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Abstract 

Neuromodulation, the alteration of nerve activity through the use of targeted 

electrical stimulation or pharmacology, is a rapidly advancing field with 

applications in a plethora of conditions e.g. epilepsy. Many of these 

techniques are invasive and expensive such as vagus nerve stimulation 

limiting their applicability to patient populations. Autonomic nervous system 

imbalance is a characteristic of many conditions including heart failure. The 

ability to favourable alter autonomic function non-invasively would, therefore, 

offer potential therapeutic benefit to a large number of patients. This thesis 

investigated the effects of two non-invasive neuromodulatory techniques on 

cardiovascular autonomic function in humans – transcutaneous vagus nerve 

stimulation (tVNS) and transcranial direct current stimulation (tDCS). 

 tVNS was performed using surface electrodes placed on the ear to 

stimulate the auricular branch of the vagus nerve (ABVN). High pulse width 

and frequency tVNS was found to alter heart rate variability (HRV) towards 

parasympathetic predominance in healthy participants (n = 34) and heart 

failure patients (n = 8). Furthermore, microneurography recordings 

performed in healthy participants (n = 10) revealed that this effect may have 

been  mediated, at least in part, by a reduction in muscle sympathetic nerve 

activity (MSNA). 

 tDCS was performed by placing electrodes over the motor cortex and 

the contralateral supraorbital region of healthy participants (n = 22). Anodal 

stimulation (positive electrode over the motor cortex) altered HRV towards 

sympathetic predominance and increased MSNA whereas cathodal and 

sham tDCS had no effect. 

 tVNS and anodal tDCS over the motor cortex had opposite effects on 

cardiovascular autonomic function. These techniques may be tailored to the 

needs of individual patients to shift cardiovascular autonomic function 

towards either parasympathetic (tVNS) or sympathetic (tDCS) 

predominance. tVNS and tDCS are simple, non-invasive and inexpensive 

allowing a wide cohort of patients to access these potential therapies. 
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Chapter 1 

General Introduction: the autonomic nervous system in 
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1.1 The autonomic nervous system  

The autonomic (Greek auto = self, nomos = rule) nervous system (ANS) is 

appropriately named as it generally operates without conscious input to 

regulate visceral function and maintain homeostasis. The ANS has three 

divisions; the sympathetic, parasympathetic and enteric divisions. The 

enteric division is situated in the gastrointestinal tract and controls digestive 

reflexes. The sympathetic and parasympathetic divisions innervate cardiac 

muscle, smooth muscle and exocrine glands. Many organs receive dual 

input from both the sympathetic and parasympathetic divisions and these 

divisions are often considered to be functionally antagonistic. For example, 

the sympathetic division is regarded as responsible for the ‘fight or flight’ 

response e.g. increasing heart rate and the parasympathetic division as 

active during ‘rest and digest’ conditions e.g. decreasing heart rate. In reality 

the ANS is more sophisticated; both sympathetic and parasympathetic 

divisions are tonically active providing integrated and co-ordinated 

responses that allow fine-tuned control of visceral function and homeostasis. 

Indeed, heart rate is under tonic inhibition at rest through parasympathetic 

input to the sino-atrial node (Jose and Collison, 1970). The initial increase in 

heart rate during exercise is due to parasympathetic withdrawal that is 

followed by increased sympathetic activity to further increase heart rate 

(Fagraeus and Linnarsson, 1976). The ability to rapidly alter sympathetic 

and parasympathetic activity in response to changing physiological demands 

is essential to healthy function. This can be impaired in numerous conditions 

such as heart failure with detrimental results. 

 

1.1.1 The sympathetic nervous system 

The sympathetic nervous system is widely distributed throughout the body 

and innervates many organs including lungs, heart, blood vessels, sweat 

glands, erector pili muscles and many abdominal and pelvic organs. The cell 

bodies of sympathetic preganglionic neurones are located in the lateral 

horns of the spinal cord from the level of the first thoracic segment to the 

second lumbar segment (T1-L2). The small–diameter, myelinated axons of 

these neurones exit the spinal cord in the ventral nerve roots and enter the 
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ganglia of the sympathetic chain through the white rami communicantes 

(Gilbey and Spyer, 1993). The axons of preganglionic sympathetic neurones 

may travel rostrally or caudally in the sympathetic chain before synapsing 

with postganglionic sympathetic neurones (Gilbey and Spyer, 1993). Non-

myelinated postganglionic sympathetic neurones exit the sympathetic chain 

through the grey rami communicantes and are distributed to their respective 

organs in branches of the spinal nerves or along the carotid arteries. Some 

preganglionic neurones pass through the sympathetic chain without 

synapsing and exit as the sympathetic splanchnic nerves. These project to 

the prevertebral ganglia including the coeliac, superior mesenteric and 

inferior mesenteric ganglia and then synapse with postganglionic neurones. 

Some of the preganglionic fibres in the greater splanchnic nerve project 

directly to the medulla of the adrenal gland (Strack et al., 1989). The cells of 

the adrenal medulla are modified postganglionic sympathetic neurones that 

secrete adrenaline and noradrenaline.  

The neurotransmitters used in the sympathetic nervous system are 

acetylcholine and noradrenaline. Sympathetic preganglionic neurones 

release acetylcholine (ACh) which activates postganglionic sympathetic 

neurones. Postganglionic sympathetic neurones primarily use noradrenaline 

which acts on alpha or beta receptors of the effector organ. The exception is 

sympathetic innervation of sweat glands through cholinergic postganglionic 

sympathetic axons (Dale and Feldberg, 1934) which act on muscarinic 

receptors (Patton, 1948).  

 

1.1.2 The parasympathetic nervous system 

The parasympathetic nervous system is described as having a craniosacral 

outflow as preganglionic parasympathetic neurones are located in brainstem 

nuclei and sacral spinal cord segments (S2-4). The parasympathetic 

brainstem cranial nerve (CN) nuclei include the Erdinger-Westphal nucleus 

(CN III – oculomotor nerve), the superior and inferior salivatory nuclei (CN 

VII – facial nerve and CN IX – glossopharyngeal nerve), the dorsal vagal 

nucleus (DVN) and nucleus ambiguus (NA; both CN X – vagus nerve). The 

majority of cardiac preganglionic neurones are located in the NA as revealed 
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by retrograde labelling following injection of cholera-toxin conjugated to 

horse radish peroxidase into rat myocardium (Izzo et al., 1993). Extracellular 

recordings of cardiac preganglionic neurones in the NA of cats revealed that 

they fire in synchrony with the cardiac cycle (McAllen and Spyer, 1978). 

Simultaneously recording afferent baroreceptor activity from the carotid 

sinus nerve confirmed that this is due to baroreceptor input and synchrony 

could be abolished by compressing the carotid arteries and sectioning the 

aortic nerve (McAllen and Spyer, 1978). In contrast to the sympathetic 

nervous system, the axons of parasympathetic preganglionic neurones are 

much longer as parasympathetic ganglia are located close to the target 

organ, however, they also use ACh as a neurotransmitter. Postganglionic 

parasympathetic neurones are relatively short and use ACh as a 

neurotransmitter which acts on muscarinic receptors of the target tissue.  

 

1.1.3 The enteric nervous system 

The enteric nervous system is relatively independent, however, it does 

receive some sympathetic and parasympathetic input. It is composed of two 

nerve plexuses that extend the length of the gastrointestinal tract. The 

myenteric (Auerbach’s) plexus between the circular and longitudinal muscle 

layers is responsible for co-ordinating muscle contraction. The submucosal 

(Meissner’s) plexus lies between the circular muscle and mucosa and 

regulates secretion. The enteric nervous system is vital in regulating 

gastrointestinal function, however, as this is not the focus of this thesis it will 

not be described in detail. 

 

1.1.4 Central control of cardiovascular autonomic function 

Precise and dynamic regulation of the autonomic control of the 

cardiovascular system is essential for healthy function and to respond to 

changing physiological demands. To achieve this, afferent information from 

the cardiovascular system is integrated into central pathways which control 

autonomic outflow. The nucleus tractus solitarius (NTS), located in the 

dorsal medulla, is essential in processing cardiovascular reflexes and 
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maintaining cardiovascular homeostasis e.g. arterial baoreceptor reflex 

controlling blood pressure. The NTS is the principal recipient of 

cardiovascular receptor afferents conveying information from baroreceptors 

and chemoreceptors through the glossopharyngeal and vagus nerves. This 

was evidenced by retrograde neuronal tracing of the carotid sinus nerve and 

aortic depressor nerve in cats (Ciriello et al., 1981). The NTS also receives 

many other visceral and somatic inputs that influence cardiovascular 

function including afferents from skeletal muscles (Kalia et al., 1981) and 

kidneys (Weiss and Chowdhury, 1998). 

The NTS also receives afferents from other autonomic centres both 

medullary (e.g. ventrolateral medulla and medullary raphe nuclei) and 

supramedullary (e.g. paraventricular nucleus [PVN], lateral hypothalamic 

nucleus, central nucleus of the amygdala and insular cortex) as 

demonstrated by neuronal tracing studies in rats (van der Kooy et al., 1984) 

(Ross et al., 1981) and rabbits (Schwaber et al., 1982; Gieroba et al., 1991). 

Furthermore, the NTS also projects to parts of the brain and spinal cord 

important for cardiovascular control including the lateral horn of the spinal 

cord, rostral and caudal ventrolateral medulla, NA, PVN and central nucleus 

of the amygdala and receives reciprocal projections from these areas too as 

demonstrated by anterograde and retrograde neuronal tracing in cats 

(Loewy and Burton, 1978) and rats (Ricardo and Koh, 1978; Ross et al., 

1985). These numerous and reciprocal projections to the NTS allow the NTS 

to integrate and influence reflex autonomic control at the level of the 

brainstem and also allows higher centres to influence autonomic function. 

 In addition to the NTS, other brainstem areas important for autonomic 

control include the DVN, NA, caudal ventrolateral medulla (CVLM) and 

rostral ventrolateral medulla (RVLM). As mentioned in Section 1.1.2, the 

DVN and NA contain preganglionic parasympathetic neurones. The DVN lies 

ventral to the NTS and the NA lies dorsolateral to the inferior olivary nucleus. 

There are also sparse preganglionic parasympathetic neurones located in 

the reticular formation which lies between the DVN and NA (Izzo et al., 

1993). The majority of cardiac preganglionic neurones are located in the NA 

which also contains motor neurones innervating the muscles of the pharynx 

and larynx. It is possible to differentiate between these two groups of 
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neurones electrophysiologically as cardiac neurones show pulse 

synchronous activity that is abolished by baroreceptor denervation (McAllen 

and Spyer, 1978).  

The RVLM is vital in regulating blood pressure (Dampney, 1994) and 

has projections to the lateral horn of the spinal cord demonstrated by 

microinjecting the retrograde neuronal tracer horseradish peroxidase into the 

RVLM (Ross et al., 1984b). It was later shown that the RVLM projects 

directly to sympathetic preganglionic neurones in the spinal cord by 

combining anterograde tracing of RVLM projections with retrograde tracing 

of preganglionic neurones innervating the adrenal medulla and visualising 

the results using electron microscopy (Zagon and Smith, 1993). Electrical 

stimulation of the RVLM in anesthetised rats caused increased blood 

pressure and heart rate plus increased plasma noradrenaline levels. (Ross 

et al., 1984a). Microinjection of excitatory amino acids (L-glutamate and 

kainic acid) into the RVLM also increased blood pressure and heart rate 

whereas the inhibitory amino acid GABA decreased blood pressure and 

heart rate (Ross et al., 1984a). The RVLM is pivotal in maintaining blood 

pressure and lesioning of this area caused a decrease in resting blood 

pressure (Dampney and Moon, 1980) indicating that the RVLM has a tonic 

influence on vasoconstriction. The importance of different cell types in the 

RVLM is being investigated using optogenetics. By introducing a virus into 

the RVLM that expresses channel rhodopsin under the control of a specific 

promoter it is possible to selectively stimulate neurones using light. This 

elegant method has recently revealed that stimulating only 

catecholaminergic neurons within the NTS increased blood pressure and 

sympathetic nerve activity providing direct evidence that catecholaminergic 

neurones in the RVLM are sympathoexcitatory (Abbott et al., 2009). 

The CVLM projects to the RVLM and is essential in regulating 

neuronal activity of the RVLM. Direct projections from the CVLM to 

sympathetic premotor neurones of the RVLM were demonstrated by 

combining injection of an anterograde neuronal tracer into the CVLM and a 

trans-ganglionic retrograde tracer into the adrenal medulla which revealed 

double labelled neurones in the RVLM (Li et al., 1992). Neurones in the 

CVLM have an inhibitory effect on the RVLM that can be elicited by 
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microinjecting glutamate into the CVLM causing a decrease in blood 

pressure (Blessing, 1988). This effect was abolished by injecting bicuculline 

(GABA antagonist) into the RVLM, indicating that the CVLM acts on the 

RVLM through a GABAergic pathway (Blessing, 1988). These robust 

findings could be enhanced through the use of optogenetics to directly 

stimulate CVLM neurones, however, this has not yet been performed. 

The raphe nuclei, located in the midline of the medulla, project to both 

supramedullary areas of autonomic control (PVN) (Standish et al., 1995) and 

the lateral horn of the spinal cord (Allen and Cechetto, 1994; Standish et al., 

1995) as revealed by retrograde neuronal tracing. The raphe nuclei also 

project to the ventral horn of the spinal cord and injections of neuronal tracer 

into lateral and ventral horns revealed double labelled neurones in the raphe 

nuclei (Allen and Cechetto, 1994). This suggests that the raphe nuclei may 

integrate autonomic and somatic motor activity. Stimulation of the raphe 

nuclei in cats caused both increases and decreases in blood pressure 

providing direct evidence of their involvement in autonomic regulation 

(McCall, 1984). 

Supramedullary areas also play an important role in autonomic 

regulation. The hypothalamus is key in integrating neuroendocrine and 

autonomic functions whereas the insular cortex and the central nucleus of 

the amygdala co-ordinate emotional responses. The PVN of the 

hypothalamus has projections to the RVLM and preganglionic sympathetic 

neurones in the lateral horn of the spinal cord as demonstrated by injecting 

fluorescent retrograde tracers into these areas (Pyner and Coote, 2000). 

The PVN also projects to the DVN and NA (Portillo et al., 1998; Palkovits, 

1999) and thereby influences parasympathetic activity. In addition to these 

diverse projections, the PVN is also neurochemically diverse containing 

GABAergic, glutamatergic, dopaminergic, oxytocinergic and 

vasopressinergic neurones (Pyner, 2009). This variety explains the 

conflicting results of stimulation studies of the PVN which caused either 

increases or decreases in blood pressure (Yang and Coote, 1998). 
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1.1.5 Reflex control of cardiovascular autonomic function 

Reflex control of cardiovascular function permits tight regulation of the 

cardiovascular system and rapid responses to physiological challenges such 

as postural changes. The arterial baroreceptor reflex is a good example of 

reflex autonomic regulation to maintain blood pressure and prevent 

excessive perturbations. Baroreceptors are specialised stretch receptors 

located in the carotid sinus and aortic arch which project to the NTS through 

the vagus (aortic) and glossopharyngeal (carotid) nerves (Ciriello et al., 

1981). An increase in blood pressure causes stretching of carotid and aortic 

arterial walls and increases baroreceptor firing. Through a glutamatergic 

projection from the NTS, this causes activation of the CVLM which inhibits 

the RVLM (Agarwal et al., 1990). This, in turn, decreases sympathetic 

outflow resulting in vasodilation to decrease blood pressure. The NTS also 

activates the NA to increase cardiac parasympathetic activity and decrease 

heart rate (Neff et al., 1998). Conversely, a decrease in blood pressure 

disinhibits the RVLM leading to an increase in sympathetic activity and 

vasoconstriction to preserve blood pressure (Minson et al., 1994). 

In addition to the arterial baroreceptor reflex, cardiopulmonary 

reflexes mediated by low pressure stretch receptors in the heart, great 

vessels and lung vasculature modulate central sympathetic outflow (Mitchell 

and Victor, 1996; Minisi, 1998). Application of lower body negative pressure 

< -20 mmHg unloads cardiopulmonary baroreceptors by decreasing central 

venous pressure without altering arterial blood pressure, allowing the effects 

of cardiopulmonary reflexes to be studied (Jacobsen et al., 1993). Recording 

muscle sympathetic nerve activity (MSNA) during lower body negative 

pressure in healthy humans revealed increased burst frequency, incidence 

and amplitude (Vissing et al., 1989; Jacobsen et al., 1993). Activation of 

cardiopulmonary baroreceptors has also been investigated in humans using 

lower body positive pressure. Pressures of 10-20 mmHg caused an increase 

in atrial dimensions measured using echocardiography and this was 

accompanied by a decrease in MSNA (Fu et al., 1998). Vagal afferents are 

involved in this reflex as blocking the cervical vagus nerves in dogs by 

cooling to 0 – 2 ºC attenuated cardiopulmonary reflex responses (Bishop 

and Peterson, 1978). The cardiopulmonary reflex may influence the arterial 
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baroreflex particularly during exercise when the arterial baroreflex is reset. 

Using manoeuvres to increase central blood volume and hence load 

cardiopulmonary baroreceptors during exercise e.g. cycling in a supine 

position as opposed to upright, attenuated the increase in blood pressure 

and resetting of the baroreflex sensitivity curve (Ogoh et al., 2007).  

The chemoreflex is also an important component in maintaining 

homeostasis and influences sympathetic activation. The peripheral 

chemoreceptors are located in the carotid bodies and respond most 

sensitively to hypoxia whereas central chemoreceptors in the brainstem 

respond to hypercapnia (Guyenet, 2000). Peripheral chemoreceptor 

afferents project to the NTS and activation of the chemoreflex causes 

increased blood pressure, bradycardia and tachypnoea. The increase in 

blood pressure, through increased sympathetic vasoconstrictor activity, is 

mediated by the RVLM and is abolished by bilateral microinjection of the 

glutamate receptor antagonist kynurenic acid into the RVLM (Koshiya et al., 

1993).  

Similarly, central chemoreceptor activation causes 

sympathoexcitation, increased blood pressure and tachypnoea, however, 

the mechanisms are unclear (Somers et al., 1989). Sympathetic nerve 

activity varies with respiration, first described in anaesthetised rabbits and 

anaesthetised or decerebrate cats (Adrian et al., 1932). Respiratory 

modulation of muscle sympathetic nerve activity has also been 

demonstrated in humans using microneurography, with a peak in activity at 

end-expiration and minimum activity at end-inspiration (Eckberg et al., 

1985). The source of this respiration dependent modulation is unclear 

however, simultaneous extracellular recordings of barosensitive GABAergic 

CVLM neurones and phrenic nerve activity in the rat revealed a central 

respiratory drive of neuronal activity in the CVLM (Mandell and Schreihofer, 

2006). GABAergic CVLM neurones inhibit RVLM neurones which also 

exhibit central respiratory drive activity that mirrors that of CVLM neurones 

and this could explain respiration dependent modulation of sympathetic 

activity (Mandell and Schreihofer, 2006). Independent of central respiratory 

drive, CNS PCO2 also influences sympathetic activity (Guyenet et al., 2010). 

It is postulated that this could be mediated by neurones of the retrotrapezoid 
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nucleus that are sensitive to PCO2 and project to the CVLM and RVLM 

(Rosin et al., 2006) in rats, however, there is currently no direct evidence of 

this pathway.  

Metabolically sensitive muscle afferents (group III and IV afferents) 

activated by metabolites (e.g. lactate, ATP, pH) also influence 

cardiovascular autonomic control through the metaboreflex (Guyenet, 2006). 

This was first described in man by Alam and Smirk (1937) who reported that 

placing inflatable cuffs around exercising limbs to prevent blood flow and 

induce ischaemia increased blood pressure to a greater degree than 

exercise with unimpeded circulation. Furthermore, leaving the cuffs in place 

to preserve ischaemia after exercise had ceased maintained the increase in 

blood pressure. Recording MSNA during post-exercise ischaemia, induced 

by inflating arm cuffs after isometric handgrip exercise, revealed that in 

addition to a maintained increase in blood pressure, there was also a 

maintained increase in MSNA burst frequency and amplitude (Mark et al., 

1985). Interestingly, heart rate was only elevated during exercise and 

decreased during post exercise ischaemia (Mark et al., 1985). There has 

been some debate as to the effects of the metaboreflex on the autonomic 

control of heart rate. Recently, the effects of metaboreflex activation on heart 

rate have been elucidated through the use of parasympathetic 

(glycopyrrolate) and beta-adrenergic (metoprolol or propanolol) blocking 

agents administered to healthy human volunteers who performed leg cycling 

and isometric handgrip exercises. Parasympathetic blockade augmented the 

elevation in heart rate during post exercise ischaemia induced after isometric 

handgrip exercise performed at 25% of maximal voluntary contraction but 

had no effect when this exercise was performed at 40% MVC (Fisher et al., 

2010; Fisher et al., 2013). Parasympathetic blockade also had no effect on 

heart rate during post exercise ischaemia following leg cycling exercise 

(Fisher et al., 2013). Beta blockade abolished heart rate elevation following 

isometric handgrip exercise at 25% MVC and attenuated heart rate elevation 

following 40% MVC handgrip exercise and had no effect on heart rate 

elevation following leg cycling exercise. The increase in heart rate following 

greater effort (40% MVC isometric handgrip) or larger muscle mass (leg 

cycling exercise) appears to be mediated by increased cardiac sympathetic 
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activity with cardiac parasympathetic withdrawal whereas exercise at lower 

intensity (25% MVC isometric handgrip) causes a smaller elevation in heart 

rate which may be due to parasympathetic reactivation. It therefore requires 

larger exercising muscle mass or greater effort for the metaboreflex to 

overcome the reflex decrease in heart rate and parasympathetic activation 

that occurs after cessation of exercise. 

 

1.2 Measuring cardiovascular autonomic function 

The majority of techniques to measure autonomic function in humans are 

indirect due to the difficulty and invasiveness of direct recordings. This 

approach provides estimates of autonomic balance rather than directly 

quantifying sympathetic and parasympathetic activity. 

 

1.2.1 Non-invasive estimates of autonomic function  

1.2.1.1 Resting heart rate 

Resting heart rate (RHR) is one of the simplest measures of sympathovagal 

balance and is usually 60-80 beats per minute (bpm). RHR can be much 

lower in trained athletes at 30 bpm and, conversely, can be as high as 100 

bpm in sedentary individuals (Cook et al., 2006). High RHR (implying 

increased sympathetic activity and/or decreased parasympathetic activity) in 

healthy population studies was associated with an increased risk of mortality 

(Shaper et al., 1993; Jouven et al., 2005). A long term study of 5713 

asymptomatic working men aged 42 to 53 years (Jouven et al., 2005) found 

that a RHR > 75 bpm resulted in a four-fold risk of sudden death compared 

to a RHR < 60 bpm. RHR is an indicator of the net contribution of the 

parasympathetic and sympathetic nervous systems to cardiac control. 

 

1.2.1.2 Heart rate recovery 

The decline in heart rate after exercise is another indication of autonomic 

cardiovascular regulation. The immediate heart rate recovery (HRR) after 
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exercise is mainly due to vagal activity as vagal blockade with atropine slows 

HRR in the 2 minute post exercise period (Imai, 1994). Studies investigating 

HRR in various populations have found that a low rate of recovery can be a 

strong predictor of mortality (Cole et al., 1999; Shetler et al., 2001; Jouven et 

al., 2005). A long term study of HRR in 2428 patients who had been referred 

for first time coronary angiography found that, after adjustments for age, sex, 

medication and resting heart rate etc, a HRR of ≤12 bpm in the first minute 

after exercise was a strong predictor of mortality (adjusted relative risk 2.0; p 

< 0.001) (Cole et al., 1999). This finding was confirmed by Shetler et al. 

(2001) who also examined HRR in 2193 patients referred for coronary 

angiography and reported that a HRR <22 bpm was predictive of a higher 

risk of mortality. This value differs from that given by Cole et al., however, 

Shetler et al. used a longer recovery time of 2 minutes after exercise. Of 

particular interest is a long term study of HRR in 5713 asymptomatic men 

(42-53 years) (Jouven et al., 2005) which reported that HRR < 25 bpm was a 

strong predictor of sudden death from myocardial infarction (MI) (relative 

risk, 2.2). 

 

1.2.1.3 Baroreflex sensitivity 

Baroreflex sensitivity (BRS) can be investigated through the change in heart 

rate in response to a change in blood pressure (BP). There are a number of 

techniques to measure BRS in the laboratory, however, some are invasive 

e.g. using drugs (phenylephrine/nitroprusside) to produce transient changes 

in blood pressure (Parati et al., 2000; La Rovere et al., 2008). Traditionally, 

measurements of BRS utilised intra-arterial monitoring of blood pressure, 

however, a strong correlation was found between measurements using this 

technique and non-invasive BP measurement using photoplethysmography 

(Pinna et al., 2000). This offers an easily implemented technique to measure 

BRS. 

A non-pharmacological alternative to induce changes in BP is to use 

the Valsalva manoeuvre. This requires forced expiration (straining) either 

against a closed glottis or resistance such as blowing into a tube connected 

to a manometer (approximately 40 mmHg). The changes in blood pressure 
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and heart rate during the Valsalva manoeuvre can be divided into 4 phases 

(Freeman, 2006). In phase I, at the onset of straining, there is a transient 

increase in blood pressure and a fall in heart rate. This is a result of the 

increase in intra-thoracic pressure compressing the aorta and forcing blood 

into the peripheral circulation. In phase II (during straining) there is a 

decrease in blood pressure due to impaired venous return. This results in 

sympathetic activation with tachycardia and vasoconstriction (Parati et al., 

2000; La Rovere et al., 2008). At the end of straining (phase III) there is a 

decrease in blood pressure and an increase in heart rate due to the release 

of intra-thoracic pressure. This is followed by an increase in blood pressure 

above baseline values (overshoot, phase IV) due to unimpaired venous 

return and residual vasoconstriction. This leads to parasympathetic 

activation to reduce heart rate and thereby decrease blood pressure (Parati 

et al., 2000; La Rovere et al., 2008). The Valsalva manoeuvre can be 

considered a natural challenge to the baroreceptors compared to 

pharmacological methods, however, it can be difficult to perform. The neck 

chamber technique, which can apply positive or negative pressure to the 

neck leading to deactivation or activation of the baroreceptors, is better 

tolerated although the equipment is expensive (Parati et al., 2000; La 

Rovere et al., 2008). Alternatively, spontaneous changes in blood pressure 

can be used to assess BRS and are arguably more physiological requiring 

no interventions.  

There are two main approaches to measuring spontaneous BRS – 

the sequence method and spectral methods. The sequence method 

identifies sequences of 3 or more heart beats where increases or decreases 

in systolic blood pressure are followed by lengthening or shortening of inter-

beat intervals measured between the R peaks of the ECG (R-R intervals) 

(Parati et al., 2000; La Rovere et al., 2008). Spectral methods use a transfer 

function between oscillations in systolic blood pressure and R-R interval in 

the same frequency band to estimate BRS (Parati et al., 2000; La Rovere et 

al., 2008). The benefits of both these techniques are that they are simple, 

non-invasive and inexpensive, however they provide estimates of BRS 

rather than direct measurements. 
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Impaired BRS (<3 ms/mmHg) has been shown by the ATRAMI 

(Autonomic Tone and Reflexes After Myocardial Infarction) study to be an 

independent predictor of mortality (La Rovere et al., 1998). This was 

demonstrated by measuring BRS using the phenylephrine technique in 

almost 1300 patients after a recent MI (< 28 days). Impaired BRS, using 

non-invasive methods of BRS measurement, has also been shown to be a 

significant risk factor (Pinna et al., 2005), however, this technique is limited 

as it cannot be applied if ectopic beats (e.g. premature ventricular 

complexes) occur. 

 

1.2.1.4 Heart rate turbulence 

Heart rate turbulence (HRT) takes advantage of the oscillations in heart rate 

that occur during an ectopic heart beat and may provide an alternative to 

BRS in subjects prone to ectopic heart beats. There is an initial acceleration 

in heart rate preceding an ectopic beat followed by a deceleration. The 

percentage difference between heart rate deceleration and acceleration is 

measured as the turbulence onset (TO). There is also a fall in systolic blood 

pressure following an ectopic beat due, in part, to the short diastolic filling 

time (Bauer et al., 2010). Through the baroreflex, this leads to vagal 

withdrawal and sympathetic activation which can be measured as changes 

in the intervals between heart beats (R-R intervals) plotted as a linear 

regression (turbulence slope - TS) (Bauer et al., 2010). Impaired HRT has 

been shown to be an independent risk factor post MI, however, 17-19% of 

patients were excluded from this study due to atrial fibrillation or absence of 

ectopic beats (Schmidt et al., 1999). 

 

1.2.1.5 Heart rate variability 

Normal heart rate varies beat to beat and is a reflection of both 

parasympathetic and sympathetic input to the sinoatrial node in response to 

a variety of factors e.g. baroreceptors, circadian rhythm, renin-angiotensin 

system, respiration and exercise. There are two main methods to analyse 

heart rate variability (HRV) either using time domain measures or frequency 

domain measures.  
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Time domain measures are perhaps the simplest as they comprise 

simple statistical and geometric analyses of R-R intervals (also termed 

normal-normal [N-N] intervals). Time domain measures are recommended 

for long term (24 hour) ECG recordings and include SDNN (the standard 

deviation of all N-N intervals) which is a measure of overall HRV; SDANN 

(the standard deviation of the averages of N-N intervals in all 5 min 

segments of the entire recording) which is a measure of long-term 

components of HRV and RMSSD (the square root of the mean of the sum of 

the squares of differences between adjacent N-N intervals) and pNN50 

(number of pairs of adjacent N-N intervals differing by > 50 ms) which are 

measures of short term components of HRV such that a higher value 

indicates increased vagal modulation (Task Force of the European Society 

of Cardiology and the North American Society of Pacing Electrophysiology, 

1996). 

Frequency domain measures use power spectral analysis to describe 

how variance (power) distributes as a function of frequency. There are a 

number of algorithms that can be used in frequency analysis but the Fast 

Fourier Transform (FFT) is most commonly used. The components of HRV 

spectral analysis are: very low frequency (< 0.04 Hz; VLF); low frequency 

(0.04-0.15 Hz; LF) and high frequency at (0.15-0.4 Hz; HF). Studies have 

shown that the HF component of HRV is related to rapid variations in heart 

rate associated with respiratory sinus arrhythmia mediated by vagal activity 

(Malliani, 2005). Akselrod et al. (1981) investigated the effect of 

parasympathetic and sympathetic blockade (using glycopyrrolate and 

propanolol respectively) on HRV in conscious dogs. Parasympathetic 

blockade abolished the HF component of HRV whereas sympathetic 

blockade had little effect confirming that HF is a reflection of 

parasympathetic activity. Interpretation of the LF component has been 

subject to debate. Some claim the LF component is a reflection of 

sympathetic activity only (Malliani, 2005) whereas others believe that both 

sympathetic and parasympathetic activity contribute to the LF component 

(Akselrod et al., 1981). Studies have shown that sympathetic blockade with 

propanolol significantly decreased the LF component in rats but did not 

completely abolish it (Aubert et al., 1999). Parasympathetic blockade with 
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atropine, as well as completely abolishing the HF component, also reduced 

LF power indicating that both sympathetic and parasympathetic activity 

contribute to the LF component (Aubert et al., 1999; Lahiri et al., 2008). It is 

agreed that the relative ratio of LF/HF is a reflection of sympathovagal 

balance (Task Force of the European Society of Cardiology and the North 

American Society of Pacing Electrophysiology, 1996). This means that HRV 

analysis provides information about the degree of autonomic modulation 

rather than the level of autonomic tone. Kleiger et al. (1987) first 

demonstrated that reduced HRV, indicating reduced parasympathetic 

influence on heart rate, was a risk factor by investigating the standard 

deviation of R-R intervals of patients post MI. This revealed a 5.3 times 

greater risk of mortality in patients with SD of R-R intervals (SDNN) < 50 ms 

compared to those with a SDNN >100 ms.  

 

1.2.2 Invasive measures of autonomic function  

Indirect measures of autonomic function such as those described above are 

useful, however, they are an estimate of autonomic function. There is no 

method to directly measure parasympathetic activity in humans, however, it 

is possible to directly assess sympathetic activity. The development of 

radiotracer-derived measurements of noradrenaline spill-over to plasma and 

microneurography revolutionised investigations of sympathetic activity 

(Engleman et al., 1968; Hagbarth and Vallbo, 1968). 

 

1.2.2.1 Plasma noradrenaline levels 

Noradrenaline is the neurotransmitter released by sympathetic adrenergic 

nerve endings. Most noradrenaline is removed by reuptake mechanisms, 

however, approximately 20% diffuses into plasma (Esler et al., 1985). 

Although only a little of the noradrenaline released enters the circulation, 

perturbations that increase sympathetic nerve activity such as exercise 

cause a prompt increase in plasma noradrenaline indicating that it may be 

used as a measure of sympathetic activity (Cohn et al., 1984). The first 

approach to measure systemic noradrenaline levels as an insight to 
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sympathetic function analysed urinary levels of excreted noradrenaline. 

(Chidsey et al., 1965). Urinary noradrenaline originates from the filtration of 

plasma noradrenaline at the glomerulus and noradrenaline released by renal 

sympathetic nerves within the kidney. This technique may therefore be 

biased by renal sympathetic activation. Noradrenaline levels in plasma were 

also measured from blood samples as an indicator of systemic sympathetic 

activity (Cohn et al., 1984). Both urinary and plasma measures of 

noradrenaline levels are crude, depending on the rate of noradrenaline 

reuptake and clearance from circulation. Measuring noradrenaline spill-over 

using a radiotracer derivative is a more accurate measurement of 

sympathetic activity. This requires infusion of radiolabelled noradrenaline 

into a peripheral vein until a steady state is achieved (approx. 90 mins). 

Blood samples are then taken from another vein and the proportion of 

endogenous noradrenaline to infused radiolabelled noradrenaline is used as 

a measure of noradrenaline spill-over into plasma (Esler et al., 1985). This 

technique has been further refined by placing catheters into the venous 

drainage of specific organs to measure regional differences in noradrenaline 

spill-over and thereby sympathetic activity. This is a powerful but highly 

invasive technique e.g. cardiac noradrenaline spill-over is measured by 

placing the catheter into the cardiac sinus. A less invasive method to assess 

sympathetic activity is microneurography. 

  

1.2.2.2 Microneurography 

Microneurography was pioneered in the late 1960s and involves inserting a 

tungsten microelectrode into a superficial nerve, commonly the peroneal 

(fibular) nerve as it courses round the neck of the fibula (Hagbarth and 

Vallbo, 1968). Microneurography allows the direct recording of sympathetic 

nerve activity to intramuscular blood vessels (Hilz and Dutsch, 2006; 

Charkoudian and Rabbitts, 2009). Initially, this technique was used to record 

bursts of muscle sympathetic nerve activity (MSNA), however, this was 

subsequently refined to permit the recording of individual vasoconstrictor 

neurones (single units) (Macefield et al., 1994). 
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 Muscle sympathetic nerve activity is closely related to blood pressure 

and the arterial baroreflex. Negative feedback through the baroreflex results 

in bursts in MSNA that are pulse synchronous. Indeed, bilateral baroreceptor 

deactivation through injection of lidocaine around the vagus and 

glossopharyngeal nerves in the neck abolishes the rhythmicity of MSNA in 

humans (Fagius et al., 1985). This technique is rather crude as anaesthetic 

was applied to these nerves as they exited the skull thereby affecting other 

afferent information e.g. from cardiopulmonary receptors, however, animal 

studies confirm that complete baroreceptor denervation abolishes pulse 

synchronous muscle sympathetic nerve activity (Gebber, 1980). Further 

confirmation of the importance of the baroreflex in the regulation of 

sympathetic nerve activity comes from stimulation of the carotid sinus nerve 

which led to a decrease in MSNA activity (Wallin et al., 1975). 

Microneurography has contributed much to the study of sympathetic activity, 

however, its application is restricted to superficial peripheral nerves and, 

unlike regional noradrenaline spill-over studies, cannot provide information 

on regional variations in sympathetic activity. Combining both invasive and 

non-invasive measures of autonomic function has led to the appreciation of 

the role of sympathetic activation in many conditions including heart failure. 

 

1.2.3 Sympathoexcitation and heart failure 

Heart failure is a complex syndrome arising from an abnormality in heart 

structure or function at rest that prevents the heart supplying adequate levels 

of oxygen to body tissues (Members et al., 2012). Heart failure is 

characterised by neurohumoral activation involving activation of the 

sympathetic nervous system and renin angiotensin system. Initially, this is 

compensatory for the initial abnormality, however, chronic sympathetic 

activation is cardiotoxic and leads to the progression of heart failure. The 

symptoms of heart failure are assessed using the New York Heart 

Association (NYHA) classification (I-IV). Patients in class I are 

asymptomatic, however, as heart failure progresses symptoms worsen. 

Patients in class II and III experience fatigue and dyspnoea that limits 

physical activity and patients in class IV experience dyspnoea even at rest. 
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Heart failure is a leading cause of mortality and it is estimated that 45-60% 

of patients die within 5 years of diagnosis (Bui et al., 2011). 

The first evidence of sympathetic activation in heart failure came from 

analysis of catecholamine excretion in urine from heart failure patients (n = 

110) compared to normal subjects (n = 13) (Chidsey et al., 1965). 

Noradrenaline excretion was significantly higher in NYHA class III and IV 

heart failure patients (46.4 and 58.1µg/day respectively) compared to normal 

subjects and combined class I and II heart failure patients (22.5 and 22.4 

µg/day respectively). This finding may reflect the renal sympathetic 

activation that occurs in heart failure patients (Petersson et al., 2005). 

Increased sympathetic activity in heart failure was confirmed by 

measuring plasma noradrenaline levels which were significantly elevated 

compared to control subjects and correlated with the severity of heart failure 

(Thomas and Marks, 1978). The more refined method of regional 

noradrenaline spill-over revealed not only regional differences in the degree 

of sympathetic activation in heart failure but also an impairment in 

noradrenaline reuptake. This may lead to overestimation of 

sympathoexcitation, however, cardiac noradrenaline spill-over was markedly 

higher compared to plasma and renal (Hasking et al., 1986). Importantly, the 

degree of sympthoexcitation in heart failure, measured using plasma 

noradrenaline, is correlated with an increased risk of mortality (Cohn et al., 

1984; Kaye et al., 1995) 

Further direct evidence of sympathoexcitation in heart failure comes 

from microneurography studies. The frequency of both MSNA bursts and 

single units was elevated in heart failure patients (n = 8) (Macefield et al., 

1999). Additionally, high levels of MSNA (> 49 bursts/ min) were associated 

with a significantly lower survival rate in heart failure patients followed up for 

1 year (n = 122) (Barretto et al., 2009). 

Heart rate variability is impaired in heart failure and indicates a shift in 

autonomic balance towards sympathetic predominance. The UK Heart 

Failure Evaluation and Assessment of Risk Trial (UK-HEART) (Nolan et al., 

1998) was the first large prospective study of HRV in heart failure and its 

potential in identifying patients with an increased risk of death. 433 
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outpatients with chronic heart failure were recruited and HRV was analysed 

using time domain measures. Patients with a standard deviation of all N-N 

intervals (SDNN) of < 50 ms had a mortality rate of 51.4% compared to 5.5% 

of patients with SDNN > 100 ms. This is similar to findings of studies 

investigating predictors of post myocardial infarction prognosis (Kleiger et 

al., 1987; La Rovere et al., 1998).  

Baroreflex sensitivity is another index of impaired autonomic function 

in heart failure. Both phenylephrine and non-invasive techniques have 

shown that BRS is an indicator of prognosis in heart failure. The 

phenylephrine method of BRS determination revealed that BRS of < 3 

ms/mmHg was an independent predictor of sudden death or cardiac 

transplantation in heart failure patients (n = 282) (Mortara et al., 1997). 

Impaired BRS using the spectral method (<3.1 ms/mmHg) was also 

associated with a significantly higher risk of cardiac death (n = 228) (Pinna et 

al., 2005). 

Overall, these disparate methods of assessing autonomic function 

illustrate that increased sympathetic activity is associated with poor 

prognosis in heart failure. To combat this, pharmaceutical interventions have 

targeted the sympathoexcitation underlying the pathophysiology of heart 

failure in order to alleviate symptoms and slow disease progression. 

 

1.2.4 Treatment of heart failure 

Current drug treatments for heart failure include beta blockers to combat the 

effects of sympathoexcitation. Lampert et al. (Lampert et al., 2003) 

investigated the effect of the beta blocker propanolol on HRV indices in 88 

patients hospitalised with acute MI. After 6 weeks, patients treated with 

propanolol had a significant decrease in LF/HF ratio compared to patients 

given a placebo (n= 96) indicating an improvement in sympathovagal 

balance toward parasympathetic predominance. There was also an 

improvement in outcome with a decreased incidence of death, MI or 

congestive heart failure in propanolol treated patients (9% propanolol vs 

23% placebo; p = 0.02). Carvedilol, another beta blocker, increased BRS 

and the HF frequency component of HRV and reduced cardiac 
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noradrenaline spill-over in heart failure patients treated for 4 months (n = 

10). This indicates that beta blocker therapy may also augment vagal activity 

through the withdrawal of the inhibitory effects of noradrenaline (Kubo et al., 

2005). 

Despite the availability of treatments such as beta blockers, ambulant 

outpatients with heart failure have an annual mortality rate of 10% (Nolan et 

al., 1998) therefore the development of new therapies is essential. Recently, 

increasing parasympathetic activity has become a target in the treatment of 

heart failure. 

 

1.2.3 The parasympathetic nervous system and heart failure 

Heart failure is not only characterised by sympathoexcitation but also 

parasympathetic/vagal withdrawal (Triposkiadis et al., 2009; Sabbah et al., 

2011a). Eckberg et al. (1971) first demonstrated impaired parasympathetic 

activity in heart failure patients compared to normal subjects as an impaired 

increase in heart rate in response to parasympathetic blockade using 

atropine. Heart rate increased by 55% in healthy subjects compared to 23% 

in heart failure patients. Vagally mediated heart rate recovery after exercise 

is attenuated in heart failure patients (Imai, 1994) and the magnitude of the 

increase in heart rate to parasympathetic blockade was attenuated in a 

canine model of heart failure compared to controls (Dunlap et al., 2003). 

Modulation of the parasympathetic nervous system e.g. vagus nerve 

stimulation therefore presents a new approach to altering the underlying 

autonomic imbalance in heart failure. 

 

1.3 Neuroanatomy of the vagus nerve  

The vagus nerves are the tenth and longest pair of cranial nerves and 

originate from the medulla. The vagus nerve is appropriately named as it 

derives from the Latin for ‘wanderer’. The vagus nerves exit the skull through 

the jugular foramina of the skull then pass through the neck and thorax to 

reach the abdomen. The vagus nerve is normally regarded as the main 



- 22 - 

parasympathetic output of the autonomic nervous system, however, it has 

many diverse functions. Indeed, counts of afferent and efferent fibres in 

silver preparations of feline cervical vagus nerve sections (n  = 11) revealed 

that it is composed of 80% afferent fibres and only 20% efferent fibres 

(DuBois and Foley, 1936).  

The afferent component of the vagus nerve consists of general 

visceral, special visceral and general somatic afferent fibres. The general 

visceral afferent fibres carry sensory information from thoracic and 

abdominal internal organs including the larynx, trachea, lungs, heart and 

gastrointestinal tract up to the splenic flexure of the colon (Figure 1.1). There 

is also some evidence of vagal afferents from the uterus (Berthoud and 

Neuhuber, 2000). The vagus nerve also carries baroreceptor and 

chemoreceptor information from the aortic arch. Special visceral afferent 

vagal fibres carry taste information from taste buds on the epiglottis. The cell 

bodies of visceral afferent sensory neurones reside in the nodose ganglion 

of the vagus nerve and project to the NTS through which they play an 

important part in the reflex control of respiration, blood pressure, heart rate, 

swallowing and digestion (Ruffoli et al., 2011). Unlike visceral afferent 

neurones, the cell bodies of the somatic afferent neurones are located in the 

jugular ganglion and project to the spinal trigeminal nucleus. The vagus 

nerve carries somatic sensory information from the lower pharynx, larynx, 

trachea, oesophagus, posterior dura mater and parts of the external ear 

(Figure 1.1). Interestingly, there are reports of activation of visceral reflexes 

in response to stimulation of the ear e.g. ear syringing can evoke cough or 

even bradycardia responses in a small percentage of the population 

(Prasad, 1984; Boghossian et al., 2010) indicating that the neuroanatomy of 

the vagus nerve is not fully understood and requires further investigation. 
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Figure 1.1 Representation of the distribution and central connections 

of the vagus nerve. All cervical and thoracic branches are bilateral 

and may have been omitted for clarity. The right recurrent laryngeal 

nerve (not shown) passes round the right subclavian artery instead of 

the arch of the aorta. Left and right vagus nerves form the oesophageal 

plexus and then become anterior and posterior trunks as they pass 

through the diaphragm to supply the abdominal viscera up to 2/3 along 

the transverse colon. NTS- nucleus tractus solitarius; DVN- dorsal 

vagal nucleus; SpV N- spinal trigeminal nucleus; NA- nucleus 

ambiguus. 
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The efferent component of the vagus nerve may be smaller but is no 

less vital. It consists of general and special visceral efferent components. 

The general visceral efferent component consists of preganglionic 

parasympathetic neurones that originate primarily in the DVN. These 

synapse in parasympathetic ganglia close to or in the walls of the organs 

they supply which are the organs of the thoracic and abdominal cavities 

including the gastrointestinal tract up to the splenic flexure of the colon. 

There is an additional contribution of preganglionic fibres from the NA 

supplying the heart. The vagus nerve has a special visceral efferent 

component that supplies the muscles of the 4th branchial pouch in the 

embryo. Neuronal tracing studies found that these motor neurones 

originated in the NA and supplied the striate muscle of the palate, larynx, 

pharynx (except stylopharyngeus) and the upper oesophagus (Bieger and 

Hopkins, 1987; Kitamura et al., 1991).  

The importance of the vagus nerve in relaying sensory information 

that influences the regulation of internal organs and its extensive distribution 

throughout the body means it is little wonder that modulation of vagal activity 

is being investigated as a possible therapy for a wide range of conditions.  

 

1.3.1 Vagus nerve stimulation 

Stimulation of the vagus nerve was first pioneered as a therapy for epilepsy 

over 100 years ago and is now an approved therapy for treatment resistant 

epilepsy. Vagus nerve stimulation (VNS) is also an approved therapy for 

treatment resistant depression in the USA and is being investigated in a 

range of other conditions including heart failure, tinnitus, obesity and 

inflammatory conditions (Clancy et al., 2013). 

 

1.3.1.1 Vagus nerve stimulation for epilepsy 

Epilepsy is one of the most common neurological disorders and is estimated 

to affect 70 million people worldwide. Epilepsy encompasses a wide number 

of syndromes characterised by recurrent seizures. The mechanisms of 

epileptogenesis are not fully understood, however, an underlying feature is 
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hyperexcitability of the cortex (Badawy et al., 2009). Approximately 30% of 

epilepsy patients have refractory epilepsy or unacceptable side effects from 

anti-epileptic drug treatment (Connor et al., 2012). Resective surgery is an 

alternative approach for treating patients with partial epilepsy where the 

epileptogenic focus can be located and removed (Connor et al., 2012). 

Refractory epilepsy patients who are not candidates for resection or whose 

epilepsy is still uncontrolled after surgery rely on palliative interventions 

including corpus callostomy, ketogenic diet and vagus nerve stimulation 

(Beleza, 2009). 

Electrical stimulation of the vagus nerve to treat epilepsy was first 

proposed in 1880s by Corning, an American neurologist. It was believed that 

cerebral hyperaemia was responsible for epilepsy, therefore, Corning 

attempted to reduce blood flow to the brain by compressing the carotid 

arteries and reducing cardiac output through transcutaneous electrical 

stimulation of the cervical vagus nerves (Corning, 1884). However, direct 

electrical stimulation of the central end of the cervical vagus nerve was later 

shown to reduce strychnine induced seizures in cats (Schweitzer and 

Wright, 1937). Further, electrical vagal stimulation desynchronised EEG 

activity in spinally transected (C1), aortic baroreceptor-denervated 

anaesthetised cats and reduced strychnine induced epileptic like activity in 

the cortex (Zanchetti et al., 1952). This demonstrated that VNS could 

modulate cortical activity independent of cardiovascular alterations and was 

dependent on vagal afferent stimulation. 

The first human studies of cervical VNS in epilepsy were conducted in 

the late 1980s (Penry and Dean, 1990; Terry et al., 1990). An electrode was 

wrapped around the left cervical vagus and connected by a lead to a pulse 

generator embedded subcutaneously below the clavicle. The generator can 

subsequently be programmed non-invasively to alter stimulation parameters. 

VNS is generally well tolerated and side effects (hoarseness, coughing, pain 

etc.) tend to be mild and transient. VNS has been used to treat over 50,000 

patients with refractory partial epilepsy and long term trials have shown VNS 

to be effective in reducing seizure frequency by 50% or more in 

approximately 40-50% of patients (Shahwan et al., 2009).  
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The mechanism by which VNS alleviates epilepsy symptoms is poorly 

understood. The original hypothesis was that stimulation of vagal afferents 

could alter the excitability of the cortex through relays in the NTS. The vagus 

nerve is composed of myelinated A- and B-fibres and unmyelinated C-fibres 

which have different activation thresholds. A-fibres have the lowest threshold 

(0.02-0.2mA), followed by B-fibres (0.4-0.6mA) and C-fibres require the 

highest stimulation parameters for activation (>2mA) (Erlanger and Gasser, 

1930). Therapeutic VNS parameters vary but are below levels required to 

activate C-fibres suggesting the anti-epileptic effects of VNS are mediated 

through A- and B-fibres (Ruffoli et al., 2011). Indeed, destruction of C-fibres 

through administration of capsaicin in rats did not affect VNS reduction of 

pentylenetetrazol (PTZ) induced seizures further supporting that C-fibres are 

not involved in the anti-epileptic mechanism of VNS (Krahl et al., 2001). This 

study was carried out using anaesthetised rats and may not apply to 

conscious animals. In addition, there is no selective method to destroy A- 

and B-fibres therefore the importance of different fibre types in VNS 

therapeutic effects requires further investigation. 

It has been suggested that VNS may alter neurotransmitter levels or 

processing in the brain. GABA is the major inhibitory neurotransmitter of the 

central nervous system and could play an important part in seizure 

reduction. Marrosu et al. (2003) investigated the possible role of GABA 

receptors in the anti-epileptic effects of VNS using single photon emission 

computed tomography (SPECT) to image GABAA receptor density before 

VNS and after 1 year of VNS therapy in 10 patients with refractory partial 

epilepsy. A significant correlation between reduced seizure frequency and 

increased GABAA receptor density suggested that increased GABA 

mediated inhibition is an important component of the VNS mechanism.  

Noradrenergic and serotonergic signalling are also altered by VNS 

and may influence epileptic activity (Dorr and Debonnel, 2006). The effects 

of VNS on locus coeruleus (LC) noradrenergic neurones and dorsal raphe 

serotonergic neurones basal firing rates were recorded extracellularly in vivo 

(rats). Long term (2 weeks to 3 months) VNS increased firing rates of both 

LC noradrenergic neurones and dorsal raphe serotonergic neurones (Dorr 

and Debonnel, 2006) which in turn influence the function of many higher 
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CNS regions (Fornai et al., 2011). Both chronic and acute LC lesions 

significantly reduced the anti-seizure effects of VNS in rats (Krahl et al., 

1998). Another hypothesis is that VNS acts to reduce inflammation 

associated with epilepsy (De Herdt et al., 2009). It therefore appears likely 

that the anti-epileptic effects of VNS are polymodal and much more work is 

required before the mechanisms involved are fully understood.  

 

1.3.1.2 Vagus nerve stimulation as a treatment for depression 

Depression is a disabling condition and it is estimated that 30-45% of major 

depressive disorder (MDD) patients are treatment resistant (Schosser et al., 

2012). Vagus nerve stimulation is also approved by the US Food for Drug 

Adminstration (FDA) for MDD treatment. Anti-depressive effects of VNS 

were first observed in patients with refractory epilepsy. Improvement in 

mood was observed even in those patients who experienced little or no 

change in seizure frequency (Harden et al., 2000). VNS for treatment 

resistant depression has been somewhat controversial due to the lack of 

controlled studies of its efficacy in depression (Martin and Martín-Sánchez, 

2012). In one randomised controlled trial of VNS in patients with depression, 

VNS performed no better than placebo (Rush et al., 2005a). However, this 

trial only lasted 10 weeks and VNS effects displayed increasing response 

rates at 3, 6, 9 and 12 months suggesting that it may be a long term 

adjunctive therapy rather than an acute treatment (Rush et al., 2005b). 

 

1.3.1.3 Vagus nerve stimulation as an anti-inflammatory therapy 

The vagus nerve is a critical component of the inflammatory reflex. This 

reflex has received much attention recently and parts of the pathway 

involved have been elucidated. The afferent arm of the reflex is the vagus 

nerve which is activated by pro-inflammatory cytokines (Tracey, 2009). The 

central pathway is unknown, however, as the vagus nerve projects to the 

NTS which in turn projects to the hypothalamus this is thought to be key in 

mediating the efferent response which is also through the vagus nerve. The 

efferent arm of this reflex is debated. Stimulation of the vagus nerve 

increases acetylcholine (ACh) release from ACh synthesising T cells in the 
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spleen (Rosas-Ballina et al., 2011). This in turn acts on the α7 nicotinic 

acetylcholine receptor expressed by macrophages to reduce cytokine 

release. Vagus nerve stimulation can reduce pro-inflammatory cytokine 

release and tissue injury in models of inflammatory diseases (Borovikova et 

al., 2000). This led to the suggestion that efferent vagal fibres may synapse 

with splenic nerves in the coeliac ganglion and thereby influence 

acetylcholine production in the spleen (Rosas-Ballina et al., 2011). However, 

electrophysiological experiments in the rat revealed that stimulation of vagal 

efferents had no effect on the splenic nerve activity (Bratton et al., 2012). 

Furthermore, combining retrograde tracing of splenic nerve fibres and 

anterograde tracing of vagal efferents revealed no putative synaptic contacts 

using confocal analysis (Bratton et al., 2012). This provides strong evidence 

that the anti-inflammatory effects of VNS are not mediated through the 

splenic nerve and require further investigation.  

Whilst the mechanisms underlying the anti-inflammatory reflex are 

unknown, this reflex is a potential therapeutic target in many conditions in 

which excessive inflammation plays a role in tissue damage, including heart 

failure. Indeed, VNS attenuated the increase in plasma C reactive protein (a 

marker of systemic inflammation) compared to the control group in a canine 

model of heart failure (Zhang et al., 2009b). 

 

1.3.1.4 Vagus nerve stimulation to reverse pathological remodelling in 

tinnitus 

The potential neuroplastic effects of VNS through alterations in CNS 

neurotransmitter levels and/or processing have led to considering VNS as a 

potential therapy for tinnitus. Tinnitus is the perception of ‘ringing in the ear’ 

despite the absence of an external sound. Persistent tinnitus affects 

approximately 10-15% of the population over their lifetime and can impair 

the ability to concentrate, follow conversations or it can even disturb sleep 

(Baigi, 2011; Schnupp, 2011). Tinnitus is usually caused by excessive noise 

exposure that leads to pathological plasticity of the auditory cortex. Engineer 

et al. (2011) investigated a potential method to reverse this process in a rat 

model of tinnitus by playing tones (outside the putative tinnitus frequencies) 
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and simultaneously stimulating the left cervical vagus nerve to induce and 

target plasticity. After 10 days of VNS paired with tones, noise exposed rats 

significantly improved in detecting a gap in presented background noise 

compared to sham treated rats. This improvement persisted for the 3 weeks 

tested post-treatment. A neurophysiological correlate was determined since 

tinnitus-induced increases in auditory cortical responses to tone presentation 

were almost reversed by VNS. These results have led to a clinical pilot study 

of VNS paired with tones in patients with tinnitus (n = 12) (Vanneste et al., 

2012). 4 weeks of treatment resulted in improved symptoms indicating that 

this may be an effective therapy for tinnitus. The potential for VNS to induce 

cortical plasticity is very exciting and could be exploited in the treatment of 

many conditions. Indeed, pairing VNS with movement increased motor 

cortical representation of the movements (Porter et al., 2011). This could 

potentially be used to treat movement disorders including the rehabilitation 

of stroke patients. 

 

1.3.1.5 Obesity and vagus nerve stimulation 

Weight loss has been observed in patients receiving VNS therapy for 

epilepsy and may be a welcome side effect for some patients (Burneo et al., 

2002). This observation was also made in a group of patients receiving VNS 

for refractory depression. Furthermore, the degree of weight loss correlated 

with baseline BMI (Pardo et al., 2007). This has led to the investigation of 

VNS as a potential strategy to tackle obesity. The vagus nerve plays an 

important role in satiety, signalling gastric distension and the release of 

gastrointestinal hormones such as cholecystokinin and leptin (Berthoud, 

2008). The vagus nerve therefore offers a potential target to modify appetite, 

however, results are conflicting. Another study investigating the effects of 

VNS on weight loss in epilepsy patients found no significant effect (Koren 

and Holmes, 2006). These patients were followed up for 2 years after VNS 

therapy commenced, similar to the other studies, however baseline BMI 

information is not provided. Since the degree of weight loss is dependent on 

BMI (Pardo et al., 2007) then it may be that the participants recruited in this 

study were already under the threshold for a significant effect of VNS. 
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 There has been no dedicated study of the effects of VNS on weight 

loss in obese humans, however, animal studies report positive results. 

Stimulation of the left subdiaphragmatic vagus nerve reduced food intake 

and weight gain in rats fed a high fat diet (Gil et al., 2011), however, this is 

not a suitable model for weight loss in obesity. To combat this, Val-Laillet et 

al. (2010) utilised obese mini-pigs (n = 8) to study the effects of bilateral 

stimulation of the thoracic vagus nerves. VNS did not cause weight loss, 

however, weight gain was significantly lower in VNS animals compared to 

sham from 5 weeks post operatively until the end of the study (14 weeks). In 

addition, VNS animals consumed significantly less compared to sham 

animals. Intriguingly, VNS also altered the food preferences of treated 

animals with a diminished preference for sweet food (Val-Laillet et al., 2010). 

These results are encouraging, however, the sample numbers used in the 

animal studies are small. Larger studies are required to confirm these 

findings before VNS can be investigated in obese humans. 

 

1.3.1.5 Vagus nerve stimulation as a potential heart failure therapy 

Early support of VNS in heart failure came from animal studies. In a canine 

model of heart failure (healed MI) there was a significant reduction in the 

number of dogs with ventricular fibrillation during exercise and coronary 

artery occlusion in the group that received VNS compared to the control 

group (10% vs. 92%) (Vanoli et al., 1991). This striking result indicates that 

vagal stimulation is protective against ventricular fibrillation. Indeed, when 

exercise was repeated in the VNS group with the stimulators switched off, 

89% developed ventricular fibrillation. VNS also improved survival in a rat 

model of chronic heart failure. Compared to the control heart failure group, 

the vagal stimulation heart failure group had improved left ventricular 

function, decreased biventricular weight and a 73% reduction in relative risk 

ratio of death (Li et al., 2004). Interestingly, the VNS treated heart failure rats 

also had significantly reduced plasma noradrenaline levels indicating 

attenuated sympathetic activation compared to the control heart failure 

group. The autonomic effects of VNS were also investigated in a canine 

ventricular pacing heart failure model (Zhang et al., 2009a). LF/HF ratio was 
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significantly lower in VNS treated heart failure dogs with significantly 

reduced LF power and increased HF power indicating a shift towards 

parasympathetic predominance. BRS was also significantly increased in the 

VNS group and plasma noradrenaline and C reactive protein levels were 

reduced. These results corroborate evidence that VNS may reduce 

sympathetic activation and may also increase parasympathetic activity in 

heart failure. In addition, these results suggest that VNS has an anti-

inflammatory effect that may be beneficial in heart failure. These numerous 

beneficial effects are encouraging, however, this study also reported side 

effects including coughing, retching, vomiting and reduced food intake. 

Dedicated research into the cardiovascular autonomic effects of VNS 

in humans is sparse, however Kamath et al. (1992) studied the effect of VNS 

of the left cervical vagus nerve on HRV in 8 epilepsy patients. Patients in the 

low stimulation group (n = 4; 2 Hz, 130 ms pulse) showed no significant 

change in LF/HF ratio after two weeks of stimulation whereas patients in the 

high stimulation group (30 Hz, 500 ms pulse) showed a significant decrease 

in LF/HF ratio and a significant increase in HF power indicative of increased 

vagal tone.  

The first clinical study of VNS in heart failure patients was conducted 

by Schwartz et al. (2008), in which 8 patients with advanced heart failure 

reported improved quality of life scores and had improved left ventricular 

function at 1, 3 and 6 months. Extension into a multicentre trial with an 

additional 24 heart failure patients revealed that chronic right sided VNS 

could improve NYHA classification, quality of life scores and left ventricular 

function at 3 months and these changes were maintained or accentuated at 

1 year follow up (De Ferrari et al., 2011). These results are encouraging, 

suggesting VNS may be a powerful adjunctive therapy to improve the 

symptoms and quality of life of heart failure patients, however, VNS is an 

invasive and expensive procedure that is associated with complications and 

side effects. This includes technical and surgical complications such as 

wound infection, cardiac arrhythmia under test stimulation and electrode 

malfunction (Spuck, 2010). In addition, side effects include hoarseness, 

dysphagia, cough and pain (Elliott et al., 2011). A non-invasive method of 

VNS with reduced side effects is desirable. The vagus nerve has a small 
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cutaneous distribution to the external ear through the auricular branch of the 

vagus nerve (ABVN). This offers an easily accessible point for non- invasive 

VNS.  

 

 

 

 

Figure 1.2 The peripheral distribution of the auricular branch of the 

vagus nerve. The shaded area represents the distribution of the ABVN 

(extrapolated from (Peuker and Filler, 2002)). T – tragus, C – concha, 

CyC – cymba concha. 

 

 

 

1.3.2 The auricular branch of the vagus nerve 

The auricular branch of the vagus nerve (ABVN) originates from the superior 

(jugular) ganglion and traverses the temporal bone to reach the external ear. 

Information regarding the terminal distribution of the ABVN is sparse. Peuker 

& Filler (2002) dissected 14 ears in 7 human cadavers and demonstrated 

that the ABVN was the sole innervation of the cymba conchae (100%). They 

also reported that the ABVN contributed to innervation of the antihelix (73%), 
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tragus (45%) and cavity of concha (45%; Figure 1.2). The variability of the 

distribution of the ABVN is unknown, therefore, further investigation of the 

terminal distribution of the ABVN is required to confirm this finding.  

 

1.3.2.1 Central projections of the auricular branch of the vagus nerve 

Little is known about the central projections of the ABVN. Chien et al. (1996) 

traced the central projections of auricular nerves in the dog. The rostral, 

middle or caudal auricular nerves were isolated in the pinna and treated with 

cholera toxin subunit B conjugated with horse radish peroxidise (CTB-HRP) 

but this included the trigeminal, facial and vagus nerves. The rostral 

auricular nerve of the dog is regarded as the auriculotemporal branch of the 

trigeminal nerve. Chien et al. (Chien et al., 1996) found that the majority of 

fibres of the middle and caudal auricular nerves were vagal (88% and 79% 

respectively) with some fibres from the facial nerve. Labelling from the 

middle and caudal auricular nerves was found in the spinal trigeminal 

nucleus, the cuneate nucleus, DVN, and NTS. Afferents from the ear 

projecting to the NTS could be involved in autonomic control (Chien et al., 

1996).  

Nomura & Mizuno (1984) provide the only study of the central 

projections of the ABVN alone. Using cats, they isolated the ABVN in the 

mastoid canaliculus of the temporal bone before it reached the facial canal 

and used HRP to trace its central connections in the brainstem. The results 

showed that fibres of the ABVN project to the principle sensory trigeminal 

nucleus, spinal trigeminal nucleus, cuneate nucleus and NTS, similar to the 

findings of Chien et al. (1996). The principle sensory trigeminal nucleus and 

spinal trigeminal nucleus are both responsible for somatic sensation. It is 

interesting that some of the fibres from the ABVN terminated in the NTS of 

the brainstem as this is where general visceral afferents terminate. 

Moreover, these terminations were located in the dorsomedial part of the 

caudal NTS which corresponds with the subdivision of the NTS that receives 

baroreceptor afferents (Ciriello et al., 1981). This indicates that the ABVN 

may be capable of influencing cardiovascular and visceral autonomic control 

through the NTS.  
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The ABVN has been reported to mediate several somatovisceral 

reflexes the most common being the ear-cough reflex (Arnold’s reflex) 

(Gupta et al., 1986; Tekdemir et al., 1998). This reflex can be elicited by 

impacted cerumen, foreign bodies or syringing the ear. The incidence of this 

reflex is estimated to be 2.3% by Tekdemir et al. (1998) who examined 514 

patients (admitted to the ear, nose and throat department) using a blunt 

probe to palpate the external auditory meatus. Gupta et al. (1986) used the 

same method to study 500 randomly selected out-patients and found a 4.2% 

incidence. Gupta et al. (1986) also observed the auriculo-palatal reflex (gag 

reflex) in 1.8%, the auriculo-lacrimal reflex in 2% and the auriculo-cardiac 

reflex (auricular syncope) in 0.6%. Another interesting phenomenon 

involving the ABVN is pain referred to the external ear from viscera supplied 

by the vagus nerve in conditions such as lung cancer (Bindoff and Heseltine, 

1988; Abraham et al., 2003; Palmieri, 2006), gastroeosophageal reflux 

(Blau, 1989) and myocardial infarction (Rothwell, 1993; Amirhaeri, 2010). 

Furthermore, cervical vagus nerve stimulation has also been reported to 

cause ear pain (Myers, 2008; Schwartz et al., 2008). The ABVN may 

therefore provide a non-invasive alternative to cervical VNS, that could be 

accessible to many more patients than surgical implantation of an electrode 

round the cervical vagus nerve. 

 

1.3.3 Transcutaneous vagus nerve stimulation  

Stimulation of the peripheral distribution of the ABVN to the external ear – 

transcutaneous vagus nerve stimulation (tVNS) – is receiving increasing 

interest as a non-invasive method of VNS. Electroencephalography (EEG) 

revealed that tVNS of the tragus elicits vagus sensory evoked potential 

(VSEPs; n = 6) (Fallgatter et al., 2003). These had a similar latency to 

cochlear nerve evoked potentials (2-5 ms) and were only produced by 

stimulation of the tragus. Stimulation of other parts of the ear not supplied by 

the ABVN (ear lobe, scapha, superior crus of the antihelix and the top of the 

helix) did not produce a VSEP. Functional magnetic resonance imaging 

(fMRI) during tVNS of the tragus revealed similar activation patterns to 

conventional VNS (Kraus et al., 2007). Recently, these results have been 
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confirmed and strengthened with the inclusion of a sham stimulation 

comparison (Kraus et al., 2013). Furthermore, this study found changes in 

brainstem signals of the NTS and locus coeruleus during tVNS of the 

anterior auditory canal (i.e. inner tragus) but not the posterior auditory canal. 

These results indicate that the tragus may be an acceptable site for tVNS. 

Few studies have investigated the cardiovascular effects of tVNS 

(Table 1.1 and Table 2.2). Electroacupuncture and manual acupuncture of 

the concha caused a significant decrease in heart rate and blood pressure in 

anaesthetised rats (n = 18) (Gao et al., 2008). The mechanisms behind 

these effects were investigated through extracellular recordings of cardiac-

related NTS neurones during manual acupuncture of the concha (n = 58 

rats) (Gao et al., 2011). Neurones were classified as cardiac-related if they 

displayed spontaneous activity synchronised with the R peak of the ECG (n 

= 34). The firing rate of these neurones increased during stimulation while 

blood pressure and heart rate decreased. Intravenous administration of 

atropine attenuated the decrease in heart rate and blood pressure in 

response to stimulation and also attenuated the increased firing rate of 

cardiac-related neurones in the NTS. These results indicate that the NTS 

plays a key role in mediating the cardiovascular effects of tVNS. tVNS of the 

right tragus using surface electrodes has also been found to suppress atrial 

fibrillation in a canine rapid atrial pacing model (n = 10) (Yu et al., 2013). 

Crucially, this effect was abolished by sectioning left and right vagus nerves 

indicating that these must also be intact. 
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Table 1.1 Animal studies of VNS and tVNS 

Paper Animal VNS location VNS Parameters Results 

Gao et al. 
(2008) 

Rats – healthy (n = 
18) 

A1-apex helix  
A2-middle of helix 
A3-tail of helix  
A4-inferior concha 
A5- middle 
antihelix 

Electroacupuncture for 30 s 
at: 4 Hz; 0.4 mA; 4 Hz; 1.0 
mA; 100 Hz; 0.4 mA; 100 Hz; 
1.0 mA 
Manual acupuncture for 30s 

Low frequency electroacupuncture (EA) had no 
significant effects. High frequency EA evoked a 
significant decrease in BP at all 5 areas and heart 
rate at A3, A4 and A5. Manual acupuncture 
reduced heart rate only in A4 and BP in A1, A3 and 
A4. 

Gao et al 
(2011) 

Rats – healthy (n = 
58) 

Inferior concha Manual acupuncture Significant decrease in HR and BP and increase in 
firing rate of cardiac related neurons in NTS. Effect 
eliminated by intravenous atropine.  

Li et al. 
(2003) 

Rats – 1 month after 
MI (VNS = 11; 
control = 13) 

Right cervical 
vagus nerve 

0.2 ms; 20 Hz; 0.1-0.13 mA 
for 6 weeks 

Significantly lower heart rate 40bpm and improved 
left ventricular haemodynamics. Significantly lower 
mortality (14% vs 50% p = 0.008). No effect on BP.  

Tsutsumi 
et al. 
(2008) 

Mice – 28 days after 
MI (VNS = 6; control 
= 6) 

Right cervical 
vagus 

1 ms; 500 mV; 10 Hz for 
15mins. 

Decrease in heart rate 10% below baseline and a 
significant reduction in cardiac norepinephrine level 

Vanoli et 
al. (1991) 

Dogs – 1 month 
after MI (VNS = 30; 
control = 24) 

Right cervical 
vagus nerve 

3 ms; 3-8 Hz; 1.0-3.0 mA 
during exercise and 
ischaemia test 

VF significantly (p < 0.001) lower in VNS group 
compared to control group (11.5% vs. 92%) 

Yu et al., 
(2013) 

Dogs – 6 hours rapid 
atrial pacing (n = 10) 

Right tragus 1 ms; 20 Hz; 80% below 
voltage required to slow sinus 
rate 

Increased effective refractory period and 
suppressed atrial fibrillation. Eliminated by 
sectioning left and right vagi. 

Zhang et 
al. (2009) 

Dogs – 8 weeks into 
high rate ventricular 
pacing (VNS = 8; 
control = 7) 

Right cervical 
vagus 

1.5 mA ± 0.6 mA; 20Hz; for 8 
weeks 

No effect on BP. Left ventricular function improved 
in VNS group. After 4 weeks VNS group had 
significant increase in HF power and lower LF/HF 
ratio; improved BRS; lower plasma levels of CRP 
and NA. 
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Table 1.2 Studies of tVNS in healthy humans 

Paper Sample 
Group 

Study Design Electrode 
positions 

Stimulation 
parameters 

Study outcomes 

Fallgatter et 
al. (2003) 

Healthy 
participants 
(n = 6) 

Pilot study Right tragus, ear 
lobe, helix, anti-
helix,  
scapha 

0.1 ms pulses of 8 mA 
at 2 s intervals. 

Vagus Sensory Evoked Potentials 
(VSEP) only elicited with stimulation 
of the tragus. 

Haker et al. 
(2000) 

Healthy 
participants  
(n = 12) 

Pilot study Left concha Manual acupuncture 
25 mins with manual 
stimulation every 5th 
min. 

Significant increase in HF during 
stimulation and post-stimulation 
period of 60mins. No significant 
change in heart rate or BP 

Kraus et al. 
(2007) 

Healthy 
participants 
(n = 8)  

Pilot study Left tragus 20 µs; 8 Hz; 30.7-33.1 
V for 4x30 s at 1 min 
intervals.  

No effects on heart rate or BP. fMRI 
shows similar activation pattern to 
invasive VNS. 

Kraus et al., 
2013 

Healthy 
participants 
(n = 16) 

Sham 
controlled 
crossover 
study 

Left auditory canal: 
anterior wall or 
posterior wall 

20 µs; 8 Hz; 14 – 57 V 
for 4x30s at 1 min 
intervals. 

fMRI during tVNS of anterior 
auditory wall shows similar activation 
pattern to invasive VNS plus 
changes in brainstem areas. 

La Marca et 
al. (2010) 

Healthy 
participants 
(n = 14) 

Sham 
controlled 
cross-over 
study 

Left concha Manual + electro-
acupuncture 30 
minutes 
2.65 V; 0.5 s; 10 Hz 

Manual acupuncture no effect, 
electroacupunture increased 
respiratory sinus arrhythmia.  

Polak et 
al.(2009) 

Healthy 
participants 
(n = 20) 

Pilot study Left and right tragus 5-10 mA; 0.1 ms at 2 s 
intervals 

Optimal intensity 8mA for VSEP 
detection without pain. No effect of 
side or gender on VSEP amplitude. 
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Only two studies have specifically investigated the autonomic effects of 

tVNS in humans. Manual acupuncture of the left concha in healthy 

volunteers caused no change in heart rate or blood pressure, however, HRV 

analysis revealed a significant increase in the HF component, representing 

vagal modulation of heart rate, during stimulation (n = 12) (Haker et al., 

2000). Electroacupuncture of the same site (left concha) was also found to 

increase respiratory sinus arrhythmia mediated by the vagus nerve (n = 14) 

(La Marca et al., 2010). These results suggest that tVNS may be capable of 

modulating cardiovascular autonomic control and merits further 

investigation. Indeed, electroacupuncture of the concha has been reported 

to alleviate symptoms in coronary artery disease patients and reduce the 

use of vasodilator medication (Zamotrinsky et al., 1997; Zamotrinsky et al., 

2001). 

Vagus nerve stimulation is not the only neuromodulatory technique 

currently receiving interest. Transcranial direct current stimulation (tDCS) is 

a non-invasive neuromodulatory technique used to influence cortical 

excitability. This is under investigation in a range of conditions including 

depression (Brunoni et al., 2013a), pain (Borckardt et al., 2011), Parkinson’s 

disease (Pereira et al., 2013) and stroke rehabilitation (Schulz et al., 2013). 

 

1.4 Transcranial direct current stimulation 

Neuromodulation, the alteration of nerve activity through the use of targeted 

electrical stimulation or pharmacology, is a rapidly advancing field with 

applications in a plethora of conditions that have previously proven difficult to 

treat. In addition to vagus nerve stimulation (Section 1.3.1) other 

neuromodulation techniques, such as renal nerve ablation and carotid sinus 

stimulation, are being investigated as potential therapies for treatment 

resistant hypertension (Esler et al., 2010; Jordan et al., 2012). Another 

neuromodulatory technique of interest is transcranial direct current 

stimulation (tDCS). 

The use of cranial electric therapy dates back to the Roman physician 

Scribonius Largus (AD 46) who applied live electric torpedo fish to the scalp 
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to treat headache (Kellaway, 1946). Pliny the Elder and the Greek physician 

Galen also described similar findings and the Muslim physician Ibn-Sidah 

(11th century) recommended the use of live electric catfish applied to the 

forehead to treat epilepsy (Kellaway, 1946). Scientific investigations of the 

effects of electrical cranial stimulation were not carried out until much later 

when Galvani and Volta (18th century) introduced the field of 

electrophysiology (Priori, 2003). Indeed Galvani’s nephew, Aldini, reported 

the successful use of transcranial galvanic/direct current stimulation in the 

treatment of melancholia in 1804 (Priori, 2003). The results of subsequent 

tDCS studies were variable and, with the introduction of electroconvulsive 

therapy (ECT) by Bini and Cerlutti in the 1930s (Endler, 1988), interest in 

tDCS diminished (Stagg and Nitsche, 2011). ECT is still currently used in 

therapy resistant depression (Kellner et al., 2012), however, the principles 

between this and tDCS differ significantly. ECT is performed using much 

higher currents (200 – 900 mA) (d'Elia G, 1983) with the aim of inducing 

seizure activity whereas tDCS is performed at 1 mA and modulates 

spontaneous neuronal activity (Nitsche et al., 2003b). tDCS was revived in 

recent years due to improved understanding of the mechanisms involved. 

 

1.4.1 Mechanisms of transcranial direct current stimulation  

tDCS has been shown to influence the spontaneous activity of cortical 

neurones. In vivo studies, applying direct current directly to the cortex in cats 

and rodents, have shown a sub-threshold depolarisation of the resting 

membrane potential of neurones underlying the anode (positive electrode) 

(Creutzfeldt et al., 1962; Bindman et al., 1964; Purpura and McMurtry, 1965; 

Nitsche and Paulus, 2000). Anodal tDCS does not directly elicit action 

potentials, rather the sub-threshold depolarisation enables other inputs to 

reach threshold. This was demonstrated by measuring motor evoked 

potentials (MEPs) elicited using transcranial magnetic stimulation before and 

during anodal tDCS. The amplitude of MEPs was significantly higher during 

anodal tDCS (1 mA) compared to baseline (Nitsche and Paulus, 2000). 

Conversely, beneath the cathode (negative electrode) there is 

hyperpolarisation causing a decrease in spontaneous neuronal activity 
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(Creutzfeldt et al., 1962; Bindman et al., 1964; Purpura and McMurtry, 1965; 

Nitsche and Paulus, 2000). 

 Remarkably the polarity specific alteration in cortical activity persists 

after stimulation has ceased. In vivo, direct current stimulation of 5-10 

minutes resulted in effects that lasted 1-5 hours (Bindman et al., 1964). The 

effects of tDCS in humans are similar with effects lasting up to 90 minutes 

after 13 minutes of stimulation (Nitsche and Paulus, 2000, 2001). The long-

term effects of tDCS depend on both the duration and strength of current 

application (Bindman et al., 1964; Purpura and McMurtry, 1965) and are 

thought to be mediated by N-methyl-D-aspartate (NMDA) receptors (Stagg 

and Nitsche, 2011). Indeed, the residual effects of both anodal and cathodal 

tDCS in healthy humans (n = 11) were blocked using dextromethorphan 

(DMO), an NMDA receptor antagonist (Liebetanz et al., 2002). This suggests 

that synaptic plasticity, such as long term potentiation or long term 

depression, mediates the effects of tDCS (Lang et al., 2005; Stagg and 

Nitsche, 2011). 

Positron emission tomography of regional cerebral blood flow (rCBF) 

has shown that the effects of tDCS are not limited to the area of cortex 

underlying the electrode. Both anodal and cathodal tDCS caused 

widespread changes in rCBF not only in other areas of the cortex but also in 

subcortical structures (Lang et al., 2005). Modelling studies also predict 

widespread distribution of the electric field used in tDCS suggesting that it 

may even induce an electric field in the brainstem (Im et al., 2012). While 

widespread activation of the cortex may facilitate plasticity, there is potential 

that this may have unintentional effects on brain function. For example, this 

may affect central regulation of autonomic function, not only through the 

possible spread of the electrical field to the brainstem but also through 

cortical projections from the areas under stimulation that may influence 

autonomic control. The potential effects of tDCS on autonomic function have 

received little attention and the results are conflicting (Table 1.3) (Accornero 

et al., 2007; Vandermeeren et al., 2010; Montenegro et al., 2011; Raimundo 

et al., 2012). This may be due to the different electrode positions and 

stimulation parameters used in these studies. As tDCS is being investigated 
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as potential therapy in patient groups that often exhibit autonomic 

dysfunction e.g. stroke patients, this merits further consideration. 

 

1.4.2 tDCS in stroke rehabilitation therapy 

The ability of tDCS to modulate cortical excitability and perhaps induce 

synaptic plasticity led to investigation of tDCS as a therapy to enhance 

stroke motor rehabilitation. Approximately 56% of stroke patients suffer 

marked hemiparesis up to 5 years post stroke (Bolognini et al., 2009). This 

limits the ability of patients to carry out activities of daily life, reducing 

independence and quality of life scores. Anodal tDCS over the motor cortex 

improved motor learning (Boggio et al., 2006; Reis et al., 2009) in healthy 

subjects and improved motor function in stroke patients compared to sham 

stimulation (Fregni et al., 2005b; Boggio et al., 2007; Stagg et al., 2012). To 

date, tDCS studies involving stroke patients are few with small sample 

numbers, however, a recent meta-analysis of tDCS in motor rehabilitation 

found significant improvement compared to sham (Butler et al., 2013).
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Table 1.3 Studies of the effects of tDCS on autonomic variables 

Paper Sample Group Electrode Positions Stimulation 
Parameters 

Study Outcomes 

Accornero et al. 
(2007) 

Healthy participants (n = 
20) 

Occipital region and 
neck base 

1 mA for 3 or 10 
mins 

No change in heart rate, blood 
pressure or body temperature 
during anodal or cathodal tDCS. 

Montenegro et 
al. (2011) 

Healthy participants; 
athletes (n = 10) and non–
athletes (n = 10) 

Left temporal lobe (T3) 
and contralateral 
supraorbital region 

2 mA for 20 mins Anodal tDCS increased HF 
component of HRV and reduced 
LF/HF in athletes. No effect in 
non-athletes. 

Raimundo et al. 
(2012) 

Healthy participants (n = 
50) 

Left motor cortex (C3) 
and contralateral 
supraorbital region 

1mA for 20 mins No change in heart rate, blood 
pressure, body temperature or 
respiratory rate. 

Vandermeeren 
et al. (2010) 

Healthy participants (n = 
30) 

Midline frontal cortex 
(Fz) and right tibia 

1mA for 20 mins Compared to sham stimulation 
there was no effect on heart rate, 
blood pressure, respiratory rate 
or HRV. 
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1.4.3 tDCS in the treatment of depression 

A greater understanding of the mechanisms underlying tDCS has led to 

consideration of this technique in the treatment of major depressive disorder 

(Fregni et al., 2005), however, the results are conflicting. Anodal tDCS over 

the left dorsolateral prefrontal cortex has been reported to cause a 

significant improvement in mood in MDD patients compared to sham tDCS 

(Fregni et al., 2006a; Loo et al., 2012). Conversely, this technique has been 

reported to perform no better than sham tDCS (Palm et al., 2012). A meta-

analysis of randomised control trials of tDCS in MDD patients found no 

difference between active and sham conditions (Berlim et al., 2013). 

Subsequently, the efficacy of tDCS compared to a selective serotonin 

reuptake inhibitor (sertraline) has been investigated in MDD patients (n = 

120). There was a significant improve in depression scores in the active 

tDCS group compared to sham. Furthermore, combined tDCS and sertraline 

treatment resulted in a significant improvement compared to either treatment 

on its own (Brunoni et al., 2013b). Further investigation into the anti-

depressive effects of tDCS is warranted, particularly as tDCS may offer an 

alternative to ECT in treatment resistant depression. 

 

1.4.4 tDCS and cognition 

Alterations in cortical excitability are observed in cognitive processes which 

has led to investigation of tDCS as a potential method to improve cognition 

(Kuo and Nitsche, 2012). Anodal tDCS over the posterior parietal cortex 

improved attention in healthy humans during a visual exploration task 

(Bolognini et al., 2010). Working memory was also improved by anodal tDCS 

over the left dorsolateral prefrontal cortex in healthy humans who were 

asked to recall specific letters (Ohn et al., 2008). Interestingly, studies of 

tDCS in patients with depression also found improvements in working 

memory and attention (Fregni et al., 2006a; Loo et al., 2012). The effects of 

tDCS on cognition may contribute to the improvement in symptoms reported 

in depression patients.  

tDCS has also been investigated in learning and long term memory 

studies. Anodal tDCS of the left motor cortex in healthy humans over three 
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sessions improved learning of a visually guided pinch task (Schambra et al., 

2011) supporting the application of tDCS in stroke rehabilitation. In addition, 

anodal tDCS has also been reported to improve verbal learning (de Vries et 

al., 2009) and arithmetic abilities (Cohen Kadosh et al., 2010) in healthy 

volunteers by targeting different areas of the cortex (Broca’s area and right 

parietal lobe respectively). There are few studies of the cognitive effects of 

tDCS, however, the potential ability of tDCS to improve learning may have 

ethical implications in the future. 

 

1.4.5 tDCS and chronic pain therapy 

The prevalence of chronic pain in the adult European population is estimated 

to be around 19% and can severely impact quality of life (Luedtke et al., 

2012). Chronic pain is often unresponsive to pharmacological therapy 

therefore surgical interventions, including brain stimulation, are being 

investigated. A multi-centre trial of deep brain stimulation of the 

periaqueductal grey matter or the thalamus showed modest improvements in 

short term pain perception in patients (3 and 6 months) but was not effective 

long term (Coffey, 2001). Stimulation of the motor cortex has also been 

investigated in chronic pain patients and reduced pain perception (Lima and 

Fregni, 2008), however, this is an invasive technique requiring surgery. 

tDCS over the motor cortex has been proposed as a non-invasive alternative 

therapy in chronic pain. Preliminary results of clinical studies indicate that 

anodal tDCS over the motor cortex may reduce pain in a range of 

neuropathic pain conditions including spinal cord injury (Fregni et al., 2006b; 

Soler et al., 2010), fibromyalgia (Fregni et al., 2006c) and chronic pelvic pain 

(Fenton et al., 2009). These results suggest that tDCS may be a non-

invasive method to alleviate pain symptoms, however, the studies are based 

on small sample groups and larger control trials are required. 
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1.5 General Hypothesis 

It is possible to non-invasively alter autonomic function using 

neuromodulatory techniques. Transcutaneous vagus nerve stimulation and 

transcranial direct current stimulation will alter cardiovascular autonomic 

function.  

 

1.6 Aims and Objectives 

The aim of this thesis was to investigate the effects of 2 non-invasive 

neuromodulatory techniques on cardiovascular autonomic function. These 

techniques were transcutaneous vagus nerve stimulation (tVNS) and 

transcranial direct current stimulation (tDCS). The objectives for the tVNS 

study were to:  

1. investigate the effects of tVNS on non-invasive estimates of 

cardiovascular autonomic function (HRV and BRS) in healthy human 

volunteers 

2. determine the optimal stimulation parameters and electrode 

placement for tVNS to increase parasympathetic predominance 

3. investigate the mechanisms of tVNS effects on cardiovascular 

autonomic control through direct recordings of sympathetic nerve 

activity (microneurography) and neuronal tracing of the ABVN in fixed 

human tissue 

4. investigate the effects of tVNS on HRV and BRS in heart failure 

patients 

5. investigate the tolerability of tVNS in HF patients 

The objectives for the tDCS study were to: 

1. investigate the effects of anodal and cathodal tDCS on non-invasive 

estimates of cardiovascular autonomic function (HRV and BRS) in 

healthy human volunteers 

2. investigate the mechanisms of tVNS effects on cardiovascular 

autonomic control through direct recordings of sympathetic nerve 

activity (microneurography). 
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Chapter 2 

The influence of transcutaneous vagus nerve stimulation on 

autonomic function 
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2.1 Introduction 

Electrical stimulation of the cervical vagus nerve has been approved for 

treatment resistant epilepsy in Europe and the USA for over 15 years 

(Shahwan et al., 2009). VNS is also an approved therapy for treatment 

resistant depression in the USA (Milby et al., 2008) and has been 

investigated as a potential therapy for a wide range of conditions including 

inflammation (De Herdt et al., 2009), Alzheimer’s disease (Merrill et al., 

2006), obesity (Val-Laillet et al., 2010), chronic pain (Kirchner A. et al., 2000) 

and tinnitus (Engineer et al., 2011). Indeed, VNS has proven effective in pilot 

studies for the treatment of heart failure (Schwartz et al., 2008) and in a 

subsequent multi-centre trial that is on-going (ClinicalTrials.gov Identifier: 

NCT01303718)(De Ferrari et al., 2011). However, despite positive 

indications from pilot studies, large scale trials are rare. 

One factor that may hinder larger trials is the invasive nature of VNS. 

VNS requires surgical implantation of a bipolar electrode around the cervical 

vagus nerve and implantation of a generator subcutaneously in the thoracic 

wall. This is associated with technical and surgical complications including 

wound infection, cardiac arrhythmia under test stimulation and electrode 

malfunction (Spuck, 2010). In addition, side effects include hoarseness, 

dysphagia, cough and pain (Elliott et al., 2011).  

A potential non-invasive route for VNS is electrical stimulation of the 

auricular branch of the vagus nerve (ABVN), which is distributed to the 

external ear (Peuker and Filler, 2002). This stimulation can be performed 

transcutaneously by applying surface electrodes or acupuncture needles to 

the external ear (tVNS). tVNS has been piloted in some patient groups as an 

alternative to implanted VNS e.g. tinnitus (Lehtimäki et al., 2012). Short term 

tVNS (7 treatments lasting 45-60 mins over 10 days) paired with sound 

therapy in tinnitus patients decreased perception of tinnitus and improved 

mood and symptoms assessed using questionnaires (n = 10) (Lehtimäki et 

al., 2012). Furthermore, magnetoencephalography revealed a decrease in 

amplitude of evoked auditory cortical responses during tVNS (Lehtimäki et 

al., 2012). Conversely, tVNS has been reported to have no effect on tinnitus 
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(n = 24) (Kreuzer et al., 2012), however, this study did not use simultaneous 

sound therapy. 

As VNS is currently used in refractory epilepsy, tVNS has been 

piloted as a non-invasive alternative. tVNS was investigated in 7 patients 

with refractory epilepsy (Stefan et al., 2012). Patients were treated for 9 

months (1 hour 3 times daily) and kept logs of seizures. Patients also 

underwent EEG at baseline and every 3 months during the study, however, 

as 4 of the 7 patients showed no clinical seizures in the baseline EEG, 

comparisons were limited. 2 of the patients exhibited a significant reduction 

in seizure number (29% and 50% decrease) during EEG at 9 month follow-

up whereas 1 patient had a significant increase in seizure number (175%) 

(Stefan et al., 2012). From the patients’ logs, 5 experienced a decrease in 

seizure frequency whereas 2 reported an increase. These mixed preliminary 

results make it unclear if tVNS is beneficial in refractory epilepsy. A larger 

sample group, with the addition of a suitable control such as sham tVNS, is 

required. 

tVNS is also being investigated as a possible non-invasive therapy in 

depression. 2 weeks of tVNS (15 minutes 1-2 times daily 5 days a week) 

significantly decreased depression rating scores using the Beck Depression 

Inventory compared to sham tVNS, however, there was no difference in 

scores assessed using the Hamilton Depression Rating Scale (Hein et al., 

2013). Interestingly, the Beck Depression Inventory is utilised by patients 

whereas the Hamilton Depression Rating Scale is based on clinicians’ 

ratings of symptoms, therefore, there was an improvement in patient rated 

scores but not in clinician scores. This may suggest a placebo effect or it 

may reflect the limitations of depression rating scales. Alternatively, the 

conflicting results may also be due to the short treatment time; evidence 

from invasive VNS for depression suggests that long term stimulation is 

required for therapeutic effects (Rush et al., 2005b). 

tVNS may also be a therapeutic approach to reduce pain perception. 

tVNS in healthy participants (n = 48) reduced pain sensitivity in response to 

tonic heat and increased mechanical and pressure pain thresholds when 

compared to sham tVNS (Busch et al., 2013). tVNS has also been 
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investigated in patients with chronic pain (endometriosis; n = 15) - responses 

to evoked mechanical pain stimuli were decreased compared to sham 

stimulation (Napadow et al., 2012). 

Electroacupuncture of the ear has also been reported to improve 

symptoms in coronary artery disease patients (Zamotrinsky et al., 1997; 

Zamotrinsky et al., 2001). 15 minutes of stimulation per day for 10 days 

abolished angina symptoms at rest and reduced the use of vasodilator 

medication. Furthermore, patients subsequently underwent coronary artery 

bypass surgery and had improved postoperative outcomes compared to the 

control group.  

These recent studies of tVNS in the clinical setting have provided 

some positive initial results, however, the outcomes investigated are varied 

and mostly subjective. In addition, the stimulation parameters used differ 

widely (Table 2.1), therefore, little is known about the optimal parameters for 

tVNS. There is also a dearth of information regarding the potential effects of 

tVNS on central autonomic control. Neuronal tracing studies in cats and 

dogs revealed projections of the ABVN to the NTS (Nomura and Mizuno, 

1984; Chien et al., 1996). The NTS receives visceral vagal afferents and 

plays a key role in integrating autonomic control through projections to the 

DVN, NA, CVLM and RVLM (see General Introduction 1.1.4), therefore, 

stimulation of the ABVN may increase efferent vagal parasympathetic 

activity and/or decrease sympathetic outflow. Indeed, acupuncture of the 

concha of the ear in healthy volunteers has been reported to significantly 

increase the HF component of HRV indicating an increase in 

parasympathetic modulation of the heart (Haker et al., 2000). Many of the 

clinical pilot studies recorded ECG data to ensure that tVNS was safe to use 

and reported no effect on heart rate (Kreuzer et al., 2012; Lehtimäki et al., 

2012; Napadow et al., 2012; Busch et al., 2013). However, heart rate is a 

crude measure of autonomic function and the sample sizes were small. If 

tVNS can be shown to influence autonomic control towards parasympathetic 

predominance it could provide a method to correct autonomic imbalance in 

conditions with parasympathetic withdrawal such as heart failure. 
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2.2 Hypothesis 

Transcutaneous stimulation of the auricular branch of the vagus nerve will 

alter cardiovascular autonomic control. 

 

2.3 Aims and Objectives 

The aim of this study was to investigate the effects of tVNS on 

cardiovascular autonomic function in healthy human volunteers. The 

objectives were to:  

1. determine an optimal tVNS protocol by investigating the effects of 

different electrode positions and stimulation parameters (pulse width 

and frequency) on cardiovascular autonomic function (measured by 

HRV and BRS analyses).  

2. determine the effects of the optimal tVNS protocol on sympathetic 

nerve activity measured by microneurography.  
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Table 2.1 Studies of tVNS in patient populations. 

Paper Sample Group Study 
Design 

Electrode 
positions 

Stimulation 
parameters 

Study outcomes 

Hein et al. 
(2013) 

Major depression 
patients (tVNS = 
17; sham = 20) 

Sham 
controlled 

Left and right 
ears 

1.5 Hz; 0-600 µA Decreased depression rating scores using the Beck 
Depression Inventory; no difference in scores using 
the Hamilton Depression Rating Scale. 

Kreuzer et al. 
(2012) 

Tinnitus patients 
(n = 24) 

Pilot study 
(no control) 

Exact site 
unclear 

25 Hz; 0.1 – 10  
mA; 24 weeks 

No effect on tinnitus symptoms. No effect on heart 
rate. Reduction in QRS complex duration. 

Lehtimäki et 
al. (2013) 

Tinnitus patients 
(n = 10) 

Pilot study 
(no control) 

Left tragus 25 Hz; approx. 0.8 
mA and sound 
therapy; 10 days 

Improved mood and tinnitus severity. Reduced 
amplitude of evoked auditory cortical responses. No 
effect on heart rate. 

Napadow et 
al. (2012) 

Endometriosis 
patients (n = 15) 

Sham 
controlled 
cross-over 

Left cymba 
concha and 
anti helix 

450 µs; 30 Hz; 
during exhalation 

Reduced pain responses to evoked mechanical pain 
stimuli and reduced anxiety. No effect on HRV (n = 
10). 

Stefan et al 
(2012) 

Epilepsy patients 
(n = 7) 

Pilot study 
(no control) 

Left ear. 
Exact site 
unclear 

300 µs; 10 Hz; 
25V; 9 months 

Reduced seizure frequency. 

Zamotrinsky 
et al. (1997) 

Coronary artery 
disease patients 
(VNS = 10; 
control = 10) 
 

Randomised 
control trial 

Left and right 
ears 
Exact site 
unclear 

Electro-
acupuncture 
0.2-1.5mA; 
3Hz;1.5ms 
15mins/day for 10 
days 

After day 4 angina did not develop at rest. After day 7 
patients had increased tolerance to exercise. Patients 
no longer needed vasodilators (glycerol trinitrate). 
Effects lasted 2-3 weeks after tVNS treatment. 

Zamotrinsky 
et al. (2001) 

Coronary artery 
disease patients 
(VNS = 8; 
control = 10) 
 

Randomised 
control trial 

Left and right 
ears 
Exact site 
unclear  

Electro-
acupuncture 0.2-
1.5mA; 3Hz;1.5ms 
15mins/day for 10 
days 

tVNS caused a transient decrease in heart rate and 
BP during first 4-5 days. After 4-5 days heart rate and 
BP chronically lower compared to baseline. Reduction 
in angina episodes and reduced need for medication. 
Improved postoperative outcome compared to control 
group. 

http://informahealthcare.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A%28Lehtim%C3%A4ki%2C+J%29
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2.4 Methods 

2.4.1 General Protocol 

The study was approved by the University of Leeds Ethics Committee 

(Appendix - BIOSCI 09-021) and was conducted in accordance with the 

Declaration of Helsinki. Informed written consent was obtained from all 

participants. 150 healthy participants were recruited for the study. Inclusion 

criteria for healthy participants were male or female over the age of 18 

years. Exclusion criteria were a history of cardiovascular disease, diabetes 

or hypertension. To avoid possible confounding factors, all experiments were 

carried out in a similar manner between 8-10 am to limit the effect of 

circadian variation on autonomic function. The study was conducted in a 

dedicated study room at 21 ± 2°C. All participants were asked to avoid 

alcohol and intense exercise 12 hours prior to attendance. They were also 

asked to avoid caffeine and nicotine on the morning of the study. Each 

participant was asked to have a light breakfast and to void their bladder 

before the study commenced. Demographic data including age, weight, 

height, medication and activity levels were recorded. Participants were 

asked to lie on a couch with a memory foam mattress topper in a semi-

supine position while heart rate, blood pressure and respiration were 

monitored continuously. Following experimental set up, participants rested 

for 10-20 minutes while heart rate and blood pressure were monitored until a 

steady state was reached. Data were recorded at baseline, during tVNS and 

during recovery for 15 minutes each. Between each recording, participants 

rested until heart rate and blood pressure returned to baseline levels. 

Participants were asked to remain still and refrain from talking during 

recordings. 

 

2.4.2 Transcutaneous Vagus Nerve Stimulation (tVNS) 

tVNS was performed using a Transcutaneous Electrical Nerve Stimulation 

(TENS) device (V-TENS Plus, Body Clock Health Care Ltd, UK) with 

modified surface electrodes (auricular clips, Body Clock Health Ltd, UK). 

tVNS was applied for 15 minutes. The effects of varying several stimulation 
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parameters were investigated; electrode position, single vs. bilateral 

stimulation and the pulse with and pulse frequency of stimulation. In all 

experiments, amplitude was adjusted to the level of sensory threshold (10-

50 mA). 

 

2.4.2.1 Electrode positioning for tVNS 

Three different electrode configurations were investigated in healthy 

participants (n = 63); tragus (n = 34), tragus + cymba (n = 15) or concha (n = 

14; Figure 1.2). tVNS was performed with a pulse width of 20 µs at 15Hz for 

15 minutes. 

 

2.4.2.2 The effects of tVNS of the right ear vs. bilateral tVNS 

In the same group of participants (n = 63) in which electrode positioning was 

investigated, the efficacy of tVNS of either the right ear only (n = 21) or both 

ears simultaneously (n = 42) was also investigated. tVNS was performed 

with a pulse width of 20 µs at 15Hz for 15 minutes. 

 

2.4.2.3 Stimulation parameters for tVNS 

The effects of different pulse width and frequency stimulation was 

investigated. As no significant difference was found between different 

electrode positioning and sides on HRV, this group were termed the low 

pulse width and pulse frequency group (L-tVNS; 20 µs pulse width at 15 Hz; 

n = 63). A further 34 participants were recruited for the high pulse width and 

frequency group (H-tVNS).  

 

2.4.2.4 Sham tVNS 

Sham tVNS (n = 14) was performed by placing the electrodes on the tragus 

and increasing amplitude until the participant reported feeling sensation. 

Participants were then told that the amplitude would be reduced slightly to 

prevent discomfort but the electrode leads were disconnected from the 

TENS machine without the participants’ knowledge. 
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2.4.3 Heart Rate Variability (HRV) 

A three lead ECG was used to monitor and record heart rate. Electrodes 

(Ambu, UK) were placed on left and right clavicles and costal margins 

enabling electrode polarities to be changed to select the lead that detected 

the most prominent R peak for subsequent HRV analysis (normally lead II). 

HRV was analysed offline using LabVIEW (National Instruments, USA) 

software. A threshold was set to detect R peaks from an 8 minute ECG 

recording and R-R intervals used to produce a tachogram. The ECG was 

inspected to ensure all R peaks were detected and there were no 

abnormalities in the ECG such as ectopic beats (e.g. premature ventricular 

complexes). Ectopic beats could be corrected using a linear spline to 

average the R-R interval prior to and following the ectopic. If more than 2 

ectopic beats were detected the recording was excluded. The resulting 

tachogram was resampled at 5 Hz and underwent 512 point Fast Fourier 

Transform (78% overlap) with a Hanning window to calculate the power 

spectrum of HRV with the low frequency (LF) component at 0.04 - 0.15 Hz 

and the high frequency (HF) component at 0.15 - 0.40 Hz (Figure 2.1). LF 

and HF powers were also converted to normalised units as a percentage of 

the total power minus very low frequency power (VLF; 0.00 – 0.04 Hz) to 

determine the LF/HF ratio. The HF component reflects parasympathetic 

modulation of heart rate (Chapleau and Sabharwal, 2011) and the LF 

component reflects both sympathetic and parasympathetic modulation of 

heart rate (Akselrod et al., 1981). The ratio of low frequency and high 

frequency oscillations of heart rate variability can be used as an index of 

cardiac autonomic balance such that a decrease in LF/HF ratio indicates a 

shift in cardiac autonomic balance towards parasympathetic predominance 

(Task Force of the European Society of Cardiology and the North American 

Society of Pacing Electrophysiology, 1996; Chapleau and Sabharwal, 2011).  
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Figure 2.1 Example of heart rate variability analysis. The high frequency (HF) component of HRV represents 

parasympathetic/vagal modulation of heart rate whereas the LF component reflects both sympathetic and parasympathetic 

influences. The ratio of LF/HF can be used as an estimate of cardiac sympathovagal balance. 
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2.4.4 Respiration 

A piezo-electric transducer (Pneumotrace, UFI, USA) was placed round the 

upper thorax to monitor and record respiration rate. A respiration rate <10 

breaths/min was unacceptable for HRV analysis as the HF component is 

respiration dependent. At slow respiration rates the HF peak of the HRV 

spectrum can merge with the LF peak (Malliani, 2005). In this case 

participants were asked to use a breathing metronome set at 16 breaths/min 

(n = 3).  

 

2.4.5 Blood pressure 

A Finometer device (Finometer Medical Systems B.V., Arnhem, 

Netherlands) was used to monitor and record blood pressure continuously 

including pulse-to-pulse changes. This device utilises the volume clamp 

method proposed by Peňáz in 1973 (Parati et al., 2003). An inflatable cuff 

was placed round the middle phalanx of the middle finger on the left hand. 

The finger cuff has an infrared light source and sensors that detect changes 

in blood volume (photoplethysmography). The finger cuff was connected to 

the front-end unit that was strapped to the subject’s wrist. This receives 

plethysmography data and adjusts pressure in the finger cuff to keep the 

diameter of the digital arteries constant (clamped). The front-end unit on the 

wrist was connected to the main unit of the Finometer. The main unit 

consists of a pump used to inflate the finger cuff and the PhysioCal software 

that calculates the set point at which the artery wall is unloaded i.e. when the 

intra-arterial pressure of the digital artery matches air pressure in the finger 

cuff. PhysioCal was switched off during recordings as it interferes with data 

collection but it was switched on again between recordings to ensure 

accurate measurements. The Finometer output screen displayed the arterial 

waveform and also the numerical values for heart rate, systolic, diastolic, 

and mean blood pressure.  

 The device also has a hydrostatic height correction system to 

compensate for hand position with respect to the level of the heart. One 

sensor was placed at the level of the heart and another on the finger cuff. An 

agreement within 10 mmHg for systolic and diastolic values obtained by the 
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Finometer device and blood pressure readings from the arm using an 

automatic blood pressure machine was sought. If there was a discrepancy 

then a variety of adjustments were tried including: 

1. reapplying the finger cuff 

2. using a different sized finger cuff 

3. warming the hands 

4. using a different finger 

Although precise values of systolic and diastolic blood pressure cannot be 

obtained using the Finometer device, this does provide accurate 

measurement of beat-to-beat changes in blood pressure that are required for 

baroreflex sensitivity measurement (Parati et al., 2003). The alternative 

method is the use of an intra-arterial catheter to measure the precise values 

for systolic and diastolic blood pressure which is highly invasive and was not 

feasible. La Rovere et al. (1997) simultaneously measured intra-arterial 

blood pressure and finger cuff blood pressure during BRS assessment in 

620 patients and found a high correlation between the two methods (r = 

0.92, p = 0.001). 

 

2.4.6 Baroreflex sensitivity (BRS) 

Spontaneous BRS can be used as an index of cardiovagal activity (La 

Rovere et al., 2008). Systolic blood pressure variability was calculated using 

a similar method to HRV except the threshold was set to detect peak systolic 

pressure. Cross spectral analysis of oscillations in systolic blood pressure 

and R-R interval was performed. The alpha index was used as an estimate 

of BRS and was calculated as the square root of the ratio of HRV LF power 

over systolic blood pressure LF power (Robbe et al., 1987). Coherence 

between oscillations in systolic blood pressure and heart rate exceeded 0.5 

for BRS analysis to be accepted. 

 



- 58 - 

2.4.7 Microneurography 

Muscle sympathetic nerve activity (MSNA) was recorded as previously 

described (Macefield et al., 1994; Greenwood et al., 1999) in 10 healthy 

volunteers in the H-tVNS group (8 male, 2 female; 29-59 years). The right 

leg was flexed at the knee (approximately 70º) and supported with foam 

cushions. The peroneal nerve was identified by palpation as it coursed round 

the neck of the fibula (Figure 2.2) and the skin was cleaned using alcohol 

wipes. Microneurography was not performed if there were skin lesions 

present in the area of electrode insertion. Two tungsten microelectrodes 

(FHC Inc., USA) were inserted percutaneously below the knee. The 

electrodes were 35 mm long with a diameter of 200 µm tapering to a tip. The 

recording electrode was epoxy insulated with an impedance of 0.3 ± 0.6 MΩ. 

An electrode with high impedance was used as this limits the area over 

which neural activity is picked up and is necessary for single unit MSNA 

recordings (Macefield et al., 2002). This was inserted into the peroneal nerve 

and the second (reference) electrode was inserted into subcutaneous tissue 

1-2 cm away. The electrodes were connected to a headstage (Neurolog 

NL100AK, UK) which was connected to an AC pre-amplifier (x50k 

amplification; Neurolog NL104A, UK). The signal was passed through a 

Humbug (Quest Scientific, Canada) to filter out mains noise at 50 Hz and a 

bandpass filter (0.7-2.0 kHz; Neurolog NL125/6, UK). The signal was 

sampled at 16 kHz and digitised (Power 1401, CED, UK). The signal was 

then passed to a PC (Dell laptop) where it was displayed in real time and 

recorded using Spike2 software (version 7; CED, UK). The time base could 

be expanded to allow inspection of individual action potentials during the 

experiment. The recording microelectrode was manipulated until a prominent 

single action potential could be visualised. Manipulations were small and 

limited to 45 minutes in accordance with guidelines (Mano et al., 2006).  

To confirm that action potentials were recorded from a sympathetic 

vasoconstrictor fibre the following criteria were used;  

1) the action potential occurred in diastole  

2) there was an inverse relationship between single unit activity and 

blood pressure as expected of a sympathetic vasoconstrictor fibre  
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3) single unit activity increased in response to cold pressor test or 

isometric handgrip exercise  

4) there was an absence of paraesthesia and no change in single 

unit activity in response to cutaneous stimuli (stroking the skin of 

the lateral leg and the dorsum of the foot).  

Further confirmation was obtained during off-line analysis by superimposing 

all putative MSNA single units to ensure the amplitude and shape remained 

constant indicating that the same unit was recorded throughout the recording 

period. MSNA frequency (per min) was calculated by counting all single units 

that occurred in the first 2 minutes of each recording. MSNA incidence (per 

100 heart beats) was also calculated to limit the effect of any changes in 

heart rate. Baseline data were normalised to 1 and stimulation and recovery 

data were normalised to baseline due to a high degree of inter-individual 

variation. Raw values of MSNA frequency and incidence are presented in 

Table 2.7. 

 

2.4.7.1 Cold pressor test 

Control data were recorded for 1 minute then the participant was asked to 

submerge the entire left hand and wrist into ice water (approximately 4ºC). 

The hand was submerged for 1 minute unless the discomfort level was too 

high. The hand was removed from the water and placed in a towel while a 

further 1 minute of recovery data was obtained. The cold pressor test is 

useful in discriminating between MSNA and skin sympathetic nerve activity 

(SSNA). The cold pressor test evokes an increase in blood pressure that 

correlates well with increasing MSNA (Fagius et al., 1989; Kregel et al., 

1992). Crucially, there is a delay in the increase of MSNA of approximately 

30 s. The degree of increased MSNA is related to the perceived level of 

discomfort and this may account for the variation in onset (Victor et al., 1987; 

Kregel et al., 1992) whereas there is no consistent change in skin 

sympathetic activity (Kregel et al., 1992). The response to the cold pressor 

test was therefore derived from the last 30 s of immersion compared to the 

control period. 
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Figure 2.2 The course and distribution of the common, deep and 

superficial peroneal (fibular) nerves in the leg (Flanigan and 

DiGiovanni, 2011) 
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2.4.7.2 Isometric handgrip exercise (IHG) 

Maximal voluntary contraction (MVC) was determined during the 

experimental set up by asking the participant to squeeze a handgrip as hard 

as possible. The handgrip was connected to a dynamometer (MIE Medical 

Research Ltd, UK) which provided a numerical display. In addition, the 

signal from the dynamometer was digitised (Coulbourn Lab Sinc V, 

Coulbourn Ltd, USA), passed to a PC and displayed as a dial on the monitor 

to aid participants during the exercise. Control data were recorded for 1 

minute then the participant was asked to squeeze the handgrip until the 

pointer was in the green area of the dial, representing 30-40% of MVC, and 

to maintain this for 2 minutes. Participants were asked to try and keep all 

other muscles as relaxed as possible and to avoid breath holding during the 

handgrip. After 2 minutes participants were asked to stop the handgrip and a 

further 1 minute of recovery data was recorded. IHG causes an immediate 

and continuous increase in blood pressure mediated in the initial stage by 

tachycardia and subsequently by increased MSNA (Seals et al., 1988). This 

exercise is useful in differentiating between muscle and skin SNA as SSNA 

increases abruptly at the start of exercise and remains constant whereas the 

increase in MSNA is delayed for 30-60 s and then gradually increases 

throughout the exercise (Seals et al., 1988; Saito et al., 1990) (Figure 2.3). 

MSNA from the second minute of IHG was therefore compared to the control 

period.  
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Figure 2.3 Example isometric handgrip exercise recording. There are 2 

putative MSNA units during the 1 minute control period and during the 

first minute of exercise. The firing of this unit increases during the 

second minute of exercise to 5 units indicating that this is a sympathetic 

vasoconstrictor unit (* = single unit). 

 

 

 

2.4.8 Data acquisition 

ECG, blood pressure and respiration data were split into two channels and 

fed into two data amplification systems (Coulbourn Lab Sinc V, Coulbourn 

Ltd, USA and Neurolog, CED, UK). The data were sampled at 12 kHz and 

stored on hard drives. Channels were independently calibrated before 

digitisation and storage on PCs. Data channels were then displayed on 

monitors using LabVIEW (National Instruments, USA) and Spike2 (CED, 

UK) software.  
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2.4.9 Statistical analysis 

All statistical analyses were carried out using SPSS (version 18). 

Independent t-tests or Mann-Whitney U tests were used to compare group 

characteristics. Repeated measures ANOVA was used to analyse time effect 

(baseline, stimulation, recovery) in each group alone with post hoc 

Bonferroni correction. To analyse the effects of different methods of 

stimulation, mixed mode ANOVA with group (electrode site, side or 

stimulation parameters) and time was used. For groups that differed at 

baseline, ANCOVA was used with baseline values held constant as 

covariates. Where interactions were revealed, post hoc analyses were 

undertaken using repeated measures ANOVA on each group separately. 

The Greenhouse – Geisser correction was used where data did not meet 

sphericity. Linear regression was used to explore the relationship between 

variables. Data are presented as group mean ± standard error of the mean 

(S.E.M.) unless stated otherwise. A 2-tailed probability value < 0.05 was 

considered statistically significant.  

 

2.4.10 Study Failures 

There were 132 volunteers for the first part of the study investigating the 

effects of different stimulation protocols on cardiovascular autonomic control, 

however, 21 records were excluded for the following reasons: 

 6 had multiple ectopic beats 

 5 had pre-existing conditions (hypertension, type 1 diabetes, 

persistent cough, back pain and stroke) 

 3 had cardiac arrhythmia  

 2 were excluded due to moving and talking during recordings 

 1 file was corrupted 

 1 had poor signal to noise ratio in ECG 

 1 had vasomotor symptoms of menopause 

 1 needed to urinate 

 1 was excluded due to noise from on-going building works 
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There were 18 volunteers for the second part of the study utilising 

microneurography however, 8 were excluded for the following reasons: 

 6 were excluded due to failure to locate an acceptable MSNA 

unit  

 1 had a poor signal to noise ratio  

 1 had a lesion present at the electrode insertion site. 

 

 

2.5 Results 

2.5.1 Electrode positioning for tVNS 

The auricular branch of the vagus nerve is distributed to parts of the external 

ear including the tragus, concha and cymba concha (Peuker and Filler, 

2002) (Figure 1.2). The effect of stimulating these three areas by specific 

electrode placement at the ear was investigated in 63 healthy volunteers (34 

female, 29 male; 20-66 years old). L-tVNS was performed for 15 minutes 

using a TENS machine (pulse width 20 µs; pulse frequency 15 Hz) and 

modified surface electrodes. Repeated measures ANOVA revealed there 

was no significant change in HRV or BRS during tVNS (Figure 2.5 A; Table 

2.2– L-tVNS group). To test if this was due to the inter-individual variation in 

resting cardiac autonomic control, HRV was analysed for responders (those 

who had a decrease in LF/HF ratio during tVNS; n = 31) and non-responders 

(n = 32; Table 2.3). This decision was validated by the fact that there was a 

significant difference in baseline LF/HF ratios between responders and non-

responders suggesting higher vagal tone in the non-responder group (1.32 

and 1.04 respectively; p = 0.038; Table 2.3). There was no significant 

difference between responder and non-responder groups in other baseline 

characteristics such as body mass index (BMI), age, resting heart rate and 

blood pressure (Mann-Whitney U test, Table 2.4– L-tVNS group). Mixed 

mode ANOVA confirmed there was no significant change in LF/HF ratio 

(time effect, p > 0.05). There was also no impact of group (responder or non-

responder main effect, p > 0.05), however, there was a significant interaction 

between group and time (p < 0.0005). Further analysis of the interaction 
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using a repeated measures ANOVA of LF/HF ratio in the responder group 

alone revealed a significant decrease in LF/HF ratio (Figure 2.5; time effect, 

p < 0.0005) during L-tVNS indicating a shift in autonomic balance towards 

parasympathetic predominance. Conversely, there was a significant 

increase in LF/HF ratio in the non-responder group (time effect, p < 0.0005) 

indicating that the interaction is due to an increase in LF/HF ratio in the non-

responder group compared to a decrease in the responder group. There was 

no significant change in LF or HF power. There was no impact of electrode 

site on LF/HF in the responder group alone (tragus n = 34; concha n = 14; 

tragus + cymba n = 15; Figure 2.4; main effect for site, p > 0.05; Figure 2.5). 

In addition, there was no interaction between electrode site and time. There 

was a significant decrease in heart rate (time effect p < 0.0005) in the 

responder group alone (Figure 2.4). There was a significant decrease in 

heart rate (time effect, p > 0.0005) and an increase in mean BP in the non-

responder group (time effect, p = 0.001). There was no impact of electrode 

site on heart rate (main effect for side, p > 0.05) or mean BP (main effect for 

side p > 0.05) and there was no interaction between electrode site and time.  
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Figure 2.4 Cardiovascular variables of responder and non-responder 

groups during L-tVNS of different electrode sites. In the responder group 

alone, there is a significant decrease in heart rate (time effect, p < 0.0005) 

and no change in mean BP (time effect, p > 0.05). There is a significant 

decrease in heart rate (time effect, p > 0.0005) and an increase in BP in the 

non-responder group (time effect, p = 0.001). Electrode site had no effect on 

heart rate (main effect for site, p > 0.05) or mean BP (main effect for side, p 

> 0.05) and there was no interaction between site and time (* = significantly 

different from baseline).  

 

 

 



- 67 - 

     

 

     

 

0

10

20

30

40

50

60

70

80

Baseline Stimulation Recovery

H
e

ar
t 

ra
te

 (
b

p
m

) 

Responders 
Concha
Tragus
Cymba + tragus

0

10

20

30

40

50

60

70

80

Baseline Stimulation Recovery
H

e
ar

t 
ra

te
 (

b
p

m
) 

Non-responders 
Concha
Tragus
Cymba + tragus

0

10

20

30

40

50

60

70

80

90

100

Baseline Stimulation Recovery

M
e

an
 B

P
 (

m
m

H
g)

 

Responders 
Concha
Tragus
Cymba + tragus

0

10

20

30

40

50

60

70

80

90

100

Baseline Stimulation Recovery

M
e

an
 B

P
 (

m
m

H
g)

 

Non-responders 
Concha
Tragus
Cymba + tragus

* * * * * * * * * 

* * * 

A B

B 

C D 



- 68 - 

 

Figure 2.5 Effects of different L-tVNS electrode positions on HRV in responder and non-responder groups. There was no 

significant change in LF/HF (A; time effect p > 0.05) and group (responder or non-responder) had no impact (main effect for 

group (p > 0.05), however there was a significant interaction between group and time (p < 0.0005). In the non-responder group 

alone, there was a significant increase in LF/HF (time effect, p < 0.0005; n = 32). There was a significant decrease in LF/HF ratio 

during L-tVNS in the responder group (p < 0.0005; n = 31). There was no impact of  electrode site on the concha (n = 14), tragus 

(n = 34) or tragus + cymba concha (n = 15; main effect for site, p > 0.05; C) and no interaction between electrode site and side (* 

= significantly different from baseline). 

B. Non-responders C. Responders A. All inclusions 

* * 

* 
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2.5.2 L-tVNS of the right ear vs. bilateral tVNS 

In the same group of participants in which electrode positioning was 

investigated, the effect of stimulating just the right ear (n = 21) versus left 

and right ears simultaneously was investigated (n = 42; Figure 2.6). Mixed 

mode ANOVA revealed no significant change in LF/HF (time effect, p >0.05) 

and no impact of group (responder or non-responder), however there was a 

significant interaction between group and time. Further analysis of the 

interaction using a repeated measures ANOVA of the responder group alone 

revealed a significant increase in LF/HF ratio (time effect, p < 0.0005). There 

was a significant increase in LF/HF ratio in the non-responder group (p > 

0.0005). There was no impact of side on LF/HF (main effect for side, p > 

0.05) and there was no interaction between side and time. There was a 

significant decrease in heart rate (time effect, p < 0.0005) and increase in 

mean BP (time effect, p < 0.0005) in the responder group alone (Figure 2.6). 

There was also a decrease in heart rate (time effect, p < 0.0005) and an 

increase in mean BP in the non-responder group (time effect, p < 0.0005).  

There was no impact of electrode site on heart rate (main effect for side, p > 

0.05) or mean BP (main effect for side p > 0.05) and there was no interaction 

between electrode site and time (Figure 2.7). Based on these results, tVNS 

of the tragus of both left and right ears was used for all subsequent 

experiments due to ease of application. 
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A. All Inclusions                     B. Non-responders           C. Responders 

    

Figure 2.6 Effects of L-tVNS of the right ear only compared to left and right ears simultaneously. There was no significant 

change in LF/HF (A; time effect p > 0.05) and group (responder or non-responder) had no impact (main effect for group, p > 0.05), 

however there was a significant interaction between group and time (p < 0.0005). In the non-responder group alone, there was a 

significant increase in LF/HF (time effect, p < 0.0005; n = 32). There was a significant decrease in LF/HF ratio during L-tVNS in the 

responder group alone (time effect, p < 0.0005; n = 31).  There was no impact of side (main effect for side, p > 0.05; C) and no 

interaction between side and side (* = significantly different from baseline).  
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Figure 2.7 Cardiovascular variables of responder and non-responder 

groups during L-tVNS of right vs. both ears simultaneously. In the 

responder group alone, there is a significant decrease in heart rate 

(time effect, p < 0.0005) and an increase in mean BP (time effect, p < 

0.0005). There is also a decrease in heart rate (time effect, p < 0.0005) 

and an increase in mean BP in the non-responder group (time effect, p 

< 0.0005). Electrode site had no effect on heart rate (main effect for 

site, p > 0.05) or mean BP (main effect for site, p > 0.05) and there was 

no interaction between site and time (* = significantly different from 

baseline). 
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2.5.2 Stimulation parameters for tVNS 

The cardiovascular autonomic effects of different stimulation parameters 

were investigated in 111 healthy volunteers (58 female, 53 male; 20-66 

years old). tVNS was performed with low pulse width and pulse frequency 

(L-tVNS = 20 µs at 15 Hz; n = 63), high pulse width and pulse frequency (H-

tVNS = 200 µs at 30 Hz; n = 34) or sham stimulation (electrodes placed on 

the ear without electrical stimulation; n = 14) and HRV analysed (including 

responders and non-responders). The L-tVNS group included stimulation 

using different electrode positions but as no significant difference was found 

between positions all were included for investigation of stimulation 

parameters. Mixed mode ANOVA revealed a significant decrease in LF/HF 

during tVNS (time effect, p = 0.040). Stimulation parameters (L-tVNS or H-

tVNS group) had no impact on LF/HF ratio (main effect of stimulation 

parameters, p > 0.05), however, there was a significant interaction between 

stimulation parameters and time (p = 0.048; Figure 2.8). Further analysis of 

the interaction using a repeated measures ANOVA of the H-tVNS group 

alone revealed a significant decrease in LF/HF ratio (time effect, p = 0.026; 

Figure 2.8). There was no significant change in LF/HF ratio in L-tVNS and 

sham groups. Splitting the H-tVNS group into responders to tVNS and non-

responders again revealed a significant difference in baseline LF/HF ratios 

between responders and non-responders (1.54 and 0.64 respectively; p = 

0.001; Table 2.3). Repeated measures ANOVA revealed a significant 

decrease in LF power during tVNS in the H-tVNS responder group (time 

effect, p = 0.001; Table 2.3) whereas total power and HF power did not 

change significantly. There was no significant change in total power, LF 

power or HF power in the non-responder group during H-tVNS.  
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Table 2.2 Heart rate variability values for Sham tVNS, L-tVNS and H-

tVNS groups including responders and non-responders. There was 

a significant decrease in LF/HF during tVNS (time effect, p = 0.040). 

Stimulation parameters (L-tVNS or H-tVNS group) had no impact on 

LF/HF ratio (main effect of stimulation parameters, p > 0.05), however, 

there was a significant interaction between stimulation parameters and 

time (p = 0.048). There was a significant decrease in LF/HF ratio during 

tVNS in the H-tVNS group alone (time effect, p = 0.026). There was no 

significant difference in baseline total power, LF power, HF power or 

LF/HF ratio between these groups. 
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 Base Stim p Base Stim p Base Stim p 

Total 
power 
(ms2) 

2463.75 
±732.50 

2789.22 
±843.02 

ns 2072.56 
±291.50 

2033.08 
±343.28 

ns 2735.31 
±422.23 

3212.17 
±497.45 

ns 

LF Power 
(ms2) 

615.52 
±168.65 

664.63 
±160.85 

ns 578.83 
±92.29 

588.49 
±81.16 

ns 906.39 
±133.74 

821.49 
±177.62 

ns 

HF Power 
(ms2) 

1109.41 
±395.90 

1286.40 
±469.05 

ns 823.99 
±143.75 

779.12 
±123.28 

ns 972.67 
±208.32 

1043.02 
±178.65 

ns 

LF/HF 
 

1.16 
±0.30 

1.19 
±0.32 

ns 
 

1.18 
±0.11 

1.16 
±0.10 

ns 
 

1.26 
±0.15 

1.04 
±0.14 

0.026 

BRS 
(ms/mmH
g) 

10.47 
±4.01 

11.46 
±4.81 

ns 11.40 
±0.82 

11.28 
±.82 

ns 11.51 
±1.46 

12.55 
±1.75 

ns 

Sham (n = 14)    L-tVNS (n = 63) H-tVNS (n = 34) 
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Table 2.3 Heart rate variability values for H-tVNS and L-tVNS responder 

and non-responder groups. There is a significant decrease in LF/HF 

ratio during stimulation (time effect, p = 0.040). Stimulation parameters 

had no impact on LF/HF (main effect of stimulation parameters, p 

>0.05). There is an interaction between stimulation parameters and 

time (p = 0.048). There is a significant decrease in LF/HF ratio in the H-

tVNS group alone (n=34; time effect, p=0.026). There is no change in 

LF/HF in the L-tVNS (n=63) or Sham (n = 14) groups. There is a 

significant difference in baseline LF power between H-tVNS responders 

and non-responders (*p = 0.041) and in baseline LF/HF ratio between 

H-tVNS (**p = 0.001) and L-tVNS groups (†p < 0.038). There is a 

significant decrease in LF power during stimulation in the H-tVNS 

responder group (time effect, p = 0.001). Both L-tVNS and H-tVNS 

responder groups show a significant decrease in LF/HF ratio during 

stimulation (time effect, p < 0.0005). There is a significant increase in 

LF/HF ratio in the L-tVNS non-responder group (time effect, p < 

0.0005). 
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 Base Stim p Base Stim p Base Stim p Base Stim p 

Total 
Power 
(ms2) 

1953.7 
±345.9 

2041.1 
±298.3 

ns 2187.7 
±340.4 

2025.3 
±293.6 

ns 2957.5 
±590.4 

3183.1 
±836.1 

ns 1895.5 
±853.7 

2799.8 
±1208.9 

ns 

LF 
Power 
(ms2) 

623.0 
±94.8 

567.4 
±93.4 

ns 536.0± 
93.3 

608.9 
±91.9 

ns 1041.9* 
±202.4 

779.9 
±172.1 

0.001 476.0* 
±292.6 

783.6 
±248.8 

ns 

HF  
Power 
(ms2) 

596.4 
±210.3 

761.2 
±163.3 

ns 1044.5 
±206.9 

796.5 
±160.7 

ns 934.3 
±210.9 

964.2 
±226.6 

ns 868.6 
±305.1 

1031.4 
±327.7 

ns 

LF/HF 1.32† 

±0.15 

0.95 
±0.15 

<0.0005 1.04† 

±0.15 

1.35 
±0.14 

<0.0005 1.54** 
±0.14 

1.09 
±0.11 

<0.005 0.64** 
±0.20 

0.88 
±0.17 

ns 

L-tVNS 

Responder Non-responder 

H-tVNS 

Responder Non-responder 
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Table 2.4 Baseline characteristics of H-tVNS, L-tVNS and sham groups. There was a significant difference in baseline LF/HF ratio 

between H-tVNS responders and non-responders (**p = 0.001) and L-tVNS responders and non-responders (*p = 0.038). There 

was also a significant difference in baseline LF/HF ratio between H-tVNS and L-tVNS non-responder groups (†p = 0.041). 

 

 

 Sham tVNS H-tVNS H-tVNS 
responder 

H-tVNS non-
responder 

L-tVNS L-tVNS 
responder 

L-tVNS non-
responder 

Number 
 

14 (6 ♀; 8 ♂) 34 (18 ♀; 16 
♂) 

23 (10 ♀; 13 
 ♂) 

11 (8 ♀; 3 ♂) 63 (34 ♀; 29 
♂) 

31 (16 ♀;  
15 ♂) 

32 (18 ♀;  
14 ♂) 

Age (years) 38±3.48 34±2.3 37±3.1 35±3.3 38±1.66 38±2.39 37±2.35 

BMI 
(kg/m2) 

23.9±0.67 24.9±0.71 25.27±0.95 24.34±0.75 24.5±0.57 24.2±0.54 24.8±1.00 

Heart rate 
(bpm) 

64±2.49 64±1.31 62±1.73 66±1.71 65±1.16 63±1.79 66±1.48 

Mean BP 
(mmHg) 

79±3.59 83±1.99 84±2.62 80±2.57 80±1.46 80±2.17 81±2.00 

LF/HF 
 

1.15±0.28 1.25±0.14 1.54±0.17** 0.64±0.10**,† 1.18±0.11 1.32±0.15* 1.04±0.15*,† 
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Figure 2.8 Comparison of high pulse width and frequency tVNS and low 

pulse width and frequency tVNS on HRV. There is a significant decrease 

in LF/HF ratio during stimulation (time effect, p = 0.040). Stimulation 

parameters had no impact on LF/HF (main effect of stimulation parameters, 

p >0.05). There is an interaction between stimulation parameters and time (p 

= 0.048). There is a significant decrease in LF/HF ratio in the H-tVNS group 

alone (n=34; time effect, p=0.026). There is no change in LF/HF in the L-

tVNS (n=63) or Sham (n = 14) groups (error bars omitted from the sham 

group to aid clarity; * = significantly different from baseline). 
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Linear regression revealed a relationship between baseline LF/HF 

ratio and the change in LF/HF ratio during H-tVNS such that a higher 

baseline LF/HF ratio predicts a greater response to H-tVNS (R2 = 0.58; p < 

0.0005; Figure 2.9). Aging is associated with changes in cardiovascular 

autonomic function with increasing sympathetic activity and decreasing 

parasympathetic activity (Umetani et al., 1998). Indeed, a relationship 

between increasing age and higher baseline LF/HF values was also 

observed in this study (R2 = 0.19; p = 0.013; Figure 2.9) although this 

relationship was weaker. 

There was no change in BRS during tVNS, however, there was a 

modest but significant decrease in heart rate (time effect, p < 0.0005; Figure 

2.10), although this was not affected by stimulation parameters (L-tVNS, H-

tVNS or sham groups; main effect of stimulation parameters, p = 0.05) and 

there was no interaction between stimulation parameters and time. There 

was also a significant increase in mean BP (time effect, p < 0.0005; Figure 

2.10) during stimulation that did not recover. Similar to heart rate, there was 

no impact of stimulation parameters on mean BP (main effect of stimulation 

parameters, p > 0.05) and no interaction between stimulation parameters 

and time. The increase in BP may be due to the method of BP measurement 

(Finometer) which was in place throughout the experiment. The Finometer 

calibration system was used during each experiment, however it was 

temporarily switched off during recordings for 15 minutes. It is possible that 

this affected accurate BP monitoring. It has also been reported that long 

term Finometer measurements may cause local oedema affecting BP 

detection (Ristuccia et al., 1997). To investigate this, 12 subjects also had 

their BP measured from the arm using an automatic BP machine. Three arm 

readings of BP were taken at baseline, during stimulation and during 

recovery and the average of the readings compared to the Finometer 

measurements. A mixed mode ANOVA revealed that there was a significant 

increase in systolic blood pressure during stimulation and recovery (time 

effect, p = 0.006; Figure 2.10) and the method of measurement had a 

significant effect (main effect method of measurement, p = 0.024). 

Furthermore there was an interaction between method of measurement and 

time (p = 0.002). Further analysis of this interaction using repeated 
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measures ANOVA revealed a significant increase in systolic BP in the 

Finometer group (time effect, p = 0.005). There was no change in systolic 

BP measure from the arm. A mixed mode ANOVA also revealed a significant 

increase in mean BP during stimulation and recovery (time effect, p = 0.016; 

Figure 2.10). Method of measurement had no impact on mean BP, however, 

there was an interaction between method of measurement and time (p = 

0.009). Further analyses of these interactions using repeated measures 

ANOVA of BP measurements taken using the arm method alone showed no 

significant change. There was a significant increase in mean BP (time effect, 

p = 0.016) measured using the Finometer alone. As there was no significant 

change in BP measurements taken using an arm sphygmomanometer 

whereas the increase in BP measured using the Finometer persisted into the 

recovery period, this suggests that the increase may be due to the method of 

measurement – perhaps constriction and oedema caused by the finger cuff. 

This may also have affected the analysis of BRS from Finometer records. 
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Figure 2.9 The relationship between baseline LF/HF and response to H-tVNS. There is a relationship between baseline LF/HF 

ratio and change in LF/HF ratio during H-tVNS indicating that higher baseline LF/HF ratios predict a greater decrease in LF/HF 

during H-tVNS (R2=0.58; p<0.0005; A). There is a relationship between age and baseline LF/HF ratio (R2=0.19; p=0.013; B). 
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Figure 2.10 There is a significant reduction in heart rate and an 

increase in BP during tVNS and recovery. There is a small but 

significant decrease in heart rate (time effect, p < 0.0005; A). There is 

also a modest but significant increase in BP (time effect, p < 0.0005; B) 

during stimulation and the recovery period. There is no impact of 

stimulation parameters on heart rate (main effect of stimulation 

parameters, p > 0.05) or mean BP (main effect of stimulation 

parameters, p > 0.05) and no interaction between stimulation 

parameters and time.  

The effects of different methods of measuring BP (arm vs. Finometer) 

was investigated (n = 12; C). There was a significant increase in 

systolic blood pressure during stimulation and recovery (time effect, p = 

0.006) and the method of measurement had a significant effect (main 

effect method of measurement, p = 0.024). Furthermore there was an 

interaction between method of measurement and time (p = 0.002). 

Further analysis of this interaction revealed a siginificant increase in 

systolic BP measured using the Finometer (time effect, p = 0.005). 

There was no change in systolic BP measured from the arm. There 

was also a significant increase in mean BP during stimulation and 

recovery (time effect, p = 0.016). Method of measurement had no 

impact on mean BP, however, there was an interaction between 

method of measurement and time (p = 0.009). Further analysis of this 

interaction revealed a significant increase in mean BP (time effect, p = 

0.016) measured using the Finometer alone. There is no change in 

mean BP measured from the arm (* = significantly different from 

baseline). 

 

 

 



- 84 - 

 

   

 

 

 

0

10

20

30

40

50

60

70

Baseline Stimulation Recovery

H
ea

rt
 r

at
e

 (
b

p
m

) 
L-tVNS H-tVNS Sham

0

10

20

30

40

50

60

70

80

90

100

Baseline Stimulation Recovery

M
ea

n
 b

lo
o

d
 p

re
ss

u
re

 (
m

m
H

g)
  

L-tVNS H-tVNS Sham

0

20

40

60

80

100

120

140

160

Baseline Stimulation Recovery

B
lo

o
d

 P
re

ss
u

re
 (

m
m

H
g)

 

Arm Systolic

Finometer Systolic

Arm Mean BP

Finometer Mean BP

Arm Diastolic

Finometer Diastolic

*  *  

*

  

*

  

A B 

C 

* * * * * * * * * * * * 



- 85 - 

2.5.3 Contribution of the sympathetic nervous system to 

cardiovascular autonomic changes during H-tVNS 

H-tVNS altered cardiac autonomic control towards vagal predominance, 

however, the lack of increase in HF power suggests this is not due to an 

increase in vagal tone. Alternatively, the shift in HRV towards 

parasympathetic predominance may be due to reduced sympathetic activity. 

While cardiac sympathetic activity can be investigated using cardiac 

noradrenaline spill-over, the invasiveness of this technique was not in 

keeping with the ethos of this study. Instead, vascular vasoconstrictor 

activity was recorded using microneurography. While there are regional 

differences in sympathetic outflow, there is a correlation between HRV and 

MSNA (Pagani et al., 1997). Sympathetic vasoconstrictor single unit activity 

was recorded in 10 healthy volunteers during H-tVNS (Figure 2.11; Table 

2.5). Cardiovascular and MSNA data during the cold pressor test and 

isometric handgrip test confirmed the identification of sympathetic 

vasoconstrictor units (Table 2.6). There was a significant decrease in MSNA 

frequency (time effect, p = 0.001) and incidence (time effect, p = 0.002; 

Figure 2.12) during H-tVNS. Similar to the H-tVNS group as a whole, there 

was a modest but significant decrease in heart rate (time effect, p < 0.0005; 

Table 2.7) and mean BP (time effect, p < 0.0005) during H-tVNS and 

recovery. There was a reduction in LF/HF ratio, however, this did not reach 

significance (time effect, p > 0.05). 

 

Table 2.5 Raw microneurography values. Results are presented as mean 

± S.E.M. 

 Baseline Stimulation Recovery 

MSNA frequency 
(units/min) 

1.20 ± 0.29 0.55 ± 0.28 0.90 ± 0.29 

MSNA incidence 
(units/100 heart beats) 

2.00 ± 0.49 0.91 ± 0.46 1.54 ± 0.48 
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Figure 2.11 Example microneurography recordings from one individual 

before and during H-tVNS. Raw ECG, BP and MSNA activity at 

baseline (A) and during H-tVNS (B). Action potentials from a single 

MSNA unit (C) and overlaid to show consistent morphology (D). 
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Table 2.6 Cardiovascular and MSNA data during cold pressor and 

isometric handgrip tests. 

 Baseline CPT Recovery Baseline IHG Recovery 

Heart rate 
(bpm) 

61 ± 2.7 66 ± 2.8 60 ± 2.8 62 ± 2.8 81 ± 2.9 61 ± 2.7 

Mean BP 
(mmHg) 

87 ± 3.1 108 ± 3.4 89 ± 3.2 86 ± 3.0 123 ± 3.3 90 ± 3.1 

MSNA 
frequency 
(units/min) 

1.24 ± 
0.30 

2.78 ± 
0.32 

1.03 ± 
0.29 

1.30 ± 
0.28 

3.84 ± 
0.28 

1.46 ± 
0.29 

MSNA 
incidence 
(units/100 
heart 
beats) 

2.03 ± 
0.48 

4.21 ± 
0.46 

1.72 ± 
0.46 

1.66 ± 
0.49 

4.74 ± 
0.48 

2.39 ± 
0.49 

 

 

Table 2.7 Effects of H-tVNS on cardiovascular and HRV variables of 

participants who underwent microneurography (n = 10). There is a 

modest but significant decrease in heart rate (time effect, p < 0.0005; 

Table 2.7) and mean BP (time effect, p < 0.0005; * = significantly 

different from baseline). 

 Baseline Stimulation Recovery 

Total Power (ms2) 2822 ± 1469 3603 ± 2127 2783 ± 1290 

LF Power  912 ± 471 711 ± 337 505 ± 140 

HF Power 861 ± 465 906 ± 457 603 ± 170 

LF/HF 1.28 ± 0.19 0.99 ± 0.15 1.13 ± 0.22 

Heart rate (bpm) 60 ± 2.7 59 ± 2.7* 58 ± 2.6* 

Mean BP (mmHg) 86 ± 3.0 94 ± 3.3* 96 ± 3.0* 

BRS (ms/mmHg) 13.15 ±  4.08 14.71 ± 4.96 13.03 ± 2.93 
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Figure 2.12 H-tVNS significantly reduces single unit MSNA frequency (A; p = 0.001) and incidence (B; p = 0.002; normalised data; 

n = 10; * = significantly different from baseline). 
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2.6 Discussion 

This study shows for the first time that transcutaneous vagus nerve 

stimulation can alter cardiovascular autonomic control in healthy 

participants. The results also highlight the role of the sympathetic nervous 

system in mediating tVNS effects. High pulse width and high pulse 

frequency tVNS significantly decreased LF/HF ratio, indicating improved 

heart rate variability with a shift in cardiac autonomic balance towards 

parasympathetic/vagal dominance. A significant decrease in MSNA during 

H-tVNS indicated that this protocol may activate central autonomic centres 

to elicit an indirect decrease in sympathetic nerve activity.  

 

2.6.1 tVNS effects on cardiovascular autonomic function 

Increased sympathetic activity and/or reduced parasympathetic activity as 

indicated by HRV is not only a powerful and independent predictor of poor 

prognosis in patients with cardiovascular disease (Kleiger et al., 1987; Nolan 

et al., 1998), but is also a risk factor in healthy populations (Nunan et al., 

2010). Reduced heart rate variability in a healthy population (n = 2501) was 

associated with a significantly increased risk of subsequent cardiac events 

(Tsuji et al., 1996). Increased MSNA is associated with poor prognosis in 

heart failure and is also elevated in hypertension, obstructive sleep apnoea 

and obesity (Charkoudian and Rabbitts, 2009). The ability to favourably alter 

HRV and MSNA through H-tVNS in a healthy population is significant and 

could be applied to many populations where cardiovascular autonomic 

balance is shifted toward sympathetic predominance e.g. older or sedentary 

populations (Mischel and Mueller, 2011) or in other conditions with 

sympathoexcitation such as hypertension (Charkoudian and Rabbitts, 2009). 

Indeed, the significant correlation between baseline LF/HF ratio and the 

change in LF/HF ratio during stimulation implies that H-tVNS may be even 

more effective in these populations.  

The stimulation parameters used for tVNS are critical. The 

percentage of those who responded to tVNS with a decrease in LF/HF ratio, 

indicating increased parasympathetic predominance, was 67 % in the H-
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tVNS group compared to 49 % in the L-tVNS group. These results suggest 

that H-tVNS parameters are effective in altering cardiac autonomic control 

towards vagal predominance in a healthy population sample. Indeed, the 

baseline LF/HF ratio of H-tVNS non-responders was significantly lower than 

L-tVNS non-responders (0.64 and 1.04 respectively). This was consistent 

with a higher proportion of respondents to H-tVNS, suggesting that H-tVNS 

was more effective than L-tVNS in altering the LF/HF ratio towards 

parasympathetic predominance even in those who have relatively high 

baseline vagal tone. Furthermore, there was a significant decrease in LF 

power in the responder sub-group during tVNS whereas there was no 

significant change in HF power. This was unexpected; tVNS may be 

predicted to increase HF power as this component of HRV represents vagal 

modulation of heart rate. However, as the participants in this study were 

relatively young and healthy and were recorded at rest vagal tone would 

already be high and it may not be possible to increase it further. The 

decrease in LF power is difficult to interpret due to the ambiguity of the origin 

of this component of HRV. 

Of particular interest in this study is the finding that the LF/HF ratio 

remains lower than baseline levels during the recovery period after H-tVNS 

has ceased. The stimulation and recovery periods lasted 15 minutes 

therefore the long term effects of H-tVNS on cardiovascular autonomic 

control require further investigation, however, auricular acupuncture 

increased HF power (indicating increased parasympathetic activity) for at 

least an hour after stimulation had ceased (Haker et al., 2000). The increase 

in HF power reported by Haker et al. (2000) is contrary to our findings. This 

may be due to the smaller sample size used (n = 12) or the use of a different 

stimulation technique - manual auricular acupuncture without any electrical 

stimulation. In addition, these conflicting results may also be due to the 

limitation of HRV analysis as an indirect measure of cardiac autonomic 

activity. La Marca et al. (2010) demonstrated that auricular 

electroacupuncture increased respiratory sinus arrhythmia (RSA, mediated 

by the vagus nerve) in healthy participants (n = 14) suggesting increased 

vagal activity, however, this is also an indirect measure of parasympathetic 

activity. One of the limitations of these studies, including the study presented 
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here, is that they have all used healthy participants therefore the extent of 

the effects that might be observed in patient populations, which 

characteristically have reduced parasympathetic activity, e.g. heart failure 

seems likely to be underestimated. Another limitation of this study was the 

omission of HRV time domain analysis. Time domain analysis of HRV was 

originally recommended for long term (24 hour) recordings (Task Force of 

the European Society of Cardiology and the North American Society of 

Pacing Electrophysiology, 1996), however, analysis of short term measures 

of HRV such as pNN50 may provide more information regarding tVNS 

effects on parasympathetic modulation of heart rate in the future. 

Furthermore, while respiration rate was monitored throughout the study and 

remained unaltered formal analysis of the effects of tVNS should be 

conducted. Another observation is that the MSNA frequencies recorded in 

this study are low in comparison to other studies. This may due to the dearth 

of microneurography studies involving healthy individuals which makes it 

difficult to define a ‘normal’ range, particularly in the presence of high inter-

individual variability. 

Recently, tVNS has gained interest as a possible non-invasive therapy 

in a number of conditions. The first clinical study of tVNS found that 

electroacupuncture of both ears was beneficial for patients with coronary 

artery disease (Zamotrinsky et al., 1997; Zamotrinsky et al., 2001). Patients 

(n = 10) received auricular electroacupuncture for 15mins/day for 10 

consecutive days. After 4 treatments, angina symptoms at rest were 

abolished and patients no longer required vasodilators. After 7 treatments, 

patients had improved exercise tolerance and were able to climb 5-7 flights 

of stairs without developing angina symptoms. These studies also reported 

that the improvement in angina symptoms persisted after the cessation of 

tVNS treatment for up to 3 weeks. Recently, tVNS using surface electrodes 

has been investigated as a possible analgesic (Napadow et al., 2012; Busch 

et al., 2013) and has been trialled as an alternative to invasive cervical VNS 

in patients with refractory epilepsy (Stefan et al., 2012). These studies 

reported no significant changes in heart rate during tVNS. Napadow et al. 

(2012) also analysed ECG data for HRV and found tVNS had no significant 

effect (n = 10). These findings are contrary to the results of the present 
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study, however this seems likely to be due to the smaller sample sizes and 

the different stimulation parameters used. 

 

2.6.2 Potential pathways of tVNS cardiovascular autonomic 

effects 

The neurocircuitry underlying tVNS autonomic effects requires further 

elucidation. The auricular branch of the vagus nerve has previously received 

little attention and hence there is a dearth of information regarding its central 

projections and its peripheral distribution (see General Introduction 1.3.2.1). 

The ABVN has been reported to project to the NTS which plays an integral 

role in relaying vagal afferent visceral information (Nomura and Mizuno, 

1984; Chien et al., 1996). Based on the results of this study, the proposed 

pathway of tVNS autonomic effects could involve activation of the NTS by 

ABVN afferents. This could activate the caudal ventrolateral medulla to 

inhibit the rostral ventrolateral medulla and thus reduce sympathetic output 

(Guyenet, 2006). In addition, the NTS could also activate the dorsal motor 

nucleus of the vagus and the nucleus ambiguus to increase parasympathetic 

activity (Izzo et al., 1993). However, the effects of tVNS on parasympathetic 

activity are unclear. If H-tVNS increased cardiac parasympathetic 

modulation a significant increase in HF power of HRV would be expected. 

This was not observed in the present study, however, this may be due to the 

healthy cohort of volunteers used who were tested under resting conditions 

when parasympathetic activity is already high. It may be that in populations 

with reduced parasympathetic activity e.g. heart failure patients, H-tVNS 

would increase HF power and this requires further investigation. In addition, 

there is no direct measure of vagal/parasympathetic nerve activity in 

humans, therefore, in vivo experiments to record vagus nerve activity directly 

may be required to clarify the effects of H-tVNS on the parasympathetic 

activity. 
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2.6.3 Scope of tVNS therapy for cardiovascular diseases 

VNS is already being trialled as a potential heart failure therapy and has 

resulted in positive clinical outcomes (De Ferrari et al., 2011). The findings 

presented here support the use of tVNS as a non-invasive method of VNS 

for cardiovascular diseases. Of particular interest is the finding that H-tVNS 

reduces sympathetic outflow. Sympathoexcitation is the hallmark of many 

conditions including heart failure, hypertension and obstructive sleep apnoea 

(Charkoudian and Rabbitts, 2009). The tVNS approach described here may 

therefore offer a simple, non-invasive and economical alternative that could 

make vagus nerve stimulation a widely available therapy and potentially 

improve quality of life for patients with heart failure and other conditions 

characterised by sympathoexcitation. 
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Chapter 3 

The influence of transcutaneous vagus nerve stimulation on 

autonomic function in heart failure 
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3.1 Introduction 

The first pilot study of VNS in heart failure was reported in 2008 (Schwartz et 

al., 2008). An implantable neurostimulator that delivered pulses synchronous 

with heart beat was placed on the right cervical vagus nerve of 8 male 

patients. During follow-up at 1, 3 and 6 months there was a modest but 

significant reduction in resting heart rate and a marked improvement in 

quality of life score and symptoms as assessed by the Minnesota quality of 

life questionnaire and New York Heart Association (NYHA) classification. 

There was also improved left ventricular function indicating that VNS 

treatment is beneficial in heart failure. The reason that the changes were 

small may be that the targeted stimulation parameters of either 5.5 mA or a 

reduction in heart rate of 5-10 bpm were not reached due to patient 

discomfort. Interestingly, patients complained of ear pain which may be 

referred pain caused by VNS to the area of skin supplied by the ABVN. This, 

combined with the small sample group used who all had advanced heart 

failure, may account for the relatively small changes reported. This study has 

now been expanded to a multi-centre trial with data from an additional 24 

patients added to the original pilot data (De Ferrari et al., 2011). The results 

are similar with an improvement in NYHA class and quality of life scores 

accompanied by a significant reduction in heart rate and a significant 

increase in left ventricular ejection fraction (LVEF). There was also a 

significant improvement in HRV (time domain measures - RMSSD and 

pNN50) at 3 months and 6 months follow-up. Most patients (n = 23) were 

also followed up at one year and these encouraging data demonstrated that 

the beneficial effects of VNS were maintained or even further improved, 

most notably LVEF continued to improve to 34% at 1 year follow-up 

compared to 21% at baseline. 

If VNS is to become a treatment to restore sympathovagal balance in 

heart failure, a less invasive and better tolerated method is desirable. The 

possibility of using oesophageal vagal afferents has been explored (Bajwa et 

al., 1997). VNS was performed for 2-5 minutes in 13 healthy male subjects 

using a manometer with an electrode inserted into the oesophagus. HRV 

analysis showed an increase in the HF component during stimulation 
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compared to baseline levels indicating increased parasympathetic influence 

on heart rate. While this technique is not surgical it is still invasive and not 

ideal for regular use. 

tVNS utilising the auricular branch of the vagus nerve may provide a 

non-invasive alternative to cervical VNS. tVNS has been investigated as a 

potential therapy for epilepsy, depression, pain and tinnitus but has not been 

investigated as a potential therapy to alter autonomic function in heart 

failure. Based on results of H-tVNS in a healthy population (Chapter 2), 

showing improved HRV and reduced MSNA, permission was obtained to 

pilot H-tVNS in heart failure patients. 

 

3.2 Hypothesis 

Transcutaneous vagus nerve stimulation will alter cardiovascular autonomic 

function in heart failure patients. Based on previous results in healthy 

participants, H-tVNS will decrease LF/HF ratio indicating a shift towards 

parasympathetic predominance. 

 

3.3 Aims and Objectives 

The aim of this study was to investigate the effects of H-tVNS on 

cardiovascular autonomic function in heart failure patients. The objectives 

were to: 

1. determine the effects of H-tVNS, using the optimal parameters 

defined in Chapter 2, on cardiovascular autonomic function in heart 

failure patients. 

2. investigate the tolerability of H-tVNS in heart failure patients.  
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3.4 Methods 

3.4.1 General Protocol 

The study was approved by the National Research Ethics Service (Appendix 

- 12/YH/0354) and was conducted in accordance with the Declaration of 

Helsinki. Informed written consent was obtained from all participants. Heart 

failure patients were recruited from the outpatients heart failure clinic in 

Leeds General Infirmary. Inclusion criteria for heart failure patients were 

male or female over the age of 18 years with a diagnosis of heart failure. 

Heart failure patients also had to be in sinus rhythm for inclusion. Heart 

failure patients were excluded if they were unable to transfer safely to a 

couch for the duration of the procedures or had known bradycardia or 

postural hypotension. Heart failure patients were also excluded if they had 

cardiac arrhythmia including atrial fibrillation. All heart failure patients were 

on optimal medical therapy including angiotensin converting enzyme 

inhibitors, angiotensin receptor blockers, beta-blockers and loop diuretics 

(Table 3.1). 4 heart failure patients also had cardiac resynchronisation 

therapy using a pacing device, however, none were atrially paced. None of 

the heart failure patients had diabetes. As patients were recruited directly 

from the clinic, the time at which experiments took place was not controlled. 

In addition, it was not possible to control for medication, caffeine, nicotine or 

physical activity prior to attendance. Experiments were carried out in a quiet 

room in Leeds General Infirmary. Patients were asked to lie semi-supine on 

a couch while heart rate, blood pressure and respiration were recorded as 

described in Chapter 2. 

 

 

3.4.2 Transcutaneous vagus nerve stimulation 

Stimulation was performed using the H-tVNS protocol described in Chapter 

2. Briefly, auricular clips were applied to left and right tragi and connected to 

a TENS machine. Stimulation was delivered as pulses of 200 µs duration at 

30 Hz for 15 minutes. Amplitude was adjusted to the level of sensory 

threshold for each individual (10 – 50 mA). 
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Table 3.1 Heart failure medication for each participant. 

 Beta-blocker ACE Inhibitor Diuretic 

Participant 1 Bisoprolol 10 mg Ramipril 10 mg Furosemide 80 mg  

Participant 2 Bisoprolol 2.5 mg Ramipirl 10 mg Furosemide 40 mg 

Participant 3 Bisoprolol 2.5 mg Ramipril 10 mg NA 

Participant 4 Bisoprolol 5 mg Candesartan 4 mg Furosemide 80 mg 

Participant 5 Bisoprolol 1.25 mg  Perindopril 8 mg Furosemide 40 mg 

Participant 6 Metoprolol 25 mg  Ramipril 5 mg  Furosemide 40 mg 

Participant 7 Bisoprolol 10 mg Ramipril 10 mg NA 

Participant 8 Carvedilol 25 mg  Candesartan 32mg  Furosemide 80mg 

 

3.4.3 Heart rate variability 

HRV was analysed offline using Spike 2 software (version 7.1; CED, UK). 

The ECG was inspected to ensure all R peaks were detected and there were 

no abnormalities in the ECG e.g. premature ventricular complexes. Ectopic 

beats could be corrected by averaging the R-R interval prior to and following 

the ectopic. A threshold was set to detect R peaks from a 5 minute ECG 

recording and R-R intervals used to produce a tachogram. This was saved 

as a memory channel and used to produce a virtual channel on which power 

spectral analysis could be carried out. Data were resampled at 5 Hz and DC 

removal process applied to remove any bias in digitisation and to set the 

channel offset to zero. Fast Fourier Transform was then applied (512 point; 

50% overlap) with a Hanning window to calculate the power spectrum of 

HRV. The power spectrum was divided into VLF, LF and HF (Chapter 2) 

components. This data was exported to Excel (2010) and normalised LF and 

HF calculated to determine LF/HF ratio. 

 

3.4.4 Baroreflex sensitivity 

Systolic blood pressure variability was calculated using a similar method to 

HRV except the threshold was set to detect peak systolic pressure. The 
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coherence between systolic blood pressure and R-R interval was calculated 

using a Spike2 script and the alpha index calculated as described in Chapter 

2. 

 

3.4.5 Tolerability questionnaire 

All heart failure patients were asked to complete a tolerability questionnaire 

at the end of the experiment to assess any possible discomfort caused by H-

tVNS. Participants were asked to rate any discomfort, pins and needles or 

warmth sensations experienced during H-tVNS using a Likert type scale 

accompanied by a visual analogue scale to aid interpretation. The scale 

ranged from 0 to 5 with 0 representing ‘not at all’ and 5 representing 

‘extremely’. Heart failure patients were also asked if they experienced any 

palpitations or feelings of anxiety during the experiment and if they found the 

couch uncomfortable. In addition, there was space for additional comments 

or suggestions they wished to make. 

 

3.4.6 Statistical analysis 

Wilcoxon signed ranks test was used to analyse the effect of H-tVNS on 

HRV compared to baseline. The Mann-Whitney U test was used to compare 

baseline characteristic between heart failure patients and healthy 

participants recruited for the study in Chapter 2. 

 

3.4.7 Study Failures 

24 heart failure patients were recruited for the study, however, 16 patients 

were excluded for the following reasons: 

 10 had ectopic beats or cardiac arrhythmias  

 2 had persistent coughing 

 2 had pre-existing pain conditions (arthritis of back and shoulder) that 

made lying on the couch painful 

 1 had pain in left arm 

 



- 101 - 

3.5 Results 

3.5.1 H-tVNS significantly improved HRV in heart failure patients 

There was a significant decrease in LF/HF ratio (p = 0.035; n = 8; Figure 3.1; 

Table 3.2) during H-tVNS. BRS was not calculated for many of the heart 

failure patients due to poor coherence between oscillations in heart rate and 

blood pressure. There was no significant change in heart rate or blood 

pressure. 

The heart failure patients were significantly older (66 ± 4.7 vs. 38 ± 

2.3; p < 0.005) than the healthy participants who received H-tVNS. The heart 

failure patients also had a significantly higher LF/HF ratio at baseline (4.23 ± 

1.21 vs. 1.20 ± 0.08; p = 0.009; Table 3.3). There was no significant 

relationship between baseline LF/HF ratio and the change in LF/HF ratio 

during H-tVNS and there was also no significant relationship between age 

and baseline LF/HF ratio. This may be due to the small sample size in this 

study. 

 

 

Table 3.2 Heart rate variability values for heart failure patients. There is 

a significant decrease in LF/HF ratio during H-tVNS (p  = 0.035). 

 

 

 

 

 Baseline Stimulation p 

Total power (ms2) 475.75 ± 172.69 434.36 ± 168.98 ns 

LF Power (ms2) 225.30 ± 54.30 174.71 ± 48.29 ns 

HF Power (ms2) 135.70 ± 88.38 180.98 ± 114.95 ns 

LF/HF 4.23 ± 1.21 3.11 ± 1.14 0.035 
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Table 3.3 Baseline characteristics of heart failure patients. 

 

 

 

 

 

Figure 3.1 The effects of H-tVNS on HRV in heart failure patients. There is 

a significant decrease in LF/HF ratio during H-tVNS (p = 0.035). In the 

one patient (participant 7) where an increase was observed, the patient 

reported that they found lying semi-supine uncomfortable which may 

have caused the increase in HRV. 

Number 8 (2 female, 6 male) 

Age (years) 66 ± 4.70 

LVEF (%) 31.88 ± 3.65 

NYHA class 3 class I; 3 class II; 1 class III; 1 class IV 

Duration of heart failure (months) 36.57 ± 5.29 

Baseline LF/HF 4.23 ± 1.21 

Heart rate (bpm) 68 ± 3.42 

Mean BP (mmHg) 68 ± 7.01 
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3.5.2 Patient tolerability of H-tVNS 

Patients were asked to complete a tolerability questionnaire which included 

specific questions about discomfort or unpleasant sensations caused by H-

tVNS. Patients were also asked if they experienced any dizziness, 

anxiousness or palpitations during the procedure. In terms of the tolerability 

questionnaire, none of the patients reported any side effects or discomfort 

caused by H-tVNS and tolerated the procedure well. However, participant 7 

rated the couch as ‘somewhat uncomfortable’ (Table 3.4). This may explain 

the increase in LF/HF ratio observed in this patient as the discomfort may 

have caused some sympathoexcitation. 

 

 

Table 3.4 Results of tolerability questionnaire. Questions were rated from 

0-5 with 0 = not at all, 3 = somewhat and 5 = extremely. 

 

 

 

 

 

Question Average Score 
(S.E.M.) 

Did you find the ear stimulation uncomfortable? 
 

0.13 ± 0.04 

Did you experience any pins and needles during the 
stimulation? 

0.75 ± 0.25 

Did you experience any warmth sensation during the 
stimulation? 

0.13 ± 0.04 

Did you feel any dizziness during the visit? 
 

0.25 ± 0.08 

Did you feel anxious during the visit? 
 

0 

Did you experience any palpitations? 
 

0 

Did you find lying on the couch uncomfortable? 
 

0.5 ± 0.17 
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3.6 Discussion 

For the first time, this study shows that H-tVNS can decrease LF/HF ratio in 

heart failure patients indicating a shift in cardiac autonomic control towards 

parasympathetic predominance. This is despite maximal medical therapy 

including beta blockers. Decreased parasympathetic activity, as determined 

by impaired HRV and BRS, is associated with an increased risk of mortality 

in heart failure patients and post myocardial infarction (La Rovere et al., 

1997; La Rovere et al., 1998), therefore, the ability to increase 

parasympathetic activity in this population is highly desirable. 

This first indication that H-tVNS may alter cardiac autonomic control 

towards parasympathetic predominance in heart failure is important. Cervical 

VNS is reserved for moderate to severe heart failure patients who are 

unsuitable for other therapies e.g. cardiac resynchronisation therapy. This is 

due to the invasive nature, cost and side effects of implantable VNS. In 

contrast, H-tVNS is a simple, inexpensive and non-invasive therapy that 

could potentially be used by a wider cohort of patients. This study also 

shows that H-tVNS is well tolerated by heart failure patients. Paraesthesia 

(pins and needles) was the most commonly reported sensation during tVNS 

(n = 3; maximum score = 3), however, none of the participants requested the 

procedure to be stopped indicating that this sensation was not sufficient to 

cause marked discomfort. 

The heart failure patients in this study were significantly older (p < 

0.0005) and also had a significantly higher baseline LF/HF ratio (p = 0.009), 

indicating accentuated sympathetic influence on heart rate compared to 

healthy participants (Chapter 2). In healthy participants, there was a 

significant relationship between baseline LF/HF ratio and the magnitude of 

the response to H-tVNS such that higher baseline LF/HF ratios were 

associated with a greater decrease during tVNS. This was not found in the 

heart failure group, however, this may be due to the small sample size. This 

may also explain why there was no relationship between age and baseline 

LF/HF in this group unlike the findings reported in Chapter 2. Age matched 

controls without cardiovascular conditions may help determine the degree of 

elevation in baseline LF/HF that is due to heart failure. In addition, future 
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studies should be controlled for time of day and provide participants with 

information prior to attendance to control caffeine, nicotine and food intake. 

The mechanisms behind the effects of H-tVNS in heart failure patients 

require investigation. There is a decrease in LF power during H-tVNS that is 

similar to the findings in healthy participants, however, this does not reach 

significance. There is also an increase in HF power that does not reach 

significance. The lack of significance may be due to the small sample size in 

this study. Further work to increase patient numbers is required to determine 

the mechanism of H-tVNS effects on HRV in heart failure. The effects of H-

tVNS on sympathetic nerve activity in heart failure patients also need to be 

determined e.g. by recording MSNA using microneurography. Due to the 

sympathoexcitation that occurs in heart failure, the incidence of MSNA 

bursts can be 100% i.e. a burst occurring during every heart beat (Macefield 

et al., 1999). Single units do not fire during every burst, therefore, the 

recording and analysis of single unit MSNA offers vital information that 

MSNA bursts cannot provide. This would determine if the effects of H-tVNS 

on sympathetic nerve activity in heart failure patients are similar to healthy 

participants without cardiovascular disease (Chapter 2). 

The residual effect of H-tVNS on HRV, as observed in healthy 

participants in Chapter 2, was not investigated due to time constraints in the 

clinic. A residual effect may make H-tVNS a more practical and patient 

friendly therapy if only intermittent application is required rather than 

continuous, therefore, this merits investigation in the future. Auricular 

electroacupuncture in coronary artery disease patients was reported to have 

no effect on symptoms after 1 treatment, however after 4 treatments, angina 

no longer occurred at rest and after 7-8 treatments, patients had no 

symptoms during moderate exercise (Zamotrinsky et al., 1997; Zamotrinsky 

et al., 2001). Moreover, tVNS also improved post-surgical (coronary artery 

bypass) outcomes with improved haemodynamics and sinus rhythm 

compared to the sham treated group. This is remarkable as surgery took 

place 2-3 weeks after tVNS ceased and symptoms of angina remained 

reduced during this time (Zamotrinsky et al., 1997; Zamotrinsky et al., 2001). 

This indicates that chronic tVNS may produce a prolonged residual effect 

that precludes the need for constant stimulation.  
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3.6.1 Manifold beneficial effects of H-tVNS in heart failure 

The potential beneficial effects of H-tVNS in heart failure may not be 

restricted to improved cardiac autonomic function. H-tVNS may reduce 

sympathetic activity in heart failure and thereby prevent cardiac remodelling 

as high levels of noradrenaline are cardiotoxic causing apoptosis. Applying 

noradrenaline to cultured isolated rat cardiomyocytes caused apoptosis that 

was eliminated by propranolol indicating that this process is mediated by 

beta-receptors (Communal et al., 1998). Reducing cardiac sympathetic 

activity would reduce catecholamine release and may attenuate pathological 

remodelling of the heart. 

Inflammatory markers (tumour necrosis factor alpha – TNF-alpha and 

interleukin 6 – IL6) are elevated in heart failure and the degree of activation 

is correlated to NYHA classification (Torre-Amione et al., 1996). The 

importance of TNF-alpha in the development of heart failure was 

demonstrated in transgenic mice that overexpressed TNF-alpha in the 

myocardium. All mice developed heart failure and the severity and 

progression of left ventricular impairment were dependent of the degree of 

overexpression (Franco et al., 1999). The vagus nerve is an essential 

component of the inflammatory reflex (Rosas-Ballina et al., 2011) and 

stimulation reduced levels of pro-inflammatory cytokines in a rat model of 

endotoxaemia (Borovikova et al., 2000). Indeed, cervical VNS in a canine 

model of heart failure also reduced plasma levels of inflammatory markers 

(Zhang et al., 2009b). Using a rat model of endotoxaemia, tVNS also 

reduced plasma levels of pro-inflammatory cytokines, moreover, this effect 

was abolished by cervical vagotomy (Zhao et al., 2012). This indicates that 

tVNS may be capable of reducing inflammation in heart failure and thereby 

slow the progression of heart failure. 

Approximately one third of heart failure patients die of sudden cardiac 

death (Narang et al., 1996), most commonly due to ventricular tachycardia 

(84%) (de Luna et al., 1989). In a ground-breaking study, cervical VNS 

reduced the incidence of ventricular tachycardia and improved survival in a 

canine model of heart failure (Vanoli et al., 1991). The mechanisms behind 

the protective effect of VNS against ventricular arrhythmias are under 
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investigation. VNS affects electrical restitution in the heart (the relationship 

between action potential duration and diastolic interval) and this is thought to 

contribute to the anti-fibrillatory effect of VNS. A steep restitution curve 

results in electrical instability and is related to the occurrence of ventricular 

fibrillation (VF) (Riccio et al., 1999). Flattening of the restitution curve with 

drugs such as verapamil (a calcium channel blocker) prevented the induction 

of VF in dogs (Riccio et al., 1999). The effects of VNS on restitution have 

been studied using an isolated rabbit heart preparation in which the 

autonomic innervation is intact (Ng et al., 2001). VNS flattened the restitution 

curve and increased the threshold at which VF could be induced (Ng et al., 

2007). This occurred in the absence of sympathetic nerve activity suggesting 

that the anti-fibrillatory effect of VNS is direct and does not require 

antagonistic sympathetic activity. Zamotrinsky et al. (1997) reported that 10 

days of tVNS treatment reduced the occurrence of post-operative 

arrhythmias in patients undergoing coronary artery bypass surgery, 

however, there has been no specific investigation of the effects of tVNS on 

arrhythmias. 

VNS is approved for treatment resistant depression in the US and this 

is pertinent in light of recent developments in psychogenic heart disease – 

the association between mental stress or psychiatric illness and the 

development of cardiovascular disease (Esler, 2010). Major depressive 

disorder significantly increases mortality risk (Faller et al., 2007; Sherwood 

et al., 2007; Lesman-Leegte et al., 2009) and hospitalisation (Sherwood et 

al., 2007) in heart failure patients. It is also associated with reduced quality 

of life scores (Bekelman et al., 2007) compared to heart failure patients 

without depression. Depression, like heart failure, is associated with 

sympathetic activation. Plasma noradrenaline levels were elevated in 

patients with major depression compared to controls (Veith et al., 1994). 

Pilot data have indicated that tVNS reduced depression symptoms 

measured using the Beck Depression Inventory in MDD patients (Hein et al., 

2013) and results presented in Chapter 2 demonstrated that H-tVNS 

reduced MSNA in healthy volunteers. These results support the potential of 

H-tVNS to reduce comorbidity of depression in heart failure and may 

improve prognosis and quality of life in this patient population. 
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Cervical VNS has led to improved quality of life scores in heart failure 

patients (De Ferrari et al., 2011). Depression was not assessed in this study 

and was not mentioned in the inclusion/exclusion criteria, therefore, it is 

difficult to speculate the impact this may have had on quality of life scores. 

Improved quality of life may be related to improved 6 minute walking test 

results and heart failure symptoms which would lead to increased ability to 

carry out activities of daily life. tVNS in patients with coronary artery disease 

improved exercise tolerance during a cycling test with 90% tolerating 50 W 

after 10 days of treatment compared to 0% at baseline (Zamotrinsky et al., 

1997). These patients also reported an improved ability to carry out activities 

of daily life after treatment. These preliminary results require validation, 

however, tVNS may facilitate independence of heart failure patients and 

thereby improve quality of life. 

 

3.6.2 Is VNS suitable for all heart failure patients? 

Atrial fibrillation (AF) occurs in approximately one third of heart failure 

patients and is associated with an increased risk of mortality (McManus et 

al., 2013). The genesis of atrial fibrillation is complex involving both 

sympathetic and parasympathetic activation. Acetylcholine perfused into the 

sinus node artery in dogs consistently induced AF (n = 20) (Sharifov et al., 

2004). Subsequent perfusion of isoproterenol (beta-receptor agonist) 

facilitated AF induction and reduced the concentration of ACh required 

(Sharifov et al., 2004). Sympathetic activation increased calcium entry and 

spontaneous calcium release from the sarcoplasmic reticulum whereas 

vagal activation reduced the effective refractory period (Shen et al., 2012). 

Combined intracellular calcium mishandling and shortened action potentials 

contribute to the generation and maintenance of AF (Shen et al., 2012). 

Indeed, cervical VNS is commonly used to induce AF in animal models 

(Katsouras et al., 2009; Zhang and Mazgalev, 2011). These findings suggest 

that VNS is not suitable for patients with AF and may risk promoting the 

development of AF in previously unaffected patients, however, AF has not 

been reported as a side effect despite the large numbers of refractory 

epilepsy patients treated with VNS (Zhang and Mazgalev, 2011). 
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Furthermore, VNS may be beneficial in reducing AF in heart failure. Using a 

stimulation protocol similar to that used in patients, left VNS reduced the 

frequency of AF in a canine AF model (atrial pacing) compared to sham 

(Shen et al., 2011). Extracellular recordings from the left stellate ganglion 

showed reduced neuronal discharge during VNS compared to baseline 

indicating a reduction in sympathetic nerve activity. Immunohistochemistry of 

the left stellate ganglion after 1 week of VNS revealed a significant reduction 

in the number of tyrosine hydroxylase positive neurones compared to control 

dogs suggesting that VNS may cause neuronal remodelling in the stellate 

ganglion (Shen et al., 2011). The stimulation parameters for VNS used to 

induce experimental AF are much higher and cause a significant decrease in 

heart rate whereas therapeutic levels of VNS are lower and produce little 

change in heart rate (Zhang and Mazgalev, 2011). This may be crucial to the 

differential effects of VNS on the atria. Transcutaneous VNS (at 80% below 

the voltage required to change heart rate) has recently been investigated in 

a canine model of atrial fibrillation and was capable of supressing AF and 

reversing acute atrial remodelling (i.e. shortened effective refractory period) 

induced by rapid atrial pacing. Furthermore, this effect was abolished by 

transection of left and right thoracic vagus nerves (Yu et al., 2013) indicating 

that H-tVNS may be an alternative approach to cervical VNS. This is 

encouraging, however, a limited number of studies have investigated the 

effects of low level VNS in AF and further evidence of safety is warranted 

before trialling in patients with AF. 

 

3.6.3 Conclusion 

Studies of tVNS in clinical populations or animal models are preliminary in 

nature and require validation, however, initial results are encouraging and 

merit further investigation. tVNS may have manifold effects that could be 

beneficial, not only in heart failure, but a variety of conditions characterised 

by autonomic imbalance such as hypertension (Charkoudian and Rabbitts, 

2009). tVNS is a simple, inexpensive and, crucially, non-invasive technique 

that may be utilised by a wider cohort of patients than cervical VNS. 
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Chapter 4 

Central projections of the auricular branch of the vagus 

nerve in humans 
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4.1 Introduction 

The results presented in Chapters 2 and 3 of this thesis indicate that H-tVNS 

can alter cardiovascular autonomic function in healthy participants and heart 

failure patients towards parasympathetic predominance, however, the 

mechanisms underlying these effects require investigation. There is a lack of 

detailed information regarding the precise innervation of the external ear, 

particularly in humans. The external ear is supplied by the great auricular 

nerve and the lesser occipital nerve, which originate from the cervical plexus 

(C2 and C3 spinal nerve roots), the auriculotemporal nerve (a branch of the 

trigeminal nerve), and the auricular branch of the vagus nerve (ABVN) 

(Peuker and Filler, 2002).  

The ABVN (also called Arnold’s nerve or the Alderman’s nerve) has 

received little attention and hence there is a dearth of information regarding 

its anatomy. The ABVN arises from the superior (jugular) ganglion of the 

vagus nerve (Nomura and Mizuno, 1984; Gupta et al., 1986; Folan-Curran et 

al., 1994; Tekdemir et al., 1998; Folan-Curran and Cooke, 2001). It then 

passes posterior to the internal jugular vein to enter the mastoid canaliculus 

in the lateral wall of the jugular fossa (Gupta et al., 1986; Tekdemir et al., 

1998). The mastoid canaliculus runs through the temporal bone to the 

tympanomastoid fissure (Tekdemir et al., 1998). Before reaching the 

tympanomastoid fissure, the mastoid canaliculus crosses the facial canal 

about 4.5 mm above the stylomastoid foramen at which point the ABVN 

crosses the facial canal and then emerges through the tympanomastoid 

fissure (Gupta et al., 1986; Tekdemir et al., 1998). The ABVN is principally 

distributed to the antihelix, conch, cymba concha and tragus of the ear 

(Peuker and Filler, 2002). 

The central projections of the ABVN have been investigated in cats 

and dogs by applying the neuronal tracer horse radish peroxidase (HRP) to 

the nerve (Nomura and Mizuno, 1984; Chien et al., 1996). The main central 

projection of the ABVN was to the spinal trigeminal nucleus which processes 

touch, pain and temperature sensations from the face (Chien et al., 1996). 

There was also a smaller projection to the nucleus tractus solitarius, a 

nucleus which is integral to central autonomic control. Interestingly, the 
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ABVN projected to the dorsomedial part of the caudal NTS which is the area 

that receives baroreceptor afferents (Ciriello et al., 1981). The central 

projections of the ABVN in humans have never been explored. This could be 

achieved by applying a neuronal tracer to the ABVN in human cadavers, 

however, the majority of neuronal tracers e.g. neurobiotin rely on active 

metabolism for axonal transport and therefore are inappropriate for fixed 

tissue (Lanciego and Wouterlood, 2011). This can be overcome by using a 

strongly lipophilic carbocyanine tracer e.g. DiI (Lanciego and Wouterlood, 

2011). DiI diffuses along the plasma membrane and was first used as a 

neuronal tracer in fixed tissue by Godement et al. (1987) to investigate the 

development of the optic nerve in embryonic mice. DiI was reported to travel 

retrogradely and anterogradely and estimated to travel 6 mm/day in living 

tissue compared to 2 mm/week in fixed tissue (Molnár et al., 2006). 

Clarifying the central projections of the ABVN using neuronal tracing could 

aid interpretation of the effects of H-tVNS on cardiovascular autonomic 

control and the mechanisms involved. 

 

4.2 Hypothesis 

The auricular branch of the vagus nerve projects to the NTS and/or areas of 

the brainstem involved in autonomic regulation in humans. 

 

4.3 Aim 

The aim of this study was to investigate the central projections of the ABVN 

in human cadavers using a neuronal tracer. 
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4.4 Methods 

4.4.1 Obtaining human tissue for research purposes 

Ethics approval was obtained from the University of Leeds (Appendix - 

BIOSCI 11-001). Donors that had provided prior written consent for tissue to 

be used for research purposes and for images to be taken were identified in 

the University of Leeds Anatomy Department. 4 heads that met these 

conditions, had intact auricles and brainstems and were no longer needed 

for teaching purposes were selected. A Tissue Transfer Agreement was 

completed and signed to transfer the tissue from the Anatomy Human 

Tissue license to the Research licence. The donors included 2 females and 

2 males and were > 65 years old at death. Tissue had been embalmed 3-5 

years previously using embalming fluid containing 75% methanol, 1.6% 

formaldehyde, phenol, glycerol and water. 

 

4.4.2 Dissection of the ABVN 

Dissections were made posterior to the ear to locate the ABVN as it 

emerged from the tympanomastoid fissure. The mastoid process was 

palpated and a longitudinal skin incision made 1-2 cm posterior to this 

structure. A horizontal incision was made superior to the external ear and 

extended to the first incision. The skin overlying the temporal bone and the 

posterior surface of the ear was then reflected. The underlying parotid fascia 

was removed and the auricularis posterior muscle reflected. A magnifier with 

a mounted light was used to carefully remove deep fascia and to identify 

auricular nerves. A nerve was accepted as being the ABVN if it:  

1) emerged from the tympanomastoid fissure 

2) continued straight over the posterior surface of the auricle 

3) pierced the auricular cartilage to reach the anterior surface of the ear.  

 

The ABVN could not be located in one head therefore 3 were used for the 

study (2 right and 1 left ABVN; Figure 4.1). In one case, 2 nerves on the 

same side met the criteria and both were utilised for tracer application 

(Figure 4.1 Error! Reference source not found.B). 
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Figure 4.1 Dissections of the right ABVN. Posterior view of dissected ears 

showing the ABVN overlying white card ( A – left ABVN; B and C – right 

ABVN). One case presented with a double right ABVN (B). 

A 

B 

C 
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4.4.3 Application of neuronal tracer 

The tissue used in this study was fixed using formaldehyde, therefore, a 

carbocyanine neuronal tracer was selected as these diffuse along the 

plasma membrane even in fixed tissue. This can be a long process as 

standard DiI (DiIC18 or 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine 

perchlorate) travels along axons at approximately 0.4 mm/day (Godement et 

al., 1987). Dilinoleyl DiI (also called FAST DiI or 1,1'-dilinoleyl-3,3,3',3'-

tetramethylindocarbocynanine perchlorate; Biotium Inc.,USA) is an analogue 

of DiI in which the 2 hydrocarbons chains are unsaturated (in contrast to 

saturated) allowing faster diffusion (Freidland et al., 1996). Dilinoleyl DiI was 

selected as the most appropriate tracer for this study due to the distance of 

diffusion required (approximately 5 cm). Once the ABVN was identified, it 

was sectioned and DiI oil pasted onto the proximal end using forceps. Care 

was taken to ensure DiI was not applied to any other tissue. The proximal 

end of the ABVN was then enclosed in a small, blind-ending plastic tube 

which was fixed in place using superglue to isolate the DiI coated end and 

ensure it did not touch the surrounding tissue. The tissue was then left at 

room temperature in the mortuary for 7 months. 

 

4.4.4 Tissue Preparation 

After 7 months, the ABVN was further dissected into the tympanomastoid 

fissure and removed using scissors. To remove the brainstem, firstly, the 

cervical musculature and the occipital belly of the occipitofrontalis muscle 

were removed using a large scalpel to expose the cervical vertebrae and the 

occipital bone. The pedicles of the upper cervical vertebrae were cut using a 

bone saw and the neural arch of the vertebrae removed to expose the spinal 

cord and caudal medulla. The occipital bone and posterior parts of the 

parietal and temporal bones were removed using a bone saw to expose the 

posterior surface of the occipital lobe and cerebellum. A large scalpel was 

inserted into the fissure between the occipital lobe and cerebellum, inferior to 

the tentorium cerebelli, to section the midbrain. The midbrain, pons, medulla, 

cerebellum and rostral cervical spinal cord were then carefully extracted. 

The superior, middle and inferior cerebellar peduncles were sectioned to 
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detach the cerebellum and the remaining brainstem was divided at the 

pontomedullary junction. Ventral and dorsal rootlets of the first cervical 

spinal root were identified and the spinal cord inferior to this point was 

removed. The meninges covering the medulla were removed using forceps. 

The medulla was then mounted on a vibrating microtome (Leica VT1000M, 

UK) and transverse sections of 50 µm were cut. Sections were mounted on 

glass slides with Vectashield (Vector Laboratories, USA). 

  

4.4.5 Microscopy 

Slides were viewed under a microscope equipped with epi-fluorescence 

(Nikon Eclipse E600) and images were obtained using an integrated CCD 

camera attached to an Aquis image capture system (Synoptics Ltd. UK).  

 

4.5 Results 

DiI was observed in the ABVN proximal to the site of application as the 

nerve entered the tympanomastoid fissure indicating diffusion of the tracer 

along the nerve, however, DiI was not observed in any of the sections of the 

medulla (Figure 4.2). There was a high level of autofluorescence in medulla 

sections which could be observed in both the red and blue fluorescence 

channels and this may have obscured any discrete DiI labelling. 

Autofluorescence was observed in all sections and was present throughout 

the medulla including the NTS and was very pronounced in the inferior 

olivatory nucleus. There was no evidence of any axonal-like labelling, 

indicating that DiI had not entered the medulla through projections of the 

ABVN. There was also no evidence of DiI labelled projections to the spinal 

trigeminal nucleus which receives the majority of ABVN projections. 

 

 

 

 



- 117 - 

 

 

 

 

 

 

 

 

Figure 4.2 Evidence of DiI tracing in the ABVN from two donors and 

autofluorescence in the NTS, spinal trigeminal nucleus (SpV) and 

inferior olive (IO). DiI can be seen diffusing superiorly along fibres of 

the ABVN away from the application site (inferior portion). Intensity is 

greatest at the application site and diminishes with distance. Areas of 

fluoresence in the same section of NTS (demarcated by dotted line), 

SpV and IO are visible in the red channel and blue channel indicating 

that this is autofluoresence and not DiI labelling. 
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4.6 Discussion 

In this unique study an attempt was made to trace the central projections of 

the ABVN in humans using DiI, however, no evidence of DiI reaching the 

medulla was found. This may be due to the extensive autofluorescence that 

was observed and may have obscured DiI labelling or it may be that 7 

months was not sufficient to allow diffusion of DiI from the ABVN at the 

tympanomastoid fissure to the medulla.  

DiI is a lipophilic neuronal tracer that diffuses along the plasma 

membrane, therefore, with enough time DiI should travel along the plasma 

membrane of axons in the ABVN to the medulla. It was estimated that the 

distance from the ABVN as it exits the skull at the tympanomastoid fissure to 

the median of the medulla was 50 mm and that seven months would be 

sufficient time to allow DiI to diffuse this distance. This would require a 

diffusion rate of 1.8 mm per week. There is no published diffusion rate data 

for ‘fast’ DiI (used in this study), however, reports using standard DiI state 

that two weeks were sufficient to obtain staining of axons in fixed mouse 

tissue for a distance of 5 mm (Godement et al., 1987). It has been shown 

that the diffusion rate of standard DiI slows with time and distance from the 

application site. Indeed, this same study found that, by 6 weeks, standard DiI 

tracing had reached a distance of 12 mm (Godement et al., 1987). This 

indicates that the average diffusion rate had slowed from 2.5 mm/week to 

2.0 mm/week. Despite this it was predicted that, as ‘fast’ DiI should have a 

more rapid diffusion rate due to the unsaturated hydrocarbon chains, 7 

months should be sufficient. Detailed investigations of the dynamics of ‘fast’ 

DiI diffusion along peripheral nerves are required to establish the time 

required for long distance neuronal tracing.  

In the future, modifications to the protocol to optimise the performance 

of the neuronal tracer may limit the time needed for diffusion. For example, 

incubating the tissue at 37ºC significantly increased standard DiI diffusion 

time in fixed rat spinal cord compared to tissue kept at room temperature 

(Chen et al., 2006). Applying a direct current to fixed human tissue has also 

been found to increase the diffusion time of DiI along the median and ulnar 

nerves. Applying a DC electric field of 40 V/cm increased the diffusion rate 
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100 times compared to control tissue (Swift et al., 2005). Another option may 

be to dissect the ABVN within the mastoid canaliculus or the jugular foramen 

of the temporal bone in order to reduce the diffusion distance to the medulla.  

 

4.6.1 Sources of autofluorescence  

A high degree of autofluorescence was present in the medulla which may 

have masked DiI labelling. Autofluorescence refers to the presence of 

endogenous fluorescence in the tissue or fluorescence induced by the tissue 

fixation process. A source of endogenous fluorescence is lipofuscin, the 

breakdown product of red blood cells (Billinton and Knight, 2001). Lipofuscin 

is prominent in neurones and levels of lipofuscin increase with normal 

ageing (Katz and Robison Jr, 2002; Ohtaki et al., 2012). The donors in this 

study were elderly, therefore, high levels of lipofuscin may account for the 

prominent autofluorescence present in this tissue. Indeed, the inferior olive is 

reported to accumulate more lipofuscin with ageing than any other area of 

the brain (Rogers et al., 1980) which is in keeping with the observations of 

this study. 

Aldehyde fixation can also result in autofluorescence. Aldehydes react 

with amine groups in tissue to form fluorescent compounds (Clancy and 

Cauller, 1998). Furthermore, aldehyde induced fluorescence increases with 

the duration of fixation. The tissue in this study was previously used in 

anatomy teaching and was fixed 3-5 years ago. The prolonged fixation time 

may have contributed to the intense autofluorescence observed in this study. 

In future studies it would be advisable to utilise tissue from younger 

donors to limit levels of lipofuscin in the tissue, however, it is unlikely that 

tissue would be obtained from younger donors as all the donations to the 

anatomy department are from elderly individuals. An alternative solution may 

be to obtain tissue from post-mortems, however, acquiring consent prior to 

death from younger individuals may be rare. It is possible to alter the fixation 

process to reduce autofluorescence. Reducing the concentration of 

formaldehyde (soft-embalming) would reduce the level of autofluorescence. 

One such technique utilises glycol, salts and boric acid to preserve the 

tissue and reduces the concentration of formaldehyde required (Eisma et al., 
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2013). This is called the Thiel method and results in flexible, life-like fixation 

that is considered ideal for surgical training (Eisma et al., 2013). The degree 

of autofluorescence induced by this method of fixation is unknown, however, 

it would be predicted that the lower concentration of formaldehyde used 

would reduce the level of autofluorescence generated. Furthermore, 

decreasing the levels of formaldehyde used would also reduce cross-linking 

of proteins, facilitating the diffusion of DiI and other lipophilic neuronal 

tracers.  

 

4.6.2 Conclusions 

The results of this study are inconclusive, however, elucidating the central 

projections of the ABVN in humans is vital in understanding the mechanisms 

of H-tVNS and its effects on cardiovascular autonomic function. There are a 

number of possibilities to enhance the neuronal tracing protocol and reduce 

autofluorescence that warrant investigation. This would clarify if the central 

projections of the ABVN in humans are similar to those reported in studies of 

cats and dogs (Nomura and Mizuno, 1984; Chien et al., 1996). Results from 

animal studies indicate that the ABVN is likely to project to the NTS, 

therefore, stimulating this pathway could influence central control of 

autonomic function.  
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Chapter 5 

The influence of transcranial direct current stimulation on 

autonomic function 
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5.1 Introduction 

Transcranial direct current stimulation (tDCS) is a non-invasive 

neuromodulatory technique that has been used to influence cortical 

excitability in a range of conditions, including depression (Brunoni et al., 

2013a) and pain (Borckardt et al., 2011), and has also been investigated in 

stroke rehabilitation (Schulz et al., 2013). Different stimulation parameters 

and electrode montages have been used in tDCS research however the 

most common arrangement consists of one surface electrode placed over 

the motor cortex and the other placed on the contralateral supraorbital 

region (Stagg and Nitsche, 2011; Im et al., 2012). A small direct current, 

typically 1-2 mA, is then applied which influences the spontaneous activity of 

cortical neurones (Nitsche and Paulus, 2000). 

tDCS alters cortical excitability through a polarity-specific shift in 

resting membrane potential resulting in changes in spontaneous neuronal 

firing rates. The effects of tDCS on motor cortex excitability can be assessed 

by measuring the amplitude of muscle evoked potentials (MEPs) elicited by 

transcranial magnetic stimulation of the motor cortex. Transcranial magnetic 

stimulation produces a magnetic pulse that, in turn, produces an electric 

current in the underlying brain tissue (Fregni and Pascual-Leone, 2007). 

Anodal tDCS causes a sub-threshold depolarisation and increases the 

amplitude of MEPs indicating increased cortical excitability. This is mediated 

by voltage dependent calcium and sodium channels, demonstrated by orally 

administering carbamazepine (CBZ; sodium channel blocker), flunarizine 

(FLZ; calcium channel blocker) or placebo drugs to healthy participants prior 

to tDCS. CBZ and FLZ reduced the effects of anodal tDCS and had no effect 

on cathodal tDCS (Nitsche et al., 2003b).  

The effects of anodal tDCS over the motor cortex on MEP amplitude 

persist for up to 90 minutes post stimulation suggesting that tDCS may also 

induce synaptic plasticity through long term potentiation and long term 

depression like mechanisms. This is supported by the finding that 

dextromethorphan (DMO; NMDA receptor antagonist), administered to 

healthy participants prior to tDCS, abolished the residual effects of both 

anodal and cathodal tDCS (Liebetanz et al., 2002). This indicates that 
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changes in glutamatergic signalling through NMDA receptors plays an 

important role in the residual effect of tDCS. Magnetic resonance 

spectroscopy has also revealed a polarity dependent change in 

neurotransmitter levels following tDCS (Stagg et al., 2009). There was a 

decrease in GABA concentration in the motor cortex of healthy human 

volunteers (n = 11) following anodal tDCS and a decrease in glutamate 

concentration following cathodal tDCS (n = 7). This suggests that a reduction 

in GABAergic inhibition contributes to the residual effects of anodal tDCS 

and the inhibitory effects of cathodal stimulation are mediated by a reduction 

in glutamatergic signalling.  

Anodal tDCS has previously been reported to cause respiratory 

depression in a healthy volunteer during frontal tDCS with an extra-cephalic 

electrode (Lippold and Redfearn, 1964; Redfearn et al., 1964). This 

suggests that brainstem respiratory centres may be affected by tDCS. 

Furthermore, this implies that tDCS may also affect autonomic control 

through modulation of neuronal activity in the brainstem, however, only a 

handful of studies have investigated the potential autonomic effects of tDCS 

with conflicting results (see General Introduction Table 1.3) (Accornero et al., 

2007; Vandermeeren et al., 2010; Montenegro et al., 2011; Raimundo et al., 

2012). These studies utilised a variety of tDCS montages and autonomic 

measures making it difficult to draw any conclusions. Indeed, many of the 

autonomic measures used were crude estimates such as heart rate, blood 

pressure and respiratory frequency which are not sufficiently accurate to 

detect potential changes in autonomic function. Clarifying any potential 

influence of tDCS on autonomic function is essential as this may be an 

unknown and underappreciated side effect of tDCS treatment. 

 

5.2 Hypothesis 

Transcranial direct current stimulation over the motor cortex will influence 

central control of cardiovascular autonomic function.  
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5.3 Aims and Objectives 

The aim of this study was to investigate the effects of tDCS on 

cardiovascular autonomic function in healthy human volunteers. The 

objectives were to determine: 

1. the effects of anodal tDCS over the motor cortex on cardiovascular 

autonomic function. 

2. the effects of cathodal tDCS over the motor cortex on cardiovascular 

autonomic function. 

3. the effects of tDCS on sympathetic nerve activity measured by 

microneurography. 

 

5.4 Methods 

5.4.1 General Protocol 

The study was approved by the University of Leeds Ethics Committee 

(Appendix - BIOSCI 11-019) and conducted in accordance with the 

Declaration of Helsinki. Informed written consent was obtained from all 

participants. 22 healthy participants were recruited for the study. Male and 

female participants over 18 years were included. Exclusion criteria were a 

history of cardiovascular disease, diabetes, hypertension, migraine or 

epilepsy. Participants were also excluded if they had any metal implants, 

were taking any psychotropic drugs (e.g. anti-depressants) or were 

pregnant. The study was conducted in the same room and similar 

environment as described in Chapter 2 to avoid confounding factors 

affecting autonomic control. Data were recorded at baseline, during tDCS 

and during recovery. The study used a double-blind, sham controlled design. 

17 participants visited the laboratory twice (at least 7 days apart) and 

received active or sham stimulation. The order of the stimulation was 

random so that half received sham stimulation on the first visit and half 

received active first. An additional 5 participants visited the laboratory once 

for microneurography recordings and received anodal tDCS. 
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5.4.2 Transcranial direct current stimulation 

Different parameters and electrode montages have been used in tDCS 

research however the most common arrangement consists of one surface 

electrode placed over the motor cortex and the other placed on the 

contralateral supraorbital region (Stagg and Nitsche, 2011; Im et al., 2012). 

tDCS was delivered by a specially developed constant current stimulator 

(Eldith DC stimulator, Magstim, UK) connected to rubber surface electrodes 

(5 cm by 7 cm, area = 35 cm2) housed in saline (0.9%) soaked sponges. For 

anodal stimulation over the non-dominant primary motor cortex (M1), the 

anodal electrode was placed over C3/4 (using the International 10-20 EEG 

system) and the cathodal electrode was placed over the contralateral 

supraorbital area. Electrodes were held in place by elastic straps placed 

round the head. For cathodal tDCS, the electrode positions were reversed.  

On the first visit, after experimental setup but before baseline 

recordings, participants experienced 10 s of 1 mA active tDCS to familiarise 

them with the procedure. This was performed in order to attenuate anxiety 

during subsequent monitoring and familiarise participants with any 

sensations they might experience during the stimulation (e.g. itching). The 

aim was to reassure participants thereby minimising changes in heart rate, 

blood pressure and respiration linked to anxiety. 

During active stimulation, a constant current of 1 mA was applied for 

15 minutes, taking 30 seconds to ramp up at the start of stimulation and 30 

seconds to ramp down at the end of stimulation. Current density was 0.029 

mA/cm2 in accordance with safety criteria (Nitsche et al., 2003a). 14 

participants (7 male, 7 female; 21-48 years) received anodal stimulation and 

8 (4 male, 4 female; 21-45 years) received cathodal stimulation. For sham 

stimulation, electrodes were placed in the same positions as for active 

stimulation. There was a 30 s ramping up period at the start of sham 

stimulation then the current was immediately ramped down again. This 

mimicked the cutaneous sensations experienced during active stimulation. In 

all conditions, recording of autonomic variables commenced after the initial 

30s when the current reached maximal test parameters (Figure 5.1). 

 



- 127 - 

 

 

 

 

 

 

Figure 5.1 Stimulation protocol for active tDCS. Current was applied for 

15 minutes and was either anodal (anode placed over the motor cortex) 

or cathodal (cathode placed over the motor cortex). 

 

 

5.4.3 Blinding procedure 

The participants and the investigator performing data analyses were blinded 

as to whether tDCS was active or sham. The tDCS device remained out of 

the participants’ and investigator’s sight at all times. Another un-blinded 

investigator, not involved in data analysis, administered tDCS. Participants 

were asked after the experiments whether they were able to determine 

which experimental session was "real" (active) stimulation and which one 

was "not real” (sham) stimulation. Half of the participants subsequently 

guessed correctly and as this was no better than chance, this was accepted 

as a suitable sham condition. 

 

5.4.4 Tolerability Questionnaire 

After each visit, participants (n = 9) were asked to provide feedback about 

their experience in the form of a questionnaire. Participants were asked to 

score experiences on a scale of 0-5 with 0 equal to none at all and 5 equal 

to extreme. This was also presented as a visual analogue scale to aid 

interpretation (Likert scale). There was no significant difference between 

scores for active and sham visits (Table 5.1). The most commonly reported 

experiences were itching or tingling during tDCS.  

30 s 

ramp up 

30 s  

ramp down 

15 minute recording period 

1 mA for active tDCS 



- 128 - 

Table 5.1 Summary of tDCS tolerability scores. There was no significant 

difference in scores between active and sham tDCS. tDCS was well 

tolerated and no participants withdrew from the study. 

 Active tDCS Sham tDCS 

Discomfort 1.38 ± 0.32 1.13 ± 0.35 

Tingling  2.44 ± 0.24 2.22 ± 0.32 

Itching  2.78 ± 0.36 2.00 ± 0.29 

Warmth 0.89 ± 0.26 0.78 ± 0.22 

Burning 0.78 ± 0.32 0.56 ± 0.24 

 

 

In addition, space was provided for free-text comments and suggestions. 

Four comments were left in total; 

 “tingling and itching only in first minute or so”  

 “stinging” 

 “initial burning sensation surprising” 

 “hat strap unpleasant” 

Participants were asked to notify the investigator if there were any symptoms 

e.g. headache after tDCS but none were reported. No participants withdrew 

from the study and all returned for the second visit. 

 

5.4.5 Cardiovascular autonomic control and data acquisition 

Heart rate, blood pressure, respiration and MSNA were recorded as 

described in Chapter 2. Muscle sympathetic nerve activity (MSNA) was 

recorded in 5 volunteers during anodal tDCS (2 male, 3 female; 21-46 

years). Microneurography was only performed for anodal tDCS after data 

analyses revealed that anodal tDCS affected HRV. It was considered 

unethical to perform microneurography in cathodal and sham tDCS groups 

as this in an invasive procedure and analyses revealed cathodal tDCS had 
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no effect on HRV. Data acquisition and analyses of HRV, BRS and MSNA 

were conducted as in Chapter 2.  

 

5.4.6 Statistical analysis 

All statistical analyses were carried out using SPSS (version 18). 

Independent t-test or Mann-Whitney U test was used to compare group 

characteristics. Freidman’s test with post hoc Bonferroni correction was used 

to analyse within subject effects of tDCS on HRV. To analyse the effects of 

different modes of stimulation (anodal or cathodal) on heart rate and blood 

pressure, mixed mode ANOVAs were used. Data are presented as group 

mean ± standard error of the mean (S.E.M.) unless stated otherwise. P-

values < 0.05 were considered significant. 

 

5.5 Results 

5.5.1 Effect of transcranial direct current stimulation on heart rate 

variability 

There was an increase in LF/HF ratio during anodal tDCS which continued 

into the post-stimulation phase and reached significance (n = 14;Freidman’s 

test, p = 0.017) whereas there was no significant change in cathodal (n = 8) 

and sham (n = 17) tDCS groups (Figure 5.2; Table 5.2). There was also a 

significant increase in LF power during anodal tDCS (Freidman’s test, p = 

0.011) whereas HF power did not change significantly (Figure 5.3; Table 

5.3). There was no significant difference between those who received active 

tDCS on the first visit compared to those who received sham first. There was 

no significant change in BRS. Mixed mode ANOVAs revealed a significant 

decrease in heart rate (time effect, p = 0.010) and increase in mean BP (time 

effect, p <0.0005). Mode of stimulation (anodal or cathodal) had no impact 

on heart (main effect for mode of stimulation, p > 0.05) or mean BP (main 

effect form mode of stimulation > 0.05). Furthermore, there was no 

interaction between mode of stimulation and time (Figure 5.4). 
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Figure 5.2 The effects of anodal, cathodal and sham tDCS on heart rate 

variability. (A) There was an increase in LF/HF ratio during anodal 

tDCS which continued into the recovery phase and reached 

significance (n = 14; time effect, p = 0.017) indicating a shift in cardiac 

autonomic control towards sympathetic predominance whereas there 

was no significant change during cathodal (n = 8) and sham (n = 17) 

tDCS. There was a significant difference between anodal and cathodal 

groups (interaction, p = 0.005). (B) Illustration of electrode placements 

for anodal and cathodal tDCS (* = significantly different from pre-

stimulation). 

 

Table 5.2 Absolute values of heart rate variability. Results are presented 

as mean ± S.E.M. 

 LF/HF Pre-
Stimulation 

LF/HF 
Stimulation 

LF/HF Post-
Stimulation 

Anodal tDCS 
 

0.81 ± 0.13 1.56 ± 0.51 1.28 ± 0.28 

Cathodal tDCS 
 

0.93 ± 0.13 0.84 ± 0.11 0.75 ± 0.13 

Sham tDCS 
 

0.85 ± 0.14 0.87 ± 0.18 0.81 ± 0.15 

.

* 
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Table 5.3 HRV values for anodal, cathodal and sham tDCS groups. There was a significant increase in LF power in the anodal 

tDCS group during stimulation (Friedman’s test, p = 0.011) and an increase in LF/HF ratio that reached significance in the post-

stimulation period (Friedman’s test, p = 0.017; * = significantly different from pre-stimulation). 

 

 

 Pre-
stimulation 

Stimulation Post-
stimulation 

Pre-
stimulation 

Stimulation Post-
stimulation 

Pre-
stimulation 

Stimulation Post-
stimulation 

Total 
power 
(ms2) 

3047.61 
± 975.71 

3426.90 
± 685.25 

3252.25 
± 778.14 

2459.42 
± 485.35 

2324.99 
± 603.41 

2638.58 
± 578.64 

2903.44 
± 539.23 

2554.96 
± 451.05 

3052.56 
± 624.31 

LF power 
(ms2) 

992.15 
± 324.43 

1316.01 
± 307.35* 

1216.51 
± 360.53 

700.92 
± 136.68 

539.36 
± 115.29 

715.57 
± 214.48 

827.24 
± 199.48 

711.23 
± 189.51 

802.82 
± 187.68 

HF power 
(ms2) 

1426.25 
± 2069.54 

1386.01 
± 1443.43 

1254.48 
± 1443.02 

948.99 
± 224.53 

764.08 
± 202.51 

924.93 
± 164.37 

1137.28 
± 1226.28 

887.23 
± 754.38 

1263.31 
± 1744.50 

LF (nu) 
 

40.49 
± 3.59 

48.12* 
± 5.88 

49.08* 
± 4.65 

45.92 
± 3.77 

43.52 
± 3.26 

40.99 
± 4.65 

40.54 
± 3.37 

38.23 
± 3.78 

38.86 
± 3.67 

HF (nu) 
 

59.50 
± 3.59 

51.81 
± 5.88 

50.92* 
± 4.65 

54.08 
± 3. 77 

56.48 
± 3.26 

59.01 
± 4.65 

59.05 
± 3.41 

61.36 
± 3.72 

61.14 
± 3.67 

LF/HF 
 

1.00 2.07 
± 0.47 

2.50 
± 0.14* 

1.00 0.94 
± 0.09 

0.95 
± 0.18 

1.00 1.00 
± 0.14 

0.97 
± 0.14 

Anodal Cathodal Sham 



- 132 - 

 

Figure 5.3 Example of the effects of anodal tDCS on HRV power spectra 

in one individual. There is an increase in LF power during anodal 

tDCS whereas there is no significant change in HF power. (A) pre-

stimulation, (B) anodal tDCS, (C) post-stimulation. 

A 

B 

C 

Pre-stimulation 

Anodal tDCS 

Post-stimulation 
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Figure 5.4 Heart rate and mean blood pressure for anodal, cathodal and sham tDCS groups. There was a significant decrease 

in heart rate (time effect, p = 0.010) and a significant increase in BP (time effect, p < 0.0005; measured using a Finometer). 

Mode of stimulation (anodal or cathodal) had no impact on heart rate or blood pressure (main effect for mode of stimulation, p > 

0.05) and there was no interaction between mode of stimulation and time (* = significantly different from pre-stimulation). 
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Figure 5.5 The effects of anodal tDCS on muscle sympathetic nerve 

activity. Example recordings of ECG, blood pressure and MSNA at 

baseline (A), during anodal tDCS (B) and recovery (C) from one 

individual (* = single unit). 
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5.5.2 Transcranial direct current stimulation increases 

sympathetic nerve activity 

Vasoconstrictor muscle sympathetic nerve activity was recorded directly 

using microneurography in participants receiving anodal tDCS (Figure 5.5 

and Figure 5.6; n = 5). There was a significant increase in single unit 

frequency and incidence during the stimulation phase which increased and 

persisted into the post-stimulation phase (time effect, p = 0.046 and p = 

0.029 respectively; Figure 5.7 ; Table 5.4). There was no significant change 

in heart rate or blood pressure during tDCS (Table 5.5). 

 

 

 

 

Figure 5.6 Examples of individual single units from MSNA recordings 

shown in Figure 5.5. MSNA units have a similar morphology as 

demonstrated by superimposition. 
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Figure 5.7 There is a significant increase in MSNA frequency and incidence during anodal tDCS and the post-stimulation 

phase (time effect, p = 0.046 and p = 0.029; normalised group data n = 5; * = significantly different from pre-stimulation). 

 

* * * * 
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Table 5.4 Raw microneurography values. Results are presented as mean 

± S.E.M. 

 

 

Table 5.5 Effects of anodal tDCS on cardiovascular and HRV variables 

of participants who underwent microneurography (n = 5). There is 

no significant change in heart rate, BP, BRS or HRV. 

 

 

5.6 Discussion 

This double-blind sham controlled study provides evidence that anodal tDCS 

of the motor cortex can shift HRV towards sympathetic predominance in 

healthy humans in the post-stimulation period. This study shows, for the first 

time, that tDCS also increases vasoconstrictor sympathetic nerve activity 

measured directly using microneurography. This is the first direct evidence 

that tDCS can affect sympathetic nervous activity and thus reveals potential 

implications for future use of tDCS in a therapeutic setting.  

 Baseline Stimulation Recovery 

MSNA frequency 
(units/min) 

0.32 ± 0.05 0.68 ± 0.21 0.82 ± 0.12 

MSNA incidence 
(units/100 heart beats) 

0.52 ± 0.07 1.12 ± 0.3 1.40 ± 0.20 

 Baseline Stimulation Recovery 

Total Power (ms2) 4902 ± 2480 4692 ± 1607 1310 ± 1936 

LF Power  1676 ± 758 2243 ± 603 1957 ± 808 

HF Power 2642 ± 1457 2041 ± 1005 1938 ± 1037 

LF/HF 0.82 ± 0.26 2.58 ± 1.35 1.62 ± 0.64 

Heart rate (bpm) 62 ± 3.4 61 ± 3.0 59 ± 2.9 

Mean BP (mmHg) 86 ± 3.1 91 ± 5.8 93 ± 3.8 

BRS (ms/mmHg) 15.6 ± 4.8 19.1 ± 4.25 14.37 ± 4.0 
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5.6.1 tDCS and autonomic control 

Since the reports in the 1960s that tDCS may affect respiration, surprisingly 

few studies have investigated the potential effects of tDCS on the brainstem 

further. The original study found that anodal tDCS over the frontal cortex 

caused respiratory depression in a healthy volunteer, however this was 

using a current of 3 mA and small electrodes (1/2 inch diameter or 1.3 cm) 

(Lippold and Redfearn, 1964; Redfearn et al., 1964) with a current density of 

0.564 mA/cm2, much higher than the recommended 0.029 mA/cm2 (Nitsche 

et al., 2003a). In addition, the electrode montage consisted of an extra-

cephalic cathodal electrode unlike the majority of studies that use a bi-

cephalic montage (Lippold and Redfearn, 1964; Redfearn et al., 1964). It 

was thought that this particular montage may pass more electrical current 

through the brainstem, however, modelling of electric fields during tDCS 

suggests that this is not the case (Im et al., 2012). Another extra-cephalic 

electrode montage, with an electrode placed on the neck and the other over 

the occipital cortex, has subsequently been found to have no effect on heart 

rate, blood pressure, body temperature, or respiratory frequency during both 

anodal and cathodal stimulation (Accornero et al., 2007), however, these are 

crude measures of autonomic function. Vandermeeren et al., (2010) also 

found that anodal tDCS over the frontal cortex with an extra-cephalic 

electrode had no significant effect on these indices but also included the 

analysis of HRV. They reported no significant effect, however, they did note 

a small increase in the LF/HF ratio during anodal, cathodal and sham tDCS 

suggesting an increase in sympathetic activity. As this occurred in all three 

groups, including sham, it may be that this was a result of anxiousness 

experienced by the volunteers during the study. Only one study has looked 

at the autonomic effects of the more commonly used bi-cephalic montage for 

tDCS and reported that anodal tDCS over the motor cortex had no 

significant effect on blood pressure, body temperature, respiratory rate or 

cortisol levels (Raimundo et al., 2012). The present study also observed no 

effect on respiratory rate although this was not formally analysed. 

Importantly, this study provides the only direct recording of sympathetic 
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nerve activity and shows that anodal tDCS over the motor cortex may indeed 

influence autonomic control in healthy humans. 

Since bi-cephalic tDCS over the motor cortex can increase 

sympathetic nervous activity it may prove a useful tool to modify autonomic 

activity. Interestingly, the increase in LF/HF ratio and MSNA continued after 

tDCS ceased. tDCS has been reported to have residual effects on motor 

cortical excitability (increased amplitude of MEPs) outlasting stimulation by 

up to 90 minutes in humans (Nitsche and Paulus, 2000, 2001) and this may 

account for the continued sympathoexcitation observed in this study. 

Whether the increase in sympathetic nerve activity is maintained for a similar 

duration of 90 minutes post stimulation merits further attention. In addition, 

whether the effects of tDCS on autonomic function are influenced by 

repeated application may warrant investigation.  

tDCS over other areas of the cortex may have different effects on 

autonomic function. Bi-cephalic anodal tDCS over the temporal lobe has 

been reported to increase the HF component of HRV and decrease LF/HF 

ratio indicating an increase in parasympathetic influence on heart rate 

(Montenegro et al., 2011). The potential for tDCS to alter autonomic function 

towards either parasympathetic (temporal lobe placement) or sympathetic 

predominance (motor cortex placement) is especially pertinent as tDCS has 

recently been applied in the context of stroke rehabilitation (Schulz et al., 

2013). Stroke patients often have compromised autonomic function and the 

degree of autonomic dysfunction is predictive of mortality (Robinson et al., 

2003; Mäkikallio et al., 2004; Sörös and Hachinski, 2012). Decreased HRV 

indicating increased sympathetic predominance is reported after stroke and 

has been reported to last up to 6 months post stroke (Korpelainen et al., 

1996). Reduced BRS and elevated plasma noradrenaline levels are also 

observed following stroke (Myers et al., 1981; Robinson et al., 1997). tDCS 

could have beneficial or detrimental effects in stroke patients depending on 

the sympathovagal balance of each individual. It may be possible to tailor 

tDCS therapy to improve autonomic function by stimulating different areas of 

the cortex e.g. anodal tDCS over the temporal lobe for patients with reduced 

parasympathetic activity. Individual autonomic function could be assessed 

on a case by case basis and would be easily implemented in clinics by using 
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non-invasive measures of autonomic function such as HRV. Further 

research into the use of tDCS in stroke patients may therefore be justified, 

including examining the duration of effects.  

 

5.6.2 Potential pathways involved in cortical modulation of 

autonomic function by tDCS 

Since tDCS is known to influence cortical structures, it may indirectly affect 

autonomic outflow through these structures. Krogh and Lindhard (1913) first 

proposed higher control of autonomic function, later termed ‘central 

command’ to account for the rapid increase in heart rate at the start of 

exercise. Since then numerous studies have detailed areas of the cortex that 

influence autonomic function including the medial prefrontal cortex (mPFC) 

(Bacon and Smith, 1993; Owens et al., 1999; Gabbott et al., 2005), insular 

cortex (Verberne and Owens, 1998) and motor (Schlindwein et al., 2008) 

cortex. 

 

5.6.3 Influence of the medial prefrontal cortex on autonomic 

function  

The medial prefrontal cortex is of particular interest in this study as it may 

have been inhibited by the cathodal electrode placed over the supraorbital 

area. Several lines of evidence indicate that such inhibition of the mPFC can 

explain the sympathoexcitation detected in this study. Stimulation of the 

mPFC in anaesthetised rats resulted in a decrease in blood pressure and 

concomitantly reduced sympathetic nerve activity, suggesting that the mPFC 

has a sympathoinhibitory effect (Owens et al., 1999). Furthermore, inhibiting 

NTS neurones by injecting muscimol (GABAA receptor agonist) bilaterally 

into the NTS attenuated the depressor and sympathoinhibitory effects of 

mPFC stimulation (Owens et al., 1999). The depressor effect of mPFC 

stimulation was also reversed by injecting bicuculline (GABAA receptor 

blocker) into the RVLM (which contains sympathetic premotor neurones) or 

by injecting kynurenic acid (ionotropic glutamate receptor antagonist) into 

the CVLM (which inhibits the RVLM), suggesting that these areas have an 
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important role in mediating the autonomic effects of mPFC stimulation 

(Owens and Verberne, 2000). The mPFC has been shown to project to 

areas of autonomic control including the NTS and RVLM using injection of 

the retrograde neuronal tracer wheat germ agglutinin conjugated to 

horseradish peroxidase (WGA-HRP) in the rat (Gabbott et al., 2005). 

Injecting anterograde neuronal tracer into the mPFC also revealed 

projections to autonomic regions of the spinal cord where sympathetic pre-

ganglionic neurones are located (Bacon and Smith, 1993) therefore the 

mPFC could also influence sympathetic activity through this pathway.  

Imaging studies have provided evidence that the mPFC is involved in 

autonomic control in humans. Combining fMRI and isometric handgrip 

exercise, causing sympathetic activation, revealed a decrease in blood 

oxygen level dependent (BOLD) signal in the ventral mPFC that correlated 

with an increase in heart rate (Wong et al., 2007). The mPFC was also 

deactivated during baroreceptor unloading induced by the application of 

lower body negative pressure (Kimmerly et al., 2005). It can therefore be 

envisaged that one possible route by which tDCS induced 

sympathoexcitation is through inhibition of the mPFC. 

 

5.6.4 Influence of the motor cortex on autonomic function 

There is also evidence that the motor cortex may play a role in autonomic 

regulation. Stimulating the motor cortex in rats induced expression of the 

activity marker c-fos protein in the NTS, DVN and RVLM (Sequeira et al., 

2000). Furthermore, injecting fluorogold (FG) into the NTS/DVN and dextran- 

tetramethylrhodamine (DR) into the RVLM revealed direct projections to the 

motor cortex (Sequeira et al., 2000). Anterograde tracing with WGA-HRP or 

DR from the motor cortex confirmed a reciprocal projection to the NTS, DVN, 

CVLM and RVLM. Moreover, by injecting DR into the ventrolateral spinal 

cord (T2-T4) and FG into the NTS/DVN or RVLM, double labelled neurones 

were found in the motor cortex indicating that corticospinal fibres provided 

collaterals to brainstem autonomic centres. This indicates that there is 

integration between the somatic and autonomic nervous systems in relation 

to movement (Viltart et al., 2003). Interestingly, the densest labelled cortical 
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projection was to the RVLM indicating that the motor cortex plays an 

important role in regulating sympathetic activity. Viltart et al. (2003) 

confirmed that stimulation of the motor cortex in the rat induced c-fos protein 

activation in the CVLM and RVLM. Motor cortex stimulation also decreased 

blood pressure and plasma noradrenaline levels, supporting a role for the 

motor cortex in autonomic regulation (Viltart et al., 2003). The presence of c-

fos protein in the CVLM indicates activation which would, in turn, cause 

GABAergic inhibition of the RVLM and would account for the decrease in BP 

and plasma noradrenaline observed during motor cortex stimulation. 

Conversely, as there was also c-fos protein immunoreactivity in the RVLM 

this would imply activation of the RVLM which would lead to increased 

sympathetic activity, contrary to the autonomic changes observed. However, 

there is a small sub-population of RVLM neurones which, when stimulated, 

caused inhibition of sympathetic preganglionic neurones in the spinal cord 

(Deuchars et al., 1997). This response could be abolished by bicuculline 

(GABAA receptor antagonist) indicating a direct GABAergic projection from 

the RVLM to sympathetic preganglionic neurones (Deuchars et al., 1997). 

This may account for the sympathetic inhibition observed by Vitart et al. 

(2003) upon motor cortex stimulation. The electrical stimulation was 

performed using a bipolar electrode implanted directly onto the motor cortex 

which delivered pulsed stimulation, the polarity of which was reversed every 

2 s. The difference in stimulation modalities used may explain why 

sympathoinhibition was observed by Viltart et al. (2003) whereas we report 

sympathoexcitation. In addition, the rats were under anaesthesia which may 

also have affected the results.  

The motor cortex also influences autonomic function in humans. fMRI 

during lower body negative pressure revealed an increase in BOLD signal in 

the motor cortex that was correlated with increased heart rate (Kimmerly et 

al., 2005). Perhaps the most elegant study of cortical contribution to 

autonomic activity used positron emission tomography with labelled glucose 

to assess cerebral metabolism at rest and relate this to spontaneous 

changes in heart rate and plasma noradrenaline levels. This revealed a 

positive correlation between plasma noradrenaline levels and increased 

regional cerebral glucose metabolism in the motor cortex (Schlindwein et al., 
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2008) supporting a role for the motor cortex in sympathoexcitation. Direct 

activation of the motor cortex by the anodal electrode may also, therefore, 

contribute to the increased sympathetic nervous activity observed in this 

study. 

Currently, few studies have investigated the potential of tDCS to 

modulate autonomic function. These studies are preliminary in nature and 

report mixed results. Further investigation of the effects of tDCS on 

autonomic function is warranted, including electrode positioning and any 

residual effects. The results of this study require consideration when using 

tDCS in patients groups with altered autonomic function e.g. stroke patients 

but also represent a potential therapeutic avenue to target autonomic control 

that may have been overlooked in the past. 

 

 

 

 

 

 



- 144 - 

Chapter 6 

General Discussion 
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6.1 Summary of findings 

6.1.1 H- tVNS altered cardiovascular autonomic function towards 

parasympathetic predominance in healthy humans and heart 

failure patients 

The physiological evidence presented in this thesis indicates that H-tVNS 

can alter cardiovascular autonomic function in both healthy humans and 

heart failure patients. In healthy subjects there was a shift in cardiac 

autonomic control towards parasympathetic predominance, however, this 

was dependent on the stimulation parameters used. Only high pulse width 

(200 µs) and frequency (30 Hz) tVNS caused a significant decrease in 

LF/HF ratio. The effect of these stimulation parameters on sympathetic 

vasoconstrictor nerve activity was also investigated. This revealed that H-

tVNS caused a significant reduction in MSNA. Based on these results, a pilot 

study of the effects of H-tVNS on cardiac autonomic control in heart failure 

patients was conducted. There was a significant decrease in LF/HF ratio 

indicating a shift in cardiac autonomic control towards parasympathetic 

predominance. This is remarkable as heart failure patients were on optimal 

medical therapy including beta-blockers and ACE inhibitors. H-tVNS was 

also well tolerated by heart failure patients and was not associated with any 

side effects. 

 

6.1.2 Anodal tDCS over the motor cortex increased sympathetic 

nerve activity in healthy humans 

Anodal tDCS over the motor cortex had the opposite effect on 

cardiovascular autonomic function compared to H-tVNS. There was an 

increase in LF/HF ratio during anodal tDCS indicating a shift towards 

sympathetic predominance that continued and reached significance in the 

post-stimulation period. This was supported by a significant increase in 

MSNA during anodal tDCS that continued after stimulation had ceased. 
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6.2 Potential mechanisms of H-tVNS cardiovascular 

autonomic effects  

The mechanisms underlying the effects of H-tVNS on autonomic function 

require further elucidation, however, there is evidence through retrograde 

neuronal tracing in cats and dogs that the ABVN projects to the NTS 

(Nomura and Mizuno, 1984; Chien et al., 1996). The NTS is integral to 

autonomic regulation and stimulating the ABVN may alter neuronal 

processing here. Interestingly, the ABVN projects to the dorsomedial part of 

the caudal NTS which also receives baroreceptor afferent projections from 

the carotid sinus and aortic arch (Ciriello et al., 1981). Therefore, stimulating 

the ABVN may activate the baroreceptor pathway through the NTS to the 

CVLM which inhibits the RVLM and decreases sympathetic output (Figure 

6.1). This could account for the microneurography findings of this thesis that 

revealed a decrease in MSNA during H-tVNS in healthy humans. This study 

attempted to define the central projections of the ABVN in humans by 

applying the neuronal tracer DiI to the ABVN in cadaveric tissue, however, 

this was unsuccessful. By adjusting the protocol e.g. applying a direct 

current to the tissue to increase the diffusion rate, it should be possible to 

define the neuroanatomy of the ABVN in humans. This would clarify, at least 

in part, the mechanisms involved in H-tVNS cardiovascular autonomic 

effects.  

The NTS also projects to the DVN and NA (containing 

parasympathetic preganglionic neurones), therefore, H-tVNS could also 

modulate parasympathetic output through this pathway. Unlike sympathetic 

nerve activity, parasympathetic nerve activity cannot be recorded directly in 

humans. The HF component of HRV represents cardiac vagal modulation 

and may provide an indication of H-tVNS effects on HRV. There was no 

significant change in HF power during H-tVNS in healthy humans suggesting 

that H-tVNS does not alter parasympathetic output, however, these 

participants were healthy and stimulation was applied during rest. These 

conditions would result in high parasympathetic tone at baseline and this 

may mask potential effects of tVNS on the parasympathetic nervous system. 

In heart failure patients, there was an increase in HF power, however, this 
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did not reach significance. The heart failure group was small (n  = 8), 

therefore, further investigation is required to explore the possible effects of 

H-tVNS on parasympathetic activity in populations with diminished 

parasympathetic activity. 

 

 

 

 

Figure 6.1 Potential mechanisms of H-tVNS effects on cardiovascular 

autonomic function. Stimulation of the ear could excite the NTS 

through projections of the ABVN. This could lead to activation of the 

CVLM which, in turn, would inhibit the RVLM and reduce sympathetic 

output. The NTS also projects to the DVN and NA therefore tVNS could 

alter parasympathetic output through this pathway. 

 

 

6.4.1 Potential mechanisms of tDCS cardiovascular autonomic 

effects  

The diffuse nature of tDCS stimulation, as revealed by computational models 

(Im et al., 2012), hinders interpretation of the mechanisms underlying the 

changes in cardiovascular autonomic function during anodal tDCS over the 

motor cortex. However, the greatest current density amplitude is under the 
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surface electrodes (Im et al., 2012), therefore, these areas are likely to be 

most affected by the stimulation. This study found that placing the anodal 

electrode over the motor cortex and the cathodal electrode over the 

contralateral supraorbital region increased LF/HF ratio and MSNA. Neuronal 

tracing studies have revealed projections from the motor cortex to areas of 

autonomic control including the NTS, DVN, CVLM and RVLM (Sequeira et 

al., 2000). PET studies in humans have also revealed a correlation between 

increased plasma noradrenaline levels and increased glucose metabolism in 

the motor cortex indicating that the motor cortex plays a role in 

sympathoexcitation (Schlindwein et al., 2008). Stimulation of the motor 

cortex by the anodal electrode may therefore have contributed to the 

increase in sympathetic activity observed in this study. In addition, the 

cathodal electrode may have influenced activity in the medial prefrontal 

cortex. The mPFC has also been found to project to areas of autonomic 

control such as the NTS and RVLM using neuronal tracers (Bacon and 

Smith, 1993; Gabbott et al., 2005). Furthermore, stimulation of the mPFC in 

anaesthetised rats decreased blood pressure and sympathetic nerve activity 

(Owens et al., 1999) suggesting that the mPFC has a sympathoinhibitory 

role. Cathodal stimulation over the mPFC may therefore have caused 

disihbition of sympathetic activity that may have contributed to the 

sympathoexcitation reported in Chapter 5. In the future, fMRI during tDCS 

may aid investigation of the mechanisms of tDCS effects on cardiovascular 

function. 

 

6.3 Neuromodulation of the autonomic nervous system 

Neuromodulation, the alteration of nerve activity through targeted electrical 

or pharmaceutical interventions, is a rapidly expanding field with applications 

in a plethora of conditions. Many of these interventions alter activity of the 

autonomic system e.g. renal sympathetic denervation for the treatment of 

hypertension (Esler et al., 2010) (see Section 6.5.1 below), carotid sinus 

stimulation and deep brain stimulation, however many of these techniques 

are invasive and expensive, limiting application to patient populations.  
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6.3.1 Carotid sinus stimulation 

Electrical stimulation of the carotid sinus to activate baroreceptors and/or 

baroreceptor afferents has been proposed as a possible therapy for 

hypertension (Jordan et al., 2012). This technique aims to mimic activation 

of the arterial baroreflex by increased blood pressure to cause a reflex 

decrease in sympathetic nerve activity and blood pressure. This has proven 

effective in clinical trials in treatment resistant hypertension patients with a 

significant decrease in blood pressure at 3 and 12 months follow-up 

(Bisognano et al., 2011). The acute effects of carotid sinus stimulation on 

MSNA have been evaluated in treatment resistant hypertension patients. 

There was a significant decrease in MSNA burst frequency, incidence and 

area during stimulation with a concomitant decrease in blood pressure and 

plasma renin concentration (Heusser et al., 2010). Interestingly, carotid 

sinus stimulation has also been reported to reduce left ventricular mass and 

wall thickness indicating improved left ventricular structure (Bisognano et al., 

2011). This, coupled with reduced MSNA, suggests that carotid sinus 

stimulation may also be beneficial in heart failure. Indeed, carotid sinus 

stimulation for 3 months in a canine heart failure model attenuated the 

decrease in left ventricular ejection fraction compared to untreated dogs 

(Sabbah et al., 2011b). In addition, carotid sinus stimulation attenuated the 

increase in plasma noradrenaline levels and cardiac remodelling with a 

reduction in interstitial fibrosis and cardiomyocyte hypertrophy. Studies of 

carotid sinus stimulation and the mechanisms involved are few, however, 

these remarkable findings warrant further investigation. 

 

6.3.2 Deep brain stimulation 

Deep brain stimulation of the periaqueductal grey (PAG) matter is performed 

in cases of chronic pain, however, this also affects central autonomic control 

(Carter et al., 2011). The PAG projects to areas of autonomic control as 

revealed by neuronal tracing studies. Injecting neuronal tracer into the PAG 

revealed projections to the NTS, DVN and NA (Farkas et al., 1997) 

indicating that these areas of the PAG influence parasympathetic activity. 
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The PAG was also found to project to sympathetic premotor neurones in the 

RVLM (Farkas et al., 1998). Stimulation of the PAG produces both pressor 

and depressor responses depending on the location of the stimulating 

electrode within the PAG. Stimulation of the dorsal PAG in anaesthetised 

rats increased blood pressure and heart rate (Lovick, 1985) whereas 

microinjection of an excitatory amino acid (D,L-homocysteic acid) into the 

ventral PAG caused bradycardia and reduced blood pressure (Lovick, 1992). 

Similar results have since been reported in humans. Stimulation of the 

ventral PAG in conscious humans caused a significant decrease in blood 

pressure whereas stimulation of the dorsal PAG increased blood pressure, 

however, stimulation at either site had no effect on heart rate (Green et al., 

2005). These effects on blood pressure merit consideration when selecting 

patients for PAG stimulation and during long term follow-up, however, this 

also offers another potential method to therapeutically alter blood pressure 

e.g. stimulation of the ventral PAG may beneficial in reducing blood pressure 

in hypertension whereas stimulation of the dorsal PAG may alleviate 

symptoms of orthostatic hypotension. 

 

6.4 Residual effects of neuromodulation 

Both neuromodulatory techniques investigated in this thesis exhibited a 

residual effect on cardiovascular autonomic function to some degree. LF/HF 

ratio did not return to baseline levels after H-tVNS but remained slightly 

reduced. There was a trend towards a return to baseline levels, however, 

this was not reached in the 15 minute period following stimulation. After 

tDCS, there was a continued increase in LF/HF ratio and MSNA. These 

residual effects imply that continuous stimulation may not be necessary to 

maintain changes in autonomic function which would facilitate the use of 

these techniques by patients and reduce disruption to daily life. This is 

supported by a previous finding that auricular acupuncture (25 minutes) 

produced changes in HRV that persisted for at least 60 minutes post-

stimulation (Haker et al., 2000). Anodal tDCS over the motor cortex (13 
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minutes) is also reported to cause changes in cortical excitability that lasted 

for 90 minutes (Nitsche and Paulus, 2000, 2001).  

Interestingly, chronic, daily administration of both tVNS and tDCS 

produce longer residual effects (Zamotrinsky et al., 1997; Zamotrinsky et al., 

2001; Boggio et al., 2007). 10 consecutive days of auricular 

electroacupuncture (15 minutes duration) in patients with coronary artery 

disease decreased the use of vasodilator medication for up to three weeks 

after stimulation ceased (Zamotrinsky et al., 1997; Zamotrinsky et al., 2001). 

Similarly, 5 consecutive days of tDCS (20 minutes duration) improved motor 

function in stroke patients that lasted 2 weeks after stimulation ended 

whereas 4 tDCS sessions administered weekly had no residual effect 

(Boggio et al., 2007). These are the only studies investigating chronic tVNS 

and tDCS stimulation and the residual effects. The effects of chronic H-

tVNS, as described in this thesis, on cardiovascular autonomic function 

remain to be determined, however, based on these studies it seems likely 

that repeated H-tVNS interventions could lengthen the residual effect on 

cardiovascular autonomic function. This would enable short H-tVNS therapy 

times that would be amenable to patients rather than continuous stimulation. 

 

6.5 Clinical Implications of H-tVNS 

H-tVNS reduced MSNA in healthy participants and therefore may be 

therapeutic in other conditions characterised by sympathoexcitation in 

addition to heart failure. Many conditions, that at first may seem unrelated , 

exhibit underlying sympathoexcitation e.g. hypertension, obstructive sleep 

apnoea and obesity (Charkoudian and Rabbitts, 2009).  

 

6.5.1 H-tVNS and treatment resistant hypertension 

Hypertension is the leading attributable cause of mortality worldwide causing 

7.5 million deaths every year and is characterised by increased levels of 

sympathetic activity (Simplicity HTN-1 Investigators, 2011). Approximately 

half of hypertensive patients are treatment resistant (elevated blood 
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pressure despite lifestyle modifications and ≥3 antihypertensive drugs) 

(Esler et al., 2010). Recently, renal nerve denervation has been trialled in 

treatment resistant hypertensive patients. This neuromodulatory technique 

attempts to attenuate sympathetic activation in hypertension by denervating 

the renal artery using radiofrequency energy delivered through a catheter 

placed in the renal artery (Esler et al., 2010). At 6 months follow-up after 

renal nerve ablation, blood pressure was significantly reduced compared to 

the control group (Esler et al., 2010) and this effect was sustained at 24 

months follow-up (Investigators, 2011). This is encouraging as these effects 

were obtained in a patient population that was resistant to conventional anti-

hypertension treatments. However, the technique is invasive and the 

investigators report several cases of femoral pseudoaneurysm and one case 

of renal artery dissection (Investigators, 2011) therefore a non-surgical 

approach is desirable. Furthermore, a recent study of renal nerve ablation in 

treatment resistant hypertension patients reported no significant change in 

blood pressure at 1 and 6 months follow-up (Hart et al., 2013). These results 

are based on a small sample group (n = 8), however, this indicates that 

further investigation of the efficacy of this technique is required. 

The mechanisms of the potential antihypertensive effects of this 

technique require further investigation. Renal nerve ablation reduced renal 

noradrenaline spill-over and MSNA indicating a decrease in regional and 

systemic sympathetic nerve activity (Schlaich et al., 2009). This could be 

mediated by attenuation of efferent sympathetic nerve activity, reducing 

vasoconstriction of the renal artery and thereby increasing renal perfusion. 

This would reduce renin production which would lead to a decrease in 

angiotensin II levels. Angiotensin II acts at peripheral and central sites to 

increase sympathetic nerve activity and blood pressure, including receptors 

in the vasculature to promote vasoconstriction and in the brainstem to 

increase sympathetic outflow (Arnold et al., 2013). This is similar to medical 

therapies utilising angiotensin converting enzyme (ACE) to reduce the 

production of angiotensin II. However, these results are based on one case 

study (Schlaich et al., 2009). Contrary to this, a recent study reported that 

MSNA was not altered at 1 and 6 months follow-up of 8 patients treated with 

renal nerve ablation (Hart et al., 2013). This same study also investigated 
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the effects of renal nerve ablation in spontaneously hypertensive rats and 

found a consistent decrease in MSNA and blood pressure. The difference in 

responses of rats and humans to renal nerve ablation may be attributed to 

the greater destruction of renal nerves (90%) in rats compared to humans 

suggesting that the procedure of renal nerve ablation requires further 

refinement.  

Alternatively/additionally, renal nerve ablation may affect afferent renal 

signalling and alter central autonomic control. Stimulation of renal afferent 

nerves in rats revealed c-fos immunoreactivity in areas of autonomic control 

including the insular cortex, paraventricular nucleus of the hypothalamus and 

the NTS (Solano-Flores et al., 1997). Activation of renal afferent nerves can 

reflexly increase or decrease efferent renal nerve activity (Johns and 

Abdullah, 2013). Stimulation of renal mechanoreceptors by dilating the renal 

pelvis in anaesthetised rats decreased efferent renal sympathetic nerve 

activity (Kopp et al., 1985) whereas activation of renal afferents throughout 

the kidney by infusing bradykinin increased efferent renal sympathetic nerve 

activity (Smits and Brody, 1984). Given the lack of understanding of afferent 

renal signalling and the effects of renal nerve ablation on renal afferent 

activity, further research is required to elucidate the mechanisms of renal 

denervation on blood pressure and autonomic function. 

This thesis has demonstrated that H-tVNS can reduce MSNA, 

therefore, H-tVNS merits consideration as an antihypertensive therapy. tVNS 

or cervical VNS have not yet been investigated in humans or animals as 

potential therapies in systemic hypertension. Investigating the effects of VNS 

on hypertension in humans would be limited by the invasive nature and 

expense of the procedure, however, H-tVNS offers a non-invasive method 

that could easily be investigated in hypertension patients and may provide 

an alternative to both cervical VNS and renal nerve ablation.  

 

6.5.2 Obesity 

The worldwide prevalence of obesity doubled between 1980 to 2008 to 

approximately 500 million obese adults and is expected to continue rising 

over the next two decades (Malik et al., 2013). Obesity is characterised by 
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elevated MSNA and the degree of sympathetic activation is related to 

increased visceral abdominal fat, independent of total fat mass (Alvarez et 

al., 2002). Moreover, weight loss through a low calorie diet and exercise 

decreased sympathetic nerve activity and plasma noradrenaline levels 

(Grassi et al., 1998; Trombetta et al., 2003). Obesity is an important risk 

factor for cardiovascular disease and this may be related to the underlying 

sympathoexcitation. Although dieting and exercise can decrease 

sympathetic activity in obese individuals, patient compliance is problematic 

(Makris and Foster, 2011). An incidental finding of VNS in epilepsy is weight 

loss and this has been investigated in animal models of obesity (Introduction 

1.3.1.5), however, these studies have not assessed any changes in 

sympathetic activity. Further investigation is required, however, VNS could 

potentially reduce weight and sympathetic activity in obesity, reducing the 

risk of developing cardiovascular disease. Conversely, reducing sympathetic 

activity could decrease metabolic rate and energy expenditure leading to 

further weight gain (Spraul et al., 1993), therefore, further animal studies are 

required to clarify the effects of VNS in obesity before trialling in obese 

humans.  

 

6.5.3 Obstructive sleep apnoea and H-tVNS 

Obstructive sleep apnoea (OSA) is estimated to affect 1-3% of the general 

population (Carlson et al., 1993), however, this increases to 40% of the 

obese population (Narkiewicz and Somers, 2003). OSA is associated with 

increased sympathetic activity demonstrated by increased MSNA and 

plasma noradrenaline levels in OSA patients (Carlson et al., 1993). Episodes 

of apnoea cause repeated periods of hypoxia and hypercapnia that activate 

the chemoreflex to increase sympathetic activity leading to increased blood 

pressure (Narkiewicz et al., 1999). Patients with OSA have an increased risk 

of cardiovascular disease and elevated levels of sympathetic nerve activity 

may contribute to this (Narkiewicz et al., 1999). One therapy for OSA is 

continuous positive airway pressure. This reduced episodes of apnoea and 

decreased MSNA in OSA patients (Narkiewicz et al., 1999), however, it 

requires patients to wear a mask while sleeping and is not well tolerated. 
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One study reported that 10/25 OSA patients recruited for a 

microneurography study refused continuous positive airway pressure 

treatment (Narkiewicz et al., 1999). H-tVNS may provide a more tolerable 

method to reduce sympathetic activity in OSA and decrease the risk of 

developing cardiovascular disease. 

 

6.5.4 Polycystic ovary syndrome 

Polycystic ovary syndrome (PCOS) is an endocrine condition that affects 

approximately 6-10% of women of reproductive age and is associated with 

an increased risk of cardiovascular disease (Yildirir et al., 2006; Lansdown 

and Rees, 2012). PCOS is also associated with obesity and OSA which are 

associated with sympathetic activation and this led to speculation that 

chronic sympathoexcitation may contribute to the pathophysiology of PCOS. 

An investigation of HRV in women with PCOS revealed a significantly 

elevated LF/HF ratio compared to age-matched controls, indicative of 

increased cardiac sympathetic predominance in PCOS patients (Yildirir et 

al., 2006). Heart rate recovery was also diminished in PCOS patients, 

compared to healthy controls, supporting evidence of autonomic imbalance. 

Indeed, impaired HRR suggests that there is parasympathetic withdrawal in 

PCOS (Giallauria et al., 2008). Microneurography has provided direct 

evidence of autonomic dysfunction in PCOS. MSNA burst frequency and 

incidence were significantly higher in PCOS patients compared to matched 

controls (Sverrisdóttir et al., 2008). These studies indicate underlying 

sympathoexcitation in PCOS, however, it is not known if this contributes to 

the pathophysiology of the condition. It is therefore difficult to predict if 

reducing sympathetic nerve activity would alleviate the symptoms of PCOS. 

Nevertheless, H-tVNS is a simple, non-invasive and safe technique to 

investigate this further. Importantly, H-tVNS may reduce sympathetic nerve 

activity in PCOS and thereby attenuate the risk of cardiovascular disease in 

this patient population. 
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6.5.5 The potential beneficial effects of H-tVNS post-stroke 

VNS may also benefit stroke patients by reducing infarct size. Cervical VNS 

applied 30 minutes after the initiation of cerebral ischaemia and lasting 1 

hour reduced infarct size by 50% in rats (Ay et al., 2011). There was no 

significant difference between VNS performed ipsilateral or contralateral to 

the area of ischaemia. The mechanisms behind VNS in reducing infarct size 

are unknown. It was hypothesised that VNS may increase cerebral blood 

flow through vasodilation of the cerebral arteries, however, measures of 

cerebral blood flow using Doppler ultrasound revealed no significant 

changes (Ay et al., 2011). Systemic inflammation and neuroinflammation 

occur as a result of stroke and the degree of inflammation is associated with 

poor prognosis post-stroke. VNS may, therefore, exert a beneficial effect 

through the anti-inflammatory reflex, however, this requires further 

investigation (General Introduction 1.3.1.3) (Cheyuo et al., 2011). Despite 

positive results in animal models of stroke, VNS in its current form is not a 

feasible acute intervention in human stroke patients due to the need for 

surgery. However, H-tVNS could be applied by paramedics or accident and 

emergency staff if a stroke is suspected. The effects of tVNS in stroke have 

not yet been investigated in animal models, however, it could potentially 

decrease the size of the infarct and thus could preserve a greater degree of 

neurological function. Furthermore, H-tVNS could reduce the risk of sudden 

death post stroke by reducing sympathetic activity (Chapter 5 Section 5.6.1) 

 

6.5.6 Vagus nerve stimulation and neurogenesis 

It has been postulated that VNS may facilitate adult neurogenesis in the 

subgranular zone of the hippocampus. Serotonin and noradrenaline have 

both been implicated in adult neurogenesis (Rajendran et al., 2009). The 

firing rates of locus coeruleus (LC) noradrenergic neurones and dorsal raphe 

serotonergic neurones recorded extracellularly in vivo in rats were increased 

by vagus nerve stimulation (Dorr and Debonnel, 2006), therefore, VNS may 

promote neurogenesis in the adult brain. Indeed, stimulation of the left 

cervical vagus nerve in rats for 24 hours increased hippocampal progenitor 

proliferation by 50% compared to sham stimulation (Revesz et al., 2008). 



- 157 - 

Vagus nerve stimulation also activates the central cholinergic pathway 

through the LC. The central cholinergic pathway projects to the 

hippocampus (Cheyuo et al., 2011) and acts on nicotinic acetylcholine 

receptors. Alpha 7 containing nicotinic ACh receptors play an important role 

in the survival, maturation and integration of new-born neurones in the 

hippocampus (Campbell et al., 2010). Rats in which alpha-7 containing 

nicotinic receptors were knocked down by injection of a retrovirus into the 

hippocampus exhibited reduced survival of new-born neurones and those 

that survived had truncated dendrites with reduced arborisation (Campbell et 

al., 2010). The hippocampus is involved in learning and memory processing 

therefore increasing neurogenesis and facilitating the integration of new-born 

neurones in this area may attenuate some of the symptoms of Alzheimer’s 

disease and other dementias. Indeed, a pilot study of VNS in 17 Alzheimer’s 

patients found that 70% showed no decline in cognitive function at 1 year 

follow-up and 40% showed an improvement in cognitive function (Merrill et 

al., 2006). These results are remarkable considering the progressive nature 

of Alzheimer’s disease, however, no other trials have since been conducted. 

This may be due to the invasiveness and expense of VNS, therefore, H-

tVNS may provide a non-invasive route to investigate the effects of VNS on 

cognition as a possible therapy to attenuate the progression of Alzheimer’s 

disease and dementia. 

 

6.5.7 Ageing and autonomic function 

Currently, 10 million people in the UK are over 65 years old and this is 

estimated to increase to around 19 million by 2050 (Cracknell, 2010). Good 

health is essential if older people are to remain independent and play an 

active role in family and community life. However, ageing is associated with 

an increase in the prevalence of many chronic conditions, which can 

contribute to loss of independence. Common chronic conditions affecting the 

elderly are those concerning the cardiovascular system (North and Sinclair, 

2012) and mental health (Luppa et al., 2012). One element linking these 

areas is altered function of the autonomic nervous system. 
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Age is the most important factor in determining cardiovascular health 

(North and Sinclair, 2012). Ageing is associated with alterations in 

cardiovascular autonomic control. Respiratory sinus arrhythmia is reduced, 

suggesting a decrease in parasympathetic influence on sinus node function 

(Kuo et al., 1999) and sympathetic activity is increased, evidenced by 

increased plasma noradrenaline levels (Esler et al., 1995) and muscle 

sympathetic nerve activity (Ebert et al., 1992; Ng et al., 1993). These 

parasympathetic and sympathetic changes contribute to a continuous 

decline in baroreflex sensitivity (BRS) and heart rate variability (HRV) in 

ageing males and females (Barantke et al., 2008), which is related to 

predisposition to cardiovascular disease (Umetani et al., 1998; Felber 

Dietrich et al., 2006; Abhishekh et al., 2013). Indeed reduced HRV is an 

indicator of poor prognosis in both healthy and patient populations (Kleiger 

et al., 1987; Nunan et al., 2010). Improving cardiovascular autonomic 

function in the elderly may, therefore, prevent or slow the development of 

cardiovascular disease.  

Depression is one of the most common mental health disorders in the 

elderly and is associated with functional decline, decreased quality of life, 

increased health care costs and increased mortality (Luppa et al., 2012). 

Indeed, depression increases the risk of developing cardiovascular disease 

by 1.5 in the general population (Luppa et al., 2012). Furthermore, patients 

with both cardiovascular disease and depression are 2-3 times more likely to 

suffer a cardiac event. Depression is also an independent indicator of poor 

prognosis after myocardial infarction. Similarly to cardiovascular disease, 

patients with depression exhibit reduced parasympathetic and enhanced 

sympathetic activity, evidenced by reduced heart rate variability (Taylor, 

2010), increased noradrenaline spill-over (Barton et al., 2007) and increased 

muscle sympathetic nerve activity (Scalco et al., 2009). Cervical VNS is 

currently approved for treatment resistant depression in the USA (General 

Introduction 1.3.1.2) and is therefore restricted to a small subset of patients. 

tVNS may provide a non-invasive adjunctive therapy for depression that 

could also attenuate associated cardiovascular risks and improve quality of 

life in the elderly. The invasive nature and expense of cervical VNS does not 
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justify its use as a prophylactic treatment, however, H-tVNS may provide an 

alternative solution. 

 

6.6 Clinical Implications of tDCS 

Sympathetic activation is associated with a wide range of conditions as 

discussed above. Furthermore, the degree of sympathoexcitation has been 

correlated with poor prognosis, including post stroke (Cohn et al., 1984; 

Kleiger et al., 1987; Kaye et al., 1995; Robinson et al., 2003; Barretto et al., 

2009). tDCS is being investigated as a potential therapy to aid stroke 

rehabilitation by promoting cortical plasticity, however, the possible effects 

on autonomic function may be underestimated. The results of this study 

indicate that tDCS, using a similar electrode montage and parameters to 

those used in stroke motor rehabilitation studies, increased MSNA. The 

effects of a single tDCS treatment are transient, however, chronic stimulation 

caused long-lasting effects on cortical excitation such that 5 daily treatments 

produced effects that lasted 2 weeks (Boggio et al., 2007). The effects of 

chronic tDCS on autonomic function are unknown, however, based on these 

results, caution is warranted before applying chronic tDCS over the motor 

cortex in stroke patient populations. It would be advisable to monitor 

autonomic function in patients undergoing such a trial e.g. regular analyses 

of HRV, to ensure there was no worsening of autonomic function that could 

potentially impact on patient prognosis. 

 Additionally, tDCS is being investigated as a potential therapy for 

depression which is also associated with sympathoexcitation. The electrode 

montage utilised in studies of tDCS in depression differs from that used in 

the present study with the anode and cathode placed over the left and right 

dorsolateral prefrontal cortex. The effects of this set-up on autonomic 

function are unknown, however, this merits investigation. Recently, 

combining fMRI and microneurography revealed a positive correlation 

between spontaneous MSNA burst activity and activation of the left and right 

dorsolateral prefrontal cortex (Macefield et al., 2013). This suggests that the 

dorsolateral prefrontal cortex may be involved in sympathoexcitation. This 
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finding warrants caution in using tDCS to treat depression until the potential 

effects on autonomic function are better understood.  

 

6.7 Limitations of the study 

A major limitation of this study is the small number of heart failure patients 

recruited. The high incidence of atrial fibrillation and other arrhythmias in 

patients attending the heart failure clinic hampered recruitment. 

Furthermore, many patients were recruited who had no diagnosis of 

arrhythmia but presented with regular ectopic beats that prevented 

acquisition of 5 minute long ECG recordings with < 2 ectopics beats as 

required for HRV analyses. In addition, recruitment and testing of patients 

during clinic restricted the time available for each experiment - hence 

recovery recordings to explore any residual effect of H-tVNS in heart failure 

were not made. In the future, patients could be recruited and undergo a 

screening ECG at the clinic prior to returning on a convenient day to take 

part in the study. This would allow adequate time for the study and the 

incorporation of microneurography into the protocol which would provide vital 

information on the effects of H-tVNS on MSNA in heart failure patients. 

The initial investigation of H-tVNS in healthy participants and heart 

failure patients relied on non-invasive measures that provide an estimate of 

autonomic balance rather than direct measurements. Two non-invasive 

measures of autonomic function, HRV and BRS analyses, were utilised in 

order to verify any changes during H-tVNS and tDCS. Whilst there were 

significant changes in HRV during H-tVNS and tDCS there was no 

significant change in BRS during either condition. This could be due to 

recruiting healthy volunteers with optimal reflex blood pressure control that 

was not affected by either intervention. Unfortunately, it was not possible to 

analyse BRS in the majority of the heart failure patients due to poor 

coherence between spontaneous changes in heart rate and blood pressure. 

Many of the heart failure patients were also excluded due to the frequent 

occurrence of ectopic heart beats. Heart rate turbulence could be used in 

future studies to both overcome the difficulty of obtaining ECG records free 
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of ectopic beats and also as an alternative to spontaneous BRS analysis in 

heart failure patients. The lack of effect of L-tVNS, cathodal tDCS and sham 

stimulation for both interventions implies that changes in HRV during H-tVNS 

and anodal tDCS were valid. Using microneurography to record MSNA in 

healthy participants partially overcame the restriction of non-invasive 

autonomic measures, however, this was not performed in heart failure 

patients and did not provide information on any regional changes in 

autonomic function. Regional changes in sympathetic activity could be 

explored in the future using the noradrenaline spill-over technique to 

examine specific changes in cardiac sympathetic nerve activity. 

Furthermore, the reproducibility of HRV and MSNA responses during both 

H-tVNS and tDCS has not been evaluated. 

Another limitation of this study is that tDCS was only performed in 

healthy participants and has not yet been investigated stroke patients. Given 

the results of this study and the clinical implication of potentially 

exacerbating sympathoexcitation in this group, determining the effects of 

tDCS on autonomic function in stroke patients is crucial. It may be that tDCS 

has no effect on autonomic function in stroke patients due to pre-existing 

sympathoexcitation and only increases MSNA in populations in which 

baseline levels are relatively low. Despite this, it is not ethical to apply tDCS 

to stroke patients at this stage without confirmation or refutation of the 

results presented in this study. A larger study of tDCS in healthy participants 

is required before contemplating a study of autonomic function in stroke 

patients.  

The findings of the neuronal tracing study of the ABVN were limited by 

restrictions on collecting the superior vagal ganglion for analysis as the cell 

bodies of the neurones that comprise the ABVN reside in the superior 

ganglion. It would have been useful to section this to determine if DiI had 

reached this point. Unfortunately, this procedure was not included in the 

original ethics application and tissue transfer agreement and there was not 

sufficient time to amend these and gain approval from the ethics committee 

and human tissue license holder. This could have provided information that 

would have informed the design of future experiments and will be included in 

subsequent studies.   
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6.8 Future studies 

6.8.1 H-tVNS in heart failure patients 

The preliminary data presented in Chapter 3 indicate that H-tVNS can 

improve cardiac autonomic function in heart failure patients, however, a 

larger sample group of heart failure patients is required to confirm this. It is 

also necessary to perform microneurography on heart failure patients during 

H-tVNS to establish if H-tVNS reduces MSNA in this population.  

The residual effect of H-tVNS on HRV in healthy participants 

represents an interesting phenomenon that may preclude the need for 

continuous stimulation. The residual effect was not explored in heart failure 

patients due to time constraints in the clinic therefore this requires 

investigation in the future. Heart failure patients would undergo a similar 

protocol as described in Chapter 3 (with the addition of microneurography) 

and would then undergo further recordings to establish the duration of the 

effect of H-tVNS on HRV and MSNA. Recordings would be made every 15 

minutes for two hours post-stimulation. If HRV and MSNA had still not 

returned to baseline levels recordings would continue every 15 minutes until 

they reach baseline levels. 

Chronic H-tVNS may have a cumulative effect on cardiovascular 

autonomic control. To investigate this, heart failure patients would be 

recruited to undergo H-tVNS twice daily for 1 month. To facilitate this, 

patients would be provided with a device and instructions to take home and 

perform H-tVNS. To monitor patient compliance, TENS machines that record 

a log of when the device was used would be utilised. A similar protocol to 

that used in Chapter 3 would be used on day 1 of the study. This would 

establish the baseline values of HRV and the acute effects of H-tVNS in 

each patient. In addition, microneurography would also be conducted. 

Patients would then undergo physiological recordings every fortnight for 2 

months to monitor the effects of chronic H-tVNS and any residual effects. 

This would provide data on cardiovascular autonomic function halfway 

through the chronic stimulation phase and on the last day of stimulation plus 

2 weeks and 4 weeks after H-tVNS had ceased. Clinical tests, such as the 6 

minute walking test and quality of life scores, would also be incorporated to 
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establish the effectiveness of H-tVNS in heart failure. If a residual effect was 

still present after one month, it may be necessary to extend the duration of 

the study to continue monitoring.  

The experiments described above would establish the efficacy of H-

tVNS in heart failure patients and would inform the design of future studies. 

In particular, determining the duration of the residual effect of H-tVNS and 

the impact of chronic stimulation may alter the length and number of H-tVNS 

periods per day. Positive results - a significant reduction in MSNA and LF/HF 

ratio - may lead to a clinical trial. A randomised controlled clinical trial would 

allow comparison of the effects of H-tVNS therapy in heart failure to a control 

group of heart failure patients receiving standard clinical care. To achieve 

this, the patients would be asked to utilise H-tVNS twice daily for 6 months 

with follow-up sessions at 1 month, 3 months and 6 months. At baseline and 

follow-up sessions, physiological measures (e.g. microneurography, HRV) 

and clinical tests (6 minute walking test, quality of life scores) would be used 

to establish the effectiveness of H-tVNS in heart failure. A multi-centre trial of 

cervical VNS in heart failure patients reported a significant increase in left 

ventricular ejection fraction at 3 months that was maintained at 1 year follow-

up (De Ferrari et al., 2011) therefore echocardiography should be included in 

future clinical studies of tVNS to investigate any effects on cardiac function. 

 

6.8.2 Elucidating the mechanisms of H-tVNS 

The central mechanisms of the cardiovascular autonomic effects of H-tVNS 

require further investigation. The working heart brainstem preparation 

(WHBP) provides an ideal method to explore this further in rats or mice. The 

WHBP is an intra-arterially perfused decerebrate in situ preparation. This 

eliminates the need for anaesthetic while preserving brainstem autonomic 

neuronal circuits and allowing intracellular neuronal recordings (Paton, 

1996). The preservation of autonomic circuits in this preparation can be 

demonstrated by increasing perfusion pressure. This stimulates 

baroreceptors and leads to a decrease in heart rate (Lall et al., 2012). 

Similarly, injecting sodium cyanide into the perfusate results in a decrease in 

heart rate and an increase in phrenic nerve discharge characteristic of 
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chemoreceptor activation (Lall et al., 2012). By adapting the electrodes used 

for tVNS, it would be possible to stimulate the ABVN in rats and record 

efferent activity of the vagus nerve directly. This would clarify the effects, if 

any, of tVNS on parasympathetic nerve activity. Moreover, to determine the 

effects of H-tVNS on neuronal activity in the NTS, intracellular recordings of 

neuronal activity would be made. By applying a neuronal tracer to the ABVN 

approximately 5 days prior to the experiment and including a fluorescent 

label (e.g.rhodamine) in the electrode utilised for intracellular recordings, it 

would then be possible to subsequently identify the NTS neurone that was 

recorded from and observe any close appositions from the ABVN.  

The consequences of H-tVNS on cardiac remodelling could also be 

investigated in vivo in an animal model of heart failure. There are many 

animal models of heart failure and one of the most commonly used involves 

ligation of the anterior interventricular coronary artery to cause myocardial 

infarction. However, this causes rapid onset heart failure which differs from 

the gradual development of heart failure in humans (Patten and Hall-Porter, 

2009). Aortic banding is an alternative technique in which a stricture is 

placed around the ascending aorta in young rats (3-4 weeks). As the rats 

grow, flow through the aorta is increasingly impeded leading to pressure 

overload in the left ventricle. At 8 weeks after banding there is left ventricular 

hypertrophy and symptoms of heart failure, such as dyspnoea, manifest at 

18 weeks post-banding (Patten and Hall-Porter, 2009). Aortic banding is a 

less invasive technique than coronary artery ligation and the gradual 

development of heart failure is more consistent with human disease. This 

model could be used to compare the effects of H-tVNS therapy to untreated 

rats with aortic banding. The development of heart failure can be monitored 

in vivo using echocardiology to assess left ventricular hypertrophy. After 18 

weeks the animals would be sacrificed and histological changes in cardiac 

tissue such as cardiomyocyte diameter and the degree of fibrosis could be 

assessed. This would elucidate the effects of H-tVNS on the 

pathophysiological remodelling of the heart.  
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6.8.3 Distribution of the ABVN 

This study attempted to determine the central projections of the ABVN in 

humans in order to clarify the potential mechanisms of H-tVNS effects on 

cardiovascular autonomic function. The results of this study were 

inconclusive and future studies to improve the protocol are outlined in 

Section 4.6. In addition to the central projections of the ABVN, the peripheral 

distribution to the external ear also merits investigation. This has only been 

investigated in one study in which the ABVN was dissected in 7 cadavers 

(Peuker and Filler, 2002). Dissection of the terminal branches of the ABVN 

would be technically challenging due to their small size. DiI travels 

anterogradely as well as retrogradely, therefore application to the distal end 

of the ABVN would label the distribution of the ABVN to the ear which could 

then be sectioned and viewed under a microscope as described in Chapter 

4. It would be beneficial to determine if there is any anatomical variation in 

the distribution of the ABVN between individuals as this may account for any 

non-responders to H-tVNS and may also inform future tailoring of H-tVNS 

electrode placement to maximise success rates. 

 

6.8.4 Autonomic effects of tDCS in stroke patients 

This thesis reports that anodal tDCS over the motor cortex, as proposed for 

stroke motor rehabilitation therapy, increased MSNA in healthy participants. 

This result requires confirmation, however, it may warrant consideration 

before tDCS is utilised in stroke patients. The effects of tDCS on autonomic 

function in stroke patients may differ from healthy participants, however, 

investigating this poses ethical dilemmas based on results presented in this 

thesis. It may be that a future collaboration with researchers investigating 

tDCS in stroke patients would minimise the number of patients exposed to 

tDCS and as the effects of tDCS are temporary, it may have no long-lasting 

effect. Despite this, an investigation of tDCS in an animal model of stroke 

would be a valuable initial investigation. The most common type of stoke in 

humans is caused by occlusion of the middle cerebral artery, therefore, 

performing a similar occlusion of the middle cerebral artery in rodents is 

frequently used to model stroke (Howells et al., 2010). Middle cerebral artery 
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occlusion in rats and mice can be performed by introducing a filament to the 

internal carotid artery and advancing this superiorly into the middle cerebral 

artery (Braeuninger et al., 2012). There are a number of established 

behavioural correlates that could be used to assess the effectiveness of 

tDCS on motor rehabilitation e.g. the ladder rung test (Balkaya et al., 2013). 

Telemetry could also be used to continuously record heart rate and blood 

pressure to allow HRV and BRS analyses. The consistency of infarct size 

could be assessed at the end of the experiment by sectioning the brain and 

using triphenyltetra-zolium chloride (TTC) to stain non-infarcted tissue red, 

leaving infarcted tissue pale (Braeuninger et al., 2012). By investigating the 

cardiovascular autonomic effects of tDCS over different areas of the cortex it 

may be possible to tailor this technique to fine tune central autonomic control 

in patients.  

 

6.9 Conclusion 

This thesis has demonstrated that it is possible to modulate autonomic 

function using tVNS and tDCS. Non-invasive neuromodulation of the 

autonomic nervous system could provide an adjunctive therapy to redress 

autonomic imbalance in many conditions and improve prognosis. These 

techniques do not require surgery and are therefore applicable to a wider 

cohort of patients than surgical techniques such as cervical VNS. 

Furthermore, tVNS and tDCS are simple and inexpensive techniques. Based 

on the results presented in this thesis, these techniques merit further 

investigation to determine the exact mechanisms involved and to explore 

their application to other conditions that exhibit autonomic imbalance such 

as hypertension and polycystic ovary syndrome. This may aid refinement of 

these techniques and enable translation to clinical practice. 
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