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Abstract 

INTRODUCTION: Rheumatoid arthritis (RA) is a complex, chronic, autoimmune disorder.  The 

severity of RA varies considerably between patients.  Stratifying patients using effective prognostic 

biomarkers may facilitate therapeutic targeting of biological agents to those at risk of severe joint 

damage.  Genetic variants including single nucleotide polymorphisms (SNPs) and environmental 

factors are known to associate with RA severity. However to date, no one has attempted to build a 

full predictive model for RA severity from these associated factors due to the high dimensional, 

highly correlated nature of the variables.   

METHODS: Available data from a case-controlled study investigating genotype-phenotype 

associations in RA was used to investigate the predictors of RA severity (cases only).  Using a sparse 

form of partial least squares (PLS) methodology, genetic SNPs and environmental factors were 

investigated to form a prediction model of a quantitative validated measure of erosive joint 

damage, called the Larsen score, before extending the methods to multiple RA severity measures.  

PLS is a dimension reduction technique which reduces the original variables to a linear combination 

with the influence of each variable being represented by a ‘loading’.  As ‘loadings’ are used to assess 

variable importance rather than beta coefficients from a regression model, PLS is not restricted by 

standard regression assumptions.  Two sets of data were investigated; a genome wide association 

study (GWAS) recorded on 394 subjects referred to as ‘GWAS SNPs’ dataset and a maximum of 

1009 subjects with 368 SNPs referred to as ‘all subjects’ dataset.   A new method was developed to 

prevent over fitting of the PLS models which involved a three stage procedure.  The first stage 

determined the order of predictive importance for the variables using 10 runs of 5, 7 or 10-fold 

cross validation (CV) (depending on the sample size).  Absolute PLS loadings for each variable were 

ranked and the median calculated across the folds and runs to order the variables.  The ‘GWAS 

SNPs’ dataset was analysed in 40 separate blocks of data.  Variables ranked <200 were carried 

forward to a higher level model.  The second stage investigated the number of variables to retain in 

the final model using an independent training and test set.  The third stage tested the chosen model 

on a further independent set. 

RESULTS: ‘GWAS SNPs’ dataset: Over fitted models containing 100 variables predicted well during 

CV (r=0.890).  However, they performed poorly when tested on an independent set (r=0.385).   

Adding a second stage to the modelling prevented the over fitting, however only three variables 

were selected for the final model (disease duration, symptom duration and age at time of diagnosis) 

to achieve the highest correlation (r=0.622).   ‘All subjects’ dataset: Applying a three stage process 

resulted in a 10 variable model (disease duration, symptom duration, age at onset of symptoms, 

age at time of diagnosis, anti-citrullinated protein antibody (ACPA) category, ACPA value, body mass 

index (BMI), rs26510, DRB1 S2 and rs26232).  The model predicted 182 independent subjects with a 

correlation of r=0.456.  Analysing ACPA positive patients only increased the predictive correlation 

on an independent set (r=0.629), using a model with six variables (disease duration, symptom 

duration, age at onset of symptoms, age at time of diagnosis, BMI and rs2073839).  Multiple Y 

variable modelling did not increase the ability to predict the Larsen score and other disease severity 

variables were poorly predicted. 

CONCLUSION: SPLS is able to select key predictors of RA severity from a large dataset.  A three 

stage approach is recommended to avoid over fitting of the model.  Further research is required to 

investigate the success of the methodology of a more homogenous cohort. 
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Summary of thesis layout 

The structure of the thesis generally reflects the order in which the work was completed.  

Motivation for the development of the methodology tended to come from the previous chapter’s 

conclusions.  The content of each chapter is summarised briefly below. 

Chapter 1 provides an introduction to rheumatoid arthritis (RA) including the pathogenesis, 

aetiology, incidence, costs and current management.   The chapter provides the medical 

justification behind why this research is useful and the overall aims of the project. 

Chapter 2 introduces the data available for use on this project.  The Genetics of RA (GoRA) study 

data contains disease phenotypes, demographics, environmental data and genetic measurements 

which are described in this chapter.   Literature reviews are performed to identify reproducible 

genetic variants and environmental factors contributing to the severity of RA.    

Chapter 3 presents relevant statistical multivariate methods and justifies the decision to use PLS to 

analyse the non-normally distributed Larsen score.  Whilst PLS provides a method to reduce the 

dimension of the data for interpretation, Sparse PLS (SPLS) incorporates simultaneous variable 

selection and dimension reduction.  Software packages capable of performing PLS are examined 

and R packages able to perform SPLS are compared.   The theory behind SPLS is detailed and any 

requirements for data preparation discussed.  Other general considerations regarding PLS are also 

detailed in this chapter. 

Chapter 4 performs initial modelling using the ‘percentage fold’ method and the ‘all subjects’ 

dataset containing 912 subjects, 368 SNPs and 19 environmental variables.  Initial model creation 

strategies are discussed in this chapter including the use of CV, how to avoid over fitted models, 

how to choose the number of components or variables for the model and how to achieve a robust 

model through using multiple runs.  This chapter describes the method of retaining variables for the 

final model if they are selected in 80% (8 out of 10) of the CV folds in all runs of the modelling.  It 

investigates the imputation of missing data using two methods (‘quick’ and Non-linear Iterative 

Partial Least Squares [NIPALS]).  It explores transformations of the Larsen score but concludes no 

improvement to the modelling process.  A flow diagram of the initial model fitting process is 

presented before reporting the results from modelling the ‘quick’ and NIPALS imputed datasets.  To 

attempt quantification of how much of the model prediction is attributable to genetics, variance 

partitioning methods are researched using two approaches.  Methods of univariate modelling to 

support the multivariate findings are explored using a Zero Inflated Negative Binomial model (ZINB) 

for the ‘all subjects’ dataset and a Negative Binomial (NB) model for the ‘GWAS SNPs’ dataset.   

Chapter 5 investigates the impact of various imputation methods on a small subset of SNPs from 

the ‘GWAS SNPs’ dataset.  The use of ‘quick’ imputation, NIPALS, IMPUTE2 and PLINK are discussed.  

The reproducibility of PLS is explored.   Changes to the ‘percentage fold’ modelling methods which 

will be required to model the ‘GWAS SNPs’ dataset are researched including the percentage of folds 

a variable has to be selected (2 out of 5 folds or 3 out of 5 folds) and the selection of the number of 

variables to extract. 
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Chapter 6 performs SPLS modelling on the ‘GWAS SNPs’ dataset.  To enable model fitting, the SNPs 

are split into 40 blocks.  The performance of the ‘percentage fold’ method is compared, carrying 

forward to the higher level model, variables selected in 2/5 and 5/5 folds of 50 runs. .  Alternative 

modelling strategies are explored to reduce running time and the requirement for user 

intervention.  A new model creation strategy entitled the ‘average rank’ method is defined.  This 

takes the median rank of the PLS loadings for each variable across the fold and runs.  Any variables 

with an average rank in the top 200 are carried through to the higher level modelling.  Attempts to 

replicate the top 10 SNPs found to be predictive of the Larsen score using SPLS modelling are 

investigated univariately by the Leiden University Medical Center (LUMC) using data from the 

Leiden Early Arthritis Clinic (LEAC) and North American Rheumatoid Arthritis Consortium (NARAC).  

The overall SPLS model performance is assessed and compared to using univariate modelling of 

SNPs.   

Chapter 7 explores SIMCA software and compares the model created with the final model from 

chapter 6.  Advantages and disadvantages of using SIMCA compared to R are discussed in addition 

to introducing orthogonal PLS (OPLS) modelling. 

Chapter 8 attempts various methods of validation of the previous models created, to question 

whether they are over estimating the likely prediction ability of the model on independent data.  

For the ‘GWAS SNPs’ dataset, both the Larsen score data alone and the Larsen score and 

environmental data together are randomly permuted 100 times. The full modelling process is 

applied to the two new sets of 100 permuted datasets.   The predictive performances are compared 

to the real Larsen score model.   The ‘GWAS SNPs’ dataset is split into 80% of the patients for a 

training set and 20% of the patients for an independent test set to investigate over fitting.  A new 

method is developed to prevent over fitting, entitled the ‘two stage average rank’ method.  This 

uses 80% of the data for a variable ordering training set and 20% of the data for a variable selection 

training set.    

The ‘two stage average rank’ method is applied to the ‘all subjects’ dataset before extending the 

method to a ‘three stage average rank’ method.  This uses a 40% variable ordering training set, a 

40% variable selection training set and a 20% independent test sample.  The ‘three stage average 

rank’ method is applied to various subgroups based on disease duration and ACPA status to 

examine performance of a less heterogeneous sample. 

Chapter 9 extends the research methods to modelling multiple measures of RA severity.  RA 

severity and activity measures are grouped according to a principal components analysis (PCA) and 

three groups of variables are modelled using SPLS.  Modelling is performed using the ‘all subjects’ 

dataset split into an 80% training dataset and 20% test dataset.  In addition, the ‘two stage’ and 

‘three stage average rank’ methods developed in Chapter 8 are used to model the multiple 

measures of RA severity.   

Chapter 10 concludes the research, drawing together the findings from the above chapters.  

Justification of the PLS approach is provided with details of the contribution this research has made 

to the current research.  Areas for future research are discussed in addition to a review of the 

software used. 
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1. Introduction and aims 

1.1. Introduction to rheumatoid arthritis 

To provide background to the disease area, this chapter details the pathogenesis, aetiology, 

incidence, costs and current management of rheumatoid arthritis (RA).   The motivation behind the 

research is discussed and the overall aim of the research defined. 

1.1.1. Pathogenesis of rheumatoid arthritis 

Rheumatoid arthritis (RA) is a complex, chronic, autoimmune disorder which mainly affects synovial 

joints such as the small joints of the hands and feet.  It is a systemic disease which can also affect 

other areas such as the heart, lungs and the eyes.  (National Institute for Health and Care Excellence 

(NICE) (2009)).    

Joints consist of cartilage and a lining synovial layer covered by a fibrous capsule.  The synovial 

lining consists of fibroblast-like synoviocytes that produce synovial fluid (a lubricating and 

nourishing fluid containing a high concentration of hyaluronic acid) and macrophages.  In a synovial 

joint affected by RA, the lining layer of the synovium has an increased number of fibroblast-like and 

macrophage-like synoviocytes, macrophages and several populations of T cells and B cells (immune 

and inflammatory cells) which lead to hypercellularity (an abnormally high number of cells) of the 

synovium and increased blood flow  (Isaacs and Moreland, 2002).    

The cycle of activity starts with the joint becoming inflamed which leads to an increase in leukocytes 

and lymphocytes which in turn leads to the release of pro-inflammatory cytokines.   The release of 

pro-inflammatory cytokines is followed by a proliferation of fibroblasts forming a pannus (an 

abnormal tumour like layer of fibrovascular tissue).  Under these conditions the joint becomes 

hypoxic (deprived of oxygen) and growth factors are released stimulating angiogenesis (the 

formation of new blood vessels from pre-existing vessels).  This in turn leads to an influx of 

leukocytes and the cycle continues with a further release of pro-inflammatory cytokines.  These 

pro-inflammatory cytokines also lead to an activation of osteoclasts and chondrocytes which in turn 

leads to joint destruction such as cartilage and bone damage.  Once the joint is damaged it can lead 

to joint failure with resultant pain and disability that can require the need for joint replacement 

surgery. 

The severity of RA varies considerably between patients.  RA which is uncontrolled can cause 

irreparable joint damage which can lead to disability, reduced quality of life, cardiovascular 

problems and other co-morbidities.  Some patients experience a mild non-permanent disease 

compared to others who are subjected to a destructive debilitating disease with persistent 

inflammation (Cornelis et al., 2010).  It has been reported that within two years of onset, subjects 

may experience moderate disability and it is estimated that after 10 years of onset, 30% become 

severely disabled.  Approximately one third of patients stop work because of the disease (NICE, 

2010). 
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1.1.2. Aetiology of RA 

Whilst RA is the most common inflammatory joint disease, the aetiology of the disease remains 

unclear (Isaacs and Moreland, 2002).  Current research acknowledges that both genetic and 

environmental factors contribute to risk (Plantinga et al., 2010).   As RA is multi-factorial (caused by 

many factors), increasing the number of factors a patient has for the disease, increases the liability.  

Once this liability is above a certain threshold then the disease becomes expressed.  In this context, 

heritability is defined as the proportion of this liability which can be accounted for by genetic 

variation. 

Twin studies investigating the heritability of RA susceptibility estimate it to be in the region of 55% 

to 66%.  Van der Woude et al. (2009) reported heritability to be 66% [95% CI: 44%-75%]  and 

MacGregor et al. (2000) reported two cohorts with heritability estimated as 55% [95% CI: 40%-65%] 

in a United Kingdom (UK) cohort and 65% [95% CI 50%-77%] in a Finnish cohort.    Regarding 

environmental factors there is increasing evidence of a complex interaction between smoking, 

genetic factors and the development of autoantibodies such as anti-citrullinated protein antibody 

(ACPA) and Rheumatoid factor (RF) (Kallberg et al., 2007, Morgan et al., 2009). 

Numerous studies have been undertaken to evaluate the genetic influence on RA severity with 

limited success in replication.  Although individual genetic variants have been identified, these have 

not been used to form a multi-variable prediction model.  Such a model would use multiple genetic 

variants and environmental factors to identify patients who are susceptible to the severest form of 

the disease. 

1.1.3. Incidence and prevalence of RA 

RA affects approximately 1% of the adult population in the European Union although this can vary 

based on ethnicity and geography (Scott et al., 2010, NICE, 2010, Hochberg, 1981).  NICE (2009) 

published estimates of 400,000 patients with RA in the UK with approximately 12,000 new cases a 

year.  More recent literature by NICE (2010) increased this estimate to 580,000 patients with RA in 

England and Wales alone.   Studies by Symmons et al. (1994, 2002) support these estimates, in 

addition to providing a detailed breakdown of disease incidence by gender and age group.  

Symmons et al. conclude that women have an earlier onset of RA, in addition to being three times 

more likely to get the disease as men.   These estimates are further supported by Isaacs and 

Moreland (2002) who also hypothesise a recent potential decrease in incidence, particularly in 

women, which could be attributable to a protective effect of the oral contraceptive pill.  Such claims 

are currently unsubstantiated.  Section 2.2.2.2 provides more details regarding the typical age at 

onset and how this compares to the cohort studied in this research. 
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1.1.4. Costs of RA 

Pugner et al. (2000) performed a Medline literature review to quantify direct and indirect costs 

associated with RA.  Costs to the National Health System (NHS) and other healthcare support are 

considered direct costs of RA, whereas indirect costs to the economy include the impact of early 

mortality and loss of productivity.  Using studies from the United States of America, Sweden, Italy, 

Canada, Netherlands and the UK, Pugner et al. concluded that the average annual per patient total 

cost was over $15,000 in 1998 (approximately £9300).  Based on the NICE (2010) estimate of 

580,000 patients with RA, this equates to a cost of £5.39 billion a year for England and Wales.   

Previous NICE (2009) guidance reports that with approximately one third of patients stopping work 

due to RA within two years of disease onset, the total costs in the UK (including indirect costs and 

work related disability costs), is estimated between £3.80 and £4.75 billion per year.  Therefore 

despite the relatively low incidence of RA, the cost to the UK economy is substantial.   

1.1.5. Current management of RA 

The primary aim of RA management is to modify the disease process, with resultant moderation of 

radiological progression leading to joint preservation and reduction in pain (NICE, 2009, Kwoh et al., 

2002).   NICE (2009) continues to add that as radiological progression is closely correlated with 

progressive functional impairment, reducing this impairment would result in reduced burden of 

costs on the NHS.   

Disease modifying anti-rheumatic drugs (DMARDs) are synthetically produced and reduce synovitis 

and systemic joint inflammation which improves the function of the joint.  Approximately 70% of 

patients treated with DMARDs respond initially, 40%-60% have a sustained response (NICE, 2009).  

NICE currently recommend that all patients are treated with DMARDs as the first line of therapy.   

Methotrexate is the leading DMARD which can be combined with other drugs of its type (Scott et 

al., 2010).  If the patient has a disease activity score (DAS28) of 5.1 or more, confirmed on two 

occasions one month apart, and has already undergone two trials of two DMARDS (including 

methotrexate), then they should progress to use of a biologically produced treatment (a biologic) 

such as an anti-tumour necrosis factor (TNF) agent.   

The reason for this two stage process is due to the cost effectiveness of methotrexate and other 

DMARDs compared to biologics.  Biologics such as anti-TNF therapies are expensive.  NICE (2010) 

estimated the annual cost per patient for treatment with Adalimumab, Etanercept, Infliximab, 

Rituximab or Abatacept was between £6984 to £10171 depending on the drug, dosage and course.  

The estimated incremental cost-effectiveness ratio (ICER) varies for each biologic depending on the 

treatment strategy.  Chen et al. (2006, table 50) provide a summary of the estimated ICERs per 

quality adjusted life year (QALY) using a base strategy of DMARDs with no TNF inhibitor.  They 

conclude that if following the NICE guidance for early RA, using TNF therapy as a 3rd line strategy 

based on early RA data, the ICER for Adalimumab, Etanercept and Infliximab compared to a base 

strategy of DMARDs alone (no TNF inhibitors), is between £28,000 to £35,000 per QALY.  However, 

if used as a 1st line strategy in early RA, the Adalimumab and Etanercept ICER is between 49,000 and 

170,000 per QALY depending on whether it is used in conjunction with Methotrexate.  For 

Infliximab the estimated ICER per QALY increases to £650,000.    Hence NHS treatments with anti-

TNF therapies are cost effective only if used as a third line therapy in early RA. 
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1.2. Motivation and aims of this research 

Patients have widely varying severities of disease even when adjusted for disease duration (Figure 

2.2).  This implies that some patients undergo a much faster rate of progression.  As described in 

section 1.1.5, all patients receive the same treatment regimen and only when their disease fails to 

be controlled, do they progress to the more aggressive treatments.   

If at disease diagnosis, patients could be stratified into those at higher risk of developing the more 

severe form of the disease, then this high risk group could be targeted earlier with a more 

aggressive treatment regimen.  It has been shown that early and targeted management of RA 

symptoms leads to a reduction in the rate of disease progression (Agarwal, 2011, Kyburz et al., 

2011, Teh and Wong, 2011).   

To address the above motivation, the aim of this project is to use previously collected genetic and 

environmental data (described in section 2.2), to form a severity prediction model.  If successful it is 

envisaged that this model could be used at disease diagnosis to estimate a patient’s future 

predicted severity.  The patients at highest risk of severe disease according to the model could then 

receive a different targeted treatment regimen which would slow the progression of their disease 

and hence reduce the economic cost to society in the long term. 
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2. Background 

2.1. Aims 

The aim of this chapter is to: 

 Give background on the data which is available for use in this project 

 Investigate correlations between RA severity measures 

 Review the genetic and environmental factors which have previously been identified to be 

predictive of RA severity 

2.2. Genetics of RA (GoRA) study data  

A case-controlled study was sponsored by GlaxoSmithKline (GSK) to investigate the Genetics of 

Rheumatoid Arthritis (GoRA) (Protocol number: RARHD2001/0010/00).  The study investigated the 

genotype-phenotype associations in RA and completed in 2006.  Cases were unrelated RA patients 

attending clinic with moderate to severe persistent RA.  To be included in the study they must have 

met the 1987 American College of Rheumatology (ACR) criteria for RA (Arnett et al., 1988) as 

assessed by their medical records when they were originally diagnosed.  They were required to 

have evidence of at least one hand or foot erosion in the last three years and disease duration of 

greater than three years (Section 2.2.2.2 reveals the variation in subject’s disease duration).   

After conclusion of the study, further genotyping of samples of whole blood white cells was 

performed.  This large quantity of data on the phenotypes and genotypes of RA patients will be 

used as the main resource for the formulation of RA severity prediction models and internal 

validation for the project.   As the purpose of this research project is to investigate severity, 

comparisons between cases and control subjects are not included in this thesis.  These details have 

previously been published (Marinou et al., 2007, Thomson et al., 2007).  To enable the analysis, data 

collected by different research groups had to be combined into one dataset.  The merging of the 

four data sources below resulted in one dataset containing 1009 subjects, 337887 single nucleotide 

polymorphisms (SNPs) and 126 other variables.   See section 2.2.3.2.1 for further details about data 

manipulation, data cleaning and quality control.  Ethical approval for a secondary data analysis has 

been obtained from School of Health and Related Research at Sheffield University (Appendix A).  

 Sheffield: The main data from the GoRA study was stored in 62 individual spread sheets.  

Previous work by Dr James Maxwell (University of Sheffield Medical School) had combined 

some of the data together into a Filemaker Pro 8.5 database and into a single spread sheet.  

These two data sources were merged together and any discrepancies corrected against 

original source documents (patient files).  Any additional data thought to be important from 

the spread sheets was also merged in.  Genotyping was completed using the Taqman 

genotyping technology by Ioanna Marinou (University of Sheffield Medical School).  This 

resulted in a dataset containing 45 SNPs, measures of disease severity and activity, 

environmental and demographic data on 1009 patients.  

 Manchester:  The data consisted of 943 patients who had been genotyped on 404 SNPs.  

Genotyping was completed using the sequenom platform with quality control steps 

described by Thomson et al. (2007).  These SNPs were selected due to their previous 

associations with autoimmune disease. 
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 Milan: This data was a genome wide association study (GWAS) using the Illumina 370 copy 

number variant (CNV) chip consisting of 336076 SNPs measured on 397 patients. 

 GSK: Data consisted of 2302 SNPs located in the Major Histocompatibility Complex (MHC) 

region genotyped by Illumina (San Diego, CA) on 855 patients. 

 

2.2.1. Disease phenotypes (Y variables) 

2.2.1.1. Summary of disease phenotypes 

The following are quantifiable measures of rheumatoid arthritis severity recorded in the GoRA 

project.  C-Reactive protein (CRP), Erythrocyte sedimentation rate (ESR) and disease activity score 

(DAS) are measures of disease activity. Modified health assessment questionnaire (MHAQ), pain 

visual analogue scale (PVAS) and short form-36 health survey (SF-36) are patient health 

assessments.  The Larsen score is a measure of erosive joint damage assessed by radiography.  The 

Larsen score can be broken down into the separate hand and foot scores in addition to a summary 

measure of any erosions (yes or no).  Swollen Joint Count (SJC) and Tender Joint Count (TJC) 

variables count the number of swollen and tender joints.  The variable RASEV measures how the 

patient rates their arthritis today on a five point scale from very mild to very severe. 

Each phenotype is described below alphabetically with summary statistics on the GoRA population.  

Of particular interest is that most measures display large variation between the mean and median 

indicating skewed data and a wide range of severities. 

C-Reactive protein (CRP): CRP is a protein found in the blood, the levels of which rise in response to 

inflammation.  The GoRA data is positively skewed (mean=16.79, standard deviation (STD)=19.41, 

median=10, minimum to maximum=2.5 to 217.5). 

Erythrocyte sedimentation rate (ESR): The ESR is the rate at which red blood cells precipitate in a 

period of one hour which provides a non-specific measure of inflammation.  The data is positively 

skewed (mean=21.26, STD=16.67, median=17.00, minimum to maximum=1 to 128).   

Larsen score: The Larsen score is a composite score measuring bone and cartilage damage.  Boini 

and Guillemin (2001) provide a review of modifications made to the score since it was originally 

published in 1975.  The version used on the GoRA patients was the modification made by Larsen in 

1995 (Larsen, 1995).  It measures 32 joints of the hands and feet.  Each joint is rated as having no 

damage (score of 0) up to severe damage (score of 5).  The maximum score for the most severe 

disease is 160. The data is positively skewed with an inflated number of zeros (Figure 2.1) 

(mean=36.45, STD=34.99, median=26.00, minimum to maximum=0 to 160).  13.6% (137/1009) of 

patients have no joint damage (erosions) at study entry (Larsen score of 0).  45% of subjects with a 

Larsen score of 0 were ACPA positive which is further described in section 2.2.2.3. 



 

7 
 

 

Figure 2.1 Larsen score distribution for GoRA subjects 

Modified health assessment questionnaire (MHAQ): The MHAQ score consists of eight questions 

on health assessment.  The four answers to each question are: Without any difficulty (0); With some 

difficulty (1); With much difficulty (2) and Unable to do so (3).  The total score ranges from 0 to 24 

with a mean =6.55, STD=4.88, median=6 and a range 0 to 24.   It is approximately normally 

distributed except for an inflation in the number of subjects reporting a score of zero.  

The MHAQ questions consist of: 

1) Dress yourself including tying shoelaces and doing buttons 
2) Get in and out of bed 
3) Lift a full cup or glass to your mouth 
4) Walk outdoors on flat ground  
5) Wash and dry your entire body 
6) Bend down to pick up clothing from the floor 
7) Turn faucets / taps on and off 
8) Get in and out of a car 
 
Pain visual analogue scale (PVAS):  To get a measure of pain, patients mark on a line (labelled 0 to 

10), how they would rate their severity of rheumatoid arthritis pain which they are feeling today.  

The data is very slightly positively skewed as a higher number of patients seem to rate themselves 

with lower severity of pain (mean=37.04, STD=25.38, median=34, minimum=0 and maximum=100). 

RA Severity (RASEV): Each patient was asked "How would you rate your arthritis today"?  They 

selected from available responses of Very Mild, Mild, Moderate, Severe and Very Severe. 

Short form-36 health survey (SF-36): SF-36 is a general health related quality of life metric.  The 

data collected were recoded onto a 0-100 scale for each of the eight health concepts: physical 

functioning (a measure of physical activities including bathing or dressing), role physical (a measure 

of problems with work or other daily activities as a result of physical health), bodily pain (a measure 

of pain), general health (a measure of perceived personal heath), vitality (a measure of energy or 

fatigue), social functioning (a measure of interference with normal social activities due to physical 

or emotional problems), role emotional ( a measure of problems with work or other daily activities 

due to emotional problems) and mental health (a measure of psychological distress and well-being) 

(Ware et al., 2000).  The recoding provides normally distributed variables for analysis.   
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Table 2.1 reveals that on average GoRA patients score lower than the general population (<50) on 

the more physical concepts (bodily pain, physical functioning, role physical and vitality) and better 

than the general population (>50) on the more mental concepts (mental health, role emotional and 

social functioning).   

Table 2.1 Summary of short form-36 health survey 

Transformed SF-36 
scores (N=1008) Mean STD Minimum Median Maximum 

Bodily pain 39 21 0 41 100 

General health 43 20 0 42 100 

Mental health 68 17 0 72 100 

Physical functioning 37 28 0 30 100 

Role emotional 64 44 0 100 100 

Role physical 37 43 0 25 100 

Social functioning 63 27 0 63 100 

Vitality 39 19 0 40 100 

 

Swollen joint count (SJC) and Tender joint count (TJC):  The variables SJC28 and TJC28 assess 

whether the following 14 joints (on the left or right side) are swollen or tender respectively: 

shoulder, elbow, wrist, Metacarpophalangeal joint (MCP) I, MCP II, MCP III, MCP IV, MCP V, 

Proximal Interphalangeal joint (PIP) I, PIP II, PIP III, PIP IV, PIP V and knee.  Both variables are 

positively skewed.  For SJC28, mean = 5.75, STD=5.34, median=4, minimum=0 and maximum=28. 

For TJC28, mean =7.10, STD=5.88, median=5, minimum=0 and maximum=28.  Extended measures, 

SJC and TJC, are also available which in addition to the above joints also include the following; 

Temporamandibular, Sternoclavicular, Acromioclavicular, Fingers (Distal interphalangeal joint [DIP] 

II, III, IV, V), Hip, Ankle, Toes (Tarsus IP I, II, III, IV, V), Metatarsophalangeal joint [MTP], MTP II, MTP 

III, MTP IV and MTP V. 

Using the CRP, PVAS, TJC28 and SJC28 described above, the disease activity score (DAS28) is a 

composite measure calculated as: 

0.36*loge(CRP+1) + 0.014*PVAS + 0.56*sqrt(TJC28) + 0.28*sqrt(SJC28) + 0.96 

This is the leading European index, is simple to use and equally valid as the more comprehensive 

articular indices which can be time consuming in routine practice (Firestein et al., 2006).   Due to 

the individual transformations applied to each of the composite parts, the overall DAS28 score is 

approximately normally distributed (mean =4.12, STD=1.22, median=4.06, minimum=0.96 and 

maximum=7.76). 
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2.2.1.2. Selection of primary and secondary disease phenotypes for analysis 

The GoRA data is cross-sectional and patients are at different stages of their disease with different 

rates of disease activity.  Measures of disease activity, inflammation and pain can vary considerably 

over time in accordance with how controlled the subject’s disease is.  Although erosive damage has 

been observed to repair itself (Keystone et al., 2004), cartilage damage is irreparable.  Therefore, 

the Larsen score tends to mostly remain constant over time, or get worse if the disease is not 

controlled.   

It was therefore decided to use the Larsen score as the primary phenotype and most important 

measure of RA severity to analyse in a single Y variable analysis.  Figure 2.2 demonstrates the wide 

variation in the Larsen score which cannot be explained by the disease duration.  This highlights the 

importance of finding other predictive markers of severity from the environmental and genetic data 

available. 

 

Figure 2.2 Larsen score plotted against disease duration for GoRA patients 

Whilst the primary focus will be on the Larsen score, other phenotypes may also be important and 

may reveal different variables which are predictive of different types of RA severity such as pain, 

functional ability or laboratory measures of disease activity.  Therefore, the other phenotypes will 

be explored using a multivariate Y variable analysis (Chapter 9).  Garthwaite (1994), Frank and 

Friedman (1993) and Eriksson et al. (2006a, p. 99) suggest that only correlated Y’s should be 

modelled together as they add stability to the model.  If uncorrelated Y’s are modelled together it 

tends to lead to a model which is difficult to interpret.  Eriksson et al. (2006a, p. 99) suggest using a 

principal component analysis (PCA) of the Y-matrix to group the Y variables into suitably correlated 

groups.  PCA is described in more detail in section 3.5. 

In order to identify groups of phenotypes to be modelled together, PCA was performed in R 

Foundation for Statistical Computing, Vienna, Austria (version 2.13.1), using the package mixOmics 

(González et al., 2011, Lê Cao et al., 2009) version 3.0.  Variables had mean centring performed and 

were scaled prior to extracting the first two components. 
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Figure 2.3 reveals correlations in the first and 

second principal components which represent 

48.37% of the total variation.  Ignoring the 

DAS28 variable, three groups can be identified 

situated in the different quadrants. 

1) 8 domain SF-36 variables 

2) 4 SJC/TJC variables  

3) PVAS, RASEV, MHAQ, ESR, CRP, Any Erosions 

and the Larsen score (including the separate 

hand and foot counts) 

The position of DAS28 on the graph reflects 

that it is a composite measure consisting of SJC, 

TJC, CRP & PVAS and is therefore situated 

between those two groups.  

 

Figure 2.3 Loadings plot from PCA of RA 
severity measures (component 1 versus 
component 2) 

For completeness, it was decided to model DAS28 with both groups 2 and 3 as it is correlated with 

variables in both groups.  This work is shown in chapter 9. 

 

2.2.2. Demographic, environmental and laboratory X variables 

2.2.2.1. Summary of demographic characteristics 

Table 2.2 and Table 2.3 summarise the key demographic characteristics.  The mean age at entry to 

the study is 61 years with 72.7% being female, 20.1% currently smoking and 38.9% being former 

smokers.   The mean smoking pack years is 13.04, however the data is positively skewed resulting in 

a median of just 3.5 pack years.  Mean body mass index (BMI), height, waist circumference and 

weight are 25.7, 165 cm, 81cm and 70kg respectively.  68.4% drink alcohol, with 44.2% drinking 

more than five days a month, but only 10.5% having ever drunk more than five units almost every 

day.   

Table 2.2 Summary of categorical demographics 

  RA patients  
(N=1009) 

Gender Female 734 (72.7%) 

Male 275 (27.3%) 

Smoking status Smoker 203 (20.1%) 

Former smoker 393 (38.9%) 

Never 413 (40.9%) 

Do you drink alcohol? No 322 (31.9%) 

Yes 687 (68.1%) 

During the past 30 days how many days did 
you have at least one drink of alcohol? 

None 56 (8.0%) 

Less than 5 332 (47.7%) 

Between 5-10 143 (20.5%) 

More than 10 165 (23.7%) 

Did you ever drink five or more drinks of 
alcoholic beverage almost every day? 

No 903 (89.5%) 

Yes 106 (10.5%) 

 

1 

2 

3 
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Table 2.3 Summary of continuous demographics 

 N Mean STD Minimum Median Maximum 

Age at study entry (years) 1009 61.5 12.2 19.7 62.0 91.9 

Body mass index (kg/m^2) 1009 25.7 4.8 12.5 24.9 50.4 

Height (cm) 1009 164.9 9.5 137.2 162.6 200.0 

Waist circumference (cm) 1007 81.0 12.0 50.8 81.0 194.0 

Weight (kg) 1009 70.1 14.9 35.4 68.0 130.0 

Smoking pack years  1009 13.0 18.3 0 3.5 150 

Time since quitting smoking 
(Years) -Former smokers only 

393 18.5 13.1 0 17 61 

Average cigarettes per day 1009 9.2 12.4 0 5 200 

Smoking duration (years) 1009 16.3 17.8 0 10 65 

 

2.2.2.2. Summary of disease history 

The mean (STD) age at time of disease diagnosis is 47.06 (15.0) and the mean (STD) age at disease 

onset is 44.18 (15.0) (Table 2.4).  However, it is worth noting that there are patients included in this 

cohort who developed juvenile rheumatoid arthritis as they were diagnosed with RA when they 

were younger than 16 (N=42, five of whom were men).   In addition, 386 patients (100 of whom 

were men) were diagnosed between the ages of 16 and 45.  It is generally agreed that the incidence 

of RA increases with age (Scott et al., 2010).  Although Isaacs and Moreland (2002) estimate that 

the peak age is in the 50s, NICE (2009) put this into the 70’s for both genders.  Symmons et al. 

(1994) (2002) report that male incidence of RA is rare under 45 years old.  For women, they 

estimate incidence increases up to 45 years old, where it remains similar until 75 years old, before a 

fall in incidence in over 75s.  As 38% (37% of males on the study) were diagnosed with RA before 

they were 45 years old, this cohort may not be truly representative of the population and may over 

represent patients diagnosed with RA at a younger age.   

The mean (STD) duration from symptoms to entering the study is 17.30 (11.6) years and the mean 

(STD) duration since disease diagnosis is 14.70 (10.7) years.  There is large variation in the duration 

patients have had the disease.  This will be a key variable to consider in the analysis of disease 

severity.  The duration of symptoms prior to diagnosis is skewed ranging from 0 to 41 years with a 

median of just one year and a mean of 2.54 years.  If patients are recorded as being diagnosed 

before having symptoms, the duration of symptoms prior to diagnosis is set to equal zero, as it was 

assumed diagnosis could not be performed without any symptoms. 

Table 2.4 Summary of age at and time since disease diagnosis and onset of symptoms 

  
Age at time of 
diagnosis 

 
Age at onset 
of symptoms 

Duration from 
diagnosis of disease 
to entering study 

Duration from 
symptoms to 
entering study 

Duration of 
symptoms prior to 
diagnosis 

N Valid 1007 1007 987 1005 986 

Missing 2 2 22 4 23 

Mean 47.06 44.18 14.70 17.32 2.54 

Median 47.90 45.20 11.00 14.00 1 

STD 15.031 15.010 10.720 11.568 4.94 

Minimum 4 2 1 3 0 

Maximum 83 82 65 65 41 
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2.2.2.3. Summary of autoantibodies of RF and ACPA  

The development of RA is preceded by and associated with elevated levels of autoantibodies in 

serum.  ACPA epitopes have the highest specificity (proportion of ACPA negative subjects without 

RA) and sensitivity (proportion of ACPA positive subjects with RA) compared to other known 

autoantibodies associated with RA.  Nell et al. (2005) estimate ACPA specificity at 98% and 

sensitivity at 41%.  They also estimate high titre RF positivity (≥50 U/mL) to have 96% specificity and 

45% sensitivity and compare this to using a lower threshold of >20 U/mL, which was found to have 

89% specificity and 55% sensitivity.  Bresnihan (2002) supports these claims reporting RF to have 

91% specificity and 54% sensitivity. An association with more severe RA severity including 

radiographic damage when ACPA and RF antibodies are positive has been identified (Jansen et al., 

2002, Ibn Yacoub et al., 2012a, Geng et al., 2012, van der Helm-van Mil and Huizinga, 2008). 

In the GoRA study, a positive ACPA is defined as > 5.5 units/mL and a positive RF is defined as >40 

IU/mL.  Excluding missing data (112 patients), 62.0% of patients have positive ACPA and RF, 76.6% 

of patients have positive ACPA and 68.8% have positive RF (Table 2.5). 

Table 2.5 Summary of RF by ACPA 

 RF 

ACPA Negative Positive Total 

Negative 157 (17.1%) 57 (6.2%) 214 

Positive 134 (14.6%) 568 (62.0%) 702 (76.6%) 

Total 291 625 (68.2%) 916 
Note: Percentages are out of the total number non-missing (916). 

 

2.2.3. Genetic variant X variables 

2.2.3.1. Summary of the shared epitope 

The MHC region on chromosome 6 consists of molecules on the cell surface which regulate 

leukocytes (immune cells also called white blood cells) and their interactions with other body cells.  

The area (also called the human leukocyte antigen (HLA)) contains many genes spanning 3.6 mega 

bases.  Marsh et al. (2010) provides a comprehensive list of HLA genes and alleles in this region.  

The list is periodically updated in accordance with latest research. 

One gene of particular interest in this region is HLA-DRB1.  A relationship was observed between 

amino acids in the third hypervariable region of the DR molecule and RA.  Tezenas du Montcel et al. 

(2005) describe the work by Gregersen et al. (1987) who observed that the alleles reported to be 

associated with RA susceptibility all shared the R-A-A motif in positions 72-74 of the amino acid 

sequence.  Patients with the R-A-A motif are said to have the ‘Shared epitope’.  Models including 

positions 67, 70, 71 and 76 have since been investigated attempting to quantify the risk of 

susceptibility and severity (Mackie et al., 2012a, Tezenas du Montcel et al., 2005, Michou et al., 

2006, Meyer et al., 2011).   
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Tezenas du Montcel et al. (2005) group the DRB1 alleles at positions 70-74 into five categories: S1 

(A-R-A-A or E-R-A-A), S2 (K-R-A-A), S3d (D-R-R-A-A), S3p (Q-R-R-A-A or R-R-R-A-A) and all other 

sequences to category X.  As each subject has two alleles, Tezenas du Montcel et al. (2005) count 

the number of subjects with each distinct pair of alleles.  For example, they count the number of 

subjects with both alleles S1 (S1/S1) and the number with one allele S1 and the other S3p (S1/S3p), 

until all combinations are accounted for.   However, for predictive modelling, this would create 

many nominal categories, some with small numbers of subjects in.  A reduced grouping method 

could be used (Michou et al., 2006), however this groups low risk categories together, rather than 

allowing them a different size of effect and could lose sensitivity of information.  It was decided to 

follow the method used by Mewar et al. (2008) where the number of copies of each allele category 

are counted for each patient.  This creates five variables, one for each category (S1, S2, S3d, S3p and 

X) and each subject has 0, 1 or 2 copies of that category.  For example, a subject with S1/S1 would 

be said to have 2 copies of S1, 0 of S2, 0 of S3p, 0 of S3d and 0 of X.   The GoRA data summarised 

using this method are shown in Table 2.6.    

Table 2.6 Summary of shared epitope status 

Category 
(N=1009) 

Number of copies of each allele category 

0 1  2 

S1 632 (70.2%) 248 (27.6%)  20 (2.2%) 

S2 449 (49.7%) 383 (42.4%) 72 (8.0%) 

S3p 440 (48.8%) 401 (44.5%) 60 (6.7%) 

S3d 829 (92.9%) 58 (6.5%) 5 (0.6%) 

X 535 (59.1%) 303 (33.5%) 67 (7.4%) 

To provide an overall summary, the number of patients with the shared epitope (defined as having 

the R-A-A motif) was also summarised.  One hundred and seventy six GoRA patients (19.0%) have 0 

copies of the shared epitope, 425 (45.8%) have one copy of the shared epitope allele and 326 

(35.2%) have two copies of shared epitope alleles.   

Many authors conclude the highest risk to susceptibility and severity is associated with the S2 

category which has a positively charged lysine (K) encoding at position 71 (Tezenas du Montcel et 

al., 2005, Michou et al., 2006, Gyetvai et al., 2010, Meyer et al., 2011).  However, results are more 

varied for the other categories.  For example, there is some evidence that S1 and S3d are protective 

(or neutral) of severity (Michou et al., 2006, Tezenas du Montcel et al., 2005, Mackie et al., 2012a) 

and some evidence that all categories increase the risk of ACPA positive disease which in turn is 

associated with worse severity (Meyer et al., 2011, Gyetvai et al., 2010) 

Many early studies attempting to use the HLA-DRB1 region to model RA susceptibility concluded 

that the role of this shared epitope could not fully explain HLA-DRB1 involvement (Tezenas du 

Montcel et al., 2000, Meyer et al., 1996, Genin et al., 1998, Rigby et al., 1998).  More recently, van 

der Helm-van Mil and Huizinga (2008) and Mackie et al. (2012a) support this, suggesting a more 

complex relationship between HLA-DRB1 and RA.  They suggest the effect is dependent on whether 

the subject is ACPA positive or negative which infers two separate distinct subgroups of disease.  

ACPA positivity has been found to be strongly associated with the shared epitope alleles although 

the association for RF with the shared epitope is thought to be weaker (van Gaalen et al., 2004, 

Irigoyen et al., 2005).   
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2.2.3.2. Single nucleotide polymorphisms (SNPs)  

As described in section 2.2, SNP data measured on the GoRA subjects is obtained from four sources.  

Unfortunately, each data source measured a different number of GoRA subjects and genotyped 

different SNPs, sometimes with overlap.   

Table 2.7 summarises for each data source, how many of the GoRA subjects’ samples were 

attempted to be genotyped and the number of SNPs measured.  It reveals that although there is a 

lot of data available, not all subjects have all SNPs recorded.   A brief description of how the SNPs 

were selected by each data source and how they were genotyped can be found in section 2.2.  

Table 2.7 Data collected by erosion status 

Data source Number of 
GoRA 
subjects

1
 

Number 
of SNPs

2
 

Number of 
usable subjects

3 
Number of subjects 
with erosions 

Number of subjects 
without erosions 

Sheffield 1009 45 1008 871 137 

Manchester 943 404 943 834 109 

GSK 855 2302 854 853 1 

Milan (GWAS) 397 336076 394 386 9 
1 

Number of unique subject identifiers in the data source.
  

2 
Number of SNPs available for use (see 2.2.3.2.1 for more details) 

3
 Subjects were merged by a unique subject identifier. In a few cases, this was not possible (perhaps due to typographical 

errors) resulting in subjects with completely missing RA severity or environmental data or both.  Hence these subjects 

were excluded from the analysis. 

2.2.3.2.1. SNP quality control 

PLINK (http://pngu.mgh.harvard.edu/purcell/plink/) (Purcell et al., 2007) was used to evaluate the 

distribution of missing data and to test for Hardy-Weinberg equilibrium (HWE) in the Milan GWAS 

data.  Table 2.8 reveals subjects to have an acceptable subject call rate with a maximum for any 

subject of 5.8% of SNPs not able to be genotyped (median=0.6%).  However, the SNP call rate 

identifies more of an issue as some SNPs have 100% data missing.  On further inspection, 969 SNPs 

have >50% of subjects with missing genotyping (3720 SNPs with >15% of the subjects with missing 

genotyping).  Traditional GWAS quality control (QC) techniques are likely to have excluded these 

SNPs at this stage of the research, however, as it was initially believed SNP QC to have already been 

completed on this data, these SNPs were not excluded until during the modelling described in 

section 4.2.3.  Figure 2.4 and Figure 2.5 present the distributions of missing data for subjects and 

SNPs. 

Table 2.8 Missing data and HWE p-values for Milan GWAS data 

 n n Missing Mean STD Min Median Max 

Subject % 
missing 

397 0 0.9 0.8 0.3 0.6 5.8  

SNP % missing 336076 0 0.9 5.7 0 0 100 

HWE p-values 335189 887 0.556 0.317 1.5x10
-42

 0.562 1 

 

http://pngu.mgh.harvard.edu/purcell/plink/
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Figure 2.4 Distribution of Missing data for Subjects in the Milan GWAS data 

 

 

Figure 2.5 Distribution of Missing data for SNPs in the Milan GWAS data 

Table 2.8 also presents a summary of the p-values from tests for HWE.  The distribution of p-values 

is plotted in Figure 2.6.  There is an increased number of p-values equal to 1 due to monomorphic 

SNPs being included in the data.  The remaining distribution looks approximately uniform indicating 

no deviation from the expected distribution of p-values under the assumption of HWE for the 

GWAS SNP data. 
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Figure 2.6 Distribution of p-values (Hardy-Weinberg equilibrium test) for Milan GWAS data 

Data from the other sources was harder to check from a quality perspective due to: 

 Genotyping in the Sheffield source was performed one SNP at a time and not all subjects’ 

samples had been intended to be genotyped for all SNPs.  For example, zero SNPs had <35% 

of the 1008 subjects genotyped, however 29 SNPs had between 35% and 50%.  Zero SNPs 

had >50% and <85% and 17 SNPs had >85%.  The peak in number of SNPs with between 

35%-50% of SNPs genotyped indicates that it was never the intention to genotype all 

subjects for all SNPs. 

 The Manchester and GSK data was extracted from large databases containing patients from 

other studies.  Some SNPs had completely missing data for the GoRA subjects however it 

was likely that this was not due to failed genotyping but because the GoRA samples never 

intended to have that SNP genotyped. 

It was therefore not possible to retrospectively decipher what the original call rates were for the 

Sheffield, Manchester and GSK data. Figure 2.7 presents histograms of the proportion of subjects 

with present data for each SNP, presented alongside the distribution of p-values from the HWE test.   

Although there were some SNPs with substantial missing data, it was not possible to tell if this was 

due to data quality or study design.  Hence all SNPs were retained for the analysis and the issue of 

missing data was re-addressed in section 4.2.3. 
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 Distribution of the proportion of subjects with 
present data for each SNP 

P-values from Hardy-Weinberg Equilibrium test 
for each SNP 

 

  

 

  

 

  
 

Figure 2.7 SNP quality checking for Sheffield, Manchester and GSK data  

 

2.2.3.2.2. SNP data cleaning  

All data manipulation and cleaning was performed in SAS/STAT software, Version 9.2 of the SAS 

System for Windows Copyright © 2002-2008 SAS Institute Inc. Cary, NC, USA.  SNPs recorded by 

more than one source (Sheffield, Manchester, Milan or GSK) were compared.  Any discrepancies 

were set to missing (blank) after checking the strand direction.   

The number of SNPs compared and which source they came from, is presented in Table 2.9, along 

with summary statistics of the percentage of patients with discrepancies.  Three SNPs (rs1295686, 

rs2516714 and rs2157337) had 26%, 27% and 17% disagreement across sources.  rs1295686 was 

compared across the Sheffield & Milan data.  rs2516714 and rs2157337 were compared across the 

GSK and Milan data.  On the assumption that two reliable platforms were used for the genotyping, 

then this level of disagreement would indicate that this data is unreliable and should not be used in 

any analysis.  However, after discussion regarding which genotyping method is the more reliable 

(for example would a GWAS be more reliable than using Taqman genotyping or visa-versa), it was 
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decided to set any disagreements across data sources to missing and providing that SNP still had 

sufficient data to be included in the analysis, then the SNP data was included.  In hindsight, this may 

not have been the best approach, however, as only 930 SNPs were able to have this comparison 

performed out of the 337887 measured, it was considered unlikely that this would affect the 

results.  After a RA severity prediction model has been created, the SNPs selected as predictive of 

RA severity could always be retrospectively checked to ensure the quality of the data was adequate.  

Table 2.9 Percentage of patients with disagreement between two or more SNP data sources 

Datasets compared   
(Number of SNPs compared) 

 
Mean 

 
STD 

 
Min 

 
Median 

 
Max 

Gora vs. Manchester (3 SNPs) 0.425 0.531 0.112 0.127 1.038 

Gora vs. Milan (6 SNPs)  6.006 9.983 0.524 1.629 26.100 

Gora vs. Milan (5 SNPs) –Exc. rs1295686
*
 1.656 1.849 0.524 1.050 5.128 

Manchester vs. Milan (94 SNPs) 0.650 0.650 0.000 0.549 3.892 

Gora vs. Milan vs. Manchester (2 SNPs) 1.150 0.660 0.683 1.150 1.616 

GSK vs. Milan (819 SNPs) 1.572 1.307 0.000 1.575 27.297 

GSK vs. Milan (817 SNPs) –Exc. rs2516714 and rs2157337
*
 1.517 0.772 0.000 1.575 7.710 

Gora vs. Milan vs. GSK (6 SNPs) 1.222 0.689 0.655 1.027 2.559 
*Exc. = SNPs excluded from the comparison. 

 

2.2.3.2.3. Final SNP data for analysis 

The Milan GWAS SNP data was only collected on 397 of the GoRA subjects which after merging with 

the other data sources resulted in only 394 subjects with usable data (due to unique subject 

identifiers not being consistent across sources).  This resulted in approximately 60% of GoRA 

subjects having the majority of SNPs missing.  It was therefore decided to create two datasets for 

use in the analysis to prevent having the problem of large quantities of missing data.    

The first dataset hereafter called the ‘all subjects’ dataset, consists of SNPs collected by either 

Sheffield (N=1008) or Manchester (N=943) as these data sources generally genotyped the majority 

of GoRA subjects.  Any subjects who had <50% of the SNPs present were removed from the dataset 

leaving N=912 subjects for analysis.  Any SNPs which had no present results for subjects were also 

removed resulting in 368 SNPs for analysis.  This dataset would be suitable to develop modelling 

methods which can be used on larger datasets.  The issue of missing data was re-examined in 

section 4.2.3. 

The second dataset hereafter called the ‘GWAS SNPs’ dataset, consisted of SNPs collected by any 

source but only retained for subjects who were in the Milan GWAS source data (N=394).  This is the 

main dataset for the research as it enables the selection of a few important SNPs from thousands of 

presumed unimportant ones.    

SNPs were coded in terms of number of copies of the minor allele (i.e. 0, 1 or 2).   This is consistent 

with approaches by other researchers analysing high-dimension data (Le Cao et al., 2011, Dimauro 

et al., 2011, Long et al., 2011, Wang et al., 2009, Le Floch et al., 2012). 
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2.2.4. GoRA study data summary 

The patient data which is available is cross sectional with varying degrees of disease duration.  The 

Larsen score is a validated measure of erosive joint damage.  It is considered the most robust 

measure of severity which is not subject to fluctuations over time (monotonic).  This will be the 

main measure of severity for modelling.  In addition, multiple severity variables will be modelled 

together as severity of RA can be measured in many ways.  PCA analysis (section 2.2.1.2) of the 

severity measures identified the following groups to model based on their correlation. 

1) 8 domain SF-36 variables 

2) 4 SJC/TJC variables and DAS28 

3) DAS28, PVAS, RASEV, MHAQ, ESR, CRP, Any Erosions and the Larsen score (including the separate 

hand and foot counts) 

As a result of the Milan GWAS not being available for all subjects, two sets of data will be 

investigated.  Firstly, the ‘all subjects’ dataset will be used to develop the methodology (Chapter 4).  

This dataset consists of all subjects (N=912) and 368 SNPs which were measured on the majority of 

GoRA subjects.  Secondly, the methods will be applied to a much larger dataset (Chapter 6) 

consisting only of the subjects who were included in the Milan GWAS (N=394).  This ‘GWAS SNPs’ 

dataset after some data cleaning contains 325,482 SNPs.  Demographic and environmental data will 

also be included in both datasets and are described in sections 4.2.2 and 6.2.2.    

 

2.3. Literature review of genetic variants contributing to the severity of RA 

2.3.1. Introduction and methods 

There has been substantial research using large cohorts investigating the genetic risks contributing 

to RA susceptibility (Eyre et al., 2012, Stahl et al., 2010, Okada et al., 2012).  However, to date, 

studies investigating the genetics of RA severity have consisted of much smaller studies.  This is 

probably due to cohorts with the more complex measures of severity not being available. 

Marinou et al. (2010) performed a systematic literature review of articles published before 

November 2008 which explored the genetic influence on RA severity.  The search was performed 

using PubMed using the following terms: ‘Genetics’ and ‘Rheumatoid arthritis’ and ‘Radiographic 

damage’ or ‘Radiological damage’ or ‘Severity’.   The findings by Marinou et al. (2010) were 

combined with a Medline systematic literature review completed on the 7th December 2010 (full 

results shown in Appendix B) followed by an updated review on the 14th June 2013.   

The search criteria were widened to include other terms which could suggest radiographic or 

radiologic damage.  The following search terms were used:  ‘rheumatoid arthritis’ had to be in the 

title and the paper had to include the term ‘severity’.  In addition, there had to be at least one of 

the following terms ‘Larsen score’, ‘Sharp score’, ‘bone erosion’, ‘bone resorption’, ‘erosion’, 

‘radiographic*’, ‘radiologic*’ or ‘gene*’.  The asterisk was used as a wild card to allow for all 

variations of ending the word.  The initial search resulted in 265 papers being selected with a 

further 242 papers examined in the updated search.  The literature review excluded papers 

investigating the effects of protein expression, consanguinity or the effect of medication on RA 

severity.  It was decided that the exploration of these variables would not be possible with the 
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available data for this research.  In addition to the systematic review, any papers which were found 

during general reading with evidence of genetic influence on RA severity were also included. 

Of the identified papers in the searches, 75 were investigating SNPs or genes to predict severity of 

RA.  The selected papers were assessed for quality using an adaption of the Critical Appraisal Skills 

Programme (CASP, 2010).  Overall, it was felt that the quality of studies was good and they had 

mostly adjusted for confounding and attempted to minimise bias.  However, many studies had very 

small sample sizes which could limit the generalisability of the results. 

2.3.2. Results of literature review 

The data from Marinou et al. (2010) was compiled along with the 75 papers selected in the later 

searches.   This increased the genetic variants under investigation from 24 reported by Marinou et 

al. (2010)  to 53 genetic variants.  Any variants reported only as negative findings were not included.  

Appendix B presents alphabetically, all genetic variants found to contribute to RA severity in the 

systematic literature review (with updates made following the updated search).  The sample size of 

the study, which severity measures were investigated, what analysis was performed and what the 

results were, are presented for each variant. 

Due to the large quantity under consideration with inconclusive evidence, only the variants with the 

strongest evidence are reported below.  As studies varied in size, quality and what was investigated, 

it was quite subjective to determine which variants could be considered likely to be truly associated 

with RA severity.  It was decided that a variant had sufficient evidence, if there were two or more 

good sized cohorts (>150 subjects) reporting associations with RA severity and only either small 

sized cohorts or cohorts looking at different endpoints, subgroups or populations which 

contradicted the evidence.  These variants are presented below in order of the variants with the 

largest number of cohorts finding evidence and the smallest number of cohorts published which 

found no evidence.  Not all papers reported the size of effect, hence in some cases, only p-values 

and the study sample size are presented.  

2.3.2.1. HLA DRB1 

As described in section 2.2.3.1, there is substantial evidence in the literature of HLA-DRB1 (Shared 

epitope) association with disease activity and severity of RA (Marinou et al., 2010, Farouk et al., 

2009, Mewar et al., 2008, Min et al., 2010, Mackie et al., 2012a, Meyer et al., 2011, Gyetvai et al., 

2010, Tezenas du Montcel et al., 2005, Michou et al., 2006).  Many of these authors report that a 

K-R-A-A amino acid sequence at positions 71-74 (S2 category) corresponds to the highest risk of RA 

susceptibility and severity.  However, results for the other shared epitope categories can vary 

depending on the endpoint used to quantify severity, the coding used for the shared epitope and 

whether ACPA status is taken into consideration (section 2.2.3.1).  One recent Japanese study 

concluded an 11.6% (95% CI: 4.1%-18.5%, p=0.0021, N=830) increase in joint damage, as measured 

by the Sharp score five years after disease diagnosis, for each copy of the RAA shared epitope motif 

that a patient has (Suzuki et al., 2013).   
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2.3.2.2. Peptidyl arginine deiminase, type IV (PADI4) 

Peptidyl arginine deiminase, type IV (PADI4) showed association with disease severity in four 

separate studies.  Suzuki et al. (2013) reported a 7.3% (95% CI: 0.14%-15%, p=0.037, N=830) 

increase in joint damage, as measured by the Sharp score five years after disease diagnosis, for each 

copy of the rare T allele.  Hoppe et al. (2009) found a higher Steinbrocker score with rs2240340 T 

allele (p<0.004) and TT genotype (p=0.008) (N=373).  Harris et al. (2008) reported serum levels for 

the Isoform 4 of the human peptidylarginine deiminase (hPAD4) to be associated with the RA 

susceptibility haplotype of PADI4.  They reported subjects who were anti-hPAD4 positive (positive 

for autoantibodies) to have significantly worse Sharp score (P<0.001) (N=129).  In support of this, 

Halvorsen et al. (2009) found anti-hPAD4 positive compared to negative patients, had a worse 

DAS28 (p=0.049), Sharp score (p=0.047) and change in Sharp score (p=0.023) (N=40).  Just one study 

of 1384 Japanese patients was found in the review which did not replicate the above findings 

(Nishimoto et al., 2008).  In conclusion there is strong evidence of an association between the 

PADI4 gene and RA severity but possibly not in the Japanese population.  

2.3.2.3. Fc receptor-like protein 3 (FCRL-3) 

Four recent studies have all concluded that the Fc receptor-like protein 3 (FCRL-3) -169 T>C 

polymorphism (rs7528684) is associated with erosive RA.  Han et al. (2012a) reported higher Sharp 

scores associated with the CC genotype for patients in the ≥10 year disease duration subgroup 

(p=0.034, N=227).  Maehlen et al. (2011) also found the CC genotype to be associated with 10 year 

radiographic progression (N=652).  Chen et al. (2011) reported an increase in CC+CT genotypes for 

patients with destructive disease compared to non-destructive disease (Odds ratio [OR]=1.672, 95% 

CI: 1.149-2.432, p=0.007, N=670) which was replicated by Bajpai et al. (2012) (N=51). 

2.3.2.4. Transforming Growth Factor Beta (TGFβ)-509, TGFβ+869 and TGFβ+915 

Four studies have found RA severity associated with Transforming Growth Factor Beta (TGFβ) -509 

(rs1800470), TGFβ+869 (rs1800469) or TGFβ+915 (rs1800471).  Ceccarelli et al. (2011) (N=77) 

reported the TGFβ+869 TT genotype was associated with a lower MTP joint total erosion score (TT 

genotype mean (STD) = 6.3 (5.78), CC/CT genotype mean (STD) = 11.7 (7.8), p=0.011).  Mattey et al. 

(2005) (N=208) detected a higher mean health assessment questionnaire (HAQ) score (p=0.04), 

higher Larsen score (not significant after adjustment for disease duration) and higher mortality 

(p=0.01) associated with the T allele at +869.  Kim et al. (2004) found a significantly higher Sharp 

score associated with the T allele at the -509 position (p=0.048, N=143) and Oen et al. (2005) 

reported the homozygous TGFβ1 codon 25 G/G genotype (TGFβ+915, rs1800471) being protective 

against joint space narrowing after two years (OR=0.176, 95%CI: 0.037-0.837, p=0.029, N=181).   

2.3.2.5. IL-6 -174 rs1800795 (possibly in RF or ACPA positive patients only) 

There was mixed evidence of an association of interleukin (IL) 6 -174 (rs1800795) and disease 

severity.  Marinou et al. (2007) (N=964) concluded a significant difference in modified Larsen score 

(median CC genotype=25, CG=27 and GC=33.5, p=0.005) however when analysed separately by 

ACPA and RF status, the association was only found in patients who were either RF positive 

(p=0.004) or ACPA positive (p=0.01).  Although no other studies were found reporting an association 

with radiographic severity, Pawlik et al. (2005c) reported a more active disease with the GG 

genotype compared to GC and CC as measured by DAS, ESR, TJC and SJC (N=98) and Oen et al. 
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(2005) found a positive correlation between the GG genotype and pain (β= 0.899, 95% CI: 0.185-

1.612, P = 0.014, N=181).  Although Oen et al. (2005) also investigated radiographic damage they 

found no evidence of an association. 

Ceccarelli et al. (2011) reported that the MTP joints total erosion score GC genotype mean (STD)= 

7.4 (8.1) was significantly less severe than the CC genotype mean (STD)=10 (8.8), p=0.007, N=77).  

Although this suggests less severe disease with the G allele, the other joints in this study were not 

significant and comparisons of GG versus CC were not significant.  Therefore, this could be a false 

positive.   

Two studies were found investigating the serum levels of IL-6.  Gottenberg et al. (2012) (N=578) 

found higher levels of IL-6 were associated radiographic progression at one year (OR =2.4, 95% CI: 

1.1 to 5.2, p=0.005).  Lamas and Rodriguez-Rodriguez, have two papers (Lamas et al., 2010, 

Rodriguez-Rodriguez et al., 2011) concluding DAS28 and plasma sIL-6R levels are positively 

correlated with ACPA positive patients (r=0.45, p=0.0336) and negatively correlated with ACPA 

negative patients (r=-0.45, p=0.0825).  In addition, they report an interaction between IL-6R 

rs8192284 and presence of ACPA for the DAS28 score (p=0.008, N=281) which supports the 

evidence of a link between ACPA positive disease and IL-6 reported by Marinou et al. (2007). 

2.3.2.6. Chromosome 5 open reading frame 30 (C5orf30) 

The T allele of Chromosome 5 open reading frame 30 (C5orf30) (rs26232) has recently been shown 

to be associated with a reduction in joint damage scores as measured by the Larsen score or Sharp 

score (Teare et al., 2013).  Using 885 of the GoRA cohort subjects (as described in section 2.2), Teare 

et al. reported a median joint damage for the CC genotype of 31, for the CT genotype of 27 and for 

the TT of 16 (p=4x10-4).  To provide replication, a meta-analysis with two other cohorts (n=581 and 

N=418) found a severity ratio of 0.90 (95% CI: 0.84-0.96, p=0.004) associated with presence of the T 

allele compared to the C allele. 

2.3.2.7. CD40 rs4810485 ACPA positive patients only 

The genotype TT versus GT/GG of rs4810485 CD40 was found to be statistically associated with a 

higher rate of joint destruction in ACPA positive patients (van der Linden et al., 2009) (p=0.003, 

N=563) and this finding was successfully replicated in the same paper using a replication set of 383 

patients (p=0.021).   

2.3.2.8. Chemokine receptor type 5 (CCR5) 

Two studies were found showing evidence of polymorphisms of the Chemokine receptor type 5 

(CCR5) gene being associated with RA severity.  Han et al. (2012b) reported a significant increase in 

total Sharp score associated with both the -1118 CTAT (insertion/deletion) in CCR5 (rs10577983) 

(p=0.048) and 303 A>G (rs1799987) (p=0.048) (N=357).  In addition, when analysing the erosion 

score alone, there was an increase in the statistical significance (corrected for multiple testing p 

values of p=0.028 and p=0.028 respectively).  Zapico et al. (2000b) also reported a CCR5-Δ32 gene 

association with severity of RA (non-severe RA vs. severe RA, N=160, p=0.012).  However Graudal 

(2004) and Pokorny et al. (2005) reported no evidence of association.   
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2.3.2.9. Protein tyrosine phosphatase, non-receptor type 22 (PTPN22) 

Although the protein tyrosine phosphatase, non-receptor type 22 (PTPN22) is well established as a 

predictor of RA susceptibility, its potential relationship with RA severity is less clear.  Two studies 

(Lie et al., 2007, Marinou et al., 2007) found an association of PTPN22 (rs2476601) and radiological 

damage (P=0.01, N=238 and p=0.04, N=964 respectively).  However a further six studies did not find 

any association (Pierer et al., 2006, Steer et al., 2005, Graudal, 2004, Karlson et al., 2008, Morgan et 

al., 2010, Innala et al., 2008). 

To explore PTPN22 further and its potential relationship with smoking, a meta-analysis of six 

cohorts totalling 2680 RA patients to investigate ACPA status and eight cohorts totalling 3172 RA 

patients was performed to investigate presence of erosive damage.  Both smoking and the PTPN22 

genotype were found to increase the risk of ACPA positive disease both individually and in 

combination (OR=2.22, 95%CI 1.69-2.91, p=8.3 x10-9).  However there was no evidence of an 

increase or decrease in risk of erosions despite association between ACPA positive disease and 

erosive damage (Taylor et al., 2013). 

2.3.3. Summary of the literature review of genetic variants contributing to RA severity 

Due to the large quantity of genetic research performed in this area, only the Medline database was 

searched which could lead to papers being missed.   

It is immediately apparent that replication of findings in this research area has proven to be 

difficult.  Most variants tested in more than one study have had contradictory results of the 

association between RA severity and the genetic variant.    There are many factors which could 

explain why the studies fail to replicate findings: 

1) Not all studies are looking at the same variant within a gene and so depending on linkage 

disequilibrium (LD) could be testing different associations. 

2) Studies are not using the same outcomes measures.  It is possible, that different genetic 

markers could have a different influence on disease activity compared to erosions.   

3) Not all analyses took into account potential confounding factors such as ACPA status, RF 

status, time since disease onset or prior treatment for RA. 

4) The type of analyses varied greatly and some analyses may not be appropriate as 

assumptions of normality and homogeneity were not explored. 

5) Sample sizes vary greatly across the studies and because some SNPs have rare alleles there 

may not be the power to detect the smaller effects particularly when continuous data has 

been reduced to binary data for analysis. 

6) Not enough power to investigate interactions and very few interactions investigated. 

7) Studies followed patients for different follow up lengths. 

8) Different ethnic populations were studied.   

9) Often the size of the effect and precision could not be determined from the paper. 
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Despite the above, the following genetic variants were found likely to have an effect on RA severity 

in approximate order of strength of evidence. 

 HLA-DRB1  

 PADI4 

 FCRL-3 

 TGFβ-509, TGFβ+869 and TGFβ+915 

 IL-6 -174 rs1800795 (possibly in RF or ACPA positive patients only)  

 C5orf30 

 CD40 rs4810485 (ACPA positive patients only) 

 CCR5 

 PTPN22 (possibly not for erosive damage but on ACPA positive disease)  

In addition, the following genetic variants appeared in more than one study as having an effect on 

RA severity, however, it was felt more research was required to confirm the findings.   For more 

details of the evidence for and against see Appendix B.    

 Caspase recruitment domain family, member 8 (CARD8) TUCAN rs2043211 

 Cyclin-dependent kinase-6 (CDK6) 

 Cyclooxygenase 2 (COX-2) -765 (for patients without the shared epitope) 

 Glutathione S-transferase Mu 1 (GSTM1)  or theta 1 (GSTT1) 

 IL-1α, IL-1β+3954 rs1143634 and IL-1β-511 rs16944 

 IL-1RN IV, +2018 and Variable Number of Tandem Repeats (VNTR) 

 IL-4 and IL-4 receptor  

 IL-10 rs18000872 (possibly in ACPA negative or RF negative patients only)  

 Mannose-binding Lectin (MBL) regions of defective 0/0 genotype and -221 for ACPA 

positive patients only 

 Matrix metalloproteinase (MMP)-3 5A/6A rs3025058 and MMP-1 1G -1607 rs1799750 

 TNFα -308 rs1800629 

 TNFAIP3/ OLIG3 rs6920220 and rs10499194 (possibly for ACPA positive disease only in long 

standing RA)  

 TNF receptor associated factor 1 rs10818488 
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2.4. Review of environmental factors contributing to the severity of RA  

2.4.1. Introduction and methods 

In addition to data on the genetic variants, the GoRA study is rich in the collection of environmental 

data.  Therefore, a literature review was performed to investigate which environmental factors 

have been found to be important in RA severity prediction. 

Papers identified in section 2.3 were combined with two Medline searches performed on the 8th 

July 2011 (search terms of Rheumatoid Arthritis, Sever* and predict* in the title) and 13th July 2011 

(with the search terms of Rheumatoid Arthritis and Sever* in the title).  This produced 21 papers 

reporting exploration into environmental effects on RA severity.   This limited search may not have 

identified all papers exploring environmental factors likely to be predictive of RA severity however it 

does help to identify GoRA study variables which it is hoped are found to be important in the 

multivariate predictive modelling. 

2.4.2. Results of literature review 

2.4.2.1. Alcohol consumption 

Maxwell et al. (2010) reported a decrease in RA severity associated with an increase in the 

frequency of alcohol consumption which remained significant after adjusting for age, gender and 

smoking status.  Although other papers which investigated alcohol and RA severity could not be 

found, a systematic review and meta-analysis investigating susceptibility and alcohol by Scott et al. 

(2013), found a summary OR of 0.52 (95% CI 0.36, 0.76) for the reduction in risk of RA for drinkers 

versus non-drinkers.   

2.4.2.2. Age 

Bukhari et al. (2002) reported age at onset of symptoms (grouped into decades) to be predictive of 

increased severity of radiographic erosions along with RF status.  Lodder et al. (2004) found age to 

be associated with low bone mineral density at the hip and spine and that low bone mineral density 

at the hip was associated with high Larsen scores for hands and feet.  Hence they conclude age is 

associated with a more severe Larsen score. 

2.4.2.3. BMI 

Of the seven studies found to investigate disease progression and BMI, five studies reported lower 

BMI to be associated with higher radiographic joint damage with the studies investigating 2007 

subjects in total (Joerg et al., 2004, Lodder et al., 2004, Caplan et al., 2013, Baker et al., 2011, 

Velpula et al., 2011).   Two studies found a higher BMI associated with disease activity, however, 

one of these studies (Ajeganova et al., 2013, N=1596), did not measure erosions and the other 

study (Ibn Yacoub et al., 2012b, N=250), only found a weak positive correlation between high BMI 

and erosions (r=0.297, p<0.001).   



 

26 
 

2.4.2.4. Female hormones 

Jorgensen et al. (1996) reported an increase in severity for patients who had more children, breast 

fed longer and breast fed more children.  They also reported a protective effect of the oral 

contraceptive pill after adjustment for age, number of children and breast feeding.  However, it is 

hypothesised that this reduction is only associated with reducing more severe forms of RA 

(Vanzeben et al., 1990).  Pikwer et al. (2012) found females experiencing early menopause were 

more likely to experience a milder form of RA, however, they reported no substantial difference in 

severity for females who took the oral contraceptive pill or breast fed. 

2.4.2.5. Gender 

Although there is no evidence of gender being related to a more severe form of RA (Gossec et al., 

2005), it was noted by Ahlmen et al. (2010) that men possibly overestimate their ability to function 

hence rate themselves lower when completing scores such of HAQ and DAS.  This is a confounding 

issue which may result in women scoring higher on disease severity scores. 

2.4.2.6. Smoking 

There is substantial evidence of an association between smoking and increased frequencies of RF 

(Mikuls et al., 2008, Westhoff et al., 2008, Papadopoulos et al., 2005, Masdottir et al., 2000, Saag et 

al., 1997).  Although Westhoff et al. (2008) detected no RF positivity/smoking association with a 

worse DAS28 or radiological outcome, numerous other studies have reported a link between 

smoking and many measures of RA severity (Mattey et al., 2002, Nyahll-Wahlin et al., 2009, 

Papadopoulos et al., 2005, Masdottir et al., 2000, Saag et al., 1997, Soderlin et al., 2011, Ruiz-

Esquide et al., 2011).   

Taylor et al. (2013) also found that subjects who had ever smoked were more likely to have ACPA 

positive disease which was enhanced with the presence of the PTPN22 polymorphism.   Mattey et 

al. (2002) reported the smoking association may also depend on the polymorphism at the GSTM1 

locus.  Whilst this could not be fully replicated by Lundstrom et al. (2011), they did find GSTM1 to 

be a risk factor for ACPA positive disease in non-smoking females over the age of 60 and a 

protective effect of GSTM1 in ACPA negative disease in men (N=2426). 

Smoking is therefore generally regarded as the most important environmental factor to date.  

Although one study was found to report a decrease in erosive disease associated with smoking 

(Salliot et al., 2011), all other studies report an increase in severity associated with smoking. 

2.4.2.7. Socioeconomic status & deprivation 

Although no significant difference was observed between socioeconomic status and erosive 

damage, there was a difference between all other clinical measures of severity (i.e. HAQ, SJC, TJC, 

VAS and DAS) (Massardo et al., 2012, N=1093).   Mackie et al. (2012b, N=6298) also reported a 

positive correlation between deprivation and RF positivity after adjusting for smoking however they 

did not observe the same relationship between deprivation and ACPA positivity. 
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2.4.3. Summary of the literature review of environmental factors contributing to RA severity  

It is hypothesised that smoking leads to a higher RA severity.  In addition, a younger age at the 

onset of symptoms and lower BMI may also lead to an increase in RA severity.   There appears to be 

a protective effect of alcohol consumption associated with lower RA severity.  This review gives an 

insight into potential environmental effects on severity which will be examined in a multivariate 

way during this research.   

2.5. Summary 

The GoRA study data available for use on this project has varied disease duration from one year to 

65 years.  As a result of this they have very varied disease severity; from a Larsen score of zero (no 

bone erosions or cartilage damage) to a maximum Larsen score of 160 (13.6% have a Larsen score 

of zero).  73% of subjects are females.  The mean age is 61 (range 20-92) and the mean BMI is 26 

(range 12.5-50). 

All subjects have information on their smoking and alcohol habits recorded, as well as general 

demographics and laboratory tests including autoantibodies.  20% are smokers with an additional 

39% being former smokers.  68% drink alcohol and 10% of these exceed more than five drinks a day 

almost every day.  Although the mean age at time of diagnosis is approximately in line with 

population estimates (mean of 47 years old), there is concern that the cohort have an increased 

number of patients (particularly males) with RA incidence at a young age compared to current 

population estimates (see 2.2.2.2).   

Two datasets are defined for analysis; 1) The ‘all subjects’ dataset containing 912 subjects which 

have 368 SNPs chosen due to previous evidence of possible effects on autoimmune diseases, and 2) 

The ‘GWAS SNPs’ dataset containing 394 subjects which have 325,482 SNPs measured from either a 

GWAS study, a study investigating the MHC region or SNPs chosen due to previous evidence of 

possible effects on autoimmune diseases.  Both datasets contain demographic and environmental 

variables as described in sections 4.2.2 and 6.2.2.    

This data resource is not without limitations.   Data is recorded at a cross-section in time and hence 

no measures of changes in disease activity or severity over time are available.  The varied duration 

of disease and very little information about the treatments administered over that period may be 

problematic in trying to predict the severity.   

The Larsen score was selected to be the key measure for this analysis due to it being relatively 

stable over time.  Unlike measures of disease activity such as laboratory measurements which can 

fluctuate, the Larsen score tends to remain the same (if progression is controlled) or get 

progressively worse over time.  Modelling methods will analyse a single severity measure (Larsen 

score), followed by multiple severity measures, grouped according to their similarity as observed in 

a PCA analysis (section 2.2.1.2).  Grouping the Larsen score into categories (mild, moderate, severe) 

and using a binary measure of erosions versus no erosions were explored.  However, it was decided 

to focus on the continuous measure.  This ensured no loss of information.  In addition, grouping the 

Larsen score would be difficult due to no consensus of a clinical definition for mild, moderate and 

severe.  
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Various genetic and environmental factors were identified through literature reviews.  Where 

genetic variants were investigated in multiple studies, there tended to be at least some 

disagreement regarding their influence on RA severity.   Determining a list of variants with sufficient 

evidence to be thought of as highly likely to influence RA severity was quite subjective.  However, 

the following list had two or more good sized studies without substantial evidence against the 

findings: HLA-DRB1, PADI4, FCRL-3, TGF-β, IL-6 -174, C5orf30, CD40, CCR5 and PTPN22.  By far the 

most conclusive environmental factor to influence RA severity was smoking.   Other factors thought 

to be detrimental to severity were a younger age at the onset of symptoms and a lower BMI.   In 

contrast, alcohol was found to have a protective effect.    

Therefore, primary focus of the research is to form a prediction model of Larsen score severity (and 

separately of multiple severity variables) by reducing a large quantity of SNPs and environmental 

factors to those most predictive.  The predictors of RA severity identified in the literature reviews 

will be compared against the variables selected in the final multivariate models created in this 

research. 
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3. Review of multivariate methodology 

3.1. Aims 

The aim of this chapter is to investigate multivariate data analysis methods and determine the most 

appropriate methods for use in this research.  The chosen methodology is described in detail with 

description of its application, strengths and weaknesses. 

3.2. Introduction  

As summarised in section 2.5 this project is challenged with investigating a large quantity of SNPs 

and environmental factors to form a prediction model of a single Y variable (Larsen score) or groups 

of correlated Y severity variables.  The desired methodology must be capable of being applied to 

the ‘GWAS SNPs’ dataset (as described in section 2.2.3.2.3) which has many more variables 

(325,482 SNPs) than observations (N=394).  

One difficulty of analysing SNPs in the same statistical model is that they are correlated together.  

The reason for this is that some combinations of alleles (haplotypes) occur more often than would 

be expected by chance alone.  In a population, after many generations, the frequencies of the 

occurrence of haplotypes should be equal to the product of the population allele frequencies.  

When this is not the case, the SNP loci are said to be in LD.  For SNPs in LD, there is a non-random 

association between alleles and this leads to correlation between genotypes.  Therefore the 

method chosen to create a prediction model of RA severity needs to be able to allow for many 

potentially correlated variables in the same model. 

Many genotyping techniques exist, from investigating one SNP at a time, to high density chip 

microarrays which can simultaneously measure tens of thousands of SNPs.  Retaining SNPs in a final 

prediction model which are not truly predictive of RA severity unnecessarily complicates the model.   

A variable selection method is required to only retain important variables predictive of RA severity 

in the final model.     

Therefore, the aim of this project is to create a predictive model which analyses correlated variables 

in the same model and applies a variable selection technique to reduce the number of variables 

retained in the final model.  

3.3. Multiple linear regression  

Suppose a multiple linear regression model with a single response variable    and m independent 

variables (               This model can be represented as: 

        

Assuming n subjects, Y is a column vector (n x 1), X is a matrix (n x m),   is a column vector (m x 1) 

and   is the residual error vector (nx1) assumed to be multivariate normal with diagonal covariance 

matrix. 

The common method to estimate the   coefficients in order to establish a solution to the model is 

to use the “least-squares method” by solving   (          . 
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This identifies the first challenge with multivariate data as the inverse of X’X may not exist.   

If there are more independent variables than the number of subjects measured (i.e. m ≥ n), then all 

variation in    can be explained by the model and there is no residual error ( ).  If m > n, there are 

infinite solutions for   and the estimates for   using the least squares method becomes unreliable.  

In these situations, a model containing many variables may be able to predict the current patient’s 

RA severity exactly, however may not be transferable to an independent set of data.   Therefore, to 

form a reliable model, the number of variables to keep in the final model needs to be reduced to 

those which are truly predictive of   and not simply explaining random noise in the data.   Where 

too many variables are included in a model, it is often referred to as “over fitting” which is further 

described in 4.2.1.2. 

Determining which variables should be kept in the model can be decided using the size of the 

standardised   coefficients (or p-values).  However, a further complication of multivariate data 

arises when modelling correlated variables, as the least squares method solution for the estimated 

coefficients of the model leads to the parameter estimates becoming unstable (Cox, 2005 p.190, 

Abdi, 2010, Geladi and Kowalski, 1986).    

Any methodology able to overcome the challenges described above also needs to be able to model 

more than a single dependant variable ( ) at a time.   

3.4. Penalised multiple linear regression 

To resolve the issue of too many variables in the model, a variable selection method is required.  

Using “forward selection”, variables are entered one at a time into the model and the lowest p-

value is used to determine the first variable to be included in the model.  The process is repeated 

including the 1st selected variable and adding in the remaining variables one at a time.  The variable 

with the next lowest p-value is then selected to accompany the 1st variable in the model and the 

process is repeated until no further variables meet a pre-specified threshold.  One problem with 

using this method on SNP data is that it would be extremely time consuming, as variables are only 

entered one at a time and many models have to be fitted to achieve the final model.  A bigger issue 

is that as SNPs are correlated, the p-value becomes unreliable, hence the order variables are 

entered into the model, or slight changes in the analysis sets of patients may result in one 

correlated variable being selected above another.  The result is the production of very different 

models being created with no indication of which variables are preferential. 

An alternative is to use a regression penalisation technique such as Ridge regression (L2 penalty), 

Least Absolute Shrinkage and Selection Operator (LASSO) (L1 penalty) or Elastic nets (a combination 

of L1 and L2 penalties).  These methods use a “penalised” least squares method to estimate   

instead of the least square method described in 3.3.  The penalisation terms which are minimised in 

each of the three methods are shown below (Li and Sillanpaa, 2012): 

Ridge regression:  ∑ (     
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  is referred to as the shrinkage factor and is pre-specified to determine the amount of shrinkage 

(reduction in the   coefficients) required for the model.  The LASSO has the added advantage of 

shrinking some of the coefficients to exactly zero which has the effect of removing hopefully 

unnecessary variables from the model.  Although Ridge regression shrinks the   coefficients it does 

not set them to zero, hence all variables are still retained in the final model even if they have small 

coefficients.  Li and Sillanpaa. (2012) report that the LASSO has two disadvantages over Ridge 

regression.  Firstly, when modelling highly correlated variables the LASSO tends to only select a 

single variable from the highly correlated group.  In addition, the maximum number of independent 

variables which can be included in the model is restricted to n, the number of observations. 

By combining the L1 and L2 penalties, Elastic net overcomes the limitation of only being able to 

select n independent variables (restriction in LASSO) and can still tend some   coefficients to 

exactly zero (restriction in Ridge regression).  When  =0, the Elastic net equation resolves to ridge 

regression.  When  =1, it resolves to the LASSO and for all other values (     ) it uses a 

combination of both L1 and L2 penalties.  

Much research using these types of methods has been conducted recently, mostly using penalised 

logistic regression to predict susceptibility from genetic variants (Ayers and Cordell, 2010, Abraham 

et al., 2013, Li and Sillanpaa, 2012).  One problem of using these methods is that they are still 

governed by standard linear regression assumptions (linearity, normally distributed independent 

errors and constant variance).   

Whilst it was felt these methods could have been examined in this research if time permitted, there 

were some concerns over their application.   Firstly, it was felt that the distribution of the Larsen 

score may make it difficult to find an appropriate model (although zero-inflated negative binomial 

[ZINB] models could be considered).  In addition, the choice of    and   for each model may heavily 

influence the variables retained for the final model and finding the optimum selection could be very 

time consuming on such a large set of data.  The main concern however was how the models would 

handle the large quantity of correlated variables and whether the beta coefficients estimated would 

be reliable and reproducible.   

One solution would be to pre-filter the SNPs, selecting one variable to represent a group of heavily 

correlated variables prior to modelling.  Whilst this successfully reduces the degree of correlated 

variables entered into the model and makes the beta coefficients more stable, Abraham et al. 

(2013) recently warned against the use of pre-filtering as it could exclude important signals in the 

data early in the modelling process.  It was therefore decided to try to find a method which does 

not exclude SNPs until their relationship with the RA severity variable had been considered. 

Methods involving dimension reduction overcome the correlated variable problem by projecting 

the original variables onto a plane.  In general, a linear transformation is performed on the original 

correlated set of variables to produce an independent set of components which can then be used in 

the modelling.  Probably the simplest form of this is PCA which is fully described below to aid later 

discussion on more advanced methods. 



 

32 
 

3.5. Principal components analysis (PCA) 

A set of correlated variables can be written into a matrix X.  Using PCA this matrix is rewritten as a 

sum of further matrices.  For example:   X = PC1 + PC2 + PC3 + …+ PCh.  Where X is a (nxm) matrix, and 

each PCh is a (nxm) matrix.  Each matrix PCh can be further written as the outer product of two 

vectors, a score th (nx1) and a loading p’h (1xm).  Such that X = t1 p’1 + t2 p’2 + t3 p’3 + …+ th p’h.   

Visually, Eriksson et al. (2006a, p. 46) and Geladi and Kowalski (1986) use diagrams similar to those 

shown in Figure 3.1 to demonstrate the relationship.   

 

 
1. After mean centring and scaling to unit 
variance, the data for 20 subjects are plotted 
with each axis representing one of three X 
variables (X1, X2 and X3). 
 

 
2. The 1st component (PC1) is computed as the line 
corresponding to minimising the sum of the 
squared residuals (least square error). The line 
must go through the origin (mean of the data). 

 
 
3. Each subject (i) is projected onto the PC1 
line (forming a 90° angle) and the distance 
from the origin to each subject’s projection is 
calculated.  The distance is the score value ti, 
a value for each subject.   
 
 

 
 
4. Each variable (Xj) is rotated onto the PC1 line.  
The cosine of the angle θj equals the loading (pj).  

Hence, a variable close to the PC1 line will have 
approximately cosine (0) or cosine (180) =1 (a high 
loading value).  A variable almost orthogonal to the 
PC1 line will have approximately cosine (90) = 0 (a 
low loading value). 
 

 

Figure 3.1 Principal component analysis 
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5. After the first PC1 line has been fitted and 
the scores and loadings calculated, the 
second component (orthogonal to the first 
can be fitted and the second set of scores and 
loadings calculated in the same way. 

 
6. The common method for estimating principal 
components is to use Non-linear iterative partial 
least squares (NIPALS).  This algorithm calculates t1 
and p’1  from the X matrix.  Then the residual error 
is calculated as X - t1p’1  .  This residual is then used 
to calculate t2 and p’2 and so on until all 
components are calculated.  The NIPALS algorithm 
can be found fully described in Geladi and Kowalski 
(1986).  A summary is reproduced here where h is 
the index for the component being calculated. 
Take a column vector Xj:  th=Xj 
Calculate the row vector loadings:  
p’h = t’hX / t’h th 
Normalise p’h to length 1: p’h = p’h /|| p’h|| 
Calculate th =X ph/ p’h ph 
Compare the t’h used in step 2 with that obtained 
in step 4.  If they are the same (within a criterion) 
then stop, else go back to step 2 using new t’h. 
Continue to calculate subsequent components but 
replacing Xj in step 1 with the residual error not yet 
explained by the calculated components. 

Figure 3.1 Principal component analysis (continued) 

3.6. Principal component regression 

Following the use of principal component analysis to remove correlation in the variables, the 

resulting principal components which are by definition uncorrelated, could be used in a regression. 

This is called Principal component regression.   In the discussion below, the X and Y data are 

assumed to be mean-centred and scaled prior to analysis.  Firstly, let’s consider the case of 

modelling a single response variable  .  X is a matrix (nxm),   is a vector (nx1), n=number of 

observations, m=number of X variables. 

The first component is calculated for the X variables using a PCA analysis as described in section 3.5 

and demonstrated again in Figure 3.2.  This provides the scores (t1) and loadings (p1) for the first 

component which are used to represent the X data:  X = t1 p’1 .  Subsequent components can be 

calculated as described in Figure 3.1. 

 

Figure 3.2 Principal component analysis – First component  
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In the single   case, the scores (t1) are used with the scaled   data and bh coefficients calculated 

using regression   ̂        where   =              (Figure 3.3).  By reducing the dimension of the 

data prior to the regression and using the t scores instead of the X data, the linear regression 

assumption of independent errors should now hold, assuming subjects are independent.   

 

Figure 3.3 PCA regression of y= t scores 

Whilst PCA regression removes the problem with unstable beta coefficients (as the principal 

components used in the model are uncorrelated), the components are derived using all variables in 

the model because the PCA is performed in isolation to the regression.  Therefore there is no 

opportunity to reduce the number of variables needed to be measured in order to use the 

prediction model.  A further concern is that all of the components are calculated without reference 

to the y variable and hence it may not perform as well for prediction as selecting variables based on 

their predictive importance. 

3.7. Partial Least Squares (PLS) regression  

Initial exploration into statistical methods each revealed problems with modelling multivariate data 

where the number of variables is substantially larger than the number of observations (m>n).   Early 

exploration into using multiple linear regression methods revealed unstable   coefficients when 

modelling correlated variables together.  When using 912 subjects’ data, it was found that no more 

than 30 variables could be fitted in the same model before model convergence problems were 

observed.   One solution is to test SNPs one at a time in the model, however, this has the potential 

of detecting false positives due to multiplicity and is very time consuming, when thousands of 

separate single SNP models are run. 

Whilst PCA regression made positive steps towards removing the collinearity and dimensionality 

problem, the components to represent the X variables are defined unsupervised on the Y variable.  

Partial Least Squares (PLS) is a natural extension from these methods.  It simultaneously applies 

dimension reduction in the general form of a PCA analysis on both the sets of X and Y variables and 

performs a regression using the calculated scores and loadings.   Unlike PCA regression, the PLS 

algorithm performs dimension reduction and regression simultaneously ensuring the selected 

components are optimised for Y variable prediction.  Further discussion is summarised in section 

10.3 as to why PLS is a good choice compared to other methods.  In addition, section 3.8 describes 

other methods which were investigated before deciding to use PLS as the main focus of this 

research. 
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3.7.1. Methodology 

The PLS algorithm as described by Geladi and Kowalski (1986), annotated for having a single Y 

variable, is described below.  Notice how unlike the PCA algorithm (Box 6 in Figure 3.1), the Y data is 

used in the calculation of the X components (scores and loadings) and the X data is used in the 

calculation of the Y components (scores and loadings).  For each component:   

 1) Let u = y             u is a vector (nx1)     

In the X block 2) w’ = u’X/u’u      w’ is a vector 1xm (as u’ is 1xn and X is nxm) 

 3) w’ = w’/||w’||   (normalisation of w’) 

 4) t = Xw/w’w        t is a vector nx1 (as X is nxm and w is mx1) 

In the Y block 5) q’ = t’Y/t’t         q’ is a scalar (as t’ is a vector 1xn and Y is vector nx1) 

 6) q’ = q’/||q’||   (normalisation of q’) 

 7) u = Yq/q’q         hence u is a vector nx1 (as y is nx1 and q is a scalar) 

Check convergence: 8) compare the t in step 4 with the one in the preceding iteration.  If they are 

approximately equal then go to step 9, else go to step 2.    

 9) p’ = t’X/t’t       p’ is a vector 1xm (as t’ is a vector 1xn and X is nxm) 

 10) p’new = p’/||p’||   (normalisation of p’) 

 11) t’new = t’ ||p’||      (rescaling scores) 

 12) w’new = w’ ||p’||   (rescaling weights) 

Find b (a scalar as u’ is 1xn and t is nx1)  

 13) b=u’t/t’t 

After the scores (t) and loadings (p) for the first component are finalised, (shown as t’new and p’new 

above), the information not yet able to be predicted by the model (residuals) are calculated and 

used to replace X and Y in the equations above when calculating the remaining components.  For 

example, for h components the X data residuals are calculated as using the finalised scores and 

loadings for the relevant component:  

Eh = Eh-1 – thp’h;  X=E0   where h is the number of components.   

Similarly, the Y data residuals (for component  h) are calculated using:  Fh = Fh-1 – bhthq’h;  Y=F0 

Note that because bhthq’h is used to calculate the Y residual as opposed to uhqh, the rank of Y is not 

decreased after each component and m-1 components can be calculated.   

Once the X in steps 2, 4 and 9 and Y in steps 5 and 7 are replaced by their corresponding residual 

matrices Eh and Fh, the algorithm returns to step 1 and the loadings and score for the 2nd 

component are calculated.   

In the case of multiple Y variables where Y is a matrix (nxc), steps 1 to 13 become: 

For each component:  1) Let u = yk            u is a vector (nx1), the kth y variable used to start      

In the X block 2) w’ = u’X/u’u      w’ is a vector 1xm (as u’ is 1xn and X is nxm) 

 3) w’ = w’/||w’||   (normalisation of w’) 

 4) t = Xw/w’w        t is a vector nx1 (as X is nxm and w is mx1) 

In the Y block 5) q’ = t’Y/t’t    q’ is a vector 1xc (as t’ is a vector 1xn and Y is vector nxc) 

 6) q’ = q’/||q’||   (normalisation of q’) 

 7) u = Yq/q’q         hence u is a vector nx1 (as y is nxc and q is cx1) 

Check convergence: 8) compare the t in step 4 with the one in the preceding iteration.  If they are 

approximately equal then go to step 9, else go to step 2.    

 9) p’ = t’X/t’t       p’ is a vector 1xm (as t’ is a vector 1xn and X is nxm) 
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 10) p’new = p’/||p’||   (normalisation of p’) 

 11) t’new = t’ ||p’||      (rescaling scores) 

 12) w’new = w’ ||p’||   (rescaling weights) 

Find b (a scalar as u’ is 1xn and t is nx1) 

 13) b=u’t/t’t 

 

Boulesteix (2004) and Boulesteix and Strimmer (2007) argue that PLS is the only known well-

established dimension reduction method which works when the number of subjects is less than the 

number of variables, makes no distribution assumptions and chooses the reduced component 

dataset using both response and explanatory variables.  This ‘supervision’ of X on Y, explains why 

PLS often performs better than principal component analysis in prediction problems.  PLS can cope 

with many, collinear, noisy and moderately incomplete data for both the X and Y variables (Eriksson 

et al., 2004, Trygg and Wold, 2002) making it an attractive option for this research. 

3.7.2. Extensions using penalised PLS (Sparse PLS [SPLS]) 

When a particular linear model is chosen, all variables in the model are assumed to have some 

predictive ability.  However, in the ‘GWAS SNPs’ dataset which has 325,482 SNPs, it is very likely 

that there are many SNPs unrelated with the severity of RA.  A final model should only retain SNPs 

contributing to the underlying RA severity and exclude SNPs that describe random error in the 

sample.  As SNPs are being selected from over 325,000, it is possible to add variables to the model 

until every patient’s severity score is perfectly explained (predicted correctly).  However, this would 

be an over fitted model and it would have poor prediction on an independent cohort.  See section 

4.2.1.2 for further discussion on over fitting. 

Therefore, a dimension reduction technique (which removes collinearity problems) and a variable 

selection technique (which removes over fitting of the model) is required.   

PLS regression is a dimension reduction technique which solves the multiple linear regression 

problem of calculating the inverse solution to (       in the presence of correlated variables.  

However, the default PLS algorithm does not have a variable selection technique and all variables 

are included in the final model (with all variables contributing to the loadings).   One way to 

overcome this is to apply a penalised regression type strategy within the PLS algorithm.  Sparse PLS 

(SPLS) provides a dimension reduction and variable selection method using a LASSO type 

penalisation (as described in section 3.4) alongside the standard PLS algorithm.  For comprehensive 

descriptions of SPLS modelling see Chun and Keles (2010), Le Cao et al. (2008) and Feng at al. 

(2012).   A brief description of the Le Cao et al. (2008) methodology is provided below and is easily 

implemented using the R package mixOmics, version 3.0  (González et al., 2011, Lê Cao et al., 2009).  

Other SPLS available software is discussed in section 3.7.5. 

The PLS algorithm as described in section 3.7.1 is used to calculate the scores and loadings for the 

first component.  Prior to finalisation of the first component, the loading vector is sorted by 

descending magnitude.  As part of the model specification, the number of variables required in the 

final model for the X’s (and Y’s in the case of multiple Y variables) is pre-specified.  Any variable, 

whose corresponding loading is not in the top required number, have their loadings set to be 0.  

Hence, these variables do not contribute to the calculation of the first component.  The PLS 
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algorithm continues recalculating the final scores and loadings based on the selected variables.   

The residual error is calculated by subtracting the predictive ability of the 1st component, (using the 

reduced set of variables), from the original X and Y variables and this residual error is used as the 

basis to model for the 2nd component.  The same process is followed for subsequent components 

up to the number of components required.  

As SPLS appears to provide a modelling solution to the research question, it was decided to 

investigate it further in section 4.  For the final model, the number of components retained requires 

careful consideration.  Components explaining only a small amount of variation may only be 

describing random noise in the data and hence should be excluded from the final model (Geladi and 

Kowalski, 1986).  This is further discussed in section 4.2.1.  In addition, the pre-specification of the 

number of variables to keep in the final model also requires careful consideration.  Further 

discussion is provided in 4.2.1.4.  

3.7.3. Regression coefficients in PLS regression 

The regression coefficients   in PLS regression are transformed back to the original scale (not scaled 

or with mean centring for interpretation).  Whilst these   coefficients can be directly interpreted as 

the direction of effect that a variable has on the model, extreme care needs to be taken.  If two 

100% correlated variables are in the same model then the value/size of their   coefficients will be 

halved.  Each variable will therefore appear to have a small effect whereas interest is in the total 

effect of both variables.  An example of this can be found in SNPs rs10506802 and rs7968671 in 

Table 6.6.  Unlike ordinary least squares regression whose  estimates become unstable in the 

presence of highly correlated variables, both variables are retained in the model, however, because 

they are 100% correlated, the estimates of their   coefficients will be halved.  As these regression 

coefficients are not being used for variable selection (loadings are used instead), the fact that they 

are smaller in the presence of correlated variables is not a problem. 

3.7.4. Advantages and disadvantages of PLS regression 

Fornell and Bookstein (1982) and (Vinzi et al., 2010 p.659) explain that unlike covariance-based 

maximum likelihood estimation which assumes a joint multivariate distribution and independent 

observations, PLS does not require these distributional, population or scale of measurement 

assumptions.  A possible limitation though is highlighted by Eriksson et al. (2006a) who warns that 

the modelling works best when the data is “fairly symmetrically distributed and have a fairly 

constant error variance.”  This could result in poor prediction models for the Larsen score because 

of the inflated number of patients with zero erosions and non-normal distribution of the data. 

One limitation identified by Chun and Keles (2010), is that PLS cannot overcome the problem of 

modelling with a dataset which has a too small sample size.  A reasonable number of observations 

are required in order to estimate the relationships between the sample covariance consistently.  

The size required is dependent on the data structures, however, if the sample is not large enough to 

represent the population, then PLS cannot overcome this and it may result in poor prediction.   

Given there are only 394 patients in the ‘GWAS SNPs’ dataset, it may not be sufficient to detect 

potentially small but important SNP effects on disease phenotypes.  Although two analyses 

containing just 320 RA subjects used PLS to investigate disease activity relationships using grip 

force, walking speed and pain intensity using the Swedish TIRA project cohort, they did not include 
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genetic variants in this research (Thyberg et al., 2005, Bjork et al., 2008).  They also did not attempt 

to create and test a prediction model and only used PLS to identify variables which contribute to RA 

severity using a variance importance plot to indicate significant predictors.   

Investigation will be required into the effect of missing data by performing a sensitivity analysis 

using multiple models (section 4.2.3).  Trygg and Wold (2002) suggest PLS can cope with moderate 

amounts of missing data (up to around 20%) based on the work by Rannar et al. (1995). 

As traditional modelling methods are not being used, parametric approaches such as the use of 

confidence intervals and p-values to assess the importance of variables in the model can not be 

used.  Measures of model fit (such as the Akaike information criterion or the Bayesian information 

criterion) which use maximum likelihood methodology also cannot be used.  Exploration into 

assessment of the model fit and model validation techniques will be explored in this research. 

A limitation of SPLS is that subjects with missing data would be excluded from the analysis during 

the various matrix and vector product calculations.  Genotyping often leads to some samples with 

missing data, therefore all of the GoRA patients have at least one data point missing.  This would 

lead to a substantial number of subjects or SNPs being excluded from investigation.  During the 

development of PCA and subsequently PLS, Wold (1975) developed the NIPALS approach which can 

be used to impute data.  This approach is fully described in section 4.2.2.  Lê Cao et al (2009) 

recommend using NIPALS separately on the Y and X data before performing a SPLS analysis which 

results in no imputations being required during the modelling.  Two forms of imputation ‘quick’ and 

NIPALS are investigated using the ‘all subjects’ dataset in chapter 4 and four methods are 

investigated using the ‘GWAS SNPs’ dataset in chapter 5.   

Another concern is to ensure variables collected in different units are scaled.  For example, SNPs are 

recorded as 0, 1 or 2, however, a variable such as smoking pack years can range from 0 to over 100.  

No preference (weight) should be given to one variable above another.  Therefore, it is 

recommended to use auto-scaling (Geladi and Kowalski, 1986, Trygg and Wold, 2002).  Auto-scaling 

is achieved for each variable by subtracting the mean from each result and dividing it by the STD.   

This results in each variable having a mean of zero and a STD of 1, hence all variables have equal 

importance irrespective of the units they are collected in.  This can be performed prior to fitting 

SPLS or performed as part of the mixOmics function. 

The use of PLS to investigate gene-gene and gene-environment interactions has previously been 

explored (Wang et al., 2009).  PLS uses the correlations within the X and Y matrices to calculate the 

loading vectors.  The correlations between X and Y are used, ensuring the final model maximises 

both the amount of variation explained within the X and Y matrices and the correlation between 

the X and Y matrices.  Multiple components can be calculated; hence the first component could 

represent the main effect of a variable whilst later components could use interactions with other 

variables to explain further variation in the Y matrix. Therefore, Wang et al. (2009) claim PLS has 

power to detect X/Y association even in the presence of gene-gene and gene-environment 

interactions.  However no further research was found supporting this claim. 
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3.7.5. Software choices for SPLS regression 

Many software packages are capable of performing PLS which by definition includes the dimension 

reduction step.  These include; MATLAB® version 7.13 R2011b (The MathWorks Inc., Natick, MA, 

USA), SIMCA® Umetrics AB Version 13.0 (Eriksson et al., 2006a, Eriksson et al., 2006b), SAS® Version 

9.2 of the SAS System for Windows Copyright © 2002-2008 (SAS Institute Inc. Cary NC USA), R 

Foundation for Statistical Computing v2.13.1 (Vienna Austria),  Tanagra v1.4.44 released May 14 

2012 (Rakotomalala, 2005) and CoreExpress v1.0 (Magidson, 2011).  However, only R software 

packages were found to apply the variable selection in the form of a sparse penalty.  Other 

packages did have additional benefits to R and therefore have been used to answer specific 

questions in this research.  A full review of software used is provided in section 10.6. 

Two SPLS regression methods were identified (both using a type of LASSO-L1 penalty), as packages 

in the R Foundation for Statistical Computing, Vienna, Austria (version 2.13.1).  The SPLS R package 

version 2.1-0 (Chun and Keles, 2010) reduces the variables to retain in the final model by optimising 

two tuning parameters (Kappa and Eta) to obtain the best model fit under cross validation (CV) 

(section 4.2.1).  Kappa is the number of components to extract (section 4.2.1.3) and eta is a sparsity 

parameter (for the L1 penalty) between 0 and 1.   There were concerns that optimising the 

parameters could be very time consuming when fitting models to such a large set of data.    In 

addition, when the SPLS method is applied to the ‘GWAS SNPs’ dataset, R reaches its maximum 

memory limit which results in the data having to be modelled in 40 separate lower level blocks (as 

described in section 6.2).  In this scenario, the tuning parameters recommend only keeping disease 

duration to carry forward to the higher level model.  It was of concern that using the tuning 

parameters on the lower level models results in optimising the fit of a poorly specified model.  This 

may lead to insufficient numbers of SNPs being carried forward to the higher level model which 

would miss variables with small effects but potentially important predictors of severity.    

To prevent the loss of too many variables at the lower level models, it was decided the mixOmics 

package would be most appropriate for this research, version 3.0  (González et al., 2011, Lê Cao et 

al., 2009).  This package allows the specification of the number of variables you want to keep.  

Hence, you can force the model to keep more variables than necessary from the lower level model 

and investigate optimising the model fit on the higher level model.    

To ensure the R mixOmics package was correctly fitting PLS models, identical models were fitted in 

R and SAS/STAT software, Version 9.2 of the SAS System for Windows Copyright © 2002-2008 SAS 

Institute Inc. Cary, NC, USA.  Both packages resulted in the same predicted model.    
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3.8. Other multivariate methods explored and modelling selection 

Numerous other multivariate methodologies were explored and are briefly summarised in this 

section.  However, none were believed to be as well suited to this research question as using PLS 

regression. 

 Canonical correlation analysis (CCA) measures the relationship between two sets of variables (X 

and Y) by estimating linear combinations of each set which have maximum correlation with each 

other.  A prediction model could be obtained by constraining each linear combination to be 

orthogonal to the previous combinations found, often resulting in numerous components 

(dimension reduction).  Unless used with a variable reduction technique such as regularisation/ 

penalisation techniques (as described in section 3.4) the resulting model would consist of all 

variables in the original X and Y matrices.  Even when used with a regularisation or penalisation 

technique, canonical correlation can require large computational power when the number of 

variables in X and/or Y variable are very large (Le Cao et al., 2009).  A recent study (Le Floch et 

al., 2012) reported that CCA can be problematic when the sample size is substantially smaller 

than the number of variables under investigation and in these cases univariate filtering may have 

to be used.   As described in section 3.4, it was hoped to avoid univariate filtering so that if a 

final suitably predictive model was found, it would have a higher chance of having the causal 

SNP retained in the model (if the causal SNP had been originally measured). 

 Cluster analysis uses the variables to group observations into ‘clusters’ of the most similarity.  

Whilst this approach could be used to cluster patients into groups of similar severity, it would 

not help to create a severity prediction model.  

 Correlated component regression (CCR) (Magidson, 2011) applies a regularisation algorithm to 

model multiple correlated variables (X) to predict an outcome variable (Y).   The dimension 

reduction is derived selecting each component to maximise its ability to predict Y.  Each derived 

component is a linear combination of the original X’s variables, however, it can be used with a 

variable reduction ‘step down’ algorithm so that a reduced number of variables are retained for 

the prediction model.  CCR is very similar to PLS, however, only implemented in the CORExpress 

software (Magidson, 2011) and hasn’t been widely used in the literature.   It was therefore 

decided not to focus on CCR initially, but to explore it at a later date if there was sufficient time. 

 Discriminant analysis classifies an individual to one or more pre-defined groups.  This research 

aims to use continuous measures of severity as agreed clinical definitions of mild, moderate and 

severe RA are not available and lead to arbitrary cut offs and loss of information.  Therefore 

discriminant analysis is not applicable. 

 Factor analysis is designed to find hidden variables (latent variables) which cannot be measured 

directly but are thought to exist.  Similar to PCA (described in section 2.2.1.2), groupings are 

defined without variable reduction and without consideration of Y prediction.  It therefore 

would not be the most appropriate technique to reduce the large quantity of X variables to form 

a prediction model of severity.   

 Neural networks can use patterns and correlations in the data to build a model capable of 

prediction.  Many types of neural networks can be applied and the optimum prediction can be 

based on either supervised or unsupervised learning.   Depending on the model input, neural 

networks can incorporate non-linear and asymmetric relationships.  However, neural networks 

may be unsuitable for modelling data with collinear variables and large quantities of variables 

because they rely on the inversion of the variance covariance matrix (Vinzi et al., 2010).  Whilst it 
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is possible to perform a PCA or univariate pre-filtering before modelling a reduced set of 

components or independent variables using neural networks (Eriksson et al., 2006a), this may 

not be optimal for the GoRA data.  The initial PCA is performed unsupervised on the Y response. 

Therefore, the variable dimension reduction is performed ignoring information regarding the 

relationship between the X and Y variables.  In addition, unless neural networks are used with a 

penalisation approach, there is no variable selection technique applied.  Therefore, if using PCA 

first, the components would require all variables measured for the final model to be fitted.  This 

could be avoided using SNP pre-filtering, however, there is evidence that pre-filtering reduces 

the ability to recover causal SNPs (Abraham et al., 2013).   

 Random forest is the method of fitting many decision trees to classify observations to categories.  

The method selects a random set of X variables and the classification tree is produced based on 

a randomly chosen training set of observations.  This model is then validated on the left out 

observations.  This approach is repeated numerous times and the most common classification is 

assigned.  By categorising a continuous variable into many categories it can also be used for 

prediction of a continuous trait.  At the start of the research project, there was no published 

evidence of random forests being used on GWAS data to predict continuous traits and no 

evidence that the method could analyse multiple Y variables.  Hence, the method was not 

investigated in this project due to PLS appearing to fit the data better.  However, of recent 

interest has been the use of random forests to detect SNP interactions from GWAS data.  

Winham et al. (2012) found interactions to be difficult to detect in the absence of large marginal 

effects.  Boulesteix et al. (2012) also recently reported that caution was required if using the Gini 

variance importance measure as it favours SNPs with large minor allele frequencies.  Hence, 

further exploration of random forests may be of interest. 

 Structural equation modelling (SEM) is a general term to reflect a multivariate data analysis 

extension to generalised linear modelling.  It is often used to test underlying latent variables 

which cannot be directly measured.   A priori model is pre-specified which estimates how 

multiple variables are related using sets of linear equations.  Using variances and covariances of 

the variables, this model is tested to determine if the parameter assumptions fit the data.  The 

model may then be adjusted based on the results and the process repeated with new priori or 

concluded to be a good fit.  Whilst this method could be applied to the GoRA data, it is believed 

that given the huge quantities of data this research is investigating, SEM may have 

computational difficulties defining the relationships between such a large set of data as 

identified by Wold (1985).  Although with modern computers this may no longer be such a 

problem. 

Although there are many options which could be explored to see if they could form a predictive 

model of RA severity, it was decided to focus the research on the use of SPLS. 
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3.9. Summary 

In order to determine the most important genetic and environmental factors predictive of RA 

severity, a multivariate technique is required which has no distributional assumptions, can model 

multiple collinear variables together (through dimension reduction) and is able to select the most 

important variables to form a final model (through variable selection).   Although many multivariate 

approaches could have been explored, it was felt that SPLS was the most appropriate.  This was due 

to it being reported to cope well with very large datasets and because it is a commonly used 

statistical approach in many other areas.  Other possibilities such as penalised multiple linear 

regression, PCA, Principal Component Regression, CCR and CCA, were either not capable of both 

dimension reduction and variable selection or they didn’t apply the methods simultaneously which 

could lose important information about the relationship between the Y and X variables.  

Although two SPLS macros are available in R, mixOmics was selected because it allows the number 

of variables to be retained for the final model to be chosen, rather than running optimisation 

strategies using tuning parameters which was anticipated to be time consuming. 

A review of published literature was unable to find any evidence of PLS being used to model 

environmental and genetic variants to predict RA severity.  However, 16 studies in non RA areas (all 

since 2005) were found analysing SNP data using PLS regression or discrimination.  All studies 

(except one) were using less than 45,000 SNPs or pre-filtered SNPs to fewer than 45,000 SNPs prior 

to analysis.  Le Floch et al. (2012) analysed 600,000 SNPs with just 94 observations however the 

results of this paper were not available until the majority of this research was completed.  The PLS 

(and SPLS) model fitting strategies used in the literature are discussed further in section 4.2. 

In order to test the feasibility of SPLS modelling on this data, model fitting strategies will first be 

applied to the ‘all subjects’ dataset (N=912) investigating prediction of a single Y variable from 368 

SNPs (Chapter 4).  Secondly, the process will be extended to the ‘GWAS SNPs’ dataset using data on 

394 subjects and investigating 325,482 SNPs (Chapter 6).  Finally the methods will be extended to 

the modelling of multiple severity variables (Chapter 9). 
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4. SPLS analysis of Larsen score –‘All subjects’ dataset 

4.1. Aims 

The aim of this chapter is to use SPLS on the smaller set of data (912 subjects, 368 SNPs and 19 

environmental variables) in order to develop an optimal strategy to find the best prediction model 

for the Larsen score.  The strategy to take forward has to be scalable so it can be applied to the 

‘GWAS SNPs’ dataset.  Therefore, decisions in this chapter will be made with consideration for the 

future GWAS modelling requirements.  The investigation includes: 

 Model creation strategies such as CV techniques to select the number of variables and 

components to avoid over fitting 

 Imputation methods 

 Issues with missing data 

 Transformations of the Larsen score 

 Predictive ability of the model 

 Interpreting the model using variance partitioning 

4.2. Methods used for the model creation 

4.2.1. Model creation strategy 

Multivariate methods often involve the use of an iterative process to determine which model fits 

the data the best (Eriksson et al., 2006a, p. 378).  Boulesteix and Sauerbrei (2011) discuss numerous 

validation techniques in the context of high throughput molecular data.   They highlight that to test 

the predictive ability of the model (and hence find the best model) the ideal scenario is to have an 

independent set of data available which is not used at all in the model creation.  Unfortunately in 

practice, this is often not available and instead the existing sample can be randomly split prior to 

any analysis into a test and training sample.  The size of the test and training sample varies, 

however, it is generally regarded that the training sample should be the larger (perhaps 80% or 90% 

of the data) so that the majority of data is used to form an accurate model and a smaller amount to 

test the model.  If there are insufficient observations (subjects) to reserve sufficient data for testing, 

then they suggest using a CV technique.   

Using the ‘all subjects’ dataset (N=912), 20% of the patients (N=182) could be reserved for a test set 

and the remaining (N=730) could be used as the training set to form the model.  Whilst this seems 

sensible, an approach is required which would be applicable to the ‘GWAS SNPs’ dataset.  As the 

‘GWAS SNPs’ dataset has only 394 subjects, this would suggest 315 for the training sample and just 

79 for the test sample.  If a SNP had a minor allele frequency of 5%, this means on average, only 

four subjects would have this allele in the test sample.  It is therefore likely that some SNPs found to 

be important in the training data would have no rare alleles in the test data.  To retain highest 

chance of detecting important rare SNPs it was decided that there was insufficient data to keep a 

test set in reserve and CV would be used instead.  This decision is reinvestigated in section 8.3 and 

8.4.    
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4.2.1.1. Cross Validation  

Many authors (Long et al., 2011, Le Cao et al., 2011, Daetwyler et al., 2013) use CV with SPLS for 

making decisions about the format of the model (choosing the number of components and number 

of variables which makes the model fit the best).  CV can also be used to provide an estimate of the 

final model fit.  Forming a model on a set of subjects and then using the model to predict the same 

subjects, will overestimate the predictive performance which would be observed on an 

independent set.  CV can take many forms as described below, however, in all cases it uses some 

subjects to form the model and then uses this model to predict the subjects omited.  Although it 

can provide better estimates of the prediction performance which may be observed on an 

independent set of subjects, the performance can still be over-estimated due to both creating and 

testing the model on the same set of subjects (optimisation bias) (Varma and Simon, 2006). 

The most common CV methods in this field documented by SAS® (2008), Eriksson et al. (2006a, p. 

374) and the package mixOmics (González et al., 2011, Lê Cao et al., 2009) version 3.0 are the leave 

one out method and the random block method.  In the leave one out method, each subject is left 

out of the training sample one at a time and the model is then used to predict the left out patient.  

In the random block method, the data is split into M folds, the model is formed on M-1 of the folds 

forming the training group and tested on the Mth fold which was left out of the training sample.  

This is repeated until each of the folds have been the test group and all patients have been assigned 

a prediction. 

The ‘leave one out’ method is better used when the sample is very small as at these times, (<20 

observations), there is not enough data to use the random block method.  At other times it is time 

consuming, as the number of models to be run, equals the number of subjects.   R2 is defined as the 

proportion of total variation in the Y response variable(s) explained by the model fitted on the 

entire set of data.   When using the ‘leave one out’ method, each run contains a similar set of 

patients (the permutation of the data is insufficient) therefore Q2 (R2 under cross validation or 

R2-CV) tends to approach R2 and therefore may not be a reliable estimate of model performance on 

an independent sample.  SAS® discusses other non-random methods of assigning blocks, 

sequentially (observations 1-50, 51-100 etc.) and split sample (observations 1, 21, 41 form a block 

and then observations 2, 22, 42 form a block etc.), however no evidence was found as to why this 

would perform better than the blocks being randomly assigned. 

A further method which could be used in this context is bootstrapping.  Although not initially 

investigated as it was not mentioned in the literature as being used with PLS modelling, 

bootstrapping is described and investigated on the ‘GWAS SNPs’ dataset shown in section 6.4.3. 

Therefore, it was decided to use all of the data in model creation and to use internal random block 

CV methods to both select the best model and then to estimate how well the final model fits under 

CV.   
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4.2.1.2. Over fitted models 

As described in section 3.7.5, care is necessary when modelling such a large dataset to avoid an 

over fitted model.  This is a model which includes too many variables so that both the predictive 

signal and the random noise in the sample is explained by the model.  An over fitted model will 

predict very well on the set of data which was used to create the model, but very poor on an 

independent set, in this case fewer variables in the model would have predicted the independent 

set better. 

Two decisions which have to be made in SPLS modelling are the number of components and the 

number of variables to retain for the final model.   If all possible components are included in a SPLS 

model, then the model will fit the data perfectly.  However, the model would not be generalisable 

as the smaller components are explaining random noise in the sample and the model is over fitted.  

Similarly with 325,482 SNPs and environmental variables, a combination could be found which fits 

the data perfectly, however, the model would not be transferable to an independent set.  

Determining the optimum numbers of components and variables are described in sections 4.2.1.3 

and 4.2.1.4. 

4.2.1.3. Choice of the number of components 

PLS models by definition extract the first component (a linear combination of the X variables) to 

represent as much of the Y variation as possible.  Each subsequent component is formulated to 

explain as much as the left over residual variation as possible (section 3.7.1).  Therefore the higher 

number of components that are fitted, the less of the original Y variable(s) variation it will explain.   

As more and more components are fitted, they could simply be describing random error and not 

predictive residual left over in the Y’s.  Therefore these components which describe very little of the 

Y variation should be left out of the final model.   For over 30 years, CV has been suggested as a 

technique to estimate the best number of components to use in a prediction model (Eastment and 

Krzanowski, 1982, Geladi and Kowalski, 1986).  This is still the recommended approach used 

currently (Daetwyler et al., 2013, Long et al., 2011, Le Cao et al., 2011). 

Using CV, the additional components added to the model are investigated to determine if they are 

of significant importance to include them or possibly just explaining noise (Sjostrom et al., 1983).  

The significance is estimated, for example in 4-fold CV, by deleting one quarter of the observations 

and then predicting the Y’s for these missing observations.  The sum of square (SS) differences 

between the observed and predicted Y values is calculated for each of the four quarters of data. 

This can be described as the prediction residual sum of squares (PRESS).  The component associated 

with the minimum PRESS corresponds to the model explaining the most variation.  Plotting PRESS 

by the number of components used, the minimum level can be observed and the component 

number this occurs in, is the number of components required in the model.   However, models 

often have similar PRESS even when fewer components are being used.  Adding additional 

components could lead to only marginally lower PRESS, not adding much to the model for the 

additional complexity and perhaps only explaining additional random noise.  Therefore the SAS® 

manual recommends a statistical randomisation based test developed by van der Voet (1994), 

which selects the model as the smallest number of components with a PRESS not significantly larger 

than the minimum PRESS.  The null model and alternative models are defined as: H0 - The squared 
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residuals from the model with and without the extra component have the same distribution and H1 

- The squared residuals from the model with and without the extra component have a different 

distribution.  Monte Carlo simulations are then used to determine whether the observed 

distributions from each model (with or without the extra component) are likely to have occurred by 

chance alone.  A p-value for the addition of each component is provided.  The SAS® manual 

recommends the number of components as the first component with a corresponding van der 

Voet’s test p-value greater than 0.1 (SAS, 2008, p. 4783), hence H0 is not rejected (at the 10% alpha 

level).  In this instance it is concluded that the squared residuals from the model with and without 

the extra component, could have the same distribution and subsequently the extra component is 

not required in the model. 

Another option to select the number of components is to use the calculation of R2-CV initially 

defined in 4.2.1.1 (González et al., 2011, Le Cao et al., 2008).  R2-CV (sometimes called Q2) is 

calculated as 1- (PRESS/SS).  Where PRESS is the residual sum of squares from the predicted model 

(as above) and SS is the total variation observed in the Y variable.  PRESS/SS equates to the 

proportion of Y variation the model is not explaining, hence 1-(PRESS/SS) describes the amount of 

variation the model is explaining.  R2-CV can be calculated for each component representing the 

amount of variation each additional component is adding to the model, or it can be presented 

cumulatively (the total amount of variation the model is explaining).  Historically predictive 

significance was determined using a 5% alpha level and the square root of the mean squared error 

of prediction (RMSEP).  As it has been square rooted, the unit is based on the STD from the model 

not the variance.  RMSEP= (        .  As R2-CV uses the variation unit, to retain the same 

significance level, a criteria of 1-0.952 = 0.0975 was traditionally used as a cut off for the R2-CV 

(Eriksson et al., 2006a, Le Cao et al., 2008).  Therefore, it was decided that if the R2-CV for the 

addition of any component is <0.0975 then it will indicate that component is not required. 

Both of these conditions will be examined and used to determine the number of components as 

summarised in the flow diagram in section 4.2.6. 

4.2.1.4. Number of variables to extract  

In SPLS, the final model does not contain all of the original variables.  Therefore a decision has to be 

made regarding how many variables to keep (extract) for the final model, which are hopefully truly 

predictive of the signal and not merely predicting noise in the data (over fitting).  The mixOmics 

function version 3.0 uses the loading vector (which indicates the size of the contribution of each 

variable to the prediction model) to order the variables.  For each fold and run, this order can be 

used to reflect the order of importance of each variable. 

The R2 of the model will continue to rise as more and more variables are fitted in the model until 

there is perfect fit of the data.  To avoid over fitting, González et al. (2011) recommend calculating 

the R2-CV and plotting it against the number of variables in the model.  The point at which adding 

an extra variable makes the prediction under CV worse, suggests that no more variables are 

required in the model.  Many authors recommend the use of CV to determine the optimum number 

of variables to retain for other penalised modelling methods (Abraham et al., 2013, Alexander and 

Lange, 2011, Li and Sillanpaa, 2012, Varma and Simon, 2006, Abraham et al., 2012).  In addition, Le 

Cao et al. (2011) use this approach with SPLS.  One particular concern is that three authors have 

recently found that the models tend to include more variables than the optimum (Li and Sillanpaa, 
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2012, Ayers and Cordell, 2010, Abraham et al., 2013).  In addition, Varma and Simon (2006) 

identified that the predictive performance which would be observed on an independent test set is 

overestimated by CV. 

Based on the guidance by González et al. (2011), it was decided to determine the number of 

variables to include in the final model by repeatedly running a CV model and extracting a different 

number of variables each time (from 1, 2, 3, 4, 5, 10, 15 and up to 250 variables).  The R2-CV of each 

model will be calculated and plotted against the number of variables that model extracted.   The 

number of variables with the maximum R2-CV will be selected as the optimum number of variables 

to extract (unless there was no clear optimum, then a decision is made based on the approximate 

highest R2-CV with possibly a smaller number of variables extracted).   

4.2.1.5. Further model considerations (number of folds, runs and model selection) 

Another key decision to make when using CV is how many folds to use.  When modelling the ‘all 

subjects’ dataset (N=912), folding the data into 10 folds, results in 91 (or 92) subjects being 

predicted each fold.  This seems a large enough number to use.  Running the SPLS through once, an 

‘unlucky’ split of patients may by chance make the selected model dependant on the way the 

subjects were randomly assigned.   To get a robust model which is the same no matter which fold 

patients are assigned to, it was decided to repeat the 10-fold CV a number of times (runs).  The 

number of runs was explored using 50 to 200 and results indicated that 50 was able to produce a 

stable model with a feasible running time (A comparison of running times is shown in section 10.3).  

After completing this work, it was observed that as few as three runs had been used in the 

literature  (Long et al., 2011), this decision is reassessed on the ‘GWAS SNPs’ dataset in section 

6.4.2, when running times of the model were substantially increased. 

Fifty runs of 10-fold CV will produce 500 models with different variables extracted.   To decide upon 

a final model, variables need to be identified which are consistently being chosen irrespective of the 

folds used.  After 50 runs of 10-fold CV, a dataset is created containing the name of each variable 

and the number of times it was selected in the top set of variables extracted.  This approach is used 

by Magidson (2011) and Gonzalez et al. (2011) who in data examples which were not using SNP 

data, only select variables to be kept in the final model if they are chosen in all folds and runs.  A 

stable model is required where variable selection is not dependent on how the data is split into 

folds.   To ensure this and to avoid SNPs that are inconsistently selected, it was decided to follow 

Magidson (2011) and Gonzalez et al. (2011) insisting that a variable should be selected by all 50 

runs.   However, because of modelling SNP data, there is a chance that a SNP is not selected in a 

fold due to insufficient variation (i.e. all of the genotypes of 1 or 2 are in the test set).  If such a case 

occurs then that SNP cannot be selected in that fold as being predictive of RA severity however may 

be selected in the other 9/10 folds.  To try to accommodate for rare but important SNPs, it was 

decided to relax the rule of having to be in 100% of the folds to only requiring SNPs to be selected in 

80% instead.  

Whilst different rules may be required for analysis of the ‘GWAS SNPs’ dataset, it was felt that with 

10 folds, retaining variables which were selected 80% of the time (8/10 folds) in all of the 50 runs, 

would retain key predictor variables for the final model.  This method was entitled the ‘percentage 

fold’ method.  Stricter criteria resulted in rarer SNPs not having a chance of being selected as 
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potentially they didn’t have enough variation to be modelled in all of the folds.  More generous 

criteria resulted in too many variables for the final model which could result in an over fitted model.   

4.2.2. Data description and imputation  

Using the ‘all subjects’ dataset (N=912), SPLS methods will be used to select the most important 

variables predictive of the Larsen score from 368 SNPs and 19 environmental variables.  Section 

2.2.3 provides an explanation of this subset of data and Appendix C contains a full list of SNPs 

including which chromosomes they are located on.  The environmental variables defined below are 

chosen because they are measurable at disease diagnosis and though in this study the data was 

collected at recruitment, this behaviour should not be confounded with disease severity over time.  

 Alcohol use: Do you drink alcohol? (Yes/No),  

 Alcohol quantity: During the past 30 days, on how many days did you have at least one 

drink of alcohol? (None, <5 days, 5-10 days, more than 10 days),  

 Categories of the shared epitope as defined by Tezenas du Montcel et al. (2005) S1, S2, S3d, 

S3p and X and Number of copies of the shared epitope (0,1,2),  

 Sex (M/F),   

 Age, age at time of disease diagnosis, age at onset of symptoms,  

 Disease duration & symptom duration,   

 Smoking status (never, former, ever), average number of cigarettes per day, Smoking 

duration (years), time since quitting smoking and number of smoking pack years (calculated 

as number of years smoking * average number of cigarettes per day / 20). 

As described in section 3.8, missing data is required to be imputed for PLS modelling.   This can be 

performed within the model fitting process however it was decided to impute all missing data prior 

to model fitting for two reasons: 

1. If missing data is imputed during the model fitting and multiple runs of multiple-fold CV are 

performed, then the model would be doing the imputation multiple times and hence 

increase the time it takes to run the model. 

2. Using the mixOmics version 3.0 function to perform SPLS CV, each time the model is fitted 

on the M-1 folds, a different set of variables can be chosen.  These variables are then used 

to predict the group of subjects in the Mth (left out) set.  If those subjects have any of the 

chosen variables with missing data, then a prediction for that subject cannot be made.  

Therefore the imputation has to be performed prior to the modelling to enable the CV 

prediction to be calculated for every subject no matter which variables are selected. 

Whilst the environmental variables recorded are relatively complete as shown in section 2.2.2, all 

subjects have a least one missing SNP when using the ‘GWAS SNPs’ dataset.  Therefore to apply 

SPLS, imputation methods are required to be applied prior to the modelling.   

Although there are many methods using LD to impute missing SNP data, the data would still require 

imputation of the environmental variables and imputation of SNPs when LD imputation methods 

were not possible.   Therefore, SPLS models created using two methods of imputation are explored 

for the ‘all subjects’ dataset; ‘quick’ imputation and NIPALS imputation as described below.  No LD 

imputation methods are investigated at this stage as the ‘all subjects’ dataset consists of 368 SNPs 
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spread through the genome and hence were not in strong LD.   The effect of using LD to impute 

missing SNP data is further investigated using the ‘GWAS SNPs’ dataset in chapter 5. 

‘Quick’ imputation  

‘Quick’ imputation is defined as imputing the environmental continuous variables with the mean 

and environmental categorical variables with the mode.  The HLA-DRB1 (S1, S2, S3p, S3d and X) 

variables are imputed with their modal value similar to the environmental variables because there 

are only five variables and computationally it would not take long to impute with the mode.  

However, all SNPs are imputed with a 0 making them the wild type homozygous (most frequently 

occurring homozygous genotype).  This method is much quicker to run on ‘GWAS SNPs’ dataset as 

all missing SNP data is replaced with a zero rather than having to count the most frequently 

occurring genotype.  In addition, it may provide a contrast to the value given using the NIPALS 

algorithm described below which uses correlation between the SNPs. 

Non-linear estimation by iterative partial least squares (NIPALS) 

NIPALS imputes missing data iteratively through multiple bivariate regression models as described 

for PCA analysis in section 3.5.  .  The slope for each variable in X is iteratively estimated using 

simple bivariate least squares regression lines using one variable as the y-variable and another 

variable as the x-variable.  Therefore the correlations between all of the variables in the same 

matrix are used to estimate the missing data based on the location that subject has in relation to 

other subjects with similar data in other variables (Eriksson et al., 2006a, p. 65).    

Using the function NIPALS in R, the missing values are replaced by the estimated values from the 

reconstituted matrix derived iteratively through the multiple bivariate regressions.   

4.2.3. Effect of missing data on the model fitting 

Many authors warn that the PLS algorithm with NIPALS imputation can cause the models to select 

variables with large amounts of missing data and has a loss of robustness as the missing data 

approaches 20% (Rannar et al., 1995, Trygg and Wold, 2002, Pedreschi et al., 2008).  Pedreschi et al. 

(2008) observed NIPALS imputation to cause an artificial reduction in the variance.  The more data 

that is imputed, the more the variance is artificially reduced.  Hence, the more data a variable has 

imputed, the more likely it is to be selected in the model. Trygg and Wold (2002) therefore 

recommend keeping the imputed data for any variable to be less than 20%.  They suggest that the 

artificial reduction in variation for variables with less than 20% imputed has little influence on the 

variable selection for the model.  

This could be problematic for the GoRA data, as although the environmental data is quite complete, 

some SNPs have at least 40% missing data.  The reason for this missing data is that although the 

original call rate may have been acceptable, data has been merged together from different sources 

which are measured on different numbers of patients (section 2.2.3).  For example, a SNP measured 

by the Sheffield group on 400 of the GoRA subjects may have a 99% call rate, however when 

merged with the full GoRA set of patients (912 in the ‘all subjects’ dataset), then the SNP has 56% of 

subjects missing. 
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To determine if this was a concern in this analysis, using NIPALS imputation, SPLS models were 

fitted and the chosen variables extracted.  The amount of missing data in the full dataset was then 

compared with the amount of missing data in the variables chosen by the model.  Including all 

environmental variables and SNPs in the ‘all subjects’ dataset, each variable on average had 8.0% of 

data missing (8.21% for the SNPs alone).  In comparison, the variables selected in the NIPALS Larsen 

score prediction model had on average 17.6% missing data (20.6% for the SNPs alone).  It was 

therefore true that the selected variables had more missing data than the variables not selected.   In 

fact, 19 of the 25 SNPS with missing data greater than 20% were selected for the final model.  It was 

therefore decided to remove any SNPs with >20% of their data missing.   The ‘quick’ imputation 

models were also investigated and as they selected similar variables to the NIPALS model, this 

approach was applied for all models.  The ‘quick’ imputation method imputed missing SNPs with a 0 

and hence would also suffer from artificially reducing the variation. 

4.2.4. Transformations to the Larsen score prior to modelling 

Eriksson et al. (2006a) warn that PLS works best when the data is normally distributed.  Due to the 

shape of the Larsen score distribution (Figure 2.1) and the wide varying disease duration in this 

sample (Figure 2.2), adjusting the Larsen score for disease duration before modelling and modelling 

the natural logarithm of the data will be investigated.  Models investigating Larsen score alone and 

Larsen score/disease duration (both unlogged, logged and with subjects having zero Larsen scores 

excluded) were examined to see whether the predictions and performance of the model were 

consistent.  Modelling the Larsen score alone, (with either imputation method), performed better in 

terms of R2-CV and correlation between actual and predicted Larsen score than any investigated 

transformation (Table 4.1).   

One reason for the Larsen score performing better than the Larsen score/disease duration could be 

that the Larsen score progression rate is unlikely to be constant over time.  Suppose the Larsen 

score progressed as in Figure 4.1, a subject with 30-years of disease duration, would have their 

Larsen score adjusted much more than a subject with 15-years of disease duration.  However, their 

Larsen scores could be similar, having levelled out over this time.  Therefore, adjusting for disease 

duration in a linear way may be inappropriate. 

Table 4.1 Summary of models fitted using various transformations and imputations 

Model N
a 

N variables 
asked to be 
extracted  

N (%) selected 
for Final 
model 

Final 
model 
R

2
-CV

b 
r corr-
elation

c 
% 
Xvar

d 
%  
Y var

e 

Larsen (‘Quick’ imputation) 1 65 39 (60%) 0.561 0.577 11.1 33.3 

Larsen (NIPALS) 1 100 64 (64%) 0.572 0.592 6.5 35.0 

Larsen /disease duration (NIPALS) 2 40 33 (82.5%) 0.36 0.433 15.0 18.7 

Log (Larsen/disease duration) (NIPALS) 2 50 44 (88%) 0.424 0.484 14.7 19.6 

Log (Larsen /disease duration) no 0 
(NIPALS) 

1 65 24 (36.9%) 0.315 0.349 10.53 12.2 

a: Number of components selected to be extracted from the model 

b: The proportion of variance in the response explained by the regression model when the chosen variables are refitted 

on the data using 10-fold CV 

c: Re-fitting the chosen variable on all of the data to retrieve the parameter estimates and then fitting this model on all 

patients (no CV) this is the correlation between the actual and predicted Y 

d/e: Percentage of X/Y variation explained by the model.  
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Figure 4.1 Example of possible Larsen score progression rate 

4.2.5. Univariate modelling and estimation of the effect size 

In many applications, bootstrapping is used to calculate 95% confidence intervals around the 

parameter estimates.  However, it is not appropriate in PLS analysis because the beta coefficients 

for each variable would be ‘weakened’ if variables in the model are correlated.   For example, if two 

variables are in complete correlation (r=1), then the size of their beta coefficient will be halved.  

This may cause important variables to have smaller beta coefficients in the model and hence 95% 

confidence intervals which overlap zero.  Therefore, in PLS it is not appropriate to interpret the size 

of the coefficient without taking into account the correlation of variables in the model.   Instead, it 

was decided to quantify the direction & size of effect by presenting the median Larsen score for 

each genotype and testing each SNP univariately.  When analysing the ‘all subjects’ dataset, in order 

to suitably model the inflated number of subjects with a Larsen score equal to zero (Figure 2.1), a 

ZINB model was found to fit the data better than a zero inflated Poisson model, negative binomial 

(NB) model or Poisson model. 

In order to adjust the univariate ZINB modelling for each SNP to predict the Larsen score, it is 

important to adjust for potential confounders such as disease duration.  Literature of modelling 

strategies recommend using medical knowledge to select important variables rather than stepwise, 

forward or backward selection methods (Harrell, 2001, p58).  Medical knowledge has been used to 

reduce the many environmental variables to the few selected for the multivariate modelling as 

listed in section 4.2.  However, this list still includes many highly correlated variables which would 

unnecessarily complicate a univariate model whose objective is to assess the importance of each 

SNP.   

A simple forward selection strategy will therefore be applied to create a standard list of 

environmental factors which will be adjusted for, when analysing the importance of SNPs.  All 

factors are assumed to have a linear relationship with Larsen score and are included in both the 

count and zero inflation part of the model.  Likelihood ratio (LR) tests are used to compare nested 

ZINB models (-2*Log Likelihood of fewer variable model + 2 * Log likelihood of greater variable 

model) and assessed using the chi-square distribution on two degrees of freedom. 

The defined strategy begins with no variables/factors in the model (the base model).  Each 

environmental factor is added one at a time and the most significant LR test indicates the 1st factor 

to include.  The base model is then amended to include the 1st important factor and the remaining 

factors are again added one at a time.  The factor with the most significant LR test is then added 
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into the base model and the process repeated until none of the LR tests are significant at the 5% 

alpha level. 

In section 4.2, BMI and ACPA were not included as potential environmental predictors due to them 

being measured post diagnosis of disease and hence, their value could be influenced by disease 

severity.  However, it was decided to include them in the univariate analysis as they were included 

in the ‘GWAS SNPs’ dataset multivariate modelling in section 6.2.2. 

Using the above strategy, the first parameter to enter the model was the disease duration  

(P<1x10-15).  The ZINB model including disease duration was then fitted and compared against fitting 

disease duration plus each remaining factor one at a time.  The second variable to enter the model 

was ACPA category (positive/negative) (p<1x10-15).   Continuing the process, the third variable to be 

entered was symptom duration (p=0.00015), followed by BMI (p=0.000769), age at onset of 

symptoms (p=0.006617) and ACPA value (p=0.005992).   At this point no further variables were 

significant at the 5% level and it was decided not to enter any further variables.  The 5% alpha level 

was selected so that only strongly predictive variables were included and the model was not over 

fitted.  Therefore, the environmental variables to include in all ZINB models to investigate SNPs will 

be Larsen score = Disease duration + ACPA category + Symptom duration + BMI + age at onset of 

symptoms and ACPA value.  The significance of these variables when fitted together in the ZINB 

model is shown in Table 4.2. 

Table 4.2 Base model for testing SNPs using ZINB models 

Count model coefficients (NB with log link): 

 Estimate STD z value Pr(>|z|) 

(Intercept) 3.370543 0.208103 16.197 < 2 x 10-16 

Disease duration 0.026751 0.0060851 4.396 1.1 x 10-5 

ACPA category  0.201284 0.0877474 2.294 0.0228 

Symptom duration 0.010815 0.0059292 1.824 0.0682 

BMI -0.01693 0.005488 -3.085 0.0020 

Age at onset of symptoms -0.00513 0.0022185 -2.314 0.0206 

ACPA value 0.002086 0.0008064 2.586 0.0097 

Log(theta) 0.645284 0.0522094 12.36 < 2 x 10-16 

 Zero-inflation model coefficients (binomial with logit link): 

 Estimate STD z value Pr(>|z|) 

(Intercept) -2.14796 0.85796 -2.504 0.0123 

Disease duration -0.00446 0.038703 -0.115 0.9082 

ACPA category  -1.12192 0.333487 -3.364 0.0008 

Symptom duration -0.07116 0.037301 -1.908 0.0564 

BMI 0.049705 0.020311 2.447 0.0144 

Age at onset of symptoms 0.020651 0.009057 2.28 0.0226 

ACPA value -0.00736 0.003848 -1.913 0.0558 
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The above model will be used as the base model and each SNP will be entered into the count and 

zero-inflation part of the model.   A LR test as described above, will be calculated and compared 

against the chi-square distribution on two degrees of freedom, to determine whether the SNP has a 

significant contribution to the model.  In the rare case that all subjects with a Larsen score equal to 

zero have the most frequent homozygous genotype, hence there is no variation in the zero-inflation 

part of the model for that SNP, the SNP will only be entered into the count part of the model and 

tested against the chi-square distribution on one degree of freedom. 

When the ‘GWAS SNPs’ dataset is being investigated, there is no longer an inflation in the number 

of zeros (Figure 6.1), hence it is more appropriate to use the NB distribution.  The Poisson 

distribution was also considered, however, a LR test indicated the NB model was more appropriate, 

suggesting over dispersion relative to a Poisson model.   The same environmental variables will be 

included in the model as defined in Table 4.2 as it may be biased to reassess the covariates based 

on a subset of patient’s data.  The p-value corresponding to the SNP in the model will be presented. 

A univariate one SNP at a time model may over exaggerate the size of the SNP effect, as it is 

examined in isolation to the rest of the model.  However, it will give indication of whether the SNPs 

would have been identified as statistically significantly important if they were analysed in a 

univariate way.  This provides an alternative view on whether the model is selecting important 

SNPs.  In addition, the medians will show the average difference in Larsen score across the 

genotypes.  



 

54 
 

4.2.6. Summary of SPLS model creation process ‘percentage fold’ method 

Using guidance from many authors (González et al., 2011, Le Cao et al., 2008, Eriksson et al., 2006a, 

SAS, 2008, Long et al., 2011) the following flow diagram was created to detail the model fitting 

process entitled ‘percentage fold’ method used on the ‘all subjects’ dataset throughout section 4 

(Figure 4.2).   

 

Figure 4.2 Iterative procedure for fitting PLS models using the ‘percentage fold’ method 
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4.3. ‘Percentage fold’ method results when using ‘quick’ imputation 

SPLS models using the ‘percentage fold’ method (section 4.2.6) were fitted using the ‘all subjects’ 

dataset.  The data consisted of 912 subjects using 387 X variables (368 SNPS, 19 environmental 

variables) after applying the ‘quick’ imputation method described in 4.2.2 (excluding SNPs with 

>20% missing data per 4.2.3).  Using a two component model, the gain in R2 (not under CV) by 

adding the second component was just 0.0146 (0.5864 with two components and 0.5718 with one 

component).  For the second component, R2-CV =0.016 suggesting that only one component was 

required, as the R2-CV was less than 0.0975.  Using the van der Voet’s test, a two component model 

had the smallest PRESS with p-value > 0.1.  However, as the model containing just the 1st 

component had a p-value of 0.0960, this indicated it was only just not being selected as the 

optimum number of components.  After investigating the amount of variation the additional 

component was able to explain (36.3% of the Y variation with two components compared to 33.8% 

of the Y variation with one component), it was decided more appropriate to use the simpler model 

with one component.  Therefore all models below are using a one component model. 

4.3.1. Number of variables to extract (‘quick’ imputation) 

Following the selection of the number of components, the number of variables to extract was 

determined by running one SPLS model at a time extracting from one to 250 variables as described 

in 4.2.1.4.  The maximum R2-CV was observed at 95 variables (R2-CV =0.599, Figure 4.3).   

 

Figure 4.3 Plot of the R
2
-CV versus the number of selected variables (‘quick’ imputation) 

 

R
2
-CV 
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4.3.2. Selection of the final model (‘quick’ imputation) 

The model was run 50 times using 10-fold CV and extracting 95 variables in each fold and each run.  

To enable the variables to be sorted into an order of importance in each fold and run, variables 

were ranked (most predictive to least predictive) according to the amount of Larsen score variation 

explained (based on the values of each variables loading in the loading vector).  Any variables not in 

the top 95 were given a loading of 0 (and ranked equal last) so as to not include them in the model.  

58 variables were selected in 8/10 folds, in all 50 runs.   

To obtain an overall order of importance, the median rank was calculated first across the 10 folds 

within each run, and then across the 50 runs and is presented in the rank column in Table 4.3.   

Using the chosen model, CV was performed resulting in an R2-CV of 0.575.  Table 4.3 reveals the 

final model, along with the median rank order, the number of subjects and median Larsen score for 

each genotype and the ZINB LR p value for SNPs (as described in section 4.2.5).  Only 13 of the 48 

SNPs (27%) selected were significant at the 5% alpha level.  Although some of the highest ranked 

SNPs (rs2075800 ranked 5 and rs2844479 ranked 6) have univariate p-values as low as <1.0x10-15, 

the SNP ranked 7th rs2071592, has a univariate p-value of 0.453.   Investigation of the median Larsen 

score alone for each genotype (0,1,2) could not explain this large difference in p-values, as in some 

cases, a clear increase or decrease in median Larsen score linearly across the genotypes was found 

not to be statistically significant. 

As the p-value tells us how likely our null hypothesis is to be true based on the strength of the 

evidence in the observed data, it appears heavily reliant on the numbers of subjects and variation in 

Larsen score within each genotype for both the zero part and count part of the ZINB model.  For 

example, for four non-significant SNPs (rs2071592, rs5029937, rs1800629 and rs7752903), all 

subjects with a Larsen score of zero had the most frequent homozygous genotype (0) and hence 

there is zero variation in the zero inflation part of the model.  Therefore, the SNP could only be 

fitted in the count part of the ZINB model and the LR p-value (calculated on one degree of freedom) 

was found to be non-significant.   Of particular concern, is the large change in significance when 

rs2071592 is analysed in section 4.4.2.  After NIPALS imputation, at least one non-zero genotype 

now has a Larsen score of 0.  With the new present variation, the p-value becomes highly significant 

p=9.24 x10-11.  Of the other SNPs, rs1800629 is not selected at all in the NIPALS model, however, 

rs5029937 and rs7752903 are both significant at the 1% alpha level (p=0.0019 and p=0.0063 

respectively).  This appears to indicate a problem with the use of univariate ZINB modelling of small 

data samples or low frequencies of genotypes. 

In the multivariate PLS analysis, variables are selected according to the size of their loading value.  

This can be thought of as the cosine of the angle between the original variable and the line of best 

fit through the data rotated to have most correlation with the Y data.  Variables with high loadings 

are hence selected for inclusion in the model.  This is a very different way of assessing importance 

of variable prediction compared to the univariate p-value setting.  Given the instability of the p-

value shown above, the multivariate method is considered less influenced by small changes in the 

data caused by the method of imputation. 

Of particular interest, the shared epitope variable (coded as 0 RAA motif, 1 RAA motif or 2 RAA 

motif copies), was not selected in the SPLS model.  However, the DRB1 S1 and S2 shared epitope 
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variables both appeared and were consistently in the direction documented in previous literature.  

This added supportive evidence that for severity prediction, using the Tezenas du Montcel et al. 

(2005) DRB1 coding is more appropriate than counting the alleles with the RAA shared epitope. 

The proportion of missing data in the selected variables was calculated in order to verify that 

preference was not being given in the PLS selection process to variables with more missing data 

(section 4.2.3).   The average missing data in all the variables available for model selection was 

5.17% whereas the mean amount of missing data in the variables which were selected was only 

slightly higher at 6.59%.  Therefore, removing SNPs with >20% missing data has prevented variables 

with a higher frequency of missing observations being selected more frequently.   

Table 4.3 Final model when using ‘quick’ imputation 

Variable 
name 

Rank Genotype (0, 1 or 2): N subjects: Median 
Larsen score 

ZINB LR  
p value 

Description  

Disease 
duration 

1     Increase in Larsen score for increase in disease duration 

Symptom 
duration 

2     Increase in Larsen score for increase in symptom duration 

Age at onset 
of symptoms  

3     Decrease in Larsen score for increase in age at onset of 
symptoms 

Age at time 
of diagnosis 

4     Decrease in Larsen score for increase in age at disease 
duration 

rs2075800 5 0: 358: 17 1: 410: 34 2: 144: 32.5 <1.0E-15 C/T variant located on chromosome 6 at 31777946.  
Missense function in HSPA1L. 

rs2844479 6 0: 393: 18 1: 391: 32 2: 128: 38 <1.0E-15 G/T variant located on chromosome 6 at 31572956. 
Unknown function. 

rs2071592 7 0: 425: 20 1: 385: 32 2: 102: 33 0.453 A/T variant located on human chromosome 6 at 31515340.  
Intron variant of NFKBIL1 

rs2242653 9.5 0: 647: 26 1: 237: 32 2: 28: 44.5 4.74E-12 C/T variant location on human chromosome 6 at 31676015.  
Missense variant in LY6G6F 

rs9366826 10 0: 560: 24.5 1: 316: 31 2: 36: 31 0.0039 C/G variant located on chromosome 6 at 33619184.  Intron 
function in Inositol 1,4,5,-trisphosphate receptor, type 3 
(ITPR3) 
 

rs805292 10.5 0: 651: 25 1: 233: 34 2: 28: 34 5.83E-11 C/T variant located on chromosome 6 at 31690259.   8167 
bases upstream of ABHD16A,  4428 bases downstream of  
LY6G6F,  8167 bases upstream of LY6G6E,  4428 bases 
downstream LY6G6D,  498 bases upstream of LY6G6D,  
1112 bases upstream of C6ORF25,  4808 bases downstream 
of DDAH2 and 8349 bases downstream of CLIC1. 

rs394581 11.5 0: 523: 32 1: 335: 20 2: 54: 29 0.196  C/T variant located on chromosome 6 at 159482771.  5' 
untranslated region of the TAGAP gene.  Associated with 
the risk of Rheumatoid Arthritis 

rs443198 12.5 0: 413: 22 1: 382: 31.5 2: 117: 37 <1.0E-15  C/T variant located on chromosome 6 at 32190656.   
Synonymous variant in NOTCH4 associated with activity in 
RA synovium 

rs26232 13.5 0: 491: 29 1: 331: 27 2: 90: 16 0.0071 C/T variant located on chromosome 5 at 102596720.  Intron 
variant in C5orf30 associated with RA susceptibility and 
severity 

Alcohol 
quantity 

14     Decrease in Larsen score with increase in alcohol quantity 
(coded as 0=None, 1=<5 days, 2=5-10 days, 3=more than 10 
days) 

rs182429 14 0: 366: 31.5 1: 430: 26 2: 116: 21.5 0.164 C/T variant located on chromosome 6 at 159469574.   3390 
bases upstream of TAGAP (Eyre et al., 2010b) 

rs2256965 17.5 0: 463: 24 1: 354: 31 2: 95: 33 <1.0E-15 C/T variant located on chromosome 6 at 31555130.  Intron 
variant of LST1: Leukocyte-specific transcript 1 protein 

rs2872507 19 0: 321: 23 1: 387: 27 2: 204: 32.5 0.118 C/T variant located on chromosome 17 at 38040763.  
Intergenic, 6614 bases downstream of ZPBP2.  

Alcohol use 19.5     Decrease in Larsen score with using alcohol vs not using 
alcohol 

rs220704 19.5 0: 704: 26 1: 196: 37.5 2: 12: 27.5 0.159 A/T variant located on chromosome 6 at  46865758.  Intron 
variant in  GPR116. 

rs4535211 19.5 0: 303: 33 1: 420: 26 2: 189: 20 0.032 A/G variant located on chromosome 3 at  17072997.  Intron 
variant in PLCL2  (Bowes et al., 2012) 

rs2431697 22.25 0: 337: 31 1: 415: 27 2: 160: 19.5 0.297 C/T variant located on chromosome 5 at 159879978.  
Intergenic region, between PTTG1 and microRNA miR-146a 
associated with Lupus & psoriasis 

Smoking 
pack years 

25     Decrease in Larsen score with increase in amount of 
smoking pack years 
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Variable 
name 

Rank Genotype (0, 1 or 2): N subjects: Median 
Larsen score 

ZINB LR  
p value 

Description 

drb1nos2 26 0: 483: 26 1: 359: 29 2: 70: 39.5 0.982 Increase in Larsen score with presence of K-R-A-A shared 
epitope sequence 

rs5029937 28 0: 830: 27 1: 79: 37 2: 3: 31 0.940 G/T variant located on chromosome 6 at 138195151.  Intron 
variant in TNFAIP3 associated with RA risk (Orozco et al., 
2009) 
 

drb1nos1 31 0: 659: 29 1: 235: 26 2: 18: 10 0.0621 Decrease in Larsen score with presence of A-R-A-A or E-R-A-
A 

rs10917214 32 0: 331: 30 1: 421: 26 2: 160: 25.5 0.127 A/G variant located on chromosome 1 at 22652501.  
Intergenic with unknown function. 

rs932744 32.75 0: 374: 24 1: 412: 28.5 2: 126: 36.5  0.100 C/G variant located on chromosome 6 at 150390663.  380 
bases upstream of ULBP3 

rs2009345 33 0: 365: 24 1: 422: 28 2: 125: 37  0.124 A/G variant located on chromosome 6 at 150389748.  
Intron variant in ULBP3. 

rs1800629 35.25 0: 648: 26 1: 237: 29 2: 27: 43 0.454 A/G variant located on chromosome 6 at 31543031.  313 
bases upstream of TNF, 931 bases upstream of LTA and 
5305 bases downstream of LTB. 

rs1076933 35.5 0: 354: 29 1: 410: 28 2: 148: 21.5 0.159 A/G variant located on chromosome 22 at 45198494.  
Intron variant in ARHGAP8 and PRR5-ARHGAP8 

Smoking 
duration 

35.5     Larsen score is decreased by an increase in duration the 
subject has smoked. 

rs7752903 37.5 0: 844: 27 1: 66: 37.5 2: 2: 31 0.965 G/T variant located on chromosome 6 at 138227364.  
Intergenic with unknown function.  In a 109 kb DNA 
segment that spans the TNFAIP3 gene possibly related to 
SLE 

rs228975 38.25 0: 382: 
22.5 

1: 404: 28 2: 126: 35 0.225 C/T variant located on chromosome 22 at 37542201.  
Intron variant in IL2RB. 

rs4777183 38.5 0: 300: 31 1: 418: 27 2: 194: 20 0.482 C/T variant located on chromosome 15 at 70004775.  
Intergenic with unknown function. 

rs5029938 39 0: 852: 28 1: 60: 18.5 2: NA: NA 0.484 C/T variant located on chromosome 6 at 138195633.  
Intron variant in TNFAIP3 associated with RA risk (Orozco 
et al., 2009) 

rs5029939 41 0: 828: 27 1: 82: 35.5 2: 2: 31 0.045 C/G variant located on chromosome 6 at 138195723.   
Intron variant in the TNFAIP3  associated with RA risk 
(Orozco et al., 2009) 

rs4265819 42 0: 753: 26 1: 151: 36 2: 8: 29.5 0.007 A/G variant located on chromosome 16 at 62617217.  
Intergenic with unknown function 

rs2327832 43 0: 507: 25 1: 351: 32 2: 54: 24 0.558 A/G variant located on chromosome 6 at 137973068. 
Intergenic with unknown function.  

rs2476601 44.75 0: 647: 26 1: 233: 33 2: 32: 44 0.114 A/G variant located on chromosome 1 at 114377568.  
Missense variant in PTPN22 associated with RA risk and 
possibly ACPA positivity. 

rs9565072 45 0: 452: 30 1: 363: 26 2: 97: 17 0.143 C/T variant located on chromosome 13 at 74639799.  
Intron variant in KLF12 which was investigated for risk of 
RA (Eyre et al., 2010a) however no associated found. 

rs864745 45.5 0: 312: 31 1: 402: 27 2: 198: 26.5 0.283 A/G variant located on  chromosome 7 at 28180556.  
Intron variant in JAZF1 which has previously been 
associated with Type II diabetes 

rs13061519 45.75 0: 854: 28 1: 56: 19.5 2: 2: 40 0.266 C/T variant located on chromosome 3 at 173235402.  
Intron variant in NLGN1. 

rs2027276 46 0: 852: 28 1: 60: 19.5 2: NA: NA 0.552 G/T variant located on chromosome 6 at 138174328.  
Intron variant in LOC100130476. 

rs2230926 46.75 0: 827: 27 1: 83: 36 2: 2: 31 0.040 G/T variant located on chromosome 6 at 138196066.  
Missense variant in TNFAIP3  associated with RA risk 
(Orozco et al., 2009) 

rs8045689 47 0: 492: 26 1: 342: 30.5 2: 78: 31.5 0.111 C/T variant located on chromosome 16 at 28988269.  
Intron variant in SPNS1. 

rs5980742 47.5 0: 393: 32 1: 299: 26 2: 220: 25 0.062 G/T variant located on chromosome X at 70321631.  
Intron variant in FOX04. 

rs10919563 48.5 0: 732: 
28.5 

1: 171: 26 2: 9: 21 0.146 A/G variant located on chromosome 1 at 198700442.  
Intron variant in PTPRC 

rs12403075 49.5 0: 723: 29 1: 180: 25.5 2: 9: 21 0.254 C/T variant located on chromosome 1 at 198721192.  
Intron variant  in PTPRC 

rs6473517 50.5 0: 703: 29 1: 196: 21.5 2: 13: 18 0.084 G/T variant located on chromosome 8 at 84857572.  
Intergenic with unknown function 

rs26510 51 0: 447: 31 1: 371: 23 2: 94: 28 0.591 C/T variant located on chromosome 5 at 96125910.  
Intron variant in ERAP1 

rs6000570 51 0: 211: 26 1: 456: 26 2: 245: 33 0.575 A/G variant located on chromosome 22 at 37514339.  
8736 bases upstream of TMPRSS6 and 7541 bases 
downstream of IL2RB. 

rs6933404 52.5 0: 508: 25 1: 351: 32 2: 53: 24 0.698 C/T variant located on chromosome 6 at 137959235. 
Intergenic with unknown function 

rs7722135 53.25 0: 582: 26 1: 281: 32 2: 49: 36 0.299 C/T variant located on chromosome 5 at 86294669.  
Intergenic with unknown function.  
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4.3.3. Assessing the predictive ability of the model (‘quick’ imputation) 

The predictive ability of the model was assessed by re-fitting it on the patients used to form the 

model, not using CV (Figure 4.4).  The model achieved a correlation between the actual Larsen score 

and the predicted Larsen score of r=0.599. 

 

Figure 4.4 Scatter plot of actual vs. predicted Larsen score (‘quick’ imputation) 

The mean absolute difference between the actual and predicted Larsen score was 21.7 (Median = 

17.7, STD =17.6, Minimum=0, Maximum=97.2).  As shown by the minimum and maximum, there 

was a wide spread in the prediction error with some subjects very poorly predicted (up to 97.2 

Larsen score points from the true Larsen score) and some subjects predicted correctly. 

4.3.4. Variance partitioning (‘quick’ imputation) 

This research aim is to predict RA severity at disease diagnosis.  Therefore any model should only 

include variables measurable pre-diagnosis.  At such a time the disease duration would be zero and 

it is likely symptom duration would also be very low due to the rapid detection and confirmation of 

RA in modern hospitals.  It is therefore of importance to remove the variation in the Larsen score 

model which is attributable to the disease duration and symptom duration.  It is useful to quantify 

how much of the Larsen score variability is explainable by the environmental and genetic variables 

Variable 
name 

Rank Genotype (0, 1 or 2): N subjects: Median 
Larsen score 

ZINB LR  
p value 

Description 

rs6932056 53.25 0: 837: 27 1: 73: 36 2: 2: 31 0.032 C/T variant located on chromosome 6 at 138242437.  
Intergenic with unknown function.  
 

rs11586238 59 0: 548: 30 1: 310: 21 2: 54: 28.5 0.239 C/G variant located on chromosome 1 at 117263138.  
Intergenic with unknown function however possibly 
associated with RA risk (Raychaudhuri et al., 2009) 

rs6927172 59.5 0: 529: 26 1: 332: 32 2: 51: 24 0.545 C/G variant located on chromosome 6 at 138002175.  
Intergenic with unknown function.  

rs10499197 60.25 0: 846: 27 1: 64: 36.5 2: 2: 31 0.081 C/T variant located on chromosome 6 at 138132516.  
Intergenic with unknown function.  

rs13242262 60.25 0: 414: 
30.5 

1: 379: 27 2: 119: 19 0.401 A/T variant located on chromosome 7 at 128591364.  
1276 bases downstream of IRF5 (associated with SLE risk), 
2870 bases downstream of TNP03. 
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alone.  There are a number of ways the variation in the Larsen score, which the final model is able 

to explain can be explored.  Unfortunately, the R package mixOmics did not automatically have this 

functionality and therefore other software was investigated. 

4.3.4.1. Tanagra: percentage contribution to each component  

Tanagra v1.4.44 released May 14 2012 (Rakotomalala, 2005) is freely available software which can 

be used to investigate variance partitioning of the final PLS model (after the sparse procedure had 

been applied in R).  To ensure the model fitting was the same as in R, the final model was run in 

Tanagra and it agreed that with just one component, 35.75% of the Y variability explained by just 

6.4% of the X variability.   Tanagra calculates the proportion that each X variable contributes to the 

first component.  Note that the contributions overlap because the variables are correlated.  Table 

4.4 shows that the first component is made up of 66% of the disease duration, 63% of the symptom 

duration, 58% of the age at onset of symptoms and 56% of the age at time of diagnosis.  The 

remaining variables contribute very little to this 1st component (<9% each).   

Whilst Table 4.4 provides us with an order of variable importance based on the contributions each 

variable makes to the explainable Larsen score variation, it does not provide us with an estimate of 

how much Larsen score variation can be explained by the environment and genetics alone because 

the contributions are not independent.  This is further investigated in section 4.3.4.2. 

Table 4.4 Tables showing the proportion of variation each variable contributes (‘quick’ imputation) 

 
>50% 

DD
*
 SymDur

#
 ageSX 

$
 ageDD^ 

0.66 0.63 0.58 0.56 

*=Disease duration, #=Symptom duration, $=age at onset of symptoms, ^=age at time of diagnosis 
 

>5% -
<50% 

rs5029937 rs5029939 rs2230926 rs10499197 rs6932056 rs7752903 rs2071592 

0.085 0.084 0.082 0.076 0.075 0.073 0.055 

 

>2.5% 
-<5% 

rs 
2075800 

Smoking 
duration 

rs 
2844479 

rs 
5029938 

rs 
182429 

rs 
2027276 

Smoking 
Pack year 

rs 
394581 

rs 
1800629 

0.043 0.041 0.039 0.032 0.032 0.030 0.027 0.027 0.025 

 

>2%-<2.5% rs932744 drb1nos2 drb1nos1 rs2242653 rs2009345 rs6933404 rs443198 

0.0228 0.0226 0.0223 0.0216 0.0215 0.0213 0.0212 

 

>1.5%-
<2% 

rs9366826 rs2327832 rs4535211 rs6927172 rs220704 rs6000570 rs10917214 Alcohol 
quantity 

0.019 0.0189 0.0187 0.0184 0.0182 0.0164 0.0162 0.0154 

 

>1.2%-
<1.5% 

rs13242262 rs864745 rs26232 Alcohol use 

0.0145 0.0136 0.0131 0.0127 

 

>1%-
<1.2% 

rs4777183 rs805292 rs228975 rs11586238 rs12403075 rs10919563 rs2431697 

0.0117 0.0115 0.0111 0.0111 0.0106 0.0104 0.0101 

 

>0.5% - 
<1% 

rs9565072 rs2872507 rs5980742 

0.0088 0.0051 0.005 

 

<0.5% rs 
1076933 

rs 
7722135 

rs 
13061519 

rs 
6473517 

rs 
8045689 

rs 
26510 

rs 
4265819 

rs 
2256965 

rs 
2476601 

0.0048 0.0047 0.0044 0.0041 0.0041 0.004 0.0037 0.0029 0.0026 
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4.3.4.2. MATLAB: Multi-block variance partitioning 

Multiblock variance partitioning (Skov et al., 2008) enables quantification of how much model 

variation is attributable to each type (block) of data.  The explainable Larsen score variation can be 

separated into variation attributable to disease duration and symptom duration (DD&SD), 

environmental and genetics, in addition to estimating the amount which overlaps between the 

blocks.  One block of variables at a time were fitted in a PLS model and the amount of variation that 

block alone can explain was calculated.   After which the other ‘blocks’ of variables were added to 

the model to see what additional variation they can explain.   Each block has its own turn of being 

fitted first in the model and having the other blocks added.  The result is that for each block you can 

estimate the amount of unexplainable variation (not explained by any variables in the model), the 

amount of unique variation, (the part that block alone explains) and the amount of common 

variation (the part explained in the block fitted first which is also explained by the blocks later 

added).   

The common and unique variation attributable to the various X blocks of data (DD&SD, 

environment and genetics) can be partitioned.  The method was performed in MATLAB® version 

7.13 (R2011b) (The MathWorks Inc., Natick, MA, USA) using the MVP Toolbox (Skov et al., 2008).  It 

also required the installation of the NWAY Toolbox (Andersson and Bro, 2000) available from 

www.models.life.ku.dk/source/nwaytoolbox.   

Fitting DD&SD alone explained 28.1% of the Larsen score variation.  However, part of this variation 

was explained by the other blocks of data, leaving only 18.1% unique to DD&SD.  There was much 

overlap between the DD&SD block and the environment block probably due to age at time of 

diagnosis and age at onset of symptoms being highly correlated with variables DD&SD.  Fitting the 

genetic block alone explained 16.2% of the Larsen score variation.  Almost all of this (15.2%) was 

unique and not common variation explainable by the other variables (Table 4.5 and Figure 4.5). 

Table 4.5 Multi-block variance partitioning (‘quick’ imputation) 

First block 
fitted 

A: Larsen score variation 
explained by each block when 
fitted alone (%) 

B: Larsen score variation unique to that block i.e. the 
variation is not common to the other blocks (%). 
(Percentage unique: B/A*100) 

DD&SD 28.1 18.1 (64.5%) 

Environment 15.6 10.1 (64.5%) 

Genetics 16.2 15.2 (94.1%) 

 

Figure 4.5 Pie chart of Larsen score variation (‘quick’ imputation) 
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In summary, of the total Larsen score variation that this model explained (35.75%), excluding 

variation which was common to other blocks, 15.2% of the Larsen score variability was attributable 

to genetics alone.   Recent estimates of the genetic heritability of radiological damage found 

possible estimates of 45% (calculated using kinship coefficients) and 58% (calculated using identical 

by descent) (Knevel et al., 2012a).  If SNPs selected due to their known link to auto-immune 

diseases can explain 15.2%, it is anticipated modelling the ‘GWAS SNPs’ dataset may be more in the 

region of the heritability estimates.  

It is also worth noting that the sum of the unique parts (18.1, 10.1 and 15.2) did not equate to the 

total amount of variation (35.75).  This was because each block had its own turn at being fitted first 

in the model and hence its parameter estimates were calculated first, followed by adding in the 

other blocks to find the unique and common variation.   Therefore, the parameter estimates are 

different depending on the order the blocks are fitted in the model.  

4.4. ‘Percentage fold’ method results when using NIPALS imputation 

For comparison with the ‘quick imputation’ method, the ‘all subjects’ dataset was imputed using 

NIPALS imputation and SPLS models were created using the ‘percentage fold’ method (section 

4.2.6).   Investigating the optimum number of components for the model resulted in an R2 of 0.567 

with one component which only increased to 0.584 when fitting two components.  The R2-CV for 

component two was 0.016 suggesting that only one component was required in the model (as it 

was <0.0975).   This was supported by the van der Voet’s test which produced a p-value of 0.1460 

for the first component.  The first component was able to explain 34.9% of the Y variation.  Hence 

all models below were fitted using one component.             

4.4.1. Number of variables to extract (NIPALS) 

Using the one component model, the maximum R2-CV was observed at 110 variables (R2-CV=0.539, 

Figure 4.6).   However it is clear from the plot that this maximum was almost reached at 55 

variables (R2-CV=0.534) and again at 95 variables (R2-CV=0.535).  Given the observable tail off after 

the 110 variables, it was decided to select 110 variables in each model.  It was hoped that if this is 

too many, they would not be kept in all the folds and therefore not retained in the final model 

because they had to be selected in 8/10 folds in all 50 runs. 
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Figure 4.6 Plot of R
2
-CV versus number of selected variables (NIPALS) 

 

4.4.2. Selection of the final model (NIPALS) 

The model resulted in 59 of the 110 extracted variables being selected in 8/10 folds, in all 50 runs.  

The rank column in Table 4.6 was calculated as the median rank of each variables loading (from the 

loading vectors) from the 10 folds within each run followed by taking the median across the 50 

runs.  The final model is shown along with the sort order (rank), the number of subjects and median 

Larsen score for each genotype and the ZINB LR p-value for SNPs (section 4.2.5).  Only 17 of the 49 

SNPs (34.7%) selected were significant at the 5% alpha level.  However as shown in section 4.3.2, 

these p-values are very sensitive to small changes in the data when there are no subjects with a 

Larsen score=0 and a non-zero genotype. 

Table 4.6 Final model using NIPALS imputation 

Variable 
name 

Rank Genotype (0, 1 or 2): N subjects: Median Larsen 
score 

ZINB LR  
p value 

Description 

Disease 
duration 

1     Increase in Larsen score for increase in disease duration. 

Symptom 
duration 

2     Increase in Larsen score for increase in symptom duration. 

Age at 
onset of 
symptoms 

3     Decrease in Larsen score for increase in age at onset of 
symptoms. 

Age at time 
of diagnosis 

4     Decrease in Larsen score for increase in age at disease 
duration 

rs2075800 5 0: 341: 18 1: 424: 33 2: 147: 32 1.31E-07 C/T variant located on chromosome 6 at 31777946. Missense 

function in HSPA1L. 

rs2844479 6.5 0: 375: 20 1: 406: 31.5 2: 131: 38 9.84E-07 G/T variant located on chromosome 6 at 31572956. Unknown 

function. 

rs9366826 8 0: 556: 24.5 1: 320: 31 2: 36: 31 0.0067 C/G variant located on chromosome 6 at 33619184.  Intron 

function in Inositol 1,4,5,-trisphosphate receptor, type 3 

(ITPR3). 

rs2872507 8.75 0: 298: 21.5 1: 407: 28 2: 207: 33 0.0973 C/T variant located on chromosome 17 at 38040763.  

Intergenic, 6614 bases downstream of ZPBP2.  

R
2
-CV 
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Variable 
name 

Rank Genotype (0, 1 or 2): N subjects: Median Larsen 
score 

ZINB LR  
p value 

Description 

rs394581 9 0: 512: 32 1: 345: 20 2: 55: 29 0.1432 C/T variant located on chromosome 6 at 159482771.  5' 

untranslated region of the TAGAP gene.  Associated with the 

risk of Rheumatoid Arthritis. 

rs2071592 11 0: 399: 20 1: 405: 32 2: 108: 33 9.24E-11 A/T variant located on human chromosome 6 at 31515340.  

Intron variant of NFKBIL1. 

Alcohol 

quantity 

11.5       Decrease in Larsen score with increase in alcohol quantity 

(coded as 0=None, 1=<5 days, 2=5-10 days, 3=> 10 days). 

rs26232 12.5 0: 480: 29 1: 342: 27 2: 90: 16 0.0039 C/T variant located on chromosome 5 at 102596720.  Intron 

variant in C5orf30 associated with RA susceptibility and 

severity. 

rs2242653 14 0: 644: 26 1: 240: 32 2: 28: 44.5 4.20E-05 C/T variant location on human chromosome 6 at 31676015.  

Missense variant in LY6G6F. 

rs805292 16.5 0: 648: 25 1: 236: 34 2: 28: 34 1.67E-05 C/T variant located on chromosome 6 at 31690259.   8167 

bases upstream of ABHD16A,  4428 bases downstream of  

LY6G6F,  8167 bases upstream of LY6G6E,  4428 bases 

downstream LY6G6D,  498 bases upstream of LY6G6D,  1112 

bases upstream of C6ORF25,  4808 bases downstream of 

DDAH2 and 8349 bases downstream of CLIC1. 

rs220704 17 0: 703: 26 1: 197: 37 2: 12: 27.5 0.171 A/T variant located on chromosome 6 at  46865758.  Intron 

variant in  GPR116. 

Alcohol use 17.5       Decrease in Larsen score with drinking alcohol vs. not drinking 

alcohol. 

rs4535211 18 0: 285: 34 1: 435: 26 2: 192: 20 0.0226 A/G variant located on chromosome 3 at 17072997.  Intron 

variant in PLCL2 (Bowes et al., 2012). 

rs2431697 18.5 0: 329: 31 1: 422: 27.5 2: 161: 19 0.206 C/T variant located on chromosome 5 at 159879978.  

Intergenic region, between PTTG1 and microRNA miR-146a 

associated with Lupus & psoriasis. 

drb1nos2 20.5 0: 474: 26 1: 368: 29 2: 70: 39.5 0.939 Increase in Larsen score with presence of 1 or 2 copies of the 

K-R-A-A shared epitope sequence.  

Smoking 

pack years 

22       Decrease in Larsen score for increase in smoking pack years. 

rs5029937 23 0: 830: 27 1: 79: 37 2: 3: 31 0.0019 G/T variant located on chromosome 6 at 138195151.  Intron 

variant in TNFAIP3 associated with RA risk (Orozco et al., 

2009). 

rs182429 23.5 0: 349: 30 1: 447: 26 2: 116: 21.5 0.223 C/T variant located on chromosome 6 at 159469574.   3390 

bases upstream of TAGAP (Eyre et al., 2010b). 

drb1nos1 29.5 0: 659: 29 1: 235: 26 2: 18: 10 0.0736 Decrease in Larsen score with presence of 1 or 2 copies of A-R-

A-A or E-R-A-A shared epitope sequence. 

rs7752903 29.5 0: 844: 27 1: 66: 37.5 2: 2: 31 0.0063 G/T variant located on chromosome 6 at 138227364.  

Intergenic with unknown function.  In a 109 kb DNA segment 

that spans the TNFAIP3 gene possibly related to SLE. 

rs932744 30 0: 363: 24 1: 421: 29 2: 128: 35 0.0989 C/G variant located on chromosome 6 at 150390663.  380 

bases upstream of ULBP3. 

Smoking 

duration 

32.5      Decrease in Larsen score with increase in smoking duration. 

rs1076933 34 0: 348: 28.5 1: 416: 28.5 2: 148: 21.5 0.185 A/G variant located on chromosome 22 at 45198494.  Intron 

variant in ARHGAP8 and PRR5-ARHGAP8. 

rs2009345 34.25 0: 357: 24 1: 428: 28.5 2: 127: 37 0.123 A/G variant located on chromosome 6 at 150389748.  Intron 

variant in ULBP3. 

rs10917214 35 0: 313: 30 1: 437: 27 2: 162: 25.5 0.0809 A/G variant located on chromosome 1 at 22652501.  

Intergenic with unknown function. 

rs5029939 35 0: 828: 27 1: 82: 35.5 2: 2: 31 0.0468 C/G variant located on chromosome 6 at 138195723.   Intron 

variant in the TNFAIP3  associated with RA risk (Orozco et al., 

2009). 

rs443198 36 0: 396: 24 1: 397: 29 2: 119: 37 2.72E-12 C/T variant located on chromosome 6 at 32190656.   

Synonymous variant in NOTCH4 associated with activity in RA 

synovium. 

rs228975 38.25 0: 382: 22.5 1: 404: 28 2: 126: 35 0.249 C/T variant located on chromosome 22 at 37542201.  Intron 

variant in IL2RB. 

rs2327832 38.5 0: 507: 25 1: 351: 32 2: 54: 24 0.588 A/G variant located on chromosome 6 at 137973068. 

Intergenic with unknown function. 
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Variable 
name 

Rank Genotype (0, 1 or 2): N subjects: Median Larsen 
score 

ZINB LR  
p value 

Description 

rs2230926 41.5 0: 827: 27 1: 83: 36 2: 2: 31 0.0444 G/T variant located on chromosome 6 at 138196066.  

Missense variant in TNFAIP3  associated with RA risk (Orozco 

et al., 2009). 

rs4265819 41.5 0: 753: 26 1: 151: 36 2: 8: 29.5 0.0093 A/G variant located on chromosome 16 at 62617217.  

Intergenic with unknown function. 

rs6000570 41.5 0: 207: 25 1: 458: 26 2: 247: 33 0.647 A/G variant located on chromosome 22 at 37514339.  8736 

bases upstream of TMPRSS6 and 7541 bases downstream of 

IL2RB. 

rs13061519 41.75 0: 854: 28 1: 56: 19.5 2: 2: 40 0.272 C/T variant located on chromosome 3 at 173235402.  Intron 

variant in NLGN1. 

rs6473517 42 0: 702: 29 1: 197: 21 2: 13: 18 0.082 G/T variant located on chromosome 8 at 84857572.  

Intergenic with unknown function 

rs6933404 42 0: 507: 25 1: 352: 32 2: 53: 24 0.723 C/T variant located on chromosome 6 at 137959235. 

Intergenic with unknown function 

rs8045689 42 0: 488: 26 1: 346: 30 2: 78: 31.5 0.0613 C/T variant located on chromosome 16 at 28988269.  Intron 

variant in SPNS1. 

rs12403075 43 0: 722: 29 1: 181: 25 2: 9: 21 0.278 C/T variant located on chromosome 1 at 198721192.  Intron 

variant  in PTPRC 

rs26510 43 0: 431: 31 1: 387: 23 2: 94: 28 0.343 C/T variant located on chromosome 5 at 96125910.  Intron 

variant in ERAP1 

rs7722135 43 0: 580: 25.5 1: 283: 32 2: 49: 36 0.284 C/T variant located on chromosome 5 at 86294669.  Intergenic 

with unknown function. 

rs5029938 43.25 0: 852: 28 1: 60: 18.5 2: NA: NA 0.594 C/T variant located on chromosome 6 at 138195633.  Intron 

variant in TNFAIP3 associated with RA risk (Orozco et al., 2009) 

rs2476601 43.5 0: 646: 26 1: 234: 32.5 2: 32: 44 0.117 A/G variant located on chromosome 1 at 114377568.  

Missense variant in PTPN22 associated with RA risk and 

possibly ACPA positivity. 

rs4777183 45.75 0: 282: 30.5 1: 434: 27.5 2: 196: 20 0.428 C/T variant located on chromosome 15 at 70004775.  

Intergenic with unknown function. 

rs10499197 48 0: 846: 27 1: 64: 36.5 2: 2: 31 0.072 C/T variant located on chromosome 6 at 138132516.  

Intergenic with unknown function. 

rs6932056 48 0: 837: 27 1: 73: 36 2: 2: 31 0.035 C/T variant located on chromosome 6 at 138242437.  

Intergenic with unknown function. 

rs10919563 48.75 0: 729: 29 1: 174: 25.5 2: 9: 21 0.173 A/G variant located on chromosome 1 at 198700442.  Intron 

variant in PTPRC 

rs6927172 52 0: 524: 26 1: 337: 32 2: 51: 24 0.555 C/G variant located on chromosome 6 at 138002175.  

Intergenic with unknown function. 

rs2027276 52.5 0: 852: 28 1: 60: 19.5 2: NA: NA 0.657 G/T variant located on chromosome 6 at 138174328.  Intron 

variant in LOC100130476. 

rs2256965 53.5 0: 447: 24 1: 368: 30 2: 97: 33 5.26E-09 C/T variant located on chromosome 6 at 31555130.  Intron 

variant of LST1: Leukocyte-specific transcript 1 protein 

rs864745 54 0: 291: 30 1: 421: 27 2: 200: 26.5 0.233 A/G variant located on  chromosome 7 at 28180556.  Intron 

variant in JAZF1 which has previously been associated with 

Type II diabetes. 

rs2002842 54.25 0: 328: 25 1: 416: 27 2: 168: 32 0.084 A/C variant located on chromosome 18 at 76409597.  

Intergenic with unknown function.  

rs11586238 55 0: 539: 30 1: 318: 21 2: 55: 26 0.188 C/G variant located on chromosome 1 at 117263138.  

Intergenic with unknown function however possibly 

associated with RA risk (Raychaudhuri et al., 2009) 

rs12137270 62.25 0: 539: 30 1: 318: 21.5 2: 55: 26 0.205 C/T variant located on chromosome 1 at 117264336.  

Intergenic with unknown function. 

rs7234029 63 0: 640: 29 1: 239: 24 2: 33: 18 0.033 A/G variant located on chromosome 18 at 12877060.  Intron 

variant in PTPN2. 

rs3788013 63.5 0: 315: 32 1: 432: 26 2: 165: 26 0.157 A/C variant located on chromosome 21 at 43841328.   Intron 

variant in UBASH3A 

rs17810546 64.5 0: 723: 29 1: 170: 25 2: 19: 18 0.116 A/G variant located on chromosome 3 at  159665050.  Intron 

variant in AK097161 possibly associated with celiac/juvenile 

idiopathic arthritis 

Note: For tabulation purposes, results imputed to be a number containing a decimal between 0 and 2 using NIPALS imputation were rounded to the nearest 
genotype and counted in that category.  However, the data were analysed as the imputed decimal value in the model and calculation of the p-value. 
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4.4.3. Assessing predictive ability of the model (NIPALS) 

The final model explained 34.9% of the Y variability with just 6.24% of the X variability.  A 

correlation of 0.592 was achieved between the predicted and actual Larsen score after refitting the 

model on the same patients used to form the model (Figure 4.7). 

 

Figure 4.7 Scatter plot of actual vs. predicted Larsen score (NIPALS) 

The mean absolute difference between the actual Larsen score and the predicted one was 21.93 

(Median=18.38, STD=17.62, Minimum=0 and Maximum=94.88).   

 

4.4.4. Variance partitioning (NIPALS) 

Using the multi-block variance partitioning method (Skov et al., 2008) described in section 4.3.4.2, 

the NIPALS model explained slightly less Larsen score variation than the ‘quick’ imputation model 

(34.9% versus 35.75%).  Table 4.7 revealed that almost the same percentage of unique Larsen score 

variation was attributable to DD&SD (18.3% versus 18.1%) and there was a similar overlap between 

the DD&SD and environmental blocks.  Fitting the genetic block alone explained only 13.9% of the 

Larsen score variation (compared to 16.2% in the ‘quick’ imputation model), but again nearly all of it 

(13.2%) was unique and not common to the other variables. 

Table 4.7 Multi-block variance partitioning (NIPALS) 

First block 
fitted 

A: Larsen score variation 
explained by each block 
when fitted alone (%) 

B: Larsen score variation unique to 
that block i.e. the variation is not 
common to the other blocks (%). 
(Percentage unique: B/A*100). 

DD&SD 28.1 18.3 (65.2%) 

Environment 16.3 10.5 (64.5%) 

Genetics 13.9 13.2 (94.7%) 
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4.5. Summary 

A SPLS multivariate modelling strategy was investigated on the ‘all subjects’ dataset (N=912).  368 

SNPs and 19 environmental variables were reduced down to the most predictive of the Larsen 

score.  Two separate imputation methods were investigated.  ‘Quick’ imputation assigned 0’s for all 

missing SNPs, the mean for all missing continuous variables and the mode for all missing 

environmental categorical variables.  NIPALS imputation assigned values iteratively using lines of 

best fit through multiple bivariate regression models.  Using the SPLS model creation process 

‘percentage fold’ method described in section 4.2.6, only one component was required in all models 

investigated.  The number of variables to extract in each run and fold of the model was determined 

according to the number which explained the largest proportion of the Larsen score variation under 

CV.  The number of variables which were extracted in 8 out of the 10 CV folds in all 50 runs were 

retained for the final model. 

Exploration into how SPLS copes with missing data discovered a bias towards selection of SNPS with 

lots of missing data when imputation using the NIPALS algorithm was used.  This had been 

identified by other authors and was reported to be possibly due to NIPALS artificially reducing the 

variation in the data (Pedreschi et al., 2008).  Hence, this would be a problem when using any 

modelling methods.  To avoid excessive variance reduction, it was recommended to exclude 

variables with greater than 20% data missing from the modelling  (Trygg and Wold, 2002).  When 

SNPs with>20% missing data were excluded the average missing data was comparable across the 

SNPs selected and not selected.  Therefore for all subsequent models, SNPs with >20% missing data 

will be removed prior to modelling. 

Modelling the Larsen score divided by the disease duration and log (Larsen score divided by disease 

duration), with or without excluding the zero Larsen scores was explored.  The predictive ability was 

not as good as modelling the Larsen score untransformed.  It is hypothesised that the reduction in 

predictive ability was because the effect of disease duration is likely not to be linear over time.  

Subjects in their first three years after diagnosis can progress much quicker than would be expected 

for a three year period from 10 to 13 years or 40 to 43 years disease duration.  This may introduce a 

non-linear relation and hence additional variability into the modelling process which was not 

predictive of Larsen score severity.  Therefore, it was decided to model Larsen score without any 

transformation. 

Similar models were obtained using the ‘quick’ & NIPALS imputation methods.  For the ‘quick’ 

imputation method, 95 variables were extracted in each fold and run which resulted in 58 variables 

selected in at least 8 out of 10 folds in all 50 runs.  These 58 variables were retained for the final 

model.   For NIPALS imputation, 110 variables were extracted which resulted in 59 selected for the 

final model.  54 of these variables were the same in both models. It is also reassuring to note that 

the choice of number of variables to extract did not appear to have an impact on the two models.  

The ‘quick’ imputation model had four variables (rs13242262, rs1800629, rs5980742 and 

rs9565072) not observed in the NIPALS model however they are ranked 35th or lower in the 

selection of variables.  The NIPALS model had five variables (rs12137270, rs17810546, rs2002842, 

rs3788013 and rs7234029) not selected in the ‘quick’ imputation model.  Reassuringly, these are 

five of the six last SNPs selected.  Hence the models were very similar. 
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The correlation between the actual Larsen score and the predicted Larsen score was; r=0.599 

(‘quick’) and r=0.592 (NIPALS).   The SPLS model was able to explain; 35.74% (‘quick’) and 34.9% 

(NIPALS) of the Y variation.  Using multi-block variance partitioning; 15.2% (‘quick’) and 13.2% 

(NIPALS) of the unique Larsen score variation was explained by genetics. 

It is well documented that using the mean to impute values can add false precision and reduce the 

estimated true variation of the sample (Schafer and Graham, 2002).  It is hypothesised that using a 

zero for all missing SNPs per the ‘quick’ imputation method may have the same effect.  Using multi-

block variance partitioning, the ‘quick’ imputation method attributed 15.2% of the variation to 

genetics compared to the smaller 13.2% for the NIPALS imputation modelling.  If the ‘quick’ 

imputation method underestimates the total variation because all missing data is assigned a zero, 

then the percentage that the genetics explains could be an over estimation.  Prior to modelling the 

‘GWAS SNPs’ dataset, the method of imputation will be explored further to incorporate imputing 

SNPs in LD (Chapter 5). 
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5. Investigation into imputation methods – ‘GWAS SNPs’ dataset 

5.1. Aims  

The aim of this chapter is to: 

 Evaluate SPLS model fitting using various imputation methods applied to a small section of 

the ‘GWAS SNPs’ dataset.   

 Investigate the reproducibility of SPLS model fitting and variable selection.   

 Further explore the SPLS methodology in terms of the number of variables to extract and 

number of runs and folds a variable has to be selected in to be kept in the final model. 

5.2. Methods of model fitting, region selection and imputation 

Prior to modelling the ‘GWAS SNPs’ dataset, the method of imputation of any missing SNP data will 

be investigated to ensure SNP selection is due to their predictive ability of the Larsen score and the 

model is not sensitive to the imputation method used.   All SNPs require imputation as they are 

being fitted in a single multivariate model (section 3.8).  This research does not investigate the 

imputation of non-genotyped SNPs as primary focus is to explore whether SPLS could select SNPs 

correlated with severity rather than investigate causal SNPs in a region. 

Four imputation methods are explored.   Two methods (‘quick’ imputation and NIPALS) are 

previously described in section 4.2.2.  Two additional methods (IMPUTE2 and PLINK) are described 

in sections 5.2.3 and 5.2.4 respectively.  

5.2.1. ‘Percentage fold’ method for subset of ‘GWAS SNPs’ dataset 

The general method of model fitting is the same as described in section 4.2.6 with the exception of 

the number of folds used and the number of folds a variable has to be selected in to be retained for 

the final model.  Only 380 subjects were included in this chapter due to patient identification 

discrepancies for 14 subjects which were resolved by chapter 6.  Five-fold CV (instead of 10-fold) 

will be used, resulting in the training models consisting of 4/5ths of the data (304 subjects) and each 

model being tested on the remaining 76 subjects.    

The SPLS analysis requires each dataset  to have any SNPs with >20% missing data removed (section 

4.2.3).  In addition, in the CV process of the SPLS models, the model fails if there is no variation in 

the training sample for any single SNP.  The process could therefore fail on one run of the CV 

models, if it so happened that 4 of the 5 folds (304 subjects) were all 0 (most frequent homozygous 

genotype) or very close to 0 (in the case of NIPALS imputation using bivariate regressions which are 

not constrained to whole numbers). It is therefore necessary to amend the mixOmics macros to 

exclude individual SNPs from certain folds, if they have no variation in the training set to prevent 

the process failing.  After exploring various alternatives the following strategy will be used: 
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1. On the training set (4/5 folds=304 subjects), count the number of subjects with results between 

0 and 0.5.  0 is a subject with most frequent homozygous genotype, however, if using NIPALS 

imputation derived using bivariate regressions it is not constrained to be 0, 1 or 2.  Hence the 

programming allows for imputations close to 0 but not exactly 0.  Less than 0.5 is used as this is 

where NIPALS is suggesting the SNP is more likely to be 0 than to be 1. 

2. Remove any SNP from that training set if >92% of the 304 subjects (280 subjects) all have results 

between 0 and 0.5.  Model creation when less than 24 subjects have a genotype of 1 or 2 is likely 

to be unstable when applied to other populations.  Whilst this may remove some rare SNPs from 

the model fitting, it is done on a fold by fold basis and so they will still be included in other folds 

if they have more subjects with minor alleles.   

Other criteria for exclusion were examined, however the above condition rarely fails whilst still 

allowing SNPs with very few rare genotypes to be included.  The above restriction on the SNPs 

available for modelling, results in slightly different SNPs being available for selection in each 

imputation dataset. 

These changes which were made to the mixOmics macro can be found in Appendix D. 

 

5.2.2. Region selection 

The HLA-DRB1 region on chromosome 6 has previously been identified as an area of key interest for 

Rheumatoid Arthritis severity and susceptibility (Tezenas du Montcel et al., 2005, Michou et al., 

2006).  For this reason and that it is in high LD, it was selected as an appropriate area to use from 

the entire genome to test the methods of imputation.  The GWAS study was built in Hg18 - build 36 

and therefore all positions are referencing that structure.  Using the region on chromosome 6 from 

30-35 million base pairs, all SNPs between rs9259806 and rs1053049 (nearest SNP above 35000000) 

were selected.  The 3504 SNPs in this region were exported into Haploview version 4.2 (Barrett et 

al., 2005) to view the LD structure of the GoRA ‘GWAS SNPs’ dataset collected in this region (Figure 

5.1).   

Reviewing sections of the Figure 5.1 in zoomed in detail, two areas close together were selected as 

regions of lower and higher LD.  The higher LD section consisted of 374 SNPs from rs9267956 

(32321616 bp) to rs7745656 (32788948 bp).  The lower LD region consisted of 471 SNPs from 

rs12206131 (31521989 bp) to rs11966200 (31945045 bp).  The higher LD region also included the 

HLA-DRB1 region 32655000 to 32665000 bp.  The two-by-two correlations between SNPs based on 

genotype allele counts were exported from PLINK (Purcell et al., 2007) as an approximate estimate 

of the strength of LD.  The absolute correlation in the high LD dataset was much larger (mean=0.44, 

median=0.29) than that observed in the lower LD region (mean=0.06, median=0.03).  Correlations 

were used instead of traditional r2 and D’ statistics to measure LD because they were faster to 

calculate.  
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Figure 5.1 LD pattern for the GoRA ‘GWAS SNPs’ dataset from 20-25 M BP. 

 

 
Figure 5.2 Flow diagram of exclusion of SNPs by reason 

Using the methods described in 5.2.1, SNPs with zero variation 
(monomorphic), SNPs with >20% missing genotypes and SNPs with 
insufficient minor allele frequency (MAF) based on that fold and run of the 
data were excluded from the analysis. Figure 5.2 shows a high level 
summary of the regions analysed prior to imputation.  As different 
imputation methods are applied prior to analysis, the number of SNPs 
with sufficient data to be analysed varies by imputation method.   Table 
5.1 shows the exact number of SNPs used by imputation method. 
 
The SNP data were merged with the 19 environmental variables described 
in 4.2.2.   SNPs in these two regions are imputed and analysed using SPLS 
to enable comparison of the sensitivity of the PLS models to various 
imputation methods. 
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5.2.3. IMPUTE2 version 2.2.2  

IMPUTE2 http://mathgen.stats.ox.ac.uk/impute/impute_v2.html  (Howie et al., 2009) uses 

observed haplotypes and compares them against a reference set of haplotypes.  For this analysis, 

the reference data was taken from the 1000 genomes project (sequence data from March 2010 and 

phased haplotypes from June 2010) and the HapMap 3 project (release number 2, February 2009) 

using NCBI genome build 36 (hg18) co-ordinates.   The low LD region (3.15e7 to 3.20e7) and the 

high LD region (3.23e7 to 3.28e7) were imputed using the options as recommended on the 

IMPUTE2 website as follows: 

 Ne: Effective size of the population: 20000 was recommended for use 

 Call_thresh 0.5: Reduced the default threshold from 0.9 to 0.5.  This means that SNPs with 
missing data were only assigned a predicted value for the three possible genotypes (0, 1 or 
2) when one of the predictions was more than 50% likely.   

 Pgs_miss:  Only replace the missing genotypes at typed SNPs.  Hence any present genotypes 
were reprinted in the output file.  

 -os 2: Only output SNPs which were measured in the GoRA ‘GWAS SNPs’ dataset (not SNPs 

from the reference dataset in the same area).  

The region of interest was exported from PLINK as a .PED and .MAP file, converted into .GEN file 

using the software Gtool (http://www.well.ox.ac.uk/~cfreeman/ software/gwas/gtool.html) and 

read into IMPUTE2.   IMPUTE2 was used to provide a dataset retaining the input (GoRA GWAS) SNPs 

only.  Any non-missing data was carried through with the correct genotype receiving a probability of 

1 and the other genotypes a probability of 0.  For any missing SNP data, IMPUTE2 assigned a 

probability of each genotype being the true genotype.   SPLS modelling cannot be performed using 

a dataset where each subject has multiple possible responses for each SNP and each of these 

responses has a probability of being the true response.  Instead, SPLS requires a single value for 

each SNP, a best estimate of what the missing result would be. 

It was therefore decided to convert the data back through Gtool (.GEN to .PED and .MAP) assigning 

each genotype as the one IMPUTE2 predicted with a probability greater than 0.5.  Any SNPs with no 

genotype predicted more than 50% likely to be the correct result were left as missing. 

A second option could have been to calculate a score between 0 and 2 which consisted of the 

weighted genotype probabilities.  However, for some SNPs IMPUTE2 assigned each genotype equal 

probability.  For example, the SNP had a 33% chance of being a 0, 33% chance of being a 1 and a 

33% chance of being a 2 (i.e. each genotype is equally likely).  Using weighted probabilities would 

assign a 1 (0.33*0 + 0.33*1+0.33*2 = 1).  This appears to be quite misleading as all the genotypes 

are all equally likely to be correct, however heterozygous is assigned.   Instead only using IMPUTE2 

to assign genotypes with a probability greater than 0.5 will utilise the external reference panel 

approach, but will leave any SNPs missing if they do not have enough information to produce a 

good prediction using this method. 

Once a predicted genotype is selected in Gtool, files are then converted through PLINK (from .PED 

and .MAP to .BID, .BAM and .FAM and then to .RAW) to be read into SAS® for merging on of the 

environmental data and comparison with the non-imputed dataset.   

http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://www.well.ox.ac.uk/~cfreeman/%20software/gwas/gtool.html
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This comparison revealed that 300 SNPs remained for the high LD region.  This was comparable to 

the 315 SNPs retained in the non-imputed high LD dataset after the SNPs with insufficient variation 

had been removed.  164 (52.6%) had at least some imputation performed using this method.  Four 

SNPs (rs35603463, rs9271622, rs9268181 and rs9274791) had more than 100 patient’s genotypes 

imputed (198, 182, 138 and 137 respectively).  Excluding these four, the remaining 160 SNPs had a 

mean = 9.35, median =3, STD =14.8, min=1 and max=91 genotypes imputed.   

Comparison of the low LD region pre and post imputation revealed that 241 SNPs remained after 

imputation in IMPUTE.  This was comparable to the 248 SNPs retained in the non-imputed low LD 

dataset after those with insufficient variation were removed.  As is to be expected in a region with 

lower LD, fewer SNPs, 85 (32.1%), were able to have some imputation performed.  Two SNPs 

(rs769178 and rs2523675) had 139 and 118 patient’s genotypes imputed respectively.  After the 

exclusion of these two, the remaining SNPs had a mean =7.8, median=3, STD=13.4, min=1 and 

maximum = 89 genotypes imputed. 

Using this method in IMPUTE2, it was unable to impute all missing values in the data.  To enable 

SPLS modelling, post using IMPUTE2 the remaining missing genotypes were imputed using a NIPALS 

algorithm per the standard approach of PLS.  Although this may make the dataset similar to the 

NIPALS imputation, it is hoped that the prior imputation using the reference panel would mean the 

datasets are different enough to compare if the IMPUTE2 step is beneficial to the PLS modelling. 

5.2.4. PLINK version 1.07  

PLINK (http://pngu.mgh.harvard.edu/purcell/plink/) (Purcell et al., 2007) is a non-computationally 

intense method which imputes SNPs using the concept of multi-marker tagging and is designed only 

for use in an exploratory manner.  However, because it is very quick to impute, it was intended to 

provide a fourth method for exploration of how sensitive the chosen SNPs are to the imputation 

method used.  The reference dataset used was the Phase 2 HapMap: CEU founders (release 22), 

containing data from 60 individuals and 2.3 million SNPs in build 36 (Hg18). Any SNPs not on the 

correct strand were flipped and there were no SNPs which were in the selected region location 

under a different base pair position.  For the high LD region, 75 (24.0%) SNPs had at least some 

imputation performed using this method.  Three SNPs (rs9268181, rs28594633 and rs28877027) 

had more than 100 patient’s genotypes imputed (138, 201 and 317 respectively).  Excluding these 

three, the remaining 72 SNPs had a mean = 9.5, median =3, STD =14.9, min=1 and max=66 

genotypes imputed.  It was a similar picture for the low LD region with 68 (25.7%) SNPs having at 

least some imputation performed.  Two SNPs (rs769178 and rs9267481) had 105 and 131 patient’s 

genotypes imputed respectively.  After the exclusion of these two, the remaining 66 SNPs had a 

mean =7.0, median=3, STD=10.6, min=1 and maximum = 53 genotypes imputed.    

This quicker method of imputation does not impute as much data as the IMPUTE2 software and is 

documented for exploratory use only.  Given there were only 60 individuals in the available 

reference panel for PLINK, compared to greater than 1000 in the IMPUTE2 software, IMPUTE2 

appears the better method.   It was therefore decided to only test the ‘quick’, NIPALS and IMPUTE2 

imputation.  

http://pngu.mgh.harvard.edu/purcell/plink/
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5.3. ‘Percentage fold’ method results on subset of ‘GWAS SNPs’ dataset 

In the following work six datasets were available for exploration: 

 High LD quick:  Region of high LD imputed using the ‘quick’ imputation 

 Low LD quick: Region of low LD imputed using the ‘quick’ imputation 

 High LD NIPALS:  Region of high LD imputed using the NIPALS imputation 

 Low LD NIPALS: Region of low LD imputed using the NIPALS imputation 

 High LD IMPUTE:  Region of high LD imputed using IMPUTE2 software followed by NIPALS 

 Low LD IMPUTE: Region of low LD imputed using IMPUTE2 software followed by NIPALS 

5.3.1. Reproducibility of PLS 

As the ‘GWAS SNPs’ dataset used in this chapter was more highly correlated than the ‘all subjects’ 

dataset used in chapter 4, it was of interest to explore whether the SPLS model is truly reproducible 

even in the presence of correlated variables.  Using the high LD ‘quick’ imputation model as an 

example, the 380 subjects and 334 X variables were run through a SPLS model selecting 45 variables 

for each fold and only retaining a variable if it was selected in 2/5 folds in all 50 models.  The 

variable selection criteria (45 variables and 2/5 folds) was lower than previously used in chapter 4 

but chosen arbitrarily before further investigation shown in section 5.3.2.  The same model fitting 

criteria was repeated three times with a full 50 runs done each time.  It was hoped that running the 

exact same model over again, would result in the same variables being selected because in each 

case, the ordering of the variables was averaged over 50 runs of 5-fold CV.  However, the different 

random allocation of subjects to folds could lead to some variation in the variables chosen.   

The three repetitions selected 33, 33 and 32 variables for the final model.  31 variables were 

consistent in all three models.  Two variables were selected in two models, and one variable was 

only selected in one model (but it was the last variable selected).  Investigation revealed the reason 

for the inconsistency was that the variables were not being selected in 50/50 runs.  The random 

selection of patients into folds, in that particular run, caused the variable to not be extracted in at 

least 2/5 folds, however, it had been selected in 2/5 folds in the 49 other runs.  This could indicate 

that using n/N folds and insisting on the selection in all runs, may not be the best way of choosing 

variables for the final model and an alternative approach is examined in section 6.4.1.  With this 

number of variables, the models were quite similar hence the methodology was not amended at 

this stage, however, this was reassessed when modelling the entire ‘GWAS SNPs’ dataset. 

5.3.2. Investigating the variable selection criteria 

The number of components and the number of variables to extract in each fold of the data were 

determined using methods described in 4.2.6 for each of the imputed datasets.  Plots of the R2-CV 

for all models selecting between one and 150 variables revealed R2-CV peaks in the regions 

described in Table 5.1.  Often there was no clear peak (with little gain or loss in R2-CV between four 

and 25 variables) hence a range was provided to enable selection of one value to take forward for 

all models.  All models suggested the use of one component.  The variation in the number of SNPs 

available for modelling shown in Table 5.1 was due to the different methods of imputation (see 

5.2.1).   
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Table 5.1 Summary of imputation method parameters 

 High LD Low LD 
‘Quick’  NIPALS IMPUTE ‘Quick’ NIPALS IMPUTE 

N subjects 380 380 380 380 380 380 
Number environmental variables 19 19 19 19 19 19 
Number of SNPs 315 317 300 248 249 241 
Number of components 1 1 1 1 1 1 
Number of variables to select (peak in R

2
) 4-25 4-35 4-25 4-30 4-30 4-25 

Previously when using 10 folds, a variable had to be extracted in 8/10 folds in each run to be 

retained in the final model.   Now only five folds were being used, it was felt 4/5 folds would be too 

strict on rarer SNPs, which may not be able to be included in all folds due to sparse variation in the 

data and the smaller sample size being used.   The high LD ‘quick’ dataset was used to explore 

changes in model selection when extracting different numbers of variables and only keeping them 

in the final model if they appear in 40% (2/5) and 60% (3/5) of the folds.   

Table 5.2 reveals that it is a trade-off between the percentage of folds a variable is required to be 

in, versus the number of variables extracted each time from the fold.  For example, extracting 30 

variables using the 2/5 fold criteria (Model 1), results in an almost identical model to extracting 40 

variables and using the 3/5 fold criteria (Model 4).  Extracting 40 variables and 2/5 fold criteria 

(Model 3) is similar to extracting 45 variables using 3/5 fold criteria (Model 6).  If 50 variables and 

3/5 folds had been used, this would be somewhere between Model 6 and Model 7 and would be 

similar to Model 3. 

Of particular interest, was the lack of increase in R2-CV when fitting more variables, perhaps 

identifying that none of the SNPs explored have a particularly large impact on the Larsen score 

prediction.   To investigate further, two sets of models (firstly extracting 45 variables and secondly 

extracting 20 variables), were produced using the 2/5 fold criteria using all three imputation 

methods for the low and high LD regions.  The 20 variable models performed better in terms of 

prediction, compared to the 45 variable models, for all imputation methods and for SNPs in low and 

high LD (data not shown).  This indicated that whilst too few variables may miss important 

predictors, too many variables can lead to over fitted models which perform poorly in CV.  

In order to explore if different imputation methods performed better or worse than each other, it 

was decided to extract 25 variables and only keep them in the final model if they appear in 2/5 folds 

in all 50 runs.   This intended to keep the important predictive variables, whilst not making the 

model over fitted and provide a comparison of all of the different imputation methods.  The 

variable selection methods were revisited in section 6.4.1.  Models comparing the different 

methods of imputation, based on these criteria, are shown in section 5.3.3. 

 



 

76 
 

Table 5.2 Investigation using high LD ‘quick’ imputation data into variable selection conditions 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

N extracted 30 30 40 40 45 45 60 

N folds required 2/5 3/5 2/5 3/5 2/5 3/5 2/5 

The order that the variables 
were chosen in has been 
amended so they can be 
compared.  The top 17 
variables were the same in 
all models.  In addition, with 
the exception of the most 
restrictive model (2), the top 
21 variables are the same 
across all models. 
 
DD=disease duration,  
SymDur=symptom duration 
Age onset=age at disease 
onset 
Smkdur= Smoking duration 
Packyear= Smoking pack 
years 
Alcohol Q= alcohol quantity 
Smoke= Smoking status 

DD DD DD DD DD DD DD 

SymDur  SymDur SymDur SymDur SymDur SymDur SymDur 

Age Diag Age Diag Age Diag Age Diag Age Diag Age Diag Age Diag 

Age onset Age onset Age onset Age onset Age onset Age onset Age onset 

smkdur smkdur smkdur smkdur smkdur smkdur smkdur 

packyear packyear packyear packyear packyear packyear packyear 

rs3117133 rs3117133 rs3117133 rs3117133 rs3117133 rs3117133 rs3117133 

rs2894249 rs2894249 rs2894249 rs2894249 rs2894249 rs2894249 rs2894249 

rs3129941 rs3129941 rs3129941 rs3129941 rs3129941 rs3129941 rs3129941 

rs6904320 rs6904320 rs6904320 rs6904320 rs6904320  rs6904320 rs6904320 

rs3129907 rs3129907 rs3129907 rs3129907 rs3129907 rs3129907 rs3129907 

rs3129871 rs3129871 rs3129871 rs3129871 rs3129871  rs3129871  rs3129871 

rs2395173 rs2395173 rs2395173 rs2395173 rs2395173 rs2395173 rs2395173 

rs3135338 rs3135338 rs3135338 rs3135338 rs3135338 rs3135338 rs3135338 

Alcohol Q Alcohol Q Alcohol Q Alcohol Q Alcohol Q Alcohol Q Alcohol Q 

rs9271348 rs9271348 rs9271348 rs9271348 rs9271348 rs9271348 rs9271348 

Alcohol use Alcohol use Alcohol use Alcohol use Alcohol use Alcohol use Alcohol use 

rs2395182  rs2395182 rs2395182 rs2395182 rs2395182 rs2395182 

rs9501626  rs9501626 rs9501626 rs9501626 rs9501626 rs9501626 

rs2856705  rs2856705 rs2856705 rs2856705 rs2856705 rs2856705 

rs9275245  rs9275245 rs9275245 rs9275245  rs9275245 rs9275245 

  rs7775228  rs7775228  rs7775228 

smoke  smoke  smoke smoke smoke  

  rs3117116   rs3117116  rs3117116 rs3117116  

  rs9268104  rs9268104  rs9268104 

  rs2395175  rs2395175  rs2395175 

  rs28891406   rs28891406   rs28891406  

  rs9268118  rs9268118  rs9268118  

  rs6457617   rs6457617   rs6457617  

  rs6910071   rs6910071   rs6910071  

    rs9267992   rs9267992  

    rs3104369   rs3104369  

    rs13204672  rs13204672 

      rs6903608  

      rs9268880  

      rs3763309  

      rs3793127  

      rs9268585  

      rs17212420  

      rs9368726  

      rs2395163  

      rs5000634  

      rs3129922  

      rs9273448  
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5.3.3. Comparison of imputation methods 

The six imputation datasets were processed using SPLS models using 5-fold CV and extracting the 

top 25 variables.  Models were run 50 times and any variables appearing in 2/5 folds in all 50 runs 

were selected for the final model.  These final selected models were then re-run on the entire 

dataset to obtain summaries of the prediction accuracy.   

The imputation models performed similarly for both the high and low LD regions.  The NIPALS and 

‘quick’ imputation model performed slightly better than the IMPUTE2 model in the high LD dataset 

and the IMPUTE2 model performed slightly better than the ‘quick’ imputation and NIPALS in the 

low LD dataset (Table 5.3).   

In conclusion, the method of variation selection appeared more important than the imputation 

method used.  This could be because any SNPs with >20% missing are removed from the analysis. 

Table 5.3 Comparison of predictive accuracy of the different imputation method models  

 High LD Low LD 

‘Quick’ NIPALS IMPUTE2 ‘Quick’ NIPALS IMPUTE2 

Number of X variables 19 18 20 23 23 19 

Correlation (Act versus Pred) 0.558 0.563 0.554 0.570 0.570 0.588 

Mean abs (Act-Pred) 24.83 24.78 24.91 24.51 24.51 24.24 

Median abs (Act-Pred) 22.14 22.32 22.21 21.35 21.36 21.00 

Min abs (Act-Pred) 0.004 0.005 0.027 0 0 0 

Max abs (Act-Pred) 98.14 97.61 102.39 85.79 85.82 84.55 

Note: Number of X variables is the number selected for the final model.  Act =Actual Larsen score, 

Pred=Predicted Larsen score, abs=absolute value. 

When examining the variables selected in each of the imputation methods for the high LD region, 

(Table 5.4) the variables were almost identical across the three models.  Just rs2395182, Smoking 

and rs9501626 are not consistently selected across the three models.   In models where these were 

included they were the last three variables selected and were not chosen in all of the folds 

(demonstrated by their median order being >25).   
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Table 5.4 Comparison of variables selected for imputation methods using the High LD region 

 ‘Quick’:   
β (ordera) 

NIPALS: 
 β (ordera) 

IMPUTE:  
β (ordera) 

Intercept  67.46 (0) 66.87 (0) 67.34 (0) 

Disease duration 0.399 (1) 0.409 (1) 0.393 (1) 

Symptom duration 0.352 (2) 0.361 (2) 0.347 (2) 

Age at time of diagnosis -0.26 (3) -0.266 (3) -0.256 (3) 

Age at onset of symptoms -0.255 (4) -0.261 (4) -0.251 (4) 

Smoke duration -0.08 (5) -0.082 (5) -0.078 (5) 

Smoking pack years -0.072 (6) -0.074 (6) -0.071 (6) 

rs3117133 -2.741 (6.5) -2.735 (7) -2.075 (19) 

Alcohol quantity -1.181 (14) -1.211 (13) -1.163 (14) 

rs2894249 -2.446 (14) -2.508 (15) -2.408 (13) 

rs3129941 -2.446 (14) -2.508 (15) -2.408 (13) 

rs6904320 -2.446 (14) -2.508 (15) -2.408 (13) 

rs3129907 -2.408 (15) -2.573 (14) -2.463 (7) 

rs2395173 -1.89 (16.5) -1.938 (16.5) -1.86 (15.5) 

rs3135338 -1.89 (16.5) -1.938 (16.5) -1.86 (15.5) 

rs3129871 -1.857 (17) -1.931 (15) -1.828 (15) 

rs9271348 -2.198 (17) -2.253 (17) -2.163 (18) 

Alcohol use  -2.395 (20) -2.455 (25) -2.357 (19) 

rs2395182 -1.914 (171)  -1.884 (22) 

Smoking status -1.257 (171)  -1.238 (165.5) 

rs9501626  -2.761 (171) -2.65 (166) 
Note: a order consists of ranking the variables according to the amount of Larsen score variation explained, if 
outside the top 25 for that fold in that run, then they are given an order equal to the total number of 
variables (equal last as not selected in the model).  The median rank (order) is then calculated over the folds 
within a run and then over the runs.  Hence, a median order >25 implies for some folds these variables were 
not selected. 
Although parameter estimates (beta coefficients) are presented here for comparison across models they 
require careful interpretation as the size of them will depend on how correlated that variable is with other 
variables in the model. 

 

Similarly for the low LD region, the variables selected in the ‘quick’ imputation and NIPALS model 

were identical (Table 5.5).  The IMPUTE2 model consisted of the same variables in the other two 

with the exception of rs1266076, rs805301, rs813115 and rs805302 which were four of the last five 

variables selected.    
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Table 5.5 Comparison of variables selected for imputation methods using the low LD region 

 ‘Quick’:   
β (ordera) 

NIPALS:  
β (ordera) 

IMPUTE:  
β (ordera) 

Intercept  58.58 (0) 58.51 (0) 64.6 (0) 

Disease duration 0.373 (1) 0.373 (1) 0.412 (1) 

Symptom duration 0.329 (2) 0.329 (2) 0.364 (2) 

Age at time of diagnosis -0.243 (3) -0.242 (3) -0.269 (3) 

Age at onset of symptoms -0.238 (4) -0.238 (4) -0.263 (4) 

Smoking duration -0.074 (5) -0.074 (5) -0.082 (5) 

rs3130617 -2.317 (5.5) -2.315 (5.5) -2.564 (5) 

rs2857597 -2.304 (6) -2.303 (7) -2.55 (6) 

rs28366162 -4.883 (7) -4.88 (7) -5.403 (6.5) 

rs28366155 -4.47 (11.5) -4.467 (17) -4.946 (12) 

rs743400 -4.47 (11.5) -4.467 (17) -4.946 (12) 

Smoking pack years -0.067 (13) -0.067 (11) -0.074 (15) 

rs2395028 -3.731 (15) -3.729 (15.5) -4.129 (15) 

rs2516454 -3.731 (15) -3.729 (15.5) -4.129 (15) 

rs2516463 -3.731 (15) -3.742 (15) -4.129 (15) 

rs2596458 -3.731 (15) -3.729 (15.5) -4.129 (15) 

rs2596480 -3.731 (15) -3.729 (15.5) -4.129 (15) 

Alcohol quantity -1.104 (18) -1.103 (18) -1.222 (18) 

rs2242660 1.421 (20) 1.454 (20) 1.632 (19) 

rs1266076 1.45 (20.5) 1.449 (20.5)  

rs805301 1.45 (20.5) 1.449 (20.5)  

rs813115 1.45 (20.5) 1.449 (20.5)  

rs805302 1.431 (22.5) 1.447 (23)  

Alcohol use -2.238 (23) -2.236 (20) -2.476 (22) 
Note: a order consists of ranking the variables according to the amount of Larsen score variation explained, if 
outside the top 25 for that fold and that run then they are given an order equal to the total number of 
variables (equal last as not selected in the model).  The median order is then calculated over the folds within 
a run and then over the runs.  Hence, a median order >25 implies for some folds these variables were not 
selected. 
Although parameter estimates (beta coefficients) are presented here for comparison across models they 
require careful interpretation as the size of them will depend on how correlated that variable is with other 
variables in the model. 
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5.4. Summary 

Three imputation methods were explored using a subset of the ‘GWAS SNPs’ data (N=394) focusing 

on a small section of SNPs in relatively high (315 SNPs) or low (248 SNPs) LD.  ‘Quick’ imputation 

and NIPALS imputation were investigated (as described in chapter 4) along with the software 

IMPUTE2 which uses observed haplotypes to predict missing data by comparing them against a 

reference set.  All imputation methods performed similarly with no sizable disparity between the 

predictive ability or the variables selected.    

To extend the ‘percentage fold’ method to be able to model fewer subjects, various model creation 

strategies were explored.  These included various numbers of variables to extract (in each fold) and 

whether variables which were extracted in 2/5 folds or 3/5 folds in all runs would be kept for the 

final model.  The number of variables extracted each time in the model was found to be critical, too 

many and the prediction ability decreases, too few and you may be missing important potential 

predictors of severity.  The more variables selected to be extracted from the model each time, the 

more ended up in the final model as there was more chance for them to be selected in 2/5 folds or 

3/5 folds in all runs.  Therefore, it was a balance between the criteria used to retain variables for the 

final model and the number of variables chosen to extract each time. 

It was decided to select NIPALS imputation as the imputation method for future research.  This was 

chosen to avoid the potential under-estimation of the variation using the ‘quick’ imputation method 

(section 4.5) and would substantially reduce the time needed to impute the ‘GWAS SNPs’ data using 

the IMPUTE2 software.   IMPUTE2 would also be problematic to take forward as the chip used for 

the GWAS selected SNPs to represent the entire genome and were not necessarily in high LD.  

Therefore, even after IMPUTE2 has tried to replace missing values, a further imputation method 

would be required to replace any which could not be imputed using IMPUTE2. 

Initial reproducibility checks indicated that although there may be some variation in the lower order 

variables selected, which were caused by using different folds of the subjects in the runs, the top 

selected variables remained the same.  

Using just the environmental variables and these small sets of SNPs, the final models achieved a 

maximum correlation between the actual and predicted Larsen score of r=0.588.  This was only just 

higher than the correlation observed using just the first four variables of disease duration, symptom 

duration, age at time of diagnosis and age at onset of symptoms alone in the model (r=0.585).  This 

suggests that none of the variables after the first four are really increasing the predictive ability of 

the model.  Whilst there are concerns at this stage that on the reduced set of GWAS SNPs, a poor 

predictive ability was observed outside of the top four variables, it is hoped once the entire genome 

of SNPs are included, more promising results may be obtained.    
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6. SPLS regression of Larsen score – ‘GWAS SNPs’ dataset 

6.1. Aims 

The aim of this chapter is to: 

 Incorporate the lessons used above using the ‘percentage fold method’ to model the 

‘GWAS SNPs’ dataset using SPLS and see how accurately the Larsen score can be predicted.   

 Investigate alternative methods of model fitting to increase efficiency such as the ‘average 

rank’ method.   

 Interpret the final selected model fitted on the ‘GWAS SNPs’ dataset to include a 

comparison with univariate SNP testing. 

6.2. ‘Percentage fold’ method on ‘GWAS SNPs’ dataset 

6.2.1. Larsen score distribution and other measures in ‘GWAS SNPs’ dataset 

Figure 2.1 reveals the Larsen score to have a right skewed distribution with 13.6% (137/1009) of the 

subjects with a Larsen score of zero.  45% of the subjects with a Larsen score of 0 are ACPA positive 

and have disease durations ranging from 3 to 57 years (mean=8.65, median=6.0).  When the 

subjects in the ‘GWAS SNPs’ dataset are examined (N=394), the distribution is quite different.  

Although still right skewed, only nine subjects (2%) have a zero Larsen score (Figure 6.1).  There is 

still a wide representation of the duration of disease although many of the subjects with long 

disease duration and zero Larsen score (as seen in Figure 2.2) are not included (Figure 6.2).  It 

therefore appears likely that the subjects selected for the GWAS were not entirely at random and 

perhaps were selected to represent the spread of Larsen score results excluding extreme outliers.  

This could result in a biased sample which will need to be considered when interpreting the results. 

 

Figure 6.1 Larsen score distribution for GoRA subjects with GWAS SNPs 
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Figure 6.2 Larsen score plotted against disease duration for GoRA subjects with GWAS SNPs 

Despite the notable change to the distribution of the Larsen score, the subjects in the ‘GWAS SNPs’ 

dataset are similar to the ‘all subjects’ dataset with respect to their demographics and 

environmental factors (gender, age, height, weight, BMI, waist circumference, smoking and alcohol 

habits).   They are also similar with respect to the average and range of disease duration, symptom 

durations, age at disease onset and age at onset of symptoms.  There is no notable change in the 

proportion of subjects with shared epitope alleles or with positive ACPA and RF categories.  This 

indicates the sample is representative of the original full cohort. 

6.2.2. Inclusion of additional environmental variables 

Unlike the ‘all subjects’ dataset analysis in chapter 4, it was decided to add to the analysis three 

additional environmental variables (BMI, ACPA category and ACPA value).  These variables were not 

originally included, because the measures in this cohort of patients were recorded at very different 

times after disease diagnosis.  Therefore BMI and ACPA values may be influenced by the severity of 

disease and hence be confounded with the Larsen score.  However, as described in section 2.4.2.3, 

numerous studies have shown that a low BMI leads to a higher radiographic joint damage and there 

is increasing evidence that ACPA categorises patients into two distinct subsets of disease (van der 

Helm-van Mil and Huizinga, 2008, Geng et al., 2012, Ibn Yacoub et al., 2012a, Jansen et al., 2002).   

In a recent meta-analysis the odds of erosions was shown to be greater for ACPA positive subjects 

compared to ACPA negative subjects (Taylor et al., 2013).  It was therefore felt important to include 

these variables as predictors in the analysis.  The variables representing smoking and alcohol use 

may also be unreliable as subjects may not have a constant usage over the course of the disease.  

This is a limitation of the available data, as severity and the covariates are only recorded once, 

which on average is recorded 14.7 years (STD=10) after disease diagnosis.  Although it could be 

argued that RF should also be included in the modelling, it was decided against the inclusion, as RF 

is more variable over time than ACPA (Mjaavatten et al., 2011). 

6.2.3. Modelling the data in smaller blocks 

Using the R package mixOmics (González et al., 2011, Lê Cao et al., 2009) version 3.0, it was not 

possible to perform a SPLS regression on the ‘GWAS SNPs’ dataset (394 subjects with 325482 SNPs) 

in a single analysis due to the excessive number of variables causing R to reach its maximum 

memory limit in the singular value decomposition of the matrix.    
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Hierarchical PLS regression (Eriksson et al., 2004, Fonville et al., 2010, Vinzi et al., 2010), fits PLS 

models to conceptually meaningful blocks and then uses the loading vector from the lower level 

model to enter into a higher level model.  Whilst this means that the data is modelled in smaller 

blocks, (enabling large datasets to be modelled), interpretation can be difficult, as you calculate 

higher level loading vectors from the lower level loading vectors and all variables from the initial 

blocks are required to form the final model.  It was decided to adapt this methodology using the 

SPLS techniques developed in chapters 4 and 5 to perform a two stage variable selection process. 

Each chromosome would form its own block and larger chromosomes would be split into two or 

three blocks, depending on the size of the chromosome.  Chromosomes 1, 2 and 6 were split into 

three blocks, chromosomes 3, 4, 5 and 7 to 13 were split into two blocks and chromosomes 14 to 

22, X and XY Pseudo autosomal region of X were one block each.    This equated to 40 separate 

blocks of data with up to 12000 SNPs in each block.   Increasing the block sizes above 12000 SNPs 

caused the models to run very slowly or the program to crash.   

Unfortunately after splitting the data into blocks and completing the modelling, it was noted that 

the SNPS were sorted by rs number and not by their position on the chromosome.  This meant that 

SNPs, likely to be more correlated as they are positioned closer on the chromosome, may not be 

modelled in the same block.  It would be a very large task to sort the SNPs by position due to the 

format of the data in SAS®.  Therefore it was decided not to repeat the analysis as the impact is 

hoped to be minimal due to the following reasons: 

 The issue only affected chromosomes 1-13 as the rest of the chromosomes are modelled as 

complete blocks. 

 The splitting only affected the value given to the imputed missing data which based on 

chapter 5 didn’t appear to affect the model.   

 Important correlated variables in separate blocks should be both carried forward to the 

higher level model although this may miss interactions. 

 Even if the variables could be sorted by position before cutting off into blocks, SNPs close to 

the cut offs would still not have the SNPs next to them in the same block.  

The problem of modelling the whole chromosome in one block is only a problem in R.  Sections 

6.4.4 and 7.2 explore the use of CORExpress (Magidson, 2011) and SIMCA (Eriksson et al., 2006a) 

which are both able to model much larger datasets.  Section 7.4 supports that the above 

assumption was not a problem as similar results were obtained by modelling all SNPs in one block 

using SIMCA. 

6.2.4. ‘Percentage fold’ method model fitting strategy 

Each of the 40 blocks were treated as an individual set of data, merged with the environmental 

variables and missing data imputed using the NIPALS algorithm (as described in sections 4.2.2 and 

5.4).  The full model fitting process using the ‘percentage fold’ method was completed similar to 

4.2.6 but with the ‘GWAS SNPs’ dataset changes (5-fold CV and 2/5 folds in all 50 runs) applied as 

described in section 5.2.1 and 5.3.2.  The variables of highest predictive importance were extracted 

from each block.  Once the top variables from each of the 40 blocks were extracted they were 

combined together to form a higher level model.   The entire model fitting process was repeated on 

the reduced set of data and the most predictive variables extracted from across the entire genome. 
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The above approach had not been identified in the literature, however, it was decided to 

investigate it as an alternative approach to pre-filtering of SNPs prior to SPLS analysis (Le Cao et al., 

2011).   

6.3. ‘Percentage fold’ method results on ‘GWAS SNPs’ dataset 

6.3.1. ‘Percentage fold’ method results from lower level modelling 

Of the 40 blocks, the maximum number of variables selected to extract for a block were 200 and the 

minimum was just 10.  The mean (82.25) and median (82.50) were similar and the STD was 41.34.  

Graphs for each of the 40 blocks along with justification of the choice of the number of variables to 

extract is provided in Appendix E. 

For the first five blocks of data, two components were initially explored (in accordance with section 

4.2.6).  Similar to all previous models on the Larsen score (in chapters 4 and 5), all of the five blocks 

concluded that only one component was required and the whole model fitting strategy redone for 

each of the five blocks using just one component.  As 40 blocks have to undergo this process and 

this stage is only used to select the number of variables to take through to the higher level model, it 

was decided to assume that only one component was required for all 40 models.  As the first 

component explains the largest amount of Y variation and all models to date indicated only one 

component was required, this was considered a low risk time saving strategy. 

6.3.1.1. Environmental variables selected  

For the environmental variables, a reassuring consistency was observed when the 40 blocks of SNP 

data were fitted and the most important variables for predicting Larsen score extracted.  The top 

four variables selected in the modelling of every block of SNPs were; disease duration, symptom 

duration, age at time of diagnosis and age at onset of symptoms respectively (Table 6.1).   BMI was 

selected as the top 5th variable in every block of SNPs with the exception of chromosome 2 part 3, 

chromosome 4 part 2 and chromosome 6 part 1, where it was selected 7th, 6th and 6th respectively.  

Therefore, it has an average selection order of 5.1.  The remaining environmental variables which 

were extracted in 2/5 folds in all 50 runs in at least one block of SNPs showed more variation as to 

whether they were selected in all blocks (Table 6.1).  Whilst they were not identified in all blocks as 

important predictors of the Larsen score, all of these variables will be carried forward for the higher 

level model, as they could always be removed at a later stage if they ranked sufficiently low.  

Neither gender nor any of the shared epitope variables were selected in any of the models and 

therefore were not taken forward to the higher level modelling. 
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Table 6.1 Selected environmental variables from the ‘GWAS SNPs’ dataset Larsen score modelling 

 
 
Variables 

Average 
order of 
selection 

 
% blocks extracted in 
2/5 folds in 50 runs 

 
% blocks extracted in 
5/5 folds in 50 runs 

Disease duration 1 100 100 

Symptom duration 2 100 100 

Age at time of diagnosis 3 100 100 

Age at onset of symptoms 4 100 100 

BMI 5.1 100 100 

Smoking status 16 5 5 

ACAP value 265 90 85 

Smoking duration 278.11 90 85 

Smoking pack years 493.84 85 75 

ACPA category 2104.3 25 12.5 

Alcohol quantity 2845.31 65 20 

Alcohol use  3029.13 20 5 

 

6.3.1.2. SNPs selected  

SNPs being selected by the model are presented by chromosome blocks in Table 6.2.  The table 

contains the number of SNPs requested to be extracted for each of the blocks in each fold of each 

run, those SNPs extracted in 5/5 folds in all 50 runs and the additional SNPs extracted in at least 2/5 

folds in all 50 runs.  The latter column represents SNPs which are more variable and are sometimes 

not selected when the patient mix changes in the folds. 

The downside of using an arbitrary cut off for variables being extracted is that, after the top 

variables extracted have been ranked, the remaining received equal last rank.  Therefore, suppose 

not enough variables were being extracted and a SNP was consistently just outside of the extracted 

number, they would not be selected for the final model.  However, as a generous threshold is being 

used, many false positives should be carried through (variables which are thought to be predictive 

of the Larsen score, but they are actually not predictive).  Hence, those variables identified outside 

of the extracted set should just explain noise in the Larsen score and not be true predictors.  

Removing this cut off entirely from the modelling methods is explored further in section 6.4.1. 

As the SNPs selected in 5/5 folds in all 50 runs are clearly more robust than those selected in ≥2/5 

folds, it was decided to run two higher level models.  A minimum SNP model (with just those 

selected in 5/5 folds) and a maximum SNP model (with those selected in ≥2/5 folds).   
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Table 6.2 Selected SNPs from GWAS Larsen score modelling 

Chromosome 
(Number SNPs 
selected to be 
extracted) 

 
Number and identification of SNPs extracted in 

5/5 folds in all 50 runs.  (SNPs entered in the 
minimum SNP model) 

 
 

Number and identification of the SNPs with 
≥2/5 folds but not 5/5 folds in all 50 runs 

N SNPs in 
maximum 

SNP 
model 

1, part 1 (45) 0: None 3: rs1888182, rs998459, rs954916 3 

1, part 2 (130) 23: rs2646852, rs2843157, rs6427859, 
rs2148322, rs2643891, rs4568808, rs6674079, 
rs2376907, rs4658015, rs3827707, rs4658547, 
rs2378494, rs2365270, rs2476020, rs2493272, 
rs4657226, rs4927072, rs4658518, rs6660197, 
rs4418557, rs2998676, rs3843257, rs2225999 

19: rs3008588, rs4654552, rs4233084, 
rs4446947, rs2684866, rs2878284, rs4304627, 
rs2292096, rs4970551, rs6429673, rs6577539, 
rs6663404, rs2878076, rs2923905, rs3737686, 
rs4626924, rs3765968, rs4509550, rs6673009 

42 

1, part 3 (85) 11: rs10925085, rs7528217, rs10495071, 
rs10922014, rs12134313, rs10495064, 
rs11802794, rs10495072, rs12145838, 
rs10493308, rs7543680 

8: rs10926974, rs12079354, rs7524397, 
rs12124014, rs12758038, rs10922200, 
rs12080578, rs12745508 

19 

2, part 1 (200) 38: rs1374153, rs1013940, rs955038, rs1250043, 
rs1862893, rs1467219, rs2028863, rs1025080, 
rs1370666, rs2084779, rs749460, rs1996634, 
rs16909, rs1882449, rs955799, rs1867801, 
rs1921814, rs2053761, rs974813, rs1367415, 
rs1438065, rs2044302, rs1224540, rs908275, 
rs1574181, rs929633, rs1899013, rs1367457, 
rs2114619, rs1514687, rs867458, rs1357182, 
rs1453496, rs985091, rs893811, rs893451, 
rs1526638, rs877328 

25: rs1377389, rs163507, rs1317981, 
rs2079538, rs981602, rs1383413, rs1568378, 
rs2110745, rs960615, rs1035833, rs1432216, 
rs1978368, rs355810, rs1146025, rs1470494, 
rs2080711, rs959257, rs1006413, rs1921772, 
rs905968, rs917237, rs295145, rs2052928, 
rs288057, rs882672 

63 

2, part 2 (100) 16: rs2218495, rs2680182, rs2889450, 
rs4851042, rs4668412, rs2304673, rs2276630, 
rs4389306, rs2883605, rs2215801, rs6543316, 
rs4671614, rs6723319, rs3771688, rs4850546, 
rs4673304 

14: rs2515402, rs2592274, rs3755427, 
rs2305491, rs2887311, rs2894500, rs6725634, 
rs4669075, rs6727113, rs6738271, rs2292869, 
rs2366812, rs4073806, rs4402808 

30 

2, part 3 (80) 12: rs11211654, rs9326161, rs11897977, 
rs10497610, rs11683588, rs11902332, 
rs12992554, rs10928155, rs7581781, rs7602332, 
rs6758704, rs10931024 

2: rs16830673, rs10201889 

14 

3, part 1 (40) 3: rs1558910, rs1532190, rs1950091 2: rs1482601, rs925680 5 

3, part 2 (110) 13: rs6788054, rs9841471, rs9847705, 
rs6762974, rs6806453, rs9842509, rs7651268, 
rs11131004, rs9290621, rs7633462, rs10804755, 
rs9853204, rs9823801 

13: rs10513603, rs11718444, rs13082763, 
rs9833136, rs7630937, rs6763272, rs7622674, 
rs9837726, rs7609860, rs7629690, rs9863209, 
rs7643807, rs13078878 26 

4, part 1 (90) 16: rs1449779, rs2015829, rs1375775, 
rs1449760, rs2101201, rs2242310, rs4391009, 
rs3851433, rs3970313, rs4339259, rs971079, 
rs1399531, rs1375738, rs2167955, rs4689290, 
rs1565534 

8: rs1320101, rs1514951, rs1850756, 
rs1107679, rs2014472, rs2114148, rs243970, 
rs260122 

24 

4, part 2 (140) 22: rs7661111, rs9884240, rs6814036, 
rs10031745, rs6856061, rs9291499, rs9291501, 
rs7663212, rs12500896, rs7664301, rs6828208, 
rs4833470, rs4696891, rs6846226, rs6535700, 
rs17088003, rs10017867, rs10516659, 
rs12512924, rs13142037, rs6811964, rs6537420 

21: rs10517429, rs6552386, rs13105340, 
rs10517960, rs13108614, rs10006264, 
rs7666497, rs10012647, rs10029929, 
rs11097585, rs12641938, rs12642793, 
rs12645705, rs13106777, rs13121783, 
rs17006928, rs4694421, rs7661337, 
rs10005962, rs4865293, rs7684707 43 

5, part 1 (120) 13: rs2933639, rs346650, rs265005, rs309556, 
rs784480, rs2635636, rs993764, rs1296135, 
rs262029, rs1992707, rs712572, rs36951, 
rs37181 

22: rs26821, rs346660, rs2560623, rs183752, 
rs2591961, rs695103, rs784482, rs890294, 
rs2277054, rs245674, rs36676, rs721834, 
rs832575, rs923957, rs2968014, rs346658, 
rs1013429, rs1465291, rs1499764, rs187580, 
rs526231, rs674726 35 

5, part 2 (10) None None 0 

6, part 1 (90) 21: rs760609, rs1323056, rs2178899, rs2023075, 
rs220704, rs1042663, rs1046080, rs3065, 
rs497239, rs547154, rs550605, rs194679, 
rs785144, rs1047033, rs1407220, rs2181437, 
rs511294, rs679013, rs438999, rs154986, 
rs341103 

34: rs927407, rs541862, rs714051, rs879036, 
rs154980, rs1984814, rs991760, rs1029295, 
rs1116029, rs1497737, rs604683, rs2181351, 
rs941816 

34 
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Chromosome 
(Number SNPs 
selected to be 
extracted) 

 
Number and identification of SNPs extracted in 

5/5 folds in all 50 runs.  (SNPs entered in the 
minimum SNP model) 

 
 

Number and identification of the SNPs with 
≥2/5 folds but not 5/5 folds in all 50 runs 

N SNPs in 
maximum 

SNP 
model 

6, part 2 (110) 15: rs3115667, rs2272593, rs2395672, 
rs2844586, rs4454114, rs4714801, rs6904223, 
rs6931700, rs3130617, rs2281272, rs2297308, 
rs2857597, rs2523619, rs3117133, rs7745708 

27: rs6916278, rs2272450, rs6921518, 
rs2516463, rs3129867, rs4140408, rs6938822, 
rs4896481, rs6913013, rs3777536, rs4714942, 
rs7739145, rs2327832, rs2894249, rs3129941, 
rs6939790, rs7741687, rs2327212, rs4335008, 
rs3129871, rs4946442, rs3129907, rs4895851, 
rs2505951, rs3823034, rs7752020, rs6457689 42 

6, part 3 (65) 8: rs12211935, rs7770227, rs10498671, 
rs10484566, rs10457277, rs9372396, rs9380681, 
rs17673852 

10: rs28366162, rs9346693, rs10434890, 
rs10080898, rs10214886, rs9485215, 
rs9469300, rs10046277, rs9350822, rs9469312 18 

7, part 1 (95) 18: rs2132046, rs1843933, rs4099560, 
rs3847015, rs705321, rs2727805, rs1878808, 
rs2075756, rs819454, rs2065668, rs702479, 
rs2245192, rs3211834, rs259152, rs2024365, 
rs2711481, rs41700, rs2286680 

12: rs36878, rs3801279, rs855686, rs2372052, 
rs2402061, rs2527636, rs926201, rs1024542, 
rs1819819, rs2528528, rs855679, rs3779107 

30 

7, part 2 (75) 10: rs6597458, rs6459830, rs10499471, 
rs17625938, rs6947058, rs12539883, 
rs13238018, rs10279978, rs10499472, 
rs7789085 

11: rs11763025, rs17558927, rs6948116, 
rs11767604, rs4722166, rs6465211, rs7779140, 
rs7805617, rs7808226, rs6462473, rs12718939 

21 

8, part 1 (95) 4: rs1354969, rs3943520, rs4551310, rs1161534 4: rs2941647, rs2957422, rs311390, rs366276 8 

8, part 2 (75) 1: rs7816057 8: rs13254276, rs7386980, rs7386656, 
rs10096683, rs10504242, rs10091402, 
rs7461129 8 

9, part 1 (90) 7: rs1754068, rs513806, rs1341063, rs1777045, 
rs3811159, rs944638, rs2153240 

17: rs783455, rs1407808, rs2777877, 
rs1668978, rs2275003, rs967671, rs1887890, 
rs3016756, rs7776, rs2149171, rs2164001, 
rs3750433, rs488948, rs2210369, rs1339490, 
rs914842, rs2147263 24 

9, part 2 (110) 13: rs10511820, rs7873559, rs12001157, 
rs7864699, rs4842019, rs4743316, rs10868794, 
rs5012630, rs7848626, rs4074426, rs4842064, 
rs11793528, rs4742515 

11: rs4146765, rs4741199, rs10758631, 
rs10976375, rs7869933, rs4842153, rs7025731, 
rs10441723, rs10115893, rs12336000, 
rs10810351 24 

10, part 1 (45) 4: rs1705013, rs1860404, rs4457655, rs1111267 3: rs2115819, rs3763745, rs884147 7 

10, part 2 (70) 10: rs11016877, rs7477944, rs10509236, 
rs11593905, rs6584162, rs10905618, 
rs11017878, rs6479789, rs6481891, rs7897741 

7: rs10490907, rs6585536, rs10509958, 
rs7905689, rs12262693, rs17645752, rs7898685 

17 

11, part 1 (95) 19: rs470215, rs470747, rs508835, rs470168, 
rs2429862, rs2499937, rs1005511, rs2303973, 
rs2063024, rs1237999, rs2445296, rs541458, 
rs1783229, rs677909, rs598373, rs903514, 
rs947837, rs487728, rs2472528 

14: rs1848082, rs725103, rs543293, rs2472527, 
rs756852, rs874548, rs964720, rs1440718, 
rs953816, rs1600591, rs2450411, rs2875379, 
rs475639, rs685320 

33 

11, part 2 (160) 33: rs4609584, rs7948160, rs10792830, 
rs10898438, rs10835941, rs4623925, rs4963214, 
rs16910726, rs7111383, rs4963212, rs7948050, 
rs4758331, rs3851179, rs10500616, rs10791200, 
rs11821612, rs3858451, rs4758322, rs10790866, 
rs3819100, rs7102738, rs7121743, rs7925573, 
rs4512811, rs4581433, rs7924850, rs7483826, 
rs4754673, rs4529888, rs7926469, rs4938097, 
rs7941509, rs7103780 

22: rs7110845, rs7931095, rs10830200, 
rs7935178, rs10767936, rs12421053, 
rs12807255, rs3782115, rs4294557, rs4480535, 
rs4938377, rs4938800, rs7130116, rs11224629, 
rs11232234, rs7112940, rs11019392, 
rs11019435, rs2943510, rs3855349, rs4121403, 
rs7117594 

55 

12, part 1 (170) 35: rs2686386, rs3751143, rs1879390, rs516505, 
rs4523751, rs1861918, rs526058, rs328765, 
rs757354, rs1496858, rs4129599, rs1434725, 
rs1544608, rs1517727, rs741628, rs1820460, 
rs844066, rs270881, rs1304341, rs3934768, 
rs2117322, rs328759, rs4246260, rs1488144, 
rs2366796, rs871257, rs2158091, rs937529, 
rs3993375, rs1894791, rs1562729, rs2971589, 
rs1920438, rs2700568, rs278899 

53: rs4131751, rs772700, rs917915, rs1027569, 
rs1569020, rs2304274, rs4237941, rs954147, 
rs1093291, rs1400138, rs1839402, rs1851094, 
rs979678, rs1426437, rs1471132, rs1631980, 
rs1669921, rs1816854, rs2398526, rs3782614, 
rs445467, rs962051, rs1385374, rs1513047, 
rs1725789, rs1873347, rs303784, rs1032332, 
rs1148985, rs1566514, rs1682593, rs1800973, 
rs1907087, rs1968964, rs2111177, rs2320501, 
rs2870951, rs4502065, rs472100, rs722097, 
rs730165, rs759518, rs1847459 78 

12, part 2 (90) 11: rs10878920, rs4760805, rs10505938, 
rs6489900, rs11177669, rs4764112, rs7309856, 
rs11106529, rs11104713, rs7312143, 
rs10842797 

13: rs4761777, rs7972233, rs7314666, 
rs10506049, rs7959196, rs17523988, 
rs11169992, rs11170524, rs5019656, 
rs10842223, rs11104703, rs4765138, rs6582065 24 
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Chromosome 
(Number SNPs 
selected to be 
extracted) 

 
Number and identification of SNPs extracted in 

5/5 folds in all 50 runs.  (SNPs entered in the 
minimum SNP model) 

 
 

Number and identification of the SNPs with 
≥2/5 folds but not 5/5 folds in all 50 runs 

N SNPs in 
maximum 

SNP 
model 

13, part 1 (85) 12: rs4770403, rs892533, rs1413882, rs572761, 
rs795659, rs1159207, rs1056114, rs2091337, 
rs1945503, rs744574, rs912656, rs1324978 

12: rs837309, rs4612929, rs1591478, rs837344, 
rs560873, rs269588, rs728993, rs735721, 
rs1341476, rs1354837, rs280392, rs1927837 24 

13, part 2 (65) 9: rs9563202, rs6420308, rs7319076, rs9571979, 
rs9588434, rs9300986, rs9563119, rs12866357, 
rs9585457 

4: rs7982644, rs9525291, rs7999681, rs9301172 

13 

14 (90) 13: rs4898652, rs7142677, rs7157967, 
rs10873293, rs8004595, rs10483876, rs1652593, 
rs4601978, rs10484017, rs8013529, rs11622224, 
rs3939209, rs1479748 

6: rs2215590, rs12890068, rs2049826, 
rs4901639, rs10483877, rs7150135 

19 

15 (80) 14: rs782933, rs8032023, rs16939900, 
rs2036534, rs7175069, rs2133570, rs4534820, 
rs4589506, rs1356782, rs2133127, rs2241494, 
rs890158, rs2871886, rs4887053 

14: rs4924057, rs4506837, rs1584407, 
rs1975242, rs9944198, rs768546, rs2852078, 
rs650716, rs570763, rs6495309, rs6495894, 
rs1356779, rs2682911, rs8035668 28 

16 (30) 0: None 4: rs1834037, rs4473203, rs4522429, rs916768 4 

17 (55) 9: rs879606, rs799923, rs4795369, rs7208487, 
rs2777899, rs2941503, rs2941504, rs12453682, 
rs1292034 

5: rs2061342, rs4074770, rs4793832, 
rs7215464, rs3785982 

14 

18 (30) 0: None None 0 

19 (60) 3: rs3745333, rs11671924, rs10420734 7: rs11086047, rs7252814, rs10411465, 
rs1141371, rs2283575, rs8108252, rs8111930 10 

20 (50) 5: rs11299, rs6050732, rs6046528, rs2747405, 
rs6044003 

3: rs285164, rs6050709, rs373561 
8 

21 (120) 24: rs2299742, rs383700, rs8132953, rs232456, 
rs2839315, rs440666, rs7277065, rs2826825, 
rs2154420, rs2822430, rs2833845, rs7280944, 
rs2837801, rs2833886, rs232518, rs2236436, 
rs2822429, rs2827308, rs2834049, rs2833629, 
rs722682, rs2834157, rs2837868, rs762417 

18: rs2178832, rs232496, rs1910635, rs468192, 
rs1787438, rs2027715, rs2838679, rs2824693, 
rs2832451, rs2833836, rs2837985, rs2850163, 
rs2839112, rs400603, rs1554936, rs2837716, 
rs463117, rs7280236 

42 

22 (35) 6: rs1076933, rs2017317, rs2072711, rs2018293, 
rs5993935, rs5998876 

1: rs5997898 
7 

X chromosome 
(45) 

15: rs5928558, rs2266806, rs4828734, 
rs6520724, rs10522027, rs1926105, rs6630822, 
rs5990454, rs12852732, rs4573446, rs5920765, 
rs3132267, rs578264, rs4826799, rs2172209 

1: rs5955786 

16 

XY Pseudo 
autosomal 
region of X (25) 

7: rs5941380, rs10127367, rs4074621, 
rs35047434, rs306910, rs34438890, rs2750171 

0: None 

7 

Total number 
SNPS 

493 426 
919 

NOTE: Blocks 7 part 2, 14 and X amended the criteria for a SNP to be fitted in the model from <92% all 0-0.5 to be <85% to enable the 
model to fit.  Whilst data was available for the Y chromosome and the mitochondrial region, there was not enough data present with 
enough variation to enable any SNPs to be modelled.  

 

6.3.2. ‘Percentage fold’ method results from higher level modelling 

As shown in Table 6.2, two models would be taken forward; firstly the ‘minimum SNP model’ which 

consisted of SNPs extracted in 5/5 folds in all 50 runs (González et al., 2011, Magidson, 2011) and 

secondly the ‘maximum SNP model’ which consisted of SNPs extracted in ≥2/5 folds in all 50 runs.  

The same environmental variables were used in both models.  If there was no benefit in adding the 

extra SNPs, then the process could be amended in future to only retain those SNPs selected in all 

folds.  Model fitting using the ‘percentage fold’ method was the same as described for each of the 

blocks in the lower level modelling (section 6.2.4). 
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6.3.2.1. Minimum SNP model 

493 SNPs and 12 environmental variables formed the higher level minimum SNP model.   All 

variables were entered into the model and then in turn, the top five to 500 variables were extracted 

calculating each time the R2-CV using 5-fold CV on the 394 subjects.  It was hoped that this would 

display the optimum number of variables for the model, whilst preventing over fitting, as the R2 is 

calculated under CV.   Unlike modelling the smaller number of SNPs in chapter 4 (which could never 

achieve an R2-CV greater than around 0.6), Figure 6.3 shows that using the selected SNPs from the 

lower level modelling, the R2-CV continued to increase, the more variables that were included, up to 

a value of 0.9316 at 500 variables.  Therefore all 505 variables were kept for the final minimum SNP 

model.  Further investigation can be found in section 8.3.2 into the over fitting of these models. 

Performing a standard PLS model (No variable selection or CV) resulted in a correlation between the 

actual Larsen score and the predicted Larsen score of 0.95 (Figure 6.4).  The mean absolute 

difference between the actual and predicted Larsen score was 8.90 (median=7.36, STD=6.99, min=0, 

max=47.35).  This was a big improvement compared to modelling a smaller set of SNPs but on a 

larger number of subjects in chapter 4.    

 

Figure 6.3 Minimum SNP model R
2
-CV for each 

number of variables extracted 

 

Figure 6.4 Minimum SNP model actual Larsen 
score versus predicted Larsen score 

 

Using the standard mixOmics ‘valid’ function version 3.0 (González et al., 2011, Lê Cao et al., 2009), 

a PLS model using 5-fold CV (keeping all 505 X variables) was used to estimate anticipated model 

performance on independent dataset.   This resulted in an R2 of 0.937 and a R2-CV of 0.874.  

However, as the original selection of variables was performed under multiple CV models, it is no 

surprise that the model performs well under CV.  Therefore, this is not a reliable method to use to 

estimate how this model would perform on an independent set of data.  Further validation 

techniques are explored in chapter 8. 

R2-CV 
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6.3.2.2. Maximum SNP model 

919 SNPs formed the maximum SNP model, having met the criteria in the lower level models of 

being selected in at least 2/5 folds in all 50 runs.    Figure 6.5 shows the R2-CV calculated using 5-fold 

CV on the 394 subjects extracting from five to 900 variables.  The maximum R2-CV was obtained at 

0.942 with the full 920 variables and is only just higher than the 0.9316 obtained using the 

minimum SNP model.   

Performing a standard PLS model (No variable selection or CV) resulted in a correlation between the 

actual Larsen score and the predicted Larsen score of 0.963 (Figure 6.6).  This is slightly higher than 

the correlation of 0.95 which was obtained using the minimum SNP model.  The mean absolute 

difference (7.86) between the actual and predicted Larsen score was also slightly better as were the 

other summary statistics (median=6.80, STD=5.92, min=0, max=30.30).    

 

Figure 6.5 Maximum SNP model R
2
-CV value for 

each number of variables extracted 

 

 

Figure 6.6 Maximum SNP model actual Larsen 
score versus predicted Larsen score 

 

The maximum SNP model was run under 5-fold CV which resulted in an R2 of 0.949 and a R2-CV of 

0.894 compared to the previous R2 of 0.937 and a R2-CV of 0.874 under the minimum SNP model.    

Therefore the increase by adding an additional 426 variables was only very slight.  Whilst there is a 

good decrease in the maximum prediction error between actual Larsen score and predicted Larsen 

score (47.35 to just 30.30), the increase in accuracy is quite likely to be due to over fitting of the 

model (as described in section 3.7). 

 

6.4. Investigation into alternative modelling strategies 

The process used for model fitting so far was quite laborious and time consuming, due to the 

number of manual steps and separate runs of CV models.   Full model fitting on the 40 blocks of the 

‘GWAS SNPs’ dataset took over one week to run.  The following section investigates ways to speed 

up the process and looks into alternatives to using R software and the package mixOmics.   The 

changes made to the mixOmics version 3.0 ‘valid’ and ‘spls’ functions for the analysis in this section 

are shown in Appendix D.  In addition, the code to produce the model fitting strategy after the 

amendments discussed in sections 6.4.1 and 6.4.2 have been made, is shown in Appendix F. 

R2-CV 
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6.4.1. ‘Average rank’ method compared to ‘percentage fold’ method 

Previously, using the ‘percentage fold’ method, the number of variables to extract for each block of 

SNPs was investigated by extracting; 1, 2, 3, 4, 5 to 100 by 5 and 110 to 250 by 10 variables.  This 

equates to 39 models for each of the 40 chromosome blocks,  resulting in 1560 runs of 5-fold CV.  

Once the number of variables to extract was selected for each of the 40 blocks, the model had to be 

re-run another 50 times for each of the 40 chromosome blocks under 5-fold CV extracting the 

chosen number.   Variables were then ranked for each fold and each run and those not in the top 

set extracted were given a score of equal last rank for that model.  The rank was then averaged 

(using the median) over the folds and then over the runs but not used further to select the 

variables.  Variables were only taken forward to the higher level model if they were extracted in at 

least 2/5 folds (or 5/5 folds) in all 50 runs. 

Section 5.3.2 has already revealed considerable variation in the variables selected, when the 

number chosen to extract and the number of folds a variable has to be selected (i.e. 2/5 or 3/5), are 

changed.  It was also apparent that although the model calculates ranks of all of the variables, this 

rank is not being used to its full potential, as those not in the top extracted are ranked equal last.   

There was concern that rare genotypes, which may not have sufficient data to be selected as 

important in all 5 folds, would not be given an opportunity to be selected for the final model.  

Therefore, in order to automate the process, reduce the number of models needed to be run and 

explore if rarer SNPs could be better selected, a new approach entitled the ‘average rank’ method 

was investigated. 

SPLS models were fitted ranking all variables by the absolute size of each variable’s loading.  The 

median of this rank was calculated over the 5-folds of CV and then across the 50 runs.  After all 

models were fitted, if a variable was ranked less than 200 on average, it was retained for the higher 

level model.   The value 200 was selected as it ensured that less than 8000 variables would go 

through to the higher level model (200 x 40 blocks of SNPs) and it was the maximum number 

selected to extract in any of the SNP blocks when they were investigated individually in section 6.3. 

It was immediately apparent that this new method was a fairer method to identify potentially 

important rarer SNPs.  Figure 6.7 demonstrates for the first part of chromosome 2, that rs2081776 

is only selected in the top 200 for 60 of the 250 models (5 folds * 50 runs). However on average it 

was selected as the 56.5th SNP.  For the other runs, if it had been selected at all, it would have had a 

higher median rank.  Therefore, it must have been excluded from the other folds due to low 

frequency of the minor allele.  This variable would not have met the criteria of being in ≥2/5 folds in 

all 50 runs, however it did meet the average rank <200 criteria.  The new method allowed for rarer 

SNPs to still have a chance of being selected for the final model. 
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Figure 6.7 Chromosome 2: part 1, variable selection under 50 runs of 5-fold CV 

The ‘average rank’ method created a comma separated variable file of the variable name, number 

of times it was selected and the average order of selection.  These files for each block of SNPs could 

be automatically read back into R, the variables ranked in the top 200 retained and entered into the 

higher level model without any manual intervention.  The process was therefore substantially 

quicker than investigating the number of variables to extract for each block by studying it 

graphically and manually entering the number.   

3766 variables were selected using this method from the lower level models to enter into the 

higher level model.  The same process was then used for the higher level model using 50 runs of 5-

fold CV and calculating the median order of selection (rank).  Rather than having to impose a 

restriction on this final model for a variable to be retained, all variables are ranked, which enables 

investigation into how much the model is improved by the addition of including subsequent 

variables into the model.   

The ‘percentage fold’ method shown in section 6.3.2.1 created a higher level minimum SNP model 

containing 493 SNPs and 12 environmental variables.  The model could predict the Larsen score 

with an R2 of 0.937, a R2-CV of 0.874 and a correlation between actual and predicted Larsen score of 

r=0.95.  Using the ‘average rank’ method and the top 505 variables to match the number of 

variables used in the ‘percentage fold’ method, the predictive ability and the variables selected 

were compared.  The ‘average rank’ method achieved similar predictive ability to the ‘percentage 

fold’ method; R2=0.940, R2-CV =0.878 and the correlation between the actual and predicted Larsen 

score was 0.953 (Figure 6.8).  Comparing the variables selected; 353 of the 505 were the same 

variables.  144 new variables were selected which were not in the original minimum data model.  

These tended to be variables which were selected infrequently; however, when they were selected, 

they were in the top ranked variables.  They would have not been selected previously due to the 

criteria that they have to be selected in 5/5 folds in all 50 runs.  As these could be important but 

rarer SNPs, this automated method using variable ranks was considered the better method. 

rs2081776, selected 60 times with 

an average order of 56.5 
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Figure 6.8 Actual Larsen score versus predicted Larsen score for higher level model (505 variables) 

 

6.4.2. Reducing the number of runs required using the ‘average rank’ method 

Although the use of the ‘average rank’ method removed the need for manual intervention and so 

could be run 24 hours a day, the modelling process still took approximately 50 hours on a standard 

computer.  It was therefore decided to investigate whether using 50 runs could be reduced.  This 

reduced the running time from 50 hours to approximately 8 hours on a standard computer.  Using 

just 10 runs, the correlation between actual and predicted Larsen score was the same 0.953 (Figure 

6.9).  The R2 =0.942 and R2-CV= 0.882 based on a model containing 505 variables were actually 

slightly improved but this is likely to be due to random variation. 

 

Figure 6.9 Actual Larsen score versus predicted Larsen score for 10 run higher level model (505 variables) 

456 of the 505 variables were in both the 50-fold and 10-fold models.  This suggests it may not be 

worth the extra 40 runs of the 5-fold CV on each block of data.  With just 10 runs the model fit is 

approximately the same with very similar variables selected.  Further exploration into reducing the 

10 runs to just one run (which runs in approximately one hour) is described in section 7.3. 

Using the median rank of the size of each variable’s loading to determine the importance of the 

variable, appears a better method than using the number of times a variable was extracted, 

because the latter is dependent on the number of variables you choose to extract.  The ‘average 

rank’ method allows identification of rarer but potentially important SNPs.   
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6.4.3. Using Bootstrapping instead of CV 

CV is traditionally used for model selection, as it estimates the expected predicted error forming 

models trained on one set of subjects and tested on another (Hastie et al., 2009, Chapter 7.10).  The 

‘average rank’ method detailed in section 6.4.1 runs multiple CV models to select variables to take 

through to the higher level modelling, based on the size of the PLS loading for each variable.  The CV 

predicted error is not used on any of the lower level modelling.  However, once the higher level 

model is fitted the CV prediction error is used to assess how well the model performs.  Not 

surprisingly, it appears to perform well as the variables were selected from the lower level models 

because they are important in the prediction consistently across multiple CV models.   

An alternative method of forming a number of new sets of the data is called bootstrapping.  Each 

new set is formed by sampling subjects randomly with replacement, so that each set are of equal 

size to the original number of patients.   

It was decided to create 100 bootstrapped sets of patients (sampling 394 subjects from the original 

sample) with replacement for each of the 40 blocks of SNPs.  The ‘average rank’ method described 

in section 6.4.1 was applied to the 4000 datasets after the removal of any SNPs which had more 

than 92% all of genotype 0.  Per the ‘average rank’ method, variables were ranked according to the 

size of their PLS loading and the median rank over the 100 samples calculated for each of the 40 

blocks.  Any variables with a median order of selection of <200 were carried forward to the higher 

level model.    The ‘average rank’ method was then applied to the higher level model using a further 

100 bootstrapped samples.  Variables were ordered by the median rank across the 100 models.  In 

order to compare the performance with section 6.4.2, 505 variables were retained for the final 

model. 

The correlation between actual and predicted Larsen score from the higher level model was 0.936 

(Figure 6.10). The R2=0.926 and R2-CV=0.855.  All performance estimates were slightly lower than 

the model formed using multiple CV models (r=0.953, R2=0.942 and the R2-CV=0.882 using the 

method in 6.4.2), however, this could be due to chance. 

   

Figure 6.10 Actual Larsen score versus predicted Larsen score for bootstrapped higher level model (505 
variables) 

For simplicity, just the top 100 variables were compared across the ‘average rank’ method using 10 

runs of 5-fold CV compared to bootstrapping.   The same five environmental variables were 

selected; disease duration, symptom duration, age at time of diagnosis, age at onset of symptoms 

and BMI.  Of the 95 SNPs which both models selected to be in the top 100, 70 were identical leaving 
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just 25 differences shown in Table 6.3.  Whilst it would be expected that these 25 appear lower 

down the ranked lists of SNPs, this was not the case.  Six SNPs were different in the top 30.  The six 

SNPs chosen by the bootstrapping method in the top 30 which were not in the 10 runs of 5-fold CV 

were; rs10488483, rs192214, rs10512270, rs10488482, rs1514920 and rs7954187 and all had no 

subjects with a genotype =2.  They also had a relatively small sample size with genotype=1 (N=51, 

24, 21, 34, 28, 27) respectively.  In contrast, the six chosen by the 10 runs of 5-fold CV, all had some 

subjects with genotype =2.   The 10 runs of 5-fold CV did select one SNP in the top 30 with no 

subjects having genotype=2, however, this was also selected in the bootstrapped sample.   The 

other 19 SNPs selected by the bootstrapping method but not by the 10 runs of 5-fold CV were 

spread evenly throughout the top 95, with no clear reason for not being selected in both models.  

18 of the 25 were statistically significant at the 5% alpha level using a univariate NB model as 

described in section 4.2.5.  This indicated that the bootstrapping method appeared to identify more 

SNPs which were significant at the 5% level when tested univariately (Table 6.3). 

Table 6.3 List of the 25 SNPs selected in the Bootstrapping model not in the 10 run 5-fold CV model 

SNP Genotype: N subjects : Median Larsen score NB p-value 

rs10488483 0: 343: 32, 1: 51: 65, 2: NA: NA 0.0038 

rs192214 0: 370: 35, 1: 24: 74, 2: NA: NA 0.0950 

rs10512270 0: 373: 33, 1: 21: 77, 2: NA: NA 0.1173 

rs10488482 0: 360: 33, 1: 34: 64.5, 2: NA: NA 0.0213 

rs1514920 0: 366: 38, 1: 28: 12.5, 2: NA: NA 2.26E-05 

rs7954187 0: 367: 38, 1: 27: 13, 2: NA: NA 5.84E-05 

rs17832312 0: 357: 33, 1: 37: 64, 2: NA: NA 0.0161 

rs11936270 0: 371: 35, 1: 21: 62, 2: 2: 137 0.0800 

rs638383 0: 370: 38, 1: 24: 12.5, 2: NA: NA 0.0045 

rs4760805 0: 264: 32, 1: 113: 47, 2: 17: 55 0.0512 

rs879986 0: 367: 35, 1: 27: 64, 2: NA: NA 0.0322 

rs6043954 0: 363: 38, 1: 30: 13.5, 2: 1: 32 0.0014 

rs3943520 0: 152: 32, 1: 179: 37, 2: 63: 56 0.0062 

rs9841471 0: 279: 43, 1: 106: 22, 2: 9: 21 5.92E-05 

rs2941647 0: 239: 29, 1: 132: 47, 2: 23: 61 8.10E-05 

rs10944478 0: 370: 33.5, 1: 24: 65.5, 2: NA: NA 0.0879 

rs1862893 0: 150: 46.5, 1: 191: 35, 2: 53: 23 0.0731 

rs1111267 0: 206: 42, 1: 164: 28, 2: 24: 26 0.0126 

rs4457655 0: 99: 55, 1: 199: 32, 2: 96: 33 0.2941 

rs7157967 0: 314: 32, 1: 79: 55, 2: 1: 93 0.0441 

rs11575845 0: 366: 38, 1: 28: 12.5, 2: NA: NA 0.0003 

rs4963212 0: 261: 32, 1: 115: 38, 2: 18: 72.5 0.0443 

rs6479789 0: 266: 29, 1: 104: 49, 2: 24: 50.5 0.0099 

rs2023075 0: 294: 43, 1: 92: 23.5, 2: 8: 13.5 0.0091 

rs28366162 0: 361: 38, 1: 33: 13, 2: NA: NA 0.0020 
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Although bootstrapping was hypothesised to be quicker than running CV, it actually took longer to 

run.  This was due to the CV method consisting of 10 runs of 5 folds on the 40 blocks = 2000 PLS 

models, the bootstrapping consisted of 100 runs of the 40 blocks = 4000 PLS models.    Therefore, 

until exploration using independent data can be performed the CV methodology in 6.4.2 will be 

continued to be used.  

6.4.4. Using CORExpress to run SPLS or CCR 

When using mixOmics to perform PLS modelling it requires substantial data pre-processing before 

the SPLS models can be fitted; such as splitting the GWAS into blocks of SNPs less than 12000 and 

imputing missing SNP data.   To see if the modelling process could be more efficient, the software 

CORExpress (Magidson, 2011) was investigated.  CORExpress is capable of running SPLS regression 

models on much larger blocks of data (reported to be up to 30,000 or more) which enables each 

chromosome to be fitted in a complete block.  It also performs all data imputation as part of the 

SPLS modelling even when performing CV.   

CORExpress can perform both SPLS regression and a new similar modelling approach called 

correlated component regression (CCR) which is soon to be included as a chapter in Abdi et al. 

(2013).  Brief conclusions of this work are summarised below. 

 Similar to mixOmics, SNPs with >20% missing data and SNPs with very low variation had to be 

removed prior to the analysis otherwise the program stopped working.  

 CORExpress could model entire chromosomes at once (maximum attempted was 24374 

variables). 

 The methods used by CORExpress are similar to the ‘percentage fold’ method, whereby the 

number of times a variable is selected in each fold and each run, after specifying a minimum 

number of variables to keep in the model, is used.  As shown in section 5.3.2, Table 5.2, this 

approach (particularly on the lower level models where there are few clear signals) is highly 

dependent on the number of variables you ask it to output.  It was shown that if no minimum is 

selected it only output disease duration, if a minimum of X is selected then it output X variables 

each time making the final model dependant on an arbitrary cut off.  The ‘average rank’ method 

as described in 6.4.1 creates models without having to specify these arbitrary limits. 

 Although it is much faster to run a PLS model in CORExpress (5 minutes per chromosome block) 

it has no programming functionality and everything has to be done manually.  Therefore 

considerable time is spent loading data and setting the models to run on each block of 

chromosomes and then outputting the results manually. 

The results using SPLS 10 runs of 5-fold CV in mixOmics (section 6.4.2), SPLS in CORExpress and CCR 

in CORExpress were compared in Table 6.4.  When the top 100 variables were examined for each 

model, only 14 of the SNPs were selected by all three models (rs1076933, rs10898438, rs1449760, 

rs1449779, rs1705013, rs1754068, rs2101201, rs470215, rs4770403, rs4898652, rs6814036, 

rs7319076, rs760609 and rs9847705).  44 SNPs were selected in 2/3 models and 148 SNPs each in 

only one model.  Hence, all three models are selecting quite different SNPs.   
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Table 6.4 Comparison of mixOmics 10 run 5-fold CV model and CORExpress models 

Final 100 variable model mixOmics SPLS SPLS CORExpress CCR CORExpress 

Number of SNPs/Enva 95 SNP, 5 Env 89 SNP, 11 Env 94 SNP, 6 Env 

R2 0.942 0.906  0.927  

R2-CV 0.882 0.871 0.899 

% significantb 71.6% 87.6% 85.1% 
a Number of SNPs and environmental variables retained in the top 100 for the final model 
b % of SNPs which are statistically significant at the 5% level per section 4.2.5. 

External replication could calculate what proportion of the SNPs selected by each model could be 

replicated and hence help to indicate which is the better model.  However, an independent set of 

data is not available.  It was therefore decided to take forward the methods from section 6.4.2 

because of the flexibility to order the variable by an average rank, as opposed to specifying the 

number of variables to extract.  In addition, it was felt much easier to be able to automate the 

running of the entire model process rather than manually having to import data, select the model 

fitting options individually for each chromosome and export the results. 

6.5. ‘Average rank’ method results on ‘GWAS SNPs’ dataset 

Using 10 runs of the ‘average rank’ method (as agreed in section 6.4.1 and 6.4.2) the top 505 

ranked variables resulted in an R2=0.942, R2-CV =0.882 and correlation between the actual and 

predicted Larsen score was 0.953.    

Unlike the ‘percentage fold’ method where 505 variables were selected because this was the 

number extracted in the top set of variables in 5/5 folds in all 50 runs, the ‘average rank’ method 

does not have a way of selecting the number of variables for the final model.  It simply ranks the 

entire set of variables and 505 was used above simply for comparison with the ‘percentage fold’ 

method.  Therefore, after developing the ‘average rank’ method which was a quicker method than 

the more standardly used ‘percentage fold’ method for fitting models to a large number of SNPs, it 

was now required to develop a method of selecting the most appropriate number of variables for 

the final model. 

6.5.1. Number of variables required 

It is highly unlikely that each SNP is contributing the same amount to the prediction model and as 

more SNPs are added, they should be explaining less and less variation in accordance with the way 

the SNPs were selected by the median rank of their loading.  Therefore, how many variables are 

needed in the model to still form a good prediction?  If fewer than 505 variables still predict well, 

then this would reduce the measures required to be collected for using the prediction model in the 

clinic.   

To explore how the model prediction changes with a different number of variables, SPLS models 

were fitted to the ‘GWAS SNPs’ dataset, the coefficients of the model estimated and then used to 

predict the same set of patients.  This was performed using the five environmental variables only, 

followed by the top 20, 50 and 100 variables, ranked according to the ‘average rank’ method.  The 

correlation between actual Larsen score and predicted Larsen score increased from 0.605, 0.72, 

0.812, up to 0.89 with 100 variables (Figure 6.11).  As the model with 505 variables achieved a 

correlation of 0.953, the correlation is only improved by 0.063 by adding an extra 405 variables.  
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Therefore it appears that 100 (or perhaps even less) are sufficient for a good prediction model.    

The additional 405 are likely to be explaining random noise.  Further methods are investigated in 

section 8.3 of how to select the optimum number of variables when using the ‘average rank’ 

method. 

 

 

Figure 6.11 Relationship between number of variables in the model and correlation. 

6.5.2. Interpretation of top 100 variables 

The top 100 variables using the ‘average rank’ method were examined to assess if they had 

previously been identified in the literature reviews (section 2.3 and 2.4) as potential predictors of 

RA severity.  Only five environmental variables were selected in the top 100 variables.   Disease 

duration and symptom duration (selected as the 1st and 2nd most important variables) are highly 

correlated and clearly a large contributor to RA severity.  The 3rd and 4th variables selected were age 

at time of diagnosis and age at onset of symptoms.  These variables are also highly correlated and 

identified in the literature review (section 2.4.2.2).  BMI was selected as the 9th most important 

predictor of RA severity and identified in the literature review in section 2.4.2.3.   

Interestingly ACPA value did not appear in the top 100 variables and was actually ranked 208th.  

Although this is surprising given the general consensus that it defines two subgroups of RA disease 

(section 6.2.2), it may have a lack of sensitivity as ACPA was not recorded at disease diagnosis and 

therefore could have varied over time. 

Based on the literature review (section 2.4) it is also surprising to find smoking duration and 

smoking pack years to be ranked 233rd and 439th respectively.  Alcohol quantity consumed was also 

ranked very low at 645th.   

It was also expected to find the HLA-DRB1 variables as coded by Tezenas du Montcel et al. (2005) 

S1, S2, S3d, S3p and X to be important as HLA-DRB1 was seen to be the most replicated genetic 

variant influencing RA severity (section 2.2.3).  However, none of these variables were taken 

forward from the lower level by chromosome block models.  To investigate possible reasons why 

they were not selected, the median Larsen score and p-value from a NB model (as described in 
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4.2.5) was extracted for DRB1 categories and none were found to be statistically significant when 

analysed univariately (Table 6.5).   In fact, producing Table 6.5 on the 912 subjects analysed in 

Chapter 4, the ZINB LR p-values are also not significant at the 5% level (DRB1-S1: p=0.062, DRB1-S2: 

p=0.983, DRB1-S3d: p=0.886, DRB1-S3p : p=0.833 and DRB1-X : p=0.161).  In conclusion, it appears 

this cohort of patients would not be able to identify HLA-DRB1 as a key predictor using univariate or 

multivariate modelling. 

Table 6.5 Median Larsen score value for each DRB1 category (394 subjects) 

 
Variable 

 
N subjects 

Median Larsen 
score 

 
p-value  

 
Observation 

DRB1-S1 0  286 38.0 0.592 22.3% decrease from 0 to 
1, 39.5% decrease from 0 
to 2. 

DRB1-S1 1  102 29.5 

DRB1-S1 2  6 23.0 

DRB1-S2 0  175 33.0 0.542 17.2% increase from 0 to 
1, 39.1% increase from 0 
to 2. 

DRB1-S2 1  187 37.0 

DRB1-S2 2  32 44.5 

DRB1-S3d 0  371 36 0.321 No linear pattern 

DRB1-S3d 1  21 55 

DRB1-S3d 2  2 14 

DRB1-S3p 0  181 35.0 0.823 No linear pattern 

DRB1-S3p 1  189 36.0 

DRB1-S3p 2  24 36.5 

DRB1-X 0  257 38.0 0.661 No linear pattern 

DRB1-X 1  115 32.0 

DRB1-X 2  22 35.5 

The details of each SNP in the final model are shown in Table 6.6.  The table columns show the 

selection order (from one to 100, excluding the environmental variables), the number of times the 

SNP was selected out of 50 models (10 runs of 5-fold CV), the average rank (median order from the 

folds and runs), the number of patients, the median Larsen score for each genotype and p-value 

from a NB model as described in section 4.2.5.   

Sixty-eight of the top 95 SNPs (71.6%) were significant at the 5% level and 43 (45.3%) at the 1% 

level.  Investigation of the medians for each genotype in Table 6.6 revealed that most SNPs have 

evidence of a monotonic increase or decrease in median Larsen score.  However, this summary 

statistic does not inform us of the underlying distribution of the data. 

The following SNPs, identified using PLS methods to be in the top 100 variables of importance, were 

also found in genes documented in the literature review (section 2.3); rs470747 is an intron variant 

in the MMP1 gene and WTAPP1, rs470215 is an intron variant in WTAPP1 and 3’ UTR variant in 

MMP1 gene, rs470168 is a 3’ UTR variant in the MMP10 gene and rs1843933 is intron variant in the 

CARD11 gene.  Only rs1076933 (Intron variant in ARHGAP8 and PRR5-ARHGAP8) selected in the 

chapter 4 modelling was also selected in this GWAS modelling.  Attempts to externally validate 

selected important SNPs and further quantify whether the model is performing better than chance 

alone is investigated in sections 6.5.4 and chapter 8. 
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Table 6.6 Table of the top 100 selected SNPs from the ‘average rank’ method 

SNP Order/ 
n times 
selected/ 
avg rank 

Genotype:  
N subjects :  
Median 
Larsen score 

p-value Chr. Description of SNP 

rs11211654 5/ 50/ 8 0: 343: 32,  
1: 48: 58.5,  
2: 3: 107 

0.00123 2 A/G Intron variant in the TPO gene (thyroid peroxidase).   
(key enzyme involved in the thyroid hormone synthesis)  

rs9326161 6/ 50/ 15 0: 350: 32.5,  
1: 42: 64.5,  
2: 2: 79.5 

0.00082 2 C/T Intron variant in the TPO gene (thyroid peroxidase).   
(key enzyme involved in the thyroid hormone synthesis) 

rs760609 7/ 50/ 
18.5 

0: 120: 25,  
1: 211: 36,  
2: 63: 58 

0.00267 6 G/T intergenic variant of unknown function 

rs1449779 8/ 50/ 19 0: 262: 29,  
1: 106: 46.5, 
 2: 26: 63 

0.00005 4 C/T intergenic variant of unknown function 

rs2218495 10/ 50/ 
27.5 

0: 285: 29,  
1: 101: 51,  
2: 8: 49.5 

0.01850 2 A/G intergenic variant of unknown function 

rs7661111 11/ 50/ 
29.5 

0: 317: 41,  
1: 74: 20.5,  
2: 3: 2 

0.00044 4 A/G Intron variant in the protocadherin 7 (PCDH7) gene.  

rs9884240 12/ 50/ 
36.5 

0: 292: 33,  
1: 98: 51.5,  
2: 4: 85.5 

0.01299 4 C/T intergenic variant of unknown function 

rs754043 13/ 12/ 
37 

0: 364: 33,  
1: 27: 58,  
2: 3: 112 

0.11438 16 C/T intron variant in the GPT2 gene. Glutamic pyruvate 
transaminase (alanine aminotransferase) 2. 

rs4898652 14/ 50/ 
37.5 

0: 135: 25,  
1: 189: 40,  
2: 70: 49 

0.00792 14 A/G intron variant in the  SOS2 gene.  Son of sevenless 
homolog 2 (Drosophila).  

rs470747 15/ 50/ 
38.5 

0: 166: 27,  
1: 182: 37.5, 
2: 46: 60.5 

0.05962 11 C/T intron variant of the MMP1 gene and WTAPP1.  

rs470215 16/ 50/ 
43 

0: 166: 26.5, 
1: 183: 38,  
2: 45: 60 

0.06504 11 A/G intron variant of WTAPP1.  3’ UTR variant in MMP1 
gene.   

rs11897977 17/ 50/ 
44.5 

0: 332: 33,  
1: 58: 54.5,  
2: 4: 108 

0.00975 2 A/G intron variant in TPO.  

rs7142677 18/ 49/ 
49 

0: 330: 32,  
1: 61: 59,  
2: 3: 138 

0.04593 14 A/C intron variant in MOK protein kinase gene ( a member 
of the mitogen-activated protein kinase superfamily). 

rs1558910 19/ 50/ 
52 

0: 258: 29,  
1: 121: 49,  
2: 15: 55 

0.02358 3 C/T intron variant  in the DGKG gene (diacylglycerol kinase, 
gamma 90kDa) 

rs2015829 20/ 50/ 
60 

0: 262: 29,  
1: 112: 50,  
2: 20: 61 

0.00007 4 C/T intergenic variant of unknown function 

rs10031745 21/ 50/ 
75 

0: 293: 33,  
1: 98: 42.5,  
2: 3: 86 

0.02259 4 C/T intron variant in PDE6B (phosphodiesterase 6B, cGMP-
specific, rod, beta) 

rs6814036 22/ 50/ 
77 

0: 128: 21,  
1: 187: 39,  
2: 79: 49 

0.00138 4 C/T intergenic variant of unknown function 

rs9563202 23/ 50/ 
78.5 

0: 317: 32,  
1: 73: 56,  
2: 4: 92 

0.06573 13 G/T intergenic variant of unknown function 

rs4609584 24/ 50/ 
88.5 

0: 336: 33,  
1: 55: 58,  
2: 3: 54 

0.00238 11 A/G variant 7400 bases upstream of TEAD1 (TEA domain 
family member 1) and 6497 bases upstream of DD413619. 

rs2933639 25/ 50/ 
90.5 

0: 132: 50.5, 
1: 198: 33,  
2: 64: 21 

0.00175 5 C/T intergenic variant of unknown function.   
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SNP Order/ 
n times 
selected/ 
avg rank 

Genotype:  
N subjects :  
Median 
Larsen score 

p-value Chr. Description of SNP 

rs879606 26/ 50/ 
96 

0: 274: 41.5, 
1: 112: 22,  
2: 8: 27 

0.15814 17 A/G variant 1328 bases upstream of PPP1R1B (protein 
phosphatase 1, regulatory (inhibitor) subunit 1B) 

rs11299 27/ 50/ 
98 

0: 323: 40,  
1: 69: 18,  
2: 2: 9.5 

0.00542 20 C/T  5’ UTR variant of CSRP2BP (CSRP2 binding protein) and 
3’ UTR variant of PET117  (homolog S. cerevisiae)  

rs1449760 28/ 50/ 
98.5 

0: 106: 23.5,  
1: 199: 35,  
2: 89: 54 

0.01095 4 A/G intergenic variant of unknown function 

rs1374153 29/ 49/ 
103 

0: 352: 33,  
1: 42: 63,  
2: NA: NA 

0.00966 2 A/G intergenic variant of unknown function 

rs955038 30/ 50/ 
104.5 

0: 277: 29,  
1: 109: 56,  
2: 8: 56 

0.00526 2 A/G intergenic variant of unknown function 

rs7948160 31/ 50/ 
111 

0: 244: 29,  
1: 128: 49.5, 
2: 22: 60 

0.01112 11 A/G intron variant in SPON1 (spondin 1, extracellular matrix 
protein) 

rs1754068 32/ 50/ 
113.5 

0: 215: 29,  
1: 147: 38,  
2: 32: 60.5 

0.01200 9 A/G intergenic variant of unknown function 

rs6788054 33/ 49/ 
118 

0: 299: 33,  
1: 91: 49,  
2: 4: 83.5 

0.05727 3 C/T intron variant in DGKG (diacylglycerol kinase, gamma 
90kDa) 

rs2686386 34/ 50/ 
124 

0: 269: 29,  
1: 117: 50,  
2: 8: 71.5 

0.11752 12 C/T variant 8007 bases upstream of P2RX4 (purinergic 
receptor P2X, ligand-gated ion channel, 4) 

rs1375775 35/ 50/ 
128 

0: 229: 27,  
1: 139: 44,  
2: 26: 53 

0.00018 4 A/G intergenic variant of unknown function 

rs10506802 36/ 4/ 
130.5 

0: 366: 38,  
1: 28: 12.5,  
2: NA: NA 

0.00002 12 G/T  intron variant in SYT1 (synaptotagmin I) 

rs7968671 37/ 4/ 
130.5 

0: 366: 38,  
1: 28: 12.5,  
2: NA: NA 

0.00002 12 C/T  intron variant in SYT1 (synaptotagmin I) 

rs3751143 38/ 49/ 
135.5 

0: 271: 27,  
1: 112: 54.5, 
2: 11: 53 

0.12724 12 G/T missense variant in P2RX7 (purinergic receptor P2X, 
ligand-gated ion channel, 7) 

rs346650 39/ 50/ 
136.5 

0: 122: 47,  
1: 186: 38,  
2: 86: 19 

0.00007 5 A/G intergenic variant of unknown function 

rs1250043 40/ 49/ 
137.5 

0: 219: 27,  
1: 151: 48,  
2: 24: 51.5 

0.01923 2 A/G intron variant in LINC00607 (long intergenic non-
protein coding RNA 607) 

rs1076933 41/ 49/ 
142 

0: 146: 48,  
1: 187: 36,  
2: 61: 18 

0.01126 22 A/G intron variant in ARHGAP8 and PRR5-ARHGAP8 

rs1323056 42/ 50/ 
145.5 

0: 143: 29,  
1: 199: 36,  
2: 52: 54.5 

0.05706 6 A/G intron variant in HS3ST5 and BC042098 

rs470168 43/ 49/ 
146 

0: 187: 29,  
1: 169: 38,  
2: 38: 62.5 

0.22409 11 A/G 3’ UTR variant in MMP10  (matrix metallopeptidase 10 
(stromelysin 2)) 

rs12211935 44/ 49/ 
147 

0: 269: 28,  
1: 114: 42,  
2: 11: 67 

0.00867 6 A/G intergenic variant of unknown function 

rs1013940 45/ 50/ 
150 

0: 325: 32,  
1: 66: 54,  
2: 3: 99 

0.00130 2 C/T 5’ UTR missense variant in SLC5A7 (solute carrier family 
5 (choline transporter), member 7) 

rs1705013 46/ 50/ 
155 

0: 161: 47,  
1: 193: 31,  
2: 40: 26 

0.03301 10 C/T intergenic variant of unknown function 
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SNP Order/ 
n times 
selected/ 
avg rank 

Genotype:  
N subjects :  
Median 
Larsen score 

p-value Chr. Description of SNP 

rs10878920 47/ 49/ 
157.5 

0: 286: 32,  
1: 97: 51,  
2: 11: 55 

0.01212 12 A/G intergenic variant of unknown function 

rs1843933 48/ 49/ 
166 

0: 201: 42,  
1: 165: 33,  
2: 28: 15.5 

0.01497 7 A/G intron variant in CARD11 (mRNA-caspase recruitment 
domain family, member 11) 

rs10898438 49/ 50/ 
168 

0: 121: 28,  
1: 191: 33,  
2: 82: 58 

0.01379 11 A/G intergenic variant of unknown function 

rs9847705 50/ 49/ 
170 

0: 206: 45,  
1: 156: 27.5,  
2: 32: 22 

0.01438 3 G/T intergenic variant of unknown function 

rs799923 51/ 50/ 
171 

0: 228: 43.5, 
1: 145: 27,  
2: 21: 17 

0.06218 17 A/G intron variant in BRCA1, associated with early onset 
breast cancer. 

rs3970313 52/ 47/ 
174 

0: 343: 33,  
1: 51: 54,  
2: NA: NA 

0.00551 4 A/G intergenic variant of unknown function 

rs2132046 53/ 50/ 
176 

0: 289: 40,  
1: 99: 22,  
2: 6: 10 

0.02793 7 A/G intergenic variant of unknown function 

rs1532190 54/ 50/ 
190 

0: 118: 54,  
1: 184: 33.5, 
2: 92: 23 

0.31945 3 G/T intron variant in GXYLT2 (glucoside xylosyltransferase 
2) 

rs2017317 55/ 49/ 
193.5 

0: 143: 49,  
1: 189: 36,  
2: 62: 18 

0.01530 22 C/T intron variant ARHGAP8 and PRR5-ARHGAP8  

rs7770227 56/ 50/ 
194.5 

0: 134: 28.5,  
1: 206: 37,  
2: 54: 52.5 

0.06430 6 A/G intron variant in HS3ST5 and BC042098 

rs10498671 57/ 50/ 
195.5 

0: 267: 44,  
1: 111: 29,  
2: 16: 21 

0.00890 6 C/T intron variant in BMP6 (bone morphogenetic protein 6) 

rs354082 58/ 14/ 
214 

0: 364: 33,  
1: 30: 58,  
2: NA: NA 

0.07122 7 C/T variant 1363 bases downstream of TRNA-Cys 

rs4770403 59/ 48/ 
216.5 

0: 244: 30,  
1: 133: 44,  
2: 17: 66 

0.00708 13 A/G 5’ UTR variant in SGCG (sarcoglycan, gamma 35kDa 
dystrophin-associated glycoprotein)  

rs8015527 60/ 45/ 
220 

0: 332: 33,  
1: 60: 51.5,  
2: 2: 112 

0.00315 14 C/T intergenic variant of unknown function 

rs892533 61/ 49/ 
221 

0: 194: 41.5, 
1: 168: 31,  
2: 32: 16 

0.00021 13 A/G intergenic variant of unknown function 

rs6427859 62/ 49/ 
225.5 

0: 252: 30.5, 
1: 132: 43.5, 
2: 10: 45 

0.05745 1 A/C intron variant in CAMSAP2 ( calmodulin regulated 
spectrin-associated protein family, member 2) 

rs7528217 63/ 49/ 
225.5 

0: 252: 30.5,  
1: 132: 43.5, 
2: 10: 45 

0.05745 1 C/T intron variant in CAMSAP2 ( calmodulin regulated 
spectrin-associated protein family, member 2) 

rs265005 64/ 48/ 
229 

0: 198: 27.5,  
1: 169: 40,  
2: 27: 68 

0.00402 5 C/T intergenic variant of unknown function 

rs2646852 65/ 50/ 
230.5 

0: 134: 24.5,  
1: 188: 37.5,  
2: 72: 55 

0.10964 1 A/G intergenic variant of unknown function 

rs8032023 66/ 49/ 
234 

0: 126: 24,  
1: 195: 39,  
2: 73: 54 

0.00135 15 C/T intron variant in RORA (RAR-related orphan receptor A) 

rs1354969 67/ 48/ 
234 

0: 131: 54,  
1: 198: 33,  
2: 65: 25 

0.13326 8 C/T variant 3454 bases upstream of U6. 
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SNP Order/ 
n times 
selected/ 
avg rank 

Genotype:  
N subjects :  
Median 
Larsen score 

p-value Chr. Description of SNP 

rs6050732 68/ 42/ 
235 

0: 359: 33,  
1: 34: 64,  
2: 1: 118 

0.01084 20 A/G intron variant in ZNF337 

rs10511820 69/ 49/ 
236.5 

0: 184: 44,  
1: 160: 33,  
2: 50: 22 

0.05292 9 A/C intron variant in LINGO2  (leucine rich repeat and Ig 
domain containing 2) 

rs2889450 70/ 48/ 
238 

0: 146: 49,  
1: 186: 36.5,  
2: 62: 19 

0.04118 2 C/T intergenic variant of unknown function 

rs11902332 71/ 47/ 
239 

0: 294: 33,  
1: 88: 39,  
2: 12: 100.5 

0.90722 2 A/G intron variant in ANKRD44  (Ankyrin repeat domain 44) 

rs2242310 72/ 49/ 
241 

0: 122: 51.5,  
1: 192: 37,  
2: 80: 21 

0.00604 4 C/T intron variant in SCFD2  (sec1 family domain containing 
2).  3’ UTR variant of AK055055. 

rs4623925 73/ 49/ 
244 

0: 220: 44,  
1: 146: 26.5,  
2: 28: 17 

0.00168 11 A/G intron variant in BC070093. 

rs508835 74/ 49/ 
244 

0: 220: 44,  
1: 146: 26.5,  
2: 28: 17 

0.00168 11 C/T intron variant in BC070093. 

rs2101201 75/ 49/ 
244.5 

0: 119: 52,  
1: 191: 37,  
2: 84: 21 

0.00744 4 C/T intron variant in SCFD2 (sec1 family domain containing 
2)  

rs10457277 76/ 49/ 
246 

0: 268: 28.5, 
1: 116: 41.5, 
2: 10: 64 

0.00776 6 A/G intergenic variant of unknown function 

rs3115667 77/ 49/ 
248.5 

0: 244: 42.5, 
1: 131: 33,  
2: 19: 13 

0.00039 6 A/G variant 9760 bases upstream of GPANK1, 5556 bases 
downstream of CSNK2B, 3172 bases downstream of 
LY6G5B  and 1062 bases downstream of LY6G5C 

rs782933 78/ 48/ 
251.5 

0: 320: 32,  
1: 72: 55,  
2: 2: 99.5 

0.00121 15 A/C intron variant in RORA (RAR-related orphan receptor A) 

rs7816057 79/ 49/ 
253.5 

0: 185: 26,  
1: 175: 47,  
2: 34: 54.5 

0.03880 8 G/T variant 3498 bases upstream of U6. 

rs2499937 80/ 49/ 
255.5 

0: 226: 44,  
1: 139: 25,  
2: 29: 19 

0.00041 11 A/G intergenic variant of unknown function 

rs4099560 81/ 48/ 
256 

0: 344: 33,  
1: 48: 57.5,  
2: 2: 83.5 

0.47210 7 A/G intron variant in MKLN1 (muskelin 1, intracellular 
mediator containing kelch motifs) 

rs2429862 82/ 47/ 
256.5 

0: 222: 28.5,  
1: 151: 44,  
2: 21: 73 

0.00487 11 A/G variant 4628 bases downstream of BC040894 and 2862 
bases upstream of RPLP0P2. 

rs7852101 83/ 1/ 
258 

0: 367: 35,  
1: 27: 73,  
2: NA: NA 

0.42565 9 A/C intergenic variant of unknown function 

rs2843157 84/ 48/ 
258.5 

0: 308: 32,  
1: 81: 59,  
2: 5: 20 

0.00236 1 A/G 3’ UTR variant in SKI ( v-ski sarcoma viral oncogene 
homolog (avian)) 

rs2680182 85/ 49/ 
259 

0: 336: 32,  
1: 54: 57,  
2: 4: 68 

0.01280 2 A/G intron variant in LINC00607 (long intergenic non-
protein coding RNA 607) 

rs6916278 86/ 36/ 
268.25 

0: 361: 38,  
1: 33: 13,  
2: NA: NA 

0.00143 6 A/G intron variant in LY6G6F (lymphocyte antigen 6 
complex, locus G6F) and ABHD16A 

rs7111383 87/ 49/ 
271.5 

0: 227: 43,  
1: 139: 26,  
2: 28: 17 

0.00184 11 C/T intron variant in BC070093 

rs7581781 88/ 35/ 
272 

0: 360: 33,  
1: 34: 66,  
2: NA: NA 

0.01281 2 A/G intergenic variant of unknown function 
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SNP Order/ 
n times 
selected/ 
avg rank 

Genotype:  
N subjects :  
Median 
Larsen score 

p-value Chr. Description of SNP 

rs12001157 89/ 47/ 
275.5 

0: 349: 33,  
1: 45: 59,  
2: NA: NA 

0.00502 9 A/G intron variant in APBA1 ( amyloid beta (A4) precursor 
protein-binding, family A, member 1)  

rs10792830 90/ 49/ 
280.5 

0: 131: 51,  
1: 183: 34,  
2: 80: 25 

0.02843 11 A/G intergenic variant of unknown function 

rs1860404 91/ 49/ 
287.5 

0: 291: 30,  
1: 98: 52.5,  
2: 5: 66 

0.00043 10 C/T intron variant in SLC18A2 (solute carrier family 18 
(vesicular monoamine), member 2 ) 

rs2395672 92/ 46/ 
291 

0: 253: 29,  
1: 126: 54.5,  
2: 15: 44 

0.02697 6 A/G intron variant in FTSJD2  (FtsJ methyltransferase 
domain containing 2) 

rs1413882 93/ 48/ 
298.5 

0: 245: 32,  
1: 135: 39,  
2: 14: 79 

0.14185 13 A/G intergenic variant of unknown function 

rs6420308 94/ 48/ 
298.5 

0: 245: 32,  
1: 135: 39,  
2: 14: 79 

0.14185 13 C/T intergenic variant of unknown function 

rs10925085 95/ 50/ 
299.5 

0: 149: 46,  
1: 172: 34,  
2: 73: 24 

0.31166 1 C/T  missense variant in OR2G2 (olfactory receptor, family 
2, subfamily G, member 2) 

rs2643891 96/ 48/ 
300 

0: 275: 33,  
1: 110: 51,  
2: 9: 22 

0.06654 1 A/G intron variant in MORN1 ( MORN repeat containing 1)  

rs1879390 97/ 48/ 
302.5 

0: 309: 33,  
1: 81: 55,  
2: 4: 54.5 

0.00380 12 G/T intergenic variant of unknown function 

rs702479 98/ 47/ 
303 

0: 192: 28,  
1: 178: 39,  
2: 24: 67.5 

0.05599 7 C/T intergenic variant of unknown function 

rs7319076 99/ 48/ 
303.5 

0: 110: 22,  
1: 190: 37,  
2: 94: 54 

0.03406 13 A/G intergenic variant of unknown function 

rs2272593 100/ 49/ 
312.5 

0: 245: 42,  
1: 132: 33,  
2: 17: 13 

0.00073 6 A/G missense variant in PRRC2A (proline-rich coiled-coil 2A) 

 

6.5.3. Variance partitioning of the final model 

The top 100 variables of the model resulted in a correlation of r=0.890 between actual and 

predicted Larsen score.  However, how much of this model’s predictive ability was due to genetics 

and how much was due to disease duration, symptom duration and the environmental variables? 

Using the multi-block variance partitioning method (Skov et al., 2008) described in section 4.3.4, the 

variation that the model explained was partitioned into that attributable to disease duration and 

symptom duration, environment and genetics.  56% of the explained variation by the model was 

attributable to genetics alone using the ‘GWAS SNPs’ dataset to produce a final model containing 

100 SNPs (Table 6.7, Figure 6.12).   This is a considerable increase from the ‘all subjects’ dataset 

model which investigated 368 SNPs in chapter 4 and found approximately 13% of the explained 

variation was attributable to genetics alone.   
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Table 6.7 Multi-block variance partitioning of 100 variable model using ‘average rank’ method 

First block 
fitted 

A: Larsen score variation 
explained by each block 
when fitted alone (%) 

B: Larsen score variation unique to 
that block i.e. the variation is not 
common to the other blocks (%). 
(Percentage unique: B/A*100). 

DD&SD 32.64 17.98 (55.1%) 

Environment 26.94 15.77 (58.5%) 

Genetics 75.51 56.23 (74.5%) 

 

 

Figure 6.12 Pie chart of variance partitioning of 100 variable model using ‘average rank’ method 

 

6.5.4. External replication of the top 10 SNPs 

In order to determine whether the top 10 SNPs identified as being predictive using the ‘average 

rank’ method on the ‘GWAS SNPs’ dataset (Table 6.6) are transferable to other cohorts, 

independent replication was provided by Dr Annette van der Helm-van Mil and Hanna van 

Steenbergen of the Leiden University Medical Center (LUMC).  Data consisted of a GWAS performed 

on 290 ACPA-negative patients from the Leiden Early Arthritis Clinic (LEAC) (van Aken et al., 2003) 

and a GWAS performed on 385 ACPA positive patients from the North American Rheumatoid 

Arthritis Consortium (NARAC) (Croiseau and Cordell, 2009).  As these were longitudinal data in an 

early RA cohort, log transferred Sharp scores were analysed using a repeated measures analysis of 

variance (ANOVA) including a genotype by time interaction term in addition to other potential 

confounders (such as gender, age, ACPA, RF, smoking and BMI).  The choice of covariates was in 

accordance with LUMC standard practices for analysing these cohorts.  The Sharp score is similar to 

the Larsen score except that it includes a count of joint space narrowing in addition to erosive 

damage.  In the case where GoRA SNPs did not exist in the NARAC or LEAC cohorts, proxy SNPs 

were used where possible (Table 6.8). 
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Table 6.8 Replication results of the top 10 SNPs (proxy SNPs identified) 

SNP NARAC results LEAC results 

rs11211654 NA NA 

rs9326161 NA NA 

rs760609 rs1323056: p=0.34 rs1323056: p=0.12 

rs1449779 p=0.49 NA 

rs2218495 p=0.95 NA 

rs7661111 p=0.71 p=0.69 

rs9884240 rs9997286: p=0.30  p=0.17 

rs754043 NA NA 

rs4898652 rs7141809: p=0.11  p=0.10 

rs470747 NA p=0.08 

NA = Not available 
 

Three of the top 10 SNPs were not available even as proxies in either of the cohorts.  Of the 

remaining seven SNPs, only rs4898652 with p-values in NARAC and LEAC of 0.11 and 0.10 

respectively and rs470747 with a p-value of 0.08 in the LEAC cohort looked promising.  The NARAC 

and LEAC data for rs4898652 and the LEAC data for rs470747 indicated a decrease in severity scores 

with an increase in genotype (0 to 1 to 2).  However, the GoRA ‘GWAS SNPs’ dataset, indicated an 

increase in severity scores with an increase in genotype (Figure 6.13).  It was therefore concluded 

that none of the top 10 SNPs could be externally replicated at this time.  This could be due to the 

model being formed on a relatively small number of patients (N=394), or that the replication sets 

are in early RA and do not have similar characteristics to the GoRA population.  Unfortunately 

external replication using a PLS model cannot be performed due to no cohort existing with the same 

SNPs as used in the GoRA dataset.  Chapter 8 provides further exploration into methods of model 

validation. 

  

Figure 6.13 Raw data, box plots and p-values from GoRA study for rs4898652 and rs470747 
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6.5.5. Manhattan plot using NB models 

When analysing the top 100 SNPs selected by the SPLS methodology, none of the SNPs in Table 6.6 

met univariate genome wide significance of p<1.5x10-7, calculated using a bonferroni correction for 

325000 SNPs.  Sixty-eight of the top 95 SNPs (71.6%) selected were significant at the 5% level and 

43 (45.3%) were significant at the 1% level using NB models as described in 4.2.5.   

Manhattan plots are used in the literature to identify the strongest associations between 

phenotypes and SNPs.  It was decided to investigate whether the SPLS ‘average rank’ method was 

missing any highly statistically significant SNPs which would have been identified by a more 

standard univariate analysis presented in a Manhattan plot.   

SNPs were fitted one at a time in a NB model (as described in section 4.2.5).  The p-values from 

univariately testing all 324563 SNPs were plotted using a Manhattan plot (Figure 6.14) using code 

sourced from: http://people.virginia.edu/~sdt5z/0STABLE/qqman.r 

 

Figure 6.14 Manhattan plot of ‘GWAS SNPs’ dataset for 324563 SNPS. 

In Figure 6.14 none of the p-values from the NB models are less than 1.5x10-7 (Above 7 on the y-

axis).  Given the testing of 324563 SNPs using a sample size of 394, it is of interest to calculate the 

power for the effect sizes observed in this data.   The power is the probability of rejecting the null 

hypothesis, given the null hypothesis is false. In other words rejecting that β=0 given the true value 

for β≠0.   

It was decided to use the Poisson distribution to provide an over-simplified approximation of the 

power which could be achieved using ZINB models.  For ease of calculation, it was assumed the 

models only have the one variable of interest (one SNP) in the model.  The equations shown below 

http://people.virginia.edu/~sdt5z/0STABLE/qqman.r
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describe how PASS 2008 sample size calculation software estimates power for Poisson regression 

models (Hintze, 2008) using formulae derived by Signorini (1991).   

Using the Poisson distribution, the probability of y events can be modelled as follows, where u 

represents the mean incidence rate:  

   (       
     

  
 

In Poisson regression, it is assumed that   is determined by a set of regressor variables.  For 

estimation of a SNPs effect on the Larsen score,       (         where    can be thought of as 

the SNP of interest (a single covariate in the model),    is the baseline response rate and exp(    is 

the change in Larsen score for a one point increase in frequency of the common allele (i.e. from a 

genotype of 0 to 1).  In the regression model, we want to test the null hypothesis that   =0 (no SNP 

effect) versus the alternative that   =B1.  Hintze (2008) use the following formula to calculate the 

sample size (N):   

   
(      √ (              √ (         )

 

      
 

In the above equation, α is the type I error, β is the type II error, Z is the standard normal deviate 

and   is a measure of over-dispersion, where for these calculations, no over-dispersion is assumed 

by setting   = 1.  As   is unknown,    is estimated from the data using the maximum likelihood 

estimate of   .   (         is the variance of    under the null hypotheses and  (          is 

the variance of    under the alternative hypothesis.  In order to calculate the variance of   under 

the null and alternative hypotheses, a probability distribution for the SNP (    being investigated 

must be specified.   The binomial distribution was selected.  By converting the genotypes to allele 

frequencies, the proportion of patients (     with the common allele can be calculated.  PASS 

software uses this value in the calculations of the variance of   shown below. 

Under the Null Hypothesis:    (         =  
 

   (      
 

Under the Alternative Hypothesis:   (          
 

     
 

 

       

The SNPs analysed in the Manhattan plot (Figure 6.14), were used to calculate the frequency of 

common allele.  On average, across all 324563 SNPs, the common allele was observed in 75% of 

patients (   =0.75).   However, SNPs vary widely in the common allele frequency, hence    =0.5 

was also investigated as this would estimate the power using the most optimistic assumption about 

   . 

Using the SNPs analysed in the Manhattan plot (Figure 6.14), the maximum effect size associated 

with a change in the frequency of the common allele (from a genotype value of 0 to 1) was 

observed to be a 145% increase in the Larsen score.  However, this would be an exceptionally large 

effect size for one polymorphism.   A range of effect sizes are presented in Figure 6.15 and Figure 

6.16 to correspond to a 10% increase (0.1) up to a 145% increase (2.45).  The calculations provided 

are likely to be optimistic as over-dispersion (   ) was not allowed for in the power calculation.   

The power estimate would be reduced if over-dispersion was present. 
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Figure 6.15 Power calculations (alpha=0.05) 

 

 
Figure 6.16 Power calculations (alpha=1.5x10

-7
)

 

 
Assuming the testing of a single SNP using 394 subjects, a 5% alpha level of significance corresponds 

to more than 90% power to detect a 50% increase (1.5) in the Larsen score for a one point common 

allele frequency increase (0 to 1) (Figure 6.15).  However, when testing 324563 SNPs, the GWAS 

alpha significance level was <1.5x10-7.  In this scenario, less than a 10% power is associated with a 

50% increase for a one point common allele frequency increase (0 to 1) (Figure 6.16). Therefore, 

with 324563 SNPs and 394 subjects, we require substantially bigger SNP effect sizes (potentially 

unrealistically large for the effect of one SNP) to have enough power to detect significance at the 

GWAS adjusted alpha level.   It is worth noting that this GWAS SNP data formed part of a much 

larger GWAS study consolidating many subjects together from different cohorts.  

The top 95 SNPs with the lowest p-values from the NB models were extracted and compared to the 

95 SNPs selected in the final 10 run 5-fold CV model (section 6.5.2).  The following six SNPs were 

chosen by both models, however, the remaining 89 were different:  rs1375775, rs1860404, 

rs2499937, rs3115667, rs7661111 and rs892533.  The reason for the difference could be due to PLS 

identifying SNPs correlated with severity, aiming to explain all the variation as opposed to a 

univariate analysis which identifies SNPs with the largest effect sizes. 

It was decided to use the smallest p-values from the NB models (combined with the top 

environmental variables chosen using SPLS), to see how well such a model can predict the Larsen 

score.  The expectation was that selecting SNPs based on the smallest p-values from NB models 

would perform worse than using SPLS and the ‘average rank’ method.  The reason for this is that 

SPLS chooses variables to explain as much variation as possible, whereas univariate p-values are 

simply identifying the SNPs with highest association to the Larsen score. 

To investigate how the 95 SNPs with the lowest p-values in the NB models perform in a PLS 

prediction model, they were used along with the same five environmental variables identified in the 

‘average rank’ method SPLS model to predict the Larsen score.  Figure 6.17 reveals a correlation of 

0.845 which only very slightly lower to the correlation observed in ‘average rank’ method with 100 

variables, r=0.890 (Figure 6.11).  Examination of the two correlation plots indicates that the 

univariate SNP selection model has a higher residual error associated with the higher Larsen scores 

(Figure 6.17).  In comparison, the SPLS model has a constant residual error (Figure 6.11).  This is 

thought to be because variables selected through PLS models will attempt to explain all Larsen 
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score variation using many predictors in combination, whereas univariate testing uses the variables 

in isolation.  Whilst, the SPLS ‘average rank’ method appears to be the better approach, this 

research identifies the difficulty selecting true predictors from such high-dimensional data.  Further 

validation methods are therefore investigated for the ‘GWAS SNPs’ dataset in section 8.3. 

  

Figure 6.17 Actual versus predicted Larsen score for 95 SNPs selected from Manhattan plot 

Using the p-values from the NB models to produce a Q-Q plot indicates that observed p-values are 

higher (larger) than would be expected for this number of tests (Figure 6.18).  For example the 

lowest p-value we observe is approximately 0.0001 (1x10-4) whereas with this number of tests we 

would expect 0.000001 (1x10-6).  The figure was recreated excluding SNPs with low MAF (<5%, 

<10% and <20%), however all figures looked similar to Figure 6.18.  Therefore, it was unlikely that 

the observed departure from the line of the theoretical distribution is due to low MAF.  As the line 

begins to depart from the theoretical distribution when the observed p-values are just 0.1 (1 on the 

Y-axis), it is speculated that the assumptions for the NB distribution do not hold well for this data.   

In section 4.3.2 and 4.4.2, p-values calculated using ZINB models on the ‘All subjects’ data were 

found to vary widely just by changing the method of data imputation which resulted in sparse 

categories having present or absent data.  Further issues with using standard regression theory with 

multivariate data is further discussed in 3 and 10.3.   

  
Figure 6.18 Q-Q plot of NB models for ‘GWAS SNPs’ dataset (324563 SNPS) 
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6.6. Summary 

The SPLS ‘percentage fold’ method which was developed in chapters 4 and 5 was applied to the 

‘GWAS SNPs’ dataset.   Due to the size of the dataset (325482 SNPs), SNPs were divided into 40 

blocks, with each chromosome being split so that no block had more than 12000 SNPs in it.  Each 

block of SNPs were modelled including the environmental variables each time.  The ‘percentage 

fold’ method consisted of taking each block in turn and assessing it for the optimum number of 

variables to extract, by plotting the R2-CV by number of variables extracted.  Numbers of variables 

to extract for each chromosome block ranged from 200 variables to just 10.  50 runs of 5-fold CV, 

extracting the relevant number of variables each time, were produced on all 40 blocks.  Any 

variables being selected in at least 2 out of 5 folds in all 50 runs were retained for the higher level 

model (maximum SNP model section 6.3.2.2).  As so many SNPs were carried through (919), it was 

also decided to produce a minimum SNP model (section 6.3.2.1) which only retained SNPs for the 

higher level model if they were extracted in 5 out of 5 folds in all 50 runs.  It was intended that the 

CV process would be repeated on the higher level models to reduce the number of variables 

further, however, investigation under CV suggested in both cases, keeping all variables formed the 

best model.  The minimum SNP model (493 SNPs) resulted in a correlation between actual and 

predicted Larsen score of r=0.950 compared to the maximum SNP model (N=919) which was only 

slightly better r=0.963.   This suggested the additional 426 SNPs were probably over fitting the 

model. 

Various efficiencies to the model fitting strategy were examined in order to reduce the time needed 

to run the models and remove the manual step of reviewing plots in order to choose the number of 

variables to extract (section 6.4).  As an alternative to the time consuming ‘percentage fold’ 

method, which was being used in SPLS literature often after pre-filtering of SNPs (Le Cao et al., 

2011), the ‘average rank’ method was developed.  This method used the absolute value of each 

variable’s loading and calculated a median rank over the CV folds and runs of the data.  This 

removed the requirement to extract a set number of variables and allowed a more sensitive ranking 

strategy for the SNPs.  SNPs which were rare but important could feature high in some models but 

not others due to the fold of the patients.  The new strategy meant that these SNPs now had a 

chance of being retained for the higher level model.  Once variables were ranked, the top 200 were 

selected from every chromosome block and taken through to the higher level model.  The same 

process was then used to rank the variables in the higher level model and final models using the top 

5, 20, 50 and 100 variables were examined for their predictive ability (section 6.5.1).   It appeared 

that whilst adding variables up to 100 substantially increase the predictive ability and resulted in a 

correlation between actual and predicted Larsen score of r=0.890, the additional gain in prediction 

from 100 to 505 variables was probably due to over fitting of the model and only achieved a 

correlation of r=0.953 (increase of 0.063).   

Testing revealed that instead of performing 50 runs of 5-fold CV, a similar model was produced 

using just 10 runs.  This along with using the ‘average rank’ method reduced the SPLS running time 

from approximately a week (with manual intervention) to eight hours.   
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In conclusion, the ‘GWAS SNPs’ dataset can be successfully modelled in an automated way using 

SPLS in mixOmics in under eight hours on a standard computer.  Unfortunately, there was 

considerable data preparation work required to split the SNPs into blocks and impute missing data.  

CORExpress software was investigated, however as it used the ‘percentage fold’ method, the 

models created were highly dependent on the number of variables you asked it to retain in the 

model.  In addition, CORExpress has no programming language.  Fitting each of the chromosomes 

individually and having to manually select the model to run was very time consuming.   A further 

way to reduce the preparation work and running time is investigated in chapter 7 using SIMCA 

software.   

Variance partitioning of the final 100 variable model suggested 56% of the Larsen score variation 

was explained by the 95 SNPs in the model. 18% was explained by disease duration and symptom 

duration,16% was explained by age at time of diagnosis, age at onset of symptoms and BMI, leaving 

just 10% unexplained.  Clearly these estimates are very high and may suggest an over fitted model.  

68 of the 95 SNPs (71.6%) were significant at the 5% alpha level and 43 (45.3%) at the 1% level 

when analysed using NB univariate models.  Median Larsen scores by genotype tended to reveal 

monotonic increases or decreases indicating an observable correlation between Larsen score and 

the top 100 SNPs.  However when the top 10 SNPs were selected and analysed in an independent 

cohort using a univariate analysis, none of the findings could be replicated.  Unfortunately, external 

validation using SPLS methods are not possible as there are no available independent cohorts with 

the same SNPs recorded.  Chapter 8 examines other internal methods of validation to attempt to 

quantify the ability of the model to predict the Larsen score.   

It was decided to test all of the SNPs, one at a time using NB models and present the results in a 

Manhattan plot.  No SNPs met the genome wide significance level, perhaps due to the sample size 

being too small (N=394).  SNPs with the 95 lowest univariate p-values were entered into a PLS 

model, which contained the same top five environmental variables, to investigate whether this 

alternative way of selecting SNPs can achieve similar or better prediction than SPLS.   A correlation 

between actual and predicted Larsen score of r=0.845 was obtained which was almost as good as 

the PLS prediction model (r=0.89) despite only six SNPs overlapping both models.   

The final SPLS model achieved excellent predictions of the Larsen score (correlation of 0.89 with 100 

variables).  However, how the model performs on an independent dataset is questionable.  It is 

standard practice to use CV to reduce the chance of over fitting of the model and estimate how well 

the model is likely to fit on an independent set.  However, the final model was selected from 10 

runs of 5-fold CV and as there were so many SNPs to select from, the variables which were chosen 

(in worst case), could be variables which describe the Larsen score very well under CV in this 

sample.   Therefore prediction estimates should be treated with extreme caution.   Quantification of 

the over fitting is investigated in Chapter 8. 
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7. SIMCA modelling of Larsen score – ‘GWAS SNPs’ dataset 

7.1. Aims 

The aim of this chapter is to: 

 Investigate the added functionality and any efficiencies of fitting SPLS in SIMCA compared 

to mixOmics to determine the best method to use in future. 

 Investigate orthogonal PLS (OPLS) and compare it to PLS in SIMCA and mixOmics. 

7.2. Methods 

A limitation of the analysis methods developed in section 6.4.2 is that mixOmics required the 

‘GWAS SNPs’ dataset to be split into smaller blocks due to reaching R’s internal memory limit.  This 

resulted in variable selection methods being applied during the model fitting so that only the most 

predictive variables were carried forward to the higher level model (section 6.4.1).  To do the 

variable selection, CV was required and this needed imputation of missing values to be completed 

prior to the analysis.  This splitting of data into blocks may result in the loss of information for 

correlated variables which happen to appear in different blocks.  In addition, the prior imputation of 

missing data may result in false precision of modelled data as imputed missing values are treated as 

real values in the analysis.  Although CORExpress (section 6.4.4) could model larger blocks and no 

prior imputation was required, it still required a lot of data manipulation and the variables selected 

for the final model were very different to mixOmics perhaps due the inflexibility of the variable 

selection methods.   

SIMCA by Umetrics AB Version 13.0 (Eriksson et al., 2006a, Eriksson et al., 2006b) is a multivariate 

data analysis software capable of analysing the entire ‘GWAS SNPs’ dataset as one dataset and 

requires no prior imputation.   This saves considerable time in data preparation prior to analysis.  

The basic PLS methodology is the same as used by mixOmics however some key differences are 

summarised in Table 7.1.   

As SIMCA analyses all the SNPs together in one model, methods derived in section 6 are not 

required (such as ‘percentage fold’ and ‘average rank’ methods).  Unlike the mixOmics function 

which took approximately five hours to run SPLS on the ‘GWAS SNPs’ dataset on a multi cluster 

machine or eight hours on a standard computer, SIMCA can run PLS models on the entire ‘GWAS 

SNPs’ dataset in approximately 1.5 hours.  The reduction in time using SIMCA is likely to be due to it 

running one PLS on all of the 325,482 SNPs together which is considerably faster than mixOmics 

which takes 40 blocks of SNPs, fits 10 runs of 5-fold CV, selects the most important variables to 

carry forward to the higher level model and then fits the final model. 

As all SNPs are analysed together, SIMCA performs simultaneous PLS & NIPALS imputation of 

missing data.  During the calculation of the PLS components, SIMCA sets the residuals for the 

missing values to zero.  The missing data is estimated iteratively using the minimum distance 

projections onto the current estimate of the loading and score vector.  This has the effect of missing 

data having no influence on the model.  Whilst this appears to be a more appropriate method of 

handling missing data, care is required to not simply analyse variables which are unreliable due to 

the quantity of missing data (Pedreschi et al., 2008).  For this reason, it is useful in SIMCA to use the 



 

114 
 

‘missing value tolerance’ option which removes observations or variables which have a pre-defined 

amount missing data (e.g. greater than 20%). 

Table 7.1 Comparison of R mixOmics and SIMCA® for PLS, SPLS and OPLS 

 R mixOmics v3.1 and 4.0-2
a
 SIMCA® Umetrics AB Version 13.0

b
 

PLS – Using no variable selection   

SPLS – The most important 
predictive X variables are selected 
for final model and only these 
variables contribute to the 
components 

The ‘Percentage fold’ method 
(Section 6.2.4) and ‘Average 
rank’ method (6.4.1) have been 
developed for use with 
mixOmics. 

No variable selection but perhaps 
could use the size of the final 
loadings to select top X variables 
for final model. 

OPLS – Uses no variable selection 
and the variation in X is split into 
that related to Y and that 
orthogonal to Y.  The 1

st
 

component contains all X variation 
related to Y (See below). 

Not currently available If >1 component was required (say 
for multiple Y variables) then this 
would give improved interpretation 
as only the 1

st
 component is 

necessary to view relationship 
between X and Y 

Cross validation Data split into folds, the left out 
rows of X and Y are predicted 
by the model 

Data split into folds, the left out 
rows of X and Y are predicted by 
the model.   

Imputation required? Must impute missing data prior 
to modelling if using CV 

Simultaneously imputes missing 
data and can perform PLS under CV 

Maximum number of variables 
which can be modelled 

<12000 at a time due to 
reaching R’s internal memory 
capacity 

Modelled all 325,482 variables at 
once and a maximum was not 
found  

a: R Foundation for Statistical Computing v2.13.1 or v2.15.1 (Vienna, Austria) 

b: (Eriksson et al., 2006a, Eriksson et al., 2006b) 

In addition to having PLS functionality, SIMCA has implemented a recent extension to PLS, designed 

specifically to aid interpretation of prediction models when there is only one Y variable.  Orthogonal 

PLS (OPLS) (Trygg and Wold, 2002), filters the variation in the X variables into that which is related 

linearly to the Y variable and that which is orthogonal (unrelated) to the Y variable.  With a single Y 

variable, the first component of the model contains all of the information from X which is predictive 

of Y and hence if the model is required for prediction, only the 1st component is of interest.  

Subsequent components can therefore be ignored as they have no (or little in the presence of 

missing data) relation to Y.  Fonville et al. (2010) recommend this approach as it increases the ability 

to model the variation of interest.  The approach has also been recently used in other areas of 

prediction (Vajargah et al., 2012, Genneback et al., 2013).  This is the only software known to 

perform OPLS although there are functions available in MATLAB and R which perform Kernel-OPLS 

for modelling non-linear relationships particularly for calibration studies (Bylesjo et al., 2008).  

However, as modelling of the Larsen score has only required one component to date, unless more 

components are required when analysing multiple RA severity variables, then this option is unlikely 

to be of much benefit. 

SIMCA default options are used.  These consist of NIPALS imputation for missing values, mean 

centring, unit variance for each variable and 7-fold CV whereby every 7th observation is assigned to 

the same fold.  The CV is only used to estimate the fit of the final model.  Although SIMCA has no 

variable selection criteria, to mirror the ‘average rank’ method used in mixOmics, the loadings 

vector from just one run using all subjects (not part of the CV), are used to quantify the influence of 

each X variable on the Larsen score.  The 100 absolute largest loadings are extracted by exporting 



 

115 
 

the loading vector and sorting them in excel.  These values are used to select the top 100 variables 

for the final model.  This model is then compared to the mixOmics model which was described in 

section 6.5.2.   

7.3. Results of SIMCA PLS and OPLS compared to mixOmics SPLS 

The additional predictive ability of including more than one component in the model using the R2 

and R2-CV was examined.  For mixOmics PLS and SIMCA PLS only one component was deemed 

necessary.  For SIMCA OPLS, all variation associated with the Y variable is contained in the first 

component therefore other components can be calculated but only the first component is ever 

needed to quantify a variables influence on the Y variable. 

To enable comparison with the mixOmics SPLS model created using the ‘average rank’ method 

(section 6.5), the top 100 variables from SIMCA models using PLS and OPLS were compared.  All 

three models retained the same five environmental variables of disease duration, symptom 

duration, age at onset of symptoms, age at time of diagnosis of disease and BMI.  Table 7.2 reveals 

much overlap between the three models with80 / 95 SNPs being the same in all three models.   

Table 7.2 Similarity of variables selected by mixOmics, SIMCA PLS and OPLS 

Number of SNPs the same in each pair of 
models (out of 95) 

mixOmics 
10 run SPLS 

 
SIMCA PLS 

SIMCA PLS one run of 7-fold CV 83 -- 

SIMCA OPLS one run of 7-fold CV 81 89 

Using one run in SIMCA of 7-fold CV created a very similar model to the mixOmics 40 blocks of 10 

runs of 5-fold CV but took substantially less time to run (one hour compared to eight hours).  It was 

decided to explore whether one run of 7-fold CV in mixOmics would result in a similar model.  

Unfortunately, there was a substantial loss in similarity.  Although the five environmental variables 

selected were the same, the one run model had a maximum of 70 SNPs the same as the mixOmics 

10 run model, the SIMCA PLS or the SIMCA OPLS.   Only 64 SNPS were the same across all four 

models.  Therefore, reducing the number of runs in the mixOmics modelling to just one run is likely 

to produce a poorer model.  It is believed that SIMCA is more stable because it analyses all SNPs at 

the same time (imputing data using NIPALS on the full dataset, within the model), whereas 

mixOmics is split into smaller lower level blocks and the multiple runs of CV is used to determine 

which variables to carry forward to the higher level model.   

In addition to SIMCA creating a very similar model to mixOmics in a much quicker time, it also had 

the added advantage of easy to produce graphics.  By pasting in chromosome locations for each 

SNP into SIMCA, any graph can be automatically labelled by chromosome.   

To demonstrate the graphical capabilities of SIMCA, a variable influence on projection (VIP) plot was 

produced for the SIMCA PLS model (Figure 7.1).  The Y-axis of the figure indicates the size of 

influence each variable on the X-axis has on the Larsen score.  In models with more than one 

component (or more than one Y variable), the advantage of using the VIP score is that the 

importance of the X variables are assessed using one value rather than multiple values for each 

component.  VIP is derived using the weighted sum of squares of the PLS weights from each 

component contributing to the prediction of the Y variable(s).  In general, variables with values 

above approximately 0.8 or 1 are considered to have an important influence on the Y prediction.  
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Figure 7.1 reveals that as expected the top four variables with highest VIP (all above 2) are disease 

duration, symptom duration, age at onset of symptoms and age at time of diagnosis.  After these 

four variables, the remaining 95 SNPs in the model and BMI have a very similar contribution to the 

prediction of the Larsen score with a VIP score of between 0.8 and 1.2.  SIMCA uses the seven 

models (from the 7-fold cross validation) to calculate standard errors and confidence intervals using 

the standard formula for jack-knifing as described by Efron and Gong (1983).  95% confidence limits 

are plotted around the estimated VIP score in Figure 7.1.  These confidence limits could also be 

used to select variables, with preference given to those of large influence and narrower limits.   

The direction of a variables contribution to the Larsen score can be investigated using either the 

loading for each variable (one per component extracted), or the model coefficients for each variable 

(calculated using all model components).  Figure 7.2 shows the loadings for the 1st component from 

the SIMCA PLS model.  It reveals disease duration and symptom duration to have a positive 

relationship with the Larsen score (a larger disease duration or symptom duration results in a larger 

Larsen score).  At the right hand side of the x-axis, it reveals that as expected, age at onset of 

symptoms and age at time of diagnosis have a negative relationship with the Larsen score (a smaller 

age at onset of symptoms and time of diagnosis results in a larger Larsen score).  BMI is revealed to 

also have a negative relationship based on the ‘GWAS SNP’ data suggesting a lower BMI results in a 

higher Larsen score.  Each SNP can be interpreted in the same way.  SNPs to the left of the plot, 

indicate that a one point increase in genotype, corresponds to an increase in Larsen score.  SNPs to 

the right of the plot, indicate that a one point increase in genotype, corresponds to a decrease in 

Larsen score.   

An alternative way to view variable loadings for each component is in a scatter plot.  The first two 

components for the model using the SIMCA PLS (Figure 7.3) are displayed despite only the 1st 

component being required in the model.  The second component is included for visual purposes 

only.  To gauge the contribution to the Larsen score, a line is drawn from the ‘Larsen_bas’ variable 

(shown on the far right of the figure) through the origin.  Each of the X variables are then projected 

onto this line (at a 90° angle) and the distance each projected variable is from the origin, indicates 

that variables contribution to the Larsen score.  The further from the origin indicates a larger 

contribution.  Figure 7.3 demonstrates that the top 95 SNPs all have very similar influence on the 

Larsen score.  If all GWAS SNPs were plotted, they would have filled in the gap between the two 

groups of positive and negative highest influence SNPs covering the origin. 

To demonstrate how the SIMCA OPLS may provide an advantage to PLS interpretation, a scatter 

plot of the loadings from the 1st component from the SIMCA OPLS model are shown in Figure 7.4.  

The vector of loadings corresponding to the first component is already rotated so that the 

‘Larsen_bas’ (Larsen score) lies exactly on the X axis.  The distance along the X-axis now corresponds 

to the size of contribution to the Larsen score and the Y axis can be ignored as this corresponds to 

variation orthogonal to the Larsen score.   In this scenario, Figure 7.4 adds little extra visually than 

can be observed in Figure 7.3, however, if more than one component was significant in the model, 

having all variation associated with the Y axis projected onto one plane would be beneficial. 
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7.4. Summary 

This chapter investigated whether SIMCA provided better functionality and similar results to the 

mixOmics macros previously used.  SIMCA is substantially quicker than mixOmics and requires very 

little pre-processing of the data.  Although the process cannot be fully automated as in R, it is 

relatively simple to import the ‘GWAS SNPs’ dataset and extract the top 100 variables using the 

absolute loading for each variable after sorting them in excel.  The final 100 variables have to then 

be imported back into SIMCA to obtain the final model.  The graphics are very easy to produce and 

can reveal patterns in the data particularly when colour coding is used for other identifiers (such as 

the chromosome identifier).    

Both the PLS and OPLS models created in SIMCA using one run of 7-fold CV were similar to using 10 

runs of 5-fold CV in mixOmics, with 80/95 variables overlapping all three models.  However, a single 

run in mixOmics using 7-fold CV is not advised, as variable selection becomes more unstable with 

only 70/95 overlapping.  The only advantage found to using OPLS compared to PLS is that the 

interpretation of the results would be simpler if there were multiple components required.  The 

only drawback of using SIMCA compared to R is that it is very time consuming to select or deselect 

patients and variables (you have to individually click on each one).   Hence, it is difficult to 

determine the optimum number of variables to include in a final model as no variable selection is 

available.  In conclusion, mixOmics may be more desirable if you want to fit multiple datasets or 

split your patient sample into training/test sets, as once the pre-processing is completed, the whole 

process can be automated.  However, SIMCA is better if you are modelling a single dataset as you 

do not have to perform any pre-processing or imputation of missing data and it has better graphics.  
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Figure 7.1 Variable importance plot for SIMCA PLS model with SNPs coded by chromosome. 
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Figure 7.2 Loadings for SIMCA PLS model with SNPs coded by chromosome. 
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Figure 7.3 Scatter plot of loadings for SIMCA PLS model with SNPs coded by chromosome. 
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Figure 7.4 Scatter plot of loadings for SIMCA OPLS model with SNPs coded by chromosome. 

 



122 
 

8. SPLS regression of Larsen score: Further methods and validation  

8.1. Aims 

The aim of this chapter is to: 

 Randomly permute the Larsen score data for the ‘GWAS SNPs’ dataset in order to 

investigate the performance of the model on unrelated Y and X data. 

 Randomly permute the Larsen score and Environmental variables for the ‘GWAS SNPs’ 

dataset in order to investigate the additional contribution SNPs have on the predictive 

ability of the model. 

 Split the ‘GWAS SNPs’ dataset into a training model dataset (80% of subjects) and a test 

only dataset (20% of subjects) and apply the ‘average rank’ method to estimate how the 

model may perform on an independent dataset.  Investigate whether a ‘two stage average 

rank’ method could both order and select the optimum number of variables for the final 

model. 

 Split the ‘all subjects’ dataset into a training model dataset (80% of subjects) and a test only 

dataset (20% of subjects) to estimate how the model may perform on an independent 

dataset.  Investigate extending the ‘average rank’ method to a ‘Two stage’ or ‘Three stage’ 

process where stage 1) select the order of importance for variables, stage 2) select the 

optimum number of variables for the final model and stage 3) test the model on an 

independent set of patients.  Investigate whether the model performs better if the ‘all 

subjects’ dataset is restricted to subgroups of disease, such as disease duration less than 10 

years, less than 15 years or ACPA positive disease only. 

8.2. Permutations Analysis – ‘GWAS SNPs’ dataset 

8.2.1. Methods 

Section 6.5 demonstrated a running time efficient, predictive model, using the ‘GWAS SNPs’ dataset 

to predict the Larsen score (the ‘true’ Larsen score data).  However, it is important to determine 

whether the observed predictive ability of the model could have been achieved by chance, due to 

variable selection being performed from 325,482 SNPs and environmental variables, to predict just 

394 subjects.  Accurate prediction could have been obtained simply because of the high-

dimensionality of the dataset.   It was therefore decided to investigate the probability of achieving 

this predictive ability when there is no relationship between the X and Y variables.   

The Larsen score data is randomly permuted 100 times whilst keeping all of the X variables linked to 

the original subject identifiers.  SPLS is fitted to each of the 100 permuted datasets using the 

‘average rank’ method.  For each permutation, the top ranked 100 variables are used to calculate 

the R2 and R2-CV.  100 variables were chosen based on the findings in section 6.5.1.  The distribution 

of the R2 and R2-CV values from the 100 models are compared to the true Larsen score data.  The 

position of the R2 and R2-CV from the true Larsen score model is then used to calculate how likely it 

is to get this result, or more extreme, under the assumption of no relationship between the X and Y 

data.   

A further permutation analysis is performed, randomly permuting the Larsen score and 

environment data together.  This retains the relationship between the Larsen score and variables 

such as disease duration, symptom duration, ACPA, smoking and alcohol use however removes the 
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relationship with the genetic SNPs.   Using 100 permutations, SPLS models are fitted using the 

‘average rank’ method.  As above, for each permutation, the top ranked 100 variables are used to 

calculate the R2 and R2-CV and the distribution of the R2 and R2-CV is compared to the true Larsen 

score data.    If the permuted data performs as well as the real data, this indicates that the SNPs are 

not adding anything to the model above being selected by chance alone. 

This work is completed using a Linux based high performance computing cluster ‘Iceberg’ and an 

updated mixOmics package (González et al., 2011, Lê Cao et al., 2009) version 4.0-2 as available on 

the 9th October 2012 in the R Foundation for Statistical Computing, Vienna, Austria (version 2.15.1). 

8.2.2. Results 

Using the ‘average rank’ method, the true Larsen score data was re-run through the entire 

modelling process.  The top 100 variables were retained for the final model and resulted in an R2 = 

0.866 and an R2-CV = 0.753.   

The Larsen score data was randomly permuted 100 times and each new dataset consisting of the 

original X and permuted Y data was run through the entire modelling process calculating the R2 and 

R2-CV on the final model.  Figure 8.1 demonstrates that on average there was no correlation (r=0) 

between the permuted and true Larsen score datasets, with a range of correlations between 

approximately ± 0.12.  Figure 8.2 and Figure 8.3 show that when retaining 100 variables for the final 

models, none of the 100 permutations achieve an R2 or R2-CV greater than when the true Larsen 

score data is modelled.  This suggests that generating a model as good or better than this one is 

unlikely (p<0.01), when the null hypothesis of no relationship between the X and Y variables is true.  

Therefore there is evidence that the true Larsen score data model contains variables predictive of 

the Larsen score. 

 

Figure 8.1 Correlation between ‘real’ and 100 permuted Larsen score datasets. 
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Figure 8.2 Distributions of R
2
 for the 100 permuted Larsen score datasets 

 

 

Figure 8.3 Distributions of R
2
-CV

  
(Q

2
) for the 100 permuted Larsen score datasets 

The Larsen score and environmental data were permuted 100 times and merged to the non-

permuted SNP data.  These new datasets were run through the entire modelling process using the 

top 100 selected variables as the final model.  The R2 and R2-CV from each of the 100 final models 

were calculated.  Figure 8.4 and Figure 8.5 reveal that two of the 100 permutations achieve an R2 or 

R2-CV greater than when the true Larsen score data is modelled.  This suggests that modelling the 

Larsen score, using the environmental data alone, is unlikely to be able to achieve as good a 

predictive model as modelling the Larsen score using the environmental and genetic SNP data 

(p=0.02).  Hence this analysis suggests that the SNP data is contributing to the model more than just 

by chance alone.   
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Figure 8.4 Distributions of R
2
 for the 100 Larsen score and environment permuted datasets 

 

Figure 8.5 Distributions of R
2
-CV

  
(Q

2
) for the 100 Larsen score and environment permuted datasets 

 

8.3. Independent training and test sets – ‘GWAS SNPs’ dataset 

8.3.1. ‘Average rank’ method using a separate training and test set 

The ‘average rank’ method (described in section 6.4.1 and results shown in section 6.5) created an 

order of importance for each of the variables considered for the model.  This order could then be 

used to form a final model which in section 6.5 contained the top 100 variables.  It was initially 

anticipated, that the use of CV in the ‘average rank’ method, would prevent against over fitting as 

justified in 4.2.1.4.  However, this could not be investigated, as all data was used to form the final 

model.   The correlation between the actual and predicted Larsen score is highly likely to be an 

overestimation of model performance, because the same patients used to create the model have 

been predicted from the model. 
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A more reliable estimate would be obtained using a test sample which is not used at all in the 

creation of the model (Eriksson et al., 2006a, p. 377).  It was decided in section 4.2.1 not to split the 

data into a test and training sample due to only having 394 subjects with GWAS data.  However, 

after the CV and permutation tests resulted in very positive results, it is of interest to investigate 

how well an independent test set can be predicted.   As no known other cohort of data exist with 

the same SNPs and Larsen score measurement, splitting the GoRA sample is the only option. 

Eriksson et al. (2006a, p.377) recommend establishing a test set which represents the entire span of 

possible X data with good representation of the Y data as well.  Although it is difficult with so many 

X variables to ensure good representation of the X’s, subjects can be representative of the 

distribution of the Larsen score Y variable.  Therefore, the subjects are sorted in ascending order by 

the Larsen score and every fifth subject, starting with the 3rd subject, is extracted for the test 

sample (20%).  This test sample should then not be used at all in the creation of a model.   

Using the ‘average rank’ method, the training set (80% of subjects) is used to form a model 

containing 100 variables (based on section 6.5.1).  An 80%/20% split was selected in order to 

hopefully allow the training sample to be sufficiently large (N=315) to form as good a model as 

possible, whilst having enough patients in the test sample (N=79), to be able to adequately assess 

the model fit.  The final model coefficients are extracted from the training data model and used to 

predict the Larsen score for the test set.  The correlation between the actual and predicted Larsen 

score is then plotted.   The program used to produce this analysis is shown in Appendix G which 

invokes the same amended ‘spls’ and ‘valid’ functions as shown in Appendix D. 

8.3.2. ‘Average rank’ method results using a separate training and test set 

Using the ‘average rank’ method, a SPLS model containing the top ranked 100 variables was formed 

using the training set data.  This model was used to predict the Larsen score for the independent 

test set.  Unfortunately, the model revealed quite poor correlation, r=0.385 (Figure 8.6).   No 

subject in this model was predicted with a Larsen score above 85 hence the full range of possible 

Larsen scores is not well represented by this model.  However, generally this is not a problem with 

PLS methods as other models are able to predict the full range of values (Figure 6.11).  In general, as 

all subjects are predicted a value between 10 and 85, subjects with a true value less than 10 are 

over-predicted and those greater than 85 are under predicted.  Hence this model does not perform 

well at the extremes of the distribution. 

In section 6.5.1 models containing from 5 to 505 variables were examined and a model with 100 

variables was chosen because it revealed a good increase in correlation from 50 variables whilst 

hopefully not being over fitted (Figure 6.11).  However, as using this model on an independent set 

appears to perform poorly, reassessment of whether the model is over fitted will be examined and 

how to select the optimum number of variables for the final model will be reinvestigated. 
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Figure 8.6 Independent prediction using the top 100 variables from the training model  

 

8.3.3. ‘Two stage average rank’ method to select variables  

The ‘percentage fold’ method uses internal CV to determine the optimal number of variables as 

recommended by González et al. (2011) and other authors as described in 4.2.1.4.  Using the 

‘percentage fold’ method on the ‘all subjects’ dataset (N=912, 368 SNPs) as shown in Figure 4.3 and 

Figure 4.6, the R2-CV showed a peak and then a decrease in predictive ability when more variables 

were included in the model.  It therefore appears to protect against over fitting, explaining why this 

method is often used in the literature.  However, when using the ‘percentage fold’ method on the 

‘GWAS SNPs’ dataset investigating 325482 SNPs (as shown in Figure 6.3), the model predicts 

increasingly better the more variables which are added.  This is likely to be due to the high 

dimensionality of the data and has recently been reported by Le Floch et al. (2012) who suggest 

univariate filtering (or preferably multivariate filtering) as a ‘mandatory step’.  They warn that as 

SPLS (and PLS) attempt to explain all variation associated with the Y variable, the methods will not 

protect against the inclusion of multiple irrelevant predictors.  It therefore appears that the success 

of the model to protect against over fitting decreases as the dimensionality of the data increases. 

The ‘average rank’ method simply creates a list of variables in order of importance of their 

contribution to the model.   Whilst the top 100 variables were used for the final model in section 

8.3.2, this was only based on comparing the correlations from models with between 5 and 505 

variables.  A 100 variable model was selected as it ‘appeared’ to be a suitable increase in correlation 

for the number of variables added and hence may not be over fitting.  Instead of investigating pre-

filtering methods which are already being explored by authors (Le Cao et al., 2011, Le Floch et al., 

2012), it was decided to investigate whether avoidance of over fitting could be obtained as part of 

the SPLS process. 

To demonstrate the extent of the problem, the ‘average rank’ method was used on the 80% training 

set to create an order of variable importance.   However, instead of using the top 100 variables (as 

used in section 8.3.2), the R2-CV using training set only was calculated using models which 

contained from just two variables to 2000 variables.  It was expected that as R2 was calculated 
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under CV on the training set only, it would reveal a maximum number of variables after which 

adding further variables would only lead to over fitting of the model and hence lower R2-CV.  Figure 

8.7 revealed a small increase from two variables (R2-CV=0.56) to five variables (R2-CV=0.59) after 

which it is relatively level until 100 variables (R2-CV=0.59).  However, there was an upward trend in 

R2 from 100 to 500 variables (R2-CV=0.616) and this trend continued until a R2-CV=0.92 at 2000 

variables.    These results are in agreement with Le Floch et al,. (2012) who report in the high-

dimensional setting, the more variables the model contains, the better the prediction.  However, 

this is likely to be because the variables were chosen through an iterative process which selects 

variables based on their ability to predict well under CV and hence the model is still over fitted and 

would not perform well on an independent set. 

 

Figure 8.7 Using internal (80%) CV to determine optimum number of variables- ‘GWAS SNPs’ dataset 

Whilst the ‘average rank’ method in section 6.5 removed the use of CV to select the optimum 

number of variables, the method resulted in a list of variables with no clear design of how to select 

the optimum for the final model.   Internal CV (as shown in Figure 8.7) does not appear to protect 

against over fitting.  It was therefore decided to investigate if using the 20% test set could 

determine the optimum number of variables to keep in the model instead.  As the 20% test set is 

completely independent to the rest of the model fitting, it should still be able to control against 

over fitting.  However, by using the test set to create the final model, it is no longer independent 

and as such cannot provide an unbiased estimate of model fit.  For this reason the training set is 

referred to as the ‘variable ordering training set’ and the test set is referred to as the ‘variable 

selection training set’. 

A ‘two stage average rank’ method is defined as follows:   

 Split the initial data into 80% of subjects for a ‘variable ordering training set’ and 20% of 

subjects for a ‘variable selection training set’. 

 Stage 1: The ‘average rank’ method is applied to the 80% (using 10 runs of 5-fold CV to 

average the ranked loadings for each variable) to create an ordered list of variables as 

described in section 6.4.1.  

 Stage 2: From 2 to 100 variables are used from the ordered list and final models are created 

fixing the coefficients based on the 80% variable ordering training set.  For example, the 
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first two variables from the ordered list are used to create a model estimating the 

coefficients for the two variables based on the 80% variable ordering training set only.  This 

is the first model.   Following on from this, the same process is used with the top three 

variables from the list and then four variables from the list continuing up to 100 variables. 

Each of these models are used to predict the 20% variable selection training set and the 

correlation between actual and predicted Larsen score is used to determine which model 

(with what number of variables) predicts the 20% of patients the best. 

8.3.4. ‘Two stage average rank’ method results  

Figure 8.8 reveals that the best prediction of the Larsen score for the 20% variable selection training 

set is when just three variables are used.   

The model was: Larsen score = 43.15   +   0.745*DD   +   0.664*SymDur   -     0.501*agediag 

Where DD= Disease duration (time since diagnosis in years), SymDur = Symptom duration (time 

since onset of symptoms in years) and agediag = age at time of diagnosis (years). 

This resulted in a correlation between actual and predicted Larsen score of r=0.622 (Figure 8.9).  

Any additional variables included from the variable ordering training set model, lowered the 

correlation between the actual and predicted Larsen score on the variable selection training set.  

This suggested that the additional variables are over fitting the variable ordering training set model, 

explaining noise in the data and they are not predictive of the Larsen score when used on an 

independent set.  It could also suggest that there is too much noise in the data to be able to 

determine the predictive signals, perhaps because the size of the signals are particularly small.   

Figure 8.9 reveals that there is still substantial unexplained variability in the model.  Despite this, 

the model containing just three variables performs substantially better at the upper extremes of the 

Larsen score than the single stage ‘Average rank’ method (Figure 8.6) which contained 100 

variables.  For example, the maximum value predicted is almost 120 and three subjects between 

100 and 120 are predicted almost exactly.  However, subjects with lower Larsen scores (particularly 

less than 20) are consistently over-predicted.  When the Larsen score is plotted against disease 

duration (Figure 2.2), it was clear numerous subjects did not develop the severity of erosions 

expected based on their disease duration.  Therefore, as this model does not contain any genetics 

or environmental variables, it is likely some key variables which explain why some subjects develop 

more severe disease than others are missing from the analysis.    Unfortunately, with such a small 

sample of patients (training set=315, test set=79), the model is not able to reliably identify these 

variables. 
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Figure 8.8 Correlation between actual and 
predicted Larsen score for 2 to 100 variables 

 

Figure 8.9 Independent prediction using the top 
three variables from the training model 

8.3.5. Summary of results using ‘average rank’ methods on ‘GWAS SNPs’ dataset 

In conclusion, if the variable ordering has been performed using internal CV of a training set, CV 

cannot be then used again with the same subjects to determine the optimum number of variables 

for the model.  Although pre-filtering could be used as suggested by Le Floch et al. (2012), Abraham 

et al. (2013) suggest in other penalised regression methods that this may lead to a reduced ability to 

detect causal SNPs.   

Therefore, a solution was suggested entitled the ‘two stage average rank’ method, which used 80% 

of the data to create the ordered list of variables and 20% to select what number of variables to 

include in order to avoid over fitting.  However, by using the independent sample in this way to 

estimate the number of variables required, this leads to overestimation of how well the model 

would perform on an independent set. 

Using the ‘two stage average rank’ method, the best estimate of the Larsen score is calculated 

simply by:   Larsen score = 43.15   +   0.745*DD   +   0.664*SymDur   -     0.501*agediag 

Where DD= Disease duration (time since diagnosis in years), SymDur = Symptom duration (time 

since onset of symptoms in years) and agediag = age at time of diagnosis (years).  Hence with such a 

small sample of patients, SPLS modelling was not able to identify any SNPs or environmental factors 

contributing to RA severity. 
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8.4. Independent training and test sets – ‘All subjects’ dataset 

8.4.1. ‘Average rank’ method using a separate test and training set 

In order to have more subjects available for use in the modelling, the ‘average rank’ method (on 

separate 80% training and 20% test sets) is applied to the ‘all subjects’ dataset.  Although this 

reduces the number of SNPs available to 368, it may give insight as to whether a better model could 

be determined if there were more subjects.   

Sorting the dataset by the Larsen score, every 5th subject is reserved for the test set (which is used 

for training variable selection in the ‘two stage average rank’ method).  This results in 730 subjects 

in the training set and 182 in the test set (80% training, 20% test).   Ten runs of 7-fold CV are used so 

that approximately 104 subjects are left out of the training set for each of the seven folds.  7-fold CV 

is used instead of 10-fold CV (section 4.4) because it was the SIMCA default (observed in chapter 7) 

and there are 182 fewer subjects in the model creation (training) dataset.  As there are fewer SNPs 

being investigated, the ‘all subjects’ dataset does not require PLS models to be fitted hierarchically 

(extracting the top 200 variables for each chromosome and then fitting a higher level model).   

The ‘average rank’ method is used to produce an order of predictive importance for each of the 

variables based on the 80% training dataset.  Instead of using the top 100 variables for the final 

model which was used in section 8.3.2 on the ‘GWAS SNPs’ dataset, it was decided to reapply a 

technique based on González et al. (2011) detailed in section 4.2.1.4, in an attempt to avoid over 

fitting of the model.  This may be a more applicable approach on the ‘all subjects’ dataset since the 

hierarchical approach (multiple CV models) to select variables is not applied to this smaller set of 

data.  After estimating the optimum number of variables for the final model based on the 80% 

training dataset, the model with fixed coefficients is then used to predict the 20% test set. 

8.4.2. ‘Average rank’ method results using a separate test and training set 

The ‘average rank’ method was applied to the ‘all subjects’ dataset and an order of predictive 

importance created.  To investigate the optimum number of variables to include in the final model, 

one run of 7-fold CV was fitted to models containing from two to 250 variables.  Each models R2-CV 

was plotted against the number of variables that model contained.  The maximum R2-CV was 

observed when the model contained 95 variables (R2-CV=0.5811) however the maximum was 

almost reached at 70 variables (R2-CV= 0.5794) (Figure 8.10).  It was therefore decided to base the 

final model for prediction of the test set on the top 70 variables from the training set model. 
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Figure 8.10 Determination of the optimum number of variables to retain for the final model – ‘All subjects’ 
dataset 

The order of importance of the variables was similar to section 4.4, however, as ACPA and BMI were 

now included as environmental variables (included as described in section 6.2.2), they featured high 

in the order of importance.   Using the top 70 variables to predict the Larsen score on the 

independent test set resulted in a correlation between actual and predicted Larsen score of 

r=0.456.   

8.4.3. ‘Two stage average rank’ method 

In order to investigate whether the correlation of r=0.456 could be improved by using a different 

number of variables to the 70 selected in 8.4.2, it was decided to apply the ‘two stage average rank’ 

method (as described section 8.3.3).    The same 80%/20% splits are used as described in 8.4.1.  If 

improved model prediction can be obtained with fewer variables then it suggests the model is over 

fitted.   This would indicate that CV is not appropriate to determine the number of variables even in 

the case of the smaller ‘all subjects’ dataset. 

8.4.4. ‘Two stage average rank’ method results  

When the model coefficients are formed on the 80% variable ordering training set and used to 

predict the 20% variable selection training set, modelling revealed that the number of variables 

required to have in the model, which achieved the best prediction, was seven (Figure 8.11).   Just 

these seven variables resulted in a higher correlation (r=0.576) than using 70 variable in section 

8.4.2.   

These findings are supportive of section 8.3.4 concluding that determining the number of variables 

to retain in the final model based on internal CV, does not protect the model against over fitting.  

Even on the smaller ‘all subjects’ dataset, the model is still considerably over fitted when the 

number of variables to include is estimated using CV as recommended by (González et al., 2011). 

R
2
-CV
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The top seven variables were disease duration, symptom duration, age at onset of symptoms, age 

at time of diagnosis, ACPA category, BMI and ACPA value (Figure 8.11).   There was wide prediction 

error particularly for subjects with Larsen score equal to zero or very high Larsen score (Figure 

8.12).    Similar to 8.3.2, this model had poor prediction at the extremes of the Larsen score 

distribution, with no predicted Larsen score result over 85.  This is probably due to having very few 

variables included in the model, resulting in the wide variation in the Larsen score not being able to 

be predicted. 

 

Figure 8.11 Correlation between actual and 
predicted Larsen score retaining two to 100 
variables – ‘All subjects’ dataset. 

 

 

Figure 8.12 Independent prediction using the top 
seven variables from the training model – ‘All 
subjects’ dataset. 

 

8.4.5. ‘Two stage average rank’ method for a two component model 

Le Floch et al. (2012) identified the SPLS tendency to retain too many variables contributing to the 

components resulting in an over fitted model.  Based on this, it was considered possible that the 

dataset being explored is so large that truly important predictors which would normally be found 

contributing to a second component, are being overshadowed by multiple predictors (not truly 

predictive) but successfully contributing to the R2 on the first component.   

As described in 3.7.1, the residual error which represents the amount of variation left to explain in 

the X and Y data is calculated after each component’s scores (th) and loadings (ph) have been 

calculated.  This can be written for the X variables as Eh = Eh-1 – thp’h;  X=E0 and for the Y variable(s) 

as Fh = Fh-1 – bhthq’h;  Y=F0  where h is the number of components.  Therefore, if too many variables 

are included in the first component such that it creates an over fitted model explaining much of the 

variation in the data, there will be little residual error left to be predicted by the second component 

(and subsequent components).  However, if a method can restrict the first component to only 

variables truly predictive, then a better model may be achieved using two or more components. 
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This may explain why no model has required two components in any of the work to date.   A review 

of the literature revealed that most authors appear to apply pre-filtering of SNPs and hence the 

problem does not appear to have been explored.   

It was decided to use the ‘two stage average rank’ method on the ‘all subjects’ dataset to see if a 

more successful model can be created with more than one component.  The number of variables 

for the first component will be restricted, based on the ‘two stage average rank’ method results 

from section 8.4.3 (seven variable model protected against over fitting) and then the same ‘two 

stage average rank’ method will be refitted to derive a second component.  By using the 

independent validation to prevent over-fitting in the 1st component, there may be sufficient 

variation unexplained in the Larsen score for a 2nd component to be beneficial to the model 

prediction.  See section 9.2 for further exploration into the use of two components in the context of 

multiple Y severity variable modelling. 

8.4.6. ‘Two stage average rank’ method results for a two component model 

In accordance with section 8.4.3, a model containing seven variables for the first component 

(disease duration, symptom duration, age at onset of symptoms, age at time of diagnosis, ACPA 

category, BMI and ACPA value) was fitted using the training dataset.  The residual variation which 

could not be explained by the first component was then used to fit a second component and the 

variables were ordered according to the average absolute size of the loading vector corresponding 

to the 2nd component across 10 runs of 7-fold CV.   

The seven variables for the first component and from two to 100 of the top ranked variables for the 

second component were fitted and the coefficients for the model obtained based on the training 

data.  These models were then used to predict the Larsen score for the test set.  The highest 

correlation (r=0.579) between the actual and predicted Larsen score was obtained when the top ten 

variables were retained for the 2nd component. This equated to 14 variables in the model in total, as 

there were seven in 1st component and 10 in 2nd component with three overlapping both 

components (Figure 8.13).  The 14 variables were: disease duration, symptom duration, age at 

onset of symptoms, age at time of diagnosis, ACPA category, BMI, ACPA value, rs9366826, age, 

alcohol use, rs805292, rs26232, rs394581 and rs2075800.   Figure 8.14 shows the correlation 

(r=0.579) for the two component model between the actual and predicted Larsen score. 

A correlation of r=0.576 was obtained using one component and seven variables.  Therefore, it 

appears the second component adds very little extra predictive ability (increase in correlation of 

0.003) even when the 1st component is restricted to very few variables.  In this example, it appears 

that the initial tests commonly used with PLS for inclusion of additional components (described in 

4.2.1.3) are adequate.  This will be explored again in chapter 9, when multiple Y variables may make 

additional components contribute to improved prediction in the model.  
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Figure 8.13 Correlation between actual and 
predicted Larsen score retaining two to 100 
variables for the 2

nd
 component– ‘All subjects’ 

dataset 

 

Figure 8.14 Independent prediction using the top 
14 variables and two components from the training 
model – ‘All subjects’ dataset 

 

8.4.7. ‘Three stage average rank’ method 

A fundamental problem with the ‘two stage average rank’ method is that as the 20% independent 

test sample is used to determine the number of variables in the second stage, it is no longer 

independent from the model creation and cannot provide an independent estimate of model 

performance. 

Therefore a ‘three stage average rank’ method was developed and is described below: 

 Split the initial data into 40% of subjects for ‘variable ordering training set’ and 40% of 

subjects for ‘variable selection training set’ and 20% of subjects for independent test set. 

 Stage 1: The ‘average rank’ method is applied to the 40% ‘variable ordering training set’ 

(using 10 runs of 7-fold CV to average the ranked loadings for each variable) to create an 

ordered list of variables.  

 Stage 2: From 2 to 100 variables are used from the ordered list and final models are created 

fixing the coefficients based on the 40% ‘variable ordering training set’ (as described in 

section 8.3.3).   The Larsen score of the subjects in the 40% ‘variable selection training set’ 

are predicted using all of the models and the model with the highest correlation between 

actual and predicted Larsen score selected as the final model. 

 Stage 3: Using the final model chosen in stage 2 (with a fixed number of variables and fixed 

coefficients) the 20% independent test set subjects are predicted.  As these subjects were 

not used at all in creation of the model it should better represent the model performance 

on an independent sample. 

Data was split into three sets containing 40%, 40% and 20% using the ordered Larsen score.  After 

ordering the patients by the Larsen score, patient 1 was assigned to group 1, 2 to group 2 and so on 
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until patient 10 was assigned to group 10.   Patient 11 was then assigned to group 1, 12 to group 2 

and so on until all patients were assigned to one of the 10 groups.  Groups 1, 5, 6 and 10 were 

assigned to the 40% ‘variable ordering training set’ (N=365), groups 2, 4, 7 and 9 were assigned to 

the 40% ‘variable selection training set’ (N=365) and groups 3 and 8 were assigned to the 

independent 20% test set (N=182).  This ensures a similar spread of Larsen score results in each of 

the sets of data. 

8.4.8. ‘Three stage average rank’ method results 

Stage 1 of the ‘three stage average rank’ method was executed using the 40% ‘variable ordering 

training set’.  A list of variables according to importance was created.  Creating models on the 

variable ordering training set containing from 2 to 100 variables and testing it on the 40% ‘variable 

selection training set’ resulted in the highest correlation between actual and predicted Larsen score 

being achieved with 10 variables (r=0.604, Figure 8.15).  The 10 variables were: Disease duration, 

symptom duration, age at symptom onset, Age at diagnosis, ACPA category, ACPA value, rs26510, 

BMI, DRB1 S2 and rs26232. 

 

Figure 8.15 Stage 2 of the ‘three stage average rank’ method applied to the ‘all subjects’ dataset 

The final model was:  

Larsen score= 50.33 + 0.543*DD + 0.515*SD - 0.290*Ageonset - 0.283*Agediag + 6.445*ACPA 

Category + 0.051*ACPA value - 3.161*rs26510 - 0.43*BMI + 3.131* DRB1 S2 - 2.964*rs26232 

Where DD= Disease duration (time since diagnosis in years), SD = Symptom duration (time since 

onset of symptoms in years), Ageonset = Age at symptom onset (years), agediag = age at time of 

diagnosis (years), ACPA category (coded as a 1=positive, 0=negative), rs26510 and rs26232 coded 

according to the frequency of the minor allele (0,1,2), BMI (in kg/m2) and DRB1 S2 (according to the 



 

137 
 

number of alleles (0, 1 or 2) with the amino acid sequence of K-R-A-A motif at positions 71-74 of the 

HLA-DRB1 region in the third hypervariable region of the DR molecule). 

For the first time in this research, genetic variants have been identified as predictive on an 

independent test set.  DRB1 S2 and rs26232 (C5orf30) were previously identified in the literature 

review in section 2.3.2.  rs26510 is a C/T polymorphism located on chromosome 5 at position 

96125910.  It is located in the intron region of the endoplasmic reticulum aminopeptidase 1 (ERAP-

1) gene.  No previous links to RA disease were found in the literature. 

Stage 3 was then performed using this model to predict the 20% of subjects in the independent test 

set.  A correlation of 0.559 was achieved (Figure 8.16) which is a substantial improvement 

compared to using the simpler one stage ‘average rank’ method model (r=0.456) when it was tested 

on an independent set using 70 variables in section 8.4.2.   However, the model still suffers from an 

inability to predict very high and very low Larsen score values with the maximum predicted value 

being approximately 90.   There is wide variation in the prediction ability across all Larsen score 

values.  Therefore, although the use of 10 variables is protecting against over fitting, there is 

substantial unexplainable variation and potentially key variables missing from the model.   

 

Figure 8.16 Stage 3 (independent prediction) using the ‘three stage average rank’ method applied to ‘all 
subjects’ dataset 

 

8.4.9. Summary of results using ‘average rank’ methods on ‘All subjects’ dataset 

This section found evidence that over fitting of SPLS models is still a problem even when CV is used 

on a relatively small dataset (912 subjects, 368 SNPs and 19 environmental variables).  Whilst in 

section 8.3.5, a two stage procedure appeared to reduce the risk of over fitting, it resulted in no 
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independent dataset available to test the final model on (one which is not involved at all in the 

model creation).  One solution to this problem is to split the data into three different sets.   The first 

set is used in stage 1 to create a list of ordered variables, the second set is used in stage 2 using 

independent testing to select the number of variables to keep for the final model and the third set 

is used in stage 3 to provide an estimate of the prediction ability of the model under independent 

testing. 

The resulting model consisting of Disease duration, symptom duration, age at symptom onset, Age 

at diagnosis, ACPA category, ACPA value, rs26510, BMI, DRB1 S2 and rs26232 was able to predict 

182 independent patients (not used in model creation) with a correlation of r=0.559.  This was the 

first model developed in this research to include genetic components when tested independently of 

a separate set of patients not used in the model fitting. 

All models explored in section 8.3 and 8.4 tended to over-estimate the predicted Larsen score for 

subjects with low Larsen score and under-estimate it for subjects with high Larsen score.  As this 

was not a problem when the model was over-fitted (section 6, Figure 6.9), it is believed to be due to 

the model not including variables which can explain variation in the extremes of the Larsen score 

distribution.  For example, if two patients have identical disease duration, environment and 

genetics, however experience different treatment regimens, the treatment regimen could be 

responsible for observing different severities.  Unfortunately, details of treatments administered to 

subjects over previous years are not available for the GoRA subjects. 

 

8.5. ‘Three stage average rank’ method - Subset analysis 

The ‘three stage average rank’ method developed in section 8.4.7 was applied to three subsets of 

disease to investigate whether improved model performance could be achieved by reducing the 

heterogeneity of the cohort. 

8.5.1. Disease duration subsets 

8.5.1.1. Methods 

It is hypothesised that the wide prediction error may be caused by patients having varied disease 

duration.  Hence, factors influencing disease severity over many years, which were not measured in 

the cross-sectional study, cannot be accounted for.  In order to investigate further, subsets of the 

‘all subjects’ dataset were created for subjects with disease duration less than 10 years and less 

than 15 years.   Ideally, an even more homogenous sample would be created using patients with 

disease duration less than three or maybe five years disease duration, however, the sample size is 

insufficient to use a cut off any less than 10 years.  Ten and 15 years is therefore chosen to provide 

enough patients for the analysis whilst still limiting subjects to those who have received relatively 

modern and hopefully more similar treatment regimens.   

350 subjects had disease duration less than 10 years.  This data is split into 40% for a ‘variable 

ordering training set’ (N=140), 40% for a ‘variable selection training set’ (N=140) and 20% for an 

independent test set (N=70), in order to apply the ‘three stage average rank’ method described in 

8.4.7.   



 

139 
 

535 subjects had disease duration less than 15 years which are split into 40% for a ‘variable ordering 

training set’ (N=214), 40% for a ‘variable selection training set’ (N=214) and 20% for an independent 

test set (N=107), in order to apply the ‘three stage average rank’ method described in 8.4.7.   

8.5.1.2. ‘Three stage average rank’ method results: disease duration < 10 years subset 

Figure 8.17 revealed that the maximum correlation which could be achieved creating a model using 

the 40% variable ordering training set and testing it on the 40% variable selection training set was 

observed using the top 6 variables (r=0.364).  The final model consisted of Larsen score = 22.7 + 

2.193*DD - 0.757*BMI + 5.348*rs443198 + 7.218*rs2568127 + 9.022*rs4133002 - 5.79 *rs4535211. 

Where DD= Disease duration (time since diagnosis in years) and BMI (in kg/m2).    

This model was then used to predict the independent test set.  The correlation between actual and 

predicted Larsen score for the 20% independent test was r=0.284 (Figure 8.18).  Therefore, reducing 

the sample to just those subjects <10 years disease duration does not increase model prediction 

ability. 

 

 

Figure 8.17 Stage 2: Correlation between actual 
and predicted Larsen score retaining two to 100 
variables – Disease duration <10 years 

 

Figure 8.18 Stage 3: Independent prediction using 
the top six variables from the training model – 
Disease duration <10 years 

8.5.1.3. ‘Three stage average rank’ method results: disease duration <15 years subset 

Based on the subset of patients with disease duration less than 15 years, the maximum correlation 

was obtained with just two variables (r=0.373, Figure 8.19).  The model consisted of Larsen score = 

3.16709 + 2.264* DD + 11.357*ACPA category.  Where DD= Disease duration (time since diagnosis 

in years) and ACPA category = 1: positive, 0=negative. 

Using the above model to predict the 20% independent test set, achieves a correlation of r=0.424.  

However, as can be seen in Figure 8.20 the maximum predicted score is less than 50 which is very 
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low compared to the maximum actual Larsen score which is 112.  Therefore the model performs 

poorly, over predicting the lower values and under predicting the higher values.   

 

 

Figure 8.19 Stage 2: Correlation between actual 
and predicted Larsen score retaining two to 100 
variables – Disease duration <15 years 

 

Figure 8.20 Stage 3: Independent prediction using 
the top two variables from the training model – 
Disease duration <15 years 

8.5.2. ACPA positive subset 

8.5.2.1. Methods 

ACPA is thought to categorise patients into two distinct subsets of disease as described in section 

6.2.2.  Genetic variants have previously been observed to have a different association with severity 

depending on whether the subject is ACPA positive or ACPA negative (sections 2.3.2.5 and 2.3.2.6).  

Although ACPA was included as a variable in the model, very little research has been performed 

investigating the ability of PLS to model interactions as noted in section 3.7.3.  Therefore in this 

section, ACPA positive patients are analysed on their own to determine whether there is any 

increase in predictive ability of the model using a more homogenous dataset.  ACPA negative will 

not be investigated as the sample size (N=223) is too small to split into a training and test sample. 

689 subjects in the GoRA cohort are ACPA positive which were split into 40% of subjects for a 

‘variable ordering training set’ (N=275), 40% of subjects for a ‘variable selection training set’ 

(N=276) and 20% subjects for an independent test set (N=138).  Models were fitted per the ‘three 

stage average rank’ method described in section 8.4.7. 

The variables ACPA category and ACPA value were excluded from this modelling. 
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8.5.2.2. ‘Three stage average rank’ method results: APCA positive subset 

Stage 2 of the ‘average rank’ method suggested that a model containing the top six variables could 

predict the ‘variable selection training set’ with the highest correlation (r=0.629, Figure 8.21).  The 

model consisted of: Larsen score =62.58 + 0.574* DD + 0.508 * SD – 0.295 *ageatdiag – 

0.288*ageatonset – 0.457*BMI – 4.937*rs2073839.   rs2073839 is a intron variant in the solute 

carrier family 22 (SLC22) A4 gene on chromosome 5. 

Using this model to predict the 20% independent test set resulted in a correlation of r=0.611 (Figure 

8.22).  This was a slight improvement to modelling the ‘all subjects’ dataset using the ‘three stage 

average rank’ method which resulted in a correlation of r=0.559.  It is possible that this slight 

increase in correlation could be due to random variation. 

 

Figure 8.21 Stage 2: Correlation between actual 
and predicted Larsen score retaining two to 100 
variables – ACPA positive subjects 

 

Figure 8.22 Stage 3: Independent prediction using 
the top six variables from the training model – 
ACPA positive subjects 

 

8.6. Summary 

This chapter focused on validation methods to attempt to quantify whether the models created are 

over fitted and how models may perform on an independent cohort.  A new technique was 

developed to prevent against over fitting and provide an estimate of independent prediction 

entitled the ‘three stage average rank’ method. 

Initially, a permutation approach was adopted to investigate the ability of the 325,482 SNPs plus 

environmental variables to predict the Larsen score, under the null hypothesis that there is no 

relationship.  The Larsen score was randomly permuted 100 times and the full modelling process 

(developed in chapter 6) repeated.  The proportion of total Larsen score variation explained by the 

model fitted, was calculated under CV (R2-CV) for the 100 permuted datasets and compared to the 

R2-CV for the true Larsen score model.  The true Larsen score model had a higher R2-CV (0.753) than 

could be achieved by any of the randomly permuted Larsen score datasets (section 8.2).   This 

suggested that it is highly unlikely to achieve this result by chance (p<0.01), if no relationship 
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existed between the X and Y variables.  Following this analysis, a further permutation analysis was 

performed retaining the link between the Larsen score and environmental variables whilst 

removing the link between the Larsen score and the SNPs.  This investigated whether any additional 

predictive ability after removing that associated with the environmental variables is due to the 

SNPs.  Two of the 100 permutations were found to achieve an R2 greater than the true Larsen score 

model.  This indicates that it is unlikely (p=0.02) to have a model which can predict the true Larsen 

score with an R2 of 0.866, if the SNPs contribution is due to chance alone.   

The ‘GWAS SNPs’ dataset was split into two datasets (80% for training and 20% for test) based on 

the distribution of the Larsen score to ensure fair representation of all possible values in the test 

set.  The SPLS ‘average rank’ method was produced on the 80% training set, with variables forming 

part of the higher level model if the median (across the folds and runs) of their ranked loadings 

were less than 200 after 10 runs of 5-fold CV.   10 runs of 5-fold CV were re-run on the higher level 

model to produce a final ranked order of the variables.  Investigation at this stage under CV 

revealed that it was unable to estimate the minimum number of variables required in order to 

prevent over fitting of the model.  Instead, it suggested that the more variables which were 

included (right up to 2000 variables) improved the model fit.  To reflect the model created in 

section 6.5.2, the top 100 variables were chosen and the model coefficients calculated using the 

training set.  This model was then used to predict the test set, however resulted in very poor 

correlation (r=0.385).  The modelling process appeared unable to protect against over fitting. 

Therefore, a ‘two stage average rank’ method was developed which attempted to select the 

optimum number of variables to retain in order to avoid over fitting.  The order of variables 

determined by the ‘average rank’ method was used to investigate models containing from two to 

100 variables.  For each of these models separately, the coefficients were fixed using only training 

data before predicting the test set.  This revealed that using disease duration, symptom duration 

and age at time of diagnosis outperformed any model using more variables (r=0.622).  This suggests 

that the SPLS modelling approach with this cohort could not detect any genetic variants which 

improved the model fit on an independent dataset.  Unfortunately, because the test set had to be 

used to determine the best number of variables for the final model, it is no longer independent and 

could be over exaggerating performance on a truly independent set.   

The SPLS approach, using the ‘GWAS SNPs’ dataset with a relatively small sample size (compared to 

the number of X variables) and widely varied disease duration, was unable to find any genetic 

variables which could add any benefit to the prediction of the Larsen score on an independent 

dataset.  Therefore, it was decided to increase the sample size (and reduce the number of X 

variables) by investigating the ‘all subjects’ dataset with only 368 SNPs.   

Using the ‘average rank’ method (but without the hierarchical modelling for the 40 blocks of 

chromosomes), the ‘all subjects’ dataset was split into a training set (N=730) and a test set (N=182).  

It was decided to use 7-fold CV as this was the default in SIMCA and there were only 730 subjects in 

the training set instead of the full 912 previously modelled when 10-fold CV was used.    

Initially, to decide how many variables to extract from the ‘average rank’ method models, 7-fold CV 

was run once, extracting a different number of variables each time and estimating the R2-CV.   

Seventy variables were found to provide approximately the optimum R2-CV.  Unlike the GWAS 

modelling, the graph produced a clear peak before descending, suggesting that the reason this 
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process doesn’t work in the GWAS modelling is because the variables have already been chosen, 

using the same subjects in the lower level models under CV.   

A model containing 70 variables (with fixed coefficients based on the training set) was used to 

predict the Larsen scores for patients in the test set.  It resulted in a correlation between the actual 

and predicted Larsen score of r=0.456.  To determine whether the model was still over fitted or 

whether CV to determine the number of variables was protecting against this, a ‘two stage average 

rank’ method was developed. 

After using the ‘average rank’ method to provide an order of importance for the variables, separate 

models containing from two to 100 variables were created fixing the estimates of the coefficients 

using only the training data.   These models were then used to predict the Larsen scores for patients 

in the test set.  The maximum correlation (r=0.576) was achieved with just seven variables (disease 

duration, symptom duration, age at onset of symptoms, age at time of diagnosis, ACPA category, 

BMI and ACPA value).  Hence, determining the number of variables to retain in the final model 

based on internal CV does not protect against over fitting.  Authors have recently identified this 

issue using other penalised regression methods, particularly when the sample size is not large 

enough for the number of variables being modelled (Li and Sillanpaa, 2012, Ayers and Cordell, 2010, 

Abraham et al., 2013).  In addition, the issue has also been identified as a problem in PLS with the 

only solution recommended being the pre-filtering of SNPs (Le Floch et al., 2012, Le Cao et al., 

2011).  Reassuringly, the model using the two stage process selected variables previously identified 

in the literature review (section 2.4) as key environmental predictors of RA severity.  However, the 

model was not able to identify any genetic variants predictive of the Larsen score. 

The addition of a second component was explored to investigate whether over fitting in the first 

component is the reason a second component is not required.  However the second component 

was found to be unnecessary even when the first component was restricted to just the top seven 

variables, providing evidence that the method of choosing the number of components is adequate. 

To enable independent testing of the ‘two stage average rank’ method, a three stage method was 

developed.  Data was split into a 40% sample to produce an ordered list of importance of the 

variables using the ‘average rank’ method.  Models were then fitted including various numbers of 

the ordered predictive variables, fixing the coefficients using the initial 40% of data and predicting 

the independent 40% of data.  Once the optimum number of variables was selected, the model was 

used to predict the remaining independent 20% of subjects.  

This new method, was able to predict the independent set of 182 subjects with a correlation 

between the actual and predicted Larsen score of r=0.559, using a model formed on training data 

containing 10 variables.  The 10 variables were: Disease duration, symptom duration, age at 

symptom onset, Age at diagnosis, ACPA category, ACPA value, rs26510, BMI, DRB1 S2 and rs26232.  

All of which have been found in the literature review to be predictive of RA severity with the 

exception of rs26510, which is a C/T polymorphism located on chromosome 5 in the intron region 

of ERAP-1. 

In conclusion, the ‘three stage average rank’ method allows variable ordering, variable selection 

and independent testing to assess model performance.  However, the initial sample has to be quite 

large to have sufficient patients to split the data into 40% variable ordering, 40% variable selection 
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and 20% model testing datasets. For this reason and due to time constraints, the method was not 

applied to the ‘GWAS SNPs’ dataset. 

Patients were grouped into <10 years disease duration, <15 years disease duration and ACPA 

positive subjects, to attempt to reduce heterogeneity (perhaps due to unmeasured treatment 

regimen effects).  Using the ‘three stage average rank’ method, limiting the sample to a duration of 

disease of <10 years (N=350) or <15 years (N=535) did not improve the model fit compared to using 

the ‘all subjects’ dataset (r=0.284 and r=0.424 respectively).  One reason for this, particularly in the 

<10 years set could be due to insufficient sample size in the training data to form a good model.  

The evidence for this was that only disease duration and BMI were selected from the environmental 

variables to be included in the model, whereas most other models included variables such as 

symptom duration, age at symptom onset, age at disease diagnosis or the ACPA variables. 

The ACPA positive patients subset (N=689), using the ‘three stage average rank’ method, achieved a 

correlation between the predicted and actual Larsen score of r=0.611.  This was achieved using a 

model containing the following six variables (disease duration, symptom duration, age at onset of 

symptoms, age at time of diagnosis, BMI and rs2073839).  rs2073839 is a previously investigated 

SNP for RA susceptibility which is found in the intron region of the solute carrier family 22 (SLC22) 

A4 gene in chromosome 5.  This model achieved a slightly better prediction than using the ‘all 

subjects’ dataset (r=0.611 versus r=0.559) although variability estimates were not explored.  

In summary, the ‘GWAS SNPs’ dataset using the ‘two stage average rank’ method could not produce 

a Larsen score predictive model which performs any better than using disease duration, symptom 

duration and age at time of diagnosis (r=0.622).   The ‘all subjects’ dataset using the ‘three stage 

average rank’ method was able to create a model capable of predicting an independent subset of 

the GoRA cohort with a correlation of r=0.559 using the following ten variables; Disease duration, 

symptom duration, age at symptom onset, Age at diagnosis, ACPA category, ACPA value, rs26510, 

BMI, DRB1 S2 and rs26232.  The predictive correlation was improved by modelling the ACPA 

positive patients on their own using a model with the following six variables (disease duration, 

symptom duration, age at onset of symptoms, age at time of diagnosis, BMI and rs2073839), 

r=0.611.   

Variability estimates for the correlations were not calculated, which has recently been 

recommended by Daetwyler et al. (2013).  This would form the basis for further research as 

described in section 10.4. 
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9. SPLS regression of multiple RA severity measures  

9.1. Aims 

Using lessons learned from modelling a single Larsen score variable, the aim of this chapter is to 

investigate whether modelling multiple RA severity measures together can lead to any benefit in 

predicting the severity of RA. 

9.2. Methods 

Although to date, only the single Larsen score Y variable has been predicted by the modelling, the 

GoRA cohort has substantial other information about the severity of the patient’s RA.   Eriksson et 

al. (2006a, p. 23) argue that “All data points are needed”.  They advise against selecting just the best 

variable or analysing one variable at a time.  Instead they promote the analysis of multiple collinear 

variables together which optimises the use of the information.  For this reason, this chapter models 

multiple correlated RA severity measures.  Three groups of severity variables are investigated as 

defined in section 2.2.1.2.   

1) 8 domain SF-36 variables 

2) 4 SJC/TJC variables & DAS28 

3) PVAS, RASEV, MHAQ, ESR, CRP, Any Erosions, the Larsen score (including the separate hand and 

foot counts) & DAS28 

Section 8.4 (‘all subjects’ dataset) was able to achieve a better correlation between the predicted 

and actual Larsen score than section 8.3 (‘GWAS SNPs’ dataset).  Therefore, it was decided to use 

the ‘all subjects’ dataset to model the multiple RA severity measures.   Instead of 912 subjects 

modelled in chapter 4 and section 8.4, 914 subjects can be included.  This is because, although two 

subjects had missing Larsen score data, they have other severity measures present.  The dataset 

consists of 398 SNPs, five DRB1 variables coded according to Tezenas du Montcel et al. (2005), 19 

environmental variables and 22 severity variables. 

The mixOmics functions in R required further updates (as shown in Appendix H) to enable suitable 

output data when modelling multiple Y variables and multiple components instead of using SIMCA.  

Although SIMCA is substantially quicker when analysing very large datasets, the variable selection 

aspects of model fitting and splitting the sample into a training and test set outside of the CV 

cannot be automated.  Therefore, it can be slower when analysing a relatively small dataset and 

subjects are required to be selected for a separate training and independent test samples (section 

7.4).   The programming code that invokes the functions shown in Appendix H, which were used to 

produce these analyses, is shown in Appendix I. 

A SPLS analyses using the ‘two stage average rank’ method, is performed for each of the three 

multiple Y variable severity groups, using 80% for the variable ordering training set (N=731) and 

20% as the variable selection training set (N=183) (independent test set).  In order to get a fair 

representation of the distribution of the severity variables in two sets, subjects are sorted by a 

severity variable representative of the group and every 5th subject starting with the third subject is 

selected to be in the test set.   As the groups are defined by variables which are correlated together, 

the mean of all of the 8 domains of the SF-36 is used to sort the subjects for analysis one and the 

DAS28 variable is used to sort the subjects for analyses two and three.  As DAS28 was a composite 
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measure it was anticipated this would represent the other variables due to the correlation observed 

in Figure 2.3.   

NIPALS imputation is performed in R prior to model fitting.  Variables are checked to ensure they 

had sufficient variation in the training data during the CV. Any variables with >92% all 0’s were 

excluded as there was insufficient variation for the model to fit.   

As the ‘average rank’ method was new to this research, no prior strategy to enable selection of 

variables with more than one component is available.  Le Cao et al. (2008) use the loadings from 

each component to determine which variables contribute to that component, based on the number 

of times the variable is selected in each of the folds and runs of the model (‘percentage fold’ 

method).  Hence different variables can contribute to different components.  

Whilst the ranking of the variables could be selected based on the average or the sum of the 

loadings across the components, this would put equal weight on the importance of the variables 

contributing to component one and component two.  On the contrary, component one represents 

the largest amount of variation which can be explained by a linear combination of the variables and 

subsequent components explain less and less of the residual variation.  Following the approach by 

Le Cao et al. (2008), the variables contributing to each component would be assessed separately.  

Variables contributing to the first component would be defined using the ‘two stage average rank’ 

method, afterwards the method would be applied separately to the second and any subsequent 

components.  TThis approach was also used in section 8.4.5. 

The diagram in Figure 9.1 describes the ‘two stage average rank’ method applied to the multiple Y 

variable and multiple component models.  This method was based on the iterative process 

described by Eriksson et al. (2006a), Le Cao (2008) and González et al. (2011) adapted for the ‘two 

stage average rank’ method accommodating multiple Y variables and multiple components. 

The data is split into a ‘variable ordering training set’ and ‘variable selection training set’.  Any 

missing data is imputed using NIPALS imputation.  The initial step is to explore the number of 

components required by extracting 3, 4, 5, 10 and 100 variables and calculating the R2-CV for one 

component.  The R2-CV for the addition of a second component is calculated for each Y variable 

using the variable ordering training set only.  If the increase in R2-CV is >=0.0975 for the addition of 

component two, then this indicates component two is contributing a significant amount to the 

prediction of that Y variable.   The reason for the use of 0.0975 including a description of how to 

choose the required number of components is described in section 4.2.1.3.   

Different numbers of variables (3, 4, 5, 10 and 100), were extracted in order to restrict the 1st 

component so it is not over fitted, allowing the second component to have more residual variation 

to explain by potential true predictors.  This was explored in 8.4.5 but found not to affect the choice 

of number of components.   
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Figure 9.1 Multiple Y model fitting process using ‘two stage average rank’ method 

As multiple Y variables are being modelled, the 2nd component may improve the model for some Y 

variables and not others.  To define a consistent rule, it was decided that two or more components 

would be required if the additional R2-CV explained by the 2nd component was >=0.0975 for more 

than one Y variable and consistently across restricting the 1st component to 3, 4 and 5 variables. 

For the first component, the ‘two stage average rank’ method is used to select the number of 

variables to keep the first component.   This consists of starting with the 80% ‘variable ordering 

training set’, fitting 10 runs of 7-fold CV and calculating the median rank for each variable from the 

70 loading vectors corresponding to the 1st component.  Using this median rank variable order, the 

first two variables are fitted in the model and the model coefficients estimated.   This model is then 

used to predict the ‘variable selection training set’ (20% of the original dataset).  The correlation 

between actual and predicted value for each of the Y variables is calculated.  This method is then 

repeated extracting the top three variables, followed by the top four variables, up to 100 variables.   

For each Y variable, the number of X variables in the model is plotted against the correlation 

obtained from predicting the ‘variable selection training set’ to determine the optimum number of 

variables required.  As the model is being tested on an independent set, it is protected against over 

fitting as observed in section 8.3.4, 8.4.5 and 8.4.8. 

It is likely that the prediction of each Y variable may suggest a different optimum number of 

variables to include in the model.  Therefore, the ‘average’ correlation across the Y variables is 

calculated.  The average correlation is then used to determine the optimum number of variables 

which on average predicts the best for all of the Y variables together and this defines the final 

model.   

Once the optimum number of variables for the 1st component is selected, if a 2nd component is 

required, then the ‘two stage average rank’ method is repeated restricting the 1st component to the 

number of variables suggested and using the same ‘two stage average rank’ method on the second 

component.  The number of additional variables required for component two which optimises the 

correlation is selected as the final model.  It was decided to let any variable selected in component 
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1 or component 2 be fitted in both components as if a variable is not important in a component, 

then it’s coefficient will be close to 0 having little impact on the model prediction.  If the ‘three 

stage average rank’ method was being used, the final model would be fitted on the ‘variable 

selection training set’, coefficients fixed and then used to predict an independent set of subjects.   

9.3. Results of Y group 1: SF-36 analyses 

The number of components was assessed and only one Y parameter (Mental Health) had an 

increase in R2-CV associated with the 2nd component greater than 0.0975.  The R2-CV equalled just 

0.1145 and was only observed when the 1st component was restricted to four variables for this one 

Y variable.  All other SF-36 domains and extracting 3, 5, 10 and 100 variables for Mental Health all 

resulted in R2-CV less than 0.0975 for the 2nd component.  Therefore, this suggested that a second 

component wasn’t beneficial and it was decided to remain with a one component model. 

Models with from two to 100 variables were created fixing the coefficients on the ‘variable ordering 

training set’ and using the models to predict the ‘variable selection training set’. The correlation 

between the predicted and actual SF-36 domains was calculated for each model and summarised 

using the average correlation across all domains.   The maximum average correlation was observed 

using just the top three variables (Table 9.1 and Figure 9.2).  The top three variables were; alcohol 

quantity used, alcohol use and symptom duration, however the average correlation between the 

actual and predicted Y variables was only r=0.159. 

Investigating each of the SF-36 scores separately revealed that none of the domains are particularly 

well predicted on the variable selection training set (Table 9.1 and Figure 9.2).  The highest 

correlation was achieved for Physical Functioning (r=0.330) using the top four variables of alcohol 

quantity, alcohol use, symptom duration and disease duration.  However, the predictive ability of 

the model is poor as can be observed in Figure 9.3.  It is of some interest that Physical Functioning 

was the best predicted domain given that severe RA would clearly interfere with physical activities 

such as bathing or dressing.  However, this could be due to chance as Role Physical (r=0.161) is 

predicted poorly and it would be expected that the same physical deterioration would affect work 

and other daily activities as well. 



 

149 
 

Table 9.1 SF-36 models with optimum correlations based on which number of variables 

Y  Variable Optimum correlation 
between actual and predicted 
values using test set 

Number and name of variables to retain in the model 

Average 0.159 (3) alcohol quantity, alcohol use, symptom duration, 

Bodily Pain 0.141 (2) alcohol quantity, alcohol use, 

General Health 0.144 (6) alcohol quantity, alcohol use, symptom duration, 
disease duration, age at onset of symptoms, BMI 

Mental Health 0.183 (6) alcohol quantity, alcohol use, symptom duration, 
disease duration, age at onset of symptoms, BMI 

Physical Functioning 0.330 (4) alcohol quantity, alcohol use, symptom duration, 
disease duration 

Role Emotional 0.161 (25) Not listed 

Role Physical 0.146 (19) 

Social Functioning 0.121 (27) 

Vitality 0.213 (4) alcohol quantity, alcohol use, symptom duration, 
disease duration 

 

 

Figure 9.2 Correlation between actual and predicted SF36 domain for the test set 
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Figure 9.3 Scatter plot of actual versus predicted physical functioning for the test set 

9.4. Results of Y group 2: SJC, TJC and DAS28 analyses 

The number of components required was assessed and the increase in R2-CV for each of the Y 

variables for all of the 3, 4, 5, 10, and 100 variables extracted was less than 0.0975.  Therefore a one 

component model was deemed sufficient.  None of the SJC, TJC or DAS28 variables were well 

predicted for the ‘variable selection training set’ when models were investigated using any number 

of variables and fixing the coefficients based on the ‘variable ordering training set’.  This can be 

observed from the very small Y axis scales in Figure 9.4 (range 0 to maximum of 0.09).   On average, 

the following 11 variables (rs10785333, age, rs12035407, rs706778, rs2715038, BMI, rs11755527, 

rs8177374, rs12198924, disease duration, rs2073839) were suggested for the final model to obtain 

the best prediction, however this resulted in almost 0 correlation between the actual and predicted 

Y variables (r=0.064).   

 

Figure 9.4 Correlation between actual and predicted TJC/SJC/DAS28 for the test set 
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9.5. Results of Y group 3: includes Larsen score, DAS28, MHAQ and others 

This section describes the analyses of PVAS, RASEV, MHAQ, ESR, CRP, any erosions, the Larsen score 

(including the separate hand and foot counts) and DAS28.  There was some evidence that two 

components would be beneficial in the model, particularly for ESR and CRP when the 1st component 

was limited to 5 variables or less.  R2-CV was greater than 0.0975 for ESR restricting the 1st 

component to 4 and 5 variables and CRP restricting the 1st component to 3, 4 or 5 variables.  

Therefore it was decided to investigate a two component model. 

On average over the Y variables, the top 11 variables gave the best correlation of r=0.296 between 

actual and predicted Y variables for the variable selection training set (Figure 9.5).  These variables 

corresponded to disease duration, symptom duration, age at onset of symptoms, age at time of 

diagnosis, ACPA category, ACPA value, alcohol quantity, alcohol use, BMI, rs26232 and rs2872507. 

 

Figure 9.5 Correlation between actual and predicted Y variables for the test set 
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Noting the varying Y axis scales in (Figure 9.5), it was clear that the foot erosions, hand erosions & 

Larsen score variables were the best predicted, using 11 variables resulting in a maximum 

correlation of r=0.604, 0.593 and 0.646 respectively.   DAS28 was particularly poorly predicted 

requiring 23 variables but only achieving a correlation of r=0.091.  The remaining variables were 

also not well predicted as shown in Table 9.2. 

Table 9.2 Optimum correlation models using one component based on number of variables  

Based on the best average correlation, the top 11 variables were selected to be retained for the 1st 

component.  These were fitted along with all variables for component two and the average ranked 

loading vectors corresponding to the 2nd component investigated from the 10 runs of 7-fold CV.  

The maximum correlation was observed using 16 variables in total, increasing the average 

correlation from r=0.296 (with 11 variables and one component) to r=0.353 (with 16 variables and 

two components) (Table 9.3).  The top 16 variables were; disease duration, symptom duration, age 

at onset of symptoms, age at time of diagnosis, ACPA category, ACPA value, alcohol quantity, 

alcohol use, BMI, rs26232, rs2872507, rs2715038, rs11755527, age, rs4892117 and rs3218253.  The 

first 11 in this list correspond to those selected in the one component analysis but all variables are 

allowed to contribute to both components. 

There was very little increase for the foot erosions, hand erosions & Larsen score variables with the 

best correlation with two components obtained with 15 (r=0.608), 21 (r=0.604) and 18 (r=0.653) 

variables (compared with one component with 11 variables r= 0.604, 0.593 and 0.646 respectively.  

This very slight improvement with the addition of many more variables and two components 

confirms that for Larsen score modelling, only one component is required (as observed in chapters 

4 and 6).  However, the inclusion of a 2nd component did increase the correlation for most of the 

other variables including CRP and ESR.  Both of these variables had an R2-CV for the 2nd component 

greater than 0.0975 indicating the 2nd component was required for prediction of these variables.  

The largest increase in correlation corresponded to the DAS28 variable (Table 9.3).  In general, the 

Y  Variable Correlation
a
 Number and name of variables to retain in the model 

Average 0.296 (11) disease duration, symptom duration, age at onset of symptoms, 
age at time of diagnosis, ACPA category, ACPA value,  alcohol quantity, 
alcohol use, BMI, rs26232 and rs2872507 

DAS28 0.091 (23) not listed 

PVAS 0.142 (2) disease duration, symptom duration 

ESR 0.166 (47) not listed 

MHAQ 0.259 (2) disease duration, symptom duration 

Foot erosions 0.604 (11) disease duration, symptom duration,  age at onset of symptoms, 
age at time of diagnosis, ACPA category, ACPA value,  alcohol quantity, 
alcohol use, BMI, rs26232 and rs2872507 

Hand erosions 0.593 

Larsen score 0.646 

Any erosions 0.282 (9) disease duration, symptom duration, age at onset of symptoms, 
age at time of diagnosis, ACPA category, ACPA value,  alcohol quantity, 
alcohol use, BMI, 

RA severity 0.116 (95) not listed 

CRP 0.193 (8) disease duration, symptom duration, age at onset of symptoms, 
age at time of diagnosis,  ACPA category, ACPA value,  alcohol 
quantity, alcohol use, 

a: Table shows the N variables required to achieve the optimum correlation between actual and predicted Y 
variables calculated using the test set with one component. 
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two component model gave better predictions on average across the Y variables but only by an 

increase in correlation of 0.057 when predicting the ‘variable selection training set’.   

Table 9.3  Models with optimum correlations for one or two components 

Y  Variable N variables: correlation  
one componenta 

N variables: correlation  
two componentsa 

Average 11: 0.296 16: 0.353 

DAS28 23: 0.091 16: 0.229 

PVAS 2: 0.142 15: 0.250 

ESR 47: 0.166 17: 0.262 

MHAQ 2: 0.259 14: 0.289 

Foot erosions 11: 0.604 15: 0.608 

Hand erosions 11: 0.593 21: 0.604 

Larsen score 11: 0.646 18: 0.653 

Any erosions 9: 0.282 102: 0.295 

RA severity 95: 0.116 36: 0.198 

CRP 8: 0.193 11: 0.224 
a: Table shows the optimum N variables required to achieve the optimum correlation between 
actual and predicted Y variables calculated using the test set with one or two components. 

Although the ‘variable selection training set’ has already been used to select the number of 

variables which will form the final model (per the ‘two stage average rank’ method) it was decided 

using the chosen 16 variables, to fit a PLS model on this set and estimate the model coefficients.   

This final model was then used to predict the ‘variable selection training set’, despite knowing this is 

likely to be an overestimate of the model prediction ability if applied to an independent set.  The 

183 test subjects predicted values are shown in Figure 9.6.   

The multiple Y variable model revealed a better correlation (r=0.651) between predicted and actual 

Larsen score compared to modelling the Larsen score variable alone in section 8.4.3, where the 

maximum correlation obtained was r=0.576 with one component.  It is worth noting that the split of 

patients into a ‘variable ordering training set’ and ‘variable selection training set’ in section 8.4 was 

based on the Larsen score distribution and the split in this section was based on DAS28 distribution.  

Hence, the difference in prediction ability could be due to the split of patients, the additional 

benefit of modelling multiple variables together or just random variation.   In order to investigate 

further, this section was reproduced using the ‘variable ordering training set’ and ‘variable selection 

training set’ based on the Larsen score as used in section 8.4.   

Using the ‘two stage average rank’ method, the optimum prediction results were found with a one 

component model containing the top eight variables; disease duration, symptom duration, age at 

onset of symptoms, age at time of diagnosis, ACPA category, ACPA value, alcohol quantity and 

alcohol use.  This obtained a correlation between the variable selection training set actual and 

predicted Larsen score of r=0.583.  Investigation of a 2nd component found the best average 

prediction across all of the Y variables to be based on the top 67 variables, however this decreased 

the prediction accuracy of the Larsen score to r=0.564.   Hence, both models agree that for the 

Larsen score, only one component is required although a second component is beneficial for other Y 

variables.  The variables selected by using the different 80:20 splits of data are very similar for the 

1st component (top 8 variables are identical).  Therefore it appears to be random variation 
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associated with which patients happen to be in the 20% predicted which impact on the selection of 

lower order variables which are only contributing a small amount to the model.     

These results suggest that there is no evidence that modelling multiple Y variables together 

improves the ability to predict the Larsen score.  There is some variation in prediction ability 

depending on how the ‘variable ordering training set’ and ‘variable selection training set’ are 

created.  Ensuring that the Larsen score is balanced, resulted in a correlation of r=0.583 using an 11 

variable model and ensuring that DAS28 is balanced, resulted in a correlation of r=0.651 using an 8 

variable model (8 variables are the same).  An area of future research would be to quantify the 

variation around the correlation achieved using different splits of the data as described by 

Daetwyler et al. (2013).   These methods are discussed in the areas for future research in section 

10.4. 

 

Figure 9.6 Actual versus predicted Y variables based on two components and 16 variables 
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In order to investigate the stability of the models created, it was decided to fit the ‘three stage 

average rank’ method using both the Larsen score and DAS28 score to split patients into the 

40%:40%:20% sets.  Although modelling multiple Y variables, primary focus would be on prediction 

of the Larsen score, as prevous research revealed poor prediction of the other severity variables.  

Only one component was explored as the second component was found not to add adequate 

Larsen score predictive ability in section 8.4.6 or earlier in this section. 

Table 9.4 reveals that the top seven variables selected using the ‘three stage average rank’ method 

are the same across models formed using DAS28 or the Larsen score to determine the split of the 

data.  In addition, the top seven variables using a 80:20 split or a 40:40:20 split are also consistent.  

As may be expected, variables which have a smaller effect are more variable when looking at 

different splits of the data as more patients are required to detect smaller effects than larger 

effects.  Table 9.4 could suggest that 40% of the data to initially rank variables may be too small, as 

the two stage model split based on DAS28 achieved a better Larsen score correlation than the three 

stage model split by DAS28.  However, as the same was not observed by splitting the data by the 

Larsen score and using a two or three stage model, it is believed to be simple variation observed by 

using a different 20% of patients to predict.  Note that the 20% in the two stage model was not the 

same 20% in the three stage model. 

Table 9.4  Comparison of using different splits of the data for multiple Y variable modelling 

Model N Vars Variables selected in 1st component Larsen score 
correlation 

2 stage: 80:20 split 
based on DAS28 

11 Disease duration, symptom duration, age at 
onset of symptoms, age at time of diagnosis, 
ACPA category, ACPA value, alcohol quantity, 
alcohol use, BMI, rs26232, rs2872507 

0.646 1 

2 stage: 80:20 split 
based on Larsen score 

8 Disease duration, symptom duration, age at 
onset of symptoms, age at time of diagnosis, 
ACPA category, ACPA value, alcohol quantity 
and alcohol use 

0.5831 

3 stage: 40:40:20 split 
based on DAS28 

10 Disease duration, symptom duration, age at 
onset of symptoms, age at time of diagnosis, 
ACPA category, ACPA value, alcohol quantity, 
alcohol use, BMI, Average number of 
cigarettes per day. 

0.5472 

3 stage: 40:40:20 split 
based on Larsen score 

13 Disease duration, symptom duration, age at 
onset of symptoms, age at time of diagnosis, 
ACPA category, ACPA value, alcohol quantity, 
DRB1 S1, rs2872507, rs9366826 rs7234029 
rs394581 rs3788013  

0.5842 

1
 indicates correlation calculated using 20% subjects who have already been used to determine the number of variables to 

retain in the model. 
2
 indicates correlation calculated using 20% subjects who are independent from all model creation. 
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9.6. Summary 

At the start of this research (section 2.2.1.2), it was speculated that the Larsen score would be the 

best measure of severity as it is more stable over time than other laboratory or quality of life 

measures.  This chapter modelled multiple Y variables together with the anticipation of improved 

predictive performance.   However, the models revealed very poor prediction of all of the SF-36 

domains, SJC, TJC, DAS28, PVAS, ESR, MHAQ, any erosions, RA severity (RASEV) and CRP.  In fact, 

the Larsen score (including when it was broken down into hand and foot erosion counts), were the 

only severity variables which obtained a correlation over 0.5 between the actual and predicted 

values for the ‘variable selection training set’.     

PVAS, RASEV, MHAQ, ESR, CRP, any erosions, the Larsen score (including the separate hand and 

foot counts) & DAS28 were modelled using the ‘two stage average rank’ method described in 

section 8.3.3.  The method was amended to accommodate multiple Y variables as described in 

section 9.2.  A two component model was deemed necessary.  Eleven variables in the model 

resulted in the highest average correlation across all of the Y variables using just the first 

component (r=0.296).  These 11 variables consisted of disease duration, symptom duration, age at 

onset of symptoms, age at time of diagnosis, ACPA category, ACPA value, alcohol quantity, alcohol 

use, BMI, rs26232 and rs2872507.  Addition of a second component suggested five further variables 

were required to improve the average correlation.  Therefore the model consisted of 16 variables in 

total contributing to the 1st and 2nd components. The average correlation increased by 0.057 (to 

r=0.353) with two components and the following additional variables; rs2715038, rs11755527, age, 

rs4892117 and rs3218253.  Whilst the 2nd component did not contribute much to the prediction 

ability of the Larsen score (or separate hand and foot counts), it did enable improved prediction of 

some of the other severity measures (particularly DAS28 which had a correlation of r=0.091 with 

one component and r=0.229 with two components).   This supports the previous work modelling 

the single Larsen score variable where only one component was required.   

It was noted that the prediction of the Larsen score improved using multiple Y variables in the 

model compared to the single Larsen score.  However, after investigation using both DAS28 and the 

Larsen score to split the data and investigating using the ‘two stage average rank’ method and the 

‘three stage average rank’ method, differences in the correlation were presumed due to using a 

different split of the data and not the method used.  This highlighted the sensitivity of correlation 

estimation when different subsets of data are used and an area of future analysis would be to 

explore the variation around the correlation estimate.  Therefore, there was no evidence to suggest 

that the Larsen score prediction was improved by modelling multiple Y variables together. 

It is speculated that the inability to use this data to accurately predict the multiple measures of RA 

severity could be due to the cohorts varied disease duration.  Measures of disease activity (such as 

CRP and ESR) may not reflect the severity over time.  Patients who are susceptible to a more severe 

disease but are currently controlled due to treatment, may have the effect of their genetic variants 

too confounded with the treatments they have received over a long period of time.  It would 

therefore be beneficial to repeat this work using a large cohort of subjects who have been followed 

up from disease diagnosis over a period of time so that the rate of their progression can be 

measured.  As treatment regimens over this period would be recorded, these could be adjusted for 

in the model and it is possible that this would enable a more sensitive detection of genetic variants 

affecting RA severity.  
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10. Conclusions 

10.1. Summary of the motivation behind the research 

The aim of this project was to attempt to create a model, which could be used at RA disease 

diagnosis, to predict whether a subject is at high or low risk of developing the more severe form of 

RA.  The project was driven by the availability of a large dataset measuring severity of RA, genetics 

and environmental factors at a cross-section in time on 1009 subjects.   Patients had varied disease 

duration from one to 65 years and varied severity of disease from zero to 160 as measured by the 

Larsen score.  The Larsen score is a radiographic measure of cartilage and bone damage.   There 

were a high proportion of patients with zero Larsen score (13.6%) and patients appeared to have 

developed RA at a younger age than expected in the population particularly for males (mean of 47 

years old at disease onset).  Despite this, the cohort appeared representative of the population in 

terms of gender (73% female), BMI (mean=26), smokers (20% smokers and 39% former smokers) 

and alcohol use (68% drinkers).  The mean age of the cohort was 61 years with the youngest patient 

aged 20 and eldest 92 years old. 

Data from a GWAS contained 325,482 SNPs and was available on 394 subjects.  For this reason the 

data was split into two sets.  The first set consisted of 912 subjects with available Larsen score data, 

19 environmental measures and 368 SNPs and the second set consisted of 394 subjects, 19 

environmental measures and 325,482 SNPs.  After exploration of multivariate modelling methods, 

PLS was selected as the most appropriate methodology for this research for the reasons 

summarised in Section 3 and 10.3.  Modelling methods were developed based on the smaller 

dataset (‘all subjects’ dataset) and then applied to the larger set (‘GWAS SNPs’ dataset).  It was 

decided to initially focus analysis on the Larsen score as the primary measure of RA severity, as 

erosive damage is more stable over time than measures of inflammation.  The analysis was later 

extended to multiple Y variables.   

10.2. Summary of results 

Many authors select variables in PLS models using a type of ‘percentage fold’ method often insisting 

variables have to be selected in 100% of the folds and runs (González et al., 2011, Le Cao et al., 

2008, Eriksson et al., 2006a, SAS, 2008, Long et al., 2011).  Multiple runs are used to avoid model 

selection being based on a particular fold on the data.  Whilst this appears to work well for variables 

with big effects sizes, this research found this to be ineffective for SNP data where smaller effects 

were being modelled and rare variants often led to a SNP not even being included in some folds due 

to insufficient variation (Figure 6.7).  The optimum number of variables to select for a model was 

often difficult to determine especially to avoid over fitting.  Using an ‘average rank’ method (simply 

ordering the variables based on the average rank of their loading) was more sensitive and allowed 

more SNPs to be considered for entry to the final model, despite not being selected by all folds or 

runs of the data. 

It is also common to investigate the number of variables to retain in the final model by plotting the 

R2-CV by the number of variables included in the model and selecting the optimum as the number 

of variables to extract (González et al., 2011).  This appears to work well for smaller datasets, for 

example, detecting a few key predictors with large effects from less than 400 variables.  However, 

as SNPs had to be modelled in groups of less than 12000 in R, this was very time consuming as each 

graph had to be inspected manually.  The ‘average rank’ method removed this requirement by 
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simply selecting any variables on average ranked less than 200 and carrying these variables through 

to a higher level model.  Using this method, CV was shown to not protect against over fitting of the 

model (Figure 6.8).   Hence, too many variables were included in the final model which resulted in 

an overestimate of the predictive ability and a model which would not transfer well to an 

independent set.  This was apparent when the model was re-created on 80% of the data and tested 

independently on the 20% left out (Figure 8.6). 

Random permutations of the data showed that there was evidence that the model including 

environmental and SNPs performed better than chance alone and in particular that the SNPs were 

also contributing to the prediction.  Therefore, methods were explored to try to avoid creating a PLS 

model which suffers from over fitting. 

Initially, a ‘two stage average rank’ method was used which split the ‘GWAS SNPs’ dataset into 80% 

for deriving the order of importance of the variables and 20% for selecting the optimum number 

required for the final model.  The data was split using the distribution of the Larsen score to ensure 

fair representation of the spread of the data in both sets.  Unfortunately, this method suggested the 

best model would be one containing disease duration, symptom duration and age at time of 

diagnosis only.  Therefore, it appears that PLS is unable to select any SNPs from the ‘GWAS SNPs’ 

dataset for inclusion in a prediction model.  It is believed this is partly due to the sample size being 

used (N= 394 subjects) and partly due to wide unexplainable variation in the data.  The GoRA data 

used come from a cross-sectional cohort with very varied disease durations and different treatment 

regimens received.   Many variables which may account for these differences amongst subjects are 

not available for analyses and hence variation in the Larsen score is unexplainable.    The same PLS 

approach would be recommended to be applied to a more homogenous cohort. It is hoped that 

even with a sample size around 400, that key SNP effects would be able to be identified. 

It was decided to apply the same methods developed on the ‘GWAS SNPs’ dataset to the ‘All 

subjects’ dataset, to investigate if SNPs could be identified as predictive of RA severity when 

assessed using a larger sample size.   

A ‘two stage average rank’ method was able to control against over fitting the data and resulted in a 

model containing seven variables which were well documented predictors of RA severity (disease 

duration, symptom duration, age at onset of symptoms, age at time of diagnosis, ACPA category, 

BMI and ACPA value).  However, no SNPs were selected for the final model.  Estimation of the 

correlation between actual and predicted Larsen score was r=0.576, which is likely to overestimate 

the true prediction ability, as the 20% independent set were used to select the optimum number of 

variables for the final model.   Of interest was that the model was not able to predict a Larsen score 

value greater than 85, suggesting that the key predictors of extremely high severity were not 

included in the model.  The ability to predict the extremes of the distribution of the Larsen score 

would need to be investigated in another cohort, to truly determine whether this is a consequence 

of PLS not predicting non normally distributed data very well, or due to missing key predictors in the 

model and wide unaccountable variation. 

To investigate how the model performs on a truly independent set of data, a ‘three stage average 

rank’ method was developed which split the data into a 40% ‘variable ordering training set’, a 40% 

‘variable selection training set’ and a 20% independent test set.  Although a slightly different model 

was obtained containing 10 variables (disease duration, symptom duration, age at symptom onset, 
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Age at diagnosis, ACPA category, ACPA value, rs26510, BMI, DRB1 S2 and rs26232), similar 

correlation between actual and predicted Larsen score was found (r=0.559).  Of particular interest 

was that three genetic variants were selected to be in the model and all except rs26510 (ERAP-1) 

are found in the literature predictive of RA severity.  This suggested that with 912 subjects the 

‘three stage average rank’ method is able to identify genetic variants contributing to RA severity.  If 

the sample size was increased and more SNPs were recorded on a more homogenous cohort, it 

would be expected more variants could be identified using this method. 

Unfortunately, attempting to use this dataset on subsets of patients, to attempt to homogenise the 

cohort and reduce some of the unexplainable variation, did not lead to much success.  Investigation 

of subjects with a disease duration of <10 years and separately of <15 years, resulted in a lower 

correlation between actual and predicted Larsen score than was achieved modelling the full cohort 

of patients together.  Investigation of the ACPA positive subset (N=689) did increase the ability to 

predict the independent 20% set of data (r=0.611), however the model only included the following 

six variables (disease duration, symptom duration, age at onset of symptoms, age at time of 

diagnosis, BMI and rs2073839).  Using the ‘three stage average rank method’ meant that just 40% 

(N=275) are used to create an order of importance for the variables and select the optimum 

number of variables.  It was believed that this may not be sufficient for SNPs with smaller sized 

effects to be identified.  Hence, the positive effect of reducing the heterogeneity may be 

overshadowed by also reducing the sample size. 

A particular advantage of using PLS methods is its ability to model multiple Y variables together.  

However, attempts to model multiple severity measures on the GoRA cohort had limited success.  

One reason for this could be because severity measures such as the Larsen score tend to be less 

variable over time than laboratory measures (such as ESR and CRP) which fluctuate with disease 

activity.  Therefore, it would be interesting to explore this further in patients with similar disease 

duration. 

The variables which were selected as predictors of RA severity for each of the models summarised 

in Table 10.1.   

Using the ‘GWAS SNPs’ dataset, the best prediction of the test set was obtained using just disease 

duration, symptom duration and age at time of diagnosis.  These are all well-known predictors of 

severity.  Modelling the ‘All subjects’ data using a ‘three stage average rank’ method extended this 

list to include age at onset of symptoms, ACPA category, ACPA value, BMI, DRB1 S2, rs26232 and 

rs26510.  All of these variables (except rs26510) are documented in the literature review to be 

predictive of RA severity (section 2.3 and 2.4).  Although the <10 years and <15 years disease 

duration subgroup analyses were unsuccessful, the ACPA positive model achieved slightly better 

correlation than the ‘all subjects’ dataset analysis (r=0.611).   The model contained disease 

duration, symptom duration, age at disease onset, age at diagnosis, BMI and rs2073839.  rs2073839 

is found in the intronic region of the solute carrier family 22 (SLC22) A4 gene in chromosome 5 and 

all other variables are known predictors of RA severity identified in the literature review. 
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Table 10.1 Summary of final models  

Y variable(s) Data: model Method & Variables
b
  Correlation

c 

Larsen score ‘GWAS SNPs’ 394 subjects 2 stage 80/20: DD, SD, Agediag Larsen=0.622
 

‘All subjects’ 912 subjects 2 stage 80/20: DD, SD, Ageonset, Agediag, 
ACPA category, ACPA value, BMI 

Larsen=0.576 
 

3 stage 40/40/20: DD, SD, Ageonset, Agediag, 
ACPA category, ACPA value, BMI, rs26510, 
DRB1 S2, rs26232 

Larsen=0.559 

Disease duration <10 
years, 350 subjects 

3 stage 40/40/20: DD, BMI, rs443198, 
rs2568127, rs4133002, rs4535211 

Larsen=0.284
 

Disease duration <15 
years, 535 subjects 

3 stage 40/40/20: DD, ACPA category Larsen=0.424
 

ACPA positive, 689 
subjects 

3 stage 40/40/20: DD, SD, Ageonset, Agediag, 
BMI, rs2073839 

Larsen=0.611
 

Multiple Y
a 

‘All subjects’ split using 
DAS28: one components,  
914 subjects 

2 stage 80/20: DD, SD, Ageonset, Agediag, 
ACPA category, ACPA value, alcohol quantity, 
alcohol use, BMI, rs26232, rs2872507 

Average=0.296 
Larsen=0.646

 

‘All subjects’ split using 
DAS28: two components,  
914 subjects 

2 stage 80/20: DD, SD, Ageonset, Agediag, 
ACPA category, ACPA value, alcohol quantity, 
alcohol use, BMI, rs26232, rs2872507, 
rs2715038, rs11755527, age, rs4892117, 
rs3218253 

Average=0.353 
Larsen=0.651

 

a
 PVAS, RASEV, MHAQ, ESR, CRP, any erosions, Larsen score (hand and foot counts) & DAS28 

b
 Method implies whether a ‘two stage average rank’ method using 80% & 20% sets was used or a ‘three 

stage average rank’ method using a 40%:40%:20% split of data.  DD=disease duration, SD=symptom duration, 
Agediag=age at time of diagnosis, Ageonset= age at onset of symptoms. 
c
 Either correlation between actual and predicted Larsen score or average correlation between actual and 

predicted results for all Y variables included in the model. 
 

Although modelling the multiple Y variables did not reveal any improvement in the correlation 

between actual and predicted Larsen score, some SNPs were selected as contributing to the final 

model.  These were; rs26232 (see C5orf30 in section 2.3.2.6), rs2872507 IKZF3 gene RA risk allele 

(Stahl et al., 2010, Kurreeman et al., 2012), rs11755527 BACH2 gene Type I diabetes risk allele 

(Cooper et al., 2008), rs4892117 investigated for a RA susceptibility gene (Barton et al., 2008) and 

rs3218253 IL2RB gene RA risk allele  (Stahl et al., 2010). 

In conclusion, a ‘three stage average rank’ method appears to be able to reduce large numbers of 

environmental variables and SNPs to select the most predictive of the Larsen score.  However, its 

success is dependent on the quantifiable variability in the data, the sample size available for 

analysis and the size of the SNP effect.   A discussion of why PLS is more appropriate in this context 

of research than using more traditional regression based method is discussed in Section 10.3.   

Section 10.4 provides further details of how this work has contributed to the research area and 

section 10.5 details areas of future research including a consideration of other methods which could 

be used. 
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10.3. Justification of the choice of PLS methodology 

Although PLS was chosen as the primary method for analysis at the start of the research (section 3), 

other methods could have also been investigated such as random forests, structural equation 

modelling or other penalised regression methods such as LASSO or Elastic nets.  These are 

described as areas for future research in section 10.5, as given the size of the dataset being 

explored, there was insufficient time to explore these methods in this research. 

The ‘All subjects’ dataset had more observations (N=912) than variables (387).  This indicates that it 

could be modelled using a more simple regression based approach.  However, even on a relatively 

small dataset, numerous problems were encountered which makes the methods inappropriate to 

apply to the ‘GWAS SNPs’ dataset.  This supports the use of the more complex PLS approach.  The 

key issues are summarised below. 

Instability of p-values: It is well documented that when analysing correlated variables in a linear 

regression model, the estimates for the model parameters become unstable (Geladi and Kowalski, 

1986).  However, problems with instability also arose when analysing the SNPs one at a time in a 

model containing environmental variables to try to predict the single Y variable of the Larsen score.  

Using the ‘All subjects’ dataset (N=912), a ZINB regression model appeared to be appropriate to 

model the inflation in the number of subjects with zero Larsen score.  However, the p-values 

became unstable, when all subjects with a Larsen score of 0 had a genotype of 0 (most frequent 

homozygous).  For example, rs2071592 was highly significant in one analysis using NIPALS 

imputation (section 4.4.2, p=9.2 x10-11) and then not significant when using Quick imputation 

(section 4.3.2, p=0.453).  The only difference between these models was the way in which 142 

subjects with missing data were imputed.  Whilst the quick imputation assigned all subjects to have 

a zero and thus retained the problem that all subjects with a Larsen score of 0 had a genotype of 0, 

the NIPALS imputation assigned them values between 0 and 2.  The PLS analysis was not sensitive to 

the method of imputation retaining the variable in both models, however, a very different 

conclusion is formed using univariate p-values to indicate the importance of a variable. 

Despite this intial issue, two further methods of regression analyses were explored.  A forward 

selection ZINB regression strategy for the ‘All subjects’ dataset (discussed below) and using 

univariate NB regression models for the ‘GWAS subjects’ dataset (section 6.5.5).   

Time constraints: Whilst forward or stepwise ZINB regression selection methods are easily 

implemented in R, it requires all variables to be fitted in the model before using the stepAIC 

function.  This is not possible for this data as there are too many variables to fit in one model and 

the model does not converge.  Therefore, to perform stepwise regression, a macro was written to 

take each variable in turn, fit the variable into the null model and evaluate its significance.  

However, running the 387 variables for the ‘All subjects’ dataset consisted of fitting 387 ZINB 

regression models which took 11 minutes.  For this reason, the forward stepwise regression 

technique would not be practical when analysing the 325,482 ‘GWAS SNPs’ dataset.  For example, it 

would take an estimated 154 hours (6.4 days) to run just the first stage of selecting the first variable 

for the GWAS data.  Should the final model contain 30 variables, this would take 4620 hours or 

192.5 days and this does not include exploration into removing the variables from the model if they 

become non-significant.  This is potentially why pre-filtering of SNPs is often used with penalised 

regression techniques to remove correlation and limit the number of variables required to be 
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investigated.  However, as PLS using SIMCA can be run in one hour on the entire ‘GWAS SNP’ data 

and this provides an ordered list of importance of the variables, it is considerably more efficient 

than regression methods and allows all potential variables of interest to be investigated.  Table 10.2 

provides a summary of the running times for each of the PLS models analysed in R.  Whilst the 

average rank method (using 1 stage) takes just 8 hours, applying the two or three stages takes only 

five to ten minutes longer.  This is due to the number of variables included in the models for the 2nd 

and 3rd stages is substantially reduced from the thousands investigated in the first stage. 

Table 10.2 Running times for various PLS models 

Model fitted ‘GWAS SNPs’ data 
325482 SNPs, 394 subjects  
Run in 40 separate blocks 

‘All subjects’ data 
368 SNPs on 912 subjects 
Run in 1 block 

Percentage fold method: 
50 runs of 10 fold CV 

Minimum 1 week  
Each of the 40 blocks,  takes 
approximately 55 minutes to determine 
variables required to extract + manual 
time to look at graph, followed by 70 
minutes to run 50 runs of 10 fold CV 
extracting the appropriate number of 
variables and creating final model. 
125 mins per block=5000 mins (83 hrs) 
however as this cannot be run over night 
due to requiring manual intervention. It 
takes a minimum of a week to run. 

Minimum 30 minutes 
13 minutes to determine variables 
required to extract + manual time to 
look at graph 
13 minutes to run 50 runs of 10 fold CV 
extracting the appropriate number of 
variables. 

Average rank method: 50 
runs of 5 (or 10) fold CV 

50 hours continuous 20 minutes continuous  

1 stage: 10 runs of 5 (or 
10) fold CV 

8 hours continuous on PC (5 hours 
on a Linux cluster machine) 

5 minutes 

 

Selection of variables:  Even if it was possible to program a forward stepwise ZINB regression model 

more efficiently and thus reduce the time it takes to apply it to the ‘GWAS SNP’ dataset, modelling 

correlated variables introduces additional problems.  The most significant variable is entered into 

the model first, after which other largely correlated variables may become none significant.  

Therefore potentially important variables are not retained for the final model, even though they 

may be able to explain some of the severity.  In addition, it is not known whether the variable 

selected for the model is a surrogate for another important variable.  For example, when modelling 

the ‘All subjects’ dataset using forward selection, disease duration and symptom duration were 

added to the ZINB model (as the 1st and 9th variables entered), however, age at symptom onset and 

age at diagnosis were not entered at all.  All four of these variables (known predictors of RA 

severity) are included in PLS models because it is capable of retaining correlated variables in the 

same model thus increasing their ability to contribute to prediction.    

Number of variables in a single model:  Linear regression models are limited by the sample size 

available to contribute to the number of degrees of freedom which can be ‘spent’ on the variables 

fitted in the regression model.  A ZINB regression model using the ‘all subjects’ dataset (N=912), 

was only able to model the top 30 variables (in both the count and zero inflation part of the model) 

before having convergence issues.  Potentially, there are many SNPs having a small but important 

effect on phenotypes.  PLS has the advantage of using a dimension reduction technique which 



 

163 
 

models the components rather than the variables directly.  This allows all variables to be 

investigated in the same model.   

Univariate SNP testing: Instead of selecting SNPs using a forward or stepwise selection, section 

6.5.5 investigated using univariate NB regression models for the ‘GWAS subjects’ calculating the 

p-value corresponding to fitting each SNP on its own in a model containing some key environmental 

variables.  Unfortunately, with just 394 subjects, there was not enough power after adjusting for 

multiple testing of 325482 SNPs.  Hence, no SNPs were found with a p-value less than the bonferoni 

adjusted significance level.  Although the top 100 SNPs corresponding to the lowest p-values could 

be used to form a prediction model and this was shown to perform as well as the top 100 SNPs 

selected by PLS, there is still no method to prevent over fitting or determine the optimum number 

of variables to retain.  In addition, each SNP tested univariately is selected due to its perceived 

influence on severity.  Correlated variables may be explaining the same variability and hence if 

these are then used to form a prediction model (i.e. the SNPs entered into the same model), they 

may be some overlap resulting in collinearity issues.  PLS does not suffer from these collinearity 

problems (due to modelling the loadings) and it selects variables to explain as much as the 

variability as possible.  It is therefore likely to create better predictive models which explain more of 

the variation in the Y data.    

This research provides evidence that PLS is a quick model fitting strategy for creation of a prediction 

model, when data contain many more variables than observations.  PLS is not limited by standard 

regression model assumptions, this allows many correlated variables to contribute to the model. 

 

10.4. Contribution of this work to current research and limitations 

Genotyping costs have dramatically reduced over the last 10 years and this has led to the amount of 

genetic data for analysis increasing substantially.  As this is a relatively new phenomenon, methods 

to deal with the data are continually being developed.  A basic review of the literature using the 

search terms ‘PLS’ and ‘SNP’ did not find any papers prior to 2010 investigating more than 20,000 

SNPs in the same analysis.  No studies were found using PLS models to predict RA severity using 

environmental factors and genetic variants.   

Since 2010 much of the research has been in animal studies (such as breeding or milk yield in cattle) 

or in plant studies and the number of SNPs being investigated together is ever increasing.  Recent 

modelling strategies have addressed specific issues, however none have reported a method within 

PLS models to avoid over fitting and enable modelling of high-dimensional data without pre-

filtering.  Recently, there have been warnings against the use of pre-filtering as it could lose 

important signals in the data (Abraham et al., 2013).    

Daetwyler et al. (2013) reviewed the current methods being applied in plant and animal genomic 

prediction.  They discuss two forms of CV, that of separate training and test sets (either run once or 

replicated) and that of replicated internal CV (such as the n runs of k-fold CV).  They highlight that 

correlation between the estimated and true response is commonly being employed to quantify 

prediction accuracy and state that CV appears to be the preferred validation method. They warn 

that CV only gives an estimate of the accuracy of the model in the data it is applied to, hence may 

not be transferable to other sets of data.  The use of averaging of CV replications to avoid bias 
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caused by the choice of folds has also been suggested for penalised regression methods and this 

approach has been applied to the PLS models in this PhD research (Li and Sillanpaa, 2012).  

Current methods developed in the SPLS area (Le Cao et al., 2008, Magidson, 2011, González et al., 

2011) use internal CV and specify the maximum number of variables to retain in the final model.  

Variables are selected for the final model if they are chosen in a certain number of folds across all of 

the runs entitled the ‘percentage fold’ method.  However, this research demonstrated that this 

method does not protect against over fitting and it is very time consuming when applied to a high-

dimensional GWAS dataset.  

Long et al. (2011) analyse 32,518 SNPs which they use to predict milk yield in Holstein cattle.  They 

use the SPLS tuning parameters (Kappa and Eta) to identify the models with the best correlation 

under CV however, because the tuning parameters can lead to models with a large number of SNPs, 

they suggest specifying an upper bound for the number of SNPs required in the final model.  This is 

similar to the recommendations using mixOmics and CORExpress (Le Cao et al., 2008, Magidson, 

2011, González et al., 2011).  Following the upper bound specification, they use a range of tuning 

parameter values to investigate models which have less than this maximum number of SNPs.   They 

comment that investigating all of the combinations of (Kappa and Eta) may be computationally 

expensive, hence the requirement to pre-specify the maximum number of variables required to be 

retained for the final model.  In addition, they have substantially fewer SNPs than are being 

investigated in this PhD research and they do not investigate how over fitting may affect the 

prediction of an independent sample.    They therefore use a combination of the R SPLS function 

with unrestricted (Kappa and Eta) and the R mixOmics function which specifies a fixed number of 

variables to keep in the model.   

This PhD research found that when modelling a single Y variable (Larsen score), a second 

component was not required even when the first component was restricted to very few variables.   

Therefore, investigating Kappa and Eta (for the number of components & number of variables) is 

not anticipated to help with model fitting and the bigger issue appears to be the avoidance of over 

fitting of the model.  In this research, over fitting was addressed by the creation of a ‘two stage’ or 

‘three stage average rank’ method.  There was also evidence that optimising kappa and eta, when 

data is split into smaller blocks prior to combining into a higher level model, may try to optimise the 

model too soon and lead to exclusion of potentially important variables (as too few variables are 

carried forward to the higher level model).  The proposed ‘average rank’ method allows many 

variables to be carried forward from the lower level models and optimises the model fit only on the 

higher level model.   Whilst the research could have investigated using tuning parameters on the 

higher level model, the ‘average rank’ method appears to prevent over fitting of the model when 

used in combination with the ‘two-stage’ or ‘three-stage’ model fitting strategy. 

Le Cao et al. (2011) have data on 525,000 SNPs however they pre-filter the SNPs removing any with 

a minor allele frequency less than 0.05 and then randomly sample 20,000 SNPs for use in their 

comparison of multivariate methods for discrimination.  Le Floch et al. (2012) investigate 622,534 

SNPs using various methods to reduce the dimension including using the rank of the loading to 

select the ‘top’ SNPs.  They suggest univariate filtering as a mandatory step to prevent over fitting.  

Whilst they comment that multivariate filtering would be preferential to univariate filtering, in 

order to account for interactions, they do not research how this would be performed.    
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The research in this PhD using the different forms of validation in the ‘three stage average rank’ 

method, provides a solution to the pre-filtering problem.  It is anticipated that the models created 

will be more transferable and robust to over fitting.  As no pre-filtering is required prior to 

modelling, there is no loss of information.  Initially, models are created under multiple internal CV 

to provide an order of the variables being investigated.  Following on from this, variable selection is 

performed using separate training & test sets.  The model is then tested using a third independent 

testing set.  This results in no bias in the estimate of the prediction ability due to those predicted 

subjects not being used at all in model training.  Whilst the method is still limited to only being 

applicable to the cohort of data being used, if the cohort is representative of the population, then it 

should be transferable to other cohorts.   To date, no other method has been identified in the 

literature which performs variable reduction multivariately, prevents over fitting of the final models 

and provides an estimate of model prediction on an independent sample.  

It is therefore believed that the ‘three stage average rank’ method implements a more suitable 

dimension reduction method as part of the SPLS model fitting strategy to avoid the requirement for 

pre-filtering which could lead to multivariate information in the data being lost.  Although this 

research was not focused on the detection of causal SNPs, Abraham et al. (2013) used LASSO and 

elastic net methods to investigate 270,657 SNPs and concluded that pre-filtering limits the 

probability to detect the causal SNP.  This supports the requirement of a multivariate variable 

reduction method as opposed to any univariate filtering. 

Turkmen and Lin, (2012) propose a two-step method ‘rPLS’ which performed regularisation to 

reduce the SNPs followed by PLS methods.  Whilst similar to the approach applied in this PhD 

research, the ‘three stage average rank’ method has the added advantage of ordering and selecting 

the variables for the final model using PLS methods and then being able to independently test the 

model fit on the set of data left out of model training.  Variables excluded during this process will 

have been considered multivariately including their relationship with the Y response rather than 

using any univariate pre-filtering methods. 

One limitation of the ‘three stage average rank’ method is that sufficient patients are required to be 

able to separate the sample into three groups, each with enough representative data to both create 

and test the model adequately.   Further research would be required to investigate the optimum 

split of the data.  A 40% ‘variable ordering training set’, a 40% ‘variable selection training set’ and a 

20% independent test set was used in this research, however, simulations to investigate the model 

variability subject to different splits would be beneficial.  

A further limitation is that the GoRA data is a cross sectional sample, measured on relatively 

heterogeneous patients with varied disease duration and different treatment regimens which have 

been administered over varying lengths of duration.  This introduces variation into the data which 

cannot be explained by the measurements recorded.  A patient susceptible to severe disease but 

administered with an aggressive treatment regimen may quickly have their progression stopped.  

Another patient with the same susceptibility to severe disease may remain undiagnosed and 

untreated for years and thus experience rapid progression.  Unfortunately, these differences cannot 

be accounted for in the analysis of this data.   Applying these techniques to a more homogenous 

sample which has details of treatments administered may be able to detect smaller SNP effects due 

to less unexplained variation in the data. 
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10.5. Areas for future research 

The ‘three stage average rank’ method used splits of the data into a 40% ‘variable ordering training 

set’, a 40% ‘variable selection training set’ and a 20% independent test set.  This created a model 

which avoiding over fitting.  Within the 40% ‘variable ordering training set’, internal CV models were 

fitted which split the data into folds which were run a number of times.  For each of these runs, 

each patient is left out of the training data once until each subject receives a predicted value.  

Rather than using CV, Wehrens et al. (2011) suggest leaving a random 30% of the samples out each 

time (similar to the 20% left out by the 5-fold CV) and also leaving a random 50% of the variables 

out each time and repeating this 100 times.  Variables are ranked by the size of their coefficients 

and the final model is determined by the number of times a variable was selected in the top 10% 

out of the number of times it was actually included in the model.  Due to time constraints it was not 

possible to use this approach on the GoRA data.  However, if a suitable dataset could be obtained 

which ideally had less variation with regards to each subjects disease duration, then exploration 

into this methodology used alongside the SPLS methods developed in this research would be 

recommended. 

Daetwyler et al. (2013) suggest presenting the mean and STD of the correlation to demonstrate 

how varied the model’s prediction ability is, based on different splits of the data.  This in turn can 

give insight as to whether the training data sample size is sufficient to form a stable model.   It 

would be recommended to repeat the ‘three stage average rank’ method using different splits of 

the 40%, 40% and 20% sets.  This would provide an estimate of the variability around the 

correlation between the actual and predicted values formed on different splits of the data.  It would 

also provide information regarding whether the same variables are selected when different splits of 

the data are used.  If different variables are selected then this indicates that the sample size may 

not be large enough to create a robust model and the model may not be transferable to other 

cohorts.  Some exploration into this was provided in section 9.5 by using two different splits of the 

40%, 40% and 20% sets.  Although there was some variability in the correlation achieved using 

different splits of the data (r=0.547 to r=0.584), the top seven variables selected were the same in 

both models.  However, as there was some variation in the variables selected after the top seven, 

this indicates that the sample perhaps was not large enough to reliably identify variables with 

smaller predictive influence on the Larsen score.  However, the results are quite reassuring and the 

‘three stage average rank’ method was shown to be more stable than the ‘two stage average rank’ 

method. 

In the review of multivariate methods, using random forest methods was originally ruled out as no 

studies were found using them to predict continuous traits using GWAS data.  However, it may be 

of interest to see how they perform in comparison to the PLS research presented.  In addition, 

exploration using structural equation modelling or other penalised methods (such as LASSO and 

elastic net) would also be of interest for comparison with the PLS findings.  It is anticipated that 

these methods would suffer from the same over fitting issues observed using PLS and so the use of 

a type of three stage procedure may be required. 
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10.6. Concluding review of software used 

As discussed in section 3.7.5, many software packages can be used to fit PLS analyses, however, 

they do have different capabilities and functionality.  This section provides justification of the 

software used throughout this research, along with the advantages and disadvantages. 

Initial choices of which software to use for analyses of this project was limited by software freely 

available at the University of Sheffield.  Although the majority of the work was conducted using the 

free software R using version 2.13.1 on a standard computer, section 8.2 was performed using 

version 2.15.1 on a Linux based high performance computing cluster ‘Iceberg’.  This was to enable 

the 100 permutations to be run simultaneously on different computing clusters.  The mixOmics R 

package (González et al., 2011, Lê Cao et al., 2009) version 3.1 was used on a standard computer 

whereas the version 4.0-2 was used on the Linux clusters as a later version was available when the 

work was performed.    The mixOmics SPLSCV function allows specification of the number of 

variables required to retain in the final model.  This is substantially easier when attempting to 

reduce 325482 SNPs to just the most predictive than using the SPLS package (Chun and Keles, 2010) 

which requires optimisation of tuning parameters.  It would be extremely hard to optimise the 

tuning parameters when all of the variables are not able to be fitted in the same model at the same 

time.  The reason for this is that a model is trying to be optimised without including all of the 

potentially important variables in it and depending on which order you fitted the variables into 

groups may result in a different suggested model.  In addition, as it was discovered in this work that 

only one component was required for modelling of the Larsen score, the tuning parameter kappa 

would equal one, hence only the number of variables (eta) would require optimising.  The number 

of variables in PLS even when assessed through CV is subject to over fitting.  Hence, the methods 

developed using the ‘three stage average rank’ method appear more suitable to prevent over fitting 

than investigating optimising tuning parameters on this data. 

Table 10.3 provides an overview of the functionality available in each of the PLS software packages 

investigated, in addition to identifying where this software was used in this thesis.  SAS version 9.2 

was used for data manipulation, formatting data, merging of SNPs and verifying the PLS function is 

correctly implemented in R.  It was not investigated for the modelling of the ‘GWAS SNPs’ dataset 

because it couldn’t perform SPLS and hence had no method to reduce the variables in the model.   

After forming a prediction model using mixOmics, quantification was required of how much of the 

variance explained was due to component blocks (i.e. to the genetic variables as opposed to the 

environment or disease/symptom duration).  No function was found in R to do this and therefore 

the functionality of Tanagra and MATLAB were investigated. Using the MVP Toolbox (Skov et al., 

2008) in MATLAB was the better software to answer this question.  Tanagra only provided 

estimates of each variable’s contribution to each component and not the contribution of a block of 

variables to the full prediction model.   

After being awarded additional Medical Research Council funding to purchase SIMCA and 

CORExpress software, the project was able to investigate whether these commercial software 

products had better functionality than R.  SIMCA had numerous benefits such that it could analyse 

the ‘GWAS SNPs’ dataset in one PLS analysis and had excellent plot capabilities.  Although, it had no 

built in variable selection (SPLS) method, a form of variable reduction could be done by hand after 

extracting the loading vector from the model and ranking them.  This resulted in a very similar 

model to the mixOmics model (section 7.3).    SIMCA was much faster than R not only because it ran 
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all of the ‘GWAS SNPs’ dataset in one model (instead of 40 blocks) but also because it only required 

one run of seven fold CV.  R was investigated using just one run, however, the results obtained were 

less in agreement with the 10 runs in R and one run in SIMCA.  An alternative solution to reduce 

model fitting time in R may be to use three runs instead of 10 runs in accordance with Long et al. 

(2011). 

SIMCA also enabled orthogonal PLS to be explored which rotated the loading vector for a single Y 

variable prediction onto a simpler plane for easier visual interpretation (section 7.2).  A limitation of 

SIMCA is that because it is not a programming language, it can take longer than R to repeat analyses 

on permutations of Y data, subsets of subjects or on different splits of a dataset.  For example, 

splitting the data into various 80% training and 20% test sets or using a 40% variable ordering 

training set, a 40% variable selection training set and a 20% independent test set. 

In conclusion, mixOmics may be more desirable if doing SPLS analysis to multiple datasets or 

splitting the patient cohort.  Once the pre-processing is done the whole process can be automated 

and the code can be re-run on different datasets.  However, SIMCA is preferred if modelling a single 

dataset as there is no need to perform any pre-processing or imputation.  SIMCA runs substantially 

quicker than R and it has better graphics.  

Table 10.3  Summary of PLS functionality by software 

Software Chapter/
Section 
in thesis  

SPLS For CV 
required 
to impute 

Variance 
partitioning 

Number 
X’s able 
to model 

Additional 
functions 

R mixOmics v3.1 and 
4.0-2

a 
4, 5, 6, 7, 
8, 9 

 
 

  <12000  

R SPLS v 2.1-0
a 

Not used  
 

  <12000  

SAS V 9.2
b 

2.2 and 
3.7.5 

By hand UNK  UNK  

Tanagra v1.4.44 
released May 14 2012

c 
4.3.4.1 By hand UNK  

(component 
contribution) 

UNK  

MATLAB® version 7.13 
R2011b

d 
4.3.4.2, 
4.4.4 and 
6.5.3 

By hand UNK   
(multi-block) 

UNK  

SIMCA® Umetrics AB 
Version 13.0

e 
7 By hand   >325482 Orthogonal 

PLS, plots 

CoreExpress v1.0
f 

6.4.4    >24374 CCR 
a: R Foundation for Statistical Computing v2.13.1 or v2.15.1 (Vienna, Austria) 
b: SAS System for Windows Copyright © 2002-2008 (SAS Institute Inc. Cary NC USA) 
c: (Rakotomalala, 2005) 
d: The MathWorks Inc., Natick, MA, USA 
e: (Eriksson et al., 2006a, Eriksson et al., 2006b) 
f: (Magidson, 2011) 
UNK: Unknown and not investigated during this thesis. 

CORExpress had SPLS functionality similar to the original version (‘percentage fold’ method) of 

mixOmics in R using multiple runs of CV.  The restrictions in the software of no programming 

functionality and requiring selection of variables based on the numbers of folds and runs instead of 

using average ranked loadings, meant that the model obtained (using PLS or CCR in CORExpress) 

was very different to that observed using the amended mixOmics version in R or SIMCA.  
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CORExpress was capable of modelling entire chromosomes at once although modelling the entire 

GWAS in one go was not attempted. 

The software PLINK was used as the original ‘GWAS SNPs’ dataset file was stored in this common 

genetic data format.  PLINK also has its own imputation methods which were explored on this 

project.  Gtool (created by Colin Freeman and Jonathan Marchini and available from: 

http://www.well.ox.ac.uk/~cfreeman/ software/gwas/gtool.html), was used to perform the transfer 

of files across various data formats from PLINK to IMPUTE2 to SAS and to R.  IMPUTE2 (Howie et al., 

2009) was used to perform haplotype based imputation.    

 

10.7. Summary 

In conclusion, modelling strategies have been developed to be able to use SPLS on very large data 

problems enabling variable ordering, selection and testing.   Running times using the ‘average rank’ 

method are more practical and efficient compared to the commonly used ‘percentage fold’ method 

or other linear regression based methods.  The methods developed could be used on any size of 

dataset and have been shown to identify known predictors of RA severity.   It is anticipated that if a 

more homogenous cohort could be found, or the sample size increased, then the methods may be 

suitable for identifying smaller effects.  As it was not possible to account for treatments 

administered in this analysis, this may have reduced the ability to detect genetic predictors of RA 

severity.  Further research is required to apply the statistical methods developed in this research to 

a larger cohort.  This would enable a prediction model to be developed, which could be used in 

clinic at disease diagnosis, to estimate the patient’s future risk of severe RA disease.   

 

  

http://www.well.ox.ac.uk/~cfreeman/%20software/gwas/gtool.html
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Appendix B: Table of evidence of gene association with severity of rheumatoid arthritis 

Acronyms: ACPA=Anti-Citrullinated protein antibody, CRP= C-Reactive protein, CI=Confidence interval, DAS=disease activity score, DMARD=Disease modifying anti-

rheumatoid drug, (M)HAQ=(Modified) health assessment questionnaire, MTX=Methotrexate, OR=Odds ratio, RA=Rheumatoid arthritis, RAAD= Rheumatoid Arthritis 

Articular Damage score,  RF=Rheumatoid factor, SJC=Swollen joint count, TJC=Tender joint count, UNK=unknown information, VAS=Visual analogue scale, VNTR=Variable 

number of tandem repeats.   

Gene/  
rs number/  
Severity marker/ 
Reference 

Sample 
size 

Evidence of association No evidence of association Analysis performed 

α2m/ 
UNK/ 
Disease activity/ 
(Zapico et al., 2000a) 

71 
severe 
RA and 
89 non-
severe 
RA 

There was a significantly higher frequency of 
carriers with the α2m deletion allele in patients 
with an early active severe RA, compared to non-
severe RA (p = 0.037),  in patients with severe RA 
compared to non-severe RA (p = 0.017) and in 
patients with 5 or more episodes of acute 
exacerbation of disease activity per year (n = 39) 
compared to those with none (n = 46) (p = 0.002) 

 UNK 

AMPD1/  
rs17602729/ 
DAS28/ 
(Grabar et al., 2010) 

211 RA  Carriers of AMPD1 34T (rs17602729) allele had a 
3.8-fold higher probability for lower DAS28 
(score <=3.2) compared with non-carriers 
(p=0.012, OR=3.786, 95% CI 1.347 to 10.642).  
After exclusion of patients co-treated with other 
DMARDs, the effect was even stronger (p=0.006, 
OR=6.729, 95% CI 1.741 to 26.007) 

 Binary logistic regression 
modelling the percentage with 
low disease activity (DAS28 
<=3.2) vs. moderate/high (DAS28 
>3.2) corrected for gender, MTX 
treatment duration, MTX dose 
and presence of RF and ACPA 
antibodies 

C5orf30/ 
rs26232/ 
Larsen and Sharp score/ 
(Teare et al., 2013) 

1884 RA Reduction in joint damage with the T allele.  
Found in 885 cohort, median Larsen score 
CC=31, CT=27, TT=16, p=4x10

-4
.  Meta-analysis 

replication in 2 other cohorts (N=581and 418) 
found severity OR of 0.90 (0.84-0.96, p=0.004). 

 Fixed effects meta-analysis. 

Calprotectin/ 
None (cell protein mg/l)/ 
Sharp, RAAD/ 

145 RA Calprotectin showed a highly significant 
correlation with modified Sharp score (r = 0.43, 
p<0.001) and RAAD (r = 0.40, p<0.001) which was 

 Spearman’s rank correlation. 
Linear multiple regression 
analyses with the modified Sharp 



 

190 
 

Gene/  
rs number/  
Severity marker/ 
Reference 

Sample 
size 

Evidence of association No evidence of association Analysis performed 

(Hammer et al., 2007) maintained after adjustment for CRP, ESR, RF, 
DAS28, sex, and age in a multiple regression 
analysis.  The parameter estimates equated to a 
Sharp score increase of 5.49 (SE=2.30), p = 0.018 
for every 1 point increase in calprotectin and a 
RAAD increase of 1.12 (SE=0.55), p = 0.04 for 
every one point increase in calprotectin  

score and RAAD score as 
dependent variables and 
calprotectin, CRP, ESR, RF, 
DAS28, sex, and age as 
independent variables.  

CARD8 (TUCAN)/  
rs2043211/  
Larsen, DAS28, SJC, TJC,  ESR/ 
(Kastbom et al., 2010) 

560 RA Patients carrying CARD8-X had significantly 
higher DAS28 (p=0.02), ESR (p=0.004) and TJC 
(0.02) than those carrying CARD8-CC over the 24 
months.  No effect was seen for SJC or Larsen 
score at baseline or 24 months  

 Analysis of variance (ANOVA) for 
repeated measurements was 
used to compare data collected 
at several time points.   

CARD8 (TUCAN) and CIAS1/  
rs2043211 and UNK/ 
DAS28, ESR, physicians global 
assessment, CRP/ 
(Kastbom et al., 2008) 

174 RA Over a three year follow-up, patients with 
presence of at least one variant allele in both 
genes (CIAS1/TUCAN -/-) showed significantly 
higher disease activity at most time points.  In 
patients presenting CIAS1/TUCAN +/+, only one 
(2%) received TNF-blocking therapy compared to 
seven (37%) in the CIAS1/TUCAN -/- group  

 Mann-Whitney U test 

CIAS1/ 
rs35829419/  
Larsen, DAS28, SJC, TJC, ESR/ 
(Kastbom et al., 2010) 
 

560 RA  There were no associations 
between NLRP3 (previously 
called CIAS1) and disease 
activity measures 

ANOVA for repeated 
measurements was used to 
compare data collected at 
several time points.   

CCR5/ 
32-bit deletion/ 
Erosions, ESR/CRP, anaemia/ 
(Zapico et al., 2000b) 

160 RA Carriers of the CCR5- Δ32 allele were at a 
significantly higher frequency (P = 0.012) in non-
severe RA compared to early severe RA patients 
(17% vs. 4%).  

 Yates chi-square test to compare 
patients with 
early severe RA vs. non-severe.   
 

CCR5/ 
32-bit deletion/ 
Baseline or follow up TJC, SJC, 
RF, ESR, CRP, DMARD usage, 

92 RA  After correcting for multiple 
testing, CCR5- Δ32 status was 
not associated with a 
significant difference in 

Mann-Whitney U test 
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Gene/  
rs number/  
Severity marker/ 
Reference 

Sample 
size 

Evidence of association No evidence of association Analysis performed 

HAQ, radiographic erosion 
status/ 
(Pokorny et al., 2005) 

disease severity  

CCR5/ 
32-bit deletion/ 
UNK/ 
(Graudal, 2004) 

682 RA  The CCR5-Δ32 was not 
associated with disease 
severity  

UNK 

CCR5/ 
-1118 (ins/del) rs10577983/ 
Sharp score/ 
(Han et al., 2012b) 

357 Significant increase in total Sharp score 
associated with both the -1118 CTAT 
(insertion/deletion) in CCR5 (rs10577983) 
(p=0.048) and 303 A>G (rs1799987) (p=0.048).  
In addition, when analysing the erosion score 
alone, there was an increase in the statistical 
significance (corrected for multiple testing p 
values of p=0.028 and p=0.028 respectively).   

 UNK 

CD40/ 
rs4810485/ 
Sharp/van der Heijde scores/ 
(van der Linden et al., 2009) 

563 RA + 
383 RA in 
rep- 
lication 

The TT and GT/GG genotype of CD40 
(rs4810485) was associated with a higher rate of 
joint destruction in ACPA positive RA patients 
(back transformed regression coefficient of 1.12 
times greater increase in the Sharp score per 
year (95% CI=1.04-1.21) p=0.003).  This finding 
was not statistical significant after Bonferroni 
correction. In replication using a perfect proxy 
for rs4810485, a higher progression rate of 3.40 
sharp units/year in the TT genotype compared to 
2.83 and 1.83 in the GT and GG genotypes 
respectively was observed (p=0.021) 

 Sharp scores were presented as 
medians over time and were log-
transformed in the analysis.  A 
linear model for longitudinal data 
was used to compare progression 
rates between groups. 
Bonferroni adjustment P<0.008 
(6 SNPs) 

CDK6 / 
rs42041/ 
Sharp/van der Heijde scores/ 
(van der Linden et al., 2009) 

563 RA + 
383 RA in 
rep- 
lication 

The GG and CC/CG genotype of CDK6 (rs42041) is 
associated with a higher rate of joint destruction 
in ACPA positive RA patients (back transformed 
regression coefficient of 1.09 times greater 
Increase in the Sharp score per year (95% 

 Sharp scores were presented as 
medians over time and were log-
transformed in the analysis.  A 
linear model for longitudinal data 
was used to compare progression 
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Gene/  
rs number/  
Severity marker/ 
Reference 

Sample 
size 

Evidence of association No evidence of association Analysis performed 

CI=1.02-1.16) p=0.012.  This finding was not 
statistical significant after Bonferroni adjustment 
and significance could not be replicated using 
imputed data for rs42041 (2.76 sharp units/year 
in the GG genotype compared to 2.38 and 2.07 in 
the CG and CC genotypes respectively (p=0.327) 
although there is still evidence of a linear trend. 

rates between groups.  
Bonferroni adjustment P<0.008 
(6 SNPs) 

Chondromodulin-II (ChM-II)/ 
UNK/ 
Modified Larsen score/ 
(Graessler et al., 2005) 

204 RA Presence of the ChM-II 172 A allele increases x-
ray damage independent of SE. Larsen scores 
were significantly higher in RA patients carrying 
the 172AA genotype (Larsen score = 96.8), than 
in RA patients with the 172GA (Larsen score = 
69.5) or 172GG (Larsen score = 54.8; p = 0.001) 
genotypes. ORs to develop more severe 
radiographic joint damage (Larsen score > 90; 
above 75th percentile) were 4 and 15.5 for the 
172GA and 172AA genotypes, respectively. 
Presence of a 172A allele increased the risk for 
enhanced radiographic damage 3-fold. 

 Cochran Armitage trend test  

Cyclooxygenase-2 (COX-2)/ 
-765GC/ 
Anatomical stage according to 
Steinbrocker/ 
(Lee et al., 2006) 

258 RA No association was observed between COX-2 
genotype and severity of RA. However, among 
those without the shared epitope (SE), carriers of 
the low activity C allele had a lower risk of RA 
and less severe form of RA than subjects with the 
G/G genotype. The OR (95% CI) was 0.04 (0.01-
0.41) for severity of RA  

 OR and 95% CIs 

Cyclo-oxygenase-2 (COX-2)/ 
23 SNP inc -1329AG, -899GC 
SNP and 6365TC/ 
Radiologic severity/ 
(Yun et al., 2008) 

1201 RA  Radiologic severity of RA was 
not associated with COX-2 
polymorphisms 

Logistic regression models were 
used to calculate OR and 95% CIs 

Cytochrome (CYP) CYP1A2/ 1268 RA A marked reduction in disease severity  ORs and 95% CIs adjusted for 
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Gene/  
rs number/  
Severity marker/ 
Reference 

Sample 
size 

Evidence of association No evidence of association Analysis performed 

rs762551/ 
Anatomical stage according to 
Steinbrocker/ 
(Cornelis et al., 2010) 

associated with the CYP1A2 C allele (-163 AC 
rs762551) was found among cases homozygous 
for the SE. OR (95% CI): 0.30 (0.09-1.01), P=0.05  

age, sex, duration of disease and 
duration of treatment. 

DNA Methyltrasferase (DNMT) 
3B/ 
-283 CT/ 
Modified Sharp score/ 
(Nam et al., 2010) 

309 RA The - 283 C/T polymorphism (Chr 20q 11.2) of 
the DNMT3B gene contributes to the progression 
of joint destruction in RA.  In the carriers of 
CT/TT, the slope of the regression line was 
significantly steeper than in the carriers of the CC 
genotype  
(y=9.546x +19.998, r

2
=0.810, vs. 

y=6.185x+34.424, r
2
=0.536; p=0.014) 

 Plotted modified sharp score 
against disease duration. Fitted 
regression lines for each 
genotype (CT+TT vs. CC). 
Differences in the slopes of the 
regression lines were analysed 
using an interaction between a 
dummy and time variable based 
on a multiple linear regression 
model.  

Endothelial nitric oxide synthase 
(eNOS)/ 
T-786C/ 
Extra-articular manifestations/ 
(Brenol et al., 2009) 

105 RA The C/C genotype carriers were more likely to 
demonstrated extra-articular manifestations 
compared with the heterozygous and T/T 
homozygous taken genotypes taken together 
(OR = 4.9, 95% CI = 1.3-18.9, P = 0.022) 

 Chi-square for categorical 
variables, t-test/ANOVA for 
normally distributed variables 
and if assumptions are not met 
fitted a Mann-whitney U test or 
Kruskal wallis test. 

FcgR Receptors for the Fc 
fragment of IgG/ 
FcgRIIIa-V/V158/ 
Joint erosions/ 
(Sfar et al., 2009) 
 

133 RA FcgRIIIa-V/V158 was the most important FcgR 
genotype for the severe disease subset with joint 
erosions.  Patients with FcgRIIIb-NA2/NA2 
genotype had an earlier incidence of clinical 
symptoms 

 UNK 

FCRL-3/ 
-169 T>C, rs7528684/ 
Sharp score/ 
(Han et al., 2012a) 
 

227 RA Higher Sharp scores associated with the CC 
genotype for patients in the ≥10 year disease 
duration subgroup (p=0.034) 

 UNK 

FCRL-3/ 652 RA The CC genotype was associated with 10 year  Multivariate linear and logistic 
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Gene/  
rs number/  
Severity marker/ 
Reference 

Sample 
size 

Evidence of association No evidence of association Analysis performed 

-169 T>C, rs7528684/ 
Radiographic progression/ 
(Maehlen et al., 2011) 

radiographic progression.  regression analyses after 
adjustment for ACPA, ESR age, 
and sex 

FCRL-3/ 
-169 T>C, rs7528684/ 
Destructive vs non/ 
(Chen et al., 2011) 

670 RA There was an increase in CC+CT genotypes for 
patients with destructive disease compared to 
non-destructive disease (OR=1.672, 95% CI: 
1.149-2.432, p=0.007) 

 UNK 

FCRL-3/ 
-169 T>C, rs7528684/ 
Erosions/ 
(Bajpai et al., 2012) 

58 RA FCRL-3 -169C allele was overrepresented in 
patients with erosive RA. 

 UNK 

Glutathione S-transferases 
(GST)/ 
/GSTM1/ 
Larsen score & HAQ/ 
(Mattey et al., 2002) 
 

164 RA Disease outcome in female RA patients with a 
history of smoking was significantly worse than 
in those who had never smoked. Smoking was 
significantly associated with the most severe 
disease (higher Larsen score) in patients who 
carried the GSTM1-null polymorphism. This 
association may be due in part to a relationship 
between the GSTM1 polymorphism and RF 
production in smokers  

 Multiple regression analyses, 
with correction for age and 
disease duration 

Glutathione S-transferases 
(GST)/ 
/GSTM1, GSTT1, GSTP1/ 
DAS28/ 
(Bohanec Grabar et al., 2009) 

213 RA Patients with GSTT1-null polymorphism 
(deletion) had a higher risk for developing high 
activity RA than the patients with GSTT1 genes 
present (p=0.028, OR=2.761, 95% CI=1.114-
6.843).   In the group of smokers, patients with 
GSTT1 deletion had an 8.5-fold higher risk for 
developing high disease activity than patients 
without the deletion (p=0.004, OR=8.640, 95% 
CI=1.995-37.426)  

GSTM1 –null polymorphism 
(deletion) and GSTP1 
polymorphisms were not 
associated with the disease 
activity 

 

HLA-DRB1/ 
DRB1*01 and DRB1*04/ 
Larsen scores/ 

87 RA *01 or *04 are significantly associated with 
higher x-ray damage  

 
 

HLA markers were evaluated by 
univariate comparisons and by 
multiple logistic regression of 
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Gene/  
rs number/  
Severity marker/ 
Reference 

Sample 
size 

Evidence of association No evidence of association Analysis performed 

(Wagner et al., 2003) progression over time. 

HLA-DRB1 / 
DRB1*04/ 
DAS, Larsen score/ 
(Farouk et al., 2009) 

29 RA HLA-DRB1*04 alleles (n=12) were significantly 
expressed among RA patients. (N=9, 75% with 
active disease vs. N=3, 25% with inactive disease, 
p<0.05 and N=3, 25% with non-erosive disease 
vs. N=9, 75% with erosive disease, p<0.05)  

 Students T-test of proportion of 
patients 

HLA-DRB1/ 
S2, S3D / 
Sharp-van der Heijde method/ 
(Gourraud et al., 2006) 

144 The presence of S2 alleles (HLA-DRB1*0401 and 
HLA-DRB1*1303) were associated with severe 
forms of RA (P = 0.004). A significant dose effect 
was observed (P = 0.01). The presence of S3D 
alleles (HLA-DRB1*11001, HLA-DRB1*1104, HLA-
DRB1*12 and HLA-DRB1*16) were associated 
with benign forms of RA (P<0.0001) and a 
significant dose effect was observed (P<0.01)  

 Non-parametric statistical tests 
(no further information 
available). 

HLA-DRB1/  
S2, S1/ 
Larsen score/ 
(Mewar et al., 2008) 

962 S2 alleles (KRAA) coding for (HLA-DRB1*0401 and 
HLA-DRB1*1303) were associated with more 
severe structural damage (Kruskal wallis test for 
0 vs. 1 vs. 2, S2 alleles, Larsen score =26, 29 and 
41 respectively, p=0.0059 and Mann-Whitney U 
test for S2/S2 genotype vs. X/X genotype, Larsen 
score=41 and 22 respectively, p=0.01).  S2 alleles 
were also found to affect the proportion of 
patients being RF positive (0 vs. 1 vs. 2, S2 alleles 
having 62%, 75% and 80% RF positive patients 
respectively, p=<0.001) and the proportion of 
ACPA positive patients (0 vs. 1 vs. 2, S2 alleles 
having 66%, 86% and 91% positive respectively, 
p=<0.001) 
S1 alleles were associated with less severe 
disease (0 vs. 1 vs. 2, S1 alleles, Larsen score =28, 
20, 18 respectively, p=0.011 and S1/S1 genotype 
vs. X/X genotype, Larsen score=18 and 22 

 Kruskal wallis test comparing 
alleles for the Larsen score. 
Mann-whitney U tests comparing 
genotypes for the Larsen score.  
ORs to test proportion positive or 
negative RF & ACPA. 
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Gene/  
rs number/  
Severity marker/ 
Reference 

Sample 
size 

Evidence of association No evidence of association Analysis performed 

respectively, p=0.069) however there was no 
association with ACPA or RF.  

HLA-DRB1/ 
rs1410766, rs322812 and 
rs347117/ 
Joint morbidity/ 
(Min et al., 2010) 
 

UNK Found a high peak (LOD = 3.29; NPL Z = 4.07) 
near the HLA-DRB1 region on chromosome 6. 
The linkage at 6p24 at rs1410766 [LOD = 2.66; 
nonparametric linkage (NPL) Z = 3.23] was 
statistically significant. Two other regions also 
showed possible linkage peaks: chromosome 
7q30 at rs322812 (LOD = 2.47; NPL Z = 3.39) and 
chromosome 15p34 at rs347117 (LOD = 1.95; 
NPL Z = 2.80).  

 Linkage association study 

HLA-DRB1/ 
Shared Epitope/ 
Erosions, SJC, HAQ/ 
(Morgan et al., 2010) 
 
 

1046 RA  No evidence HLA-DRB1 SE 
associated with prevalent 
erosions, SJC or HAQ. SE 
included number of copies (0, 
1 or 2) of HLA-DRB1*0101, 
0102, 0401, 0404, 0405, 0408, 
and 1001 and did not look 
individually at the SE 
genotypes  

Logistic (presence/absence of 
erosions) and linear regression 
(SJC, HAQ) were used to 
undertake trend tests of 
association, which were adjusted 
for symptom duration 

HLA-DRB1/ 
UNK/ 
Larsen, DAS28, ESR, SJC, TJC/ 
(Innala et al., 2008) 

210 RA  HLA-DRB1 alleles were not 
related to radiological 
progression or inflammatory 
activity over time.  Unknown 
grouping of HLA-DRB1 alleles  

UNK 

HLA-DRB1/  
Shared epitope/ 
Sharp-van der Heijde method/ 
(Huizinga et al., 2005) 
 

408 RA Large differences were observed between ACPA 
positive and ACPA negative patients. No 
apparent association was observed between SE 
positivity and progression of joint damage in 
ACPA negative patients. In contrast, radiographic 
severity scores were higher among ACPA positive 
patients who were SE positive than among those 

 Plots of Sharp score over time 
split by ACPA positivity and SE 
status 
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Gene/  
rs number/  
Severity marker/ 
Reference 

Sample 
size 

Evidence of association No evidence of association Analysis performed 

who were SE negative. 

HLA-DRB1/  
Shared epitope/ 
Sharp score/ 

(Suzuki et al., 2013) 
 

830 RA 11.6% (95% CI: 4.1%-18.5%, p=0.0021, N=830) 
increase in joint damage, as measured by the 
Sharp score five years after disease diagnosis, for 
each copy of the RAA shared epitope motif that a 
patient has. 

 UNK 

HLA-DRB1/  
Shared epitope/ 
Sharp score/ 
(Mackie et al., 2012a) 

3657 RA Particularly in ACPA / RF positive disease, there 
was a hierarchy of severity associated with the 
SE alleles.   The worst severity was associated 
with DRB1 *0404 or *0401 (p=0.0003 when 
compared to *0101 and *1001).  For ACPA/RF 
positive only, there was a gene dose effect 
observed with a protective effect for D70 (OR 
0.82, 95% CI 0.73–0.92, P=5.8 × 10−4). HLA-DRB1 
SE alleles were also associated with ACPA-
negative, RF-positive RA (OR 1.42 (1.15–1.76), 
P=0.0012). 

 UNK 

HLA-DRB1/  
Shared epitope/ 
Sharp score/ 
(Meyer et al., 2011) 

143 RA Shared epitope patients showed strong 
association with ACPA positive disease (OR = 
10.2 and P = 0.0010, OR = 9.2 and P = 0.0028, 
respectively). Clinical scores and concentrations 
of the other biomarkers of disease activity were 
also generally higher in the shared epitope group 
vs no shared epitope group 

 UNK 

HMOX1/ 
(GT)n repeat/ 
ESR, CRP, RF, DAS28, Ratingen 
radiographic damage scoring 
system/ 
(Wagener et al., 2008) 
 

325 RA After 9 years of follow up, subjects with short 
(GT)n repeat (n<25; SS genotype) had a better 
radiographic outcome that those carrying long 
(GT)n repeat (n>=25; LL genotype). Increase in 
damage score from SS to SL and LL  is 8.2 
(SE=6.1) and 12.1 (SE=5.9) respectively 
(p=0.047). Increase in damage score for allele L 
compared to S is 5.9 (SE=2.7), p=0.013). 

 Difference from baseline 
analysed using linear regression 
with dummy variables for 
genotype groups 
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Gene/  
rs number/  
Severity marker/ 
Reference 

Sample 
size 

Evidence of association No evidence of association Analysis performed 

Genotype LL.  No effect seen for ESR, CRP, RF or 
DAS28.   

IL-1α/ 
rs17561 (+4845)/ 
Larsen wrist x-ray index/ 
(Jouvenne et al., 1999) 

98 RA/ 
poly-
arthritis 

The percentage of patients carrying the rare IL-
1A2 allele in the control population was 45%.  
This increased for destructive RA to 54.4% and 
decreased in non-destructive RA to 26.8%, 
(Destructive versus non-destructive, p < 0.007). 
All indices of disease activity and joint 
destruction were significantly lower in the 
patients positive for IL-1A1, and higher in those 
positive for IL-1A2  

 UNK 

IL-1α/ 
rs1800587/ 
Presence of nodules, 
requirement for joint 
replacement and radiographic 
progression by Rau-Ratingen 
method/ 
(Harrison et al., 2008) 
 

756 RA  No direct association 
between IL-1A (-889 C/A, 
rs1800587) and clinical 
severity characteristics  
 

Modelled Logit transformation of 
radiographic score (ln[score/max 
score-score])  = square root of 
disease duration.  Fishers exact 
test to compare allele frequency 
vs. mild (score<20) or severe 
(score>80) 

IL-1α/ 
rs6712572, rs3783550, rs17561, 
rs378351, rs1800587, rs1894399, 
rs6746923, rs17597976/ 
With and without hand erosions/ 
(Johnsen et al., 2008) 

712 RA 
patients 
test and 
414 rep-
licate  

 No robust, reproducible 
association between IL-1α 
variants and the proportion of 
patients with or without hand 
erosions. 

Chi square test of the proportion 
with and without erosions.  
Analysed erosions at one time 
point and could be very 
dependent on aggressiveness of 
treatment received and length of 
treatment. 

IL-1β/ 
rs1143634/ 
Presence or absence of erosive 
damage/ 
(Cantagrel et al., 1999) 

108 RA Carriage of the rare IL-1β +3954  (rs1143634) 
allele 2 was found to expose patients to an 
increased risk of erosive disease, with an OR of 
8.20 (95% CI 2.59-25.84, P < 0.0001)  

IL-1β -511 was not associated 
with the development of 
erosions   

UNK 
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Gene/  
rs number/  
Severity marker/ 
Reference 

Sample 
size 

Evidence of association No evidence of association Analysis performed 

IL-1β/  
rs1143634/ 
Larsen wrist x-ray index/ 
(Buchs et al., 2001) 

378 RA Carriage of the rare IL-1β +3954 (rs1143634) 
allele 2 was associated with an increase in 
destructive arthritis as compared to non-
destructive arthritis (OR 1.7, 95% CI 1.1-2.8, 
49.0% vs. 35.9%).  Patients carrying this allele 
had more destruction (Larsen wrist radiological 
index: mean +/- s.e.m., 2.1 +/- 0.2 vs. 1.6 +/- 0.1, 
P = 0.005; Steinbrocker functional index: 2.4 +/- 
0.1 vs. 1.9 +/- 0.1, P = 0.002) and more active 
disease (Ritchie articular index: 8.1 +/- 0.8 vs. 5.3 
+/- 0.6, P = 0.002; ESR: 36.6 +/- 2.9 mm/h vs. 
25.3 +/- 1.8 mm/h, P = 0.002). This contribution 
was independent from that of HLA DR4/DR1 to 
severity 

 UNK 

IL-1β/ 
rs1143634/ 
DAS28, ESR, SJC, TJC/ 
(Pawlik et al., 2005a) 

93 RA For patients carrying the rare IL-1β +3954 
(rs1143634) allele 2, the active form of RA was 
more frequently diagnosed. Moreover in these 
patients the measurements of disease activity 
(DAS28 score, ESR, number of swollen and 
tender joints) were significantly increased  

 UNK 

IL-1β/ 
rs1143634/ 
Cumulative disease score/ 
(Cvetkovic et al., 2002) 

54 RA Patients with genotype A2A2 of IL-1β had higher 
accumulated disease activity score than patients 
with A1A1 and A1A2  
(p < 0.05)  

 UNK 

IL-1β/ 
rs16944/ 
Larsen score/ 
(Genevay et al., 2002) 

233 RA IL-1β -511 (rs16944) allele 2 was associated with 
milder radiographic progression.  The slope of 
Larsen progression in the rare allele groups 
diverged significantly from those of the frequent 
allele groups after approximately 20 years of 
disease duration (P < 0.001)  

 UNK 

IL-1β / 
rs16944, rs1143623, rs4848306/ 

756 RA  No direct association 
between IL-1B (-511 A/G, 

Modelled Logit transformation of 
radiographic score (ln[score/max 
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Gene/  
rs number/  
Severity marker/ 
Reference 

Sample 
size 

Evidence of association No evidence of association Analysis performed 

Presence of nodules, 
requirement for joint 
replacement and radiographic 
progression by Rau-Ratingen 
method/ 
(Harrison et al., 2008) 

rs16944), IL-1B (-1464 C/G, 
rs1143623), IL-1B (-3737 G/A, 
rs4848306) and clinical 
severity  

score-score])  = square root of 
disease duration.  Fishers exact 
test to compare allele frequency 
vs. mild (score<20) or severe 
(score>80) 

IL-1β/ 
rs4849125, rs7596684,  
rs1143634, rs1143633, RA1,  
rs1143627, rs16944, RA3, 
rs13013349, rs13032029, RA4, 
rs4447608, rs6735739, 
rs6745746, rs12053091/ 
With and without hand erosions/ 
(Johnsen et al., 2008) 

712 RA 
patients 
test and 
414 rep-
licate 

 No robust, reproducible 
association between IL-1β 
variants and the proportion of 
patients with or without hand 
erosions.  

Chi square test of the proportion 
with and without erosions.  
Analysed erosions at one time 
point and could be very 
dependent on aggressiveness of 
treatment received and length of 
treatment. 

IL-1β/ 
rs16944, rs1143634 / 
HAQ/ 
(Lubbe et al., 2008) 

141 RA IL-1β -511 and +3954 were found to be possible 
polymorphisms associated with disease severity 
in RA.  Carriage of one copy of IL-1β-511 T allele 
was associated with worse MHAQ scores 
(corrected for disease duration) compared to 
patients not carrying this allele  (mean=1.54 vs. 
1.0, respectively, p=0.02)   

 Linear regression was used to 
quantify the relationship 
between severity markers and 
genotypes. 

IL-1RN, IL-1RA/ 
IV allele/ 
Inflammatory activity/ 
(Huang et al., 2001) 

104 RA The IL-1RN IV allele was more common in 
patients with low inflammatory activity.  In 
contrast, the IV allele of IL-1Ra was significantly 
increased in RA patients with low inflammatory 
activity (P=0.03)  

 UNK 

IL-1RN/ 
Variable number of tandem 
repeats (VNTR)/ 
Presence or absence of erosive 
damage/ 

108 RA  The IL-RN variable number of 
tandem repeat was not 
associated with development 
of erosions  

UNK 
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Gene/  
rs number/  
Severity marker/ 
Reference 

Sample 
size 

Evidence of association No evidence of association Analysis performed 

(Cantagrel et al., 1999) 

IL-1RN/ 
+2018 C allele and VNTR-T long 
3-6 repeats / 
HAQ/ 
(Lubbe et al., 2008) 

141 RA IL-1RN*2 (+2018 C allele and VNTR-T long 3-6 
repeats) was found to be a marker of erosive 
joint damage in Black South Africans with RA  

 Linear regression was used to 
quantify the relationship 
between severity markers and 
genotypes. 

IL-2/ 
-330/ 
DAS28, ESR, SJC, TJC/ 
(Pawlik et al., 2005a) 

93 RA In patients with the GG genotype of IL-2, the 
active form of RA was more frequently 
diagnosed and measurements of disease activity 
(DAS28 score, ESR, number of swollen and 
tender joints) were also significantly increased. 

 UNK 

IL-4/ 
VNTR/ 
Larsen score/ 
(Genevay et al., 2002) 

233 RA The rare allele of the IL-4 VNTR was associated 
with less severe course, the rare allele groups 
diverged significantly from those of the frequent 
allele groups after approximately 20 years of 
disease duration (P < 0.001).  

 Regression analysis by allele 
group 

IL-4/ 
rs2243250/ 
DAS28, ESR, SJC, TJC/ 
(Pawlik et al., 2005d) 

94 RA Parameters of disease activity (DAS28 score, ESR, 
number of swollen and tender joints) were 
significantly increased for patients carrying the 
IL-4 -590 T allele (rs2243250) (genotypes CT and 
TT) compared to the 
homozygous CC genotype  

 UNK 

IL-4/ 
rs2243250 and VNTR/ 
Presence or absence of erosive 
damage/ 
(Cantagrel et al., 1999) 

108 RA  The IL-4 promoter 
variant -590 (rs2243250) and 
the 70 bp VNTR were not 
associated with erosive RA  

OR & 95% CI 

IL-4/ 
rs2227284, rs2243263, 
rs2243267 / 
Larsen score/ 
(Marinou et al., 2008) 

965 RA  
 

IL-4 (rs2227284, rs2243263 
and rs2243267) were not 
found to be associated with 
Larsen scores 

Modified Larsen score 
differences were tested for 
associations with each candidate 
gene polymorphism using the 
nonparametric Kruskal-Wallis 
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Gene/  
rs number/  
Severity marker/ 
Reference 

Sample 
size 

Evidence of association No evidence of association Analysis performed 

test 

IL-4R/ 
rs1801275 and rs1805010/ 

Larsen score/ 

(Marinou et al., 2008) 

965 RA  IL-4R ( rs1801275 and 
rs1805010) were not found 
to be associated with Larsen 
scores 

Modified Larsen score 
differences were tested for 
associations with each candidate 
gene polymorphism using the 
nonparametric Kruskal-Wallis 
test 

IL-4R/ 
rs1805010/ 
Erosive vs non erosive disease/ 
(Prots et al., 2006) 

471 RA There was a significant difference in the 
distribution of the IL-4R I50V (rs1805010) 
between patients with erosive and non-erosive 
disease (chi-square = 15.68, P = 0.0004). Bone 
erosions at 2 years after disease onset were 
present in 68.1% of patients homozygous for the 
V50 allele compared with 37.0% of patients 
homozygous for the I50 allele (OR 3.86, P < 
0.0001)  

 ORs & 95% CI  

IL-6/ 
rs1800795/ 
DAS28, ESR, SJC, TJC/ 
(Pawlik et al., 2005c) 

98 RA Carriers of the IL-6 -174 G (rs1800795) alleles 
had a significant increase in DAS28, ESR, SJC and 
TJC 

 UNK 

IL-6/ 
rs1800795/ 
Joint radiographs within first 2 
years after onset/ 
(Oen et al., 2005) 

181 RA  Although the IL-6 genotype -
174G/G was positively 
correlated with pain 
[regression coefficient B = 
0.899, 95% confidence 
intervals (CI) 0.185, 1.612, P = 
0.014] the IL-6 -174 had no 
significant effect in 
radiographic damage  

UNK 

IL-6/ 
rs1800795/ 
Larsen score/ 

964 RA The IL-6 -174 G allele was associated with 
increasing radiographic damage (p=0.005) but a 
subgroup analysis showed this was only in 

 Modified Larsen score 
differences were tested for 
associations with each candidate 
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Gene/  
rs number/  
Severity marker/ 
Reference 

Sample 
size 

Evidence of association No evidence of association Analysis performed 

(Marinou et al., 2007) patients who were either RF positive (p=0.004) 
or ACPA positive (0.01)  

gene polymorphism using the 
nonparametric Kruskal-Wallis 
test 

IL-6/ 
rs1800795/ 
FMD%/ 
(Palomino-Morales et al., 2009) 
 

311 RA Homozygous IL-6 -174 GG genotype had more 
severe endothelial dysfunction (FMD%) than GC 
or CC genotypes. 4.2 vs. 6.3 vs. 6.0 respectively, 
p=0.02  

 UNK 

IL-6R/ 
rs8192284/ 
DAS28/ 
(Lamas et al., 2010) 
 

281 RA A statistically significant interaction was 
observed between IL-6R rs8192284 
polymorphism and the presence of ACPA 
(p=0.008). An inverse relationship between the 
polymorphism and DAS28 was observed 
depending on ACPA status 

 A mixed-effect model was used 
to analyse the measurements. 

IL-6R/ 
rs8192284/ 
DAS28/ 
(Rodriguez-Rodriguez et al., 
2011) 

281 RA DAS28 and plasma sIL-6R levels are positively 
correlated with ACPA positive patients (r=0.45, 
p=0.0336) and negatively correlated with ACPA 
negative patients (r=-0.45, p=0.0825). 

 UNK 

IL-6R/ 
rs8192284/ 
Erosion score/ 
(Ceccarelli et al., 2011) 

77 Evidence of association between IL-6 -174 and 
disease severity p=0.007. 

 UNK 

IL-6R/ 
rs8192284/ 
Radiographic erosions/ 
(Gottenberg et al., 2012) 

578 RA Serum levels of IL-6 were found higher in 
subjects with radiographic progression at 1 year 
(OR 2.4, 95% CI: 1.1 to 5.2, p=0.005) 

 UNK 

IL-10/ 
rs1800896/ 
Modified Sharp score/ 
(Huizinga et al., 2000) 

138 RA Patients with the IL-10 -1082 (rs1800896) GG 
genotype had increased radiographic damage 
score.  Increase during the first 6 years was 9 +/- 
9 per year for -1082AA genotype vs. 19 +/- 16 
per year for patients with the -1082GG genotype 

 Regression of the mean increase 
in Sharp score 
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Gene/  
rs number/  
Severity marker/ 
Reference 

Sample 
size 

Evidence of association No evidence of association Analysis performed 

(P= < 0.02)  

IL-10/ 
-2849/ 
Sharp-van der Heijde method/ 
(Lard et al., 2003) 

283 RA Patients with the -2849 AG/GG genotype, which 
is associated with high IL-10 production, had 
higher autoantibody titres at baseline 

 UNK 

IL-10/ 
rs1800896/ 
Presence or absence of erosive 
damage/ 
(Cantagrel et al., 1999) 

108 RA  The IL-10 -1082 was not 
associated with the presence 
of erosive damage  

OR & 95% CI 

IL-10/ 
rs1800896, rs18000872 and -819 
(rs UNK)/ 
Joint radiographs within first 2 
years after onset/ 
(Oen et al., 2005) 

181 RA  The IL-10 promoter 
polymorphisms  
-1082, -819 and -512 were 
not associated with 
radiographic damage  

UNK 

IL-10/ 
rs1800896 and rs18000872/ 
SJC, TJC, ESR, CRP, duration of 
morning stiffness/ 
(Pawlik et al., 2005b) 

95 RA  The IL-10 variants -1082 and -
592 are not genetic risk 
factors for RA severity 

Correlation 

IL-10/ 
rs18000872/ 
Larsen score/ 
(Marinou et al., 2007) 

964 RA Patients with the IL-10 −592CC genotype had 
more extensive radiographic damage than did 
those with the AC or AA genotype (P = 0.006), 
but this was observed only among patients who 
were RF negative (P = 0.002) or ACPA negative (P 
= 0.002)  

 Modified Larsen score 
differences were tested for 
associations with each candidate 
gene polymorphism using the 
nonparametric Kruskal-Wallis 
test, or Cuzicks test for trend if a 
trend was observed. 

IL-10/ 
rs18000872/ 
DAS28, bone erosions, 
deformities, extra articular 

336 RA The A allele of IL-10 -592 polymorphism was 
found to be marginally associated with the 
higher DAS28 score (C allele, 5.57 +/- SE 1.19 vs. 
A allele 5.77 +/- SE 1.19, p=0.045).  Other alleles 

 Multiple linear regression models 
for DAS28, logistic regression 
models for joint erosions, 
deformities or presence of extra 
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Gene/  
rs number/  
Severity marker/ 
Reference 

Sample 
size 

Evidence of association No evidence of association Analysis performed 

features/ 
(Gambhir et al., 2010) 

were not found to be significant and IL-10 -592 
and -1082 did not associate with bone erosions, 
deformities or presence of extra articular 
features 

articular features. 

IL-15/ 
rs7667746, 
rs7665842, rs2322182, 
rs6821171 and rs4371699/ 
Sharp score/ 
(Knevel et al., 2012b) 

1318 RA In a meta-analysis of 4 cohorts, subjects with the 
most frequent homozygous genotype for 
rs7667746, rs7665842, rs2322182, rs6821171 
and rs4371699 had 0.94 (p=4.0×10

−6
), 1.04 

(p=3.8×10
−4

), 1.09 (p=5.0×10
−3

), 1.09 
(p=5.0×10

−3
) and 1.09 (p=9.4×10−3) fold rate of 

joint destruction compared to other patients 
respectively. 

 Meta-analysis 

IL-17F/ 
rs763780, rs2397084/ 
TJC, SJC, HAQ, Labs, DAS28, 
Disease duration, CRP, VAS, RF, 
early-late RA, ACPA, gender/ 
(Paradowska-Gorycka et al., 
2010) 

220 RA IL-17F gene His161ARG 7488 A/G rs763780 
variant had some evidence of association with 
TJC, creatinine, HAQ and DAS28 but not with SJC, 
disease duration, CRP, VAS, platelets, 
haemoglobin, RF, gender, early/late RA and 
ACPA 
Some evidence of IL-17F gene Glu126Gly 7383 
A/G rs2397084 may be associated with longer 
disease duration but not statistically significant 
and no association with other disease activity 
measurements. 

 Wilcoxon test and chi-square test 
with yate’s correction 

MBL/ 
0/0 genotype/ 
Larsen score, 30% of maximum 
radiographic destruction (RE30), 
ESR, SJC, Labs/ 
(Graudal et al., 2000) 

140 RA Patients with the MBL defective 0/0 genotype, 
which is associated with undetectable levels of 
plasma MBL, had worst radiographic outcome. 
RE30 was 3.1 (95% CI 1.8-5.1) in the MBL-
insufficient group versus the MBL-competent 
group (P < 0.0001). 
RE30 occurred in 50% of MBL-competent 
patients within 17 years, while such an event 
occurred 9 years earlier in MBL-insufficient 

 MBL-insufficient patients (those 
with 2 defective structural MBL 
alleles or with 1 defective allele 
combined with a low-expression 
variant of the normal allele).  
Relative risks of defection vs. not 
defective against severe 
radiographic outcome which was 
defined as 30% of maximum 
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Gene/  
rs number/  
Severity marker/ 
Reference 

Sample 
size 

Evidence of association No evidence of association Analysis performed 

patients (i.e., within 8 years) (P < 0.0001). During 
the first 15 years, there was a significant trend 
toward lower haemoglobin levels (P < 0.04), 
higher ESRs (P< 0.02), and a higher number of 
swollen joints (P < 0.05) in the MBL-insufficient 
group. 

radiographic destruction (RE30) 

MBL/ 
0/0 genotype/ 
Presence or absence of erosions/ 
(Ip et al., 2000) 

211 RA Patients with erosive and serious extra-articular 
disease had significantly lower serum MBL levels 
than those without. Significantly more patients 
with erosive disease had a codon-54 mutation of 
the MBL gene compared with those with non-
erosive disease. Serum MBL levels did not 
correlate with drug treatment or with disease 
activity.  

 UNK 

MBL/ 
-550/ 
DAS score/ 
(Gupta et al., 2005) 

120 RA The promoter polymorphism at -550 of the 
minor allele G was observed significantly more 
frequently in severe RA patients compared with 
the less severe group (P=0.003).  The haplotype 
LYA was significantly more frequent in the less 
severe group (P=0.03) and haplotype HYA was 
significantly more frequent in the severe RA 
patients (P=0.04). 

 UNK 

MBL/ 
UNK/ 
Larsen score/ 
(Jacobsen et al., 2001) 

68 RA Patients with early polyarthritis homozygous for 
MBL variant alleles had an increased risk of 
having erosive RA at inclusion by a factor of 4.7 
(p = 0.02) and after one year by a factor of 3.6 (p 
= 0.04). MBL deficiency was associated with 
increased levels of CRP and IgM RF at inclusion (p 
< 0.05). 

 UNK 

MBL/ 
-221 (XX, XY, YY) MBL2/ 
ACPA, DAS28, HAQ, Sharp score/ 

158 RA High scores of disease activity, CRP-based DAS28 
(p=0.02), and physical disability by HAQ (p=0.01) 
were associated with high MBL2 expression 

 UNK 
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rs number/  
Severity marker/ 
Reference 

Sample 
size 

Evidence of association No evidence of association Analysis performed 

(Jacobsen et al., 2009) genotypes in a gene-dose dependent way, but 
only in ACPA positive patients. At this early stage 
of the disease there was no association with 
erosion score from radiographs. 

MBL/ 
-550, -221, codon 52 and codon 
54/ 
Larsen score/ 
(Barton et al., 2004) 

438 
inflam- 
matory 
polyar-
thritis 

 None of the SNPs (positions -
550,  
-221, codon 52 and codon 54) 
was associated with 
development of erosions or 
Larsen score at 1 year and 5 
years 

Allele frequencies by patients 
with or without erosions in 
addition to an analysis of change 
in Larsen score (method of 
analysis UNK). 

MBL/ 
550, -221, codon 52 and codon 
54/ 
Need for anti-TNF therapy / 
(van de Geijn et al., 2008) 

639 RA  No association between MBL 
groups and disease severity  

UNK 

Mediterranean FeVer (MEFV) 
gene mutations/ 
Five frequent mutations (E148Q, 
M694V, M694I, M680I, V726A) 
and three rare mutations 
(A744S, R761H and P369S) 
DAS28, CRP, Larsen score/ 
(Koca et al., 2010) 

103 RA Deformed joint count was significantly higher in 
the mutation carrier group (mean number of 
deformed joints =6.2, SE=9.7) than those of the 
non-carrier group (mean number of deformed 
joints =2.6, SE=5.1) in chr 16p13.3 (p=0.026). The 
level of CRP, DAS28 and modified-Larsen scores 
were slightly but not significantly higher in the 
mutation carrier group in chr 16p13.3 

 T-tests to compare groups, 
fisher’s exact to compare 
categorical variables, and ORs 
(95%CI) for the assessment of 
risk factors.  Analysis of 
covariance was used to adjust 
variables for disease durations. 

Metalloproteinase (MMP)-1 and 
MMP-3/ 
1G/2G(MMP1) and 5A/6A 
(MMP3) 
Ratingen score/ 
(Dorr et al., 2004) 

308 RA There was a significant effect on the degree of 
radiographic joint destruction with the 1G-5A 
haplotype (P = 0.0001) and the interaction term 
'estimated number of 1G-5A haplotypes x 
duration of disease' (P = 0.0007). The interaction 
revealed that the 1G-5A haplotype had a 
protective effect over a period of about 15 years 
of RA, but was associated with a worse 

 Factorial regression containing 
interaction terms & main effects 
(allele frequency * disease 
duration). 
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rs number/  
Severity marker/ 
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Sample 
size 

Evidence of association No evidence of association Analysis performed 

radiographic progression in later years. Similar 
results were also found with the 1G allele of 
MMP1 alone (P = 0.015), interaction ‘1G x 
duration of disease (P = 0.014).  

MMP-3/ 
5A/6A biallelic polymorphism/ 
Sharp-van der Heijde method/ 
(Constantin et al., 2002) 

103 RA The MMP-3 6A/6A genotype was associated with 
the highest Sharp score both at baseline and 
after a 4 year follow-up and with the highest 
progression of the Sharp score over the 4 years 
of follow-up. Patients homozygous for MMP-3 
6A and DRB1 SE had the highest progression of 
the Sharp score. 

 UNK 

MMP-3/ 
6A polymorphism/ 
Larsen score/ 
(Mattey et al., 2004) 

254 RA Patients homozygous for the MMP-3 6A allele 
had more radiographic damage (measured by 
Larsen score) than those with other genotypes 
(109.8 vs. 91.1, P=0.04). Patients with the 6A/6A 
genotype also had more functional impairment 
and higher serum pro MMP-3 levels, although 
only the latter was significant (P=0.002). 

 UNK 

MTHFD1 /  
rs17850560/  
DAS28/ 
(Grabar et al., 2010) 
 

154 RA 
patients  

After exclusion of patients co-treated with other 
DMARDs (not methotrexate), a significant 
association of MTHFD1 1958GG genotype was 
found with lower disease activity (p=0.021, 
OR=4.674, 95% CI 1.266 to 17.262)  

 Disease activity low (DAS28 
<=3.2) vs. moderate/high (DAS28 
>3.2).  ORs, 95% CI and p-value. 

P53/ 
Coden 72/ 
Sharp-van der Heijde method/ 
(Macchioni et al., 2007) 

122 RA At five years, patients carrying the Pro/Pro 
genotype compared to the Arg/Arg genotype, 
had a significantly higher percentage of eroded 
joints (Pro/Pro 93%, Arg/Arg 52%, p=0.0001), 
mean number of eroded joints per patient 
(Pro/Pro 13.2, Arg/Arg 3.6, p=0.0001). The mean 
Sharp score, joint space narrowing score and 
total damage score were significantly higher in 
the Pro/Pro subgroup compared with the 

 UNK 
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Arg/Arg and Arg/Pro subgroups. 

Peptidyl arginine deiminase 
type 4 (PADI4)/ 
rs2240340/ 
DAS28, cumulative therapy 
intensity, steinbrocker score/ 
(Hoppe et al., 2009) 

373 RA PADI4 genotype, C>T rs2240340 was associated 
with ACPA status, SE, Anti-nuclear antibodies and 
disease activity.  T allele exhibited a significant 
trend towards higher Steinbrocker scores (<=I vs. 
II vs. III vs. IV) testing the frequency of T allele 
across the groups p<0.004 and for the T/T 
genotype p=0.008 when adjusted for covariates  

 Non-erosive (steinbrocker score 
<=1 and erosive (steinbrocker 
score II-IV).  ORs & 95% CI by 
logistic regression adjusting for 
covariates. 
Cuzick non-parametric test for 
trend. 

PADI4/ 
Anti-hPAD4/ 
DAS28, Sharp-van der Heijde 
method/ 
(Halvorsen et al., 2009) 
 

40 RA Anti-hPAD4 positive patients had more severe 
disease (DAS28 and Sharp score) than the 
negative patients at baseline (p=0.049 and 
p=0.047 respectively) and after 1 year (on anti-
TNF-alpha therapy) (p=0.016 and p=0.032).  The 
mean change in erosion score from baseline to 1 
year were 1.27 (0.11 to 2.44) vs. -0.32 (-1.17 to 
0.54) (p=0.023). 

 Anti-hPAD4 levels compared 
using Wilcoxon rank sum.  
Change in Sharp score assessed 
using Wilcoxon signed rank tests.  
Erosive progression tested using 
fishers exact and bivariate exact 
logistic regression 

PADI4/ 
padi4_89 (rs11203366) padi4_90 
(rs11203367), padi4_92 
(rs874881) / 
Sharp-van der Heijde/ 
(Harris et al., 2008) 

129 RA Anti–PAD-4 negative patients (n=83) with those 
with anti–PAD-4 autoantibodies scored as 3+ in 
the immunoprecipitation assay (n =26). Mean 
unadjusted Sharp scores were 57 (95% CI 43.6–
70.9) in the anti–PAD-4 negative group, 
compared with 132 (95% CI 90.6–173.7) in the 
group with high anti–PAD-4 scores. These 
differences were statistically significant (P 
<0.001) and remained significance (P=0.001) 
after adjusting for confounding effects. 

 ANOVA of mean Sharp scores 
with and without potential 
confounding variables in the 
model 

PADI4/ 
rs2240340/ 
Japanese HAQ score, disease 
durations/ 
(Nishimoto et al., 2008) 

1384 RA  No evidence that PADi-94 is a 
predictor of aggravation of 
functional impairment of RA 
in the Japanese population  

Linear regression analysis on the 
HAQ scores and ANOVA on the 
disease duration. 

PADI4/ 830 RA 7.3% (95% CI: 0.14%-15%, p=0.037, N=830)  Meta-analysis 
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rs2240340/ 
Sharp score/ 

(Suzuki et al., 2013) 

increase in joint damage, as measured by 
the Sharp score five years after disease 
diagnosis, for each copy of the rare T allele 

PTPN22/ 
rs2476601/ 
Sharp-van der Heijde method/ 
(Lie et al., 2007) 

238 RA An association between annual progression rate 
of Sharp-van der Heijde score and PTPN22 
R620W (rs2476601) T-allele carriers was found, 
(p = 0.01), which was also present when only 
patients positive for the shared epitope were 
analysed (p = 0.03). 

 UNK 

PTPN22/ 
rs2476601/ 
Larsen score/ 
(Marinou et al., 2007) 

964 RA Marginally significant +1858 T allele association 
with radiological damage (Median Larsen score 
TT=50, TC=33, CC=25, Cuzicks test for trend 
p=0.04)  

 Cuzicks test for trend 

PTPN22/  
rs2476601/ 
Larsen score/ 
(Pierer et al., 2006) 

123 RA  No significant differences in 
disease activity or Larsen 
scores were detected 

Mann-Whitney U test or t-test. 

PTPN22/  
rs2476601/ 
Erosive damage/ 
(Steer et al., 2005) 

302 RA  No evidence of an association 
between PTPN22 and the 
presence or absence of 
erosive damage 

Presence or absence of erosive 
disease testing CC/TT genotypes 
by ORs, 95% CIs. 

PTPN22/ 
rs2476601/ 
Larsen, DAS28, ESR, SJC, TJC/ 
(Innala et al., 2008) 

210 RA  PTPN22 T variant alleles were 
not related to radiological 
progression or inflammatory 
activity over time 

UNK 

PTPN22/ 
rs2476601/ 
Erosions, SJC, HAQ/ 
(Morgan et al., 2010) 
 

1046 RA  No evidence PTPN22 is 
associated with prevalent 
erosions, SJC or HAQ.  

Logistic (presence/absence of 
erosions) and linear regression 
(SJC, HAQ) were used to 
undertake trend tests of 
association, which were adjusted 
for symptom duration 

PTPN22/ 2680 - Meta-analysis of six cohorts (N=2680) found No evidence of an increase or Fixed Mantel Haenszel and 
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rs2476601/ 
ACPA status and Larsen score/ 
(Taylor et al., 2013) 

3172 RA smoking and the PTPN22 genotype increased the 
risk of ACPA positive disease particularly in 
combination with each other (OR=2.22, 95%CI 
1.69-2.91, p=8.3 x10-9).   

decrease in risk of erosions 
despite association between 
ACPA positive disease and 
erosive damage 

random effects Dersimmion & 
Laird Meta analyses. 

Stromal cell–derived factor 1 
(SDF-1 or CXCLI2)/ 
3′-UTR (801 G/A)/ 
Sharp-van der Heijde/ 
(Joven et al., 2005) 

138 RA 10 years after RA disease diagnosis patients with 
the SDF-1 3’-UTR AA genotype had an increase in 
mean Sharp/van der Heijde score of 13.7 
compared to 8.2 for patients with the GG or GA 
genotypes considered together (P = 0.020) 

 ANOVA 

T cell receptor (TCR)/ 
2kb allele/ 
Modified Sharp method/ 
(Devries et al., 1993) 

111 RA Radiographic progression (modified Sharp 
method) after a three year follow up, was 
significantly less in the group possessing the 2.0 
kb allele (p=0.03). 

 UNK 

TGFβ/ 
+869/ 
Larsen score/ 
(Mattey et al., 2005) 

208 RA Patients carrying a TGFβ1 +869 T allele had a 
higher mean HAQ score than those without this 
allele (1.60 v 1.22, p = 0.04). The T allele was also 
associated with higher five year mean area under 
the curve (MAUC) ESR, and nodular disease. 
Larsen score was higher in patients with the TT 
genotype compared with CC + CT genotypes, 
although this was not significant after correction 
for disease duration. There was a trend of 
increasing mortality risk with T allele dose after 
adjustment for age, sex, and disease duration. 
Hazard ratio = 1.6 (95% CI, 1.1 to 2.4), p = 0.01. 

 The association of genotypes 
with normally distributed 
outcome measures (Larsen 
score) was assessed using 
Analysis of covariance with 
disease duration as a covariate. 
Association between genotypes 
and non-parametric data such as 
HAQ, MAUC, ESR, and C reactive 
protein was assessed using 
Kruskal–Wallis one way ANOVA 
on ranks.  Cox-regression was 
used for survival analysis. 

TGFβ/ 
-509/ 
Modified Sharp score/ 
(Kim et al., 2004) 

143 RA The progression of radiographic severity, which 
was defined by a modified Sharp score plotted 
against disease duration, was significantly faster 
in the carrier of T allele at the -509 (p=0.048). 

 Plotted Sharp score against 
disease duration 

TGFβ/ 
+869/ 

77 RA For ACPA positive patients, the TGFβ+869 TT 
genotype was associated with a lower total 

 UNK 
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Erosions score/ 
(Ceccarelli et al., 2011) 

erosion score (p=0.011).  However in ACPA 
negative patients, the TGFβ+869 TT 
genotype showed a trend towards a higher 
total erosion score (p>0.05).   

TGFβ/ 
codon 10T →C and codon 
25G →C / 
Joint radiographs within 2 years 
of onset/ 
(Oen et al., 2005) 

181 RA The homozygous TGF-β1 codon 25G/G genotype 
showed a protective effect against joint space 
narrowing on radiographs taken within 2 years of 
disease onset, but confidence intervals were 
wide [OR 0.176, 95% CI: 0.037 to 0.837 P = 
0.029].  The TGFβ1 10TC variant shows no 
association. 

 Kruskal–Wallis, χ
2
 or Fisher's 

exact tests 

TNF-alpha/ 
rs1800629 -308(G/A)/ 
Cumulative disease score/ 
(Cvetkovic et al., 2002) 

54 RA Patients having the genotype A1A2 of TNF-alpha 
developed more severe disease compared with 
patients with A1A1 genotype: they were younger 
at disease onset (p < 0.05), had a higher 
accumulated disease activity (p < 0.05) and 
worse functional class (p < 0.05)  

 UNK 

TNF-alpha/ 
rs1800629 -308/ 
Steinbrocker radiographic score, 
HAQ, standard disability index / 
(Nemec et al., 2008) 

130 RA Significant differences observed in radiographic 
progression of disease based on the Steinbrocker 
radiographic score (p=0.03) and functional ability 
(HAQ) (p=0.03) suggesting an association of the -
308 G/A polymorphism of the TNF-alpha gene 
with the severity of RA. 

 Erosive (steinbrocker score 
stadium II-IV) vs. non-erosive 
(steinbrocker score stadium I)  
and standard disability index (<=1 
vs. >1) compared using ORs, 95% 
CI’s and fishers exact test 

TNF-alpha/ 
rs1800629 -308/ 
DAS28/ 
(Gambhir et al., 2010) 
 

222 RA  -308(G/A) and -863(C/A) of 
TNF gene did not associate 
with DAS28, bone erosions, 
deformities or presence of 
extra articular features  

Multiple linear regression 
models.  Logistic regression 
models for bone erosions, 
deformities or presence of extra 
articular features. 

TNFAIP3/ OLIG3 
rs6920220, rs10499194, 
rs675520, rs9376293, 
rs1878658/ 

324 RA rs6920220 (A) and rs10499194 (C) lie close to 
TNFAIP3 and were found to be associated with 
ACPA positive disease in long standing RA but 
this was not replicated in a study with shorter 

 Average increase in sharp-van 
der Heijde scores during the 
follow-up period was estimated 
for each person by regression 
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Sharp-van der Heijde scores, 
ACPA 
(Scherer et al., 2010) 

duration of  RA. 
rs675520 (G) found to be significantly associated 
with increase in Sharp score (median slope 
AG/GG=4.6, AA=2.3; Mann-Whitney p=0.007)   
rs9376293 (C) associated with increase in Sharp 
score (median slope CC/CT=4.5, TT=3.0; Mann-
Whitney p=0.021) 
No significant influence of rs1878658, 
rs10499194 and rs6920220 were found on 
radiographic joint damage 

analysis. Subsequently the 
average increase (slope) of scores 
for each genotype was compared 
non-parametrically using the 
Mann-Whitney rank-sum test. 

TNFAIP3/ OLIG3 
rs6920220/ 
Erosions, SJC, HAQ/ 
(Morgan et al., 2010) 

1046 RA  No evidence OLIG3/TNFAIP3 
associated with prevalent 
erosions, SJC or HAQ  

Logistic (presence/absence of 
erosions) and linear regression 
(SJC, HAQ) were used to 
undertake trend tests of 
association, which were adjusted 
for symptom duration. 

TNFAIP3/ 
rs2230926/ 
Sharp score/ 
(Suzuki et al., 2013) 

830 RA  No evidence of association 
between rs2230926 and 
Sharp scores. 

Meta analysis 

TNF receptor/ 
-383 TNFRI/ 
DAS28/ 
(Valle et al., 2010) 

190 RA The TNFRI -383 A/A genotype carriers had higher 
DAS28 score than A/C genotype (p=0.02)  

 Means comparisons were 
evaluated using the Mann-
Whitney U test. 

TNFSF1b/ 
rs1061622/ 
3 and 6 year follow up joint 
damage/ 
(Toonen et al., 2008) 
 

248 RA TNF receptor super family 1b (TNFSF1b) gene 
(rs1061622) (676T>G, M196R) shows a 
significant difference in progression of 
radiological joint damage between the 3 
genotype groups (TT, TG and GG) after 3 years 
follow-up (p=0.02), which lost significance after 
adjustment for multiple testing (p=0.06) and was 
also not significant at 6 years of follow up 

 Linear regression modelling of 
the mean joint damage 
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(p=0.29). 

Toll-like Receptors (TLR)/ 
rs5741883/ 
RF positivity, DAS28, joint 
damage (Rau scores) at 3 and 6 
months/ 
(Enevold et al., 2010) 

319 RA After Bonferroni correction, there was a 
moderate association between RF positivity and 
TLR8 (rs5741883). 

None of the 22 SNPs in TLR2, 
3, 4, 5, 7, 8, and 9 had a 
statistically significant 
association with any RA 
clinical characteristics 

Analysed for association 

Toll-like Receptors (TLR)/ 
rs4986790, rs4986791/ 
Larsen score/ 
(Sheedy et al., 2008) 

965 RA  TLR4 299 (rs4986790) and 
TLR4 399 (rs4986791) do not 
contribute to RA severity  

Kruskal-Wallis test of the median 
Larsen score 

TNF receptor 1 (TRAF1)/ 
rs10818488/ 
Sharp-van der Heijde method/ 
(Kurreeman et al., 2007) 

268 RA Carriers of the minor susceptibility A allele of 
rs10818488 had a two- fold higher radiological 
damage at 2 years after inclusion (p=0.008). 

 UNK 

TRAF1/ 
rs10760130/ 
Erosions, SJC, HAQ/ 
(Morgan et al., 2010)  

1046 RA Some evidence that TRAF1/C5 (rs10760130) A 
allele was associated with more severe HAQ 
scores when adjusted for symptom duration.  
Mean (95% CI) AA=1.25 (1.11-1.38), GA=1.34 
(1.24-1.43), GG=1.50 (1.35-1.65), OR(95% CI) 
=0.09 (0.01-0.19) p=0.031.  No evidence 
TRAF1/C5 associated with prevalent erosions or 
SJC  

 Logistic (presence/absence of 
erosions) and linear regression 
(SJC, HAQ) were used to 
undertake trend tests of 
association, which were adjusted 
for symptom duration. 

Tristetraprolin (TTP)/ 
359(A/G), -503(A/C)/ 
Using of Infliximab/ 
(Suzuki et al., 2008) 

155 RA TTP (also known as Tis11, Nup475 and GOS24) 
located on Chr 19, position -686 to +25, 2 SNPS 
at -359(A/G), -503(A/C) were investigated and 
found to mildly affect promoter activity (allele A 
had a 1.5-2 fold increase in Luciferase activity 
than that with allele G, p<0.001) and thus may 
influence the disease activity. 

 Fisher’s exact test of the use of 
infliximab vs. genotype. 

Other region/ 
rs322812 and rs347117/ 

UNK Two other regions also showed possible linkage 
peaks with joint morbidity: chromosome 7q30 at 

 Linkage analysis study. The 
phenotypic variables analysed 
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Gene/  
rs number/  
Severity marker/ 
Reference 

Sample 
size 

Evidence of association No evidence of association Analysis performed 

Joint morbidity, RF/ 
(Min et al., 2010) 

rs322812 (LOD = 2.47; NPL Z = 3.39) and 
chromosome 15p34 at rs347117  (LOD = 1.95; 
NPL Z = 2.80). 

were the level of RF and score on 
the Joint Alignment and Motion 
(JAM) scale. The scale was 
modified by dividing by RF values 
relevant to disease severity. 

Other region/ 
Various/ 
DAS28/ 
(Junta et al., 2009) 

23 RA Disease activity modulated the expression of 106 
genes of which 91 were exclusively observed in 
RA patients exhibiting active disease 
(DAS28>5.0).  The functions of these genes were 
related to signal transduction, apoptosis, 
response to stress, immune response and 
response to DNA damage stimulus.  The 
remaining 15 genes had their expression 
influenced by the presence of SE (HLA-DRB1 
*0401, *0404, *0405, *0408, *0101, *0102, 
*1001 and *1402) and ACPA   

 Analysis of the data using the 
significance analysis of 
microarrays algorithm together 
with a Venn diagram allowed the 
identification of shared and of 
exclusively modulated genes, 
according to patient features. 
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Appendix C: Description of SNPs modelled in the ‘all subjects’ dataset 

After exclusion of SNPs with >20% subjects with missing data, the remaining 368 SNPs were distributed throughout the genome as follows: 

Chromosome 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Frequency of SNPS 31 19 9 26 19 92 14 6 15 15 11 20 9 3 4 9 11 9 4 3 3 34 2 

 

Here is a list of the 368 SNPs used in modelling. 

rs333,  rs689,  rs6311,  rs6313,  rs6314,rs7343,  rs8873,  rs16944,  rs17561,  rs26232,rs26510,  rs30187,  rs30245,  rs42041,  rs42046,rs84458,  rs182429,  rs195967,  rs213950,  
rs220704,rs228934,  rs228935,  rs228937,  rs228945,  rs228947,rs228954,  rs228975,  rs228979,  rs229528,  rs229541,rs231707,  rs231735,  rs231775,  rs380421,  rs394581,rs443198,  
rs472391,  rs473892,  rs508214,  rs540386,rs548234,  rs550523,  rs553247,  rs584794,  rs590523,rs597846,  rs609438,  rs617956,  rs626787,  rs632020,rs632535,  rs633010,  rs636393,  
rs653178,  rs665668,rs667520,  rs678385,  rs706778,  rs719149,  rs719150,rs729749,  rs730560,  rs743776,  rs743777,  rs743778,rs743779,  rs758664,  rs763361,  rs775241,  
rs775249,rs791590,  rs805292,  rs842647,  rs854350,  rs864745,rs873308,  rs874040,  rs892188,  rs896135,  rs917997,rs923658,  rs929230,  rs932744,  rs951005,  rs983230,rs1003693,  
rs1003694,  rs1054028,  rs1076933,  rs1078109,rs1160542,  rs1295686,  rs1304037,  rs1372884,  rs1398553,rs1410160,  rs1436272,  rs1445898,  rs1447888,  rs1464510,rs1465788,  
rs1510702,  rs1545092,  rs1545783,  rs1556837,rs1678542,  rs1716157,  rs1773560,  rs1793004,  rs1799724,rs1800629,  rs1800925,  rs1801275,  rs1805010,  rs1837519,rs1872779,  
rs1878658,  rs1887346,  rs1980422, rs1990760,rs2002842,  rs2004640,  rs2009345,  rs2027276,  rs2069311,rs2069762,  rs2069777,  rs2069778,  rs2071592,  rs2073839,rs2075800,  
rs2104286,  rs2188776,  rs2210918,  rs2227284,rs2230926,  rs2235330,  rs2240340,  rs2242653,  rs2243263,rs2243267,  rs2250259,  rs2256965,  rs2268146,  rs2276418,rs2281094,  
rs2292239,  rs2327832,  rs2339898,  rs2431697,rs2476601,  rs2514189,  rs2542151,  rs2568127,  rs2569702,rs2618476,  rs2666236,  rs2677821,  rs2715038,  rs2736340,rs2771369,  
rs2793108,  rs2812378,  rs2816316,  rs2837960,rs2844479,  rs2872507,  rs2888334,  rs2900180,  rs2941794,rs3087243,  rs3087456,  rs3093023,  rs3118469,  rs3176767,rs3194051,  
rs3218253,  rs3218258,  rs3218292,  rs3218312,rs3218315,  rs3218316,  rs3218322,  rs3218339,  rs3748816,rs3757173,  rs3761959,  rs3777612,  rs3788013,  rs3803815,rs3807306,  
rs3816587,  rs3816769,  rs3825932,  rs4112788,rs4133002,  rs4265819,  rs4272626,  rs4492018,  rs4505848,rs4535211,  rs4637409,  rs4675600,  rs4677742,  rs4695391,rs4750316,  
rs4755453,  rs4760169,  rs4777183,  rs4791034,rs4810485,  rs4833248,  rs4869816,  rs4892117,  rs4895499,rs4896286,  rs4896303,  rs4963128,  rs4986790,  rs4986791,rs5029394,  
rs5029937,  rs5029938,  rs5029939,  rs5754217 
,rs5756391,  rs5980742,  rs5995385,  rs6000570,  rs6017667,rs6441961,  rs6473517,  rs6490130,  rs6568431,  rs6570184,rs6682654,  rs6822844,  rs6897932,  rs6903624,  
rs6909753,rs6918078,  rs6920220,  rs6927172,  rs6932056,  rs6933404,rs7021049,  rs7026551,  rs7041422,  rs7091432,  rs7234029,rs7257520,  rs7313599,  rs7543174,  rs7574865,  
rs7579737,rs7601303,  rs7722135,  rs7749323,  rs7752903,  rs7753873,rs7766288,  rs7949682,  rs8045689,  rs8084582,  rs8177374,rs8180663,  rs8192284,  rs9270657,  rs9321627,  
rs9359049,rs9366826,  rs9389526,  rs9389541,  rs9402914,  rs9402927,rs9494850,  rs9550642,  rs9564915,  rs9565072,  rs9622555,rs9770242,  rs10015924,  rs10036748,  rs10040327,  
rs10282458,rs10489265,  rs10499196,  rs10499197,  rs10516487,  rs10760129,rs10760130,  rs10785333,  rs10786617,  rs10812655,  rs10814339,rs10818488,  rs10865035,  rs10878089,  
rs10905518,  rs10910099,rs10914783,  rs10917214,  rs10919563,  rs10954213,  rs10997632,rs11080287,  rs11151064,  rs11162922,  rs11203203,  rs11203368,rs11586238,  rs11651303,  
rs11718592,  rs11724582,  rs11732095,rs11755393,  rs11755527,  rs11761231,  rs11762801,  rs11868854,rs11876710,  rs11970361,  rs12035407,  rs12094648,  rs12137270,rs12150054,  
rs12194870,  rs12194935,  rs12198924,  rs12206392,rs12251833,  rs12403075,  rs12525464,  rs12527282,  rs12527578,rs12551429,  rs12603665,  rs12708716,  rs12722489,  
rs12723859,rs12746613,  rs12840573,  rs13017599,  rs13031237,  rs13061519,rs13119723,  rs13192841,  rs13207033,  rs13242262,  rs13277113,rs13315591,  rs13393256,  rs16881910,  
rs17005786,  rs17015108,rs17037696,  rs17066681,  rs17085170,  rs17143115,  rs17223208,rs17388568,  rs17534243,  rs17612952,  rs17696736,  rs17780429,rs17810546,  rs28665122,  
rs61330082 
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Appendix D: Amended ‘spls’ and ‘valid’ functions from mixOmics version 3.0 

(amended version 4 for Larsen score and one component) 

################################################################################## 

#    Here are two macros which were taken from the Mixomics Version 3.0 function## 

#    and adapted numerous times for specific use on the SNP data modelling the  ## 

#    Larsen score                                                               ## 

#                                                                               ## 

#  Version 1: The first updates were to output more of the datasets to be       ## 

#     available for use after the macro was run                                 ## 

#    For spls to spls_lyn, the changes enabled a list of the selected variables ## 

#    ranked for each CV to be output into a dataset so once the model           ## 

#    is selected in 8/10 folds in 50 runs, the variables can be                 ## 

#    ranked in order of importance                                              ##  

#                                                                               ## 

#    For valid to splscv, The changes enable it to output the number of times   ## 

#    each variable is selected in the M folds (Svar) and it outputs (Ycorr)     ## 

#    Ycorr has the original Y values and the predicted Ys from the separate     ## 

#    folds of the data                                                          ## 

#                                                                               ## 

# Version 2: Was written for the GWAS modelling                                 ## 

#    The change was to make SNPs of 0 variance in some cross-validations just   ## 

#    be excluded from that run to prevent the analysis failing                  ## 

#                                                                               ## 

# Version 3: amended from using 0 variance to include close to 0, as the NIPALS ## 

#    algorithm could impute 0.0001 as SNP value but this was still insufficient ## 

#    variation for the model to fit                                             ## 

#                                                                               ## 

# Version 4: amended code to export list of variable selection order instead    ## 

#    of ranking top X variables and assigning equal last rank for those not     ## 

#    selected                                                                   ## 

#                                                                          ##  

# To ensure consistency, the macros were moved to this program                  ## 

# to be run at the start of any analyses program thus ensuring the same code    ## 

# is being used each time                                                       ## 

################################################################################## 

 

################################################################################## 

#  Original macros are from the following package: Mixomics Version 3.0          # 

#                                                                           #  

#  LÊ CAO, K.-A., I, G. & S, D. 2009. integrOmics: an R package to unravel       # 

#  relationships between two omics data sets. Bioinformatics, 25 (21), 2855-2856.# 

#  NOTE: the package 'integrOmics' has been renamed 'mixOmics'.                  # 

#                                                                           #  

# GONZÁLEZ, I., LÊ CAO, K.-A. & DÉJEAN, S. 2011. mixOmics: Omics Data Integration#  

# Project. URL: http://www.math.univ-toulouse.fr/~biostat/mixOmics/.             #  

################################################################################## 

 

################################################################################## 

#  MACRO 1: AMENDED spls FUNCTION and renamed spls_lyn                           # 

################################################################################## 

 

spls_lyn <- 

function(X,  

         Y,  

         ncomp = 2,  

         mode = c("regression", "canonical"), 

         max.iter = 500,  

         tol = 1e-06, 

         keepX = rep(ncol(X), ncomp),  

         keepY = rep(ncol(Y), ncomp), 

         ...) 

{ 

 

    #-- validation des arguments --# 

    if (length(dim(X)) != 2)  

        stop("'X' must be a numeric matrix.") 

      

    X = as.matrix(X) 

    Y = as.matrix(Y) 
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    if (!is.numeric(X) || !is.numeric(Y))  

        stop("'X' and/or 'Y' must be a numeric matrix.") 

      

    n = nrow(X) 

    q = ncol(Y) 

      

    if ((n != nrow(Y)))  

        stop("unequal number of rows in 'X' and 'Y'.") 

      

    if (is.null(ncomp) || !is.numeric(ncomp) || ncomp <= 0) 

        stop("invalid number of variates, 'ncomp'.") 

   

    nzv = nearZeroVar(X, ...) 

 

    if (length(nzv$Position > 0)) { 

        warning("Zero- or near-zero variance predictors.  

  Reset predictors matrix to not near-zero variance predictors. 

  See $nzv for problematic predictors.") 

        X = X[, -nzv$Position] 

    } 

 

 p = ncol(X) 

  

    ncomp = round(ncomp) 

    if(ncomp > p) { 

        warning("Reset maximum number of variates 'ncomp' to ncol(X) = ", p, ".") 

        ncomp = p 

    } 

  

    if (length(keepX) != ncomp)  

        stop("length of 'keepX' must be equal to ", ncomp, ".") 

      

    if (length(keepY) != ncomp)  

        stop("length of 'keepY' must be equal to ", ncomp, ".") 

      

    if (any(keepX > p))  

        stop("each component of 'keepX' must be lower or equal than ", p, ".") 

      

    if (any(keepY > q))  

        stop("each component of 'keepY' must be lower or equal than ", q, ".") 

      

    mode = match.arg(mode) 

      

    #-- initialisation des matrices --# 

    X.names = dimnames(X)[[2]] 

    if (is.null(X.names)) X.names = paste("X", 1:p, sep = "") 

      

    if (dim(Y)[2] == 1) Y.names = "Y" 

    else { 

        Y.names = dimnames(Y)[[2]] 

        if (is.null(Y.names)) Y.names = paste("Y", 1:q, sep = "") 

    } 

      

    ind.names = dimnames(X)[[1]] 

    if (is.null(ind.names)) { 

        ind.names = dimnames(Y)[[1]] 

        rownames(X) = ind.names 

    } 

       

    if (is.null(ind.names)) { 

        ind.names = 1:n 

        rownames(X) = rownames(Y) = ind.names 

    } 

      

    #-- centrer et réduire les données --# 

    X = scale(X, center = TRUE, scale = TRUE) 

    Y = scale(Y, center = TRUE, scale = TRUE)  

 

    X.temp = X 

    Y.temp = Y 

    mat.t = matrix(nrow = n, ncol = ncomp) 



 

219 
 

    mat.u = matrix(nrow = n, ncol = ncomp) 

    mat.a = matrix(nrow = p, ncol = ncomp) 

    mat.b = matrix(nrow = q, ncol = ncomp) 

    mat.c = matrix(nrow = p, ncol = ncomp) 

    mat.d = matrix(nrow = q, ncol = ncomp) 

 n.ones = rep(1, n) 

 p.ones = rep(1, p) 

 q.ones = rep(1, q) 

 na.X = FALSE 

    na.Y = FALSE 

    is.na.X = is.na(X) 

    is.na.Y = is.na(Y) 

 if (any(is.na.X)) na.X = TRUE 

    if (any(is.na.Y)) na.Y = TRUE 

   

#  added by Lyn into version 1: created a blank matrix called ordselvar to complete the 

ordering of selected variables by component # 

   ordselvar=matrix(nrow=p, ncol=ncomp) 

 

    #-- boucle sur h --# 

    for (h in 1:ncomp) { 

        nx = p - keepX[h] 

        ny = q - keepY[h] 

          

        #-- svd de M = t(X)*Y --# 

        X.aux = X.temp         

        if (na.X) X.aux[is.na.X] = 0 

          

        Y.aux = Y.temp          

        if (na.Y) Y.aux[is.na.Y] = 0 

   

        M = crossprod(X.aux, Y.aux) 

        svd.M = svd(M, nu = 1, nv = 1) 

        a.old = svd.M$u 

        b.old = svd.M$v 

          

        #-- latent variables --# 

        if (na.X) { 

            t = X.aux %*% a.old 

            A = drop(a.old) %o% n.ones 

            A[is.na.X] = 0 

            a.norm = crossprod(A) 

            t = t / diag(a.norm) 

            t = t / drop(sqrt(crossprod(t)))    

        } 

        else { 

            t = X.temp %*% a.old / drop(crossprod(a.old)) 

            t = t / drop(sqrt(crossprod(t))) 

        } 

          

        if (na.Y) { 

            u = Y.aux %*% b.old 

            B = drop(b.old) %o% n.ones 

            B[is.na.Y] = 0 

            b.norm = crossprod(B) 

            u = u / diag(b.norm)  

            u = u / drop(sqrt(crossprod(u)))    

        } 

        else { 

            u = Y.temp %*% b.old / drop(crossprod(b.old)) 

            u = u / drop(sqrt(crossprod(u))) 

        } 

        iter = 1 

          

        #-- boucle jusqu'à convergence de a et de b --# 

        repeat { 

            if (na.X) a = t(X.aux) %*% u 

            else a = t(X.temp) %*% u 

    

  if (na.Y) b = t(Y.aux) %*% t 

            else b = t(Y.temp) %*% t 

              

M=X’Y.  

a.old= loadings of X (p), 

b.old=loadings of Y (q) 

As previously imputed missing with NIPALS 

algorithm this code isn’t needed 

As previously imputed missing with NIPALS 

algorithm this code isn’t needed 

 

M=X’Y.  

a.old= loadings of X (p), 

b.old=loadings of Y (q) 

t=Xp / p’p  scores of X 

u=Yq/ q’q  scores of Y 

Calculates the loadings again from p=X’u 

and q=Y’t 
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            if (nx != 0) {  

 

#Lyn added in version 3: object loadord is created to rank the loadings before applying 

the 0 to those not extracted 

                loadord=a          

         

#Lyn note: abs(a[order(abs(a))][nx]) returns the value (loading coefficient) of the  

#corresponding max number to be extracted, i.e. extracting 20 vars, returns the 20th 

coefficient. 

                a = ifelse(abs(a) > abs(a[order(abs(a))][nx]),  

                    (abs(a) - abs(a[order(abs(a))][nx])) * sign(a), 0) 

             

 

 

 

 

 

# Lyn added in version 1: ranks the selected variables in order of importance and 

outputs them in the object ordselvar# 

  

                ordselvar[,h]=p-(rank(abs(loadord),ties="average"))+1 

             

            } 

            a = a / drop(crossprod(u)) 

            a = a / drop(sqrt(crossprod(a))) 

        

            if (ny != 0) { 

                b = ifelse(abs(b) > abs(b[order(abs(b))][ny]), 

                    (abs(b) - abs(b[order(abs(b))][ny])) * sign(b), 0) 

            } 

            b = b / drop(crossprod(t)) 

     

            if (na.X) { 

                t = X.aux %*% a 

                A = drop(a) %o% n.ones 

                A[is.na.X] = 0 

                a.norm = crossprod(A) 

                t = t / diag(a.norm) 

                t = t / drop(sqrt(crossprod(t)))    

            } 

            else { 

                t = X.temp %*% a / drop(crossprod(a)) 

                t = t / drop(sqrt(crossprod(t))) 

            } 

              

            if (na.Y) { 

                u = Y.aux %*% b 

                B = drop(b) %o% n.ones 

                B[is.na.Y] = 0 

                b.norm = crossprod(B) 

                u = u / diag(b.norm) 

                u = u / drop(sqrt(crossprod(u)))    

            } 

            else { 

                u = Y.temp %*% b / drop(crossprod(b)) 

                u = u / drop(sqrt(crossprod(u))) 

            } 

            

            if (crossprod(a - a.old) < tol) break 

              

            if (iter == max.iter) { 

 

  

   warning(paste("Maximum number of iterations reached for the component", h), 

                        call. = FALSE) 

                break 

            } 

              

            a.old = a 

            b.old = b 

            iter = iter + 1 

        } 

If the X loadings p are 

similar to the last iteration 

(per the Tol value) then the 

process is stopped. 

Selects the top X variables to keep in the model based on the size 

of the p loadings 

Selects the top Y variables to keep in the 

model based on the size of the q loadings 

Recalculate the scores t and u 

based on the new loadings. 

If the X loadings p are 

similar to the last iteration 

(per the Tol value) then the 

process is stopped. 
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       #-- deflation des matrices --# 

        if (na.X) { 

            X.aux = X.temp 

            X.aux[is.na.X] = 0 

            c = crossprod(X.aux, t)     

            T = drop(t) %o% p.ones 

            T[is.na.X] = 0 

            t.norm = crossprod(T)     

            c = c / diag(t.norm) 

        } 

        else { 

            c = crossprod(X.temp, t) / drop(crossprod(t)) 

        }  

   

        X.temp = X.temp - t %*% t(c)    

          

        #-- mode canonique --# 

        if (mode == "canonical") { 

            if (na.Y) { 

                Y.aux = Y.temp 

                Y.aux[is.na.Y] = 0 

                e = crossprod(Y.aux, u) 

                U = drop(u) %o% q.ones 

                U[is.na.Y] = 0 

                u.norm = crossprod(U)     

                e = e / diag(u.norm)      

            } 

            else { 

                e = crossprod(Y.temp, u) / drop(crossprod(u)) 

            } 

    

            Y.temp = Y.temp - u %*% t(e) 

        } 

          

        #-- mode regression --# 

        if(mode == "regression") { 

            if (na.Y) { 

                Y.aux = Y.temp 

                Y.aux[is.na.Y] = 0 

                d = crossprod(Y.aux, t) 

                T = drop(t) %o% q.ones 

                T[is.na.Y] = 0 

                t.norm = crossprod(T)     

                d = d / diag(t.norm) 

            } 

            else {     

                d = crossprod(Y.temp, t) / drop(crossprod(t)) 

            } 

              

            Y.temp = Y.temp - t %*% t(d) 

        } 

          

        mat.t[, h] = t 

        mat.u[, h] = u          

        mat.a[, h] = a 

        mat.b[, h] = b 

        mat.c[, h] = c 

        if (mode == "regression") mat.d[, h] = d 

          

    } #-- fin boucle sur h --# 

      

    #-- valeurs sortantes --# 

    rownames(mat.a) = rownames(mat.c) = X.names 

    rownames(mat.b) = Y.names 

    rownames(mat.t) = rownames(mat.u) = ind.names 

      

    dim = paste("comp", 1:ncomp) 

    colnames(mat.t) = colnames(mat.u) = dim 

    colnames(mat.a) = colnames(mat.b) = colnames(mat.c) = dim  

      

    cl = match.call() 

    cl[[1]] = as.name('spls') 

The first component scores & loading are 

agreed and we deflate the Y matrix using: 

Ynew = Y – t d’ where d=Y’t / t’t 

The first component scores & loading are 

agreed and we deflate the X matrix using: 

Xnew = X – t c’ where c=X’t / t’t 

Not doing canonical 

modelling this section of 

code not used 

The first component scores & loading are 

agreed and we deflate the Y matrix using: 

Ynew = Y – t d’ where d=Y’t / t’t 
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    result = list(call = cl, 

                  X = X, Y = Y, ncomp = ncomp, mode = mode,  

                  keepX = keepX, 

                  keepY = keepY, 

                  mat.c = mat.c,  

                  mat.t = mat.t,  

                  variates = list(X = mat.t, Y = mat.u), 

                  loadings = list(X = mat.a, Y = mat.b), 

                  names = list(X = X.names, Y = Y.names, indiv = ind.names), 

 

 # added by Lyn : version 1 if >1 component the order is the min selected in either 

component.  selvarinord is output so can be used outside the function # 

             selvarinord=apply(ordselvar,1,function(x) min(x)) 

            

      ) 

    if (length(nzv$Position > 0)) result$nzv = nzv 

 

    class(result) = c("spls", "pls")  

    return(invisible(result))  

} 

 

################################################################################## 

#  MACRO 2: AMENDED valid FUNCTION renamed splscv                                # 

################################################################################## 

splscv <- 

function(X,  

         Y,  

         ncomp = min(6, ncol(X)),  

         method = "spls", 

         mode = c("regression"), 

         criterion = c("all"), 

         keepX = NULL, keepY = NULL,  

         validation = c("Mfold"), 

         M = M, 

         max.iter = 500,  

         tol = 1e-06, ...) 

{ 

 

    method = match.arg(method) 

   

    #-------------------- sPLS ---------------------# 

    if (any(c("spls") == method)) { 

      

        #-- validation des arguments --# 

        #-- do warning for mode + other warnings --# 

        if (length(dim(X)) != 2)  

            stop("'X' must be a numeric matrix.") 

    

        mode = match.arg(mode)    

        validation = match.arg(validation) 

          

        X = as.matrix(X) 

        Y = as.matrix(Y) 

           

        n = nrow(X) 

        q = ncol(Y) 

        res = list() 

    

        if (!is.numeric(X) || !is.numeric(Y))  

            stop("'X' and/or 'Y' must be a numeric matrix.") 

    

        if ((n != nrow(Y)))  

            stop("unequal number of rows in 'X' and 'Y'.") 

    

        if (any(is.na(X)) || any(is.na(Y)))  

            stop("Missing data in 'X' and/or 'Y'. Use 'nipals' for dealing with NAs.") 

  

# Added by Lyn: Version 2 

# REMOVED the following check as variables with insufficient variation are removed on 

# a variable by variable basis according to the cross folds used. See below:  

#  We do not want them excluded from all analyses. 
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#  nzv = nearZeroVar(X, ...) 

#        if (length(nzv$Position > 0)) { 

#            warning("Zero- or near-zero variance predictors.  

#  Reset predictors matrix to not near-zero variance predictors. 

#  See $nzv for problematic predictors.") 

#            X = X[, -nzv$Position] 

#      res$nzv = nzv 

#        } 

     p = ncol(X)      

          

        if (is.null(ncomp) || !is.numeric(ncomp) || ncomp <= 0 || ncomp > p) 

            stop("Invalid number of components, 'ncomp'.") 

        ncomp = round(ncomp) 

     

        if (method == "spls") {   

            if(is.null(keepX)) keepX = rep(ncol(X), ncomp) 

            if(is.null(keepY)) keepY = rep(ncol(Y), ncomp) 

              

            if (length(keepX) != ncomp)  

                stop("length of 'keepX' must be equal to ", ncomp, ".") 

                  

            if (length(keepY) != ncomp)  

                stop("length of 'keepY' must be equal to ", ncomp, ".") 

                  

            if (any(keepX > p))  

                stop("each component of 'keepX' must be lower or equal than ", p, ".") 

                  

            if (any(keepY > q))  

                stop("each component of 'keepY' must be lower or equal than ", q, ".")

  

        }    

          

        #-- M fold  validation --# 

        ##- define the folds 

        if (validation == "Mfold") {  

            if (is.null(M) | !is.numeric(M) | M < 2 | M > n) 

                stop("Invalid number of folds, 'M'.") 

            M = round(M) 

            fold = split(sample(1:n), rep(1:M, length = n))  

        }  

   

        #-- compute MSEP and/or R2 --# 

        if (any(criterion %in% c("all", "MSEP", "R2"))) {   

            press.mat = Ypred = array(0, c(n, q, ncomp)) 

            MSEP = R2 = matrix(0, nrow = q, ncol = ncomp) 

 

# Lyn added the following 3 rows in version 1 to create a blank matrices for filling in 

   

            Svar=matrix(0, ncol(X), M)          

            Ycorr=matrix(0, n, 2) 

            ordSvar=matrix(0,p,M)    

   

            for (i in 1:M) { 

                omit = fold[[i]] 

                X.train = X[-omit, ]  

                Y.train = Y[-omit, ] 

                X.test = matrix(X[omit, ], nrow = length(omit)) 

      Y.test = matrix(Y[omit, ], nrow = length(omit))  

 

## added by lyn: version 2 because there are SNPs which when folded have no variation  

##  all 0's, then don’t want process to fall down, so just exclude that variable        

##  from that fold.  If a variable is predictive, then it will come up in all 50 runs 

## but not in all folds as it has too low MAF with the sample size.   Lyn has  

## programmed to include variables with at least 92% variation in the training set  

## so minor alleles with <5% MAF won’t be included  

# Lyn added for version 3:  Minor code change from version 2:   

# From sum(X>==0) to sum(x>=0 & x<=0.5).  This allows for 0'S or very small close to 

zero # numbers derived from the NIPALS algorithm missing data imputation  

# Otherwise macro still falls down with insufficient variation 
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           MAF <-apply(X.train[,1:ncol(X.train)], 2, function(x) sum(x>=0 & x<=0.5)) / 

nrow(X.train[,1:ncol(X.train)]) * 100 

            MAF2<-MAF>92  # put TRUE to those with >92% 0s. 

 

###remove any with >92% 0s from the training & test X data ### 

            X.train<-X.train[,!MAF2] 

            X.test<-X.test[,!MAF2] 

 

 

                X.train = scale(X.train, center = TRUE, scale = FALSE) 

                xmns = attr(X.train, "scaled:center") 

                  

                Y.train = scale(Y.train, center = TRUE, scale = FALSE) 

                ymns = attr(Y.train, "scaled:center") 

                  

                X.test = scale(X.test, center = xmns, scale = FALSE) 

            

                #-- spls --#   

                object = spls_lyn(X = X.train, Y = Y.train, ncomp = ncomp,  

                                  mode = mode, max.iter = max.iter, tol = tol,  

                                  keepX = keepX, keepY = keepY) 

              

#####################Lyn amended the code here : in version 1########### 

##    It will now export the predicted scores, the B coefficients     ## 

#     and will list the variables selected                            ## 

##    For each of the M models, for h components                      ## 

##    It will also export the ordering of the selected variables      ## 

######################################################################## 

 

          predpar = predict(object,X.test) 

          Y.hat=predpar$predict 

 

          s.var=apply(abs(object$loadings$X),1,sum)>0   

 

#  Lyn added version 2: As some variables excluded due to insufficient variation in 

some #folds, the following code was added so that a complete list of variables in 

created. 

# Those not included as set to 0.  

 

                MAF3<-cbind(MAF2,names(MAF2)) 

                colnames(MAF3)<-c("EIMOD","SNP") 

 

                s.var2<-cbind(s.var,names(s.var)) 

                colnames(s.var2)<-c("CBMOD","SNP") 

                

                 s.var3 <- merge(s.var2,MAF3, by="SNP", all=TRUE)    

                 s.var3 [is.na(s.var3)] <- FALSE 

                 s.var5<-as.matrix(s.var3[,2]) 

                 rownames(s.var5)<-s.var3[,1] 

            s.var6<- s.var5[order(row.names(s.var5)),] 

  

                 Svar[,i] <-as.matrix(s.var6) # changes the vector into a matrix 

                 rownames(Svar)=names(s.var6) 

 

# Lyn amended here in Version 2: need to label selvarinord with var names. 

# Merges on the variables which were not fitted above and get a complete list  

# which all folds can be merged by.  

                 revar<-names(MAF2[!MAF2])                 

                 selvarinord2<-cbind(object$selvarinord,revar)       

                 colnames(selvarinord2)<-c("CHORD","SNP") 

                 selvarinord3<-merge(selvarinord2, MAF3, by="SNP", all=TRUE)    

                 selvarinord4<-as.matrix(selvarinord3[,2]) 

                 rownames(selvarinord4)<-selvarinord3[,1] 

            selvarinord5<- selvarinord4[order(row.names(selvarinord4)),] 

                 ordSvar[,i]=as.matrix(selvarinord5) 

                 rownames(ordSvar)=names(s.var6)                

                  

                for (h in 1:ncomp) {  

  Y.mat = matrix(Y.hat[, , h], nrow = dim(Y.hat)[1], ncol= dim(Y.hat)[2])

   

              Y.hat[, , h] = sweep(Y.mat, 2, ymns, FUN = "+")   

 

This tells us what is in the 

model and which variables 

are out 
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   # Added by lyn version1 : As modelling Larsen score, Yhat is only allowed to be 

   #       0-160,  so limit results below  

 

   Y.hat[, , h]<-apply(as.matrix(Y.hat[, , h]), 2 , function(x) ifelse(x<=0,0, 

ifelse(x>=160,160,x)) ) 

 

                 press.mat[omit, , h] = (Y.test - Y.hat[, , h])^2 

                 Ypred[omit, , h] = Y.hat[, , h] 

                } 

                

                Ycorr[omit,]<-cbind(Y.hat[, , ncomp], Y.test)   # added by Lyn 

            } #end i  

     

            for (h in 1:ncomp) {  

                MSEP[, h] = apply(as.matrix(press.mat[, , h]), 2, mean, na.rm = TRUE) 

                R2[, h] = diag(cor(Y, Ypred[, , h], use = "pairwise"))   

            }      

            colnames(MSEP) = colnames(R2) = paste('ncomp', c(1:ncomp), sep = " ") 

            rownames(MSEP) = rownames(R2) = colnames(Y)  

              

            if (q == 1) rownames(MSEP) = rownames(R2) = ""           

              

            #-- valeurs sortantes --# 

            if (any(criterion %in% c("all", "MSEP"))) res$MSEP = MSEP 

       if (any(criterion %in% c("all", "R2"))) res$R2 = R2 

 

##   3 lines added by lyn to ensure the new objects are output.    

           res$Svar=Svar   

           res$Ycorr=Ycorr 

           res$ordSvar=ordSvar  

  

        } 

  

        #-- compute Q2 --# 

        if (any(criterion %in% c("all", "Q2"))) { 

            if (method == "pls") { 

                Q2 = q2.pls(X, Y, ncomp, mode, M, fold, max.iter, tol) 

            } 

            else { 

                Q2 = q2.spls(X, Y, ncomp, mode, keepX, keepY, M, fold, max.iter, tol) 

            } 

        

            Y.names = dimnames(Y)[[2]] 

            if (is.null(Y.names)) Y.names = paste("Y", 1:q, sep = "") 

    

            if (q > 1) { 

                res$Q2$variables = t(Q2[, 1:q]) 

                res$Q2$total = Q2[, q + 1] 

                rownames(res$Q2$variables) = Y.names 

                colnames(res$Q2$variables) = paste('comp', 1:ncomp, sep = " ") 

                names(res$Q2$total) = paste('comp', 1:ncomp, sep = " ")     

            } 

   else { 

                colnames(Q2) = "" 

                rownames(Q2) = paste('comp', 1:ncomp, sep = " ") 

                res$Q2 = t(Q2) 

            } 

        }   

    } 

   

    method = paste(method, "mthd", sep = ".")  

    class(res) = c("valid", method) 

    return(invisible(res))  

} 
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Appendix E: Graphs determining optimum number of variables to extract based on 

R2-CV derived for each of the 40 blocks of data. 

 

Chromosome 1, part 1 (SNP=8257) 
The maximum R2 of 0.590 is 
obtained when 10 variables are 
extracted.  However, a very similar 
R2 is found at 15 (R2=0.589) and 45 
(R2=0.588). After this point the R2 
gradually decreases.  To allow the 
maximum chance of selecting 
variables for final higher level model 
which may be important, it was 
decided to extract 45 variables from 
this model.  

 

Chromosome 1, part 2 (SNP=8258) 
The maximum R2 of 0.6096655 is 
obtained when 130 variables are 
extracted.  From the graph, it 
appears to gradually increase up to 
this point (almost reaching it at 55 
and 110) and then decreases after 
this point. Therefore, it was decided 
to extract 130 variables from this 
model.  
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Chromosome 1, part 3 (SNP=8194) 
The maximum R2 of 0.5907745 is 
obtained when 85 variables are 
extracted.  However, this value is 
almost obtained with just 20 
variables.   As the graph is relatively 
stable at the 0.59 level up to 85 
variables, it was decided to extract 
85 variables from this model.  

 

Chromosome 2, part 1 (SNP=8884) 
The maximum R2 of 0.5953790 is 
obtained when 200 variables are 
extracted.  The graph is relatively 
stable up to 200 variables and then 
starts to decrease after this point. 
Therefore it was decided to extract 
200 variables from this model.  

 

Chromosome 2, part 2 (SNP=8872) 
The maximum R2 of 0.5989761 is 
obtained when 100 variables are 
extracted.  The graph is relatively 
stable up to 100 variables and then 
starts to decrease after this point. 
Ttherefore it was decided to extract 
100 variables from this model.  
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Chromosome 2, part 3 (SNP=8796) 
The maximum R2 of 0.6104767 is 
obtained when 80 variables are 
extracted.  The graph is relatively 
stable up to 80 variables and then 
starts to decrease after this point. 
Therefore it was decided to extract 
80 variables from this model.  
 
 

 

Chromosome 3, part 1 (SNP=11361) 
The maximum was observed at 40 
variables however it was almost 
reached again at 55 variables 
(R2=0.5913 and 0.5907 respectively).  
The R2 was relatively stable prior to 
40 but we observed at dip at 50 
variables before it increased at 55 
variables.  It was therefore decided 
to extract 40 variables for this 
model. 

 

Chromosome 3, part 2 (SNP=11298) 
The maximum was observed at 110 
variables (R2=0.589).  It is stable up 
to this point but decreases after 
hence 110 variables will be 
extracted for this model. 
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Chromosome 4, part 1 (SNP=10142) 
The maximum was observed at 45 
R2= 0.6151818, then almost again at 
90, R2 =0.6113111.  It is very variable 
between 45 and 120 when it almost 
reaches the same level again.  It was 
decided to pick a midpoint in order 
to give variables maximum 
opportunity for being selected.  
Therefore 90 variables were chosen 
to be extracted for this model.      
 

 

Chromosome 4, part 2 (SNP=10042) 
This is more like the plot expected 
on each set of data.  The line 
steadily increases until a maximum 
observed at 140, R2= 0.6175557. 
After which, the R2 decreases 
steadily.  Therefore 140 variables 
were extracted for this model.     

 

Chromosome 5, part 1 (SNP=10077) 
The maximum R2 is observed at 120, 
R2= 0.5972783. There is quite a bit of 
variability after 80 however to give 
variables the best chance of being 
included, 120 variables were 
extracted for this model.     
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Chromosome 5, part 2 (SNP=9989) 
This plot is interesting as the 
maximum is observed at just 10 
variables extracted (R2=0.5910226) 
and the line decreases from that 
point onwards.  It was decided to 
extract 10 variables for this model as 
it is assumed that the addition of 
more variables does not aid in the 
prediction of the Larsen score. 
 

 

Chromosome 6, part 1 (SNP=8396) 
This plot is very variable and hard to 
determine the optimum number of 
variables. It is clear however that 
the plot steadily decreases after 120 
variables.  The maximum is 
observed at 90 variables 
(R2=0.6030127) and a similar R2 at 
120 variables R2=0.6011744.  Given 
the instability before 90 variables, 
extracting 90 variables was selected 
for this model. 
 
 

 

Chromosome 6, part 2 (SNP=8325) 
Although the maximum is observed 
at 45 variables 0.5993820, 
approximately this level is retained 
until 110 variables (R2=0.5943365).  
To give variable the maximum 
opportunity to be selected, 110 
variables were decided to be 
extracted for this model. 
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Chromosome 6, part 3 (SNP=8135) 
The maximum is observed at just 35 
variables R2=0.5972813.  However, 
there is another peak at 65 variables 
which results in nearly the same R2 
(R2=0.5956908).  After the peak at 
65 the line steadily decreases, 
therefore 65 was chosen as the 
number of variables to extract from 
this model. 
 
 

 

Chromosome 7, part 1 (SNP=8945) 
The graph steadily increases to the 
point of 95 variables (R2=0.6025330) 
after which point it decreases and 
becomes more variable.  Therefore 
extracting 95 variables was selected 
for this model. 
 
 

 

Chromosome 7, part 2 (SNP=8859) 
The graph is quite varied but does 
maximise at 75 variables 
(R2=0.6027475).  Although there are 
two small peaks after that it does 
generally decrease. Therefore 
extracting 75 variables was selected 
for this model. 
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Chromosome 8, part 1 (SNP=9393) 
The maximum was found at 30 
variables (R2=0.5936440) however 
was almost the same at 40 variables 
before it steadily decreased.  
Therefore 40 variables were 
selected for extraction for this 
model. 

 

Chromosome 8, part 2 (SNP=9345) 
The maximum observed at just 5 
variables (R2=0.5885593) however it 
is relatively consistently high until 
65 variables (R2=0.5872437) after 
which it steadily decreases.  
Therefore 65 variables were 
selected for extraction for this 
model. 
 
 

 

Chromosome 9, part 1 (SNP=8126) 
The maximum observed at 90 
variables (R2=0.5920790) after which 
point the R2 decreases.  Therefore 
90 variables were selected for 
extraction for this model. 
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Chromosome 9, part 2 (SNP=8089) 
The maximum observed at 45 
variables (R2=0.5929606) however 
the R2 remains high up to 110 
variables after which point it 
decreases.  To maximise the 
opportunity for variables to be 
selected 110 variables were selected 
for extraction for this model. 
 

 

Chromosome 10, part 1 (SNP=8257) 
The maximum R2 of 0.5969518 
occurs at 45 variables after which 
point the R2 decreases.  Therefore 
45 variables will be extracted for this 
model. 

 

Chromosome 10, part 2 (SNP=8162) 
The maximum R2 of 0.5926617 
occurs at 70 variables after which 
point the R2 decreases.  Therefore 
70 variables will be extracted for this 
model. 
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Chromosome 11, part 1 (SNP=7742) 
The R2 increases up to 95 variables 
after which is becomes more 
unstable.  Although there are some 
peaks which almost match the 
maximum at 200 and 230 variables 
it was decided extracting 95 
variables would be sufficient given 
the variation in R2 after that point. 

 

Chromosome 11, part 2 (SNP=7679) 
The R2 increases up to 160 variables 
(R2=0.6202291) after which it 
decreases.  Therefore 160 variables 
were chosen to extract for this 
model. 
 

 

Chromosome 12, part 1 (SNP=7837) 
This graph is harder to determine 
the optimum number of variables to 
extract as although the maximum R2 
is observed at 170 (R2=0.6001613), it 
is almost at the same level at 35, 65, 
90 and 180 variables.  As this is a 
preliminary stage and variables can 
be removed at the upper level 
model fitting, it was decided to 
extract 170 with the provision that 
some extracted may not be very 
predictive. 
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Chromosome 12, part 2 (SNP=7765) 
The maximum R2 was observed at 
90 variables (R2=0.6037449) after 
which it decreased.  Although there 
is some variability before 90 
variables in the R2 estimates, 90 
variables were chosen to be 
extracted. 

 

Chromosome 13, part 1 (SNP=6153) 
Although slightly variable, the 
maximum R2 was observed at 85 
variables (R2=0.60634).  As there 
was a clear decrease after this point, 
85 was selected as the number of 
variables to export. 

 

Chromosome 13, part 2 (SNP=6093) 
The maximum R2 was observed at 
20 variables (R2=0.5975580)   
however it was almost as high again 
at 65 variables (R2=0.5974014), after 
which the R2 decreases.   Therefore 
65 variables were chosen to be 
extracted. 
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Chromosome 14, (SNP=10279) 
The maximum R2 of 0.5967481 was 
observed at 25 variables however it 
remains a a similar level up to 90 
variables 0.5914446.  It was 
therefore decided to export 90 
variables for this model. 
 

 

Chromosome 15, (SNP=9247) 
The maximum R2 was at 80 variables 
(R2=0.604956) and as it increases 
before this point and decreases 
after this point, 80 variables were 
selected for extraction.  
 

 

Chromosome 16, (SNP=9232) 
Although the maximum was 
observed at 10 variables 
(R2=0.5932914), it remains 
approximately level until 30 
variables (R2=0.5909528) where it 
becomes more unstable with a 
decreasing trend.  Therefore 30 
variables were selected to be 
extracted. 
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Chromosome 17, (SNP=8672) 
Although the highest R2 is observed 
at just 5 variables (R2=0.5889406), 
the estimate is relatively stable & 
almost as high at 55 variables 
(R2=0.5856562).  After 55 the 
estimate is more variable and it 
decreases.  Therefore 55 variables 
were chosen to be extracted for this 
model. 

 

Chromosome 18, (SNP=10629) 
Although the maximum R2 is at 10 
variables (0.5926424 ), the same 
value is almost reached at 30 
variables (R2=0.5887089).  In order 
to export the maximum predictive 
SNPs possible (and there is 
opportunity to exclude variables at a 
later date if found to be not 
predictive), 30 variables were 
selected to be exported. 
 

 

Chromosome 19, (SNP=6277) 
The maximum R2 is observed at 60 
variables (R2=0.5999831) after which 
is generally decreases (except for a 
spike at 120).  It was decided to 
extract 60 variables for this model. 
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Chromosome 20, (SNP=7951) 
The maximum R2 is observed at 50 
variables (R2=0.5968821). Prior to 
this point the estimate is relative 
stable and after this point R2 
gradually decreases.  Therefore 50 
variables were chosen for 
extraction. 
 

 

Chromosome 21, (SNP=5532) 
Although the maximum R2 was 
observed at 25 variables (R2= 
0.5926111), it remains at a similar 
level with just small variation until 
120 variables (R2=0.5879888).  After 
120 we see a decrease and 
therefore 120 was chosen as the 
number of variables to extract for 
this model.  

 

Chromosome 22, (SNP=5622) 
The maximum R2 is observed at 35 
variables (0.6028986) after which 
the R2 declines. Therefore 35 was 
chosen as the number to export.  
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X chromosome, (SNP=499) 
The maximum is observed at 35 
(0.6094233) but it is almost reached 
again at 45 and 25.  In order to 
export as many as possible 
important variables it was decided 
to export 45 variables. 

 

XY Pseudo autosomal region of X, 
(SNP=74) 
As there are only 74 variables to 
choose from, the region of 
extracting from 5 to 70 variables 
was examined.  The maximum R2 
was observed at 25 variables with a 
decrease in R2 observed after this.  
Therefore 25 variables were 
selected for extracting in this model. 
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Appendix F: Code to produce GWAS analysis 

#------------------------------------------------------------------------# 

# 2012: Program fits SPLS analysis for the larsen score                  # 

# Analysis 3: GWAS MODELLING                                             # 

# This program performs the cross validation with imputed data           # 

# This program is similar to the original GWAS modelling  except         # 

# The mixomics macro has been amended to output the order of all SNPS    # 

# rather than SNPS > number extracted being ranked equal last            # 

# in addition, rather than exploring optimum number of SNPs to export for# 

# each chromosome, 200 are extracted and then hoped the excess be removed# 

# in the higher level model                                              # 

#------------------------------------------------------------------------# 

require(mixOmics) 

require(gtools) 

 

#### read in the macros I've adapted from mixomics ############## 

source("D:\\Lyns Stuff\\PHD\\R with Gora Data\\R functions code from MixOmics 

3_0\\Macros adapted from Mixomics_version 4.R") 

 

### amend the location here and it will follow through all code below ### 

##data location### 

datloc<-"D:\\Lyns Stuff\\PHD\\3rd year plan and record of work\\GWAS modelling\\" 

##output location ## 

outloc<-"D:\\Lyns Stuff\\PHD\\3rd year plan and record of work\\GWAS 

modelling\\run10folddata\\" 

 

#################################################################### 

# The following macros runs through the process of the lower level # 

# modelling, each time selecting 200 variables in the PLS          # 

# however the ordering of variables is continuous from 1 to max SNP# 

# the n times selected though is based on being in the top 200     # 

#################################################################### 

 

# inport required Y data and ensure only GWAS subjects kept  

yin <-paste(datloc,"mody.csv", sep="") 

mody <- read.csv(yin, sep=","  , header=T) 

gwin <-paste(datloc,"GWAS_subj.csv", sep="") 

gwas <- read.csv(gwin, sep=","  , header=T) 

rownames(gwas)=gwas$subjid 

rownames(mody)=mody$subjid 

larsen <-merge(gwas, mody, all.x = TRUE) 

larsen <-as.numeric(larsen[,11]) 

 

 

################################################################################## 

#This macro reads each block of snps per chromosomes,keeps only the chosen       # 

# variables  with an average order of selection less than 200                    #                   

################################################################################## 

rodat1 <- defmacro(chrid,    

                  expr={ 

 

   indata <-paste(datloc,chrid,".csv", sep="") 

   datx <- read.csv(indata, sep=","  , header=T) 

 

   inkeep <-paste(outloc,chrid,"final.csv", sep="") 

   keepx <- read.csv(inkeep, sep=","  , header=T) 

   selvar<-keepx[which(keepx$aordSvar<200),2] 

   myvars <- names(datx) %in% selvar  

   chrid<- datx[,myvars] 

   

}) 

 

 

rodat1(chrid="chr1a") 

rodat1(chrid="chr1b") 

rodat1(chrid="chr1c") 

rodat1(chrid="chr2a") 

rodat1(chrid="chr2b") 

rodat1(chrid="chr2c") 

rodat1(chrid="chr3a") 
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rodat1(chrid="chr3b") 

rodat1(chrid="chr4a") 

rodat1(chrid="chr4b") 

rodat1(chrid="chr5a") 

rodat1(chrid="chr5b") 

rodat1(chrid="chr6a") 

rodat1(chrid="chr6b") 

rodat1(chrid="chr6c") 

rodat1(chrid="chr7a") 

 

rodat1(chrid="chr8a") 

rodat1(chrid="chr8b") 

rodat1(chrid="chr9a") 

rodat1(chrid="chr9b") 

rodat1(chrid="chr10a") 

rodat1(chrid="chr10b") 

rodat1(chrid="chr11a") 

rodat1(chrid="chr11b") 

rodat1(chrid="chr12a") 

rodat1(chrid="chr12b") 

rodat1(chrid="chr13a") 

rodat1(chrid="chr13b") 

 

rodat1(chrid="chr15") 

rodat1(chrid="chr16") 

rodat1(chrid="chr17") 

rodat1(chrid="chr18") 

rodat1(chrid="chr19") 

rodat1(chrid="chr20") 

rodat1(chrid="chr21") 

rodat1(chrid="chr22") 

 

rodat1(chrid="chr7b")  

rodat1(chrid="chr14") 

rodat1(chrid="chr23") 

 

###now need to merge all the columns together to create 1 X dataset ### 

 

fxvars<-

cbind(chr1a,chr1b,chr1c,chr2a,chr2b,chr2c,chr3a,chr3b,chr4a,chr4b,chr5a,chr5b,chr6a,chr

6b,chr6c,chr7a,chr7b,chr8a,chr8b, chr9a,chr9b,chr10a,chr10b, 

chr11a,chr11b,chr12a,chr12b, chr13a,chr13b,chr14,chr15,chr16, chr17,chr18,chr19,chr20, 

chr21,chr22,chr23) 

sfxvars<-unique(names(fxvars)) 

finxv<- fxvars[,sfxvars] 

ncol(finxv) 

 

names(finxv) 

 

#outfdat <-paste(outloc,"NIPIMPupperlevelmodel_mixomics.csv", sep="") 

#write.csv(finxv,outfdat) 

 

########################################################################### 

##########keep top 100 variables                                  ######### 

########################################################################### 

 

###- decrease to 100 vars and see what happens to prediction ****; 

 

   inkeep <-paste(outloc,"upperlevelmodel_final_selvarsfinal.csv", sep="") 

   keepx <- read.csv(inkeep, sep=","  , header=T) 

   selvar<-keepx[which(keepx$X<101),2] 

   myvars <- names(finxv) %in% selvar  

   xmodel<- finxv[,myvars] 

names(xmodel) 

#outfdat <-paste(outloc,"top100variables.csv", sep="") 

#write.csv(xmodel,outfdat) 

 

   res <-pls(xmodel, larsen, ncomp=1, max.iter=500, tol=1e-09)  #spls or pls gets same 

model here# 

   pred <-predict(res, xmodel) 

 

 # Any predicted values <0 or >160 amended to be predicted as 0 and 160 # 
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 comp2<-apply(as.matrix(pred$predict[,1,1]), 2 , function(x) ifelse(x<=0,0, 

ifelse(x>=160,160,x)) ) 

 predvals<-data.frame(cbind(comp2,larsen)) 

 

 #plot actual value vs predicted value # 

outgraph<-paste(outloc,"upperlevelmodelfinal100variables_101",".tif",sep="") 

tiff(outgraph, height=1200, width=2400, res=600, units="px", pointsize=6, compression = 

"lzw") 

par(mar=c(5.1, 5.1, 3.1, 2.1)) 

 plot (predvals$V1,predvals$larsen, xlab="Predicted Larsen Score", ylab="Larsen 

score", 

      pch=4, cex=0.8, cex.axis=0.6, 

    xlim=c(0,180), xaxp=c(0,180,9), ylim=c(0,180), yaxp=c(0,180,9)) 

 #   Get the correlation of the plot # 

 corrv<-round(cor(predvals$V1,predvals$larsen),digits=3) 

 text(120,5,"r=") 

 text(140,5,corrv) 

 abline(1,1) 

 

dev.off() 

 

# calculate the difference between predicted & actual larsen score  

 preddiff2<-abs(predvals$larsen-predvals$V1) 

 mean(preddiff2,na.rm=T) 

 median(preddiff2,na.rm=T) 

 sd(preddiff2,na.rm=T) 

 min(preddiff2,na.rm=T) 

 max(preddiff2,na.rm=T) 

 sum(is.na(preddiff2)) 

 

 

 #**********have a look at % we get correct if predicting larsen >5 ***; 

 act_grp <- cut(predvals$larsen, breaks=c(-0.1,5,20,60,164))  

 pre_grp <- cut(predvals$V1, breaks=c(-0.1,5,20,60,164)) 

 table(act_grp,pre_grp) 

 

 

 

# ***  under cross validation ###### 

 

cv_model<- valid(finaldat, larsen, ncomp=2, method="pls", mode="regression", 

criterion="all", 

         validation="Mfold", M=5, max.iter=500, tol=1e-09 

          ) 

cv_model 

 

old<-read.csv("D:\\Lyns Stuff\\PHD\\2nd year plan and record of work\\detailed write up 

of PLS larsen score GWAS analyses\\mindata.csv", sep=",", header=T) 

names(old[,2:505]) 

names(finaldat) 

 

 

################################################################################ 

##if you want to get the parameter estimates of the model run the following:#### 

################################################################################ 

 

 

   indata <-paste(outloc,"upperlevelmodel_final_selvarsfinal.csv", sep="") 

   resord <- read.csv(indata, sep=","  , header=T) 

   resord2<-resord[1:100,2]  # 1:505 uses top 500 SNP & 5 env,  

 

   indat <-paste(datloc,"upperlevelmodel_final_selvars.csv", sep="") 

   datx <- read.csv(indat, sep=","  , header=T) 

   myvars <- names(datx) %in% resord2 

   finaldat<- datx[,myvars] 

 

   spls.final <-pls(finaldat, larsen, ncomp=1, max.iter=500, tol=1e-09)  #spls or pls 

gets same model here# 

   larsen.predict <-predict(spls.final, finaldat) 

 

   ##output variables from the prediction model -beta hat are the coefficients of the 

regression### 
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   # NOTE: coefficient below (1) represents 1 component only, increase if more 

components # 

   vpred<-cbind(names(finaldat),round(larsen.predict$B.hat[,,1], digits=3)) 

   cnames<-c("xname","p_est") 

   colnames(vpred)<-cnames 

  vpred 

 

   ############################################################ 

   #  Because the code above doesn't output the intercept run # 

   # the following copied from Mixomics predict which will    # 

   ############################################################ 

 

    newdata=finaldat 

   X = spls.final$X 

   Y = spls.final$Y 

   q = ncol(Y) 

   p = ncol(X) 

         

    #-- initialisation des matrices --#  

    ncomp = spls.final$ncomp 

    a = spls.final$loadings$X 

    b = spls.final$loadings$Y 

    c = spls.final$mat.c 

      

    means.X = attr(X, "scaled:center") 

    means.Y = attr(Y, "scaled:center") 

    sigma.X = attr(X, "scaled:scale") 

    sigma.Y = attr(Y, "scaled:scale") 

      

    newdata = as.matrix(newdata) 

    ones = matrix(rep(1, nrow(newdata)), ncol = 1) 

    ##- coeff de regression  

    B.hat = array(0, dim = c(p, q, ncomp)) 

    ##- prediction 

    Y.hat = array(0, dim = c(nrow(newdata), q, ncomp)) 

    ##- variates 

    t.pred = array(0, dim = c(nrow(newdata), ncomp)) 

       

    #-- calcul de la prediction --#  

    for(h in 1:ncomp){ 

     W = a[, 1:h] %*% solve(t(c[, 1:h]) %*% a[, 1:h])   

     B = W %*% drop(t(b[, 1:h]))    

     B = scale(B, center = FALSE, scale = 1 / sigma.Y) 

     B = as.matrix(scale(t(B), center = FALSE, scale = sigma.X))   

     intercept = -scale(B, center = FALSE, scale = 1 / means.X) 

     intercept = matrix(apply(intercept, 1, sum) + means.Y, nrow = 1) 

     Y.hat[, , h] = newdata %*% t(B) + ones %*% intercept 

     t.pred[, h] = scale(newdata, center = means.X, scale = sigma.X) %*% W[, h] 

  B.hat[, , h] = B 

    }  #end h 

 

   intercept 

 

 

}) 
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Appendix G: Code to produce GWAS analysis using 80% of data for training and 

20% of the data to independently test the model 

#------------------------------------------------------------------------# 

# 2013: Program fits SPLS analysis for the larsen score                  # 

# Analysis 3: GWAS MODELLING                                             # 

# This program performs the cross validation  with imputed data          # 

# This program is similar to the original GWAS modelling  except         # 

# The mixomics macro has been amended to output the order of all SNPS    # 

# rather than SNPS > number extracted being ranked equal last            # 

# in addition, rather than exploring optimum number of SNPs to export for# 

# each chromosome, 200 are extracted and then hoped the excess be removed# 

# in the higher level model                                              # 

#                                                                        # 

#  This program only uses 80% of the data to form the prediction model   # 

#  The remaining 20% is used as an independent prediction sample         #                                                   

#------------------------------------------------------------------------# 

 

require(mixOmics) 

require(gtools) 

 

#### read in the macros I've adapted from mixomics ############## 

source("D:\\Lyns Stuff\\PHD\\R with Gora Data\\R functions code from MixOmics 

3_0\\Macros adapted from Mixomics_version 4.R") 

 

### amend the location here and it will follow through all code below ### 

##data location### 

datloc<-"D:\\Lyns Stuff\\PHD\\3rd year plan and record of work\\GWAS modelling\\" 

##output location ## 

outloc<-"D:\\Lyns Stuff\\PHD\\3rd year plan and record of work\\GWAS 

modelling\\independanttest\\" 

 

#################################################################### 

# inport required Y data and ensure only GWAS subjects kept        # 

#  Then split the GWAS subjects into 20=test, 80%=training         # 

# This is done by sorting by the larsen score & every 5th subject  # 

# going into the test set                                          # 

#################################################################### 

 

yin <-paste(datloc,"mody.csv", sep="") 

mody <- read.csv(yin, sep=","  , header=T) 

gwin <-paste(datloc,"GWAS_subj.csv", sep="") 

gwas <- read.csv(gwin, sep=","  , header=T) 

rownames(gwas)=gwas$subjid 

rownames(mody)=mody$subjid 

ydata <-merge(gwas, mody, all.x = TRUE) 

ydata2 <-ydata[,c(1,11)] 

ydata3 <-ydata2[order(ydata2[,2]),] 

ydata4=split(ydata3, rep(1:5, length = nrow(ydata3))) 

 

testonly=ydata4[[3]] 

testonly2<-testonly[order(testonly[,1]),] 

 

train1=ydata4[[1]] 

train2=ydata4[[2]] 

train4=ydata4[[4]] 

train5=ydata4[[5]] 

trainonly<-rbind(train1,train2,train4,train5) 

nrow(trainonly) 

nrow(testonly) 

 

trainonly<-trainonly[order(trainonly[,1]),] 

testonly<-testonly[order(testonly[,1]),] 

 

larsen <-as.numeric(trainonly[,2]) 

trainingsubj<-trainonly[,1] 

larsentest<-as.numeric(testonly[,2]) 

testsubj<-testonly[,1] 
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testrows<-c(5 , 6 , 8 , 9 , 23 , 28 , 31 , 34 , 37 , 42 , 47 , 49 , 51 , 61 , 67 , 70 , 

71 , 84 , 102 , 104 , 110 , 111 , 113 , 115 , 130 , 136 , 139 , 140 , 143 , 144 , 150 , 

151 , 167 , 180 , 187 , 192 , 197 , 205 , 215 , 216 , 219 , 224 , 225 , 228 , 229 , 236 

, 245 , 249 , 252 , 253 , 259 , 262 , 267 , 277 , 282 , 285 , 293 , 304 , 309 , 310 , 

314 , 316 , 318 , 323 , 327 , 335 , 336 , 342 , 347 , 348 , 349 , 357 , 358 , 373 , 376 

, 377 , 379 , 383 , 387) 

 

 

#################################################################### 

# The following macros runs through the process of the lower level # 

# modelling, each time selecting 200 variables in the PLS          # 

# however the ordering of variables is continuous from 1 to max SNP# 

# the n times selected though is based on being in the top 200     # 

#################################################################### 

 

rodat7 <- defmacro(chrid, n_ext=200, 

                  expr={ 

 

     # inport required X dataset ### 

     indata <-paste(datloc,chrid,".csv", sep="") 

     modx <- read.csv(indata, sep=","  , header=T) 

     #then need to remove subjid from being the first variable and only keep the 

training subjects  

     XPRE<-modx[-testrows,-1] 

 

#### fit the model with all variables extracted,: not limited to X vars. #### 

 

    # set up dummy matrices to contain the output data below # 

    svar<-matrix(0,ncol(XPRE),10)  # last digit here is the number of runs below 

    ordSvar <-matrix(0,ncol(XPRE),10) 

    nammap<-matrix("",1,ncol(XPRE)) 

    M=5 

 

    ### Perform the cross validation 10 times and save the results =amend num vars to 

export here#### 

    for (k in 1:10) { 

       spls.mcv<- splscv(XPRE, larsen, ncomp=1, method="spls", mode="regression", 

criterion="all", 

          keepX=n_ext, validation="Mfold", M=M, max.iter=500, tol=1e-09, 

          keepY=1) 

 

### calculate the median average of the median average ranks in the 10 runs 

############## 

### Annoyingly ordSvar is character so export /import converts to numeric ###### 

      dumname<-paste(outloc,chrid,"dummy",k,".csv", sep="") 

      write.csv(spls.mcv$ordSvar,file= dumname)  # outputs 1 csv per run, and all 

order/ranks for the 5 folds 

      temp1<-read.csv(file= dumname, sep=","  , header=T) 

      nammap<-temp1[,1] 

      ordSvar[,k]<-apply(temp1[,2:6],1,median, na.rm=TRUE) #averages over the folds so 

1-50 columns. 

 

      ###outputs the number of times the variable is selected ###########   

      svar[,k]<-as.vector(apply(spls.mcv$Svar, 1, function(a) sum(a == "TRUE")))  #add 

/M*100 to get % 

    } 

 

oname<-paste(outloc,chrid,"ordSvar.csv", sep="") 

write.csv(ordSvar,file= oname) 

ordSvar<-read.csv(file= oname, sep=","  , header=T) 

ordSvar<-ordSvar[,2:11] 

 

sname<-paste(outloc,chrid,"svar.csv", sep="") 

write.csv(svar,file= sname) 

svar<-read.csv(file= sname, sep=","  , header=T) 

svar<-svar[,2:11] 

 

nsel<-(apply(svar,1,sum))  # number of times selected in the fold min 0, max 250 (5 

folds*50 runs) 

aordSvar<-apply(ordSvar,1,median, na.rm=TRUE)  #takes median rank of 50 runs,  1 

obtains the row medians 
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bordSvar<-cbind(as.matrix(nammap),nsel,aordSvar)  #merge the names, the number times 

selected & average sort order 

fin_ordSvar<-bordSvar[order(aordSvar,-nsel),]  #sorts by descending n times selected & 

ascending sort order 

 

outtitle<-paste(outloc,chrid,"final",".csv",sep="") 

write.csv(fin_ordSvar,file=outtitle) 

 

outgraph<-paste(outloc,chrid,"final",".tif",sep="") 

tiff(outgraph, height=1200, width=2400, res=600, units="px", pointsize=6, compression = 

"lzw") 

par(mar=c(5.1, 5.1, 3.1, 2.1)) 

plot(fin_ordSvar[,2]~fin_ordSvar[,3], xlab="Average order selected", ylab="Number of 

times selected", pch=20, cex=0.3,  ) 

dev.off() 

 

### Can use graph above to determine cut off for the number of variables to take 

forward to the next model -top left variables## 

 

}) 

 

rodat7("chr1a") 

rodat7("chr1b") 

rodat7("chr1c") 

rodat7("chr2a") 

rodat7("chr2b") 

rodat7("chr2c") 

rodat7("chr3a") 

rodat7("chr3b") 

rodat7("chr4a") 

rodat7("chr4b") 

rodat7("chr5a") 

rodat7("chr5b") 

rodat7("chr6a") 

rodat7("chr6b") 

rodat7("chr6c") 

rodat7("chr7a") 

 

rodat7("chr8a") 

rodat7("chr8b") 

rodat7("chr9a") 

rodat7("chr9b") 

rodat7("chr10a") 

rodat7("chr10b") 

rodat7("chr11a") 

rodat7("chr11b") 

rodat7("chr12a") 

rodat7("chr12b") 

rodat7("chr13a") 

rodat7("chr13b") 

 

rodat7("chr15") 

rodat7("chr16") 

rodat7("chr17") 

rodat7("chr18") 

rodat7("chr19") 

rodat7("chr20") 

rodat7("chr21") 

rodat7("chr22") 

 

rodat7("chr25", n_ext=70)   

 

 

#inports new mixomics version 4 macro at 85% done 92% ##### 

 

source("D:\\Lyns Stuff\\PHD\\R with Gora Data\\R functions code from MixOmics 

3_0\\Macros adapted from Mixomics_version 4b.R") 

rodat7("chr7b")  # needs running at the 85% level not 92% 

rodat7("chr14")  # needs running at the 85% level not 92% 

rodat7("chr23", n_ext=100)  # needs running at the 85% level not 92% 
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##########Run all Chromosomes through above model, then choose final set of variables 

based on plots ## 

########## & run chosen variables through upper level model to get prediction - do we 

get same variables as before? # 

 

 

 

################################################################################## 

#  This macro reads in the block of chromosome, keeps only the chosen variables  # 

# above  Well those with an average order of selection less than 200             #                                                                                 

################################################################################## 

 

rodat1 <- defmacro(chrid,    

                  expr={ 

 

   indata <-paste(datloc,chrid,".csv", sep="") 

   datx <- read.csv(indata, sep=","  , header=T) 

 

   inkeep <-paste(outloc,chrid,"final.csv", sep="") 

   keepx <- read.csv(inkeep, sep=","  , header=T) 

   selvar<-keepx[which(keepx$aordSvar<200),2] 

   myvars <- names(datx) %in% selvar  

   chrid<- datx[,myvars] 

   

}) 

 

rodat1(chrid="chr1a") 

rodat1(chrid="chr1b") 

rodat1(chrid="chr1c") 

rodat1(chrid="chr2a") 

rodat1(chrid="chr2b") 

rodat1(chrid="chr2c") 

rodat1(chrid="chr3a") 

rodat1(chrid="chr3b") 

rodat1(chrid="chr4a") 

rodat1(chrid="chr4b") 

rodat1(chrid="chr5a") 

rodat1(chrid="chr5b") 

rodat1(chrid="chr6a") 

rodat1(chrid="chr6b") 

rodat1(chrid="chr6c") 

rodat1(chrid="chr7a") 

 

rodat1(chrid="chr8a") 

rodat1(chrid="chr8b") 

rodat1(chrid="chr9a") 

rodat1(chrid="chr9b") 

rodat1(chrid="chr10a") 

rodat1(chrid="chr10b") 

rodat1(chrid="chr11a") 

rodat1(chrid="chr11b") 

rodat1(chrid="chr12a") 

rodat1(chrid="chr12b") 

rodat1(chrid="chr13a") 

rodat1(chrid="chr13b") 

 

rodat1(chrid="chr15") 

rodat1(chrid="chr16") 

rodat1(chrid="chr17") 

rodat1(chrid="chr18") 

rodat1(chrid="chr19") 

rodat1(chrid="chr20") 

rodat1(chrid="chr21") 

rodat1(chrid="chr22") 

 

rodat1(chrid="chr7b")  

rodat1(chrid="chr14") 

rodat1(chrid="chr23") 
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###now need to merge all the columns together to create 1 X dataset ### 

 

fxvars<-

cbind(chr1a,chr1b,chr1c,chr2a,chr2b,chr2c,chr3a,chr3b,chr4a,chr4b,chr5a,chr5b,chr6a,chr

6b,chr6c,chr7a,chr7b,chr8a,chr8b,chr9a,chr9b,chr10a,chr10b,chr11a,chr11b,chr12a,chr12b, 

chr13a,chr13b,chr14,chr15,chr16,chr17,chr18,chr19,chr20,chr21,chr22,chr23) 

sfxvars<-unique(names(fxvars)) 

finxv<- fxvars[,sfxvars] 

ncol(finxv) 

 

###need to write to both out locaiton & data location as macro below always reads from 

data location but will overwrite each time## 

outtitle<-paste(datloc,"upperlevelmodel_final_selvars",".csv",sep="") 

write.csv(finxv,file=outtitle) 

outtitle<-paste(outloc,"upperlevelmodel_final_selvars",".csv",sep="") 

write.csv(finxv,file=outtitle) 

 

source("D:\\Lyns Stuff\\PHD\\R with Gora Data\\R functions code from MixOmics 

3_0\\Macros adapted from Mixomics_version 4.R") 

 

######assuming all variables above are to be kept, then run the upper level model 

through extracting 1000 each time #### 

rodat7("upperlevelmodel_final_selvars", n_ext=2000)  

 

 

 

################################################################################## 

#This creates CSV file of the final model, with fully ranked variables, can then # 

#test the model with all... or some variables entered.  If take top 100,200,6?   #                   

################################################################################## 

 

########################################################################### 

##########See which model forms the best prediction 3 variables   ######### 

########################################################################### 

 

 

   indata <-paste(outloc,"upperlevelmodel_final_selvarsfinal.csv", sep="") 

   resord <- read.csv(indata, sep=","  , header=T) 

   resord2<-resord[1:3,2]  # 3 is the number of vars which will be in model 

 

   indat <-paste(outloc,"upperlevelmodel_final_selvars.csv", sep="") 

   datx <- read.csv(indat, sep=","  , header=T) 

   myvars <- names(datx) %in% resord2 

   finaldat<- datx[-testrows,myvars] 

   newdat<- datx[testrows,myvars] 

 

##################Forms model using the final variables and the 315 subjects # 

##  Then uses the newdat indp subj, to predict larsens score ####### 

   res <-pls(finaldat, larsen, ncomp=1, max.iter=500, tol=1e-09) #spls or pls gets same 

model here# 

   pred <-predict(res, newdat) 

 

 

##output variables from the prediction model -beta hat are the coefficients of the 

regression### 

# NOTE: coefficient below (1) represents 1 component only, increase if more components 

# 

   vpred<-cbind(names(finaldat),round(pred$B.hat[,,1], digits=3)) 

   cnames<-c("xname","p_est") 

   colnames(vpred)<-cnames 

  vpred 

 

 # Any predicted values <0 or >160 amended to be predicted as 0 and 160 # 

 comp2<-apply(as.matrix(pred$predict[,1,1]), 2 , function(x) ifelse(x<=0,0, 

ifelse(x>=160,160,x)) ) 

 predvals<-data.frame(cbind(comp2,larsentest)) 

 

 #plot actual value vs predicted value after X components # 

outgraph<-paste(outloc,"upperlevelmodelfinal3variables_indtest",".tif",sep="") 

tiff(outgraph, height=2400, width=2400, res=600, units="px", pointsize=6, compression = 

"lzw") 

par(mar=c(5.1, 5.1, 3.1, 2.1)) 
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 plot (predvals$V1,predvals$larsentest, xlab="Predicted Larsen Score", 

ylab="Larsen score", 

      pch=4, cex=0.8, cex.axis=0.6, 

    xlim=c(0,180), xaxp=c(0,180,9), ylim=c(0,180), yaxp=c(0,180,9)) 

 #   Get the correlation of the plot # 

 corrv<-round(cor(predvals$V1,predvals$larsentest),digits=3) 

 text(120,5,"r=") 

 text(140,5,corrv) 

 abline(1,1) 

 

dev.off() 

 

 

############################################################################## 

#  This runs multiple times, using a different number of variables and plots # 

# the correlation each time for the prediction on the independent set of data# 

############################################################################## 

 

  corrs <-matrix(0,100,2) 

 

  for (k in 2:100) { 

 

   indata <-paste(outloc,"upperlevelmodel_final_selvarsfinal.csv", sep="") 

   resord <- read.csv(indata, sep=","  , header=T) 

   resord2<-resord[1:k,2] 

 

   indat <-paste(datloc,"upperlevelmodel_final_selvars.csv", sep="") 

   datx <- read.csv(indat, sep=","  , header=T) 

   myvars <- names(datx) %in% resord2 

   finaldat<- datx[-testrows,myvars] 

   newdat<- datx[testrows,myvars] 

 

    #########Forms model using the final variables and the 315 subjects ####### 

    ##     Then uses the newdat indp subj, to predict larsens score ####### 

    res <-pls(finaldat, larsen, ncomp=1, max.iter=500, tol=1e-09)  #spls or pls gets 

same model here# 

    pred <-predict(res, newdat) 

 

    ##output variables from the prediction model -beta hat are the coefficients of the 

regression### 

    # NOTE: coefficient below (1) represents 1 component only, increase if more 

components # 

    vpred<-cbind(names(finaldat),round(pred$B.hat[,,1], digits=3)) 

    cnames<-c("xname","p_est") 

    colnames(vpred)<-cnames 

    vpred 

 

 # Any predicted values <0 or >160 amended to be predicted as 0 and 160 # 

 comp2<-apply(as.matrix(pred$predict[,1,1]), 2 , function(x) ifelse(x<=0,0, 

ifelse(x>=160,160,x)) ) 

 predvals<-data.frame(cbind(comp2,larsentest)) 

 

 corrs[k,2]<-round(cor(predvals$V1,predvals$larsentest),digits=3) 

      corrs[k,1]<-k 

} 

 

corrs 

corr<-corrs[-1,] 

 

outgraph<-paste(outloc,"Correlationfordifferentvariableskeptinthemodel",".tif",sep="") 

tiff(outgraph, height=2400, width=2400, res=600, units="px", pointsize=6, compression = 

"lzw") 

par(mar=c(5.1, 5.1, 3.1, 2.1)) 

 

plot(corr[,2]~corr[,1], pch=20, type="l", xlim=c(0,100), ylim=c(0,0.7), 

xaxp=c(0,100,10), yaxp=c(0,0.7,7), 

             xlab="Number of variables in the model", ylab="Correlation") 

text(10,0.65,"Maximum correlation observed with 3 variables, r=0.622", adj=0) 

text(10,0.62,"Disease duration, Symptom duration and Age at diagnosis", adj=0) 

 

dev.off()  
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Appendix H: Amended ‘spls’ and ‘valid’ functions from mixOmics version 3.0 

(amended version 5 for multiple Y variables and multiple components) 

################################################################################## 

#    Here are two macros which were taken from the Mixomics Version 3.0 function## 

#    and adapted for specific use on the SNP data modelling the Larsen score    ## 

#                                                                               ## 

#  Version 1: The first updates were to output more of the datasets to be       ## 

#     available for use after the macro was run                                 ## 

#    For spls to spls_lyn, the changes enabled a list of the selected variables ## 

#    ranked for each CV to be output into a dataset so once the model           ## 

#    is selected in 8/10 folds in 50 runs, the variables can be                 ## 

#    ranked in order of importance                                              ##  

#                                                                               ## 

#    For valid to splscv, The changes enable it to output the number of times   ## 

#    each variable is selected in the M folds (Svar) and it outputs (Ycorr)     ## 

#    which has the original Y values and the predicted Ys from the separate     ## 

#    folds of the data                                                          ## 

#                                                                               ## 

# Version 2: Was written for the GWAS modelling                                 ## 

#    The change was to make SNPs of 0 variance in some cross-validations just   ## 

#    be excluded from that run rather than to make the analysis fall down       ## 

#                                                                               ## 

# Version 3: amended to include 0 variance as 0 or close to 0, as the NIPALS    ## 

#    algorithm imputed 0.0001 as SNP value but this was still insufficient      ## 

##   variation for the model to fit                                             ## 

#                                                                               ## 

# Version 4: amended code to export list of variable selection order instead    ## 

#    of ranking top X variables and assigning equal last rank for those not     ## 

#    selected                                                                   ## 

#                                                                          ## 

#                                                                               ## 

# Version 5: in the case where multiple components are required for the final   ## 

#    model, the order of importance is no longer simply the minimum rank of     ## 

#    either of the components:selvarinord=apply(ordselvar,1,function(x) min(x)) ## 

#    Instead, we want to list the order of variables contributing to each       ## 

#    component.  Therefore amended macro to output a list of variable order     ## 

#    for each component Svar_comp1 to ncomp and ordSvar_comp1 to ncomp          ## 

#    This is for multiple Y variables as larsen score no longer Y variable it   ## 

#    doesn't have its predicted values limited to within 0 & 160                ## 

#                                                                               ##  

# To ensure consistency, the macros were moved to this program                  ## 

# to be run at the start of any analyses program thus ensuring the same code    ## 

# is being used each time                                                       ## 

################################################################################## 

 

 

################################################################################## 

#  Original macros are from the following package: Mixomics Version 3.0          # 

#                                                                           #  

#  LÊ CAO, K.-A., I, G. & S, D. 2009. integrOmics: an R package to unravel       # 

#  relationships between two omics data sets. Bioinformatics, 25 (21), 2855-2856.# 

#  NOTE: the package 'integrOmics' has been renamed 'mixOmics'.                  # 

#                                                                           #  

# GONZÁLEZ, I., LÊ CAO, K.-A. & DÉJEAN, S. 2011. mixOmics: Omics Data Integration#  

# Project. URL: http://www.math.univ-toulouse.fr/~biostat/mixOmics/.             #  

################################################################################## 

 

 

 

################################################################################## 

#  MACRO 1: AMENDED spls FUNCTION and renamed spls_lyn                           # 

################################################################################## 

 

spls_lyn <- 

function(X,  

         Y,  

         ncomp = 2,  

         mode = c("regression", "canonical"), 

         max.iter = 500,  
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         tol = 1e-06, 

         keepX = rep(ncol(X), ncomp),  

         keepY = rep(ncol(Y), ncomp), 

         ...) 

{ 

 

    #-- validation des arguments --# 

    if (length(dim(X)) != 2)  

        stop("'X' must be a numeric matrix.") 

      

    X = as.matrix(X) 

    Y = as.matrix(Y) 

      

    if (!is.numeric(X) || !is.numeric(Y))  

        stop("'X' and/or 'Y' must be a numeric matrix.") 

      

    n = nrow(X) 

    q = ncol(Y) 

      

    if ((n != nrow(Y)))  

        stop("unequal number of rows in 'X' and 'Y'.") 

      

    if (is.null(ncomp) || !is.numeric(ncomp) || ncomp <= 0) 

        stop("invalid number of variates, 'ncomp'.") 

   

    nzv = nearZeroVar(X, ...) 

 

    if (length(nzv$Position > 0)) { 

        warning("Zero- or near-zero variance predictors.  

  Reset predictors matrix to not near-zero variance predictors. 

  See $nzv for problematic predictors.") 

        X = X[, -nzv$Position] 

    } 

 

 p = ncol(X) 

  

    ncomp = round(ncomp) 

    if(ncomp > p) { 

        warning("Reset maximum number of variates 'ncomp' to ncol(X) = ", p, ".") 

        ncomp = p 

    } 

  

    if (length(keepX) != ncomp)  

        stop("length of 'keepX' must be equal to ", ncomp, ".") 

      

    if (length(keepY) != ncomp)  

        stop("length of 'keepY' must be equal to ", ncomp, ".") 

      

    if (any(keepX > p))  

        stop("each component of 'keepX' must be lower or equal than ", p, ".") 

      

    if (any(keepY > q))  

        stop("each component of 'keepY' must be lower or equal than ", q, ".") 

      

    mode = match.arg(mode) 

      

    #-- initialisation des matrices --# 

    X.names = dimnames(X)[[2]] 

    if (is.null(X.names)) X.names = paste("X", 1:p, sep = "") 

      

    if (dim(Y)[2] == 1) Y.names = "Y" 

    else { 

        Y.names = dimnames(Y)[[2]] 

        if (is.null(Y.names)) Y.names = paste("Y", 1:q, sep = "") 

    } 

      

    ind.names = dimnames(X)[[1]] 

    if (is.null(ind.names)) { 

        ind.names = dimnames(Y)[[1]] 

        rownames(X) = ind.names 

    } 
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    if (is.null(ind.names)) { 

        ind.names = 1:n 

        rownames(X) = rownames(Y) = ind.names 

    } 

      

    #-- centrer et réduire les données --# 

    X = scale(X, center = TRUE, scale = TRUE) 

    Y = scale(Y, center = TRUE, scale = TRUE)  

 

 

    X.temp = X 

    Y.temp = Y 

    mat.t = matrix(nrow = n, ncol = ncomp) 

    mat.u = matrix(nrow = n, ncol = ncomp) 

    mat.a = matrix(nrow = p, ncol = ncomp) 

    mat.b = matrix(nrow = q, ncol = ncomp) 

    mat.c = matrix(nrow = p, ncol = ncomp) 

    mat.d = matrix(nrow = q, ncol = ncomp) 

 n.ones = rep(1, n) 

 p.ones = rep(1, p) 

 q.ones = rep(1, q) 

 na.X = FALSE 

    na.Y = FALSE 

    is.na.X = is.na(X) 

    is.na.Y = is.na(Y) 

 if (any(is.na.X)) na.X = TRUE 

    if (any(is.na.Y)) na.Y = TRUE 

   

   

#  added by Lyn into version 1: created a blank matrix called ordselvar to  

complete the ordering of selected variables by component # 

 

   ordselvar=matrix(nrow=p, ncol=ncomp) 

 

    #-- boucle sur h --# 

    for (h in 1:ncomp) { 

        nx = p - keepX[h] 

        ny = q - keepY[h] 

          

        #-- svd de M = t(X)*Y --# 

        X.aux = X.temp         

        if (na.X) X.aux[is.na.X] = 0 

          

        Y.aux = Y.temp          

        if (na.Y) Y.aux[is.na.Y] = 0 

   

        M = crossprod(X.aux, Y.aux) 

        svd.M = svd(M, nu = 1, nv = 1) 

        a.old = svd.M$u 

        b.old = svd.M$v 

          

        #-- latent variables --# 

        if (na.X) { 

            t = X.aux %*% a.old 

            A = drop(a.old) %o% n.ones 

            A[is.na.X] = 0 

            a.norm = crossprod(A) 

            t = t / diag(a.norm) 

            t = t / drop(sqrt(crossprod(t)))    

        } 

        else { 

            t = X.temp %*% a.old / drop(crossprod(a.old)) 

            t = t / drop(sqrt(crossprod(t))) 

        } 

          

        if (na.Y) { 

            u = Y.aux %*% b.old 

            B = drop(b.old) %o% n.ones 

            B[is.na.Y] = 0 

            b.norm = crossprod(B) 

            u = u / diag(b.norm)  

            u = u / drop(sqrt(crossprod(u)))    

M=X’Y.  

a.old= loadings of X (p),  

b.old=loadings of Y (q) 

As previously imputed missing with 

NIPALS algorithm this code isn’t 

needed 

t=Xp / p’p  scores of X 

As previously imputed missing 

with NIPALS algorithm this code 

isn’t needed 
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        } 

        else { 

            u = Y.temp %*% b.old / drop(crossprod(b.old)) 

            u = u / drop(sqrt(crossprod(u))) 

        } 

          

        iter = 1 

          

        #-- boucle jusqu'à convergence de a et de b --# 

        repeat { 

            if (na.X) a = t(X.aux) %*% u 

            else a = t(X.temp) %*% u 

    

  if (na.Y) b = t(Y.aux) %*% t 

            else b = t(Y.temp) %*% t 

              

            if (nx != 0) {  

 

#Lyn added in version 3: object loadord is created to rank the loadings before  

applying the 0 to those not extracted 

                loadord=a          

         

#Lyn note:abs(a[order(abs(a))][nx]) returns the value (loading coefficient) of the  

#corresponding max number to be extracted, i.e. extracting 20 vars, returns the 20th 

coefficient. 

                a = ifelse(abs(a) > abs(a[order(abs(a))][nx]),  

                    (abs(a) - abs(a[order(abs(a))][nx])) * sign(a), 0) 

             

 

 

 

 

 

# Lyn added in version 1: ranks the selected variables in order of importance and 

outputs them in the object ordselvar# 

  

                ordselvar[,h]=p-(rank(abs(loadord),ties="average"))+1 

             

            } 

            a = a / drop(crossprod(u)) 

            a = a / drop(sqrt(crossprod(a))) 

        

            if (ny != 0) { 

                b = ifelse(abs(b) > abs(b[order(abs(b))][ny]), 

                    (abs(b) - abs(b[order(abs(b))][ny])) * sign(b), 0) 

            } 

            b = b / drop(crossprod(t)) 

     

            if (na.X) { 

                t = X.aux %*% a 

                A = drop(a) %o% n.ones 

                A[is.na.X] = 0 

                a.norm = crossprod(A) 

                t = t / diag(a.norm) 

                t = t / drop(sqrt(crossprod(t)))    

            } 

            else { 

                t = X.temp %*% a / drop(crossprod(a)) 

                t = t / drop(sqrt(crossprod(t))) 

            } 

              

            if (na.Y) { 

                u = Y.aux %*% b 

                B = drop(b) %o% n.ones 

                B[is.na.Y] = 0 

                b.norm = crossprod(B) 

                u = u / diag(b.norm) 

                u = u / drop(sqrt(crossprod(u)))    

            } 

            else { 

                u = Y.temp %*% b / drop(crossprod(b)) 

                u = u / drop(sqrt(crossprod(u))) 

u=Yq/ q’q  scores of Y 

Calculates the loadings 

again from p=X’u and q=Y’t 

Selects the top X variables to keep in the model 

based on the size of the p loadings 

Selects the top Y variables to keep in the 

model based on the size of the q loadings 

Recalculate the scores t and u based 

on the new loadings. 
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            } 

            

            if (crossprod(a - a.old) < tol) break 

              

            if (iter == max.iter) { 

               warning(paste("Maximum number of iterations reached for the component", 

h), 

                        call. = FALSE) 

                break 

            } 

              

            a.old = a 

            b.old = b 

            iter = iter + 1 

        } 

          

        #-- deflation des matrices --# 

        if (na.X) { 

            X.aux = X.temp 

            X.aux[is.na.X] = 0 

            c = crossprod(X.aux, t)     

            T = drop(t) %o% p.ones 

            T[is.na.X] = 0 

            t.norm = crossprod(T)     

            c = c / diag(t.norm) 

        } 

        else { 

            c = crossprod(X.temp, t) / drop(crossprod(t)) 

        }  

   

        X.temp = X.temp - t %*% t(c)    

          

        #-- mode canonique --# 

        if (mode == "canonical") { 

            if (na.Y) { 

                Y.aux = Y.temp 

                Y.aux[is.na.Y] = 0 

                e = crossprod(Y.aux, u) 

                U = drop(u) %o% q.ones 

                U[is.na.Y] = 0 

                u.norm = crossprod(U)     

                e = e / diag(u.norm)      

            } 

            else { 

                e = crossprod(Y.temp, u) / drop(crossprod(u)) 

            } 

    

            Y.temp = Y.temp - u %*% t(e) 

        } 

          

        #-- mode regression --# 

        if(mode == "regression") { 

            if (na.Y) { 

                Y.aux = Y.temp 

                Y.aux[is.na.Y] = 0 

                d = crossprod(Y.aux, t) 

                T = drop(t) %o% q.ones 

                T[is.na.Y] = 0 

                t.norm = crossprod(T)     

                d = d / diag(t.norm) 

            } 

            else {     

                d = crossprod(Y.temp, t) / drop(crossprod(t)) 

            } 

              

            Y.temp = Y.temp - t %*% t(d) 

        } 

          

        mat.t[, h] = t 

        mat.u[, h] = u          

        mat.a[, h] = a 

        mat.b[, h] = b 

If the X loadings p are similar to 

the last iteration (per the Tol 

value) then the process is 

stopped. 

The first component scores & loading are 

agreed and we deflate the X matrix using: 

Xnew = X – t c’ where c=X’t / t’t 

Not doing canonical 

modelling this section of 

code not used 

The first component scores & loading 

are agreed and we deflate the Y matrix 

using: 

Ynew = Y – t d’ where d=Y’t / t’t 
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        mat.c[, h] = c 

        if (mode == "regression") mat.d[, h] = d 

          

    } #-- fin boucle sur h --# 

      

    #-- valeurs sortantes --# 

    rownames(mat.a) = rownames(mat.c) = X.names 

    rownames(mat.b) = Y.names 

    rownames(mat.t) = rownames(mat.u) = ind.names 

      

    dim = paste("comp", 1:ncomp) 

    colnames(mat.t) = colnames(mat.u) = dim 

    colnames(mat.a) = colnames(mat.b) = colnames(mat.c) = dim  

      

    cl = match.call() 

    cl[[1]] = as.name('spls') 

      

    result = list(call = cl, 

                  X = X, Y = Y, ncomp = ncomp, mode = mode,  

                  keepX = keepX, 

                  keepY = keepY, 

                  mat.c = mat.c,  

                  mat.t = mat.t,  

                  variates = list(X = mat.t, Y = mat.u), 

                  loadings = list(X = mat.a, Y = mat.b), 

                  names = list(X = X.names, Y = Y.names, indiv = ind.names), 

 

 # added by Lyn : version 1 if >1 component the order is the min selected in either 

component.  selvarinord is output so can be used outside the function # 

             selvarinord=apply(ordselvar,1,function(x) min(x)) 

            

      ) 

    if (length(nzv$Position > 0)) result$nzv = nzv 

 

    class(result) = c("spls", "pls")  

    return(invisible(result))  

} 

 

 

 

 

################################################################################## 

#  MACRO 2: AMENDED valid FUNCTION renamed splscv                                # 

################################################################################## 

 

 

 

splscv <- 

function(X,  

         Y,  

         ncomp = min(6, ncol(X)),  

         method = "spls", 

         mode = c("regression"), 

         criterion = c("all"), 

         keepX = NULL, keepY = NULL,  

         validation = c("Mfold"), 

         M = M, 

         max.iter = 500,  

         tol = 1e-06, ...) 

{ 

 

    method = match.arg(method) 

   

    #-------------------- sPLS ---------------------# 

    if (any(c("spls") == method)) { 

      

        #-- validation des arguments --# 

        #-- do warning for mode + other warnings --# 

        if (length(dim(X)) != 2)  

            stop("'X' must be a numeric matrix.") 

    

        mode = match.arg(mode)    
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        validation = match.arg(validation) 

          

        X = as.matrix(X) 

        Y = as.matrix(Y) 

           

        n = nrow(X) 

        q = ncol(Y) 

        res = list() 

    

        if (!is.numeric(X) || !is.numeric(Y))  

            stop("'X' and/or 'Y' must be a numeric matrix.") 

    

        if ((n != nrow(Y)))  

            stop("unequal number of rows in 'X' and 'Y'.") 

    

        if (any(is.na(X)) || any(is.na(Y)))  

            stop("Missing data in 'X' and/or 'Y'. Use 'nipals' for dealing with NAs.") 

  

# Added by Lyn: Version 2 

# REMOVED the following check as variables with insufficient variation will be removed 

on 

# a variable by variable basis according to the cross folds used. See below:  

#  We do not want them excluded from all analyses. 

 

#  nzv = nearZeroVar(X, ...) 

#        if (length(nzv$Position > 0)) { 

#            warning("Zero- or near-zero variance predictors.  

#  Reset predictors matrix to not near-zero variance predictors. 

#  See $nzv for problematic predictors.") 

#            X = X[, -nzv$Position] 

#      res$nzv = nzv 

#        } 

     p = ncol(X)      

          

        if (is.null(ncomp) || !is.numeric(ncomp) || ncomp <= 0 || ncomp > p) 

            stop("Invalid number of components, 'ncomp'.") 

        ncomp = round(ncomp) 

     

        if (method == "spls") {   

            if(is.null(keepX)) keepX = rep(ncol(X), ncomp) 

            if(is.null(keepY)) keepY = rep(ncol(Y), ncomp) 

              

            if (length(keepX) != ncomp)  

                stop("length of 'keepX' must be equal to ", ncomp, ".") 

                  

            if (length(keepY) != ncomp)  

                stop("length of 'keepY' must be equal to ", ncomp, ".") 

                  

            if (any(keepX > p))  

                stop("each component of 'keepX' must be lower or equal than ", p, ".") 

                  

            if (any(keepY > q))  

                stop("each component of 'keepY' must be lower or equal than ", q, ".")

  

        }    

          

        #-- M fold  validation --# 

        ##- define the folds 

        if (validation == "Mfold") {  

            if (is.null(M) | !is.numeric(M) | M < 2 | M > n) 

                stop("Invalid number of folds, 'M'.") 

            M = round(M) 

            fold = split(sample(1:n), rep(1:M, length = n))  

        }  

   

        #-- compute MSEP and/or R2 --# 

        if (any(criterion %in% c("all", "MSEP", "R2"))) {   

            press.mat = Ypred = array(0, c(n, q, ncomp)) 

            MSEP = R2 = matrix(0, nrow = q, ncol = ncomp) 

 



 

257 
 

#  Lyn added 3 rows (for svar, Ycorr and ordSvar) in version 1 to create a blank 

matrices # for filling in, however these were amended in version 5 to allow for 

multiple components  

# This is the number Y variables (q) times 2 as got actual value & predicted value in 

the # matrix.  Svar matrix is created containing the order of variables for all 

components              

 

             Ycorr=matrix(0, n, q*2)  

             assign(paste("ordSvar", sep = ""), matrix("0",p,(ncomp*M)+1)  )  

             assign(paste("Svar", sep = ""), matrix("0", ncol(X), (ncomp*M)+1) )  

 

            for (i in 1:M) { 

                omit = fold[[i]] 

                X.train = X[-omit, ]  

                Y.train = Y[-omit, ] 

                X.test = matrix(X[omit, ], nrow = length(omit)) 

      Y.test = matrix(Y[omit, ], nrow = length(omit))  

 

## added by lyn: version 2 because there are SNPs which when folded have no variation  

##  all 0's, then don’t want process to fall down, so just exclude that variable        

##  from that fold.  If a variable is predictive, then it will come up in all 50 runs 

## but not in all folds as it has too low MAF with the sample size.   Lyn has  

## programmed to include variables with at least 92% variation in the training set  

## so minor alleles with <5% MAF won’t be included  

 

 

# Lyn added for version 3:  Minor code change from version 2:   

# From sum(X>==0) to sum(x>=0 & x<=0.5).  This allows for 0'S or very small close to 

zero # numbers derived from the NIPALS algorithm missing data imputation  

# Otherwise macro still falls down with insufficient variation 

  

        MAF <-apply(X.train[,1:ncol(X.train)], 2, function(x) sum(x>=0 & x<=0.5)) / 

nrow(X.train[,1:ncol(X.train)]) * 100 

            MAF2<-MAF>92  # put TRUE to those with >92% 0s. 

 

###remove any with >92% 0s from the training & test X data ### 

            X.train<-X.train[,!MAF2] 

            X.test<-X.test[,!MAF2] 

 

 

                X.train = scale(X.train, center = TRUE, scale = FALSE) 

                xmns = attr(X.train, "scaled:center") 

                  

                Y.train = scale(Y.train, center = TRUE, scale = FALSE) 

                ymns = attr(Y.train, "scaled:center") 

                  

                X.test = scale(X.test, center = xmns, scale = FALSE) 

            

                #-- spls --#   

                object = spls_lyn(X = X.train, Y = Y.train, ncomp = ncomp,  

                                  mode = mode, max.iter = max.iter, tol = tol,  

                                  keepX = keepX, keepY = keepY) 

              

#####################Lyn amended the code here : in version 1########### 

##    It will now export the predicted scores, the B coefficients     ## 

#     and will list the variables selected                            ## 

##    For each of the M models, for h components                      ## 

##    It will also export the ordering of the selected variables      ## 

######################################################################## 

 

          predpar = predict(object,X.test) 

          Y.hat=predpar$predict 

 

          s.var=apply(abs(object$loadings$X),1,sum)>0   

 

#  Lyn added version 2: As some variables excluded due to insufficient variation in 

some #folds, the following code was added so that a complete list of variables in 

created. 

# Those not included as set to 0.  

 

                MAF3<-cbind(MAF2,names(MAF2)) 

                colnames(MAF3)<-c("EIMOD","SNP") 

This tells us what is in the model 

and which variables are out 
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# Added into version 5, instead of taking sum across all loadings for all coefficients  

# keep separate and count number of times in /out of model for each component  

# svar shows which variable is in model and which out for each comp (s) 

# for 1 comp will be in columns 2 to m+1, 2 comp will be in m+2 to 2m+1 columns. etc. 

 

 

          for (s in 1:ncomp) {  

                 s.var<-apply(as.matrix(abs(object$loadings$X[,s] )),1,sum)>0  

                 s.var2<-cbind(s.var,names(s.var)) 

                 colnames(s.var2)<-c("CBMOD","SNP") 

                

                 s.var3 <- merge(s.var2,MAF3, by="SNP", all=TRUE)    

                 s.var3 [is.na(s.var3)] <- FALSE 

                 s.var5<-as.matrix(s.var3[,2]) 

                 rownames(s.var5)<-s.var3[,1] 

           s.var6<- s.var5[order(row.names(s.var5)),] 

                            

                 Svar[,1]<-as.matrix(names(s.var6)) 

                 Svar[,(((s*M)+i)-M)+1]<-as.matrix(s.var6)   

 

           } 

 

# Lyn amended here in Version 2: need to label selvarinord with var names. 

# Merges on the variables which were not fitted above and get a complete list  

# which all folds can be merged by.  

 

# Amended again in version 5, so that a matrix is created for each component containing 

the order of variables  

            

            for (s in 1:ncomp) {  

                 revar<-names(MAF2[!MAF2])                 

                 selvarinord2<-cbind(object$ordselvar[,s],revar)   #selvarinord =min 

order across comps, ordselvar=1 for each comp    

                 colnames(selvarinord2)<-c("CHORD","SNP") 

                 selvarinord3<-merge(selvarinord2, MAF3, by="SNP", all=TRUE)    

                 selvarinord4<-as.matrix(selvarinord3[,2]) 

                 rownames(selvarinord4)<-selvarinord3[,1] 

           selvarinord5<- selvarinord4[order(row.names(selvarinord4)),] 

 

                 ordSvar[,1]<-as.matrix(names(selvarinord5)) 

                 ordSvar[,(((s*M)+i)-M)+1]<-as.matrix(selvarinord5) 

            }  

 

                  

                for (h in 1:ncomp) {  

     Y.mat = matrix(Y.hat[, , h], nrow = dim(Y.hat)[1], ncol= 

dim(Y.hat)[2])   

                    Y.hat[, , h] = sweep(Y.mat, 2, ymns, FUN = "+")  

 

#  Lyn amended in version 5 as multiple Y variables, so do not want to restrict the 

prediction to be 0-160 as different variables in different units.  

 

# Y.hat[, , h]<-apply(as.matrix(Y.hat[, , h]), 2 , function(x) ifelse(x<=0,0,     

ifelse(x>=160,160,x)) ) 

 

                 press.mat[omit, , h] = (Y.test - Y.hat[, , h])^2 

                 Ypred[omit, , h] = Y.hat[, , h] 

                } 

             

 

# Added by Lyn in version 1 but amended again in version 5, to calculate the 

correlation  

# between the predicted Y vars (using all components) and the actual Y values  

# When more than 1 component, need to sum the predicted Y.hats to make the complete 

model 

  

                gpredval<-apply(simplify2array(Y.hat), c(1,2), sum) 

                Ycorr[omit,]<-cbind(as.matrix(gpredval), as.matrix(Y.test))   

                prefixc<-rep("p_",q)   #prefix predicted values with a p_ 

                lstcolname<-colnames(Y.hat)  

                lstcolname2<-paste(prefixc,lstcolname,sep="") 
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                colnames(Ycorr)<-c(lstcolname2,colnames(Y.hat)) 

 

            } #end i  

     

            for (h in 1:ncomp) {  

                MSEP[, h] = apply(as.matrix(press.mat[, , h]), 2, mean, na.rm = TRUE) 

                R2[, h] = diag(cor(Y, Ypred[, , h], use = "pairwise"))   

            } 

           

            colnames(MSEP) = colnames(R2) = paste('ncomp', c(1:ncomp), sep = " ") 

            rownames(MSEP) = rownames(R2) = colnames(Y)  

              

            if (q == 1) rownames(MSEP) = rownames(R2) = ""           

              

            #-- valeurs sortantes --# 

            if (any(criterion %in% c("all", "MSEP"))) res$MSEP = MSEP 

       if (any(criterion %in% c("all", "R2"))) res$R2 = R2 

 

             res$Ycorr=Ycorr # line added by lyn in version 1. 

  ##########following added into version 5 to output the required variables for all 

components #### 

             res$ordSvar<-ordSvar 

             res$Svar<-Svar  

 

 } 

 

# calculation of Q2 removed from Version 5 as we only use the R2 under CV.  

        #-- compute Q2 --#   

    } 

      

 

    method = paste(method, "mthd", sep = ".")  

    class(res) = c("valid", method) 

    return(invisible(res))  

} 

 

  



 

260 
 

Appendix I: Code to produce GWAS analysis for multiple Y variables using 80% of 

data for training and independently 20% to test. 

#------------------------------------------------------------------------# 

# 2013: Program fits SPLS analysis for the 3
rd
 group of & variables       # 

# All subjects MODELLING 80% and testing it on 20%                       # 

# This program performs the cross validation  with imputed data          # 

# As smaller dataset, PLS in 1 model & top X variables explored under CV # 

#                                                                        # 

#------------------------------------------------------------------------# 

require(mixOmics) 

require(gtools) 

 

rm(list=ls()) 

 

#### read in the macros I've adapted from mixomics ############## 

source("D:\\Lyns Stuff\\PHD\\R with Gora Data\\R functions code from MixOmics 

3_0\\Macros adapted from Mixomics_version 5.R") 

 

### amend the location here and it will follow through all code below ### 

##data location### 

datloc<-"D:\\Lyns Stuff\\PHD\\3rd year plan and record of work\\Multiple Y modelling\\" 

##output location ## 

outloc<-"D:\\Lyns Stuff\\PHD\\3rd year plan and record of work\\Multiple Y modelling\\" 

 

 

#################################################################### 

#################################################################### 

##### "DATA INPUT"                                             ##### 

##### PVAS, MHAQ, RASEV, ESR, CRP, Any erosions, Larsen , hand ##### 

#####  & foot counts + DAS28 variables to analyse              ##### 

#################################################################### 

#################################################################### 

 

yvars<-paste(datloc,"nipals_dasyvars_training.csv", sep="") 

ydata <- read.csv(yvars, sep=","  , header=T) 

 

xvars<-paste(datloc,"nipals_dasxvars_training.csv", sep="") 

xdata <- read.csv(xvars, sep=","  , header=T) 

nrow(xdata) 

nrow(ydata) 

 

#names(xdata) 

xdata2<-xdata[,c(-1,-4)] 

ncol(xdata2) 

 

#names(ydata) 

ydata2<-ydata[,c(2,3,4,9,10,11,12,13,14,15)] 

ncol(ydata2) 

 

#################################################################### 

# Run a model with 5, 10 and 100 variables to see if 1 or 2        # 

# components are needed (or more!)                                 # 

#################################################################### 

 

## Set number of components to 2  

ncomp <- 2 

 

## Total number of selected genes on all ncomp dimensions  

kpX <-c(3,4,5,10,100) 

R2_1<-R2_2 <-matrix(NA,length(kpX),ncol(ydata2))  

 

for (i in 1:length(kpX)) {  

    error <- splscv(xdata2, ydata2, ncomp = ncomp, keepX = rep(kpX[i],ncomp),  

                        method = "spls", mode="regression", criterion="all", 

                        validation = "Mfold", M = 7, max.iter=500, tol=1e-09, 

                        keepY=rep(ncol(ydata2),ncomp)  ) 

 

   R2_1[i,]   <-as.vector(error$R2[,1]) # = 1st comp R2 calculated under CV 

   R2_2[i,]   <-as.vector(error$R2[,2]) # = 2nd comp  R2 calculated under CV 
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}   

 

###Want to compare the R2 for each number of variables extracted to see if the 2nd 

component is any benefit ### 

## Columns are the Y variables (as we get an R2 for each variable #### 

R2<-R2_2-R2_1 

anyimp<-any(R2>=0.0975) 

anyimp  ## If this is false then none of the Y variables (using the 3 different number 

of X variables) require 2 components. 

colnames(R2)<-names(ydata2) 

R2 

 

#################################################################### 

# The following macros runs through the                            # 

# modelling, each time selecting 100 variables in the PLS          # 

# however the ordering of variables is continuous from 1 to max SNP# 

# the n times selected though is based on being in the top 100     # 

#################################################################### 

 

## Set number of components based on decision made above, 7 fold & 10 runs 

ncomp <- 1 

M=7 

nruns=10 

 

    # set up dummy matrices to contain the output data below # 

    svar1runs<-matrix(0,ncol(xdata2),nruns)   

    mord1<-matrix(0,ncol(xdata2),M)   

    mord1runs <-matrix(0,ncol(xdata2),nruns) 

 

    ### Perform the cross validation 10 times and save the results =amend num vars to 

export here#### 

    for (k in 1:nruns) { 

       spls.mcv<- splscv(xdata2, ydata2, ncomp=ncomp, method="spls", mode="regression", 

criterion="all", 

          keepX=rep(100,ncomp), validation="Mfold", M=M, max.iter=500, tol=1e-09, 

          keepY=rep(ncol(ydata2),ncomp)) 

 

      ### calculate the median average of the median average ranks in the 10 runs for 2 

components ############## 

      mord1[,1:M]<-as.numeric(spls.mcv$ordSvar[,2: (M+1)])    

      rownames(mord1)<-spls.mcv$ordSvar[,1]   #  Component 1, ranks for each fold. 

      mord1runs[,k]<-apply(mord1,1,median, na.rm=TRUE)   

 

      ###outputs the number of times the variable is selected ###########   

      svar1runs[,k]<-as.vector(apply(spls.mcv$Svar[,2: (M+1)], 1, function(a) sum(a == 

"TRUE")))  #add /M*100 to get % 

    #  svar2runs[,k]<-as.vector(apply(spls.mcv$Svar[,(M+2):(M+M+1)], 1, function(a) 

sum(a == "TRUE")))  

    } 

 

nsel1<-(apply(svar1runs,1,sum))  # number of times selected in the folds & runs for 

comp 1 

ord1<-apply(mord1runs,1,median, na.rm=TRUE)  #takes median rank of runs,   

 

sumstats<-cbind(as.matrix(spls.mcv$ordSvar[,1]),nsel1,ord1)  #merge the names, the 

number times selected & average sort order - 1 comp 

 

finaldset<-sumstats[order(ord1,-nsel1),]  #sorts by comp 1 average rank and descending 

number of times selected - 1 comp 

 

outtitle<-paste(outloc,"finalvarsortorderallplusdas_1comp",".csv",sep="") 

write.csv(finaldset,file=outtitle) 

 

 

 

 

#################################################################### 

##### "TEST DATA INPUT"  ########################################### 

#################################################################### 

 

 

ytst<-paste(datloc,"nipals_dasyvars_test.csv", sep="") 
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ytest <- read.csv(ytst, sep=","  , header=T) 

 

xtst<-paste(datloc,"nipals_dasxvars_test.csv", sep="") 

xtest <- read.csv(xtst, sep=","  , header=T) 

nrow(xtest) 

nrow(ytest) 

 

#names(xtest) 

xtest2<-xtest[,c(-1,-4)] 

ncol(xtest2) 

 

#names(ytest) 

ytest2<-ytest[,c(2,3,4,9,10,11,12,13,14,15)] 

ncol(ytest2) 

 

############################################################################## 

#  This runs multiple times, using a different number of variables and plots # 

# the correlation each time for the prediction on the independent set of data# 

############################################################################## 

 

  corrs <-matrix(0,99,(ncol(ytest2)+2)) 

 

  for (k in 2:100) { 

 

   indata <-paste(outloc,"finalvarsortorderallplusdas_1comp.csv", sep="") 

   resord <- read.csv(indata, sep=","  , header=T) 

   resord2<-resord[1:k,2] 

 

   myvars <- names(xdata2) %in% resord2 

   finaldat<- xdata2[,myvars] 

   xtestdat<- xtest2[,myvars] 

 

    ##  Forms model using the final variables and 730 subjects ####### 

    ##  Then uses the newdat independent subj, to predict larsens score ####### 

    res <-pls(finaldat, ydata2, ncomp=1, max.iter=500, tol=1e-09)  #spls or pls gets 

same model here# 

    pred <-predict(res, xtestdat) 

 

     gpredval<-apply(simplify2array(pred$predict), c(1,2), sum)  ## this averages over 

2 or more components to get full prediction value 

     rval<-cbind(as.matrix(gpredval), as.matrix(ytest2))   

     prefixc<-rep("p_",ncol(pred$predict))   #prefix predicted values with a p_ 

     lstcolname<-colnames(pred$predict)  

     lstcolname2<-paste(prefixc,lstcolname,sep="") 

     colnames(rval)<-c(lstcolname2,colnames(ytest2)) 

 

     for (j in 1:ncol(ytest2)) { 

     corrs[k-1,j+2]<-round(cor(rval[,j],rval[,j+ncol(ytest2)]),digits=3)  # calculates 

average correlation across all Y variables. 

     corrs[k-1,1]<-k 

     colnames(corrs)<-c("Nvars","Average corr",colnames(ytest2)) 

     } 

} 

 

corrs[,2]<-round(rowMeans(abs(corrs[,3:(ncol(ytest2)+2)]), dims=1, 

na.rm=FALSE),digits=3) 

 

outgraph<-paste(outloc,"Correlation_allplusdas",".tif",sep="") 

tiff(outgraph, height=2400, width=2400, res=600, units="px", pointsize=6, compression = 

"lzw") 

par(mar=c(5.1, 5.1, 3.1, 2.1)) 

par(mfrow=c(4,3)) 

 

names<-c("None","Average","DAS 28", "PVAS", "ESR", "MHAQ", "Foot erosions", "Hand 

erosions", "Larsen score", "Any erosions", "RA severity","CRP") 

 

for (i in 2:12) plot(corrs[,i]~corrs[,1], col="black", pch=20, type="l", xlim=c(0,100), 

xaxp=c(0,100,10), 

             xlab="Number of variables in the model", ylab="Correlation", 

main=paste(names[i]) ) 

dev.off() 
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#### output the number of vars corresponding to the maximum correlation for each Y 

variable ### 

sumdset<-matrix(0,11,2) 

for (i in 2:12) { 

      sumdset[(i-1),2]=max(corrs[,i]) 

      sumdset[(i-1),1]=corrs[corrs[,i]==max(corrs[,i]),1] 

} 

sumdset 

 

 

   indata <-paste(outloc,"finalvarsortordersjctjcdas_1comp.csv", sep="") 

   resord <- read.csv(indata, sep=","  , header=T) 

   resord2<-resord[1:12,2] 

resord2 

 

 

#################################################################### 

#################################################################### 

#       add in a second component & refit using the 11 variables   # 

#     selected from the 1 component model                          # 

#################################################################### 

#################################################################### 

 

 

#################################################################### 

# The following macros runs through the                            # 

# modelling, each time selecting 100 variables in the PLS          # 

# however the ordering of variables is continuous from 1 to max SNP# 

# the n times selected though is based on being in the top 100     # 

#################################################################### 

 

## Set number of components based on decision made above, 7 fold & 10 runs 

ncomp <- 2 

M=7 

nruns=10 

 

    # set up dummy matrices to contain the output data below # 

    svar1runs<-matrix(0,ncol(xdata2),nruns)   

    svar2runs<-matrix(0,ncol(xdata2),nruns)  # a dataset for each component 

    mord1<-matrix(0,ncol(xdata2),M)   

    mord2<-matrix(0,ncol(xdata2),M) 

    mord1runs <-matrix(0,ncol(xdata2),nruns) 

    mord2runs <-matrix(0,ncol(xdata2),nruns) 

 

    ### Perform the cross validation 10 times and save the results =amend num vars to 

export here#### 

    for (k in 1:nruns) { 

       spls.mcv<- splscv(xdata2, ydata2, ncomp=ncomp, method="spls", mode="regression", 

criterion="all", 

          keepX=c(11,100), validation="Mfold", M=M, max.iter=500, tol=1e-09, 

          keepY=rep(ncol(ydata2),ncomp)) 

 

      ### calculate the median average of the median average ranks in the 10 runs for 2 

components ############## 

      mord1[,1:M]<-as.numeric(spls.mcv$ordSvar[,2: (M+1)])    

      rownames(mord1)<-spls.mcv$ordSvar[,1]   #  Component 1, ranks for each fold. 

      mord2[,1:M]<-as.numeric(spls.mcv$ordSvar[,(M+2):(M+M+1)])    

      rownames(mord2)<-spls.mcv$ordSvar[,1]   #  Component 2, ranks for each fold. 

      mord1runs[,k]<-apply(mord1,1,median, na.rm=TRUE)   

      mord2runs[,k]<-apply(mord2,1,median, na.rm=TRUE) 

 

      ###outputs the number of times the variable is selected ###########   

      svar1runs[,k]<-as.vector(apply(spls.mcv$Svar[,2: (M+1)], 1, function(a) sum(a == 

"TRUE")))  #add /M*100 to get % 

      svar2runs[,k]<-as.vector(apply(spls.mcv$Svar[,(M+2):(M+M+1)], 1, function(a) 

sum(a == "TRUE")))  

    } 

 

nsel1<-(apply(svar1runs,1,sum))  # number of times selected in the folds & runs for 

comp 1 
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nsel2<-(apply(svar2runs,1,sum))  # number of times selected in the folds & runs for 

comp 2 

ord1<-apply(mord1runs,1,median, na.rm=TRUE)  #takes median rank of runs,   

ord2<-apply(mord2runs,1,median, na.rm=TRUE)  #takes median rank of runs,   

 

sumstats<-cbind(as.matrix(spls.mcv$ordSvar[,1]),nsel1,nsel2,ord1,ord2)  #merge the 

names, the number times selected & average sort order - 2 comp 

 

finaldset<-sumstats[order(ord1,-nsel1,ord2,-nsel2),]  #sorts by comp 1 average rank and 

descending number of times selected - 2 comp 

 

outtitle<-paste(outloc,"finalvarsortorderallplusdas_2comp",".csv",sep="") 

write.csv(finaldset,file=outtitle) 

 

 

#################################################################### 

##### "TEST DATA INPUT"  ########################################### 

#################################################################### 

 

 

ytst<-paste(datloc,"nipals_dasyvars_test.csv", sep="") 

ytest <- read.csv(ytst, sep=","  , header=T) 

 

xtst<-paste(datloc,"nipals_dasxvars_test.csv", sep="") 

xtest <- read.csv(xtst, sep=","  , header=T) 

nrow(xtest) 

nrow(ytest) 

 

#names(xtest) 

xtest2<-xtest[,c(-1,-4)] 

ncol(xtest2) 

 

#names(ytest) 

ytest2<-ytest[,c(2,3,4,9,10,11,12,13,14,15)] 

ncol(ytest2) 

 

############################################################################## 

#  This runs multiple times, using a different number of variables and plots # 

# the correlation each time for the prediction on the independant set of data# 

############################################################################## 

 

  corrs <-matrix(0,99,(ncol(ytest2)+2)) 

 

  for (k in 2:100) { 

 

   indata <-paste(outloc,"finalvarsortorderallplusdas_2comp.csv", sep="") 

   resord <- read.csv(indata, sep=","  , header=T) 

#####need to keep the top 11 from the comp1 ### 

   resord1<-as.vector(resord[1:11,2] ) 

#####Then sort by the 2nd comp vars and extract the top 2 to 100- removing any 

duplicates across the 2 components### 

   resord1b<-resord[order(resord$ord2,-resord$nsel2),] 

   resord2<-as.vector(resord1b[1:k,2] ) 

   resord3<-unique(c(resord1,resord2)) 

   newk<-length(resord3) 

 

   myvars <- names(xdata2) %in% resord3 

   finaldat<- xdata2[,myvars] 

   xtestdat<- xtest2[,myvars] 

 

    ##  Forms model using the final variables and 730 subjects ####### 

    ##  Then uses the newdat independant subj, to predict larsens score ####### 

    res <-pls(finaldat, ydata2, ncomp=2, max.iter=500, tol=1e-09)  #spls or pls gets 

same model here# 

    pred <-predict(res, xtestdat) 

 

     gpredval<-apply(simplify2array(pred$predict), c(1,2), sum)  ## this averages over 

2 or more components to get full prediction value 

     rval<-cbind(as.matrix(gpredval), as.matrix(ytest2))   

     prefixc<-rep("p_",ncol(pred$predict))   #prefix predicted values with a p_ 

     lstcolname<-colnames(pred$predict)  

     lstcolname2<-paste(prefixc,lstcolname,sep="") 
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     colnames(rval)<-c(lstcolname2,colnames(ytest2)) 

 

     for (j in 1:ncol(ytest2)) { 

     corrs[k-1,j+2]<-round(cor(rval[,j],rval[,j+ncol(ytest2)]),digits=3)  # calculates 

average correlation across all Y variables. 

     corrs[k-1,1]<-newk  # as adding in extra comp 2 vars which might be duplicates to 

the 1st, n vars = 11+ number in 2nd comp removing dups. 

     colnames(corrs)<-c("Nvars","Average corr",colnames(ytest2)) 

     } 

} 

 

corrs[,2]<-round(rowMeans(abs(corrs[,3:(ncol(ytest2)+2)]), dims=1, 

na.rm=FALSE),digits=3) 

 

outgraph<-paste(outloc,"Correlation_allplusdas_2comp",".tif",sep="") 

tiff(outgraph, height=2400, width=2400, res=600, units="px", pointsize=6, compression = 

"lzw") 

par(mar=c(5.1, 5.1, 3.1, 2.1)) 

par(mfrow=c(4,3)) 

 

names<-c("None","Average","DAS 28", "PVAS", "ESR", "MHAQ", "Foot erosions", "Hand 

erosions", "Larsen score", "Any erosions", "RA severity","CRP") 

 

for (i in 2:12) plot(corrs[,i]~corrs[,1], col="black", pch=20, type="l", xlim=c(0,100), 

xaxp=c(0,100,10), 

             xlab="Number of variables in the model", ylab="Correlation", 

main=paste(names[i]) ) 

dev.off() 

 

 

#### output the number of vars corresponding to the maximum correlation for each Y 

variable ### 

sumdset<-matrix(0,11,2) 

for (i in 2:12) { 

      sumdset[(i-1),2]=max(corrs[,i]) 

      temp<-corrs[corrs[,i]==max(corrs[,i]),1] 

      sumdset[(i-1),1]=min(temp) 

} 

sumdset 

 

 

 

############################################################ 

# Use program below to produce scatter plots of final model# 

############################################################ 

 

 

   indata <-paste(outloc,"finalvarsortorderallplusdas_2comp.csv", sep="") 

   resord <- read.csv(indata, sep=","  , header=T) 

#####need to keep the top 11 from the comp1 ### 

   resord1<-as.vector(resord[1:11,2] ) 

#####Then sort by the 2nd comp vars and extract the top 2 to 100- removing any 

duplicates across the 2 components### 

   resord1b<-resord[order(resord$ord2,-resord$nsel2),] 

   resord2<-as.vector(resord1b[1:7,2] )  #### enter here the number of additional 

vairables we decided to add in for 2nd comp. N=7. 

   resord3<-unique(c(resord1,resord2)) 

   newk<-length(resord3) 

 

   myvars <- names(xdata2) %in% resord3 

   finaldat<- xdata2[,myvars] 

   xtestdat<- xtest2[,myvars] 

 

    ##  Forms model using the final variables and 730 subjects ####### 

    ##  Then uses the newdat independant subj, to predict larsens score ####### 

    res <-pls(finaldat, ydata2, ncomp=2, max.iter=500, tol=1e-09)  #spls or pls gets 

same model here# 

    pred <-predict(res, xtestdat) 

  

     gpredval<-apply(simplify2array(pred$predict), c(1,2), sum)  ## this averages over 

2 or more components to get full prediction value 

     rval<-cbind(as.matrix(gpredval), as.matrix(ytest2))   
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     prefixc<-rep("p_",ncol(pred$predict))   #prefix predicted values with a p_ 

     lstcolname<-colnames(pred$predict)  

     lstcolname2<-paste(prefixc,lstcolname,sep="") 

     colnames(rval)<-c(lstcolname2,colnames(ytest2)) 

 

outtitle<-paste(outloc,"predvaluesgroup3_2comp",".csv",sep="") 

write.csv(rval,file=outtitle) 

 

 

###########plot all the correlations from the final models ####### 

 

outgraph<-paste(outloc,"RawCorrelation_allplusdas_2comp",".tif",sep="") 

tiff(outgraph, height=2400, width=2400, res=600, units="px", pointsize=6, compression = 

"lzw") 

par(mar=c(5.1, 5.1, 3.1, 2.1)) 

par(mfrow=c(4,3)) 

 

names<-c("DAS 28", "PVAS", "ESR", "MHAQ", "Foot erosions", "Hand erosions", "Larsen 

score", "Any erosions", "RA severity","CRP") 

 

for (i in 1:10) { 

   plot(rval[,i]~rval[,i+10], col="black", pch=20, xlab="Actual", ylab="Predicted", 

main=paste(names[i]) ) 

   cval=cor(as.vector(rval[,i]),as.vector(rval[,i+10])) 

   mtext(side=1, line=2.8, text=paste("r=",round(cval,digits=3),sep=""), adj=1,  

cex=0.6)  

   reg1 <- lm(rval[,i]~rval[,i+10]) 

   abline(reg1) 

} 

 

dev.off() 

 

 

 

 

 

 

 




