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Abstract

There is a growing concern amongst offshore pipeline operators over the instability

problem of lateral buckling and axial walking of offshore pipelines which is linked with

elevated operating temperature and pressure. While some mitigating options are

available to tackle this phenomenon, in most cases these are expensive and

impracticable in deep waters, and none of them involves the modification of the ambient

soil properties typically characterised by very low undrained shear strength (cu) and

high water content (w). In recent times, the use of engineered buckle solutions has

become generally accepted as a cost effective and elegant solution. This option

involves laying the pipeline in a snake configuration where some specific sections are

designed to move during operation while others relatively stable. This option depends

on accurate understanding of pipe-soil interactions which presently poses the greatest

uncertainty in pipeline design. Furthermore, in order to ensure that the buckles are

formed as predetermined, the ambient soil strength must be sufficient to resist the pipe

motion at locations designed to be relatively stable or the entire design approach would

be undermined.

This dissertation presents laboratory investigations at both small and pilot scale directed

at using the electro-kinetic phenomenon (EK) to treat the soil around a partially buried

pipeline with the aim of increasing the pipeline stability to lateral buckling and axial

walking. The influence of the EK treatment was assessed by evaluating the changes in

the soil Cu, wand the soil resistance to vertical, lateral and axial displacements of pipe

sections. Additionally, large-scale pipe-soil interaction studies were conducted to study

the soil deformations, especially the real time study of the berm of soil formed and the

development of the soil resistance during pipe motion.

Preliminary results of the application of EK in geotechnical engineering to offshore

pipelines show up to 600% increase in Cu, 14% decrease in w and 190% increase in the

pullout force thus implying promising outcomes which could form the basis for

subsequent research in this area.

Keywords: Pipeline, seabed, lateral buckling, axial walking, berm, electro-kinetics
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Chapter t

INTRODUCTION

1.1 Introduction

As the world population grows, there is an increasing demand for energy and oil and

gas continue to play a leading role; no other alternatives have yet been proven to

economically replace them. This high demand in oil and gas has initiated the current

move to deep offshore exploration and production of the energy trapped in the seabed.

The concomitant requirement of this move is a high demand for more pipeline

networks, which are increasingly being required to operate at elevated temperature and

pressures in order to ease the flow within these pipelines. These elevated temperatures

and pressures force the pipeline to expand but this expansion is normally restricted by

the interface friction between the pipeline and the seabed resulting in an imposed axial

stress on the pipeline. This in most cases may result in pipeline displacements in either

vertical (referred to as upheaval buckling), lateral (lateral buckling) or axial (axial

walking) directions depending on the path of the least resistance.

The capacity of these pipelines to withstand the internally induced displacements

depends on the weight of the pipeline and the soil strength. As the pipe moves laterally

at the buckled section, a berm of soil is formed which tends to increase the resistance of

the soil to further pipe motion. The deformation of soil during this berm formation and

the accurate prediction of this berm effect are not fully understood. Excessive lateral

buckling may lead to pipeline rupture resulting in loss of containment and release of

oil/gas into the offshore environment. The financial impact of the recovery and clean-up

process, lost production and repair or replacement of pipeline may be in the excess of

US$200M (Griffiths et al.,2007), depending on the project specifics. This instability of

offshore pipelines is currently a serious issue facing offshore pipeline operators

prompting the current search for mitigating methods.

1-1



Chapter 1 Introduction

The simplest and the most straight forward means to increase pipe stability is to dig a

trench and bury the pipe. However, with the increasing move to deeper waters, this

becomes expensive and not feasible thus prompting a need for more cost effective

alternatives. Of all the other existing methods available, none of them considers the

modification of the soil properties which supports the pipeline. Additionally, the

interaction between soil and pipeline during the pipeline motion is until now the greatest

uncertainty in pipeline design and the mechanism of soil failure during pipeline

displacement is not fully understood.

Recent studies on pipe-soil interaction and pipeline instability (Carr et al.,2003; Cheuk

et al.,2007; Bruton et al.,2008; White and Cheuk,2008) suggest that a more efficient

design method is to relieve the axial stress by controlling the formation of buckles along

the pipeline. This is an "on-bottom" engineered buckling approach described by

pipeline operators as "snake-lay". By adopting the snake-laying configuration, some

sections of the pipeline are designed to buckle when the pipe is loaded as it tries to

expand on the seabed, hence relieving the axial stress imposed on the pipeline. On the

other hand, some sections are designed to be relatively stable otherwise the whole

approach will be seriously undermined. In order to ensure that the buckles are formed as

predetermined, the soil strength must be sufficient to resist pipe motions at locations

designed to be relatively stable. This soil strength can be enhanced by using an

approach which has been tested to be effective in enhancing the capacity of foundation

soils.

Electro-kinetic improvement of soft clay soil is not new in geotechnical engineering

practice. It has been successfully used in improving the foundation soil in onshore areas

such as slope stability (Casagrande,1952) and improvement of pile bearing capacity and

recently has been employed offshore to enhance the bearing capacity of offshore

foundations. It is yet to be applied to offshore pipelines. Therefore, the focus of this

research is on mitigation measures involving the modification of the soil properties

around partially buried pipelines using electro-kinetics technology as well as studying

the soil deformation behaviour during lateral deflection of pipeline, that is the berm

effects on the soil resistance to pipe displacement.
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1.2 Motivations for the study

This research was undertaken due to two major concerns facing offshore pipeline

stability. These are the uncertainty relating to pipe-soil interaction and the need to

increase the resistance of subsea pipelines to instability due to elevated temperature and

pressure. This work investigates some of the uncertainties involving pipe-soil

interactions which affect its stability on the seabed and then attempts to enhance its

stability by engineering the ambient soils around the pipeline. The current study should

be of direct benefit to practising offshore pipeline engineers and also presents a more

cost-effective way of reducing the instability of the pipeline caused by high temperature

and pressure conditions.

1.3 The aim of this study

The aims of this study are (I) to investigate the use of electro-kinetic (EK) technology

to increase the stability of partially embedded offshore pipelines by increasing the soil

resistance to the pipe's displacement and, (2) to study the soil deformation behaviour

during large pipeline displacements which are associated with the operational induced

conditions with the aim of reducing the uncertainty with pipe-soil interaction during

pipeline motion.

1.4 Objectives of the study

To address the above issues, the development of the application of EK to enhance the

stability of a partially embedded pipeline was investigated through a series of small-scale

and pilot tests. Additionally, a series of pipe-soil interaction tests were conducted aimed at

studying the resistances offered by soil to a partially embedded pipeline. Emphasis was

placed on the formation, growth and influence of the berm of soil. This research will help

to improve current knowledge of soil-pipeline interaction and mitigation against lateral

buckling and axial walking of these pipelines.

The following objectives were set:

I) To conduct a literature review to determine current and developing practice in

controlling lateral buckling and axial walking of offshore subsea pipelines
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2) To investigate the use of EK technology to increase the stability of a partially

embedded pipeline at pilot scale.

3) To study the effect of electro-kinetic treatment on soil resistance to vertical,

lateral and axial resistances of partially embedded pipelines

·4) To comment on the effects of electrical parameters and soil properties on the

performance of the electro-kinetic treatment

5) To comment on the influence of electrode material on the effectiveness of the

EK treatment

6) To make recommendations and suggestions on the application of the EK

technology to offshore pipeline operations

On the pipe-soil interaction study, the following objectives were set out to be achieved:

7) To develop and implement a new and improved testing rig for studying pipe-soil

interaction at pilot scale

8) To observe the deformation mechanism pattern of the soils surrounding the pipe

section during large lateral displacements

9) To measure the resistance of a model seabed to lateral and axial motion of a

partially embedded pipe section

10) To study the deformation characteristics and geometry of model seabed during

pipe motion and comment on the effects on the soil resistances

11) To investigate the influence of pipeline properties such as the initial depth of

embedment and the weight of the pipe on the deformation behavior of the soil

during pipe motion

12) To investigate the influence of speed of pipe movement, amplitude of lateral and

axial displacement, number of cycles and comment on the soil deformation

patterns

1.S Structure of the thesis

This thesis is subdivided into seven chapters which are described below:

The background to this study including motivation, aims and objectives for this study, is

presented in Chapter 1.
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Chapter 2 is the literature review which focuses on the instability problem of partially

embedded offshore pipelines. The behaviour of high temperature-high pressure

pipelines is discussed including existing methods to mitigate their instability problems.

Finally, research on electro-kinetic technology in geotechnical engineering especially as

applicable to soil improvement is presented.

Chapter 3 presents the experimental methodology. This is divided into two parts: part

one focuses on the electro-kinetic treatment of a model seabed in small testing tanks

while part two deals with the large-scale pipe-soil interaction test which is aimed at

studying the soil deformation behaviour during large amplitude of pipe displacement on

a model seabed. This displacement of the pipeline simulates the behaviour of partially

buried pipelines on the seabed during lateral buckling and axial walking.

Chapter 4is concerned with the results of the investigation to assess the feasibility of

using electro-kinetic processes to modify a model seabed. The discussions of the results

of the electro-kinetic treatment of the soil in the small and the large testing tanks

described in chapter 4 are presented Chapter 5.

Chapter 6 presents the results and discussions of the large-scale pipe-soil interaction

tests while Chapter 7 presents the summary and conclusions of the results of the entire

research and makes recommendations for future work.
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LITERATURE REVIEW

2.1 Introduction

The problems associated with subsea pipeline stability have been extensively studied by

many researchers. Two major areas of research have been the problem relating to the

stability of pipeline under environmental loadings (mainly hydrodynamic loadings) and

operational loadings (from elevated temperature and pressure) resulting in the thermal

buckling of pipelines. The problem relating to hydrodynamic loadings has received

significant attention in the past while the problem of the operation loadings has become

an issue only recently. While a considerable amount of work has been done to

investigate the problem of pipeline instability, not much research has been carried out to

investigate the solutions.

This chapter presents a review of the research focused on partially embedded pipeline

stability on the seabed including the mechanics and prediction methods of the pipeline-

soil responses during pipe motions. It then discusses work on the nature and

compositions of offshore seabed clay soils. An overview of the existing methods of

controlling pipeline instability as well as some methods of soil improvement are then

discussed followed by research into EK technology in geotechnical engineering. A

summary of the literature review is then presented at the end of the chapter.

2.2 Stability of subsea pipelines -understanding the problem

An early attempt to analyse and predict the stability of subsea pipelines was by the use

of the classical bearing capacity approach (Small et al., 1972). Figure 2 - 1 is a picture of

a partially embedded pipeline on the seabed. Small et al. (1972) assumed the pipeline to

be a strip footing foundation for the evaluation of the initial pipe settlement using the
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ultimate bearing capacity of the soils from the classical soil mechanics bearing capacity

theories proposed by Terzaghi and Peck (1948); Meyerhof (1951); and Skempton

(1951). However, this theory relies on the behaviour of flat strip footing foundations

and not the curved base associated with pipelines which makes direct application of

these theories questionable.

Figure 2 - 1: Typical partially embedded pipeline on the seabed

Research focused on the complex problem of pipe-soil interactions and pipeline stability

can be grouped into two areas: (a) stability against hydrodynamic loading where the

pipe is designed to allow for limited or no movement, and (b), stability against large

amplitude of displacement of the pipeline: up to ten pipe diameter (Carr et aI.,2003).

Most of the research on pipeline stability initially focused on the first part as in Lyons

(1973) and Ghazzaly (1975) while the second part has only recently received attention

from researchers due to the phenomenon of pipeline buckling which is associated with

high temperature-high pressure (HTHP) operating conditions.

2.2.1 Analysis of lateral resistance of partially embedded pipeline

The horizontal capacity of embedded offshore pipeline has traditionally been estimated

in industry by a Coulomb friction model (Figure 2 - 2). Here, the lateral forces

attempting to displace the pipe are resisted by a friction force, assumed equal to the

effective weight of the pipe times a coefficient of friction between the pipe and

sediment normally assumed constant of the order of 0.4 - 0.5, (Morris et aI.,1988). This

approach is based on the assumption that the seabed supporting the pipe is rigid and

stable and the pipe slides parallel to the surface and the soil resistance is not affected by

pipe displacement. Both the deformation of the soil during pipe motion and the pipe

trajectory during motion are not considered in this assumption. However, this,
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assumption might hold for stiff clay and dense sand but not for soft clay due to

significant pipe penetration during motion.

To determine the stability of the pipeline on the seabed, the hydrodynamic drag force is

computed in advance and the minimum weight of the pipe to exceed this drag force is

determined. The drag force is the horizontal component of the hydrodynamic force

produced when a wave or current flows across a pipeline laid on the seabed. This is

shown in Figure 2 - 2 as Fo. It is this external force which attempts to displace the

pipeline on the seabed. This conventional approach is still available in various design

codes such as BS8010 (1993): part 3 and Veritec-RP-E305 (1988). However,

(Lyons,1973), using empirical data from his test on sand and soft clay as well as finite

element (FE) modelling, was the first to point out the weakness of this design approach.

The test conducted in clays was typically at the depths of pipeline embedment of less

than ID. He concluded that the Coulomb friction model which relies on the weight of

the pipe may be adequate to predict the soil lateral resistance to sliding of a pipe on stiff

clay or dense sand but not for soft clay soil. He proposed the use of FE as a better model

for predicting lateral stability on soft clays.
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Figure 2 - 2: The conventional Coulomb friction analysis (after Lyons (1973)

Other observations noted by Lyons (1973) were that the lateral resistance in clays

decreased with increasing pipe diameter and increased with increasing submerged

weight of the pipeline and that the friction coefficient for clay depends on pipe

diameter, weight of pipe and the coating material. The friction coefficient (u) increases

with weight of pipe and is higher for bare pipe than coated pipe. However, Lyons
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(1973) attempts at using FE to predict the lateral resistance of soft clay was limited in

application and was subsequently strengthened by Karal (1977) through the introduction

of some geometrical, loading and material parameters.

Karal's (1977) study was the first use of a theoretical geotechnical approach to analyse

pipeline stability where he used an upper bound approach of the theory of perfect

plasticity to develop a method for geotechnical stability analysis of subsea pipelines in

both clay and sand. He idealised the pipeline as rigid wedge indenter and presented the

results in parametric forms. The effect of time on the lateral resistance of soil was

studied by Karal (1983). Murff et al.( 1989) extended Karal' s (1977) method by

developing both upper and lower bound solutions to the pipe penetration in uniform

strength clay soil with the pipe idealised as a rigid cylinder. They presented a plasticity

solution for pipeline penetration in cohesive soil. However, in their analysis the pipe-

soil contact was below the centre of the pipeline making the solution only valid for

small pipeline penetration up to O.2D.

Still with limited data on the lateral resistance for clay soil, Wantland et al. (1979)

embarked on further studies to investigate specific areas especially:- effects of pipe

weight, pipe diameter (D), depth of embedment and soil type on the lateral capacity

developed during lateral displacements of pipes. This work involved both field and

laboratory studies which were aimed at providing a relationship between the developed

lateral resistance and the variables mention above. This study did not, however, include

soil deformation pattern and the effect of the soil deformation pattern were not studied.

The test rig was not sophisticated enough to measure the lateral displacement directly

but deduced from the rate of displacement.

Wantland et al. (1979) concluded that there was no influence of the rate of pipe

displacement on the soil lateral resistance, but that the lateral resistance was influenced

by the depth of embedment. The displacement before failure was highest for the

relatively shallow pipes and the deepest pipes but was lowest for the intermediate values

of relative penetration of the pipe. This they attributed to the fact that shallow pipes

appear to fail by surface sliding, which involved the continuous build up of a soil berm.
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Figure 2 - 3: Assumed flow pattern for pipe embedded for more than ID during lateral
displacement of pipe, after (Wantland et aI., 1979)

Deeply buried pipes fail through a flow mechanism as depicted in Figure 2 - 3. This

requires considerable displacement to mobilise fully. Soil for the intermediate depth of

penetration fails by producing an incomplete failure surface, approximately a Coulomb

passive wedge.

The first field large-scale pipe-soil study to determine coefficient of lateral soil friction

was conducted by Lambrakos (1985) for hydrodynamic stability. However, this test did

not address pipe-soil interaction aspect and was only concerned with the determination

of coefficient of friction of the soil during pipe displacement.

2.2.2 Effects of oscillatory pipe displacement

The effect of oscillatory pipe displacement on the pipe-soil response was investigated

by Brennodden et al (1986) in a full-scale test. They came to the following conclusions:

- small oscillatory motion generally increases the resistance in loose medium/ coarse

sand and soft clay; large-amplitude oscillations may degrade resistance in loose silty

fine sand; resistance in dense medium/coarse sand and stiff clay is less sensitive to prior

cycling; consolidation of clays increases the resistance to monotonic loading but the

increase is quickly broken down by cycling. Palmer et al. (1988) simulated various

loading regimes during pipe installations and concluded that cyclic loading increases

lateral resistance.
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A laboratory study to quantitatively determine the extent that a pipeline resting on a

seabed would self-bury when subjected to cyclic loading from wave and current forces

was carried out by Morris et aI. (1988). These studies only considered cyclic

displacement between O.OSD and O.SD which is less than the large amplitude

displacement typical of a buckling pipeline. As the pipe settles due to cyclic

displacement, a berm of soil forms at the sides of the pipe. Thus an additional resistive

term is included in the resulting lateral resistance. To predict the amount of pipeline

embedment from a given cycles of pipe displacements, Morris et aI. (1988) proposed

the use of Figure 2 - 4 where the embedment "h" is normalised by the pipe diameter, D.

Apart from the fact that this study did not include the measurement of the lateral extent

of the deformed soil in front of the pipe, these plots were produced from uniform

loading cycles from storm waves and not likely to be applicable in the large amplitude

oflateral displacement associated with HTHP pipelines.

~
D

FIL =
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Figure 2 - 4: Embedment against time chart (after Morris et aI., 1988)

2.3 Mechanics of the breakout of partially embedded objects

In offshore geotechnical engineering and in particular offshore pipelines, the need to

accurately predict the amount of force needed to lift an offshore structure including

pipelines embedded in seabed sediment is a vital component of the design process as

this assesses the long term stability of the structure after placement. This force in excess

of the submerged weight of the object is referred to as the breakout force (Muga,1967;

Vesic,1971). This is sometimes referred to as the mud suction (Liu,1969). The

classification for either partial or complete embedment of an object such as a pipeline is
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a function of the depth of embedment with respect to the diameter of the pipeline. If the

pipeline is embedded by an amount greater than its diameter, then this would be a fully

embedded pipeline and its breakout resistance is partly dependent on the failure of the

soil above the pipeline whereas if the depth of embedment is less than the diameter,

then the pipeline is considered to be partially embedded and its breakout resistance

governed by the factors below the base of the pipeline such as suction and soil strength

(Lee,1973).

If an object is resting on the sea floor without embedment and no adhesion develops

between the object and the ocean sediment, then the force required to lift the object will

be equal to its submerged weight only. The value of the breakout force in this case is

zero. If the object is embedded and an attempt is made to lift it, skin friction or adhesion

which develops around the sides of the object and adhesion along the base will resist the

effort to lift it. The difference between the force now required to raise the object and the

submerged weight is the breakout force. The contribution from skin friction and

adhesion in many cases is only a small fraction of the total breakout force. Thus the

mechanism for resisting breakout cannot, in most cases, be assumed to be due to skin

friction and adhesion, and other mechanisms must be sought (Vesic, 1971).

Liu, 1969, and Finn and Byrne, 1972 both argue that the behaviour of dislodging an

object embedded in the seafloor is similar to bearing capacity failure of a shallow

foundation. This is because the two failures are not only time dependent but also

strongly dependent on the weight of the object resting on the soil surface. The resistance

to which the soil offers to the breakout of an object is referred to as the soil holding

strength as it is strongly dependent on the shear strength of the soil (Lui,1969). Factors

affecting this force are the type of soil (cohesive and non-cohesive), rate of loading

(drained or undrained), surface of embedded (object-skin roughness or skin friction) and

the depth of embedment.

2.3.1 Mechanism of breakout during pullout for a partially buried object

The mechanism of breakout of a partially embedded object in the seabed has been

described by Liu (1969). While this study dealt with different offshore structures

including sunken submarine vessels, a direct application to a surface-laid pipeline is

justifiable. A schematic of the forces acting on a partially embedded object is shown in
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Figure 2 - 5. A constant lifting force is applied through the centre of gravity of the

object.

CentreO! I w
gravity •

Soil

Figure 2 - 5: Forces acting on an object during breakout (after Liu, 1969)

DUring vertical pulling of the object from the seabed, the lifting force first relieves the

soil bearing pressure underneath the object. The object remains in this position until

both the bearing pressure and side friction force are counter balanced. The balance of

the lift force will then produce an upward motion of the object. The vertical pulling

force is normally resisted by the stationary shear stress/friction shear forces on the sides

of the object and the tension resistance under the object. These determine the magnitude

of the breakout resistance offered by the seabed. Thus the strength of the soil plays a

major role in the breakout force.

According to Liu (1969), the resultant force (R) acting on an object placed at the water-

soil interface may be expressed as:

R=W-B -B -cA -aAw sus x 2-1

Where

W == weight of object in air

B; == water buoyancy force

B, == soil buoyancy force

As == side surface area of object

Axe == base surface area of object
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Cu = undrained shear strength of soil

ex = bearing strength of soil.

The values of W and Bw are constant, whereas B varies with the embedded depth. The

extra buoyancy force from the soil (Bs) is due to the fact that the object displaces soil

that has a higher saturated density than the water (Randolph and Quiggin, 2009).

The mode of failure under pull-out is different from the deformation pattern developed

under compressive load. As the embedded object is pulled upward (depending on the

soil strength and suction developed) the soil mass outside the object moves laterally

towards the object while the soil beneath the object moves up. This failure pattern is

consistent with the failure mode observed by Byrne and Finn (1978). Finn and Byrne

(1972) suggested that the conventional bearing capacity and breakout problems have

similar failure mechanisms but with opposite direction of motion (Figure 2 - 6).

~B'---I Water Surface
Fa -+-

Ocean Bottom

WoterSurface
-+-

Ocean Bottom

(CNc+y'd ) A (CN,-Y'd ) A

(0) Conventional Bearino

Capacity Foilure Mechanism

Fa = (CNc - Vd) A +W I
(b) Uplift capacity Failure

Mechanism

F. = (CNc+y'd) A -W

Figure 2 - 6: Plastic failure mechanisms for bearing capacity and uplift of shallow
footing (after Finn and Byrne 1972)

2.3.2 Dependence of breakout force on soil strength

Finn and Byrne (1972) suggested that the mechanism of soil failure during object

pUllout is similar to the mechanism of shallow footing failure when loading in

compression provided suction develops underneath the embedded object. This

assumption lead to the proposition of a modified bearing capacity equation for

determination of the breakout force as:
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2- 2

Where

Cu = soil undrained shear strength

Ne = bearing capacity factor which depends on the shape of the embedded object

Wb = the submerged weight of the object

Ys = unit weight of the seabed soil

DJ = depth of embedment of the object

A = object plan area

The above expression indicates the breakout force of a partially embedded object in

seabed is directly related to the undrained shear strength of the soil. This in tum is

related to soil water content (w). Therefore the magnitude of the breakout force could

substantially improve by increasing the undrained shear strength of the seabed soil.

2.4 Prediction models for soil lateral resistance and pipe penetration

2.4.1 Methods for predicting pipeline embedment

The total pipe penetration into soft seabed is dependent on the magnitude of the

immediate penetration, consolidation settlement during installation and the additional

settlement due to hydrodynamic forces or disturbances during installation (Cathie et

al.,2005). While the level of disturbance is subject to a high level of uncertainty and

could be difficult to predict, the approach for predicting the penetration caused by

shearing of the soil, which contributes the largest portion of the pipe penetration, have

been suggested by different researchers using analytical closed form solutions (Small et

al.,1972; Ghazzaly and Lim,1975; Karal,1977; Wantland et al.,1979; Aubeny et

al.,2008). The basic assumption is to idealise the pipe penetration as a bearing failure of

a shallow strip footing as shown in Figure 2 - 7.

A rigorous classical analysis of pipe penetration in soft clay was presented by Murff et

al. (1989) and is based plasticity solutions. They assumed a rigid-plastic response for

clay and zero friction between the pipeline and the clay. Aubeny et a1.(2005) extended

the work of Murf et al (1989) which concentrated on uniform Cu and depth of

embedment less than one-half cylinder diameter (D) to soils with linearly varying

strength profile with pipe embedment exceeding ID.
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Vis the effective weight of the pipe plus contents

Figure 2 - 7: Schematic illustration of the mechanism of immediate pipe penetration
based on the general bearing capacity failure mode

They presented a senes of solutions for soil resistance versus embedment depth

obtained from FE simulation and approximate solutions using classical plasticity theory.

They suggested that load was expressed in terms of shear strength at the pipe invert.

The limiting load at a given penetration was given as:

_v_ = a(~D)b
CU,lnvertD

2- 3

Where

V = the vertical load

D = the pipe diameter

Cu = soil shear strength at penetration and

W, a and b are fitting coefficient for limiting conditions of roughness.

For a perfectly rough pipe, Aubeny et al 2005 suggested a = 7.41 and b = 0.37. For

perfectly smooth pipe, a = 5.42 and b = 0.29.

The empirical equation proposed by Verley and Lund (1995) to assess the maximum

penetration and soil resistance is the one most used. They suggested maximum z/D of

0.3 for the equation to be valid (z is the depth of pipe penetration). However this

expression did not include the rate of cyclic motion, pipe coating, angle of applied force

and the effects of seabed gradients on the penetration. This model was based on data

Collected from a large database of large and small scale tests and from numerical

analysis used to develop models based on non-dimensional groups. The model predicts
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both the breakout force and the initial penetration of pipe in soft clay. Subsequent

analyses revealed that equation 2-4 approximately fits the data. They have therefore

proposed this equation for estimation of the initial penetration of pipe into soft clays.

2- 4

S and G are non-dimensional parameters which depend on the pipe and the soil

properties and defined as

2- 5

2- 6

In the same way, the maximum pipe penetration was estimated by fitting the data

obtained from the database by Verley and Lund 1995 as:

(Z) ( )0.17- = 1. 1SGO.54 ~
D max D 2-7

Here, Z is the pipe penetration (distance between bottom of pipe and original seabed)

and, a is the amplitude of pipe motion.

The lower bound solutions of Murf et al (1989) are shown in Figure 2 - 8 and compared

with experimental data and the Verley and Lund (1995) approaches. These solutions are

very important in very soft clay where embedment may be very significant. The scatter

is mainly due to difficulty in measuring the strength of the soft clay with depth (Cathie

et al.,2005; White and Cheuk,2008). The plasticity solution did not account for the soil

heave and berm of soil or any increase in strength with depth.
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Figure 2 - 8: Lower bound plasticity solutions and empirical approaches for pipeline
penetration in cohesive soils after (after Cathie et al.,2005)

While these prediction methods are widely used in the industry for design of pipeline

stability, the actual field penetration after pipeline installation is often larger than the

predicted value indicating a high level of conservatism in the pipe stability design

(Lund,2000). This is attributed to high level of uncertainty relating to pipe loading

during installation. Also, these prediction models suffer with uncertainty due to non-

uniformity of the pipe responses during lateral motion.

A case is a real life field observation (Pinna et al.,2003) of the non uniformity in the self

burial of offshore pipelines -where some sections of the pipeline experienced

significant self-burial while some sections remain exposed. This implies that the

existing prediction methods available for estimating pipeline penetration may not

predict accurately the real life behaviour of these pipelines.

2.4.2 Penetration due to cyclic loads

Cyclic vertical loading was investigated by Dunlap et al. (1990) while cyclic lateral

loading from environmental loading has been instigated by Morris et al (1988). In both

cases, the depth of the penetration was due to the magnitude of the force or

displacement and the duration of the application of the applied force.
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Verley and Lund (1995) proposed an empirical equation to assess the magnitude of the

maximum penetration that can be achieved for a given amplitude of motion and to

assess the development of the penetration as a function of the work done by the pipe on

the soil. They suggested that due to the limitations of the data (data used was from a

number of previous test data), an upper limit of (zID)max ofO.3 should be applied.

(Z) _ r, (cu)O.54 aO.17- -1.1-. - -
D max Dcu Dy D

2- 8

Bruton et al. (2006) proposed an equation for initial pipe embankment for a given

vertical load in a non-dimensional form to include the effect of soil sensitivity (SD as:

~ = s, 2 s, ( V )2
D 45 V = 45 DCu_lnvert

2- 9

They argued that although the solutions by Murf et al. (1989) are more rigorous than a

simple fit to test data and they are difficult to apply being in the form of V/Dc,

f(zini/D), instead of Zini/D = f(VIDcu).

Verley and Lund (1995) equation was rearranged to exclude the use of the non-

dimensional parameter Sand G.

2.4.3 Methods for predicting soil lateral resistance

Three approaches to the assessment of lateral soil resistance to pipe displacement have

evolved over the years. These are: (1) a single friction approach where the lateral

resistance is related to the effective weight of the pipelines and the soil type, (2) the two

component approach where the contribution from the soil deformation is included and,

(3) the plasticity model approach. The two component models are based on empirically

fitting lab test data. Subsequent primary and secondary consolidation underneath the

pipeline will result in additional embedment (Oliphant and Moconochie,2007).

However, Hesar (2004) argued that the separation of the lateral soil resistance into the

two components has no rational basis particularly in clays since the interface friction (or

adhesion) between pipeline and soil is not contact stress dependent and the strength of
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clay is not constant with depth as assumed by the models. He therefore suggested the

use of FE models as the best approach to predict lateral soil resistance.

Another soil model was developed during the PIP ESTAB Project (Wagner et al.,1989)

to predict soil resistance to lateral motion of surface-laid pipelines by including soil

strength information and pipe displacement history thus improving upon the traditional

Coulomb friction estimation. This consisted of two components: the sliding resistance

and a penetration dependent soil resistance component. The model described the

variation in total horizontal soil resistance force with lateral pipe displacement during

arbitrary loading history. This model is given as:

F - (W F ) + (BeA)
H- 11 s - L -D- 2-10

Where

FH = horizontal force (per unit pipe length)

Ws = net pipe weight (per unit pipe length)

FL = hydrodynamic lift force (per unit pipe length)

Ii = 0.20 coefficient of sliding resistance

B = 39.3 for monotonic loading

31.4 - for cyclic loading «5%D)

15.7 - for large displacement cyclic loading

c = remoulded undrained shear strength of the clay

A = one half the area of the vertical cross section of the soil displaced by the pipe

D = pipe diameter

This model is basically an empirical formula which combines a purely Coulomb friction

model with a purely cohesive term for side resistance (berm). Apart from the difficulties

in mixing these two approaches, the cohesive term would appear not to correspond to a

plasticity approach to the actual area of shearing. In reality, deformation in soft

saturated clays will be dominated by cohesive yield both for bottom sliding and lateral

resistance. Their results show that increasing clay Cu decreases the lateral soil resistance

since the pipeline would penetrate less into a stiffer soil. This led to their conclusion

that the pipe penetration can be more important than the Cu for lateral resistance. This

Would therefore suggest that increasing the soil strength after the pipe penetration

2-15



Chapter 2 Literature review

should be beneficial to the pipeline stability as the passive soil lateral resistance to

pipeline displacement is enhanced.

Brennodden et al (1989) developed another model based on a similar approach but

using a different method for prediction of the lateral resistance. This was a research

project into pipe-soil interaction conducted by SINTEF on behalf of American Gas

Association (AGA) which resulted in an improved model that captures the effects of

soil strength and load history on the lateral resistance shown as:

2-11

Where FH is the total soil resistance force, FF is the sliding resistance force and FR is the

penetration dependent soil resistance force. The first term in the equation depends on

the net vertical pipe load, while the second term depends on the pipe penetration and the

strength of the soil. The first term mimics the sliding resistance of the pipe along a flat

surface. The second term (FR ) captures the soil resistance due to the failure of the

p~ssive soil wedge in front of the pipe. Their results show that the passive force term

plays a dramatic role in the total resistance. They gave a general equation to describe

the sliding resistance force (FF) as:

2-12

Where 1.1 is the frictional coefficient, about 0.2 for clay soils, Ws and FL are the

submerged pipe weight and hydrodynamic lift force respectively. This was followed by

energy calculation where the energy dissipated in the soil during arbitrary pipe loading

was correlated with the pipe embedment.

Ayers et al (1989), described a body of research conducted by the American Gas

Association (A.G.A.) which led to development of analytical models for both the

hydrodynamic and pipe-soil interaction forces to be implemented in a pipe dynamic

software package.

Verley and Lund (1995) have also proposed a simplifi~ation of the soil lateral

resistances based on dimensional analysis. They showed that the most important
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parameters are the soil Cu and the submerged weight and less important are the

amplitude of hydrodynamic cyclic force and pipeline diameter. Using existing database

from previous studies, they proposed that the soil resistance contributed by a given pipe

embedment, Z, could be estimated by:

Fr-= 4.13G-o.392 zl.31
D

2-13

The peak breakout force, F, is normalised by the pipe diameter and soil strength.

Bruton et al (2006) recalibrated the model proposed by Verley and Lund (1995) for

breakout resistance based on a new database and proposed a prediction of the breakout

force as:

h 0 2 ' 3 Zstartup
breakout = . V + -;===;=~ D,j cu_lnvert/yD

2-14

Where

v' = normalised vertical load = VIDcu

Zstartup = initial pipe embedment at startup

hbreakout = normalised breakout force =Hbreakou/Dcu

Cu and yare the soil undrained shear strength and the soil unit weight respectively.

Cathie et al.(2005) have reviewed the methods available for predicting the soil lateral

resistance to pipe movement and emphasised the dependence of the soil resistance on

the undrained strength of the soil which would ultimately determine the level of initial

pipe penetration in the soft seabed. All the above discourse on lateral soil resistance

appear to suggest that any means of increasing the strength of the soft seabed soil would

considerably enhance the capacity of the soil to resisting pipeline movement.

2.5 Axial resistance on the seabed

The estimation of axial resistance of the seabed to pipe movement is a vital component

of the lateral buckling design and axial walking assessment. The depth of pipe

embedment, the rate and duration of pipeline loading, pipeline displacement and the

relative roughness of the pipe-soil interface are determinants of the magnitude of the
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axial resistance (Cathie et al.,200S; Oliphant and Moconochie,2007). It is therefore

quite vital to assess the axial resistance of a partially buried pipeline at the design stage

as this controls pipeline expansion and affects end connections and spool pieces.

A comprehensive discourse on the estimation of the soil axial resistance was presented

by Oliphant and Moconochie (2007) where they proposed different equations for

estimating axial resistance for the drained and undrained soil responses in clay as:

Undrained conditions, peak axial resistance

2-15

Where Ac is the contact area which is computed as:

A -1 (2Zt) D dc = Dcos 1- D ' for 0 < zi ~ 2 an,

nD D
Ac = ""2 ' for z, > 2

2-16

2-17

Where, z, is the initial depth of embedment of the pipe, cup is the peak undrained shear

strength at the pipe invert, l1p is the adhesion factor which is dependent on the relative

roughness of the pipe, typically between 0.7 and 1 for very soft clay. They reported that

the peak axial resistance in very soft clay is typically mobilised with an axial

displacement of 3 to Smm.

Similarly, the residual undrained axial resistance can be estimated as:

2-18

Where the letter, r, denotes residual value.

cur is the undrained shear strength at the axial displacement of approximately 10cm

which is related to the average sensitivity of the soil near the mudline, Sf, expressed as:
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2-19

The authors suggested the assumption of residual conditions for a cyclic axial

displacement of the pipe with changes in direction and also advised of the use of

adhesion factor at the residual displacement of 1.0.

Drained conditions

For the drained soil response, Oliphant and Moconochie (2007) and Cathie et al. (2005)

suggested the use of the Coulomb friction model for estimating the peak drained axial

resistance of soil to pipe displacement given as:

2- 20

Where IJ is the friction coefficient

/-lp = f p. tancI>p= tan op

fp = resistance factor

(/>p = peak drained angle of shearing resistance

bp = peak interface friction angle

W' = operational submerged weight of the pipe and

FL = the lift force

Cathie et al. (2005) reasoned that for thermal expansions, the temperature increase is

likely to take several hours which may justify the need for drained analysis. The

selection of appropriate friction coefficient, IJ also depends on the soil friction angle and

the properties of the soil-pipeline interface which could be obtained from various

guidelines used in the offshore industry.

2.6 Behaviours of high temperature high pressure pipelines

Three different modes of pipe displacements are associated with HTHP pipelines

namely: upheaval buckling, lateral buckling (or Euler (bar) buckling) and axial walking.

Only the last two are associated with pipelines laid directly on the seabed without

trenching and burial. This is because the surface-laid pipeline, unlike the buried

pipeline, offers less resistance to pipeline lateral displacement and therefore the pipeline

moves only laterally or axially (directions of least resistance). Figure 2 - 9 is an
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illustration of the mechanism of axial walking of pipeline while a typical buckled

pipeline is shown in Figure 2 - 10. Figure 2 - 9 explains the pipeline's relative

movement towards the steel catenary risers (SCR).

While the solutions to the problem of upheaval buckling have received significant

attention (Craig et aI.,1990; Ellinas et aI.,1990; Kim and Chang,1999; Andreuzzi and

Perrone,2001; Nielsen and Lynberg,2004; Liming et aI.,2007), relatively little has been

done on the lateral buckling and axial walking phenomenon. These include (Preston et

aI., 1999; Perinet and Frazer,2006; Perinet and Simon,20 11).
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Figure 2 - 9: Illustration of pipeline walking (after Perinet and Frazer, 2006)

,
, . Original track of as-laid pipeline

Figure 2 - 10: Side-scan Sonar Image of a Lateral Buckle
(After Bruton et al (2006)
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2.6.1 Impact of pipe instability due to HTHP conditions

The pipeline movement caused by HTHP operating conditions may induce stress on the

pipeline and affect connections to other subsea structures such as manifolds and

connection spools. The continuous production cycles of start up and shut down may

result in cyclic loading on the pipeline which could affect the structural integrity of the

pipeline with time. The SAFEBUCK project (Boreas Consultant Limited,2002) is one

major research programme to investigate the stability and design of submarine pipelines

for lateral buckling. Significant results were gained from this project to improve the

understanding of the pipe-soil interaction responses. However, uncertainties still exist

on the soil deformation behaviour and the pipe-soil response during the large amplitude

of pipe displacement associated with the lateral buckling phenomenon such as the

problem of determining the extent of the berm of soil formed which has an effect on the

resulting lateral resistance of the soil to pipe motion effects.

Recent studies on pipe-soil interaction and pipeline instability (Bruton et al.,2006; Carr

et al.,2006; Bruton and Carr,2007; Bruton et al.,2008) suggested that a more efficient

design method is to relieve the axial stress by controlling the formation of buckles along

the pipeline. This is an on-bottom engineered buckling approach referred by pipeline

operators as "snake-laying". By adopting the snake-laying configuration, some sections

of the pipeline are designed to buckle when the pipe is loaded as it tries to expand on

the seabed, hence relieving the axial stress imposed on the pipe. Some sections are

designed to be relatively stable otherwise the whole approach will be seriously

undermined.

The greatest uncertainty with this design approach is in the prediction of the pipe-soil

response and the deformation pattern and the resulting soil lateral resistance during pipe

movement. This solution is extremely sensitive to pipe-soil interaction as well as

sensitive to the local lateral resistance (Bruton et al.,2006).

In order to ensure that the buckles are formed as predetermined, the ambient soil

strength must be sufficient to resist pipe motions at a location designed to be relatively

stable (Bruton et al.,2008). Typical displacement to mobilise the lateral friction is about

O.lD (Lyons,1973; Brennodden et al.,1986; Wagner et al.,1989). Marine clay in most

offshore regions are characterised by very low strength and high compressibility. A

method of soil improvement aimed at increasing the strength of this ambient soil around
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the pipeline stands to increase the efficiency of this design. The greatest uncertainty

relating to modelling, designing and enhancing pipeline stability is the uncertainties

relating to pipe-soil interaction (Bruton et al.,2008).

Different approaches are available for the initiations of the engineered buckles at

predefined regular intervals. This initiation will result in the compressive load on the

pipe being released at the predefined buckle sites. The effectiveness of this arrangement

however lies on the prediction of the lateral resistance at the buckle sites. This is

currently very challenging in adopting this novel design approach. Not only that, the

very soft clay with its very low effective stress makes the expected soil lateral resistance

to pipe displacement quite unpredictable and sometimes lower than expected (Bruton

and Carr,2007). This is why the need to understand the pipe-soil interaction is vital in

the lateral buckling (LB) design approach. In addition, a means of improving the soil by

way of strengthening the soil near the proposed lateral buckle location may enhance the

effectiveness of this design approach.

According to (Bruton and Carr,2007), initiation of buckle is governed by three

parameters: (i) the effective compressive force in the pipeline which is a function of

axial resistance; (ii) out of straightness (OSS) features; and (iii) lateral breakout

resistance. Lateral breakout resistance is generally the largest uncertainty.

Different techniques are employed to initiate controlled lateral buckling:

• Snake lay where the pipe is laid with regular tight-radius route curve

Vertical upset - pipe is raised from the seabed using sleepers

Local weight - pipe weight is reduced or increased to create local buoyancy or

localised heavy pipe.

TyPical lateral buckling design involves controlled lateral pipe movement of 5 - 20 D,

and up to 1000 thermal cycles during the life of the pipeline (White and Cheuk, 2008).

Prediction of soil resistance is complicated by the formation of soil berm at the either

side as the pipe as the pipe is displaced laterally.

•
•

A study by Bruton et al. (2006) involving the sweeping of a model pipe section

(283mm diameter, 99mm long) on a model seabed generated a typical large
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displacement pipe-soil lateral friction response associated with the large amplitude of

displacement typical of lateral buckling. Both E-grade kaolin clay and clay soil

retrieved from the Gulf of Guinea offshore West Africa were used in this study. The

primary aim of this study was to evaluate the large displacement cyclic responses that

occur during lateral buckling. The model pipe was allowed to ride up over or embed and

displace the soil in its path. The force displacement response was shown to depend on

the soil and the pipe properties. The influence of the berm consolidation during pipe

displacement was also evaluated. According to Bruton et al. (2006), four different

stages of the pipe-soil interaction were investigated. These include the (1) embedment

of the pipeline at installation (2) breakout during buckle formation, (3) the large

amplitude displacement as the buckle forms and, (4) the repeated cyclic behaviour of

the pipeline. Figure 2 - 11 (a and b) shows typical profile for monotonic and cyclic

lateral force-displacement responses respectively. The numbers on Figure 2 - 11

represent the various stages in the force displacement response during pipe motion as

defined by the authors as:

(0 - 1) First load monotonic breakout, a function of depth of initial pipe penetration.

(1 - 2) Suction release phase

(2 - 3) Steady accretion phase, characterised by the gradual increase in soil resistance

(3 - 4) Steady state residual friction

(5 - 6) Cyclic breakout including suction release from the established static soil berm

(6 - 7) Cyclic phase with a fresh active berm accretion in front of pipe

(7 - 8) Berm reaction which increases as the berm is established over initial cycles

(9 - 10) Cyclic breakout (as 5 - 6)

(10 - 11) Cyclic accretion (as 6 - 7)

(11 - 12) Cyclic berm interaction (as 7 - 8)

Another large-scale test performed at the Norwegian Geotechnical Institute (NGI)

(Dendani and Jaeck,2007) considered both static and cyclic loading. They reported a

peak mobilisation distance of between 0.3 and 0.8% of the pipe diameter, While 2 to

3% was reported for heavily penetrating pipe.

From available literature, the only studies that included the berm effect during the large

amplitude of pipe displacement are from (Bruton et al.,2006) and (White and

2-23



Chapter 2 Literature review

Cheuk,2008). While White and Cheuk (2008) did attempt to assess the berm formation

by modelling the amount of soil scraped from the trough behind the moving pipe, the

real time measurement of berm and heave geometry was not conducted as part of the

pipe-soil interaction studies. The model they proposed made use of data from the

geotechnical centrifuge (Bruton et al.,2006; Cheuk et al.,2007).There is therefore need

to account for the real time assessment of the development of the soil berm in order to

fully understand the behaviour of the soil and soil deformation during the pipe motion.
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Figure 2 - 11: A typical large displacement pipe-soil lateral friction response for a)
monotonic and b) cyclic lateral force-displacement response respectively

after Bruton et al. (2006)

2.7 Properties and distribution of marine clays soils

The sea floor is increasingly being used as a supporting surface for offshore structures

including pipelines thus necessitating a need for better understanding of the engineering

properties of these soils (Ferguson and Bell,1977; Le et al.,2008). Typical deep water
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field offshore clays are often made of very soft clays usually characterised by low shear

strength, high water content and high compressibility resulting in considerable

challenge (Bruton et al.,2008). These soft deposits occur in layers ranging from a few

meters in thickness to depths of 30m below the seabed (Srinivasaraghavan and

Rajasekaran,1994).

Another challenge with offshore clays is the apparent variability in the geotechnical

properties from one region to the other. For instance Le et al. (2008) reported that the

geotechnical properties of the soft Gulf of Guinea clays differ significantly from those

of the equivalent Gulf of Mexico or North Sea clays.

2.7.1 Level of saturation of marine seabed soils

Due to the biogenic and petrogenenic activities in the seafloor which generate gaseous

compounds (Floodgate and Judd,1992), marine soils are rarely gas-free and hence their

levels of saturation are rarely 100% (Le Tirant,1979; Wheeler, 1988, 1988; Sills and

Wheeler,1992). Evidence of shallow gas may be acquired remotely by geophysical

surveyor from geochemical analysis of the drilling mud, seabed sediment or seawater
)

samples (Judd and Hovland,1992). The gas, wh,n present in the seabed, can either be in

the form of solution in the pore water, undissolved in the form of gas-filled voids, or as

gas hydrates. However, it is mostly the presence of gas in the gas-filled voids that have

significant effects on the engineering properties of the seabed soils (Sills and

Wheeler,1992). For example, (Wheeler,1988) reported that gas can have the effects of

either increasing or decreasing the undrained shear strength of the clay depending on the

consolidation history and the ambient water pressure. Sills and Wheeler (1992) have

concluded that in addition to a reduction in strength due to the presence of gas, the soil

is also likely to experience an increase in compressibility due to presence of the gas in

its void spaces. They also reasoned that the presence of gas in the seabed soil is

Particularly more severe during cyclic loading of the offshore pipeline on the soil either

from hydrodynamic or operational induced (elevated temperature and pressure). This

Can cause a significant build of the pore pressure and a corresponding reduction in

strength. Table 2- 1 is a summary of geotechnical properties of some marine deposits.
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2.8 Mineralogy and structure of clay soils

Clay soils are a naturally occurring fine-grained aluminium silicate group of minerals.

Some clay also contains alkalis and or alkaline earths as essential components

(Bowles,1979). Its main distinguishing characteristic from other soil types is its particle

sizes « 0.002 mm) and mineralogy. Clay minerals are predominantly crystalline in that

the atoms composing them are arranged in definite geometrical patterns. Apart from

them being electrochemically active particles, they also exhibit characteristics of

affinity for water and resulting plasticity not exhibited by other small particle minerals.

There are two fundamental building blocks (Figure 2 - 12) for clay minerals structures.

One is the silica unit in which four oxygens form the tip of a tetrahedron and enclose a

silicon atom. The other unit is the one in which an aluminium or magnesium (and

sometimes Fe, Ti, Ni, Cr, or Li) atom is enclosed by six hydroxyls having the

configuration of an octahedron.

a

:~; and0 =Oxygens • and 0 = Silicons

btfJ····....·............ ",

:~; and 0= hydroxyls • =Aluminium, magnesiwnetc.

Figure 2 - 12: Fundamental building blocks for clay minerals (a): Silicon tetrahedron
and silica tetrahedral arranged in a hexagonal network (b): Octahedral unit and

sheet structure of octahedral units (after Mitchell and Soga, 2005)

The different types of known clay mineral groups are formed by the different patterns in

which atoms are assembled into tetrahedral and octahedral units, followed by the

formation of sheets and their stacking to form layers (Mitchell and Soga,2005). All the

Possible combinations of these basic units to form clay minerals produce a net negative

charge on the exterior of the clusters. A soil-water suspension will thus have an alkaline

reaction (pH >7) unless the soil is contaminated with. an acidic substances

(Bowles,1979).
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It is possible for isomophous substitution of silicon or the aluminium by lower valency

ions as well as disassociation of hydroxyl ions to occur within a clay-electrolyte system

resulting in the clay particle surface carrying residual negative charges. The negative

charges caused the cations present in the water in the voids spaces to be attracted to the

particles due to the net negatively charged surface but at the same time they tend to

move away from each other because of their thermal energy. The net effect is that the

cations form a dispersed layer adjacent to the particle, the cations concentration

decreasing with distance from the surface until the concentration becomes equal to that

in the general mass of the water in the void space of the soil as whole. This is the double

layer and is discussed in detail in §2.10.1.1.

Some of the most common clay minerals are kaolinite, illite, and montmorillonite.

However, only kaolinite is discussed further as it forms the kaolin soil sample employed

in this study. The reader is referred to Mitchell and Soga (2005) for a comprehensive

discussion on the various clay minerals while the extensive regional distribution of clay

minerals in the world ocean is discussed in Griffin et al (1968).

2.8.1 Kaolinite group of clay minerals

Kaolinite is the predominant clay mineral of kaolin clay soil (Griffin et al.,1968). Its

structural unit consists of alternating layers of silica tetrahedral with tips embedded in

an alumina (gibbsite) octahedral unit (Figure 2 - 13a) resulting in a 1:1 basic unit. The

combined silica-gibbsite sheets are held together relatively strongly by hydrogen

bonding. Kaolinite is characterized by a low activity compared to other clay minerals

(Bowles,1979). A diagrammatic sketch of the kaolinite structure is shown in Figure 2 -

l3b. The structural formula is (OH)g Si4Al40JO and the charge distribution is indicated in

Figure 2 - 13c. There is very limited isomophous substitution within a kaolinite

structure (Craig,2005; Mitchell and Soga,2005).
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Figure 2 - 13: Kaolinite mineral; (a) Schematic diagram of the structure of kaolinite (b)
Structure of kaolinite (c) Charge distribution on kaolinite

(After Mitchell and Soga, 2005)

2.9 Current mitigation methods for pipeline stability

The interest in the pipeline stability problem which initially revolved around

instabilities due to environmental (mainly hydrodynamic) loadings, and currently on

operational loadings (HTHP behaviour), have attracted considerable attention and

significant research initiatives as outlined in §2.2. Some measures which have been put

in place to mitigate against this phenomenon are outlined and reviewed in this section.
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2.9.1 Trenching and burial of pipeline

The simplest and most straightforward way of stabilising a pipeline against buckling is

to dig a trench and bury the pipe (Palmer et al.,1988; Palmer et al.,1990) and thus

remove the need for lateral buckling. This option is often difficult and expensive

especially in deep waters, and has prompted a search for alternative options where

laying of the pipeline directly on the seabed has been recognised as an easy and cost

effective option. A number of alternative methods proposed and currently in use are

discussed below:

2.9.2 Increase the submerged weight of pipeline

This is aimed at engendering greater penetration of the pipeline into the seabed during

installation. This could be achieved by increasing the concrete coating or increasing the

pipe wall thickness. This is not economic because of the cost of the extra material with

attendant increase in installation costs. Griffiths et al. (2007) argued that apart from the

attendant installations issues for the lay-batch which might be associated with this

option, another challenge is the possibility of increasing the severity of the pipeline out-

of straightness (OOS) shape, which could induce unplanned buckling of the pipeline.

2.9.3 Adjusting pipe weight at specific locations along its length

By adjusting the weight of the pipeline either by increasing or reducing the pipeline

buoyancy, the initial vertical out-of-straightness (OOS) of the pipeline is reduced. This

is one way of preventing the formation of the lateral buckling in the first place rather

than controlling it. It is also possible to attach external in-service structures to the

pipeline at predetermined locations where out-of-straightness is envisaged in order to

keep the OSS as low as possible along the length of the pipeline.

2.9.4 Preheating the pipeline

Although this method is mainly used for controlling upheaval buckling, it is also

applicable to surface-laid pipelines. In this method, the pipeline is preheated and

allowed to move to relax the compressive force induced by the elevated temperature and

pressure conditions (Craig et al.,1990). The pipeline is continuously flushed with hot

Water causing it to buckle laterally to a stable position before putting into operation. By

this method, tensile pre-stress is induced in the pipeline which stretches the pipeline
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before it is commissioned. However, the success of this solution depends on the soil

resistance being able to sustain the compressive load associated with the induced lateral

buckling.

2.9.5 Increasing the vertical load on the pipeline

Stabilisation of the pipeline by dumping rocks over the pipeline is also considered by

some pipeline operators (Griffiths et aI.,2007). This can either be continuously over the

entire length of the pipeline or intermittently at predefined intervals (Ellinas et aI.,1990).

This option can be improved by the use of concrete mattresses (Figure 2 - 14) or placing

geotextile over the pipe before the rock is placed. The geotextile helps to increase the

surface area of support offered by the rock dumps. When the pipeline begins to move,

the weight of the rock on the geotextile on either side of the pipeline holds the

geotextile down and keep the pipeline in place. However, the long term stability and

performance of geotextile in a deep offshore environment has not yet been proven

experimentally.

Figure 2 - 14: Concrete mattress (from: www.aterra-tj.com)

2.9.6 A reduction in the operating temperatures and pressure

This is a sort of passive mitigation approach where the causative agents for pipeline

instability are eliminated or reduced considerably within the safe limit of the pipeline

operation. However, reduction in the operating temperature is generally impracticable

unless a heat exchanger is added to the system. This is a complex arrangement and not

normally considered by deep offshore pipeline operators as it would lead to an increase

in the pressure needed to pump the oil through the pipeline because of the increased

friction between the oil and the pipe.
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2.9.7 Reduction of the wall thickness of the pipeline

The main aim of this is to reduce the temperature component of the effective axial force,

N, which is the driving force for the pipeline buckling as shown in Equation 2 - 11 . N is

expressed as:

N = 1lR2(1 - 2v)p + 21lRtEa8 - T

Where

N = the effective axial force (compressive positive)

R = the mean radius, (l/2)(outside diameter -t)

t = the wall thickness

p = (internal pressure - external pressure)

E = the elastic modulus (Young's modulus)

T = the residual effective tension left after construction has been completed, but before

2- 21

the pressure and temperature change.

v = Poisson's ratio

e = (operating temperature-installation temperature)

The temperature component is thus proportional to the wall thickness of the pipeline.

2.9.8 Increase in the lay tension

This is to increase the tensile stress in the pipe (i.e. it stretches the pipe). The lay tension

is the tensile force applied to the pipeline during its installation on the seabed. Residual

lay tension balances part of the compressive force induced during operation, and

therefore reduces the resultant driving force. The assumption here is that if sufficient

pre-stress was applied during installation, the residual operation compressive stress

could be kept within acceptable limit that could prevent pipeline buckling. A difficulty

is that residual tension cannot be managed directly, but must be calculated from the lay

conditions, and that its continued presence in the pipeline depends on there being no

lateral movements. This approach is therefore highly unpredictable hence rejected by

most pipeline operators.

Penner and Frazer (2006) and Perinet and Simon (2011) presented a range of solutions

for controlling axial walking of pipelines. These include the use of jumper Ispools and

use of suction anchors. The suction anchors are initially placed on the seabed before

being connected to the pipelines after pipeline laying operation. The anchors hold the
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pipeline in place and prevent it from moving axially. Various types of anchors were

suggested which ranged from anchoring the pipeline end to suction anchors, midline

restraint or use of chain restrains. This option is both expensive and unreliable in deep

offshore sites. Others means suggested by the authors to increase pipeline axial and

lateral stability include: increasing the depth of pipe embedment on the seabed by

progressive free flooding of the pipeline. This would potentially result in higher lateral

soil resistance.

2.9.9 Use of sleepers

This approach is normally used in conjunction with the lateral buckle design approach

to be discussed in §2.9.10. Basically, it involved laying pipelines over pre-installed

sleepers to initiate engineered lateral buckling deformations at pre-determined locations

in order to initiate lateral deformation (Bruton et al.,2008). The sleepers provide an

artificial vertical OOS features. The complexity of this approach as well as installation

challenges is depicted in Figure 2 - 15.

200m

Figure 2 - 15: Control oflateral buckling using sleeper: a) sleeper before deployment;
b) pipeline on sleeper on the seabed and c) schematics of the sleeper arrangement

(after Perinet and Simon, 2011)
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While these methods may significantly reduce pipe buckling and walking, the cost

implications of their application in terms of vessel lay cost and additional elements

needed are challenging. The actual cost of individual mitigation options depends on the

specific situations and field conditions. Perinet and Simon (2011) reasoned that this cost

can be as high as 10% of the overall cost of the flow line system. For instance, the cost

of additional elements (example as in the use of sleepers, Figure 2 - 15) can

substantially increase not only the operational cost of the flowline, but also the vessel

time during installations. Furthermore, they may not be feasible in very deep waters.

2.9.10 Snake lay (Lateral buckling design)

This is the most current and cost effective way of controlling lateral buckling. It

involves laying the pipeline in a snake configuration on the seabed without trenching

(Vermeulen, 1995; Bruton et al.,2006). This configuration helps to reduce excessive

bending of the pipeline by effectively releasing most of the compressive loads on the

pipelines at predetermined locations along the line with no additional structures

required. The effectiveness of this method lies on the ability of the seabed soils to resist

lateral displacement of the pipeline at the "no movement locations" (Figure 2 - 16). It

therefore requires a better understanding of the interaction between the seabed and the

pipelines during the large-amplitude cycles (White and Cheuk,2008). Prediction of this

soil resistance is made complicated by the formation of berm on either side of the pipe,

as soil is pushed ahead of the pipe during lateral movement. Designing for lateral

buckling typically involves controlled lateral pipe movements of 5-20 diameters, and

up to 1000 thermal cycles during the life of the pipeline (Bruton et al.,2006).

A major setback of this method is the level of uncertainty in predicting accurately soil

deformation characteristics and pipe-soil behaviour especially at the no-movement

locations during pipe lateral travel. A typical configuration of the snake lay mitigation

method is shown in Figure 2 - 16. Perinet and Simon (2011) appear to be the main critic

of this option. Their concerns focused on the low resistance offered by the very soft

seabed soil to pipeline displacement and inherent out-of-straightness in the pipeline

which could present difficulty and uncertainty in predicting pipe-soil response during

pipe movement. These they believe could affect the formation of the curves at the

predetermined locations thus potentially undermining or complicating the entire design

option.
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Figure 2 - 16: Snake lay configuration (modified after Perinet and Simon, 2011)

Even with the above stated challenges, the snake lay approach is currently being used in

different projects in West Africa (Bruton et al.,2008). Preston et al. (1999) also reported

the use of the snake lay configuration to control the compressive stress due to elevated

operational temperature and pressure in pipeline location at the UK North Sea.

2.10 Overview of methods of improving foundation soils

Foundation soils which support civil engineering structures may sometimes not exist in

the state and conditions adequate to safely support the structure. That is, the anticipated

soil capacity may be below the expected state for safe long term function of the super-

structure. In such cases, there may be a need to improve the conditions of the foundation

soil. This is referred to as ground improvement in geotechnical engineering practise.

The concept of ground improvement is not new in geotechnical engineering. It basically

involves the re-engineering of the properties of the foundation soil by either introducing

other elements to the internal fabric of the soil, replacing some portion of the soil with

improved soil or the application of external loading to the soil with the aim of

rearranging its fabric. The actual design option is mostly based on the specific site

condition and the experience of the engineer.

While improvement in onshore geotechnical practice is relatively simple and well

researched, soil improvement at the offshore sites poses considerable challenge and has

received less attention. In this section, the existing ground improvement methods

employed in the onshore sites and those used in the offshore sites are reviewed briefly.

A review of the existing literature on the available technique~ for soil improvement

indicates that they can be broadly grouped into three areas.
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2.10.1 Soil improvement by the application of loading to the soil fabric

2.10.1.1 Pre-compressions or preloading

Pre-compression is the process of placing and removal of dead loads to speed up soil

compaction and settlement prior to the construction phase. The idea is to accelerate the

rate of dissipation of pore water pressure and increase the effective stress of the in-situ

soil. This method is best suited for compressible silts, saturated clays and organic clays

and peat. In offshore operations, soils at the sites of jack up rigs are sometimes

preloaded to increase their capacity and reduce the tendency to excessive leg penetration

which might lead to failure. Preloading is not common in offshore operations. However,

one reported case of its application is given by Yan and Cao (2005).

2.10.1.2 Vacuum preloading

Research interest in vacuum induced consolidation has attracted considerable attention

mostly from onshore applications (Bergado et al.,1998; Mohamedelhassan and

Shang,2002; Chu et al.,2008; Saowapakpiboon et al.,2011). The system works by using

atmospheric pressure as a preload to maintain pressure beneath a sealing membrane

using vacuum-generating equipment. During the process. a negative pressure is

produced by high speed water jetting from a water pump. It is most effective for low

permeability and high compressive saturated soil by accelerating the rate of

consolidation. A typical illustration of vacuum preloading is shown in Figure 2 - 17.

Sand. drain

. Separation
_11

Figure 2 - 17: Field illustration of onshore vacuum preloading
after Qian et al.,(1992)

Under-water vacuum consolidation

An attempt to extend the application of vacuum consolidation under water was

postulated by Thevanayagam et al.(1994) The general assumption they had was that by
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applying the vacuum below the water table and used in conjunction with dewatering,

the equivalent preload could increase significantly. However, a full-scale pilot study has

not yet been conducted to investigate this. Although Thevanayagam et al.(l994)

suggested the possibility of using this technique for under-water ground improvement, it

is not likely to be suitable in deep offshore sites due to the difficulty in setting up the

treatment process. No direct application of this method in deep offshore sites is reported

in the literature.

2.10.1.3 Vibro Compaction/vibro floatation

This is the rearrangement of granular soils particles into denser configuration by

powerful deep vibrators. In this case, the load is applied laterally to the soil fabric in

situ. A foundation soil is judged suitable for compaction based on its grain size analysis.

In addition, the soil must have adequate permeability to allow quick drainage of the

pore water during the compaction process. Sand and gravels can be compacted by the

deep vibratory compaction method, while clay and silt soils cannot be compacted by

vibration alone. This option is not suitable for most offshore site which is characterised

by high compressibility and low permeability.

2.10.1.4 Dynamic compaction

This method is employed in the onshore ground improvement but rarely in offshore site

locations. It essentially involves repeatedly impacting the ground surface with a

predetermined weight from a predetermined height to increase the density of the

foundation soil. This method could be applied to improve both cohesive and non-

cohesive foundation soils. However, significant improvement is more likely to be

achieved in granular soils than in cohesive soils.

2.10.2 Soil improvement by replacement

2.10.2.1 Vibro-concrete columns

This is the product of vibro-replacement where the in-situ non compactable cohesive

soil is improved by means of special deep vibrator. It is similar to vibro-compaction

technique which is mainly applied to granular soils to densify them by means of

vibration resulting in direct in-situ soil improvement. Vibro-concrete column is similar

to the continuous flight auger (CFA) piles. However, the advantage it has over the CFA

2-37



Chapter 2 Literature review

is that almost all the soil is displaced in-situ rather than dug. Enlarged column base and

variable column diameter can also be achieved.

1 2 3 4 5

Installation of vee
1. Locate riQ over vee pont.
2. Vibrate down to depth.
3. Start the concrete pump.
4. Build the enlilrged base.
5. pun wth constant speed while observng Iimt value.s for concrete pump pressure.

Figure 2 - 18: Installation ofvibro concrete column
(from http://www.vibroflotation.com )

2.10.2.2 Dynamic replacement

This is another method of ground improvement for treating soft compressive clayey

soils which is adaptable for use in offshore sites. It is similar to the dynamic compaction

technique. However, in dynamic compaction, the granular soil is compacted from the

surface with no need for replacement of the in situ soil. Both techniques have been

employed in offshore sites to increase the bearing capacity of offshore foundations.

Figure 2 - 19 shows the schematics for the dynamic compaction process. It involves

systematically dropping a heavy weight to drive a granular material into soft

compressive cohesive soils (replacing the in situ soil in the process) and to compact the

driven material sufficiently to meet the project design criteria. Hamidi et al.(2010)

reported the first use of (about 30m water depth) dynamic replacement technique to

improve seabed soils.

2.10.2.3 Stone columns

This is a relative old method of soil improvement which could be employed in any soil

condition especially where washout of soil to the surface is to be avoided. A hole is

drilled through the soil by vibration equipment and then filled with stone to increase the

bearing capacity of the foundation soil. This method is diffe~ent from the dynamic

replacement method in the sense that holes are bored into the soil before being filled
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with an improved material whereas in the former, no hole is bored but the soil is being

replaced directly through compaction.

Figure 2 - 19: Dynamic replacement process at offshore site
(after Hamidi et al.,(2010)

2.10.2.4 Grouting technique for ground improvement

Grouting is one soil improvement techniques which has been extensively used to

enhance the capacity of offshore foundations (Domone,1990). Littlejohn (1985) also

reported the application of this technique in pipeline stability. Essentially, this method

involves the injection of high-fluid (to ease pumping) materials which could be variable

compositions of Portland cement/pulverised fuel ash, chalk and bentonite or sodium

silicate, depending on the site requirement, into a soil formation to change the physical

and chemical characteristics of the foundation soil. The grout material must be

sufficiently cohesive to replace sea water and also be able to help stabilise the wall of

the bore during excavation. Grouting can provide increased soil strength and rigidity. A

considerable amount of laboratory research work was conducted in the 1970' s before

the adoption of the technique in the offshore area (Domone,1990).

The two most used injection grouting techniques are jet grouting and compaction

grouting. In jet grouting, a jet of high pressure grout material is forced into the soil

fabric to cause erosion of the soil structure and replace the soil particles with the grout

material. The grout material, with any remaining in-situ soil, would mix together to

form an improved soil mass with greater strength than the surrou~ding soil.
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Compaction grouting on the other hand involves injection (at relatively low rate) of

highly viscous grout material (Figure 2 - 20) that does not permeate the native soil thus

compressing the surrounding soil resulting in a controlled growth of a grout bulb mass

(Boulanger and Hayden,1995). The injected grout pushes the soils to the sides as it

forms a grout column. This is the option most adopted in the offshore (Figure 2 - 21).

Stop1 SIop2 SIop3

!:::::==,: I:IIII
Figure 2 - 20: Schematic of compaction grouting: a) soil cross section and sequence, b)

plan view of square treatment (after Boulanger and Hayden, 1995)

tower ~o .ea aurfacc

(l-2m. thick)

Figure 2 - 21: Use of grout for offshore foundation system
(After Domone (1990)

2.10.2.5 Lime columns

In this method, holes are drilled into the ground and the soft soil allowed to mix in situ

intimately with the lime to produce columns of material with greater strength and
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stiffness, reduced water content and increased soil density (Rogers and

Glendinning,1997). The column behaves as a conventional pile foundation system

which ultimately improves the bearing capacity of the soft clay. The procedure for

construction of lime column is shown in Figure 2 - 22. This technique has been

suggested by Narasimha-Rao and Rajasekaran (1994) for use in stabilizing soft offshore

marine clays.

2.10.3 Soil improvement by introducing other elements into the soil fabric

2.10.3.1 Lime piles

Lime piles essentially involve drilling holes in the ground and filling them with

specially prepared quick lime without mixing. The quick lime is injected by compressed

air through openings located at the bottom of the drilling casing Figure 2 - 23. This

method is useful for both cohesive and non-cohesive soils.

Up 10 10m

Unslaked
~me

Rotary

Mixing tool
("egg beater")

Figure 2 - 22: Procedure for construction oflime columns
(after Broms and Boman (1979)
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5

Figure 2 - 23: Chemical lime piles installation process
(after Ingles and Metcalf (1972)

2.10.3.2 Deep mixing

Deep mixing is a ground improvement technique which involves mechanically mixing

the soil in-situ with a stabilising agent, usually Portland cement, to achieve certain

improved properties. This technique has been employed in some offshore sites to

improve the in-situ seabed conditions. This is potentially a viable option for improving

the engineering properties of weak cohesive and granular soils and is reported to have

been used in offshore site near Japan (M. A. Ismail,2002). However, the application of

this method in deep offshore sites, currently up to 2000m water depth, would require

special technology.

2.10.3.3 Electro-kinetic (EK) consolidation method of soil improvement

The improvement of soil by EK processes basically entails the in-situ modification in

the physical, chemical and mechanical properties of the soil by the direct application of

electric current through soil using oppositely charged electrode materials. The main

electro-kinetic processes which facilitate these changes, depending on the special

requirement of the treatment process, include: (a) electro-osmosis (EO) (transport of

pore water towards the negative electrodes), (b) electro-phoresis (transport of negatively

charged particles towards to positive electrode), (c) migration or sedimentation potential

(transport of ions toward electrodes) and (d) streaming potential (electrical potential.
induced by movement of water under hydraulic gradient) (Mitchell and Soga,2005).
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The phenomenon of electro-kinetics was discovered over 100 years ago. However, the

earliest geotechnical application of EK to improve soil conditions was conducted by

Casagrande (1949) and (1952) on silt and clay soils. The phenomenon is now well

understood based on extensive studies by, for example, Gray and Mitchell (1967); Gray

(1970); Esrig (1968) Lockhart (1983b), (1983c) and (1983d). EK treatment of soil not

only improves the soil properties but also changes the behaviour of the soil (Lo et

al.,1991). The clay is also over consolidated after the EK treatment indicating that the

effect of the treatment is permanent (Lo et al., 1991).

The earliest use of EK treatment in geotechnical engineering practice initially centred

on improvement of onshore soils with significant research work being conducted to re-

engineer soils for various geotechnical issues ranging from: (a) the use of EK to solve

foundation problems related to weak soils; example, (Bjerrum et al., 1967;

Lockhart,1983d; Barker et al.,2004; Burnotte et al.,2004; Chew et al.,2004); (b) solving

slope and walls stability issues (Glendinning et al.,200S) and (c) increase in the capacity

of pipes (Milligan,199S). In recent times, emphasises has been on the application of the

EK technology to improve the offshore foundations soils. This is reviewed in §2.1.1.S.

Lo et al. (1991) demonstrated that the increase in the soil strength by EK involved the

expansion of the effective strength envelope and increase in the pre-consolidation

pressure. Therefore, the improvement in the engineering properties of the soil would be

permanent. The long term effectiveness of the EK effects was confirmed by Milligan

(1995), who reported that the bearing capacity of 16.Sm long steel H-piles installed in a

silty clay remain unchanged 33 years after the EK treatment.

2.10.4 Interim conclusion on available soil improvement techniques

The soil improvement techniques described can improve the strength and stiffness of

offshore foundation soils but many are not suitable for offshore pipelines. In order to

assess the effectiveness and their applicability to seabed pipelines, the following issues

were taken into consideration:

• The radial zone of influence of a pipeline is small

The lateral extent (J.e, length of pipeline ) of the zone of influence is significant

The technology to operate underwater and at great depth

•
•
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Using these criteria, an assessment of the improvement techniques in terms of their

effectiveness and applicability to offshore pipelines is presented in Table 2- 2. They are

ranked from 1 to 5 with 5 implying most suitable and 1 denoting least suitable.

Assuming total cut-off scores of 8 for the purposes of this assessment, it appears that

pre-compression (e.g. using rock dump), grouting, deep mixing and EK may be

explored further for application to offshore pipelines.

Pre-compression is used to strengthen sea bed soils to control lateral buckling though it

is the weight of the pre-compression material that remains in place that may be more

relevant then the improvement in the soils. Injection grouting could be considered as

the zone of influence of the pressure grouting can be continued. It has been used

offshore to help stabilise platforms. Therefore there is some experience of this

technique offshore. EK, however, is worth investigating further as the zone of influence

can be controlled. Further it may not be necessary to install anything in the seabed.

This implies that it is not necessary to use construction machinery on the seabed. The

aim would be to develop a system that can be part of the pipeline thus installing it as the

pipe is laid. Further EK does not require any additional material or heavy plant,

The EK technology which appears to offers a more excellent option for improving the

seabed soil surrounding pipelines is discussed in detail in the following section.

2.11 Electro-kinetic phenomena in soils

When a direct current is applied across two oppositely charged electrodes embedded in

a saturated or partially saturated soil mass, electro-kinetic processes namely electro-

osmosis (EO), electrophoresis, streaming potential and ionic migration are generated.

The prolonged application of this electrical gradient may not only induce hydraulic

flow, but also cause significant changes in state and properties of the soil and flows

(example, chemical flow) through the soil (Gray and Mitchell,1967; Mitchell,1991;

Mitchell and Soga,2005). Figure 2 - 25 is an illustration of these electro-kinetic

processes and their possible effects on the soil mass. The interplay between the

electrical gradient and the induced hydraulic flow in soil (electro-osmosis) has received

considerable attention in geotechnical engineering within the last 60 years.
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2.11.1 Electro-osmotic phenomenon in soils

The phenomenon of EO was first observed by Reuss (1809) (cited in Lewis and

Humpheson (1973). However, it was not until over 100 years before the practical

significance of this phenomenon was introduced into geotechnical engineering largely

due to the work of Casagrande between 1937 and 1960. A schematic illustration of the

mechanism of EO consolidation is shown in Figure 2 - 25. Several theories such as the

Helmholtz-Smoluchowski theory, the Schmidt theory and the Spiegler theory have been

proposed to explain the phenomenon of electro-kinetics in soils. The Helmholtz-

Smoluchowski theory is one of the earliest and the most widely used (Mitchell and

Soga,2005).

Electrical gradient induces
water flow

(B) Streaming potential

(e) Electro-phoresis

Electrical gradient induces
particle movement

(cl) Migration potential

P3I1ide movement generates
electrical potmtial+ ..

Particle
mm.~ent

Movement of water Ullder a
hydrz:dlc gr,adient induces an

electrical potential

Figure 2 - 24: Electro-kinetic phenomena (after Mitchell and Soga, 2005)
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The Helmholtz and Smoluchowski theory is based on the double layer (DL) theory

Figure 2 - 25: Schematic of electro-osmotic consolidation

2.11.1.1 The double layer concept- Helmholtz and Smoluchowski theory

which attempts to relate analytically the electrical and the flow parameters of electro-

kinetic transport and presents a mathematical treatment of electro-osmotic flow based

on the flow through capillaries. The property of the diffuse DL is an important

controlling factor for the structural development, hydraulic conductivity, and other

physico-chemical and mechanical properties of soil. Figure 2 - 26 is a schematic of the

DL system showing the nature and distribution of charge particles on clay surfaces. It

shows the surface of the clay particle as being negatively charged and the DL which is

divided into two main layers. The inner wall of the DL is relatively thin compared to the

outer wall with negatively charge ions on the clay surface strongly attached to the wall.

The outer wall on the other hand consists of moveable positive ions.
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Figure 2 - 26: Distribution of ions adjacent to clay surface based on the diffused double
layer concept (modified from Mitchell and Soga, 2005)

Within the diffuse layer there is an imaginary boundary inside which the ions and soil

particles form a stable entity. When the soil particle moves, ions within the boundary

move with it. Those ions beyond the boundary stay with the bulk solution. The

electrical potential difference across this boundary (surface of hydrodynamic shear) is

the zeta potential. Immediately adjacent to the double layer is a portion of free water

(within the external phase). When a direct current is applied, the mobile positive ions

will be attracted towards the cathode, dragging with them the free water molecules

causing a general movement of water from the anode to the cathode. This is the theory

on which the principles of electro-osmotic dewatering of saturated or partially saturated

soil is based.

Mitchell and Soga (2005) has presented an analytical treatment of the Helmholtz-

Smoluchowski theory which considers a liquid- filled capillary as an electrical

condenser with charges of one sign on or near the surface of the soil particle and

counter-charges concentrated in a layer in the liquid a small distance from the wall, as

shown in Figure 2 - 27. The mobile shell of the counter ions is, assumed to drag water

through the capillary by plug flow. There is a high-velocity gradient between the two
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plates of the condenser. The rate of water flow is controlled by the balance between the

electrical force causing water movement and the friction between the liquid and the

wall. If v is the flow velocity and 0 is the distance between the wall and the centre of the

plane of mobile charge, then the velocity gradient between the wall and the centre of

positive charge is v/o; thus, the drag force per unit area is I] dv/dx = nv/o, where 11is the

viscosity. The force per unit area from the electrical field is (filE/ilL, where (J is the

surface charge density and ilE/ilL is the electrical potential gradient.

Mobile Cations

1---.1 + + +~+ + + + + + + + + + + + + + ---+ Forces

Figure 2 - 27: Helmholtz-Smoluchowski model for electro-kinetic phenomena
(after Mitchell and Soga, 2005)

Mitchell and Soga (2005) presented analytical solutions using the above parameters

using the analogy with Darcy's law, the flow through a capillary is:

2- 22

Where

qA = flow rate through a bundle of capillaries

ie = the electrical potential gradient

A = total cross-sectional area normal to the flow direction

ke = the coefficient of electro-osmotic hydraulic conductivity expressed as

2- 23
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Where

s is the zeta potential

D is the relative permittivity, or dielectric constant of the pore fluid

n = porosity of the soil

It can be seen that Equation 2 -12 is similar to Darcy's law of fluid flow. According to

the Helmholtz-Smoluchowski theory and Equation 2 - 13, ke should be relatively

independent of pore size contrary to the case of hydraulic conductivity, ki;

Values of the electro-osmotic conductivity, k.; have been published by many

investigators on many different types of soil. These are summarised in Table 2- 3.

Casagrande (1952) suggested that for most practical applications a value for, ki; of 5 x

io' cms-I per Volt/cm would suffice.

Table 2- 3: Coefficient of electro-osmotic conductivity (after Mitchell and Soga, 2005)

Material Water content ke in 10-5 Approximate
(%) (cm2/sec-V) kb (cm/sec)

London clay 52.3 5.8 to-IS

Boston blue clay 50.8 5.1 10-1S

Kaolin 67.7 5.7 10-1

Clayey silt 31.7 5.0 to-O

Rock flour 27.2 4.5 10-1

Na- Montmorillonite 170 2.0 10-Y

Na-Montmorillonite 2000 12.0 to-IS

Mica powder 49.7 6.9 io'
Fine sand 26.0 4.1 io'
_Quartz powder 23.5 4.3 to-4

As quick clay 31.0 20.0-2.5 2.0 x 10-1S

Bootlegger Cove clay 30.0 2.4-5.0 2.0 x 10-1S

Silty clay, West Branch 32.0 3.0-6.0 1.2 x 10-1S -6.5
Dam x io'
Clayey silt, Little Pic 26.0 1.5 2.0 x 10-'
River, Ontario
Marine silty clay 37 6-9 10-1

Sources:
1 - 10 - Casagrande (1952)
11 - Bjerrum et al. (1967)
12 - Long and George (1967) -look for all sources
13 - Fetzer (1967)
14 - Casagrande et al. (1961)
15 - Eggestad and Foyn (1983)
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Table 2- 3 indicate that EO presents an excellent method of removing pore water from

soil of low conductivity such as clay or silt given the fact that high hydraulic

conductivity soils give lower electro-osmotic conductivity (less than 5 x 10-5 ems" per

Volt/cm suggested by Casagrande, 1952). This implies that the treatment is not likely to

be effective on a coarser grained material such as sand with a hydraulic conductivity of

k h = 10-4cms-l. However, the EO effect in low conductivity 'Soils can be significant

(Casagrande, 1952).

2.11.2 Development of pore pressure in soils due to EK treatment

The application of direct current can result in a variety of changes within the soil mass

such as alteration of the clays minerals and the deposition of clay minerals. However,

hardening by consolidation is the fastest to take effect and most effective in changing

the soil strength (Esrig,1968). This is dependent on the generation of negative pore

water pressure with the concomitant increase in the effective stress within the soil mass.

Esrig (1968) argued that the application of an electric field in a soil mass may lead to

the development of both positive and negative pore water pressures and that the rate of

development of this pore pressure can be predicted. However, the nature of pore

pressure developed depends primarily on the applied voltage, on the electrode

configurations and on the boundary conditions at the electrodes. This is discussed later

in this section.

The theoretical framework presented by Esrig (1968) on the development of pore

pressures in soils due to application of a uniform potential field is the one most adopted

in assessing the development of pore pressure during electro-osmotic consolidation.

This theory, which has been validated by Wan and Mitchell (1976), is based on the

assumption that flow caused by an electric field may be superimposed on flow caused

by a hydraulic gradient. The effect of boundary conditions of pore water pressure as

proposed by Esrig (1968) is discussed in the next section.

2.11.2.1 Boundary conditions/or pore pressure development

The definition of the drainage regimes as applicable to conditions at the electrodes

during EK treatment could be either an open or close system depending on the flow of

water. Open drainage conditions are considered to exist if an electrode is open to the

atmosphere or hydrostatic pressure, such that no excess pore pressure can exist at the
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electrode, while a close drainage exist if an electrode is sealed such that no passage of

fluid can take place along the length of the electrodes and excess pore pressure may

develop. Three cases that could develop depending on the drainage conditions are

shown schematically in Figure 2 - 28 and discussed in details below.

Case I: Anode and cathode open with free access to water

For this case both the anode and the cathode have free access to water (Figure 2 - 28a).

Esrig (1968) proposed the following equation for the development of pore water

pressure in a soil:

2- 24

Where:

u,= pore water pressure due to EO

VAF maximum voltage

k; = electro-osmotic conductivity

Yw = unit weight of water

v= voltage at any particular point

L = Distance between the electrodes

x= distance from the cathode

This suggest that the term in parentheses in the Equation 2 -19 must be zero in a

uniform field implying that the pore water pressure Ue, would also be zero. Therefore, in

the presence of a uniform field with open boundaries that have free access to water, no

pore water pressures should develop.

Case II: Anode closed, cathode open with free access to water

In this case the anode is closed while the cathode is open (Figure 2 - 28b). During EO,

water flows from the anode and drains at the cathode. Since there is no water to

replenish the soil at the anode, negative pore pressure will develop. Esrig (1968)

proposed Equation 2 -20 for the prediction the magnitude of the negative pore pressure

that could developed given this drained condition.

2- 25
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Equation 2- 20 therefore suggests that in an incompressible medium, a closed anode

produces negative pore water pressures at any point that are proportional to the applied

voltage at that point.

Case III: Cathode Closed, Anode Open With free access to water

This scenario is illustrated in Figure 2 - 28c and is based on the fact that water is

available at the anode but no drainage is permitted at the cathode. During EO, as water

moves from anode to cathode, positive pore water pressures are generated at the

cathode. Esrig (1968) proposed Equation 2 -26 for predicting the magnitude of the

positive pore pressure that could be generated.

Ue = :: Yw(V max - V) 2- 26

2.11.3 Factors influencing the efficiency of the electro-osmosis treatment

The efficiency and the economic viability of the EK treatment is dependent on the

amount of water transferred per unit charge passed which may vary over several orders

of magnitude. This is a function of a number of factors including the soil type, water

content, the nature of the electrolyte concentration, the type of electrodes, electrode soil-

contact and the electrode layout. These have been the focus of most EK studies aimed at

improving the efficiency of the EK treatment and potential application in the field.

A method of evaluating the electro-osmotic efficiency was proposed by Gray (1966)

and Gray and Mitchell (1967) This is based on the assumption that electro-osmotic

water flow occurs if the momentum transfer (or frictional drag) between the ions of one

sign and their surrounding water molecule exceeds that caused by ions of the opposite

sign. No EO occurs in free electrolyte solutions (.i.e., if the cations and the anions are

present in equivalent concentrations). The greater the concentrations of cations and

anions, the greater the net drag on the water in the direction toward the cathode. This

net flow of water determines the efficiency of the treatment process.
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Drainage regime Boundary condition.s Voltage distribution Pore-water pressure
distribution

a Cathode: jAnode Cathode Anode Cathode
x = 0, V = 0, u, = 0 + - + -,,

Case L Anode and > ,, ~,; - -
cathode open with Anode: " - , ee Zero el!I:06S pore,, '", .,

0 , u water pres sure 1lcfree access to water x = L, V = Vmilt, u, =.0 >
,, J1,- - -

L • -Distaace.x 0 L Distmce x 0
b Cathode:

lAnode Anode Cathode
O,V=.o, us= 0 Cathodex= + + -

Case II: Anode - ", ~ lNegative pore~ ,, "dosed, cathode Anode:
,,

Iwater pres su:r;1t'",; - '", -, ~.open with free x = L, V =Vmax,
., ",

~
,, til, "access to water velocity of flow = 0 ,, "-, '",- -L Distaice.x 0 L Distmce.x 0

c Cathode: t\Dode Cathod!! Anode Cathode+
Case III: Cathode x = .0, no flow at the - +, -,, Pos~Closed, Anode boundary >

,, pore '",, -!J water pries.s1l:I";"1lc.t'
Open With free Ii - - , .,-, ee '"access to water Anode: 0

,. 8 "> ,, J1, '"x = L, V=Vma:, Ut =.0
, ~"Dis~OL -L Distance. x 0

Figure 2 - 28: Pore pressure development at different electrode and drainage and
boundary conditions (modified from Esrig, 1968)

Apart from the double-layer theory presented, the Donnan (1924) theory can be

employed to describe the equilibrium ionic distribution in fine-grained materials. This

deals with the equilibrium distribution of water and ions between two phases. A case of

a sodium clay immersed in a sodium chloride solution is presented in Figure 2 - 29

while a theoretical model for predicting water transport by EO showing the effect of

different activity (A) clay minerals based on this Donnan concept is shown in Figure 2 -

30.

Figure 2 - 30 therefore implies the efficiency of the EO treatment process is a function

of the concentration of the ions (i.e., the electrical conductivity) of the soil mass which

in tum is dependent on the water content and the cation exchange capacity (cec) of the

soiL Gray and Mitchell (1967) studies indicated that electro-osmotic efficiency

decreases with a decrease in water content and an increase in activity of the soiL

However, in the practical sense, the type of electrode materials and the configurations of

these electrodes would determine how efficient the treatment process would be

(Mohamedelhassan and Shang,2000; Rittirong et aL,2008).
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Figure 2 - 29: Schematic illustration of Donnan distribution of ions between external
and internal phase for clay saturated in sodium chloride solution

(After Gray and Mitchell, 1967)
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Figure 2 - 30: Schematic prediction of water transport by EO according to Donnan
concept (after Gray and Mitchell, 1967)

Mitchell and Soga (2005) argued that the treatment would be ineffective in soil with a

high specific conductivity (SC) as the required current to establish a voltage gradient for

the treatment will be too high. SC by definition is the reciprocal of the specific

resistance of the soil measured between two electrodes which is a good measure of the

concentration of ions and salinity of the soil water system and thus the material's ability

to conduct an electric current. The specific conductivity of a saturated soil depends on
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several properties of the soil such as porosity, degree of saturation, conductivity of the

pore water, mineralogy and fabric.

According to Mitchell and Soga (2005), field applications on soil with specific

conductivities in the range of 0.02 to 0.03 siemens have proved successful while

treatment on soil with specific conductivity of 0.25 siemens was not effective. Also, if a

high current is used, the generation of gas, heat and electro-chemical effects becomes

excessive. However, studies. on marine clays (Mohamedelhassan and Shang,2000;

Micic et al.,200!; Mohamedelhassan and Shang,200!; Micic et al.,2002b,2003c) with

high pore fluid conductivity were successful when current intermittence and electrode

polarity techniques were employed.

2.11.3.1 Effect of electrode materials

One main challenge in applying EK in an offshore environment is the high conductivity

of the seawater which means that high current density is required to drive the process.

The implication of this would be the rapid corrosion of the electrode materials used,

especially the anode. It is therefore necessary to assess the relative performance of

specific electrode material with respect to the composition, the mineralogy of the seabed

soil and the conductivity of the seawater. The amount of voltage loss and electrode

reactions at the soil-electrode interface is a function of the nature of the electrode

material used. Therefore, electrode material that is likely to perform best are those that

have the minimum voltage loss at the soil-electrode interface, resist corrosion and afford

the maximum coefficient of electro-osmotic conductivity, k; (Mohamedelhassan and

Shang,2000). The voltage drops at the soil-electrode interfaces are more sensitive to the

anode than the cathode material. The actual selection of the electrode material for field

application should be a function of cost and environmental impact (Mohamedelhassan

and Shang,2000; Rittirong et al.,2008).

In the experimental investigation conducted by Wrixon and Cooper (1998), three

electrode materials namely steel, aluminium and copper were installed vertically in the

marine soil. The aim was to increase the bearing capacity of a model offshore casing.

They noted that each of the electrodes performed differently during the EK treatment.

The steel electrode performed relatively well while the aluminium electrode performed

poorly at high voltages, but yielded the highest shear strengths at low voltages. They
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suggested that aluminium electrode should be preferred for offshore application due to

the high current involved, low voltage is likely to be best suited. They concluded that

copper electrodes appear to be the best performer and should be used as a coating

material during offshore EK consolidation operations as it could reduce the current

demand as compared to either steel or aluminium electrodes. In the Kim et al (1997)

study involving iron and aluminium electrodes installed in a marine clay for EK

investigation, they reported that a more homogenous degree of strength was obtained

using aluminium electrode than using iron electrode, although both metals produced

significant increase in the soil Cu. They attributed this to the generation of precipitates of

iron oxides, aluminium oxides and aluminium hydroxides.

2.11.3.2 Current intermittence and polarity reversal

Polarity reversal is defined as the reversal of electrode or current directions while

current intermittence is defined as the application of a pulsed voltage at predetermined

intervals during the EK treatment process. Several researchers have investigated the

effects of polarity reversal and current intermittence on the efficiency and effectiveness

of the EK treatment. (Lockhart and Hart,1988; Mohamedelhassan and Shang,2000;

Micic et al.,2002a).However, there appear not to be a general agreement as to the effects

on the EK. While some researchers like Lockhart and Hart (1988) concluded that

current intermittence has no significant impact on the EK process, others (Lo et

al.,2000; Mohamedelhassan and Shang,2000; Micic et al.,2002a) have shown from their

laboratory investigations that current intermittence could enhance the efficiency of the

EK treatment. It could be possible that this inconsistency is due to the state of the soil

sample used in the various tests.

2.11.3.3 Effect of electrode configuration and electric field intensity

The efficiency of the EK treatment depends to a large extent on the layout and the

configuration of the electrode materials used. This is what determines the generation of

the current and the current density which drives the EK process. Lo et al. (1991)

demonstrated through a pilot test that pumping of expelled water at the cathode can be

even eliminated by the appropriate design of electrodes and polarity reversals. This in

agreement with Micie et al. (2002e) who demonstrated that through optimisation of the

electrode arrangement and implementation of the reversal techniques, the soil strength

can improve significantly. The selection of electrode configuration is vital in the design

of efficient EK treatment. Soil cementation due to EK treatment has been reported to be
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closely related to the electric field intensity which in tum is controlled by the electrode

layout (Shang et al.,2004; Rittirong et al.,2008).

2.11.3.4 Electro-chemical effects during EK treatment

Electro-chemical changes are always associated with EK in soil-water electrolyte

system. The changes in the engineering properties of soil during EK treatments have

been attributed to not only electro-osmotic consolidation but also due to electro-

chemical hardening of clay around the soil-structure contact (Micic et al.,2002b).

Bjerrum et al (1967) reported that EO dewatering alone could not explain the increase in

shear strength of quick clay after EK treatment. Other researchers (Shang and

Dunlap,1998; Mohamedelhassan and Shang,2000) have all agreed as to the influence

and contribution of chemical alteration in modifying the soil during EK treatment. This

effect is due mainly to the migration of ionic species under the concentration gradients

and continues to happen even when the electric field is withdrawn, which makes EK

treatment a progressive process with time (Micic et al.,2002b). As the anodes

decompose, they participate in the electro-chemical hardening of the soil. Thus the

increase in strength may be higher than can be attributed to consolidation of the soil.

(Kim et al.,1997) also reasoned that if sufficient aluminium hydroxides or iron oxides

were excited when aluminium or iron electrodes were employed in the EK treatment,

the geotechnical properties of the clay soil could be changed due to cementation effects.

In some cases, the addition of foreign chemical agents into the soil-electrolyte system

could accelerate the EK treatment process. Shang et al. (2004) conducted an EK

treatment with addition of calcium chloride (CaCh) in the system and reported that

cementation was generated in calcareous silt by the application of an electric field

through the soil.

2.11.3.5 Effect a/soil type

The electro-osmotically driven water flow during EK treatment is dependent on the

mineralogy of the soil, the electrical conductivity and the hydraulic and electro-osmotic

conductivity of the soil. The typical hydraulic conductivity of soils suitable for electro-

osmotic treatment is in the range 1 x 10-10 to 1 x 10-9m/s, whereas the coefficient of

electro-osmotic conductivity is in the range of 1 x 10-9 to 1 X 10-8 m2/sV. To generate
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electro-osmotic consolidation, the ratio of kJkh (mN) should be higher than 0.1

(Mohamedelhassan and Shang,2000).

Grundl and Michalski (1996) conducted a test using naturally occurring calcite plus

illite-smectite rich glacial till and a kaolinite - water system, which is usually used in

most EK tests, and reported that the results from the two test differs significantly. The

mode of current conduction differs markedly also. They found out that the mechanism

of flow stoppage in kaolinite was due to the cessation of current flow while electric

current continues to flow through the till after the water cease to move. This was

attributed to the presence of the different minerals in the clays causing the electrolytic

system to respond differently to the application of an electric field. In fact the presence

of calcite in the natural clay prevents the formation of low pH conditions in the

sediment pore water.

2.11.4 Energy requirement

According to Mitchell and Soga (2005), if the amount of water moved per unit charge

passed (GalIhlAmp, or moles per faraday) is denoted as k., then

2- 27

Where the quantity k, varies over a wide range unlike k., The power consumption P is

given as

2- 28

For LIE in volts and I in amperes, the power consumption per unit volume of flow is

given as

p
-= AE X 10-3 (in kWh)

k, 2- 29

K, is related to the k, by the following relationship
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2- 30

And because L1Ell is resistance and L1LI (resistance x A) is specific conductivity o,

Equation 2 -17 in terms of electro-osmotic efficiency, k, (in gallons/amp/hour) becomes

k, = ke
l (J

2- 31

This indicates the k.; is a sensitive function of the electrical conductivity (o) of the soil.

Energy consumption per unit volume

Micic et al. (2002a) presented an equation for calculating energy consumption per unit

volume of treated soil during a test, We (Wh/m3
) as:

2- 32

Where:

Va = applied voltage (V)

T = current intermittence ratio

tRi = treatment time under 1 polarity (h) (i = 2, ... NR);

NR = number of polarity reversal (NR = 1 for no reversal)

1(t) = electric current as a function oftime, t (A)

v = volume of treated soil, =A x H (rrr'); A = treatment area (m2) and

H = electrode insertion depth (m)

ton"t = _..::..:.:...._
ton+to{{

2- 33

Where;

't = current intermittence ratio

ton = power-on time (min)

tOff= power-off time (min)

For a constant applied DC current, 't = 1
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2.11.5 A review of the application ofEK treatment to offshore soils

The application of EK to offshore foundation soils is a relatively new move. The

successful applications of EK reported in §2.l0.3.3 involved soils of low salinity, i.e.,

the salt content in the pore water was less than 2g NaCVI or the equivalent. In contrast,

marine clays are characterised with high salinity, up 30g NaCIII (Mohamedelhassan and

Shang,2000). The earliest reported attempted case of the application of EK in the

offshore was to increase the driveability of offshore piles in which pore fluid was forced

to migrate towards the tips of the pile during penetration (Rose,1979). This technique of

driving piles led to an investigation on the possibility of applying EK to increase the

bearing capacity of soft marine sediment to support offshore casings as reported by

Wrixon and Cooper (1998). They conducted an EK treatment on jet-drilled casing

models and found that the bearing capacity of the model increased by 1000% within

hours.

One major challenge in the use of EK in the marine environment has always been the

high conductivity of the sea water which has significantly limited the application of this

technology in marine soil in the past. The high conductivity of the pore fluid results in

excessive power consumption and severe corrosion of the electrodes, especially the

anodes, due to chemical reactions which would ultimately reduce the efficiency of the

EK treatment. Srinivasaraghavan and Rajasekaran (1994) reported that the high salt

contents of the marine clay could produce beneficial effects on the effectiveness of the

EK process if chemical additives are added during the treatment process. However, the

economy of such approach would be unfeasible in deep offshore field applications.

The earliest comprehensive study on the application of EK to offshore foundations

started with the work of Lo et al.(2000) and Micic et al.(2001) in which marine clay

from a coastal basin was dredged and tested for the possibility of electro-kinetically

increasing its strength and for possible application in enhancing the capacity of offshore

foundations. A significant increase in the undrained shear strength (cu) and

corresponding decrease in water content of the treated soil were reported.

In an attempt to enhance the effect of surcharge preloading consolidation of a marine

clay soil dredged from an offshore site, Micic et al. (200 I) conducted laboratory tests

involving the combination of the surcharge preloading with EK treatment. They
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reported up to 145% increase in the undrained shear strength and about 125% decrease

in the water content of the soil when EK was combined with surcharge preloading than

when the preloading consolidation was used alone. This significant change in the soil

notwithstanding the high salinity (high conductivity) of the marine soil was achieved by

the use of intermittent current.

The effects of polarity reversal and current intermittent current were investigated by

Micic et al. (2002a). They concluded that the application of the intermittent current

significantly reduced the energy consumption and electrode corrosion of the EK

treatment but without reducing the effectiveness of the soil strength strengthening. In

addition, they concluded that polarity reversal can generate a more uniform increase in

the soil Cu during the EK treatment. They reported 185% and 80% increase in the soil Cu

at the anode and the cathode zones respectively.

Micic et al. (2002a) and Micic et al. (2002b) conducted an extensive series oflaboratory

EK tests on marine clay recovered from a coastal basin. The tests involved both the EK

phase and the post treatment phase where the ionic diffusion in the treated sample were

studied. The primary aim was to strengthen the soil around an embedded steel plate

which simulated a part of an offshore foundation, thus enhancing the bearing capacity of

the plate. They reported a significant change in the soil properties. In addition to the

decrease in the soil plasticity at the anode, the soil Cu increased from 4.2kPa to 16.5kPa

during the EK phase and a further increase to 21kPa after 45 days exposure to allow for

chemical diffusion phase (i.e., diffusion under the influence of a gradient in chemical

composition). The soil water content also dropped from 94.3% to 74.2%, but increased

to 84.9% after the 45 days diffusion phase. These changes were attributed to the

combined action of electro-osmotic consolidation and chemical alteration of the soil

sample during the EK treatment. The post treatment tests on the soil samples using the

mercury intrusion porosimetry technique indicated that EK treatment causes a decrease

in the pore size diameter of the treated soil which indicated precipitation of amorphous

compounds.

Micic et al. (2003a) also presented results of a study using EK tests involving a large-

scale testing facility to investigate the effects of EK treatment on the loading carrying

capacity of a model skirted foundation embedded in a marine sediment and reported a
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three-fold increase in both the load carrying capacity and the Cu of the treated soil. The

soil-structure adhesion force was also increased as indicated by the clay strongly

adhering to the wall of the model foundation due to increase bonding promoted by the

EK processes in the soil. The effects were assessed though series of pull-out, water

content and undrained shear strength tests conducted on both the treated and the control

samples.

Micic et al. (2003b) reported a study which involved an investigation on the effect of

EK in soft marine clay embedded steel plate which simulated part of a skirted

foundation. From the results of the small-scale tests, a large-scale model (Figure 2 - 31)

with a cylinder simulating a model skirted foundation was studied. The aim was to

assess the effect of the EK treatment on the improvement of the load-carrying capacity

of a model skirted offshore foundation embedded in soft marine clay. The dimensions

of the small-scale test were 26.5xl1.9x25.4 cm (LxWxD) while the large-scale test had

dimensions of 150x75x70 cm (LxWxD). The load carrying capacity of the foundation

was evaluated via axial loading and pullout tests. From the results of the investigation,

they concluded that the load-carrying capacity of the model skirted foundation increased

by a factor of three while the soil Cu increased by a factor of seven mainly due to the EK

effects. In addition, the axial loading tests indicated a three-fold increase in the adhesion

coefficient after the EK treatment.

The above studies on typical marine soil were all successful and promising. However, it

should be noted here that while Esrig (1968) theorised that open electrode arrangement

(i.e., the one that allows egress and ingress of pore fluid) does not promote the

generation of negative pore pressure and hence little consolidation due to EO, most of

the above studies on offshore EK involved an open electrode arrangement. Therefore, it

can be suggested that even in the open electrode arrangement, significant improvement

to the soil properties could still depend on the electrode layout.
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Figure 2 - 31: Large-scale testing facility used in EK treatment of clay around a skirted
foundation model (Micic et al.,2003b)

This improvement is possibly due to development of suction as well as electro-chemical

effects on the soil (Hamed et al., 1991; Acar et al.,1992; Eykholt,1997). In addition,

changes in ionic concentration and pH can result in a non uniform electric field. The

resultant non uniform field could generate negative pore pressures in the soil (Acar et

al.,1994). Summary of electro-kinetic test conducted to enhance the capacity of offshore

foundations is presented in Table 2- 4.
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2.12 Summary of literature review

From this review of literature, it is evident that although many authors have attempted

to investigate the problem associated with pipeline instability, not much work has been

done to solve this problem. Even in the reported studies on the pipeline instability, some

level of divergence exists in both the assumptions employed and the reported

conclusions. There is also the argument on the best approach to be used for assessing

pipe-soil interaction responses. While some researchers such as Lyons (1973) and Hesar

(2004) advocated the use of numerical approach as the best method, others such as

Verley and Lund (1995), Bruton et al. (2006) supported the use of empirical curve

fitting approach which relies mostly on results from previous laboratory studies.

While there appears to be a relative agreement amongst researchers as to the influence

of depth of pipe embedment on the soil lateral resistance, other parameters such as rate

of pipe displacement, pipe diameter and coating show considerable variance amongst

researchers. Lyons (1973) concluded that lateral resistance of clay decreases with

increasing pipe diameter, increases with pipe submerged weight and that the frictional

coefficient increases with the weight of pipe and decreases with increasing pipe

diameter and is higher for bare pipe than coated pipes while Verley and Lund (1995)

concluded that pipe diameter has less importance on the lateral resistance of the soil.

There is also little reported on the influence of the rate of pipe displacement on the

ensued lateral resistance although Wantland et al. (1979) concluded on no influence of

the rate of pipe displacement on soil lateral resistance. The displacement of pipeline

before soil failure has not received much attention apart from the work of Wantland et

al. (1979).

All workers agree to the existence of high level of uncertainty in predicting the initial

embedment of pipeline into the seabed which is attributed mainly to the challenge of

estimating the soil loadings during the pipeline installation process. There appears to be

no conclusive solutions on this issue at present. Although various equations are in place

in most cases they are on the conservative side; the actual pipe penetration is mostly

greater than expected. The Verley and Lund's (1995) equation still offers the best model

for pipe penetration estimation. Discrepancies between the outcomes from the various

approaches of predicting pipe initial embedment could be due to the selection of the

appropriate soil strength for the analysis. The review also indicates that all workers
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agree on the dependency of the soil lateral resistance on the strength of the soil thus any

means of increasing this strength would enhance the capacity of the pipeline to

movement.

The greatest uncertainty in pipeline design is the one relating to the pipe-soil interaction

especially the deformation characteristic of the soil during large amplitude of pipe

displacement. While White and Cheuk (2008) have attempted to predict the additional

resistance offered by the berm of soil using plasticity approach from the failure of the

soil in front of the pipe, the actual real time study of the generation of the berm was not

included and none of the past researchers have addressed this in their laboratory studies.

The laboratory studies conducted by Bruton et al., 2006 which studied the effect of

berm consolidation on soil lateral resistance did not involve real time studies of the

berm generation. This present study would attempt to bridge this gap in addition to

investigating some of the other parameters mentioned above.

The instability problem associated with operation conditions of the pipeline is well

established. Some mitigating options are available to reduce the risk of pipeline

buckling and although they may reduce the instability of pipeline, they are expensive

and not feasible in deep waters. In addition, none of them deal with the modification of

the soil ambient properties.

Currently, the use of engineered lateral buckles has become a generally accepted and

frequently used in the industry. However, this approach depends on the ability of the

soft seabed soil to resist pipe displacement at a predefined location. Electro-kinetic

phenomenon is one of the methods employed in geotechnical engineering to improve

the engineering properties of weak soils and may prove potentially to be used to

enhance the engineering properties of the very soft offshore seabed.

It has been demonstrated through recent studies (Mohamedelhassan and Shang,2000;

Micic et al.,2002a; Micic et al.,2003b; Rittirong et al.,2008) that EK can be applied to

increase the capacity of offshore foundations. However, the review of literature

indicated that no study has been conducted to investigate the use of EK on subsea

pipelines. This research was therefore set out to investigate the feasibility of using EK

to reduce the risk of subsea pipeline instability.
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EXPERIMENTAL METHODOLOGY

3.1 Introduction

This research focuses on the development of the application of electro-kinetic

phenomenon to increase the stability of subsea pipelines, as well as studying at a large-

scale, pipe-soil interaction during large cycle pipe displacement. The primary aim of this

study is to mitigate against lateral buckling and axial walking of offshore pipelines which

is normally associated with high temperature and high pressure pipelines. To assist in this

study, a number of pieces of equipment were designed and fabricated both at small-scale

and at large-scale. The chapter is divided into two major sections covering mfterialS and

methods. The first section covers the application of electro-kinetic processes to enhance

subsea pipeline stability while the second section covers large-scale pipe-soil interaction

test. A summary of all tests conducted is presented at the end of each section.

3.2 Design philosophy and overview of the testing programme

The main philosophy behind the test set up was to model as closely as possible a partially

embedded pipeline on the seabed in two dimensions. It was decided to use small scale

tests as this was an initial study of the topic and the small scale test would allow a

relatively rapid test programme enabling a range of parameters to be investigated in a

reasonable time. The geometric arrangements and materials of the tests were designed to

reflect expected practical arrangements (depth of embedment, soil strength, loading rate

etc). The larger scale tests were designed partly to confirm if the results of the smaller

scale tests were applicable at a larger (nearly full size) scale and to permit a more detailed

study of the soil deformation behaviour during pipe displacement, albeit of a more

limited range of parameters.
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In both test series EK was applied to the soil, the soil response monitored and then the

pipe generally subjected to vertical, lateral or axial displacement while the force -

displacement responses were monitored. The soil bed was prepared as a uniform,

homogenous layer which was felt to be fairly representative of a soft seabed. Given the

relatively small extent of the influence of pipelines the assumption of uniformity was felt

to be reasonable, although not necessarily realistic. One typical clay type was chosen to

limit the range of variable to be tested.

The existing applications of EK offshore as noted from the literature review were taken

into consideration during the design of the research in an attempt to ensure the findings

would be applicable. The small-scale tests were conducted in a small perspex tank which

was opened to the surface. A plastic pipe was used to model the pipelines as offshore

pipelines are normally non-conductive. The arrangement of the electrodes around the

pipeline was designed to allow for ease of installation and to represent a feasible

arrangement in line with existing technology in the offshore pipeline

Different types of electrode materials were investigated to identify the one with

maximum efficiency. During the treatment, the consolidation of the sample was inferred

from a dial gauge attached to the pipe while the electrical parameters were recorded

manually. Only one soil type was used in all tests. A small rig was designed and

fabricated to apply the various loadings of the pipe on the soil. The design philosophy of

the small rig was to simulate the various pipe displacements during buckling.

The larger scale pipe-soil interaction tests were conducted in a reinforced steel tank lined

with perspex sheets. At the top of the tank was a support frame which was connected to

the pipe section and was able to generate controlled lateral displacement of the pipe

section via a stepper motor. The resistance offered by the soil during the pipe movement

was measured by a load cell while the vertical and the horizontal displacement of the

pipe were measured by a draw wire displacement sensor and a posichron displacement

sensor respectively. Results from all the sensors were automatically recorded by a logger

connected to a pc. Different variables were investigated for the pipe-soil interaction

responses. The displacement of the pipe was controlled to minimise end-effects which

ensured that the soil deformation and the force-displacement responses could be

modelled as a plane strain problem (two dimensions). Kaolin clay was used in all tests to
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model the seabed. The soil sample was prepared in one batch but remixed and re-

characterise before each test. The main task involves measuring the soil resistance of a

pipeline that is partially buried in a model seabed during the pipe displacement and the

real time measurement of the soil geometry and its deformation in 2D during the pipe

displacement.

3.3 The equipment for the small-scale EK tests

In order to investigate this process in relation to pipeline stability, a number of pieces of

equipment were designed and fabricated. The primary emphasis was on the reduction in

water content of the soil around a model pipeline, increase in effective stress of the

seabed as well as increase in the pipeline-soil adhesive force in order to increase the

breakout force of a partially embedded model pipeline. In this section, a series of electro-

kinetic tests were conducted on a kaolin clay soil model seabed using an embedded

model pipe section which simulates a section of an offshore pipeline is presented. The

materials used in the experiments are discussed first, followed by the test procedures and

programmes. Some of the limitations of the experimental procedures are highlighted for

further improvement.

3.3.1 Materials

3.3.1.1 The clay soil used

Selection of the test material

The selection of test material for this research was based on the following considerations:

(a) its suitability for electro-kinetic treatment, (b) its consistency in terms of known

physical and chemical compositions and, (c) potential ease to work with and produce a

consistent and easily controllable tests samples that are identical in all tests and which

can potentially be compared with previous studies. Although this study is aimed at

modifying offshore marine clays, typical offshore soils in sufficient quantity could not be

obtained within the time frame of this research due to logistical reasons. In addition, the

variability in the properties of these marine soils as well as varying compositions

between offshore locations (see §2.3.3) makes the choice of kaolin clay a suitable option

for this preliminary studies. This material has been used in previous laboratory studies

and kaolinite is a common constituent of many real clay soils.
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Commercially available Polwhite E grade kaolin, a pure form of clay was therefore

chosen for all the tests. This grade of kaolin was selected because it has a more uniform

(in terms of its composition obtained from various sites) physical and chemical properties

than most natural soils and has been reported in the literature to be suitable for electro-

kinetic treatment given its chemical and geotechnical characteristics (Hamed et aI., 1991 ;

Acar and Alshawabkeh,1996; Eykholt,1997; Karim et al.,2005). This soil is produced

from deposits in Cornwall (United Kingdom) and supplied by Imerys Minerals Ltd, John

Keay House, St Austell, PL25 4DJ, Cornwall, (United Kingdom). The property of this

clay is well documented in, for example, Acer et al (1994), Hamed and Bhadra (1997)

and Lehane et al (2009).

In its natural state, kaolin is white clay comprising mainly of the hydrous aluminium

silicate clay mineral kaolinite. The kaolinite minerals consist of roughly hexagonal, platy

crystals ranging in size from about 0.1 micrometer to 10 micrometers or even larger.

Please refer to §2.7 for a brief review on clays soil including kaolin clay. Figure 3 - 1

presents the particle size distribution characteristics of the material. Its structure is made

up of one tetrahedral silicate sheet (ShOs) linked through oxygen to one octahedral sheet

of aluminium oxide/hydroxyl layer (AI(OHk A summary of the chemical properties of
)

the Polwhite E grade kaolin clay material used in this study is presented in Table 3 - 1,

while a full data sheet from the supplier can be found in Appendix A.
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Figure 3 - 1: Particle size distribution curve for the grade polwhite E kaolin as given in
the manufacturer's data sheet
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Table 3 - 1The chemical properties of the Polwhite E grade kaolin clay*
Property Unit Polwhite E grade

Water content max mass% 1.5
Specific gravity - 2.6

pH - 5.0 ± 0.5
Water soluble salt content Mass% 0.15
Si2 Mass% 50
AL203 Mass% 35

*Values as given in the manufacturer's data sheet

A range of laboratory soil tests were carried out in accordance with B.S.1377:1990,

Methods of Tests For Soil for Civil Engineering Purposes to determine the basic

properties of the kaolin. The soil has plastic and liquid limits of about 33% and 56%

respectively. Its water content varies with depth below the mudline and is about 68 %

when it is allowed to consolidate (due to self weight and depending on the depth of soil)

to an undrained shear strength of about 0.8kPa (from the T-bar test conducted on the

soil), the corresponding unit weight is about 16kN/m3The hydraulic conductivity (kh)of

the kaolin obtained using the falling head method was 4.0 x 10-9m/so The electro-osmotic

conductivity (ke) of the commercial kaolin, found from previous studies, ranges between

1.1 x 10-5 cms-1 per Volts/cm and 5.7 x 10-5 cms-1 per Volts/cm (Bjerrum et al.,1967;

Esrig,1968; Hamir,1997). Casagrande (1952) had also reported a k; value of 5.7 x 10-5

erns" per Volts/cm for a commercial kaolin at 67.7% water content.

3.3.1.2 The small-scale electro-kinetic testing tanks

In the absence of relevant standard methods or apparatus for this type of study since no

research has been published in the area of pipeline stability by EK treatment a 'fish tank'

model (Figure 3 - 2) was chosen for this investigation. The rectangular, open-to-the

surface tank model was considered to be more representative of actual field conditions

than the traditional cylindrical closed cells used in most EK study by various researchers.

In addition, this configuration allowed for post treatment tests to be conducted e.g. the

various pulling tests.
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Figure 3 - 2: Perspex tank models used in the small-scale EK tests

The small test tank was made from transparent perspex sheets to render it non-conductive

to electrical current as well as being hydraulically and electrically impermeable. Its

dimension was 410mm x 210mm x 210mm (length x width x height). These dimensions

allowed for both the geotechnical and pulling tests to be conducted before and after the

EK treatment. A second tank was used for the control test. The results of the control

experiments were compared to those of the EK tests to assess the effectiveness of the EK

treatment process.

3.3.1.3 The T-bar penetrometer and the hand shear vane devices

The selection of appropriate devices for in-situ strength measurement of very soft clays

(Cu -1 -2kPa), which is typical of most deepwater offshore sites, is currently challenging

in geotechnical engineering practice and was therefore given serious consideration in this

research. Currently, the most commonly used in-situ test apparatus in offshore

geotechnical engineering are the vane shear and the cone penetrometer. However, these

two devices have inherent limitations. For the cone penetrometer, there is need for

correction for overburden pressure and pore pressure, while the shear vane suffers from

the inability to measure accurately the <lkPa strength of the upper 1m depth of

deepwater seabed (Randolph and Andersen,2006). In addition the vane shear can only

give strength values at discrete depths.
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The T-bar penetrometer (Stewart and Randolph, (1994» which is a modified form of the

cone penetrometer is considered by offshore geotechnical engineers as best suited for

measuring the strength of the very soft seabed soils. It was therefore considered as the

best tool to characterise the soil shear strength in this study.

a) The T-bar penetrometer

The laboratory T-bar penetrometer used in this study is shown in Figure 3 - 3. It was

designed and fabricated as part of this research for assessing the undrained shear strength

of the bed of clay before and after the EK treatment. The design of the T-bar was based

on the original concept developed by Stewart and Randolph (1994) and gives a

continuous profile of shear strength with depth. The shaft of the T-bar [1], which has a

diameter of9.6mm, was made from an aluminium rod. At the end of the shaft is a 40mm

long cylindrical T-bar [2] of diameter 9.6mm which is attached perpendicular to the shaft

and offers a projected area of 384mm2 during the soil penetration.
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Chapter 3 Experimental methodology

A load cell [3] attached to the top of the T-bar shaft measures the resistance during the

soil penetration while the corresponding travel distance is measured using a draw wire

displacement sensor [4] attached to the supporting frame [5]. The supporting frame has a

threaded rod [6] which allowed the free movement of the travelling block [7]. The T-bar

apparatus is connected to the travelling block and can move up or down depending on the

direction of turn of the rotating handle [8]. During the T-bar testing, each test was

conducted by manually rotating the handle at the top at a rate of 1 revolution per second

which resulted in a penetration (and extraction) rate of2mm/sec.

Finnie and Randolph (1994) suggested through dimensional analysis that the degree of

partial consolidation during continuous penetration is controlled by the non-dimensional

velocity, V = Dr-bar Vr-ba/Cv and that an undrained behaviour will prevail if V> 10 (.i.e.,

Dr-bar Vr-ba/Cv > 10). Dr-bar is the diameter of the T-bar while vr.s» is the velocity of

penetration. Cv is coefficient of consolidation of the soil. In this study, the diameter of the

bar is 9.6mm while the Cv of the kaolin sample is reported extensively in literature to be

around lrnmvs. This results in V = 19.2 which is enough for undrained conditions to

prevail during penetration.

One challenge with the manual way of controlling the vertical penetration of the T-bar

was the possibility of slight variations in the rate of penetration of the T-bar into the soil

arising from inconsistent rate of rotation of the rotating handle (see Figure 3 - 3a).

However, during the tests, this was conducted with great care to ensure uniformity in

results. It is therefore recommended that this T-bar device should be further developed to

allow for use of an automatic displacement control system such as the use of an

integrated stepper motor which could be programmed for specific rate of displacement.

3.3.1.4 The model pipe sections

pvc pipe sections 150 mm long, 50.8 mm diameter and 3 mm wall thickness were used

to simulate a section of an offshore pipeline (shown later in Figure 3 - 13). The pipe

section was designed to be non- conductive and hence has no influence on the flow of

Current within the system during the EK treatment. It was closed at both ends using

perforated non conductive materials that allowed for water to flood the pipe and render it

fully submerged during testing.
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3.3.1.5' The electrode materials

The selection of electrode materials was based on availability of the material, suitability

for electro-kinetic applications and cost. A literature search showed that the material

most used in previous electro-kinetic studies was copper (referred to here as CU-

electrode), due to its conductivity, metallic properties and durability in a saline

environment.

Experiments were conducted first using metallic copper materials as the anodes and

cathodes. Mild steel (referred to here as FE-electrode) and aluminium (referred to here

as AL-electrode) were also used during the later stages of the research. Although

stainless steel was expected to be more suitable in the aggressive saline environment, it

was not considered due to cost implications in practical field applications.

All the electrodes used were 150mm long and 3mm diameter solid metallic rods (Figure

3 - 13). Cathodes normally act as drains since the electro osmosis process forces the pore

fluid to the cathode but in these tests the cathodes were in the 'sea' therefore they did not

act as drains; the surface of the sea bed was the drain.

3.3.1.6 Electrode supporting units

To support and position the electrodes in place during installation for the EK treatment,

two electrode positioning units (Figure 3 - 4) were designed and fabricated for each pipe

section. The units were made from polypropylene materials to render them non-

conductive. The rings were 4mm thick with internal and outer diameter of 50.8mm and

70mm respectively. 3mm diameter holes spaced at an angle of 10° and located 30.5mm

from the centre of the ring (centre to centre) were drilled through the ring. This

arrangement made it possible for the electrode spacing and electrode numbers to be

varied between the tests. The electrodes were horizontally installed parallel to the pipe

section which serves neither as the anode nor the cathode.
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Holes for inserting
the electrodes

Figure 3 - 4: Electrode supporting unit used in the tests

3.3.1.7 The small test rig

To enable the three loading configurations, namely vertical, lateral and axial for the

partially embedded pipeline after the EK treatment, a small test rig (Figure 3 - 5) was

designed and fabricated as part of this study. Referring to Figure 3 - 5, the frame of the

rig [6] was made from aluminium 25mm x 25mm box section with 2mm wall thickness.

From the top of the frame runs a 25mm diameter adjustable vertical rod [7] which holds a

plastic bearing at its base. A flexible wire [8] was used to connect the pipe section with

the load cell via the bearing. The load cell was supported by a 9.6mm aluminium rod

which in tum was connected to a travelling block attached to a supporting frame [5]. To

measure the displacement of the pipe during pulling, the draw wire cable [10] was

securely attached to the travelling block [11]. During the pulling tests, the rotation of the

rotating handle [1] resulted in the movement of the travelling block which in tum moved

the load cell and the attached pulling cable thus moving the pipe. The cable could either

be attached to pull the pipe laterally, axially or vertically. The load cell measured the

resistance of the soil as the pipe is forced to move.

While this arrangement offers a reasonable means of assessing the effectiveness of the

EK treatment of the soil in terms of measuring the change of the soil resistances to the

various pipe motions, some possible sources of inaccuracy of were noted and given

consideration. These range from the error due to the possibility of introducing variable

tension in the pulling cable before the pulling began, twisting and bending of the

supporting stand and rods, friction losses in the bearing etc. Another factor is the
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possibility of the rotation of the pipe section during pulling. These could cause a

discrepancy in the measured pulling force. However, since the same approach was

employed in all the tests including the control tests, the effects on the outcome of the

tests were considered minimal. The use of this test rig is discussed in detail in §3.3.2.7.

3.3.2 Test procedures and programme

The description of the test procedures are presented in this section. A schematic flow

chart of the various steps of the test programmed is given in Figure 3 - 6.

3.3.2.1 Preparation of the kaolin sample/or the EK tests

The test sample was prepared by mixing the dry kaolin with saline water to form slurry

with initial water contents of 70%, 90% and 120%. The saline solution was prepared by

mixing 3% of Nail in 97% water to produce a 30g Nailll solution which is reported as

being typical of pore fluid salinity of marine offshore seabed soils (Mohamedelhassan

and Shang,2000; Micic et al.,2003b; Shang et al.,2004). Most of the tests used 70% water

content while the 90% and 120% water content tests were conducted at the latter stages

of the research to assess the influence of water content on the effectiveness of the EK

treatment process.

To reduce the time of consolidation of the clay in the tank which would be the case if the

soil was prepared from a slurry state, the 70% water content was accepted although this

might not guarantee 100% saturation. However, most seabed soils are rarely fully

saturated due to the presence of gas bubbles (Whee1er,1988,1988; Sills and

Wheeler,1992). The kaolin soil used here has a LL of 56% and at lALL implies the soil

would be considered fully saturated at 78% WC. Therefore the soil was therefore

assumed to be partially saturated and given that seabed soils are rarely fully saturated, the

70% water content is considered adequate to represent typical offshore soils.
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Start

lJ
Soil mixed with saline

water

H
Soil transferred into

testing tank

~
Characterisation of soil

in testing tank

U
Soil flooded with saline

water

EK ..J H Control test;£1

il" ~
Install pipe-electrode Install pipe-electrode

unit unit

H H
Connect to a DC power No power applied

source

HH
Monitor V, I and pipe Monitor pipe
settlement with time settlement with time

UH
Conduct pull-out tests

Conduct pull-out tests

HU Conduct strength and

Conduct strength and WC tests

WC tests H
U Conduct soil and water

Conduct soil and water pH test

nll test )J
U Dismantle test batch

Dismantle test batch

Figure 3 - 6: Flow chart for the small-scale EK test

Mixing the dry kaolin and the saline water was carried out in large batches using an

industrial mixer. Homogeneity was assumed when the slurry appe~red smooth with no

sign of air bubbles. The mixture was then placed into the small test tanks, in small layers
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approximately 20mm thick. After each layer, the soil was mechanically vibrated on a

shaking table to allow entrapped air bubbles to escape. The pouring and shaking was

repeated until the tank was filled to a depth of about 150mm which was approximately

O.013cubic meter of sample. The soil surface was thereafter levelled using a specially

made plastic plate leveller. The tank with the soil sample were transported to the research

laboratory where initial soil characterizations where conducted before the electro-kinetic

treatment.

3.3.2.2 Initial soil sample characterisation

Characterisation of the soil sample involved determining the initial pH of the soil and

surface saline water, the initial undrained shear strength profile and initial water content

profile of the bed of clay. The pH of the soil and water were measured using a hand-held

pH meter in accordance with BS 1377-3: 1990, methods of tests for soil for civil

engineering purposes.

Samples of the model seabed were taken by gently pushing a hollow cylindrical thin-

walled metal tube into the prepared bed of clay. The hollow pipe was about 350mm long,

20mm internal diameter and 1mm wall thickness. The tube was lined with a thin

transparent plastic sheet, cut length-wise, which allowed for the recovered samples to be

easily extruded. Due to the increasing wall friction as the soil is pushed into the tube,

only the first 120mm depth of soil representing 80% of the soil were recovered. It is

assumed that soil at the base of tank was displaced (Figure 3 - 7). To minimise

disturbance to the bed of soil, the initial water content test was conducted at the corner of

the tank on the assumption that the soil was uniform.

The undrained shear strength characterisation of the soil sample was conducted using the

T-bar penetrometer. Sample locations for the water content tests varied between the tests

conducted for lateral and vertical pull-out and axial pull-out tests. The locations were

chosen to allow for investigation of EK effects based on the configuration of the pipe for

each test. Figure 3 - 8 shows the water content sampling location for both vertical and

lateral pull-out test while Figure 3 - 9 show sampling location for axial pull-out tests

only. When testing using different electrode materials, the sampling location for the

undrained shear strength were modified to reflect the observed changes in the soil Cu.
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Figure 3 - 10 and Figure 3 - 11 show the modified test locations for aluminium (AL) and

iron (FE) electrode respectively. These will be discussed in detail in chapter 4.

Depth

-~ 20mm

70mm
t50mm

tOOmm

}

Unrecovered
(JOmrn)

Thickness of the
recovered sample
from the tube

T

Actual
thickness of the
soil in the tank

120mm

1
Figure 3 - 7: Recovered sample depth versus actual thickness of soil in the testing tank

for the water content tests
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Figure 3 - 8: Plan view, a), and elevation view, b) showing water content sampling
locations designed for vertical and lateral pull-out test
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Figure 3 - 11: Modified Cu test locations used to assess lateral zone of influence for test
involving FE- electrodes after EK treatment test series TV-EM

Preliminary tests conducted on a sample at three different locations before the EK test

indicated the w and the Cu profiles as being similar (between 0.4 and 0.6% deviation from

the mean) therefore during subsequent testing, only one sample location for wand Cu was

used. The initial conditions for the rest of the tests were therefore assumed to be

consistent throughout the bed of clay in each tank because the same procedure to create

the test bed was followed.

After the initial soil characterisation, the soil in the tank was flooded with the same saline

water to about 65mm above the soil surface. The actual depth of the water was not

considered critical because the increase in pressure due to the weight of the water above

the soil does not have measurable influence on the void ratio or any other mechanical

properties of the soil. This is mainly because no significant change in effective stress

will take place since the water level is above the soil mass and the soil almost saturated.

3.3.2.3 Preparation of electrode and pipe section

(i) Option analysis

It has been reported that the electro-kinetic treatment of soil is closely related to the

electric field intensity (Mohamedelhassan and Shang,2000; Micic et al.,200 1; Rittirong et

al.,2008). This electric field intensity is largely a function of electrode layout. Therefore,

the design of efficient electro-kinetic soil treatment suitable for offshore applications
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depends on the selection of appropriate electrode layout. Most of the existing

configurations for onshore EK applications such as (Lockhart,1983c; Reddy et al.,2006)

and existing offshore EK e.g. (Lo et al.,1991; Micic et al.,2003a) could not be replicated

in this study due to the various post treatment tests planned as part of this research.

While searching for an appropriate and most effective approach, different electrode

configurations involving various anode-cathode spacing, numbers of electrodes and

anode-cathode arrangement were investigated during the trial tests to determined

optimum pipe-electrode configuration. Some salient factors including suitability for the

field application based on the known theory of EK process, ease of installation in the

field and most efficient treatment were taken into consideration in designing the final

configuration.

The general design consideration was to simulate as close as possible a typical offshore

pipeline laid on the sea bed surface and buried under its own weight with the proposed

electrodes (for EK soil treatment) surrounding the pipe. Thus, no consolidation pressure

was applied prior to the application of the electro-kinetic treatment. Also, only upward

vertical drainage was allowed which simulates a consolidating seabed soil due to upward

movement of pore fluid.

(ii) Electrode configuration

The layout adopted is shown in Figure 3 - 12a. This arrangement is similar to an existing

model used in the industry for cathodic protection with "sacrificial elements"

surrounding the pipeline during the treatment. The electrodes (anodes and cathodes) are

parallel to each other. It is also thought that this option will allow for easy installation of

the electrode during the main pipeline installation.

(iii) Preparation of pipe-electrode assemblage

The electrodes were prepared by cutting the electrode materials (§3.2.3.5) to 150mm

length with one end of the electrode being soldered to a 2mm copper wire to ensure good

electrical contact. Wire was used to ensure that no unnecessary load was imposed on the

electrode/pipe arrangement during subsequent post treatment testing This was achieved

by using cable-ties (see Figure 3 - 12) to hold all the wires from the electrodes in place in

both the treated and the control samples in order to ensure that the arrangement of the
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wires were uniform in all tests .. To prevent direct contact of this connecting point with

the aggressive saline environment during testing, it was protected with a clear adhesive

lined heat-shrink tubing-9mm bore - 6: 1 shrink ratio (Figure 3 - 13). The connection

point was still intact even after the EK treatment implying that it was protected against

the saline environment.

The required number of electrodes was pushed into the holes in the electrode supporting

units which held them firmly in place. Two electrode supporting units were used for

each pipe section. All the ends of the wire from the electrodes to be energised as the

anodes were joined together and connected to the positive terminal (+) of the DC power

source. Similarly, one cable from the cathodes was also connected to the negative (-)

terminal of the power source. Finally, the model pipe section described in §3.2.3.4 was

pushed through the electrode supporting units and held firmly for the subsequent pipe-

electrode assemblage installation (Figure 3 - 12b). To ensure that the pipe would be

embedded to the equal depth in all tests, a marker was drawn axially on the pipe as

shown the Figure 3 - 12b.

a

! Horiz ontal m arkings on
; the pipe section to ensure
I equal depth of pipe
: embedrn em
I -r--____J

Figure 3 - 12: Pipe and electrode preparation for EK tests: a) electrode in the electrode
supporting units, b) complete pipe-electrode assemblage
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3.3.2.4 Pipe-electrode assemblage installation

The model pipe with the electrodes was inserted into the prepared soil by gently pushing

it by hand into the prepared soil to the required depth of burial (30mm chosen for all tests

conducted). This was considered the best simulation of actual field pipeline installation.

Excavation before placement of the pipe is not applicable to surface-laid pipelines. After

the installation, the anode and cathodes were connected to the appropriate terminals of

the power source for a predefined voltage to be applied across the electrodes. The applied

voltage was kept constant while current was monitored with time during the treatment

period. A solid bar was placed on top of the testing tank to support a dial gauge whose tip

extended to the middle of the pipe section. The dial gauge was used to monitor the

settlement of the pipe section before the EK treatment, referred to here as phase -1, and

during the EK treatment referred to here as phase 2. The set up of the EK test in the small

tank is shown in Figure 3 - 14.

Connecting wire cables

Heat shrink tube

Electrode positioning unit

Electrode material

Perforated ends of pipe

Hole - 2 used to connect pulling wire
for the lateral pulling test

Hole - 2 & 3 used to connect pulling
wire for the axial pulling test

Figure 3 - 13: Pipe-electrode assemblage for the EK tests

After initial pipe installation, about 3 days was allowed for dissipation of excess pore

pressure while also monitoring the settlement of the pipe section. This duration was

chosen because during the trial test, the primary consolidation appeared complete during
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the first three days based on the submerged pipe and soil weight only (.i.e., no external

vertical loading).

Dial gauge

Dial gauge
extension to
pipe section

Cables from
the electrodes
held in place
using cable ties

DC power
source

Figure 3 - 14: Test set up of the EK test in the small tank

During the treatment process, settlement of the pipe section versus time and current

versus time were monitored and recorded manually. It is not feasible to replace the

electrodes in practice and therefore provision was not made for this during the test.

Furthermore, since the cathode was submerged with the water body as it is expected to be

in the real field situation, it was assumed that the expelled water from the anode would be

released at the surface of the sea bed. Thus there should be no need to pump water away

from the cathode. The configuration of the pipe-electrode assemblage for the lateral and

vertical pull-out test is shown in Figure 3 - ISa while the configuration of the axial pull-

out test is shown Figure 3 - ISb. The various pull-out tests are discussed in details in

§3.2.2.7.

3.3.2.5 Electro-kinetic process monitoring

The selection of the recording intervals for both the current and the settlement was based

on the trial tests conducted. The final sampling interval adopted is presented in Appendix

B (sample table for EK monitoring). This interval was used in all tests conducted. The

Current density, which is the ratio of the current generated to the electrode surface area, in

the tests were based on the anode surface as the cathodes were not in contact with the

soil.
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.a

b
Figure 3 - 15: Pipe-electrode installation: a) lateral and vertical pull-out, b) axial pull-out

3.3.2.6 Post EK tests in the small testing tank

After the EK test, various tests were conducted to investigate the changes in the physical,

mechanical and chemical properties of the soil sample. This was done with a view to

assessing the effectiveness of the EK treatment on the tested soil. These tests were

conducted in the order listed below.

• Measurement of pH of surface water

• Pull out tests

• The measurement of the undrained shear strength
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• Determination of the soil water content

• Measurement of pH of soil samples at predefined depths

The pH, wand Cu tests were carried out as in the pilot tests. However, during the water

content test, the surface saline water was drained from the tank before the test was

carried out. The free water left on the top of the clay sample was removed using a paper

towel to prevent the flow of water into the excavated portion of the soil where the pipe

section had been pulled out. Water contents were determined at depths of 20mm, 70mm

and 100mm.

The following section describes in details the various pull-out tests conducted.

3.3.2.7 Description of the pipe pull-out tests

The main objective of these pulling tests was to study the effect of EK processes on the

stability of the partially embedded pipe section. These involved three sets of tests namely

lateral pull-out, for assessing lateral resistance of the modified seabed; axial pull-out, for

assessing the axial resistance of the soil and vertical pull-out, for assessing the resistance

of the soil to vertical breakout. An extracting device with a rotating handle connected to a

load cell measured the pulling force while the pipe displacement was measured with a

draw wire displacement sensor. All the pulling tests were conducted on both the treated

clay and untreated clay under identical conditions for ease of comparison. The specially

designed small testing rig described in §3.3 .1.7 (Figure 3 - 5) was employed in the tests.

Some critical aspects of the pulling tests are listed below:

.:. The depth of the embedment of the pipe section

Consistency of this was maintained by making horizontal markings on the side of the

pipe section and the electrode supporting unit (Figure 3 - 12). This ensured that in all

the tests, including the control tests, the pipes were embedded to the same level

below the mud line. The embedment depth for the model pipe section was 30mm

(0.60). This is slightly deeper than the typical depth of initial embedment of pipeline

in soft offshore clay - about 0.45 diameters (Dingle et al.,2008). Nevertheless, it is

considered adequate for this preliminary study.

3-24



Chapter 3 Experimental methodology

.:. The flexibility of the pulling wire cable used must not affect the pulling

mechanism

In order to ensure that the connections of the wire to the pipe and electrode imposed

similar loads for similar pulling tests, the connecting wires were of uniform

dimensions and tied together using cable-ties which ensured no variable loading was

imposed on the embedded pipe section (please refer to Figure 3 - 14). In addition, the

attached wires were securely attached to the sides of the tanks to reduce disturbance

to the pipe and electrodes during connections to power source and subsequent post

testing after the EK treatment.

.:. The weight of the pipe plus the electrodes must be uniform or a correction made

for any differences in weight.

.:. The coupling of the cable to the pipe was a critical aspect of the testing

programme as any irregularity will significantly distort the result of the entire test.

.:. The pulling rate: To ensure consistency in results, all the pulling tests were

conducted at a pulling rate ofO.1mm per second.

The pulling resistance and the horizontal/vertical displacements were automatically

recorded by a load cell and a draw wire displacement transducer respectively. Undrained

shear strength tests and water content tests were conducted immediately after the pulling

tests to assess the soil conditions. The changes in the pull-out force and the soil shear

strength, compared with the control tests, were used to evaluate the effects of the EC

treatment. Details of the three pull-out tests are described below.

(a) Vertical pull-out test

Figure 3 - 16 shows the schematic representation of the pull-out mechanism adopted for

the vertical pull-out tests in this study. Referring to the Figure 3 - 16, a flexible steel

wire [1] was made to go through the top holes of the two electrode supporting units as

indicated in Figure 3 - 13. The flexible wire was then connected to a load cell [2] whose

other end was connected to the travelling block [3]. The tip of the draw wire [4] was

connected to the travelling block which was free to travel up or down the support stand

[5] depending on the direction of rotation of the rotating handle [6]. The vertical

movement of the buried pipe and the pull-out force were captured automatically using the

data logger connected to the draw wire sensor [7]. At the end of the pulling test, the pull-
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out force was plotted against the vertical displacement where the yield point was

identified and compared with the control test in order to assess the effects of the EK

treatment. The schematic of the small-scale pullout rig is shown in Figure 3 - 5 and could

assist in understanding the layout of the pipe pullout.

+l-I-I----Support stand(5)

~~~~~BE1-tttt---Electrode!I supportingunit

Electrode

Figure 3 - 16: Schematic of the vertical pull-out test arrangement

(b) Lateral pull-out test

During the lateral pull-out tests, the flexible steel wire was made to go through hole-2 as

indicated in Figure 3 - 13. The methodology for the lateral pulling test was similar to the

vertical pull-out except the pipe was connected 90 degrees to the connecting points of the

vertical test (Figure 3 - 17). The flexible wire was made to go round the bearing which

was attached to the adjustable bearing stand (please refer to Figure 3 - 5). The wire was

then connected to the load cell unit. The measurement and recording of the pulling force

and the lateral movement of the buried pipe section were similar to the vertical pull-out

test described above.

(c) Axial pull-out test

DUring the axial pull-out test, the pulling wire was connected to hole-2 and hole-3 as

shown in Figure 3 - 13 before being made to passed through the bearing as shown in

Figure 3 - 18. The pulling mechanism were similar to the lateral puiling tests
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~ ~.
Rotating handle (6)

,.......,..~
,..-- Draw wire sensor (7)

Draw wire cable (4)

1IIIIIII 11111 ~ Travelling block (3)

~. Load cell (2)=s=
Support stand (5)

_s;:_

Pulling wire (I)~e~;'" Plastic bearing (8)

." , Ff?
rny·y.:.'·ffTJ'n,"",YT1}··')·' ,. ~Tl?7rn77'WJT!"'rn'rn"""n'n17"nn

Figure 3 - 17: Schematic of the lateral pull-out test arrangement

":::r;__----------i;:=:::!-~--UU----PuIlingwire (I)

+Ht---- St"'oon stand (5)

1~~f~~3~-----+---.==f--titt_--Plastic bearing (8)

~ . "', ~"-

..,............,..,..,..,..-.~.7',......_~T_··~·~ ..~f· "' ............... .,....~ •• ,,, ."···· ....~ ........ -f~ ..

Figure 3 - 18: Schematic of the axial pull-out test arrangement

3.3.3 Summary of test conducted for the EK treatment of soil

Table 3 - 2 is a summary of tests conducted in the small testing tank
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Chapter3 Experimental work

3.4 Large-scale experiment description

The greatest challenge with modelling and designing for pipeline stability is the

uncertainty relating to pipe-soil interactions especially during the large-amplitude of pipe

movements associated with pipeline buckling (Bruton et al.,2008). This uncertainty calls

for a further understanding of the nature of soil deformation in association with large-

cycle displacement of offshore subsea pipelines, especially the development of the berm

of soil as the pipe moves. In order to address the above issues, a series of pipe-soil

interaction tests were conducted aimed at studying the resistances offered by soil to a

partially embedded pipeline. Emphasis was placed on the formation, growth and

influence of the berm of soil formed during pipe motion. The details of the research

materials and apparatus are presented below.

The general philosophy behind the pipe-soil interaction tests was to model as closely as

possible in two dimensions the behaviour of a partially embedded pipeline on the seabed

and subsequent movement of the pipeline during lateral buckling and axial walking

including the resistances that the soil could offer to restrict the pipe movements as

discussed in §3.2. To study this phenomenon, a model seabed was prepared in a large

testing tank. The dimensions of the tank and the pipe section were carefully selected to

minimize edge and end effects during the pipe various motions and to ensure that the

deformation of the soil is investigated under plane strain test conditions.

In order to model pipe behaviour in two dimensions it is necessary to consider possible

end effects. In axial movement of the pipe there will obviously be end resistance (at both

ends). This was however taken into consideration during the design of the length of the

tank. In vertical and lateral movement tests, there will be end effects, but assuming that

the embedded section is subjected to a resistance equal to Cu then the end component will

be:

Ends 2x (nR2x...!!!_- 2x(CR-Z)XRSinW)) C
360 2 u 3 -la

w = 2cos-1 (R;Z) 3 -lb

3 -lc
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Where L is the length of the pipe section, z is the depth of pipe embedment, R is the

radius of the pipe and w is the angle relating to the extent of the pipe-soil contact surface

or depth of penetration of the pipe.

Therefore for typical pipe dimensions the percentage contributions of the ends will be

minimal in relation to the total. The contribution will be similar for test with similar

geometry but obviously will need to be considered if applying the results to other tests.

There will be other end effects, for example soil flowing around the ends of the pipe, or

affecting the ends if any build up of material occurs when the pipe is moving which is

difficult to quantify but is felt not to be of major importance if the length of the pipe is

large compared to the depth of embedment.

The movement of the pipe section was provided by a specially built rig (loading trolley)

which was designed to provide a cyclic movement (sweeping) of the attached pipe using

an actuator system. The main actuator which was coupled to the top of the tank consists

of a 2.5m long belt driven linear guide controlled by a stepper motor and capable of

providing variable pipe speeds. The force-displacement responses during the pipe-soil

interaction tests were studied using instrumentation which is explained in detail in the

following sections.

3.4.1 The large-scale laboratory testing tank

Referring to Figure 3 - 19a, a large-scale testing tank used in this study was

approximately 2m long, 0.9m wide and 0.9m deep. The base and walls of the tank were

made of 20mm clear perspex acrylic sheets [1]. Apart from being watertight and non-

conductive during the large-scale EK tests, the clear perspex sheets render the tank walls

transparent during pipe motions and therefore helped in the study of the soil

deformations. Furthermore, to ensure that the tank can withstand the lateral earth pressure

exerted by the soil, 50 x 50mm mild steel box sections [2] were employed to reinforce the

outer walls of the tank. At the top levels of the two sides of tank, 5mm thick metal plates

[3] were welded to the reinforced frame to be used to support the actuator and the stepper

motor units.

In order to ensure drainage at the top and base of the tank during the clay consolidation, a

100mm thick gravel layer [4] was placed in the tank before placing the clay sample. The
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gravel was covered by a sheet of geotextile [5] material which prevented mixing of the

clay sample with the underlying gravel layer. The thickness of the bed of clay was

approximately 450mm in all tests conducted.

3.4.2 Soil material used in the tests

Pure E-grade kaolin clay was used as the seabed material. The choice of the kaolin clay

over other clay materials, the nature, composition as well as sample preparation are as

discussed in §3.2.2.1. The initial plan was to also conduct tests using typical offshore

soils. However, this was not possible due to the difficulty in obtaining offshore clay soils;

hence only kaolin clay was used in all the tests. All the samples for the large-scale tests

were mixed at 70 percent water content. Although the 70% water content does not in

theory guaranteel00% saturation of the sample (that is less than I.4LL) as already stated

in §3.2.3.l, it was assumed appropriate for the investigations since in actual field

conditions, ocean seabed soils are not normally fully saturated.

3.4.3 Seabed preparation

The preparation of the model seabed was carried out by placing the soil in layers. The

first model seabed soil was prepared by pouring the saline kaolin clay into the tank in

layers of about 100mm until the tank was filled up to the required 450mm thickness from

the top of the geotextile layer. In each of the layers, the surface of the soil was levelled

using a specially prepared plate before the next layer was placed. This was done in order

to minimise the amount of entrapped air during pouring. Thereafter, the whole soil in the

tank was thoroughly mixed again using a universal stirring mixing tool coupled to a hand

held drill (Figure 3 - 19b). The blade of this mixer was designed to generate mixing effect

from bottom to top of the tank which was necessary to ensure that the entrapped air was

released during mixing. After mixing, the model seabed was flooded with saline water

(Figure 3 - 19c).

Each of the tests series was conducted in a freshly re-consolidated bed. After the first bed

of clay was used, subsequent tests commenced with pumping out the surface water using

a submersible water pump and remixing the soil using the mixer mentioned above. After

each consolidation, the model seabed was characterised again in terms of the soil

undrained shear strength and water content. After carrying out .a pipe settlement analysis
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given the size and submerged weight of the model pipe section, the depth of influence of

the pipe was assessed to be within approximately 300mm.

During the first test series, the soil was mixed and allowed to consolidate under its own

weight for 10 and 15 days before a test commenced. However, a site investigation on the

soil to investigate the effect of consolidation duration using T-bar penetrometer tests on

the reconstituted soil at 3, 7 and 10 days before the test showed no significant difference

in the shear strength. Hence, subsequent tests were carried out at after only three days

consolidation. In all a total of 29 beds of consolidated soil were prepared comprising 19

beds for the lateral pipe-soil interaction tests, 6 beds for the axial pipe-soil interaction

tests and 4 beds for the large-scale EK tests.

3.4.4 Seabed characterisation

The selection of the appropriate undrained shear strength poses considerable challenge to

the pipeline design. This is because of the soft nature of the top 1m of the seabed.

Although a number of devices are used to measure the soil strength, the T-bar is the most

current and appears to be most effective and was therefore employed in this study.

After each model seabed was prepared, a simple site investigation was conducted across

the model soil bed. This included the characterisation of the horizontal and vertical

variations in undrained shear strength of the model seabed using aT-bar penetrometer as

well as determination of soil water content profiles across the seabed. The specification

of the T-bar is described in §3.2.2.3. The setup for the T-bar test in the large tank is

shown in Figure 3 - 20 (the schematic of the setup is as shown in Figure 3 - 3) while the

sampling locations for the T-bar and the hand shear vane tests are shown in Figure 3 - 21.

In addition, a hand shear vane was also use to measure the soil shear strength for purpose

of comparisons only. This was the conventional Pilcon type with a 33mm diameter and a

50mm long rotating blade.
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:5teel plate (3)

Steel :ltam.e fOr ~ (2)

-]Im.~ D!!!t (J)

Figure 3 - 19: Equipment for the large-scale pipe-soil interaction test
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Left FUghtr---------------------------------------------------------~

Figure 3 - 20: Set up for T-bar penetrometer testing in the big tank
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T-bar-6

.......•........................... -... ........•.
T-bar-3T-bar-t2 T-bar-8

225

225

225

225

Characterisation of the initial water content of the bed of soil was conducted using

transparent plastic tubing 25mm diameter, 3mm wall thickness and 850mm long. This

was obtained by gently pushing in the sample tube into the prepared bed of clay at

predetermined locations. During the withdrawal of the tube, the top end of the tube was

covered (to render it airtight) and to increase suction and enhance the recovery of the

continuous samples. The recovered samples were analysed for water content in

accordance with BS1377: 1990: Part 2. This gave an indication of the vertical and

horizontal variation of water content across the model sea bed. Five water content

.....................m.....
..

IISV-6
.. JWaL

T-bar-8

.. ..
IISV-4 HSV-2
. _.--.-.-- II6!m.-

T-bitr-5 T-bar-2T-bar-l1 ..
IISV-I

..
HSV-5

._ ... __ .. __ ... _ .. __ ._ .. __ ._------
T-~ar-7

..
IISV-3

..........em --.--.-.-.-.-.-.-.--.-.
T-b~r-4 T-bar-tT-bar-tO

Figure 3 - 21: Sampling locations for the T-bar penetrometer test
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locations were chosen to cover the whole tank. These were located adjacent to five T-bar

test locations namely LCI, LC3, LC5, LCIO, and LCl2 (see refer to Figure 3 - 21).

3.4.5 The actuator and the trolley pulling system

The horizontal pulling force on the model pipe section was provided by a linear motion

actuator system which was attached to a loading trolley designed and built as part of this

study. Components of the trolley are shown in Figure 3 - 23. The main actuator, which is

a GL20-250-T4F-L-EF-C-ASSY model (Figure 3 - 22), was supplied by THK Industries

Japan. It was coated with THK AP-CF layer (black chrome plating) to withstand the

harsh saline environment. The actuator consists of a 2.5m long single axis actuator that

allows a belt drive [1] to be integrated with an aluminium base [2] on which four units of

linear motion guide [3] are mounted. The belt driven type [1] was selected because of its

high rigidity as well as not being subject to restriction by high speed as opposed to ball

screw type [4]. The belt type also has more rigidity and flexibility to support longer

amplitude of stroke length (compared to the screw type). This is necessary for the large

pipe displacement planned for this study.

Belt drive (1)

Actuator top
plate

Linear motion
guides (3)

Aluminium
base (2)

Figure 3 - 22: The THK actuator model used to provide the pulling force

The main loading trolley was made of 50x50x3mm aluminium box sections (Figure 3 -

23a), the top of which was machined to carry the actuator during pipe motion. At the two

sides of the trolley there were the vertical ball splines (Figure 3 - 23c) which were

designed to hold the pipe section in place (Figure 3 - 23d). The ball spline allowed free

vertical motion of the pipe section but prevented rotation of the pipe section in order to
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mimic the actual field motion of a typical offshore pipeline. The static permissible

moment for the ball spline was given by the manufacturer as 60Nm which was in excess

of the 34Nm calculated for this study. Therefore the bearing within the nut of the ball

spline was believed to be able to withstand the resistance provided by the soil during pipe

motion.

3.4.6 The model pipe sections

A model pipe 800mm long (Figure 3 - 26b), 130mm outer diameter, 2mm wall thickness

and made from stainless steel was made to simulate an offshore pipeline. In addition,

another 300mm long 130mm pipe section (Figure 3 - 26c) made of the same material was

fabricated to allow for the determination of the axial resistance offered by the soil only.

Details of how the axial friction was obtained will be discussed later.

The model pipe section which hangs from a loading carriage was designed to allow for

the pipe's lateral and axial motion in a cyclic pattern across the surface of the model

seabed using a system of actuators (Figure 3 - 26a). The ball spline ensured that that the

pipe did not rotate. Thus the pipe was prevented from rolling in the horizontal plane but

was allowed free vertical movement.

In order to achieve different submerged weight of the pipe section, variable dead weights

were transferred to the pipe section via a loading rod which was provided with a flat top

for bearing vertical loads (Figure 3 - 27a). The specific gravity of pipeline is defined as a

ratio of the average density of the pipeline to water density. To facilitate full submerged

conditions, slots were made at the sides of the pipe to allow water to flood it during

testing. Details of the pipes used are shown in Table 3 - 3.

3.4.7 The pulling mechanism and the actuator system

The pulling mechanism using the actuator system is illustrated in Figure 3 - 24. The

pulling motion which simulates the horizontal pipe displacement was provided and

controlled by a stepper motor [1] attached to the pulley shaft located at the head of the

linear motion actuator unit (LM) [2]. The stepper used was an MDrive34Plus integrated

motor plus driver (supplied by Zapp Automation UK Ltd) with capability of about 20

micro-step resolutions up to 51,200 steps per revolution (- ±5,OOO,000steps/sec).
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The trolley frame

_ The load cell unit inside the supporting unit

The two ball spline used to transfer load
from trolley to pipe section

c
Cross-bar used to keep the ball spline in
place during the 300mm and 800mm pipe
tests

d

Figure 3 - 23: Parts of the trolley for the large-scale pipe-soil interaction test (a-d)

It could therefore be programmed to variable speeds as low as O.OOlmm/s and therefore

replaces the use of a cumbersome gear box system. Therefore, it was suitable to give the

required pipe displacement of between O.OSmm/s and 24mm/s which covers the range of

typical offshore speed of pipeline during pipeline buckling.
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The horizontal pulling force which gives an indication of the soil resistance to the pipe

displacement was measured by a PC60 load cell [3]. The load cell was designed to

connect the top of the linear motion actuator [4] to the trolley unit [5] without the base of

the load cell and the top of the actuator touching each other. This ensured that the pulling

force was transmitted from the actuator via the load cell to the trolley (which supports the

pipe section). Thus the resistance to the pulling force was considered to be from the soil

resistance only. During the lateral and axial displacement of the pipe section, the

horizontal displacement of the pipe was measured with a 200mm stroke Posichron [6]

linear displacement sensor while the vertical displacement of the pipe was measured by a

pair of draw wire displacement sensors [7] attached to the two sides of the trolley. The

tips of the draw wires were connected to the pipe section as shown in Figure 3 - 26. The

measured parameters were logged to the computer using a 30- WF6032 model,

Geodatalog series 6000 supplied by Wykeham Ferrannce Soil Mechanic Technologies.

One benefit of this modified actuator system and the nature of the pipe-trolley connection

is the possibility of applying an uninterrupted lateral and axial loading during the change

in pipe pulling direction. Because the LM actuator system can maintain a forward and

backward movement of the pipe, it becomes easier to apply the cyclic movement of the

pipe without the need for disconnection during change of direction. In some studies, (e.g.

Lyons, 1973) the load was applied by a pulling arm which had to be disconnected and

reconnected when there was a need for change of pipe pulling direction. This introduced

some disturbances to the force displacement response during the pipe-soil interaction

tests.

Axial pulling tests were also conducted to assess the frictional force acting on the

embedded portion of the curve surface of the pipe. During the axial tests, the submerged

weight of the long pipe was 87N. It was anticipated that additional passive resistance

acting at the end of pipe during pulling will affect the determination of the actual

frictional force measured. In order to make sure that the frictional resistance is due only

to the pipe-soil contact (less the passive resistance at the end of the pipe), the submerged

weight of the short pipe (300mm long) was increased to 33N by adding additional 3N

vertical load. This ensured that the same contact pressure as in the long section (800mm

long) was applied to the soil from the two pipes. The determination of the actual friction

force from the soil is illustrated schematically in Figure 3 - 25.
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Loadcell(3)

Draw wire (7)

Top of.L1'.1(4)

Troney top (S)

Stepp er motor (1)

.LM head (2)

Posichron
displacement
sensor(6)

F(

Figure 3 - 24: The actuator system and pulling mechanism during pipe-soil interaction,
a): Test set up, b): cross-section, c): front view

Trolley top (5)

Top ofLM(4)

b

'lHf------- Ball :splmesupport
14-------- Ball splme shaft

------ Load cell (3)

c
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T bi 3 3 W . h f ni d h d I

).,
I

a e - : eigi to pipe section an attac e e ements
Object Value

Pipe section
800mm long 4.62kg
300mmlong 2.28kg
Ball spline x2 1.34kg
Support rod x2 0.43kg
Total (pipe plus attachments)
800mm long 6.4kg
300mmlong 4.lkg

Submerged weight
800mmlong 57N
300mm long 30N
Specific gravity
800mm long 3.99
300mm long 4.0
Specific gravity plus attachment
800mm long 5.0
300mm long 6.2

Projected area of pipe section
800mm long O.l04m2

300mm long 0.039m2

Contact pressure for pipe section
800mm long @ 87N 0.83kPa
300mm long @ 33N 0.83kPa

Referring to Figure 3 - 25, assuming the two pipe sections are buried to D/2 (i.e., z is the

same). D is the pipe diameter and the mobilised soil strength at the pipe invert is same for

the two pipe sections, then the frictional force, F is:

F = frictional resistance + passive resistance

P is the soil passive resistance. Therefore,

3-2a

Similarly,

R2 = P + F2 3-2b

This implies,
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3-2c

Therefore the soil passive resistance component at the face of the pipe is eliminated and

the frictional force can be computed from the two lengths of the pipe section.

z

FI = eu x LI x Cl x DR

Similarly,

Iz=300mm
I.. ~I

R2~

Figure 3 - 25: Schematic illustration of the determination of the actual frictional
resistance of the seabed during axial pulling tests

3.4.8 Test procedures and programme

Three types of test were conducted in the large tank as part of this study namely: lateral

pulling, axial pulling and the EK test (both lateral and axial). The tests are grouped to

assess the influence of the pipe's submerged weight, speed of pipe travel and depth of

initial embedment of the pipe on the soil resistances.

3.4.8.1 Lateral pulling tests

In the first series of tests the pipe was allowed to settle under its own weight. In order to

allow the excess pore pressure generated during pipe penetration to dissipate, the test was.
carried out at between 20 and 24 hours after the pipe was placed on the soil surface
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during which time the pipe settlement was measured. Thereafter, the pipe was swept

laterally while held under constant vertical load which simulate the submerged weight of

a surface laid pipeline during buckling on the seabed. These first set of tests (series LP-

SW) investigated the influence of pipe submerged weight on the lateral resistance of the

soil and the effects on the berm formation (see Table 3 - 4).

The second set of tests (series LP-PS) involved the investigation of the speed on the

lateral resistance from the soil as well as the formation and nature of the berm. Three

pulling speeds were investigated namely 0.05, 0.1 and lmm/sec which simulates both the

drained and undrained conditions. This was followed by another set of tests (series LP-

DE) where specific predefined depths of embedment were investigated. During this time,

the pipe was pushed into the soft seabed to three different depths of embedment namely;

ID, 1/2D and 1I4D and the same programme of cyclic pulling carried out as in the

previous test set of tests.

3.4.8.2 Axial pulling tests

The last set of the pipe-soil interaction tests (series AP-DE) were designed for axial tests

only where the aim was to determine the frictional force offered by the soil during axial

displacement. The location of the pipe section during the lateral and the axial pulling tests

is shown in Figure 3 - 28. All the tests were conducted on a reconstituted bed of clay after

the necessary site investigation were conducted. The soil deformation mechanism

associated with the failure of the soil during the lateral sweeping of the pipe and the

associated load-displacement responses were investigated by manually measuring and

recording the geometry of the seabed (soil berm) during pipe displacement.

3.4.8.3 Large-scale EK tests

In addition to the pipe-soil interaction tests conducted in the large tank, two lateral and

two axial tests (one test as the control and one test on EK treated seabed each) were also

conducted on the model seabed to see if the findings obtained from the small-scale tests

were replicated.

The electrode configuration was similar to the small-scale test. However, only the iron

electrodes were investigated here as it was deemed the best electrode material during the

small scale tests. The results of the EK tests conducted in the big tank are presented in

Chapter 4.
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The 800mm pipe section
section

Trolley assemblage during for the pipe-soil
test

cell for measuring the soil resistances
during pipe travel

Aluminium rod for transferring variable vertical
to the pipe section

Draw wire displacement sensor for measuring
r+~~lthe vertical displacement of the pipe section

Steel wire cable from the draw wire to the pipe

The pipe is perforated at the two sides to allow it
to be fully submerged during the pipe-soil
interaction tests

, b

The 300mm pipe section

c

Data logger unit used for the pipe-soil
interaction test

Figure 3 - 26: Equipment for the large-scale pipe-soil interaction test (a-d)
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configuration for lateral
pulling test

The actuator system and the
trolley

The trolley

The linear motion actuator model
GL20-250- T4F -L-EF -C-ASSY

The integrated stepper motor used
to control the pipe displacement
during the pipe-soil interaction
tests

Integrated stepper motor

c

Figure 3 - 27: The actuator and pipe connections for the large-scale pipe-soil interaction
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3.4.9 Use of models in research

This section is concerned with the scaling of the model tests presented above to a possible

field situation. A simplified equation for electro-osmotic movement of water through

porous soil material (analogous to Darcy's law for flow of water a through porous media)

was given in Equation 2-22 (Mitchell and Soga, 2005). The effectiveness of the EK

treatment depends on the voltage gradient (i.e. ratio of the applied voltage to the distance

between the anode and the cathode). In addition, the magnitude of the electro-osmotic

flow was also a function of the electro-osmotic conductivity of the soil (this depends on

the soil conditions at site) as well as the cross sectional area of the soil treated.

In the model (laboratory) tests, the pipe diameter was 50mm while the electrodes were

3mm in diameter installed 10° apart around the pipe. In field conditions, the average

diameter of pipelines subject to buckling is between 0.3 to 0.5m. Therefore, applying a

scale factor of 10 the model scale tests dimensions can potentially be replicated in the

field. However, for the scaling factor to be applied, the voltage gradients used in the

model and field should be similar. This can be achieved by adjusting the voltage at the

power source. In the model tests, the distance between the anodes and the cathodes were

kept constant at approximately 50mm while the applied voltage varies between 2.5 and

20V giving rise to varying voltage gradients. Most of the tests employed a 10V supply

over an electrode distance of 50mm resulting in voltage gradient of 2V/cm.

Alternatively, it may be necessary to select a target current density given the above

dimensions of the electrodes in the field. Wrixon and Coper (1998) reported that a current

density of 10Alm2 is sufficient to produce significant electro-osmotic flow in saline soil.

It should also be noted that increasing the voltage gradient could be beneficial to the EK

treatment. This however will require further work to determine the optimum voltage

gradient that can be applied to a given soil condition. The duration of the EK treatment to

give the desired laboratory effects can also be scaled up by the same scaling factor

assuming the same voltage gradient is applied. Esrig (1968) has demonstrated that the

electro-osmotic consolidation time is proportional to the square of the anode-cathode

spacing. However, if the scaling factor is applied to the applied voltage, then

consolidation time becomes proportional to the anode-cathode spacing (Esrig, 1968).
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Chapter 3 Experimental work

As the goal of this study is in exploring the feasibility of extending EK technology in the

improvement of offshore soils and hence pipeline stability, the concern is establishing the

effectiveness of the process in this research. This is mainly assessed in terms of the

increase in resistances of soil to pipeline displacements, to demonstrate whether the

technique is feasible and may be applied to field situation.

For the pipe-soil interaction tests presented in chapter 6, the load-displacement response

were normalised by the soil undrained shear strength, pipe diameter and pipe length

which allows for direct application of the results in typical field situations.

3.4.10 Summary oftests conducted for the large-scale pipe-soil interaction

Table 3 - 4 is the summary of tests for the pipe-soil interaction tests.

I. 400 _I. 200 -I· JOOO _I. 400

a

Amplitude of cyclic displacement

Final displacement through the
dormant berm of soil

Direction of first sweep

~1.~__~5~QQ~ ~_~I~.__~4~QQ~__ ~_~I~. ~8~QQ~ -+_~I.~~3Q~Q~~_1

b
Axial pipe pulling direction

/ \
Final pipe position Initial pipe position

Figure 3 - 28: Pipe positions during large-scale pipe-soil interaction tests:
a) Lateral pull, b) axial pull
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Chapter a

RESULTS OF ELECTRO-KINETIC TREATMENT OF SOIL

ON PIPELINE STABILITY

4.1 Introduction

In this chapter the results of the experimental investigations to study the effects of

electro-kinetic (EK) treatment of soils around partially embedded pipe sections are

presented. Six series of tests were conducted as presented in Table 3 - 2. The effects of

EK treatment on the soil are assessed with respect to: (a) evolution of current density

with time, (b) pipe settlements with time during the EK treatment, (c) spatial changes in

water contents of the soil specimen, (d) development of undrained shear strength (Cu)

after EK treatment and (e) pullout force after the EK treatment of the soil.

The chapter starts by investigating at a small-scale, the feasibility of using EK processes

to modify a model seabed by studying the influence of voltage and current density on

the EK processes. The effects of using different electrode materials as well as the effects

of treatment time and initial water contents are then presented. Finally, the results of the

large-scale tests where the small-scale tests are replicated are presented. Detailed

discussions and analyses especially with respect to subsea pipeline stability are

presented in Chapter 5.

4.2 Effect of using different voltages

Two test series (TV-VP and TV-AP) comprising 15 individual EK tests were carried out

to study the influence of voltage on the modification of the mechanical and chemical

properties of a model seabed. The investigations included monitoring and recording of

pipe settlement with time and variation of current with time. In addition, changes in soil

water contents, undrained shear strength and soil/water pH wt?re investigated.
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Chapter4 Results of electro-kinetic treatment of soil on pipeline stability

The impact of voltage on vertical and axial breakout resistances of the treated soil is

assessed from series of pull-out tests conducted on the model seabed.

4.2.1 Voltage and generation of current density

The variations of current density with time for test series TV-VP and TV-AP are shown

in Figure 4- 1a and Figure 4- 1b respectively. The two series were conducted under the

same conditions except for orientations of the pipe sections where one was for vertical

pulling test and the other for axial pulling test. The applied constant voltages ranged

between 2.5V to 20V generating initial currents of between 0.9A to about 4.09A. The

current density, which is defined as the ratio of the current generated to total surface

area of the electrode, was assessed only from the anode surface area since the cathodes

were not in contact with the soil. Given this voltage range, the soil conditions and

electrode specifications, the maximum time for all the tests to come to an end (.i.e.

when the anodes are depleted) was about 100hours (-6000 minutes).

The general shape of the current density curve from the two test series is comparable for

the same applied voltage. This can be divided into four main stages. In the first stage, as

soon as the specified voltage gradient is applied, the initial current drops almost

instantaneously and then rises gradually to a peak value. This is normally followed by

the second phase which is characterised by a gradual rise in current density. The third

stage is depicted by gradual decline in current density while the last phase which is

characterised by low current density lasts longer and gradually declines to almost zero

as the test comes to an end. The decay in current density is probably due to increase in

resistivity of the soil with time and is discussed in detail in chapter 5.

The effect of voltage on the generation of current density is more evident in the second

stage of the current density curves. This is where the peak in the current density is

always observed. The height of this peak is directly proportional to applied voltage and

the higher the applied voltage the sooner the occurrence of the peak in the current

density. Moreover, the pattern is less noticeable for applied voltages below 10V.

Therefore it does appear that the applied voltage affects the generation of current

density which is necessary to drive the EK processes. The trend of the current density

for 17.5V and 20V is quite similar in their peak values. This is possibly due to the

capacity of the power source used where the maximum allo~able current is 4.1OA. It is
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Chapter 4 Results of electro-kinetic treatment of soil on pipeline stability

therefore likely that the maximum current density for 20V would have been higher if the

available current capacity was greater. However, the similarity in the curves for the two

applied voltages differing by only 2.5V is worthy of note which may suggest that the

difference in the effect of applied voltage is minimal for these two voltages.

0
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Figure 4- 1: Evolution of current density with time using different voltages: (a) series
TV-VP and (b) sereis TV-AP
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Chapter 4 Results of electro-kinetic treatment of soil on pipeline stability

4.2.2 Voltage and soil settlememt

Soil settlement was inferred from a dial gauge placed at the top centre of the embedded

pipe section. The primary aim of monitoring soil settlement was to use it to deduce the

consolidation and dewatering of the soil during the EK treatment. Figure 4- 2 shows the

plot of maximum pipe settlement against applied voltage for the two test series at the

end of consolidation (phase-l ).

Although an attempt was made to ensure uniformity in the test samples and pipe-

electrode assemblege, the pipe settlements had slight variations varying between 1.6mm

to about 3.2mm with an average of about 2 ± O.3mm. This variation could possibly be

due to slight disturbance of the soil during transportation from the mixing point to the

main testing laboratory, non-uniformity from different batches of clay mix or variation

in vibration effect. Additionally, since settlement was only measured at one location on

top of the pipe section, it was not possible to establish if settlement was laterally

uniform. However, It was assumed that this variation will not affect the outcome of the

EK treatment (phase-2) since the soil is assumed to have consolidated before the

com;nencement of the EK treatment.
)

1~
~ Series -TV-VP
0 3.0'.;1

-~eries- TV-M>vJ-e
;.:::I
0" 2.5 -Average pipe settlement!II aB a
t> \;,;/

Ck- 2.0o ~
-e !II
~ «I.,.c:.,P-. 1.5~1
«I l.)-a:;j 1.0.,~a., 0.5S.,
en

0.0
·!.)V I UV LD V 1)V 1'1 .) V :lUv control

Applied volta ge

Figure 4- 2: Plot of overall settlement with time at the end of consolidation
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Chapter 4 Results of electro-kinetic treatment of soil on pipeline stability

The results of the maximum pipe settlement after the EK treatment (phase-2) are

presented in Figure 4- 3. The plot suggests a gradual increase in pipe settlement with

increase in applied voltage possibly due to increasing dewatering with increasing

voltage application. It also appears to indicate that the settlement was very nearly

independent of applied voltage after 5V.

~
4.0

_!:l.._, 3.5[fJ
'--/

..s
~ 3.0.§
csv,,-., 2.5~1
ON 2.0.._,v
v Vl
;:l ro
"O~ 1.5co..
v
E 1.0v
3v
Vl 0.5v
.&p.. 00

00

...

• •.
r.•

.Series-TV -VP

CSeries- TV-AP

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Applied voltage (1)

Figure 4- 3: Plot of relative pipe settlement against applied voltage at the end ofEK
treatment

4.2.3 Applied voltage and changes in soil water content

The results of vertical variation in water content from the two series measured at depths

20mm, 70mm and lOOmm below the mud line at LC2 only is shown in Figure 4- 4.

Figure 4- 5 shows the lateral variation in water content across the horizontal distance

from pipe invert from series TV-VP while Figure 4- 6 presents the lateral water content

variation against the horizontal distance across the tank, (i.e. left to right, R-L) from

series TV-AP. Detailed water content samples locations showing the two reference

planes are shown in Figure 3 - 8 (sample locations), §3.3.2. Figure 4- 7 shows an

attempt to correlate applied voltage with decrease in water content.

It can be seen from the Figure 4- 4 that while the control tests had between 1 and 2%

decrease in water content within the soil mass due to consolidation those treated by EK
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Chapter 4 Results of electro-kinetic treatment of soil on pipeline stability

showed a significant decrease. About 5 -13% decrease in water conterit occurred for the

sample taken at depth 20mm level while between 4 and 11% decrease occur for sample

taken at 70mm level.

Decrease in water content (%)

0 2
0

v-g
t:: 20 _. )Kcs
v

~~ 40 _.
o "-/
V
.o~ 60 -v >
U t::

)I(~.~
._ 0- 80-0.-_.&
ro
U ....t; 100-
:>

4 6 8 10 12 14

Due mainly to
consolidation. ~ .. ~

A

120~==================================~
1+2.5v .5V A.7.5V010V l112.5V.15V 017.5V 020V ",cONTROLI

Figure 4- 4: Decrease in water content below the anodes (pipe invert)

Furthermore, at level 100mm, a decrease of between 2 and 5% was obtained which is

still higher than the results from the control tests. It should be noted here that the water

content samples from the treated bed soil clay had significant chemical alterations

especially at the top 35mm level (Figure 4- 8). This alteration, which was caused by the

degradation of the electrode materials and noticed by the discolouration of the water

content sample, may have some influence on the engineering properties of the treated

soil and is discussed in chapter 5.

The vanous water content profiles shown demonstrate that there are variations III

changes in water content both vertically and laterally after the EK treatment of the soil

mass. These variations do not appear to show constant relationship with the applied

voltage which theoretically should be the case since the applied voltage should be the

driven force for the electro-kinetic processes. However, the apparent difference with the

results from the control tests indicates the feasibility of using EK to promote a decrease

in the water content of the soil around a partially embedded pipe section.
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Figure 4- 8: Side view of tank showing chemical alterations of the soil sample

4.2.4 Effects of voltage on undrained shear strength

Undrained shear strength (cu) of the soil was investigated using aT-bar device discussed

in §3.2.l.3. Initially, T-bar tests were conducted at three predefined locations across the

length of the tank before the EK treatment (Figure 3 - 5). The resulting shear strength

profiles from these locations were observed to be quite similar. Thus, in subsequent

tests only one Tbar test (LeI) was conducted before the EK treatment on the

assumption a bed of clay was uniform.

The notations used in describing the T-bar test are explained in Figure 4- 9. "B4"

denotes before the EK treatment while "AFT" denotes after the EK treatment. A typical

c, plot showing the strength profile before and after the EK treatment is shown in Figure

4- l O. This is expressed in terms of the T-bar bearing pressure q, obtained by dividing

the soil resistance by the projected area of the bar. The undrained shear strength (cu) is

then obtained using the following equations:

4 -1

Where, N, is a factor representing the relationship between shear strength and net

bearing pressure. Typically, an average value of 10.5 is used in most offshore

geotechnical analysis involving low strength seabed soils and is used in this research.
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The reporting of the changes in Cubefore the EK test is explained with respect to the test

locations .ie. LCI, LC2 and LC3, as shown in the insert.

Electrode type Applied voltage Sample location Stage

Figure 4- 9: Notations used in describing the T-bar/c, test

Results of the undrained shear strength profiles conducted on all the beds of clay (from

series TV -VP and TV-AP) before the EK treatment including the average shear strength

profile is shown in Figure 4- 11. The results lie in a band of between +/-33% of the

mean. The observed variation in the Cuprofile from different tanks could be due to

different batches of clay mixes used and other factors associated with the mode of

preparation such as placement of the clay in layers, levelling of the clay surface and

subsequent vibration effects. Additionally, since the T-bar tests were conducted shortly

after the placement of the soil in tank, the soil had therefore not consolidated before the

T-bar test. As stated earlier, the individual beds of clay were virtually uniform in

strength which suggests that comparisons can be made before and after EK treatment

for each bed of clay tested to assess the effects of EK on the soil.

Results of the undrained shear strength tests after the EK treatment for series TV-VP

are shown in Figure 4- 12 and Figure 4- 13 for LCI and LC2 respectively. It can be

seen from the two plots that there are considerable increases in the soil Cu.Taking the Cu

at 30mm depth as a reference (depth of pipe burial), the undrained shear strength ranges

between 0.2 and 0.6kPa for LCI while it is about 0.25 and 0.7kPa for LC2. Therefore,

the maximum strength appears to occur below the pipe invert. At LC2, the control

profiles appear to converge with the treated soil from about 80mm depth. The plots also

suggest that there is a trend between applied voltage and increase in the Cu.
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Depending on the applied voltage, some of the tests completed the EK process much

quicker than others. As stated earlier, the EK process was inferred from the decline in

the measured current. However, to ensure that there was uniformity in the time of

exposure and the effects of consolidation due to self weight of the soil, all the tests were

allowed the same time of exposure. This implies a particular batch of tests was only

dismantled when all the individual bed of clay had completed the EK process.

4.2.5 Voltage and soil/surface water pH

Figure 4- 14 presents the variation of soil and surface water pH after the EK treatment

of the soil. The soil samples were taken directly below the pipe invert for each of the

applied voltage gradients. The plot appears to indicate the dependency of the resulting

soil and water pH on the applied voltage gradients - the higher the applied voltage, the

lower the ensuing pH and vice versa. It also shows that the pH of the soil increases with

depth below the pipe invert where the soil is more acidic near the anode area (i.e. close

to the embedded pipe section).
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Figure 4- 14: Variation of pH with depth below the pipe Invert

4.2.6 Pulling test results using different voltages

The main aim of the pulling test was to investigate the effects of the EK treatment on

soil resistances to pipe displacement in order to assess its impact to enhance pipeline
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stability on the seabed. Results of vertical and the axial pullout tests are presented in

Figure 4- 15 and Figure 4- 16 respectively. The results indicate an increase of between

70% to about 210% for the vertical pullout and between 90% to about 209% for the

axial pullout. In all, the two types of pulling tests indicate an average of about 140%

increase in pipe resistance to displacement due to EK treatment effect.
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Figure 4- 15: Vertical pulling test results for test series TV-VP
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Figure 4- 16: Axial Pulling Test Results for Test Series TV-AP

The resistance of the soil to pullout is related to the :;tpplied voltage. However,

unexpectedly higher vertical pullout force is measured for the 12.5V test. This could
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possibly be due to chemical alteration of the soil leading to increase pipe-soil adhesion

not explained by electro-osmotic dewatering alone.

4.3 Current density/number of anodes

The effectiveness of the EK treatment process IS a function of the current density

generated during the treatment which is the main driving force for the various electro-

kinetic processes. At constant voltage, the current density is directly related to the

number of anodes. It was deemed necessary to investigate the influence of the numbers

of anodes for economic considerations and practical field applications. To investigate

this influence, one test series- TE-A comprising nine individual tests was conducted.

Results of individual aspects of the tests are presented below.

4.3.1 Electrical aspect

The influence of number of anodes and voltage on the current density is shown in

Figure 4- 17. The insert is the same plot but with the vertical axis reduced to highlight

more details of the plot.
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Figure 4- 17:Variation of current density with number of electrodes and voltage

4-16



Chapter 4 Results of electro-kinetic treatment of soil on pipeline stability

The plot demonstrates the dependency of current density generated on the number of

anodes employed. It indicates that the higher the number of anodes, the higher the

current density generated. However, the current density generated by 4 anodes at 10V

application has a higher peak than 6 anodes at 5V. Similarly, 2 anodes at 10V have a

higher peak than 3 anodes at 5V. This trend appears to suggest that increasing the

applied voltage could compensate for increasing number of electrodes although this will

need to be evaluated further in terms of cost of applied voltage to cost of electrode

materials.

4.3.2 Changes in water content with number of anodes

Figure 4- 18 shows the effect of numbers of anode/current density on the dewatering of

the model seabed. It should be noted here that the water content samples were taken

from the top 20mm only and not the entire soil mass. This indicates that the higher the

current density the greater the amount of water removed from the soil.
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Figure 4- 18: Variation of change in water content (w) with different number of anodes

4.3.3 Undrained shear strength and numbers of anodes

The relationship between undrained shear strength and number of anodes is shown in

Figure 4- 19. The plot indicates that for number of anodes less than four, the EK effect

of soil is minimal. Significant impact appears to starts at six anodes. This will be

discussed further in chapter 5.
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4.3.4 Effect of number of anodes on soil pH

The variation of soil pH with number of anodes is shown in Figure 4- 20. The influence

is more pronounced for higher number of anodes where the top soil is more acidic and

the base becoming less acidic.
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4.3.5 Pulling test results with number of anodes

Figure 4- 21 shows the results of the vertical pulling tests conducted to investigate the

effects of number of anodes on the soil resistance to pipe vertical displacement after the

EK treatment. The resistance increases with the number of anodes. Figure 4- 22

indicates that there is a gradual increase in the maximum pulling force with increase in

number of anodes.
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Figure 4- 21: Vertical pulling test results using different numbers of anodes

rzn

~ 10.0_,
~v
loo

0...
.~., 8.0

=~
Q..- 6.0ee
,,).............~
;;-

4.0s::
~
.$
1>1 2.0C':

~

0.0

0

-----------------------------------1 ~5', ~IO\' ~-------------

234 j

Nwnber or anodes
Figure 4- 22: Plot of maximum vertical pulling force with number of anodes

4-19



Chapter 4 Results of electro-kinetic treatment of soil on pipeline stability

4.4 Effect of using different electrode materials

The selection of appropriate electrode material is vital for both economic viability and

treatment efficiency of the EK process. Three electrode materials, namely copper (CV),

iron (FE) and aluminium CAL), were chosen to investigate the effects of the electrode

material on EK modification of the model soil and hence pipeline stability. For each test

involving a particular electrode material, both the anode and the cathode were the same

type. Test series TV-EM, TV-DT and TV-WC were designed to investigate the impact

of electrode materials during the EK treatment. The results of the various aspects of the

investigations are presented below.

4.4.1 Generation of current density with different electrode materials

The plots of current density with time during the EK treatment involving the three

electrodes materials are presented in Figure 4- 23. The amount of the initial current

density for all the electrodes appears to be proportional to the applied voltage. The

initial current density drops as the applied voltage is reduced. CV electrodes show an

instantaneous drop in the current density before rising gradually to a peak value and

then drop again to minimum. FE and AL however show a slight increase within the first

500 minutes before undergoing a rapid decline to almost zero with virtually no

subsequent increase as the process continues to completion. The rapid drop in the

current density using FE and AL could suggest a rapid increase in the soil resistivity due

to the chemical changes in the soil. CV electrodes also indicate that the time to reach

the peak in the current density is a function of applied voltage; the lower the applied

voltage the longer it takes for the peak in current density to be attained.

The time it takes for the EK process to come to completion varied between the three

electrode materials. FE and AL appear to come to an end much faster than CV

electrodes. This duration is also influenced by the amount of constant voltage applied

to the system. The higher the voltage, the faster the EK processes. This duration of EK

process will be essential for deciding which electrode will be of optimum economic

advantage during field application. It is not clear at this point if the lower/minimum

current density implies no EK activities are going on in the soil mass.
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4.4.2 Pipe settlement with different electrode materials

A plot of the relative pipe settlement with time during the EK treatment and the

maximum pipe settlement at the end of the EK treatment involving the three electrode

materials are presented in Figure 4- 24 and Figure 4- 25 respectively. It can be seen that

a gradual settlement of the pipe with time occurs using CV and AL electrodes while a

slight uplift of the pipe occurred using FE electrodes. At higher applied voltage more

uplift is obtained. This uplift also coincides with the peak in current density noted in

Figure 4- 24.
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A large number of gas bubbles (Figure 4- 26) was also released from the soil within this

period and is likely to have contributed in pushing the pipe upward. The total pipe

settlement at the end of the EK treatment shown in Figure 4- 25 indicates that the final

pipe level after the EK treatment using FE electrodes, at 1QV, was slightly higher than

the as-placed level.

Figure 4- 26: Gas escape from the soil during EK treatment
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4.4.3 Changes in water content using different electrode materials

The results of water content (w) tests measured at depths of 20mm, 70mm and 100mm

below the mud line at LC 2 only is shown Figure 4- 27. LC2 was chosen because this is

where maximum EK effects were observed based on the previous tests. Within the first

layer (20mm depth), maximum decrease in w is observed with FE electrodes while the

lowest value is observed with the AL electrodes. This suggests FE is the best performer

in terms of electro-osmotic dewatering efficiency within that zone. However, within the

second layer (70mm depth), AL electrodes show a greater decrease in water content.
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Figure 4- 27: Decrease in water content against electrode materials at depths below

pipe invert at LC2

4.4.4 Development of Cu with different electrode materials

Figure 4- 28 shows a typical trace of the Cu profile using the AL electrode material. Both

the peak strength and the remoulded strength were investigated. However, in subsequent

plots, only the peak strength will be shown for ease of comparisons since it is the peak

strength that governs the behaviour of the pipe. Figure 4- 29 shows the undrained

strength profile of the soil samples before the EK treatment including the average Cu.

The strength profiles lie in a narrow band generally within +/- 15%. Figure 4- 30 and

Figure 4- 31 show the Cu profile at LCI and LC2 respectively after the EK treatment. At

LCI where the least effect is expected to occur, the maximum increase in Cu is measured

for the FE electrode while the least increase was recorded using AL electrodes.
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Maximum effect of EK is observed at LC2 where AL causes up to 600% increase in

strength. About 200% and 100% increase is measured for FE and CU electrodes

respectively. The peak Cu is also directly related to the applied voltage. It does appear

from the plots that FE electrodes actually stiffen the soil at the surface while the AL

stiffens more at greater depth. It also indicates that the EK effects using AL reaches

down to the base of the tank.
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4.4.5 The effects of electrode materials on soil and water pH

The variation of soil and water pH after the EK treatment is shown in Figure 4- 32. It

may be seen that at the end of the EK treatment, the soil within the vicinity of the

anodes (directly below pipe invert) becomes more acidic; the level of acidity is also

shown to decrease with decrease in applied voltage. This pattern is more pronounced

with FE electrodes although both AL and CV also show slight increase in acidity. In

addition, the plot appears to suggest that the chemical alteration of the soil is more

pronounced within the top 60mm of the soil for all the electrodes employed.
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Figure 4- 32: Variation of pH with depth below the pipe Invert using different electrode
materials and voltage

4.4.6 Effect of electrode materials on the pulling test results

The objective of the pullout tests was to study the effect of electrode materials on the

resistance to controlled displacement of the partially embedded pipe section in the

model electro-kinetically treated seabed. Three types of displacement controlled pullout

out tests were conducted namely: vertical, axial and lateral pullouts as explained in

detail in §3.3.6. Figure 4- 33 shows the results of vertical pullout test conducted using

the three electrodes. The control test is also shown for purposes of comparisons. The

peak resistance of the soil at failure is indicated with the arrow. In order to quantify the

impact of the EK treatment on the soil, the peak resistances of the soil at failure are

expressed as percentage of the peak from the control test at failure. The calculated
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percentage increase is also included as an insert in the plot. It can be seen from the plot

that while FE electrodes show the maximum increase in vertical breakout of the pipe,

the AL electrodes show the least value decreasing to even a negative value (J.e. less

than the control test) at higher applied voltages.
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Figure 4- 33: Vertical Pulling Test Results from different electrode materials and
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Results of the axial pulling test involving the three electrodes are presented in Figure 4-

34. There is in excess of 170% increase in soil resistance to axial pipe displacement

using FE electrode compared to about 70% for CU electrodes. AL again shows a

reduction in the pullout resistance. It should be noted here that depth of embedment of

the pipe was 30mm for all the tests conducted and it is the combination of both physycal

and chemical changes in the soil that lead the to the overall changes in the treated soil

resistances as seen by both the chemical and mechanical changes in the soil.

The results of the lateral tests conducted on the treated soil using different electrodes are

presented in Figure 4- 35. It should be noted that this test lasted only 6 hours as it was

part of the 6 hours test which investigated the effect of the treatment time on lateral soil

resistance. This will be presented in detail in §4.5 FE results in 89% increase in the

lateral resistance while CU causes 30% increase. AL causes a reduction in the original

strength of the surface and thus a reduction in the soil resistance as compared to the

control test. Again, this test demonstrates that FE electrode produces the best effects in

terms of re-engineering the soil to resist pipe displacement.
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Figure 4- 35: Lateral Pulling Test Results from different electrode materials (6hrs)

The modification of the top soil was more pronounced even with visual examination of

the pipe-soil contact after the pulling tests. It was observed that the treated soil was

firmly attached to the pipe section as seen in Figure 4- 36 using FE and CU electrodes.
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However, this was not observed during tests with AL, instead the top layer of the soil

(about l2mm thick) appears much softer than the original soil before the test Figure 4-

36e). For the axial pull, there is also a clear peak when using FE and CV electrodes,

whereas in AL and the control tests, the soil builds up resistance due to progressive

increase in the passive resistance only with significant increase in the pipe-soil

adhesion.

Pipe-soil contact after EK treatment using FE
electrode

Side of the tank showing fluidised top layer Pipe-soil contact after EK treatment from
of the test . AL electrodes control test .cal lout
Figure 4- 36: Pipe-soil contacts after the EK treatment using different electrodes
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4.5 Effect of treatment time

In this section, the results of the tests conducted to study the effect of the duration of EK

treatment are presented. The effects of treatment on the development of soil strength

using the three electrodes were studied by exposing the soil to 6hours, 12 hours and end

of (i.e. till zero current was reached) EK treatment. It should be noted that this

assessment was made with respect to the specific dimensions of the electrodes

employed in the small scale tests. However, it is assumed that that these changes in the

soil would repeat at an enlarged scale using relevant scaling factor. This assessment is

considered vital in order to determine the time to maximum efficiency of the EK

process. It is also necessary for practical field applications. Typical Cu profiles showing

the variation of Cu with treatment time are presented in Figure 4- 37 to Figure 4- 41.

This indicates that the development of the undrained shear strength increases with time.

However, for the AL electrodes, the treatment appears to be completed from 12 hours

treatment which may suggest that this could be the effective treatment duration for these

tests conditions. This is discussed in chapter 5.

From the Cu profile in Figure 4- 39 (AL electrodes only), average strength over the top

30mm showed a higher Cu than the average over 75mm. This is because after the

treatment, the Cu increased from the top to a maximum of about 1.9kPa at about 35mm

depth before gradually reducing again to about lkPa at approximately 75mm.
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4.6 Effect of initial water content

Results of tests to assess the effects of initial water content of the model seabed on the

EK treatment efficiency are presented in this section. The effect was assessed in terms

of changes in the electrical properties and the undrained shear strength of the treated

soil. In this case, only AL and FE electrodes were considered for further assessment

because from preceding results, FE appears more suitable for surface-laid pipes while

AL appeared more suitable for buried pipes.

4.6.1 Current density

Figure 4- 42 shows the evolution of current density with time for AL and FE electrodes

tested on soil samples with 70%, 90% and 120% initial water contents. All the tests

exhibit a similar trend in current density generally increasing briefly within the first 500

minutes to its peak value before declining rapidly to zero value within the first 1500

minutes. AL electrodes show faster decline in current density than FE electrodes for all

the three water contents considered. It does also appear that for FE electrodes, the lower

the water content the faster the decline in current density and the quicker it is for the

process to come to an end whereas for AL electrode, the higher the water content the

faster the decline in current density and the faster it takes the process to complete.
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Figure 4- 42: Variation of current density with time using AL and FE at different water

contents
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4.6.2 Water content and undrained shear strength

Typical Cu plots showing the Cu profiles at different initial water content before and after

the EK treatment are presented in Figure 4- 43 to Figure 4- 46 .
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Figure 4- 44: Cu Plot after EK treatment @ 90% water content Using FE- Electrodes
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4.7 Results from large-scale tests

The results of the EK tests on the model seabed at small-scale indicated the feasibility

of using EK treatment to enhance pipeline stability on the seabed through re-

engineering the soil properties. Therefore, some of the tests conducted in the small-scale

tank were scaled up in the large testing tank to assess the impact of EK on the model

seabed. The main aim of the large-scale tests was to assess EK effects on mitigating

against lateral buckling and axial walking of the pipeline which is the main aim of the

whole research.

Of the three electrodes used in the small-scale to investigate the EK treatment

efficiency, iron (FE) electrodes were identified as the best performer for partially

embedded pipeline and were therefore employed in subsequent large-scale

investigations. In the case of the pullout tests, only the lateral and the axial pulling tests

were conducted in the large scale as the pipe-soil testing rig used in the pipe-soil

interaction study could not simulate vertical pullout. Details of the large-scale testing

facility and the pulling mechanisms are explained in §3.3. Results of the large-scale

tests are presented below.

4.7.1 Large-scale electrical current and pipe settlement

Figure 4- 47 show the evolution of current density and pipe settlement with time during

the EK treatment in the large-scale tank. It can be seen that the trend of the pipe

settlement and the current density curves are similar suggesting that the two are directly

related. As evident in the figure, current density decreased with time. This is similar to

the trend obtained during the small-scaled tests using FE as the electrode thus proving

the fact that the tests can be scaled up. The only difference is in the amount of current

density generated which is directly related to the dimensions of the electrode used -

3mm and 7.6mm for small and large-scale respectively. Figure 4- 48 shows the plot of

pH of the surface water against time during the duration of treatment of the soil sample.

It can be seen that the surface water pH increased with time from the initial value of

~7.4 to about 13.8 after about 7 days of treatment. The results here are from the lateral

pulling tests only.
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Figure 4- 48: Plot of pH with time during the large-scale EK test

4.7.2 Large-scale water content tests

Figure 4- 49 shows the plot of the decrease in water content for the electro-kinetically

treated and untreated bed of clay in the large-scale tank. The initial water content across

the length of the tank was almost uniform ranging between 72% at the top level to 68%

at the. base leveL After the EK treatment, it can be seen just below the pipe invert, a

decrease of 10% and 3% in water content for the EK treated and control test

respectively was obtained due to EK effect. The highest decrease in water content

occurs below and near the pipe invert and diminishes away from it.
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Figure 4- 49: Plot of decrease in water content along the length of the model seabed for
control and after EK treatment in the large-scale tank

4.7.3 Large-scale undrained shear strength tests

Results of undrained shear strength tests conducted on the model seabed before the pipe

embedment and those conducted after EK treatment and subsequent pipe displacement

are presented in this section. Sample locations for the tests before and after the EK tests

are presented in Figure 4- 50. Figure 4- 51 shows Cu profiles for the control test with no

EK treatment before and after pipe sweeping (i.e. pipe displacement over the clay

surface) while the results of the Cu profile before and after the EK treatment (and after

pipe sweeping) are presented in Figure 4- 52. Only the lateral test results are presented

here as this configuration allows for easy assessment of the lateral extent of the EK

effects.

It can be seen from the control tests that no significant changes occur in the c, before

and after soil sweeping (and after the pipe sweeping) especially below the pipe invert.

LC4-coritrol and LC5-control denote Cu test locations after the pipe sweeping. However,

significant increase in the Cu occurs in the treated soil after the EK treatment especially

near the pipe invert. The lateral extent of the EK effect on the soil can also be seen from

Figure 4- 53 where the chemical front migrates from the pipe invert and spreads

laterally away from the pipe invert. The model seabed was left in a submerged state for

three months after which Cu tests were conducted to assess the changes in strength after

withdrawal of the EK application. The profiles of Cu conducted after three months on the

same bed of clay are also included in the plot. It can be seen that the strength is still
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retained (slightly higher) even after withdrawal of EK treatment. This might suggest

that post EK changes still takes place even after the withdrawal of the EK treatment.
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Figure 4- 50: Sample location for T-bar test before and after EK tests
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Figure 4- 53: Chemical alteration along the length of the soil
EK treatment in the large-scale test
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4.7.4 Large-scale pulling test results

Results of the lateral and axial pulling tests are shown in Figure 4- 54 and Figure 4- 55

respectively. It can be seen that the lateral breakout force increased from about 81N in

the untreated soil (control test) to about 162N in the treated soil indicating about 98%

increase. Also, the axial breakout force increased from about 63N from the untreated

soil to about 182N from the treated soil indicating an increase of about 190%. This

therefore suggests that EK treatment can effectively increase the resistance of the soil to

both lateral and axial pipe displacements.

The load-displacement curves and the pipe displacements before breakout also vary

between the treated and the untreated soil. In the case of the lateral displacement, both

the treated and the untreated soil are similar in pattern the only difference being that the

pipe moves about 30mm before the soil is mobilised to failure while it moves by only

9mm before failure in the control test. This is possibly due to stiffening of the soil

around the pipe due to EK effect. On the contrary, there is a distinct difference between

the axial curves for the control and treated soils. In the case of the untreated soil the

resistance gradually builds up after breakout due to progressive increase in passive

resistance of the soil as the berm of soil is created whereas in the treated soil, the axial

resistance underwent a gradual decrease after failure. This is probably due to reworking

of the area of the soil previously modified by the EK treatment as well as severing of

the pipe-soil bonding.

4.7.5 Visual observations during the EK tests

Visual observations were carried out throughout the duration of the EK treatment. At

the start of the test, lots of gas bubbles were released from the soil underneath the pipe

to the surface water due to electrolysis of water. The volume and the frequency of the

gas bubbles were also observed to reduce with time. After the EK test, the soil in

between the electrodes and near the pipe section was visually inspected for any changes.

Itwas observed that the soil near the anode at the base of the pipe was much harder than

that of the soil around it (Figure 4- 56). Water content testing of the sample gave w of

27% (-43% decrease in w). This was firmly adhered to the pipe section. The anodes

also show considerable level of corrosion with the overcall diameter decreasing from

7.9mm to about 5.6mm, approximately 29% reduction. It should be noted here that the

4-41



Chapter 4 Results of electro-kinetic treatment of soil on pipeline stability

corrosion of the anode should reduce the overall weight of the pipe and hence the

pulling force may likely have been reduced.
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test

Cathode

..._Anode

Hard layer of
soil around the

Figure 4- 56: Large-scale pipe section after the EK test showing the hard layer of clay
and some chemical reactions at the pipe-soil

4.8 Reproducibility and repeatibility of the test results

• Current density

The repeatability in the evolution of the current density during the EK treatment was

checked from test series TV-VP and TV-AP (from the small-scale tests) where the tests

were identical except in the orientation of the pipe section. TV-VP was designed as part

of the vertical pulling test while TV-AP was designed as part of the axial pulling test. It

is observed in §4.2.1 that the trend of the current density is similar for the two test series

conducted at the same voltage thereby demonstrating the repeatability of the tests.

Referring to Table 4 - 1, the maximum deviation in the peak current density and the

time to reach the peak (both used as a means of assessing test repeatability) were both

10% deviation from the mean. Furthermore, given the small volume of soil used, the

repeatability of the tests is considered satisfactory.
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• Water content and undrained shear strength

The repeatability in the water content and the undrained shear strength tests is also

assessed by using the two results from series TV-VP and TV-AP. Referring to Table

4 - 2, it can be seen that both the water content and the Cu were within 10% deviation

from the mean.

• Pullout test

Table 4 - 3 show the comparison of the maximum pullout force for the vertical and

axial pulling test. Only the 10V test is presented here as this was the only repeated

applied voltage. It can be seen here that the 11% deviation from the mean was

calculated for the vertical pullout while about 47% was recorded for the axial pullout.

This high percentage error could be due to the effect of variation in batches of soil mix

or variation in the chemical activities within to be discussed further in chapter 5.
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4.9 Summary of Findings

Overall the results of the investigation revealed the following:

a) Current density and soil settlement

• The evolution of current density during the EK treatment occurs in four stages and

the effect of voltage is more noticeable in the second phase where the peak occurs.

• The peak occurs sooner for higher applied voltage than lower voltage.

• This trend is also noticed in the large-scale test where FE electrodes were used.

This suggests that the effect can be scaled up

• There is a gradual increase in pipe settlement with increase in applied voltage

although the effects appear less significant from about SV application.

• It is suggested from the results that increasing the applied voltage can compensate

for increasing the number of anodes.

• If the number of anodes is less than three, the EK effects on the soil are minimal.

• Gradual settlement of the pipe section occurred using CV and AL electrodes while

slight pipe uplift occurred using FE electrodes, the higher the applied voltage the

higher the uplift.

• FE electrode completes the EK process quicker than AL and CV.

• For FE electrodes, the lower the initial water content the faster the decline in current

density and the quicker it takes for the process to complete whereas for AL

electrodes the higher the water content the faster the decline in current density and

the quicker it takes the process to complete.

b) Changes in water contents

• Maximum decrease in water content occurs below the pipe invert and reduces

laterally away from it. This pattern is not very prominent at greater depth within the

soil mass.

• The effect due to consolidation alone from the control test show very minimal

decrease in water content.

• The decrease in water content appears to converge at 100mm depth for applied

voltage greater than 12.SV

Very little correlation exists between applied voltage and decrease in water content.

This could suggest that the overall dewatering of the soil depends on other factors

•
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and not entirely on the applied voltage. For example, as long as the EK process is

allowed to progress to completion irrespective of the applied voltage, the overall

dewatering will be significant especially in the top layer.

• Results suggest that for most of the recorded maximum pipe settlement, the

maximum decrease in water content is between 10 and 14%. This is not in

agreement with the theoretical basis that the higher the settlement the more the

decrease in water content.

• At the top soil level, the maximum decrease in water content is obtained using FE

electrodes and less using AL electrode. However, in the second layer, AL electrodes

record the maximum decrease in water content.

c) Undrained shear strength

• Significant increase in undrained shear strength occurs after EK treatment with the

maximum effect occurring below the pipe invert and reducing laterally and with

depth down to about 80mm.

• FE electrodes appear to stiffen the soil at the top level while AL electrode stiffens

the soil at lower level. The increase in strength using AL electrodes reaches down to

the base of the testing tank.

• Increase in undrained shear strength during EK treatment is water content dependent

and thus the effects will be site condition dependent.

• The large-scale test also confirms increase in the undrained shear strength due to EK

treatment.

d) Soil pH

• Lower pH (acidic conditions) occurs directly below the pipe invert and the pH

gradually increases with depth.

The higher the applied voltage the lower the pH at the base of the pipe

Of the three electrode materials used, FE give most acidic condition followed by CV

and then AL.

Surface water pH increase with time of treatment from neutral state to alkaline

Chemical alteration of the soil is more pronounced within the top 60mm.

•
•

•
•
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e) Pullout test

• There is between 70% and 210% increase in vertical pullout and between 90% and

209% increase in axial pullout due to EK treatment effect. In all, the two pulling

tests indicate an average of about 140% increase in pipe resistance to displacement

as a result of EK treatment.

• FE electrodes show the maximum increase in the three pullout tests while AL

electrodes show the least.

• FE electrode appears to give the maximum pipe-soil adhesion force

• A combination of both physical and chemical changes leads to the overall changes

in the treated soil resistance to pipe displacement.

4.10 Concluding remarks

In this chapter, results of investigations to study the feasibility of using electro-kinetic

processes to increase the stability of partially embedded pipe section have been

presented. The results have provided some of the benchmark basis for further work in

this area. Some significant trends relating some of the variables have also been

identified although this is considerably obscured by the rather low strength of the soil

samples used in this study. Reasonable repeatability between experiments suggests that

EK phenomenon can be employed to reengineer subsea soils and thus increase the

stability of subsea pipelines. Detail analysis and interpretation of these results in relation

to its application to offshore pipeline stability will be discussed in chapter 5.
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Chapters

ASSESSMENT OF THE IMPACT OF ELECTRO-KINETIC

TREATMENT OF SOIL ON THE PIPELINE STABILIlY

5.1 Introduction

The feasibility of using electro-kinetic (EK) treatment of soil to enhance the stability of

subsea pipelines has been demonstrated from the experimental results presented in

chapter 4. In this chapter analysis and discussions of the results obtained in chapter 4

are presented with the aim of assessing the effectiveness of the EK treatment process

and its potential application to increase the stability of subsea pipelines. The chapter

initially begins by discussing the electrical aspect of the tests conducted by analysing

the current density and the influence of voltage. Then the spatial changes in water

content are discussed followed by the development of undrained shear strength due to

EK treatment of the model seabed. The effects of the EK treatment on resistances of the

soil to various pipes displacements are discussed followed by the effects of treatment

time. Finally, an assessment of the zone of influence including the power requirement

of the EK treatment on the soil is discussed.

5.2 Electrical aspect and pipe/soil settlement

The main driving force in the EK process is the current density (Shang and

Dunlap,1996). This was observed to vary during the EK testing period depending upon

the electrode material used and the applied constant voltage gradient. Figure 4- 1,

Figure 4- 17, Figure 4- 23, Figure 4- 42 and Figure 4- 47 of chapter 4 all showed the

current density with time and are used in the analysis and discussions regarding the

evolution of current density (J) in the various tests conducted.

From the results of this study, the entire process of the generation of current (or current

density) during the treatment process may be broken down into four main stages or
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phases namely: 1) initial current density which is obtained immediately after the

prescribed voltage is applied across the sample, 2) initial low in current density (this is

observed only with copper electrodes), 3) the maximum or peak current density during

the treatment process and 4) the residual current density. The position and occurrence of

these points on the current density curves are directly related to applied voltage and the

electrode materials used. Figure 5 - 1 shows an idealised form of the current density

curve showing the points mentioned above with the peak in the current density

increasing with increasing voltage and the residual current density decreases with

decreasing voltage.

The most noticeable difference between the two idealised curves is the presence of an

initial drop in current density obtained when CU electrodes are used. Upon the

application of the voltage across the sample using CU electrodes, the current density

immediately rose to a very high value before dropping to a low value. This is the first

stage (point 1 to 2 in the idealised curve). The actual reason for this variation in current

density is not very clear at this point but could be due to the initial migration of the free

ionic species on the surface of the electrodes. It is well known that the generation of

current density is controlled by the migration of ionic species to the opposite electrode

during EK treatment (Mitchell and Soga,2005) and (Wan and Mitchell,1976). It is also

likely that this could be due to the surface chemistry of the CU electrodes compared to

the FE and AL electrodes. In contrast, FE and AL electrodes showed a gradual rise in

current density within the first 300 minute with no initial drop in current density before

reaching the peak value.

Nevertheless, this first stage in current density generation is assumed not to have had a

significant effect on the treatment process due to its short duration - less than 30

minutes for a 6000 minutes treatment time. This unique response (i.e. within the first

stage) in current density using CU electrodes is not reported by previous researchers.

This is the only study that involves a partially embedded object where the cathode is not

in contact with the soil sample. This is therefore subject to further investigations.

The second stage (point 2 to 3 for CU electrodes) is characterised by a sharp increase in

current density. Similar observations (the second stage) were reported by Lo et al.

(1991) and Wan and Mitchell (1976) - that after the initial decrease in current to a
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minimum value, the current starts to increase again, thereafter it gradually decreases.

The third stage- point 3 to 4 shows a rapid fall in current density before the onset of the

final stage (point 4 to 5) which is characterised by very low current density as the

process continues to the end.

Although the current density was very low throughout the last stage, significant

chemical alterations of the soil sample continue to take place evident by the gradual

increase in the size of the area of discoloration on the side of the tank even when the

current was approaching zero value. It is tentatively concluded that the decrease in

current density during the test does not necessarily mean that the EK process within the

soil sample has ended. This is because decrease in the current density in this study

usually coincides with the electrode depletion. However, some chemical reactions could

still continue which might result in further modification of the soil property as explained

in §2.11.3.4.

1 - initial current density

2 - initial low in current density

3 - peak current density

4 - residual current density

5 - end of EK test

v = applied voltage

CU electrodes

FE and AL electrodes

With decreasing V

5

Figure 5 - 1: Idealised stages in current density generation for partially embedded pipe
section during EK treatment of the ambient soil

A number of possible explanations have been postulated as to the causes of the

observed decline in current density with time during the EK treatment. The most,

noticeable reason for this is due to the corrosion of the electrode material. In this study,
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the electrodes inspection after the tests revealed considerable degradation, about 80% of

the weight of the original material. Shang et al. (2004) also attributed the decline in

current density to corrosion of the electrode used in their test. During EK treatment,

acidic medium was generated at the anode area while alkaline medium existed at the

cathode area. Mitchell (1991), Mitchell and Soga (2005) and Lo et al. (1991) also

reported similar findings. Therefore, in a more aggressive saline environment, as in this

study, this acidic front is aggravated by the salt water thus resulting in the rapid

corrosion and decomposition of the anode with time. The rate of this decomposition is

also noticed in this study to be related to the applied voltage - the higher the applied

voltage the faster the decomposition and vice versa.

Some other causes also exist. Acar and Gale (1992) argued that the dissolution of clay

minerals due to electrolysis and pH changes within the soil mass could reduce the

current density. It is therefore possible that the dissolution of minerals within the clay

mass and from the electrodes evident by the discolouration in the soil could necessitate

a decrease in current observed in the test. Acar and Alshawabkeh (1996) and Hamir

(1997) also reasoned this by suggesting that the electrolytic reaction products could

cause a reduction in ionic concentration hence a reduction in current. They claimed that

this resulted when the migrating ions fronts (from the electrolysis of the two electrodes)

are neutralised as they meet. In this study, the H+ ions migrating towards the cathode

could have been neutralised by the OH- ions migrating towards the anode thereby

increasing the resistivity (Le, reduced ionic concentration) of the system.

The electrolysis of the individual electrode used in the EK treatment could also affect

the electrolytic products. Segall et al. (1980) argued that during electro-osmosis, the

clay-water electrolyte system behaves like an electro-chemical cell in which the cations

migrate towards the cathode and the anions migrate towards the anode. Potter (1956)

and Hamed et al.(1991) listed some possible chemical reactions which could result from

the electrolysis of these electrodes. At the cathode, the principle reaction is the

reduction of hydrogen from water whereas at the anode, a metal corrodes into its oxide

and the oxidation of the hydroxide ions forms oxygen. These chemical reactions are

also dependent on the characteristic of the pore water and material properties of the

electrodes (Barker et al.,2004).
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The following equations described the chemical reaction

At the cathode area

2H20 =H30++ OH-

H30+ + e +M = MH + H20
+ l'MH+H30 +e~ H2 +H20+M

+ '"or 2H30 + 2e ~ H2 + 2H20

4H20 + 4e~ 2Ht + 40H (from water hydrolysis)-reduction

5 - 1

5-2

5-3

5-4

5 - 5

M is the specific electrode material used in the EK treatment. According to Acar and

Alshawabkeh (1996), the reaction will result in an increase in the concentration of

hydroxide ions as well as boosting the precipitation of metallic hydroxide and the

liberation of hydrogen gas.

At the anode area

or

2H20 = H30++ OH-

OH-+M=MHO+e

MHO + OH =MO +H20 + e

2MO ~o1' +2M
40H~ 01+ 2H20 + 4 e

2H20 - 4 e~ Oft' + 4F (from water hydrolysis) -oxidation

5-6

5-7

5-8

5-9

5 - 10

5 - 11

The reactions at the anode result in the liberation of oxygen and the production of

hydrogen ions. The increase in the hydrogen ions lowers the pH at the anode.

If the ions are not removed or neutralised, it may result in the movement of hydrogen

ions (acid front) towards the cathode and the hydroxide ions (base front) towards the

anode. When these two fronts meet they form a neutralised zone of very low

conductivity i.e. reduced current in the system (Acar et al.,1990). The current (or current

density) is proportional to the amount of metal species in the system and thus affects the

ionic strength (Reddy et al.,2002). Therefore the current density decreases as the ions

migrate towards their respective electrodes. The migration of these ions depends on the

metal species in the electrolytic system.
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The evolution of current density can be improved during the EK treatment. Bergado et

al. (2003) demonstrated that current density can be increased by polarity reversal while

Micic et al. (2002a), Wan and Mitchell (1976), Micic et al. (2004) and Rittirong (2006)

reported an increase in current due to a combination of polarity reversal and current

intermittence. However, these means of improving the generated current density were

not done as part of this study since it was considered not feasible in practical field

situations.

It is important to note here that since these tests were conducted using only a kaolinite-

rich clay system, the mode of current generation and the responses of the soil sample to

the EK treatment may differ significantly from a natural occurring soil or soil of

different mineral compositions (as in different offshore petroleum basins). Grundl and

Michalski (1996) conducted a test using naturally occurring calcite and illite-smectite

rich glacial till and a kaolinite- rich clay system (usually used in most EK tests) and

concluded that the results from the two tests differ significantly and that includes the

mode of current generation. In fact, the presence of calcite in the natural clay prevents

the formation of low pH conditions in the sediment pore water whereas this was not the

case for the kaolinite-rich clay. This was attributed to the presence of the different

minerals in the clays which causes the electrolytic system to respond so differently to

applications of an electric field.

Therefore, this idealised current generation path observed in this study may only be

applicable to partially embedded pipeline in a kaolin-rich clay system. Further work will

be required to study the mode of current generation for soils of different species and

mineralogical compositions.

In the investigations involving AL and FE electrodes at different initial water contents

for soil samples, evolution of the current density also exhibited some differences. AL

electrodes show a faster decline in current density than FE electrodes for all three water

contents considered (J.e. 70%, 90%, and 120%). FE electrodes showed a faster decline

in current density for lower water content. According to Mitchell and Soga (2005), ions

and polar molecules dissolved in the soil pores fluid migrate under an electric field. This

could suggest that ionic migration through the pores of the clay sample is faster for
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lower MC possibly due to the nature of the FE2+ionic species in the electrolyte system.

This could therefore result in rapid reduction in ionic concentration and hence the

current density measured.

On the contrary, for AL electrodes, the lower the water content the slower the decline in

current density. This again could be due to the speed of migration of the AL3+ ions

species within the soil mass. The size and nature of these species could play a part.

Thus, the lower the water content, the slower the migration of these ions and the slower

the decline in current density during the EK treatment. Although no comparative

assessments of the rate of migration of the various ionic species through different soil

masses have been carried, it is likely, however, that this variation could have affected

the pattern in the generation of current densities during EK treatment.

Reddy et al. (2002) demonstrated that the initial water content significantly affects the

generation of current by reporting that as the initial water content increased, the current

increased which makes it easier for the ionic species to migrate through the pore

network of the soil sample. However, their study only focused on one electrode material

- graphite. Therefore, this study gives an insight into the effects of initial water content

of the test soil when different metallic electrodes materials are employed.

The magnitude of the constant applied voltage across the soil sample also affects the

migration of the ionic species in the soil and hence the evolution of current density. It

has been shown from the experimental results that the lower the applied voltage the

slower the migration of the ions and the longer it takes for a test to come to completion.

This was demonstrated by the trend in current density from CU electrodes at 7.5V and

10V which indicated that the 10V application had a shorter time to completion than the

7.5V test. For practical field application the time of treatment is very vital. It was also

shown in section §4.3.1 that higher applied voltage can compensate for a larger number

of electrodes although this will depend on electrode cost and the cost of power source

for a given field application. It should be noted that the higher the applied voltage the

faster the corrosion of the electrode due to creation of a more aggressive environment.
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5.2.1 Influence of electrode materials on EK treatment efficiency

Lockhart (1983d) concluded from his test on Na-kaolinite clay that the dewatering

process was not dependent on electrode materials. However, the general opinion from

most researchers e.g. (Mohamedelhassan and Shang,2000; Bergado et al.,2003; Xie and

Shang,2006) is that electrode materials affects the EK treatment. The effectiveness of

individual electrode materials in EK applications is a function of the conductivity of the

materials, the reaction of the various species released during the decomposition of the

materials, and durability during the EK treatment.

Furthermore, the electro-osmotic dewatering process using different electrode types is

strongly dependent on the nature of the clay mineral used and its subsequent reactions

with the electrode materials used in the EK treatment. Therefore, depending on the

overall chemical compositions of given offshore clay or site conditions, the product and

the effects of the EK treatment on the soil will vary. Lockhart (1983c) reported that for

Na-kaolinite clay, most of the electro-osmotic dewatering took place at low voltage (1V

and 2V) whereas for Ca-kaolinite clay no significant dewatering took place until 10V.

In addition, Al-kaolinite clay required about 25V for significant water flow to take

place. Further study on different offshore soils is required in this area. Some possible

chemical reactions using the three different electrodes are summarised in the following

sections.

(I) Iron electrode

According to Barker et al. (2004) the possible reactions using mild steel electrode as in

this study will be as follows:

Oxidation at the anode:

Fe- Fe2+ + 2e-

Reduction at the cathode

O2 + 2H20 + 4e- -4(OHf

Combined

Fe2+ + 2(OH) -_ Fe(OHh Ferrous hydroxide

Further reaction:

Fe2+_ Fe3+ + e
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Micic et al. (2002) concluded that the precipitation of iron compounds onto the soil

particles surfaces led to a reduction in soil pore volume resulting in the observed

increase in the soil undrained shear strength. Therefore the release of the iron oxides

and hydroxides from the FE electrodes into the pore spaces of the soil sample could

have caused a reduction in pore volume leading to more dense material as well as acting

as the cementing agents that causes the observed increase in the strength of the soil after

the EK treatment.

(II) Aluminium electrode

Similarly, the change in the geotechnical properties of the kaolin clay when aluminium

electrodes are used is due to the release of aluminium ions due to EK phenomenon.

Gray and Schlocker (1969) stated that the aluminium hydroxides generated leach into

the pores ofthe clay causing a reduction in the pore spaces and thus an overall change

in the geotechnical properties of the clay. Thus, the relatively higher strength obtained

with AL electrodes compared to the electrodes in this study could be due to the reaction

of the kaolin clay minerals with the aluminium ions. Such possible reactions are listed

below:

AI- At3+ + 3e-

Al + 40H=--' AI(OH)4- + 3e-

AI(OHk- AI(OH)3 + OH-

The ability of aluminium to co-ordinate with hydroxide in different ways to form

hydroxy-aluminium compounds makes it very effective to alter the mineralogy of the

clay soils thus increasing the in-situ strength (Gray, 1970). Gray (1970) also showed

that the resulting compounds can make layers between layers of clay minerals or

precipitate externally in the pore spaces as amorphous or crystalline hydroxide e.g.

Gibbsite.

According to Kim et al.(2007), an aluminium electrode has more effect in decreasing

water content than iron electrodes. This however was with respect to buried electrodes

and not a partially buried object where the anode is buried while the cathode is

submerged in water. From their experiment involving the insertion of electrodes in clay

soil sample to study the migration of leached ions and adsorption in the clay surface,

they concluded that the decomposition of the inserted electrodes during EK treatment

resulted in the modification of the clay soil.
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(III) Copper electrode

The use of copper as an electrode has an advantage in terms that only copper oxide or

hydroxide is formed and little gas is liberated (Lo et al.,1991). The high conductivity of

copper implies that no significant loss of current or electric potential will ensue during

the EK treatment.

Another kind of electrode material which was initially planned to be employed as part

of this study is the electro-kinetic geosynthetic electrode, generally referred to as the

EKGs. Due to logistical reasons, these sets of materials were not investigated.

However, in a preliminary investigation on the use of EK treatment to enhance the

stability of buried pipelines, Armstrong (2007) reported that EKG anodes lasted

considerably longer than exposed steel anodes. While the EKGs lasted up to about

100hrs, the exposed steel lasted for only 24 hrs. Therefore, it is anticipated that using an

EKG in place of exposed iron electrodes as the case in this study, may increase the

durability of the electrodes and possibly, the efficiency of the EK treatment. This

however will need to be substantiated with extensive research.

5.2.2 Interim conclusions -influence of electrode materials

• Chemical reactions at the various electrode materials significantly affect the

outcome of the EK treatment and the re-engineering of the soil sample.

• The durability of the electrode materials is best with CU electrodes and least with

FE electrodes due to their chemical compositions and reactions during EK tests.

• AL electrodes produces most favourable reactions with the kaolin clay that

contributes to the observed increase in the soil shear strength at depth after the EK

treatment.

• Chemical compositions of offshore site soil will need to be assessed before

application of the EK treatment.

5.2.3 The electric field during the EK test

The distribution and intensity of electric fields in the soil during the EK treatment are

dependent on the arrangement of electrodes, applied voltage and soil properties.

Rittirong (2006) reported that the effectiveness of the EK treatment is dependent on the

combination of electric field intensity and treatment time. As already explained in
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§3.2.2.3, an effective way to treat the soil below the partially buried pipe section was to

generate the electric field around the pipe by installing the electrodes parallel to it.

In this study the electrodes were placed horizontally around the pipe length (anodes

below the pipe within the soil mass and the cathode above the pipe within the seawater).

The electric field distribution is simplified to indicate a flow of current from the anode

below the pipe section to the surface water above (Figure S - 2).
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• Cathode

o Anode

Figure 5 - 2: Assumed simplified electrical field distribution for the pipe-electrode
arrangement

Since both the anodes and the cathodes were connected in parallel, they can be

simplified as a sheet of metal conductors below and above the pipe. The simplified

distance between the anode and the cathode in this case is approximately SOmm

resulting in an electric field intensity of between SOY/m for the 2.SY test to 400Y/m for

the 20Y test. Given the fact that the conductivity of the sea water is high compared to

the clay, the resistivity of the sea water can be ignored and it can be treated as the

cathode.

In terms of the performance of the various electrodes used in this study, the longer the

time to the complete decomposition of the electrodes, the more resistant were the

electrodes to corrosion during EK treatment. CV electrodes appear to last longer and

therefore considered to be more resistant to corrosion. FE electrodes on the other hand

corrode fastest and hence are less durable in the aggressive saline environment. The

interplay between the duration of the electrodes, the performance/effective of the
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electrode material will be vital in selection of an appropriate electrode material for

actual field application. Direct measurement of pore water pressure generation during

the EK treatment and possible effects from the current density was not done since this

preliminary study was only aimed at investigating the increase in strength and pipe-soil

adhesion due to EK treatment effects. Further research will be needed to study the pore

generation during this treatment.

Apart from the dewatering of the soil sample due to electro-osmotic phenomenon in the

soil, another electro-kinetic process, electro-cementation, also contributes to the

modification of the soil during the treatment. Electro-cementation here involves the

cementation of the soil particles by the chemical agents released into the soil during the

EK treatment from the electrode materials as a result of the breakdown of species within

the soil. The development of electro-cementation during EK treatment is strongly

related to the electric field intensity and treatment time (Rittirong et al.,2008).

Therefore, the effectiveness of the treatment process is a function of the electrode

configuration.

5.2.4 Current density and soil settlement

The influence of current (or current density) on the settlement of the soil mass was more

noticeable in the large-scale test than in the small-scale test. In the large-scale test, the

higher effective weight of the pipe section in relation to the soil strength gave better

response of the pipe to the corresponding soil consolidation. The current density curve

and the pipe settlement curve follow the same trajectory since the driving force for the

electro-osmotic process is essentially the current through the soil mass. However, this

was difficult to show in the small-scale tests because the light weight of the PVC pipe in

relation to the soil strength. Shang et al. (1997) demonstrated that the electric current

density is the driving force in electro-osmotic consolidation and that the effectiveness of

electro-osmotic consolidation can be improved by increasing the current density.

Therefore the direct relation between these two parameters demonstrates the feasibility

of EK treatment in this application. Current (or current density) is the driving force for

electro-osmotic consolidation. However, an attempt to relate current density with soil

consolidation (inferred from pipe settlement) (Figure 5 - 3 and Figure 5 - 4) did not

reveal any significant correlation possibly owing to the erratic responses in the

generation of current during the test as explained in §5.2.'
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Figure 5 - 3: Plot of current against relative pipe settlement during EK Treatment using
copper electrodes
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Figure 5 - 4: Plot of current against relative pipe settlement during EK Treatment using
different electrode materials

An attempt is made to correlate the observed pipe settlement due to EK treatment with

the decrease in water content at 20mm level only as shown in Figure 5 - 5. Although

the measured settlement is the cumulative settlement of all the clay, it was however

assumed that the decrease in water content with depth below the pipe especially near the

surface could be related to the soil settlement. The plot suggests that, for most of the

recorded maximum pipe settlement, the maximum decrease in water content is between

10 and 14% near the surface of the soil. This is not in agreement with the theoretical

basis that the higher the settlement the more the decrease in water content.
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Figure 5 - 5: Plot of relative pipe settlement against decrease in water content

5.2.5 Interim conclusions -electrical aspects and soil/pipe settlement

The following conclusions are made regarding the electrical aspect of this study:

1. The entire process of current (or current density) generation during the EK

treatment of soil around a partially embedded pipe can be divided into four stages

from the current density curves

2. The position and the occurrence of these stages are directly related to the applied

voltage and the electrode material used in the EK treatment.

3. The rate of corrosion and decomposition of the electrodes are related to the applied

voltage - the higher the voltage the quicker the decomposition and vice versa.

4. The generation of current density is affected by the initial water content of the soil

sample and this is dependent on the type of electrode material.

5. FE electrodes show a faster decline in current density for lower water content while

AL electrodes show a slower decline in current density for lower water content.

6. The amount of constant applied voltage across the sample affects the migration of

the ionic species in the soil, hence the evolution of current density- the lower the

applied voltage the slower the migration of ions and the longer it takes for the test

to come to completion.

7. In terms of resistance to corrosion and durability during EK treatment, CU

electrodes are more durable while FE electrodes are less durable
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5.3 Water content changes

Electro-osmosis, which is one of the four related electro-kinetic phenomena earlier

discussed in chapter 2, is the main driving force for movement of water during EK

treatment (Mitchell and Soga,2005). This section discusses the results of the observed

changes in water content during the EK treatment of the soil samples as presented in

§4.2.3 of chapter 4. To initiate these discussions, some underlying assumptions and

equations associated with the principles of EK phenomena are presented in order to aid

in understanding the results and also the expected outcome.

The process of dewatering due to EK treatment is not new. It has been established from

past studies that the application of electrical potential to a wet soil mass causes ionic

migrations to the opposite electrodes - cations to the cathode and anions to the anodes.

As these ions move, they carry their water of hydration resulting in a net flow of water

towards the cathode and dewatering at the anode. These reductions in water content may

result in generation of negative pore water pressure and hence increase in the effective

stress of the soil hence, increase in the soil strength. A simplified equation for electro-

osmotic movement of water through porous soil material (Hamed et al.,1991; Grundl

and Michalski, 1996; Mitchell and Soga,2005) is presented in equation 5-12 as:

5 -12

Where:

q,= electro-osmotic flow

A = cross sectional area of the soil

ke= electro-osmotic conductivity and

~v diie= - = voltage gra lent.
si.

If both the anode and the cathode have access to free water (open cathode and anode),

the soil will function as a porous plug (Mohamedelhassan and Shang,2000). According

to Mitchell and Soga (2005), the electro-osmotic induced flow by the open anode and

cathode is given by the empirical relationship:

5 -13
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Where:

Q = electro-osmotic flow rate (m3/s)

E = electric field intensity (V/m) .i.e. ratio of applied voltage to the distance between

the electrodes

ke= electro-osmotic conductivity and

It should be noted that it was not possible to measure the flow rate during the test hence

the flow was only assessed by evaluating the changes in water content profile after the

test.

Equation 5 - 13 suggests that the effectiveness of the EK treatment will be a function of

the voltage gradient, V/m and the coefficient of electro-osmotic conductivity, k; The

distance between the anodes and the cathodes was kept constant at approximately 50mm

while the applied voltages vary between 2.5 to 20V giving rise to varying voltage

gradients. EK tests involving commercial kaolin have been extensively used in previous

researches and the k; ranges between 1.1 x 10-5 ems" per Volts/cm and 5.7 x 10-5 ems"

per Volts/cm (Bjerrum et al.,1967; Esrig,1968; Hamir,1997). Casagrande (1952) had

also reported a k; value of 5.7 x 10-5 cm-I per Volts/cm for a commercial kaolin at

67.7% water content. Thus the only variable in the test is the value of the applied

voltage which was investigated during the test.

The theory of electro-osmotic consolidation originally proposed by Esrig (1968)

predicts development of pore pressure (and consolidation) across electrodes embedded

in the soil only if the closed anode and open cathode configuration is used (refer to

section 2.3.1). Hamed et al. (1991), Acar et al. (1994) and Acar and Alshawabkeh

(1996) report consolidation (decrease in w) and development of negative pore pressures

in bench-scale experiments with open electrode configuration.

The results of the water content tests presented in Figures 4 - 5, 4 - 6, 4 - 7, 4 - 27 and

4 - 49 all indicated significant decrease in water content. Based on the experimental

evidence, a plot of the decrease in water content with depth at different voltage

gradients (Figure 4 - 4) is use to assess the effect of voltage.
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Although the theoretical expression shows the dependency of the dewatering process of

the soil on applied voltage gradient, the results obtained here showed some deviations.

At the first level (20mm depth), all the applied voltage gradients show the highest

decrease in water content. However, the influence of the applied voltage is not very

apparent as the decrease in water content lie approximately between 10 - 14% for all

the tests apart from the 5V test which is slightly different. It is therefore possible that

although the actual speed of migration of the pore fluid within the soil mass during the

EK treatment might have been dependent on the applied voltage gradient, the final

change in water content is approximately similar.

Therefore, this could suggest that as long as the process was allowed to come to an end

before the water content test was carried out on the sample, the effect of dewatering will

be similar if only movement of water is considered. This was also demonstrated by the

summary plot of Figure 4 - 8. The EK treatment does not only involve movement of

water (electro-osmosis); the final effect of the EK treatment could be different with

different applied voltage gradient. (Lo et aI., 1991; S.Micic et aI.,2002; Mitchell and

Soga,2005). The second level (70mm depth) and the third level (100mm depth) also

~how similar trends in decrease in water content where the influence of voltage gradient

is not very pronounced. It is not clear at this point if this unique deviation from the

expected trend could be due to the configuration of the electrodes or the partially buried

nature of the pipe section used in this study.

The lateral variation in changes in water content is shown in Figure 4 - 6(a-c). Here, it

is shown that the greatest reduction in water content is directly below the pipe invert

and the reduction reduces with horizontal distance from the pipe. This variation may be

related to the distribution of the electric field intensity within the soil mass given the

limit of the boundary conditions of this experiment. Again, the influence of the applied

voltage is not very pronounced from the results. A similar trend was also obtained from

the large-scale test where the maximum decrease in water content was measured at

below the pipe invert (Figure 4 - 49).

The effects of the EK treatment below the pipe axis on the development of water

content is seen in Figure 4 - 6 where the maximum reduction in the water content was

noted near the axis of the embedded pipe and it reduces with distance from the pipe.

5-17



Chapter5 Assessment of the impact of electro-kinetic treatment on pipeline stability

This further demonstrates that changes in the water content occur due to EK treatment.

By correlating the soil settlement with the observed decrease in water content at the top

level of the soil (Figure 4 - 10), the maximum settlement due to EK treatment coincides

with about 10 - 14% decrease in water content.

The effects of electrode material in the electro-osmotic flow of water and hence

decrease in water content indicates FE electrode as the best performer for the partially

embedded pipe. This conclusion arose from the fact that the maximum decrease in water

content at the top level of the soil sample was obtained using FE electrodes. The

alteration of the soil sample caused by the corrosion and degradation of the electrode

materials was also more pronounced in the soil with FE electrodes. Apart from having

effects on the soil-pipe adhesion which will be discussed later, it is thought that this is

likely to have some influence on the outcome of the water content. This might be due to

the nature of the ionic species from irons electrodes and its effects on the chemistry of

the soil.

To the contrary, the decrease in water content at deeper levels indicates the AL

electrode as the best performer. However, given the position of the anode and the

possible electric field generation within the soil mass, this decrease in water content

cannot be explained in terms of electro-osmosis alone. Quigley (1980) has reported that

the precipitation of iron oxides and carbonate can act as cementing agents, which

strengthen soil inter-particle bonds while Micic et al.(2002b) demonstrated the

occurrence of pore size and void ratio decrease due to electro-chemical effects on

treated soil. Therefore, it is possible that the migrations of the dissolved aluminium ions

(which is the main species from the AL electrodes) permeate into the soil pore under

gravity, react favourably with the kaolin clay resulting in the reduction in the void ratio,

pore size and hence, the decrease in water content obtained. This is however subject to

further research before a final conclusion can be arrived at. With this assumption, it

implies that the various ions from the dissolution of iron, copper and aluminium

electrodes migrate differently and react with the kaolin clay differently. A summary plot

showing the variation of water content profile using the three electrode materials is

shown in Figure 5 - 6.
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Figure 5 - 6: Variation in water content (w)proile using different electrode materials
and voltage after EK treatment

Apart from the AL electrode at 10V, all the water content profiles including the control

test roughly converged at around 70mm depth suggesting the possible limit of the

dewatering effects due to the EK treatment. The lowest water content is obtained for FE

followed by CU. AL at lower voltage also indicates a lower water content than AL at

higher voltage. This however is not consistent with the settlement plot (Figure 5 - 6)

where higher settlement is noted for AL at higher voltage.

5.3.1 Flow and spatial changes in sample water content

The electro-osmotic flow of pore fluid during the EK treatment is expected to be from

the anode, located below the pipe, to the cathode, located above the soil. This is

expected to be similar to the direction of flow of the electric field. Therefore, the water

will tend to move upward according to the direction of the simplified flow pattern.

However, the migrating species from the dissolution of the electrode (mainly the anode)

aPI?ears to go in an opposite direction, moving vertically downward (under gravity) as

evident by the increase in strength of the soil sample below the pipe invert. This pattern

of movement was also reported by Alshawabkeh and Acar (1996) where a migrating

chemical front resulted in the modification of the soil sample during an EK treatment.

Therefore, the strength improvement which was measured below the pipe could be due

to the combined actions of chemical alteration and dewatering of the soil. It is assumed
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that the whole water surface acts as the cathode. This appears to be effective for a small

scale test as in this study but not yet clear on how it will behave in a typical subsea

environment.

5.3.2 Interim conclusions - water content

• Significant decrease in water content occurs both vertically and laterally in all tests

conducted.

• Results appear to suggest that as long as the EK treatment is allowed to complete,

before the water content test is conducted on the soil samples from the various

applied voltages, then the decrease in water content may be almost the same in all

the applied voltages.

• FE electrodes appear to perform best (in terms of decrease in water content) at the

top level of the soil while AL electrodes appear to perform at greater depth below

the pipe section.

• Variations exist in the migrations and reactions of the ionic species (released from

the disintegrated electrodes) and the kaolin soil sample which affect the water

content profile at depth within the soil after the EK treatment.

5.4 Development of undrained shear strength due to EK treatment

5.4.1 Strength profile analysis after EK treatment

This section presents the analysis and discussions of the effects of EK treatment on the

undrained shear strength (cu) of the soil samples using simple classical soil mechanics

approaches. Firstly, an assessment of the effects of EK on the treated soil is investigated

by subtracting the Cu profiles before the EK treatment at the test locations LC 1 and LC2

from their profiles after the EK treatment. The ensuing relative Co profiles for LC 1 and

LC2 are presented in Figure 5 - 7 to Figure 5 - 10 for the two test series TV-VP and TV-

AP (refer to §4.2A). These show an increase in strength for the treated soils relative to

the control tests. The control tests also show a linear increase in strength with depth up

to about OAkPa, about 0.04kPa per metre attributed mainly to consolidation. Thus the

observed changes in the treated soils include also the effect of consolidation.
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Due to the observed slight variations in the c, profiles from the different batches of clay

mix, the EK effects on the soil strength is considered to be best assessed by comparing

strength differences in the individual bed of clay. It appears from Figure 5 - 8, which

shows the change in strength, that the EK treated soils at LC 1 are weaker than the

control test from about 30mm depth downwards. Although LCI is outside the zone of

EK influence based on the location of the pipe, this weakening effect on the soil after

EK treatment is not fully understood at this point but might be connected to the flow of

water during the EK treatment.

Change in undrained shear strength, c, (kPa)
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Figure 5 - 7: Change in Cu after EK treatment @LCI for Test Series TV-VP

In the same way, the effects of the EK treatment using the three electrodes were

assessed by subtracting their profiles before the EK treatment from the Cu profiles after

the EK treatment at test locations LCI and LC2. These are presented in Figure 5 - 11

and Figure 5 - 12 for LCI and LC2 respectively. Here, the maximum increase in Cu at

depth after the treatment is observed with AL electrodes. It appears from the results that

the effects due to EK are very minimal at LCI-AP (Le, axial configuration), implying

this is outside the zone of influence of the EK effect.
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Change in undrained shear strength, c, (kPa)
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Figure 5 - 12:Change in Cu after EK treatment at LC2 using different electrode
materials

5.4.2 Shear Strength / applied voltage / water content

A second attempt is made to relate the resulting shear strength of the soil with the soil

water content as well as the applied voltage since the development of undrained shear

strength is related to water content of soil. Figure 5 - 13 show the correlation between

the undrained shear strength after the EK treatment with the water content after the

treatment. It can be seen from the plot that there is a gradual increase in the soil Cu as the

water content decreases due to the EK treatment.

The effect of voltage on the development of undrained shear strength of the treated soil

is presented in Figure 5 - 14. This was done by averaging the shear strength at LCI and

LC2 over the depth of embedment of the pipe, denoted DJ (30mm below mud line) and

over the calculated zone of influence (ZOIF), 75mm below the mud line. The trend

shows that there is a gradual increase in the average Cu with applied voltage.

Similarly, the analysis of influence of voltage on the treatment efficiency of the EK

using the three electrodes is shown in Figure 5 - 15. It may be seen that there is a

gradual increase in average Cu with increasing voltage. While FE and CU show a
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gradual increase with increasing voltage, AL electrodes show almost constant value

between 2.5 and 7.5V before and a sharp increase between 7.5V and lOY.
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0.7

~ 0.6-OIl~
(1)

!:l 0.5r/)

~
(1)

-5i '(0 0.4
]~
.S '-"e cJ' 0.3
"Cl~
;:l
(1) 0.2OIl
to....
(1)
>
<t: 0.1

0.0
0

•C

• .Series TV-VP- Df
CSeries TV-AP- Df
&Series TV-VP- ZOI
6Series TV-AP- ZOI

Control test

2.5 10
Voltage (V)

12.5 17.5 205 7.5 15
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Figure 5 - 15: Development of undrained shear strength different electrode materials
and voltage

An analysis of the development of undrained shear strength using different electrode

materials is presented in Figure 5 - 16 and Figure 5 - 17 for LCI and LC2 respectively

while the variation of changes in Cu after the EK treatment using AL and FE electrodes

at different water contents are presented in Figure· 5 - 18. This assessment was carried

out by subtracting the initial c, before EK treatment from the Cu after the EK treatment

at depth 30mm, at LC2 only. The plot shows that there is an increase in Cu for all the

water content used. However, in terms of the actual percentage increase in the Cu,

variation does exist with initial water content used. The percentage increase in Cu is

included as an insert in the plot. This suggests that the increase in the undrained shear

strength during EK treatment is water content dependent. Thus this treatment process

will vary depending on site conditions.

Figure 5 - 19 shows the variation of water content with Cu after EK treatment using the

different electrodes at the specified initial water content. Also included here is one test

with CV electrode for purposes of comparison. It can be seen from this plot that there

are changes in both the water content and Cu using the three electrodes. The greatest

changes however are observed with AL electrodes.
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Electrode material and voltage

Figure 5 - 16: Development of undrained shear strength at LCI with different electrode
materials and voltage
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Figure 5 - 17: Development of undrained shear strength at LC2 with different electrode
, materials and voltage

5-27



Chapter 5

2.0

,--,
co 1.6~
'-'

"o
.s" 1.2 -Cl)
I:::
(l)

!:I
'"....co
(l) 0.8 -.s::=
'""0
(l)

.S
co.... 0.4"0
I:::
~

Assessment of the impact of electro-kinetic treatment on pipeline stability

_FE ~AL
% Cu increase

MC AL FE
70 660 156
90 810 450
120 760 400

0.0 ....---~----"I--------""""I"---""'"
70 80 90 100 110

Figure 5 - 18: Variation of Cu with water content using FE and AL Electrodes

Water content (%)
120

2.4 'r"'"--""!""'"--~--~--"""'!""--~--_--....,

"t.i
.=r 1.6-OJ)=Q,j
a..
';;;1.2
a..
'"Q,j-='"~ 0.8
=.;
a..-e
;5 0.4 ,

J ~Y~F~-0~.~00~4~13~~+JO~.5~3~~t;!:::::::::::~~~·~·~;~~~,.~----J0.0 .
60

-------+-
I

I -------+-
, :

- - - - - -\ - - - - - -~-.'.- - - - --

• MC -cu profile B4 EK

• AL-lOV-AFT EK

• FE-JOV-AFT EK

• CU-lOV-AFT EK

a CONTROL

-Linear (MC -cu profile B4 EK)

- - - - - - -1- - - - - - - -!- - - - - - - - - - - - - - -
i i
: :

------~--------

70 80 90 100

. Figure 5 - 19: Development of undrained shear strength and water content using
copper, iron and aluminium electrodes after EK treatment

Water content, w (%)

Although the increase in strength should be directly related to decrease in water content

(Le., if no chemical effects are included), considerable increase in the Cu of the treated

soil could still occur without corresponding decrease in water content. Micic et al.

(2002a) reported such results in their experiment on natural offshore marine clay. They

110 120 130
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attributed this to cementation bonding generated by the EK in highly saline marine clay

which cannot be explained by electro-osmosis alone. They arrived at this based on

Quigley's (1980) suggestion that the possible causes of increase in soil strength without

corresponding decrease in water content is due to selective sorption and ionic exchange

of ionic species on clay particles surface and precipitation of amorphous chemical

compounds such as iron oxide and carbonate, which serve as cementation agents.

5.4.3 Normalised strength analysis

To further investigate the changes in the soil mass due to EK treatment, the computation

and assessment of the normalised strength of the soil before and after the EK treatment

is carried out. This basically involves the assessment of the eu/(y' z) versus depth profile

at LC2 - .i.e. directly below the pipe invert where maximum EK effect was noticed. The

depth was taken from the mud line in the trench after the extraction of the pipe section.

The normalised strength profile of the as-placed soil was denoted as cu-P whiles those

due to consolidation effect (from the control test) and those due to EK effects are

denoted as C-cu and EK-cu respectively. A typical normalised strength profile is shown

in Figure 5 - 20.

Referring to Figure 5 - 20, it appears that the soil is placed at a water content which is

greater than the water content for normal consolidation (NC) giving a profile which is

constant from 60mm depth. Potential over-consolidation (QC) was noted at the top layer

of the soil possibly due to soil placement technique. It is possible that the soil surface

was subjected to additional load during the levelling process. Results of the normalised

strength plots for the two test series are presented in Figure 5 - 21. After the application

of the EK treatment, the soil consolidates leading to an increase in the normalised

strength plot eu/(y' z) up to about 100mm depth below the mud line. The control tests

show a constant profile from about 20mm depth suggesting the increase in strength was

primarily due to EK effects.

The control test curve appears to follow the normal consolidation trend line while the

treated soils show significant increase in eu/(y' z) between depth 20mm and 60mm. In

the case of the control test, softening of the soil below the pipe section was probably

due to failure caused by the installation of the pipe. This softening can be added to the

EK treated soil and hence a slightly higher Cu could have been recorded. Assuming the
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soil mass in the tank was uniform given the similarity in the Cu trend for all plots, then

the impact of the EK can be assessed by considering the changes in Cu at LC2 only for

all the various voltages used.

Similarly, the normalised strength plots for the soil using the three electrode materials

are shown in Figure 5 - 22. It can be seen that while the control tests show almost a

uniform normalised strength from about 10mm downwards, the treated samples show

considerable increase from the top up to about 80mm where they start to converge with

the control tests. The plot suggests that the soil is improved down to about 70 - 80mm

depth using CV and FE electrodes while the improvement increases down to the base of

the tank when AL electrodes are used. In addition, AL electrodes produce the maximum

increase while CV produces the least. By comparing the zone of influence due to EK

with the theoretical zone of influence (calculated as 75mm) indicate that the two zones

are approximately similar.
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Figure 5 - 20: Typical normalised undrained shear strength plots of the soil before and
after treatment
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5.4.4 Interim conclusions -development of undrained shear strength

• The electrochemical reactions of the aluminium electrodes with the kaolin clay

sample indicates that AL electrodes produced the greatest increase in shear strength

at depth FE electrodes produced the greatest effects on shear strength at the surface

of the treated soil.

• The effects of voltage on the soil using AL electrodes are not very prominent

between 2.5V and 7.5V. A sharp increase starts between 7.5V and lOY.

• The increase in Cu is initial water content dependent.

• Considerable increase in Cu could still occur without a corresponding decrease in

water content.

• Increase in the soil c, extends down to about 70 to 80mm for AL electrodes using

analysis from the normalised strength plots.

5.5 Soil and water pH

It was shown in chapter 4 that the pH of the soil generally increases with depth below

the pipe invert where the soil is more acidic near the anode area (Le. close to the

embedded pipe section). It was also shown that the higher the current density the lower

the pH of the soil. The gradual increase in the surface water pH from the large-scale test

(Figure 4 - 48) is shown to be related to the evolution of the current density. As the

current density decreases with time, the surface water pH increases. Given that the

electrode material in this case was iron, this gradual increase in pH could be due both to

the release of iron species into the surface water and the reduction of hydrogen from

water at the cathodes (submerged in the surface water) with time resulting in the release

of hydroxyl ions (OH-) into the surface water during the EK treatment processes.

The dissociation of hydroxyls (OH-) ions in water and the resulting release of the H+ is

strongly influenced again by the pH of the system (Mitchell and Soga,2005).These

hydroxyls (OH-) ions are also exposed on the surfaces of the clay particles and the

higher the pH, the greater is the tendency for the released H+ to go into solution. The

higher the amount of the free hydroxyl ions, the more basic is the water. This is likely to

have caused the observed increase in the surface water pH. The concern at this point for

this study is the environmental impacts of the increase seawater pH on the aquatic life
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during real life EK treatment. However, given the volume of water in relation to the

pipe footprint in the sea, the effect is likely to be minimal.

There remains a need to assess and quantify these effects, albeit this was not part of this

study. The pH level to support aquatic life is generally between 6.5 and 8.5. High pH

may mean that the water is low in CO2 which is necessary to produce oxygen and

support aquatic life. However, given the scale of this study, the exact values of resulting

seawater pH after EK treatment on a given scale will need to be determined through

further research in which the body of water is increased or replenished.

5.6 Analysis and discussions of the pull-out test results

The evaluation of the force required to lift objects, including subsea pipelines, on the

seabed is a key requirement in the assessment of the stability of these objects

(Vesic,1971). The breakout-force, which is the portion of this force to displace the

object in excess of the submerged weight of the object, is generally used in this

assessment in offshore operations (Liu,1969; Lee,1973; Byrne and Liam Finn,1978).

The pull-out force is approximately equal to the object's submerged weight if it is

embedded in cohesion-less soil or at rest on the seafloor without embedment .i.e. no

adhesion develops at the soil-object contact (Lee,1973). In undrained conditions where

the force is applied rapidly and water has no time to flow into or through the underlying

soil, then suction force will develop below the object. It is this suction force that has to

be overcome by the applied force to the object.

For an undrained condition to prevail around a penetrating surface foundation, Finnie

and Randolph (1994) showed that a non-dimensional velocity of vlr/c; > 30 should

suffice, with D being the diameter of the foundation, Cv and v being the coefficient of

consolidation and the velocity of penetration respectively. In this study, the velocity of

pullout is O.1mm/s while the pipe diameter is 50mm. A Cv value of between 1m2/year

and 2m2/year is typically used for kaolin clay. Lehane and Gaudin (2005) reported a

value of 2m2/year. This therefore implies that vls/c; is up to 79 which is greater than 30

suggested by Finnie and Randolph (1994). This therefore suggests that undrained soil

behaviour is the prevailing condition during all the pullout tests from this study. Typical

range of displacement of subsea pipelines when exposed to elevated temperature and
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pressure are between 0.05mm/s to 13mm/s for axial displacement and between 0.2mm/s

and 24mm/s for lateral displacement (Denis and de Brier,2010).

The effects of EK treatment on the breakout force using different voltage gradients and

electrode materials are analysed and discussed here. The submerged weights of the

pipe-electrodes assemblage were kept almost constant for a particular electrode type -

0.68N for copper, 0.61N for iron and 0.22N for aluminium electrode. These were

subtracted from the maximum pulling force recorded from the various tests conducted

to obtain the breakout force. The key soil parameter that influences the breakout force is

the undrained shear strength of the soil. The empirical equation proposed by Muga

(1967) and modified by Lui (1969) and then Lee (1973) based on the conventional (Le,

compressive) bearing capacity equation (Skempton,1951) can be used to predict

breakout force from the undrained shear strength although in this case the load is

tensile. This is given in equation 5 - 14 and 5 - 15 as:

5 -14

Where,

FUh = the immediate breakout force

A = object plan area

B = object width and

W" = object submerged weight

F q = se, (1 + 0.2 ::) (1 + 0.2 i) 5 -15

Where,

Cu = undrained shear strength of the soil supporting the object

L = length of the object

Dj= depth of embedment

Given that the pipe dimensions, pipe submerged weight, electrode configurations and

the depth of pipe embedment were kept constant in all the tests involving a particular

electrode material, equations 5 - 14 and 5 - 15 indicate that the only variable in this
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study in terms of the soil resistance to pipe displacement is the undrained shear strength

of the soil. Also, taking into consideration the analogy with conventional bearing

capacity equation, the failure mechanism of the soil during pipe pullout will involve not

only the deformation of the soil at the pipe-soil contact but also failure of soil some

distance (vertically and laterally) away from the embedded pipe as the failure surfaces

extends away from the pipe. Therefore, the measured soil resistances are due to both the

changes (laterally and vertically) in the undrained shear strength of the soil as well as

the increase in the pipe-soil adhesion force due to EK treatment.

The correlation between the average undrained shear strength of the soil and the

resulting vertical pullout resistance from test series TV-VP is presented in Figure 5 - 23.

Assuming symmetry between LCI and LC3 (.i.e., the EK effect is the same at the two

sides of the pipe) the average c, was obtained by taking the average at LC I and LC2

only for all tests conducted. The shear strength was averaged over the pipe burial depth

(D;) and the zone of influence (ZOIF) obtained using the general foundation theory. The

results show slight trend between the peak vertical force and average Cu which

demonstrates that increasing applied voltage gradients across the sample promotes

increase breakout resistance of the treated soil.

D

D

v c, (kPa) F peak

0 0.30 4.2
2.5 0.40 6.0
5.0 0.37 8
7.5 0.44 9
10 0.47 12
12.5 0.52 19
15 0.57 13
17.5 0.53 12

0.50 0.60
Average eu (kPa)

Figure 5 - 23: Comparison of peak vertical pulling force against average Cu for both
ZOlp (75mm) and Df(30mm)

It appears that as the average Cu at the sides of the pipe .increases, the pipe-soil contact

stress increases and the bond between the pipe and the soil also increases resulting in
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the increasing resistance to pipe breakout. However, it is expected that the value of the

adhesion would depend on the soil type (or site condition) and the type of coating

material used on the pipeline. The frictional resistance between coated pipe and

uncoated (or rough) pipe is likely to be slightly different.

Erchul and Smith (1970) reported a slight difference in the resistances of coated and

uncoated plates penetrated into sediment having cohesion of7.2kPa. The uncoated pipe

has a maximum adhesion of between 17 to 24% of the sediment cohesion while the

coated plate had between 15 and 20% of the cohesion of the sediment. The type and

nature of the surface coating of the pipe will also affect the pipe-soil adhesion force.

Adhesion increases with soil cohesion as well as surface roughness of the embedded

object (Chari et al.,1978). It should be noted that adhesion is not considered in this

investigation. However, the sharpness of the peaks noted in some of the pullout tests

could be related to the level of the adhesion force developed after the EK treatment

where higher adhesion could be the reason for sharp peak as it is that noted the load will

drop suddenly as the pipe breaks away due to effect of suction.

The top soft level reported for AL electrodes significantly contributed to the low

breakout forces measured. Thickness of this layer (about 13mm for AL-l OV and about

3mm for AL-2.5V) is likely the primary reason for the lower value of breakout force

obtained at 10V for AL. This is shown schematically in Figure 5 - 24. The pulling force,

F is therefore the sum of the undrained shear strength and the force developed due to

the EK treatment. This is expressed as

F= l(e,J + a 5 -16

Where

F = peak breakout force

A = cross sectional area of the soil within the reference zone and

a = force of adhesion at the pipe-soil contact

Cui X AI + Cu2X A2 + 0.1 + 0.2 = F

For AL electrodes.e.j is significantly greater than Cui

While for FE electrodes.c., ~ Cui
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Therefore, FFE > FAL

Although Cu significantly increased at depth using AL-I OV and AL-2.5V tests, the pipe-

soil adhesion bonding within the pipe-soil contact is greatly reduced due to the top soft

layer of the soil by the EK process. During the lateral pulling tests, it is the passive soil

resistance and some of the interface friction which contributes to the pullout resistance

of the soil whereas during axial pull, it is both interface friction and passive resistance

from the soil. Table 5 - I presents a comparison of the percentage pullout breakout force

measured during this study.

x x x

Passive soil :---'0 x x ')( X
res istance during ~_
latera! pullout -----...,

Lateral pull

Passive soil '5' .....J

resistance
during axial
pullout

Axial pull

Figure 5 - 24: Two strength zones developed after EK treatment

As stated in §4.7.5, it was observed that the soil around the embedded portion of the

pipe section (i.e. anode area) was noticeably altered electro-kinetically. This is due to

electro-chemical hardening of the clay around the pipe. In the large-scale test, the pipe

section was bare stainless (i.e. no coating) steel pipe section. It does appear that the pipe

also acts as the anode even though the electrodes were completely insulated from the

pipe section during the test. This is evident by the slight corrosion of the base of the

pipe noticed when it was pulled out of the soil. The exact reason for this is not very

clear at the moment.

This hardening of the soil and the concomitant increase -in the pipe-soil adhesion force

at the large-scale confirms the efficiency of the electrode configuration employed in this
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study and the potential application of the EK treatment at a full-scale to increase the

stability of partially buried subsea. This is consistent with the findings from Milligan

(1995) who demonstrated the use of EK to increase the bearing capacity of a metallic

steel friction pile in a bridge pier due mainly to electro-chemical hardening of the clay

soil around the pipes.

5.6.1 Interim conclusions -analysis of pullout tests results

• FE-electrodes gave the highest breakout force while AL-electrodes gave the

lowest breakout force.

• The top weak layer of the soil produced when AL electrodes are used significantly

contributed to the lower breakout force.

• Hardening of the soil around the pipe section adds to the increase in the breakout

force and also confirms the efficiency of the EK treatment.
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Chapter 5 Assessment of the impact of electro-kinetic treatment on pipeline stability

5.7 Effect of treatment time

In order to be in position to estimate the efficiency of the treatment process using the

different electrode materials, an attempt was made to assess the effect of treatment time

on the modification of the model seabed after the EK treatment.

By averaging Cu over the 75mm zone of influence and 30mm depths of embedment, the

effects of treatment were assessed and presented in Figure 5 - 25. It can be seen from

the plot that the higher the applied voltage the sooner it takes for the process to come to

an end. At a constant 10V gradient across the sample, FE electrodes complete the

process faster, about 24 hours followed by AL- about 28 hours and finally CU, 60

hours. However, at 2.5V, FE takes the longest time to complete, about 95 hours,

followed by AL, 56 hours. For AL at 10V, no significant increase in strength occurs

after 12 hours treatment implying that the majority of the EK treatment is only within

the first 12 hours of treatment at this applied voltage. A lower applied voltage (2.5V)

using the same AL electrode, resulted in a constant increase in strength with increase in

treatment time although the final strength is still less than strength at 10V. The 2.5V test

was not conducted with CU electrodes.

2.4 -r------------------.....,-- ..-...=-•. -...-AL;:-:;:-_-:::2--::.S::;-V::--l
--&-- AL-l OV
----- FE-IOV
.... -0 .... FE-2.5V

--*-- CU-1OV
--AL-2.5V
--e-AL-IOV
-FE-I0V
~FE-2.5V
_"_CU-I0V

, ' ,

@75m~I'

---- @ 30m:_j :
,

- r

,I1l------""--El, ,
- _,' I

I!

o 12 24 36 48 60 72 84 96
Treatment time (hrs)

Figure 5 - 25: Effect of treatment time (6hrs, 12hrs and end of test) from different
electrode materials and voltage
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This therefore implies that in terms of speed of the EK process, FE electrodes are the

best performers (especially at high applied voltage). This is however a function of the

applied voltage gradients, the higher the voltage the faster the treatment process and

vice versa.

5.8 Assessment of the zone of influence of the EK treatment

In this section, an attempt is made to assess the combined zone of influence (ZOIc) of

the EK treatment on the model seabed. This involves the analysis of the undrained shear

strength profiles obtained at the predefined locations (Figure 3 - 10 and Figure 3 - 11)

laterally and vertically as well as the use of the normalised strength profiles from the

analysis of the Cu profiles. The profiles are extracted from the c, profiles conducted as

part of this assessment. The assessment of this zone is carried out with respect to AL

and FE electrodes only since AL electrodes show the best performance in terms of

vertical extent of the EK and FE electrodes showed the best performance in terms of

lateral extent of the EK treatment.

The lateral and vertical variation in Cu profiles for AL electrode and FE electrodes are

presented in Figure 5 - 26 and Figure 5 - 28 respectively. In order to obtain the Cu due

to EK effects only, the Cu from the control test was subtracted from the Cu at the various

locations and the results presented in Figure 5 - 27 and Figure 5 - 29 for AL electrodes

and FE electrodes respectively. The figures appear to suggest the effect of the EK on the

soil is symmetrical from the pipe invert.

Figure 5 - 27 shows an analysis of the extent of the lateral EK effect on the treated soil

using AL electrodes. It appears from this analysis that using AL electrodes, the vertical

influence of the EK treatment appears to extend down to the base of the tank but

extends laterally to between 75 and 100mm from the pipe inverts (i.e. about 150 and

200mm horizontally). Similarly the lateral extent of the EK effect using FE electrodes is

presented in Figure 5 - 29. It does appear that at LC5, the effects extend to between 70

and 80mm. Also, at LCl, the effect is negligible from about 50mm depth. Therefore,

this could be interpreted to mean that the EK influence extends to about 80mm depth

and spread about 200mm laterally(Le. 100mm each from both sides of the pipe invert),

depending on the electrode material used. Analysis of ,the normalised strength plots

(Figure 5 - 21and Figure 5 - 22) also confirms the vertical extent of the EK treatment -
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about 70 to 80mm below the pipe invert. Therefore it could be concluded that the EK

effects using FE electrodes extends laterally more than using AL electrodes. However,

the vertical influence is greater when AL electrodes are employed.

If the lateral extent is denoted EK1a, and the vertical extent denoted as EK Vet, a non

dimensional term which relates the lateral and vertical extents of the EK effects is used

to assess the extent of the EK. This combined zone of influence (ZOIc) could either be

elliptical or circular. However, for ease of assessment and comparison, it is simplified

as a rectangular and expressed as:

ZOIc = EK'at
EKvet

5 -17

This zone is used in the evaluation of the power requirement (§5.9) of the treatment

process for each electrode employed. It gives an indication of the volume of soil treated

by the EK process and may be related to the power consumption which is also related to

the effectiveness of the EK treatment in terms of cost implications.

Undrained shear strength, c, (kPa)
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Figure 5 - 26: Lateral and vertical variation of Cu after EK Treatment using AL-
Electrodes

5-42



Chapter 5 Assessment of the impact of electro-kinetic treatment on pipeline stability
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Figure 5 - 27: Assessment of the zone of influence of the EK treatment using AL
electrodes

Undrained shear strength, c, (kPa)

~ 40<:»
V
.S
::0
~ 60
!J:
0v
..0

:S 80
0..v
Q

100

120

0.0
o

0.2 0.4 1.2

I--FE-lOV-LCI-B4

-FE-IOV-LCI-AFT

-FE-l OV-LC2-AFT

1OV-LC3-AFT

1OV-LC4-AFT

-FE-I0V-LC5-AFT

5-43

Figure 5 - 28: Lateral and vertical variation of Cu after EK Treatment using FE-
Electrodes
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Figure 5 - 29: Assessment of the zone of influence of the EK treatment using FE

electrodes

5.9 Power requirement

In an attempt to evaluate the efficiency of the electro-kinetic treatment, the power

consumption at a given voltage gradient is assessed. A simple equation to evaluate the

energy consumption during EK treatment was suggested by Lefebvre and Bumotte

(2002), Equation 5-18. Micic et al.(2003a) also proposed an empirical equation taking

into consideration the changes in current with time (Equation 5-19). This second

equation is employed here to evaluate the how much power will be needed to achieve a

certain change in the soil. In this study, the effects of the EK were noticed far below the

depth of embedment of the electrodes due to some chemical alteration of the soil as

evident in the results.

E = 20V/t
v 5 -18

Where:

v = mean applied voltage (V)

1= mean current (A)

t = total time (h)

v = sample volume treated
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5 -19

Where:

W= energy consumption per unit volume of treated soil (kWhlm3)

U; = applied voltage (V)

I(t) = electric current as a function of time t (A)

T= total time of treatment (h)

v= volume of treated soil V =A x H (m")

A = effective area between electrodes (m2)

H = electrode insertion depth

From the tests using FE and AL electrodes at constant applied voltage of 10V (refer to

§5.9) and over treatment time of about 37 and 34hrs for FE and AL electrode

respectively, the lateral spread of the EK treatment was 200 mm and 150 mm for FE

and AL electrodes respectively. The depth of influence was 80 mm and 100 mm for FE

and AL electrodes respectively. The total energy consumption was calculated as

308kWh/m3 for FE electrode and 302 kWhlm3for AL electrodes. This shows that the

energy requirement for the two electrodes is very similar. It should be noted here that

while the energy requirement were roughly similar, the ZOIc varied slightly in terms of

lateral spread and depth of influence of the EK using AL and FE electrodes. Further

research will be needed to investigate the variation of the power consumption with

different applied voltages since this study only investigated the lateral extents of the EK

effect using voltage gradient of 10V only due to time constraints.

The amount of power needed to cause a change in the soil properties is assessed as

follows: Referring to the undrained shear strength at 30mm DJ at LC2 as a baseline, the

power consumption calculated indicates that 308kWhlm3 is needed to cause a 230%

increase in the undrained shear strength of the soil using FE electrode while 302kWhlm3

is needed to cause about 400% increase in the undrained shear strength using AL

electrodes over about 1.5days of treatment.
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5.10 Overall repeatability of the EK tests

In order to establish the repeatability of the tests, two identical EK tests (TV-VP and

TV-AP) using the same voltage gradients were compared. Various measured parameters

such as the current density, changes in the undrained shear strength, water content

changes and pullout forces were compared. The results of the comparisons were

presented in Tables 4 - 1 to 4 - 3. For instance, the current density from all the tests

showed the same trend demonstrating that the experiments were repeatable for the same

applied voltage gradient. Referring to Tables 4 - 1 to 4 - 3, it can be concluded that the

repeatability of the test results in terms of changes in soil water content, undrained shear

strength and the pullouts were satisfactory and repeatable as explained in §4.8.

5.10.1 Interim conclusions -zone of influence and power consumption

• FE electrodes produce the largest lateral zone of influence while AL electrodes

produce the most vertical zone of influence.

• The power consumption using AL and FE electrodes are almost similar but not for

the same strength.

5.11 Potential electro-kinetic application in pipeline operations

The results and discussions of this research have demonstrated that very soft clay

surrounding a seabed offshore pipeline can be successfully treated using EK treatment

and therefore provide an alternative approach of mitigation against subsea pipeline

instability. However, this approach can only be applied to a new pipeline during the

installation process as the cost of its application to an existing pipeline network is not

likely to be cost effective. Since EK is potentially a good way of increasing the stability

of the pipeline, some suggestions on its possible application to offshore pipeline

operations are presented below.

5.11.1 Proposed methods of installation for offshore applications

A preliminary assessment of the shear profile of the site should be carried out and an

empirical equation should be use to determine the depth of embedment of the pipeline

into the seabed during installation. The next phase should be to couple a series of

electrodes around the outer surface of the pipeline using either a geotextile material or

appropriate existing offshore pipeline infrastructure. The electrodes could be either
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strips of conductive material or woven into a strip of geotextile material e.g. EKGs.

These electrodes could either be placed as linear lines along the pipeline, either

preinstalled or attached as the pipeline leaves the lay vessel. It is expected that the self

weight of the pipeline will cause it to sink into the seabed, bringing the electrodes into

direct contact with the soil.

Engineering studies should be conducted in advance of the pipelay operation to determine

the lengths of pipeline over which stabilisation will be required. This will have the effect

of proving increased contact strength between the pipeline and the seabed at intervals

along its length, or throughout its whole length as required. This will enhance the

stability of the pipeline at those locations where the pipeline is designed to be anchored

and therefore increase the efficiency of the snake-lay configurations (Figure 5 - 30). In

addition, the pipeline stability will also be enhanced where the pipeline is to be laid

around a curve and over discrete lengths between which the pipeline can expand and

contract, without walking. As in this study, the electrode configuration would be such that

the electrodes at base of the pipeline and in contact with the soil will be energised as the

positive electrode (anodes)will the electrodes at the top portion of the pipeline and within
)

the water medium, will be energised to act as the cathode.

Existing offshore pipeline technology, example (the instrumentations used during pipeline

installations) could be used to determine the orientation of the pipeline and possibly give

the first indication of depth of embedment. This would guide in determining which

electrodes needs to be energised as anode and cathode to provide electro osmosis of the

seabed soil. With input from pre-lay engineering studies, the input power requirements

and duration of electro osmosis could be determined. During this treatment process the

current and voltage could be monitored to give an indication of the progress of the

stabilisation. In some circumstances, a subsea power pack and control system may be

used with monitoring by acoustic signals; however, in general an umbilical cable could be

used as source of power.
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Displacement of
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Subsea
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Figure 5 - 30: Schematic representation of plan view of typical lateral buckling design
. showing possible locations for EK improvement

The most common problem posed with the application of EK treatment in offshore

foundations capacity enhancement is the enormous amount of current/power needed to

consolidate the soil due the very high conductivity of the seawater. However, in pipeline

operations, only a small volume of soil is needed to be consolidated to increase the

stability of the pipe and therefore considerably less power will be needed. For example,

during axial displacement of the pipeline, only a small volume of soil is involved.

5.12 Concluding remarks

The chapter has presented the analyses and discussions of the results obtained from the

electro-kinetic treatment of ambient soil around a model seabed and also demonstrate

the potential of using this phenomenon to increase the stability of subsea pipelines.

These preliminary results are the first attempt at extending the application of EK in

geotechnical engineering to offshore pipelines. The outcomes are very promising and

could form a basis for subsequent research in this area.

Although some of the measured effects of EK are not very impressive as compared to

the traditional EK treatment onshore, the design of the tests was constrained to closely

mimic the actual offshore field conditions and therefore could be improved upon. In

addition, some interesting areas for further research which could not be explained using

the limited results of this preliminary study have been -identified. Possible ways to
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better understand and improve upon the knowledge base of these innovative solutions

from this study have been suggested.

The preceding parts of the thesis have revealed that most of the existing approaches to

reduce damage caused by pipeline instability are expensive and difficult in the very

deep waters which is the current trend in offshore explorations. The novel approach

from this study when developed could be a better alternative.

5-49



Chapter 6

RESULTS, ANALYSES AND DISCUSSIONS OF THE

LARGE-SCALE PIPE-SOIL INTERACTION TESTS

6.1 Introduction

This chapter presents in detail the results, analyses and discussions of the large-scale

pipe-soil interaction tests described in §3.3. The results of the seabed characterisation

tests are presented first followed by the results of the main pipe-soil interactions tests.

The results of the lateral pipe-soil interactions are divided into three major sections to

assess the influence of the weight of the submerged weight of the pipe, speeds of pipe

pulling and the depth of pipe initial embedment during pipe lateral displacement. The

results of the axial pipe-soil interaction are also presented. The responses in relation to

the generation and development of the soil berm are explained and finally, a summary

of the findings and the conclusions of the chapter are provided at end of this chapter

followed by discussions of findings in relation to stability of subsea pipeline.

6.2 Test results from the model seabed characterisation

6.2.1 The T-bar and vane test results

The undrained shear strengths (cu) of the model seabed which were estimated from T-

bar and hand shear vane (HSV) tests are presented here. The soil strength from the T-

bar penetrometer is achieved by converting the measured soil resistance on the projected

area of the bar during the T-bar penetration to the soil Cu using aT-bar factor (Nt) of

10.5 (Stewart and Randolph, 1994) as expressed in equation 4-1. It should be noted here

the 10.5 factor suggested by Stewart and Randolph (1994) disregards the effects of

differences in the surface area during the T-bar penetration and extraction. This appears

to suggest the soil strength during extraction ofthe T-bar is slightly higher.
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There is therefore need to assess the effects of this differences with necessary

corrections being applied. Figure 6 - 1 shows a typical sets of Cu profiles obtained from

T-bar tests, showing both the peak (during pushing in of the T-bar) and the remoulded

(during pulling out of the T-bar) undrained shear strength of the model seabed prior to

the pipe-soil interaction tests. Note that the lines connecting the two profiles are there

because the penetration strength is shown as positive and the extraction strength as

negative.

Only the peak strengths, i.e. the penetration strength, are shown subsequently for the

purposes of assessing the soil strength. The softening index, Ss (equation 6 -1) of the

clay normally expressed as the difference between the strength during the T-bar

penetration (peak Cu) and extraction (remoulded cu) of the soil at the same water content

gives an indication of the change in the Cu of the bed of clay due to softening. Ss is

usually used to express soil sensitivity to disturbance at constant water content

(Craig,2005). From this study, the kaolin used here is indicated to have a Ss ranging

between 1.7 and 2.8 which is typical of most normally consolidated clays (Craig,2005).

peak Cu 6 - 1
remoulded Cu

A total of 25 model seabed (labelled test "a" to test "y") were prepared as part of these

tests. T-bar test was not conducted for test-y because the model seabed was assumed

very uniform after repeated mixing. For each of the model seabeds investigated, the

various Cu profiles from the individual test locations are combined together to obtain an

average Cu profile which is taken as the representative shear strength profile of that

model seabed (Figure 6 - 2).

Figure 6 - 3a and b show the Cu profiles from the first two model seabeds including

results from the hand shear vane (HSV). These two model seabeds are shown because

they both include the HSV tests results which were conducted for purposes of

comparison with the T-bar. Apart from the first four beds of clay which show relatively

higher strength, other model seabeds show slightly reduced strength possibly due to the

effect of repeated mixing. There was a slight variation in the spatial variation in the soil

Cu across the model seabed in the first seven tests. However, test-h sea bed shows

significant uniformity in the soil Cu across tank (Figure 6 - 4b). Therefore test a, b, d and
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h are shown here while the remainder of the strength plots are shown in Appendix C.

The uniformity in the soil strength with repeated mixing is supported by Figure 6 - 5

which appears to suggest that the homogeneity in soil strength across the tank increases

with increasing number of mixes.

Almost all the model seabeds show the average undrained shear strength as being very

soft clay with an increase in the Cu of about O.02kPa/cm down to a depth of 200mm

before beginning to increase rapidly with depth. The sudden increase in the strength at

about 200mm is mainly due to prolonged exposure to consolidation under its weight

since only the top 220mm of the seabed was repeatedly remixed. The HSV data appear

to agree with the T-bar results thus the vane were carried out on the first three seabeds

only. Also shown in Figure 6 - 2 is the theoretical profile of the Cu for comparison where

Cu is predicted from Cu = O.3av' (Muir Wood,1990), assuming 'Y = 16 kN/m3, which is

typical of kaolin clay. Although this relationship applies to fresh water soil, no direct

relationship exists for saline soil, thus it is assumed valid for saline water.

The predicted soil strength is mainly due to the self weight consolidation of the clay

(and is a function of the effective unit weight of the soil elements as well as level of

consolidation). This theoretical profile however shows a slightly lower soil strength

than the measured strength which might suggest that the soil is slightly over-

consolidated with depth. The strength profiles from the tests show that beyond 225mm

depth the soil shows increasingly higher strength. Since the calculated zone of influence

due to the lateral and axial motion of the pipe is within this depth, its effects on the soil

resistance is assumed to be minimal. The determination of the seabed Cu profile is

fundamental in estimating the penetration of the pipe into the seabed as well as

assessing the lateral and axial resistance of the soil to pipe motion.

In order to assess the influence of consolidation time on Cu from aT-bar test, additional

T-bar tests were conducted at 24 hours intervals during test-d (Figure 6 - 4a). These are

LC 10 to LC 12. It can be seen from the plots that the average change in Cu from the T-

bar was approximately O.02kpa per day implying the increase in shear strength -1 %.

This reflects that the effect of consolidation time on the c, after thorough mixing was

minimal and therefore between 3 to 7days consolidation time was chosen for all the

tests.
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Undrained shear strength, Co (kPa)
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Figure 6 - 1: A typical T-bar response showing the push-in and pull-out soil resistances
representing the peak and the remoulded strength profiles of one of the model

seabeds

300 ~----~------------------~~~~~ L-~~~~~~~~
Figure 6 - 2: Plots of average undrained shear strength profiles of the model seabeds
. investigated

50

I
(!) 10013
"0

S
~ 150
o
'1i
.D
,..qfr 200
Cl

250

Undrained shear strength, c, (kPa)
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.r-----~---------.

1-\ vera ce cu-test-a
o --oi:=---------------- ......--""1 -----Average cu-test-b

----- Average cu-test-c
----- Averagecu-test-d
----- Average cu-test-e
----- Averagecu-test-f

Average cu-test-g
----- Averagecu-test-h
----- Averagecu-test-i
-- Average cu-test-j
- Averagecu-test-k
- Averagecu-test-l
-- Averagecu-test-m
-- Averagecu -test n
-- Averagecu -test 0

Averagecu -test p
- - Averagecu -test q

-- Averagecu -test r
-- Averagecu -test s
- - - Average cu -test t
-- Averagecu -test u
-- Averagecu -test v

Average cu -test w
--- Average cu -test x

,,,\,,
I I

"\I,
"l'"

II

"""..\'~ I

Predicted strength at
cu/crv' = 0.3

It is a usual practise to normalise the resulting soil resistances during pipe displacement

by a representative shear strength value. In order to assess this representative Cu value

from the individual seabeds, the soil Cu at depths 65mm (l/2D), 130mm (lD) and

225mm were extracted from the individual averaged c, profiles and are presented III

6-4
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Table 6 - 1. The specified depths are chosen to represent 1I2D, ID and the anticipated

depth of zone of influence from the pipe invert taken here as approximately _250mm

from the mudline. These strength values are used in the analysis of the pipe-soil

interaction responses during the pipe travel to be discussed later.
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Figure 6 - 3: Undrained shear strength profile for model bed a, and b
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Figure 6 - 5: Plots of representative model seabed strength at selected depths

T bi 6 1 S fth T b t da e - : ummaryo e - ar pene rometer test an resu ts

Test Representative Cu (kPa)
Date of testlabel

65mm 130mm 225mm 250mm
a 0.51 0.65 0.95 1.25 16/02110
b 0.5 0.73 1.48 2.3 22/03110
c 0.62 0.98 1.41 1.6 08/04110
d 0.74 0.93 1.4 1.9 19/04/10
e 0.33 0.5 0.65 1.4 26/04/10
f 0.28 0.35 0.61 0.81 07/05/10
g 0.41 0.55 0.7 0.87 18/05/10
h 0.39 0.56 0.74 2.2 02/06/10
1 0.31 0.41 0.54 1.13 09/06/10
j 0.31 0.39 0.83 2 16/06/10
k 0.37 0.53 0.65 1.35 23/06/10
I 0.33 0.45 0.94 2.68 09/07/10
m 0.3 0.47 1.5 4.2 20/07110
n 0.34 0.51 0.75 3.6 03/08110
0 0.37 0.5 1.2 3.6 10/10/10
p 0.32 0.47 0.7 1.42 15/09/10
q 0.25 0.35 0.5 2 21109110
r 0.29 0.41 0.51 2 30109110
s 0.29 0.41 0.58 2.4 11110/10
t 0.26 0.38 0.51 3.8 18/10/10
u 0.31 0.42 0.6 3.8 25/10/10
v 0.33 0.42 0.6 3.9 29/10110
w 0.27 0.37 0.53 3.8 02111110
x 0.33 0.38 0.59 3:9 04111110
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6.2.2 Water content test results

The results of the water content tests on the 25 model seabeds are shown in Figure 6 - 6.

Each of the data points at a particular depth represents average water content over 5

locations across the seabed. Referring to Figure 3 - 21, the five locations were near to

the T-bar test locations 1, 3,5,10 and 12. Standard deviations from the various tests at

each depth are generally between 0.8 and 4.8. A summary water content table can be

found in Appendix D. The profile of the water content from the first seabed (test-a)

shown as a dotted line indicates the initial water content ranges between 69 and 63%

(from top to base of the bed of clay in the tank) after about 10 days of consolidation in

the tank. While all the tests indicate a decrease in water content with depth, the water

content within the top 150mm varied between 60 and 78% due to the repeated remixing

of the seabed during successive tests.
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Figure 6 - 6: Plot of water content profiles for all the tests conducted

The constant remixing of the model seabed after each test appears to promote a

variation in water content profiles. It can also be seen that in the zone where no mixing

took place, the value of the water content constantly decreased with time down to about

42% due to prolonged consolidation of the seabed. It does appear therefore that this

method of seabed preparation which involves removal of the surface water after each
,

pipe-soil interaction tests and remixing of the clay bed does not ensure consistency in
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the water content as seen in the Cu plots. However, the pipe-soil interaction responses

during tests were normalised by the representative Cu for ease of comparison of results.

6.3 Results from pipe-soil interaction tests

6.3.1 Effects of submerged weight of pipe - Series LP-SW

In this section, the results of tests to investigate the effects of effective vertical weight of

the pipe on soil lateral resistance are presented. Results of the lateral pulling tests are

presented first followed by the results of the seabed deformation studies (berm

generation) during the lateral movement of the pipe (referred to as pipe sweeping).

6.3.1.1 Results of the lateral pulling tests (pipe sweeping)

The first sweep (from test-a) started by releasing the pipe section from the loading

trolley and allowing it to bury gently into the model seabed due to its submerged weight

(plus the weight of the pipe attachments, totalling -57N); subsequent tests involved

adding more vertical loads to simulate increasing pipe submerged weight. The contact

force from the vertical load of the pipe on the soil generates immediate shearing

deformation of the soil similar to the local shear failure under a strip footing foundation.

The resulting immediate pipe penetrations after laying on the model seabed are

presented in Table 6 - 2. The pipe was left in that position for 24hrs which resulted

in further penetration due to consolidation.

It should be noted that in practice the maximum load between the pipe and the soil as it

is laid on the seabed is greater than the contact stress due to the width of the pipe alone.

This is because of cyclic movement of the pipe laying vessel and the additional vertical

force due to the interruption of the natural catenary created by the pipe as discussed in

§2.4.1. Therefore the embedded depth of pipes in practice (Cathie et aI, 2005) is greater

than that due to its weight alone. These additional forces are unknown and are difficult

to predict. Therefore, the total penetration of a pipe is a function of the immediate

penetration during pipe installation, penetration at the end of consolidation period, and

further penetration due to cyclic movement of the pipe. The penetration due to the

weight of the pipe can be predicted using classical soil mechanics approaches already

discussed in chapter 2.
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The force-displacement responses and the pipe trajectories during the lateral sweeps

from the five tests conducted in this test series are presented in Figure 6 - 7 to Figure 6 -

11, while the pipe vertical penetrations during the tests are presented in Table 6 - 2.

All the plots are presented using the same scale for purposes of comparison of the soil

resistances from various submerged pipe weights. For test-a, the immediate pipe

penetration into the soil was about 6mm plus a further 0.43mm after 24 hours of

consolidation of the soil.

The first sweep was made to start at -500mm (on the x-axis of the graph) and moved to

the left a distance of about 600mm. At the end of the sixth sweep, the maximum pipe

penetration was 35mm. Initially the pipe moved horizontally (Figure 6 -7a). Gradually

a berm of soil started to build in front of the pipe causing the pipe to rise by about

10mm (equivalent to approximately lmm uplift per 40mm of lateral displacement).

This is consistent with the force-displacement response (Figure 6 - 7b) of the pipe

where after the breakout from the as-laid position, the lateral resistance of the soil

continue to increase as the berm of soil increases in front of the pipe section. The

breakout force was defined in §2.3 as the force in the excess of the pipe's submerged

weight needed to lift or move the pipe from its as-laid position.

During the second sweep, the pipe invert level reduced by about 17mm due to the pipe

gradual embedment into the soil. The relative reduction in the pipe invert level in

subsequent sweeps was less than that in the second sweep. This was possibly due to the

increasing shear strength of the soil at greater depth below the mudline; i.e. the soil

provided a greater resistance to penetration. In all, a total of 15 lateral sweeps were

conducted during test-a. In subsequent tests it was decided to restrict the number of

passes to six because the additional passes did not show any further increase in soil

resistance.

It is noted that in test-a there was very little variation in the hysteresis loop between

passes after the first pass (Figure 6.7.b). Furthermore, the gradient of the force

displacement plot as the pipe moved across the trench created by the previous pass was

almost horizontal. This pattern was noted in test -b and -c (Figure 6 - 8 and Figure 6 -

9). However, in test d and e (Figure 6 - 10 and Figure 6 - 11) there was a significant

increase in the slope of the force-displacement plot. Figure 6 - 12 shows a plot of these
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gradients for the first pass only. This tends to suggest that slope of the horizontal force-

displacement curve is a dependent on the submerged weight of the pipe. Effectively

the pipe slides over the seabed if its weight is less than 87N but acts as a plough if the

weight exceeds 87N. As state in §2.2.8, pipes are classified as 'light' or 'heavy'

depending on their normalised weight (W'/cuLD), i.e. with respect to the seabed strength

and the pipe diameter. For normalised pipe weight (W'/euLD). < ~ 1.5, the pipe is

considered "light" whereas for values > ~2.5, it is considered "heavy"(Bruton et

al.,2008). The normalised weight for tests -a - d ranges between 1.1 and 1.5 while that

of test-e is 3.1 based on the representative eu at the respective pipe invert. Therefore,

tests -a-d behave as light pipes while test-e as a heavy pipe.

It appears. therefore that even within the same category some variations exist in the

response of the pipe that would call for reclassification especially with the "light" pipes.

Nonetheless, it appears to suggest that the slope of the curve which represents the rate of

increase in lateral soil resistance with lateral displacement is dependent on the effective

weight of the pipe as seen by the shape of the hysteresis curve. This response is also

consistent with the vertical penetration of the pipe where significant pipe penetration

with lateral displacement increases significantly in test-e (W'/LDcu = 3.1).

In addition, only test-a (W'/LDcu = 1.1) shows pipe uplift during pipe travel after

breakout during its first sweep while test b - d, although classified as "light pipes", do

not. It is the opinion of the author therefore that normalised pipe weight from ~3.0 is

likely to promote excessive pipe vertical penetration during cyclic lateral displacement.

Extreme vertical penetration of pipelines, especially at the crest of the buckles, imposes

excessive lateral load on the pipe which could undermined its structural integrity during

operation (Friedmann, I989; Bruton et al.,2008). This is because with increasing

penetration, the lateral movement of the pipeline is restricted leading additional loading

on the pipe. All five tests except test-e were allowed to go over the dormant berm of soil

at a point (mostly during the 4th sweep). This was to assess the amount of additional

lateral resistance that could be offered by the dormant berm. The dormant (or static)

berm is the heap of soil left behind when the pipe changes its direction of movement.

For test-a, as the pipe approaches the dormant berm and tries to climb it, the pulling

force increases rapidly initially and then become nearly constant as the pipe climbs the

berm.
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Chapter 6 Large-scale pipe-soil interaction

Vertical cracks are also noted on the soil surface in front of the pipe as it pushes through

the berm possibly indicating tensile failure of the soil mass. In contrast, test-b, d and e

all indicate a constant increase in the soil resistance as the pipe pushes through the

dormant berm of soil. As the pipe maintains a constant climb, the force starts to reduce

slightly meaning the lateral restraint from the soil reduces as the advancing pipe climbs

upward.
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One way of presenting the results of the pipe-soil interaction is to present them in non-

dimensional units. The representative strength of soil employed to normalise the

effective weight of the pipe is the undrained shear strength of the soil at the pipe invert.

Depending on the depth of embedment of the pipe, this lies within the strength range at

1/2D to ID below the mudline (please refer to Table 6 - 1) and given the pipe diameter,

D of0.13m and length ofO.8m, the effects of the pipe effective (submerged) weight are

assessed by combining the results of the 5 tests.

Table 6 - 3 presents the summary of the parameters used in the assessment. This is

extracted from the pulling tests results for series LP-SW. The initial level of the pipe

invert before the lateral sweep was subtracted from the final levels of the pipe invert to

give an indication of the maximum penetration of the pipe during each test. In the test -

e (i.e., 107N pipe weight), only four lateral sweeps were conducted due to excessive

penetration of the pipe into the soil.

Figure 6 - 13 seems to suggest that while the normalised displacement of the pipe after

the six-cycle lateral sweeps increases from test-a to d (j.e. 55N to 99N vertical load),

the normalised vertical displacement appears to be independent of the normalised

weight of pipe.
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Chapter 6 Large-scale pipe-soil interaction

6 3 S f f LP SWTable - : ummary 0 assessment parameters or senes -
Test label a b c d e

Pipe effective weight, W' (N) 57 77 87 97 107

Representative c, at 1/2D depth 0.51 0.50 0.62 0.74 0.33
(kPa)
Normalised weight 1.07 1.48 1.35 1.26 3.12
W'/cuLD
Normalised breakout force 0.35 0.45 0.61 0.53 0.79
(F/cuLD)
Normalised horizontal 0.l1 0.22 0.45 0.38 0.l8
displacement before
breakout(hlD)
Normalised maximum lateral 1.15 1.50 1.20 2.00 4.75
force at the end of sweep #1
Pipe penetration after 24hrs 0.43 9.85 10.l0 16.66 31.08
(mm)
Normalises pipe penetration 0.0 0.08 0.08 0.13 0.24
after 24hrs (x/D)
Maximum pipe penetration after 35 111 128 160 151
six sweeps, x (mm)
Normalised maximum pipe 0.27 0.85 0.98 1.23 1.16
penetration after six sweeps
(xmaJD)

The only deviation is from test -e which shows significantly higher normalised pipe

weight with reduced normalised vertical penetration. This could be possible due to the

selection of the average Cu used for the normalisation. Also, the model seabed is slightly

over consolidated with depth hence reducing the amount of penetration after the initial

pipe penetration. Such response will vary depending on the seabed conditions.

However, the average seabed strength within the first 1m depth is between 1 - 2kPa,

although lateral variations do exist at times, which increases the level of uncertainty in

the selection of the appropriate representative Cu for the pipe-soil analysis.

Figure 6 - 14 shows the plot of normalised breakout force against normalised pipe

horizontal displacement before breakout. This is one way of assessing the effect of

effective pipe weight on the breakout resistance of the soil. Also included as insert, is

the maximum normalised lateral load on the pipe at the end of the first sweep from the

five tests conducted in this series. Apart from test-e which shows a relatively higher

breakout force compared to other pipes, there is a slight increase in the breakout force

with increasing pipe effective weight. However, this difference lies within a very

narrow band of between 0.3 and 0.6. The excessive increase in the breakout force from

test-e is mainly due to the higher frictional component of the force due to the higher
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Chapter6 Large-scale pipe-soil interaction

submerged weight of the pipe and less of the passive resistance from the soil. The

passive resistance from the soil berm will be dealt with in §6.3.1.2. It is also interesting

to note that higher pipe effective weight appears to indicate higher normalised lateral

pipe displacement before breakout. The plot also appears to suggest a linear

relationship (apart from test-e which appears as an outlier) between the normalised

breakout force and the mobilised pipe displacement before breakout for increasing pipe

weight. This tends to suggest that higher pipe weight could withstand more lateral

displacement before breakout. This negative value on the plot is due to the load cell

which measures left-ward pulling as negative force and right-ward pulling as positive.

The effect of the effective weight of pipe on the lateral soil resistance and vertical pipe

penetration can be assessed by plotting the normalised vertical displacement against

normalised horizontal displacement (Figure 6 - ISa) and normalised horizontal pulling

force against normalised horizontal displacement (Figure 6 - ISb) for the five test

conducted. It can be seen that only test -a appears to show pipe uplift during the first

pass. Test -b and c appears to show almost horizontal pipe trajectory while test-d and e

show significant pipe embedment while undergoing the first sweep. This is also

consistent with the results of the normalised pulling force where the lateral force for test

-b and c are similar while there is significant increase in pulling force for test-e. Test-d

differs from test-e by only ION, but then the amount of penetration during pipe

movement is significantly different in test-e. This may appear to indicate that there is

likely a combination of pipe weight and soil strength where the magnitude of pipe

embedment during pipe lateral displacement will initiate excessive pipe penetration

during lateral displacement.

6.3.1.2 Development of soil berm during lateralpipe pulling - Series LP-SW

The stability of offshore pipelines to lateral displacement is a function of the lateral

resistance that can be offered by the soil during pipe travel and the frictional resistance

between the soil and the pipe. The lateral resistance is dependent on the volume of soil

in front of the pipe which in tum is related to the level of the pipe .invert and hence

depth of penetration of the pipe. The depth of initial penetration and rate of subsequent

penetration during pipe displacement has been shown in the preceding section to be

affected by the effective pipe weight. It is therefore likely that the effective weight of

the pipe could control the formation of the berm of soil since as the pipe moves laterally
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Chapter 6 Large-scale pipe-soil interaction

an active berm of soil is created in front of the pipe resulting in additional increase in

the soil lateral resistance. The height of that berm is dependent on the penetration of the

pipe which in tum is a function of the weight of the pipe. The frictional resistance also

increases as the pipe penetrates the soil because the shear strength increases.
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Chapter 6 Large-scale pipe-soil interaction

The schematic illustration of the geometry of the soil surface and pipe positions

employed in this study is illustrated in Figure 6 - 16. The description of the soil surface

and the nomenclature adopted during the pipe lateral travel is shown in Table 6 - 4. This

section investigates the influence of the effective weight of the pipe on the formation

and development of the berm of soil as the pipe moves.

Datum (base of the actuator)

....~.I. ~ ~!. !gp. ~ .I.(! ..?~i ?:..e .

.: "OJd
• Sb ';;"': \ ~

T I· . Imtialempora position . . f
of pipe invert P?SIt~on0
during lateral travel pipe Invert

TT

Figure 6 - 16: Schematic illustration of the seabed deformation during pipe travel

The height of the active berm relative to the pipe invert in front of the advancing pipe

during travel is: B, = Z, - Xs1a, while the height of the berm relative to the trench level

is: BI = Tab - Xs1a. The berm height relative to the original pipe invert after initial

embedment is: Boi = Xs1a - Zio, Zio being the original pipe invert level before start of

sweep. Thus true heights of the berm during each sweep are captured as the soil surface

deforms as the pipe moves across the seabed surface. As the pipe moves, a berm of soil

is formed in front of the pipe from soil scraped from the trough. This is referred to as

the active berm. At the end of each sweep where the pipe changes direction, the active

berm is left behind and becomes dormant (i.e. dormant berm).

Although the berm geometry could be idealised as a semi-circle, the characteristic area

of the soil berm is modelled by multiplying the base (width) of the berm with its vertical

height. Thus, (Aab) = Sb X Hab. Similarly the shape of dormant berm is Adb = U X Hdb.

Table 6 - 5 shows typical data from the seabed bed geometry (including berm) study for

test -b sweep 1. These data are plotted in Figure 6 - 17 together with the results of the
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Chapter 6 Large-scale pipe-soil interaction

other sweeps. It can be seen that only the first two sweeps are shown for the area of the

active berm in Figure 6 - 17b. This is because during the 3 to 6 sweeps, deeper

penetrations of the pipe obscured the measurement of the base (width) of the berm of

soil generated.

It was noted that for the lighter pipe as in test -a, the characteristic shape of the soil

berm generated reduced after the first sweep. In the first sweep shortly after the initial

embedment, the heave of soil around the sides of the pipe contributed to the size of the

initial berm but in the next sweep, this heave is not present and the lateral load from the

pipe is less. Thus, subsequent berm areas are less than the first. A plot of the first two

sweeps for test -a is shown in (Figure 6 - 18) which indicates the reduction in the berm

height after sweep #1.

T bl 6 4 D ·f fth dl bd f duria e - : escnpnon 0 emo e sea e sur ace unn~etrave
Key Description

Sb Width of base of active berm

Tab Trench level in front of active berm

U Width of dormant berm

Vs1 Soil level in front dormant berm

Ws1 Soil level at the dormant berm

x., Soil level at the top of the active berm in front of pipe

Zj Pipe invert level during lateral travel

z, Soil level after initial pipe embedment

d Depth of initial embedment of the pipe from the mudline

Zs Instantaneous pipe penetration into the soil

tt; Height of the active berm

Hdb Height of the dormant berm

Aab Area of the active berm of soil in front of the pipe

Adb Area of the dormant berm left behind by the pipe

z: The original pipe invert level before start of sweep

s; The berm height relative to the original pipe invert after initial
embedment

Note: all levels are referenced to below the actuator base level (J.e. Omm)
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Figure 6 - 17: Typical active berm generation with pipe travel, (a) berm height relative
to pipe invert and (b): area (i.e., characteristic shape) of active benn relative to

pipe invert

Figure 6 - 19 and Figure 6 - 20 show the combined plots of the generation of the active

berm of soil from the series LP-SW for sweep #1 and #2 respectively. The plots are

grouped in this manner in order to aid in the comparison of the shape of berm with

increasing pipe weights (.i.e. test -a - e). Therefore, the berm of soil formed during the

first sweep from different pipe weights is investigated first followed by the berm from

the second pass. It can be seen here that the volume of soil scraped from the trench to

form the berm as the pipe moves increases with increasing weight of pipe. For the light

pipes (test-a - c), the volume of the berm is similar. However, for the heavy pipes (test-

d and e), the volume of the berm continues to increase as the pipe moves down into the
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seabed. For the light pipe (test-a), the second sweep shows slightly lower soil berm

value of the characteristic shape whilst for the heavy pipes, slightly higher values are

measured.
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Figure 6 - 18: Berm height for the first two sweeps from test-a (lighter pipe, 57N)
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Figure 6 - 19: Combined active berm generation with pipe travel for test -a - e,
sweep#1 only, a) berm height relative to pipe invert and b): area (i.e.,

characteristic shape) of active berm relative to pipe invert
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Figure 6 - 20: Combined active berm generation with pipe travel for test -a - e,
sweep#2 only, (a) berm height relative to pipe invert and (b): area (i.e.,

characteristic shape) of active berm relative to pipe invert

6.3.2 Effects of rate of lateral displacement of pipe - Series LP-PS

In this section, the results of the tests to investigate the effects of the rate of pipe

displacement during lateral pipe pull are presented. Series LP-PS was designed

primarily for this investigation. However, tests -b, c and d from series LP-SW are also

included in this assessment because they were all conducted at a pulling rate of

O.OSmm/sec but with different pipe weights. Results of the lateral pulling tests are

presented first followed by the results of the seabed deformation studies (berm

generation) during the pipe lateral pulling (pipe sweeping).

6.3.2.1 Results of the lateral pulling tests

The results of the force-displacement response and the pipe trajectory during the lateral

sweeps from series LP-SP are presented in Figure 6 - 22 to Figure 6 - 27 and the
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parameters derived from the tests are presented in Table 6 - 2. The influence of rate

of displacement pipe can be seen by considering the pipe trajectory and the force-

displacement response from the test conducted. Figure 6 - 21 presents the plots of the

gradient (i.e. change in lateral pulling force against change in pipe lateral displacement

in N/mm) of the pulling force with lateral velocity for the three vertical loads at

different pulling speed.

The figure indicates that for all the three vertical weights investigated, the gradients of

the slope of the pulling force increased rapidly from 0.05mm/sec to O.1mm/sec pulling

rate possibly suggesting that the higher the rate of pipe displacement, the higher the rate

of build up of the soil lateral force on the pipe.
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Figure 6 - 21: Plot of gradients of the slope of the force-displacement response from
sweep#l only for series LP-SP

The rate of penetration and the maximum penetration at the end of the first sweep are

also influenced by the rate of pipe displacement. For the lower speed (0.05mm/sec),

after the initial penetration into the soil, the pipe appears to maintain almost a horizontal

trajectory while in the case of the higher speeds (0.1 and lmm/sec) the pipes underwent

a constant penetration in to the soil. This pattern is observed in all the three vertical

weights investigated.

It does appear that at a lower speed of lateral displacement, the pipe does not penetrate

the seabed but as the speed is increased the embedment of the pipe into the seabed is
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increased. The amount of displacement of the pipeline during operation is however

dependent on the operating temperature and pressure of the fluid within the pipe in

relation to the ambient conditions. There is therefore need to incorporate this effect of

the operating temperature on the rate of pipe displacement in the design stage as

excessive penetration of pipe during lateral displacement is detrimental to the structural

integrity of the pipe during operation. This is because the rate and amount of

propagation of the buckles related to the temperature in the pipeline (Hobbs,1984).

The summary of the parameters extracted from the pipe-soil interaction pulling tests

which are used to assess the effects of pipe pulling speed are presented in Table 6 - 6.

In order to compare the effects of pulling speed, tests with the same vertical loads are

grouped together.

Leanne et al. (2009) demonstrated both drained and undrained conditions of soil

behaviour during the penetration of aT-bar in kaolin clay depending on speed of

penetration. They summarised their findings by concluding that although resistance of

clay increases with reduced penetration velocity, as more time is allowed for

consolidation around the penetrating object, there is also a tendency for increases in

resistance with increasing velocity when the velocity exceeds approximately lmm/s.

This they attributed to the occurrence of viscous flow. This supports the suggestion that

in this study at the slowest velocity of O.OSmm/s, drained conditions prevailed while at

velocities exceeding O.OSmm/s, undrained conditions prevailed.

It is apparent in Figure 6 - 21 that for the 77 and 97N tests the results are relatively

insensitive to pipe pulling speed greater than O.lmm/s. For the 87N test there is a

marked change at O.lmm/s but the lmm/s test may be an anomaly. The data suggest that

below O.lmm/s the behaviour is drained/partially drained while above O.lmm/s is

essentially undrained.
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T bi 6 6 A ffl f . 11" da e - : ssessment parameters to investigate e ect 0 .pipe pu mg spee
Test label b f i c h k d g j

Pipe effective 77 77 77 87 87 87 97 97 97
weight, W' (N)

Pipe pulling speed 0.05 0.1 1 0.05 0.1 1 0.05 0.1 1
(mm/sec)

Representative c, at 0.50 0.28 0.31 0.62 0.39 0.37 0.74 0.41 0.31
1I2D depth (kPa)
Normalised weight 1.48 2.64 2.39 1.35 2.14 2.52 1.26 2.27 3.01
W'/cuLD
Normalised breakout 0.45 0.55 0.56 0.61 0.34 0.52 0.53 0.44 0.87
force (F/cuLD)
Normalised 0.22 0.06 0.03 0.45 0.04 0.04 0.38 0.05 0.05
horizontal
displacement before
breakout(hID)
Normalised 1.50 5.00 4.19 1.20 2.81 3.18 2.00 3.93 5.01
maximum lateral
force at the end of
sweep #1
Pipe penetration after 9.85 15.11 25.79 10.10 9.57 22.74 16.66 20.05 28.90
24hrs (mm)
Normalises pipe 0.08 0.12 0.20 0.08 0.07 0.17 0.13 0.15 0.22
penetration after
24hrs (x/D)
Maximum pipe 111 154 140 128 152 154 160 160 147
penetration after SIX

sweeps, x (mm)
Normalised 0.85 1.18 1.08 0.98 1.17 1.18 1.23 1.23 1.13
maximum pipe
penetration after six
sweeps (xmax/D)
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It can be seen from Figure 6 - 28 that there are no significant variations in the

normalised pipe displacement before breakout between 0.1 and lmm/sec rate of pipe

displacement. Thus only little ~isplacement is noted with increase in the breakout force.

However, for the lowest speed) (O.OSmm/sec), the normalised pipe displacement before

breakout appears to show an increase in breakout force with increase in displacement.

The maximum lateral load on the pipe section at the end of the first sweep is presented

in Figure 6 - 29. It can be seen here that the maximum lateral load which represents the

maximum soil resistance, increases with increasing speed of pipe travel although a

small deviation exist for 77N test where O.lmm/sec loading is slightly higher than

lrnm/sec loading. The maximum pipe penetration at the end of the six sweeps also

shows the faster pipe speed having maximum vertical penetration at the end of the

sweep (Figure 6 - 30). Figure 6 - 31 shows combined plots for the series where the

effects of the pulling speed on the pipe trajectory and lateral soil resistances are

presented for purposes of comparison.
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6.3.2.2 Development of soil berm during lateral pipe pulling - series LP-SP

The effects of pulling speed on the generation and migration of soil berm during lateral

pipe displacement is shown in Figure 6 - 32. It can be seen that the higher the speed of

travel the greater the volume of soil scraped from the seabed to form the berm of soil in

front of the pipe. This could be inferred to imply that higher pipe speed will result in

faster generation of soil berm and hence increase in soil resistance to pipe motion. Due

to the higher speed of displacement coupled with the excessive penetration in Test -i.
the monitoring of berm formation was not possible.
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6.3.3 Effects of depth of initial embedment of pipe - Series LP-DE

In series LP-DE, the influence of pipe initial embedment was investigated. Only the soil

resistances are presented here as berm analysis could not be conducted for series LP-DE

due to the depth of initial embedment which made it impracticable to study the berm

formation during pipe travel.
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6.3.3.1 Results of the lateralpulling tests

Combined plots of the force-displacement response and the pipe trajectory during the

lateral sweeps is shown in Figure 6 - 33 while detail plots of all the tests (test- I to s

from this series) are presented in Appendix E. Tests in this series are arranged such that

the effects of the pipe effective weight and the pulling speed are assessed as they are

affected by the depth of initial pipe embedment (.i.e. half the pipe diameter, 1I2D and

full pipe penetration, ID). It can be seen from the combined plots that the soil resistance

increases with depth of initial pipe embedment (I12D <ID). At deeper depth (ID), the

S7N pipes show breakout forces that are nearly similar for the two lateral speeds

investigated implying that at deeper initial embedment, lighter pipes appear to show

only a slight dependence on the breakout force with speed than the heavier pipes. Also,

lower lateral pipe speeds appear to promote increasing lateral soil resistance as the

lateral pipe displacement increases.

For the 87N pipe weight, the breakout force and the ensuing soil resistance responses

are different with the lower speed (O.OSmm/s) producing higher soil resistance. For

shallower embedded lighter pipe at 1/2D burial, the lower speed (O.OSmm/s) produces

higher soil resistance than the higher speed (O.lmm/s) while for the deeper buried pipes,

almost the same breakout force are measured but the lower speed gives higher soil

resistance at greater pipe displacement. For the heavy pipes at shallower embedment,

the faster the pipe travel, the higher the soil resistance to pipe travel while for deeper

embedment, the lower the speed the higher the soil resistance.

In order to assess the effects of the initial depth of embedment of the pipe on the pipe-

soil interaction response during the lateral pulling of the pipe, some parameters

extracted from the force displacement plots are summarised in Table 6 - 7. The plot of

normalised breakout force versus normalised horizontal displacement for series LP-DE

is shown in Figure 6 - 34. It can be seen that the normalised breakout force increases

with increasing depth of embedment. For the same depth of initial embedment, the

lower the pulling speed, the lower the breakout force and the lower the lateral

displacement before breakout. For deeper initial embedment, this pattern is not

pronounced. However, higher pulling speed indicates greater distance before breakout.

For slightly heavier pipe (87N), this pattern reverses with the lower speed giving higher

breakout force and lateral displacement before breakout.
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T bi 6 7 A t fr the initial d hf bda e - : ssessment parame ers om e imtia ept o em e ment
Test label I ID n 0 p q r s

Pipe effective weight, W' 57 57 57 57 87 87 87 87
(N)

Pipe pulling speed 0.05 0.05 0.1 0.1 0.05 0.05 0.1 0.1
(mm/sec)

Representative c, at 1/2D 0.33 0.30 0.34 0.37 0.32 0.25 0.29 0.29
depth (kPa)
Normalised weight 1.66 1.83 1.61 1048 2.61 3.35 2.85 2.88
W'/cuLD
Normalised breakout force - -2.29 -1.15 -2.23 - -3.32 -1.20 -2.70
(F/cuLD) 1.03 1.18
Normalised horizontal 0.04 0.10 0.15 0.38 0.17 0040 0.13 0.34
displacement before
breakout(hlD)
Normalised maximum 3.06 3.75 2.35 3.61 2.72 4.39 3.20 4.28
lateral force at the end of
sweep #1
Pipe penetration after 1.20 -0.20 0.91 -1.17 0.13 0.10 0.91 0.10
24hrs (mm)
Normalises pipe 0.01 0.00 0.01 -0.01 0.00 0.00 0.01 0.00
penetration after 24hrs
(x/D)
Maximum pipe penetration 51 7 68 6 89 5 5 5
after six sweeps, x (mm)
Normalised maximumpipe 0.39 0.05 0.52 0.05 0.68 0.04 0.04 0.04
penetration after six
sweeps (xmaxlD)

The maximum lateral load on the pipe at the end of the first sweep (Figure 6 - 35)

shows that the higher the depth of initial embedment the higher the maximum load on

the pipe. The lower the speed the higher the maximum load on the pipe at the end of the

first sweep. For slightly higher weight, the lower the speed, the lower the max loads on

the pipe at the end of the first sweep. Figure 6 - 36 presents the plot of normalised pipe

weight versus normalised vertical penetration of the pipe after cyclic sweeps for series

LP-DE. It can be seen that the deeper the pipe initial embedment, the lower the

maximum pipe penetration at the end of the first sweep. The faster the pipes speed, the

higher the maximum penetration at the end of the pipe first sweep. For deeper

embedment, almost no difference exit in the maximum pipe penetration for varying

speed.
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6.3.4 Axial pipe-soil interaction results

Series AP-DE investigated the frictional resistance of the pipe section during axial

displacement. The test matrix for this series had to be modified due to time constraints

to investigate all the parameters. Figure 6 - 37 presents the results of the force-

displacement and pipe trajectory during the axial pipe-soil interaction tests. The results

are presented to show the effect of the depth of embedment on the resulting friction

force generation.
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Figure 6 - 37: Results of axial sweeping of the model pipeline on the model seabed for
test -u - y: a) vertical displacement against axial displacement, b) horizontal

pulling force against axial displacement
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Referring to Figure 3 - 25 where the proposed determination of the frictional force is

schematically illustrated, Figure 6 - 38 shows the friction force on the pipe surface

extracted from the force-displacement plots during the axial pull. It can be seen that the

higher the depth of embedment, the higher the resulting axial pulling force. However,

when the equivalent frictional force on the pipe surface is extracted, the frictional force

from the 112D embedment appears higher. The reason for this is not understood but

could be due to the variation in the soil strength.
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embedment
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Figure 6 - 38: Extracted frictional force on the pipe surface from the axial pulling tests

6.4 Results of the large-scale electro-kinetic stabilisation of pipeline

Series LS-EK was designed to investigate this area of the research. The results of the

large-scale EK investigations are presented and discussed in chapters 4 and 5.

6.S The overall repeatability of the pipe-soil test results

The test rig facility allowed a displacement controlled regular pipe motion which

enabled the tests to be carried out in a repeatable manner. The assessment of the force-

displacement responses of the pipe with the same vertical pipe load, e.g., the 87N

vertical pipe weight, revealed that the whole pattern repeated itself in all pipe sweeps

with the results showing very repeatable load-displacement cycles, thus demonstrating

that the tests were repeatable. In the different beds of clay, priority was given to soil
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preparation and the pipe displacement control. Sufficient uniformity and repeatability

were successfully achieved for each bed of soil. The T-bar, shear vane and the water

content tests carried out to check the state of the soil indicated that satisfactory

homogeneity and repeatability of the results were obtained. The results from each test

bed of soil (e.g., the soil Cu) provided the parameter used in normalising the resulting

force-displacement responses of the pipe-soil interaction tests.

6.6 Summary of results of the pipe-soil interaction tests

This chapter covers the large-scale pipe-soil interaction investigation which aims at

studying in detail the soil deformation patterns during pipe motion. Emphasis has been

on the development of soil berm during lateral pipe motion. Model seabeds were

prepared and characterised using an in-house designed laboratory T-bar penetrometer

and the conventional hand shear vane. An in-house designed actuator system with

capability to capture the force-displacement response and trajectory of the pipe section

was developed to aid in the study.

Based on the results obtained, the following summary is made regarding the pipe-soil

interaction tests from this study:

• Apart from the first breakout, lighter pipes show more consistency in the force-

displacement curves than the heavier pipes.

• The slope of the force-displacement curve is dependent on the submerged weight of

the pipe section during lateral motion.

• Some variation exists in the force-displacement responses of pipes classed as

"lighter" pipes and therefore required further reclassification in terms of generation

oflateral resistance and pipe penetration during pipe motion.

• The lateral resistances from the soil reduces as the pipe tries to climb the soil berm

• Slight increase in breakout force exists with increasing submerged weight of pipe.

• Higher pipe weights shows slightly greater lateral displacement before the actual

pipe breakout than the lower weight pipes.

• There is a possible combination of pipe weight and soil strength where the pipe

embedment during lateral displacement will initiate excessive pipe penetration

during pipe lateral travel.
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• The amount of soil berm generation reduces after the first cycle for lighter pipes

while it increases for heavier pipes.

• The rate of pipe penetration increases with depth for heavier pipes.

• The volume of soil scrapped from the trench to form the berm during pipe travels

increases with increasing pipe weight.

• The gradient of the force-displacement response is dependent on the speed of lateral

motion of the pipe.

• The rate of penetration and maximum penetration of pipe are influenced by the rate

of pipe displacement. This response varies between light and heavy pipes.

• At lower speeds (O.OSmm/sec), the rate of pipe penetration is minimal whereas for

elevated speeds (lmm/sec), the rate of pipe penetration is accelerated.

• The maximum lateral load on the pipe at the end of sweep increases with increasing

speed of pipe travel.

• Faster pipes show maximum vertical penetration at the end of sweep cycle.

• The higher the speed of pipe travel, the faster the generation of soil berm and hence

the higher the soil resistance generated.

• Soil resistance increases with depth of embedment.

• At a shallower depth of initial embedment, the effect of pulling speed is similar.

However at greater depths, the difference is more pronounced.

• At a deeper initial embedment, lighter pipes appear to show only a slight

dependence of breakout force with speed than the heavier pipes. Also, lower lateral

pipe speeds appear to promote increasing lateral soil resistance as the lateral pipe

displacement increases.

6.7 Discussions of the large-scale pipeline-soil interaction tests

6.7.1 Introduction

Subsea pipelines operated at elevated temperature may become unstable due to

expansion and contraction from start-up and shut-down cycles. Excessive pipe

expansion can result in lateral buckling while unplanned/excessive penetration of the

pipeline can undermine the structural integrity of the line. Therefore, in order to

adequately design these pipelines, a clearer understanding of the pipe-soil responses in

terms of soil lateral resistance and pipe penetration in addition to berm formation is
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essential. This section discusses the results of the pipe-soil interaction reported in earlier

in this chapter with a view to increasing this understanding and therefore increases the

available database on pipe-soil interaction.

6.7.2 Seabed shear strength profile

The results from the model seabed have been presented in §6.4. The various seabed

strength profiles appear to indicate a near linear profile down to about 225mm depth

which is typical of a normally consolidated soil. However, most deepwater seabeds

often show a layer of strong crust (~ 10 -15kPa) within the upper 1m depth which is

believed to be attributed to biogenic activates (White and Cheuk,2008). This leads to a

very high normalised strength (cz/u'v) within this depth and corresponding dilatant

behaviour when the soil is sheared. The resulting strength profile from this study did not

show this crust which is a limitation of this method of seabed preparation as this profile

was difficult to obtain within the time frame of this research.

Another drawback to the model seabed in this study is the disparity in the coefficient of

consolidation (c.) of the kaolin, about 2m2/year, as compared to the about 0.3m2/year

(White and Randolph,2007) for most offshore clays. Also, this value varies significantly

depending on the composition and depositional environment of the clay. This variation

is likely to have effects on the consolidation and settlement behaviour of the

seabed/pipeline when attempt is made to relate results from these tests to typical

offshore locations.

6.7.3 Vertical pipe penetration

Various attempts have been made by some researchers to provide prediction methods

for assessing the initial embedment of pipeline into cohesive soil. As discussed in §2.4,

the Verley and Lund (1995) is the one mostly used in the industry (Equation 2.4). An

attempt to compare the results of the initial embedment of the pipe section obtained

from series LP-SW, where various pipe weights were investigated, with the proposed

prediction method from Verley and Lund (1995) is shown in Figure 6 - 39. The unit

weight of the kaolin clay was taken as 16kN/m3 which is typical of this clay and is used

throughout this study.
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Figure 6 - 39: Comparison between pipe embedment prediction from Verley and Lund
(1995) and this study

It can be seen from the plot that the value of pipe embedment for a given pipe weight is

less than the predicted value. A possible reason for this variation could be in the

selection of the undrained shear strength value used for the normalisation. For ease of

comparison, the soil strength at 112D embedment of the pipe was used. Within this

depth range, the model seabed strength varies between 0.25 and 0.74kPa. However, in

the case of the Verley and Lund's (1995) prediction, an average strength value of

0.5kPa was used which made it difficult to correlate with the experimental data due to

the variation in the seabed strength used in the various tests. The experimental data

indicate a trend which shows increasing depth of penetration with increasing pipe

weight.

Referring to Figure 6 - 13, where the normalised vertical pipe penetration was plotted

against the normalised pipe weights, the effects of the cyclic motion of the pipe at

constant amplitude of displacement can be inferred. It does appear from the plot that the

normalised vertical penetration of the pipe is independent of the normalised weight of

the pipe after the constant amplitude and cycles of a specified displacement. The effect

is however expected to be different if the pipe is moved at varying cycles. The

dependence of pipe maximum penetration of pipeline on the numbers of cycles of pipe

displacement especially in a soft clay seabed has already been pointed out by previous

researchers (Brennodden et al.,1986;'Morris et al.,1988; Palmer et al.,1988). They all
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agreed that the higher the number of cycles, the deeper the pipe penetration. Although

this study focused on only a single amplitude of pipe displacement, it is envisaged that

the normalised pipe penetration would be higher for increased numbers of cycles. For

instance in the case of the failure of a pipeline project offshore near Angola

(Allan,200S) the pipe dug deep into the soft seabed while undergoing slight cyclic

displacement on the sleeper (sleeper is another mean of controlling lateral buckling of

pipeline) due to the very soft nature of the seabed. Thus there is a need for the soil

around the pipe to be strengthened. If the pipe does not slide across the seabed as

planned, then it will be buried with time into the seabed thus imposing stress on the

pipeline.

The influence of weight of pipe on the maximum pipe penetration was presented in

Figure 6-30 which suggests that increasing the speed of the pipeline on the seabed

increases the maximum penetration of the pipe for a given cycle and amplitude of

displacement. However, this relationship is not significant in the heavier pipe (97N)

and the reason could be possibly attributed to the deeper penetration of the pipe due to

its weight coupled with the increasing soil strength which obscured the relationship

between the rate of displacement and the pipe penetration. The discrepancy is even

more obvious in Figure 6 - 36, where the pipe was forced to a specified depth of 1I2D

and 1D before the lateral sweeps.

6.7.4 Soil resistance and breakout force

The results presented in chapter 6 indicate that the soil resistance on the pipe section

and the breakout force are affected a number of factors including the weight of the pipe,

speed of pipe displacement and the depth of initial embedment of the pipe. The

prediction method proposed by Verley and Lund (1995) is mostly employed in the

industry for the estimation of the breakout resistance of partially buried pipeline.

Analysis of the Verley and Lund's (1995) solution clearly shows that the breakout force

increases with depth of pipe penetration. A comparison of this solution with other

methods has been presented in Figure 2 -S. However, this solution did not consider the

mobilised displacement before the breakout of the pipe under varying conditions such

as effects of rate of pipe displacement and varying pipe weight.
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It is important to note that this study made some interesting observations relating to the

breakout force and lateral force on the pipe such as: the greater the normalised pipe

weight, the greater the mobilised displacement before pipe breakout (Figure 6 - 14); the

quicker the rate of the pipe motion, the lesser the dependency of the breakout force on

the mobilised displacement before breakout (Figure 6 - 28); the maximum lateral load

on the pipe at the end of the constant amplitude of pipe motion is indicated to be

dependent on the rate of pipe motion, where the lateral force on the pipe increases with

increasing rate of pipe motion (Figure 6 - 29). In addition, Figure 6 - 34 and 35

conform to the Verley and Lund's (1995) prediction where the breakout force and the

lateral load on the pipe are directly related to the depth of the pipe embedment. This

additional information is considered vital in reducing the uncertainty relating to the

large amplitude of displacement associated with the lateral buckling of partially

emended pipelines.

A comparison of the breakout force between the predictions by Verley and Lund (1995),

Bruton et al (2006) and the experimental data from the study (Figure 6 - 40) indicates

that the experimental data is significantly higher than the prediction model proposed by

Verley and Lund (1995) while it is fairly consistent with the model proposed by Bruton

et al (2006) for the lighter (57 to 97N) pipes but deviates significantly from the heavy

pipe (107N). In this comparison, only the experimental results from series LP-SW

(same speed of pipe motion) were used. The various depths of embedment obtained

from this study were substituted in the two prediction models to obtain the breakout

force. The lower value obtained from the Verley and Lund's (1995) model could be

possibly due the fact that this model only predicts the lateral resistance for a given depth

of embedment of the pipe, while no provision is made for varying the depths of pipe

embedment in the formula.

The results presented from the experimental data and the Bruton et al. (2006)

predictions however involve various pipe weights. It should be noted that the peak

breakout force is a function of the depth of pipe embedment and the submerged weight

of pipe; the higher the pipe weight the lower the breakout resistance (White and

Cheuk,2008). However, both the experimental data and the two models show the

dependency of the breakout force on the depth of pipe embedment.
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this study

6.7.5 Berm development

The resistance of soil to movement of a partially buried pipeline in soft clay has been

noted to be affected by not only frictional force at the base of the pipe but also by the

passive resistance offered by the wedge of soil (the berm) as the pipe moves laterally.

While the first component (frictional force) is relatively well understand and

established, the contributions from the berm under varying conditions is uncertain.

This study indicates that the generation of the berm during the lateral motion of the pipe

is affected by the weight of the pipe and the speed of pipe motion. Using data from the

first sweeps only which give a better platform comparison before the onset of excessive

pipe penetration, the effects of pipe weight on the berm generation is assessed. Figure 6

- 19 indicates that the greater the pipe weight, the larger the area of the berm formed

assuming plane strain conditions. However, while heavier pipes (Test d & e, 97 N &

107N) show significant variation in the volume of berm generated, the lighter pipes

(tests a -c, 57N to 87N) appear to show close response in the behaviour of the berm

with increasing tendency to converge with increasing lateral pipe displacement. The

influence of pipe speed of displacement (Figure 6 - 32) also indicates that the higher the

speed of displacement, the faster the increase in the volume of soil scraped to form the

berm and consequently increases in the lateral soil resistance.
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CONCLUSIONS AND RECOMMENDATIONS FOR

FURTHER WORK

7.1 Introduction

The objectives of this thesis were to assess the feasibility of using electro-kinetic

phenomenon to enhance the stability of subsea pipelines as well as studying pipe-soil

interaction on the seabed, especially the deformation of soil during large amplitude pipe

displacement and its effects on soil resistance. It was motivated by the ongoing

concerns relating to pipe instability problem due to operational conditions. To aid in the

study, small-scale EK tests were conducted. Additionally, pilot-scale pipe-soil tests

were conducted using a specially designed pipe-soil interaction testing rig. The overall

conclusions drawn from the findings of the EK and the pipe-soil interaction studies are

detailed in this chapter. Recommendations for further work are presented at the end of

the chapter.

7.2 Conclusions

The review of relevant available literature has indicated that the use of engineered

buckle solutions to mitigate against subsea pipeline instability has become generally

accepted and more frequently used offshore. This is because the other existing

mitigating methods are either expensive or impractical in deeper waters. It has also been

shown that none of the existing mitigation methods deal with the modification of the

ambient soil properties. The use of EK phenomenon which has been explored in this

thesis has been identified as an option which could potentially be employed to enhance

pipeline stability. The effectiveness of this proposed alternative approach was assessed

from the changes in the soil parameters which are summarised below.
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7.2.1 Electrical aspects of the EK treatment

Given the configuration of the EK tests adopted for this study, four stages in the

generation of current density have been identified as: (1) position of the initial current

density, (2) the presence of initial lows in current density, (3) the maximum current

density during the EK treatment and (4) the residual current density. Idealised stages in

current density generation for partially embedded pipe section during EK treatment of

the ambient soil have been presented. The positions and the magnitudes of the four

stages on the idealised curve were noticed to be directly related to the applied voltage

and the type or nature of the electrode material employed.

It was not confirmed if this trend would be replicated under varying experimental

conditions such as different soil type and electrode configurations. Apart from the

influence of the electrode materials on the amount of the current density generated, the

time it take for the treatment to complete and the influence of the initial water content

were indicated to be electrode material dependent which was also shown to influence

the rate of corrosion of the electrodes, where copper electrodes were identified as being

more durable and iron electrodes less durable.

7.2.2 Changes in soil water contents

A series of water content (w) tests were conducted to investigate the changes in w due to

the EK treatment. Findings from this study had indicated that up to 14% decrease in

water content was measured with the maximum decrease occurring below the pipe

invert. The effects of applied voltage were not pronounced from the various tests

conducted to assess this parameter. It appears to suggest that as long as the EK

treatment was allowed to come to an end indicated by the complete depletion of the

electrodes, then the difference in the changes in the measured water content were not

significant probably due to the associated chemical alteration of the soil during the

treatment. It was also shown that iron electrodes produced the maximum decrease in

water content at the top level of the soil while aluminium electrodes produced

maximum decrease at greater depth within the soil mass. The changes in the water

content which is directly related to the development of the undrained shear strength of

the treated soil also affects the breakout resistance of the soil and hence the pipe

stability on the seabed. These changes in w due to the EK treatment supports the fact
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that soil engineering properties around a partially buried pipeline could be improved by

the application of EK treatment. However, aluminium electrodes appear to weaken the

soil at the top level and are likely not to be effective for partially buried pipelines.

7.2.3 Changes in soil undrained shear strength

A significant increase in the undrained shear strength of the treated soil was noted after

EK treatment. Iron electrodes stiffened the soil more at the top level while some level of

softening of the top level of the soil was noted using aluminium electrodes, although the

greatest increase in strength was obtained at depth using aluminium electrodes. In some

cases Cu reduced (i.e., less than the Cu increase from the control test) when the soil was

treated with aluminium electrodes.

The increase in the soil strength was indicated to be water content dependent which may

imply that the treatment efficiency could be site condition dependent. A sharp increase

in the soil strength obtained when aluminium electrodes were used was thought to be

mainly from the favourable chemical reaction between the kaolin clay and some

chemical species derived from the degradation of the aluminium electrodes. Therefore,

the observed increase in soil strength was probably mostly due to electro-chemical

cementation. It was also shown that considerable increase in strength could still take

place without corresponding increase in water content due to continuous electro-

chemical reaction within the soil even after the withdrawal of the electric current.

Analysis of the normalised strength plot indicates that the strength improvement extends

to between 70 and 80 mm depth of the soil which was more than 60% of the soil

thickness.

7.2.4 Changes in soil breakout force

Pullout tests were conducted to assess the impact of the EK treatment on the soil using

specially designed test rig. Between 70% and 210% increase in the vertical breakout

force was noted after the EK treatment while between 90% and 209% increase was

noted for the axial breakout force. In the same vein, iron electrodes caused up to 89%

increase in the lateral breakout force while copper electrodes caused up to 30% increase

with aluminium electrode reduced the breakout force compared to the breakout from the

control tests. The greater increase in the breakout force was obtained with iron

electrodes. The increase in the breakout force was attributed to the interplay between
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chemical alteration and consolidation of the soil which resulted in the increase in the

pipe-soil adhesive force. The softening of the top level of soil when aluminium

electrodes were used was the reason for the low pullout force measured for aluminium

electrodes.

7.2.5 Proposed practical field application of this novel approach

A proposed approach to the actual field application of this novel solution is envisaged to

be used in conjunction with the lateral buckle solution for reducing the risk to pipe

instability associated with elevated temperature and pressure.

In summary, the preliminary results from this research at extending the applications of

EK in geotechnical engineering to offshore pipelines show promising outcomes. The

reasonable repeatability between experiments suggests that this preliminary study can

form a basis for subsequent research in this area and the results could provide some

benchmark for further work in these areas. Furthermore, it is hoped that this thesis

would stimulate the pipeline industry to invest in research about the application of EK

in pipeline engineering.

7.2.6 Pipe-soil test

The large-scale pipe-soil interaction tests were conducted on E-grade kaolin clay using a

specially designed testing rig which was conceived, designed and fabricated to aid in the

study. This rig had the advantages of being able to provide uninterrupted loading on the

soil during change of direction of pulling as well as using more precision data capturing

devices. A laboratory in-house designed T-bar penetrometer was used to measure

undrained shear strength profile and the strength values at predefined depths used to

normalise the pipe-soil responses. Some interesting observations were made from the

pipe-soil interaction tests. Based on the results obtained, the following conclusions are

made regarding the pipe-soil interaction tests from this study:

(a) Force-displacement responses and pipe weights

• The force-displacement responses of the "lighter" pipes were somewhat different

from that of the "heavier" pipes with regards to the pattern of the displacement

hysteresis loop during cyclic pipe sweeps, the displacement distance before the pipe

breakout and the rate of pipe penetrations.
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(b) Influence of speed of pipe lateral displacement

• The maximum lateral load on the pipe at the end of the predetermined cycles of

displacement were observed to increase with the increasing speed of the pipe

displacement where the faster the pipe, the higher the vertical pipe penetration at the

end of the cycle of displacement.

• It was also observed that the higher the speed of travel the faster the generation of

the soil and hence the higher the soil resistance generated.

(c) Influence of depth of initial embedment

• The soil resistances and the breakout force measured were observed to be affected

by the initial depth of embedment of the pipe where at deeper initial embedment, the

lighter pipes show only a slight dependence on the breakout force with speed than

the heavier pipes. Also, the lower pipe speed of displacement appears to promote

increasing lateral resistance as the lateral pipe displacement increases.

7.3 Key research findings

The following is a summary of the key findings from the research:

1. Results indicate a distinct pattern of current density generation with time for the

three electrodes (copper, iron and aluminium) used in this study. Only copper

electrodes show an initial low in current density during the EK treatment.

2. Iron electrodes produced the maximum decrease in water content at the top level of

the soil while aluminium electrodes produced maximum decreases at greater depth

within the soil mass.

3. As long as the EK treatment was allowed to reach completion the difference in the

changes in the measured water content were not significant for Cu probably due to

the associated chemical alteration of the soil during the treatment.

4. Aluminium electrodes appear to weaken the soil at the top level and are likely not to

be effective for partially buried pipelines while iron electrodes stiffen the soil at the

top level. Significant increases in strength were measured at depth using aluminium

electrodes.

5. Iron electrodes give the greatest increase in the pullout force compared to copper

and aluminium electrodes. The increase in the breakout force was attributed to

chemical alteration and consolidation of the soil.
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From the pipe-soil interaction studies the following are considered the key research

findings:

1. The higher the speed of pipe displacement on the seabed, the higher the maximum

lateral load on the pipe at the end of the predetermined cycles of displacement. This

implies the higher the speed of travel the faster the generation of the soil berm and

hence the higher the soil resistance to pipe movement.

2. The soil resistances and the pipe breakout force depend on the initial depth of

embedment of the pipe. For lighter pipes at deeper initial embedment, the breakout

force is only slightly affected by pipe speed than compared to the effect for the

heavier pipes

3. There appears to be a possible combination of a pipe's vertical load and soil strength

where the rate of pipe embedment during pipe motion will initiate excessive pipe

penetration.

4. The amount of soil berm generation reduces after the first cycle for lighter pipes

while it increases for heavier pipes.

5. Higher pipe weights shows slightly greater lateral displacement before the actual

pipe breakout than the lower weight pipes.

7.4 Contribution to the field of knowledge

Through the series of the EK and pipe-soil interaction tests conducted and described in

this thesis, the contribution to the field of knowledge are summarised as follows:

• An extension of the application of electro-kinetic phenomenon to enhance the

stability of subsea pipelines.

• The suggestion and proposal on possible field application of EK technology in the

offshore industry.

• The demonstration of the similarity between the small-scale and the pilot-scale EK

treatment of the soil around partially buried pipelines.

• The recognition of the unique nature of the current density generation associated

with different electrode materials during the EK treatment of soil around partially

embedded pipes.

• The recognition of the influence of electrode materials on the breakout forces during

EK treatment of partially buried pipeline, especially the behaviour of aluminium

electrode during this treatment.
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• The study and presentation of the real time measurement of the berm geometry and

its effects on the soil laterals resistance

• The explanation of the favourable electro-chemical reactions which resulted in the

significant increase in the undrained shear strength when aluminium was used as

electrodes.

• The real time measurement of seabed (berm geometry) deformation during pipe

lateral displacement and comments on the effects of pipe weight, rate of pipe

displacement, and normalised pipe weights on the seabed deformation and the soil

resistances.

7.5 Recommendations for further work

While the results of this study provide a benchmark and insights into the extension of

EK phenomenon to offshore pipeline, further studies are still required to apply the

results from this study to a wider scope and make them applicable to field situations.

Future work should be focused on the following issues:

1. During the EK treatment of the model seabed, it was observed that the chemical

alteration of the soil was affected by the nature and composition of the electrode

used. It therefore implies that the reactions and subsequent modification would be a

function of the reaction of a particular seabed composition and the electrode

materials. Further work is necessary to investigate other electrode types with

varying compositions as well as soils from different offshore sites. In addition, there

is a need to carry out chemical analyses (including pH) of the soil sample before and

after the EK treatment for the purposes of accurately modelling the chemical fronts

due to the EK effects. This will also aid in assessing the zone of influence as well as

electrochemical alteration of the soil sample which could not be accurately assessed

in this study. Furthermore, tests should be conducted to assess the rate of depletion

of electrodes of different properties and dimensions as this is expected to have an

impact on the cost and efficiency of the treatment. This could be another tool to

check the efficiency of the individual electrodes on a real time basis.

2. The results from this study indicate that aluminium (AL) electrodes strengthen the

model seabed at depth below the pipe section. Since this present research was aimed

at only surface-laid pipes, further work is needed to investigate the use of AL for

increasing the stability of buried pipelines.
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3. The consolidation of the treated soil was inferred from the settlement of the pipe and

the changes in the water content. However, direct measurement of the pore pressure

development during the EK treatment could be a better way to monitor the

consolidation during the EK treatment.

4. Further work is needed to assess the effect of cyclic loading on the electrically

modified soil after the EK treatment since the pipeline may be subjected to cycles of

lateral and axial displacement after EK treatment. It is not clear what the effect of

this cyclic movement would be on the EK modified soil.

5. Finally, this approach is designed to be applicable to new pipeline during

installation. However, further studies on the extension of this solution to existing

pipelines on the seabed would be useful.

For the pipe-soil interaction tests, there are some issues that require further research

work. Firstly, the study of the berm generation assumed that the seabed is horizontal.

There is therefore need to investigate the influence of the effect of seabed gradient on

the berm generation and soil resistances. Work is also necessary to incorporate the real

time study of the berm generation presented in this study to existing pipeline design

codes.

Secondly, only one soil type was used in these pipe-soil interaction tests. There is need

to test different soils with different chemical and physical characteristics, for example,

soil from specific petroleum basins. Observation of the berm formation should also

include the measurement of pore pressure build up during the soil deformation and its

effects on the ensuing soil resistances.

Finally, only a bare (uncoated) pipe was used in this study There is need to assess the

influence of different pipe coatings on the rate of pipe penetration, generation of soil

berm and the soil resistances that could be developed.

In spite of the shortcomings implied by the need for further research work, this present

research is hoped to form a basis for subsequent research in this area. It has also led to

an improved the understanding of the interaction between soil and pipeline on the

seabed.
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