PMPC-PDPA polymersomes-mediated siRNA delivery

Nisa Patikarnmonthon

University of Sheffield Faculty of Science Department of Biomedical Science

Thesis submitted for the Degree of Doctor in Philosophy to the University of Sheffield, Sheffield, UK

November, 2013

This thesis is dedicated to my teachers and my mum.

Declaration

This thesis is a testimony of the author's work completed in The University of Sheffield, UK, under supervision of Professor Giuseppe Battaglia. This work has not been submitted in whole or any part for any other degrees at this or any other institute.

> **Nisa Patikarnmonthon** Department of Biomedical Science University of Sheffield Sheffield, UK

Abstract

Polymersomes made from the amphiphilic diblock copolymers, PMPC-PDPA, are proposed to serve as a siRNA carrier with pH-responsive property that provides endosomal escape. The main purpose of this work is to investigate the ability of polymersomes to provide effective intracellular delivery of siRNA into HeLa cells.

Encapsulation of siRNA into polymersomes was performed by pH-switch and electroporation method, both techniques enable siRNA encapsulation. No alteration of polymersomes size and morphology was observed in DLS and TEM. Purification of polymersome was conducted to ensure that no free siRNA or polymer remained.

Intracellular delivery was examined by using fluorescence-labelled siRNA to track the internalisation. Flow cytometry and fluorescence microscope were used to study the cellular uptake of polymersomes and siRNA. siRNA is successfully delivered with the distribution of siRNA signal throughout the cell, with stronger signal compared with Lipofectamine. Kinetic uptake of siRNA suggests that siRNA can be effectively delivered to most cells within 20 hours. In addition, evidence of endosomal escape of siRNA delivered by polymersomes was observed.

Silencing activity of siRNA was determined by qPCR and Western blot, mRNA and protein expression of Lamin A/C as a target gene were not significantly decreased. Cytotoxicity and other cellular response, including pro-inflammatory response and interferon response, were investigated. Polymersomes provide very low cytotoxicity and no pro-inflammatory response, unlike Lipofectamine. Moreover, the gene expression profile of interferon response indicates the possible apoptosis occurrence in Lipofectamine treated cells, but not in polymersomes treated cells.

The information suggests two possible factors that influence the silencing activity of siRNA delivered by polymersomes; the incomplete characterisation of siRNA process and the cellular response from carriers.

Acknowledgements

Above all, I would like to acknowledge the financial support provided by Royal Thai Government Scholarship, Thailand.

I would like to express my sincere gratitude to my supervisor, Professor Giuseppe Battaglia for his guidance, patience and encouragement. Without him as my supervisor and mentor, it would have been more difficult for me to build up my confidence, expand my knowledge and strengthen my attitude towards research.

I would like to extend my acknowledge to my advisors, Professor Elizabeth Smythe and Dr. Mohammed Nassar for their time, support, valuable suggestions and comments for improvement on my work.

I also would like to thank for training and helping from Dr. Irene Canton for her advice on working with siRNA and cell culture, Dr. Jeppe Peter Madsen for polymer synthesis, Dr. Linge Wang for working on encapsulation by electroporation and TEM, Dr. Xiaohe Tian for Confocal microscope imaging, Adrian Steve Joseph for encapsulation efficiency calculation and image analysis, Georgia Bakirtzi, Dr. Marzia Massignani, Milagros Avila Olias, Kamonchanok Ngamkam, Guan Lijuan, Luca Cherico, Russell Pearson, Dr. Carla Pegoraro, Dr. Denis Cecchin, James Robertson, Guy Yealland, Dr. Priya Viswanathan, Gavin Fullstone, Silvia Bianco, and also other people in Battaglia group.

My special thanks are extended to all of my friends in the University of Sheffield, including Dr. Khanitta Kamwilaisak, Sujunya Boonpradit, Dr. Phakpoom Phraprasert, Dr. Natwadee Poomipark, Dr. Sawaporn Siripanthana, Dr. Supatthra Narawattana, Pornpen Panomwan, Oratai Weeranantanapan, Dr. Chomchon Fusinpaiboon, and many more, for their supports and friendships, especially for my friends in Thai@the travellers restaurant, who made me feel like home. Additionally, I sincerely appreciate Matthew Savage and Ay Ping for English corrections.

Lastly, I would like to thank my family, especially for my beloved mother and brother for their loves, encouragements and infinite supports.

List of publications and presentations

Publications

Peer-reviewed papers

Canton, I., Massignani, M., **Patikarnmonthon, N.**, Chierico, L., Robertson, J., Renshaw, S. A., Warren, N. J., Madsen, J. P., Armes, S. P., Lewis, A. L.,and Battaglia, G. (2013). Fully synthetic polymer vesicles for intracellular delivery of antibodies in live cells. *FASEB J*, *27*(1), 98-108.

Wang, L. G., Chierico, L., Little, D., **Patikarnmonthon, N.**, Yang, Z., Azzouz, M., Madsen, J., Armes, S. P., and Battaglia, G. (2012). Encapsulation of Biomacromolecules within Polymersomes by Electroporation. *Angewandte Chemie-International Edition*, *51*(44), 11122-11125.

Book Chapter (ahead of print)

Robertson J.D., **Patikarnmonthon**, **N.**, Joseph, A.S, and Battaglia, G. (2014) "Block Copolymer Micelles and Vesicles For Drug Delivery." in Bader, R. A., Putnam, D. A.. Engineering Polymer Systems for Improved Drug Delivery (p. 163-188). NY: Wiley

Presentations (poster)

- **Patikarnmonthon, N.**, Canton, I., Madsen, J. P., Armes, S. P., Lewis, A., and Battaglia, G. (2010, July 11-16). The 43rd IUPAC World Polymer Congress: Macro2010, Glasgow, UK.
- **Patikarnmonthon, N.**, Canton, I., Madsen, J. P., Armes, S. P., and Battaglia, G. (2012, February 26-29). The 45th Miami 2012 Winter Symposium: Nanotechnology in Biomedicine. Miami, FL, USA.
- **Patikarnmonthon, N.**, Canton, I., Madsen, J. P., Armes, S. P., and Battaglia, G. (2012, May 3). The Biological Sciences Division Poster day. Sheffield, UK.
- **Patikarnmonthon**, *N.*, *Canton*, *I.*, *Madsen*, *J. P.*, *Armes*, *S. P.*, *and Battaglia*, *G.* (2012, May 28-30). The 9th International Symposium on Polymer Therapeutics: Laboratory to Clinical Practice. Valencia, Spain.

Contents

.	6 4 1 1		
List	List of Abbreviations		
List of Figures List of Tables			v
List (of Tables		V111
Chaj	pter 1: I	ntroduction	1
1.1.	Backgro	ound of the study	1
1.2.	Hypoth	esis and objectives of the study	3
1.3.	Overvie	ew of Thesis	4
Cha	pter 2: L	iterature Review	5
2.1.	RNA int	terference	5
	2.1.1.	Discovery of RNAi	5
	2.1.2.	RNAi pathway	5
	2.1.3.	Protein involved in RNAi process	7
	2.1.4.	Localisation of RNAi processing	8
	2.1.5.	Types of RNAi	9
	2.1.6.	Functions and applications of RNAi	10
2.2.	Cellular	barriers	10
	2.2.1.	Nature of mammalian cell membrane	10
	2.2.2.	Endocytosis	11
2.3.	Improv	ement on RNAi delivery	13
	2.3.1.	RNA instability	13
	2.3.2.	Off-targeting	14
	2.3.3.	Available siRNA delivery system	15
	2.3.4.	Progress in RNAi delivery system and the pre-clinical study	19
2.4.	Block c	opolymer	23
	2.4.1.	Block copolymer characteristics	23
	2.4.2.	PMPC-PDPA	25
	2.4.3.	Advantages over other methods	26
Chaj	pter 3: M	laterials and Methods	29
3.1.	Materia	ıls	29
	3.1.1.	Chemicals	29
	3.1.2.	siRNA	30
	3.1.3.	Polymers used in this study	30
3.2.	Method	ls	31
	3.2.1.	Polymersomes preparation	31

	3.2.2.	Preparation of polymersomes in different size	32
	3.2.3.	Encapsulation of siRNA	32
	3.2.4.	Purification of polymersomes	32
	3.2.5.	Micelles formation and siRNA encapsulation	33
	3.2.6.	Transmission Electron Microscopy (TEM)	33
	3.2.7.	Particle size and zeta potential	33
	3.2.8.	Polymer concentration	33
	3.2.9.	siRNA concentration	34
	3.2.10.	Gel electrophoresis	34
	3.2.11.	Encapsulation efficiency	34
	3.2.12.	Cell culture	36
	3.2.13.	Transfection	36
	3.2.14.	Flow cytometry analysis	37
	3.2.15.	Fixed cell imaging	38
	3.2.16.	Live cell imaging	38
	3.2.17.	MTT assay	39
	3.2.18.	mRNA extraction	39
	3.2.19.	Total RNA concentration	39
	3.2.20.	cDNA synthesis	40
	3.2.21.	Gene expression	40
	3.2.22.	Cell extraction	43
	3.2.23.	Protein assay	43
	3.2.24.	Protein expression	43
	3.2.25.	NF-ĸB translocation assay	44
	3.2.26.	Human Interleukine-6 expression	44
	3.2.27.	Type I interferon assay	45
	3.2.28.	Statistical analysis	46
Chap	ter 4: Re	esults and Discussions I	47
Optin	nisation o	f polymersomes preparation and siRNA encapsulation	
4.1.	Introduc	tion	47
4.2.	Results and Discussions		48
	4.2.1.	Interaction of siRNA and polymer	48
	4.2.2.	siRNA encapsulation by pH switch method	49
		Effect of pH on siRNA	50
		Polymersomes characterisation	51
		Micelles and siRNA encapsulation	55
	4.2.3.	siRNA encapsulation by electroporation	57
		Effect of applied electrical potential and number of pulses on siRNA	58
		Size distribution and morphology	58
		Effect of siRNA sequence	59
	4.2.4.	Encapsulation of siRNA	60
4.3.	Summary	<i>y</i>	63

Chaj	pter 5: R	esults and Discussions II	64
Cellu	ılar deliv	ery of siRNA	
5.1.	Introdu	ction	64
5.2.	Results	and Discussions	65
	5.2.1.	Cellular uptake of Polymersomes	65
		Flow cytometry	65
		Microscopy	68
	5.2.2.	PMPC25-PDPA70 polymersome mediated siRNA delivery	71
		Flow cytometry	71
		Microscopy	73
5.3.	Summa	ry	82
Chaj	pter 6: R	esults and Discussions III	84
Кпос	ckdown e	fficiency and Cellular response of polymersomes mediated siRNA	
6.1.	Introdu	ction	84
6.2.	Results	and Discussions	85
	6.2.1.	Cell viability	85
	6.2.1.	Knockdown of Lamin A/C by siRNA	88
		Study on mRNA expression	88
		Study on protein expression by automated Western analysis	94
	6.2.3.	Pro-inflammatory response	96
		NF-ĸB activation	96
		IL-6 production	99
	6.2.4.	Type I Interferon response	100
	6.2.5.	Stress induced silencing activity	111
		Polymersomes plus TNF-α	111
		Polymersomes plus Lipofectamine	112
6.3.	Summa	ry	114
Chaj	pter 7: G	eneral Conclusions and Future Directions	117
7.1.	General	conclusions	117
7.2.	Future	directions	120
Refe	rences		122
App	endices		150

List of Abbreviations

BCA	Bicinchonic acid
cDNA	Complementary DNA
DLS	Dynamic Light Scattering
DTT	Dithiothreitol
dsRNA	Double Stranded RNA
EDTA	Ethylene diaminetetracitic acid
ELISA	Enzyme-linked immunosorbent assay
GFP	Green fluorescence protein
GPC	Gel Permeation Chromatography
HeLa	Henrietta Lacks
HRP	Horseradish peroxidase
Hu IL-6	Human interleukine-6
IFN	Interferon
IgG	Immunoglobulin G
ΙκΒ	Inhibitor-kappa B
mRNA	Messenger RNA
MTT	3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
MW	Molecular weight
NF-κB	Nuclear Factor-kappa B
m	Metre
М	Molar
miRNA	Micro RNA
PBS	Phosphate Buffer Solution
PDPA	Poly-2-(Diisopropylamino)ethyl methacrylate
рКа	Acid Dissociation constant
PMPC	Poly-2-(Methacryloyloxy)ethyl phosphorylcholine
qPCR	Quantitative Polymerase Chain Reaction
RIPA buffer	Radioimmunoprecipitation buffer
RISC	RNA Induced Silencing Complex
RNAi	RNA interference
ROI	Region Of Interest
rpm	Rounds per minute
shRNA	Short Hairpin RNA
siRNA	Small interfering RNA
TEM	Transmission Electron Microscopy
TNF-α	Tumor Necrosis Factor-Alpha
U	Enzyme Unit
UV-Vis	Ultraviolet-Visible

List of Figures

Figure 1.1:	Timeline of discoveries and progress in the field of RNAi.	2
Figure 2.1:	RNAi mechanisms.	6
Figure 2.2:	The composition of Dicer and its mechanism.	7
Figure 2.3:	A proposed model of two main proteins, Dicer and RISC, and their actions in RNAi process.	8
Figure 2.4:	The model of the Argonaute with the association of small single-stranded RNA in RNAi machinery.	8
Figure 2.5:	Three types of RNAi including shRNA, siRNA and miRNA.	9
Figure 2.6:	Phospholipids and Phospholipid bilayer.	11
Figure 2.7:	The overview of the endocytosis in eukaryotic cells.	12
Figure 2.8:	Diagram of the condition inside endocytic organelles including the ion concentration, and pH, relative to time.	13
Figure 2.9:	Some examples of RNA modification.	14
Figure 2.10:	Proposed mechanism of nucleic acid/lipoplex releasing by "Fusion" of lipoplex lipid to the lipid membrane.	17
Figure 2.11:	Possible complex formation of lipoplex.	17
Figure 2.12:	Proposed endosomal release mechanism, 'proton sponge' hypotheses.	19
Figure 2.13 :	Example of amphiphilic block copolymer self-assemble morphology.	23
Figure 2.14:	Diblock copolymers and their tunable properties for biomedical applications.	24
Figure 2.15:	Structure of MPC and DPA.	25
Figure 2.16:	Self-assembly and polymersomes formation.	26
Figure 2.17:	The proposed mechanism for endosomal release of PMPC-PDPA	
	polymersomes.	28
Figure 2.18:	Evidence of endosomal escape of polymersomes.	28
Figure 3.1:	Cross section of polymersome.	35
Figure 3.2:	Thermal cycling profile for qPCR.	41
Figure 4.1:	Polymersome preparation.	48
Figure 4.2:	Zeta-potential of polymersomes and siRNA.	49
Figure 4.3:	Effect of pH on siRNA.	50
Figure 4.4:	Characterisation of polymersome: encapsulation of siRNA into polymersomes using pH switch.	51
Figure 4.5:	The polymersomes formation pathway.	52
Figure 4.6:	Gel Permeation Chromatography of siRNA/polymersomes samples.	53

Figure 4.7:	Morphology of polymeric vesicle with TEM.	55
Figure 4.8:	pH switch method resulting in micelles formation.	56
Figure 4.9:	Gel Permeation Chromatography of siRNA/micelles samples.	56
Figure 4.10:	Effect of the number of pulses and the applied voltage on siRNA.	58
Figure 4.11:	Characterisation of polymersome: encapsulation of siRNA using electroporation.	59
Figure 4.12:	Different siRNA sequences have no effect on polymersomes size distribution	. 60
Figure 4.13:	Efficiency of PMPC-PDPA in encapsulation of siRNA using pH switch and electroporation.	61
Figure 4.14:	Number of pulses have no effect on siRNA encapsulation efficiency.	62
Figure 5.1:	The kinetic uptake of Rhodamine conjugated PMPC25-PDPA70 in HeLa cells	. 66
Figure 5.2:	The cellular uptake of Rhodamine conjugated PMPC25-PDPA70 in HeLa cells in long incubation time.	67
Figure 5.3:	Effect of polymersomes size with cellular uptake.	68
Figure 5.4:	The imaging of cellular uptake of polymersome.	69
Figure 5.5:	Fluorescent microscope image of HeLa with different time.	70
Figure 5.6:	The ratio of polymer in different areas of the cells over time.	71
Figure 5.7:	Cellular uptake of Alexfluor® 647-siRNA/polymersomes.	72
Figure 5.8:	Cellular uptake of polymersomes alone and siRNA with polymersomes as a carrier.	73
Figure 5.9:	Fluorescent microscope image of siRNA/polymersomes uptake in HeLa with different incubation time.	74
Figure 5.10:	The ratio of siRNA within the cells over time: siRNA/polymersomes.	75
Figure 5.11:	Live cell imaging of siRNA/polymersomes uptake in HeLa.	75
Figure 5.12:	Fluorescent microscope image of siRNA/Lipofectamine uptake in HeLa with different incubation times.	76
Figure 5.13:	Comparison of siRNA delivery by two different carriers.	78
Figure 5.14:	The ratio of siRNA within the cells over time: siRNA/Lipofectamine.	78
Figure 5.15:	Live cell imaging of siRNA uptake in HeLa cells.	80
Figure 5.15:	Live cell imaging of siRNA uptake in HeLa cells cont.).	81
Figure 5.16:	Overview of cellular uptake of polymersomes and siRNA.	83
Figure 6.1:	Cell viability of polymersomes treated cells.	86
Figure 6.2:	Cell viability of HeLa cells: effect of siRNA.	87
Figure 6.3:	Cell viability of Lipofectamine [™] 2000 treated cells.	88
Figure 6.4:	Cycle threshold Ct) of reference genes among samples.	89
Figure 6.5:	Difference in Cycle Threshold Δ Ct) values between treated samples and control samples.	91
Figure 6.6:	mRNA expression on Lamin A/C in HeLa cells treated with siRNA/polymersomes.	92
Figure 6.7:	mRNA expression on Lamin A/C in HeLa cells treated with siRNA/Lipofectamine.	93
Figure 6.8:	Lamin A/C expression at protein level of polymersomes treated cells.	94
Figure 6.9:	Lamin A/C expression at protein level of Lipofectamine treated cells.	95
Figure 6.10:	Determination of activated and non-activated cells.	97

Figure 6.11:	Dose response of TNF-alpha treated cells.	97
Figure 6.12:	Dose response of polymersomes treated cells.	98
Figure 6.13:	Pro-inflammatory response of HeLa cells via NF-κB translocation study.	99
Figure 6.14:	Pro-inflammatory response of HeLa cells via Human IL-6 expression.	100
Figure 6.15:	Type-I interferon response in HeLa cells.	101
Figure 6.16:	Heat map of type-I interferon response in 2 hours PMPC-PDPA polymersome treated HeLa cells.	103
Figure 6.17:	Heat map of type-I interferon response in overnight PMPC-PDPA polymersome treated HeLa cells.	104
Figure 6.18:	Venn diagram for overview of gene expression.	105
Figure 6.19:	Knockdown of Lamin A/C with polymersomes in the presence of TNF-alpha.	112
Figure 6.20:	Knockdown of Lamin A/C with polymersomes in the presence of Lipofectamine.	113
Figure 6.21:	Summary of cellular activity in response to siRNA/polymersomes treatment.	116
Figure 6.22:	Summary of cellular activity in response to siRNA/Lipofectamine treatment.	116

List of Tables

Table 2.1: Examples of polymeric nanoparticle siRNA delivery systems.	18
Table 2.2: List of current progress in RNAi-based therapeutics in clinical study.	20
Table 3.1: siRNA sequences used in this study.	30
Table 3.2: Block copolymer used in this study.	31
Table 3.3: List of parameters used in calculation of encapsulation efficiency.	35
Table 3.4: PMPC ₂₅ -PDPA ₇₀ polymer and Lipofectamine [™] 2000 concentration used in the transfection experiments.	37
Table 3.5: The details of primers used in this study.	42
Table 6.1: The PCR cycle threshold values of 3 reference genes.	89
Table 6.2: The details of genes in interferon response.	106