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Abstract 

Reported in this thesis is a study of combustion in a disc-shaped combustion chamber spark 

ignition engine, and in-cylinder flow and combustion in an idealised pent-roof spark 

ignition engine. Both engines were skip fired, to remove residuals and ensure a well

defined in-cylinder fuel-air mixture. Other important parameters were also controlled, e.g. 

inlet temperature, inlet pressure, air mass flow, mixture strength, engine speed and spark 

timing. 

With the disc-shaped spark ignition engine, a shadowgraph technique was used to study 

early flame development. Simultaneous natural light and shadowgraph imaging techniques 

were adopted to validate the later use of the former method for monitoring flame 

propagation in the pent-roof engine. The disc-shaped engine flame images were processed 

to yield mean flame radius, flame centroid and to describe flame 'circularity'. Good 

agreement was obtained between flame radii obtained from natural light and shadowgraph 

images. No correlation was found between early flame development, centroid 

displacement, flame 'shape' and the rate of combustion as defined by the crank angle at 

which peak pressure was attained. 

The pent-roof engine was 'mapped' to determine optimum conditions, prior to flow and 

flame studies on the same engine. Flow was analysed using laser doppler and particle 

tracking velocimetry techniques. Mean and rms velocities were obtained. Observed flow 

patterns at the two engine speeds tested (750 and 1500 rpm) differed and were not as 

expected for the simplified geometry. Similar trends in rms velocity were observed at all 

locations tested, with similar magnitudes at all points and in all directions tested during the 

critical combustion period. Simultaneous top and side natural light flame images were 

generated using two high-speed digital cameras; in-cylinder pressure was also recorded. 

The top and side images were analysed in terms of top and side successive flame positions 

and top and side mean flame radius. Centroid displacements, from side flame views, were 

also determined. No correlation was found between initial flame developments and later 

flame development viewed from the side. 
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Chapter 1 

Introduction 

1.1 Background 

As the 2 t sl century begins, in the automobile industry there are a number of quite 

different technologies competing for a chance to reduce automotive emission problems. 

Among the possible solutions are hybrid electric vehicles (Motavalli, 2000). These 

vehicles have a high efficiency and low fuel consumption. However, they are limited by 

the performance of their batteries, which are expensive, heavy and do not last many 

cycles of charging and discharging. On the other hand, the continuing use of automotive 

engines involves the risk of increasing air pollution and global warming due to their 

rapidly increasing numbers, despite impressive advances in output for individual cars. 

Despite its problems, the internal combustion (IC) engine remains the most practical 

power source available for transportation. 

Many improvements have been the result of imposition of legislation on automotive 

emissions and fuel consumption. In the USA, automotive manufacturers, in cooperation 

with the federal government, began researching the causes and effects of vehicle 

emissions in the early 1960s. They determined that there were three main sources of 

emissions: exhaust emissions (HC-hydrocarbons, CO-carbon monoxide and NOx-oxides 

of nitrogen), crankcase vapours (HC) and fuel evaporation (HC). Similarly, there are 

concerns over C02-carbon dioxide emissions from automotive exhaust, as these 

contribute to global warning. These emitted gases cause a number of health-related and 

environmental concerns. Moreover, there are concerns over limited fuel reserves, as 

demands for energy increase along with the current increase in oil prices. 

The installation of emission-control systems to reduce automotive emissions was first 

adopted in California in t 961. These included removal of blow-by gases from the 

crankcase with a positive crankcase ventilation (PCV) system; use of an air pump, to 

provide the air necessary for the oxidising process inside the catalytic converter; 

introduction of the three-way catalytic converter to reduce the exhaust emissions ofHC, 
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CO and NOx• Some engines also used exhaust gas re-circulation (EGR) to reduce NOx 

emissions. Late in 2004, California became the first state to approve a regulation for 

reducing C02 emissions from vehicle exhausts by using four-way converters 

(Halderman et aI., 2005). However, the effective operation of the catalyst required a 

stoichiometric mixture. Further development introduced sophisticated technologies, 

such as automotive sensors (inlet air, coolant temperature, oxygen, etc.), which helped 

in reducing automotive emissions and improving fuel economy. 

An alternative solution to reduce exhaust emissions and improve fuel economy, and 

hence engine efficiency, can be achieved by using lean burn engines. However, such 

engines tend to run roughly, due to misfire and incomplete combustion, with slow 

burning associated with fall in engine power and increased cyclic variation. To 

compensate for these effects, it is necessary to introduce faster burning. This can be 

achieved by increasing the in-cylinder turbulence, which enhances turbulent burning 

velocity. One way to improve turbulence is by introducing bulk flow (axial swirl, 

tumble) in the cylinder. Tumble flow has been found to accelerate the combustion 

process and improve engine performance in engines equipped with 'pent' head 

chambers. Furthermore, fast burn engines have also the advantage of tolerating EGR, 

which can result in higher efficiency and lower NOx values. However, excessive 

turbulence can cause partial or complete flame quenching (Bradley et ai., 1992). 

Significant improvements in engine efficiency can also be achieved by increasing the 

effective compression ratio by use of a turbocharger. However, such improvements are 

limited by the occurrence of knock. Adopting high compression ratio engines with fast 

burning technology might result in a reliable combustion of lean mixtures without the 

tendency of knock (Lumley, 1999) and, consequently, lead to reduced fuel 

consumption, improved thermal efficiency and reduced exhaust emissions. Therefore, to 

achieve this target, fundamental research studies to understand the interaction between 

in-cylinder flow and combustion inside the spark ignition engine are required. Due to 

their complexity, only limited tests (e.g. pressure and emissions data) can be conducted 

in real production engines. Hence, more detailed in-cylinder flow investigations and 

turbulent flame propagation studies, using research engines, are vital. 
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The use of single cylinder research optical engines can help in visualisation and 

understanding of in-cylinder flow and turbulent flame propagation. It also helps in 

enabling close control of engine running parameters, such as mixture strength, 

temperature, inlet pressure and in eliminating residual gases from previous firing cycles 

by running the engine in skip firing mode (to be explained later in Chapter 3), or adding 

simulated EGR to the engine over a range of engine operating conditions 

(Small bone, 2004). Flow characterisation can be achieved by using flow investigation 

techniques (Laser Doppler Velocimetry (LDV), Particle Tracking Velocimetry (PTV) 

and Particle Image Velocimetry (PIV». Turbulent flame propagation monitoring can be 

achieved using natural light photography, schlieren or shadowgraph imaging 

techniques. The two latter techniques are preferable at the very early stages of flame 

kernel development, due to inadequate light emission from the flame kernels and 

interference from the spark. 

1.2 The Current Study 

Successive workers at Leeds (Hicks, 1994; Lee, 1995; Atashkari, 1997; Abdi Aghdam, 

2003) have employed variants of the ported optical engines described in Chapter 3 in 

studies of the fundamentals of turbulent flame development and propagation, as well as 

to provide validation for a thermodynamic cycle model which attempts to extend Leeds 

turbulent 'bomb' derived turbulent burning velocity correlations to engine applications 

(Bradley et al.,1988; Merdjani and Sheppard,1993). These engines have invariably 

adopted a cylindrical 'disc' shaped combustion space with full overhead optical access 

to the combustion space. For this engine, a considerable library of flow, turbulence, in

cylinder pressure and flame propagation rate data has been established (employing laser 

Doppler anemometry (Atashkari, 1997), particle tracking velocimetry (Cairns, 2001), 

natural light cine photography (Abdi Aghdam, 2003), schlieren/shadowgraph cine 

photography (Cairns, 2001), single and multiple laser sheet Mie imaging techniques 

(Hicks, 1994; Lee, 1995) as well as conventional pressure transducer methods (Lee, 

1995) for a wide range of conditions. The engines have also been used extensively in 

auto-ignition/knock studies (Konig and Sheppard, 1990; Konig, 1993; Pan, 1994; Pan 

and Sheppard; 1994 Small bone, 2004). 
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The current work was stimulated by Leeds' contribution to the EU sponsored Gasoline 

Engine Turbocharging (GET) cluster of projects in (GET-C02; GET-Drive; GET

Engine) undertaken in association with Renault, VW, PSA motor manufacturers, the 

turbocharger company Garrett and the consulting engineering company Ricardo. The 

Leeds effort was directed to integrating their combustion auto-ignition and knock model 

'LUSIE' (Leeds University Spark Ignition Engine) into Ricardo's 'WAVE' commercial 

engine simulation code, with appropriate experimental validation, for application to 

highly turbocharged downsized multi-cylinder engines. 

The purposes of the work reported in this thesis were to add further data to fill a gap in 

the existing database on the critical initial flame development period and then extend 

the model validation database to an idealised pent-roof geometry engine of exceptional 

optical access. This engine's cylinder head geometry and 9.2: 1 compression ratio were 

selected to mimic those of a 1.4 litre VW engine used in the GET project by the VW 

company and fellow Leeds research student (Wu, 2006). As reported in later chapters, 

the current author had no involvement with the parallel modelling work, which is 

reported elsewhere (GET-C02 final report; Abdi Aghdam, 2003; Smallbone, 2004). 

1.3 Thesis Outline 

The work reported in this thesis has been concerned with flame imaging of the early 

stages of flame development using a 'disc' head engine (LUPOEI-D). This involved 

using shadowgraph imaging of the early stages of flame development. Simultaneous 

natural light and shadowgraph imaging techniques on the same engine were adopted for 

comparative studies, to assess the applications of the simpler technique for engines of 

less generous optical access and to validate information gathered by previous workers at 

Leeds University using natural light cine photography. It has also concerned 

fundamental study of in-cylinder flow and 3-D turbulent flame imaging in a 'pent' head 

research spark ignition engine (LUPOE2-P), an idealisation of the commonly adopted 

4-valve pent-roof geometries of most current engine manufacturers. 

In Chapter 2, a literature review covering the in-cylinder flow, turbulence and 

combustion of spark ignition engines is presented. Descriptions of the experimental 

equipment, and instrumentation associated with it, for the two research engines adopted 
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in the study (LUPOEI-D and LUPOE2-P), are reported in Chapter 3. Set out in 

Chapter 4 is a brief review of the experimental techniques and associated imaging 

equipment adopted for flame visualisation, flow and turbulence characterisation inside 

the engine cylinders. This is followed in Chapter 5 by descriptions of the adopted 

pressure and flame imaging analysis, and of the flame and flow image processing and 

analysis techniques employed in this study. In Chapter 6, preliminary pressure-crank 

angle measurements collected to find the optimum conditions for LUPOE2-P (engine 

mapping) are reported. Subsequently, in Chapter 7, the imaging and analysis results of 

the currently reported studies are presented for both engines. Finally the major findings 

of this research are summarised and discussed, together with recommendations for 

future work, in Chapter 8. 
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Chapter 2 

In-cylinder Flow, Turbulence and Combustion 

2.1 Introduction 

The purpose of this chapter is to provide general background for the study presented 

later in this thesis rather than to provide an in-depth review or literature search; these 

are available elsewhere (Heywood, 1988; Weaving, 1990). A concern over emission of 

'greenhouse effect' gases such as CO2 from automotive exhausts, which contribute to 

global warming, and limited hydrocarbon fuel reserves in an era of rapid global 

economic growth motivates the quest for engines of higher thermal efficiency and fuel 

economy (mpg). The requirements to do this, while maintaining low noxious emissions, 

have intensified efforts to develop lean burn concepts. 

However, lower combustion temperatures associated with lean burn lead to decreased 

laminar burning velocity (u,) and hence decreased turbulent burning velocity (u,) and 

slow flame propagation. This in tum leads to long combustion duration and lower 

thermal efficiency. It can also result in partial or total quench, misfire, increase in cyclic 

variation and increase in pollutant emissions. To compensate for these effects, it is 

necessary to introduce faster burning (Lumley, 1999). 

Faster bum can be achieved by reducing flame travel. This can be influenced by spark 

plug location, combustion chamber geometry, or using twin spark plugs (per cylinder) 

(Li et aI., 2004). It can also be promoted by increasing in-cylinder turbulence, which 

enhances turbulent burning velocity (Arcoumanis et aI., 1994). Turbulent flow is 

irregular both in space and time, and random in three dimensions; its definition is 

problematic because of unsteadiness and cyclic fluctuation of the 'mean' flow, as 

discussed later in Section 2.2. 

The required small-scale turbulence during the combustion period can be achieved 

towards the end of the compression stroke by decay of organised bulk motions such as 
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swirl or tumble (Gosman et aI., 1985). However, excessive turbulence can lead to 

increased heat transfer, misfire and excessive cyclic variation. 

One of the first hot-wire anemometry (HW A) experimental studies of in-cylinder 

turbulence was conducted by Semenov (1963). He showed that, by eliminating the 

intake and exhaust strokes, turbulence was significantly reduced. He therefore reasoned 

that the intake stroke was responsible for the initial generation of the turbulent flow

field. The production and modification of this initial flow-field has since been the 

subject of many studies, some of which are referenced below. 

The recent development of laser-based techniques for the measurement of velocity 

throughout the engine cycle, usually under motoring conditions, has allowed detailed 

mapping of the flow and improved understanding of the in-cylinder fluid mechanics. A 

number of workers have used Laser Doppler Velocimetry (LDV) to characterise in

cylinder flow and turbulence on the basis of ensemble averaged data under motoring 

(Arcoumanis et aI., 1994) and firing conditions (Hall, 1987; Miles et aI., 1994). Some 

studies have used Particle Tracking Velocimetry (PTV), which involves manually 

tracking relatively sparse and individual particles present in the laser sheet (Kent and 

Trigui, 1994). Most recently, other researchers have employed Particle Image 

Velocimetry (PIV), using small particles densely to seed the in-cylinder gases 

(Ghandhi et aI., 1992; Towers et aI., 1996; Baby et aI., 2002). 

In the following sections, characterisation of turbulence and bulk air motion are 

discussed, before moving on to consider turbulent engine combustion and cyclic 

variation. 

2.2 Characterisation of Turbulence 

Since turbulent flow is irregular and random, statistical methods are invariably adopted 

to define it. The quantities normally used are mean velocity, fluctuating velocity about 

the mean, and a number of length and time scales (Heywood, 1988). 
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The instantaneous local fluid velocity, V at a point, may be defined as the sum of the 

mean velocity (ii) and a temporally fluctuating component u(t) (Heywood, 1988): 

V(t) = Ii + u(t) (2.1) 

2.2.1 RMS Turbulent Velocity 

The strength of the fluctuating velocity component u(t) is defined by its root-mean

square value (rms) u', often loosely termed the turbulence intensity (more correctly, 

turbulence intensity is defined as u' / ii). The root mean square turbulent velocity (u') 

is determined from the instantaneous fluctuation velocity (u) about the mean velocity 

as: 

[ 

1 +I ]0.5 
u' = lim ! °J(V 2 

- ii 2 )dt 
1-+«) t 

'0 
(2.2) 

In engines, velocity measurements at a point have traditionally been made using the 

Laser Doppler Velocimetry (LDV) technique, e.g. Section 4.4.1 of this thesis. This 

method is usually able to generate few instantaneous measurements of velocity in a 

given crank angle interval ('window') in an individual cycle. In determining u' for this 

crank angle window, it is usual therefore to 'ensemble average' over a large number of 

engine cycles (Heywood, 1988): 

_ 1 Nc 

V EA(8)=-LV(8,i) 
Nc ;=1 

(2.3) 

where N is the total number of engine cycles for which data are available, V(8, i) is 

the difference between the mean velocity at crank angle 8 in cycle i and U EA (8) . 

However, because of cyclic variation, Section 2.5; in-cylinder flow patterns have been 

noted to vary from cycle to cycle (Heywood, 1988; Ozdor et aI., 1994). 
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In an attempt to mitigate the effects of such variation in mean flows on the calculated 

values of u' (which may otherwise be over-estimated), various methods of separating 

cyclic variation in mean velocity and estimating 'true' rms turbulent velocity have been 

advanced. One method involves low-pass filtering to estimate the mean velocity in each 

engine cycle. The rms deviation involves low-pass filtering to estimate the mean 

velocity in each engine cycle. The rms deviation of the instantaneous velocities from the 

mean velocities in that cycle are then computed over all cycles (Liou and Santavicca, 

1983; Whitelaw and Xu, 1995; Xu, 1995); this is termed velocity-filtering-based 

analysis. Another technique depends on evaluation of non-stationary autocorrelation 

functions of the fluctuations about the ensemble-averaged velocity (Glover, 1986; 

Fansler and French, 1988). An alternative approach is to employ 'conditional sampling' 

to identify groups of engine cycles of similar behaviour, which can then be further 

analysed using ensemble-averaging. Conditional sampling techniques have proved 

useful in resolving the relationship between flow characteristics before ignition near the 

spark plug, or in the unburned region ahead of the propagating flame, with combustion 

parameters during individual engine cycles (Swords et aI., 1982; Witze et aI., 1984; 

Witze and Martin, 1986; Plee et aI., 1987; Whitelaw and Xu, 1993). Some combustion 

parameters adopted for conditional sampling include peak pressure, flame speed and 

flame arrival time. In the current study, only conventional ensemble averaging has been 

employed; this should be considered to be the case in all other works referred to in this 

thesis, unless otherwise stated. 

For a 'disc-shaped' chamber engine, it has been shown that there is an approximately 

linear relationship between turbulent intensity at TOC and mean piston speed S p (Bopp 

et aI., 1986; Hall and Bracco, 1987). At Leeds University, Atashkari (1997) conducted 

LOV measurements in the LUPOEI-O engine (described in Chapter 3, Section 3.2) 

used in the currently reported study. From measurements conducted at different engine 

speeds, he observed a linear correlation between turbulent intensity at TOC and mean 

piston speed, as shown in Figure 2.1. 

Newman (1993) showed, for a pent-roof chamber and a compression ratio of 10.5, the 

turbulent intensity was about half mean piston speed for measurements taken near the 
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spark plug. Arcoumanis et al. (1994) and Gosman (1986) reported turbulent intensity 

values as high as 1.0-1.2 times the mean piston speed. 

The findings of many researchers have supported the supposition of a near-linear 

relationship between u' and mean piston speed, as shown in Figure 2.2 (Bopp et aI., 

1986). Although near-linear relationships have generally been obtained for a given 

location in the cylinder and specific engine geometry, the slopes of u' versus mean 

piston speed differed. 

2.2.2 Integral Length and Time Scales 

The size of 'eddies' within a turbulent flow have usually been characterised by one or 

more turbulent length and time scales. Generally, three length and time scales have been 

adopted: integral length (L) and time (TL ) scales, Kolmogorov length (17) and time (Til) 

scales and Taylor length ( A. ) and time ( T,t ) scales. 

The integral length scale (L) is used to characterise the larger scales of turbulence 

(although much larger eddies than the value of L may exist in the cylinder). The largest 

eddies in the flow are limited in size by the system boundaries. The integral length scale 

is defined as the integral of the autocorrelation coefficient (Rx) of the fluctuating 

velocity at two adjacent points with respect to the variable distance (x) between the 

points (Heywood, 1988): 

R =_1_,£ u(xo)u(xo +x) 

x N -1 ;=1 u'(xo)u'(xo + x) 

(2.4) 

(2.5) 

where N is the number of data points. A variation of the spatial velocity autocorrelation 

coefficient (Rx) with distance is shown diagrammatically in Figure 2.3. Since applying 

spatial autocorrelation in an engine can be difficult, integral length scale has often been 

determined from the integral time scale T L • 
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The integral time scale of turbulence is defined via an autocorrelation between two 

velocities at a fixed point in space, but separated in time (Heywood, 1988): 

R = _1-£ u(to)u(to + t) 
, N - I ,=1 U/(tO)U/(tO + t) 

(2.6) 

(2.7) 

In a flow-field where a mean flow exists, the length scale can be deduced (Tabaczynski, 

1976): 

(2.8) 

However, flow in some engines may show near-zero mean velocities. In 1986, Fraser 

and co-workers employed two-point LDY measurements in a disc-shaped ported 

engine. They concluded that the integral length scale (L) was proportional to 

instantaneous clearance height (H), with a proportionality of 0.2 at TDe, as illustrated 

in Figure 2.4. 

Shear forces between large scales eddies and walls cause them to break down into 

smaller and smaller scales (Heywood, 1988). The Kolmogorov length scale (1]) 

provides a measure of the size of the smallest eddies, where viscous shear stresses act at 

a molecular level to dissipate turbulent kinetic energy into heat (Tennekes and Lumley, 

1972): 

(2.9) 
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The corresponding Kolmogorov time scale ( T" ) is given by: 

I 

T" =(;Y (2.10) 

where v is the kinematic viscosity and e is the energy dissipation rate per unit mass. 

Hence, "the smallest scales of turbulence depend only on the viscosity of the fluid and 

the dissipation of kinetic energy from the large scales" (Weaving, (990). 

An intermediate length scale, the Taylor length scale (A), may also be defined by 

relating the mean fluctuating strain rate (or velocity gradient) to the rms turbulent 

velocity (Heywood, (988): 

& u' 
(2.11 ) -~-

The Taylor length scale ( A, ) and the Taylor time scale ( T" ) are related by the mean flow 

velocity as: 

(2.12) 

For isotropic (rms velocities at different directions are equal - e.g. u' = v' = w') and 

homogeneous (rms velocities at different locations are equal) turbulence, Heywood 

(1988) stated the following expression for the Taylor length scale: 

A, = {l5 R -0.5 VA L 
(2.13) 

where A is a constant of order unity and RI. is the turbulent Reynolds number. 

Although turbulence can be characterised by these three scales, there is of course a 

complete spectrum of eddy sizes from the largest the container can hold, down to the 

very smallest. 
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2.3 Bulk Air Motion 

As mentioned in Section 2.1, turbulence generation is a function of the bulk flows (axial 

swirl, tumble) occurring within the engine cylinder. 

2.3.1 Axial Swirl 

Axial swirl is defined as the rotational component whose axis is parallel to the cylinder 

axis. The intensity of the imposed swirl can be quantified by a 'swirl ratio' Rs 

(Heywood, 1988): 

R = OJ" 
s (2.14) 

where OJ n is the angular speed of the rotating crankshaft and OJ s is the angular speed of 

a solid body swirl. The latter is generally measured by swirl meter or by laser 

velocimetry techniques. 

Intake-generated swirl is a particularly important aspect of the air motion in many types 

of both diesel and gasoline engines. In ported engines, inclining the inlet pipes in the 

radial direction may generate swirl. In four-stroke engines, swirl may be produced by 

the induction system, e.g. helical or tangential inlet ports, shrouded valves and valve 

deactivation (Heywood, 1988). Swirl flow has an important effect on engine 

combustion. With increase of swirl ratio, bum duration has been shown to decrease and 

the maximum value of bum rate to increase (Hamamoto et aI., 1987). High swirl has 

been shown to affect combustion-related perfonuance favourably in tenus of the 

maximum cylinder peak pressure and flame growth rate, regardless of ignition position 

and engine speed (Seong-Soo et aI., 1995). 

Changing the orientation of a shroud on the intake valve of a research engine, Witze et 

al. (1981) showed that the fastest burning and the least cyclic variation were associated 

with the highest swirl condition. Other investigators, Hill and Zhang (1994), have 

concluded that the introduction of swirl reduced cyclic variation and attributed this to a 

more repeatable flow than achieved under undirected inlet conditions. Some workers 
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have suggested that Rs is independent of engine speed (Hill and Zhang, 1994; Seong

Soo et aI., 1995), while others have shown an increase (Hall and Bracco, 1987; Saxena 

and Rask, 1987) or decrease (Liou et aI., 1983) in R, with increase in engine speed. 

"Although the observations of these workers were derived from LDY measurements at a 

limited number of locations, there is agreement that the swirl ratio is dependent upon 

the inlet geometry and breathing of the engine" (Cairns, 2001). 

In summary, reports of the influence of axial swirl (in the absence of tumble) on in

cylinder turbulence are contradictory. Both Atashkari (1997) and Hall and Bracco 

(1987) employed LDY measurements in ported, disc-shaped research engines, and 

noted the presence of swirl increased the in-cylinder turbulence intensity. However, 

both Atashkari (1997) and Saxena and Rask (1987) concluded that increasing the swirl 

ratio beyond certain levels did not further increase the turbulence intensity. 

2.3.2 Tumble 

In recent years, engine design has moved towards 'pent roof geometry, designed 

principally to accommodate multiple valves in order to maximise valve area and 

volumetric efficiency. Such designs have the added advantage of facilitating central 

ignition, with reduced flame travel and increased burn rate. For such engines, 'tumble' 

flow has been found to accelerate the combustion process and improve engine 

performance. Tumble is defined as a rotational air motion around an axis perpendicular 

to the cylinder axis. A tumble ratio (Rr ) may be defined: 

(2.15) 

where OJr is the angular momentum of the tumbling motion. A tumble ratio is relatively 

difficult to define, as the axis of the tumbling vortex changes significantly during 

compression. Consequently, a reference axis through the centre of mass is often quoted. 

In the literature, val ues of Rr of up to 1.7 have been reported (Chapman et a\., 1991). 
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The strength of tumble is governed by the design of the inlets and by the chamber and 

piston geometry (Kuwahara et aI., 1994). The effect of the pent-roof combustion 

chamber on flow and combustion seems to depend on the details of its geometry. 

Workers at the Rover Group found that changing the angle of inclination of the head 

surfaces had a dramatic effect on the flame front area and, as a result, on the burning 

rate (Herron, 2001). 

Tumble motion, as a means of generating turbulence in the cylinder, has been used more 

often than swirl, because it is simpler to generate than swirl in a four-valve-per-cylinder 

gasoline engine (Urusihara et aI., 1996). Moreover, tumble motion has been shown to 

generate greater turbulence in the combustion chamber than swirl (Urusihara et aI., 

1995; Witze et aI., 1983). 

It has been suggested that four-valve cylinder heads (with their pent-roof geometries 

and central ignition) can allow survival of the tumbling vortex even after TOe of 

compression, with associated higher turbulence levels and enhanced burning rates 

relative to conventional two-valve cylinder heads with disc-type chambers and equipped 

with directed or helical ports (Arcoumanis et aI., 1991). In-cylinder flow measurements 

(carried out using LOY on a single cylinder four-valve, pent-roof chamber engine of 

compression ratio of 10.5) confirmed a correlation between stronger tumble during 

induction and higher convective velocity and turbulence levels near the spark gap at the 

time of ignition; this resulted in faster combustion rates and more stable combustion 

under lean mixture conditions (Arcoumanis et aI., 1994). 

In an experimental study, with a single-cylinder four-valve transparent engine of 8.5 

compression ratio, using forward and back scatter LOY techniques, Kang et al. (1996) 

observed that with tumble flow persisting during the compression stroke, the turbulence 

intensity at the end of compression was twice that without tumble. Due to the stronger 

tumbling motion, the release of turbulent kinetic energy was greater during its 

breakdown and occurred later in compression (Arcoumanis et aI., 1990; Rui-Lin et aI., 

1996). Urushilhara et al. (1995) showed that reduction in combustion duration 

associated with increased tumble flow did not reduce the cyclic variation compared with 

swirl flow. However, Hu et al. (1992) showed reduced cyclic variation and higher 

combustion rate for all cases tested with a high tumble inlet configuration. Similarly, Li 
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et al. (2004) showed that introducing strong tumble flow significantly reduced cyclic 

variations. 

2.4 Engine Combustion 

The combustion process in a spark ignition engine can be considered in three phases: 

(1) ignition and early flame development, (2) propagation of the flame across the 

combustion chamber and (3) flame termination (Heywood, 1988). 

2.4.1 Ignition and Early Flame Development 

"The ignition system must provide sufficient voltage across the spark plug electrodes to 

set up the discharge and supply sufficient energy to the discharge to ignite the 

combustible mixture adjacent to the plug electrodes under all operating conditions" 

(Heywood, 1988). The ignition process influences the overall performance of spark 

ignition engines (Loye and Bracco, 1987). In these engines, many aspects control the 

mechanism of transferring electrical energy from an ignition system into the mixture in 

the spark gap. "The major parameters of these are inputs of electrical energy, 

combustion energy release and heat transfer" (Jeonghoon et aI., 2000). A more detailed 

study of the principles and basic properties of spark ignition is available elsewhere, in 

the seminal work of Maly (1984). 

Early flame development can be affected by spark plug ground electrode orientation, 

flame attachment and detachment from the electrode, physical properties of the mixture 

and local in-cylinder flow. 

Spark plug ground electrode orientation has been known to influence engine 

performance (Burgett et aI., 1972; Pischinger and Heywood, 1990). The effect can be 

attributed to changes in the flow field in the vicinity of the spark plug electrodes, 

electrical spark energy loss to the electrodes and heat transfer between the flame kernel 

and the electrodes. Early flame development in a spark ignition engine accounts for a 

large portion of the complete combustion period and also directly affects the 

performance of late combustion (Seong-Soo et aI., 1995; Witze et aI., 1990). 
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In analysing flame development, Hacohen et al. (1992) showed that if the flame is 

convected towards the electrodes, then the contact area of the flame with the electrodes 

is increased. This leads to unfavourable conditions for flame development. However, 

when the flame is convected away (detached) from the electrodes, the contact area is 

small and successful ignition is more likely to occur. Pajot et al. (2000) concluded that 

the largest flames are found relatively far from the electrodes, due to reduced heat 

exchange with the electrodes. Therefore, reducing the contact area between the flame 

kernel and the spark plug leads to a faster flame kernel development (Herweg et aI., 

1990). However, other researchers (Witze et aI., 1981) showed that the fastest burn was 

achieved with high swirl and when the flame remained attached to the spark plug. They 

noticed that flame detachment from the spark plug could occur early in the burn, 

midway, or not at all. However, they suggested that these results should be treated with 

caution when trying to relate them with production engine performance. 

It is well known that the physical properties of the mixture and the local flow field at the 

spark plug affect the initial flame kernel and subsequent flame development (Petrovic, 

1982; Swords et aI., 1982; Tagalian and Heywood, 1986). The contact area variation 

between the flame and electrodes due to flame kernel elongation is influenced by 

changes in the flow field (Herweg et aI., 1988; Pischinger and Heywood, 1990). The 

early flame propagation speed is known to be increased with turbulence intensity of the 

in-cylinder mixture (Loye and Bracco, 1987). The flame kernel can be convected away 

from the spark gap, the direction and extent of motion varying cycle by cycle. The 

surface of the growing flame becomes increasingly distorted with time by the turbulent 

flow. Both larger scale structures that persist for some time, and smaller scale wrinkling 

or distortion are apparent (Gatowski and Heywood, 1984). 

Loye and Bracco (1987) showed that as engine speed increased, the shape, size and 

location of the initial kernel became less repeatable, and that the kernel flame front 

became more convoluted. Some kernels had a fairly continuous flame front, while 

others had a much more discontinuous appearance. The apparent discontinuity of the 

flame front could easily have been caused by a highly convoluted, but contiguous flame 

front in the direction normal to the measuring plane. 
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2.4.2 Turbulent Flame Propagation 

In the spark-ignition engine, there is usually a sufficiently long period for turbulence to 

mix the fuel and oxidiser down to a molecular level before a spark initiates combustion. 

The deposition of energy from the spark generates a flame kernel that grows first by 

laminar and then by turbulent flame propagation. In consequence, both laminar and 

turbulent burning velocities are important parameters ofa combustible mixture. 

The laminar burning velocity u, can be defined as the velocity, relative and normal to 

the flame-front, with which unburned gas is entrained into a flat, planar front, and is 

transformed to products under laminar flow conditions (Heywood, 1988). Laminar 

burning velocities at pressures and temperatures typical of unburned mixtures in an 

engine are often measured in spherical closed vessels by propagating a laminar flame 

radially outwards from the vessel centre. The laminar burning velocity is determined 

from analysis of successive images of flame-front position, usually established using 

high-speed cine' schlieren photography (Bradley et aI., 1998). 

Gillespie et al. (2000) defined two turbulent burning velocities; one a turbulent 

entrainment velocity (Ute)' based on mass rate of entrainment of fresh unburned gas into 

the flame, the other a turbulent burning (reacting) velocity (u tr ), based on rate of mass 

reaction. The parameter Ute is usually determined on the basis of schlieren photography; 

Utr is usually derived from analysis of pressure records or laser sheet experiments. In 

the literature, there is confusion between Ute and U tr , with turbulent burning velocity 

labeled Ut in each case. Bradley et al. (2003) have recently shown how the two different 

parameters can be related to one another. 

Under turbulent condition, the flame front is assumed to entrain and then bum the 

mixture at a rate governed by the rms burning velocity and the local laminar burning 

velocity (Stone, 1999). Much experimental work has shown the positive effects of the 

rms turbulent velocity on turbulent burning velocity (Bradley et aI., 1988; Hynes, 1986). 

As previously discussed in Section 2.2, u' at TOe is generally found to be 
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approximately proportional to the mean piston speed Sp. It follows, therefore, that ul 

should also increase with Sp. 

Andrews et at. (1975) suggested that the ratio of turbulent to laminar burning velocity 

(u l Iu,) is proportional to the ratio of the turbulence intensity to the laminar burning 

velocity (u' I u,). Bradley et al. (1992) have correlated turbulent burning velocity with 

turbulence parameters on the basis of 1650 experimental values generated at Leeds 

University and elsewhere. At Leeds, data were obtained using a fan-stirred explosion 

bomb to produce controlled isotropic turbulence. Since the bulk of the experiments 

adopted schlieren photography, the values of u l are likely to approximate ule rather than 

U,r, in each case. The correlations suggested that: 

~ = f(U~ ,K,Le(orMa)) 
u, u, 

(2.16) 

where the ratio of u, I u, represents the increase in burning velocity due to the presence 

of turbulence, u~ is an 'effective' turbulence intensity (obtained from the Power 

Spectral Density (PSD) from frequencies corresponding to the Kolmogorov scales to 

that corresponding to the size of the kernel at any instant (Abdel-Gayed et aI., 1987»; K 

is the Karlovitz flame stretch factor (a ratio of chemical (8J I UI) to eddy lifetime (A. / U '), 

where 8J is the laminar flame thickness and A. the Taylor microscale); Le is the Lewis 

number (the thermal diffusivity divided by the diffusion coefficient of the deficient 

reactant, D; thus Le = kip cp D, where k is the thermal conductivity, p is the density 

and cp is specific heat at the constant pressure). The Lewis number was adopted in place 

of Markstein number, Ma, (a direct measure of the effect of stretch rate on burning 

velocity (Bradley et ai, (1992» due to insufficiency of Ma data for generating a 

correlation. 

Bradley et al. (1988) discussed the limiting effects of turbulence enhancement in spark 

ignition engines. When a flame grows, u~ increases due to the wider spectrum of 

turbulence scales available to wrinkle the flame surface; as a result, ul also increases. 
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However, as u~ increases, so does the strain rate and the tendency to quench, as shown 

in Figure 2.5. Further flame growth leads to a large temperature rise and an increase in 

u,. This reduces the Karlovitz flame stretch factor K, and quenching becomes less 

likely. Thus, flame quenching is most likely to occur in the early stages of flame 

development, when both the temperature and laminar burning velocity are relatively 

low. This is particularly true for lean mixtures (low u,) at high turbulence levels (e.g. 

high engine speeds), since such conditions lead to high values of K. 

A number of alternative expressions exist in the literature (some experimentally, others 

theoretically-based) (Lipatnikov and Chomiak, 2002). Zimont (1979) developed a 

turbulent combustion model, leading to the following expression: 

A ,3/4 112 -1/4L1/4 
U"O = U U, a (2.17) 

where u"o is the developed turbulent burning velocity, A is a constant, u' is root mean 

square (rms) turbulent velocity, u, laminar burning velocity, a thermal ditfusivity and 

L integral length scale. To date, this has proved to be the most successful of the 

available expressions for u, in modelling the LUPOE I-D engine (Abdi Aghdam, 2003). 

2.5 Cyclic Variation 

The existence of cyclic combustion variation in spark-ignited, internal combustion 

engines has long been recognised; its minimisation is one of the many factors to be 

considered in the design and control of such engines. 

2.5.1 Background 

During the early stage of combustion, the flame kernel is small; however, it is then 

displaced from the spark plug region by large-scale flows in a random way, which has 

significant effect on the subsequent flame propagation. This can lead to cyclic variation 

in combustion development. Controlling cycle-to-cycle variation, such that all cycles 

bum in a similar way, would provide an improvement in fuel economy and exhaust 
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emission levels (Heywood, 1988). It is believed that if cyclic variation could be 

eliminated, there would be an increase in power output for the same fuel consumption 

for weak mixtures. Moreover, cyclic variation in combustion leads to differing amounts 

of work being produced in each cycle. This leads to fluctuations in the engine speed 

(Stone et aI., 1996). 

Many researchers have analysed cyclic variation and improved insight into it, but it is 

still not completely resolved. Unfortunately, there is little agreement between the 

researchers who have investigated this problem. Various engine configurations have 

been used, with both liquid and gaseous fuels, which have complicated the 

interpretation of the results. Cyclic variation has commonly been attributed to three 

main factors (Bade Shrestha et ai., 2001; Heywood, 1988; Gatowski et aI., 1984; Reuss, 

2000): 

• Variation in the in-cylinder flow (turbulence intensity, turbulence length 

scales). 

• Variation in in-cylinder mixture composition. 

• Variation in mixing between air, fuel, and inert gases. 

Changes in the in-cylinder motion can result in variation in rms turbulent velocity, u', 

and mean flow velocity in the vicinity of the spark gap, which affects the initial flame 

development and promotes cycle-by-cycle variation. The varying flow at the plug can 

also have a significant effect on the mixture composition in the vicinity of the spark 

plug at the time of the spark discharge, and so affects the early stage of flame 

development. Stone et al. (1996) concluded that bodily displacement of the flame kernel 

during the early stages of combustion has a major role in the origination of cyclic 

variation in combustion. In a simulation exercise, Holmstrom and Denbratt (1996) 

similarly showed that random movement of the flame kernel has a significant effect on 

the cyclic variation. Variation in the growth rate and the location of the flame kernel 

very early in the combustion process were considered to influence significantly the 

cyclic variation in the later combustion development (Hall, 1989; Ozdor et aI., 1994). 

In their literature review, Ozdor et ai. (1994) stated that the shorter the combustion 

stages (especially in the initial flame kernel development stage), the less was the cyclic 
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variation. Other researchers, Glover et al. (1988), claimed that cyclic variation was 

mostly attributable to instability in the position of the axis of the tumbling vortex from 

one cycle to the next. Petrovic (1982) found that improvement of mixture homogeneity 

has the greatest effect on the decrease of flame initiation variation and on the reduction 

of its period. Other researchers, Lee and Foster (1995), stated that the effect of mixture 

concentration variation in the vicinity of the spark plug gap on the cyclic combustion 

variation was not significant in a homogeneous mixture preparation for any equivalence 

ratio. Comparing successive flame 'contours' of the fastest lean-condition cycles with 

those of flames recorded for stoichiometric conditions, Aleiferis et al. (2004) showed 

both to have similar contour characteristics. It was suggested that the fastest lean flames 

on a cycle-by-cycle basis might have been richer than the average in the vicinity of the 

spark plug at ignition. 

2.5.2 Cyclic Variation Quantification 

A number of parameters to quantify cycle-by-cycle variation have been adopted. 

Pressure-related parameters, for example, in-cylinder peak pressure (maximum 

pressure) Pmax ' and the crank angle at which it occurs ()Pmax' have been widely used for 

characterising cyclic variation (Heywood, 1988). The peak pressure Pmax exhibits the 

largest relative cycle-by-cycle variation at maximum brake torque (MBT) timing 

(Ozdor et aI., 1994). However, they claimed that the crank angle at which the peak 

pressure occurs «() Pmax) is the most suitable indicator for cyclic variation in the initial 

flame kernel development stage. One important measure of cyclic variability, derived 

from pressure data, is the coefficient of variation in indicated mean effective pressure. 

This is defined as standard deviation in IMEP (CT IMEP) divided by the mean IMEP 

(IMEP) and is usually expressed as a percentage (Heywood, 1988): 

cov alMEP 
IMEP== 

IMEP 
(2.18) 
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It can also be defined in terms of peak pressure (maximum pressure). The coefficient of 

variation of peak pressure is: 

2.6 Closure 

COV 
Pmax 

(j 

Pmax 

Pmax 

(2.19) 

As clearly stated in Section 2.1 (Introduction), the purpose of this chapter has been to 

provide a general background for the experimental study reported in later chapters. In

depth reviews of in-cylinder flow, turbulence, combustion and cyclic variation are 

available elsewhere (Heywood, 1988; Weaving, 1990; Ozdor et aI., 1994). 

The following chapters are concerned with description of the equipment and methods 

adopted in the current study, prior to presentation of the results and conclusions of the 

work. 
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Chapter 3 

Experimental Engine and Instrumentation 

3.1 Introduction 

Described in this chapter are the two experimental engines, together with the associated 

equipment and instrumentation, used in the current study. The first engine, designated 

LUPOEI (Leeds University Ported Optical Engine Version I), was based on a JLO 

L372, ported single cylinder, two-stroke engine (Konig, 1993). This engine was 

modified by Hicks (1994) to enable single and multiple laser sheet flame imaging. 

Further modifications were carried out by Lee (1995) to enable the introduction of axial 

swirl into the flow. Further studies using the engine and derivatives have been 

performed by Buran (1998), Gillespie (1998), Cairns (2001), Abdi Aghdam (2003) and 

Smallbone (2004). Since no new modifications to the engine were introduced in the 

current study, this engine is only briefly described in Section 3.2; very detailed 

descriptions are given in the work of Lee (1995) as well as in the other these mentioned 

above. 

The second engine was based upon the more substantial base of a Lister-Petter-PHI; 

this was heavily modified and designated LUPOE2. The revised engine adopted the 

same bore diameter as LUPOEI, with which cylinder heads were interchangeable, but 

with its longer stroke, it was possible to achieve higher effective compression ratios for 

a given clearance volume. In the work described in this thesis, LUPOE 1 was always 

fitted with the 'disc' (cylindrical combustion space) cylinder head used by earlier 

workers (i.e. LUPOEI-D) and LUPOE2 with the 'pent' cylinder head described in 

Section 3.3 (i.e. LUPOE2-P). The specifications of the engines are set out in Table 3.1. 
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LUPOEI-D LUPOE2-P 

Bore (mm) 80 80 

Stroke (mm) 74 110 

Effective Stroke (mm) 52 84 

Effective bore/stroke ratio 1.54 0.95 

Swept Volume (cc) 372 553 

Effective Swept Volume (cc) 266.4 422.2 

Clearance Volume (cc) 42.7 51.4 

Nominal Volumetric 7.2:1 9.2:1 

Compression Ratio 

Con-rod length (mm) 148 232 

Crank throw (mm) 37 55 

Exhaust port open/close 108.5 albTDC 115.4 albTDC 

Inlet port open/close 115.7 albTDC 120 albTDC 

Table 3.1 Engine Specifications for LUPOEI-D and LUPOE2-P Engines 

3.2 LUPOEI-D Engine 

The LUPOE 1-0 engine used during the current study was a ported, single cylinder 

engine, with a disc-shaped optical combustion chamber to enable full access for flame 

imaging. Essentially, just the crankcase, crankshaft and piston of the JLO engine were 

retained. This crankcase was fitted with a purpose designed and manufactured 

spheroidal graphite casting with a honed bore. The casting was machined to accepted 

twin inlets and exhaust pipe connecting to the ports, with flanges to connect to the 

crankcase and cylinder head, Figure 3.1. To minimise engine speed variations, Hicks 

(1994), fitted a new flywheel (of a greater mass and inertia than that the original). 

The cylinder head, Figure 3.2 was designed for maximum overhead optical access as 

well as near complete optical access to the clearance height via two side windows, 

Figure 3.1. The disc shaped optical cylinder head comprised two main parts; an upper 

'top hat' section and a lower 'flat' section. The 'top hat' section of the cylinder head 

was bolted to the lower 'flat' section, which had cavities into which two quartz inserts 

for laser sheet access and exit were bonded with a silicone based adhesive. A quartz 

window, which gave optical access to the complete cylinder bore, was fixed into the 

annular 'top hat' section and secured by a separate metal ring. To allow versatility in 
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cylinder head design, the cylinder was designed such that the piston at TOC would 

protrude from the top flange by 12 mm. A seal between the cylinder head arrangement 

and the top flange of the cylinder was accomplished by means of a Viton '0' ring. 

Accurate location of the cylinder head was achieved via two diametrically opposed 

dowel pins secured in the top ofthe flange. 

A purpose-built spark plug was adopted, as shown in Figure 3.2, to maximise the optical 

access to the combustion chamber. In some experiments, for better visualisation of early 

flame development, the spark plug was modified so that the electrodes were clearly 

visible, as shown in Figure 3.3. 

The original JLO pistons were machined flat and fitted with 6 mm thick silver-surfaced 

mirror when back-reflection shadowgraph film techniques and simultaneous natural 

light and shadowgraph studies were made. This modification to the piston resulted in a 

slightly lowered calculated effective compression ratio of 7.2. However, the piston was 

usually fitted with a disc (instead of a mirror) bonded to the piston crown, machined flat 

and painted matt black to minimise laser flare when not using shadowgraph film 

techniques. 

Pressurised air-fuel mixture entered the cylinder through two opposed inlet ports and 

was expelled through an exhaust port at 90° to the inlets (Figure 3.5). To improve 

scavenging, the radial inlet ports were inclined vertically to an angle of 20°. Lee (1995) 

fitted a simple brass venturi carburettor to each inlet pipe, together with three electrical 

'band' heaters (2 x 250W and 1 x 125W) on each inlet line to ensure complete fuel 

evaporation (Figure 3.6). The top flange of the cylinder barrel was similarly heated to 

maintain the cylinder at a constant operating condition. 

The engine was operated in 'skip fire' mode, to ensure that no residual was left from the 

previous firing cycle. Skip firing involved a number of motoring cycles (without 

combustion) between each firing cycle. For example, in the case of a skip fire ratio of 

five, the engine was fired every fifth cycle, with four motoring cycles in between, as 

shown in Figure 3.4. 
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Thermocouples were fitted to the barrel (at three different heights) to measure cylinder 

wall temperature. Two thermocouples were fitted at the end of each inlet to measure 

inlet temperature. One thermocouple was fitted on the lower part of the head to measure 

head temperature. The engine was connected to a DC dynamometer, which could also 

be used to motor the engine. 

To avoid excessive oil fouling of the cylinder head windows, every day before 

conducting any experiment, a small amount of oil (about 50 ml) was fed into the 

crankcase through the breather hole. The engine was rotated by hand a few revolutions 

so that all the moving parts were lubricated. Then the oil was drained out and just a 

small amount was left in the crankcase to enable the crank assembly to splash the 

cylinder wall with oil during its motion. However, leakage of mixture into the crankcase 

caused a pressure build up, augmented by the piston motion during the expansion 

stroke, within the crankcase assembly. This forced lubricating oil up past the piston 

rings into the combustion chamber and out past the crankcase seals. To minimise these 

effects, a Citroen 2CV one-way oil filterlbreather valve was installed, via a flexible 

hose, between a 30 mm diameter hole drilled in the crankcase wall and the exhaust. This 

arrangement generated a partial vacuum in the crankcase and led to much improved 

flame image quality (Hicks, 1994; Lee, 1995). 

3.3 Modified Petter (LUPOE2-P) Engine 

This engine had a longer stroke than that of LUPOE 1-0, allowing increased 

compression ratio for a given clearance volume. The configuration of LUPOE2-P used 

predominantly in the currently reported study had a compression ratio of 9.2:1 when 

fitted with the idealised pent-roof cylinder head described later; it was also operated 

under skip firing condition. 

The bore diameter was changed from its original 87.3 mm, to 80 mm, the same as that 

of the LUPOEI-D engine, so that cylinder heads could be interchangeable. To 

accommodate the head windows, the spark plug position was slightly offset 

(by 1.8 mm) from the centre ofthe bore, as shown in Figure 3.7. Pressurised air entered 

the cylinder through one inlet port, inclined vertically to an angle of 40·, as shown in 

Figure 3.8. Early tests showed that the heaters attached to the long inlet pipe were not 
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sufficient to vaporise the fuel completely and, as a result, the engine mis-fired and 

incomplete combustion occurred. Therefore, additional heaters were added to the inlet 

port to ensure mixture vaporisation. Temperatures were recorded by two thermocouples. 

One thermocouple was fitted at the end of the inlet port, as shown in Figure 3.8, and the 

other was fitted at the top part of the top collar, as shown in Figure 3.1 O( c). 

3.3.1 Engine Barrel and Assembly 

The exhaust system was modified, with multiple small ports in place of the large ports 

in the cylinder barrel, as shown in Figure 3.9, and connected to two exhaust manifolds. 

This was intended to improve engine breathing and control of flow in the cylinder. It 

allowed 'diffusion' of exhaust into an annulus (prior to removal via the two exhaust 

pipes) to prevent the strong exhaust flow through the single exhaust port experienced 

with LUPOEI-O (as observed by Cairns, 2001), the latter having created bulk flows in 

the cylinder which affected the subsequent cycle. 

The inlet tube was inclined at a vertical angle (40°) to assist scavenging and promote 

'tumble' motion in the cylinder. The barrel comprised four main parts: mounting flange, 

exhaust collar, top collar, and liner, which are shown in Figure 3.10. 

The ported breathing design and the change in bore diameter required a new modified 

piston with a longer skirt, as shown in Figure 3.11. The top land crevice height of the 

piston above the top ring was 13 mm. This was to allow for possible mirror attachment 

for shadowgraph photography, whilst maintaining adequate strength to retain the piston 

rings. This influenced the amount of mass lost to the exhaust early in the compression 

process. To allow ready adoption of alternative designs of piston crown, a two-piece 

piston was adopted, as shown in Figure 3.12. An assembly diagram for the LUPOE2-P 

barrel is shown in Figure 3.13. 

3.3.2 Cylinder Head Arrangements 

Pent-roof cylinder heads, 'metal' and 'optical' versions, were used in the current 

reported study, as shown in Figures 3.14 and 3.15, respectively. The pent angle was 

inclined on a vertical angle of 2 (. The metal version was used initially for finding the 
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optimum conditions of the engine at different operating conditions (engine mapping). 

This was to save the less robust optical version from the possibility of damage. The 

metal head was fitted with two flush-mounted pressure transducers; one, water-cooled, 

to the top and the other to the side of the chamber. Once the optimum conditions had 

been determined, only the optical version was used. This was equipped with two top 

and two side windows for flow studies and flame imaging. The view of the underside, 

showing the extent of the windows, is illustrated in Figure 3.16(b). Flow studies, 

employing LDV, were conducted using the top and the side windows of the optical 

version. Simultaneous top and side natural light flame images and pressure data were 

also collected using the optical version. Due to the limited space in the top part of the 

optical version, two side flush-mounted transducers were used, as shown in Figure 3.15. 

Another barrel and head, made of Perspex, was additionally made and used in the study 

for cold flow studies by PTV, as shown in Figure 3.17. 

3.3.3 Engine Lubrication 

The LUPOE2-P required a continuous supply of oil to lubricate the crankshaft and 'little 

end' journal bearings. The original engine's oil pump was used to supply pressurised oil 

to these bearings. This created a problem for the new, ported, engine. When dismantling 

the cylinder head after running the engine, large amounts of oil were observed in the 

cylinder. A small modification was carried out, installing an oil trap in the lower part of 

the barrel to minimise oil splashing into the combustion chamber, as shown in 

Figure 3.18. 
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3.3.4 Modifications 

The design of the new engine (LUPOE2-P) was such that changes could be effected by 

minor modifications to the cylinder head, liner, exhaust collar or piston crown, as 

shown in Table 3.2. 

Remarks 

Swept Volume Can be changed by modified liner 

Effective Swept Volume Can be changed by modified liner 

Clearance Volume Can be changed by different heads 

or different piston cro\'m shapes 

Nominal Volumetric Can be altered by different heads, 

Compression Ratio liners or piston crown shapes 

Exhaust port open/close Can be affected by liner design 

Inlet port open/close Can be affected by liner design 

Table 3.2 Engine Geometry for LUPOE2-P 

3.3.5 TDC Setting 

Before serious experiments could be conducted using the LUPOE2-P engine, it was 

vitally important to set the top dead centre (TOC) position correctly, for the subsequent 

analysis of cylinder pressure data. Three methods were adopted to do this. First, with 

the cylinder head removed, a dial indicator attached to the top part of the cylinder barrel 

was used to assess the topmost position of the piston crown. By rotating the flywheel of 

the engine by hand, the dial indicator detected the highest position (TOC) of the piston. 

The disadvantage of this method related to piston pin offset at TOe. A second method 

involved noting the crank angle for peak pressure on a non-firing trace; this had to occur 

slightly before TOe (Douglas et aI., 1997). The second method proved a useful way of 

confirming the first method (Figure 3.19). Later, a third method was adopted; this 

involved setting the Toe position by using a proximity meter, as shown in Figure 3.20. 

With the engine run at low speed, this detected the highest position of the piston crown 

in a cycle. The shaft encoder output signals and proximity meter readings suggested 

good agreement for TOe position, as shown in Figure 3.21. 
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3.4 Air and Fuel Supply Systems 

Throughout the experiments, controlled air and fuel supply systems were used. The 

fresh charge was blown into the engine cylinder under pressure (Section 3.4.1). Under 

firing conditions, the fuel was introduced via carburettors, fitted to each inlet pipe. 

3.4.1 Air Supply System 

The air supply for both engines used in the present study was from the laboratory's 

compressed air line. A Norgen pressure regulator was installed in-line to regulate the 

delivery pressure to 4 bar (gauge) and the air was filtered to remove any oil and water 

vapour contamination. The air system was split and delivered to the hoses feeding the 

inlet lines. 

Brooks 5812N Thermal Mass Flow Meters were installed to monitor the airflow rate. 

The meters were calibrated by the manufacturer at a standard condition (1.013 bar and 

0° C) for a full-scale deflection (FSD) flow rate of 400 litres/min, equivalent to 8.6 gls. 

A Brooks 5875 display unit was connected to the meters. The unit consists of four 

channels; two channels were selected, one for each inlet hose. The air then passed 

through in-line 5-litre reservoirs (air surge tanks) employed to damp air fluctuations 

resulting from the reciprocating piston motion, before feeding the inlet manifolds (two 

in the case ofLUPOEI-D and one in the case of LUPOE2-P). 

3.4.2 Fuel Supply System 

The fuel used in the current study was iso-octane (2-2-4 trimethylpentane). The fuel was 

stored in a one-litre tank, from which the fuel was supplied to an electric fuel pump via 

a fuel filter. A pressure regulator controlled the delivery pressure of the fuel. The fuel 

supply was divided downstream of the pressure regulator and flowed via two separate 

Platoon rotameters. Both rotameters were capable of measuring fuel flow rates between 

2 and 25 cm3/min to the two fuel nozzles. The original nozzles used in the LUPOEI-D 

engine were calibrated by Lee (1995), and the new nozzles used in the LUPOE2-P 

engine were calibrated during the present study by the current author. Lee (1995) 

conducted a series of experiments to verify the calculated in-cylinder equivalence ratio, 
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using a rapid acting sampling (,snatch') valve. The method involved extracting a small 

sample of gas from the engine's exhaust manifold, which was then passed to a 

hydrocarbon analyser having a flame ionisation detector (FlO) for on-line analysis. In 

the detector, a small amount of sample gas was burnt in a polarised hydrogen flame 

located between negative and positive electrodes. As the hydrocarbon in the sample 

burned, ions were formed at the electrodes. The resulting ions formed caused a current 

to flow, which was related to the concentration of hydrocarbon in the sample. For the 

current study, the snatch valve and hydrocarbon analyser were not available and so it 

was not possible to verify the set equivalence ratio for LUPOE2-P in the same fashion. 

However, since the configuration of the air and fuel entering supply systems used in 

current work were identical to those used by Lee, the mixture was assumed correct. The 

combined fuel-air system is shown in Figure 3.22. A similar fuel-air system diagram for 

LUPOE 1-0 is available elsewhere (Abdi Aghdam, 2003). 

3.5 Ignition System 

The ignition system used for both LUPOEI-0 and LUPOE2-P engines comprised a 

Lucas contact-less electronic ignition unit, a standard Lucas ignition coil, and a 12-volt 

battery. A purpose-built spark plug was used to maximise the optical access to the 

combustion chamber (Buran, 1998; Lee, 1995). The control unit for the ignition system 

counted shaft encoder pulses and triggered the spark at the required crank angle set by 

the user. 

3.6 Pressure Measurement 

Cylinder pressure was measured using piezoelectric pressure transducers. This type of 

transducer contains a quartz crystal, one end of which is exposed through a diaphragm 

to the cylinder pressure; as the cylinder pressure increases, the crystal is compressed and 

generates an electric charge, which is proportional to the pressure. However, 

piezoelectric pressure transducers have a number of disadvantages. They monitor gauge 

(not absolute) pressure, experience sensitivity to thermal shock, long and short- term 

drift, and sensitivity to temperature, so that the output has to be referenced at the 

beginning of each cycle to an absolute pressure (Burnt and Pond, 1997; Douglas et aI., 

1997; Higuma et aI., 1999; Rosseel et aI., 1999). 



Chapter 3 36 

When running the LUPOEl-O engine, an absolute pressure transducer, 

Kistler Type 4045 A50 (with the range of 0-50 bars), was placed in the cylinder waH 

just above the exhaust port (108.5
0 

albTOC), so that it was protected from combustion 

pressure and temperature by the piston but was uncovered at later stages of expansion. 

In the case of the LUPOE2-P engine, when using the above absolute transducer, a non

linear error was experienced. Since it was not possible to obtain an immediate 

replacement, another available absolute transducer, Kistler Type 4045 A5, was adopted, 

but this had a range of only 0-5 bar, and it was not possible to use this in firing tests. 

The engine was therefore motored at different operating conditions similar to those of 

the firing tests (equivalence ratios, engine speeds, temperatures and air mass flow). The 

absolute pressure at a given point (80
0 

albTOC) from the motoring tests was then used 

to reference the pressure recorded by the gauge pressure transducer at the corresponding 

crank angle in later firing tests. 

The piezoelectric pressure transducers used in this study for the LUPOE 1-0 optical 

head and LUPOE2-P metal head were both water-cooled to minimise the effect of 

thermal shock. The pressure transducer was selected for its ability to measure a rapidly 

changing pressure in the range of 0-250 bar. In the LUPOE 1-0 engine, a Kistler 

Type 601A pressure transducer was used. Due to the limited space available with the 

disc-shaped combustion chamber, a 3 mm diameter v-shaped channel was drilled 

immediately below the pressure transducer mounting position to allow a flow of water 

to provide some cooling of the pressure transducer (GiHespie, 1998). 

In the LUPOE2-P engine, a Kistler Type 60lA pressure transducer was installed in the 

top of the metal pent-shaped cylinder head. It was fitted in a special adapter for water

cooling. A non-water-cooled Kistler Type 601A pressure transducer was fitted in the 

side. Illustration of both transducers is shown in Figure 3.14. Due to limited space in the 

optical version, two non-water-cooled Kistler Type 60 I A pressure transducers were 

fitted to the sides ofthe head, as shown in Figure 3.15. 

The signals generated by the piezoelectric transducers were transmitted via 

Kistler Type 5011 charge amplifiers to the computer data acquisition system. The 

piezoresistive absolute pressure transducers were similarly connected via 

a Kistler Type 4601 A amplifier. 
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3.7 Crank Angle Position Measurement 

Hohner Type 3202 and 3702 shaft encoders were used in conjunction with the 

LUPOEI-O and LUPOE2-P engines, respectively. In each case, shaft encoders were 

coupled to the free end of the crankshaft. Both encoders generated 1800 pulses per 

revolution (PPR), i.e. pulses were generated at 0.2
0 

crank angle increment. The shaft 

encoders also generated an additional reference signal per revolution for TOC and BOC 

(bottom dead centre) alignment purposes. 

3.8 Data Acquisition System 

The analogue pressure pulses from both dynamic and absolute pressure transducers, 

along with the shaft encoder pulses, were then converted to digital format using an on

line Microlink 4000 analogue to digital converter (AOC). Two channels were used to 

record these pulses: one was used to record the absolute pressure pulses, the second to 

record the dynamic pressure, TOC, BOC, spark ignition and shaft encoder pulses. Each 

channel was capable of data acquisition at up to I Msamples/sec with 12 analogue bits 

(4096 levels), and had a maximum storage capacity of 128 ksamples. Each analogue 

channel also had four digital inputs, each with one bit accuracy (giving a total of 

16 bits). 

The pressure signals were sampled mostly with a 200 KHz sampling rate. The start of 

sampling was controlled by the engine control unit, based upon identifying the BOC of 

the next firing cycle before starting sampling. The engine control and data acquisition 

system is shown in Figure 3.23. 

3.9 Experimental Procedure 

Prior to each experiment, all heaters were switched on with the engine air supply 

blowing continuously, with the piston at the BOC position. This method ensured a 

constant and uniform temperature prior to any test recorded. The warm-up period was 

essential to ensure complete evaporation of the fuel in the mixture entering the cylinder 

through the inlet manifolds. The charge amplifiers and the Brooks thermal mass flow 

meter were turned on. The air supply main valve was opened and the air pressure 
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regulated to 4 bar. Then, the engine was motored by the dynamometer at low engine 

speed, whilst the air supply was set for both inlet lines. Then, the fuel pump was 

switched on and the rotameters set to achieve the required test equivalence ratio, using 

their calibrated values. This procedure was important to minimise the time when setting 

the fuel and air entering the cylinder during the actual tests. 

Before the actual experiments were carried out, the valve controlling the water supply to 

the cooled piezoelectric pressure transducer was turned on when using the water-cooled 

transducer. The W A VECAP software used in the data acquisition system was activated 

to capture and store pressure and shaft encoder signals. The ignition timing, skip firing 

and the engine speed were then adjusted to meet test requirements. The spark was 

initiated after a few firing cycles (4 firing cycles), the W A VECAP software was run, 

and data were saved following actuation of a manual trigger. The temperatures of inlet 

mixtures and cylinder head were recorded after the trigger. 

Following this review of the experimental engine and instrumentation, the next chapter 

is concerned with techniques used for flame visualisation and flow and turbulence 

characterisation in the present study. 
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Figure 3.3 Revised spark plug used for observation of spark discharge in LUPOEI-D 

(note 3mm offset from chamber axis). 
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Figure 3.4 Typical pressure record for LUOPEI-D engine running in skip fIring mode. 
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Figure 3.5: LUPOE1-D inlet/exhaust arrangement (Cairns, 2001). 
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Figure 3.6: Inlet pipe assembly (Cairns, 2001). 
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Figure 3.9 Liner showing distributed exhaust ports in LUPOE2-P engine. 
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Figure 3.10: (a) mounting flange, (b) exhaust collar with inlet and exhaust tubes, 

(c) top collar and (d) liner (Abdi Aghdam, 2003). 
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Figure 3.11 LUPOE2-P piston, showing long skirt. 

Figure 3.12 LUPOE2-P two-piece piston. 
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Figure 3.13: Barrel assembly for LUPOE2-P engine (Abdi Aghdam, 2003). 
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(a) 

(b) 

Figure 3.16 LUPOE2-P optical pent-roof head, (a) side view (b) underside showing 

extent of window. 
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( 

Figure 3.17 LUPOE2-P Perspex barrel and head (with piston close to BDC). 
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Figure 3.18 LUPOE2-P oil trap. 
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Chapter 4 

Flame Visualisation and Flow and Turbulence Characterisation 

4.1 Introduction 

The purpose of the current study was to investigate flame propagation and pressure 

development, in both simple 'disc' and 'pent-roof combustion chambers, to relate to 

flow and turbulence, and to obtain modelling validation data for colleagues. This 

entailed monitoring the flow and turbulence in the pent-roof case for a range of 

operating conditions, as no prior data were available in this case. Flame propagation 

was monitored using natural light and shadowgraph techniques. For flow and turbulence 

characterisation, laser doppler velocimetry and particle tracking velocimetry were 

adopted. 

4.2 Flame Visualisation (LUPOEI-D) 

Historically, natural light, schlieren, shadowgraph and laser sheet Mie scatter imaging 

techniques have variously been used to monitor flame progress across engine chambers. 

In the natural light technique, luminosity for imaging comes from the flame itself. This 

method generally presents no particular problems; however, for lean flames, natural 

luminosity has not always been adequate (Lewis, 1987). For suitably optically accessed 

engines, this method has the advantage of being relatively simple to perform, due to the 

uncomplicated experimental set-up and ease of processing to a binary image. Schlieren 

or shadowgraph techniques, sensitive to density changes in the imaged medium, have 

also been widely used. In general, the schlieren technique gives greater contrast than the 

shadowgraph technique. This is due to the knife-edge or aperture, which is used to 

block part of the refracted light through the test section (Zhao, 2001). However, in 

engine applications, density gradients are usually adequate for good contrast In 

shadowgraph images. The shadowgraph technique is less sensitive to the quality of the 

optical components than the schlieren technique, leading to considerable cost saving. 

Both techniques require the use of a mirrored piston, to reflect light back to the camera, 

unless optical access through both sides of the combustion space is available. The 
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schlieren method is more sensitive to the inevitable rocking of the mirrored piston 

surface relative to the knife-edge. This rendered the schlieren technique difficult in the 

currently reported study, so that natural light and shadowgraph imaging (sometimes 

simultaneous) were preferred. 

4.2.1 Natural Light Imaging 

Natural light imaging is relatively easy to perform and involves relatively little data 

processing time. It was adopted for the LUPOE 1-0 engine, taking advantage of the 

excellent full-bore optical access of the disc-shaped combustion chamber, described in 

Section 3.2. The natural light flame chemiluminescence was captured using the high

speed digital Phantom V4.1 camera. The framing rate for the camera was set to 3700 

fps, with an exposure time of 21 Ilsec. For visualisation of the entire bore, at this 

framing rate, the available image size was 256 by 256 pixels. Both Abdi Aghdam 

(2003) and Smallbone (2004) had previously conducted extensive natural light imaging 

using LUPOEI-O at a number of engine operating conditions. The current study 

encompassed both natural light and shadowgraph imaging, sometimes simultaneously, 

as described later in Section 4.2.3. 

4.2.2 Shadowgraph Technique 

A shadowgraph technique requires a light source and optical lens to generate a parallel 

beam of light, which is guided into the combustion chamber. The technique relies on 

density gradients in the combustion zone to change refractive index and generate an 

image on screen. Due to the substantial difference between burned and unburned gas 

densities, the entrainment flame front can be derived from the image. With only (full

bore) overhead optical access, a mirror is needed on the piston crown to reflect light 

from the chamber. Any piston crown surface rocking motion may displace the image on 

the screen (Zhao, 2001). The optical set-up ofa shadowgraph system is similar to that of 

schlieren, with the exception that (in the latter method) a knife-edge or aperture is used 

to block part of the refracted light passing straight through the test section, as discussed 

above. 
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The shadowgraph technique was adopted in the LUPOEI-0 engine for investigation of 

early flame development, which was not clear in natural light images due to low light 

levels and interference from the spark. A high-speed digital Phantom V4.1 camera, 

32000 fps maximum framing rate, was adopted. The framing rate was generally set to 

11200 fps, with an exposure time of 10 Jlsec. At this framing rate, the image size 

available was only 128 by 128 pixels; hence, for good spatial resolution, only the 

40 mm diameter central region ofthe chamber was imaged. 

The light from a 12V halogen lamp was passed through a plano-convex lens, where the 

light beam was focused into the pinhole. The beam was then expanded to 150 mm 

diameter before passing through a plano-convex lens of 1000 mm focal length; this 

larger lens was used to form a parallel circular cross-section beam of light with neutral 

density. This light was then reflected by a 220 mm square silver-surfaced mirror above 

the engine at an angle of 45°, before passing through the cylinder head window onto the 

circular silver surfaced mirror bonded to the top of the piston. The light passing back 

through regions of varying density (and refractive index) at the flame front was 

refracted and subsequently reflected back to the receiving optics/camera, as shown in 

Figure 4.1. It was necessary to slightly misalign the input and receiving optics 

(by - 0.3"), imaging of a grid placed on the piston crown showed that the resulting 

image distortion was negligible. 

4.2.3 Simultaneous Natural Light and Shadowgraph Techniques 

Simultaneous natural light and shadowgraph imaging were also undertaken, for 

comparative purposes. Beyond the point in flame development where there was 

adequate luminosity for natural light imaging, the mean flame radii obtained from the 

two sets of images proved surprisingly similar, giving confidence in the adoption of 

natural light filming for the later LUPOE2-P experiments, where the optical access 

requirements for shadowgraph images could not be met. 

The same basic set-up used for study of early flame development, Section 4.2.2, was 

employed, but for the natural light flame images; natural light from chemiluminescent 

flames was picked up from the 220 mm square mirror at the top of the engine and 

directed via a 25 mm silver-surfaced mirror to the high-speed digital Phantom V 4.1 
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camera, Figure 4.2. The framing rate for the camera was set to 3700 fps, with an 

exposure time of 21 J..lSec. For visualisation of the entire bore, at this framing rate, the 

available image size was 256 by 256 pixels, as mentioned above in Section 4.2.1. For 

shadowgraph flame images, a Hitachi 16HM high-speed cine camera, which had a 

maximum framing rate of 10,000 frames per second, was used (as only one digital high

speed camera was available at the time of undertaking these experiments). The set-up 

for the simultaneous imaging is shown in Figure 4.2. 

4.3 Flame Visualisation (LUPOE2-P) 

The pent-roof geometry clearly precluded adoption of schlieren or shadowgraph 

photography. However, the earlier work with the 'disc' chamber had demonstrated 

(with electronic high-speed cameras) that image definition with a natural light technique 

was almost as good. Use of natural light imaging also readily allowed a degree of 3D 

information, using more than one camera. For studies of 3D flame propagation in the 

pent-roof(LUPOE2-P) engine, simultaneous top and side natural light film imaging was 

employed, using the optical head version of LUPOE2-P. This involved using two 

separate Phantom high-speed cameras for top and side flame images. The framing rate 

for the side camera was set to 7100 fps with an exposure time of 30 J.!sec. At this 

framing rate, the available image size was 256 by 128 pixels. The framing rate for the 

top camera was set to 3550 fps with an exposure time of 30 J.!sec; however, this was 

achieved with a software setting of 3560 fps. At this framing rate, the available image 

size was 256 by 256 pixels. 

The top two windows were inclined at an angle of 21" to the horizontal. Rather than 

using a separate camera for imaging each window, four sets of reflecting mirrors were 

used, so that images from the two inclined windows could be recorded with a single 

camera, as shown in Figure 4.3. The arrangement involving two high-speed cameras, 

for simultaneous top and side flame imaging, is shown in Figure 4.4. 

The metal retaining clamps of the two overhead windows, as shown in Figure 4.5, 

precluded imaging the very earliest stages of flame development via the top high-speed 

camera. The side camera was able to capture the full flame development from initiation 

(Figure 4.6). 
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4.4 Flow and Turbulence Characterisation (LUPOE2-P) 

For LUPOE2-P now and turbulence characterisation, both the optical engine variant 

used in the imaging described above and the perspex variant (Section 3.3.2) giving full 

access to the cylinder barrel, were used. Both forward and backscatter LDV methods 

were adopted for point measurements in various places within the combustion space; 

the measurements made were supported by whole field PTV flow studies carried out 

using the perspex variant of the engine. 

4.4.1 Laser Doppler Velocimetry (LDV) 

Light scattering has proved to be one of the most powerful techniques for probing the 

properties of particulate systems. The technique of using the Doppler shift of laser light 

to determine velocities was first demonstrated in 1964 by Yeh and Cummins, who 

observed the shift of light scattered from particles carried in a water flow. 

Measurements of flow velocities in gases soon followed (Drain, 1980). Laser Doppler 

velocimetry is generally considered to be the most suitable technique for point 

measurements of turbulent fluid velocity. In the LDV technique, it is the velocity of 

small particles embedded in the flow, not that of the flow itself, that is measured 

(Stevenson, 1976); hence, determination of flow velocity directly depends on the ability 

of these particles to follow faithfully the fluid flow. 

The principle upon which the LDA technique is based is the Doppler effect, where an 

apparent change in the observed frequency of a wave is a result of relative motion 

between the source (moving object) and the (stationary) observer. The light source is 

provided by a laser, which produces a high intensity, continuous, monochromatic, 

spatially precise beam of light which is first split into two beams which are then made 

to cross. When the laser beams, at same frequencies cross, they produce stationary 

fringes (a pattern of bright and dark stripes). As such, it is not possible to infer the 

direction of the flow since a particle moving through the interference fringes in one 

direction would produce the same Doppler frequency as one moving in the opposite 

direction. In order to resolve this problem, two coherent laser beams that have slightly 

different frequencies are crossed. This is accomplished by applying a frequency shift to 

one of the beams (utilising a Bragg cell). Such an arrangement produces a moving 
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system of fringes. which is fonned in the intersection volume. Small particles 

suspended in the fluid act as moving receivers and transmitters of light waves, which 

scatter the oncoming laser radiation. Movement of a particle in one direction lowers the 

frequency difference. and. in the opposite direction, raises it. The scattered light is 

received by a photodetector (Drain, 1980), which converts it into an electrical signal. 

Since both Doppler shifted waves are scattered from a particle onto the detector, the 

resulting frequency difference can be readily detennined. The particle velocity can be 

calculated from the frequency shift of the scatterred light. The resulting frequency 

difference is given by: 

(4.1) 

where vcosfJ is the component of velocity nonnal to the direction of the intersection of 

the two beams, 1/ and 12 are the wavelengths of the incident beams, lsI and 1s2 are the 

frequencies of the incident beams and a is the angle between the beams. 

The intensity of light scattered onto the detector rises and falls at a rate directly 

proportional to the velocity of the particles (Durst et aI., 1976). The instantaneous 

velocities were measured and then the nns velocities calculated from an array of 

instantaneous measurements by the Dantec BSA software. By translating the position 

probe volume, the velocity could be measured at different points within the cylinder. 

A Spectra Physics Stabilite Model 20 17-04S argon ion laser was used in the currently 

reported study. It had a broadband rear mirror in the laser cavity, allowing a multi-line 

laser, with wavelengths in the range of 457.9-514.5 nm. For LDV measurement 

purposes, the multi-line laser was separated into its single wavelength components, and 

each component was divided into two beams. This was done with a Dantec 60x40 

transmitting box, which is an integrated Bragg cell (beam shifter) and colour separator 

unit. The multi-line laser beam was first diffracted to its zero and first-order components 

by 40MHZ frequency shifting through the Bragg cell. These were then separated into 

three wavelengths by a prism in the colour separator unit, and directed to vertical 

outputs on the top of the transmitter box. These outputs allowed mounting of Dantec 

60x24 manipulators for positioning and angling beam pairs into optical fibres. In the 
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currently reported study, only the longest wavelength, 514.5 nm (green), was applied. 

This allowed measurement of one velocity component (1-0 LOV). For this 

configuration, both the zero and first-order green beams were transmitted from the 

manipulators to the distributor box at the rear end of the transmitter box into separate 

fibres. A 40 m long integrated LOV optical fibre link was used to transport the two 

beams from the distributor box to a Oantec 60xlO probe, with 38 mm beam separation. 

A 160 mm focal length lens was mounted in the front of the probe to focus the two 

beams and form a measurement volume at their crossing (Jakubik, 2002). 

Two methods of light reception were applied, forward and back scatter (FS and BS). In 

FS, light was received by optics on the opposite side of the measurement volume, i.e. 

received light direction was forward relative to the beam propagation. However, in BS, 

light was received by the same lens used to focus the laser beams; i.e. the direction of 

received light was backward relative to the beam propagation. 

For both configurations (FS and BS), a TSI Model 9162 photo-multiplier was used to 

convert the scattered light to electrical signals. In the case of FS, the scattered light was 

transferred directly from the receiving optics to the photo-multiplier, which was 

mounted on the top ofthe receiving optics, as shown in Figure 4.7. However, in the case 

of BS, the scattered light was transmitted to the distributor box by the fibre link, then to 

the photo-multiplier by a separate fibre, as shown in Figure 4.8. 

The received signals (both methods, FS and BS) were analysed using a Oantec BSA 

(Burst Spectrum Analyser) F70. The processor was connected to a PC and controlled by 

BSA flow software supplied with the processor by Oantec. 

Experiments for the pent-roof shaped engine (LUPOE2-P) were conducted with the 

engine motored over a range of engine speeds (750, 1000, 1500 and 1900 rpm). Both FS 

and BS techniques were employed at different times, as discussed above, to measure in

cylinder velocities at a number of different locations within the chamber. Forward 

scattering is characterised by its strong signal to noise ratio, but it requires at least two 

optical accesses to the engine, as illustrated in Figure 4.7. Though it has a lower signal 

to noise ratio, backward scattering is necessary when only one optical access is 

available (Figure 4.8). Two orthogonal velocity components were generally measured 
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(not simultaneously, since only single component measurement was possible with the 

available equipment). 

The LOV technique is an absolute velocity measurement method, requmng no 

calibration. Under optimal conditions (good seeding, well defined geometry, etc.) the 

accuracy of LOV, when compared with other available techniques, is exceptionally 

good. The accuracy of the LOV technique is dependent on the concentration of the 

seeding within the flow (Lading, 1994). In this respect, the flow within the reciprocating 

engine involves more problems than almost any other type of enclosed flow because the 

seeding concentration will vary throughout the cycle of the engine, due to the 

movement of the piston. Seeding particles must be added to the flow to provide 

sufficient scattering sources. If the particles are too large, they will not follow the flow; 

resulting in an inaccurate representation of the fluid velocity. If the particle are too 

small, they will not scatter sufficient light to provide the signal-to-noise necessary to 

minimize measurement uncertainty in the signal processing electronics. For all these 

reasons, the selection of the seeding material and the particle size requires careful 

consideration. At Leeds University, Jakubik (2002) explored the use of silicon oil 

droplets and olive oil droplets. The former was found to result in a poor validation rates, 

whereas the latter gave acceptable signal strength. Olive oil was used in the current 

study and found to yield superior data quality. 

The air flow rate to the engine was set at 6.89 g/sec (equivalent to 80% ofthe 400Llmin 

full scale reading of the available air flow meter (Section 3.4.1» and seeded with olive 

oil. A small portion of air (3 % of the 80% of the air flow-rate in the case of forward 

scatter (FS), and 10% of the 80% in the case of backscatter (BS» from the main fuel 

and air supply tower was fed to a SCITEC LS-IO liquid seed generator. The seeding 

generator worked by injecting air into a fluid (olive oil) at near sonic velocity through a 

number of Laskin nozzles. Each nozzle produced micro-bubbles with micro-droplets 

inside. These bubbles reached the free oil surface and burst, releasing the micro

droplets. Internal barnes were used to remove unwanted large droplets that could be 

produced by the splash when a bubble bursts (Oxford Lasers, 2005). This mixture of air 

and micro-droplets was then directly taken from the cylindrical reservoir (3% in the 

case of FS, and 10% in the case of BS) to the engine ports and blended back into the 

main air supply (77% of air flow-rate in case of FS, and 70% in the case of BS, which 
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was fed from the main fuel and air supply tower, this gave a total of 80% of the 

400Llmin for each case (FS and BS configurations», as shown in Figure 4.9. Full 

details of the LOY system, setting and preparation are described elsewhere (Jakubik, 

2002). 

The diameters of the generated droplets were in the range 0.5 to 5 J!m depending on the 

operating conditions (pressure drop across nozzles, height of liquid level in reservoir), 

and applied liquid properties. 

In LOY, the uncertainty in both the mean and rms velocities can be reduced by 

increasing the number of individual tests and achieving high LOY data rates. In the 

current study, several tests were carried out for each position measured and at each 

engine speed tested, until the data rate proved satisfactory (-12000 Hz for forward 

scatter (FS) and about 1000-2000 Hz for backscatter (BS) configurations). Measuring 

uncertainty with LOY can also result from relative motion of the LOY probe and the 

combustion chamber. For a fixed LOY probe position, such relative motion can arise 

from engine vibration. The vibration associated with engine speed variation was 

minimised by the large and heavy flywheel attached to the engine. 

The measurement points and directions adopted when using the FS and BS 

configurations are set out in Chapter 7 (Section 7.3.2). General specifications are 

tabulated in Appendix A. 

4.4.2 Particle Tracking Velocimetry (PTV) 

Although LOV velocity data were able to provide much useful insight into the in

cylinder flow, in addition to the required rms velocity fluctuation data, it proved hard to 

interpret the complex and unsteady flow from the restricted number of positions and 

directions accessible in the pent-roof chamber. Whole field measurement techniques 

have been developed to overcome such problems. Whole field measurements are most 

usually undertaken using particle image velocimetry (PIV) techniques (Calendini et aI., 

2000; Eric, 1997; Fujimoto, 2002), which have made rapid progress in recent years. No 

such system was available to the study at the time the currently reported work was 
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conducted. Hence an alternative particle tracking velocimetry (PTV) was used to 

characterise the complex in-cylinder flows. 

In particle tracking velocimetry (PTV), particles are introduced into the flow and 

subjected to intense stroboscopic illumination, so that their successive positions can be 

recorded photographically. In PTV, individual particles or group of particles are 

identified and matched between exposures, so that their displacement, and hence 

velocity, may be measured (NeuBer et aI., 1995). 

In summary, when applied under optimal seeding conditions, PTV allows the tracking 

of individual and relatively large particles (which follow the large-scale turbulent 

structures) to resolve the in-cylinder flow development throughout relatively long 

periods of individual engine cycles (Adrian, 1986). This has the advantage of enabling 

video presentation of data and animations, in addition to vector plotting. 

In the currently reported study, a planar laser sheet Particle Tracking Velocimetry 

(PTV) technique based on the Mie scattering principle was developed to visualise the 

in-cylinder flow under motoring conditions at two engine speeds (750 rpm and 1500 

rpm). An Oxford Lasers Model LS20·50 copper vapour laser was used as the light 

source for the 2·D imaging experiments, using the Perspex cylinder barrel and head 

version of the LUPOE2-P engine shown in Chapter 3 (Section 3.3.2). The experimental 

process involved seeding the mixture entering the engine cylinder with relatively sparse 

and large particles (typically < 70J..lm); these particles passed through the laser sheet, 

scattering light towards a camera positioned normal to the plane of illumination. More 

details of the laser system used in the currently reported study are available elsewhere 

(Cairns, 2001; Gillespie, 1998). 

The 2-D imaging technique required the laser light to be formed into a thin sheet which 

was then passed through the scattering medium. The apparatus utilised during the 

experiments is shown schematically in Figure 4.10. Upon exit from the laser head, the 

25 mm laser beam was aligned to the desired height, using five 45° dichroic mirrors. A 

1000 mm focal length; spherical convex lens focused the beam to the centre of the bore; 

a 500 mm plano-convex cylindrical lens then formed the light into a thin sheet passing 

through the centre of one of the top windows. It was necessary to keep the sheet 
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thickness as thin as possible, estimated to be 250 /-lm (Woolley, 2005). The laser sheet 

was positioned in the vertical plane, in the centre of the window opposite to the inlet. 

The central plane was chosen to allow an element of comparison of the data with LDV 

measurements (shown later in Chapter 7) taken in the same position. 

The air flow rate was set at 6.89 g/sec (80% of the maximum 400 Llmin for the meter) 

and seeded with white pepper (size < 70/-lm). A high-speed digital Phantom V 4.1 

camera was used in the currently reported study, with a framing rate of 2000 fps and a 

laser frequency of 10 KHZ. At this framing rate, the available image size was 512 by 

256 pixels. The particle tracks were to an accuracy of ±1 pixel (±80/-lm). This error 

corresponded to a maximum velocity error of ±0.12m/s in calculation of particle 

velocities. 

The LOV technique is insensitive to the properties of the gas under investigation and 

requires no calibration; it is the more accurate of the two velocity techniques adopted. 

However, this method yields ensemble averaged rather than cyclically resolved velocity. 

The whole flow field PTV technique helped to uncover intermittent flow patterns 

masked in the LOV measurements. 
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Figure 4.3 (a) Diagrammatical and (b) photographic illustration of mirror set-up fo r top 

flame imaging using one camera (LUPOE2-P). 
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Window clamps 

F igure 4.5 Top-view of LUPOE2-P pent-head, showing two metal clamps retaining the 

optical windows. 
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Chapter 5 

Processing and Data Analysis 

5.1 Introduction 

Presented in this chapter are descriptions of the adopted pressure and flame analysis 

techniques, and descriptions of flame and flow image processing and analysis 

techniques employed for the two engines used in the currently reported study 

(LUPOEI-D and LUPOE2-P engines). 

5.2 In-Cylinder Pressure Data 

In-cylinder pressure records yield the most useful information for analysing the 

combustion process in internal combustion engines. Information that can be obtained 

directly from the pressure record includes peak pressure (Pmax ) and the crank angle of 

its occurrence (e pmllX)' which can be used for evaluating cyclic variation (Ozdor et aI., 

1994). Other useful data that can also be found from the pressure record include 

optimum spark timing, knock and misfire detection (Heywood, 1988). 

As discussed in Chapter 3.6, in-cylinder pressures were recorded using piezoelectric 

pressure transducers, which had to be referenced at the beginning of each cycle to an 

absolute pressure. Shown in Figures 5.1 (a) and (b), are examples of in-cylinder 

dynamic pressure records before and after referencing to an absolute pressure trace, 

respectively. The output of a piezoelectric pressure transducer is subject to 'short-term' 

thermal drift, which generates false readings on the pressure record. This thermal drift 

can be reduced by using water-cooled transducers or by covering the transducer tip with 

silicon grease, to be explained later in Section 6.2. 

5.2.1 In-Cylinder Pressure Data Processing 

As described in Section 3.9, after data acquisition was completed, the captured signals 

were ready to be stored, using the 'WA VECAP' software, supplied with the Microlink 
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system. The pressure and shaft encoder signals were extracted from the binary raw data 

files of one of the channels and were stored in the same sub-directory for that channel 

using the software 'SPLIT', supplied with the Microlink system. The use of this 

software was important (to split each signal in a sub-directory, e.g. dynamic pressure 

record, absolute record, TDC, clock, BOC and spark signals) in monitoring and 

observing all signals captured after each test, before proceeding to conduct more 

experiments. This proved necessary during the experimental work, where faulty signals 

were sometimes observed. These problems were generally related to damaged 

transducer washer, poor connections between transducer and amplifier, or faulty 

amplifier. Occasionally, spark interference was noted on the pressure graph, as shown in 

Figure 5.1 (a). Moving the spark lead away from the transducer cable generally 

eliminated such effects. 

After the above binary data were saved and checked, a program (bin2asc), written by 

colleague (Wu, 2006), was used to convert the binary data to a readable format (an 

ASCII format). Later, a FORTRAN program (JLOPetterCam), written by Dr. Abdi 

Aghdam was used, to reference the dynamic pressure trace to an absolute pressure trace 

at exhaust port closure timing, 108.5° albTOC in the case of the LUPOEI-O engine and 

80° albTOC in the case of the LUPOE2-P engine. After using the program, it was 

possible to select any firing cycle or any motoring before firing for the tested 

conditions. 

5.3 Film Data 

The combustion duration in a spark ignition engine is relatively short. Combustion starts 

when the spark ignites the mixture before the piston reaches TOC and finishes after the 

peak pressure point in the expansion stroke, e.g. for a combustion crank angle duration 

of 36° (e.g. starting at 20° bTDC and finishing at 16° aTOC) and an engine speed of 

1500 rpm, combustion duration is: 

° 1 min 1 rev 60 sec 
Time=36 x X--o x--=0.004sec=4ms 

1500 rev 360 1 min 
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It can be seen that the combustion duration is short and decreases with engine speed. 

High-speed electronic cameras were used to capture these fast combustion events. 

Shadowgraph and natural light methods (sometimes simultaneous) were used in the 

current study, as discussed in Chapter 4. The shadowgraph method was used in 

LUPOE 1-0 engine for early flame kernel development studies; sometimes with 

simultaneous natural light imaging (see Sections 4.2.2 and 4.2.3). Simultaneous 3D top 

and side natural light imaging was adopted with the LUPOE2-P engine 

(see Section 4.3). 

5.3.1 Film Data Processing 

After the high-speed camera/cameras captured images of turbulent flame development, 

they were downloaded directly to the computer and saved as cine files. Phantom 

software was used, where the cine files for each filmed cycle captured were split into 

'tir files and converted to 'greyscale' mode, in order to be used later in Adobe 

Photoshop Version 6 software. Every pixel of a greyscale image had a brightness value 

ranging from 0 (black) to 255 (white). The aim of using this software was to convert 

these images to black and white binary form via five processing steps, as shown in 

Figure 5.2. First, the raw image, converted to 'greyscale' mode, was selected, as shown 

in Figure 5.2 (a). The shadow of the spark wire can be observed in the image. In 

Figure 5.2 (b), the brightness level of the image was adjusted using the 'level' command 

under the drop down menu of 'image-adjust' commands in the software. This command 

allowed adjustment of the brightness and contrast of the image; it applied the same 

adjustment to every pixel in the image. Then, the spark plug wire was manually 'filled' 

using the 'paintbrush' tool in the software, as shown in Figure 5.2 (c). Next, a binarised 

black and white (B/W) image was created, as shown in Figure 5.2 (d), using the 

'threshold' command under the drop down menu of 'image-adjust' commands. The 

adjustment of the threshold level was controlled, so that the white area covered the 

enflamed area. Hence, all pixels lighter than the threshold were converted to white; all 

pixels darker were converted to black. Finally, the 'dust and scratches' command under 

the drop down menu of 'filter-noise' commands was used, to remove any dissimilar 

pixel and smooth the flame edge of the thresholded image, as shown in Figure 5.2 (e). 

This procedure (converting the raw images to B/W images) was applied to the images 

derived from both engines (LUPOEI-D and LUPOE2-P) used in this study. 
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In the case of LUPOE 1-0, the black and white (B/W) binarised images were converted 

to an EPS format, using Photoshop Version 6 software. The EPS format changed the 

images to a readable format (an ASCII format), using a FORTRAN program 

(Edgesab4), written by Dr. Woolley. This enabled the flame radius, centroid and flame 

edge co-ordinates to be determined. Other useful flame parameters were also analysed, 

using 'Excel' software (shape factor and flame kernel centroid convection). 

To quantify the distortion of the flame from that of a circular shape, Buran (1998) and 

Gillespie (1998) defined a 'Shape Factor' (SF). The same parameter was applied for the 

study of cyclic variation in the early flame kernel development in LUPOEI-O, where 

the 'Shape Factor' was defined in terms of flame perimeter ( Pr) relative to that (P.) of 

circular flame of identical area, as follows: 

P 
Shape Factor = ~ 

Pe 

(5.1) 

In the case of LUPOE2-P, the black and white (B/W) binarised images were converted 

to an EPS format, using Corel Photo-paint Version 9. Later, two FORTRAN programs 

(Top Film and Side Film) written by Dr. Abdi Aghdam were used to find the flame edge 

co-ordinates for both top and side films. In addition, flame radius for top and side films 

and flame centroid movement for side films were found and analysed using another two 

programs (Iupoe2top and lupoe2side), written by Dr. Woolley. It was difficult to find 

the flame centroid movement for the top films, due to the existence of two metal clamps 

retaining the top optical windows, which precluded imaging the very earliest stages of 

flame development, hence it was difficult to determine the spark electrode position 

(Section 4.3, Figure 4.5). 

5.4 Laser Doppler Velocimetry (LDV)-LUPOE2-P Engine 

The LOV tests in this study were conducted on the LUPOE2-P engine with an air mass 

flow-rate of 6.89 g/sec. The LOV set-up for both forward and back scatter 

configurations has been described in Section 4.4.1. The LOV data collection and 

analysis is outlined below. 
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BSA flow processing software 

The LOV data were collected and analysed using Oantec BSA flow V2.00.29 flow 

processing software, more details of the software used in the currently reported study 

are available elsewhere (Jakubik, 2002). 

A Oantec F70 burst spectrum analyser (BSA) signal processor was used to analyse the 

LOA signals. It calculated the velocity by a Fast Fourier Transformation (FFT) 

technique. 

Validation rate and data rate 

Within the software, the following were selected and needed to be set correctly for 

successful measurements. 

Centre frequency: this defined the centre frequency of the doppler signal to be 

measured. In the current case, it was defined as the expected mean velocity of flow in 

the measurement position; this was converted to frequency by the software. 

Bandwidth: this defined the doppler frequency window, centred on the above 

frequency. Values presented in Appendix A, Table A4 indicated that velocities falling 

into the range from -9 mls to +9 mls were to be measured. 

Proper choice of the above two parameters (centre frequency and bandwidth) resulted in 

a good Gaussian probability distribution function of the measured velocities. 

Record length mode and Record length: these two parameters defined the number of 

samples for the applied record length, i.e. number of samples passing the measurement 

volume at the same time to be considered as a successful record or burst. Too high 

values tend to remove noise, but at the same time decrease data rate. "Therefore, a good 

balance needs to be found between these two" (Jakubik, 2002). 

Signal gain: this was the gain of the PM signal amplifier. According to the Dantec 

user's guide the recommended starting level should be around 24 dB. In the current 
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study, values of 26 dB and 24 dB were selected for forward scatter and back scatter 

configurations, respectively (Appendix A, Table A5). 

Burst detector SNR level: sets the SNR (signal-to-noise ratio) threshold level of the 

burst detector. Default value was set at 0 dB, the same as Jakubik (2002). 

Level validation ratio: this was the ratio between two highest peaks in the burst 

spectrum. The value recommended by Jakubik (2002), was adopted. 

5.5 Particle Tracking Velocimetry (PTV) -LUPOE2-P Engine 

The PTV particle tracking was performed using a manual tracking method for each 

individual particle. 

5.5.1 PTV Analysis 

The laser was pulsed at 10KHz and the camera ran at 2 KHz, therefore, during each 

camera exposure period the laser pulsed 5 times. This resulted in each particle 

producing 5 'spots' on each frame, as shown in Figure 5.3. The PTV raw images were 

analysed using a manual treatment for every individual particle track, joining the five 

successive positions of the particle, as shown in Figure 5.3. Before choosing and 

analysing the particle tracks, the tracks created by individual particles in these 

successive camera exposures were examined; e.g. Figures 5.4 (a), (b) and (c). This was 

done to ensure selection of particles with clear 5 dots, and, to verify the direction of the 

analysed particle by considering its motion between frames. This procedure also 

ensured that the particle under analysis did not suffer interference by another particle, 

especially in regions of high seeding density, where overlapping particle tracks were 

observed, as shown in Figure 5.5. After this verification procedure, every particle track 

was then transformed into a local velocity vector using three steps. First, the 

measurement tool in 'Photoshop' software Version 6 was used to find the coordinates of 

each particle in each position, as shown in Figure 5.6. This tool was used manually to 

mark the particle displacement, where the start point of the particle was noted and 

tracked until the end of the exposure time for this particle. Then, the navigator 

command under the drop down 'window' menu showed the x, y, height (H) and width 
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(W) coordinates necessary for vector (R) map calculations. Second, the magnitudes and 

directions for each individual particle were calculated from those coordinates using 

'Excel' software. Finally, the data calculated from 'Excel', which represented the vector 

map, were plotted using 'Origin' graphic Version 7 software. This procedure yielded a 

vector field which revealed the large-scale structures in the flow studied, as shown in 

Figure 5.7. 

In general, measurements were made at various crank angles for a number of cycles 

recorded at two engine speeds (750 rpm and 1500 rpm). This enabled investigation of 

the flow patterns for the two engine speeds as a function of crank angle for a number of 

different cycles. The results are presented later, in Section 7.3.1.1. 

Following this description of processing and data analysis, the next chapter is concerned 

with LUPOE2-P preliminary engine mapping prior to presentation of the results and 

conclusions of the work. 
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(a) Raw image (b) Setting brightness level 

(c) Filling spark wire and cleaning (d) Threshold 

(e) Removing noise from flame front 

Figure 5.2 Sequences of flame image processing to produce binarised black and white 

image from raw image. 
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Figure 5.3 Raw image of seeded PTV flow, showing successive positions of each 

particle for five laser flames separated by 0.1 ms during a total camera frame exposure 

of 0.4 ms. 
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Figure 5.5 Overlapping particle tracks in regions of high seeding density. 

Figure 5.6 Manual tracking of individual particle, showing start point (x and y 

coordinates) finish point, height (H) width (W), resultant R (vector) and flow direction. 
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Chapter 6 

LUPOE2-P Preliminary Engine Mapping 

6.1 Introduction 

Before collecting series of simultaneous film and pressure data using the optical head 

version, it was important to establish the optimum conditions of the LUPOE2-P engine 

under various operating conditions (engine mapping). For this purpose, the metal (no 

window) version was used, to save the less robust optical version from the possibility of 

damage. Details of LUPOE2-P have been presented in Chapter 3 (Sections 3.1 and 3.3). 

The fuel used in the currently reported study was iso-octane, as mentioned earlier in 

Section 3.4.2. In the case of the LUOPEI-D engine the optimum ignition timing at the 

various operating conditions had previously been determined by Lee (1995) and Abdi 

Aghdam (2003), and no such mapping was therefore necessary in the current study. 

Before finding the optimum conditions for the LUPOE2-P engine, the following tests 

were carried out: 

1. A study of the effect of pressure transducer type (water-cooled and non-water

cooled) on peak cylinder pressure value and crank angle of its occurrence. Top 

cooled and side non-cooled transducers were used in the currently reported 

study, as shown in Figure 6.1. 

2. A study of the effect of spark ground electrode orientation on peak pressure. 

Three orientations were selected, as shown in Figure 6.2. 

Then the following investigations were conducted, with 50 cycles recorded for each test 

condition. With the air mass flow set at 8.62 g/sec, and using the water-cooled 

transducer with inlet and top barrel temperatures set to 70· C (except at 1900 rpm, for 

which inlet/head temperatures were set to 50· C, to be explained in Section 6.8), the 

following effects were explored: 
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1. Skip-firing ratio (5,6, 7, and 8) at 1500 rpm on IMEP and COV1MEP. 

2. Engine speed (750, 1000, 1500 and 1900 rpm) on optimum ignition timing. 

3. Engine speed (750, 1000, 1500 and 1900 rpm) on IMEP and COV1MEP. 

4. Equivalence ratio (0.7, 0.8, 1.0, 1.05 and 1.1) at 1500 rpm on IMEP and 

COV1MEP. 

5. Inletlhead temperature (50°, 60° and 700q at 1500 rpm on IMEP and COVIMEP. 

6. Air mass flow (8.62 and 10.34 g/sec) at 1500 rpm on IMEP and COV1MEP. 

Brunt et al. (1996) suggested that up to 300 engine cycles are required to achieve 

acceptable repeatability and accuracy in indicated mean effective pressure (IMEP) 

measurement. However, for the current study, a lower number (50 cycles) was adopted 

due to the limited number of cycles recordable in a single run with the available 

software to conduct the experiments. 

6.2 Dynamic Pressure Transducers 

The in-cylinder dynamic pressure transducers were exposed intermittently to flames and 

combustion gases. "This short-time heating in the range of milliseconds provides a 

measuring error due to thermal stress in the sensor (short-term drift)" (Kuratie et aI., 

1992). The output of a pressure transducer subjected to this 'short-term' thermal drift 

will generate false readings on the pressure record due to the deformation of the quartz 

crystal and, as a result, a transducer response even when pressure remains constant. 

Water-cooling of transducers can reduce short-term drift; it can be reduced also by 

covering the transducer tip with silicon grease (Brunt et aI., 1996; Kuratle et aI., 1992; 

Rosseel et aI., 1999). Short-term drift can be detected by using two or more pressure 

transducers in the same cylinder. 

Due to the limited space available in the top part of the optical pent-roof head version 

used in the current study, it was not possible to use a water-cooled pressure transducer; 

instead, a side flush-mounted, non-cooled Kistler Type 601A pressure transducer was 

adopted, as mentioned previously in Chapter 3 (Sections 3.3.2 and 3.6). Therefore, to 

study the effect of short-term drift associated with the non-cooled pressure transducer 

and to compare its output with that of a water-cooled pressure transducer, the metal 

pent-roof head (in which it was possible to use two types of Kistler pressure 
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transducers) was adopted. A Kistler Type 601A pressure transducer mounted in a 

standard water-cooled adapter was installed in the top of the metal pent-shaped cylinder 

head and a non-water-cooled Kistler Type 60lA pressure transducer was fitted in the 

side, as described in Section 3.6. 

The study showed that short-term drift had no effect on the peak pressure value (or the 

crank angle at which it occurred) for typical slow, middle and fast cycles at the 

reference condition, as shown in Figures 6.3, 6.4 and 6.5, respectively. There was no 

evidence of short-term drift in the peak region of the pressure-crank angle diagram; 

however, short-term drift began to affect recorded in-cylinder pressure at later crank 

angles. For the slow cycle, the drift started at about 30
0 

aTDC, as shown in Figure 6.3. 

For the middle cycle, it started at about 26
0 

aTDC, as shown in Figure 6.4. For the fast 

cycle, it started at about 21
0 

aTDC, as shown in Figure 6.5. That is, earlier for 

increasingly fast combustion. It can be seen from the graphs that the pressure trace 

generated by the water-cooled pressure transducer corresponded well with the cylinder 

barrel absolute pressure trace at later stages of expansion, suggesting that it had been 

unaffected by short-term drift and gave a correct reading. However, the pressure trace 

for the non-water-cooled transducer did not match, suggesting that it had been affected 

by short-term drift. 

For cycles of higher peak pressure, the drift started earlier. This was presumably due to 

higher temperature associated with the higher pressure of the fast burn engine. 

As a result of the short-term drift experienced with the non-cooled transducer, the IMEP 

values were lower than for the water-cooled, as shown in Table 6.1. The IMEP values 

for the non-cooled transducer were low by about 8-12% compared with the water

cooled transducer. 



Chapter 6 90 

Cycles Water-cooled Transducer Non-cooled Transducer 

IMEP IMEP 

Slow 9.6 8.8 

Middle 9.7 8.7 

Fast 9.7 8.5 

Table 6.1 IMEP for water-cooled and non-cooled transducer. 

As noted earlier, it was necessary to use a non-cooled transducer in the optical pent-roof 

head studies. However, these studies were primarily concerned with the combustion 

process rather than power output. Since the events of interest generally occurred shortly 

after the occurrence of peak pressure, the short-term drift problems were not considered 

serious. 

On occasions when drift-free data were required, the transducer tip was coated with 

silicon grease. However, this was not done routinely, because of the time involved in 

dismantling the engine head regularly to renew the coatings. 

6.3 Spark Plug Ground Electrode Orientation 

Spark plug ground electrode orientation has been shown to affect engine performance 

(Burgett et aI., 1972; Pischinger and Heywood, 1990). 

In the current study, three orientations (A, Band C, as shown in Figure 6.2) were 

adopted in preliminary work. The results showed that the first orientation (A) resulted in 

the highest peak pressure. Moreover, it had higher pressure in the early stages (bTDC). 

The other two orientations (B and C) had nearly similar peak pressure values and 

positions, as shown in Figure 6.6. Orientation (A) was adopted in all subsequent tests 

for LUPOE2-P. In the current study, there was not time to investigate further the effects 

of the three orientations on the early stages of combustion; it might merit effort in some 

future work. 
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6.4 Effect of Skip Firing 

At constant ignition advance, values of IMEP increased, and COY reduced, as skip fire 

ratio (SFR) was increased from 5 to 8. This was associated with improved scavenging 

of residuals (and possibly lower mixture temperatures), leading to higher charge 

concentration in the cylinder. However, at skip firing ratios of 7 and 8, the values were 

nearly the same, as shown in Figure 6.7. Hence, a skip fire ratio of 7 was selected for all 

engine speeds, except for 1900 rpm (where a skip fire ratio of 8 was adopted). At higher 

engine speed, less time was available for residual purging, and so the higher skip fire 

ratio was adopted for improved engine scavenging. 

6.5 Effect of Engine Speed 

The engine was tested at four speeds, 750 rpm, 1000 rpm, 1500 rpm and 1900 rpm. At 

each engine speed, ignition timing was varied in order to determine the optimum timing 

(on the basis of indicated mean effective pressure, IMEP), as shown in Figure 6.8. At 

any given condition, IMEP values were relatively insensitive to changes in ignition 

timing. At 750 rpm, no tests were conducted for ignition earlier than Big of i bTDC, 

since the measured peak pressures for the mean cycles at that timing were found to 

occur at about 16_18° aTDC (where maximum brake torque (MBT), and hence optimum 

spark timing, are expected (Heywood, 1988; Witze et aI., 1983». Ignition timing had 

greater effect on peak pressure value (Pmax ) and its position (e pmax)' as shown in 

Figure 6.9. As ignition timing advanced, higher peak pressure values were noted. The 

optimum timings and corresponding values of average IMEP for each engine speed are 

summarised in Table 6.2. The air mass flow was set at 8.62 g/sec with inlet and top 

barrel temperatures set to 70° C, except at 1900 rpm (for which inlet/head temperatures 

were set to 50' C), as mentioned in Section 6.1. 
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Optimum Ignition 

Engine Speed Equivalence Timing IMEP Skip Firing 

(rpm) Ratio (cjl) (bTDC) Ratio 

750 1.0 2 8.2 7 

1000 1.0 4 9.1 7 

1500 1.0 7 9.6 7 

1900 1.0 10 10.5 8 

Table 6.2 Optimum conditions at different engine speeds for LUPOE2-P. 

The maximum IMEP increased with engine speed, as shown in Figure 6.10. This might 

be associated with increase in rms turbulent velocity, and hence turbulent burning 

velocity increase, although the time available for combustion would of course reduce as 

weIl. The trend might also be related to blow-by, which would reduce as engine speed 

increased. In addition, at low engine speed the incoming mixture would have time to 

pick up relatively more heat during entry to the cylinder at low engine speeds; this 

would result in lower charge density, less mass of charge at port closure (Le. lower 

volumetric efficiency) and hence lower pressure development and IMEP. There would 

also be more time for heat transfer from the burned gases to the cylinder waIls and so 

less work done on the piston (a consequence ofthe First Law of Thermodynamics). At 

the various engine speeds, cyclic variation was much the same, except at the lowest 

engine speed (750 rpm). 

Comparing the results from LUPOE2-P with those of LUPOEl-D, the later optimum 

ignition timings for LUPOE2-P suggest rather faster combustion (Figure 6.11). 

6.6 Effect of Equivalence Ratio 

At 1500 rpm, the engine was operated at vanous equivalence ratios and the 

corresponding IMEP values at optimal ignition advance in each case were plotted. As 

expected, IMEP increased and COY reduced, and optimum ignition advance was later 
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as equivalence ratio increased over the range 0.7 to 1.1. However, these parameters all 

proved fairly constant for ¢=I to 1.1, as shown in Figure 6.12. 

6.7 Effect of IDletlHead Temperature 

As the (identical) set inlet mixture and cylinder head temperatures were reduced, the 

values of IMEP increased, as shown in Figure 6.13. At lower temperature, the density of 

air increased, leading to higher volumetric efficiency. However, at the lowest 

temperature (50·C), cyclic variation increased. 

6.8 Effect of Air Mass Flow 

In the tests reported in previous sections, an air mass-flow of 8.62 g/sec was used. For 

the work reported in this section, two air mass flow-rates (8.62 g/sec and 10.34 g/sec) 

were adopted in a study of the effects of air mass-flow. Higher mass flow-rates resulted 

in excessive fuel consumption and lower flow-rates resulted in 'run-on' problems. In the 

earlier LOY tests conducted with the same engine, an air mass flow as low as 6.89 g/sec 

was used; however, under firing conditions with the metal version of the pent-roof head 

set to 70·C, run-on problems occurred. At 8.62 g/sec, no run-on was encountered at 

engine speeds of 750 rpm, 1000 rpm and 1500 rpm. However, at the higher engine 

speed of 1900 rpm, run-on persisted, even at this air mass flow-rate; therefore (at 

1900 rpm), the temperature was lowered gradually to 50·C, when no run-on was noted. 

The values of IMEP for the two air mass flow-rates adopted (8.62 and 10.34 g/sec) were 

identical, possibly because of the nearly complete scavenging in both cases at the high 

SFR adopted. Since less fuel was consumed with an air mass flow of 8.62 g/sec, that 

flow-rate was adopted in all subsequent experiments. In PTY flow studies, using the 

same perspex barrel and head as that used in the current study but with a GOI bowl 

piston (Alrefae, 2005), varying the air mass flow-rate had no significant effect on 

experimentally derived velocity vectors. This suggests that in this engine, flow and 

turbulence are governed more by engine speed and geometry than inlet flow velocity. 
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On the basis of the experimental work reported above, a 'reference' operating condition 

(Table 6.3) was selected for the later, more extensive, 'optically-based' experiments, 

and for associated model validation studies undertaken by colleagues. 

Compression ratio 9.2 

Equivalence ratio 1.0 

Engine speed 1500 rpm 

Ignition timing 7°bTOC 

Intake air flow 8.62 glsec 
rate 

Type of fuel Iso-octane 

Table 6.3 Reference operating condition. 

In the preliminary tests described above, using the 'non-optical' metal cylinder head, the 

inlet and top barrel temperatures were set at 70°C. However, a run-on problem occurred 

when series of tests were conducted with the optical 'pent' head version of LUPOE2-P. 

With that head, it proved necessary to reduce the temperature to 55°C, to avoid the 

possibility of run-on. The latter temperature was therefore adopted for the 'reference 

condition' in al\ subsequent optical head experiments. 

Following this description of the preliminary engine mapping experimental work for the 

LUPOE2-P engine, the experimental results for the optical variants of both LUPOE 1-0 

and LUPOE2-P engines are presented in Chapter 7. 
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Figure 6.12 Effect of changing equivalence ratios on !MEP and COVrMEP at 1500 rpm. 
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Chapter 7 

Experimental Results and Discussion 

7.1 Introduction 

Presented in this chapter are the experimental results for the two engines used in the 

current study (LUPOE1-D and LUPOE2-P, described in Chapter 3). 

For L U PO E 1-0, the following studies were conducted: 

1. Application of the simultaneous natural light and shadowgraph imaging methods 

described in Chapter 4 (Section 4.2.2) in an exploration of the relative merits of 

the two techniques for determination of mean flame radius development. 

2. Investigation of early flame development using the shadowgraph technique 

discussed in Chapter 4 (Section 4.2.1) at a number of operating conditions 

(engine speed, equivalence ratio and ignition timing) with the inletlhead 

temperature set to 50° C. 

For LUPOE2-P, the following studies were undertaken: 

1. Characterisation of the flow and turbulence in the engine, using the LDV and 

PTV techniques discussed in Sections 4.4.1 and 4.4.2. In the LDV study, both 

forward and back scatter configurations were applied at a number of 

measurement points through the chamber space and two orthogonal velocity 

components which were generally measured, as discussed in Section 4.4.1. Data 

were analysed in terms of mean and RMS velocities. In the PTV study, in

cylinder flow patterns were visualised at two engine speeds (750 rpm and 1500 

rpm). 
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2. The natural light cine flame technique, for 3D simultaneous top and side 

imaging (described in Chapter 4, Section 4.3), was applied in conjunction with 

in-cylinder pressure recording. Derived data were analysed in terms of top and 

side view successive flame position contours and flame radii (for middle, fast 

and slow cycles based on peak pressure) and associated pressure development 

through the cycles. Side view flame centroid displacements were also analysed 

for these middle, fast and slow cycles. 

7.2 Flame Study (LUPOEI-D) 

A former colleague (Abdi Aghdam, 2003) conducted a study involving natural light 

imaging and simultaneous pressure data recording for a wide range of conditions for the 

LUPOE 1-0 engine. However, the natural light technique relies on flame luminosity for 

imaging; as a result, flame boundary definition is generally accepted to be less clear 

than with schlieren or shadow graph photography. To assess the relative merits of the 

techniques for the current study and confirm the validity of Abdi Aghdam's earlier 

work, simultaneous natural light and shadowgraph imaging were undertaken, using the 

methods described in Section 4.2.3. Also, since flame definition in the low flame 

luminosity early stages of flame development was generally not good, shadowgraph 

imaging was applied in a study of cyclic variation in the early flame kernel growth over 

the central 40 mm of the chamber (Section 4.2.2). It has been suggested that early flame 

development is the controlling factor for the later combustion rate in engines (Hall, 

1989; Witze et aI., 1990); faster early flame kernel growth leading to higher unburned 

gas temperature and enhanced burning velocity later in the cycle. 

7.2.1 Simultaneous Natural Light and Shadowgraph Study 

Due to difficulties experienced with the Hitachi 16HM high-speed cine camera used in 

the shadowgraph imaging (only one digital high speed camera was available at the time 

of undertaking these experiments, and this was used for natural light imaging), together 

with the limited time available for processing the shadowgraph images, this 

comparative study was undertaken at only one engine speed (750 rpm). 
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Simultaneous images were captured using both techniques, as shown in Figure 7.l. The 

mean flame radii determined from the two sets of images proved very similar, as shown 

in Figure 7.2, although the shadowgraph images yielded better flame definition in the 

very early stages of flame development. 

7.2.2 Early Flame Development 

Flame kernel formation depends on the mixture composition, thermodynamic state, 

fluid motion, ignition system and spark plug design (Herweg et aI., 1988). Cyclic 

variation in flame development is associated with variations in these parameters. Shown 

in Figure 7.3 (a) is an example of symmetrical development of a stoichiometric flame, 

which remained centred on the spark plug, as illustrated. Also shown, in Figure 7.3 (b), 

(for another stoichiometric cycle) is an example ofa flame convected and distorted in its 

deve lopment. An example of lean flame development is illustrated in Figure 7 .3 (c); this 

kernel can be seen to develop more slowly, as well as being convected and distorted in 

its early stages. 

In general, flames appeared to remain 'anchored' to the spark plug; with no examples of 

flames completely detached from the spark plug. This 'flame holding' by the spark plug 

has been noted by other researchers (Aleiferis et aI., 2004). 

Early flame development was investigated at a number of operating conditions, as 

shown in Table 7.1, with the inletlhead temperatures set to 50
0 

C in each case. 

Engine Speed Equivalence Ignition Timing 

Condition (rpm) Ratio (~) (bTDC) 

1 1500 1.0 20 

2 1500 l.1 18 

3 1500 0.8 31 

4 1500 1.0 31 

5 1500 0.8 20 

6 750 1.0 10 

7 2000 1.0 31 
.. 

Table 7.1 Conditions tested for early flame development. 
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7.2.2.1 Cyclic Analysis 

Between 30 and 70 cycles were recorded at each condition, the number being restricted 

by the need to avoid long run times for the low lubricant mirrored piston conditions; 

mirror damage occurred relatively frequently. Cyclic variations in flame and pressure 

development were noted, the latter of the order experienced in production engines 

(Ozdor et aI., 1994). This is illustrated in the cyclic variation in maximum cylinder 

pressure and the crank angle at which it obtained, Figure 7.4. The earlier peak pressure 

was achieved (i.e. the faster the combustion event), the higher was that peak pressure. 

Marked on Figure 7.4 are the values of cyclic mean peak pressure and those at ± two 

standard deviations from that mean. Three sets of data representative of 'middle', 'fast' 

and 'slow' cycles were chosen for further analysis. These were selected on the basis of 

having peak pressure close to the mean peak pressure and Pmax ± 20' Pmax , respectively. 

(1) Flame Radius 

Data obtained at the reference condition (Condition I, Table 7.]) were analysed first. 

Mean flame radii for the middle, fast and slow cycles are shown in Figure 7.5. In 

general, cycles having earliest and highest peak pressure (i.e. faster cycles) did exhibit 

faster initial flame growth. Nevertheless, some overlap between growth rate of faster 

and slower cycles is apparent and some 'fast' cycles can be seen to have rather slow 

growth rate in their very early stages. Much the same pattern was observed for a rich 

mixture (¢=l.l) at the same engine speed, with ignition adjusted to the optimum 

(MBT) at that condition, although one overall 'fast' cycle (based on a peak pressure) 

was amongst the slowest in terms of flame radius at 1.3 ms elapsed from ignition 

(Figure 7.6). For a lean mixture (¢ ==0.8) at the same engine speed, with the ignition 

advance again re-set to MBT at that condition, the 'overlaps' and 'cross-overs' in flame 

radius development were more marked (Figure 7.7). The slower combustion associated 

with the lean mixture (accentuated by the lower gas temperatures associated with the 

reduced compression accompanying the advanced ignition), perhaps allowing more time 

for interaction between the (cyclically varying) turbulence local to the ignition site and 

the flame. It can be observed that at a given mean flame radius the spread in mean flame 

radius was similar for all the equivalence ratios (stoichiometric, rich and lean), with that 
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spread more apparent as time increases. Nevertheless, not all those flames faster at very 

early stages of flame development were also faster at later stages of combustion. Similar 

observations were noted at the other engine speeds and ignition timings adopted 

(Table 7.1). 

(2) Flame Centroid 

Kernel convection has been quantified using kernel centroid displacement with time, for 

the period from ignition to that where part of the flame circumference went beyond the 

40 mm field of view. There was no correlation between direction of centroid migration 

and observed bum rate of fast, middle and slow cycles; nor between the cycles within 

each set for the tested conditions. However, it was noted that for conditions where 

flames were present in the turbulent flow field for longer times (e.g. for mixtures where 

the optimum ignition timing was advanced more), the centroid movements were greater; 

e.g. Figures 7.8 (a) and (c) for stoichiometric and lean (¢=0.8) mixtures, respectively, 

at 1500 rpm. Similarly, for any given equivalence ratio, the fast cycles experienced less 

displacement, although there was little observable difference between the displacements 

of middle and slow cycles. There seemed to be an overall preferred migration direction 

towards the fourth quadrant; however, within this, the variation between the sets of 

cycles and within a set of cycles was apparently random. This was also the case at the 

other engine speeds and ignition timings adopted. 

(3) Flame Shape Factor 

Flame kernel distortion was quantified using a 'Shape Factor' parameter SF (a rough 

measure of flame 'circularity'). This 'Shape Factor' expresses the flame perimeter (Pf ) 

relative to that (Pe ) of a circular flame of identical area, i.e. it has a value increasingly 

greater than unity as flames become more distorted. Shown in Figure 7.9 are values of 

Shape Factor derived from successive flame front positions over the first If CA 

following ignition, for the fast, middle and slow cases discussed previously, for 

stoichiometric, rich and lean conditions. It can be seen that the SF remains close to unity 

for the first 1.5
0 

CA after ignition, due to the fact that the flame kernel after ignition is 

smaller than most scales of turbulence and hence propagates at a rate close to the 

laminar burning velocity. This can be seen also in Figure 7.10, where the SF is plotted 
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versus mean flame radius rather than time; the value of SF remains close to unity at the 

flame radius of I mm for fast, middle and slow (stoichiometric, rich and lean) cases 

discussed above. However, as the flame surface increases, it can become wrinkled by an 

increasing spectrum of turbulent scales (Abdel-Gayed et aI., 1984). Although the 

general trend is of increasing SF with crank angle (and time) and mean flame radius, 

there is no evidence that fast, middle and slow combustion is related to the degree of 

flame distortion, e.g. there are slow cycles with both high and low SF, likewise rich and 

lean cycles. 

An alternative approach was also adopted in an examination of the effect of SF on the 

very early stages of flame kernel development. Shown in Figure 7.11 (a) are values of 

SF for the three fastest and slowest stoichiometric cycles based on the mean flame 

speed during the first 5° CA following ignition, determined from the flame images (as 

opposed to the much later peak cylinder pressure employed previously to characterise 

fast and slow cycles). Similar data for the rich ($ = 1.1) and lean ($ = 0.8) mixtures are 

presented in Figures 7 .11 (b) and (c), respectively. In these diagrams, the empty 

triangles represent the high and the filled squares the low flame speed cycles, 

respectively. In general, it can again be seen that Shape Factors remain close to unity for 

the first 1.5
0 

CA following ignition; from that point, flames became more distorted. For 

stoichiometric flames (Figure 7.11 (a), the most distorted cycle was among the slowest 

burning cycles; however, 'overlaps' between the slow and fast cycles are again apparent 

and the least distorted cycle also proved slow. Contrary behaviour was noted for the rich 

and lean cases, the cycles with the most distorted flames were generally fast burning -

with some overlap between fast and slow bum cycles again apparent towards the end of 

the bum period. From the above, there would seem to be no correlation between flame 

speed during the very early stages of flame kernel development and the degree of flame 

distortion. 
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7.3 Flow Investigation (LUPOE2-P) 

As outlined in Section 7.1, both LOV and PTV techniques were used for flow and 

turbulence characterisation. The results are presented below in Sections 7.3.1 and 7.3.2. 

7.3.1 PTV Flow Investigation 

Although, the LOV study was conducted before the PTV flow investigation, the results 

of the PTV investigation are presented here first. The LOV data yielded ensemble

averaged values at a number of points and directions in the chamber accessible using the 

technique. However, the flow is better understood (and the LOV data easier to 

comprehend) by considering first the cyclically resolved whole field data generated with 

PTV. 

7.3.1.1 PTV Results 

The PTV method was adopted for motoring conditions, at two engine speeds (750 rpm 

and 1500 rpm), as described earlier in Section 4.4.2. Relatively few tests were 

conducted at each engine speed. This was due to the limited time available to conduct 

the experiments (as the same engine was used by a colleague, for more extensive flow 

studies within a GOI variant of the engine) and because the procedure was very time 

consuming. The latter was associated with the need to dismantle the head after each run, 

to clean the engine of seed particles. No tests were carried out at engine speeds above 

1500 rpm, because the Perspex suffered excessive wear as engine speed increased and at 

high speeds engine vibration was experienced. 

The experiments were conducted first at 1500 rpm, with the camera focused on the right 

side of the clearance volume (away from the inlet port) of the Perspex engine, as shown 

in Figure 7.12 (a). The reason for so doing was to concentrate the laser sheet to visualise 

the flow in the region where the tumble was expected (in the area near to the wall 

opposite the inlet) on the basis of the LOV study at this engine speed, as discussed later. 

At 750 rpm, the camera was moved to a more central position, as shown in 

Figure 7.12 (b), to allow more complete observation of the flow in the clearance 

volume. For clarity, the results at 750 rpm are presented first. At the outset ofthe study, 
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it was thought that the pent roof geometry in conjunction with the inclined inlet duct 

would generate a strong 'tumble' swirling flow, as indicated in Figure 7.13 (possibly 

with weaker induced secondary vortices as shown), which would then 'spin-up' as 

compressed by piston motion before degenerating into more random (smaller scale, 

'turbulence ') motion at TDC. In the event, the PTV study revealed a rather more 

complex state of affairs. 

750 rpm 

In practice, at 750 rpm (at which the mean piston speed was 2.75 m/s), three quite 

separate basic patterns offlow were observed. These are illustrated by three examples in 

Figures 7.14, 7.15 and 7.16, respectively. The flow suggested by the data in Figure 7.14, 

representative of that recorded in about 15% of cycles, was generally in accord with 

expectation; with a principal anti- clockwise vortex in the observable region at 85.5 and 

67.s" bTDC, at which piston speeds were 4.38 and 4.36 mis, respectively. Towards TDC 

(22.5° CA to TDC), when piston speeds were 2.26 and 0 mis, respectively, the particle 

tracks suggest this vortex moving to the right and degenerating into multiple smaller 

vortices, with a hint of the secondary contra-rotating vortices suggested in 

Figure 7.13 (a), although the seed density at the left was insufficient to allow good 

definition of this. The magnitude of the mean velocities was relatively low (6 m/s) 

compared with an estimated inlet jet velocity of the order 14.4 m/s. A further 7% of 

cycles demonstrated the behaviour set out in Figure 7.15, with no strong motion in the 

clearance volume at 85.5° CA. However, by 67.5° CA, an anti-clockwise vortex seemed 

to have developed to the left of the chamber, with a principal direction of motion 

primarily to the right (as shown). By 22.5° CA to TDC, this resulted in a fairly strong 

clockwise vortex centred at the middle of the chamber, with a hint of an induced anti

clockwise vortex to the left. However, the majority (78%) of cycles exhibited contrary 

behaviour, with an initial (85.5 and 67.5° CA) strong clockwise motion, as shown in 

Figure 7.16. Nevertheless, by 22.5° CA, this can be seen to have given way to a strong 

flow (with no apparent vortex motion in the field of view) in the reverse direction (i.e. 

to the left), a situation maintained to TDC. The reasons for this are not obvious; 

although this flow to the left must be compensated by flow to the right on planes other 

than the central plane illuminated by the laser sheet, i.e. as suggested in Figure 7.13b (i) 
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and consistent with later LOV derived mean velocities (Figures 7.21 (a), 7.24 (a) and 

7.25 (a)). 

1500 rpm 

At 1500 rpm (at which the mean piston speed was 5.5 m/s), for about 25% of cycles, the 

flow pattern behaviour was similar to that noted in the majority of cases at the lower 

engine speed of 750 rpm (Figure 7.17) (for the same air mass flow and piston speed 

higher, one might expect flow to be more easily deflected up the left hand side of the 

cylinder). However, for the majority (75%) of cases at 1500 rpm, the strong motion to 

the right observed at 85.5 and 67.5° CA (where piston speeds were 8.77 and 8.72 mis, 

respectively) was maintained to 22.5° CA and TOC (where piston speeds were 4.52 and 

o mis, respectively) within the limited field of view, with a clockwise vortex motion, as 

shown in Figure 7.18. This flow to the right must be compensated by flow to the left on 

planes other than the central plane illuminated by the laser sheet, as shown in 

Figure 7.13b(ii) and consistent with later LOV derived mean velocities (Figures 7.21 

(c), 7.24 (c) and 7.25 (c)). 

7.3.2 LDV Study 

Presented in this section are the results of LOV mean and turbulent measurements for 

the LUPOE2-P optical engine. All data were obtained under motoring conditions, over a 

range of engine speeds (750 rpm, 1000 rpm, 1500 rpm and 1900 rpm). The flow within 

the cylinder was unsteady and three-dimensional in nature. Therefore, measurements at 

various locations within the LUPOE2-P engine were carried out using both forward and 

backscatter configurations (as described earlier in Section 4.4.1), to provide more 

quantitative data at a restricted number of points to supplement the more qualitative 20 

information derived from PTV. 

Shown in Figure 7.19 is the co-ordinate system adopted in presenting the results. This 

system has its datum at the centre (C) of the piston crown at TDe. The measurement 

positions are labelled A, B, C, D, E and are defined by the co-ordinates x, y, z in the 

diagrams that follow. The LOV fibre optic probe access was generally via the side 

window, as shown in Figure 7.20; some later measurements were made via one of the 
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top windows, as shown in relevant later diagrams. Velocity components measured 

relative to the probe in these positions are defined in the diagrams at the appropriate 

times (see Table 7.2). 

Measurement Point Co-ordinates Velocity Components 

(x, y, z) Measured 

A (0,6.5,20) u,V 

B (0, 6.5, -20) u 

C* (0,6.5,0) u 

D (10,5,0) Sf) (u v)**, wD (z)*** 

E (20,3,0) SE (u v)**. WE (z)*** 

* Datum in centre, point (C) of the piston crown at TDe. 

* y-axis datum, piston at TDC (0 mm). 

** S component was a combination of u and v components of velocity 

1 

[s = (u 2 + v2)"2]. 

*** W component was measured in z direction. 

Forward scatter (FS), points (A, B, C). 

Back scatter (BS), points (0, E). 

Table 7.2 Co-ordinates system for measured points. 

7.3.2.1 Forward Scatter Experiments Results 

First results will be presented for (i) the horizontal component of velocity u in a vertical 

plane (at right angles to the 'ridge' of the pent root) through the centre (point C) of the 

chamber, to allow ready comparison with the PTV data already presented for that plane; 

for the same two engine speeds (750 and 1500 rpm) adopted in the PTV study; and for 

the two additional speeds (1000 and 1900 rpm). Then, (ii) results will be presented for 

points A and B in two planes parallel and to either side ofthe central plane. including at 

Point A data for the vertical component of velocity v in addition to the horizontal 

component u . 
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(i) Effect of Engine Speed (u-component of velocity at chamber centre, Point C) 

The velocity component u, in the x-direction (Figure 7.19, Table 7.2) was measured at 

the centre of the chamber at Point C (co-ordinate 0, 6.5,0), some 6.5 mm above the 

piston crown position at TDC. For ready comparison with the PTY flow investigation 

presented earlier, LOY data for 750 and 1500 rpm are presented first. 

High positive ensemble mean horizontal velocities (u) were noted at Point C prior to 

port closure (lPC/EPC) at 750 rpm, as shown in Figure 7.21 (a), reducing towards port 

closure. The magnitude of this velocity component then increased after port closure; it 

reached a maximum value at around 75° bTDC before decreasing and reversing 

direction. This change in direction was also observed in the PTY flow pattern exhibited 

in the majority (78%) of cycles at this engine speed (750 rpm), as discussed earlier in 

Section 7.3.1.1. Ensemble averaged (over 100% of cycles) values of the u component 

of velocity are shown (with a box surrounding the vectors) for successive CA positions 

superimposed on the PTY data shown in Figure 7.16. The LOY mean velocities 

(averaged over 100% of cycles) are consistent with the PTY data for both Figures 7.16 

and 7.15 (together comprising 85% of cycles), but opposite in direction to the minority 

of cycles (15%) shown in Figure 7.14. 

At 1500 rpm, constant positive mean horizontal velocities were noted at Point C before 

port closure (Figure 7.21 (c». Then, as at 750 rpm, the mean velocity increased after 

port closure, reaching a maximum value at around 50° bTDC before decreasing. 

However, at 1500 rpm (unlike at 750 rpm), no change in direction occurred. This lack of 

change in direction is consistent with the PTV observations for the majority of cycles 

(75%) at this engine speed (1500 rpm). As before, LOY-derived vectors at Point C at 

the various crank angles are shown ('boxed') superimposed on the PTV information in 

Figure 7.18. 

For both engine speeds. it can be seen that mean velocity at Point C is approximately 

constant and of relatively low magnitude (albeit in different directions at the two 

speeds) during the combustion period (2 to t CA bTOC). It is interesting to note that, 

during the combustion period, generally I u 1< 2 mls (2 mm/msec); this would result 

(on average) in relatively little bulk transportation of the flame kernel in this direction 
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during the combustion event. Corresponding values of the rms turbulent velocity (u') at 

Point C for the two engine speeds are shown in Figures 7 .21 (b) and (b). At this point in 

the chamber, values of u' can be seen to be relatively constant during induction and 

compression, with an increase in value as the piston approaches TOC, followed by a 

decay in u' from about 30· bTOC right through the expansion stroke. The values of u' 

at TOC for the two engine speeds (one double the other) were about 3 and 3.7 mls for 

750 and 1500 rpm, respectively. 

Corresponding LOY -derived variations of u and u' at Point C with crank angle are 

shown for the additional engine speeds of 1000 and 1900 rpm in Figure 7.22. The trends 

in Ii and u' at the intermediate engine speed of 1000 rpm are similar to, and consistent 

with the data already presented and discussed for 750 and 1500 rpm. However, at the 

highest engine speed (1900 rpm), different trends in u with c.a. were observed at 

Point C during the induction and early compression period, with very high values of u 
before and after port closure (Figure 7.22 (c». The reasons for this difference are not 

obvious. However, from about 50· bTOC and through the expansion until port opening, 

the u behaviour can be seen to be more consistent with that noted at the lower engine 

speeds (Figure 7.23 (a». At 1900 rpm, anomalous behaviour in u' during the critical 60' 

to TOC period is also very apparent, with a sharp increase in u' from the sort of values 

noted at other engine speeds to a peak of about 8 mls (twice that at other speeds) at 

about 20· bTOC (Figure 7.22 (d». This was followed by a decay in u' through the 

expansion stroke; this was more consistent with the behaviour at lower speeds, although 

the magnitude of u' was significantly higher than at lower engine speeds 

(Figure 7.23 (b». Again, the reason for the anomalous behaviour was not obvious (the 

LOY data rate was satisfactory, -12000 Hz). It may have been associated with 

'structures' in the flow patterns/movements of vortex centres noted in the PTY studies, 

induced at the higher piston speed, with implications for ensemble averaged LOY data. 

Unfortunately, there was insufficient time to investigate this further; this is important 

for further study, possibly using time-resolved PlY. 
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(ii) Velocity variation with position (u and u' at points A and B, vand v' at 

Point A, at 750 and 1500 rpm) 

Points A and B were on vertical planes parallel to that presented for Point C, equi

distant 20 mm on either side of the central plane (Figure 7.19 and Table 7.2). 

At 750 rpm, the variation in the magnitude of the mean velocity component u with 

crank angle proved remarkably similar to that at C (central plane) at the corresponding 

positions A and B in the parallel planes, as shown in Figures 7.24 (a) and 7.25 (a); 

although at Point B, the flow direction reversal from approximately 40· bTOC seen at A 

and C did not occur (Figure 7.25 (a». Likewise at 1500 rpm, the behaviour in 

magnitude of u was very similar at all three positions, although this suggested flow 

reversals at about 40· bTOC at A and B, with little mean velocity after 20· aTOC at 

Point A and a further reversal of flow direction just after TDC at Point B (Figures 7.24 

(c) and 7.25 (c». However, it should be remembered that the mean velocities derived 

from LOV are the result of ensemble averaging, masking the switch of flow patterns 

suggested in the earlier PTV study; the latter effect may have disproportionate results on 

the mean values at the three positions. It should again be noted that the magnitudes of 

u at the three positions during the critical combustion period is again suggested to be 

low, such that only minor translations of flame kernels might be expected in these 

directions during combustion. 

Set out in Figures 7.24 (b) and 7.25 (b), and Figures 7.24 (d) and 7.25 (d), are 

corresponding rms turbulent velocity data (u~, u~) for engine speeds of 750 and 1500 

rpm; to compare with earlier data for position C shown in Figures 7 .21 (b) and (d). The 

u'data at all three positions can be seen to be very consistent in both trend and 

magnitude, particularly during the crank angle interval corresponding to the expected 

combustion period. 
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Shown in Figure 7.26 are corresponding vertical velocity component (v) and rms 

turbulent velocity (v') at Point A. At 750 rpm, the mean vertical velocity at this position 

remained low throughout the cycle; in the upward direction late in the compression 

stroke, reducing to approximately zero at TDe and reversing direction (towards the 

piston crown) after TDe, albeit at very low magnitude (Figure 7.26 (a». A similar 

pattern pertained at 1500 rpm, with higher (but still low) velocity (Figure 7.26 (c». The 

vertical rms velocity(v') reflected (with slightly lower magnitude) the behaviour noted 

previously for the horizontal component (u,) at the same position (Point A) 

(Figure 7.24 (b) and (d», at the two engine speeds. The slight difference in magnitude 

of the two components might be associated with ensemble averaging. 

7.3.2.2 Back Scatter Experiments Results 

The limited height available with the cylinder head side windows and the severe 

distortion created at the outer edges of these windows restricted the positions within the 

cylinder head for which it proved possible to apply the forward scatter technique. 

Hence, to obtain further insight into the flow in the pent head, the back scatter method 

was adopted to measure velocity at two other positions in the head. Application of the 

technique to more points was restricted by back-reflected light from the piston crown. 

As shown in Figure 7.27, the LOV fibre optic probe was held at right angles to one of 

the top windows. By rotation of the probe on its axis, two components of velocity were 

accessible: the w component aligned in the z direction and the other, s component, as 

shown in Figure 7.19 and Table 7.2. The s component was a combination of u and v 

components of velocity (s = (u 2 + v2 t2). Mean and rms turbulent velocities were 

measured at two points, D and E, at co-ordinates (10, 5, 0) and (20, 3, 0), respectively 

(as shown). 

The mean velocity variation with crank angle, at both engine speeds (750 and 

1500 rpm), followed the pattern described for the mean horizontal component of 

velocity (u) at the same engine speeds as measured in the chamber centre (Position e, 
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Figure 7.21 (a». At 750 rpm, flow reversal at about 30° bTDC occurred for component 

Sf) (Figure 7.28 (a», whereas no reversal was observed at 1500 rpm for both positions 

C and 0 (Figures 7.21 (c) and 7.28 (c». Similarly, rms velocities (s~) followed the 

patterns observed previously at 750 and 1500 rpm (Figures 7.28 (b) and (d». The mean 

velocity component WI) in the z direction remained low throughout the cycle (Figures 

7.29 (a) and (c» at both engine speeds - in particular, it was of the order I mls during 

the combustion process interval. The pattern and magnitude of w~ was again similar to 

that observed previously at other positions (Figures 7.29 (b) and (d». 

(ii) Position E (s E' WE) and (s~, W~ ) 

Set out in Figures 7.30 and 7.31 are corresponding mean and rms velocity components 

SF> s~: and WE' w~., respectively, for the two engine speeds (750 and) 500 rpm). The 

behaviour patterns were similar to those noted at Position D, although rms velocities 

were of slightly reduced magnitude. 
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7.4 Flame Study (LUPOE2-P Engine) 

Simultaneous top and side natural light film imaging experiments (with concurrent in

cylinder pressure data recording) were conducted with the LUPOE2-P engine at the 

operating conditions detailed in Table 7.3. It proved impossible to conduct planned 

higher engine speed experiments at 1900 rpm, due to run-on problems. 

Engine Speed Equivalence Ignition Timing 

Condition (rpm) Ratio (q,) (bTDC) 

1 * 1500 1.0 7 

2 1500 1.0 2 

3 1500 1.0 12 

4 1500 1.1 6 

5 1500 0.8 12 

6 750 1.0 2 

7 1000 1.0 4 

* Reference Condition 

Inletlhead temperatures set to 55° C, throughout. 

Ignition timing set optimal for all conditions except Conditions 2&3. 

Table 7.3 LUPOE2-P engine operating conditions. 

At each operating condition, data were recorded for approximately 80 cycles and values 

of peak in-cylinder pressure (Pmax ) were plotted versus the position of its occurrence 

(Bpmax ), e.g. Figure 7.32(a). As in the case ofLUPOEl-D data analysis, Section 7.2.2.1, 

four representative 'middle', 'fast' and 'slow' cycles were selected for detailed 

examination on the basis of having peak pressure close to the mean peak pressure and 

Pmax ± 2o- pmax , respectively, Figure 7.32(a). The pressure - crank angle diagrams for 

these cycles, at the reference condition, are shown in Figure 7.32(b). 

As described in Section 4.3, simultaneous overhead and side view natural light film 

flame images were collected using separate Phantom high-speed cameras. The overhead 

window clamping flanges, Figure 4.5 precluded overhead imaging of the very earliest 
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stages of flame development (the first 0.35 to 0.45 ms of flame development, for the 

majority of the cycles), Figure 4.6. The view of the flame via the side window, 

Figure 3.16(a) was subject to significant refraction effects at large flame radii. 

7.4.1 Reference condition 

(i) 'Middle' cycles at reference condition 

Shown in Figure 7.33 are successive flame front positions (as recorded by overhead and 

side view cameras) for the four selected 'middle' cycles, at the reference condition 

(¢ = 1, 1500 rpm, 7" bTDC ignition). Viewed from above, the flames appear 

approximately circular in each case; although late in the combustion events the flames 

can be seen to approach the walls non-symmetrically, touching the wall at some points 

around its circumference and creating 'bubbles' of unburned gas (which later bum up) 

at other points. Two cycles, (a) and (d), show significant shifts of the enflamed zones to 

the right; in accord with the dominant (75% of cycles) flow pattern noted at this engine 

speed in the particle tracking experiments (Figure 7.18). In one case, Cycle (b), the 

flame remains fairly central and in the fourth, Cycle (c), the flame moves more to the 

left (in accord with the flow pattern behaviour noted in approximately 25% of cycles, 

Figure 7.17). In the corresponding side views, flames again appear relatively circular in 

their early development - although the centres of these 'circles' do not remain anchored 

on the spark position (as often assumed in models). The unburned 'bubbles' seen at later 

flame front positions in the overhead views are largely obscured in the side views -

although in Cycle (c), and to a certain extent in Cycle (b), a similar 'bubble' is apparent 

just left of centre close to the piston crown; this is again consistent with the flow pattern 

noted at this position in Figure 7.17. In both views, enflamed regions appear completely 

to fill the chamber by the crank angle corresponding to peak cylinder pressure 

(- 18° aTOC) for these 'middle' cycles. Of the four selected cycles, Cycle (d) seems 

marginally faster in terms of flame propagation; this is reflected in pressure 

development for this cycle, vis a vis the other three, Figure 7.34 (a). 

The successive positions of the flame fronts shown in Figure 7.33 were processed to 

determine the corresponding enflamed areas; the centroids of these areas and 

corresponding flame radii (that of a circular flame encompassing similar en flamed area 
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in each case) were then determined. The flame centroid migrations (determined from 

the side view), Figure 7.34(b), correspond with the earlier descriptions; i.e. Cycles (a) 

and (d) showing flame kernel movement to the right, Cycle (c) slightly to the left and 

Cycle (b) staying approximately central. In the horizontal direction, the average velocity 

of flame kernel migration for the four selected middle cycles was of the order 2mm/ms 

(2 m/s) - in the same direction and at almost the same magnitude noted in the ensemble 

averaged LDV measurements at the centre of the chamber (Point C), Figure 7.21(c). 

However, in each case, a strong downwards movement of the flame centroid from the 

spark position can be noted. Not surprisingly, late in the combustion events (by which 

time flames practically fill the entire chamber) the centroids co-incide with the chamber 

centroid. 

Values of mean flame radius versus crank angle for the four selected 'middle' cycles are 

set out in Figure 7.34(c). In the early stages of combustion, radii could be determined 

only from the side views (because of window obscuration, Figure 4.5); in the later 

stages, those based on the overhead views are considered more reliable because of 

severe side window refraction effects at large radii. The radii determined from the two 

views can be seen to be reasonably consistent, with relatively little scatter for these four 

cycles of similar pressure development history. There is a suggestion that those cycles 

experiencing greater flame kernel migration to the right {(a) and (d)} exhibit faster 

flame radius development; however, the differences seem marginal. For cycle (b), the 

slow late burning suggested from the overhead view (Figure 7.34(c» might be 

associated with the 'bubble' of unburned gas noted at the wall in Figure 7.33. 

(ii) 'Fast' cycles 

Shown in Figure 7.35 are similar diagrams illustrating successive flame front positions, 

overhead and side views, for the four selected 'fast' cycles (Figure 7.32). The faster 

burning is evident in the larger flames (c.f. 'middle' cycles, Figure 7.33) at the time 

corresponding close to TDe (the black contours in the diagrams) and the greater 

separation of the flame contours (more flame travel in the same time between flames). 

Also evident in the overhead views are, vis a vis the 'middle' cycles, generally more 

elliptical (i.e. less circular) flames, with faster bum in the direction of the' apex' of the 

pent-roof chamber. Flames viewed from the side, also seem more 'distorted' from a 
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circular shape in the early stages of flame propagation, Figure 7.35. The flame growth 

patterns and kernel movements also seem more consistent between cycles, for these four 

selected faster burn cycles. This is evident in the diagrams (Figure 7,36(b» showing the 

flame kernel centroid displacements (determined from the side view) and values of 

(equivalent circular area) flame radii, Figure 7.36(c). Unlike the 'middle' cycles, greater 

differences between radii determined from overhead and side views of the flame are 

apparent - consistent with the less spherical (and greater mean flame surface area per 

unit enflamed volume) noted c.f. the case for the middle cycles. 

(iii) 'Slow' cycles 

Similar successive flame front positions for the selected 'slow' cycles (Figure 7.32) are 

set out in Figure 7.37; with corresponding derived flame centroid displacements and 

flame radii given in Figures 7.38(b) and (c), respectively. These slower cases seem to 

exhibit relatively little movement to the left and right (as seen from the side view) and 

to tend to stay closer to the 'roof of the chamber (particularly so in the slowest case, 

Cycle (c», with corresponding loss of effective flame surface area (flames touching roof 

walls) early in the combustion events. 

Comparison of representative 'middle', 'fast' and 'slow' cycles 

Shown in Figure 7.39(a) are pressure versus crank angle diagrams for representative 

'middle', 'fast' and 'slow' cycles at the reference condition; with corresponding derived 

(side view derived) flame centroid displacements and flame radii (for both overhead and 

side views) given in Figures 739(b) and (d), respectively. The representative middle 

cycle was selected as that having ()Pmax closest to the mean, the fast and slow 

representative cycles were those nearest a line of mean slope (dPmax/dOmax ) drawn 

through the representative mean point. At TDC, both middle and fast cycles exhibit a 

similar clockwise movement from spark position (about 5mm in the x-direction and 

2.9mm in the y-direction from the spark position), as shown by the filled black square 

and the filled red circle, whereas, the slow cycle remained close to the spark at TDe, as 

shown by the filled blue triangle (as seen from the side view). This was also reflected in 

the pressure diagram where both middle and fast cycles showed some pressure 
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development at TOC, whereas, no development was noticed for the slow cycle 

(Figure 7.39(a)). In general, the corresponding flame radii at Toe (about 0.77 msec 

from ignition) derived from the side view exhibited the behaviour similar to that noted 

in both pressure and flame centroid graphs; i.e. middle and fast cycles had similar flame 

radii (about 10.3mm), c.f. - 6.6mm for the slow cycle, at TOe. The convection of both 

middle and fast cycles from the spark at TOC might have reduced the contact area (and 

hence reduced heat exchange) and so resulted in greater pressure and flame 

development than for the slow cycle (with its centroid close to the spark at TOC). 

Similar behaviour was noted for the other fast and slow cycles (Figure 7.39(c)). This 

accords with the findings of both Hacohen et al. (1992) and Pajot et al. (2000); they 

reported that their largest flames were found relatively far from the electrodes, which 

they associated with reduced heat exchange with the electrodes. Conversely, Gatowski 

and Heywood (1984) found no such correlation between flame development and the 

direction and extent of flame kernel convection away from the spark plug. 

7.4.2 Effect of Ignition Timing 

The experiments reported in Section 7.4.1 (for the 'Reference' 1500 rpm case) were 

repeated for two different ignition timings (2 and 12° bTOC) at the same equivalence 

ratio (¢ = 1.0); Conditions 2 and 3, respectively, Table 7.3. No significant differences in 

flame growth behaviour between fast, middle and slow cycles (vis Ii vis that noted at the 

reference condition) were observed. For completeness, since the data are valuable for 

colleagues modelling the engine over a wide range of conditions, various diagrams 

corresponding to those at the reference condition are given in Appendices Bland B2 (as 

well as fully reported in a technical report, Murad (2006)). However, only a summary 

diagram characterising some of the behaviour noted for the 'middle' cycles is presented 

here, Figure 7.40. It can be seen that ignition timing had a significant effect on peak 

pressure value and its position. As expected, advanced ignition led to earlier flame and 

pressure development and higher peak pressure; and vice-versa for retarded ignition. 

Mean flame radii derived from corresponding overhead and side views were again 

consistent for these 'middle' cycles. It was interesting to note that, slow initial flame 

development for the late ignition apart, flame speed (expressed as increase in flame 

radius/crank angle increment (Figure 7.40(b) and (c)) or flame radius/time increment 
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(Figure 7.41) was remarkably similar for all ignition timings. This was presumably 

associated with similar turbulence intensities in all three cases. 

7.4.3 Effect of Equivalence Ratio 

As for the disc-shaped engine, experiments were also conducted at two other 

equivalence ratios: rich, ¢ =1.1 and lean, ¢ = 0.8 (Conditions 4 and 5, Table 7.3). At 

each operating condition, representative 'middle', 'fast' and 'slow' cycles were selected 

as before. 

(i) Rich Mixture (¢ =1.1) 

The optimum ignition timing for the rich mixture was 6° bTDC, close to the optimal 

t bTDC for a stoichiometric mixture at the reference condition. The pattern of flame 

propagation (successive flame positions seen in top and side views) and flame kernel 

migration trends were very similar to those noted for ¢ =1 and are not shown here (they 

are available in Appendix B3 and technical report, Murad (2006». Magnitudes of peak 

cylinder pressure and crank angle for its occurrence for middle, fast and slow cycles, 

Figures 7.42(a) and (b), were almost identical with the corresponding values for ¢ =1, 

Figure 7.32(a). Likewise, the flame radii derived from overhead and side views, 

Figure 7.43. 

(ii) Lean Mixture (¢ =0.8) 

For the lean mixture, for maximum imep it was necessary that the ignition timing be 

advanced by 5° bTDC (to Ii bTDC) relative to that at 'reference' condition (¢=1), in 

order to compensate for the slower burning associated with a leaner mixture. As 

previously, representative middle, fast and slow cycles were selected (on the same basis 

as before) for further analysis, Figure 7.44. Set out in Figure 7.45 are successive flame 

front positions recorded by the overhead and side view cameras for the four 'middle' 

cycles. Vis it vis the richer mixtures, more flame front distortion (from circular) is 

evident in both overhead and side images; also, c.f. the middle cycles, there was less 

distortion in the fast cycles and more in the slow cycles, Figures 7.46 and 7.47, 
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respectively. This might be associated with the greater length of time available for a 

bigger proportion of the range of turbulent eddy sizes existing within the chamber to 

distort the flame. Note that the unburned gas temperature at ignition would be lower, 

with more advanced ignition timing, resulting (in conjunction with a lean mixture) in a 

lower laminar burning velocity, as well as reduced resistance to flame stretch rate 

effects. 

Overhead and side view derived mean flame radius versus crank angle diagrams are set 

out in Figures 7.48(b) and (c). As noted for ¢=1, there was consistency between radii 

derived from the two separate views for middle and slow cycles and lack of consistency 

for the fast cycles. For the latter, overhead view estimated radii were greater, associated 

with elongated (elliptical) flows along the pent-roof. Unlike previous cases, the flame 

speeds indicated by the gradient of the radius/crank angle diagrams did not become 

similar for slow, fast and middle cycles but remained slower the slower the set of cycles 

considered. However, one of the middle cycles, Cycle (b) (see also Appendix B4 -

Figures 84-1 and 84-2) showed higher pressure and faster flame radius (derived from 

both side and overhead views) development well before TDe (and continuing albeit 

occurring after TOC). Nevertheless, the peak pressure proved similar to those other 

middle cycles. Moreover, this particular cycle exhibited more rapid flame radius 

increase (derived from the side view) than the "fast" cycles (and of similar flame speed) 

derived from the overhead view, to those "fast" lean cycles. The reasons for the 

anomalous behaviour of this particular cycle are not understood. 

As in all previous cases, for these lean cycles, flame centroids migrated down about 

7 mm towards the piston crown over the combustion event. Most, and all fast, lean 

cycle flame kernels convected in a clockwise direction (Figure 7.48(a». 

(iii) Summary of Variation with Equivalence Ratio 

As noted previously, results for stoichiometric and rich (¢ = 1.1) operation were 

practically identical; lean (¢ =0.8) burning resulted in slower burning, lower pressure 

and greater cyclic variation, Table 7.4. 
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Equivalence Pmax B Pma:-. 
CYpmax COVpmax Big 

ratio (bar) ( 
0 
CA) aTOC (bar) (0 CA) bTOC (%) 

¢=0.8 46.6 18.4 5.6 12.1 12 

¢= 1.0 55.6 17.3 3.1 5.6 7 

¢= 1.1 56.3 16.9 3.1 5.5 6 

Table 7.4 Peak in-cylinder pressure data, including standard deviation (a pmax) and 

coefficient of variation (CO Vp ), for lean, stoichiometric and rich conditions. 
max 

Collected together in Figures 7.49 and 7.50 are pressure - crank angle and flame radius 

development diagrams for the middle cycles at all three equivalence ratios. For the lean 

cycles, it proved necessary to advance ignition to compensate the slow initial burn rate. 

However, having done this the mean flame radius at TOC was generally similar to that 

for the richer mixtures and the subsequent flame speed (gradient of the flame radius 

versus crank angle (time» was much the same for all equivalence ratios (Figures 7.49(b) 

and (c) and 7.50). This suggests that the lower pressure developed for the lean mixture 

might be more associated with slower bum-up of mixture behind the flame and lower 

energy input of the weak mixture rather than slower flame propagation; i.e. above a 

certain critical laminar burning velocity (or chemical to eddy lifetime) entrainment rate 

and flame speed are largely a function of u'. The anomalous behaviour of one lean 

cycle has been discussed previously. Aleiferis et al. (2004) also encountered some lean 

mixture cycles burning at the same (higher) rate as stoichiometric ones (on the basis of 

having similar successive flame front positions). They suggested that these fast lean 

cycles might have experienced a richer than the average mixture strength in the vicinity 

of the spark plug at ignition. However, in the current work, such differences in mixture 

strength were eliminated by running the engine in skip firing mode (Chapter 3). 

7.4.4 Effect of Engine Speed 

The experiments reported in Section 7.4.1 (for the 'reference' 1500 rpm case) were 

repeated at 750 and 1000 rpm, at the same equivalence ratio (¢ =1); ignition timing was 
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adjusted to yield mean maximum indicated mean effective pressure at each speed 

(2° bTDC and 4° bTDC, respectively), as detailed in Section 6.S. It proved impossible to 

conducted planned tests at 1900 rpm, due to the run-on problems reported earlier (in 

Section 7.4). 

Set out in Figure 7.51 is a Pmax versus ()Pmax diagram for filmed cycles at the lower 

engine speed, 750 rpm. As before, representative 'middle', 'fast' and slow cycles were 

selected and have been highlighted in the diagrams. 

Lower engine speed (750 rpm) 

Shown in Figure 7.52 are the plotted successive flame positions for the four selected 

'middle' cycles at 750 rpm. For cycles (a), (b) and (d), flame kernels are convected to 

the left (see also Figure 7.S3(a» at an average velocity in that direction of2.2 m/s. This 

corresponds well with the flow pattern and ensemble averaged mean velocity observed 

in 78% of cycles at this engine speed, Figures 7.16 and 7.21(a). It can be seen that as 

these flames grow, they become significantly distorted from a circular shape at the right 

of the chamber (as viewed). In contrast, the flame in Cycle (c) can be seen to remain 

central and to grow quite symmetrically (circular), with the centroid first moving 

vertically down towards the piston before drifting left. This is consistent with the flow 

pattern seen in 15% of cycles at this engine speed, Figure 7.14. In all cases, the flame 

radii derived from the overhead views at any given crank angle appear greater than 

those evaluated from the side view for these middle cycles, Figures 7.S3(b) and (c). This 

is possibly associated with the less circular nature of side viewed flames at this engine 

speed. 

The same patterns of flame development pertained for the sets of fast and slow cycles 

and hence, for brevity, the corresponding diagrams are not shown here (they are 

available in Appendix BS and technical report, Murad (2006». Summary data for the 

fast and slow cycles are available in Figures 7.53(a), (b) and (c). Fast cycles appear 

associated with initial flame kernel migration to the right (as viewed in the diagrams), as 

in the flow pattern of Figure 7.15, and the slow cycles (apart from one showing strong 
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initial movement to the left) tended to be associated with no lateral motion (i.e. kernels 

centroids migrating slowly towards the piston). 

The flame radii derived from side and overhead views seem more consistent for the fast 

and slow cycles than for the middle cycles. Initial flame kernel growth rate can be seen 

to be similar for fast, middle and slow cycles, later deviating with fast cycles 

continuously burning faster than middle and (in tum) slow cycles, Figures 7.53(b) 

and (c). 

Intermediate Engine Speed (1000 rpm) 

Shown in Figures 7.54(a) and (b) are the usual peak pressure versus crank angle of its 

occurrence and selected representative fast, middle and slow cycles. The overhead and 

side view successive flame contours are again omitted for brevity; as in the other test 

cases the same range of patterns occurred and individual flame growth patterns within a 

set of fast, middle and slow cycles seemed to have little effect on flame speed or 

pressure development (the full data are available in Appendix B6 and a technical report, 

Murad (2006». Summary data for the fast, middle and slow cycles are presented in 

Figures 7.55(a), (b) and (c). The patterns of behaviour can be seen to be similar to those 

observed at 750 rpm; unfortunately, no PTV flow pattern data were available at 

1000 rpm. However, in the horizontal direction, the average velocity of flame kernel 

migration for the four selected middle cycles was of the order 2.8mm/ms (2.8 m/s) -

similar to the velocity noted for the same engine speed in the LDV measurements at the 

chamber centre (-2 mls - a little lower due to the ensemble averaging nature associated 

with the LDV technique), Figure 7.22(a). At this engine speed, for the selected cycles, 

all fast cycles convected downwards, whilst all middle and slow cycles convected in an 

anti-clockwise direction (Figure 7.55(a». 

7.4.5 Comparison of Middle Cycles at Various Engine Speeds 

Shown in Figure 7.56 are pressure versus crank angle as well as side and overhead view 

derived mean flame radius versus crank angle diagrams for the middle cycles at the 

three adopted engine speeds. Lower pressure values obtained at the lower engine speed 
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(750 rpm), even before ignition, this is probably related to increased blow-by for the 

ported engine as engine speed decreased. 

As a function of time from ignition, flame speeds (gradient, dR/ dt) can be seen to be 

lower at lower engine speeds, Figure 7.57. As a result greater ignition advance was 

required for optimum imep with higher engine speed. Nevertheless, the gradient of 

flame radius versus crank angle for developed flames proved very similar, Figures 

7.56(b) and (c). That is to say, there is an increase in flame speed proportional to 

increase in engine speed (Figure 7.58) - this is consistent with flame speed increasing in 

proportion to turbulent burning velocity (with the latter increasing with u' and mean 

piston speed). 

Closure 

The key results of the experimental study are summarised and discussed in the 

following Conclusions chapter of this thesis. 
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Natural Light 

Figure 7.1 atural light and shadowgraph images at same instant, 0.8 ms between 

image 
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Figure 7.2 Mean flame radii derived from simultaneous natural light and shadowgraph 

imaging technique . 
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8) (b) (c) 

Figure 7.3 had \i graph image of flame de elopment over central 40 mm of cylinder 

f80 mm), 2.4" A between images. Flames (a) and (b) stoichiometric, 1500 rpm, 

igniti n timing _0· bTD : ) ~ = 0.8, 1500 rpm, ignition timing 31
0 

bTDC. 
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Figure 7.4 Peak pressure values versus corresponding crank angle occurrence with 

ensemble average and the selected fast, middle and slow filmed cycles. 
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Figure 7.5 Selected fast, middle and slow mean flame radii for stoichiometric, 

1500 rpm cycles, ignition timing 20
0 

bTDC. 
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Figure 7.6 Selected fast, middle and slow mean flame radii for rich (cI> = 1.1), 1500 rpm 

cycles, ignition timing 18 0 bTDC. 
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Figure 7.7 Selected fast, middle and slow mean flame radii for lean (cI> = 0.8), 1500 rpm 

cycles, ignition timing 31
0 

bTDC. 
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Figure 7.8 Centroid movement of middle, fast and slow cycles at 15fJ& ~ tOr 

(a) stoichiometric {ignition timing 20° bTDC} (b) rich: (<<I> = 1.1) 

{ignition timing 18° bTDC} and (c) lean (<<I> = 0.8) {ignition timing 3t' bTDC} mixtures. 
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Figure 7.9 Shape Factor versus time and crank angle of middle, fast and slow cycles at 

1500 rpm (over duration of 12" CA (1.33 ms) following ignition), for (a) stoichiometric 

{ignition timing 20° bTDC} (b) rich (4) = 1.1) {ignition timing 18° bTDC} and (c) lean 
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(a) 

(b) 

Figure 7.12 PTV flow investigation using side window of Perspex engine with inlet to 

left side of chamber, (a) focus on right side of clearance at 1500 rpm, (b) view of 

complete clearance volume at 750 rpm. 
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Figure 7.13 (a) Anticipated tumble flow generated with pent-roof geometry in 

conjunction with inclined inlet duct, (b) observed flow in central plane illuminated by 

laser (and suggested by comparison LDV data) in (i) 78% of cycles at 750 rpm and (ii) 

75% of cycles at 1500 rpm. 
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Figure 7.19 Co-ordinate system adopted for LDV study (see Table 7.2). 
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Figure 7.20 LD fibr optic probe held vIa the side window (forward scatter 

configuration). 
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variat ion at 1500 rpm. 
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and (d) u ~ variation at 1500 rpm. 
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(a) liB ariation at 750 rpm, (b) u ~ variation at 750 rpm, (c) liB variation at 1500 rpm 

and Cd) u ~ variation at 1500 rpm. 
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Figure 7.26 LDV-derived vAand V~ (VA component of velocity) variations with crank 

angle at Point A (0, 6.5, 20), (a) VA variation at 750 rpm, (b) v~ variation at 750 rpm, 

(c) VA variation at 1500 rpm and (d) v~ variation at 1500 rpm. 
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Figure 7.27 LOY fibre optic probe held at ri ght angles to one of top windows (back 

scatter configuration). 
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Figure 7.41 Mean fl ame radius versus time from ignition of middle cycles derived from 

(a) the side view and (b) the overhead view for two ignition timings additional to that at 

the refe rence condition. 
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.. 
:J) 

:I) 

10 

· 10 

.:1) 

.:J) 

... 

Ie 
I. 
12 
10 
8 

E e 
E • 

2 
TllC- o 

-2 
-4 

/--~~'~ 
( I I I ' 

i \ ' ., / '.,' : \ 
I I ) , 
1 ':J'~ q i,l;'I I ~ 
~ , ~ \ 

I } 
! I I ; \ 

"- :l J II /' 
_ J L----' 

i I I I I I I I 
.4() .3() -20 ·10 10 20 :J) 40 

om 

o~'~ 
,,' ~ 

~ ___ ;; ..r-~_ ~ __ _ _ ~ __ _ 

Fltlton It P I'm 

I ii i , I I ~ 

.4() .3() ~ ~ W 20 :J) 40 
om 

Cycle (a)-tlOd7a 

.. 

., 
:I) 

10 

·10 

.:1) 

.:J) 

... 

18 
14 
12 
10 
8 

E 8 
E 4 

2 
TllC- O 

-2 
-4 

<0 
l ' ... 

\ )1 
, I I : ( 

) f 
f rJ 

[ " 

~-
I I I I I I 

.4() .3() ·20 · 10 :J) 40 

om 

~ 
,/ '" I-~ _::-- - _ __ .. ::"--~ _ __ ~I 

PlRor'IIItP ~ 

~ ~ ~ k ~ ~ ~ ~ 
om 

Cycle (b)-t12d7a 

.. 

., 
:I) 

10 

· 10 

.:1) 

.:J) 

... 

Ie 
14 
12 
10 
8 

E e 
E 4 

2 
TllC- O 

-2 
-4 

t Exhaust 

ClosetoTDC 

- ------- Close to P ~DO 
X 

"r- '~ 

( I, "-r i ) . 
:' "; ";'" } 
~ ; ) 

"" ~- L/ 
i I I i I I I I 

.4() .3() ·20 -10 10 20 :J) 40 

mm 

Pilton at P"... 
r--------T " I I , I 

.4() .:J) ~ -w W 20 :J) 40 
im1 

Cycle (c)-t14d7a 

.... 
Spark position 

.. 
:J) 

:I) 

10 

·10 

.:lll 

. ., 

..., 

Ie 

" 12 
10 
8 

E e 
E 4 

2 
lDC- O 

-2 
-4 

l Exhaust 

( i; -......." 
I 

, 
! " ) I 

\ : ') 11 : I 
,1 , " 

i I I I I I I I 
.4() .3() -20 -10 10 20 :J) 40 

om 

." 
D " , .. 

, " , , , .. , .. 
,,' '" ' ''. , __ ~ ' __ ~ ____ _ .. _ _____ J 
p 2 Z 2 2 Z 2 2 Z 22222222222 1 

Alton It,.. ...... 

.4() .3() ~ ~ W 20 :J) 40 
nrn 

Cycle (d)-t26d7a 

Figure 7.52 Successive flame front positions, overhead and side views, for the four selected 'middle ' cycles for stoichiometric, 750 rpm, 

ignition timing 2 0 bTDC (with top and side contours separated by ~ 1.26 and 0.63
0 

CA, respectively) . 

C1 
=-~ 

"t:S 
~ 
('t) ., 
-..l 

--..) 
--..) 



Chapter 7 

16 
14 
12 
10 

E 8 
E 6 

4 
2 

178 

--Middle cycles 
. . . . . Fast cycles 
- .-.- Slow cycles 

o TDC~----------------------------------------~ 

Side 
40 

35 

E25 
E-
If) 

:520 
'" 0: 
~ 15 

'" u:: 10 

5 

roc 

-40 -30 -20 -10 

- 0 - Mdele cydes 
Fastcydes 
SlOoNcydes 

~ ~ 0 2 4 6 8 m ~ ~ • m ~ n ~ 
Crank Angle (deg) 

(b) 

(a) 

o 10 20 30 40 

mm 

Top 
40 - ----
35 

:J) 

E25 
E-
If) 

:620 
'" 0: 
Q) 15 
E 

'" u:::: 10 

TOC 

Ig-ition 

1 
-0- Mdele cydes 

Fastcydes 
- Slowcydes 

~ ~ 0 2 4 8 8m ~ ~ m m ~ n ~ 

Crank Angle (deg) 

(c) 

Figure 7.53 Summary data showing (a) flame centroid displacement determined from 

just ide view filled symbol showing centroid positions close to TDC and mean flame 

radiu er u crank angle derived from (b) the side view and (c) the overhead view for 

toichiometric cycles at 750 rpm, ignition timing 2 0 bTDC. 
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reference condition (1500 rpm). 
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Chapter 8 

Summary, Concluding Discussion and Recommendations for Future 
Work 

The objectives of the study reported in this thesis were: 

i. To investigate turbulent flame kernel development and propagation (in both 

simple 'disc' (LUPOEI-O) and idealised 'pent-roof' combustion chamber spark 

ignition engines). 

ii. To relate bum rate to flow and turbulence. 

iii. To obtain comprehensive sets of engine model development and validation data 

for colleagues. 

Set out in Section 8.1 is a summary listing the achievements and experimental results 

obtained in seeking to meet these objectives. This is followed in Section 8.2 by 

discussion of the principle experimental findings. The thesis is closed in Section 8.3 

with some recommendations for future study. 

8.1 Summary 

Achievements and experimental findings include: 

• Successful re-commissioning of the LUPOE 1-0 'disc' head optically accessed 

engine and its associated systems, data and analysis equipment for the study. 

• Generation of routines and associated software for determination and display of 

enflamed area centroid trajectory and 'flame shape factor' (for characterising 

flame perimeter distortion from the circular shape associated with idealised 

'spherical' flames) development with flame growth. 
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• Development of optics for simultaneous natural (chemiluminescent) light and 

shadowgraph cine imaging of flame development, particularly initial flame 

kernel growth. The shadowgraph technique involved a silver surfaced mirror 

bonded to the piston crown for back reflection of light and development of a 

special spark plug to give improved optical access to the plug gap and very early 

stages of flame initiation and growth. 

• The shadowgraph technique yielded better flame definition in the early flame 

kernel development stages (when chemiluminescent output was low) and gave 

some insight into flame structure and turbulent flame thickness. Nevertheless, 

for most of the flame development period, mean flame radii determined from 

shadowgraph and natural light images proved very similar. This generated 

confidence in the library of flame progress data collected for LUPOEI-D using 

natural light photography by a previous worker (Abdi Aghdam, 2003) and in the 

use of this technique for later pent-roof engine investigations (where the optical 

access required for shadowgraph/schlieren methods was not available). 

• Data on the early flame development period and whole combustion duration 

have been collected for a wide range of engine conditions (ignition timing Big = 

10° bTDC to 3( bTDC), mixture strength (¢=0.8 to ¢=I.I), engine speed (750 

rpm to 2000 rpm) for residual free iso-octane air mixture at a nominal 

compression ratio of 7.2: I; these augment cine laser sheet Mie-scatter flame 

imaging (Hicks, t 994; Lee, 1995), particle tracking velocimetry flow studies 

(Cairns, 2001), turbulence measurements (Atashkari, 1997; Jakubik, 2002) and 

autoignitionlknock studies (Konig and Sheppard, 1990; Konig, t 993; Pan, 1994; 

Pan and Sheppard, 1994; Smallbone, 2004), information for the same engine for 

colleagues modelling the combustion process. 

• At each engine condition, sets of data representative of 'fast', 'middle' and 

'slow' cycles were systematically selected on the basis of having cycle peak 

pressure (Pmax) close to the mean and Pmax ± 20' Pmax' Attempts to relate the 

speed of the overall combustion rate of these groups of cycles (as well as 
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individual cycles within these groups) to turbulence related parameters such as 

early flame kernel displacement and flame 'shape factor' proved inconclusive. 

• A modified ported optical engine fitted with an idealised pent-roof cylinder head 

representative of the geometry of a modem 4-valve engine, but having almost 

completed overhead and side view optical access to the clearance volume 

combustion space, has been designed, built and commissioned. This engine 

(LUPOE2-P), based on the robust crankcase and connecting rod of a single 

cylinder Lister-Petter-PHl, was designed with a perforated barrel and annular 

exhaust gas removal system in an attempt to reduce the effects of exhaust flow 

on in-cylinder flow and turbulence noted in LUPOEI-D (Cairns, 2001; Cairns 

and Sheppard, 2000). A perspex barrellhead variant of the engine was also 

designed, built and commissioned to give complete optical access for LDV, PTV 

and (in future) PIV study of flow and turbulence under motoring conditions. 

• In preliminary experiments, the performance of the LUPOE2-P engine was 

mapped, over a very wide range of conditions (equivalence ratios ¢ =0.7 to 

¢=1.1, skip-firing ratios 5 to 8, engine speeds 750 to 1900 rpm, inlet/head 

temperatures 50° to 70°C and air mass flow-rates 8.62 and 10.34 g!sec), using an 

all metal variant of the cylinder head, in order to establish its operating range 

and optimum ignition advance (for maximum indicated mean effective pressure) 

at each operating condition prior to the observations of flame development in the 

less robust optical head variant. An influence of spark plug gap orientation was 

noted, that yielding maximum peak cylinder pressure at the 'reference condition' 

(¢=1, 1500 rpm, ignition timing Big t bTDC) was adopted in all subsequent 

experiments. 

• Video laser sheet Mie scatter particle tracking velocimetry (PTV) techniques 

were developed and applied to study the flow in the motored perspex variant of 

LUPOE2-P. The flow proved complex and intermittent. At the 'reference' 

engine speed of 1500 rpm, about 75% of the cycles exhibited one general flow 

pattern; with most other cycles generally showing one other basic flow pattern. 

At 750 rpm, cycles similarly grouped into 3 basic flow patterns. 



Chapter 8 187 

• The PTV study was augmented by application of laser Doppler velocimetry 

(LDV) to determine the ensemble average mean and rms turbulent velocities at 

selected points within the pent-roof chamber. The mean velocities were 

generally consistent with those of the dominant flow pattern determined in the 

PTV experiments. During the crank angle interval corresponding with the 

combustion period, mean flow velocities were generally small and the rms 

turbulent velocity proved relatively isotropic and homogeneous. 

• A novel natural light cine imaging system, employing two separate cameras, was 

set up to film (simultaneously) flame kernel development via both top windows 

and a side window. Processing methods were developed to produce plan view 

(parallel to the piston crown) and side elevation images of each flame surface 

and to determine associated mean flame radius (of a circle encompassing the 

same area) and flame kernel centroid position. 

• A comprehensive library of in-cylinder pressure, mean flame radius and flame 

kernel trajectory data for a wide range of conditions (equivalence ratios ~=0.8 

to ~=1.1, engine speeds 750 to 1900 rpm and inletlhead temperature 55) has 

been established for colleagues attempting to model the engine. 

• As for the LUPOE 1-0 case, at each engine condition, sets of representative 

'middle', 'fast', and 'slow' cycles were selected on the consistent basis of 

having Pmax close to the mean and Pmax ± 2o-pmax • 

• Analysis of successive flame positions for typical 'middle', 'fast' and 'slow' 

cycles at different conditions suggested no correlation between flame shape and 

burning rate. All flames were observed to be distorted from circular (spherical); 

with less distortion encountered at low engine speed (750 rpm) at ignition timing 

near TOC (20 bTOC) and more distortion seen at high engine speed (I 500 rpm) 

with leaner mixture (¢ =0.8) and ignition timing advanced (12° bTDC ) to 

compensate for the slow burning. 
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• At 1500 rpm (except for the lean mixture), the radii determined from the two 

views (top and side) for 'middle' cycles were reasonably consistent when flames 

viewed from overhead view were approximately circular. The opposite was true 

in the case of the 'fast' cycles. However, at low engine speed (750 rpm), the 

flame radii derived from side and overhead views seemed more consistent for 

the fast and slow cycles than for the middle cycles. These differences in 

behaviour might be related to the difference in flow patterns observed in the 

PTV flow investigation and the complex unresolved third dimension flow 

patterns. 

• In general, the centroid migrations from the spark electrode were consistent 

with the flows observed in the PTV investigation. The average velocity of flame 

kernel migration was of the same order as the ensemble average measured near 

TDC using LDV (2mm/ms). There was a suggestion that those cycles 

experiencing greater flame kernel migration to the right (as viewed in Figure 

7.36(b), for example) exhibited faster flame radius development; whereas no 

preferred direction was observed for middle and slow cycles. 

• The maximum flame speeds noted for the LUPOE2-P engine proved higher and 

the cyclic variation lower, than those obtained for the LUPOEI-D engine (used 

also in the current study) by Abdi Aghdam (2003). 

8.2 Concluding Discussion 

8.2.1 In-cylinder Flow and Turbulence 

Previous work (Cairns, 2001) had shown that even in the nominally quiescent disc 

shaped chamber (LUPOEI-D), where the ensemble average LDV experiments 

suggested near zero mean flow and approximately isotropic turbulence (Atashkari, 

1997), there was a degree of intermittency with a number of flow patterns. This was 

even more marked in the pent-roof (LUPOE2-P) chamber, where the PTV data gathered 

in the motored 'perspex' engine showed a number of alternate distinct flow patterns -

which varied with engine speed. Similar effects have been noted in recent PIV 

investigations showing cyclic variably of undirected (Le. no axial swirl) flows in a 
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poppet - valve four stroke engine (Reuss, 2000) and an optically accessed single 

cylinder variant of a modern Jaguar pent-roof production engine, (Jarvis et aI., 2005; 

Jarvis et aI., 2006) 

The intermittency was masked in the current LUPOE2-P LDV data, due to the ensemble 

averaging process implicit in the technique - where velocity data at a point in the 

combustion chamber during a crank angle interval (or 'window') has to be collected 

over many cycles in order to generate statistically relevant data (Heywood, 1988). The 

inherent cyclic variation hence leads to overestimates of the true rms turbulent velocity 

influencing a growing flame in an individual cycle - whilst possibly under - estimating 

the mean local velocity which might bodily transport the kernel in a particular cycle. To 

avoid such contamination of LOV data, some workers have therefore attempted cycle 

by cycle analysis, where the mean and rms velocities have been calculated for each 

engine cycle; achieved by employing a high data sampling rate (Liou and Santavicca, 

1985; Corcione and Valentino, 1994). Other investigations have employed conditional 

sampling techniques (Libby et aI., 1982; Swords et aI., 1982; Witze and Martin, 1986; 

Plee et aI., 1987), where similar engine cycles have been experimentally identified and 

then ensemble-averaged (Witze et al., 1984). This technique may be subject to a degree 

of arbitrariness, dependent upon on the selection ofthe conditioning parameters. 

However, in the currently reported study, in common with most other engine flow 

studies available in the literature under motoring (Arcoumanis et aI., 1994; Kang and 

Baek, 1998) and firing conditions (Hall, 1987; Miles et aI., 1994) conditions, only 

'normal' ensemble averaged data were generated. Nevertheless, clear similarity in 

trends and values of rms turbulent velocity noted for all directions at all measurement 

positions was encouraging. If true, this would prove a useful finding, allowing 

considerable simplification in combustion modelling. Shown in Figures 8.1 (a) and (b) 

are the rms velocity variations with c.a. for the directions recorded at the various 

measurement positions at the two principal engine speeds used (750 and 1500 rpm). It 

can be seen that the peak rms values at 1500 rpm were earlier (around TDC) than those 

at 750 rpm. However, the same trends were exhibited at both speeds (750 and 1500 

rpm); with rms velocity increasing after port closure and through the compression 

stroke, then decreasing before TOC all the way through the expansion stroke. 
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Set out in Figure 8.2 (a), for both the current LUPOE2-P and earlier (Jakubik, 2002) 

LUPOE I-D experiments, are values of nns velocities at TOC plotted against mean 

piston speed, where the engine speed has been converted to mean piston speed (S p ), 

using the relationship (Heywood, 1988): 

- N 2L 
S =-.-

p 60 1000 
(8.1 ) 

where N is the engine speed in rpm and the stroke (L) for the LUPOE2-P engine was 

110 mm. The data suggest that the in-cylinder turbulence in LUPOE2-P was somewhat 

higher than that in LUPOEI-D at all mean piston speeds tested. At 1500 rpm, u'ISp 

was in the range 0.6-0.9 for the pent-roof engine compared to 0.5-0.6 for the disc. 

Relative turbulence intensities have been reported to reach values as high as 1.0-1.2 

times the mean piston speed (Arcoumanis et aI., 1994; Gosman, 1986). It appears that 

the stronger the tumbling motion, the greater the turbulent kinetic energy release during 

its breakdown and the later this release in compression (Arcoumanis et aI., 1990). 

In the current study, a good fit to the pent roof rms turbulent velocity (all positions, all 

directions) (Figure 8.2 (b), was obtained by the least squares method: 

u' = 1.7 + 0.44Sp (8.2) 

Compared in Figure 8.3 are the current and earlier Leeds data for rms turbulent velocity 

versus mean piston speed with some of those reported in the literature (for conditions 

listed in Table 8.1 (Hattrell, 2006). Although the trends (disc versus pent-roof, 

experimental and CFO) are qualitatively the same - considerable variation is evident for 

the engines listed. 



PortlValve Measurement Compression Chamber Chamber Note 
Location Ratio Geometry Flow 

LUPOE2-P LOV Port Chamber 9.2 Pent Tumble Ensemble averaged u' used, 
mean chamber mean calculated by 

taking average of all measuring 
points I 

LUPOE I-D LOV Port Centre of the 7.6 Disc Quiescent Ensemble averaged u' used 
chamber 

LUPOE I-D CFD Port Chamber 7.6 Disc Quiescent Chamber mean from k-epsilon 
mean model used 

VWOECFO Valve Chamber Pent Tumble u' determined from k-epsilon 
mean model as sqrt(2/3k) 

Corcione &Valentino Valve Inside bowel, 21 Flat head, Squish Both ensemble averaged u' and 
close to edge piston with u' with attempt to filter out bulk 

bowl velocity fluctuations presented. 
Ensemble averaged results used 

here 
Hall & Bracco Port r = 0.77 x bore 7.5 Disc Swirl Arbitrary cut-off frequency used 

to separate u' from bulk motion 
Kang& Baek Valve Centre of bore 8.5 Pent High tumble Cut-off frequency as suggested 

or normal by Catania and Mittica used to 
separate u' from bulk motion 

variations 
Hong & Tamg Not specified 4 Disc Measurements giving both 

ensemble averaged u' and cycle 
resolved u' with bulk velocity 

fluctuations filtered out 
- --------

Table 8.1 Specification of engines used in the literature reported by various researchers, see also Figure 8.3 (Hattrell, 2006). (continued overleaf) 

n 
~ = "0 ;-.. 
QC 

\0 



PortlValve Measurement Compression 
Location Ratio 

Kim et al. Valve Mean along 9.2 
bore axis 

Arcoumanis et al. Valve Mean along 10.5 
bore axis 

Johansson & Olsson Valve Spark gap 12 
location 
(centre) 

Liu et al. Valve Centre of 704 
combustion 

chamber 
Nordgren et al. Valve 8 mm below 12 

head 

Lee & Lee Valve PIVaverage lOA 
from centre of 

bore _._-

(continued) 

Chamber Chamber 
Geometry Flow 

Pent Tumble 

Pent Tumble 

Not stated 
(probably 

pent) 

Wedge Swirl 

Not stated Swirl 
(probably 

disc) 
Pent Depends on 

valve used 

~--

Note 

Paper not specific, text suggests 
that averaged u' used 

No cut-off frequency used. Data 
for non-sleeved valves used. 

Difficult to estimate accurately 
given the quality of the graphs in 

the paper 
Arbitrary cut-off frequency used. 
Only results for flat piston used. 

Other pistons show very different 
levels of turbulence. 

Only motoring data used 

Motoring data from truck engine, 
u' is chamber average determined 

byPIV 
PIV motoring data with three 

different valves: normal, tumble 
and swirl 

I 
, 

(") 
== "'0 -fD .., 
QO 

IS 
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8.2.2 Effect of Flow and Turbulence on Combustion 

Differences in mixture strength (Petrovic, 1982; Swords et a!., 1982; Tagalian and 

Heywood, 1986), residual gas concentration, temperature and spark plug earth electrode 

orientation (Burgett et a!., 1972; Pischinger and Heywood, 1990; Aleiferis, 2000) have 

all been proposed as sources of cyclic variation in engine combustion rate. However, 

even though the experimental methods adopted in the currently reported study 

(LUPOEl-D engine) eliminated variation in all these parameters with approximately 

mean zero flow, cyclic variation of a similar order to that experienced in production 

engines (Wu, 2006) still occurred. It is considered that this can only be due to cyclic 

variation in turbulence at ignition and during subsequent flame propagation. 

Nevertheless, attempts to relate the speed of the overall combustion rate of individual 

cycles (designated fast, middle or slow) to turbulence-related parameters such as early 

flame kernel displacement and Shape Factor (thought to characterise the particular 

turbulent eddies affecting the ignition kernel in individual cycles early in its 

development) proved inconclusive. This may be related to flame development in the 

third unresolved dimension, to the unmeasured energy contained in small-scale 

structures local to the ignition/early flame development, or to the importance of scales 

of turbulence smaller than could be investigated using the available techniques. 

In general, kernel convection for slow cycles seemed to exhibit relatively little 

movement to the left and right (as seen from the side view) and tended to stay closer to 

the 'roof of the chamber of LUPOE2-P engine, with corresponding loss of effective 

flame surface area. Moreover, there is a suggestion that most cycles experiencing 

greater flame kernel migration to the right of the chamber (as seen from the side view, 

e.g. Figure 7.36(b» exhibited faster flame radius development. This was also supported 

by the findings of other researchers (Herweg et aI., 1990; Hacohen et al. 1992; Pajot et 

aI., 2000). They found that faster flames were observed far from the electrodes. 

However, other researches (Witze et aI., 1981) showed opposite results. Moreover, 

Holmstrom and Denbratt (1996) showed that random movement of the flame kernel has 

a significant effect on the cyclic variation. These differences in observations might be 

related to the changes in the flow around the electrodes (Herweg et aI., 1988; Pischinger 

and Heywood, 1990), or the effect of rms turbulent burning velocities at early flame 

propagation (Loye and Bracco, 1987). Both effects (functions of mean and rms 
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velocities) would have been masked to a certain extent in analysis of the current 

LUPOE2-P LOV data, due to the ensemble averaging process implicit in the LOV 

technique. 

For the LUPOE2-P engine, as speed increased from 750 rpm to 1500 rpm, the flame 

became more wrinkled and distorted. Loye and Bracco (1987) showed that as engine 

speed increased, the shape, size and location of the initial kernel became less repeatable, 

and that the kernel flame front became more convoluted. Some kernels had a fairly 

continuous flame front, while others had a much more discontinuous appearance. 

In preliminary study, using the metal variant of the LUPOE2-P engine, three spark 

orientations were chosen. The orientation yielding maximum peak cylinder pressure at 

the 'reference condition' (¢ = 1, 1500 rpm, ignition timing Big i bTOC) was adopted in 

all subsequent experiments. Other researchers (Burgett et aI., 1972; Pischinger and 

Heywood, 1990; Aleiferis, 2000) have also shown spark plug ground electrode 

orientation to affect engine performance. This might be attributed to changes in the flow 

field in the vicinity of the spark plug electrodes, electrical spark energy loss to the 

electrodes and heat transfer between the flame kernel and the electrodes. The results of 

Aleiferis (2000) showed similar spark orientation effects to those noted in the current 

LUPOE2-P experiments. 

The reduced cyclic variation in the LUPOE2-P engine vis a vis the LUPOE 1-0 engine 

might be related to the reduction in combustion duration associated with the increased 

turbulent burning velocity accompanying the higher rms turbulent velocity with 

increased tumble flow. These findings were in accord with other researchers (Hu et aI., 

1992; Li et aI., 2004). However, yet other researchers showed opposite results. This 

might be related to the design of the inlets, pent-roof and piston geometries (Kuwahara 

et aI., 1994), which affect the tumble strength and hence the cyclic variation. 

Arcoumanis et al. (1994) using a single cylinder four-valve, pent-roof chamber engine 

of compression ratio of 10.5) confirmed the correlation between stronger tumble during 

induction and higher convective velocity and turbulence levels near the spark gap at the 

time of ignition; this resulted in faster combustion rates and more stable combustion 

under lean mixture conditions. 
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8.2.3 Modelling Database 

In order to reduce development lead times and expensive testing, motor manufacturers 

are increasingly relying on computer modelling of engines - to the extent of developing 

'virtual' powertrains and even complete vehicles (Eluga, 1993; Richardson, 1997). 

There are many important aspects to such models, including intake/exhaust tuning 

(Chow and Wyszynski, 1999), fuel injection (port and direct) and evaporation 

(Anderson et al., 1996; Wallesten et al., 2002; Wyszynski et al., 2002), charge mixing 

(Bo et al., 1997; Dec, 1997), turbocharging (Han et al., 1997), auto ignition and knock 

(Chun, et al., 1988; Cowart, et al., 1990; Zheng, et al., 2002) etc. 

One of the most intractable problems in engine modelling remains that of the flame 

propagation and pressure development in the spark ignition engine. In many cases, for 

study of engines which exist (or are of proposed design similar to available engines), the 

problems can be met reasonably well using relatively simple 1-0 thermodynamic cycle 

models employing 'Wiebe' (or similar) empirical expressions for determining the 

combustion rate in idealised 'two-zone ' (burned and unburned) combustion space -

with the functions empirical constants adjusted to match experimentally available in

cylinder pressure data for a range of conditions (Krieger and Borman, 1966; Guezennec 

and Hamama, 1999). However, as suggested, such models are only applicable for 

interpolating or mildly extrapolating knowledge from pre-existing experimental data -

they can not properly accommodate radical changes in engine chamber geometry, 

ignition site (or multiple sites), running conditions (e.g. high EGR) or fuel type. Some 

success in coping with such requirements has been claimed for more complex 'quasi

dimensional' two or three zone thermodynamic cycle models employing turbulent 

burning velocity expressions coupled to assumptions on flame and combustor wall 

surface areas - usually making truncated 'spherical' flame surface approximations (Liu, 

2004) and sometimes allowing flame kernel centre movement in response to in-cylinder 

flow (Keck et al., 1987) with flame to wall approach and heat transfer expressions of 

varying complexity (Annand, 1963; Woschni, 1967; Morel et al., 1985). However, such 

models often lack generality and often 'fitted' to rather sparse experimental data - they 

also rarely take into account the cyclic variation evident in many experimental studies, 

including the current work. 
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Others have advanced 3-D CFD codes to meet engine modelling requirements (Sazhina 

et aI., 1999; Lee, et a\., 2000; Nishiwaki, et aI., 2000). The current 'state of the art' in 

such modelling usually employ RANS (Reynolds Averaged Navier Stokes) 

formulations, which by their nature are incapable of correctly representing cyclic 

variation and have often been shown to be deficient in flows of having strong 

recirculation features. Such CFD models can often prove useful in aiding flow 

visualisation, although tuning to match experimental data is sometimes necessary and 

portability to very different combustion chambers with fixed model constants is 

debateable. The combustion modelling in such CFD codes is generally less reliable than 

flow prediction and requires the greater part of the computational time. Large eddy scale 

(LES) CFD codes are being developed to address cyclic variation and flow modelling 

deficiencies and possible represent the best long term solution for simulation of 

complex engines. Nevertheless, although such models may be useful for research into 

specific features of engine flow and combustion, it is generally recognised that they are 

currently too computer intensive for routine engine development work. 

If computer models (advanced quasi-dimensional or CFD) are to be improved, it is 

essential that reliable experimental data are available for their development and 

validation. Many experiments have been conducted on optical engines of various 

designs (Whitelaw and Xu, 1993; Jarvis et aI., 2005) as well as more real production 

engines modified to give varying levels of restricted access for instrumentation 

(Hentschel et aI., 2001; Kim et aI., 2002; Wu, 2006). 

The Leeds LUPOEl-D (disc) and LUPOE2-P (idealised pent-root) flame propagation 

and in-cylinder pressure development database over wide ranging conditions (to which 

the current study has contributed a lot) represents possibly the most consistent and 

comprehensive information available for validation of the combustion phase of spark 

ignition burning under simple well defined conditions; this is considered an essential 

step if a model's predictive capacity for more complex but less well defined situations is 

to be accepted as more than fortuitous. The findings (for the current engines) that the 

rms turbulent velocity is relatively isotropic, that flames remain approximately 

'spherical', that mean flow velocities are such that flame kernels are bodily transported 

relatively little during the available combustion period and the consistent definition of 

'fast', 'middle' and 'slow' cycles for residual free homogenous fuel-air mixtures are 
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useful features for step by step model development (before application to more complex 

flows). 

The validity of ported engine data for validation of modelling of poppet-valved 

production engines has sometimes been questioned. Clearly the engine breathing (e.g. 

volumetric efficiency) flow and turbulence generation processes will be different. 

However it is argued that once the ports/valves are closed, the combustion process will 

be governed by the same laws of physics and chemistry in both ported and valved 

engines and that models incapable of modelling combustion in the current engines 

(LUPOE I-D and LUPOE2-P) must also be deficient for poppet-valve engines. The 

problem becomes that of defining the parameters (e.g. u', L ) controlling the burn rate in 

thermodynamic cycle modelling and defining the 'boundary conditions' for CFO 

modelling. The latter involves modelling the flow into the ported engine, currently 

being undertaken using Ricardo's VECTIS CFD code at Volkswagen (GET-C02 final 

report, 2005), or comprehensively defining the in-cylinder flow and turbulence at port 

closure via experiment. 

8.3 Recommendations for Future Work 

Disc Chamber 

The database for the current LUPOE 1-0 engine build, with radially opposed intake 

ducts to create essentially quiescent (turbulent but no mean flow) conditions during the 

combustion period, is considered essentially complete. However, it would be useful to 

build a disc version of LUPOE2-P in order to see whether the 'colander' exhaust 

arrangement reduces the intermittent cyclic variation in flow pattern noted by 

Cairns (2001) and so cyclic variation in flame development. Such a version might also 

enable extension of the database to higher nominal compression ratio. Similarly, it 

would be useful to explore higher engine speed (i.e. above 2000 rpm) - although this 

would require a different dynamometer and checks on the maximum speed safely 

attainable with the engine crankcases/crankshafts/connecting rods/pistons currently 

available. 
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It might also be worth bringing the prior database for the axial versions of LUPOE 1-0, 

with tangentially oriented intakes (Lee, 1995; Atashkari, 1997; Gillespie, 1998; Cairns, 

2001), to the level attained for the quiescent case. Similarly, examination of alternative 

spark plug locations might provide useful additional model validation data (by changing 

the relationship between flame radius and flame/wall wetted surface areas), as well as 

allow systematic investigation of the effects of the spark gap orientation noted in the 

current pent-roof preliminary experiments and in the work of others (Burgett et aI., 

1972; Pischinger and Heywood, 1990; Aleiferis, 2000). 

Pent-Roof Chamber 

Although the geometry of the LUPOE2-P idealised pent-roof chamber was simple, the 

flow within the chamber proved complex. The 2-D PTV experiments gave a good 

insight into the general features of the flow for the central plane; however, the basically 

uni-directional flow suggested at some conditions requires reverse direction flow in 

other planes (in order to satisfy continuity) which could not always be confirmed by the 

LOV measurements. This might have been associated with the ensemble average nature 

of the LOV measurements or possibly, by strong circumferential flows close to the 

cylinder walls, where measurement was impossible. Further investigation (PIV, LOV 

possibly involving conditional sampling and/or PTV), is necessary to define properly 

the flow in the LUPOE2-P engine. 

As well as better defining the conditions in the current build of LUPOE2-P, in order to 

obtain maximum benefit of the data collected to date, it would be useful to explore the 

effects on intake/exhaust geometry and flow rates in an attempt to establish the more 

regular flow patterns initially expected for this idealised pent-roof design. 

In the current study, investigation of the in-cylinder flow and turbulence was 

concentrated on those pertaining during the combustion period. To assist CFO 

validation, it would be beneficial to define fully the in-cylinder conditions at port 

closure. This would provide appropriate boundary conditions for CFO modelling; this 

might possibly avoid the need to encompass modelling of intake and (closing) port 

flows, associated with the need to extend the CFO domain to include these to establish a 

reliable model boundary condition (GET-C02 final report). 
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In order to provide a well defined 'baseline' condition for modelling 

development/validation, the current study adopted residual free running on pure iso

octane reference fuel. The database should be extended to encompass controlled levels 

of simulated residual gas (adopting the system developed by Smallbone (2004), 

involving skip-fired operation with metered quantities of residual gases into the intake 

charge) and primary reference fuels (iso-octane/n-heptane mixtures) as well as 

commercially available gasolines and surrogates (well defined mixtures of pure 

hydrocarbons representative of the major alkane/aromatics etc. constituently of real 

gasolines). Similarly, it would be sensible to conduct experiments in the Leeds bombs 

(Bradley et aI., 1998) to establish laminar burning velocity data to be used in models 

applied to the suggested new engine data. 
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and directions at (a) 750 rpm, (b) 1500 rpm. 
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for, (a) LUPOE1-D (in the centre) and LUPOE2-P (at different positions through the 

chamber), (b) line fitted through the measured points at TDC for LUPOE2-P with 

equation of the line. 
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APPENDIX A: LDV General specifications and setting adopted 

Set-up No. of valves* Seeded air Main air 
open flow rate flow rate 

[%] [%1 
Back scatter set up 1 at 750& 1000rpm 

(BS) 1&1/2 at 1500 rpm 10 70 
2 at 1900 rpm 

Forward scatter set up 1 at all speeds 3 77 
(FS) 

* Number of valves opened in SCITEC LS-IO liquid seed generator, 
shown in Figure 4.9. 

The combined % of each BS or FS was 80% of the 400Llmin of 
the air mass flow (equivalent to 6.89 g/sec). 

Table At Air flow-rate set up for forward and back scatter configurations (LUPOE2-P) 

Advanced 

High voltage activation Manual 

Anode current warning level 90% 

Data collection mode Burst 

Frequency shift 

40 MHz frequency shift Enable 

Variable frequency shift Disable 

Synchronisation Input Signals 

Sync. 1 BNCI 

Sync. 2 None 

Trigger edge sync. 1 Positive 

Trigger edge sync. 2 Negative 

Reset encoder None 

Encoder None 

Start measurement None 

Stop measurement None 

Burst detector enable None 

External burst detector trigger None 

Reference clock mode Internal 

Table A2: DANTIC LOV Processor properties settings (Thomas, 2002) 
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Max. Samples 200000 

Max. Acquisition time 60.005 at 1500& 1900 rpm 
120.000s at 750& I 000 rpm 

Fi lter method Overlapped 

Scope zoom 400% 

Encoder data Excluded 

High voltage Off 

Table A3 Group I properties 

Centre frequency 0.00 mls 

Bandwidth 18 .00 mls 

Record length mode Fixed 

Record length 128 

Maximum record length 128 

High voltage level 1000 V 

Signal gain 26 dB for 
Forward scatter 

24 dB for 
Back scatter 

Burst detector SNR level o dB 

Scope display Burst signal 

Scope trigger channel this 

Level validation ratio 4 

Table A4 LOY} channe l properties 
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Engine Speeds 750 rpm 1000 rpm 1500 rpm 1900 rpm 

Record length mode Fixed Fixed Fixed Fixed 

Record length 128 128 128 128 

Signal gain 26' dB 26'dB 26 dB 26 dB 

Burst detector SNR level -3,0 dB -3,0" dB -3,0 dB -3,0 dB 

Level validation ratio 4 4 4 4 

" value -3 dB for back scatter and 0 dB for forward scatter configuratIOn 
'value 24 dB for back scatter configuration and 26 dB for forward scatter configuration 

Table AS Some LOYI channel properties used in this work (LUPOE2-P) 

Wavelength 514.500 nm 

Focal length 160.000 mm 

Beam diameter 1.400 mm 

Expander ratio 1.000 

Beam spacing 38.000mm 

Table A6 Optical LOY System properties 

In forward scatter, the beams were focused through a curved side window. Oue to this 

effect, both the focal length and beam-crossing angle were corrected, as shown in 

Table A7. 

In back scatter, transition of beams through thick quartz window refracted the position 

of the beam crossing and moved its position forward. This shift can be calculated using 

Snell's law for light beams entering an optically denser medium according to Atashkari: 

, b(1 cosa 1 Z = Z + - -;::::==== .Jn2 -sin 2 a 

where z = 160 mm is the original focal length of front lens, b = 40 mm is window 

thickness, n = 1.4 is refractive index of quartz and a =6.7 degrees is beam crossing half 

angle. Applying this refractive index correction, the correct focal length was 165.8 mm. 
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Radial position in cylinder 30 20 10 0 -10 -20 -30 
[mm] 

Beam-cross angle 
10.43 9.41 8.31 7.82 7.15 6.84 6.31 

[deg] 

Corrected focal length 
(BSA software input) 208.2 230.8 261.5 278 304.1 318 344.7 

[mm] 

Table A7: Measured beam-cross angles and the corresponding software input focal 

lengths (Thomas 2002) 
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LDV Channel Properties (Forward and back scatter configurations) 

(1) Forward scatter-LUPOE2-P Engine 

At various probe positions (A, B, C - centre) within the pent-roof chamber, refer to 

Table 7.2 and Figure 7.19. 

Point A 

LDVI channel properties for Point A (u- component) 

Engine Speeds 750 rpm 1000 rpm 1500 rpm 1900 rpm 

Centre frequency 0.00 mls 0.00 mls 0.00 mls 0.00 mls 

Bandwidth 35.27 mls 47.03 mls 47.03 mls 70.55 m/s 

LDVI channel properties for Point A (v- component) 

Engine Speeds 750 rpm 1000 rpm 1500 rpm 1900 rpm 

Centre frequency 0.00 m/s 0.00 mls 0.00 m/s 0.00 m/s 

Bandwidth 24.54 mls 24.54 m/s 24.54 49.08 mls 

Point C (centre) 

LDVI channel properties for Point C (u- component) 

Engine Speeds 750 rpm 1000 rpm 1500 rpm 1900 rpm 

Centre frequency 0.00 mls 0.00 mls 0.00 m/s 0.00 mls 

Bandwidth 42.44 mls 56.59 m/s 56.59 mls 56.59 mls 

Point B 

LDVI channel properties for Point B (u- component) 

Engine Speeds 750 rpm 1000 rpm 1500 rpm 1900 rpm 

Centre frequency 4.03 mls 6.06 mls 6.06 mls 8.09 mls 

Bandwidth 32.35 mls 48.52 mls 48.52 mls 64.7 mls 
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(2) Back scatter-LUPOE2-P Engine 

At two probe positions (0 and E) within the pent-roof chamber, refer to Table 7.2 and 

Figure 7.19. 

Point D 

LOVl channel properties for Point D (so) 

Engine Speeds 750 rpm 1000 rpm 1500 rpm 1900 rpm 

Centre frequency 6.13 m/s 6.13 m/s S.18 m/s S.ISm/s 

Bandwidth 49.08 mls 49.08 m/s 65.45 mls 65.45 mls 

LOVl channel properties for Point D (wo) 

Engine Speeds 750 rpm 1000 rpm 1500 rpm 1900 rpm 

Centre frequency 6.13 mls 0.00 mls 0.00 mls 0.00 m/s 

Bandwidth 49.08 mls 49.08 mls 65.45 mls 65.45 m/s 

Point E 

LOVl channel properties for Point E (St) 

Engine Speeds 750 rpm 1000 rpm 1500 rpm 1900 rpm 

Centre frequency 6.13 m/s 6.13 mls 8.18 m/s 8.18 m/s 

Bandwidth 49.08 mls 49.08 m/s 65.45 mls 65.45 mls 

LOVl channel properties for Point E (WE) 

Engine Speeds 750 rpm 1000 rpm 1500 rpm 1900 rpm 

Centre frequency 0.00 m/s 0.00 mls 0.00 m/s 0.00 mls 

Bandwidth 49.08 mls 49.08 mls 65.45 mls 65.45 m/s 
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