluctuating stress terms for second (and higher)
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order elements depend in a non-trivial manner on the shape of the element, making

them impractical for our computational scheme. In Section 3.2.7 below a simple scheme

is presented which allows elastic contributions to the stress to be treated using second-

order elements, whilst retaining a first-order scheme for viscous and thermal stresses.

2.4 External Fluid Dynamics

A proper treatment of the interaction between an external fluid and an immersed soft

body involves solving the Navier Stokes equation in the external fluid with with conti-

nuity of velocity and surface forces at the boundary. This is a non-trivial problem due

to the complexity of deriving the thermal noise terms, consistent with the dissipation

of the Navier Stokes equation, where the boundary conditions are time dependent due

to the motion and deformation of the soft immersed body. This would significantly in-

crease the computational cost per timestep. We will consider a much simpler problem

where the immersed soft body experiences friction due to the motion relative to a fixed

background medium.

2.4.1 Mathematical Model of the External Fluid Dynamics

To develop a simple model for the external fluid dynamics, we shall consider that there

is a sphere of a specific radius on each node. The radius of the sphere is defined by the

length scale of the finite element mesh and in principle maybe different on each node.

The drag force Fp on each node is assumed to be equal to the isolated Stokes’ drag on

its corresponding sphere:

Fp = −6πR(p)µsvp. (2.45)

Here R(p) is the radius of the sphere on a specific node p, µs the external solvent

viscosity and vp is the velocity on a specific node p. For convenience, we can re-express

equation (2.45) in terms of a viscosity matrix Ke
pq and a velocity vector vp:
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Fp = Ke
pαvα, (2.46)

where Ke
pq is defined by

Ke
pq = ηpδpq, (2.47)

and the vector of friction constants is defined as

ηp = 6πRpµ
s. (2.48)

This is the simplest form of interaction with an external fluid and is equivalent to

that used in Brownian dynamics[58] simulations where hydrodynamic interactions are

neglected. Although this model does not capture long range hydrodynamic interactions

between different parts of a molecule that are moderated by the solvent, it does take

some account of the influence of the external viscosity on the dynamics of the system.

The new external fluid viscosity will alter the fluctuation dissipation relation that was

derived in Section (2.3.1) and we are required to repeat the derivation and add an

additional noise term to counterbalance this new viscosity.

2.4.2 Fluctuation Dissipation Relation with an External Fluid

In order to derive the fluctuation dissipation relation for the finite element system we

must obtain the equation of motion for the deformable soft body with the external

hydrodynamics. To the finite element equation of motion (2.14), we must now add

two additional forces; the viscous force vector Fp in its matrix form defined in equation

(2.47); and an additional noise vector N e due to the external fluid. Thus, the new

equation of motion is given by:

Mpα

∂vα
∂t

= (Np +N e
p)− (Kpγ +Ke

pγ)vγ −∇pU(x). (2.49)
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However by making two substitutions:

K ′
pq = Ke

pq +Kpq, (2.50)

N ′
pq = N e

pq +Npq. (2.51)

We can transform this back into the form the form of equation (2.14),

Mpα

∂vα
∂t

= N ′
p −K ′

pγvγ −∇pU(x). (2.52)

Furthermore, the derivation of the fluctuation dissipation relation is independent of

the form of the viscosity matrix and so the form of the fluctuation dissipation relation

must be the same. Therefore, the fluctuation dissipation relation for this system in

terms of the noise vector N ′
p and viscosity matrix K ′

pq is:

〈N ′
pN

′
q〉 =

kBT

∆t
(K ′

pq +K ′
qp). (2.53)

We must now solve (2.53) for the exact form of the new noise vector N e
p.

2.4.3 Solution for the External Fluid Noise

To solve for the form of the external fluid noise N e
p we note that Np and N e

p are

independent processes, so that 〈NpN
e
p〉 = 0. This is a consequence of the linear finite

element solution. The solutions to both the internal dynamics and external dynamics

are linear, and can be added together to form a new solution for the internal and

external system. Thus, there are no correlations between the internal and external

noise. Therefore equation (2.53) separates into internal and external components to

give:

〈NpNq〉+ 〈N e
pN

e
q〉 =

kBT

∆t
(Kpq +Kqp) +

kBT

∆t
(Ke

pq +Ke
qp). (2.54)
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By substitution of the solution of the noise vector Np in Section (2.3.2) into (2.54),

we can eliminate the internal viscosity terms Kpq and reduce the problem to that of

solving for the external noise vector N e
p in terms of the external viscosity matrix Ke

pq:

〈N e
pN

e
q〉 =

kBT

∆t
(Ke

pq +Ke
qp). (2.55)

Equation (2.55) and (2.54) show that the internal and external noise are not coupled

and one can merely solve the two internal and external noise problems independently

of one another.

Thus, in order to solve for the external noise vector N e
p we substitute in the form

of the external viscosity matrix Kpq from equation (2.47) so that:

〈N e
pN

e
q〉 =

2kBTηp
∆t

δpq. (2.56)

Equation (2.56) is the fluctuation dissipation relation for the external fluid viscosity

and external noise alone. The external noise vector N e
p is then of the following form:

N e
p =

(
2kBTηp

∆t

) 1

2

Xe
p (2.57)

Where Xe
p is a stochastic vector with the following correlations:

〈Xe
p〉 = 0 (2.58)

〈Xe
pX

e
q〉 = δpq (2.59)

2.5 Summary

In this chapter, I have introduced the material model that includes viscous damping,

elasticity and thermal noise and I shown that within a finite element approximation the

thermal noise for this system can be derived locally both with and without an external
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solvent.
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Chapter 3

The Numerical Method and

Validation

The mathematical results of Chapter 2 form the basis for solving equation (2.1). In this

chapter, I will describe the implementation of the algorithm and its validation via a

series of test problems. Section 3.1 discusses the construction of the algorithm, Section

3.2 the numerical validation of only the continuum mechanical model in the absence

of an external solvent and Section 3.3 the validation of the continuum model with an

external solvent.

3.1 Numerical Method

As discussed in Chapter 2, the finite element discretisation results in a system of

Langevin equations for the nodal velocities vp:

Mpq

∂vq
∂t

= −Kpqvq + Ep +Np. (3.1)

Equation (3.1) can be numerically integrated using a standard time integrator such

as Runge-Kutta[89] (RK), velocity Verlet[90] or Euler[91]. An example of a simple

iterative loop to perform a time step is given below.
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1. Characterise the initial conditions such as starting position and structure of the

finite element mesh.

2. Calculate Mpq, Kpq, Ep, Np and M−1
pq .

3. Evaluate the new velocity vector and node positions using a time integrator.

The computational bottleneck in this loop is the calculation of the required matrices

and vectors. However, this part of the algorithm can easily be parallelised. The matrices

are symmetric which reduces the computational load. Since the the mass matrix and its

inverse remain constant through the simulation, they only need to be calculated once

at the start of the simulation.

3.2 Validation of the Continuum Model

In this Section, we consider the continuum model without the presence of an external

solvent. To validate the results related to the continuum model derived in Chapter 2

and to demonstrate that the numerical algorithm reproduces the thermal physics of the

system correctly, the following tests were performed on the numerical model:

1. The average kinetic and average potential energy converge to the correct values

required by the classical equipartition theorem for sufficiently small integration

timesteps (Section 3.2.1).

2. The distribution of the nodal velocities matches the theoretical Gaussian result

(Section 3.2.2).

3. Used Euler Beam Theory to show that the average amount of potential energy

found in the first two Fourier modes of a long beam also agrees with the equipar-

tition value (Section 3.2.3-3.2.4).

4. The distribution of the Fourier amplitudes matches the theoretical distribution

(Section 3.2.5).

56



5. The anisotropy of the inertia tensor converges as the mesh resolution is increased

to demonstrate spatial convergence of the new method (Section 3.2.8).

3.2.1 Testing the Average Potential and Kinetic Energies

The average potential and kinetic energy depends on the number of degrees of freedom

the of system. In this Section only internal forces are considered so there is no solid

body rotation or translation, effectively freezing out six degrees of freedom. Thus if n is

the number of nodes in the system, the total number of traditional degrees of freedom

is 3n − 6 and there an equal number of velocity degrees of freedom. Therefore, from

equipartition[92] the average kinetic energy is given by:

〈E〉 =
(3n− 6)kBT

2
. (3.2)

If deformations are small then only harmonic terms in the elastic energy are impor-

tant and the average potential energy becomes:

〈U〉 =
(3n− 6)kBT

2
. (3.3)

The kinetic energy and potential energy for the system are then defined as follows:

E =
vpMpqvq

2
, (3.4)

U =
∑

γ

∫

V0

G

2
tr(FF T )γ +

B

2
(det(F γ)− α)2 dV0

+
∑

γ

∫

V0

−3G

2
− B

2

(
G

B

)2

dV0. (3.5)

Here the sum over γ represents a sum over all the elements in the system and V0 is the
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rest volume of each individual element.

Dimensionless systems were considered, in which the density, viscosities, µ and λ

and elastic moduli G and B were set to unity throughout, with kBT = 0.0001 to

ensure small deformations. To test that the kinetic and potential energies comply with

equipartition, a simulation of a 54 element cylindrically meshed beam was performed,

which was constructed using the GMSH package[93]. The system was first allowed to

equilibrate for a million time steps and then the average kinetic and potential energies

were calculated. The different time integrators; Euler[91], velocity Verlet[90], second

order Runge-Kutta (R2) and fourth order Runge-Kutta[89] (R4) were tested. Figure

3.1 shows the percentage error in the energies as a function of the integration time

step. The simulations were continued until the sampling errors in the average kinetic

and potential energies were sufficiently small that the trends in Figure 3.1 could be

clearly observed (this required 4 million timesteps for equilibration, and 20 million

timesteps production run). The simulation performed with all four integrators gives the

correct equipartition value for short integration timesteps, indicating that the inclusion

of thermal fluctuations into FEA provides the expected equipartition values for the

kinetic and potential energy associated with the thermal fluctuations of the mesoscale

beam.

When larger time steps are used, the errors in the kinetic energy for the Euler

and Verlet schemes grow linearly with time step. This is expected, as these schemes

are both first order in time; whereas the errors in the higher order R2 and R4 schemes

remain small over all time steps considered. All four integrators reproduce the potential

energy to within 1%. Although R2 and R4 are more accurate than the Euler and Verlet

algorithms, they also require more floating point operations per time step; to perform a

single time step using R4 requires that the viscosity matrix Kpq and elasticity vector Ep

be recalculated 4 times. Consequently in practice, the Euler integrator often offers the

lowest computational expense, since an error of 1% is tolerable for most applications,

and the stability limits on the maximum timestep are similar for all 4 integrators.
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Figure 3.1: Convergence of the kinetic and potential energy averages as a function of
the time step of a 54 element cylindrical mesh, where the unit time step is ∆t0=0.0001.
This graph shows that as the time step decreases the error in the average energy in
each quadratic degree of freedom tends to zero.
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3.2.2 Nodal Velocity Distributions

As with comparing the average total kinetic energy we can also examine the distribution

of kinetic energies. As discussed in Section (2.3.1) the distribution of the kinetic energy

is a generalised Gaussian[87], as shown in Equation (2.16). Thus, the second moment

average of the nodal velocities at equilibrium must be:

Qpq = 〈vpvq〉 = kbTM
−1
pq . (3.6)

From equations (2.16) and (3.6) the distribution of the velocity in each kinetic

degree of freedom must be Gaussian with a variance given by Equation (3.6). In order

to test this prediction, I ran long time scale simulations of a cylindrical beam, and

measured the velocity distributions of nodes throughout the system. The results for a

representative node are shown in Figure 3.2. The agreement between the theoretical

and simulated results shows that the numerical solution to the equation of motion (2.1)

preserves the correct statistical physics of the system.

3.2.3 Euler Beam Theory

The energy convergence tests in Section 3.2.1 and the distribution of the nodal veloci-

ties in Section 3.2.2 show that the fluctuation dissipation relation derived in Chapter 2

is obeyed and that the correct theoretical averages for the kinetic and potential energies

are obtained as well as the correct nodal velocity distributions. However, these tests do

not on their own show that the set of deformations predicted by the model are statisti-

cally correct. In order to test the conformational dynamics predicted by the stochastic

finite element model we consider the flexing of a thin rod due to thermal fluctuations,

and compare the vibrational modes this system sustains from those derived from Eu-

ler Beam Theory[94]. For a classical beam undergoing pure bending, the equilibrium

deflection h due to an external torque τ is given by:
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Figure 3.2: Simulated velocity distribution functions of the x, y and z components
of a representative node within a cylindrical beam, plotted against the distributions
expected theoretically. The velocities have been made dimensionless and scaled by a

velocity vc =
(
kBT
m

)0.5
where m is the average mass on an element in the simulation.
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d2h(x)

dx2
= − τ

EI
, (3.7)

where E is the Young’s Modulus and I is the second moment of inertia of the cross-

section. The product EI is the flexural rigidity. Equation (3.7) holds for thin beams

when the deflection h(x) is small relative to the length. For a uniform torque τ the

solution to Equation (3.7) with boundary conditions h(0) = 0 and h(L) = 0 (where L

is the beam length):

h(x) =
τx(L− x)

2EI
. (3.8)

Since Equation (3.8) provides the solution of Equation (3.7) for beam undergoing

bending due to an external torque, we can obtain the flexural rigidity EI by applying

an external torque to a beam in the absence of thermal noise. The amount of work

required to bend a beam is given by:

W =
EI

2

∫ L

0

(
∂2h(x)

∂x2

)2

dx. (3.9)

If τ = 0 at both ends of the beam so that ∂2h
∂x2 = 0, h(x) can be expressed as a

Fourier sine series:

h(x) =
∑

p

hp sin
(pπx
L

)
. (3.10)

Substituting Equation (3.10) into (3.9) gives the amount of work done in each of

the Fourier modes that correspond to a degree of freedom of the system, so that:

W =
∑

p

Wp, (3.11)
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where:

Wp = h2p

(
EI

4

)(pπ
L

)4
L. (3.12)

Therefore, from equipartition of energy it follows that if the beam is subject to

thermal fluctuations then:

〈Wp〉 =
kBT

2
. (3.13)

3.2.4 Numerical Calculations for Beam Bending

I tested a total of eight finite element meshes; three have a hexagonal cross-section, four

octagonal and one square (See Figure 3.3). The hexagonal and octagonal beams have

a maximum radius of 10nm, the square beam has sides of length 10nm and all beams

have a total length L of 160nm. In all simulations the viscosities were set to 3 mPas (3

times that of water), the elastic moduli G and B were set to 10MPa, giving a Young’s

modulus of 20MPa. The density was 1000Kg

m3 . Thus, these simulations reproduce the

thermal fluctuations of a hypothetical “nanogel” beam. The numerical tests are divided

into two sections. First, we determine the flexural rigidity EI of the beams. This tests

the influence of the mesh resolution, and in addition investigates the effect of different

finite element meshes. Secondly, we obtain the average energies in the first and second

Fourier modes to confirm that the deformations of the beams obey the correct statistics.
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Figure 3.3: The eight beam meshes used to test configurational fluctuations in the
stochastic finite element method. Only the surface meshes of Hex2 and Hex3 are the
same, internally the element structure is different. Similarly, for Oct2 and Oct3 the
internal nodes are placed slightly differently to ensure the the results obtained are
independent of the arrangement of finite elements. Oct4 is the beam mesh used to
perform the fine grained calculations in Section 3.2.3 and the square beam mesh is used
in the second order element scheme described in Section 3.2.4. For the square beam
mesh, all the linear elements in the system within the second order element structure
are shown.
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To determine the flexural rigidity an external torque τ was applied to the end of

each beam with thermal noise. Prior to finite element discretisation, the governing

continuum equation for this system is:

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=
∂σv

ij

∂xj
+
∂σe

ij

∂xj
+ τi. (3.14)

To impose a torsional stress on each beam, a torque τ of magnitude τ = 5x · 10−12Nm

(where x is the linear distance from the central axis of the beam) was applied to the

end faces only. Stress-free boundary conditions were used elsewhere. The results of

these eight calculations are presented in Table 1.

Table 3.1: Flexural Rigidity Results for Different Meshes

Beam (EIx)Simulated

(EIx)Theory

(EIy)Simulated

(EIy)Theory

Hex1 1.70 1.70
Hex2 1.60 1.60
Hex3 1.82 1.75
Oct1 1.61 1.50
Oct2 1.48 1.48
Oct3 1.48 1.48
Oct4 1.30 1.26
Square 1.00 1.00

For linear finite elements the flexural rigidity of the long thin beams is larger than

is predicted theoretically. This is a consequence of there being only a small number

of linear elements across each cross-section, which artificially stiffens the rods. There

are two alternate strategies to improve the accuracy of the flexural rigidity for linear

finite elements. One solution (discussed in Section 3.2.6) is to use h-refinement wherein

more linear finite elements are placed across the cross-section of the beam. The second

is p-refinement (discussed in Section 3.2.7) using higher order elements to describe the

displacements and elastic stresses.

Now that the flexural rigidity of each beam has been obtained (see Table 1), the

thermal noise is reintroduced so that the Fourier modes can be extracted. The tem-

perature of the system was set to be 300K. To maintain small deformations, kBTL
EI

is
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set to be approximately 10−3. With stress free boundary conditions everywhere, the

governing equation for this simulation prior to finite element discretisation is now given

by:

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=
∂σv

ij

∂xj
+
∂σe

ij

∂xj
+
∂σt

ij

∂xj
. (3.15)

For the Hex1-3 and Oct1-3 beams, a total of 21 independent repeat simulations were

performed. This ensured sufficient sampling of the first and second Fourier modes in the

x and y directions perpendicular to the beam axis. There are two important time scales

in this system; the period of the first harmonic and the decay time of these oscillations.

The period of oscillation can be found by considering the beams as vibrating strings[95]

for which the period of the first harmonic is given in terms of the tension T on the

string, the total length L and the mass per unit length µ:

τ = 2

(
µL2

T

) 1

2

. (3.16)

Equation (3.16) can be re-written in terms of the cross sectional area of the beam

A such that µ = ρA. Similarly by performing dimensional analysis, the tension T can

be expressed as T = EI
L2 . So that in terms of the important parameters the beam the

period of the fundamental mode is of order:

τ = 2

(
ρAL4

EI

) 1

2

. (3.17)

From this estimate the period of oscillation for the Hex1-3 and Oct1-3 beams are

of order 10ns; the longest decay time scale for these oscillations was measured by

simulation and is also around 10ns. Since the total simulation time was 1.5µs, both

of these important time scales were adequately sampled. Each Fourier amplitude was

then averaged, the variance of the distribution obtained; substitution into Equation

(3.12) then provides the average energy of that particular Fourier mode (see Table 2).

The results for the different meshes using the flexural rigidities from Table 1 all show
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Table 3.2: Average energies in the first and second Fourier modes normalised by kBT
2

(so
that the correct theoretical answer is 1). FM1X and FM1Y denote the average energy
in the first and second Fourier modes in the X and Y directions respectively, while
FM2X and FM2Y refer to the average energy in the second Fourier modes. Where the
error is given by the standard deviation of the resultant distribution of energies from
each of the 21 different simulations.

Beam FM1X
(

2〈Wp〉

kBT

)
FM1Y

(
2〈Wp〉

kBT

)
FM2X

(
2〈Wp〉

kBT

)
FM2Y

(
2〈Wp〉

kBT

)

Hex1 1.014 ± 0.068 1.058 ± 0.038 1.000 ± 0.034 1.024 ± 0.032
Hex2 0.940 ± 0.064 0.982 ± 0.056 0.960 ± 0.034 0.966 ± 0.030
Hex3 0.976 ± 0.044 1.004 ± 0.062 0.910 ± 0.028 0.924 ± 0.024
Oct1 0.984 ± 0.048 0.928 ± 0.052 1.022 ± 0.030 1.052 ± 0.028
Oct2 1.026 ± 0.082 0.982 ± 0.062 1.046 ± 0.036 1.064 ± 0.042
Oct3 1.010 ± 0.076 0.906 ± 0.070 0.974 ± 0.044 0.980 ± 0.034

good agreement with the theoretical prediction for the average energy in the first and

second Fourier bending modes. The results agree with the theoretical average energy

predicted by the equipartition theorem within the calculated sampling error.

Figure 3.4 shows four representative conformations of the beams sampled from the

FFEA simulations. These were obtained by plotting the centre of mass of different

sub-sections of the beam along its length relative to the beam ends to represent the

instantaneous configuration (consequently the ends of the beams always have a total

displacement of zero). Furthermore, the deflections of each centre of mass of the beam

follow a Gaussian distribution as expected for a beam subject to thermal noise.
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Figure 3.4: Four different conformations adopted by the Hex1 beam due to thermal
noise. The boundary condition of no external torque ∂2h

∂x2 = 0 enables the deformations
h(x) to be measured relative to the positions of stationary beam ends.
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From the calculation of the flexural rigidities from the finite element meshes of

the eight beams (Table 1), and the calculation of the average energies in the first two

Fourier modes, we conclude that the average energies obtained from the stochastic

finite element model are in agreement with theoretical predictions. However, the linear

approximation for the elements leads to an over-estimation of the flexural rigidity when

the mesh contains too few elements. To demonstrate that this can be corrected by

increased spatial refinement, two simulations were performed one employing a finer

mesh of linear elements (See Section 3.2.6), and another using second order elements

for the elastic deformation of the rods (See Section 3.2.7).

3.2.5 Distribution of the Fourier Amplitudes

The energy in a given Fourier mode is quadratic in the respective Fourier amplitude (as

shown in Equation (3.12)). Therefore, the distribution of the Fourier amplitudes must

be Gaussian[87]. The variance of the distribution of each of the Fourier amplitudes is

given by:

〈h2p〉 =
(
kBT

2L

)(
EI

4

)−1 (pπ
L

)−4

. (3.18)

For the Oct2 beam, I computed the distribution of the Fourier amplitudes by running

long time scale stochastic finite element model simulations and comparing the results

with Equation (3.18), as shown in Figure 3.5. The agreement between the theoretical

and experimental curves confirms that the thermal statistics of the model are correct

and consistent with the results derived in Chapter 2.

3.2.6 Fine Grained Mesh, h-refinement

To capture the bending of the beams more accurately I calculated the flexural rigidity

using an octagonal mesh with four elements across the diameter of the beam (Oct 4)

compared to the two used in Oct1, 2 and 3. The same viscosities, elastic moduli and
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Figure 3.5: The simulated Second Fourier modes are shown in green and red and
the analytic distribution is shown in blue. The orange and cyan lines represent ±1%
error in the analytic standard deviation of the distributions. The Fourier amplitudes
are normalised against the the second moment average of the analytic distribution, as
given in Equation (3.18).

density were used as previously. As shown in Table 2, improving the mesh resolution

halves the error in the flexural rigidity measured. However, this solution is more nu-

merically costly as there are approximately 8 times as many elements to be considered

in this finer grained mesh.

3.2.7 Second Order Element Solution, p-refinement

An alternative method for improving the spatial resolution is to use quadratic functions

in the interpolation of displacements. This requires a solution of Equation (2.9) in which

the elastic terms and the mass matrix are solved using second order elements[80]. The

elastic stress is calculated using 10 node isoparametric tetrahedral elements from which

Equations (2.10 and 2.12) can be solved using second order shape functions. In general,

this integral cannot be performed analytically since in the second order regime the local

compression within an element is not homogeneous. Thus, the integrals need to be
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performed numerically using Gaussian quadrature. As discussed in Section 2.3.2, it

is much more difficult to include viscous and thermal noise terms for a second order

finite element mesh. We therefore retain a linear solution for the thermal and viscosity

terms by subdividing each quadratic element into 8 linear elements, and using these

sub-elements to calculate the viscous and thermal noise terms. The viscosity matrix

and thermal force vector are calculated by subdividing each isoparametric tetrahedron

into linear elements and then performing the integrals in Equations (2.11) and (2.13)

for each of the linear sub-elements.

To test the quadratic element solution, I repeated the beam bending calculations

and obtained the flexural rigidity for a simple square cross-section beam with sides of

unit length . As shown in Table 3.1, the second order elements give the correct flexural

rigidity for a square cross-section. In this case, the use of second order elements provides

a more efficient method to improve the of accuracy of the solution than increasing

the number of linear elements. Since the main increase in the computational expense

for the quadratic elements arises from calculating the thermal and viscosity terms,

which involve the contributions from the eight linear sub-elements that make up each

quadratic element, the second order solution gives better efficiency in the trade-off

between accuracy and computational expense. However, this method does suffer from

stability issues.

3.2.8 Spatial Convergence

To demonstrate spatial convergence of the stochastic finite element model method, I

simulated a series of 6 cubes with identical side length (1µm) but an increasing number

of finite elements, as shown in Figure 3.6. The other material parameters such as the

viscosity, temperature and density were held constant in all 6 simulations.
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Figure 3.6: Convergence of the anisotropy of the inertia tensor as a function of the
element number. The error bars are the standard deviation of the anisotropy. Meshes
corresponding to the data points are also shown.

To characterise the thermal fluctuations of each cube I calculated the average fluc-

tuations in the anisotropy of the inertia tensor. The inertia tensor Iij is defined as:

Iij =

∫

V

ρ(r2δij − rirj)dV , (3.19)

where r is the position vector relative to the centre of mass and r2 = r · r. The inertia

tensor is a positive definite symmetric tensor and therefore has three real eigenvalues and

corresponding linearly independent eigenvectors. We define anisotropy of the inertia

tensor as the difference between the largest and smallest eigenvalues. The anisotropy

can then be time averaged as the cubes deform due to thermal fluctuations for long

times. The results of these simulations are shown in Figure 3.6 alongside the meshes

used in each simulation. It can be seen that with the exception of the coarsest mesh that

the anisotropy converges linearly with the inverse cube root of the number of elements.

This indicates that the error is first order with respect to the distance between nodes,

as expected for linear finite elements.
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3.3 Validation of the External Hydrodynamics

Having validated the simulations for the case of no external solvent, we now test the

external hydrodynamics to ensure they too conform with expected behaviour. The

external hydrodynamics used in this model are crude and correspond to only a back-

ground solvent that the nodes of the finite element mesh can drag against. The largest

limitation is that the input fluid mechanics does not conserve momentum as the im-

plementation mirrors that of Brownian dynamics and thus cannot replicate the physics

of the Navier-Stokes equation. Furthermore, the interior nodes of the finite element

mesh feel the influence of the background fluid as much as the surface nodes. In reality,

this is unphysical as only the surface nodes should feel the external fluid and so the

material model will not respond correctly to external flow. A more sophisticated fluid

model could be included by instead resolving a surface force from the fluid onto the

finite element mesh through the boundary element method. For now though, we will

only include this crude model as it is sufficient to impose an external viscosity that we

shall then use in chapter 6.

3.3.1 Validation of the External Fluid Dynamics

In order to validate the external fluid dynamics a number of numerical tests have been

performed on a sphere (See Figure 3.7) of radius 100nm with elastic moduli similar to

that of steel but with very low internal viscosity and an external viscosity similar to

that of water. This ensures that deformation of the ball is small so that the ball moves

as a rigid body on the time scale of the external fluid dynamics.

I have performed four different numerical simulations that test different aspects of

the implementation of the external fluid. Specifically, I have tested that the trajectory

of the steel ball agrees with theoretical predictions when the thermal noise is turned off;

that the total average kinetic and average total potential energies agree with theoretical

predictions; and that the sphere diffuses at a rate consistent with the Stokes Einstein

relation.
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Figure 3.7: Finite Element Nanosphere of radius of 100 nm
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3.3.2 Trajectory Analysis

The equation of motion for a rigid particle moving through a viscous background

medium is given by:

m
dv

dt
= −ηv. (3.20)

Where m is the mass of the particle, v the velocity in space and, η the friction constant.

So that if the sphere as initial velocity v(0) = v0:

v = v0 exp(−
ηt

m
) (3.21)

and the displacement from the initial position is given by:

x =
mv0

η
(1− exp(−ηt

m
)). (3.22)

Equations (3.21) and (3.22) describe the velocity and position of a point like particle

undergoing deceleration due to the viscous drag. To test that the simulation reproduces

this behaviour, we use the sphere mesh shown in Figure 3.7 and place the same initial

velocity on each node of the system. To parametrise the friction on each node of the

system, we assume that the ball experiences a drag force of 6πµRv from Stokes’ drag

in the surrounding fluid and divide this equally between the nodes of the system such

that: η = 6πµR
N

where N is the number of nodes and R is the radius of the sphere. The

results of these simulations are compared against the analytical results in Figure 3.8.

The results from these simulations show accurate agreement between the theory

and the simulations. Thus, the background fluid correctly retards the velocity of the

particle.
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Figure 3.8: Velocity (above) and position (below) as a function of time of a sphere of
radius 100nm being retarded by an external solvent. The analytical result is shown in
green with the simulated results in red.

76



3.3.3 Average Kinetic and Average Potential Energy Conver-

gence

The inclusion of external friction means that we have added extra dissipation to the

system and so a corresponding additional noise term is required by the fluctuation dis-

sipation relation (2.53). We shall therefore retest the total average kinetic and potential

energy of the system to ensure agreement with the equipartition theorem.

In order to calculate the average kinetic and average potential energy theoretically,

we must calculate the number of degrees of freedom of the system. Inclusion of the

force from the external fluid means that the system can now rotate and translate.

This increases the number of kinetic degrees of freedom by 6 (3 translations degrees of

freedom and 3 rotational) so that there are now a total of 3N kinetic degrees of freedom

in the system where N is the number of nodes. Thus, the average kinetic energy is given

by:

〈E〉 = 3NkBT

2
. (3.23)

However, the potential energy is invariant under translation and rotation and thus the

addition of translation motion and rotational motion does not effect the statistics of

the potential energy. Thus the average potential energy remains given by:

〈U〉 = 3(N − 6)kBT

2
. (3.24)

In order to test the average kinetic and potential energies numerically, long time

simulations were run at a temperature of 300K for a variety of different time steps

until the kinetic and potential energies converged to within half a percent accuracy.

The results of these simulations are presented in Figure 3.9.

The average kinetic and potential energies are accurate within a fraction of a percent

error for a time step spanning an order of magnitude. This confirms that the solution

of the external noise is correct. The accuracy of these results reflects that the particle is
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Figure 3.9: Convergence of the Kinetic energy (Red) and Potential Energy (Green) as
a function of time of the sphere shown in Figure 3.7. Note the very high accuracy of
the test regardless of time step.

essentially rigid and the shortest time scales in this simulation come from resolving the

high frequency oscillations of the nodal positions not the external fluid dynamics. This

has the effect of keeping the deformation of each of the elements in the system very

small and thus the errors due to numerical time stepping in this simulation are also

very small. Thus, the energies of the simulation are accurate regardless of the time step

until the fast oscillations of the nodes are no longer resolved and the system becomes

unstable.

3.3.4 Einstein Relation

The Einstein relation[71] relates the viscosity and average displacement of particles in

a fluid as follows:

〈∆x2〉 = 2kBT

η
t. (3.25)

Here ∆x is the displacement of the particle relative to its starting point in one dimen-
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sion, η is the friction coefficient and t is time. This relation was revealed in Einstein’s

1905 paper on Brownian Motion[71] and derived independently by Smoluchowski[72]

and Sutherland[73] in the same year. For a spherical particle η = 6πµR where R is the

radius of the particle and µ the solvent viscosity.

In order to provide a further validation of the thermal noise and Stokes’ drag, we

have measured the diffusion of the the rigid sphere shown in Figure 3.7 at a temperature

of 300K in 3 dimensions and recorded the position of the center of mass of the sphere

as a function of time for 100ns averaged over 100 realizations.

As the sphere is a 3 dimensional particle and each axis is indistinguishable we can

simply add the result of equation (3.25) 3 times to get the relation full 3 dimensional

diffusion of the particle such that:

〈∆x2 +∆y2 +∆z2〉 = 6kBT

η
t. (3.26)

The theoretical results from equation (3.26) and simulation results are compared below

in Figure 3.10.

The theoretical and analytical results are in agreement within the error bars. From

this, we conclude that the external viscosity and corresponding thermal noises have

been implemented correctly and yield the appropriate thermal physics.

3.4 Summary

In this chapter, I have demonstrated that the numerical algorithm with and without and

external solvent conserves the correct thermal physics as well as the correct mechanical

properties. I have also demonstrated both spatial and temporal convergence of the

algorithm. From this, we conclude that the algorithm is functioning correctly and that

the algorithm can be applied to biological problems. We can now apply this method to

biological problems.
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Figure 3.10: Diffusion of the sphere shown in Figure 3.7 against time. The theoretical
result from 3.26 is shown in green against the observed average diffusion in red. The
analytic and simulated data agree within error bars and thus confirm the external
solvent is implemented correctly.
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Chapter 4

Introduction to Biological

Simulations

In this chapter, I describe the method used to take the mathematical and theoretical

results from Chapters 2 and 3 and apply them to biological systems. In order to run a

biological simulation utilising this method (Section 4.3), a finite element mesh of a bio-

logical molecule must be constructed (Section 4.1) and parametrised with appropriate

values for the density, elasticity and viscosity (Section 4.2). This chapter discusses in

detail how to construct a finite element mesh of a biological molecule from low resolu-

tion imaging data as well as appropriate values for the elasticity, viscosity and density

of biological matter. For reference, a Fortran version of the stochastic finite element

algorithm and the improved coarse graining algorithm are included in appendix A.4

and appendix A.5 respectively.

4.1 Finite Element Mesh

In order to construct a finite element mesh of a protein or other biological material, we

are required to know the 3 dimensional shape of a biological molecule ab initio. There

are many techniques for obtaining structures of biological molecules, a few examples be-

ing Nuclear Magnetic Resonance (NMR)[96], X-Ray crystallography[97], Cryo Electron
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Microscopy (Cryo-EM)[98] and Small Angle X-Ray Scattering (SAXS)[99]. The struc-

tures obtained by these methods vary in resolution, for example X-Ray crystallography

can yield structures with sub-angstrom resolution[100] that reveal protein secondary

structure and atomic positions, whereas (Cryo-EM) yields structures to within a reso-

lution of a few angstroms[101] and so can reveal the overall shape.

Unlike an atomistic simulation, a continuum approach can use low resolution imag-

ing data as only the overall shape of the biomolecule is important from the continuum

mechanical point of view, not the positioning of individual atoms. This is advantageous

because even low resolution imaging data with no atomic information can be used to

build a finite element mesh. However, there is a minimum length scale below which the

continuum approach cannot probe. This length scale is on the order of several inter

atomic distances and for simplicity can be thought of as approximately 5 Å. Below this

length scale, the thermal fluctuations result in large strains that cause the numerical

algorithm to become unstable unless a time step smaller than that of molecular dy-

namics is used. This length scale sets the absolute minimum length of any edge in a

finite element mesh that represents a biomolecule. Furthermore, below this length the

material will not behave like a continuum as it is intrinsically atomic. There are better

simulation methods such as molecular dynamics capable of treating these small length

scales with greater accuracy.

In this Section, I will describe how a finite element mesh for the 3 dimensional

structure of a CoA ligase enzyme from the organism Fusobacterium nucleatum is ob-

tained through Small Angle X-Ray Scattering (SAXS)[102]. The SAXS technique will

be described in more detail in Chapter 5. For now only the fact that a 3 dimensional

structure can be obtained from it is important. From this a mesh is generated with

an edge length of 2.4Å (Section 4.1.1). As this is below the minimum length scale

appropriate for this method, I have developed two different coarse-graining methods to

increase the element size (Section 4.1.2 and Section 4.1.4).
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Figure 4.1: Low resolution SAXS[102] envelope of a CoA Ligase enzyme[103] from
Fusobacterium nucleatum with the initial finite element mesh on the right.

4.1.1 Small Angle Scattering Envelope to a Finite Element

Mesh

A SAXS[102] envelope of the CoA ligase enzyme[103] is shown in Figure 4.1 with

a homologous protein from Archaeoglobus fulgidus (PDB ID:3G7S[104][38]) together

with the corresponding finite element mesh on the right. The SAXS data is used

to define the envelope of the molecule as a cluster of spheres of radius 2.4 Å. This

length corresponds to the shortest length scale probable in SAXS before the SAXS

data becomes too noisy. By taking points on the outer surface of the sphere a finite

element mesh can be constructed using generation software such as TETGEN[105] to

give an initial finite element mesh of the system shown on the right in Figure 4.1.

While a simulation based on the initial finite element mesh is in principle possible,

the length scale of this mesh (2.4 Å) is below the level for which a continuum approx-

imation is valid. Resolving the thermal fluctuations of such small elements in practise

requires a time step of order 0.1fs, smaller than that required in MD simulations and

is impractical. Thus, we are required to coarse grain this initial finite element mesh to
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Figure 4.2: A general two dimensional surface mesh with one short edge.

a more suitable length scale to ensure the validity of the continuum approximation. I

have devised two different coarse graining algorithms, one basic and one advanced, to

tackle this problem.

4.1.2 Basic Coarse Graining Method

Coarse graining the finite element mesh involves reducing the total number of nodes

and elements in the system whilst preserving the shape of the biomolecule as accurately

as possible. To reduce the geometric complexity, we will coarse grain just the surface

mesh and regenerate the volume mesh using standard mesh generation software.

In order to construct a coarse graining algorithm, we first consider how to coarse

grain a simple test surface shown in Figure 4.2. Figure 4.2 shows a hypothetical section

of a surface mesh with one short edge located at the centre. In order to coarse grain

this mesh we must remove this short edge by removing one of the nodes. Given we can

solve this problem we can then iterate the solution many times over a full surface mesh

to arrive at a coarse grained surface mesh.

A solution to this problem is presented in Figure 4.3. The solution employs four

steps as follows:
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1. Construct the initial fine grained surface mesh.

2. Identify the shortest edge, in this case the two nodes A and B forming the edge

AB.

3. Construct a new node C at the midpoint between nodes A and B and delete the

two surface elements (Orange) that contain the edge AB.

4. Reconnect the surface mesh by merging nodes A and B into node C.

As shown in the final pane of Figure 4.3 this does indeed coarse grain the mesh

and returns us to an initial mesh that, in principle, we could parse again with this

algorithm.

This procedure can be iterated until the minimum edge length is above the desired

threshold.

4.1.3 Problems of the Basic Coarse Graining Method

The basic method for coarse graining described in Section 4.1.2 preserves the shape of a

planar surface. However, if the surface is curved there will be a small change to surface

shape and hence the volume occupied by the biomolecule.

To illustrate this point, in Figure 4.4 we consider the change in the volume below the

surface as a consequence of implementing one iteration of the coarse graining algorithm.

There is a small reduction in the volume below the surface caused by the curvature of

the mesh, as shown in Figure 4.5.

The basic coarse graining algorithm causes volume loss when the surface is locally

convex and volume gain when it is locally concave. While each step only produces a

small change in the volume the cumulative effect can produce a significant change in

the shape of the biomolecule. Therefore it would be desirable to have a coarse-grainer

that preserves the volume of the biomolecule at each iteration.
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Figure 4.3: Simple Algorithm for coarse graining a surface mesh.

86



Figure 4.4: 3D view of the basic coarse graining algorithm.

Figure 4.5: Volume Loss.
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4.1.4 Improved Coarse Grainer

In order to design a coarse grainer that conserves volume we shall modify the basic

algorithm presented in Section (4.1.2) so that no net volume is lost or gained as a

consequence of removing the node. An algorithm for this is presented in Figure 4.6 and

4.7. The difference from the previous algorithm is that the position of the new node,

termed C, is determined so that there is no volume change. The algorithm is as follows

and a complete Fortran 90 version of the code is included in Appendix A.5:

1. Construct an initial surface mesh.

2. Identify the shortest edge, in this case the two nodes A and B forming the edge

AB.

3. Find all the elements that contain either node A or B.

4. Calculate the outward pointing unit normals N1 and N2 that belong to the two

elements containing nodes A and B.

5. Construct two new nodes C and D on the line through the midpoint of A and B

directed parallel to the vector N defined as the average of the unit normals N1

and N2.

6. Construct a local volume mesh by connecting the surface elements containing

nodes A or B to node D and the equivalent volume mesh using new node C

instead of A and B.

7. Calculate the total volumes of the two volume meshes constructed in part 6 and

move new node C along the vector N to ensure that the volume of both volume

meshes is equal.

8. Construct the new surface mesh using new node C to ensure no volume loss.

In the algorithm described above, we have ignored the specific placement of nodes

C and D. There are two useful scaling lengths that are found in the initial surface mesh
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Figure 4.6: Improved Coarse Grained Algorithm Part 1.
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Figure 4.7: Improved Coarse Grained Algorithm Part 2.
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Figure 4.8: Example sphere that will be coarse grained using the basic and advanced
method.

the longest edge length and the length of the edge between nodes A and B. The node

D is placed 10 times the longest edge length in the initial surface mesh away from the

midpoint of nodes A and B. This avoids any clashes between volume elements such as

self intersection. Node C is placed utilising the length between nodes A and B to scale

the average normal vector N. This provides a sensible initial location for node C that

will be close to the point where no volume change takes place. The point C can then

be moved along the vector N using a simple convergence routine based on the changes

in volume.

The principle behind this method is to place the new node C, not at the average

position of A and B, but at a nearby point such that the reconnection produces no

change in volume. This is achieved by constructing a local volume mesh constructed

from the tetrahedra formed from the surface elements.

4.1.5 Performance of the Improved Coarse Grainer and the

Basic Coarse Grainer

As a simple test to show the relative performances of the two coarse graining algorithms,

a sphere shown in Figure 4.8 was coarse grained using both coarse grainers for a varying

number of steps.

The results of these simulations is shown in Figure 4.9 where we see that the basic

algorithm loses up to 5 percent of the volume of the sphere while the improved algorithm
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Figure 4.9: Volume loss as a function of coarse graining step.

is accurate to machine precision for the volume of a sphere.

4.2 Material Parameters for Proteins / Biological

Matter

In order to simulate the motion of biomolecules we require estimates for the material

properties of biomolecules. While some continuum properties such as density are easily

determined, others are much harder. In this section, we discuss the existing literature

and justify the range of values we use.

4.2.1 Experimental Techniques to Probe the Material Prop-

erties of Biomolecules

Here I will elaborate on the precise nature of the material properties used in the contin-

uum model. There are a few experimental techniques that have been used to probe the

material properties of biomolecules such as the internal viscosity (Section 4.2.3), the
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Young’s modulus (Section 4.2.4) and density (Section 4.2.2). These include solvent

based methods[106][107] and Atomic Force Microscopy (AFM)[108][109] techniques

to measure the internal viscosity of proteins as well as surface force apparatus[110],

nanoindentation[111] AFM techniques and sound wave experiments[112] to measure

the Young’s Modulus. Of these methods the most reliable measurement of the internal

viscosity and Young’s modulus comes from solvent based methods and nanoindentation

AFM techniques respectively. The reasons for this will be discussed in Sections (4.2.3)

and (4.2.4).

4.2.2 Biomolecule Density

The density of biomolecules is easy to calculate as the masses of atoms are known and

there are many complete crystal structures in the protein database (PDB)[38]. On aver-

age the density of biomolecules is around 1500kgm−3 or 1.5 times that of water[113][114].

4.2.3 Biomolecule Internal Viscosity

There are two experimental techniques used to probe the internal viscosity of proteins.

These are solvent based techniques[106][107] and AFM[108][109]. The solvent based

techniques work by measuring the effect of the solvent viscosity on the unfolding /

refolding rates and extrapolating the effect of the internal viscosity. AFM techniques

work by measuring the relaxation time of a protein by either oscillating the AFM tip

across a frequency range[108] or by deforming a protein and then retracting the AFM

cantilever while monitoring the deflection of the tip[109].

The solvent based experiments[106] model protein folding as a diffusive process over

energy barriers. The method works by assuming that there are two contributions to the

diffusion coefficient over the folding energy barrier, namely the solvent viscosity and the

internal viscosity of the protein[106]. Thus, if one can alter the solvent viscosity, while

maintaining the shape of the free energy surface, and measure the protein relaxation

rate between folding and unfolding. Then the internal viscosity can be extrapolated
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using a result from Ansari et al[115].

In the oscillating tip AFM experiments[108] the protein is attached to a gold film

and a gold nano particle by tethers. The tip can then be oscillated back and forth at

different amplitudes and frequencies to probe various regimes of viscoelastic response.

An alternative to tethering the protein and thus any chemical sequence modification is

to dry proteins onto a film. Once the tip finds a protein on the film, the force indentation

curve can be measured. This allows one to extract a Young’s modulus (See Section

4.2.4) by compressing the protein. The AFM tip can then be retracted. However,

as the tip is effectively attached to the protein at this point, a viscous response[109]

is observed that allows the internal viscosity of the protein to be calculated using a

Maxwell element[109] to model the tip deflection.

These two methods yield radically different values for the internal viscosity with

solvent based methods yielding values on the order of 10−3Pas and the AFM techniques

104Pas. The reason for these differences is that the solvent and AFM techniques probe

different relaxation time scales. The AFM techniques use either an oscillating tip with a

frequency on the order of a few kHz[108] and thus measure millisecond relaxation times

or measure the time taken for the AFM tip to relax (hundreds of microseconds)[109]. By

contrast, the solvent based techniques intrinsically depend on the relaxation time of the

solvent which is a much faster time scale of either of the AFM techniques[106]. Hence

the higher viscosities found in AFM based measurements result from all the modes

with relaxation times less than a few milliseconds, while the solvent based methods

probe much shorter time scales on which the longer relaxation modes behave elastically.

Given that my simulations have run times on the order of microseconds, much shorter

than those of the AFM measurements, the solvent based measurements provide a more

appropriate value for the internal viscosity of biomolecules in the continuum model.
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Table 4.1: Young’s modulus and Poisson ratio for a variety of different materials.

Material Young’s Modulus Poisson ratio
Rubber[116] 1-10 MPa 0.48-0.50
Low Density Polyethylene[117] 200 MPa -
High Density Polyethylene[118] 800 MPa 0.46
Steel[116] 190-210 GPa 0.27-0.30

4.2.4 Biomolecule Young’s Modulus and Poisson Ratio

The Young’s modulus of a material describes how much stress builds up in a material

according to a given strain[83]. Therefore, the Young’s modulus is defined as:

E =
σ

ǫ
. (4.1)

The Young’s modulus is a useful quantity because it is normalised for the dimension

of a material and the applied deformation. Thus, it is straightforward to compare results

of materials with different dimensions undergoing different deformations.

The Poisson ratio[83] is best explained by the following thought experiment, con-

sider a cube that is compressed in the x-axis. This cube will shorten in the x-axis

and typically expand in the y and z axis. The Poisson ratio ν describes the ratio of

compression in the transverse axes (y and z) to the axial compression in the x-axis. As

such the Poisson ratio is defined by:

ν = −dǫtrans
dǫaxial

. (4.2)

Where ǫtrans is the strain in the y and z axes and ǫaxial is the strain in the x-axis.

The Poisson ratio varies from -1 to 0.5, where materials with a Poisson ratio of 0.5 are

incompressible.

Before I discuss how these two elastic moduli relate to biomaterials, a list of typical

values of the Poisson ratio and Young’s modulus for common materials is provided in

table 4.1 to provide context for the values derived for biomolecules.
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Table 4.2: Young’s Modulus for different globular proteins.

Globular Protein Young’s Modulus
Lysozyme[109] 300-700 MPa
Bovine carbonic anhydrase II[120] 75 MPa
Lactate Oxidase[121] 500-800 MPa

Of the methods listed in Section 4.2.1 that measure the Young’s modulus of biomolecules,

only the nanoindentation[111] AFM method yields values that are appropriate for the

continuum model. The reason for this is that the nanoindentation AFM method mea-

sures the Young’s modulus of a single[111] globular protein by using compressive inden-

tation to measure the resultant force as a function of the depth of the indentation. This

indentation can be modelled purely elastically using the Hertz contact model and the

Young’s modulus extracted[111]. It is required that the indentation be fully reversible

so that the protein is not damaged by the experimental process. The other methods

listed in Section 4.2.1 measure the Young’s modulus of either multiple proteins in a

crystalline phase[112] or long fibrous (non globular) proteins such as actin[119] tracks

making the extracted Young’s moduli incompatible with the continuum model.

It may seem contradictory that we use the nanoindentation AFM technique to mea-

sure the Young’s modulus while rejecting the other AFM methods to measure the

internal viscosity. The reason for this is that the viscoelastic response of globular pro-

teins to deformation is complex and that the AFM techniques probe different physics.

The internal viscosities derived from AFM explore relaxation time scales much longer

than any of my simulation run times and are thus inappropriate[108][109]. However,

the nanoindentation technique measures only the elastic response of a protein due to

deformation[111]. Thus, the Young’s modulus obtained from nanoindentation is di-

rectly applicable to the continuum model because the continuum model should yield

the same behaviour under the same conditions.

The observed values for the Young’s modulus using the nano indentation AFM

technique for globular proteins are given in table 4.2.
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Based on these experimental values of the Young’s Modulus, we conclude that a

reasonable range for the Young’s modulus of globular proteins is probably on the order

of 100-1000 MPa. This range correlates well with what we would expect from table 4.1

in that proteins are at the most basic level polymer chains folded in a specific way due

to hydrogen bonding, hydrophobicity, electrostatics and Van der Waals. So it should

come as no surprise that the Young’s moduli compare favourably with those of low and

high density polyethylene.

The Poisson ratio is more difficult to measure experimentally in part due to the

difficulty of measuring the exact volume of proteins undergoing deformations. However

it has been estimated to be between 0.3 and 0.4[122].

4.3 Application to Biology

I now demonstrate the use of the continuum model to probe the conformational flex-

ibility of a globular protein using the first order element approximation to improve

computational efficiency. As a representative system, we have used the long fatty acid

chain CoA ligase[103] enzyme from the organism Fusobacterium nucleatum. To date,

it has not been possible to obtain atomically detailed structural information for this

protein. However, the overall 3-dimensional shape of the biomolecule has been de-

termined using Small Angle X-ray Scattering (SAXS)[102]. Figure 4.10(a) shows the

atomistic structure of the homologous protein long-chain-fatty-acid-CoA ligase from

Archaeoglobus Fulgidus (PDB ID: 3G7S[104]), with the SAXS structural envelope of

the CoA ligase superimposed. The experimentally determined structural envelope was

converted into a finite element mesh using TETGEN[105], which was then further re-

fined using NETGEN[123] and the basic coarse graining method described in Section

4.1.2.

The resulting mesh is compared with the original SAXS structural envelope in Figure

4.10(b).

For these calculations, I tested the model using three values of the Young’s modulus
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Figure 4.10: Comparison of the SAXS[102] structural envelope and atomistic structure
of the homologue CoA ligase[103][104] from Archaeoglobus Fulgidus with the equivalent
finite element mesh viewed in NETGEN[123].
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corresponding to low (450MPa), medium (560MPa) and high (800MPa) biomolecu-

lar flexibility. Additional simulations were run with Young’s moduli at 340MPa and

100MPa however these proved to be unstable unless an exceptionally small time step,

smaller than that of atomistic molecular dynamics was used. This made producing

long time simulations impractical for these values of the Young’s modulus. The rea-

son for this is that the finite element mesh of CoA ligase is on the lower bound of

the continuum approximation. At this length scale thermal fluctuations dominate and

make the numerical algorithm unstable. Higher Young’s moduli help to compensate

for numerical instability making it more difficult for elements to deform significantly.

The remaining material properties of the biomacromolecule were assigned based on the

existing literature values quoted for proteins, where available see Section (4.2). The

density was set to be 1500kgm−3. I have assumed a value that corresponds to the shear

viscosity of water, 10−3Pas. The same value was used for the bulk viscosity[124]. The

temperature was set to 300K and the Poisson ratio set to 0.4. The bulk and shear

moduli can then be calculated from the following, where E is the Young’s Modulus and

ν the Poisson ratio:

G =
E

2(1 + ν)
(4.3)

K =
E

3(1− 2ν)
(4.4)

Prior to finite element discretisation, the governing equation for the protein model

is given below in Equation (4.5):

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=
∂σv

ij

∂xj
+
∂σe

ij

∂xj
+
∂σt

ij

∂xj
. (4.5)

Using the governing Equation (4.5), with stress free boundary conditions and the

mesh shown in Figure 4.10(b), each simulation was run for 500ns for the three dif-

ferent choices of material parameters. Each calculation took approximately 2 weeks
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of CPU time on a single processor. The simulation trajectories were visualised us-

ing paraFEM[125]. On visualising the trajectories, it was apparent that the molecule

changes its orientation relative to the starting structure, whilst conserving angular mo-

mentum, as the fluctuations in the shape of the biomolecule cause the inertia tensor to

change[126]. Therefore, the trajectories were post-processed to reorientate the molecule

prior to analysis. The biomolecular flexibility was quantified by calculating the Root

Mean Squared Deviation (RMSD) of the co-ordinates of the mesh nodes from their

initial values during the simulations, as shown in Figure 4.11.

As expected, increasing the Young’s modulus from 450MPa (red line) to 800MPa

(blue line) results in a smaller RMSD from the initial structure, indicating a less flexible

protein. The value of (2Å) obtained lies within the range 1 to 6Å found from 10ns

atomistic MD simulations of small proteins selected from the protein data bank[127].

In these MD simulations the magnitude of the thermal fluctuations about the native

state of the protein was measured by calculating the RMSD. As the proteins in the

MD simulations did not refold into a different state, both the finite element simulations

and MD simulations should yield comparable results for the RMSD. Other areas of the

simulation literature also support this conclusion as well as the protein literature in

general[128] [129] [130].

The stochastic finite element model simulations provide a series of conformers of

the protein as it undergoes thermal fluctuations that are analogous to conventional

particle-based molecular dynamics, but now at the continuum level. Figure 4.12 shows 9

representative conformations of the protein extracted from the stochastic finite element

model simulation trajectories performed with the lowest Young’s Modulus (450MPa).

Each of the 9 snapshots are coloured by their overall deviation from the equilibrium

configuration with the scale bar showing the displacement in nanometers. Figure 9

shows that the “trunk” of the protein is relatively immobile, and undergoes minor

structural disruptions while retaining its overall shape. However, the lobe located to

the left of the biomolecule moves more significantly than other regions of the trunk
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Figure 4.11: RMSD obtained for three different sets of elastic parameters (with rotations
removed prior to analysis).
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Figure 4.12: Nine representative conformers CoA ligase sampled from stochastic finite
element model simulations with E = 450MPa: 1. Arm swings left. 2. Small thermal
disruptions to the entire trunk, including lobe. 3. Large arm swing to the left and lobe
disruption. 4. Arm sticks out of the page and disruption to the leftward lobe. 5. Entire
protein elongated by the thermal noise. 6. Arm swings to the right. 7. Arm swings to
the left and major disruption to the shape of the arm. 8. Arm swings out of the page.
9. Elongation with change in shape of the entire trunk.
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as it is considerably thinner than the main body of the protein. The most striking

deformations occur in the “arm” at the base of the enzyme, which is highly flexible

and swings back and forth around the bottom of the molecule during the course of the

simulation. This indicates that the intermediate region between the arm and the trunk

acts as a flexible hinge region in the biomolecule. It is interesting to note from Figure

4.10(a) that it is precisely in the region that stochastic finite element model predicts

should be of greatest flexibility that the homologous protein Archaeoglobus Fulgidus

has missing electron density, indicating that this region was too mobile for its structure

to be determined crystallographically.
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Chapter 5

Finite Element Simulations of Small

Angle X-ray Scattering

Experiments

In this chapter, I describe the application of the finite element model to Small Angle

X-ray Scattering (SAXS) experiments, extending the work done in Chapter 4. Here

I use the static SAXS envelope to construct the finite element mesh and then use

the finite element model to generate dynamics for the structure (Section 5.3). The

dynamics of the X-ray scattering signal can then be generated and compared against

the experimentally determined X-ray scattering curve (Section 5.4 and Section 5.5).

5.1 Scattering Theory

The X-ray scattering signal can be determined from the shape of a protein. Scatter-

ing theory describes how a wave interacts with matter via processes such as collision,

interference or diffraction[131]. These effects produce scattering patterns that contain

structural information about the object which scatters the wave. Throughout this

chapter, we are exclusively concerned with elastic scattering, the mechanism relevant

to SAXS[132]. The theory of elastic scattering[131][133] is developed in Section 5.1.1
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Figure 5.1: Construction of a scattering experiment.

for point like particles and extended to continuum materials[133] in Section 5.1.3 before

introducing the idea of form and structure factors[133] in Section 5.1.4.

5.1.1 Elastic Scattering Theory

In elastic scattering, the kinetic energy of the incident wave is conserved during scattering[131].

A typical scattering experiment is illustrated in Figure 5.1. The source emits a wave,

such as X-rays, that interact with the scattering object. This produces a scattering

signal that we consider to be a radial wave emitted by the scattering object[133]. The

amplitude of this scattered wave is a function of the scattering angle θ. The variations

in this amplitude as a function of θ lead to patterns in the scattering signal that reveal

information about the structure of the scattering object.

The incoming beam is given by[133]:

A = A0 exp(ik · x), (5.1)

where |k| = 2π
λ

is the wavenumber for waves of length λ.

The scattered radiation pattern is formed from the superposition of the waves from

each object[133]. We consider n identical particles whose dimension is much smaller

105



than the wavelength of the incoming wave. The interaction between the incoming beam

and particle m at position rm will then produce a radially symmetric scattered wave:

Am =
A0bm
R

exp(ik · rm) exp(ik0 · (x− rm)). (5.2)

The first exponential in equation (5.2) comes from evaluating equation (5.1) at the

position of the scattering particle while the second exponential gives the phase factor

of the radially emitted wave. The pre-factor bm
R

arises from the reduction in amplitude

with distance for a spherical wave, where R is the distance between the scattering

source and the detector, and bm is called the scattering length[133]. Equation (5.2) can

be re-arranged by introducing a new variable q = k− k0 such that:

Am =
A0bm
R

exp(irm · q) exp(ik0 · x). (5.3)

We note that:

|q| = 4π

λ
sin

(
θ

2

)
. (5.4)

Where θ is the angle between the incident and scattered beams.

From equation (5.3), we can now calculate the total amplitude of the resultant

scattered wave by summing over all of the scattering particles:

A =
A0

R
exp(ik0 · x)

n∑

m=1

bm exp(iq · rm). (5.5)

In experiments one does not measure the amplitude of the scattered beam, but the

intensity[133] I = AA∗ where A∗ denotes complex conjugate. Thus, the intensity is

given by:
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I =
A2

0

R2

n∑

m=1

bm exp(iq · rm)
n∑

l=1

bl exp(−iq · rl),

=
A2

0

R2

∑

l,m

bmbl exp(iq · (rm − rl)). (5.6)

Equation (5.6) relates the intrinsic position of the particles in the scattering exper-

iment shown in Figures 5.1 and 5.2 to the observed intensity.

5.1.2 Absolute Intensity

The intensity I detected at radius R from the scattering material depends upon both

the amount of material and the distance between the material and the detector. It is

therefore useful to normalise the intensity so that the effects of distance and the amount

of material are scaled out[133]. This gives the absolute intensity Iabs, defined as follows:

Iabs =
IR2

I0V
, (5.7)

where I0 = A0A
∗
0 is the intensity of the incident radiation and V is the volume of the

scattering source.

By substitution of equation (5.6) into equation (5.7) this is the quantity generally

reported by experimentalists:

Iabs =
1

V

∑

l,m

bmbl exp(iq · (rm − rl)). (5.8)

5.1.3 Continuum materials

We now consider the scattering from a continuum material. We modify equation (5.2)

to incorporate the number density of particles ρ(r) in a specific small scattering volume

∆V [133] such that:
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A∆V =
A0b

R
ρ(r)∆V exp(ik · rm) exp(ik0 · (x− rm)). (5.9)

The derivation now proceeds in a similar manner to that presented in Section 5.1,

but instead of summing over all particles we sum over all volumes to calculate the total

scattering amplitude[133] A =
∑

∆V in V

A∆V so that the total scattering amplitude:

A =
∑

∆V inV

A∆V

A0b

R
ρ(r)∆V exp(ik · rm) exp(ik0 · (x− rm)), (5.10)

and in the limit that ∆V tends to 0 the summation can be replaced by an integral:

A =
A0b

R
exp(ik · x)

∫

V

dV ρ(r) exp(iq · r). (5.11)

Once again we now convert to measuring the intensity of the scattered beam by

computing I = AA∗ so that:

I =
A2

0b
2

R2

∫

V

dV ρ(r) exp(iq · r)
∫

V ′

dV ′ρ(r′) exp(−iq · r′)

=
A2

0b
2

R2

∫

V

dV

∫

V ′

dV ′ρ(r)ρ(r′) exp(iq · (r− r′)). (5.12)

Equation (5.12) gives the intensity in terms of the pair distance between any two

infinitesimal volumes of a continuum solid. Once again we must normalise equation

(5.12) to account for the experimental setup as in Section 5.1.2 using equation (5.7) to

yield:

Iabs =
b2

V

∫

V

dV

∫

V ′

dV ′ρ(r)ρ(r′) exp(iq · (r− r′)). (5.13)

Equation (5.13)[133] defines the absolute intensity and completes the derivation of

the form of the intensity in terms of the vector q. We will now examine what these

formulas can tell us about the structure of the scattering object. This will lead to two

important terms that describe different aspects of the object structure: The form factor
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and structure factor.

5.1.4 Form Factors and Structure Factors

We now consider scattering from a set of identical objects with some large scale spatial

arrangement. In this case, there are two major contributions to the overall scattering

pattern. The two contributions are from the global arrangement of the objects and

second from the internal structure of the objects themselves. The scattering from the

global arrangement is called the structure factor[134] S(q) while the scattering from

the internal structure of the objects is called the form factor[131] P (q). In order to

see the origin of these two terms we consider the Fourier transform of the scattering

density:

ρ̃(q) =

∫
d3rρ(r) exp(iq · r). (5.14)

We consider a density ρ(r) where a constant background density ρ0 is perturbed

locally by some additional objects, with centres of mass given by rα (see Figure 5.2).

The total density of the system[134] is given by:

ρ(r) = ρ0 +
∑

α

ρp(r− rα). (5.15)

where ρp(r− rα) is the density from the object centred at rα.

Substitution into equation (5.14) to yields:

ρ̃(q) =

∫
d3r

(
ρ0 +

∑

α

ρp(r− rα)

)
exp(iq · r)

=
∑

α

∫
d3rρp(r− rα) exp(iq · r) (5.16)

and, making the substitution r′ = r− rα:
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Figure 5.2: Diagram of number density variation at different length scales. Clearly, at
long length scales there is an overall density of the system given by ρ0 that is perturbed
locally by the internal structure.

ρ̃(q) =
∑

α

∫
d3r′ρp(r

′) exp(iq · r′) exp(iq · rα) (5.17)

= ρ̃p(q)
∑

α

exp(iq · rα). (5.18)

The scattering intensity is then proportional to ρ̃(q)ρ̃∗(q) such that:

I = ρ̃p(q)ρ̃
∗
p(q)

∑

αβ

exp(iq · (rα − rβ)) (5.19)

From equation (5.19), we identify the structure factor S(q) and the form factor[134]

P (q) as follows:

S(q) =
∑

αβ

exp(iq · (rα − rβ)), (5.20)

P (q) = ρ̃p(q)ρ̃
∗
p(q). (5.21)
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The structure factor S(q) is defined purely by the relative distances between the

centre of masses of the objects and contains information about the overall placement of

objects in the bulk volume of the material. In contrast the form factor[131][134] P (q)

depends only on the local perturbations in the scattering density due to the structure

of an individual object. This is an example of convolution in real space becoming

a multiplication of two functions in Fourier space. The difference between the form

factor and structure factor[134] will be important when we discuss the nature of SAXS

experiments to identify the shape of biomolecules in Section 5.2.

5.2 Small Angle Scattering Experimental Procedure

and Envelope Construction

SAXS experiments determine the small angle X-ray scattering curve from a particular

biomolecule. The small angle scattering curve contains information on the overall shape

of biomolecules, not the location of individual atoms or protein secondary structure.

From this a low resolution model 3D structure of the biomolecule can be generated

(Section 5.2.3) called a SAXS envelope. The primary advantage of the SAXS technique

is that all experiments can be run in solution with small sample volumes[102]. This

avoids the need to grow crystals of biological molecules as is required by higher resolu-

tion techniques such as X-ray crystallography. In the following sections I introduce how

a SAXS experiment is run (Section 5.2.1), spherical averaging of the X-ray scattering

signal (Section 5.2.2) and construction of the SAXS envelope (Section 5.2.3).

5.2.1 Experimental Procedure

An example of the basic construction of a SAXS experiment is shown in Figure 5.3.

The experiments are run on dilute protein solutions[102]. The consequence of this

is that the proteins are randomly distributed in space and do not aggregate. This

means that there is no global structure to the proteins as they are randomly arranged
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Figure 5.3: Experimental setup of an X-ray beam line.

in space and therefore the structure factor is flat. Secondly, as the proteins are free

to translate and rotate in solution, the scattering signal is a population average of all

protein conformations in all orientations[135]. Therefore, there is a need to average our

X-ray scattering equations over all orientations detailed in Section 5.2.2.

5.2.2 Spherical Averaging of the X-Ray Scattering Signal

In a SAXS experiment there are two sources of scattering from the buffer and from

the dissolved biomolecules. The effect of the buffer can be subtracted out by simply

sampling the scattering pattern of the buffer without any biomolecules present[102].

Thus, what remains is simply the signal from the remaining biomolecules in solution.

The solutions are assumed to be sufficiently dilute such that cross scattering between

different biomolecules can be neglected[102]. Consequently, the scattering is due to the

form factor not the structure factor.

The biomolecules are undergoing Brownian motion in the fluid and are thus free

to rotate and translate in solution as well as explore their free energy landscape due

to thermal fluctuations. Consequently, the scattering signal from the solution is a

population average over all conformations and orientations of the biomolecule. This

requires us to average our scattering equations over all orientations[131], so starting

from equation (5.13) the scattering from a continuum material is given by:
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Iabs(q) =
b2

V

∫

V

dV

∫

V ′

dV ′ρ(r)ρ(r′) exp(iq · (r− r′)). (5.22)

We start by averaging the absolute intensity about all orientations, so functions of

r are unaffected, to yield:

〈Iabs(|q|)〉 =
b2

V

∫

V

dV

∫

V ′

dV ′ρ(r)ρ(r′)〈exp(iq · (r− r′))〉. (5.23)

The important quantity in equation (5.23) is 〈exp(iq · (r − r′))〉. We can interpret

this factor as the contribution to the absolute scattering from each pair of respective

infinitesimal volumes dV and dV ′. The average of 〈exp(iq · (r− r′))〉 can be expressed

as:

〈exp(iq · (r− r′))〉 = 1

4π

∫ 2π

0

dφ

∫ π

0

dθ sin θ exp(iq · (r− r′)) (5.24)

Equation (5.24) can be integrated analytically by choosing spherical coordinates

about the direction of the vector q. Thus, we integrate equation (5.24) as follows:

〈exp(iq · (r− r′))〉 =
1

4π

∫ 2π

0

dφ

∫ π

0

dθ sin θ exp(i cos θ|q||r− r′|)

=
i

4π

∫ 2π

0

dφ
exp(−i|q||r− r′|)

|q||r− r′| − exp(i|q||r− r′|)
|q||r− r′|

=
sin(|q||r− r′|)
|q||r− r′| . (5.25)

Substituting this expression in equation (5.25), in SAXS the average absolute scattering[131]

is given by:

〈Iabs(|q|)〉 =
b2

V

∫

V

dV

∫

V ′

dV ′ρ(r)ρ(r′)
sin(|q||r− r′|)
|q||r− r′| . (5.26)
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Figure 5.4: SAXS envelope of protein ‘Tom1l1’[138] with sphere radius 2.4Å.

5.3 Small Angle Scattering Envelope Construction

Equation (5.26) relates the SAXS scattering to a known density distribution ρ(r). How-

ever, the objective of the experiment is to infer the shape of the molecule from the

scattering function. We define an envelope[136] for a biomolecule E as being the set of

points r that lie inside it so that:

ρ(r) =





ρ0 r ∈ E

0 r /∈ E.

(5.27)

where ρ0 is the average density of the biomolecule.

The objective is to find the form of the envelope E that reproduces the observed value

of Iabs(|q|); this is referred to as the SAXS envelope. This type of problem is referred

to as an inverse geometric problem and is ill-posed. However, a software package called

‘ATSAS’[137] has been developed to solve this problem. ATSAS attempts to construct

the SAXS envelope as a set of spheres on a lattice. An example is shown in Figure 5.4.
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5.3.1 ATSAS Package

The ATSAS[137] package contains two important routines DAMMIF[139] and DAMAVER[140].

DAMMIF[139] takes an X-ray scattering curve and utilises simulated annealing, with

the dummy atom model shown in Figure 5.4, to build a 3D structure. At each step

of the DAMMIF[139] algorithm, the X-ray scattering curve from the current set of

spheres is calculated. The calculated signal is then compared with the experimental

curve. The structure is then mutated by adding or removing spheres to improve the

fit, via simulated annealing to minimise the error in scattering.

As this simulated annealing only finds the local minima, in general there are many

different solutions of packed spheres that will yield an X-ray scattering curve that fits

with the experimental data within the tolerance required. Thus, the recommended

practise is to generate many different models for the same X-ray scattering curve by

changing the random number seed in the DAMMIF[139] input. These models are then

averaged together to produce a consensus model using the DAMAVER[140] routine.

The X-ray scattering curves from the consensus model shown in Figure 5.4 of Tom1L1

are shown in Figure 5.5 to demonstrate the use of this technique. The SAXS model

shown in Figure 5.4 was produced at the Hauptmann Woodward Medical institute by

Thomas Grant[138].

5.4 Simulations of Tom1L1 Using the Finite Ele-

ment Model

In the previous sections, we have built an understanding of elastic scattering theory,

the fundamentals of SAXS experiments and how one can generate a low resolution 3D

structural model of the biomolecule Tom1L1[138]. There are potential problems with

this structural model due to the fact that the X-ray scattering signal is a population

average over all conformers and that the initial data is inherently noisy. The SAXS

model of Tom1L1 is a static model of what is in reality a dynamic structure[135].
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Figure 5.5: Experimental X-ray scattering curve of Tom1L1[138] (Red) compared
against the model envelope generated by use of DAMMIF[139] and DAMAVER[140]
(Blue). As shown the fit from the consensus model (Figure 5.4) tracks the experimental
signal well visualised in PRIMUS[141].
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In this Section, we will use the continuum finite element model to put the dynamics

back into the model structure (Section 5.4.3) and then compare the experimentally

determined data against the modelled / dynamical data (Section 5.4.4). In the next

subsection we discuss the calculation of the X-ray scattering curve from a finite element

mesh (Section 5.4.1) before the conversion of the spheres model of Tom1L1 to a finite

element model along with quality control (Section 5.4.2).

5.4.1 Calculation of the X-ray Scattering from a Finite Ele-

ment Mesh

From equation (5.26) the scattering integral is given by:

〈Iabs〉 =
b2

V

∫

V

dV

∫

V ′

dV ′ρ(r)ρ(r′)
sin(|q||r− r′|)
|q||r− r′| . (5.28)

For a volume that is divided up into n finite elements equation (5.28) becomes a double

sum over all elements as follows:

〈Iabs〉 =
b2

V

n∑

i=1

n∑

j=1

∫

Vi

dVi

∫

V ′

j

dV ′
j ρi(r)ρj(r

′)
sin(|q||ri − r′j |)
|q||ri − r′j |

. (5.29)

Where Vi is the volume of the ith finite element.

To evaluate these integrals it is natural to transform the volume integrals to those

of a right angled tetrahedron. We assume initially that the density in the system

is uniform, however the local density will change as finite elements deform. From

conservation of mass the local density satisfies ρdet(J) = ρ0det(J0), Where the subscript

0 represents the initial configuration of an element and J is the Jacobian that describes

the transform of an element to the right-angled tetrahedron reference element. Thus,

equation (5.29) can be re-written as:

〈Iabs〉 =
ρ20b

2

V

n∑

i=1

n∑

j=1

∫

Vi

dVi

∫

V ′

j

dV ′
j

det(J0i)

det(Ji)

det(J ′
0j)

det(J ′
j)

sin(|q||ri − r′j |)
|q||ri − r′j |

. (5.30)
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The two volume integrals can then be evaluated numerically using quadrature. To

do this we utilise the fact that the vector r can be expressed in terms of the finite

element shape function of linear elements[77] in this case:

r = (1− s− t− u)x1 + (s)x2 + (t)x3 + (u)x4. (5.31)

Where x1 to x4 represent the nodal positions of a particular finite element.

This completes our discussion of the calculation of the X-ray scattering curve from

a finite element model. We now move onto the construction of the finite element mesh

and quality control.

5.4.2 Construction of the Finite Element Mesh for Tom1L1

As briefly discussed in Chapter 4, the finite element mesh is constructed by utilising

the initial SAXS envelope (See Figure 5.4). In order to capture the full volume of the

envelope extra points are placed on the edges of the spheres and then an initial mesh

is generated using TETGEN. This initial mesh is then coarse-grained by using the

advanced coarse-graining algorithm described in Chapter 4. As a check, we calculate

the X-ray scattering curve from the finite element mesh, to ensure that we have not

distorted the shape in the process of coarse-graining the finite element mesh.

In order to demonstrate the effects that coarse-graining can have on the SAXS

scattering, I have produced 3 finite element meshes from the scattering envelope for

Tom1L1[138]. The meshes are termed Mesh I, Mesh II and Mesh III. Mesh I was pro-

duced using the basic coarse graining with nodes placed only at the centre of each sphere

of the Tom1L1 SAXS envelope. Mesh II was produced using the basic coarse grainer

with nodes places at the edges of the spheres in the SAXS envelope to better capture the

surface. Mesh III was produced using the advanced coarse grainer with nodes placed

on the surface of the SAXS envelope. The three meshes and their corresponding X-ray

scattering curves are shown in Figure 5.6.

Figure 5.6 demonstrates the problems with the basic coarse graining method and
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Figure 5.6: Top: Tom1L1[138] SAXS envelope shown in red with the corresponding
finite element mesh shown as a wireframe in white. Below: The X-ray scattering curves
from the 3 meshes compared against the scattering from the Tom1L1 SAXS envelope
visualised in PRIMUS[141].
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volume loss. It is clear that meshes I and II do not track the volume and shape of

the Tom1L1 mesh well and this is reflected in the shape of the X-ray scattering curve.

While Mesh II does show improvement, the scattering curves from mesh I and II differ

significantly from that of the SAXS envelope. By contrast, Mesh III using the advanced

coarse grainer is a much better fit to the Tom1L1 SAXS scattering curve especially for

low values of q that correspond to long length scales. This makes sense as with coarse

graining we desire to retain the same long length scale information while coarse graining

over the short length scales.

We conclude from this that Mesh III gives a sufficiently similarly X-ray scattering

curve to be a reasonable model of Tom1L1.

One question that remains unresolved is how this coarse grainer compares to already

existing software available for meshing. As we have already used Netgen, I shall compare

the performance of the Netgen’s ability to coarse grain compared to the coarse grainer

I have written. Netgen contains a variety of options for constructing a volume mesh of

various degrees granularity ranging from very coarse to very fine with the definitions

changing properties of what qualifies as an acceptable finite element for the mesh.

Typically, the very coarse option will accept poorer elements than the very fine option

and so the very fine option will produce a mesh containing more elements than the very

fine option.

We can now perform a test, if we use the initial surface mesh that was coarse grained

to construct Mesh III in Figure 5.6 and task Netgen to construct a volume mesh using

the very fine and very coarse granularity options Netgen returns a Mesh with 4243

elements in either case. By contrast, Mesh III contains 425 elements. Thus, it would

appear that for the Tom1L1 starting mesh the coarse graining options within Netgen

do not have any affect for this particular mesh and secondly Netgen makes no attempt

to coarse grain the surface mesh. Consequently, the edge lengths of the Netgen coarse

grained mesh are all of order 2Å and thus too small to run a stochastic finite elment

simulation on. While the finite element mesh coarse grained by Netgen will have a
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Figure 5.7: Combinations of Young’s moduli and Poisson ratios used in the simulations
shown as red crosses.

X-ray scattering curve that better matches the Tom1L1 SAXS envelope than Mesh III

this is because in effect no coarse graining has taken place in Netgen as the surface

mesh is taken as a given and the volume mesh constructed around it.

5.4.3 Simulations of Tom1L1

Using Mesh III we performed simulations of the dynamics of Tom1L1. The density,

temperature and viscous parameters were set to be 1500Kgm−3, 300K and 10−3Pas

respectively, while the elastic parameters were different in each simulation.

As discussed in Section 4.2.4 the Young’s modulus of biomolecules is expected to

be around 600 MPa, and so in common with out studies in chapter 4 we choose the

Young’s modulus to be between 500MPa and 800MPa and Poisson ratios between 0.3

and 0.4. Figure 5.7 displays the combination of Young’s moduli and Poisson ratios used

giving nine sets of parameters.

Each simulation was run for a total of 500ns taking a total of 28 days on a single

core processor. The primary objective of these simulations was to see the effect on the

X-ray scattering curve, radius of gyration and the maximum dimension of Tom1L1 due

to the elastic parameters.

121



Figure 5.8: Overall scheme of work. FFEA stands for Fluctuating Finite Element
Analysis and means application of the model to the Tom1L1 SAXS envelope.
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5.5 Results

In this section, we shall consider the results from the 9 simulations of Tom1L1. The

overall scheme of work is shown in Figure 5.8. First the overall observed dynamics in

section 5.5.1, the averaged X-ray scattering curve is discussed in section 5.5.2, the effect

of the Young’s modulus in section 5.5.3 and the effect of the Poisson ratio in section

5.5.4.

5.5.1 Observed Dynamics

We shall begin by considering the results from simulation 1. Qualitatively the dynamics

of the other simulations are similar as only the maximal extent of the motions are

affected by the different choice a elastic parameters. Nine different conformers are

shown in Figure 5.9 from a total of 50 conformers extracted at 10 nanosecond intervals,

to ensure statistical independence between conformers.

In general, the dynamics in the first simulation shows that the primary mode is a

pincer movement wherein Lobes 1 and 2 are brought against the body then back again.

This is best shown in the 17th and 27th conformer. Lobes 1 and 2 are not necessarily

correlated in their motions and are in general independent of one another as shown in

conformers 5 and 14. Other motions of Tom1L1 include overall extensions shown in

conformers 15 and 41.

5.5.2 Dynamically Averaged X-Ray Scattering Curve

To produce the average X-ray scattering curve for each of the 9 sets of material param-

eters, a total of 50 conformers are selected from the dynamics every 10ns as discussed

above. The X-ray scattering curve for each of these 50 conformers are then calculated

and averaged to produce a time averaged signal from the simulation (See Figure 5.10).

When the X-ray scattering curves of the nine averages are compared against the

experimental X-ray scattering curve shown in turquoise or the SAXS envelope shown
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Figure 5.9: A total of nine conformers of Tom1L1 including the rest state are displayed
along with the X-ray scattering curve from each conformer. The green scattering curves
belong to the static structure shown in the top left and the brown scattering curves the
deformed structure shown below. The colours represent the overall displacement of the
rest structure to the static structure shown in the figure legend.
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Figure 5.10: Average X-ray scattering resultsm.

125



in dark pink in Figure 5.6 they are broadly very similar. Furthermore, the difference

observed between the averages and the SAXS envelope is comparable to the difference

between the initial finite element mesh (Mesh III in Figure 5.6) and the SAXS envelope.

We interpret this as meaning that the quality of the initial mesh is crucial and defines

how close the final X-ray scattering curves will be to the experimental curves.

The simulations show that the average X-ray scattering curve for all nine simula-

tions is approximately the same. In other words, regardless of the individual dynamics

dependent on the elastic properties of each simulation the net scattering is unaffected to

within the precision of the measurement. The initial finite element mesh shown in Fig-

ure 5.6 (Mesh III) is assumed to be the at rest structure. When thermal fluctuations

are added, the structure oscillates around this rest structure. However, the average

X-ray scattering signal remains close to that of the rest structure. While this conclu-

sion suggests that it is not be possible to determine dynamics just from the average

X-ray signals in the case of Tom1l1, it does demonstrate that neglecting the effects of

fluctuations in the reconstruction of the SAXS envelope is reasonable, at least for this

protein.

We now discuss the effect of the Young’s modulus and Poisson ratio on the distri-

butions of the maximum dimension and the radius of gyration.

5.5.3 Effect of the Young’s modulus

The radius of gyration and maximum dimension are calculated for all conformers ob-

tained from the 9 simulations of Tom1L1. These results are presented in the form of

histograms in Figure 5.11 and 5.12 to display the distribution of the radius of gyration

and maximum dimension.

The average radius of gyration from all simulations is approximately 30 Å while the

maximum dimension of Tom1L1 is approximately 120 Å. This compares well with the

radius of gyration found from the experimental data of 31 Å and the experimentally

observed maximum dimension of 120 Å. The radius of gyration was obtained from the
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Figure 5.11: Effect of the Young’s modulus on the radius of gyration (Above) and the
maximum dimension (Below). From left to right the graphs show the Poisson ratio
held at 0.40, 0.35 and 0.30. The graphs show that as the Young’s modulus is decreased
the width of the distribution of the radius of gyration and the maximum dimension
increases.

calculated gradient of Guinier[142] region of the experimental X-ray scattering curve

and by computing the pair distribution function from the experimental X-ray scattering

curve using an inverse Fourier transform and obtaining the point where the distribution

function tends to 0 respectively[102]. Care must be taken in calculating the inverse

Fourier transform to ensure that the pair distribution function falls off smoothly and

does not oscillate.

The effect of varying the Young’s Modulus is shown in Figure 5.11 where the changes

in the distribution for each of the 3 values of the Poisson ratio are compared. As the

Young’s modulus is decreased the average radius of gyration and maximum dimension

decreases, while the width of the distributions increases. As the Young’s modulus is

decreased the FFEA model of Tom1L1 becomes more flexible. Thus, both Lobe 1 and

Lobe 2 are able to move closer to the body of Tom1L1. This deformation will decrease

the radius of gyration and maximum dimension of the finite element model because it

is more compact (see Conformer 27 in Figure 5.9). These conformers are not present

when the Young’s modulus is increased due to the material stiffness.
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Figure 5.12: Effect of the Poisson ratio on the radius of gyration (Above) and the
maximum dimension (Below). From left to right the graphs show the Young’s modulus
held at 500 MPa, 650 MPa and 800 MPa. The graphs show that the Poisson ratio has
a very small effect on the dynamics.

5.5.4 Effect of the Poisson ratio

The effect of the Poisson ratio on the distribution of the radius of gyration and the

maximum dimension is shown in Figure 5.12. In comparison to the Young’s modulus

the effect of changing the Poisson ratio is very small. For the most part, the graphs

in Figure 5.12 overlap and show no significant differences with change in Poisson ratio.

One interpretation of this is that the dynamics of Tom1L1 is dominated by bending,

which that is controlled by the Young’s modulus and not by compressive deformations

that are controlled by the Poisson ratio. This again correlates with the dynamics

discussed in the analysis of simulation 1 where the most common mode of motion is a

pincer movement. This motion is a pure bending motion and reliant on the Young’s

modulus.

5.6 Overview

The simulations of Tom1L1 agree with the experimental data in terms of the X-ray

scattering curve, radius of gyration and the maximum dimension. However, the scat-

tering signal was found to be insensitive to the values of the elastic parameters and so
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it is not possible to obtain this information from this form of scattering experiment,

at least for this particular biomolecule. Although the configuration space explored by

the molecule does depend on the Young’s modulus this does not significantly affect the

averaged value of the scattering intensity.

This study does demonstrate that we can derive a finite element mesh from this

type of experiment, and also demonstrates what features of a biomolecule need to be

preserved when coarse-graining, so as to retain compatibility with the SAXS envelope.
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Chapter 6

Finite Element Simulations of the

Molecular Motor Dynein

In this chapter, I apply the stochastic finite element method discussed in this thesis to

model the motion of the molecular motor dynein. Dynein is a large, geometrically com-

plex molecule whose atomic structure is only partially known[143], and hence cannot be

studied using molecular dynamics. However, by using low resolution imaging data[144]

we can perform a simulation using the stochastic finite element model. Here, I shall give

a brief description of the biological function and importance of dynein to eukaryotic

life[145] (Section 6.1), a review of the experimental data (Section 6.2) and construction

of the finite element meshes for dynein in different biochemical states (Section 6.3),

homogeneous and inhomogeneous simulations of dynein and results (Section 6.4).

6.1 Molecular Motors and Biological Function

Molecular motors are nanomachines capable of performing a variety of cellular functions

from driving the beating of cilia[146], transporting vesicles[145] in cells and muscle

contractions[147]. Molecular motors work by binding Adenosine Triphosphate (ATP) to

a region of the motor called the motor domain. ATP is a chemical that effectively stores

energy within the phosphate bonds. Molecular motors release this energy by breaking
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one of the phosphate bonds by hydrolysing ATP and forming Adenosine Diphosphate

(ADP). This process alters the biochemical state of the motor, inducing conformational

changes in the motor structure and potentially changing its binding characteristics[148].

Molecular motors cycle through this process of binding and hydrolysing ATP, known as

priming the motor, and releasing ADP to perform a power stroke. This process gives

rise to the functionality[145][144] of the motor.

In eukaryotes, there are three cytoskeletal superfamilies of molecular motors: ki-

nesin, myosin and dynein[145]. Of these superfamilies, kinesin and myosin are similar

in structure and both have molecular weights on the order of 100kDa[145]. However,

dynein is significantly larger with a molecular weights for the cytoplasmic variant ex-

ceeding 1MDa[145]. In the cell, the molecular motor super families all have different

functionalities and bind to different cellular structures. Myosin is involved in muscle

contraction and binds to actin filaments, kinesin is a microtubule walker and drags

vesicles from the cell nucleus to the membrane and the cytoplasmic dynein variant is

another microtubule walker that travels from the cell membrane to the nucleus.

6.1.1 Structure and Biological Function of Dynein

The molecular motor we shall consider is dynein. Dynein binds to microtubules. There

are two primary types of dynein found in eukaryotes: cytoplasmic dynein and flagel-

lar dynein[148]. Cytoplasmic dynein is a dimer with a molecular weight of 1.5MDa[149]

and is involved in vesicle transport from the cell membrane to the nucleus and mitosis[148].

For the purposes of this thesis, we are only concerned with flagellar dynein[148].

Flagellar dynein is found in the axoneme. The axoneme is a cytoskeletal structure in

eukaryotes found in cilia and sperm tails[82]. Flagellar dynein is the molecular motor

that drives the beating motion of the axoneme giving rise to waves that generate propul-

sion for sperm and the oscillating motion of cilia[144]. There are two experimentally

imaged states of dynein called the APO state and the ADPVI state. The APO state

corresponds to there being no ATP or ADP bound to the motor domain of dynein.
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Figure 6.1: Flagellar dynein in the ADPVI state showing the microtubule binding
domain, stalk consisting of a coiled coil of alpha helices, the motor domain containing 6
ATP binding sites, a linker region and a tail that anchors the motor in situ. Structure
built from data provided by Roberts et al[144].

While the ADPVI state is a transition state mimic of the ADPPI state that has a very

high affinity for the binding sites of the dynein motor domain[150]. A picture of the

ADPVI state of dynein is shown in Figure 6.1.

Flagellar dynein is larger and more complex than either kinesin or mysoin. In dynein

the ATP binding site and microtubule binding domain are separated by a coiled coil

unlike in either mysoin or kinesin[145]. This separation of the ATP binding site from

the microtubule binding point requires a mechanism for long range signalling from

the motor domain to the stalk when ATP is bound and unbound. There are other

complications such as dynein contains six ATP binding sites, only four of which are

active in the motor domain as well as a long extended tail and linker regions[148].

In the axoneme, dynein is anchored by its tail to a microtubule in the axoneme
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while the microtubule binding domain on the stalk is free to explore conformational

space. On hydrolising ATP, dynein undergoes a major conformational change wherein

the linker moves across the face of the motor domain and allows dynein to pull on the

neighbouring microtubule[144][148]. Dynein motors work cooperatively to generate a

wave in the axoneme that drives sperm tail propulsion.

For the remainder of this thesis, we will be exclusively concerned with flagellar

dynein and this will be referred to as dynein from this point forth. I will now discuss

the relevant experimental dynamics and imaging data that have allowed me to apply

the stochastic finite element method to dynein.

6.2 Review of Experimental Data on the Dynamics

of Dynein

In this section, I will review two papers that provide measurements on the dynamics of

the dynein molecular motor (Section 6.2.1) and reveal the three dimensional shape of

the dynein motor (Section 6.2.2).

6.2.1 Dynamics of Dynein

Burgess et al[148] measured the conformations of dynein in two different biochemical

states. These are the APO state and the ADPVI state. The APO state corresponds

to a post power stroke conformation while the ADPVI state replicates the pre power

stroke state where ADPPI is bound.

Burgess et al[148] used negative staining and electron microscopy to obtain low

resolution images of many thousands of dynein motors in different conformations. These

conformations are combined through image processing to produce a set of conformers

that represent the extent of motion due to thermal fluctuations in the ADPVI and APO

states. From these images, metrics such as the overall length and angular distributions

of various parts of the dynein motor can be measured.
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Figure 6.2: Length and angle distributions for the dynein molecular motor in the APO
and ADPVI state measured from negative staining experiments. Data provided by
Burgess et al[148]

Figure 6.2 shows the experimentally measured distributions of the length of the

dynein molecule from the microtubule binding domain to the tip of the tail and the

distribution of the angle between a vector running from the base of the stalk to the

microtubule binding domain and the linker to the tip of the tail. The experiment shows

that in going from the pre power stroke state (ADPVI) to the post power stroke state,

there is a significant change in the overall reach of the motor and the conformational

space explored by the motor.

Burgess et al[148] also gives the overall flexibilities of the stalk independently of

the tail motion and the tail motion independent of the stalk. In the ADPVI state the

standard deviations for the stalk and tail are 20 degrees and 18 degrees respectively

while for the APO state the standard deviations are 11 degrees for the stalk and 16

degrees for the tail. This data shows that the stalk of dynein stiffens considerably

between the APO and ADPVI state whereas the stiffness of the tail would seem to be

relatively constant over both states. These observations will allow us to fit the dynamics

of the simulations discussed in Section 6.4 to the experimental data. However, before
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this can be done we require a 3D structure of dynein.

6.2.2 Cryo-EM Imaging of Dynein

In a separate experiment Roberts et al[144] use flash freezing rather than negative

staining to prepare the samples for electron microscopy. The primary difference be-

tween these techniques is that in the negative staining technique of Burgess et al the

biomolecules are dried onto a film whereas in Cryo-EM the biomolecules are frozen in

vitrified ice. This helps to prevent damage to the biomolecules as they are kept in-

tact during the flash-freezing. The molecules can then be imaged under a micrograph.

While the signal from each individual motor in the frozen assay is quite weak, by image

processing and averaging, the signal to noise ratio can be increased.

From these images a 3 dimensional structure of dynein can be built up in both

biochemical states. This is achieved by using specialist software such as System for

Processing Image Data from Electron microscopy and Related fields (SPIDER)[151]

that builds a 3 dimensional density map that reflects the imaging data. From this

process two Cryo-EM maps of dynein have been produced, one in the APO state and

one in the ADPVI state. An image of these is shown below with a partial crystal

structure in Figure 6.3 from Roberts et al[144].

Using these density maps, I have constructed a finite element mesh of dynein dis-

cussed in the next section.

6.3 Overview of Dynein Simulations: Mesh Con-

struction and Theoretical Issues

In this section, I discuss the issues behind the simulations of dynein including how to

construct the finite element meshes Section (6.3.1), how to accelerate the exploration of

conformational space (Section 6.3.2) and the theoretical expectations of the simulations

(Section 6.3.3).
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Figure 6.3: Cryo-Em structures of dynein in the APO state (left) and ADPVI state
(right). Image provided by Roberts et al[144]

6.3.1 Construction of the Finite Element Meshes

I have constructed a finite element mesh that represents the shape of the dynein molec-

ular motor in both biochemical states. These meshes were constructed from the Cryo-

Electron density maps obtained from Roberts et al[144]. Dynein is made of distinct

parts such as the linker, tail, motor domain and stalk in the case of the ADPVI state.

From the density maps of each of these sections, an isosurface of equal densities can

be constructed in SPIDER[151]. The isosurfaces from each section of dynein can then

be positioned and oriented correctly relative to one another to build an overall model

of the shape of the full motor. From these oriented and positioned isosurfaces of each

section of the dynein motor we then construct a surface mesh from which the volume

mesh is generated. I will now give more precise details on the nature of the meshing

for both biochemical states.

ADPVI State Finite Element Mesh

The ADPVI state configuration is formed from 4 separate density maps for different

sections of the dynein motor. The construction of the final mesh of ADPVI dynein takes
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place in three stages. Firstly, the surface meshes of the four different parts of dynein are

extracted from the density maps of each part respectively by the Chimera[152] package.

The advanced coarse grainer, discussed in Chapter 4, is then used to coarse grain the

surface mesh of each of the four sections (See Figure 6.4). These four separate sections

then have to be combined to form a single surface mesh for the entire molecule. Each

section has to be positioned and oriented correctly and the four surface meshes were

then stitched together at their intersections. This process was completed by hand. This

yields the mesh shown at the bottom of Figure 6.4.

APO State Finite Element Mesh

The construction of the mesh for the APO state follows the same process as the ADPVI

state. The APO state uses the same coarse grained meshes as the ADPVI for the tail and

stalk as the changes in the motion and function of dynein are mostly due to reshaping

of the motor domain. A mesh is constructed for the motor domain using the density

map and Chimera that is then coarse grained using the advanced coarse grainer. The

individual pieces are oriented correctly and can then be stitched by hand. This process

is detailed in Figure 6.5 with the final APO mesh shown at the bottom.

6.3.2 Critical Damping of the Dynein Motor

In absence of an external fluid the thermal motion of the dynein molecule is under-

damped due to the relatively low internal viscosity. This means that the molecule takes

a long time to fully explore conformation space.

In order to accelerate the exploration of conformational space, I have used the

external solvent described in Chapter 2 and 3 to critically damp the motion of the tail

of dynein. The motion of the tail gives the longest timescales because it is the largest

moving object in the simulations. Assuming ergodicity, critical damping will not change

the conformational space explored by dynein for a particular set of material parameters

because it does not affect the energetics, only the rates of timescales within the system.

This damping is achieved by modeling the motion of the tail as a 2nd order ordinary
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Figure 6.4: The four finite element meshes of the different parts of ADPVI dynein
are shown at various stages of mesh construction. In the top row the meshes extracted
from the density maps are shown, in the middle after coarse graining with the advanced
coarse grainer and bottom shows the final product after stitching.
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Figure 6.5: The three finite element meshes of the different parts of APO dynein are
shown at various stages of mesh construction. The stalk and tail are the same meshes
used for the ADPVI state in both initially and after coarse graining. The three meshes
can then be stitched together by hand to form the final APO state mesh.
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differential equation:

m
d2x

dt2
+ ν

dx

dt
+ kx = 0, (6.1)

where m is the mass of the tail ν is the tail’s drag coefficient and k is a spring constant.

The coefficients m, ν and k can be estimated by characterising the tail as a sphere of

radius 5nm that moves through a background solvent that induces Stokes’ drag on the

sphere with a maximum motion of about 15nm obtained from experiment (See Figure

6.6). Thus coefficients are given by:

m = ρV (6.2)

where V = 4πr3

3
,

ν = 6πηr, (6.3)

and the spring constant by,

k =
kBT

〈x2〉 (6.4)

using the equipartition theorem and where 〈x2〉 is the mean square distance moved by

the sphere.

The roots l1 and l2 of the characteristic equation of equation (6.1) are then given

by:

li =
−ν +

√
ν2 − 4mk

2m
. (6.5)

We seek the critically damped solution such that the discriminator is 0 so that:

η =

√
4mk

6πr
. (6.6)

All the quantities in equation (6.6) are known and yield a solvent viscosity for critical
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Figure 6.6: Simple model of the motion of the tail through a background solvent. This
model can then be used to attribute to coefficients from equation (6.1).
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Figure 6.7: Diagram showing the deflection h(x) of a beam with one end fixed.

damping of 10−6Pas which is three orders of magnitude less than that of water. The

two timescales of such a system are given by τ1 =
m
ν
and τ2 =

ν
k
. At critical damping,

these time scales are approximately equal with a time of 5ns.

If we were to use the viscosity of water for the solvent, then the motion would be

strongly over damped. In other words the the Reynolds number is low.

6.3.3 Theoretical Modeling of the Stalk and Tail

From the structure of the dynein molecule the principle forms of the motion are flexing

of the stalk and tail. Since these are long thin structures, we would expect their motions

to be analogous to that of beams. However, since both the stalk and tail are effectively

pinned to the motor domain and linker rather than a free beam, we have a beam where

one end is fixed, as shown in Figure 6.9. This gives rise to a highly simplified model

for model for the motion of the stalk and tail that is a modification to the beam theory

discussed in Chapter 3[153]. This results in a power law in the Young’s modulus that

will be important to the interpretation of the results in Section 6.4.2.
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The equation on motion describing the deflection h(x, t) of the uniform beam is

given by[153]:

EI
d4h(x, t)

dx4
− µ

d2h(x, t)

dt2
= q(x), (6.7)

where µ is the mass per unit length of the beam and q(x) is the external load subject to

the boundary conditions. We are going to use a cantilevered beam wherein one end is

fixed so that ĥ(0) = 0 and dĥ(0)
dx

= 0. The other end is subject to a free torque boundary

condition so that d2ĥ(L)
dx2 = 0 and d3ĥ(L)

dx3 = 0 where L is the length of the beam[153].

The modes of vibration are found by seeking a solution of the form h(x, t) =

Re(ĥ(x)eiωt) so that:

d4ĥ(x)

dx4
= k4ĥ(x), (6.8)

where k2 =
(

µω2

EI

) 1

2

.

The general solution of equation (6.8) is given by[153]:

ĥ(x) = A1 cosh(kx) + A2 sinh(kx) + A3 cos(kx) + A4 sin(kx). (6.9)

Imposing the boundary conditions, the solutions for h(x) are found to be of the

form:

ĥ(x) = cosh(kx)− cos(kx) +

(
cosh(kL) + cos(kL)

sin(kL) + sinh(kL)

)
(sin(kx)− sinh(kx). (6.10)

Where k must satisfy:

cosh(kL) cos(kL) + 1 = 0, (6.11)

Equations (6.10) and (6.11), called the frequency equation, describe the shape and

the modes of a cantilever beam. The roots of the frequency equation provide the sup-
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ported wavenumbers of the beam from now on termed kn[153]. Each mode contributes

to the overall deflection of the beam such that ĥ(x) =
∑

n ĥn(x) where,

ĥn(x) = An

(
cosh(knx)− cos(knx) +

(
cosh(knL) + cos(knL)

sin(knL) + sinh(knL)

)
(sin(knx)− sinh(knx)

)
.

(6.12)

We can now proceed with our derivation by utilizing equation (3.9) from chapter 3:

W =
EI

2

∫ L

0

(
∂2h(x)

∂x2

)2

dx. (6.13)

Since the modes are orthogonal[153], we can determine the energy contributed by

each mode as:

Wn =
A2

nEI

2

∫ L

0

(
∂2Sn

∂x2

)2

dx. (6.14)

Where ĥn(x) = AnSn. In principle, we can integrate (6.14) analytically however, this is

not necessary for the purpose of the discussion here. We shall denote by cn the integral

in (6.14) so that Wn is of the form:

Wn =
A2

ncnEI

2
. (6.15)

Equation (6.15) is quadratic in the amplitude An while the other terms are all

constants determined by the properties of the beam. Thus, at thermal equilibrium, the

following relationship holds:

〈Wn〉 =
kBT

2
=

〈A2
n〉cnEI
2

. (6.16)

We can now re-arrange equation (6.16) to yield:

〈A2
n〉 =

kBT

cnEI
, (6.17)
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where 〈An〉 = 0 due to symmetry. Hence, since the mode shape is not affected by

averaging it follows that:

〈ĥ2n(x)〉 = 〈A2
n〉S2

n(x). (6.18)

By evaluating the position at the end of the beam, we can obtain the variance of any

individual mode of the system. This can be summed to produce the variance 〈ĥ2(L)〉

because each of the modes are independent of one another[153]. Thus:

〈ĥ2(L)〉 =
∑

n

〈A2
n〉S2

n(L) =
kBT

EI

∑

n

S2
n

cn
. (6.19)

From equation (6.19) the standard deviation of the distribution is proportional to

E− 1

2 . This can be converted to an angular distribution using Figure 6.7 and a small

angle approximation such that θ = h(L)
L

so that the standard deviation of the angular

distribution is given by:

σ =

(
kBT

EIL2

) 1

2

(
∑

n

S2
n(L)

cn

) 1

2

(6.20)

Thus, the angular distribution of the stalk and tail should follow a power law in terms

of the Young’s modulus. Note that although this result was derived for a uniform beam,

the result extends to beams of non-uniform cross-section as this only affects the shape

Sn(x) and the values of the eigenvalues kn.

6.4 Dynein Simulations

In this section, I describe the results of the simulations of dynein and compare the range

of motion with the distribution of conformers found by Burgess[148]. There are two

distinct sets of simulations run with homogeneous (Section 6.4.1) and inhomogeneous

material parameters (Section 6.4.3). In the homogeneous simulations, we assume that

the material properties are uniform throughout the molecule and explore how the range
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of motion of the stalk and tail depends upon the values of the elastic parameters. From

these simulations we are able to identify the material parameters that best match the

experimental range of motion of the stalk and tail of dynein independently (Section

6.4.2). Finally in Section 6.4.3, we perform simulations with differing material param-

eters for the tail and stalk in order to match the range of motion of the tail and stalk

in the same simulation (Section 6.4.4).

6.4.1 Homogeneous Dynein Simulations

The purpose of this set of simulations is to determine how the range of motion of the

molecule depends upon the material parameters. As the overall amount of deformation

at a particular temperature is going to be purely controlled by the elasticity of model,

we must understand how the statistics of the motion of different sections of dynein

in both biochemical states vary with the elastic parameters. From the experimental

data, the standard deviation of the distribution for the tail and stalk is given in both

biochemical states of dynein. We aim to find the elastic parameters that yield the same

deviations.

In total, 60 different cases were run; 30 for the APO state and 30 for the ADPVI

state as shown in Figure 6.8. Each simulation was run for sufficient time for the standard

deviation of the stalk and tail angle distributions to converge to within approximately

half a degree. All simulations used the following parameter values: Density 1500kgm−3,

internal viscosities 0.001Pas (the same as water), temperature 300K and external vis-

cosity 10−6PaS (as discussed in Section 6.3.2). The elastic parameters in the model

range between a Poisson ratio of 0.45 and 0.25 with Young’s moduli varying between

100MPa and 1000MPa, therefore covering the entire biological range of interest (See

Figure 6.8).

The elastic parameters are assumed to be homogenous in each simulation so that

each element has the same Young’s Modulus and Poisson ratio with the values given in

Figure 6.8. Thus, each simulation will have a different range of accessible conformers
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Figure 6.8: Table showing the elastic parameters used in the 30 simulations for the
ADPVI and the APO state of dynein. The crosses mark parameter values used for
the Young’s modulus and Poisson ratio that is set to be equal in all elements in the
simulation. The elastic parameters are the only variables changed between the different
simulations and thus each simulation will have a different accessible range of motion.
The aim is to then match these ranges of motion against the experimentally observed
distributions in Burgess et al[148].

governed by these different elastic parameters. Thus, we can then simulate the motion

of the dynein motor in both the ADPVI and APO states until enough independent

conformers have been observed to characterise the overall range of motion of the dynein

motor for a particular set of elasticites. These ranges of motion can then be compared

to the experimentally known distributions found in Burgess et al[148] and the correct

set of elasticities required to required to repliocate the experimental data extracted.

In these simulations, we are only modelling the thermal fluctuations of the dynein

motor about the elastic energy minimum corresponding to the APO and ADPVI states.

We are not intending to switch between the two states. This is a good match to

the conditions of the experiments in Burgess et al[148] where the dynein motors are

effectively locked in one biochemical state or the other.

In these simulations, I measured the angular distribution of both the stalk and

tail, first having removed the effects of translation and rotation by aligning the system
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Figure 6.9: The rest state of the ADPVI state (in red) with a deformed state (in blue).
The stalk angle θ and tail angle φ are visually defined.

against a fixed axis within the motor domain. This is done by using a vector normal

to the hole through the motor domain, that we define as the x-axis, and a second

vector from the centre of the hole to the base of the stalk. The cross product of these

two vectors then forms the third vector and a complete coordinate system that any

conformation of dynein can be referenced to. This effectively pins the motor domain

and shows the motion of the tail and stalks respectively, akin to the experimental

data[148].

This allows for a consistent definition of the tail angle and stalk angle to be made

between different time steps in the simulations as shown in Figure 6.9 and 6.10. The

stalk angle θ and the tail angle φ are defined using the rest state and a deformed state

of dynein in both the APO and ADPVI state. The stalk angle is defined as the change

in angle of the vector from the tip of the stalk to the base of the stalk. Similarly the

tail angle is defined from the change in angle of the vector from the tip to the base of

the tail.

Note that in the experiments the angle measured is the projection onto the plane

perpendicular to the hole axis, and therefore we shall report angles measured in this
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Figure 6.10: The rest state of the APO state (in red) with a deformed state (in blue).
The stalk angle θ and tail angle φ are visually defined.
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projection. I have also examined the angular distribution in the perpendicular plane

but the results are broadly the same and so not shown here.

6.4.2 Homogeneous Dynein Simulation Results

The standard deviations of the stalk and tail angles for the two biochemical states of

dynein have been analysed for all conformers in all simulations to produce the following

elasticity maps.

Figure 6.11 shows the APO state stalk and tail angle standard deviations. The

results show that the flexibility of both the stalk and tail is highly dependent on the

Young’s modulus but less sensitive to the Poisson ratio. This is demonstrated by the

near vertical nature of the colour gradient on the graphs in Figure 6.11. This indicates

that just as in Chapter 5, the primary modes of APO dynein are driven by bending

and not volume change.

The experimentally observed standard deviations for the APO state are 11 degrees

for the stalk and 16 degrees for the tail[148]. To match these flexibilities the simulations

require a stalk Young’s modulus of approximately 350 − 400MPa and tail Young’s

Modulus of approximately 100MPa.

Figure 6.12 shows the flexibilities stalk and tail of the ADPVI state. The results are

very similar to the APO state results in that again the Young’s modulus is a far more

important quantity in defining the flexibility of the stalk and tail. The experimental

data for the ADPVI state indicates that the stalk has a standard deviation of 20 degrees

and a tail standard deviation of 18 degrees[148]. This corresponds to Young’s moduli

of approximately 175MPa for the stalk and 150MPa for the tail. This suggests that

in that going from the ADPVI state to the APO, the stalk gets stiffer and the tail gets

slightly softer.

This result reflects the experimental observation that the range of motion in the

stalk is reduced in the experimental data in going from the ADPVI state to the APO

state. The relationship between the tail in the two states is far less clear. The range of
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Figure 6.11: Elasticity maps of the APO state stalk angle standard deviation (above)
and tail angle distribution (below).
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Figure 6.12: Elasticity maps of the ADPVI state stalk angle standard deviation (above)
and tail angle distribution (below).
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Table 6.1: Fitting parameters for the ADPVI state in the plane perpendicular the the
hole for the stalk and tail.

Poisson Ratio a Stalk b Stalk a Tail b Tail
0.25 0.58 ± 0.02 6.06 ± 0.10 0.50 ± 0.03 5.26 ± 0.02
0.30 0.56 ± 0.01 5.94 ± 0.08 0.53 ± 0.02 5.45 ± 0.10
0.35 0.58 ± 0.01 6.08 ± 0.09 0.50 ± 0.02 5.27 ± 0.15
0.40 0.55 ± 0.02 5.82 ± 0.13 0.52 ± 0.02 5.32 ± 0.09
0.45 0.56 ± 0.01 5.81 ± 0.08 0.49 ± 0.02 5.10 ± 0.13

motion between the two states is very similar with standard deviations of 18 degrees for

the ADPVI state and 16 degrees for the APO state. However, the simulations indicate

the Young’s modulus differs between the two states by a factor of 2. The reason for

this is that in the ADPVI state the tail is effectively longer than in the APO state due

to the position where the linker is bound to the motor domain. In the APO state much

more of the linker is directly bound to the motor domain, which shortens the length of

tail and thus reduces the effective range of motion. This is then compensated for by

the change in the Young’s modulus of the material.

These maps can be analysed further by looking at lines of constant Poisson ratio

and plotting a graph of the log of the Young’s modulus against the log of angle. If the

mode of motion is essentially that of a beam flexing from a fixed point then this should

reveal the power law discussed in Section 6.2.3. Figure 6.13 shows a selection of results

for the APO and ADPVI states.

The data shown in Figure 6.13 is a small snapshot of all the simulations and a

complete analysis of the data is given in Tables 6.1-6.4 using a fit to the line f(x) =

−ax+b. The fitting parameters are based on a χ squared fit to the data using Gnuplot.

Tables show that the fitting parameter a is generally very close to the predicted

value of 1
2
and usually within the error. However, the case of the stalk in the ADPVI

state in the plane perpendicular to the hole, a is always above the trend by at least ten

percent. In this case, we conclude that while the basic behaviour is that of a flexing

beam there are secondary effects that modify the results compared to beam bending
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Figure 6.13: Log graphs of the observed angle against the Young’s Modulus showing
the observed power law. The data for these graphs is drawn from the APO with Poisson
ratio 0.30 for the stalk and 0.45 from the tail (Top). While the ADPVI data (bottom)
is drawn from simulations with Poisson ratios 0.45 for the stalk data and 0.40 for the
tail data.
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Table 6.2: Fitting parameters for the ADPVI state in the plane parallel to the hole for
the stalk and tail.

Poisson Ratio a Stalk b Stalk a Tail b Tail
0.25 0.52 ± 0.01 5.63 ± 0.05 0.53 ± 0.02 6.02 ± 0.09
0.30 0.51 ± 0.01 5.60 ± 0.04 0.55 ± 0.02 6.13 ± 0.10
0.35 0.53 ± 0.01 5.69 ± 0.07 0.56 ± 0.01 6.17 ± 0.04
0.40 0.50 ± 0.01 5.44 ± 0.08 0.52 ± 0.03 5.87 ± 0.15
0.45 0.50 ± 0.01 5.39 ± 0.05 0.52 ± 0.01 5.81 ± 0.09

Table 6.3: Fitting parameters for the APO state in the plane perpendicular the the
hole for the stalk and tail.

Poisson Ratio a Stalk b Stalk a Tail b Tail
0.25 0.53 ± 0.01 5.72 ± 0.07 0.48 ± 0.02 5.01 ± 0.09
0.30 0.51 ± 0.01 5.58 ± 0.06 0.46 ± 0.01 4.88 ± 0.07
0.35 0.54 ± 0.01 5.75 ± 0.05 0.49 ± 0.02 5.02 ± 0.09
0.40 0.55 ± 0.01 5.78 ± 0.08 0.52 ± 0.02 5.15 ± 0.09
0.45 0.54 ± 0.01 5.60 ± 0.03 0.50 ± 0.01 4.96 ± 0.06

Table 6.4: Fitting parameters for the APO state in the plane parallel to the hole for
the stalk and tail for the stalk and tail.

Poisson Ratio a Stalk b Stalk a Tail b Tail
0.25 0.52 ± 0.01 5.83 ± 0.05 0.52 ± 0.01 5.27 ± 0.08
0.30 0.52 ± 0.01 5.76 ± 0.06 0.51 ± 0.01 5.17 ± 0.07
0.35 0.51 ± 0.01 5.73 ± 0.04 0.51 ± 0.01 5.15 ± 0.06
0.40 0.53 ± 0.02 5.79 ± 0.10 0.50 ± 0.01 5.06 ± 0.05
0.45 0.51 ± 0.01 5.63 ± 0.04 0.51 ± 0.01 5.12 ± 0.07
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theory.

As the Young’s modulus is increased, the beam appears to be less stiff than one

would expect for its Young’s modulus. This rules out the effect of non-linear elasticity

since these would increase the effective stiffness. Volume effects can also be ruled out

because the observed power is not dependent on the Poisson ratio. The most likely

cause is that the base of the stalk is not fixed but moves slightly accommodating larger

bends by violating the static base boundary condition. This would increase the range

of motion making the beam appear less stiff for a given Young’s modulus.

From these homogeneous simulations of dynein we have been able to obtain the

elastic parameters that best fit the motion of the stalk and tail. These suggest that

the elastic properties of these two sections are not the same, which is expected given

their different secondary structure[143]. Therefore, in order to most closely match the

motion of dynein we need to use different values for the elastic parameters in the two

parts of the molecule.

6.4.3 Inhomogeneous Dynein Simulations

The inhomogeneous simulations use the results from the homogeneous simulations to pa-

rameterise the elasticities of the stalk and tail of dynein in both biochemical states. Un-

der the assumption that there is no long range communication through the biomolecule

between the stalk and tail, then the Young’s Moduli observed in Section 6.4.2 should

yield the correct angular distributions for the stalk and tail. We can use the results

from the elasticity maps in Figures 6.11 and 6.12 to give elasticities that will give the

correct standard deviations.

The results discussed in Section 6.4.2 show that the standard deviations of the

distributions of the head and tail are not significantly affected by the Poisson ratio.

Instead the Young’s modulus plays a much more important role. On this basis, I

have fixed the Poisson ratio of these simulations to be 0.35 and alter only the Young’s

modulus of the material between finite elements. From Figures 6.11 and 6.12 the
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Figure 6.14: Young’s Moduli for the Stalk and Tail for the ADPVI state.

correct Young’s moduli for the stalk and tail of the ADVPI state are around 175MPa

and 150MPa respectively. For the APO state the correct Young’s moduli are 350MPa

and 75MPa.

A total of 18 simulations, 9 for each state of dynein, have been run with parameters

detailed in Figures 6.14 and 6.15. The simulations are designed such that at least one

of the simulations should pick up the correct combination of Young’s Moduli.

In order to define the Young’s modulus of each finite element, I have used a simple

rule. Any element in the tail or linker will use the tail Young’s modulus in a specific

simulation and any element in the stalk will use the stalk’s Young’s modulus. In the

motor domain the Young’s modulus is varied linearly between the connection point at

the linker to the stalk. This ensures that there is a smooth transition between material

properties and avoids any problems with a hard barrier between the stalk and tail that

might have unexpected effects.

In terms of the remaining parameters: The density was set to be 1500kgm−3, internal
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Figure 6.15: Young’s Moduli for the Stalk and Tail for the APO state.

viscosities set to be 0.001Pas, temperature 300K and external viscosity 10−6Pas the

same as the homogeneous simulations. Each simulation as run for a total of 500ns. This

provides approximately 100 independent conformers based on the results in Section

6.2.2.

6.4.4 Inhomogeneous Dynein Simulation Results

The inhomogeneous simulations were analysed in the same way as the homogeneous

simulations. First I have checked that the expected flexibilities of the stalk and tail in

both the ADPVI state and APO state match the predictions from Section 6.4.3. Figure

6.16 shows the distributions of the flexibilities for the stalk and tail in the APO state

and Figure 6.17 shows the flexibilities in the ADPVI state.

The results for the APO simulation show that there is no communication between

the stalk and tail that affects their overall dynamics. This is shown by stalk distribution

being constant as the Young’s modulus of the tail is varied and vice versa. Furthermore,
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Figure 6.16: Distributions of the stalk (Top) and tail (Bottom) as a function of the
inhomogeneous input parameters for the APO state.
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Figure 6.17: Distributions of the stalk (Top) and tail (Bottom) as a function of the
inhomogeneous input parameters for the ADPVI state.

from this data we can see that simulation 3 with a Young’s modulus 400MPa for the

stalk and 100MPa gives the closest match to the experimental data[148] with a stalk

standard deviation of 11.7 degrees and tail standard deviation of 15.2 degrees.

The ADPVI results reinforce the argument that there is no communication between

the stalk and tail as there is no evidence of the tail Young’s modulus affecting the

flexibility of the stalk or vice versa. Simulation 4 yielded the closest match to the

experimental data with a Young’s modulus for the stalk of 175MPa and tail modulus

of 125MPa. These parameters yields a stalk standard deviation of 20.1 degrees a tail

160



standard deviation of 17.0 degrees.

Having established the elastic properties based upon the standard deviation of the

angular distribution, I will now compare the simulation results with the full set of

measurements of Burgess et al[148]. From APO simulation 3 and ADPVI simulation

4 we can now calculate the length and angle distributions in the same manner as the

experimental data. This is shown in Figure 6.20 with the length data shown above and

the angle data shown below.

These distributions match qualitatively the experimental data; the mode for the

APO state is 42nm and for the ADPVI state 46nm this is slightly longer than the

experimental distributions by 2nm[148]. Both distributions show a minimum length

of approximately 30nm, which compares well for the APO case but is slightly too

short in the case of the ADPVI case by 3nm. The maximum length for the APO

state is 48nm and 56nm for the ADPVI state[148]. Again, this is slightly broader

by a few nanometers than the experimental observation. However, overall the length

distributions are a reasonable approximation of the experimental data.

We now examine the angle between the stalk and tail for both the APO and ADPVI

state. In the simulations, the APO state has a mode of 130 degrees with a minimum

angle of 70 degrees to a maximum angle of 200 degrees. The width of the APO angular

distribution is a good match to the experimental data indicating that the standard

deviations of the simulated and experimental data are very similar. The main differ-

ence between the two data sets is that the maximum angle of the simulated data is

approximately 20 degrees too large[148]. The ADPVI state does not have such a good

fit. The mode of the simulated ADPVI state is 180 degrees while the mode for the ex-

perimental data is 160 degrees. However, the width of the experimental and simulated

distributions is the same indicating that the flexibilities are correct but consistently out

by approximately 20 degrees[148].

From this, we conclude that the overall fit to the experimental data seems to be

reasonable. Properties such as the mode and standard deviations of the distributions
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Figure 6.18: Total length (Top) and angle (Bottom) distributions for dynein using the
closest fitting simulations to the experimental data .
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between experimental and simulated data are conserved reasonably well. The main

exception to this is the ADPVI angular distribution where the mode is shifted by

about 20 degrees between the simulated and experimental data. This would suggest

that there is something wrong with the base state of the ADPVI finite element mesh

in that the tail is in the wrong place. We can conclude this because the tail undergoes

the largest change in position going from the APO to the ADPVI state and thus is the

most likely source of any error in the base state. An alternative explanation is that

there is a difference between the negative staining experimental data and the Cryo-EM

data. The negative stating data is 2D because of the drying process onto a graphite

film[148] this might alter the conformers observed in that experiment. By contrast the

Cryo-Em data[144] is 3D and does not rely on a drying process onto a film. Thus, the

shift in the angle in the ADPVI state might simply be an artifact of the 2D and 3D

experimental data.

The only other significant deviation from the simulated data and experimental data

is that the model predicts longer lengths between the stalk and tail and larger angles

between the stalk and tail. A possible reason for this is that there is a feature called the

buttress[144] that would impede this kind of motion of the stalk, but it is not modelled

in the simulations as it is a fine scale feature removed by coarse-graining.

6.5 Conclusion

In this section, I have demonstrated how low resolution imaging data can be used

to provide a simulation of the motor protein dynein. Three dimensional electronic

density measurements are used to construct the finite element mesh, and then separate

experimental measurements of the standard deviation of the angular distribution are

used to establish the elastic properties. The resulting simulations are then able to

reproduce the experimental distributions to reasonable accuracy. These simulations

can now be used to study the details of the power-stroke of the dynein motor, as

discussed in the conclusion chapter. In particular, they provide dynamic information
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not previously available as the experiments provide only static conformers.
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Chapter 7

Conclusion

The purpose of this thesis was to develop a novel coarse grained simulation method

capable of tackling problems of mesoscopic length and time scales. In chapter 1, we

discuss both the need for such a simulation in order to access biologically important

length and time scales and also the physics that must be included to model motion at

this scale [46][47][48][49]. Chapters 2-3 shows the numerical and mathematical details

of the model including the validation, while chapters 4-6 show examples of how the

model can be applied to specific molecules.

Chapter 1 discusses the range of simulation tools available for studying biologi-

cal systems. This shows that there are no ubiquitous methods to deal with length

and time scales in the range of 10nm to 100nm and 100ns to microseconds. This is

marked contrast to the macroscale where finite element[3] and finite volume methods

are well established and the nanoscale where and molecular dynamics[16] and quantum

chemistry[9] are used. While there are many simulation methods in the mesoscale, they

are mainly adapted to solving fluid type problems such as dissipative particle dynamics

and not the individual dynamics of a protein[57]. However, it is the dynamics and

ability of proteins to change shape structure governs their functionality.

Chapter 2 and 3 detail the derivation and validation of the stochastic finite element

model. Specifically, chapter 2 shows how the fluctuation dissipation relation can be writ-

ten down and solved for a Kelvin-Voigt material within the finite element framework.
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This is the key result from chapter 2 that gives rise to an efficient and computationally

inexpensive algorithm that can model the important thermal fluctuations that give rise

to protein dynamics. Chapter 3 is concerned with validating the algorithm described

in chapter 2 against thermodynamic principles and understanding the numerical model

of the mathematical framework.

Chapter 4 uses the validated numerical code to build a biological simulation and

addresses the issues of how to build a finite element mesh of a protein from low res-

olution imaging data as well as determining the material parameters from Atomic

Force Microscopy and measurements of protein viscosity using solvent based folding

methods. Using these parameter values we have simulated the protein CoA[103] ligase

and compare its RMSD with the RMSD found for proteins undergoing thermal fluc-

tuations obtained from molecular dynamics[127]. The RMSD found from the coarse

grained method and molecular dynamics are comparable and we conclude that the

coarse grained model is producing reasonable dynamics for the molecule.

In chapter 5, I discussed using simulations to calculate the X-ray scattering curve

from a biomolecule termed Tom1L1[138] and comparing it to the experimental curve.

The results showed that the population average X-ray scattering curve from the Small

Angle X-ray Scattering data was comparable to the simulated dynamically averaged X-

ray scattering curve within the range of parameter values appropriate for biomolecules

the X-ray scattering curve was independent of material parameters. This shows that at

least in the case of this neglecting thermal fluctuations in building the low resolution

structure from the experimental data is reasonable. However, it also shows that the

experimental X-ray scattering curve does not contain dynamical information that could

be used to further analyse the simulations.

In order to compare to dynamical information, chapter 6 considers using the molec-

ular motor dynein[148][144] for which a low resolution structure exists and dynamical

information about the flexibility of the motor. This allows for a more thorough compar-

ison of the experimental data and simulated data and allowed me to extract material
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parameters that match the experimental data. From this an inhomogeneous simulation

of dynein was run that matches the overall reported dynamics for both of the motors

biochemical states. A Young’s modulus can be extracted for both the stalk and tail of

dynein. These simulations show that the coarse grained model can replicate the correct

distribution conformers of large globular proteins.

We can take the simulations of dynein further and actually place the molecular motor

in situ within the axoneme[82] as shown in Figure 7.1. The image of the axoneme shown

in Figure 7.1 is obtained from electron microscopy but highly flexible regions such as

the stalk of dynein are averaged out in the image protein and are missing from the

image. By using higher resolution imaging of dynein and the dynamics to parameterise

dynein, the position of the stalk can be modelled back into the structure. This has

important biological applications as the stalk binds to the neighbouring microtubule in

order to generate motility in the axoneme.

These simulations allow us to monitor the position of the stalk head and in particu-

lar how close it comes to the neighbouring micro tubule in both biochemical states (See

Figure 7.2). This gives hints as to the detailed motion of the motor. In the future, we

will be able to generate a finite element mesh for the axoneme and resolve external forces

to the motor and axoneme such as Van Der Waals, hydrodynamics and electrostatics

as well as swap between the two biochemical states of dynein within a single simula-

tion. Such a simulation would give a detailed description of how the motor functions,

generates force and provide a window into how biology works in the mesoscale.

167



Figure 7.1: Image of the axoneme obtained through electron microscopy. The position of
the dynein motor we have modelled in chapter 6 is identified along with the microtubule
it binds to to generate force. Image obtained from Pigino et al[82].
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Figure 7.2: The axoneme[82] with simulations of APO (Blue) and ADPVI (Red) dynein
shown with the stalk. The squares track the position of the APO stalk tip (Yellow)
and ADPVI stalk tip (Green). The two distributions collide on different parts of the
microtubule showing the potential for the motor to drag the microtubule during a power
stroke.
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Appendix A

Relationship to the Fokker-Planck

Equation

In chapter 2, I introduced the Fokker-Planck equation as an additional means of testing

the validity of the derived thermal noise terms in equations (2.29) and (2.36). I will now

provide more detail on this derivation and the physical meaning of the Fokker-Planck

equation.

A.1 The Fokker-Planck Equation

Let us consider a N-dimensional random vector Xp subject to a stochastic differential

equation of the form:

dXp = µp(Xp, t)dt+Bpα(Xp, t)dWα. (A.1)

Then the time evolution of the probability distribution function ψ(Xp, t) of the random

vector Xp is given by the Fokker-Planck equation[88]:

∂ψ

∂t
= − ∂

∂xα
(µαψ) +

1

2

∂

∂xα

∂

∂xβ
(Dαβψ). (A.2)

Where µ is called the drift vector and Dpq is called the diffusion tensor defined as:
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Dpq = BpαB
T
αq. (A.3)

Equation (A.1) introduces the vector of Weiner processes dWp, these are stochastic

objects that represent the random processes of the system. Weiner processes have the

following statistical properties:

〈dWp〉 = 0, and (A.4)

〈dWpdWq〉 = δpqdt. (A.5)

The Fokker-Planck equation is thus a kinetic theory approach to statistical mechan-

ics and explicitly describes the time evolution of the probability distribution function

of a random set of vectors Xp[154]. In order to use the Fokker-Planck equation to test

the validity of the derived thermal noise, we must recast equation (2.14) using Weiner

processes in the same form as equation (A.1) and then obtain the appropriate forms of

the diffusivity matrix Dpq and the drift vector µ.

A.2 Recasting the Finite Element Equation of Mo-

tion

After finite element discretisation, the equation of motion for the system is given by:

Mpα

∂vα
∂t

= Np −Kpγvγ −∇pU(x). (A.6)

Equation (A.6) can be re-arranged to give the infinitesimal change in velocity dvp

by inverting the mass matrix as follows:

dvp = −M−1
pα Kαβvβdt−M−1

pα ∇αU (x) dt+M−1
pα Nα. (A.7)
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Equation (A.7) only characterises half the available space as not only are the velocities

of the nodes stochastic the node positions are as well. The relationship between node

position and velocity is given by:

dxp = vpdt. (A.8)

The union of equations (A.7) and (A.8) provides a complete set of stochastic vectors

that obey the Fokker-Planck equation wherein the drift vector µ is given by:

µp = −M−1
pα Kαβvβdt−M−1

pα ∇αU(x) + vp, (A.9)

note that the drift vector picks up components from the velocity space and position

space.

The derivation for the diffusion tensor Dpq is slightly more complicated and is

achieved by rewriting equation (A.6) in terms of Weiner processes as follows:

dvp = −M−1
pα Kαβvβdt−M−1

pα ∇αU (x) dt+BpαdWα. (A.10)

Wherein the relationship between the tensor Bpq and the noise force vector NP is given

by:

M−1
pα Nα = BpαdWα. (A.11)

The overall statistics of both the left and right hand side of equation (A.11) must

be equivalent so that:

〈BpαdWαBqβdWβ〉 = 〈M−1
pα NαdtM

−1
qβ Nβdt〉, (A.12)

this simplifies, using equation (2.29), to:

BpαB
T
αq = kBTM

−1
pαM

−1
qβ (Kαβ +Kβα). (A.13)
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We have now derived the form of diffusion matrix Dpq in equation (A.13) and the

drift vector µ in equation (A.9). The Fokker-Planck equation for the equation of motion

(A.6) is therefore given by:

∂ψ

∂t
=

∂

∂vp

[(
M−1

pα Kαβvβ +M−1
pα

∂U (x)

∂xα

)
ψ

]
− ∂

∂xp
(vpψ) +

1

2

∂

∂vp

∂

∂vq
(Dpqψ) . (A.14)

A.3 Solution of the Fokker-Planck Equation

At equilibrium, the probability distribution ψ is given by the Boltzmann distribution[87]:

ψ (x,v) = A exp

(
−U (x)

kBT
− vpMpqvq

2kBT

)
. (A.15)

All that is left is to show that the probability distribution ψ given in equation (A.15)

satisfies the Fokker-Planck equation for the system. At equilibrium the probability

distribution should not change in time and therefore the right hand side of equation

(A.14) should be zero. Thus, we proceed by substitution and evaluate the terms of the

Fokker-Planck equation:

∂

∂vp

(
M−1

pαKαβvβψ
)
=M−1

pαKαβδpβψ − Kαβvα
kBT

ψ, (A.16)

∂

∂vp

(
M−1

pα

∂U(x)

∂xα
ψ

)
= − vα

kBT

∂U(x)

∂xα
ψ, (A.17)

∂

∂xp
(vpψ) = − vα

kBT

∂U(x)

∂xα
ψ, and (A.18)

1

2

∂

∂vp

∂

∂vq
(Dpqψ) = −M−1

pα Kαβδpβψ +
Kαβvα
kBT

ψ. (A.19)

Equations (A.16)-(A.19) cancel out such that:
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∂ψ

∂t
= 0. (A.20)

The result in equation (A.20) shows that the expected probability distribution func-

tion ψ for our stochastic system given in equation (A.15) is the static solution of the

Fokker-Planck equation. This is entirely expected as the probability distribution func-

tion ψ was obtained by considering the case of thermal equilibrium and thus the dis-

tribution function should not be time dependent. From this, we conclude that the

stochastic system constructed in Chapter 2 of this thesis conforms to the Fokker-Planck

equation at thermal equilibrium.

A.4 Stochastic Finite Element Fortran Code

For completeness the main driving algorithm for the stochastic finite element model is

provided. To compile the code the BLAS libraries are required as well as the Harwell

subroutines for sparse matrix inversion and sparse matrix multiplication.
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Figure A.1: Fortran 90 stochastic finite element code.
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Figure A.2: Fortran 90 stochastic finite element code.
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Figure A.3: Fortran 90 stochastic finite element code.
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Figure A.4: Fortran 90 stochastic finite element code.
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Figure A.5: Fortran 90 stochastic finite element code.
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Figure A.6: Fortran 90 stochastic finite element code.
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Figure A.7: Fortran 90 stochastic finite element code.
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Figure A.8: Fortran 90 stochastic finite element code.
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Figure A.9: Fortran 90 stochastic finite element code.
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Figure A.10: Fortran 90 stochastic finite element code.
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Figure A.11: Fortran 90 stochastic finite element code.
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Figure A.12: Fortran 90 stochastic finite element code.
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Figure A.13: Fortran 90 stochastic finite element code.
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Figure A.14: Fortran 90 stochastic finite element code.
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Figure A.15: Fortran 90 stochastic finite element code.
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Figure A.16: Fortran 90 stochastic finite element code.
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Figure A.17: Fortran 90 stochastic finite element code.
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Figure A.18: Fortran 90 stochastic finite element code.
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Figure A.19: Fortran 90 improved coarse grainer code.

A.5 Coarse Graining Algorithm Fortran Code

The improved coarse graining algorithm Fortan code is provided here.
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Figure A.20: Fortran 90 improved coarse grainer code.
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Figure A.21: Fortran 90 improved coarse grainer code.
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Figure A.22: Fortran 90 improved coarse grainer code.
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Figure A.23: Fortran 90 improved coarse grainer code.
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