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Abstract 

 

 
RNA surveillance by the exosome complex is remarkably conserved from yeast to humans and 

best studied in baker’s yeast Saccharomyces cerevisiae. The multi-subunit RNA exosome is 

involved in the processing, maturation, quality control and general turnover of RNAs, as well as 

the degradation of harmful, aberrant or unwanted transcripts. To execute its distinct 

cytoplasmic and nuclear functions, the exosome requires compartment-specific co-factors like 

Rrp47, a protein directly associated with the nuclear exosome exoribonuclease Rrp6. The aim 

of this study was to investigate the role of Rrp47 in exosome-mediated processes based on 

the model that Rrp47 is an RNA binding protein that helps direct Rrp6 to its substrates. 

Mutational analysis of Rrp47 revealed that the Sas10 domain which Rrp47 shares with other 

proteins involved in RNA processing is critical for Rrp6 binding and for all in vivo Rrp47 

functions. However, the less conserved C-terminus of Rrp47 functions in the final maturation of 

snoRNAs, and both C- and N-terminus cooperate in RNA binding in vitro. Protein and mRNA 

expression analyses demonstrate that the proteins critically influence each other’s stability and 

expression levels whereby Rrp47 expression is drastically reduced when Rrp6 is absent. Studies 

into the assembly of Rrp47-Rrp6 suggest that the proteins are imported into the nucleus 

separately where Rrp47 is degraded if Rrp6 is not available for interaction. Rrp47 has less 

pronounced effects on Rrp6 stability and expression, yet defects in the processing of Nrd1 

terminated transcripts were alleviated by Rrp6 overexpression in cells lacking Rrp47. 

Specifically, growth was restored by overexpressing Rrp6 in an otherwise synthetic lethal rex1∆ 

rrp47∆ strain, suggesting that Rrp47 is critical for maintaining adequate Rrp6 levels. Taken 

together this study has given crucial new insights into domains required for Rrp47 function, 

as well as assembly and interdependency of Rrp47 and its associated exonuclease Rrp6. 
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Chapter 1 - Introduction 

 

1.1    DNA, RNA and gene expression  

1.1.1  Gene expression and the importance of RNA surveillance  

All organisms face the vital task of preserving the integrity of their genome, as well as ensuring 

the fidelity of gene expression, the correct transcription and translation of this genetic master 

plan into functional RNAs and proteins. The eukaryotic genome is made up of long chains of 

deoxyribonucleic acid (DNA). Herein, the genetic code is contained in the distinct sequence of 

four basic building blocks, called nucleotides, and safeguarded by their specific base-pairing (A-

T, G-C) in a stable, double stranded DNA helix. The DNA is packaged with proteins into a dense 

structure called chromatin to form the chromosomes in the nucleus.  

The genome is divided into genes, defined as regions of DNA that encode and generate 

functional RNAs and proteins in a highly regulated process termed gene expression. In the first 

stage single-stranded ribonucleic acid (RNA) copies of the DNA coding strand are produced. 

These primary transcripts are then further processed and modified to generate the mature 

functional RNAs assembled into RNA-protein-complexes; coding mRNAs are exported to the 

cytoplasm where ribosomes translate the code into amino acids to generate proteins. Gene 

expression is tightly controlled and diverse proof-reading and surveillance mechanisms 

monitor every step of the way from DNA to RNA and to protein (Richard and Manley 2009). 

Cells make huge amounts of RNA and therefore efficient RNA regulation is imperative to 

ensure the right type of RNA is produced at the right time and in sufficient amount and quality. 

This requires a highly regulated but flexible system that allows for rapid changes of transcript 

amounts according to requirements. Faulty regulation of RNA levels has been implicated in 

many diseases, including cancer (Rougemaille and Libri 2010, Staals and Pruijn 2010). 

Moreover, the abundance and importance of regulatory RNA molecules discovered over the 

last decade have revolutionised the understanding of gene expression and regulation. Only 

recently it has come to light that yeast and human cells transcribe almost their entire genomes 

(Belostotsky 2009, Houseley and Tollervey 2009), a vast fraction thereof non-coding RNAs 

which have become apparent as regulators in gene expression. Most of these transcripts 

appear to be regulated and degraded by the RNA exosome, a key cellular RNA surveillance 

complex. Pervasive transcription of the genome and the ever expanding diversity of known 

non-coding RNAs raise fundamental questions over the purpose of these RNA molecules and 

put a new perspective on the importance of RNA surveillance by the RNA exosome and other 

ribonucleases in the “policing of the transcriptome” (Belostotsky 2009, Rougemaille and Libri 

2010).   
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1.1.2 The vast world of RNAs – RNA diversity and versatility 

RNA is an extremely versatile molecule which can encode information, allow sequence or 

structure specific interactions with DNA, proteins and other RNA molecules, assume stable 

secondary and tertiary structures and display catalytic activity (Sharp 2009). Most likely, 

cellular life originated with RNAs fulfilling both functions as information carriers and regulatory 

molecules. Many genes therefore not only encode one RNA molecule but in higher eukaryotes 

genes often constitute a complex system that can generate different RNA molecules from 

several, bi-directional promoters and through alternative co- and posttranscriptional 

processing mechanisms (Dinger et al. 2011, Tuck and Tollervey 2011). 

The bona fide types of stable RNAs in the cell are messenger RNAs (mRNAs), transfer RNAs 

(tRNA) and ribosomal RNAs (rRNA); mRNAs are transcripts of protein-coding genes which are 

decoded with the help of tRNAs by translating nucleotide triplets (codons) into corresponding 

amino acids. These are assembled into proteins by ribosomes, cellular protein factories made 

up of rRNAs and proteins. Although best studied, mRNA constitutes less than 5 % of the total 

RNA in a typical cell. Other stable RNAs are small nucleolar RNAs (snoRNAs) which are required 

for rRNA processing and modification and small nuclear RNAs (snRNAs) required for mRNA 

splicing which involves the removal of non-coding intron sequences and joining of the coding 

exon sequences (Richard and Manley 2009, Kuehner et al. 2011). Catalytic RNAs were first 

discovered in the form of self-splicing introns contained in the pre-rRNA of Tetrahymena. 

Other RNAs with enzymatic functions include RNaseP involved in converting precursor tRNAs 

into active tRNAs and the rRNA in the large ribosome subunit (“ribozyme”) which catalyses 

protein synthesis from amino acids. Moreover, some double-stranded RNAs were shown to 

inhibit gene expression via RNA interference pathways (RNAi) using microRNAs (miRNAs) and 

small interfering RNAs (siRNAs) to regulate mRNA transcription, translation and stability. Other 

small regulatory non-coding RNAs include piwi-interacting RNAs (piRNAs), repeat-associated 

small interfering RNAs (rasiRNAs) and transcription initiation RNA (tiny or tiRNA).  

More recently, numerous new classes of non-coding RNAs (ncRNAs) have been discovered in 

yeast and other eukaryotes resulting from pervasive transcription by RNAPII such as cryptic 

unstable transcripts (CUTs) and stable unannotated transcripts (SUTs) in yeast (Marquardt et 

al. 2011, Xu et al. 2009, Neil et al. 2009, Davis and Ares 2006), promoter upstream transcripts 

(PROMPTs), promoter-associated and terminator-associated small RNAs (PASRs and TASRs) in 

mammals and upstream non-coding transcripts (UNTs) in Arabidopsis (Belostotsky 2009). The 

functions of these transcripts are poorly understood. Some of these ncRNAs function in locus-

specific gene regulation and silencing, others might just represent transcriptional noise. 

PROMPTs have been found to influence DNA modification patterns in humans (Belostotsky 

2009, Preker et al. 2008 and 2011).   
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1.2 RNA synthesis – The basics of transcription  

1.2.1 RNA polymerases transcribe a specific set of RNAs 

In most eukaryotes, three enzymes termed RNA polymerases (RNAP I, II and III) are responsible 

for the transcription of the DNA template into a specific subset of RNAs. Table 1 gives an 

overview of the transcripts of the three RNAPs (Richard and Manley 2009). Two further RNA 

polymerases have been characterised in plants, termed RNAP IV and V. They appear to 

specifically function in gene silencing; RNAP IV produces silencing RNA (siRNA) precursors and 

RNAP V generates non-coding RNA targets for the siRNAs (Wierzbicki et al. 2008). 

Eukaryotic RNAPs are multi-subunit enzymes that share a high degree of sequence and 

structural similarities and they also share some subunits. However, the core catalytic activities 

are unique to each of the enzymes to carry out their specific task (Schneider 2011). Apart from 

the TATA-binding protein TBP which is required for transcription by all three enzymes, each of 

the three RNAPs has its own set of general transcription factors (Hahn and Young 2011). 

 

 

 
Figure 1.1 RNA polymerases I, II and III transcribe a specific set of RNAs.  
Simplified schematic of transcription showing only the helical double stranded DNA template, 
the RNA polymerase (grey circle) and the nascent single stranded RNA in red. The arrow marks 
the direction of transcription from 5’ to 3’ denoting the free ends of the ribose backbone. 
Listed below are transcripts produced by each of the three eukaryotic RNA polymerases (RNAP 
I, II and III), stable RNAs are marked in bold. 
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The transcription process by the three RNAPs shares basic features, and although more 

complex, it has been best studied for RNAPII and a short overview of RNAPII transcription is 

given here. The three main stages of the transcription process are initiation, elongation and 

termination. Transcription involves complex interactions between RNAP, proteins, DNA and 

RNA and is a dynamic, yet highly regulated and coordinated process. Transcription is closely 

coupled to termination, processing and modification events which determine the fate and 

localisation of the transcript once matured into a fully functional ribonucleoprotein (RNP) 

particle (Richard and Manley 2009).  

1.2.2 RNAPII transcription is coordinated by its C-terminal domain (CTD)  

The C-terminal domain (CTD) of the largest RNAPII subunit Rpb1 is thought to have a unique 

function as an interaction platform for transcription, processing and termination factors (Egloff 

et al. 2008). The CTD contains multiple heptameric repeats of the peptide consensus sequence 

YSPTSPS. The number of repeats varies in different organisms (26 repeats in yeast and 52 in 

humans). The phosphorylation state of the CTD serine residues (Ser2P, Ser5P and Ser7P) 

during the transcription cycle determines which factors bind to the CTD and in which order, 

thus dynamically orchestrating the assembly of distinct factors to the CTD and coordinating 

events during the transcription cycle (Buratowski 2009). Ser5P correlates with transcription 

initiation and early elongation, Ser2P with advanced elongation and poly(A)dependent 

termination and Ser7 phosphorylation appears specifically associated with snRNA transcription 

(Egloff et al. 2010). 

1.2.3 Transcription initiation 

Transcription is initiated by the assembly of the RNA polymerase and a set of general 

transcription factors (GTFs) on the DNA template. The GTFs recognise and bind a regulatory 

upstream region of genes, called the promoter, and position the RNAP near the transcription 

start site. Next, the DNA double helix is unwound (11-15 base pairs) and the template strand 

enters the active site of the RNAP in an open complex (Luna et al. 2008, Sikorski and 

Buratowski 2009). RNAPII then scans the DNA for a suitable start site. Besides the GTFs, 

transcriptional activators and repressors are modulating and regulating transcription by 

binding to upstream activation or repression sequences (UAS and URS) and chromatin-

modifying complexes. The pre-initiation complex (PIC), consisting of RNAP and a minimal set of 

transcrition factors, is not universal, but promoter-dependent; different subsets of 

transcription factors are utilised depending on promoter context. Several DNA sequence 

elements have been identified for basal promoter recognition, including the TATA element, 

downstream promoter elements (DPEs), TFIIB recognition elements (BREs) and the initiator 

element (INR). Any of these can be present at a promoter and associate with a distinct set of 

transcription factors to modulate transcription (Sikorski and Buratowski 2009). 
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1.2.4 Transcription elongation  

When the transcript reaches a certain length (after the eighth nucleotide for RNAPII) the 

promoter is cleared, coinciding with start of the CTD phosphorylation cycle (Luna et al. 2008). 

At this critical stage, the PIC is partially disassembled; some GTFs are released from the 

transcription complex and other factors associate with the RNAP to coordinate subsequent 

events (Luna et al. 2008). As Ser2P levels increase and Ser5P levels drop, the RNAP enters full 

elongation mode producing 1-4 kilobases RNA per minute (Egloff and Murphy 2008). A RNA-

DNA-hybrid of 8 nucleotides is maintained during elongation and disruption of this 

heteroduplex is thought to affect termination (Kuehner et al. 2011). The elongation stage 

coincides with the activation of splicing, moreover, "early export factors" such as Yra1 and 

Sub2 are recruited to the RNAPII CTD via the THO complex to prepare the export of the RNA to 

the cytoplasm (Rougemaille et al. 2008). 

1.2.5 RNAPII has two transcription termination pathways  

Transcription termination by all three polymerases occurs through specific termination signals 

and/or factors present at the 3’ end of the nascent transcript or gene. Generally, termination 

follows shortly after endonucleolytic cleavage of the nascent transcript (Richard and Manley 

2009). The polymerase ceases RNA synthesis and is released from the DNA template (Kuehner 

et al. 2011). Termination is best studied for RNAPII which uses two distinct termination 

pathways, the poly(A)-dependent pathway for transcripts > 1kb and the Nrd1-dependent 

pathway for shorter, mostly non-coding RNAs <1kb (Steinmetz et al. 2001 and 2006, Kuehner 

et al. 2011). The choice of termination pathway is influenced by the phosphorylation status of 

the RNAPII CTD subunit (Egloff and Murphy 2008, Gudipati et al. 2008); Ser2P has been shown 

to coincide with poly(A)-dependent termination, whereas Ser5P-CTD is linked to Nrd1-

dependent termination (Vasiljeva et al. 2008). The two RNAPII transcription termination 

pathways share some features and it appears that they can provide “mutual fail-safe 

termination”, for example to rescue RNAPs that fail to terminate at poly(A) sites (Kim et al. 

2006, Kuehner et al. 2011).  

Poly(A) dependent termination 

Most mRNAs are cleaved downstream of a conserved termination and polyadenylation signal 

AAUAAA by the multi-subunit cleavage/polyadenylation complex, in yeast comprising the 

cleavage and polyadenylation factor (CPF) and cleavage factors CF1A and CF1B (Proudfoot 

2011). Endonucleolytic cleavage is thought to create an entry point for the 5' exonuclease 

Rat1. This allows the exonuclease to chase the RNA polymerase and trigger transcription 

termination ("torpedo model") as well as polyadenylation of the free mRNA 3' end by the 

poly(A)polymerase Pap1 (Luna et al. 2008). The resulting poly(A) tail at the 3'OH end (app. 70-
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90 residues in yeast and 250 residues in humans) is bound by poly(A) binding proteins (PABP) 

and thus protected from exonucleolytic degradation (Houseley and Tollervey 2009). Strikingly, 

more than 50 polypeptides within multiple subcomplexes are required for 3’ end cleavage and 

polyadenylation (Proudfoot 2011) indicating the high complexity of this process. 

Nrd1-dependent termination  

In S. cerevisiae, an early, alternative RNAPII transcription termination pathway was discovered 

for small non-coding RNAs such as snRNAs, snoRNAs and CUTS (Steinmetz et al. 2006). 

Termination occurs within the first few hundred nucleotides of elongation and the short 

transcripts have no poly(A) tail in their mature form. Transcription termination of these RNAs 

depends on the Nrd1-complex consisting of the RNA binding proteins Nrd1 and Nab3 and the 

putative RNA/DNA helicase Sen1. Nrd1 directly interacts with Ser5P-CTD at the early stages of 

transcription (Vasiljeva et al. 2008a). Nrd1 and Nab3 form a heterodimer and both recognise 

and bind the nascent RNA at specific motifs, GUAA/G and UCUU, respectively (Carroll et al. 

2004). Binding of the Nrd1-complex to both RNA and CTD is thought to trigger the release of 

the transcription machinery from the DNA template (Carroll et al. 2007).  

 

 

 
 
Figure 1.2 RNAPII uses two transcription termination pathways. 
Depicted are the Nrd1-dependent termination of sn/snoRNAs and CUTs versus the poly(A)-
dependent termination of mRNAs. The choice of termination pathway is directed by the 
phosphorylation state of the RNAPII C-terminal domain (CTD). Ser5P directly interacts with 
Nrd1-Nab3 and terminates RNAs with Nrd1 terminator sequences. The RNA is then 3' 
processed by the exosome for maturation or in the case of CUTs completely degraded due to 
the lack of protective features. In contrast, Ser2P interacts with the cleavage and 
polyadenylation complex of the poly(A) termination machinery and leads to termination and 3' 
end polyadenylation by Pap1. The nascent transcripts are co-transcriptionally processed and 
packaged into functional mature ribonucleoprotein particles (RNPs). 
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1.3  RNAs, their processing and maturation 

 
1.3.1 Processing and maturation of primary transcripts (pre-RNAs) 

Primary transcripts follow distinct processing and maturation pathways. Whilst mRNAs and 

snRNAs/snoRNAs are processed into RNP particles, RNA fragments and pervasive transcripts 

such as CUTs are immediately degraded (Schmid and Jensen 2008b). Stable RNAs are generally 

transcribed as long, heterogeneous nuclear RNAs (hnRNAs) or precursors (pre-RNAs). Many 

RNAs undergo 5' maturation by the addition of a 5' cap structure (all RNAPII transcripts). 

Further, spacer fragments (pre-rRNA) and introns (pre-mRNAs) are excised from primary 

transcripts and subsequently degraded or processed if the introns encode other RNA species. 

Finally, the processing of 3' ends, often involving precise trimming of 3' extended precursors, is 

required in the formation of functional RNAs of all known eukaryotic species. Transcription 

termination and pre-RNA processing are tightly coupled. The nascent RNA molecules associate 

with specific RNA-binding proteins which direct a series of modification and processing steps 

to allow proper folding and packaging of the RNAs with proteins to generate the 

functional “mature” RNAs, ready to be exported into the cytoplasm or to exert diverse nuclear 

functions.  

 

Notably, most RNAs are functional as RNA-protein complexes, which require elaborate folding 

and assembly. The associated proteins protect the RNA from exonucleolytic degradation and 

coordinate or direct downstream events, localisation und functions of the mature 

ribonucleoprotein particles (RNPs). These maturation processes are thought to be 

continuously monitored by surveillance systems (Houseley et al. 2006, Luna et al. 2008). Tight 

coupling between transcription termination and 3’ end processing is essential because RNAs 

with free 3’ ends that lack protective or stabilising features are rapidly degraded by the 

exosome as demonstrated with CUTs (Rosonina et al. 2006, Rougemaille and Libri 2010). In 

yeast, these RNA processing and degradation activities also involve the 5'-3' exonucleases Rat1 

in the nucleus and Xrn1 in the cytoplasm. Transcription and RNA processing are closely 

interlinked processes directed by cross-stimulatory interactions. Each stage provides a check-

point and influences downstream events thus determining the fate of the transcript 

(Proudfoot 2011). There is also evidence for reverse coupling, as splicing has been shown to 

have a stimulatory effect on transcription initiation. Moreover, gene loops are formed by 

contacts between 5' and 3' ends of genes for rapid reinitiation of transcription thus allowing 

the recycling of RNAP and GTFs (Luna et al. 2008, Lykke-Andersen et al. 2011b). 
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1.3.2 mRNAs are matured into mRNPs for export to the cytoplasm 

In order to produce a translatable mRNA, the nascent transcript undergoes 5'-capping, splicing, 

3'-end processing and packaging with mRNP proteins and export factors for translocation to 

the cytoplasm. CTD-Ser5 phosphorylation attracts the capping enzymes. Capping at the 

emerging 5' end requires removal of the 5' phosphate, addition of GTP and methylation of 

guanine to generate the 7-methylguanosine (m7G)-cap. Pausing of RNAPII is thought to act as 

a checkpoint to ensure only correctly capped mRNAs are extended (Coppola et al. 1983). The 

newly formed cap is then bound by the nuclear cap binding complex (CBC) which not only 

protects the nascent RNA from 5' decay, but is critical for subsequent events including splicing, 

termination, export, mRNA decay and translation (Luna et al. 2008, Schmid and Jensen 2008b). 

 

Protein-coding genes can not only generate one specific mRNA, however this is the norm for 

simpler eukaryotes like yeast. In contrast, higher eukaryotes often have larger and more 

complex genes with multiple expressed sequences (exons) and non-coding intervening regions 

(introns) which can encode multiple mRNAs with distinct coding and regulatory sequences 

(Licatalosi and Darnell 2010). Introns are removed from the pre-mRNA in a process termed 

splicing, and exons are then joined to generate the complete coding sequence (Patel and 

Bellini 2008). Alternative splicing, a key feature of gene regulation in mammals, allows multiple 

mRNA isoforms to be produced from a single gene or pre-mRNA precursor (Jurica and Moore 

2003, Proudfoot 2011). This highly regulated process is mediated by the spliceosome formed 

by the U1, U2, U4, U5 and U6 snRNPs together with over 300 other splicing factors which 

assemble onto the pre-mRNA (Brody and Abelson 1985, Patel and Bellini 2008).  

 

 
 

Figure 1.3 Schematic of pre-mRNA processing. The pre-mRNA contains coding sequences" 
Exons", as well as intronic non-coding sequences "Introns" and untranslated regions (UTRs) at 
both 5' and 3' ends. The pre-mRNA is capped at the 5' end, introns are removed by the 
spliceosome and exons are joined guided by snRNA base-pairing at exon and branch point 
(orange circle) junctions, the 3' end is cleaved and polyadenylated. 
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mRNA 3’ end processing and mRNP formation   

3’ end formation is an essential step in the maturation of all mRNAs and is closely coupled to 

RNAPII termination (Buratowski 2005). The mature mRNA 3’ end is not defined by the stop 

codon of the mRNA, but by a non-coding sequence called the 3’ untranslated region (3’UTR) 

which contains the poly(A) signal (PAS) AAUAAA (Proudfoot 2011). An upstream and a GU-rich 

downstream sequence element (USE and DSE) were also shown to enhance 3’ end formation. 

The DSE–AAUAAA-USE pattern is generally conserved across eukaryotes. In addition, the actual 

nucleotides at the site of 3’ end cleavage can influence efficiency of 3’ end formation. 3’ UTRs 

can vary in length from 50 to several 1000 nucleotides with a 3’ proximal PAS or close 

consensus. Alternative poly(A) signal (PAS) selection is another, more recently discovered 

source of mRNA variation and gene regulation. The resulting mRNA isoforms differ in the 

length of their 3’ UTR which determines stability and translatability of the mRNA (Proudfoot 

2011). In parallel to the processing events, the nascent transcript is also co-transcriptionally 

loaded with assembly factors and packaged into correctly assembled mRNP particles which are 

targeted to the nuclear pore complexes for export (Vinciguerra and Stutz 2004). In S. cerevisiae 

these factors include the THO complex, the RNA helicase Sub2, RNA binding protein Yra1, the 

mRNA export receptor Mex67:Mtr2 and hnRNPs (Rougemaille et al. 2007, Fasken and Corbett 

2009).  

 

1.3.3 snRNAs, snoRNA and CUTs 

These RNAs are all 3’ processed and/or degraded by the exosome. The Nrd1-termination 

complex recruits the exosome to its substrates coupling transcription termination tightly to 3’ 

end processing (Vasiljeva et al. 2006). This leads to 3’ trimming and maturation of snRNA and 

snoRNA precursors or immediate degradation of CUTs and aberrant RNAs. 5’ and 3’ end 

processing of sn- and snoRNAs also involves Rnt1, an RNAse III type endonuclease (Houseley et 

al. 2009). 

 

snRNAs  

The uridine-rich small nuclear spliceosomal snRNAs are non-polyadenylated ncRNAs which 

assemble with proteins into small nuclear ribonucleoprotein particles (snRNPs). U7 snRNP 

functions in histone pre-mRNA 3’ processing, whereas all other snRNPs form the core of the 

spliceosome and function in the precise removal of introns from pre-mRNAs through base-

pairing interactions at the exon-intron and branch point junctions. The Sm snRNAs (U1, U2, U4, 

U5, U7, U11, U12) are transcribed by a specialised form of RNAPII as 3’ extended precursors 

(Matera et al. 2007, Patel and Bellini 2008). Like all RNAPII transcripts, they are co-

transcriptionally capped at the 5’ end and thought to be bound by the CBC like pre-mRNAs. 

Transcription is dependent on the snRNA-specific core promoter, a proximal sequence element 
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(PSE), and a conserved 3’-box element. Co-transcriptional 3’ processing is dependent on 

factors which associate with the RNAPII CTD at the promoter, the Integrator complex in 

metazoans and the Nrd1 complex in conjunction with the exosome in yeast. Endonucleolytic 

cleavage occurs downstream from the 3’-box (Richard and Manley 2010). Recently, Ser7P was 

shown to be specifically required for the expression of Sm snRNAs and the recruitment of the 

integrator complex in mammalians (Egloff et al. 2010). The Lsm-class snRNA U6 is transcribed 

by RNAPIII and contains a cluster of uridines at the 3’ end which forms the Lsm binding site and 

also constitutes the RNAPIII transcription terminator.  

 

Lsm class snRNAs are solely nuclear whereas Sm class snRNAs are exported to the cytoplasm 

for maturation. The snRNA specific export complex comprises the export adaptor PHAX, the 

export receptor CRM1 (exportin-1) and the CBC. Assembly of the snRNAs with the heptameric 

Sm core on the consensus Sm site into stable snRNPs is performed by the survival motor 

neuron (SMN) complex and its associated factors known as Gemins (Matera et al. 2007). 

Hypermethylation of the 5' cap triggers reimport into the nucleus and final maturation of the 

snRNPs in the Cajal bodies which involves assembly with a unique set of snRNP-specific 

proteins and site-specific modifications.   

 

 

 

Figure 1.4 Features of Sm- and Lsm- class snRNAs (adapted from Matera et al. 2007).  
Sm snRNAs are transcribed by RNAPII and contain a 5’-trimethylguanosine (TMG) cap, a 
consensus Sm site (except U7) and a 3’ stem loop. Sm snRNAs are exported for 3’ trimming and 
assembly with the ring-shaped heptameric Sm core before hypermethylation of the 5’ cap 
which triggers reimport into the nucleus and targeting to Cajal bodies for snRNP maturation. 
Lsm RNAs are transcribed by RNAPIII and carry a 5’ monomethylphosphate cap, a 3’ stem loop 
and a 3’ terminal stretch of uridines constituting the Lsm site for assembly with the heptameric 
Lsm core. 
 



11 
 

snoRNAs 

snoRNAs can be divided into two structurally and functionally defined classes termed H/ACA 

snoRNAs and box C/D snoRNAs defined by conserved sequence elements and secondary 

structures. They are co-transcriptionally assembled into RNA-protein-complexes termed small 

nucleolar ribonucleoproteins (snoRNPs) and mainly direct nucleotide modifications in rRNA, 

however they also affect other target RNAs as shown for snRNAs in eukaryotes and tRNAs in 

archaea. Box C/D snoRNAs function as guide RNAs in the site-specific 2’O-ribose methylation of 

rRNAs and H/ACA snoRNAs direct the pseudouridinylation of rRNAs. Both classes of snoRNPs 

are essential for ribosome function. They target key rRNA regions within the ribosomes like the 

peptidyl transferase centre and the mRNA decoding centre through antisense elements. 

Telomerase RNA, also an H/ACA RNA, is required for telomere synthesis. In addition, there are 

numerous "orphan" snoRNAs with as yet unknown targets (Henras et al. 2004, Richard and Kiss 

2006, Matera et al. 2007). Contrary to the small number of snRNA species (24 in yeast), 

eukaryotic cells contain more than 200 unique C/D and H/ACA snoRNA species. These 

abundant and functionally diverse trans-acting ncRNAs are essential for protein translation, 

mRNA splicing and genome stability; besides eukaryotes, they are also present in archaea 

(Matera et al. 2007). In yeast, most C/D and H/ACA snoRNAs are produced as independent 

RNAPII transcripts, however they can also be derived from polycistronic precursors containing 

several RNAs which are released through cleavage by the endonuclease Rnt1 (yeast RNAse III). 

In mammalians and plants, snoRNAs are generally encoded in introns of protein-coding genes 

and require release from the spliced host intron by the RNA lariat-debranching enzyme Dbr1 

(Bernstein and Toth 2012). The nuclear exosome is critical for co-transcriptional quality control 

which leads to either correct exonucleolytic 3' end maturation of the snoRNP or complete 

degradation of aberrant RNAs. 

snoRNP assembly 

Co-transcriptional recruitment and association of a core set of snRNP proteins protects the 

nascent RNA from degradation and is required for snoRNA maturation, stability and nuclear 

localisation. Other proteins are necessary for specialised functions (Matera et al. 2007, Richard 

and Manley 2009). H/ACA snoRNP assembly occurs co-transcriptionally. Yeast nuclear-

assembly factor Naf1 can interact with the RNAPII CTD and actively recruits Cbf5/dyskerin 

(pseudouridin-synthase) to the ACA box and the lower stem of the guide RNA where the 

antisense element is positioned close to the catalytic site. The other H/ACA snoRNP proteins 

Nop10, Nhp2 and Gar1 are recruited to intronic snoRNAs during pre-mRNA synthesis (Richard 

and Kiss 2006, Richard and Manley 2009). The assembled pre-RNPs are matured to functional 

RNPs in Cajal bodies where Naf1 is exchanged for Gar1 in H/ACA RNPs (Fig. 1.5).  
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Figure 1.5 Features of box C/D and H/ACA snoRNPs (adapted from Matera et al. 2007). 
The two classes of snoRNAs (depicted in red) are defined by conserved sequence elements 
(marked in blue) and secondary structures. To form functional snoRNPs, the snoRNAs interact 
with a core set of highly conserved proteins. Box C/D snoRNAs associate with the 2’-O-
methyltransferase Fibrillarin/Nop1, Nop56-Nop58 and the 15.5K protein/snu13. H/ACA 
snoRNAs assemble with the pseudouridine synthase Cbf5/dyskerin, Gar1, Nhp2 and Nop10. 
Final maturation of the snoRNPs occurs in Cajal bodies.  
 

Co-transcriptional box C/D snoRNP assembly is thought to be splicing-dependent. The majority 

of mammalian box C/D snoRNAs require an optimal distance of approximately 50 nucleotides 

upstream of the splicing branch point and are processed in a splicing dependent manner. The 

emerging transcript is first bound by the 15.5 kDa K-turn binding protein (Snu13 in yeast) 

followed by the ribose-2'O-methylase fibrillarin (Nop1 in yeast) and the two related nucleolar 

proteins Nop56 and Nop58. The C/D RNP exchange factor is most likely Bcd1 which also seems 

to interact with RNAPII CTD and is probably replaced by Nop56 when the snoRNP is finally 

matured in the Cajal bodies (Matera et al. 2007). 

 

CUTs and other non-coding RNAPII transcripts 

In yeast, cryptic unstable transcripts (CUTs) are only stabilised and therefore readily detectable 

in exosome/rrp6Δ mutants, whereas they are rapidly and efficiently degraded by the exosome 

in wild-type strains (Wyers et al. 2005, Thiebaut et al. 2006). CUTs are relatively short 

transcripts (200 to 600 nucleotides) from yeast intergenic regions with very short half-lives. 

They have a 5’-cap and heterogeneous 3’ ends. Some CUTs appear to play a regulatory role in 

gene expression by controlling adjacent gene activity via transcriptional interference or gene 

silencing. Most commonly, CUTs are the result of bidirectional transcription where the actual 

gene and its antisense CUT compete for transcription (Xu et al. 2009, Neil et al. 2009, 

Belostotsky 2009). Efficient clearance of CUTs requires Nrd1-termination and Trf4-dependent 
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polyadenylation which stimulates degradation by the exosome. In contrast to stable snoRNAs 

and snRNAs, CUTs lack stabilising features at their 3’ end and are therefore rapidly degraded 

by the exosome (Arigo et al. 2006a, Thiebaut et al. 2006, Rougemaille and Libri 2010).  

 

Recently, stable unannotated transcripts (SUTs) and Xrn1 sensitive transcripts (XUTs) have 

been distinguished from CUTs due to their higher and more easily detectable levels in wild-

type strains and their mode of termination and degradation (Marquardt et al. 2011). SUTs 

resemble mRNAs in some respects and have similar half-lives. They appear to escape 

degradation by the exosome and instead are exported to the cytoplasm and degraded by 

cytoplasmic RNA decay pathways including NMD (nonsense mediated decay), decapping 

enzymes and Xrn1-dependent 5' to 3' degradation (Mitchell et al. 2003b). Some of these 

ncRNAs are dependent on translation to initiate the NMD pathway. Depletion of the nuclear 

exosome subunit Rrp6 or Rrp47 leads to a marked increase in CUTs but only a partial 

accumulation of SUTs (Marquardt et al. 2011).   

 

1.3.4 rRNA processing and ribosome biogenesis 

RNAPI is specialised on rRNA synthesis and is responsible for more than half of total cellular 

RNAs in a growing cell (Warner 1999, Russell and Zomerdijk 2005). RNAPI produces three of 

the four ribosomal RNAs, termed 25S (28S in mammals), 18S and 5.8S according to their 

sedimentation properties, whereas 5S rRNA is synthesised by RNAPIII. In all eukaryotes the 

ribosomal DNA (rDNA) is arranged in multiple tandem repeats (150-200 copies in yeast, 400 

copies in humans). The rDNA is transcribed as a single, large precursor (35S yeast/45S human) 

with a conserved layout that contains all three rRNA species (Venema and Tollervey 1999, 

Schneider 2011). 

Only a portion of rDNA genes is actively transcribed. Downstream terminator elements (T, see 

Fig. 1.6) guide the termination of the 35S transcript and RNAse III/Rnt1 cleaves the precursor 

at the 3' end (Richard and Manley 2010, Kufel et al. 1999). Initially, the 5' external transcribed 

spacer region (5'ETS) is rapidly degraded by the 3' to 5' exo- and endonucleolytic activities of 

the exosome and TRAMP (Lebreton et al. 2008). Then the internal transcribed spacers (ITS1 

and ITS2) are removed and degraded and the rRNA precursors are further processed at their 5' 

and 3' ends. The pre-rRNA undergoes a complex and highly coordinated sequence of 

endonuclease cleavages and exonuclease trimming, co-transcriptional and post-transcriptional 

processing, modification and folding steps to generate the mature 18S, 5.8S and 25/28S rRNA, 

respectively (Fig. 1.6).  
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Figure 1.6 Diagram of the 35S/45S ribosomal DNA repeat and ribosome assembly (adapted 
from Schneider 2011). Bent arrows indicate RNAP promoters. Internal and External transcribed 
spacers (5’ETS, ITS1, ITS2) are excised from the primary transcript in a complex series of 
processing reactions to produce the mature 18S, 5.8S and 25S (28S in mammalians) and 5S 
rRNAs which assemble with ribosomal proteins into the pre-40S and pre-60S subunits to form 
the mature 80S ribosome. 

 

The most abundant post-transcriptional rRNA modifications found in the rRNAs of all species 

are pseudouridine (ψ) and 2'O-methylribose (Schneider 2011). Yeast ribosomes have around 

50 modified sites of each type. They cluster in key functional regions of the ribosome and are 

thought to aid folding and increase stability of the rRNA (Bernstein and Toth 2012). In 

eukaryotes the modifications are carried out by snoRNPs within the nucleolus where the rRNAs 

also assemble with ribosomal proteins to form the pre-40S and pre-60S subunits (Henras et al. 

2008, Reichow et al. 2007). The pre-ribosomal subunits are then exported to the cytoplasm for 

final maturation and assembly into mature ribosomes, the protein factories of the cell. 

Ribosome biogenesis, a universal cellular process, involves more than 100 accessory proteins, 

about as many snoRNPs in addition to 60-80 ribosomal proteins (Peculis 2002). A growing 

yeast cell produces around 2000 rRNA precursors per minute equivalent to some 14 million 

nucleotides (Warner 1999, Houseley et al. 2006). Defective ribosomes are largely degraded by 

the TRAMP-exosome complex (Houseley and Tollervey 2009). This probably involves the large 

number of ATPases required for ribosome synthesis. It is not yet understood how defective 

ribosomes are identified and specifically targeted.  
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1.3.5  tRNAs and other RNAPIII transcripts 

RNA polymerase III is highly specialised for the synthesis of tRNAs and also transcribes a 

variety of short (100-150 bp), essential non-coding RNAs (ncRNAs) such as 5S rRNA, U6 snRNA, 

7SL RNA, 7SK RNA which regulates RNAPII activity, and others (White 2011). RNAPIII 

terminates efficiently at a simple T-rich 3’ consensus sequence aided by an intrinsic cleavage 

activity without the need of other factors (Richard and Manley 2010). The processing of tRNAs 

involves 5’ cleavage by RNaseP and addition of the nucleotides CCA by a dedicated polymerase 

after 3’ processing. tRNAs also undergo a series of folding and modification reactions to aquire 

their canonical L-shaped tertiary structure, and some tRNAs also undergo splicing. The major 

surveillance pathway for hypomodified tRNAs is 5’ degradation by the exonuclease Rat1, which 

implies nuclear import of defective tRNAs. The processing of other RNAPIII transcripts is fairly 

simple and 3’ ends are produced by simple trimming. RNAPIII transcripts are also known to 

undergo nuclear surveillance which can be performed by the exosome-TRAMP complex, as 

suggested for 5S rRNA, U6 snRNA and pre-tRNAs (Houseley and Tollervey 2009).  

 

1.4 Nuclear RNA quality control - RNA surveillance and degradation  

All organisms have highly efficient systems to remove aberrant RNAs and recycle all other 

RNAs at the end of their useful life. The various RNA species have very distinct half-lives, 

shortest for RNA fragments and processing by-products like excised introns and spacers, 

carefully regulated for protein-coding mRNAs and longest for stable sn/snoRNAs and rRNAs in 

ribosomes. The degradation of pre-rRNA spacers (app. 3.3 x 106 nts per minute) probably 

constitutes a substantial fraction of total cellular RNA degradation (Bernstein and Toth 2012). 

In higher eukaryotes, intron removal also produces huge amounts of RNA and a special 

debranching activity is needed to further process the circularised intron lariats. In addition to 

efficient debris removal, RNA surveillance systems closely monitor all processing and 

maturation steps from primary transcript to mature RNA, identifying and rapidly degrading 

unwanted and faulty transcripts and RNPs (Schmid and Jensen 2008). Nuclear mRNA decay 

pathways specifically target splicing intermediates or unspliced RNAs and quality control 

mechanisms prevent the export of incorrectly or too slowly processed mRNAs. RNA 

surveillance ensures that only correctly processed RNAs reach their final destination and 

avoids potentially detrimental effects of rogue non-functional RNA fragments (Houseley and 

Tollervey 2009). All eukaryotic RNAs are thought to be subjected to surveillance, however it is 

unclear how the diverse RNA degradation substrates are identified and targeted.  
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Three major classes of cellular RNA degrading enzymes (RNases, ribonucleases) are 

distinguished according to how they access RNA molecules: endonucleases cut RNA internally, 

5’ exonucleases degrade RNA from the 5’ end and 3’ exonucleases digest RNA from its 3’ end. 

RNases are highly abundant and often have multiple and/or overlapping functions and 

substrates (Houseley and Tollervey 2009). This redundancy greatly enhances the efficiency of 

RNA processing and degradation. In yeast, two major nuclear RNA processing and degradation 

activities function in processing and degradation of transcripts of all three RNAPs, the 5’-3’ 

exonuclease Rat1 (Xrn2 in humans) and the 3’-5’ exonuclease activities of the nuclear exosome 

(Rrp6 and Rrp44/Dis3). In addition, bacteria and eukaryotes harbour multiple other 3’ 

exonucleases involved in RNA processing and degradation, often with partially overlapping 

functions and substrates (Lykke-Andersen et al. 2009).  

 

However, ribonuclease activities, especially endonucleases, have to be tightly controlled to 

restrict degradation to unwanted RNAs. Pre-RNAs are highly susceptible to 3-5’ decay, 

therefore RNA stability seems primarily determined by protective features acquired during 

processing and maturation of the RNAs (Bousquet-Antonelli et al. 2000, Kufel et al. 2004). For 

stable RNAs exonucleolytic trimming stops at secondary structures and/or bound proteins that 

protect these RNAs from degradation and thus becomes a processing and maturation step. 

Accordingly, 5’ caps protect all RNAPII transcripts from the 5’ end, and 5’ degradation requires 

initial decapping to make the 5’ end accessible. Likewise, poly(A)-binding proteins (PABPs) and 

sn/snoRNP proteins protect the 3’ tail of mRNAs and stable sn/snoRNAs from 3’-5’ decay. In 

contrast, non-coding RNAs like CUTs which lack protective features are rapidly degraded as are 

RNAs produced in mutants defective in 3’ or 5’ processing, like aberrant mRNAs that are not 

adenylated or not bound by PABP (Anderson 2005, Lykke-Andersen et al. 2009).  

 

Yeast RNA degradation activities are universal in so far as the diverse substrates generated by 

the three RNA polymerases are all targeted by the exosome or Rat1, despite no obvious 

common substrate features (Houseley and Tollervey 2009). The substrate specificity is thought 

to derive from the association of the exonucleases with co-factors. Moreover, the dual role in 

maturation and degradation of the same transcripts suggests mechanisms which allow further 

differentiation. Kinetic proofreading in 3’ end formation seems to play a role in distinguishing 

aberrant from correctly processed RNAs. For snoRNAs it has been shown that several cycles of 

oligoadenylation by Trf4 and trimming by the exosome appear to allow a certain time for the 

correct processing and assembly of the snoRNP which is then released. Alternatively, if the 

snoRNA fails to form a correctly folded and packaged mature RNP within the time given, it is 

completely degraded by the exosome (Grzechnik and Kufel 2008). This implies controlled 

counteracting efficiencies of polyadenylation and RNA decay which allow coupling of RNA 
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processing, surveillance and degradation in the same process (Burkard and Butler 2000, Jensen 

et al. 2003, Milligan et al. 2005). Notably, oligoadenylation of RNA 3’ ends by 

poly(A)polymerases is now widely believed to be a general mechanism of providing a single-

stranded fuse for exonucleolytic digestion, since all exonucleases initiate degradation 

inefficiently on structured RNAs. Interestingly, the role of polyadenylation in marking nuclear 

RNAs for degradation by the exosome is conceptually very similar to the polyubiquitylation of 

proteins for degradation by the proteasome (Makino et al. 2013b, Lorentzen and Conti 2006). 

In addition to poly(A) polymerases, other important co-factors for RNA degradation are ATP-

dependent RNA helicases like Sen1 and Mtr4, components of the Nrd1 and TRAMP complexes, 

respectively (Jammonak et al. 2011, Bernstein and Toth 2012). Helicases participate in almost 

all RNA processing and degradation pathways possibly unwinding secondary structures and 

dislocating bound proteins while moving along RNA molecules or recruiting other factors for 

RNA degradation. Mtr4 has recently been shown to control the activity of its associated 

poly(A) polymerase Trf4 in the TRAMP complex (Jia et al. 2011). 

 

 

 

 

1.5  The RNA Exosome 

1.5.1 Nuclear RNA processing, surveillance and degradation by the exosome 

The RNA exosome is a critical nuclear RNA processing and degradation activity, highly 

conserved from yeast to humans, with related complexes also present in bacteria and archaea. 

The multi-subunit protein complex was initially discovered through its role in stable rRNA 

processing (Mitchell et al. 1997, Mitchell and Tollervey 2010). However, the RNA exosome is 

now established as the major 3’ to 5’ RNA surveillance and degradation complex in eukaryotes 

dealing with a multitude of RNA substrates (Schneider et al. 2012). As well as ensuring 

adequate RNA quantities and quality of transcripts produced by all three RNA polymerases, the 

exosome also plays key roles in gene regulation by controlling the abundance of non-coding 

RNA transcripts and in antiviral protection by destroying harmful RNAs (Schmid and Jensen 

2008). Most, if not all RNA molecules are thought to encounter the exosome at some stage in 

their life cycle for processing, quality control, controlled turnover or for degradation 

(Chlebowski et al. 2013, Butler and Mitchell 2010, Lykke-Andersen et al. 2009). 

 
 
 
 
 



18 
 

1.5.2 Exosome structure and function is highly conserved 

The exosome complex is highly conserved in structure and function in all eukaryotes studied to 

date and has striking similarities in its architecture to RNA degrading exosomes from archaea 

and polynucleotide phosphorylase (PNPase) found in bacteria, plants and vertebrate 

mitochondria (Januszyk and Lima 2010). In eukaryotes, nine subunits of the exosome core 

(Exo-9) assemble into a two-layered barrel-shaped structure to form a channel which can 

accommodate single-stranded RNA (Fig. 1.7). The central hexameric ring is formed by three 

distinct heterodimers of RNase PH-like proteins (Rrp41-Rrp45, Rrp46-Rrp43, Mtr3-Rrp42). 

Three further RNA-binding subunits (Rrp4, Csl4 and Rrp40) form a cap and stabilise the 

complex by holding neighbouring dimers together (Liu et al. 2006).  

 

 

Figure 1.7  Schematic representation of the structure of the eukaryotic exosome complex 
indicating the spatial distribution of subunits, adapted from Lykke-Andersen et al. 2011a. The 
core of the exosome (Exo-10) is formed by the exo-/endonuclease Rrp44/Dis3 and 9 
catalytically inactive subunits (Exo-9), six of which form a central channel which is capped by 
three RNA-binding proteins. In the nucleus, the Exo-10 associates with the 3'->5' exonuclease 
Rrp6 and its co-factor Rrp47 (depicted as yellow eye). The single-stranded RNA substrate 
(depicted in red) is channelled through the central tunnel to reach the active site of Rrp44/Dis3 
(yellow scissors represent the endonucleolytic activity). 

 

In comparison, the 9-subunit archaeal exosome is also made up of three dimers of the RNase 

PH like subunits Rrp41 and Rrp42 forming a hexameric ring, and the exosome cap is formed by 

Rrp4 and in some species Csl4. Whereas PNPase is a homotrimer of polypeptides with RNA 

binding domains and RNase PH like dimers similar to Rrp41-Rrp42 which also form a hexameric 
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ring with a central channel (Januszyk and Lima 2010). Whilst the architecture of these ancient 

RNA processing complexes is highly conserved with the same domain composition and spatial 

arrangement, the catalytic properties are very different. The prokaryotic complexes use the 

processive 3'-5' phosphorolytic ribonuclease activity within the Rrp41 RNase PH-like domains. 

In contrast, the core subunits of the eukaryotic exosome, although closely related to the 

bacterial phosphorolytic ribonuclease RNase PH, have lost their catalytic function and have 

evolved into inactive structural components (Januszyk and Lima 2010). However, through their 

residual RNA binding capabilities the core proteins have a critical function in channelling the 

substrate to the active site of Rrp44/Dis3 and seem to modulate substrate specificity and 

catalytic properties of all three associated hydrolytic ribonuclease activities provided by 

Rrp44/Dis3 and Rrp6 (Makino et al. 2013a, Chlebowski et al. 2013, Drazkowska et al. 2013). 

 

1.5.3 The catalytic activity of the exosome core Dis3/Rrp44 

 

The catalytic activity of the yeast exosome in both the nucleus and cytoplasm is supplied by 

the processive hydrolytic 3’-5’ exonuclease Rrp44/Dis3 (Mitchell et al. 1997, Dziembowski et 

al. 2007). The essential protein degrades both circular and linear ssRNA substrates and is stably 

associated with the other nine exosome core subunits. Rrp44/Dis3 shares common features 

with bacterial RNase II (see Fig. 1.8) such as two cold-shock domains (CSD1, CSD2), an 

exonuclease domain (RNB) and a C-terminal RNA-binding domain (S1). However, it has an 

additional N-terminal PIN domain which adds an endonucleolytic activity and attaches Rrp44 

to the core exosome (Lebreton et al. 2008, Lorentzen et al. 2008, Schaeffer et al. 2009, 

Schneider et al. 2009).  

 

 

 

Figure 1.8 Domain structure of Rrp44/Dis3 in yeast and humans vs. E. coli RNAse II (adapted 
from Lykke-Andersen et al. 2011a). Comparison of architecture of Rrp44/Dis3 yeast and 
human homologues with RNAse II from E. coli; CSD= Cold shock domain, RNB= exonuclease 
domain, S1 = RNA binding domain, PIN= endonuclease domain. 
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How both endo- and exonucleolytic activities of Rrp44 modulate exosome functions is still 

poorly understood. Both activities appear to cooperate in the degradation of substrates and 

add versatility to the complex (Chlebowski et al. 2013, Lykke-Andersen et al. 2009). It has been 

proposed that RNAs designated for degradation thread through the central channel of the 

exosome core to the active Rrp44/Dis3 site which is tethered to the bottom of the exosome via 

direct interaction of its PIN-domain with Rrp41 (Bonneau et al. 2009, Schneider et al. 2009, 

Lykke-Andersen et al. 2011a). In agreement with this, blocking the exosome channel reduces 

both exo- and endonuclease activity of Rrp44 (Wasmuth and Lima 2012).   

A recent crystal structure of the yeast Exo-10 with a trapped RNA substrate has given crucial 

insights into this channelling mechanism which is remarkably conserved from prokaryotes to 

eukaryotes (Makino et al. 2013a). The RNA binding path runs from the entrance pore at the 

cap to the Rrp44 active site and spans at least 25 unwound single-stranded nucleotides 

extending over 160 A°. All exosome subunits contribute to RNA binding via non-specific 

electrostatic interactions which allows the exosome to degrade such a wide variety of 

substrates. The mechanism of channelling RNA substrates through the exosome core for 

degradation is reminiscent of the mechanism by which polypeptides are threaded through a 

central channel to be degraded by the proteasome (Makino et al. 2013b).  

 

1.5.4 Rrp6 adds a major 3’-5’ exonuclease activity to the nuclear yeast exosome 

In yeast, Rrp44 is the only active exosome subunit in the cytoplasm, whereas in the nucleus 

Rrp6 contributes a major distributive hydrolytic 3'-5' exoribonuclease activity (Burkard and 

Butler 2000) which has also been shown to enhance the nuclear core Rrp44/Dis3 activities 

(Wasmuth and Lima 2012). Other eukaryotic Rrp6 homologues, like the human PM-Scl 100 kDa 

autoantigen, appear to be present in small quantities in the cytoplasm, however they are 

rarely associated with the cytoplasmic exosome (Lykke-Andersen et al. 2009, Chlebowski et al. 

2013).  

Whilst Rrp6 is not essential for growth, it is needed for optimal growth in yeast. Accordingly, 

Rrp6 deletion causes slow growth at 30 °C and a temperature-sensitive lethal phenotype at 

37°C (Briggs et al. 1998). The exonuclease functions in nuclear RNA 3' maturation and 

degradation pathways of all known classes of RNAs. Rrp6 is also involved in regulating levels of 

specific mRNAs suggesting key functions in gene expression and regulation (Butler and Mitchell 

2010, Januszyk et al. 2011). Cells lacking Rrp6 are defective in stable RNA processing and 

accumulate 3' extended precursors and processing intermediates (Allmang et al. 1999). 

Moreover, Rrp6 has unique functions in the final maturation of 5.8S rRNA, mRNA quality 

control near transcription sites and polyadenylation-dependent degradation of pervasive non-

coding transcripts (Butler and Mitchell 2010). 
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Nuclear RNA processing defects can be seen in core exosome mutants or alternatively in 

mutants of Rrp6 and its co-factor Rrp47 (Allmang et al. 1999, Mitchell et al. 2003a). Although 

long used as a marker for nuclear exosome activity, there is increasing evidence for distinct 

functions and substrate specificities of Rrp6, Rrp44/Dis3 and core exosome subunits (Callahan 

and Butler 2008, Kiss and Andrulis 2010), as well as for core exosome-independent functions of 

Rrp6 as shown in cell cycle progression (Graham et al. 2009). 

 

Despite its functions in RNA processing and surveillance, Rrp6 does not show stable RNA 

binding in vitro (Phillips and Butler 2003). Also, whilst purified Rrp6 degrades unstructured 

RNA efficiently, it is inhibited by stable RNA secondary structures such as stem loops in vitro 

which are known to be present in typical Rrp6 substrates e.g.the 5'ETS fragment (Liu et al. 

2006, Burkard and Butler 2000). Rrp6 is therefore thought to be dependent on co-factors like 

Rrp47, TRAMP or the Nrd1 complex for substrate recognition, substrate specificity and the 

degradation of structured substrates (Butler and Mitchell 2010, Chlebowski et al. 2013). 

 

Rrp6 architecture 

Rrp6 belongs to the RNase D family of 3’ to 5’ exoribonucleases whose members typically 

contain an exonuclease domain consisting of four conserved acidic residues DEDD, in addition 

to one or more helicase and RNase D C-terminal (HRDC) domains (Callahan and Butler 2008, 

Butler and Mitchell 2010). Rrp6 homologues (see Fig. 1.9) have an additional N-terminal 

domain, termed PMC2NT domain (Staub et al. 2004).  

 

 

 

 

Figure 1.9 Rrp6 and its eukaryotic homologues are considerably larger than their prokaryotic 
RNase D counterparts. Comparison of DEDD exonucleases and Rrp6 domain structure, 
adapted from Lykke-Andersen et al. 2011a. HRDC= Helicase and RNase D C-terminal domain; 
EXO = catalytic exonuclease domain; PMC2NT=N-terminal domain required for interaction 
with co-factor Rrp47/C1D (red circle), C-terminal domain is required for binding to the 
exosome (blue circle). 
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The PMC2NT domain is required for Rrp6 binding to its co-factor Rrp47 (C1D in humans), but 

does not affect the interaction of Rrp6 with the core exosome (Stead et al. 2007). It has been 

suggested that this N-terminal region folds over the catalytic exo-domain of Rrp6 and could 

thus affect Rrp6 activity (Phillips and Butler 2003, Midtgaard et al. 2006). In contrast to Rrp6 

deletion phenotypes, catalytically inactive Rrp6 mutants cause a loss of function and a cold-

sensitive growth phenotype (Briggs et al. 1998). The C-terminal domain of Rrp6 appears to 

mediate Rrp6 and core exosome interactions. This is based on the observation that Rrp6 

mutants with a C-terminal deletion fail to degrade rRNA intermediates that need cooperation 

between Rrp6 and Rrp44, whilst still processing the 3' ends of snoRNA and 5.8S rRNA 

precursors (Callahan and Butler 2008). The association of Rrp6 with the exosome does not 

seem to affect the catalytic activity of Rrp6, as opposed to exosome-bound Rrp44 whose 

enzymatic activity appears attenuated (Liu et al. 2006). At the very C-terminus, Rrp6 also 

contains a consensus bipartite nuclear localisation signal which if deleted mislocalises some 

Rrp6 to the cytoplasm (Briggs et al. 1998, Phillips and Butler 2003).  

A recent crystal structure has further characterised the exosome-binding region of Rrp6 within 

its C-terminus (residues 518–693) and suggests that this region of Rrp6 wraps around the 

exosome cap structure and also contacts the RNase PH ring thereby stabilising the RNA binding 

path of the core exosome (Makino et al. 2013a). More specifically, residues 532–557 of Rrp6 

form an α-helix that binds to Csl4 and Mtr3, and residues 565–619 contain an unstructured 

region followed by a small β-hairpin and α-helix that contact Mtr3, Rrp43 and approach Csl4 

docking onto a conserved surface of Exo-9. The C-terminus of Rrp6 does not contact RNA 

directly but indirectly contributes to the long RNA-binding path by stabilising the exosome cap 

protein Csl4, thus ensuring an appropriate RNA-binding conformation. This could explain 

previous observations that Rrp6 binding to the core exosome increases Exo-10 

exoribonuclease activity independently of Rrp6 catalytic activity (Wasmuth and Lima 2012, 

Makino et al. 2013a). 

 

 

1.6 RNA Exosome functions 

 

1.6.1 Stable RNA 3’ end processing and maturation 

The exosome plays a critical role in stable RNA synthesis and specifically catalyses 3' end 

trimming and maturation of rRNA, snRNAs and snoRNA precursors (Allmang et al. 1999, Briggs 

et al. 1998). In 5.8S rRNA processing the exosome is required for the trimming of the 7S pre-

rRNA to the mature 5.8S species (Allmang et al. 1999, Mitchell et al. 1997). The current 

understanding is that the core exosome exonuclease Rrp44 produces a 5.8S +30 rRNA 



23 
 

intermediate from the 7S pre-rRNA. Notably, the 30 nucleotide 3' tail matches the length 

required for an RNA substrate to thread through the exosome ring to the active Rrp44/Dis3 

site. Further 3' end trimming to generate the 6S form is carried out by Rrp6 without the core 

exosome. However, efficient trimming of 3' extended 5.8S precursors by Rrp6 requires its co-

factor Rrp47 in S. cerevisiae or its homologue C1D in humans (Butler and Mitchell 2010). 

Similarly, Rrp6 and Rrp47 are required for the final maturation of 3' extended snRNA and 

snoRNA precursors by removing the last few nucleotides which also requires the Nrd1 complex 

to recruit TRAMP and the exosome to the RNA substrates (van Hoof et al. 2000a; Grzechnik 

and Kufel 2008). 

 

1.6.2 Nuclear quality control and degradation of aberrant RNAs 

The exosome plays a crucial role in nuclear RNA surveillance and quality control by degrading 

aberrant processing intermediates such as snRNAs, snoRNAs, hypomodified tRNAs and pre-

rRNAs, as well as processing by-products such as the 5' ETS and ITS excised spacer fragments 

from the 35S pre-rRNA precursor (Allmang et al. 1999 and 2000, Schmid and Jensen 2008a). 

Yeast rrp6∆ exosome mutants accumulate polyadenylated sn-/snoRNAs and pre-rRNAs as well 

as CUTs. Due to the huge amounts of rRNA produced in the cell, surveillance of pre-rRNAs and 

pre-ribosomes is highly active in yeast and degradation of defective precursors is largely 

mediated by TRAMP (see section 1.7) and exosome complexes (Fang et al. 2005, Kos and 

Tollervey 2010). Moreover, the same surveillance pathway is used for the degradation of non-

coding pervasive transcripts by RNAPII such as CUTs (Butler and Mitchell 2010).  

In yeast, the exosome is recruited via the Nrd1-termination complex co-transcriptionally 

(Vasiljeva and Buratowski 2006) for precise 3'-end processing and quality control of snRNA and 

snoRNAs, whereas unstable transcripts like CUTs and incorrectly processed RNAs are 

immediately degraded (Allmang et al. 2000, Wyers et al. 2005, Thiebaut et al. 2006). TRAMP-

mediated polyadenylation of those substrates stimulates their degradation by Rrp6 (LaCava et 

al. 2005, Callahan and Butler 2010) which is contrary to the stabilising mRNA poly(A) tails in 

the cytoplasm. Like CUTS, many of the recently discovered non-coding RNAPII transcripts 

appear to be subject to exosome-TRAMP-mediated regulation and degradation, suggesting 

that the exosome is the guardian of the "dark matter" in the transcriptome (Belostotsky 2009, 

Vanacova and Stefl 2007). How TRAMP recognises substrates for degradation is still unclear. A 

kinetic proofreading model has been proposed which involves alternating cycles of 

polyadenylation of the 3’ end by TRAMP and trimming by the exosome to allow degradation of 

substrates that are processed too slowly. This implies that all RNAs are polyadenylated as part 

of their 3’ end processing and surveillance (Grzechnik and Kufel 2008).  



24 
 

1.6.3 Nuclear mRNA surveillance and regulation of mRNA levels  

The nuclear exosome has critical functions in the surveillance of polyadenylated RNAs (van 

Hoof et al. 2002) and degradation of improperly spliced or processed mRNAs such as splicing 

intermediates and read-through transcripts (Anderson and Wang 2009, Milligan et al. 2005, 

Torchet et al. 2002). Exosome functions in mRNA surveillance have mainly been studied with 

Rrp6 deletion mutants which accumulate incompletely processed and polyadenylated mRNAs 

(Anderson 2005). Rrp6 also slows the conversion of pre-mRNAs to export-competent RNPs by 

retaining pre-mRNAs in nuclear foci at or close to their site of transcription (Hilleren et al. 

2001). S. cerevisiae strains that lack Rrp6 fail to form nuclear foci and consequently aberrant 

transcripts exit the nucleus and reach the cytoplasm. Rrp6 also functions in the DRN pathway 

(degradation of mRNA in the nucleus) which degrades mRNAs that are exiting the nucleus too 

slowly (Butler and Mitchell 2010). Furthermore, some defects in the mRNA 3' end formation 

and polyadenylation pathways are suppressed in the absence of Rrp6 which leads to 

accumulation of aberrant mRNAs; examples are the temperature-sensitive pap1-1 allele 

(Briggs et al. 1998) which produces non-polyadenylated mRNAs and the rna14-1 mutant 

(Carneiro et al. 2008) which generates read-through transcripts that can generate functional 

mRNAs in the absence of Rrp6 (Butler and Mitchell 2010, Torchet et al. 2002).  

Rrp6 also regulates levels of a number of mRNAs in simple feedback control pathways such as 

NRD1 and NAB2 mRNA in yeast (Arigo et al. 2006b, Roth et al. 2005) and also down-regulates 

histone mRNA levels at the end of the S-phase of the cell cycle. Strikingly, mRNA levels of the 

exosome co-factor Nrd1 are regulated on two levels, firstly the exosome is involved in 

premature termination and degradation of Nrd1 mRNA when Nrd1 is in excess and secondly, 

the exosome degrades the Nrd1 antisense CUT and thus allows Nrd1 expression (Arigo et al. 

2006, Belostotsky 2009). The exosome is believed to have a general role in gene regulation by 

transcriptional attenuation, i.e. by controlling the switch between alternative transcription 

start sites (TSS) to produce either a functional mRNA or a CUT (Belostotsky 2009). Examples 

are the expression of the IMD2 gene encoding the key enzyme of GMP biosynthesis and the 

yeast URA2 gene which are regulated in response to GTP and uracil levels, respectively. It is 

still unclear how exactly Rrp6 is targeted to the substrates and how it distinguishes between 

degradation and maturation (Butler and Mitchell 2010). 

 

1.6.4 Exosome functions in gene silencing  

Silencing of genes and especially transposable elements and viral RNAs in eukaryotes is widely 

conserved and can be regulated through changes in chromatin structure, transcriptional and 

post-transcriptional repression as well as RNA stability (Belostotsky 2009). Most eukaryotes 
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utilise RNA interference (RNAi) pathways. These involve small interfering RNAs (siRNAs) 

produced from longer RNA precursors in the cytoplasm which target specific mRNAs by base-

pairing interactions and thus promote their degradation or inhibit translation. Some organisms 

like S. cerevisiae lack RNAi machinery and silencing is mainly achieved via heterochromatin- 

inducing DNA and histone modifications e.g. by histone deacetylases Sir2 (Silent information 

Regulator) and by the exosome which degrades and down-regulates RNA species like antisense 

CUTs and other ncRNAs involved in gene silencing or chromatin remodelling, as well as harmful 

RNAs (Houseley and Tollervey 2008). In S. cerevisiae, the exosome contributes to 

heterochromatic silencing by directly degrading heterochromatic RNAPII transcripts from rDNA 

and telomeres, as well as cryptic transcripts. Moreover, the exosome-TRAMP (Trf4) mediated 

degradation of rDNA-CUTs helps to prevent loss of rDNA repeats via recombination (Houseley 

et al. 2007, Vasiljeva et al. 2008b, Wolin et al. 2012).  

RNAi-independent pathways in other organisms also appear to rely on the exosome and its 

function in regulating the expression of ncRNAs and maintaining appropriate ncRNA levels a lot 

of which regulate gene silencing (Belostotsky 2009). The exosome is therefore believed to play 

a global role in regulating stability of antisense RNAs; examples are Ty1, GAL10 and PHO84 

antisense RNAs which induce silencing of their respective sense genes and are stabilised in 

rrp6∆ mutants. However in wild-type cells, gene silencing and heterochromatin formation are 

antagonised by the degradation of the respective antisense CUTs by the exosome (Belostosky 

et al. 2009). In S. pombe, the exosome and TRAMP, or more specifically Rrp6, Rrp44 and Trf4, 

are involved in the silencing of telomeric, silent mating type and centromeric regions (Askree 

et al. 2004). In plants, aberrant RNAs enter RNAi pathways if not degraded by the exosome or 

Xrn1. Thus, in organisms which are equipped with RNAi systems, RNA species which are 

stabilised in exosome mutants can compete for RNAi biogenesis and interfere with 

heterochromatic silencing. There is accumulating evidence in mammalians for exosome-

mediated ncRNA surveillance pathways with an even wider range of exosome co-factors than 

known in yeast (Wolin et al. 2012) 

 

1.6.5 Cytoplasmic exosome functions 

The yeast cytoplasmic exosome relies solely on Rrp44 for its ribonuclease activity and 

associates with four superkiller (Ski) proteins to degrade or process mRNAs that lack a stop 

codon or lack poly(A) tails following deadenylation. This also includes RNA fragments 

generated by endonucleolytic cleavage as well as viral RNAs which lack poly(A) tails (Schaeffer 

et al. 2009). The four Ski proteins, Ski2, Ski3, Ski7 and Ski8 are the only four co-factors required 

for all known cytoplasmic exosome functions (Mitchell and Tollervey 2003b). Ski2, Sk3 and two 

copies of Ski8 form a complex with a general helicase core provided by the DExH box RNA 

helicase Ski2 and protein-protein-interaction regions provided by Ski2, Ski3 and Ski8 (Synowsky 
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et al. 2009, Anderson and Parker 1998). Ski2 belongs like Mtr4 to the Ski2-like family of DExH 

helicases. The two helicases share great similarity, most notably an arch domain which is 

required for exosome-mediated RNA processing and only found in exosome-associated 

helicases (Jackson et al. 2010). The currrent understanding is that the Ski complex together 

with Ski7 recruits the exosome to its substrates. The Ski7 C-terminal region has an additional 

special function in nonstop mRNA decay. Ski7 recognizes stalled ribosomes on mRNAs and 

recruits the Ski complex along with the exosome for degradation interacting with both 

complexes via its N-terminus. The activity of the cytoplasmic exosome is not essential, which is 

in striking contrast to the vital role of the nuclear exosome. This is most likely due to 

overlapping functions of the cytoplasmic 5'-3' exonuclease Xrn1 which degrades mRNAs after 

decapping and provides the predominant pathway for mRNA degradation in the cytoplasm 

(Schaeffer et al. 2009). 

 

1.7  Exosome substrates and cofactors  

A wide variety of transcripts undergo exosome-mediated processing or decay, as has been 

proposed, most RNAs encounter the exosome at some point in their life cycle (Lykke-Andersen 

et al. 2009). With the dual role of the exosome in total RNA degradation and precise RNA 

processing in mind, the central question is how the exosome distinguishes between its 

numerous substrates for maturation or degradation. The versatility and processing mode of 

the exosome is believed to be achieved by the use of various distinct pathways and association 

with specific accessory factors which help to recognise and target its diverse substrates and 

avoid degradation of functional, mature RNAs (Butler and Mitchell 2010, Bernstein and Toth 

2012, Chlebowski et al. 2013). In the cytoplasm the Ski proteins (see section 1.6.5) are the only 

known exosome co-factors for mRNA turnover and degradation of aberrant RNAs. In contrast, 

in the nucleus, a number of exosome co-factors have been identified such as the ATP 

dependent RNA helicase Mtr4 (Bernstein et al. 2008), the polyadenylation complex TRAMP 

(LaCava et al. 2005, Vanacova et al. 2005), the Nrd1-Nab3-Sen1 termination complex (see 

section 1.2.5), as well as the small nuclear proteins Rrp47 and Mpp6 (Mitchell et al. 2003a, 

Chen et al. 2001, Butler and Mitchell 2010).  

 

1.7.1 The RNA helicase Mtr4 and TRAMP  

TRAMP is a major co-factor of the exosome in the surveillance and degradation of stable RNAs, 

mRNAs and CUTs (LaCava et al. 2005., Vanacova et al. 2005) and has been shown to stimulate 

the exonuclease activity of the exosome and Rrp6 (Callahan and Butler 2010). TRAMP is a 

trimeric complex which contains the noncanonical poly(A)-polymerase Trf4 (or Trf5), the RNA-
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binding protein Air1 (or Air2) and the RNA helicase Mtr4 linking TRAMP to the exosome 

(Houseley et al. 2006). TRAMP complexes are distinguished in TRAMP4 and TRAMP5 

complexes depending on their constituent poly(A) polymerase Trf4 or Trf5 and have distinct 

surveillance and degradation activities (Egecioglu et al. 2006, , Houseley et al. 2007, Wery et al. 

2009). The TRAMP complex is thought to mark its RNA substrates for degradation by adding 

short poly(A) tails which provide an unstructured “fuse” for rapid digestion by the 

exosome/Rrp6. This rationalises why many of the accumulated RNAs in rrp6 mutants are oligo- 

or polyadenylated (Callahan and Butler 2010, Grzechnik and Kufel 2008). TRAMP requires a 

minimum 3’ overhang of 3 nucleotides to initiate polyadenylation, however the precise 

mechanism by which TRAMP recognises its substrates is unknown. Callahan and Butler (2010) 

have shown that TRAMP enhances the rate of RNA degradation by recombinant Rrp6 around 

10-fold. Experiments with reconstituted S. cerevisiae TRAMP have also shown that TRAMP 

inherently suppresses poly(A) addition after only 3 to 4 adenosines (Jia et al. 2011) as opposed 

to polyadenylation by the conventional poly(A) polymerase Pap1, which produces much longer 

poly(A) tails that stabilise mRNAs. This length restriction is controlled by Mtr4p which acts as a 

critical regulator of TRAMP polyadenylation in response to features in the RNA (Jia et al. 2011). 

Mtr4 is also thought to have TRAMP-independent functions (Bernstein et al. 2008, Bernstein 

and Toth 2012). TRAMP and the exosome are recruited co-transcriptionally to their substrates 

by the Nrd1 complex (Vasiljeva and Buratowski 2006, Honorine et al. 2011). 

 

1.7.2 Mpp6  

Mpp6 is a small, basic nuclear RNA-binding protein that was identified in association with 

exosome preparations that lack Rrp44/Dis3 but contain Rrp6 (Chen et al. 2001). Its role in 

exosome function is still unclear. Whilst Mpp6 shares certain similarities with Rrp47 (see 

1.7.3), it shows different substrate specificities with a preference for pyrimidine-rich RNA 

(Milligan et al. 2008, Butler and Mitchell 2010). Lack of the human Mpp6 protein results in the 

accumulation of 5.8S rRNA precursors carrying a pyrimidine-rich sequence at their 3' ends 

(Schilders et al. 2005). It has been proposed that Mpp6 could target the exosome to a specific 

set of substrates and/or promote Rrp6-TRAMP interaction. Interactions between Mpp6 and 

the human Rrp6 homologue PM-Scl 100, as well as the TRAMP component hMtr4 have been 

shown by two-hybrid interaction and pull-down experiments (Schilders et al. 2007). Mpp6 is 

required for viability of cells lacking Rrp47 and/or Rrp6, thus Rrp47 and Mpp6 interactions with 

Rrp6 are not functionally redundant. Moreover, accumulation of the NEL025c model CUT is 

exacerbated when both Mpp6 and Rrp47 are depleted compared to the single deletion 

mutants (Milligan et al. 2008). This suggests an important function of these proteins in the 

regulation of CUTs which could explain the synthetic lethality of rrp47Δ mpp6Δ strains.  
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1.7.3 Rrp47 acts jointly with Rrp6 in RNA processing and surveillance pathways 

Rrp47 in yeast (also known as Lrp1 or yC1D) and its human counterpart C1D are small basic 

proteins which interact directly with the nuclear exosome exonuclease Rrp6 in yeast and PM-

Scl 100 in humans (Stead et al. 2007, Schilders et al. 2007). There is strong evidence for 

functional conservation of Rrp47/C1D (Mitchell 2010). Both, yeast Rrp47 and human C1D 

proteins have been implicated in DNA repair (Chen et al. 2004, Erdemir et al. 2002 a and b, 

Yavuzer et al. 1998) and are localised to the nucleus, consistent with roles in RNA surveillance 

and DNA repair (Kumar et al. 2002, Hieronymus et al. 2004). There is conclusive biochemical 

and genetic evidence that Rrp47 acts jointly with Rrp6 in the same final maturation step in 

stable RNA 3' processing, as well as in the surveillance of stable RNAs and degradation of non-

coding RNAs like CUTs (Mitchell et al. 2003a, Peng et al. 2003, Arigo et al. 2006, Hieronymus et 

al. 2004, Butler and Mitchell 2010). The non-additive phenotype of rrp47Δ rrp6Δ double 

mutants also confirms that they act in the same pathway. However, the nature of the 

interaction of Rrp47 with Rrp6 and the precise function of Rrp47 in these pathways are still 

poorly understood.  

Rrp47 has been shown to bind the N-terminal PMC2NT domain of Rrp6 and has no apparent 

effect on the Rrp6-exosome interaction (Mitchell et al. 2003a, Stead et al. 2007). Notably, the 

PMC2NT domain of Rrp6 is not only sufficient and necessary for Rrp47 binding, but also for 

normal Rrp47 expression in yeast since Rrp47 levels are drastically reduced in its absence 

(Stead et al. 2007). Rrp47 concomitantly binds Rrp6 and structured nucleic acids in vitro and 

can form a stable complex with structured nucleic acids and Rrp6 (Stead et al. 2007). Purified 

recombinant Rrp47 was found to bind to double-stranded (ds) DNA or structured RNA with 

comparable affinity, but showed no interaction with single-stranded (ss) nucleic acids. C1D has 

also been reported to bind to structured RNAs in vitro (Schilders et al. 2007). However, Rrp47 

and C1D proteins do not share any sequence homology to previously characterised nucleic 

acid-binding proteins. 

Based on the interactions of Rrp47 with Rrp6 and structured RNA, it has been suggested that 

Rrp47 might target Rrp6 to structured RNA substrates and facilitate the notoriously 

problematic 3’ exonucleolytic digestion of structured RNAs as Rrp6 is known to degrade 

structured RNAs poorly in vitro (Liu et al. 2006, Burkard and Butler 2000). Based on co-

purification analyses of proteins from yeast cell extracts, the nuclear exosome appears to be 

the only protein complex with which yeast Rrp47 is stably associated (Peng et al. 2003). Rrp47 

is known to play a role in Nrd1 termination and degradation of CUTs; the rrp47Δ mutation is 

synthetic lethal with the nrd1-102 mutant which is defective in RNA binding (Arigo et al. 

2006b) indicating a role for the RNA binding activity of Rrp47 in the recruitment of the 

exosome to termination regions.  
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1.8 Aims and objectives  

The aim of this study was to elucidate the role of yeast Rrp47 in exosome-mediated RNA 

processing and degradation, specifically its function as a co-factor of the exoribonuclease Rrp6, 

one of the main nuclear RNA processing and surveillance factors. The conservation of the Rrp6 

and Rrp47 interaction from yeast to humans indicates the importance of Rrp47 for its 

associated exoribonuclease and its role in RNA metabolism. However, as yet, it is not clear 

what the precise function of Rrp47 is and whether Rrp47 can function independently of Rrp6. 

Due to the lack of structural information, bioinformatics analyses of the Rrp47 protein 

sequence and site-directed mutagenesis were chosen as tools to reveal and map critical 

domains and residues within Rrp47 by creating and analysing loss of function mutants. As a co-

factor of Rrp6, it was of particular interest to map sites or domains important for Rrp6 binding 

and/or RNA binding, to confirm the model that Rrp47 could target Rrp6 to its substrates or 

contribute to substrate recognition or binding. Furthermore, we were interested in the effects 

the proteins exert on each other, specifically the basis and implications of the conditional 

expression of Rrp47 in the presence of Rrp6. The main objectives of these investigations were 

to further characterise the interaction of Rrp6 with Rrp47 with respect to requirements within 

Rrp6 for interaction, assembly of Rrp6-Rrp47, nuclear import and localisation. These studies 

led to revisiting the effects of Rrp47 in maintaining Rrp6 stability, as well as gaining insights 

into the synthetic lethality of a joint deletion of Rrp47 and the yeast exonuclease Rex1. 
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Chapter Two 

Materials and Methods 

 

2.1. Materials 
 

 

2.1.1 General reagents, buffers and solutions 

 

All reagents used were of molecular biology grade, purchased from Sigma-Aldrich (Sigma 

Aldrich Chemie GmbH, Munich, Germany) or Melford (Melford Laboratories Ltd., Ipswich, UK) 

and stored at room temperature unless stated otherwise. Solutions and their preparation are 

listed in Table 2.2 and Table 2.3. If required, solutions were sterilised by autoclaving at 121 psi 

for 20 min or by filtration through a 0.2 µM filter (Millipore, Bedford, USA) for sterilisation. 

Water was routinely Millipore-filtered and for RNA work also treated with Diethyl-

pyrocarbonate (DEPC) and sterilised. Unless stated otherwise, enzymes were purchased from 

Promega (Promega Inc., Madison, USA), NEB (New England Biolabs., Massachusetts, USA) or 

Fermentas (Fermentas international Inc., Canada) and stored at -20 °C.  

 

 

2.1.2 Bacterial strains, media and supplements 

 

General cloning was carried out using the commercial Escherichia coli strains XL1-Blue 

(Stratagene, La Jolla, CA, USA) or DH5αTM (Invitrogen, Life Technologies Corporation, Paisley, 

UK). For protein expression the E. coli strain BL21(DE3) pLysS (Stratagene) was used (Table 

2.1). All media and glassware for bacterial cultures were sterilised by autoclaving or filtration. 

Antibiotics (Table 2.4) were supplemented to media as required from 1000 x stocks (stored at -

20 °C) after autoclaving/immediately before pouring the plates. 

 

Table 2.1 Bacterial media and supplements  

 

Luria Bertani (LB) medium   1 % bacto-tryptone, 0.5 % yeast extract, 1 % NaCl 

LB agar plates 2 % w/v bacto-agar added to LB broth  

Antibiotics  

- Ampicillin (Amp) 100 µg/ml in 50 % ethanol 

- Chloramphenicol  (Cam) 25 µg/ml in 100 % ethanol 

- Kanamycin (Kan) 50 µg/ml in 50 % ethanol 
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Table 2.2 Buffers and solutions for DNA and RNA expression, extraction and analysis 

 

Buffers and solutions for DNA and RNA expression, extraction and analysis 

TfbI 30 mM KAc, 100 mM RbCl2, 10 mM CaCl2, 50 mM MnCl2,  
15 % glycerol, pH adjusted to 5.8 with 0.2 M acetic acid 

TfbII 10 mM MOPS, 75 mM CaCl2, 10 mM RbCl2, 15 % glycerol,  

pH adjusted to 6.5 with 0.5 M KOH 

TE (Tris-EDTA) buffer 10 mM Tris-HCl (pH 8.0), 1 mM EDTA (pH 8.0) 

Alkaline lysis solution I 25 mM Tris-HCl (pH 8.0), 50 mM glucose, 10 mM EDTA (pH 8.0) 

Alkaline lysis solution II 0.2 M NaOH, 1 % SDS 

Alkaline lysis solution III 3 M potassium acetate, 11.5 % acetic acid 

Phenol-Chloroform 50 %  phenol, 48 %  chloroform, 2 % isoamylalcohol  

6 x DNA loading dye  30 % glycerol , 0.25 % bromophenol blue, 0.25 % xylene cyanol  

TBE 90 mM Tris, 90 mM boric acid, 2 mM EDTA (pH 8.0) 

50 x Denhardt’s solution 0.04 % Ficoll, 0.04 % polyvinylpyrrolidone, 0.04 % BSA, -20°C 

20 x SSPE 150 mM NaCl, 9 mM sodium di-hydrogen phosphate, 1 mM 

EDTA, adjusted to pH 7.4 with NaOH 

Neutralisation buffer 1.5 M NaCl, 0.5 M Tris, pH adjusted to 7.4 with HCl 

DEPC-H2O Millipore water treated with 0.1 % diethylpyrocarbonate (DEPC)  

2 x RNA loading dye 95 % formamide, 20 mM EDTA, 0.05 % bromophenol blue,  

0.05 %  xylene cyanol  

RNA glyoxal loading 

buffer 

50 % DMSO, 1 M glyoxal, 1 x MOPS, 10 % glycerol, 20 µg/ml 

ethidium bromide, 0.025 % (w/v) bromophenol blue,  

0.025 % (w/v) xylene cyanol 

10 x MOPS 200 mM MOPS (morpholinopropanesulfonic acid) pH 7.0,  

50 mM NaAc, 10 mM EDTA 

Na-Acetate mix 10 mM Tris-HCl pH 8.0, 100 mM Na-Acetate pH  5.0,  

1 mM EDTA pH 8.0 

GTC-mix 6.1 M guanidine thiocyanate, 15 mM EDTA pH 8.0, 

 75 mM Tris-HCl pH 8.0, 3 % sarkosyl, 1.5 % β-mercaptoethanol 

Oligohybridisation buffer 6 x SSPE, 5 x Denhardt’s, 0.2 % SDS 

Stripping solution 0.1 % SSPE, 0.1 % SDS 

1 x LiAc buffer 10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0,  

100 mM Lithium acetate pH 7.5 

Cell breaking buffer 10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0, 100 mM NaCl,  

1 % SDS, 2 % Triton X-100 

10x HEPES binding buffer 

(UV-crosslinking buffer) 

200 mM HEPES pH 7.5, 1500 mM NaCl, 50 mM MgCl2,  

1 mM EDTA 

RNA/DNA binding buffer  

 

10 mM Tris-HCl (pH 8.0), 2 mM MgCl2, 0.1 mM EDTA,  

10 % (v/v) glycerol,  150 mM NaCl 
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Table 2.3 Buffers and solutions for protein expression, purification and Aanalyses 

Buffers and solutions for  

 

protein expression, purification and analyses 

H300 lysis buffer 20 mM Hepes pH  7.4, 300 mM NaCl, 10 mM imidazole pH 7.6,  

2 mM PMSF added prior to use  

H300 wash buffer As for H300 lysis buffer but with 20 mM imidazole 

H300 elution buffer As for H300 lysis buffer but with 250 mM imidazole 

H150 lysis, wash buffers As for H300 but with 150 mM NaCl instead of 300 mM 

H500 elution buffer As for H300 but with 500 mM NaCl instead of 300 mM 

GST elution buffer As for H300 lysis buffer but with 25 mM reduced glutathione 

TMN-150 lysis buffer 10 mM Tris-HCl pH 7.6, 5 mM MgCl2, 150 mM NaCl 

Alkaline lysis buffer 0.2 NaOH, 0.2 % β-mercaptoethanol 

2 x Protein loading buffer 160 mM Tris-HCl (pH 6.8), 10 % β-mercaptoethanol, 2 % SDS,  

10 % glycerol 

5 x Protein loading buffer 400 mM Tris-HCl pH 6.8, 25 % β-mercaptoethanol, 5 % SDS,  

25 % glycerol 

Tris-Glycine SDS running 

buffer (1 x TGS) 

25 mM Tris, 192 mM glycine,  

0.1 % (w/v) sodium dodecyl sulphate 

Coomassie Blue stain 40 % ethanol, 10 % acetic acid,  

0.1 % (w/v) Coomassie Brilliant Blue G250 

Destain solution 20 % ethanol, 10 % acetic acid 

Western transfer buffer 0.5 x TGS, 20 % methanol, 0.1 % SDS 

TBS (Tris-buffered saline) 10 mM Tris-HCl (pH 7.4), 150 mM NaCl 

Western blocking solution 10 % (w/v) skimmed milk powder (sigma) dissolved in TBS 

ECL solution I, 4°C 100 mM Tris-HCl pH 8.7, 2.5 mM luminol,  

400 µM p-coumaric acid  

ECL solution 2, 4°C 100 mM Tris-HCl pH 8.7, 5.4 mM H202 

RNA binding buffer  

(filter binding) 

10 mM Tris-HCl pH 8, 150 mM NaCl, 10 % glycerol,  

2 mM MgCl2, 0.1 mM EDTA 
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2.1.3 Yeast Strains, media and supplements 

 

Media for cultivation of budding yeast Saccharomyces cerevisiae (Table 2.4) were prepared 

with Millipore water and autoclaved before use. Antibiotics were filter-sterilised and added to 

the cooled medium before pouring. For agar plates 2 % bacto-agar was added to the medium 

prior to autoclaving. S. cerevisiae strains were grown in suitable media shaking at 30 °C unless 

otherwise indicated. Strains were stored on slants at 4 °C for several months or supplemented 

with 25 % glycerol for long-term storage at -80 °C.  

 

 

Table 2.4 Yeast media and supplements 

 

YPD 2 % bacto-peptone, 1 % yeast extract, 2 % glucose 

YPGal 2 % bacto-peptone, 1 % yeast extract, 2 % galactose 

Minimal Synthetic 

Defined (SD) base 

0.17 % yeast nitrogen base, 0.5 % ammonium sulphate,  

2 % glucose or galactose or raffinose, amino acids were added as 

required from 100 x stocks (see below) 

YPD, YGal, SD agar 2 % (w/v) bacto-agar added to medium 

5’-FOA Agar 

 

5’-Fluoro-orotic acid dissolved in DMSO was added to a final 

concentration of 1 mg/ml to autoclaved minimal SD base agar  

 

Amino Acids (100 x stock in H2O, -20 °C) mass per litre (g/l) 

Adenine hemisulfate, pH was neutralised with NaOH 

Arginine monohydrochloride 

Histidine monochloride 

Methionine  

Tryptophan  

Uracil 

2 

Lysine monohydrochloride 
Tyrosine, pH was neutralised with NaOH 

3 

Leucine 6 

Phenyalanine 5 

Threonine 20 

 

Antibiotics Final concentration 

Geneticin (G418) 200 µg/ml 

Hygromycin B 200 µg/ml 
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        Table 2.5 Yeast strains used and generated in this study 

 

Strain Description/Genotype Source/Reference 
 

BMA38 MATa/Matα ade2-1/ade2-1 his3-Δ200/his3-Δ200 leu2-3, 112/leu2-3, 112  
trp1-1/trp1-1 ura3-1/ura3-1 can1-100/can1-100 

Laboratory Stock, Baudin et al. 1993 

P575 Haploid of BMA 38; Mata ade2-1 his3-Δ200 leu2-3,112 trp1-1 ura3-1 can1-
100 

Laboratory Stock 

P364 Mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0, BY 4741 TAP-tagged strain 
background. 

Open Biosystems, Mortimer and Johnston 1986 

 Matα his3Δ1 leu2Δ0 lys2∆0 ura3Δ0, BY 4742 TAP-tagged strain background. Open Biosystems, Mortimer and Johnston 1986 

P158 rrp6Δ::TRP1 in P575 Laboratory Stock, Allmang et al. 1999 

P246 Mata ade2-1 his3-11 leu2-3 trp1-1 ura3-52 rrp4∆::HIS3 + pRS416[zzTEV-rrp4] Laboratory Stock, Mitchell et al. 2003 

P356 rrp47Δ::kanMX4 in P364 Euroscarf, University of Frankfurt 

P368 rrp47Δ::kanMX4 in P575 Laboratory Stock, Mitchell et al. 2003 

P369 rrp47Δ::kanMX4 in P246 + pRS416[zzTEV-rrp4] Laboratory Stock, Mitchell et al. 2003 

P414 rrp47-zz::HIS3sp, in P575 Laboratory Stock, Mitchell et al. 2003 

P439 rrp47-zz::HIS3sp rrp6Δ::TRP1 kl  in P575 Laboratory Stock, Mitchell et al. 2003 

P539 rrp6-TAP::HIS3 sp in P364 Laboratory Stock, Open Biosystems 

P540 rrp6-TAP::HIS3 sp rrp47∆::kanMX4 in P364 Laboratory Stock 

P550 rex1Δ::kanMX4 in BY 4742 Laboratory Stock , Open Biosystems 

P589 rrp6Δ::TRP1 kl in p246 + pRS415[zz-TEV-rrp4] Laboratory Stock 

P596 plasmid shuffle strain; P368 x P550; ade2 ade3 leu2 his3 trp1-1 ura3 can1-100 
rex1∆::kanMX4  rrp47∆::kanMX4  + p265 (pRS416 [RRP47 URA3 ADE3]) 

Laboratory Stock, Costello et al. 2011 

P781 rrp6∆::kanMX4 in P364 Euroscarf, University of Frankfurt 

P956 GAL10::rrp47  in P550 Laboratory Stock 

P957 GAL10::rrp47-TAP::TRP1 kl  in P575 R. Jones, Laboratory Stock 

1095 erg6∆::kanMX4 in P364 Euroscarf, University of Frankfurt 

  

3
7
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1096 GAL10::rrp47-TAP::TRP1 kl rrp6∆::kanMX4 in P575 This study 

1111 erg6Δ::kanMX4 rrp47-zz::HIS3sp in P575 This study 

1112 erg6Δ::kanMX4 rrp47-zz::HIS3sp rrp6Δ::TRP1 kl  in P575 This study 

1113 rrp47-GFP::kanMX4 in P575 This study 

1114 rrp47-GFP::HIS5sp in P575 This study 

1115 rrp6∆::TRP1 rrp47-GFP::HIS5sp in P575 This study 

1127 erg6∆::hphMX4 in P364 This study 

1160 rrp47-GFP::HIS5sp in P364 This study 

1161 rrp47-GFP::HIS5sp rrp6∆::kanMX4 in P364 This study 

1162 rrp47-GFP::HIS5sp rrp6∆::kanMX4 in P364 This study 

1163 rrp6-GFP::HIS3sp in P364  Roche Diagnostics 

1182 rrp6-GFP:::HIS3sp rrp47∆::kanMX4 in P364 This study 

1183 rrp6-GFP:::HIS3sp rrp47∆::kanMX4 in P364 This study 

1254 pep4∆::kanMX4 in P364 Euroscarf, University of Frankfurt 

1256 rrp47-zz::HIS3sp pep4∆::kanMX4  in P575 (pep4∆ in P414) This study 

1257 rrp6∆::TRP1 kl rrp47-zz::HIS3sp pep4∆::kanMX4 in P575 (pep4∆/1 in P439) This study 

1258 rrp6∆::TRP1 kl rrp47-zz::HIS3sp pep4∆::kanMX4  in P575 (pep4∆/2 in P439) This study 

1259 rrp47∆::hphMX4 rrp6∆::kanMX4 in P575 This study 

1528 rrp47∆::hphMX4  in P364 This study 

1599 rrp47∆::hphMX4  rrp6∆::kanMX4 in P364 This study 

heterologous markers -  His3 Sp, His5Sp= from S. pombe (Sp) and Trp1Kl from K. Lactis (kl),  

drug resistance cassettes - hphMX4=  resistance to hygromcin B, kanMX4= resistance to Geneticin (G418),  

fusion peptides - GST (glutathione S-transferase) , His/His(6) (polyhistidine), GFP (green flurorescent protein),  

zz-domain (double zinc-finger domain of protein A of Staphylococcus aureus), TAP – Calmodulin-bindng domain,  

Tev protease site, ∆ denotes a deletion or truncation 

3
8
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2.1.4 Plasmids used and constructed during this study 

 

Plasmid backbones for this work are listed in Table 2.6. Laboratory stocks used and plasmids 

generated for this study are detailed in Table 2.7. and Table 2.8. For recombinant protein 

expression in E. coli, mutations were introduced into the RRP47 genomic sequence in pRSETB 

(p238) and pRS314 (p262) by site-directed mutagenesis (SDM, see 2.2.10) using 

complementary oligonucleotide primers (e.g. o277/o278) carrying the desired mutations as 

listed in Tables 2.9. Point mutations were created by alanine substitutions e.g. E79A. C-

terminal truncations were generated by introducing a stop codon (X) as desired e.g. I162X.  

 

Table 2.6 Plasmid backbones used for this study  

 

  

Plasmid Description /Features Manufacturer/ 

Reference 

pRSET-B  

E. coli expression 

vector 

Allows high-level expression of proteins with an  

N-terminal polyhistidine tag (His6) from a 

bacteriophage T7 promoter in BL21(DE3) E. coli. 

Invitrogen 

pGEX-6P1  

E. coli GST fusion/ 

expression vector 

Allows expression of proteins fused to 26 kDa 

glutathione S-transferase (GST) peptide with 

PreScission protease site. 

Amersham 

pGEX-2T 

E. coli GST fusion/ 

expression vector 

Allows expression of proteins fused to 26 kDa 

glutathione S-transferase (GST) peptide with 

thrombin protease site. 

GE Healthcare 

pBS1479 For C-terminal TAP-tagging, 

Calmodulin-binding domain (CBD), TEV protease 

cleavage site, Protein A zz domain,  

(Ampr, TRP1 marker K. lactis).  

Euroscarf/ 

Puig et al. 2001. 

pTL26 For expression of genes under the inducible GAL 

promoter pGAL1-10 (Ampr, HIS3 marker). 

Euroscarf/ 

Lafontaine and 

Tollervey 1996. 

Yeast/E. coli 

shuttle vectors 

For cloning in E. coli and expression in yeast, 

selectable via specific amino acid markers and 

ampicillin resistance, T7 promoter, T3 promoter 

Stratagene / 

Sikorski and Hieter 

1989. 

pRS314 TRP1 marker, CEN6 single-copy vector  

pRS415 LEU2 marker, CEN6  single-copy vector  

pRS416 URA3 marker, CEN6  single-copy vector  

pRS425 LEU2 selectable, 2µ multi-copy vector  

pRS426 URA3 marker, 2µ  multi-copy vector  

For C-terminal  

GFP tagging 

  

p536 pFA6a-GFP.S65T-kanMX6 Longtine et al. 1998 

p537 pFA6a-GFP.S65T-HIS3MX6 Longtine et al. 1998 
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Table 2.7 Plasmids for recombinant protein expression in E. coli used and generated in this study 

 

No. Name Description / Construction  Source/ 
Reference 

p238 Rrp47-His RRP47 genomic sequence in pRSET-B Stead et al. 2007 

p245 GST-Rrp6NT KpnI-StuI deletion of RRP6 in pGEX-2T, lacks residues 212-721 of Rrp6 Stead et al. 2007 

p247 Rrp47 ∆C1 as p238 but with  N121PGX Stop; truncation, lacks C-terminus of Rrp47 (121-184)  Costello et al. 2011 

p272 Rrp47 ∆C2 as p238 but with I162X Stop, truncation, lacks basic tail of Rrp47 (162-184)  J. Stead 

p276 Rrp47 E79A as p238, but with E79A point mutation, SDM using o277/o278 J. Stead 

p313 Rrp47 Y55A as p238 but with Y55A point mutation, SDM using o296/o297 This study 

p311 Rrp47 F62A as p238 but with F62A point mutant, SDM using o298/o299 This study 

p305 Rrp47 Y86A as p238 but with Y86A point mutation, SDM using o300/o301 This study 

p302 Rrp47 ∆C3 as p238 but with G181X Stop, C-terminal truncation, SDM using o310/o311 J. Costello 

p323 Rrp47 R82A as p238 but with R82A point mutation, SDM using o349/o350 This study 

p325 Rrp47 K84A as p238 but with K84A point mutation, SDM using o351/o352 This study 

p327 Rrp47 K89A as p238 but with K89A point mutation, SDM using o353/o354 This study 

p331 Rrp47 K92A as p238 but with K92A point mutation, SDM using o355/o356 This study 

p329 Rrp47 N113A as p238 but with N113A point mutation, SDM using o357/o358 This study 

p348 Rrp47 S100X as p238 but with S100X Stop, C-terminal truncation, SDM using o373/o373 This study 

p382 Rrp47 V70X as p238 but with V70X Stop, C-terminal truncation truncation using o401/o402 This study 

p384 Rrp47 L80X as p238 but with L80X Stop, C-terminal truncation using o409/o410 This study 

p386 Rrp47 mm as p238 but with multiple mutations E79A, R82G, K84I, Y86S (mm) in p238 using o407/o408 This study 

p437 Rrp47 G181X mm as p238 but with G181X Stop and multiple mutations E79A, R82G, K84I, Y86S using o407/o408 on p302 This study 

p526 Rrp47 G181X N* as p238 but with 181X Stop and  mutations E79A, R82G, K84I, Y86S, K89M, K91I using o537/o538 on p437  This study 

p528 Rrp47 N* as p238 but with multiple point mutations E79A, R82G, K84I, Y86S, K89M, K91I using o537/o538 on p386 This study 

  

4
0
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To generate yeast expression plasmids, standard molecular cloning techniques (see 2.2) were used including site-directed mutagenesis (SDM, see 2.2.10), PCR 

amplification of genomic or plasmid sequences (see 2.2.9) and cut-and-paste methods using restriction enzymes (see 2.25).  

 

Table 2.8 Yeast plasmids generated and used for this study  
 

No Name Details/Construction Source/ 
Reference 

p44 pRS416 with pRRP4, zz-tag  vector for expression of N-terminal zz-tagged fusion proteins from an RRP4 promoter  P.Mitchell 

p236 Rrp47 wt in pRS416 RRP47  genomic wild-type allele from W303-1A P. Mitchell 

P248 Rrp47 I162X in pRS416 as p236 but with I162X Stop, lacks basic tail (162-184) of Rrp47 J. Stead 

p260 zz-Rrp6∆NT  in p44 as p263, but lacking RRP6 N-terminus (∆1-213) P. Mitchell 

p262 Rrp47 wt in pRS314 as p236, but RRP47 gene in pRS314 (SacI-XhoI)  R. Jones. 

p263 zz-Rrp6  in p44 RRP6 wild-type genomic sequence in p44 (EcoRI-HinDIII) Allmang et al. 1999 

p265 Rrp47:: ADE3 in pRS416 as p236 but with ADE3 gene (BamHI-XbaI) blunt end cloned into XhoI site of p236  R. Jones  

p274 Rrp47 ∆C2 in pRS416 as p236 but with I162X Stop, Rrp6 C-terminal  truncation, SDM  using o275/o276 J. Stead 

p285 zz-Rrp6NT1  in p44 as p263 but with P176X Stop,Rrp6  C-terminal  truncation, SDM using  o255/o256  J. Stead 

p287 zz-Rrp6NT2  in p44 as p263 but with L197X Stop,Rrp6 C-terminal truncation, SDM using  o257/o258  J. Stead 

p289 Rrp47 E79A in pRS314 as p262 but with E79A point mutation, SDM  using o277/o278 J. Stead 

p293  Rrp47 ∆C1 in pRS314 as p262 but with 121PGX Stop, lacks C-terminal region (121-184) of Rrp47, (from p274 XhoI-SacI) This study 

p295 Rrp47 ∆C2 in pRS314 as p262 but with I162X Stop, lacks basic tail (162-184) of Rrp47, (from p248 XhoI-SacI) This study 

p319 Rrp47 Y55A in pRS314 as p262 but with Y55A point mutation, SDM  using o296 /o297 This study 

p317 Rrp47 F62A in pRS314 as p262 but with F62A point mutation, SDM using o298 /o299 This study 

p315 Rrp47 Y86A in pRS314 as p262 but with Y86A point mutation, SDM using o300 /o301 This study 

p322 zz-RRP6  in pRS426 zz-rrp6 allele with RRP4 promoter (from p263 ClaI-SacI) R. Jones 
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p338 Rrp47 R82A in pRS314 as p262 but with R82A point mutation, SDM using o349 /o350 This study 

p340 Rrp47 K84A in pRS314 as p262 but with K84A point mutation, SDM using o351/o352 This study 

p342 Rrp47 K89A in pRS314 as p262 but with K89A point mutation, SDM using o353/o354 This study 

p346 Rrp47 K91A in pRS314 as p262 but with K91A point mutation, SDM using o355/o356 This study 

p344 Rrp47 N113A in pRS314 as p262 but with N113A point mutation, SDM using o357/o358 This study 

p350 Rrp47 S100X in pRS314 as p262 but with S100X Stop, C-terminal truncation using o373/o374 This study 

p352 Rrp47 F142A in pRS314 as p262 but with K89A point mutation, SDM Rrp47 point mutation F142A in p262 using o332/333 J. Costello 

p354 Rrp47 130X in pRS314 as p262 but with I130X Stop, C-terminal truncation using o324/o325 J. Costello 

p356 Rrp47 T140X in pRS314 as p262 but with T140X Stop, C-terminal truncation using o326/327 J. Costello 

p358 Rrp47 S150X in pRS314 as p262 but with S150X Stop, C-terminal truncation using o328/329 J. Costello 

p362 Rrp47 F135A in pRS314 as p262 but with F135A point mutation, SDM using o330/331 J. Costello 

p376 Rrp47 V70X in pRS314 as p262 but with V70X Stop, C-terminal truncation, SDM using o401/402 This study 

p378 Rrp47 L80X in pRS314 as p262 but with L80X Stop, C-terminal truncation, SDM using o409/o410 This study 

p380 Rrp47 mm in pRS314 as p262 but with multiple mutations E79A, R82G, K84I, Y86S (mm), SDM using o407/o408 This study 

p389 zz-rrp6.1 in p44 as p263 but with catalytically inactive rrp6.1 allele (D238N), SDM using o366/o367 P. Merothra 

p390 pRRP4/RRP6 in pRS416 as p263, but zz tag deleted, RRP6 gene with RRP4 promoter  in pRS416 P. Merothra 

p409 Rrp47 L60X in pRS314 as p262 but with L60X Stop, C-terminal truncation, SDM using o429/430 This study 

p411 Rrp47 I50X in pRS314 as p262 but with I50X Stop, C-terminal truncation, SDM using o431/0432 J. Costello 

p413 Rrp47 L40X in pRS314 as p262 but with L40X Stop, C-terminal truncation, SDM using o433/0434 J. Costello 

p417 Rrp47 NT∆2-9 in pRS314 as p262 but with N-terminal deletion of Rrp47 (∆2-9) by two-step PCR using o437 /o158 and o439 J. Costello 

p419 Rrp47 NT∆2-19 in pRS314 as p262 but with N-terminal deletion of Rrp47 (∆2-19) by 2-step PCR using o438 /o158 and o439  J. Costello 

p427 zz-RRP6  in pRS314 zz-rrp6 allele with RRP4 promoter (XhoI-SacI from p263) P. Merothra 

p429 zz-rrp6.1  in pRS314 as p427, but with catalytically inactive zz-rrp6.1 allele (XhoI-SacI from p389) P. Merothra 

p436 RRP6  in pRS416ΔKpn1  RRP6 genomic sequence cloned Xba1-EcoR1 in pRS416 ΔKpn1  (Vent polymerase, o457/o458)  R. Jones 
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p448 rrp6.1 in pRS416∆KpnI  as p436 but with catalytically inactive rrp6.1 allele (D238N point mutation), SDM using o336/o337 R. Jones 

p449 rrp6∆NT in pRS416∆Kpn1 as p436 but with rrp6∆NT allele, lacks Rrp6 N-terminal region (1-213), deletes RRP6 ORF to KpnI  R. Jones 

p452 Rrp47-N* in pRS314 as p262 but with mutations E79A,R82G, K84I, Y86S, K89M, K91I, SDM on p380 using o537/o538 R. Jones 

p494 pRRP4/zz-RRP6  in pRS424  zz-rrp6 allele with RRP4 promoter in pRS424 (XhoI-SacI from p322) M. Turner 

p495 pRRP4/zz-rrp6.1 in pRS424 as p494 but with zz-rrp6.1 catalytically inactive allele (D238N), (XhoI-SacI from p389) M. Turner 

p496 rrp6∆NT  in pRS424  as p494 but lacks Rrp6 N-terminal region (∆1-213), (XhoI-SacI from p449)  M. Turner 

p503 RRP6  in pRS426 RRP6 wild-type sequence in multi-copy vector (CalI-SpeI from p390) M. Turner 

p513 rrp6∆NT in pRS314 Rrp6 N-terminal deletion, (XhoI-SacI from p449)  M. Turner 

p530 NEL025c in pRS425 PCR of NEL025c gene using o636/o637, cloned BamHI-SalI into pRS425  This study 

p532 NEL025c in pRS426  as p532 but cloned into pRS426 This study 

p538 rrp6NT in pRS416∆KpnI Rrp6 truncation 197X Stop in p436 using o257/o258.  This study 

p540 pRRP4/zz-rrp6NT in pRS424  Rrp6 truncation 197X Stop in p494, using o257/o258 This study 

p552 RRP6 in pRS314 RRP6 genomic clone  (XhoI/SacI from p436) M. Turner 

p553 RRP6 in pRS424 RRP6 genomic clone (XhoI/SacI from p436) M. Turner 

p622 zz-RRP47 in p44 RRP47 genomic clone with N-terminal zz-tag and RRP4 promoter (using o818/o159) P. Mitchell 

p625 rrp6∆C in pRS416∆KpnI as p436 but with P523X Stop, Rrp6 C-terminal truncation, SDM using o812/o813 This study 

p627 zz-rrp6∆C in pRS416 as p263 but with P523X Stop, Rrp6 C-terminal truncation, SDM using o812/o813 This study 

p631 Rrp47 G181X mm in pRS314  as p262 but with G181X Stop and mutations E79A, R82G, K84I, Y86S, SDM on p380 using o310/o311 This study 

p632 Rrp47 G181X N*  in pRS314 as p262 but with mutations E79A, R82G, K84I,Y86S, K89M, K91I, SDM on p452 using o310/o311 This study 

p645 RRP6 in pRS416 ∆KpnI ∆CEN  RRP6 genomic clone in PRS416 with CEN sequence deleted by two-step PCR on p436 using 
o839/o840 and o841/o842 to introduce Hpa1 sites 5’ and 3’ of CEN, digested Hpa1 and religated 

This study 

p651 rrp6.1 in p645  as p645 but with cataytically inactive rrp6.1 allele (D238N) (from p448 XhoI-SpeI) This study 

p652 rrp6∆NT in p645 as p645 but with Rrp6 N-terminal deletion (∆1-213) ( from p449 XhoI-SpeI) This study 

p653 rrp6NT1 in p645 as p645 but with Rrp6 197X Stop, Rrp6 N-terminal truncation (from p538 XhoI-SpeI) This study 

p654 rrp6∆C in p645  as p645 but with Rrp6 P523X Stop, Rrp6 C-terminal  truncation (from p625 XhoI-SpeI) This study 

4
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2.1.5 Oligonucleotides 

 

Purified and dephosphorylated oligonucleotides used for this for this work were obtained from 

Operon (Eurofins MWG Operon, Ebersberg, Germany).  Oligonucleotides were diluted from 

100 µM stocks to a working concentration of 5 µM in DEPC-H2O (or 2 µM for SDM) and stored 

at -20 °C. The sequences of oligonucleotides used in this study are listed in 5’ to 3’ direction in 

Tables 2.9 SDM primers, 2.10 PCR and qPCR primers and 2.11 primers for Southerns and 

northerns.  

 

Table 2.9 Oligonucleotide primer pairs designed and used for SDM  

 

Mutation No. Sequence Plasmid 
No. 

Rrp6 P176X o255_F 
o256_R 

ttgatgatgatgaaaataactagtgtcactacccccatccttatg 
cataaggatgggggtagtgacactagttattttcatcatcatcaa 

p285 

Rrp6 L197X o257_F 
o258_R 

caagagtatagtccaggaatctagaaaattagagaggagattccc 
gggaatctcctctctaattttctagattcctggactatactcttc 

p287 

Rrp47 I162X o275_F 
o276_R 

gacagtaccgatcactagtggaaagcaagtagtaag 
cttactacttgctttccactagtgatcggtactgtc 

p248, p272, 
p274, p295 

Rrp47 E79A o277_F 
o278_R 

tgtctcctatactcggggccctgaaaagagta 
tactcttttcagggccccgagtataggagaca 

p276, p289  

Rrp47 Y55A o296_F 
o297_R 

taatcgttacgcggctgtattgagctctctgatgtttg 
caaacatcagagagctcaatacagccgcgtaacgatta 

p313, p319  

Rrp47 F62A o298_F 
o299_R 

cgtatgtattgagctctctgatggctgctaatatgaaag 
ctttcatattagcagccatcagagagctcaatacatacg 

p311, p317 

Rrp47 Y86A o300_F 
o301_R 

aaaagagtaaaatcagccatggataaggctaaac 
gtttagccttatccatggctgattttactctttt 

p305, p315 

Rrp47 G181X o310_F 
o311_R 

ataaagttggaaaaaagaaatgatatcagaagtagaggtcgacg 
cgtcgacctctacttctgatatcatttcttttttccaactttat 

p302, p631, 
p632 

Rrp47 I130X o324_F 
o325_R 

caattcgagccctcttagagctcgagcaactttcaaggga 
tcccttgaaagttgctcgagctctaagagggctcgaattg 

p354 

Rrp47 T140X o326_F 
o327_R 

tttcaagggaagcattagagctctgaaaacgatgaact 
agttcatcgttttcagagctctaatgcttcccttgaaa 

p356 

Rrp47 S150X o328_F 
o329_R 

cgatgaactggcagagtagagctcgactaagattattga 
tcaataatcttagtcgagctctactctgccagttcatcg 

p358 

Rrp47 F135A 
 

o330_F 
o331_R 

cctctataagcaggagtaatgcccaagggaagcatacga 
tcgtatgcttcccttgggcattactcctgcttatagagg 

p362 

Rrp47 F142A 
 

o332_F 
o333_R 

agggaagcatacgaaggccgagaacgatgaactggcaga 
tctgccagttcatcgttctcggccttcgtatgcttccct 

p352 

Rrp47 R82A o349_F 
o350_R 

ctcggcgaactgaaggccgtaaaatcatacatgg 
ccatgtatgattttacggccttcagttcgccgag 

p323, p338 

Rrp47 K84A o351_F 
o352_R 

ggcgaactgaaaagggtcgcatcatacatggataagg 
ccttatccatgtatgatgcgacccttttcagttcgcc 

p325, p340 

Rrp47 K89A o353_F 
o354_R 

aaatcatacatggacgccgccaaacaatacgataatag 
ctattatcgtattgtttggcggcgtccatgtatga ttt 

p327, p342 

Rrp47 K91A o355_F 
o356_R 

catggataaggccgcgcaatacgataatagg 
cctattatcgtattgcgcggccttatccatg  

p331, p346 

Rrp47 N113A o357_F 
o358_R 

agagcaagaaaaagcgaaggcgatcatttccaatgttttg 
caaaacattggaaatgatcgccttcgctttttcttgctct 

p329, p344 
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Rrp47 S100X o373_F 
o374_R 

aataggataaccaaatagatctaaaaatcgcaggcagagc 
gctctgcctgcgatttttagatctatttggttatcctatt 

p348, p350 

Rrp47 V70X o401_F  
o402_R 

gaaagtcctaggctagcaagatatgtctcc 
ggagacatatcttgctagcctaggactttc 

p376, p382 

Rrp47 mm o407_F 
o408_R 

cctatactcg gcgcactgaaaggagtaatatcatccatggataagg 
ccttatccatggatgatattactcctttcagtgcgccgagtatagg 

p380, p386, 
p437 

Rrp47 L80X o409_F 
o410_R 

cctatactcggcgaatagatctgagtaaaatcatacatgg 
ccatgtatgattttactcagatctattcgccgagtatagg 

p378, p384 

Rrp47 L60X o429_F 
o430_R 

cgcgtatgtattgagttcttagatctttgctaatatgaaagtcc 
ggactttcatattagcaaagatctaagaactcaatacatacgcg 

p409 

Rrp47 I50X o431_F 
o432_R 

gagggctaaattagaactctagaatcgttacgcgtatgta 
tacatacgcgtaacgattctagagttctaatttagccctc 

p411 

Rrp47 L40X o433_F 
o434_R 

ggatgaacagctgttgctctagactgatgagagggctaaa 
tttagccctctcatcagtctagagcaacagctgttcatcc 

p413 

Rrp47 N* o537_F 
o538_R 

agtaatatcatcgatggatatggctatacaatacgataatagg 
cctattatcgtattgtatagccatatccatcgatgatattact 

p452, p526, 
p528 

Rrp6ΔC P523X o812_F 
o813_R 

ggaagctactcccatttgagctcccgagaccaaagcagacg 
cgtctgctttggtctcgggagctcaaatgggagtacgttcc 

p625, p627, 
P654  

CEN 5' Hpa o839_F 
o840_R 

gttggcgatccccctagagtcgttaacatcttcggaaaacaaaaactat 
atagtttttgttttccgaagatgttaacgactctagggggatcgccaac p645 

CEN 3' Hpa o841_F 
o842_R 

aattatttttatagcacgtgatgttaacgacccaggtggcacttttcgg 
ccgaaaagtgccacctgggtcgttaacatcacgtgctataaaaataatt p645 

 

 

Table 2.10 Oligonucleotide PCR and qPCR primers used in this study 

 

Name No. Sequence Use/ used to 
generate 

Rrp47_F 
Rrp47_R 

o158 
o159 

cacgaattctcgtgcagt 
gttaagcttgaagggttt 

p417/p419 

Rrp47_5' Xho1_F 
Rrp47_3’ SacI_R 

o191 
o192 

aaactcgaggaactgactactga 
aaagagctcaaactttcgctgg 

Screening of 
Rrp47 mutants 

Rrp47[2-9]_F o437 ttgaaaaactcctaacgtacattactgatctaatact p417 

Rrp47[2-20]_F o438 tatttctggtttcagctccattactgatctaatact p419 

Rrp47_R o439 tacgtcgacctctactt p417, 419 

Rrp6_F 
Rrp6_R 

o457 
o458 

cagtctagacttcgagatgagcttg 
gctgggcccacctcagtattacagc 

P1161, P1599  

KANMX4/HYG_F  
 
KANMX4/HYG_R 

o506 
 
o507 

cgtacgctgcaggtcgacggatccccgggttaattaaggcgcg
cgaagcttcgtacgctg 
atcgatgaattcgagctcgttttcgacactggatggcggcgtat
catcgatgaattcgag 

P1528, P1599 

KANMX4_F 
KANMX4_R 

o508 
o509 

cgtacgctgcaggtcgac 
atcgatgaattcgagctcg 

P1528, P1599 

RRP47 GFP_F 
 
RRP47 GFP_R 

o518 
 
o519 

gattggataaagttggaaaaaagaaaggagggaagaagcgg
atccccgggttaattaa 
aaccctataagcatttttgcatttgtgctctcacatcaccgaattc
gagctcgtttaaac 

P1113, P1114, 
P1115 

NEL025c_5’BamH1 
NEL025c_3’SalI 

o636 
o637 

catggatccatatgctgtctttaagcc 
catgtcgacgaacgtaacgacttttcc 

PCR NEL025c 
p530, p532 

RRP6_F 
RRP6_R 

o650 
o651 

tggcttcagcgagatttagg 
gcggtcttatacgccagtca 

qPCR  
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SCR1_F 
SCR1_R 

o654 
o655 

gagagtccgttctgaagtgtcc 
cctaaggacccagaactaccttg 

qPCR 

ERG6 +500_F 
ERG6 -500_R 

o664 
o665 

gatcagcaaaatttaggg 
ttgaaaagcacatgccg 

P1111/P1112 

ERG6 +1 kb_F 
ERG6 -1 kb_R 

o668 
o669 

gccatcacgtgtacca 
gtaacagtacatgggga 

Screening 

RRP47_F 
RRP47_R 

o701 
o702 

ctcctatactcggcgaactgaa 
tcccttgaaagttgctcctg 

qPCR 

ALG9_F 
ALG9_R 

o744 
o745 

gtttaatccgggctggttc 
cccagtggacagatagcgtag 

qPCR 

TCF1_F 
TCF1_R 

o748 
o749 

ctgatagcgacggatccaag 
tgaccgactcatctctgaagg 

qPCR 

PEP4_F 
PEP4_R 

o782 
o783 

cttgagctcctcaattgtat 
acgatgaagttgatcgtaca 

P1256, 1257, 
1258 

  

 

Table 2.11 Oligonucleotide probes used in this study (Southerns and northerns) 

 

Name No. Sequence Use 

5.8S o221 gcgttgttcatcgatgc Northern probe for 5.8S rRNA 

ITS2-5’ o222 tgagaaggaaatgacgct Northern probe for 5.8S+30, 7S 

5.8S o236 gcgttgttcatcgatgc Northern probe for 5.8S 

ITS2 o237 tgagaaggaaatgacgct Northern probe for 5.8S+30, 7S 

U14 o238 tcactcagacatcctagg Northern probe for U14 

U18 o239 atatattatctgtctcctc Northern probe for U18 

snR13 o240 caccgttactgatttggc Northern probe for snR13 

SCR1 o242 aaggacccagaactaccttg Northern probe for SCR1 

snR44 o241 catgggattaaatatcccgg Northern probe for snR44 

U24 o270 tcagagatcttggtgataat Northern probe for U24 

snR38 o272 gagaggttacctattattacccattcag
acagggataactg 

Northern probe for snR38-3’ 

5’ETS o274 cgctgctcaccaatgg Northern probe for 5’ETS 

5S 5S ctactcggtcaggctc Northern probe for 5S 

snR52 o318 gtatcagagattgttcacgctaatg Northern probe for snR52 

pre-tRNA-Arg3 o339 agaaacaaagcactcacgat Northern probe  

18S o405 catggcttaatctttgagac Northern probe   

25S o406 ctccgcttattgatatgc Northern probe  

U3 o443 ttcggtttctcactctggggtac Northern probe  

snR30 o444 gaagcgccatctagatg Northern probe  

snR50 o494 ctgctgcaaattgctacctc Northern probe  

U6 o517 atctctgtattgtttcaaattgaccaa Northern probe  

NEL025c o809 ggcttctacagaacaagttgtatcgaa
atgattgttggcgac 

Northern probe   

P523X probe o814 cccatttgagctcccgag Southern probe 

CEN6∆ seq o843 ttcttaggacggatcgcttg Southern probe 

R82A_F o359 aactgaaggccgtaaaa t Southern probe 

K84A_F o360 aaaagggtcgcatcatac a Southern probe 

K89A_F o361 ggacgccgccaaac   Southern probe 

K91A_F o362 taaggccgcgcaatac Southern probe 

N113A_F o363 agcgaaggcgatcatt t Southern probe 
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2.1.6 Antibodies 

 

Antibodies, their working dilutions in TBS and suppliers are listed in Table 2.12. Incubation was 

typically 2 hours for primary antibodies, followed by 1 hour for secondary antibodies at room 

temperature with gentle agitation on an orbital shaker. Antibodies were aliquoted and stored 

according to manufacturers’ instructions. The abbreviations in brackets are frequently used in 

the text.  

  

 

Table 2.12  Antibodies used in this study 

 

Name Dilution 
in TBS 

Supplier/ Source 2nd 
antibody 

Primary antibodies    

Mouse anti-penta-his (α-His)  1:10.000 Qiagen RAMPO 

Rabbit anti-Glutathione-S-Transferase  
(α-GST) 

1:10.000 Sigma GARPO 

Peroxidase/anti-peroxidase (α-PAP) 1:10.000  Sigma -- 

α-PGK1 1:10.000 Invitrogen GAM 

α-GFP Mouse IgG1K 1:3.000 Roche Diagnostics GAM 

α-NRD1 rabbit polyclonal antibody 1:2.000 Gift from D. Brow GARPO 

α-Rrp47 rabbit polyclonal antibody  1:5.000 Laboratory stock GARPO 

α-Importin-α (yD-18) α-SRP1 1:500 Santa Cruz Biotch. Inc.  GAM 

α-Rrp6NT rabbit polyclonal antibody 1:5.000 Gift from D.Tollervey GARPO 

    

Secondary antibodies    

Goat Anti Rabbit Peroxidase (GARPO) 1:10.000 Sigma  

Rabbit Anti Mouse Peroxidase (RAMPO) 1:20.000 Sigma  

Goat Anti Mouse (GAM) 1:5.000 Bio-Rad  

Mouse Anti Goat (MAG) 1:5.000 Santa Cruz Biotch. Inc.  

Donkey Anti-Goat (DAG) 1:5.000 Santa Cruz Biotch. Inc.  
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Methods 

 

2.2 E. coli growth and recombinant DNA techniques 

 

2.2.1 Bacterial strains and growth 

E. coli cultures were grown in LB medium at 37 °C shaking with good aeration unless otherwise 

stated. Antibiotics to select for plasmid carrying strains were supplemented to media from 

1000 x stocks (stored at -20 °C). For long term storage, saturated cultures of transformed 

E. coli strains were supplemented to a final concentration of 17 % glycerol and stored at -80 °C. 

 

2.2.2 Generating competent cells  

The rubidium chloride method was used to generate “competent” E. coli cells to introduce 

plasmid DNA. A freshly grown colony of E. coli XL1-blue or DH5-α cells was grown in 5 ml LB 

over night at 37 ˚C. The overnight culture was diluted 100-fold into pre-warmed LB and grown 

shaking at 37 ˚C to an OD595 of 0.48. Cells were harvested by centrifugation at 3.200 x g for 

5 min at 4 ˚C and subsequently resuspended and incubated in 40 ml chilled Tfb1 buffer for 10 

min. Cells were pelleted as before, resuspended and incubated in 5 ml TfbII buffer for 15 min. 

100 µl aliquots were snap-frozen in liquid nitrogen and stored at -80°C. 

 

2.2.3 Transformation of competent E. coli 

Plasmids containing the desired DNA fragments for expression were introduced into 

competent E. coli cells by transformation. A 100 µl aliquot of competent cells was thawed on 

ice for 15 minutes and then incubated with 20 to 100 ng of plasmid DNA on ice for 30 minutes. 

Cells were then heat-shocked at 42 °C for up to 2 minutes and immediately transferred to ice 

again for 2 minutes. 800 µl LB was added to allow transformants to recover for 60 min at 37 °C 

before pelleting and plating the cells resuspended in 100 µl LB on selective medium. Plates 

were incubated over night at 37 °C. 

 

2.2.4  Isolation of plasmid DNA from E. coli – “plasmid miniprep” 

Single colonies of plasmid containing strains were grown in 5 ml LB broth with suitable 

selective antibiotic at 37 °C overnight shaking. Cells were pelleted by centrifugation at 15.000 x 

g for 1 min and the supernatant was discarded. Plasmids for SDM were purified with spin 

miniprep kits (DNEAZY miniprep kit I from omega bio-tek, Norcross, GA, USA) according to 

manufacturers’ instructions. For the screening of transformants, plasmid DNA was extracted 
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using the alkaline lysis method (Birnboim and Doly, 1979). Cell pellets from 1.5 ml saturated 

overnight culture were resuspended in 100 µl alkaline lysis solution I, then 200 µl alkaline lysis 

solution II was added, mixed by inversion and incubated for 2 min. 150 µl cold alkaline lysis 

solution III was added, immediately mixed by inversion and incubated on ice for 5 min. 

Following centrifugation at 15.000 x g for 10 min, the supernatant was transferred to a new 

tube, mixed with an equal volume of phenol/chloroform pH 7.4 and centrifuged for 5 min at 

15.000 x g. The aqueous phase was transferred to a new tube and DNA precipitated with 2 

volumes of chilled 100 % ethanol. DNA was pelleted by centrifugation at 15.000 x g for 10 min 

and the pellet was washed twice in chilled 70 % ethanol. Pellets were air-dried, resuspended in 

50 µl H2O or TE buffer and incubated with 1 µl of 1 mg/ml RNase A for 30 minutes at room 

temperature. Plasmid minipreps (10 % of prep) were routinely checked by restriction digest 

(see 2.2.5) and agarose gel electrophoresis (section 2.2.6). Plasmid DNA for laboratory stocks 

from sequenced plasmids was prepared from 15 ml cultures using the omega bio-tek miniprep 

kit II providing 100 µl stocks for storage at -80 ˚C. 

 

2.2.5  DNA restriction digests 

Restriction digests were performed according to enzyme manufacturer’s instructions, 

generally in 20 to 50 µl reaction volume using < 1 µg plasmid DNA for miniprep screening or up 

to several micrograms of plasmid DNA for preparative digests. Products were analysed by 

agarose gel electrophoresis (see 2.2.6) and purified from gels (2.2.7) for cloning as required.  

 

2.2.6  DNA agarose gel electrophoresis  

DNA was analysed by agarose gel electrophoresis. Gels were prepared by dissolving 0.5 to 2 % 

agarose in 0.5 x TBE adding 1 µl of 10 mg/ml ethidium bromide solution per 100 ml of agarose. 

Samples were prepared with 6 x DNA loading buffer. The 1 kb ladder (Fermentas) was 

routinely used as a molecular weight marker. Gels were run in 0.5 x TBE running buffer at 75 

volts in a Mini-Sub Cell GT Agarose Electrophoresis system (Bio-Rad, Munich, Germany). The 

DNA was visualised using a UV transilluminator. 

 

2.2.7  Purification of DNA from agarose gels 

Following electrophoresis, DNA fragments were excised from agarose gels under UV light and 

recovered using a gel extraction kit (omega bio-tek) according to manufacturer’s instructions. 

DNA was eluted in 30 µl of the provided elution buffer or in H2O for sequencing. 10 % of the 

purified DNA was routinely checked on a 1 % agarose gel (see Section 2.2.6.). 
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2.2.8  DNA dephosphorylation and ligation  

Digested vector DNA was dephosphorylated using shrimp alkaline phosphatase (SAP) to 

prevent re-ligation. Typically, 1 µl (1U) of SAP was added to a 50 µl restriction digest, incubated 

at 37 °C for 60 min and subsequently inactivated by heat denaturation at 80 °C for 15 min. The 

digested and dephosphorylated vector and insert DNA were run out on an agarose gel and 

purified after electrophoresis as described above in 2.2.7. The insert DNA was used for ligation 

with approximately 3 molar excess compared to the vector. 

 

Typical ligation reaction: 

~200 ng dephosphorylated vector DNA  

insert DNA  

2 µl 10 x T4 ligase buffer 

1 µl T4 DNA ligase (1 U, Promega) 

H2O to final volume of 20 µl  

 

The ligation reaction was incubated over night at 4 °C. Another 1 µl of T4 DNA ligase was 

added to the ligation mix and incubated at room temperature for a further 4 hours. 10 µl of 

the ligation reaction was transformed into competent E. coli XL-1 or DH5α cells (see 2.2.3). 

 

2.2.9  Polymerase chain reaction (PCR) 

DNA sequences for cloning and screening of mutants were routinely amplified by polymerase 

chain reaction (PCR) using Taq polymerase (GoTaq®, Promega). Primers were diluted from 

100 µM stocks to 5 µM working dilutions before use. 

 

Typical PCR reaction:     Typical thermo-cycler settings: 

 

 26.5 µl 

10 µl 

5 µl 

5 µl 

1 µl 

1 µl 

1 µl 

0.5 µl 

 

ddH20 

5 x GoTaq® buffer 

2 mM dNTP mix  

25 mMMgCl2 

forward primer  

reverse primer  

(10 ng) of template DNA 

GoTaq® polymerase (2.5 U) 

 

 

 

Initial: 

Denaturing: 

Annealing: 

Extension: 

Final: 

 

 

 

98 °C 

98 °C 

45-55 °C 

68-72 °C 

68-72 °C 

 

 

 

2 min 

30 s 

1 min 

1 min/kb 

10 min 

 

The amplified DNA products were analysed on agarose gels and if required, excised and 

purified as described in section 2.2.7 or using a PCR clean up kit (omega bio-tek) according to 

manufacturer’s instructions. 

x 30 
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2.2.10  Site-directed mutagenesis (SDM) 

In order to generate specific mutations, amino acid substitutions or protein truncations, the 

QuikchangeTM Site Directed Mutagenesis Kit (Stratagene/Agilent Technologies) was used 

according to manufacturer’s instructions (Papworth et al. 1996). SDM of Rrp47 was mainly 

performed on two plasmids containing the ORF of Rrp47, the protein expression vector p238 

and the E. coli/yeast shuttle vector p262 (see table 2.7 and table 2.8). For SDM on Rrp6, 

plasmids containing full-length Rrp6 (p436) and TAP-tagged Rrp6 (p263) were used. For each 

mutant two complementary oligonucleotide primers were designed which contained the 

desired mutations encoding amino acid substitutions or introducing a stop codon to generate 

truncations at the required position. For ease of screening candidates, restriction sites were 

introduced downstream of the new stop codons. SDM reactions were performed in 25 µl 

rather than 50 µl volume as specified by the manufacturer. 

Reaction mix: (25 µl)  

 15 µl H2O 

2.5 µl 10 x reaction buffer 

1.5 µl plasmid DNA (50-100 ng) 

2.5 µl forward primer (2 µM stock) 

2.5 µl reverse primer   (2 µM stock) 

0.5 µl dNTP mix 

0.5 µl Pfu Turbo DNA polymerase (2.5 U / µl) 

          Thermocycler parameters:  

              95 °C 30 s 

95 °C 30 s 

55 °C 1 min          x 18 

68 °C 12 min  

68 °C 10 min (final extension) 

Following amplification, the SDM reaction was incubated with 1 µl DpnI (10 U) for 1 hour at 

37 °C to digest the parental plasmid. 10 to 15 µl of the reaction mix were transformed into 

competent E. coli cells as described in section 2.2.3, except the heat-shock at 42 °C was 

reduced to 90 seconds. Transformants were screened by restriction digest or Southern blotting 

(see 2.2.11) with a complementary radio-labelled oligonucleotide probe. Positive candidates 

were confirmed by sequencing using appropriate primers (Source Bioscience, Nottingham, UK). 

 

2.2.11  Southern blotting  

In order to analyse electrophoretically separated DNA with specific probes, the DNA was 

transferred from the gel to Hybond N+-membrane (GE Healthcare Life Sciences, Bucks., UK) 

using the ‘turboblot’ procedure (Southern 1975). Gels were first soaked in 0.4 M NaOH for 15 

min with gentle agitation for denaturing of the DNA, followed by 15 min in neutralisation 

buffer and a further 15 min wash in 10 x SSPE transfer buffer. The gel was then placed on a 

Hybond-N+ membrane pre-soaked in 10 x SSPE on a stack of paper towels. A wick connected 

to the elevated transfer buffer tank was placed on top of the gel and weighted for transfer 

over night in 10 x SSPE. After transfer, the DNA was cross-linked to the membrane using 1200 

joules/cm2 UV light at a distance of 10 cm. The Southern blot was then pre-hybridised 

immediately or stored saran-wrapped at -20 °C.   
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2.2.12 Labelling of short oligonucleotides (Maniatis et al. 1982) 

For the detection of specific DNA or RNA sequences on Southern and northern blots, short 

complementary oligonucleotides were designed (5 µM working dilutions) and radio-labelled at 

their 5’ hydroxyl group with γ[32P]-ATP (Perkin Elmer, Mass., USA) using polynucleotide kinase 

(invitrogen).  

 

Typical 5’ end labelling reaction: 

14 µl DEPC-H2O 

  1 µl oligonucleotide (5 pmoles/µl) 

  2 µl Kinase buffer 

  1 µl Polynucleotide Kinase (PNK 10 U/ml)) 

  2 µl [γ -32P]ATP (~6 pmol total)  

 

Reactions were incubated at 37 °C for 30 min, heat-inactivated at 65 °C for 5 min and mixed 

with 1 ml hybridisation buffer before passing through a 0.2 µM filter into 50 ml hybridisation 

buffer. Probes were stored after heat-inactivation or dilution in hybridisation buffer at -20 °C 

for re-use. 

 

 

2.2.13 Southern/northern hybridisation with radio-labelled oligonucleotide probes 

For analyses of membranes from Southern (DNA) and northern (RNA) transfers with 5’ end 

labelled probes, the cross-linked membranes were pre-hybridised for 1 hour at 37 °C in 

hybridisation buffer with gentle agitation. The diluted 5’ end labelled oligonucleotide probe 

(see above) was then filtered into the hybridisation buffer and incubated overnight at 37 °C 

with gentle agitation. The filter was then washed three times for 1 minute in 6 x SSPE and a 

fourth wash was left gently shaking at 37 °C for 15 minutes to remove all non-specifically 

bound material. Filters were dried and saran-wrapped for visualisation by autoradiography 

using MS film (Kodak, Kodak Ltd., Herts., UK) or phopshor imaging using phosphor storage 

screens (Kodak) and a Personal Molecular Imager FX (Bio-Rad). Exposure time to screen or film 

was adjusted according to the strength of the signal, typically between 4 and 16 hours at room 

temperature. Phosphor imaging screens were bleached under white light for 20 min before 

use. Non-saturated images were analysed using the ImageJ64 software (NIH). Oligonucleotide 

probes used for Southern and northern hybridisations are listed in Table 2.11. 
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2.3 Expression of recombinant proteins in E. coli, purification and analyses 

 

 

2.3.1 Expression of recombinant proteins in E. coli 

Recombinant proteins were over-expressed in E. coli strain BL21(DE3)pLysS cells transformed 

with plasmids containing the required gene to produce the desired protein or peptide. Single 

colonies of successful transformants selected on LB agar plates supplemented with the 

appropriate antibiotics (typically LBAC) were used to inoculate 5-10 ml LB starter cultures and 

grown over night to saturation. The starter cultures were diluted 100-fold into 0.5-1 litre pre-

warmed medium and grown at 37 °C with agitation to 0.5 OD600 before induction with IPTG at 

a final concentration of 0.5 mM. Cells were grown for a further 4 hours at 37 °C and harvested 

by centrifugation at 4.200 x g for 15 min. Cell pellets were lysed or frozen for storage at -80 °C. 

 

 

2.3.2 Preparation of E. coli cell extracts 

Cell pellets from E. coli expression cultures were thawed on ice if used from frozen and 

completely resuspended in chilled H300 lysis buffer (5-10 ml / litre cell culture). Cells were 

lysed by sonication with a MSE Soniprep 150 Sonicator (MSE Ltd, London, UK) using 10 cycles 

of 15 seconds sonication at 10 µm with 45 seconds pauses on ice. Cell lysates were clarified by 

centrifugation at 15.000 x g for 30 min at 4 °C and stored at -20 °C.  

 

 

2.3.3 Two-step purification of His-tagged Rrp47 constructs from E. coli cell lysates 

Recombinant His-tagged Rrp47 protein was purified from E. coli cell lysates in a two-step 

procedure, first by immobilised metal affinity chromatography (IMAC) using nickel-nitriloacetic 

acid agarose beads (Ni-NTA agarose, QIAGEN, protocol according to manufacturers’ 

instructions) and then further purification of the protein via ion exchange chromatography 

(IEC) using SP sepharose (Amersham, Amersham Biosciences, New Jersey, USA). Disposable 

poly-prep columns (Bio-Rad) were loaded with 0.5 ml of resuspended Ni-NTA agarose and 

equilibrated with 10 ml of H300 lysis buffer. 5-10 ml clarified cell lysate from 1 litre expression 

culture was filtered (0.2 µm) onto the column and the flow-through was reloaded twice before 

washing  3 x with 10 ml H300 wash buffer. Bound protein was eluted using 1 ml H300 elution 

buffer containing 250 mM imidazole. For the subsequent IEC the eluate was diluted 10-fold 

into H300 lysis buffer to reduce the imidazole concentration and allow binding to SP sepharose 

beads. 0.25 ml of SP sepharose beads were equilibrated in H300 lysis buffer in a poly-prep 

column and the diluted eluate was passed three times through the column before washing 3 x 

in 10 ml H300 wash buffer to remove non-bound material. Bound proteins were eluted by 
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resuspending the SP sepharose beads in 0.5 ml H600 for 5 min before collecting the eluate. 

The purity and yield of protein were checked by Bradford assay (see 2.3.5), SDS-PAGE 

(described in 2.3.6) and western analysis (see 2.3.7). The purified protein could be stored at - 

80 °C for several weeks.  

 

Rrp47 truncation mutants were purified by IMAC using Ni-NTA beads as described above, but 

dialysed into H150 buffer over night for IEC, rather than diluted with H300 buffer. Truncations 

which shorten the protein to less than 120 amino acid residues and remove most of the 

positive charge could not be bound to SP sepharose and were therefore only passed over the 

SP sepharose column after dialysis and collected as flow-through with some impurities 

removed.  

 

 

2.3.4 Purification of GST-tagged recombinant proteins from E. coli cell lysates 

GST-tagged proteins were purified from E. coli lysates, essentially as described in Smith and 

Johnson 1988. 10 ml clarified lysate was mixed with 0.5 ml glutathione sepharose 4B beads (GE 

Healthcare) pre-equilibrated in H150 lysis buffer for 2 hours with agitation. Non-bound 

material was removed by successive washes in 10 ml H150 wash buffer followed by 

centrifugation at 1.500 x g for 5 min. To elute bound material, 0.5 ml H150 GST elution buffer 

containing 25 mM glutathione was added and mixed for 15 min before collecting the 

supernatant.  

 

 

2.3.5 Determination of protein concentration 

The total protein concentration of a sample was routinely determined using either direct 

absorption at 280 nm or the Bradford assay (Bradford 1976). The Bradford assay was used to 

estimate protein concentrations by comparison with a BSA standard curve generated using 

known concentrations of BSA from 0.1 to 5 µg. 1 ml of Bradford assay solution (Bio-Rad) was 

mixed with 5 µl of protein solution and left for 1 min to develop, followed by measurement of 

absorption at 595 nm in a spectrophotometer. Alternatively, the concentration of purified 

protein samples was determined by direct UV absorption at 280 nm. For purified protein the 

concentration was calculated using the protein specific extinction coefficient (E280) (Edelhoch 

1967; Pace et al. 1995) using the formula: 

 

E280 (M-1 cm-1) = (#Tryptophan residues*5500) + (#Tyrosine residues*1490) + (#Cysteine 

residues*125) 
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The E280 of recombinant Rrp47-His with 6 Tryosine residues was estimated to be 8940 M-1 cm-1. 

The protein concentration in mg/ml is then calculated as [Protein] (mg/ml) = A280/(Ε280(cuvette 

path length in cm)). 

 

 

2.3.6 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) of proteins 

Proteins were routinely resolved and analysed by SDS-PAGE (Shapiro et al. 1967) using gels 

with acrylamide (37:1) concentrations ranging from 8 to 16 %. Prior to loading, samples were 

denatured in protein loading buffer at 90 °C for 5 min. Gels were run in 1 x TGS buffer using 

the Mini-Protean® Cell electrophoresis system (Bio-Rad) at 75 volts, increasing to 125 volts 

once the dye-front reached the resolving gel. The Precision Plus Protein All Blue standard (Bio-

Rad) was routinely used as molecular weight marker (10-250 kDa). To visualise proteins after 

SDS-PAGE, gels were stained using Coomassie brilliant blue stain (Neuhoff et al. 1988) followed 

by de-staining as required or Instant Blue Coomassie colloidal stain (Expedeon, Harston, 

Cambridgeshire). Alternatively, the resolved proteins were transferred onto membranes for 

western analysis using protein-specific antibodies (2.3.7). 

 

 

2.3.7 Western blotting 

Following SDS-PAGE, proteins were transferred from gels to Hybond-C nitrocellulose 

membrane (GE Healthcare) over night at 15 volts in western transfer buffer using a HSI, TE 

Series Transphor Electrophoresis Unit (HSI, Hoefer Scientific Instruments, San Francisco, USA). 

After transfer, membranes were washed in TBS, stained in Ponceau S solution for 5 min to 

visualise the protein, photographed or labelled as required; blots were washed in TBS again 

and then blocked in 10 % skimmed milk powder in TBS for 1 hour. Membranes were washed 

again three times for 5 min in TBS before adding the primary antibody diluted in TBS at the 

required concentration for 2 hours. Membranes were then washed with TBS three times for 5 

min and if required, incubated with the appropriate secondary antibody coupled to 

horseradish peroxidase (HRP) for 1 hour. After another final three washes in TBS, equal 

volumes of ECL solutions 1 and 2 were mixed and applied to the membrane for 1 min. 

Membranes were then wrapped in saran wrap for exposure to chemiluminescent film (Kodak) 

and film processing using a Compact X4 Developer (XOgraph, XOgraph Imaging Systems Inc., 

Gloucs., UK). Alternatively, ECL membranes were analysed using a G:Box iChemi XL system 

(Syngene). Details of antibodies and concentrations used are detailed in Table 2.12.  
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2.3.8  RNA-protein filter binding assays (slot blot assay) 

RNA binding by recombinant proteins was analysed using a modified double-filter binding 

assay (Wong and Lohman 1993) using a MiniFold® II slot-blot apparatus (Schleicher & Schuell 

Inc., NH, USA). Strips of Hybond-N+ and Hybond-C were pre-soaked in 1 x RNA binding buffer.  

In a vacuum chamber, the Hybond-C membrane which retains protein and protein-bound RNA 

was placed on top of the Hybond-N+ membrane which retains all unbound RNA. Purified 

recombinant proteins were two-fold serially diluted in RNA-binding buffer generally starting at 

20 µM protein. Triplicate 20 µl aliquots were mixed with 5 µl of 32P-labelled RNA substrate (50 

cps, final concentration, 10 nM). After 15 min incubation on ice, the reaction mixtures were 

applied to the slots and vacuum-filtered through the double membranes. Slots were washed 3 

times with 0.5 ml RNA binding buffer and left to dry before dismantling the apparatus and 

analysing the filters by autoradiography or using a phosphor imager (see 2.2.13) to allow 

quantification. Exposure times for the membranes were estimated using a Geiger counter, 

typically 16 hours overnight. Screens were scanned at a resolution of 100 µm and then 

analysed using ImageQuant v2.0 software (GE Healthcare). For quantification, background was 

deducted using a suitable reference point on the membrane. Bands were measured and the 

mean of the triplicate samples was calculated. Background binding of radio-labelled substrate 

to Hybond-C was taken into account by subtracting the mean count for the RNA-only control 

from the other experimental values. Values were then plotted as the percentage of signal 

detected on Hybond-C (protein-bound RNA) with respect to the total count on both 

membranes relative to the total protein concentration of the incubation mixture.  

 
Uniformly 32P-labelled SLAU RNA (ggguuuccuucucaaacauucuguuugguagugaguaauuaaaaa 

ugaauu) was kindly provided by J. Stead generated by in vitro transcription from an EcoRI-

linearised plasmid using T7 RNA polymerase. Yeast tRNAPhe (Sigma) was dephosphorylated 

and 5’-labelled as described (2.4.8). 

 

2.3.9  UV cross-linking of RNA and protein 

Two step-purified Rrp47 protein (10 µM, app. 5 µg) was incubated in 1 x Hepes binding buffer 

with app. 5 ng dephosphorylated 5’ 32P-labelled tRNAPhe (sigma) or in vitro transcribed SLAU 

RNA (see above) in 20 µl reaction volume. Samples were irradiated with UV light on ice at 254 

nm with 400 mJ/cm2 four times at a distance of 10 cm with agitation in between. Following 

irradiation, 1 µg of RNase A was added and samples were incubated for 20 minutes at 37 ˚C. 

Reaction products, as well as irradiated protein-only controls, were supplemented with an 

equal volume of 2 x SDS loading buffer and resolved by 10 % SDS-PAGE. Gels were fixed in 

acetic acid and stained with Coomassie Blue to visualise relative levels of protein input; gels 

were then dried and RNA-protein cross-linked complexes, as well as non-bound 32P-RNA were 

analysed by autoradiography. 
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2.4  Yeast molecular biology techniques 

 

2.4.1  Yeast growth, growth curves and spot growth plates 

For growth rate analyses, pre-cultures were diluted into 50 ml pre-warmed medium to a 

starting OD600 of 0.1 or above. OD was measured every 2 h or as appropriate and plotted on a 

logarithmic scale (log10) against time. For spot growth assays, serial 10-fold dilutions in H2O 

were prepared from freshly grown cultures with adjusted/equalised starting OD600 and 4 µl of 

each dilution were spotted onto the appropriate solid medium plates and grown for 2 to 5 

days at the required temperature.  

 

2.4.2 Yeast transformation 

Yeast transformations were performed using either a colony transformation protocol for 

plasmid DNA or a high efficiency protocol for chromosomal integration of PCR fragments (Gietz 

et al. 1992). For plasmid transformations, freshly growing colonies of the recipient strain were 

harvested and washed in 1 ml sterile TE buffer. Cells were pelleted by centrifugation at 13.000 

x g for 15 s and resuspended in 1 ml LiT buffer before pelleting again. Cells were resuspended 

in 50 µl LiT buffer per transformation and mixed with 1 µl of the required plasmid DNA (~1 µg) 

and 5 µg of herring sperm carrier DNA (10 mg/ml, Roche). After 15 min at room temperature, 

100 µl of sterile-filtered, freshly made 40 % PEG-4000 in LiT buffer was added and the mixture 

was incubated at room temperature for 30 min. Then, 15 µl of DMSO was added prior to a 

heat-shock at 42 °C for 15 min. Cells were then pelleted by centrifugation for 30 s, washed 

with 1 ml 1 x TE buffer, pelleted again and resuspended in 100 µl TE buffer and plated on 

appropriate selective medium.  

 
For genomic integration of DNA fragments by homologous recombination, a high efficiency 

transformation protocol was used, harvesting cells in early log phase of growth. 50 ml cultures 

of the recipient strain were grown in appropriate medium to an OD600 of 0.5 to 1.0 and 

harvested by centrifugation at 3.200 x g. Cells were successively washed in 5 ml TE buffer and 

5 ml LiT buffer and then resuspended in 0.5 ml LiT buffer. For each transformation 100 µl cell 

suspension was used and mixed with 100 ng of DNA fragment (e.g. gel purified PCR product) 

and 5 µg of herring sperm DNA. After 15 min at room temperature, 300 µl of sterile-filtered, 

freshly made 40 % PEG-4000 in LiT buffer was added and the mixture was incubated at room 

temperature for 30 min. As before, 50 µl of DMSO was added prior to a heat-shock at 42 °C for 

15 min. Cells were then pelleted by centrifugation for 30 s, washed with 1 ml 1 x TE buffer, 

pelleted and resuspended in 100 µl TE buffer and plated on appropriate selective medium. 

Where selecting for a G418 or hygromycin resistance, cells were initially plated and grown up 

on YPD for 2 to 3 days to allow expression of the resistance gene before replica plating on YPD 

plates containing G418 or hygromycin. 
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2.4.3 Genomic DNA extraction from yeast  

Yeast genomic DNA for PCR analysis and amplification of DNA fragments was extracted using a 

method adapted from Cryer et al. 1975. 10 ml of yeast culture grown to saturation in 

appropriate medium was harvested by centrifugation at 3.200 x g for 5 min. Pellets were 

washed in 0.5 ml sterile water, transferred to a 1.5 ml microfuge tube and pelleted again 

before resuspension in 200 µl cell breaking buffer. 200 µl glass beads and 200 µl 

phenol/chloroform pH 7.4 were added and cells were vortexed for 5 min. 200 µl TE buffer was 

added, vortexed briefly and cell remnants were pelleted via centrifugation at 15.000 x g for 5 

min. The supernatant was transferred to a new 1.5 ml microfuge tube and DNA was 

precipitated with 2 volumes cold 100 % ethanol for 15 min before centrifugation at 15.000 x g 

for 15 min. The supernatant was discarded and the pellet dissolved in 400 µl TE buffer. The 

prep was then incubated with 30 µl RNase A (1 mg/ml) at 37 °C for 30 min to remove RNA and 

DNA and was re-extracted with an equal volume of phenol-chloroform. The supernatant was 

precipitated by adding 135 µl 7.5 M NH4Ac, and an equal volume of isopropanol at room 

temperature. The DNA was pelleted at 15.000 x g for 5 min, the supernatant was discarded, 

the pellet resuspended in 100 µl TE buffer. The isopropanol precipitation was repeated three 

times. The pellet was finally washed with 70 % ethanol, allowed to air-dry and resuspended in 

50 µl TE buffer. The yeast genomic DNA (1 µl) was routinely analysed on an agarose gel. 

 

 

2.4.4 RNA extraction from yeast 

Total RNA was extracted from yeast cells using an adapted protocol of the hot phenol method 

(Maniatis et al. 1982, Tollervey and Mattaj 1987). 50 ml of yeast culture was grown in 

appropriate medium to 0.5 OD600. Cells were harvested by centrifugation at 3.200 x g for 10 

min at 4 °C. Pellets were either frozen for storage at -80 °C or lysed immediately by vortexing 

for 5 minutes with 1 ml sterile DEPC-treated glass beads, 0.5 ml of GTC mix and 0.5 ml of 

phenol pH 4.5. Another 1.5 ml of GTC mix and 1.5 ml of phenol were added, briefly vortexed, 

heated to 65 °C for 10 min and cooled on ice. 2 ml chloroform and 1 ml NaAc mix were added 

and mixed. Following centrifugation at 3.200 x g for 5 min at 4 °C, the aqueous phase was 

transferred to a new tube and re-extracted with an equal volume of phenol/chloroform at 

3.200 x g for 5 min at 4 °C. The RNA contained in the aqueous phase was precipitated with 2 

volumes of 100 % ethanol at -80 °C for 1 to 16 hours and then pelleted by centrifugation at 

3.200 x g for 30 min at 4 °C. Pellets were washed twice in 70 % ethanol, air-dried for 10 

minutes, resuspended in 100 µl DEPC-treated H2O and stored at -80 °C.  
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RNA concentration was determined by diluting 5 µl of the sample into 800 µl DEPC-treated 

water and measuring the absorbance at 260 nm and 280 nm. RNA concentration was 

calculated assuming a specific absorbance of 1 A260 / 40 µg. An A260/A280 ratio of > 1.7 was 

taken as being of efficient purity. Values for A260 were multiplied with a conversion factor of 

6.4 to obtain the concentration of the RNA in µg/µl and the RNA was routinely analysed on 

denaturing polyacrylamide gels (5 µg) or on agarose gels (10 µg RNA samples) depending on 

size.  

 

 

2.4.5  RNA polyacrylamide and agarose gel electrophoresis  

Depending on type and size of the RNA of interest, total RNA was resolved on 6 to 15 % 

denaturing acrylamide gels to detect smaller RNA species and on 0.8 - 2 % agarose gels to 

visualise larger RNAs like mRNAs or RNAs > 15 S. Polyacrylamide gel solutions were prepared 

with 50 % (w/v) urea and 19:1 acrylamide: bisacrylamide in 0.5 x TBE. Samples were routinely 

prepared containing 5 µg of RNA in DEPC-H2O with 2 x RNA loading buffer in 8 µl final sample 

volume and denatured at 65 °C for 10 min prior to loading. Gels were run over night at 90 to 

160 V in 0.5 x TBE and then stained in 100 ml 0.5 x TBE containing 2 µl of a 10 mg/ml ethidium 

bromide solution for 10 min to visualise the main RNA species on a UV transilluminator before 

proceeding to northern blot transfer as required. Agarose gels were prepared using 1 to 2 % 

agarose in 1 x MOPS buffer. Samples were prepared containing 10 µg of RNA in DEPC-H2O in 3 

x RNA glyoxal loading buffer containing ethidium bromide and run in 1 x MOPS buffer at 30 V 

for 6 hours.  

 

 

2.4.6  Transfer of RNA onto nitrocellulose filters (northern blotting) 

For further analyses, RNA separated by gel electrophoresis was transferred onto nitrocellulose 

filters (Hybond-N+, GE Healthcare) by northern blotting (Alwine et al. 1977). For 

polyacrylamide gels, transfer was performed overnight at 15 volts in 0.5 x TBE buffer. RNA 

agarose gels were soaked in 75 mM NaOH for 15 min followed by 15 minutes in neutralisation 

buffer and 15 minutes in 2 x SSPE with gentle agitation. RNA from agarose gels was then 

transferred using the turboblot method as described in Southern blotting (section 2.2.11) but 

using 2 x SSPE for the transfer. After transfer, membranes were cross-linked using 1200 joules 

UV light at a distance of ~ 10 cm and pre-hybridised as described for Southerns or saran-

wrapped and stored at -20 C.  
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2.4.7  Radio-labelling probes and northern hybridisation 

For northern analyses, labelling reactions and hybridisations were performed as described for 

Southerns in 2.2.11 and 2.2.12. For successive hybridisations of the same membrane with 

different probes, blots were stripped by incubating in 100 ml boiling stripping solution for 30 

min before adding the new probe. Oligonucleotide probes used for northern hybridisation to 

detect specific RNA species are listed in 5’ to 3’ direction in Table 2.11.  

 

 

2.4.8  Dephosphorylating and radiolabelling tRNA 

For use in filter binding assays, 50 µg tRNA-Phe (sigma, 1mg/ml) was treated with 10 U Alkaline 

Phosphatase (AP, Roche) for 1 hour at 50 °C. RNA was recovered by phenol-chloroform 

extraction and ethanol precipitation. The RNA was fractionated on a 10 % polyacrylamide urea 

gel, excised and extracted by soaking the gel slice over night shaking in extraction buffer (10 

mM Tris pH 7.6, 1 mM EDTA pH 8, 100 mM NaCl, 0.1 % SDS). After centrifugation at 3.200 x g 

the aqueous phase was transferred to a new tube, RNA extracted with phenol-chloroform and 

precipitated with 100 % ethanol. The pellet was taken up in 50 µl DEPC H2O and RNA (5 µg/ml) 

was diluted 4-fold to 5 pmol/µl for 5’-end labelling as described in 2.4.7. After a final phenol-

chloroform extraction, 1 µl glycogen was added for ethanol precipitation over night at -20 °C. 

The RNA was pelleted at 15.000 x g, air dried and diluted as required for filter binding to 

approximately 50 cps. 

 

 

2.4.9  Real-Time quantitative PCR (RT-qPCR) 

For quantitative analyses of steady state mRNA levels, yeast strains were grown in 50 ml 

appropriate medium to 0.5 OD600. Total RNA was extracted using the hot-phenol GTC method 

as described (2.4.4) and 100 µg RNA was purified using the RNeasy miniprep kit (Qiagen) 

following the manufacturer’s RNA clean up protocol. To test the integrity of the RNA, 5 µg 

samples were resolved through a 1 % agarose gel, stained with ethidium bromide and 

visualised by UV. 10 µg RNA were treated with 1 µl DNase I (Roche) in a 20 µl reaction volume 

for 30 minutes at 25 °C, followed by heat inactivation of the enzyme for 10 minutes at 65 °C. 

Reverse transcription (cDNA synthesis) was performed in triplicate on 2 µg DNase I treated 

RNA (cDNA synthesis kit, Bioline Reagents Ltd, UK) using random hexamer primers, according 

to the manufacturer’s protocol. qPCR primers were designed with a Tm of 60 °C using the qPCR 

settings of the Primer3Plus server (http://www.bioinformatics.nl/cgi-bin/primer3plus, 

Untergasser et al. 2007) and checked for specificity by BLAST search (Lopez et al. 2003). Primer 

specificity was further confirmed in a test PCR run with the appropriate cDNAs.  

http://www.bioinformatics.nl/cgi-bin/primer3plus
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The best of at least three primer pairs designed and analysed per gene was used for RT-qPCR. 

cDNAs were diluted 10-fold in RNase free H2O and 4 µl were added to 6 µl of a master-mix 

containing the appropriate primers and 5 µl 2 x SensiMixTM SYBR kit (Bioline Ltd., UK) according 

to manufacturer’s instructions. RT-qPCR was performed in triplicate 10 µl reaction mixtures in 

a Corbett Rotor-Gene cycler (RotorGeneTM, Qiagen) using a ‘3-Step with Melt’ protocol: initial 

polymerase activation for 10 minutes at 95 °C followed by 45 cycles of 15 s denaturation at 95 

°C, 15 s annealing at 60 °C and 25 s extension at 72 °C. RT-PCR reactions were analysed with 

the associated RotorGene 6000 software v1.7 using comparative quantitation analysis 

(comparative CT method, Schmittgen et al. 2008) to normalise RRP47 and RRP6 mRNA levels 

against the reference gene SCR1 and two validated qPCR reference genes TCF1/ALG1 (Teste et 

al. 2009). Data from at least three replicate experiments were pooled and displayed in bar 

graphs with error bars representing the positive and negative ranges of the standard error of 

the means from at least three independent experiments. 

 

 

2.5  Expression and purification of recombinant yeast proteins 

 

2.5.1 Preparation of yeast cell lysates  

Native yeast cell extracts were prepared as described in Mitchell et al. 1996. Strains were 

grown in appropriate media to an OD600 1-2 and harvested by centrifugation at 4.200 x g for 5 

min. Cell pellets were either washed in TMN-150 and stored at -80 °C or resuspended in an 

equal volume TMN-150 and PMSF was added to 1 mM. An equal volume of sterile glass beads 

(Sigma) was added and the cells were lysed by vortexing 10 times for 30 s with 1 min pauses 

on ice. Lysates were then clarified by centrifugation at 15.000 x g for 30 min and transferred to 

a new tube. Lysates were either used immediately or were mixed with glycerol to a final 

glycerol concentration of 8.6 % and stored for several weeks at -80 °C. 

 

For quantitative western analyses, cell lysates were prepared under strictly denaturing 

conditions using an alkaline lysis protocol (Motley et al. 2012). 10 OD freshly grown cells were 

harvested (10 ml at 1 OD600) by centrifugation at 3.200 x g for 5 min. Pellets were either frozen 

for storage at -80 ˚C or immediately lysed on ice by complete resuspension in 500 µl ice-cold 

NaOH/SDS lysis buffer and incubation for 10 minutes on ice. Protein was then precipitated by 

adding 40 % trichloracetic acid (TCA, final 10 %) and incubating for 10 minutes on ice followed 

by centrifugation at 15.000 x g for 5 min. Pellets were then resuspended in 10 µl Tris pH 9.4 

and 90 µl of 2 x SDS loading buffer were added. Samples were denatured for 5 min at 90 ˚C 

and centrifuged for 1 min at 15.000 x g before loading 10 µl (equivalent to 1 OD harvested 

sample) on an SDS-PAGE gel.  



62 
 

For quantification, generally three independent experiments were performed with triplicate 

samples resolved by SDS-PAGE and analysed by western blotting using an appropriate 

antibody and an internal control (Pgk1). For ECL imaging a G:Box iChemi XL system (Syngene) 

was used and bands were quantified using the associated GeneTools software. Values were 

adjusted against the internal control Pgk1 and relative values were plotted onto a graph using 

Microsoft Excel. Error bars were added to represent the positive and negative ranges of the 

standard errors of the means from at least two independent experiments. 

 

 

2.5.2  Purification of TAP-tagged proteins expressed in yeast 

Native yeast cell extracts from strains expressing TAP-tagged proteins were prepared as 

described in section 2.5.1. The purification protocol was adapted from Rigaut et al. 1999 and 

Puig et al. 2001. 1 ml of lysate was mixed with 50 µl of IgG Sepharose (GE Healthcare) 

equilibrated in TMN-150 buffer and bound for 2 hours at 4 °C with gentle agitation. Flow 

through was collected and the beads were washed extensively in TMN-150 buffer. Bound 

Proteins were eluted with 50 µl 0.5 M acetic acid and eluates were subsequently lyophilised. 

 

 

2.5.3  Co-immunoprecipitation of TAP-tagged yeast proteins using IgG-Sepharose 

Yeast strains expressing TAP-tagged protein were grown to 1 OD600 in 500 ml appropriate 

medium and harvested by centrifugation at 3.200 x g for 10 minutes at 4 ˚C. Yeast native cell 

lysates were prepared as described (2.5.1) with 2 x 500 µl extractions using lysis buffer 

supplemented with the serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF, final 

concentration 1 mM) and the protein concentration was then determined through direct UV 

absorption at A280. Extracts from a 500 ml culture were pooled and loaded onto a polyprep 

column (Bio-Rad) charged with 250 µl IgG Sepharose beads equilibrated with TMN-150 lysis 

buffer and bound for 2 hours rotating at 4 ˚C. The flow-through fraction was collected and 

columns were washed 5 times with 10 ml lysis buffer. Bound proteins were eluted twice for 5 

minutes with 500 µl 0.5 M acetic acid. Samples were lyophilised, resuspended in 1 ml H2O and 

lyophilised again to remove traces of acetic acid. Samples were finally taken up in 90 µl H2O 

and 10 µl 2 x SDS-PAGE loading buffer, denatured for 5 minutes at 90 ˚C and analysed by 

western blotting using appropriate antibodies (see Table 2.12). 
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2.5.4  Pull-down of TAP-tagged yeast proteins on recombinant Rrp47-His  

Polyhistidine-tagged recombinant Rrp47 was purified on Ni-NTA agarose beads (20-50 µl), as 

described (first step in section 2.3.3). The beads were then washed successively in 10 ml of 

H300 wash buffer, followed by 10 ml H300 wash buffer with 0.1 % NP-40, and 10 ml TMN-150 

binding buffer. Beads were then mixed with 0.5 ml lysate from a yeast strain expressing the 

TAP-tagged protein of interest and 0.5 ml TMN-150 binding buffer and left to bind for 2 hours 

at 4 °C with gentle agitation. After binding the supernatant was removed and the beads were 

washed five times with 1 ml TMN-150 buffer containing 0.1 % NP-40 for 10 minutes. As 

required, beads were incubated with DNase I, micrococcal nuclease or RNase A (Sigma) in lysis 

buffer appropriately supplemented with CaCl2 (50 µl incubation volume) and then rewashed. 

Bound proteins were then eluted by adding 50 µl H300 elution buffer containing 250 mM 

imidazole and incubating the mixtures on ice for 15 minutes. Eluates were mixed with 50 µl 2 x 

SDS loading buffer and heat-denatured at 90 °C. Samples were resolved by SDS-PAGE followed 

by western blotting using the peroxidase/antiperoxidase (PAP) antibody (Sigma). 

 

2.5.5  Translation shut-off assay / protein stability assay 

Protein stability was assessed in translation shut-off experiments using the protein synthesis 

inhibitor cycloheximide (Sigma). Strains were grown in appropriate medium to an OD600 of 0.5 

in 300 ml cultures at 30 ˚C. 10 OD cells (20 ml) were harvested by centrifugation at 3.200 x g 

for 5 min marking the zero time point and cycloheximide was added to 100 µg/ml final 

concentration from a 10 mg/ml stock in 50 % ethanol. 10 OD cells were then harvested at 10 

minute intervals after cycloheximide addition over a period of 80 minutes. Samples were 

prepared by alkaline lysis (2.5.1), 1 OD was resolved by SDS-PAGE and analysed by western 

blotting with a protein- or tag-specific antibody, followed by anti-Pgk1 as internal control. 

 

2.5.6  Localisation of GFP-tagged proteins by fluorescence microscopy 

Strains expressing GFP-tagged proteins or the wild-type control (P364) were grown on minimal 

medium to an OD600 below 1.0. A 1 ml aliquot was collected and DNA was stained with 1 µl 

DAPI (4’-6-diamidino-2-phenylindole, 1 µg/ml) in H2O to reveal localisation of the cell nuclei. 5 

µl of the cell suspension was then mounted on a microscopy slide and coverslipped for live-

imaging using a Delta Vision RT microscope running SoftworxTM version 3.2.2 (Applied Precision 

Instruments, Washington, USA) with a 100 x Olympus objective. Stacks of micrographs of each 

strain were taken with identical exposure settings using standard FITC and DAPI channels. 

Images were cropped, and stack projections and merged images were created using the 

ImageJ MacBiophotonics software package (Rasband, W.S., ImageJ, National Institutes of 

Health, Bethesda, Maryland, USA (http://rsb.info.nih.gov/ij/).  

http://rsb.info.nih.gov/ij/
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2.5.7 Glycerol gradient ultracentrifugation 

In order to investigate the size distribution of proteins, yeast cell lysates expressing TAP-tagged 

proteins were subjected to glycerol gradient ultracentrifugation. 12 ml 10-30 % glycerol 

gradients were prepared in TMN-150 buffer by under-laying, using a Beckman Model 385 

Gradient former (Beckman-Coulter, Beckman-Coulter (UK), Ltd, Bucks, UK). A 30 % glycerol 

/TMN-150 solution in the outer chamber was mixed with a 10 % glycerol/TMN-150 solution in 

the outlet chamber and poured into 12 ml SW41 Beckman ultracentrifugation tubes (Beckman-

Coulter). Depending on protein concentration, 100 to 500 µl native cell lysate were loaded 

onto the top of the gradient. Ultracentrifugation was performed using a SW41 rotor at 100.000 

x g for 36 hours at 4 °C using a Beckman-Optimer™, LE-80X, Ultracentrifuge (Beckman-

Coulter). Fractions of 650 µl were taken successively from the top of the gradient and 50 µl 

aliquots were analysed on SDS-PAGE gels by Coomassie staining and by western blotting using 

an appropriate antibody. In addition to the cell lysates, a solution of 1 mg/ml of proteins of 

known sedimentation coefficients were similarly fractionated and resolved in parallel by SDS-

PAGE to be used as size markers after visualisation by Coomassie staining. The molecular 

weight and S-values of each of the protein standards are shown in Table 2.13 below.  

 

 

Table 2.13 Molecular weight markers used in glycerol gradient ultracentrifugation 

Protein Name S-value MW 

(kDa) 

Elution 

volume (ml) 

Reference 

Catalase (bovine liver) 11.3S 250 9 Rowe and Khan 1972 

BSA 4.3S 66 4 Rowe and Khan 1972 

Ovalbumin  3.4S 43 3 Svedberg 1934 

 

 

2.5.8 Bioinformatics 

Yeast gene and protein sequences were obtained from the Saccharomyces Genome Database 

(SGD) (http://yeastgenome.org). Rrp47 homologous protein sequences were acquired using 

BLAST searches (Altschul et al. 1990, Lopez et al. 2003) and alignments obtained using 

ClustalW (Larkin et al. 2007) and displayed using Jalview (Waterhouse et al. 2009). Protein 

structural prediction information was obtained from the web server Phyre2 (Kelley and 

Sternberg 2009). Prediction of RNA and DNA binding was obtained from the BindN web server 

(Wang and Brown 2006). The Pfam database was used to identify protein families and shared 

domains of proteins (Finn et al. 2008). The Mfold web server (Zuker 2003) was used to predict 

folding of RNA sequences, e.g. the SLAU RNA used in filter binding assays. 

http://yeastgenome.org/
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Chapter 3  

Mutational analysis of the exosome co-factor Rrp47 

 

3.1 Introduction  

The small nuclear protein Rrp47, and its human homologue C1D, have been implied in various 

nuclear processes such as RNA surveillance, RNA processing and degradation (Mitchell et al. 

2003a, Peng et al. 2003), DNA repair (Erdemir et al. 2002a and b, Hieronymus et al. 2004) and 

telomere maintenance (Askree et al. 2004). Rrp47 co-purifies with the nuclear exosome 

exonuclease Rrp6 and associated yeast exosome complexes (Mitchell et al. 2003a), and like 

other exosome factors, Rrp47 is conserved throughout eukaryotes. Its human counterpart C1D 

also functions with the human Rrp6 homologue PM/Scl-100 in stable RNA processing pathways 

and both proteins have RNA- and DNA-binding activity (Stead et al. 2007, Schilders et al. 2007).  

Rrp47 interacts directly with the Rrp6 N-terminal PMC2NT domain (residues 13-102) (Stead et 

al. 2007). The Rrp47-Rrp6 interaction is independent of RNA and is very stable (in salt 

concentrations up to at least 2 M NaCl). Rrp47 is not essential for cell viability, but strains 

lacking Rrp47 display similar, albeit less pronounced defects in growth and RNA processing to 

strains lacking Rrp6 (Mitchell et al. 2003a, Peng et al. 2003). Loss of Rrp47 in yeast strains leads 

to an accumulation of 3’ extended RNA processing intermediates which in the presence of 

Rrp47 are processed to mature RNAs or degraded and therefore not detectable. These include 

5.8S rRNA, snoRNAs and snRNAs, 5’ ETS and ITS2 (5’ external and internal transcribed spacers) 

and cryptic unstable transcripts CUTs (Wyers et al. 2005, Arigo et al. 2006, Milligan et al. 2008). 

However, rrp47Δ has a weaker, less pronounced effect on stable RNA processing compared to 

rrp6Δ and also a more moderate non-conditional growth defect compared to the temperature 

sensitive-lethal phenotype of rrp6Δ strains (Mitchell et al. 2003). This indicates that Rrp6 

function for optimal growth is independent of Rrp47. Mutants with deletions of both RRP6 and 

RRP47 appear like an rrp6∆ mutant, they do not display any additive or synergistic effects. This 

indicates related or cooperative functions for the two proteins in the same pathway.  

Due to its association with the RNA exonuclease Rrp6, a related function for Rrp47 in RNA 

processing or degradation is assumed. Notably, binding of nucleic acids occurs concomitantly 

with Rrp6 (Stead et al. 2007). However, Rrp47 has no similarity to known ribonucleases and 

purified recombinant Rrp47 did not show exoribonuclease activity when tested on a variety of 

RNA substrates in vitro (J. Stead, unpublished data). Yet, recombinant Rrp47 has been shown 

to bind both RNA and DNA in vitro with preference for double-stranded or structured nucleic 

acids like tRNA or polyA-polyU stem loops over linear substrates e.g. polyA. Also, dsRNA is a 
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competitor to DNA binding by Rrp47 (Stead et al. 2007), indicating that binding is mutually 

exclusive, most likely because RNA and DNA compete for the same site. However, unlike 

characterised RNA binding proteins, Rrp47 has no known RNA binding or recognition motif and 

no obvious RNA sequence specificity (Butler and Mitchell 2010).  

Initially, Rrp47 was thought to aid the digestion of structured RNA by increasing the retention 

time of Rrp6 on its substrates or by positioning the RNA 3’ end close to the catalytic centre of 

Rrp6 (Mitchell et al. 2003, Butler and Mitchell 2010). However, in vitro RNA degradation assays 

have failed to show stimulation of Rrp6 activity by Rrp47 (unpublished data/communication, J. 

Stead and C. Lima). The data so far suggest a function for Rrp47 as a co-factor of Rrp6 in the 

recognition or recruitment of structured substrates, sensing RNA secondary structures rather 

than sequence motifs. This is supported by the observation that Rrp6 has been shown to 

degrade structured RNA substrates poorly in vitro (Liu et al. 2006), yet the majority of known 

Rrp6 substrates in vivo are in fact structured RNAs. The 3’ ends of 5.8S rRNA and snoRNA 

precursors which accumulate in rrp6∆ and rrp47∆ mutants are predicted to form imperfect 

double-stranded structures (Villa et al. 2000, Yeh et al. 1990). Thus the RNA binding activity of 

Rrp47 could be of key importance to its function as an exosome co-factor.  

 

The aim of this study was to elucidate Rrp47 function and investigate which parts of the 

protein are relevant for its interactions with Rrp6 and RNA. Loss of function mutants created 

by in vitro mutagenesis were used to map critical residues and domains within Rrp47. Due to 

the lack of a Rrp47 3D-structure, bioinformatics analyses were employed to gain information 

and predictions about conservation, secondary structure and RNA binding to identify 

potentially critical target residues and domains for mutagenesis. Subsequently, the chosen 

targets were subjected to site-directed mutagenesis creating single amino acid exchanges, 

multiple point mutations and C-terminal truncations. The Rrp47 mutants were expressed as 

recombinant proteins in E. coli and assessed for Rrp6 and RNA binding in vitro, as well as 

expressed in yeast and tested for growth, rrp47∆ complementation and RNA processing 

defects in vivo. The here described mutational analysis of Rrp47 has revealed and mapped 

regions required for Rrp6 interaction, stable expression, normal growth, RNA binding and 

snoRNA processing. This study reveals that the N-terminal Sas10 domain of Rrp47 is critical for 

fitness and Rrp6 binding, whereas the C-terminal region specifically contributes to snoRNA 

processing. RNA binding assays and UV cross-linking of recombinant protein to RNA showed 

that both C- and N-terminus of Rrp47 contribute to RNA binding in vitro. Results of this study 

are published in Costello et al. 2011 and led to an ongoing cooperation with Elena Conti’s 

laboratory (MPI, Tuebingen, Germany) where recently a 3D structure of the Rrp47∆C-Rrp6NT 

complex was obtained. This complex is currently being further characterised by mutagenesis 

for interactions of Rrp47 and Rrp6 with other proteins.   
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3.2 Results 

 

3.2.1 Bioinformatics analyses reveal functional residues and domains within Rrp47 

Lacking any structural information on Rrp47, sequence analysis and bioinformatics tools were 

used to reveal potentially critical features and regions of interest within Rrp47 to choose as 

targets for mutagenesis. Information about conservation, homologies, predicted protein 

folding patterns and potential RNA binding sites was collected and analysed. In parallel, efforts 

to crystallise the protein in order to obtain an atomic resolution structure in cooperation with 

other labs were underway, as well as a project by another lab member to generate a library of 

Rrp47 mutants by error-prone PCR. 

 

Rrp47 has a C-terminus rich in basic residues  

Rrp47 is a small, 21 kDa protein consisting of 184 amino acids. A striking feature is the high 

number of basic amino acid residues within Rrp47, and particularly the highly basic C-terminus 

(basic residues are highlighted red in Figure 3.5A) which results in a fairly high isoelectric point 

of 10.39. Half of the 24 C-terminal residues (160-184) are basic amino acids, including 10 

lysines (K) and 2 arginines (R). Such highly basic K/R clusters can be found in a number of 

proteins from bacteria and viruses involved in RNA recognition such as the tat and rev gene 

expression regulators (Chen and Varani 2005) or proteins involved in DNA/RNA binding as well 

as nucleolar localisation as documented for ribosomal proteins L22 and L7 (Houmani et al. 

2009, Hemmerich et al. 1997). 

 

The N-terminus of Rrp47 is well conserved across species 

By directly comparing the amino acid sequences of Rrp47 homologues across different species 

(Fig.3.1), conserved features and domains within the protein can be identified. To generate 

sequence alignments, Rrp47 homologous sequences were identified by BLAST searches of the 

EMBL non-redundant database using WU-BLAST2 (http://dove.embl-heidelberg.de/Blast2/) 

(Altschul et al. 1990, Lopez et al. 2003). Alignments of the obtained sequences were created 

using ClustalW2 (http://www.ebi.ac.uk/clustalw/index.html) (Larkin et al. 2007) and displayed 

with Jalview (Waterhouse et al. 2009, Clamp et al. 2004). The sequence alignments indicate 

consensus, quality and conservation of amino acid residues across the various species. The 

comparison shows that the N-terminus of Rrp47, residues 1-120, contains the majority of 

conserved residues, many of them basic or charged.  

 

 

http://dove.embl-heidelberg.de/Blast2/
http://www.ebi.ac.uk/
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In contrast, the C-terminus (121-184) shows less conservation or consensus across species 

apart from the basic cluster with a high content of lysine (K) and arginine (R) residues which is 

a conserved feature across species. The region 130-144 contains a number of residues 

conserved in yeast species but not in other eukaryotes.  

 

 

Table 3.1 shows an overview of the best conserved residues within the alignment (score >5) 

and alternative amino acids in those positions in other species. Notably, most of the conserved 

residues in the very N-terminus (1-80) have hydrophobic side chains (A, I, L, M, F, Y, V), 

whereas most other highly conserved residues between 82-113 are basic (K, R). 

 

 

Table 3.1 Highly conserved Rrp47 residues (score >5). 
Residues of Rrp47 with their position in S. cerevisiae and amino acids in one letter code found 
in this position in other species in the alignment (in Fig. 3.1). I=Isoleucine, L=Leucine, V= valine, 
M=methionine, F=phenylalanine, A=alanine, E=glutamic acid, K=lysine, T=threonine, 
Y=tyrosine, R=arginine, N= asparagine.  

 

 

 

Figure 3.1 The N-terminus of Rrp47 is highly conserved across species (See next page). 
Multiple sequence alignment of Rrp47 homologues across a range of species using BLAST to 
search for homologous sequences (Altschul et al. 1990), aligning sequences with ClustalW 
(Larkin et al. 2007) and using Jalview (Lopez et al. 2003, Waterhouse et al. 2009) for display. 
The S. cerevisiae sequence is at the bottom of the alignment with rankings (0 lowest to 9 
highest) for conservation, quality and consensus of the residues given below. Conserved amino 
acids are depicted using the default ClustalW/Jalview colour scheme: 
 

 
 

W, L, V, I, M, F, A, C 

K, R 

T, S, N, Q 

C 

D, E 

G 
H, Y 
P 



71 
 

 

Figure 3.1  The N-terminus of Rrp47 is highly conserved across species. 

7
1
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Rrp47 belongs to the Sas10/C1D family 

A search for Rrp47 homologues in the Pfam database (protein families database of alignments 

and hidden markov models; http://pfam.sanger.ac.uk/) revealed that Rrp47 belongs to the 

Sas10/C1D family with Pfam reference accession number PF04000 (Finn et al. 2008, Mitchell 

2010). The so-called Sas10 domain is common to all members of this family, which include 

Rrp47, its human homologue C1D, as well as the Sas10/Utp3 and Lcp5 proteins required for 

18S rRNA synthesis (Kamakaka et al. 1998, Wiederkehr et al. 1998, Dragon et al. 2002), and the 

mammalian protein neuroguidin, an eukaryotic initiation factor (eIF4E) binding protein (Jung et 

al. 2006). The Sas10 domain shares around 22 % average identity among its members 

according to Pfam. The function of this domain is as yet unknown, however, all members in 

this family are known to associate with RNA; the nature of this interaction, whether direct or 

indirect, has yet to be established (Fig. 3.2 Sas10 / C1D family). The Sas10 domain spans 

residues 10-89 in yeast Rrp47 and 17-96 in its human counterpart C1D. Notably, C1D which has 

also been shown to bind RNA and DNA is a much smaller protein with a basic C-terminus but 

lacking the extended C-terminal tail present in Rrp47.  

 

 

 

Figure 3.2 Rrp47 belongs to the Sas10/C1D family of proteins. 
Schematic of proteins of the Sas10/C1D family and location of the Sas10/C1D homology 
domain in blue with amino acid residues within the protein given. The domain corresponds to 
Rrp47 region 10-89 and is also found in Sas10 (residues 219-298 in S. cerevisiae and 229-310 in 
humans), the human Rrp47 homologue C1D (residues 17-96), Lcp5 (residues 7-108), and 
neuroguidin (7-98). 
  

http://pfam.sanger.ac.uk/
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The Rrp47 N-terminus is predicted alpha-helical, the C-terminus unstructured 

Due to the lack of structural data, the Rrp47 primary amino acid sequence was entered into 

the 3D fold recognition server Phyre2 (http://www.sbg.bio.ic.ac.uk/phyre2; Kelley and 

Sternberg 2009). Although no good fit to resoled structures could be obtained, the programme 

provided a consensus a secondary structure prediction (Fig. 3.3). Around half (52 %) of the 

Rrp47 sequence is predicted to be disordered including the C-terminus (residues 120-184) with 

very little structural organisation. For disordered regions a secondary structure cannot be 

meaningfully predicted. Accordingly, the confidence for short potential helices in the C-

terminus is very low. However, the prediction proposes with high confidence (cut-off value of 

7) four putative alpha-helices spanning residues 4-29, 43-67, 75-91 and 108-117 at the N-

terminus of Rrp47. In context, the Sas10/C1D homology domain corresponds to Rrp47 region 

10-89 and contains the predicted helices 1, 2 and most of helix 3. Interestingly, in the first helix 

hydrophobic and hydrophilic residues alternate every 3 to 4 residues (L18, L21, K22, I25, K27, 

L28, K30). This amphipathic helix organisation has been implicated in functions including DNA 

binding and protein dimerisation (Patel and Sen 1998).  

 

Figure 3.3 Rrp47 contains four putative α-helices at its N-terminus. 
Rrp47 secondary structure prediction using the web server Phyre2 (Kelley and Sternberg 
2009). The top row gives the S. cerevisiae amino acid sequence in one letter code and 
sequence position annotated above. The predicted secondary structure and confidence of 
prediction is indicated colour-coded (see key below) below. Likewise, the disorder prediction 
and confidence is annotated at the very bottom. A key is given for confidence, disorder and 
structure annotations. 
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Rrp47 is predicted to bind RNA and DNA  

Similarly, to address RNA and DNA binding, the amino acid sequence of Rrp47 was entered 

into the BindN web-based tool for efficient prediction of DNA and RNA binding sites in amino 

acid sequences (Wang and Brown 2006, http://bioinfo.ggc.org/cgi-bin/bindn/bindn.pl). BindN 

predicts 54 residues that potentially interact with RNA at a user-defined specificity of 90 %. 

Notably, three clusters of RNA binding sites could be identified spanning residues 80-112, 131-

141 and 162-184 of Rrp47 with high confidence (6 or higher out of 10) which could indicate 

RNA binding domains. 14 of the predicted binding sites lie within the Sas10 homology domain, 

most of them in the 80-112 cluster. Very similar results are obtained for DNA binding with an 

additional small cluster at the N-terminus of Rrp47 spanning residues 10-16.  

 

Sequence:  MEDIEKIKPYVRSFSKALDELKPEIEKLTSKSLDEQLLLLSDERAKLELINRYAYVLSSL 

Prediction:-------+---+--------------+--++------------+---------------- 

Confidence:998972863146242168568265746416726767998847366163574247278249 

 

Sequence:  MFANMKVLGVKDMSPILGELKRVKSYMDKAKQYDNRITKSNEKSQAEQEKAKNIISNVLD 

Prediction:--------------------++-+++--+-+-+--+-++++-+++-++-+-+-------- 

Confidence:858593777836736966376837683283726117468771878367266628724862 

 

Sequence:  GNKNQFEPSISRSNFQGKHTKFENDELAESTTTKIIDSTDHIRKASSKKSKRLDKVGKKK 

Prediction:--+-------++++-+++--+------------+--------++-+++++++-++--+++ 

Confidence:416113232569672868117554867633111746422433881999989937911899 

 

Sequence:  GGKK 

Prediction:++++ 

Confidence:8898 

 

Figure 3.4 Rrp47 is predicted to bind RNA. 
The Rrp47 amino acid sequence was entered into the BindN server for RNA binding prediction 
(Wang and Brown 2006) with a user-defined specificity of 90 %. Predicted RNA binding 
residues are highlighted in pink labelled with a “+”, non-binding residues in green labelled with 
“-“. The confidence for the prediction is given below from level 0 (lowest) to level 9 (highest).  

 

 

Conclusions from bioinformatics analyses for Rrp47 mutagenesis  

The combined results of the bioinformatics analyses are presented in Fig. 3.5. In summary, the 

Rrp47 sequence analyses indicate that the predicted α-helical N-terminus of Rrp47 (Sas10 

domain, residues 10-89) is highly conserved from yeast to humans. The N-terminal domain is 

arranged into four putative α-helices, three of which are part of the Sas10 domain. The 

additional fourth helix predicted from position 108-116 and a number of highly conserved 

residues between helix 3 and helix 4 are indicative of a putative RNA binding domain.  

 

http://bioinfo.ggc.org/cgi-bin/bindn/bindn.pl
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The C-terminal portion of Rrp47 is less structured and poorly conserved among Rrp47 

homologues, except for the cluster of basic amino acids (K/R) at the very end of the C-terminus 

(162-182). This is a conserved feature between species potentially mediating nucleic acid 

binding, recognition or nucleolar localisation.  

 

A 

 

 

B 

 

 

Figure 3.5 Bioinformatics summary and schematic of Rrp47 architecture. 
(A) Annotated Rrp47 amino acid sequence in one-letter code. Basic residues are displayed bold 
in red and predicted RNA binding residues (BindN) are marked with an asterisk above letters; 
putative α-helices are marked as boxes around the letter sequence with the numbering of the 
amino acid residues below. (B) Rrp47 architecture based on amino acid sequence analysis 
using bioinformatics tools. The mainly α-helical N-terminus is well-conserved and includes the 
Sas10/C1D homology domain (residues 10 to 89). The four predicted α-helices are depicted in 
blue (α1 –α4). The C-terminus is poorly conserved except for a stretch of basic residues, the 
K/R rich region (depicted as a red box). 
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3.2.2  Generating and analysing Rrp47 mutants 

 

Alanine substitution of highly conserved residues within the N-terminus of Rrp47 

Amino acids that occur with a high consensus at the same position throughout a range of 

species are most likely to be critical for protein function and characteristics. Such highly 

conserved residues (E79, N113), as well as bulky aromatic residues (Y55, F62 and Y86), and 

charged basic amino acids (R82, K84, K89, K91) were selected as targets for mutagenesis (Fig. 

3.6). The chosen residues lie within the Sas10 domain and putative RNA binding region within 

helices 2, 3 and 4. Point mutations were created by converting the chosen residues into 

alanine residues by base exchanges using site-directed mutagenesis (SDM, Papworth et al. 

1996). Where possible, a restriction site was introduced for screening, or alternatively, 

mutants were screened by Southern blotting with mutant-specific oligonucleotide probes. All 

mutations were confirmed by sequence analysis. SDM was performed in parallel on an 

Escherichia coli protein expression vector (based on pRSETb) containing a His(6)-tagged RRP47 

wild-type allele (p238) and in a yeast/E. coli shuttle vector (based on pRS314) containing the 

wild-type RRP47 sequence (p262).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6 Mutations of highly conserved residues of Rrp47 (see next page). 
Highly conserved residues within Rrp47 were identified by sequence alignment of Rrp47 
homologues using BLAST, ClustalW and Jalview. The Saccharomyces cerevisiae sequence is 
framed by a black box and mutated residues are annotated with arrows pointing to their 
position in the S. cerevisiae sequence sequence alignment of the conserved Rrp47 N-terminus 
below (120 residues of S. cerevisiae Rrp47) and a schematic of the position of the putative α-
helices (above).   
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Overview of assays to analyse Rrp47 mutants  

A number of in vitro and in vivo assays were performed to analyse the Rrp47 mutants carrying 

single amino acid substitutions for the loss of critical functions as summarised in Table 3.2. 

Recombinant His-tagged proteins of Rrp47 mutants were expressed in E. coli and analysed for 

binding to the Rrp6 N-terminal domain (GST-Rrp6NT), as well as binding to RNA in vitro in filter 

binding and UV cross-linking assays. Yeast strains with mutant rrp47 alleles were assayed in 

vivo for complementation of the rrp47Δ slow growth phenotype, as well as for functionality in 

a synthetic lethal (sl) rex1Δ rrp47Δ double mutant. The mutated strains were also assessed for 

Rrp47-specific RNA processing phenotypes, specifically accumulation of 3’ extended processing 

intermediates of 5.8S rRNA and various sn/snoRNAs, as well as accumulation of the 5’ external 

transcribed spacer (5’ETS). The table shows the phenotypes of RRP47 wild-type (column 1) vs. 

rrp47∆ deletion mutant (column 2) and point mutants analysed in this study (column 3 Rrp47* 

point mutants are Y55A, F62A, E79A, R82A, K84A, Y86A, K89A, K91A, N113A). 

 

Analyses of Rrp47 point mutants  
 

Rrp47 rrp47∆ Rrp47*mutants 

Recombinant Protein assays 
- Pull-down by GST-Rrp6NT 
- UV crosslinking to RNA 
- Filter binding to RNA 

 
+ 
+ 
+ 

 
n.a. 
n.a. 
n.a. 

 
+ 
+ 
+ 

 RRP47 rrp47Δ rrp47* 

Growth /Complementation assays 
- complementation of rrp47Δ  
- slow growth phenotype 
- complementation of sl 
  rex1Δ rrp47Δ double mutant 

 
+ 
- 
 
+ 

 
- 
+ 
 
- 

 
+ 
- 
 
+ 
 

RNA processing phenotypes 
- 5.8S +30 rRNA / ITS2 
- 5’ETS 
- snR38 and other snoRNAs 

 
- 
- 
- 

 
+ 
+ 
+ 

 
- 
- 
- 

 

Table 3.2  Overview of analyses of Rrp47 mutants.  
Recombinant His-tagged proteins of Rrp47 point mutants were expressed in E. coli and 
analysed for binding to Rrp6 (GST-Rrp6NT) and binding to RNA in vitro. Yeast strains with 
mutant rrp47 alleles were assayed for complementation of the rrp47Δ slow growth phenotype, 
as well as complementation of synthetic lethality (sl) of rex1Δ rrp47∆ (Peng et al. 2003) in vivo. 
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3.2.3 Rrp47 point mutants behave like wild-type protein with respect to expression 

levels, Rrp6 and RNA binding 

 

All Rrp47 point mutants can be expressed and purified similarly to wild-type protein 

Using standard procedures, the recombinant His-tagged Rrp47 proteins Y55A, F62A, E79A, 

R82A, K84A, Y86A, K89A, K91A, N113A were expressed in E. coli cells and purified using a two-

step protocol established for Rrp47 in the lab (Stead et al. 2007). A typical purification is shown 

in Figure 3.7 (A and B). Competent E. coli BL21(DE3)pLysS cells were transformed with protein 

expression plasmids containing the Rrp47-His wild-type and mutant sequences. Typically 0.5 to 

1 litre LBA expression cultures were grown up at 37 ˚C to an OD600 of 0.5 and protein 

expression was induced by adding IPTG. Cultures were grown for another 4 hours before 

harvesting by centrifugation. Cells were lysed by sonication and extracts clarified by 

centrifugation. The obtained lysates (A, B lane 1) were then sequentially purified over NiNTA 

metal-affinity chromatography followed by ion exchange chromatography using SP Sepharose. 

Samples were resolved by 12.5 % SDS PAGE and stained with Coomassie Blue (A) or analysed 

by western blotting (B) using an anti-His antibody. The eluate fractions (A, lane 4 and lanes 8-

10 and B, lanes 3 and 5) show the enriched purified protein with a size of 25 kilo Dalton. Up to 

5 mg protein could be obtained from 1 litre E. coli expression culture.  

 

All Rrp47 point mutants carrying an amino acid substitution were expressed and purified with 

the same method. Proteins eluted from NiNTA (E1) and further purified SP Sepharose eluates 

(E2) are shown in Figure 3.7 (C). The mutant proteins showed no significant differences in 

protein yield or stability compared to the wild-type protein and could be stored for several 

weeks at -20 ˚C. The purified proteins were used in pull-down-assays to determine binding to 

Rrp6 (see Fig. 3.8) and in filter binding and UV cross-linking assays to analyse RNA binding (see 

Fig. 3.9 and 3.10). 
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   A       B            

 

 

   C 

           
 

 

 

 

Figure 3.7 Two-step purification of recombinant Rrp47 mutant proteins.  
Two-step purification of recombinant His-tagged Rrp47 (p238) over NiNTA and SP sepharose. 
Equivalent amounts (0.1 %) of lysate, supernatant (SN) and wash fractions, as well as 0.1 % of 
eluate fractions E1 (app. 5 µg) and E2 (app. 2.5 µg) were resolved through 12.5 % SDS-PAGE 
and (A) stained with Coomassie-Blue or (B) analysed by western blotting using a His antibody. 
(C) Coomassie stain of NiNTA (E1) and SP Sepharose eluates (E2) of purified mutated Rrp47 
proteins resolved by 12.5 % SDS-PAGE as indicated (Y55 p313, F62A p311, Y86A p305, R82A 
p323, K84A p325, K89A p327, K91A p331, N113A p329).  
 
  

Rrp47-His 

Rrp47-His 
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The single point mutations introduced into Rrp47 do not affect binding to Rrp6 

 

Binding of Rrp47 to its co-factor Rrp6 has previously been assessed in the lab in a pull-down 

assay using as bait a GST-tagged Rrp6 protein truncated to its N-terminal domain required for 

Rrp47 interaction (Stead et al. 2007). The same assay was used to determine whether the 

single point mutations introduced into Rrp47 affect Rrp6 binding. GST-Rrp6NT and the GST-tag 

control were expressed in E. coli cells and lysates were mixed with glutathione sepharose resin 

to allow binding of GST-Rrp6NT and GST, respectively. After several washes, equal amounts of 

purified Rrp47 proteins were incubated with the glutathione sepharose beads pre-charged 

with GST or Rrp6-GST fusion protein. After binding for 1 hour at 4 ˚C, the beads were washed 

extensively with lysis buffer and bound proteins were boiled off the resin with SDS loading 

buffer. GST and Rrp6-GST eluates were resolved side by side through 12.5 % SDS-PAGE and 

analysed by western blotting with antibodies directed against the His or the GST tag (Fig. 3.8 

upper and lower panel). All Rrp47 point mutants tested were captured by GST-Rrp6NT (even 

numbered lanes) with similar efficiency. No Rrp47 protein could be detected in the GST-

control (odd numbered lanes). In conclusion, Rrp6 binding is not clearly affected by any of the 

single point mutations in Rrp47 tested in this pull-down assay.  

 

 

Figure 3.8 All Rrp47 mutant proteins bind GST-Rrp6NT in vitro. 
Western analysis of pull-down-assays of Rrp47 mutants on GST-Rrp6NT (p245). Purified 
recombinant Rrp47 proteins (50 µg each) were incubated for 1 hour with equal amounts of 
GST-Rrp6NT (even numbered lanes) or GST-control (odd numbered lanes) bound to 
glutathione sepharose beads. Beads were eluted with SDS loading buffer, resolved through 
12.5 % SDS PAGE and analysed by western blotting with antibodies against the His(6)-tag to 
detect bound Rrp47 proteins (upper panel) and anti-GST to detect the input of the bait 
proteins GST-Rrp6NT and the GST control (lower panel).  

  

     1       2       3      4       5       6       7       8          9     10    11     12     13     14     15    16     17     18     
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Mutant Rrp47 proteins bind structured RNA in a concentration-dependent manner 

Next, binding of recombinant Rrp47 proteins to RNA was assessed with a modified double 

filter binding assay as previously described (Stead et al. 2007). Structured RNA substrates were 

used that have shown to be bound by Rrp47 in a concentration-dependent manner, i.e. yeast 

tRNA-Phe and a model RNA based on the ITS2 rRNA fragment which accumulates in rrp47∆ 

mutants. The model RNA generated by in vitro transcription contains a 5’ stem loop linked to a 

3’ A/U rich sequence (SLAU RNA) and was kindly provided by J. Stead. A schematic of the filter 

binding assay is shown (Fig. 3.9). The purified Rrp47 proteins were dialysed overnight into RNA 

binding buffer. Triplicates of serially diluted protein were mixed with P32-labelled RNA and 

incubated for 15 minutes on ice (A). Samples were then loaded onto a slot blot apparatus 

fitted with layered membranes to capture either protein/protein-bound RNA (C filter, top) or 

non-bound RNA (N filter, bottom) upon vacuum filtration (B). After washing and drying, the 

blots were arranged side by side and analysed using either X-ray film or phosphor imaging.  

A typical slot blot for Rrp47 wild-type protein is shown with triplicate samples (Fig. 3.9 C). The 

amount of non-bound RNA retained on the N-filter visibly decreases with rising Rrp47 protein 

concentration, and the signal of Rrp47-bound RNA appears on the C-blot. The bands were 

quantified as percentage of ligand bound to protein and the average values of the triplicates 

were plotted against the protein concentration to obtain an RNA binding saturation curve as 

shown here for Rrp47 and tRNA-Phe (D). Rrp47 binds RNA in a concentration-dependent 

manner with a dissociation constant (Kd) of approximately 1 µM indicating the protein 

concentration where 50 % of the ligand is bound. Above a protein concentration of 1 µM RNA 

binding increases sharply and at 20 µM effectively all of the RNA substrate is bound to protein.  

 

The mutated Rrp47 proteins were tested for RNA binding using the slot blot assay and the 

primary data is shown in Figure 3.10 for mutated aromatic residues (A) and for mutants with 

substitutions in basic residues and the highly conserved N113 site (B). None of the point 

mutants showed a significant loss or decrease in RNA binding compared to the wild type 

protein (A, top and B, first panel). The mutants K89A and N113A (B, bottom row) appeared to 

start binding RNA at a slightly higher protein concentration (see C filters). However, the signal 

was overall weaker and subsequent quantification of the bands and the resulting binding 

curves (Fig. 3.10 C) showed a very similar profile for the K89A and N113A mutants and the wild 

type protein or the R82A mutant (Fig. 3.10). In conclusion, the Rrp47 point mutants tested 

here do not show any significant effects on RNA binding in these in vitro assays.  
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Figure 3.9 The double filter binding assay to analyse RNA binding by Rrp47 mutants. 
(A) Triplicate samples of serially diluted, purified protein were incubated with 5’ 32P-labelled 
RNA substrate for 15 minutes on ice. (B) Pre-soaked Hybond C (on top) and Hybond N (below) 
membranes were assembled into the slot blot apparatus (photo: Schleicher). Samples were 
loaded in rows of triplicates and adsorbed by applying vacuum. After washing and drying, the 
C- and N-filter were exposed side by side to a phosphor imager screen or X-ray film (C). Bands 
were quantified using ImageQuant software and the average of the triplicate data was plotted 
as the percentage of bound ligand against the protein concentration. (D) RNA binding 
saturation curve for wild-type Rrp47 and SLAU-RNA (see text). 
 

  

   Protein + 32P- RNA 

Top        Hybond C –  protein + bound RNA 

Bottom  Hybond N – unbound RNA 

 A 

 

 

B 

 C D 
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Figure 3.10 Rrp47 point mutants bind RNA with similar efficiency to wild-type. 
Slot blot assays (A+B). Shown are the C- and N- slot blot filters of RNA binding assays side by side 
for the Rrp47 point mutants as indicated above the panels binding to SLAU RNA (Stead et al. 
2007). The C filter on the left shows triplicate samples of the RNA bound to protein with 
increasing protein concentration from 0 to 20 µM, whereas the N-filter on the right shows the 
unbound RNA. (C) Filter binding saturation curves obtained from the average of the triplicate 
primary slot blot data for the K89A, N113A and R82A mutants and wild-type Rrp47 showing 
percentage of ligand bound. 
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3.2.4 Rrp47 point mutants complement rrp47Δ growth and RNA processing defects 

Strains lacking Rrp47 have a moderate slow growth phenotype at 25 ˚C, 30 ˚C and 37 ˚C 

(Mitchell et al. 2003a). To assess the effect of the mutations on growth, plasmids carrying the 

mutated Rrp47 sequences and a selectable marker were transformed into an rrp47Δ strain 

(rrp47Δ::kanMX4 allele in BMA38). Serial dilutions of freshly grown cultures with equal starting 

cell densities were spotted onto plates containing selective medium and left to grow for 3 days 

at 30 ˚C. Plates were generally done in duplicate and two independent transformants of each 

mutant strain were tested as shown for Y55A, F62A and Y86A. The rrp47∆ strain transformed 

with the vector control showed the characteristic slow growth defect (Fig. 3.11 A top row) 

which could be alleviated with the introduction of a wild type gene (pRS314::RRP47, second 

row). Strains transformed with the mutated alleles also showed complementation of the slow 

growth phenotype seen in the vector control and recovered growth similar to the wild-type 

gene as seen on the spot growth plates. Thus, none of the mutations notably affected growth. 

 

 

 

        

 
 
Figure 3.11 Rrp47 point mutants complement slow growth of rrp47Δ. 
Spot growth assays. Rrp47 point mutants, a vector control (pRS314) and an RRP47 wild type 
allele (p262) were transformed into an rrp47Δ strain (P368). Serial 10-fold dilutions of freshly 
grown cultures with equal starting OD 600 were spotted onto plates containing selective 
medium (SD-trp) and grown up for three days at 30 °C. The rrp47∆ vector control is shown at 
the top of each plate with strains complemented with RRP47 wild type and mutant alleles 
below as indicated to the right (Y55 p319, F62A p317, Y86A p315, R82A p338, K84A p340, K89A 
p342, K91A p346, N113A p344). 
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Rrp47 point mutants do not show typical RNA processing defects of rrp47∆ strains 

Another characteristic of strains lacking Rrp47 or Rrp6 are defects in RNA processing which 

affect early steps in pre-rRNA processing, as well as the final 3’ maturation of 5.8S rRNA and 

snoRNAs. As a result, these mutants accumulate degradation and processing intermediates 

(Mitchell et al. 1996 and Mitchell et al. 2003). One of these accumulated species is the 5’ 

external transcribed spacer (5’ETS) which is generated by the initial cleavage of the 35S 

precursor rRNA (Fig 3.12 A) and which is rapidly degraded by the exosome and Rrp6-Rrp47 in 

wild-type cells. 35S pre-rRNA processing requires a complex series of processing reactions 

involving numerous endo- and exonucleases. Exosome mutants and rrp47∆ and rrp6∆ strains 

show distinct defects in the synthesis of 5.8 S rRNA. The core exosome is involved in processing 

a 3’ extended 7S precursor containing roughly 140 nucleotides of the internal transcribed 

spacer (ITS2), whereas rrp47∆ and rrp6∆ strains accumulate a 30 nucleotide 3’ extended 

species (5.8S+30, 188 nt). Similarly, rrp47∆ and rrp6∆ mutants accumulate box C/D snoRNAs 

with distinct 3’ extensions of 3 nucleotides indicating a defect in the final 3’ processing step. 

Again, core exosome mutants accumulate longer 3’ extended species of snoRNAs with 3’ 

extensions of variable length.  

 

A 

 
 

Figure 3.12 A Schematic of Rrp47 function in pre-rRNA processing. 
Schematic of 35S pre-rRNA processing with focus on the first processing step which produces 
the 5’ETS fragment that is degraded by the exosome and Rrp6-Rrp47 and the 3’ processing of 
5.8S rRNA which involves processing of a 3’ extended 7S precursor by the exosome to produce 
a 5.8S+30 RNA species which is then processed by Rrp6-Rrp47. rRNA coding regions are 
denoted as bars, transcribed spacer regions as lines, scissors represent cleavages. The position 
of northern probes to detect these RNA species is marked with red bars.  
 

 



87 
 

To assess RNA processing defects of Rrp47 point mutants, total RNA isolated from these strains 

was resolved through 8 % denaturing polyacrylamide gels. Due to the predominance of rRNA 

in total cellular RNA, the 5S and 5.8S/5.8S+30 species can easily be seen on ethidium stained 

gels (Fig. 3.12 B lane 1, bottom panel). For less abundant species, the resolved RNAs, once 

transferred to a membrane, can be detected with 5’ 32P-labelled transcript-specific 

oligonucleotide probes, a method termed northern hybridisation, as shown here for 5’ETS and 

the snR38 species (Fig. 3.12 B upper panels). Whilst the rrp47∆ mutant showed the typical 

accumulation of 5’ETS, snR38 and 5.8S+30 species (lane 1), the single point mutations had no 

effect on the RNAs analysed. There was no accumulation of the 5’ETS fragment, the 5.8S+30 

processing intermediate or the 3’ extended snR38 +3 species seen in strains expressing the 

mutated proteins. All mutants displayed RNA processing phenotypes similar to the strain 

containing wild-type RRP47 (lane 2).  

 

B 

 
 

Figure 3.12 B Rrp47 point mutants complement rrp47Δ RNA processing defects.  
Analysis of RNA from strains expressing rrp47 point mutations. Cells were grown to just below 
0.5 OD600, total RNA was extracted and 5 µg resolved through an 8 % polyacrylamide gel 
followed by northern hybridisation with probes complementary to the 5’ ETS and snR38 RNA 
species (upper panels) as indicated to the left. The 5.8 S/5.8 S+30 and 5S rRNA bands are 
shown on the ethidium bromide stained gel (lower panel). Lane 1 shows the rrp47∆ vector 
control, lane 2 the RRP47 complemented mutant, lane 3-7 and lane 3-12, respectively, show 
two independent transformants of the point mutants as indicated above the panels. 
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3.2.5 All point mutants complement a synthetic-lethal rex1Δ rrp47Δ double mutant 

 

Yeast strains lacking Rrp47 or Rrp6 and the 3’ to 5’ exonuclease Rex1 (RNA exonuclease 1) are 

synthetic-lethal (Peng et al. 2003). The reason for the synthetic lethality is not established, 

however Rex1 has been shown to be involved in 5S processing (van Hoof et al. 2000, Piper et 

al. 1983) and it is believed that Rrp6 and Rex1 have redundant functions and thus the loss of 

both exonucleases is lethal. Rrp47 point mutants were assessed for their ability to complement 

rex1Δ rrp47Δ synthetic lethality in a plasmid shuffle assay (Fig. 3.13 A schematic). The point 

mutants were transformed into a double mutant test strain (P596) that carries a plasmid with 

a wild-type RRP47 allele for viability and an ADE3 allele resulting in red coloured colonies 

which allows visualisation of strains harbouring this plasmid. Complementing Rrp47 mutants 

(rrp47*) allow stochastic loss of this original plasmid during cell division resulting in red/white 

colony sectoring. In contrast, if only the vector control is transformed, the essential RRP47 

allele and the ADE3 allele on the plasmid are retained and solid red colonies develop (ade2 

phenotype) as seen in the first panel for the vector control (Fig. 3.13 B). Like the wild-type 

RRP47 allele and the E79A mutant shown here, all point mutants in this study allowed colony 

sectoring and therefore expressed functional proteins (C). Moreover, the white rex1Δ rrp47* 

subpopulation was isolated from sectoring strains and the loss of the original RRP47 allele was 

confirmed by loss of growth on SD-ura. Mutant rex1Δ rrp47* strains were analysed for fitness 

at 30 °C in a spot growth assay (D), as well as for possible RNA processing defects, but the 

rex1∆ rrp47* double mutants showed no considerable differences to the wild-type allele in 

these analyses and also showed no RNA processing defects (Fig. 3.13 D and data not shown).  

 

 

 

             

B 

 

A 
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Figure 3.13 All point mutants complement a synthetic-lethal rex1Δ-rrp47Δ mutant. 
(A) Schematic of the plasmid shuffle assay (Kranz and Holm 1990). Plasmid-encoded Rrp47 
mutants (depicted as circle, rrp47*TRP) were transformed into a synthetic-lethal rex1Δ rrp47Δ 
plasmid shuffle strain (depicted as big oval, P596) carrying a copy of the RRP47 wild-type, 
URA3 and ADE3 alleles on a plasmid (red circle). (B) Colony sectoring results for vector control, 
RRP47 wild-type and E79A mutant allele transformed into the rex1∆ rrp47∆ [RRP4] strain 
(P596). (C) Sectoring results for Rrp47 point mutants. (D) Isolation of rex1∆ rrp47* double 
mutants (white sector) on SD-trp, confirming lack of growth on SD-ura and spot growth assay 
on SD-trp for 3 days at 30 ˚C along with rex1∆ single mutant (top row). 
 

 

In summary, the Rrp47 single point mutants behaved in all respects like wild-type Rrp47 in 

these assays. They had no clear adverse effect on growth, protein function or RNA processing 

in vivo and no effect on Rrp6 and RNA binding in vitro (Summary in Table 3.1 Rrp47*). Taken 

together, these results indicate that despite the high conservation of the residues chosen for 

mutagenesis, the single point mutations in the Rrp47 sequence tested here are still producing 

and replacing a functional wild-type Rrp47 protein. 

C 

D 
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3.2.6 Analysis of Rrp47 C-terminal truncations and multiple mutations 

In addition to the point mutants, Rrp47 truncations were generated to elucidate the functions 

of the basic C-terminus and effects caused by its partial or whole deletion. Initially, two 

truncations were investigated, the C-terminal deletions ΔC1 (residues 120-184) removing the 

whole disordered C-terminus and ΔC2 (residues 162-184) removing the conserved C-terminal 

K/R cluster (Fig. 3.14). Recombinant ΔC1 and ΔC2 truncated proteins had already been 

investigated in the lab for Rrp6 and RNA binding, however no in vivo data had been produced 

to assess genetic and RNA processing phenotypes in yeast. The C-terminal truncation ΔC1 (also 

referred to as N121PGX) was created by subcloning from a construct previously generated in 

the lab by deletion of the C-terminus and insertion of linker oligos before the stop codon 

(Stead et al. 2007). At later stages additional truncations were created by SDM that terminate 

at residue 100, 80, 70 and 60 by introducing a stop codon (X) at the required site and a 

restriction site for screening. An overview of Rrp47 truncations is shown in Figure 3.14. The 

truncation mutant G181X, as well as two N-terminal deletions ΔN2-9 and ΔN 2-19 analysed in 

this study were generated by Joe Costello (detailed in Costello et al. 2011).  

 

 
 

Figure 3.14 Schematic of Rrp47 truncation mutants analysed in this study. 
Schematic of Rrp47 C-terminal truncations ending with an X denoting the Stop codon at the 
indicated position and N-terminal deletions depicted in relation to the predicted α-helices (α1- 
α4, depicted as blue cylinders) in the N-terminus of Rrp47 (full length 184 residues).  
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Moreover, due to the lack of phenotypes in the single point mutants, multiple mutations were 

combined within the putative N-terminal RNA binding domain in helix 3 to create the 

quadruple mutant “mm” which combines point mutations E79A, R82G (to glycine), K84I (to 

isoleucine) and Y86S (to serine). Instead of changing the amino acids to alanine as before, 

amino acid substitutions were chosen which altered charge or size of the amino acid residue. 

 

 
3.2.7 Protein yield and stability decreases for larger Rrp47 truncations  

Recombinant proteins of the Rrp47 truncations ∆C1, ∆C2 ∆C3, 100X, 80X, 70X and the multi-

mutant (mm) were expressed and purified using a similar procedure as for the point mutants 

before. Due to the loss of the basic tail and positive charge, the C-terminal truncations are less 

stable in high salt and bind to SP sepharose only very inefficiently. Therefore, the purification 

protocol for truncated proteins was modified to include dialysis of the NiNTA purified protein 

into lower salt Hepes buffer containing 150 mM NaCl over night before loading onto the SP 

Sepharose beads for further purification. The amounts of purified protein recovered were 

similar for the wild-type and the multiple mutant (mm, Fig 3.15 lane 12 vs. lane 18). However, 

expression and/or protein stability decreased the more of the C-terminus was removed. The 

∆C1, ∆C2, ∆C3 and 100X truncations could be produced in similar, albeit slightly reduced 

amounts compared to the wild type protein (left panel). Strikingly, recombinant protein 

recovered for the truncations 80X (lane 16) and 70X (lane 14) was considerably reduced and 

further truncations (60X, 50X) could not be expressed/purified as recombinant proteins at all. 

 

 

 

 

Figure 3.15 Expression levels and stability decreases for truncated Rrp47 proteins.  
Coomassie stains of 10 % (left) and 12.5 % (right) SDS-PAGE gels with purified truncated Rrp47 
proteins expressed in E. coli as recombinant His-tagged proteins. Lanes 1 to 10 display 
duplicate samples of purified S100X (p348), ∆C1 (N121 PGX p247), ∆C2 (I162X p272) and ∆C3 
(G181X p302) proteins (app. 5 µg). Lane 11 to 18 shows 1 % of the NiNTA (E1) and SP 
Sepharose eluate (E2) resolved side by side (app. 10 µg of wild-type protein) of full length 
Rrp47 (p238), V70X (p382), L80X (p384) and mm (p386). 
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Truncations that affect the Sas10 domain reduce protein stability and Rrp6 binding  

 

To assess Rrp6 binding, the C-terminal truncations and the multi-mutant were incubated with 

GST-Rrp6NT fusion or GST control bound to glutathione sepharose as described before. The C-

terminal truncations S00X, ∆C1 and the multi-mutant (mm) were captured by the Rrp6 

interaction domain with equal efficiency to the wild-type protein (Fig. 3.16 lanes 3, 5, 7, 9, 11), 

but not by the GST control (lanes 2, 4, 6, 8, 10) or the vector control (lane 1). In contrast, the 

amount of bound protein was markedly decreased for the 80X truncation and reduced to an 

even greater extent for the 70X mutant in pull-downs using purified protein. Since expression 

and purification of these truncations was much less efficient (see Coomassie stain above Fig. 

3.15), the loss of binding could be due to weaker expression and lack of protein stability, rather 

than lack of binding sites. The experiment was repeated using cell lysates instead of purified 

Rrp47 protein to ensure an excess of 80X and 70X protein input, however with the same result 

as observed for purified protein before; hardly any 70X was detectable bound to GST-Rrp6NT 

and the amount of 80X was greatly reduced (Fig. 3.16 lanes 13 and 15) compared to wild type 

and multi-mutant (lanes 9 and 11). None of the Rrp47 proteins could be detected with the GST 

control (even numbered lanes). In conclusion, C-terminal Rrp47 truncations which shorten the 

protein below 100 residues cutting into the Sas10 domain were pulled down much less 

efficiently than 100X, ∆C1, mm or full-length Rrp47 which were pulled down with similar 

efficiency by GST-Rrp6NT (odd numbered lanes).  

 
 

 
 

Figure 3.16 Rrp6 binding is diminished for truncations within the Sas10 domain. 
Pull-down-assays on GST-Rrp6NT with vector (pRSETb) and wild-type control (p238), truncation 
mutants S100X and ΔC1, as well as the multi-mutant (E79A, R82G, K84I, Y86S) and truncations 
L80X and V70X. Purified proteins were incubated with GST-Rrp6NT fusion or GST control bound 
to glutathione sepharose. Eluates were resolved by 12 % SDS-PAGE and analysed by western 
blotting with antibodies against the His(6)-epitope (upper panel) to show bound protein and 
GST-tag (lower panel) to show bait input, respectively.  
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3.2.8 Removal of the Rrp47 C-terminus (120-184) abolishes RNA binding in vitro  

As previously shown in our lab, even short C-terminal truncations (181X) of Rrp47 can decrease 

RNA binding (Costello et al. 2011) and RNA-binding is lost for the ΔC1 truncation in filter 

binding assays, but can still be observed in UV cross-linking assays (J. Stead unpublished data). 

Accordingly, the S100X mutant was assessed for RNA binding in a filter binding assay (Fig. 3.17 

A) and alongside the 80X and 70X truncations in a UV-cross-linking assay (below Fig. 3.17 B). As 

before, 32P-labelled SLAU RNA was used as a binding substrate and incubated on ice with 

triplicate serial dilutions of purified wild-type Rrp47 and 100X proteins for filter binding. The 

Rrp47 wild-type protein bound the SLAU-RNA in a concentration-dependent manner, as seen 

before, with a dissociation constant of approximately 1 µM calculated based on the 

concentration of the monomeric protein. The slot blot for the 100X truncation (Fig. 3.17 A) 

showed no protein-bound RNA (right panel) even at a protein concentration of 40 µM as seen 

by the lack of signal on the C filter; the labelled RNA is solely captured by the N-filter.  

Less stable protein-RNA interactions can still be detected by cross-linking of pre-formed 

complexes. Therefore, RNA binding of the 100X, 80X and 70X truncations was further assessed 

by UV cross-linking. Purified protein and radio-labelled SLAU-RNA (Stead et al. 2007) diluted to 

50 counts per second as used for filter binding assays were mixed and incubated on ice 

alongside protein-only controls. Samples were irradiated on ice with UV light (total 420 

mJ/cm2), resolved through 10 % SDS-PAGE including a non-irradiated RNA control and 

visualised using X-ray film (Fig. 3.17 B upper panel). The wild-type Rrp47 protein (lane 6) and 

the multi-mutant (lane 14) showed distinct cross-links in the presence of RNA of 50 kDa size as 

expected, since both the His-tagged full length Rrp47 protein and SLAU-RNA run at 25 kDa. In 

contrast, no cross-links were observed for the 100X, 80X and 70X truncations (B, lane 8, 10, 

12). Cross-linked products were also not observed for the GST controls or the RNA irradiated 

and non-irradiated controls. Notably, protein levels assayed were lower for the 80X and 70X 

truncations as seen from the Coomassie stain of the protein input (lower panel). However, UV 

cross-links could be obtained for equally low levels of Rrp47ΔC1 with two different RNA 

substrates (J. Stead unpublished data).  

 

In summary, the more extensive C-terminal truncations S100X, 80X and 70X did not bind RNA 

in either the filter binding (A) or the UV cross-linking assay (B). In conclusion, RNA binding is 

not observed for Rrp47 truncations that shorten the protein to its N-terminal 100 amino acids 

or less and lie within the Sas10 domain, respectively.  
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Figure 3.17 RNA binding is not observed for mutants shorter than 100 residues.  
RNA binding of Rrp47 truncations. (A) Slot blot assay for purified recombinant Rrp47 wild-type 
protein (left) and S100X truncation (right) binding to 32P -labelled stem loop AU-rich (SLAU) 
RNA. Triplicate samples of serially diluted protein starting at 20 µM were incubated for 15 
minutes with equal amounts of RNA and loaded onto a slot blot. The filters were visualised 
side by side using a phosphor imager with the C filter showing protein-bound RNA and the N-
filter retained non-bound RNA. (B) UV cross-linking assays. Purified Rrp47 proteins were 
incubated with 32P-labelled SLAU-RNA and irradiated four times with UV light at 254 nm (420 
mj/cm2) and then incubated with RNase A. Reaction products, as well as irradiated protein-
only controls, were resolved by 10 % SDS-PAGE. RNA-protein cross-links, as well as non-bound 
32P-RNA were visualised by autoradiography (upper panel). The Coomassie-Blue stain (lower 
panel) shows the relative input levels of protein.  
  

A 

  B 
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3.2.9 The Rrp47 truncations complement growth in an rrp47∆ strain, but ∆C1 has a 

specific snoRNA processing phenotype  

 

Rrp47 ∆C truncations complement growth in an rrp47∆ strain  

To assess the truncations for complementation of an RRP47 deletion, the Rrp47 ∆C1, ∆C2 and 

S100X alleles were transformed into the rrp47∆ strain (P368) alongside wild-type and vector 

controls. Two transformants of each mutant were tested in a spot growth assay as shown in 

Figure 3.18. Despite the in vitro observed loss of RNA binding, all truncations complemented 

the rrp47 null allele in vivo and displayed similar growth to the RRP47 wild-type allele.  

 

 

 
 

 
Figure 3.18 Rrp47 truncations complement the rrp47∆ slow growth defect. 
Spot growth assays. Truncation mutants ∆C1 (p293), ∆C2 (p295) and S100X (p350) were 
transformed into an rrp47∆ strain (P368). 10-fold serially diluted, freshly grown cultures were 
spotted onto SD-trp plates and grown for 3 days at 30 ˚C. The vector control (pRS314) and wild 
type (p262) complemented strain are shown at the top along with two transformants each 
carrying the ∆C2 (1162X), ∆C1 (N121PGX) and S100X alleles (right panel).  
 

 

 

Rrp47∆C truncations do not affect rRNA processing 

 

Next, the rrp47∆ strains carrying the truncations were analysed for the complementation of 

RNA processing defects observed in strains lacking Rrp47 (Fig. 3.19). Initial northern blot 

analyses were performed for the ∆C1 (121PGX) and ∆C2 (162X) mutants and the E79A point 

mutant which had been made by J. Stead but had not yet been analysed. Total RNA was 

extracted from the strains and resolved through 8 % denaturing polyacrylamide gels for 

northern hybridisation as before. The 5.8S and 5S species were visualised by ethidium bromide 

staining of the gel (Fig. 3.19 A). As seen previously, the rrp47∆ strain (lane 2) showed 

accumulation of the distinct 5.8S +30 species, however, the defect was complemented by the 
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truncations, the E79A point mutant and the wild-type protein. The rRNA processing 

phenotypes were investigated more specifically by northern hybridisation. Figure 3.19 B shows 

typical defects of the rrp47∆ strain in rRNA processing. The 5’ETS probe (B1) detects cleaved, 

but undegraded 5’ETS fragments from the pre-rRNA which were only present in the rrp47∆ 

vector control strain (lane 2). The ITS2 probe (B2) targets sequences at the 5.8S-ITS2 boundary 

and gives a strong 5.8S +30 signal for the rrp47∆ strain carrying the vector control, but not for 

the Rrp47 wild-type (lane 1) or mutants (lane 3-8). The probe specific for mature 5.8S rRNA (B3 

and B4) also showed the distinct 5.8S +30 species, as well as the longer 7S precursor for longer 

exposure times (B4) only for the vector control (lane 2). In summary, neither the truncation 

mutants, nor the E79A mutant showed any defects in rRNA processing observed in the 

absence of a functional RRP47 allele.  

 

Rrp47∆C1 has a specific snoRNA processing phenotype  

Rrp47 is also required for snoRNA maturation (Mitchell et al. 2003) and probes complementary 

to a number of snoRNAs (Fig. 3.19 C and D) revealed the typical 3 nucleotide extended 

snoRNAs, as well as longer, polyadenylated and more heterogenous precursors of various 

length in the rrp47∆ strain shown here for snR38-3’ (C1) and U14-3’ I-pA and II-pA (D3) which 

represent polydenylated (pA) transcripts from two snoRNA termination sites I and II (Grzechnik 

and Kufel 2008). Strikingly, the rrp47∆C1 mutant, but not the rrp47∆C2 or E79A mutant, 

retained discrete 3‘ extensions of 3 nucleotides of the box C/D snoRNAs snR38, snR52 and U24 

(Fig.3.19 C2, C3, D2, lanes 5 and 6) along with reduced levels of mature snoRNA (D1, D2). This 

indicates that the C-terminal domain (120-184) of Rrp47 has an effect on snoRNA synthesis, 

albeit not as pronounced as the rrp47∆ deletion (C and D, lane 2). The rrp47C1 mutant only 

affects the final +3 step in the 3‘ end maturation, whereas the rrp47 mutant has a more 

comprehensive 3‘-maturation defect with longer 3‘-extended precursors as seen for snR38 (C1, 

lane 2) and U14 (D3, lane 2).  
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C            D 

    
 
Figure 3.19 The rrp47∆C1 truncation has a specific snoRNA processing phenotype. 

Total RNA analyses of rrp47∆ strains complemented with Rrp47 mutants E79A, C1 and C2 
along with wild-type and vector controls. (A) Ethidium bromide stain of 5 µg RNA of each strain 
resolved through an 8 % denaturing polyacrylamide gel. (B-D) Northern analyses. Blots were 
hybridised with 5’ radio-labelled probes complementary to discrete RNA species as denoted to 
the right of the panels. For snR38 (C) and 5.8S rRNA (B3, B4) two different exposures are 
shown to visualise either the longer 3’ extended precursors (C1, II-pA) or the +3 RNA species 
(C2) and the 7S (B4) or the 5.8S+30 species (B3), respectively.  
 

A B 
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3.2.10  C-terminal domain mutants complement rex1∆ rrp47∆ synthetic lethality, but 
Rrp47∆C1 has a specific defect in snoRNA processing.  

 

Mutants lacking the C-terminal domain were further assessed for complementation of the 

synthetic lethal rex1∆ rrp47∆ strain (P596) using the previously detailed plasmid shuffle assay 

(compare Fig. 3.13). Colony sectoring which results from loss of the RRP47 wild-type allele in 

the presence of another functional Rrp47 protein was observed for E79A, both the ∆C1 and 

∆C2 mutants and the wild-type (Fig. 3.20 A). In contrast, the vector control which does not 

express a functional Rrp47 protein retains the shuffle plasmid with the RRP47 wild-type allele 

and develops solid red colonies. Double rex1∆ rrp47∆C mutants were then isolated from the 

white sections of the colonies and the so obtained rex1∆ rrp47* mutant strains were tested for 

growth defects in a spot assay. Two independent transformants each are shown. No difference 

in growth was observed for the C-terminal truncations ∆C1, ∆C2 and E79A compared to the 

RRP47 wild-type allele (B). 

 

   A 

            
 

   B 

 

 

Figure 3.20 The Rrp47 truncation mutants and E79A produce functional proteins. (A) Colony 
sectoring assay. Complementation of a rex1∆ rrp47∆ synthetic lethal double mutant with 
vector control, wild-type Rrp47, and mutated Rrp47 proteins ∆C1, ∆C2 and E79A (rrp47*-trp) 
in a plasmid shuffle strain (P596). (B) Spot growth assays of the rrp47∆ strain compared to the 
rex1∆ rrp47∆ strains complemented with the RRP47 wild-type allele, as well as two separate 
transformants of the ∆C1, ∆C2 truncations and the E79A mutant.   
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Rrp47∆C1 shows a specific snoRNA processing defect in the rex1∆ background 

 

In addition to RNA species accumulating in rrp47∆ mutants, RNA analyses of the rex1∆ rrp47* 

double mutants included probing for tRNA-Arg3 and 5S rRNA (Fig. 3.21 A). Processing of both 

species is known to be affected by the absence of Rex1 (v. Hoof et al. 2000, Piper et al. 1983). 

tRNA-Arg3 is the only yeast tRNA that can contain two tRNA-Arg3 genes (two cistrons) in one 

transcription unit, whereas all other yeast tRNAs are produced as monomeric transcripts. The 

dicistronic precursors (A1, marked with an asterisk) are processed into two monomeric 

intermediates, however, due to the lack of 3’ termination signals the 5’ cistron requires further 

processing by Rex1. 5S rRNA is transcribed by RNAPIII as a 3’ extended pre-rRNA with 7 to 13 

nucleotide extensions which require trimming. Rex1 is thought to process the final step in 5S 

rRNA maturation since rex1∆ strains accumulate 5S rRNA species which are 3 nucleotides 

longer (5S +3) than wild-type 5S rRNA at the 3’ end. Total RNA analyses of the rex1∆ rrp47* 

mutant strains with the ∆C1, ∆C2 and E79A mutations showed no discernible effects on 5S, 

5.8S and tRNA-Arg3 processing (Fig. 3.21 A) when compared to the double mutant 

complemented with wild-type RRP47.  

Rex1 mutants also accumulate 1 to 4 nucleotide extended snoRNA species (v. Hoof et al. 

2000). Interestingly, the rex1∆ rrp47 rrp47∆C1 double mutant showed a more exacerbated 

snoRNA processing defect than the rex1∆ single mutant (Fig. 3.21 A, compare lane 4, 5 with 

lane 2) or rrp47∆ single mutant complemented with rrp47∆C1 (Fig. 3.19 C lane 2). Instead of 

the discrete +3 bands observed for ∆C1 in the rrp47∆ strain, a more diffuse signal with 3’ 

extensions of variable lengths is detected for snR52, snR38 and U24 (A, lanes 4, 5 asterisk) in 

the rex1∆ rrp47 ∆C1 double mutant, along with a clear depletion of the mature snoRNA as 

seen for U24 and to some extent for snR38. Termination of snoRNAs occurs either via an 

Nrd1/Nab3/Sen1-dependent pathway (at site I) or via a fail-safe terminator further 

downstream using the mRNA 3′ end formation machinery (site II). Precursors of snoRNAs 

terminating at both sites are thought to be polyadenylated by default by Pap1 and Trf4 as an 

essential step for snoRNA processing and quality control by the exosome and other 

exonucleases (Grzechnik and Kufel 2008). The heterogeneous 3‘ extended species in the 

combined rex1∆ rrp47∆C1 mutant are indicative of polyadenylated snoRNA precursors or 

processing intermediates terminated at site I which require Rex1 and/or the C-terminal portion 

of Rrp47 for proper maturation. The ∆C2 mutant showed a similar phenotype to the Rrp47 

wild-type allele (lane 6, 7 compared to lane 2) with short 1 to 4 nucleotide extensions as 

described for the rex1∆ single mutant. Interestingly, the E79A mutant (lane 3) appears to 

suppress the rex1∆ phenotype and looks similar to wild-type strain (lane 1).  
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Taken together the deletion of the Rrp47 C-terminus (121-182) does not complement a rex1∆ 

rrp47∆ double mutant to the same degree as wild-type RRP47 with respect to snoRNA 

processing. Notably, the effect on snoRNA processing observed in the rex1∆ rrp47∆ rrp47∆C1 

mutant is the first synergistic defect observed in a conditional double mutant and points to 

redundant functions for Rrp47 and Rex1 in snoRNA processing as a possible reason for 

synthetic lethality of the rex1∆ rrp47∆ double mutant. 

 

  A      B 

 

 

Figure 3.21 Rrp47 truncations show snoRNA processing defect in rex1∆ background.  
Northern analysis of rex1∆ rrp47∆ rrp47* strains carrying the mutant rrp47 ∆C1, ∆C2 and E79A 
alleles versus the rex1∆ single mutant (lane 1). Total RNA was resolved through an 8 % 
denaturing RNA gel and analysed by northern hybridisation with probes complementary to the 
RNA species indicated to the right of the panels (A) tRNA-Arg3 (schematics of unprocessed and 
processed dicistronic precursors and mature tRNA Arg3 are shown (A1), 5S (A2) and 5.8S rRNA 
long (A3) and short (A4) exposure (B) snR52, snR38 and U24. The heterogeneous 3’-extended 
snoRNA precursors are marked with a bar and an asterisk.  
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3.2.11  The Sas10 domain is critical for fitness and Rrp6 binding 

For a direct comparison, the most interesting Rrp47 truncation mutants produced in the lab, 

were assayed together for complementation of the slow growth phenotype of the rrp47Δ 

strain (Fig 3.22 A and B). Due to the rather moderate effect on growth, differences were not 

very pronounced in the spot growth assay (Fig. 3.22 A), therefore growth rates were 

determined in liquid cultures over a period of 9 hours (Fig. 3.22 B). Data was plotted on a 

logarithmic scale as the ratio of the optical density (OD) at the time point taken divided by the 

OD at time point zero as a function of time. A combined graph of all mutants assessed is shown 

in B1 and subsets of mutants are shown in separate graphs B2, B3 and B4 for better resolution 

of the data. The C-terminal 100X truncation and all lesser C-terminal truncations (130X to 181X 

not shown here) which contain the full Sas10 domain displayed a growth rate similar to the 

wild-type (B2). In contrast, the 80X and 70X truncations which lie within the Sas10 domain 

grew significantly slower and the 60X mutant showed a growth rate similar to the rrp47Δ strain 

(B3). Furthermore, growth rates obtained for the N-terminal truncations removing 10 and 20 

residues, respectively, showed that while deletion of the first 9 N–terminal amino acids has no 

discernible effect, the loss of the first 19 N-terminal residues reaching into the Sas10 domain 

results in slow growth and loss of rrp47Δ complementation (B4).  

Moreover, Rrp47 truncations were assessed for complementation of the synthetic lethal rex1Δ 

rrp47Δ strain. The plasmid shuffle strain (P596) described in Figure 3.13 was transformed with 

plasmids encoding the mutant rrp47 alleles and grown on 5’FOA (fluoro-orotic acid) to detect 

non-complementing rrp47 alleles by counter-selecting for the URA3+ marker. Due to toxicity of 

5’FOA for cells expressing Ura3, complementing mutants lose the original plasmid with the 

URA3 gene (Fig. 3.23). Mutants were grown in parallel on minimal medium (SD-trp) as control 

and on 5’ FOA to check for complementation of the mutated alleles. Consistent with 

observations in the rrp47∆ strain, the plasmid shuffle assay showed that the ∆2-9N, 100X and 

lesser C-terminal deletions (∆C1, ∆C2) produced a functional protein and thus grew on 5’FOA, 

whereas the ∆2-19N, 60X and 80X mutants did not and the 70X mutant allowed partial 

complementation (right panel). Additional Rrp47 mutants used for this analysis were 

generated by J. Costello (N-terminal truncations N2-9, N10-19, and the C-terminal truncations 

130X, 140X, 150X, 181X, as well as point mutations F135A, F142A (Costello et al. 2011). 

 

In summary, rrp47 mutants which encode a complete Sas10 domain showed normal growth 

rates and produced functional proteins. The growth rate analysis strongly suggests that the N-

terminal Sas10 domain of Rrp47 is necessary and sufficient for growth, as well as for the 

complementation of an rrp47Δ strain and a synthetic lethal rrp47Δ rex1Δ double mutant.  
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  B 

 

 

Figure 3.22 The Sas10 domain is necessary and sufficient for normal growth. 
Complementation and growth analysis of Rrp47 truncations. (A) Spot growth assay of Rrp47 
mutants transformed into an rrp47∆ strain. Strains were grown up on minimal medium at 
30 ˚C for 3 days. (B) Growth rate analysis in liquid minimal medium cultures measured over 9 
hours. Log10 values of the ratios of OD600 readings at the given time points to OD at time zero 
(OD/ODt0) were plotted against time in hours. B1 shows combined data for all mutants B2-B4 
show subsets of mutants as indicated in the legends to the right of the graphs for better 
comparison. 
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Figure 3.23 Truncations within the Sas10 domain do not produce functional proteins. 
Complementation and growth analyses of Rrp47 truncation mutants. Rrp47 truncation 
mutants were assayed for complementation of a synthetic lethal rex1Δ rrp47Δ double mutant 
in a plasmid shuffle strain containing a plasmid with an RRP47, ADE3 and URA3 alleles (as 
detailed in Fig. 3.13). This strain was transformed with plasmids encoding the mutant rrp47 
alleles and mutants were grown on SD-trp control (left) and 5’FOA (fluoro-orotic acid) for 3 
days to detect non-complementing rrp47 alleles by counter-selecting for the URA3+ marker 
(right). Due to the toxicity of 5’FOA for cells expressing Ura3, complementing mutants lose the 
original plasmid with the URA3 gene. 
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3.2.12 Rrp47 truncations affecting the Sas10 domain show rrp47∆ phenotypes 

 
The complete set of Rrp47 truncation mutants was then analysed for characteristic rrp47∆ RNA 

processing phenotypes (Fig. 3.24). As already seen above, yeast rrp47Δ strains accumulate 3’-

extended processing intermediates of 5.8S rRNA and box C/D snoRNAs, as well as the 5’ETS 

(external transcribed spacer) excised from the 35S pre-rRNA (Figure 3.24 compare lane 3 to 

wild-type and complemented wild-type lane 1,2). All truncations that lie within the Sas10/C1D 

domain from amino acids 10 to 89 in S. cerevisiae (Δ2-19, 50X, 60X, 70X, 80X, lanes 5-10) 

caused the characteristic rRNA processing defects of an rrp47Δ allele (lane 3) with 

accumulation of 5.8S+30 rRNA (A) precursors and 5’ETS fragments (B). Also 3 nucleotide 

extended snoRNA species were observed for snoRNAs snR38 (D), snR50 (E), snR52 (F), as well 

as longer 3’ extended precursors shown here for snR38 (C 3’ II-pA) which were also seen for 

other snoRNAs. The U6 snRNA showed more diffuse 3’ extended oligoadenylated precursors 

and the accumulation of a degradation intermediate in Sas10 domain mutants typically seen in 

rrp47∆ mutants (G). This indicates that the Sas10 domain is critical for Rrp47 function in RNA 

processing.  

 

Interestingly, mutants 100X to 140X showed an accumulation of snoRNA+3 precursors (D-F) 

but not the longer extended forms of snR38 (lanes 11-14), indicating an effect on the final step 

of snoRNA maturation. In contrast, strains with the Δ2-9 mutation (lane 4) and shorter C-

terminal truncations (150X, ∆C2 162X, ∆C3 181X, lanes 15-17) showed no significant 

accumulation of extended or aberrant forms of any of the RNA species tested. Two point 

mutations of highly conserved residues, F135A and F142A (lanes 18 and 19), confirmed the 

relevance of these residues for snoRNA maturation. Particularly the F142 mutant showed a 

strong accumulation of the 3 nucleotide extended snoRNAs (C-E lane 19) comparable to the 

∆C1 mutant lacking residues 121-184 of full length Rrp47. Subsequent protein capture assays 

could demonstrate that Rrp47 can interact directly and independently of RNA with the snoRNP 

proteins Nop56 and Nop58 (Costello et al. 2011) strongly indicating a role for the C-terminus of 

Rrp47 in snoRNP assembly. 

 

In summary, while the Sas10 domain of Rrp47 is critical for processing of all RNA species tested 

here, the C-terminus of Rrp47 has a role in the final maturation of snoRNAs involving the 

removal of the last 3 nucleotides. 
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Figure 3.24 Sas10-domain mutants have an rrp47Δ RNA processing phenotype.  
Northern analyses of rrp47 mutant strains. Total RNA was resolved through an 8 % denaturing 
polyacrylamide gel and analysed by northern hybridisation using probes complementary to 
various stable RNAs as indicated on the right of the autoradiographs A-H. 3’I-pA and 3’ II-pA (C) 
indicate 3’ extended polyadenylated snoRNA precursors terminated at site I or II respectively 
and “+3” indicates the 3 nucleotide extended species seen above the mature snoRNA (C-F). 
SCR1 RNA serves as a loading control. Lane 1 shows RNA from the wild-type strain and lanes 2-
19 from the rrp47Δ strains carrying plasmids encoding the Rrp47 wild-type, vector or mutant 
rrp47 alleles as indicated at the top. 
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3.2.13  N-terminus and C-terminus of Rrp47 cooperate in RNA binding. 

 

As observed by J. Costello, even short C-terminal Rrp47 truncations decrease RNA binding in 

filter binding assays. The G181X mutant only lacks the last three C-terminal residues of Rrp47 

and shows a significant decrease in RNA binding compared to full length Rrp47 in filter binding 

assays; RNA binding is not detectable for more extensive C-terminal truncations such as ΔC1 

and S100X. To assess whether the C-terminus and the putative RNA binding domain in helix 3 

(residues 75-91) cooperate in RNA binding, a sextuple mutant (N*) was created with the point 

mutations E79A, R82G, K84I, Y86S, K89M, and K91I, as well as a combination of the sextuple 

mutant with a short C-terminal truncation (G181X N*). The short C-terminal truncation G181X 

and additional mutations K89M and K91I were introduced by SDM into the quadruple mutant 

“mm” E79A, R82G, K84I and Y86S. A schematic of the mutations is shown in Figure 3.25 A.  

The G181X truncation, N* multiple mutant and combined G181X N* mutants were expressed 

in E. coli and purified using the two-step protocol as before. The proteins were expressed with 

similar efficiency compared to the wild-type protein (Fig. 3.25 B). Pull-down-assays on GST-

Rrp6NT were performed as previously described to confirm interaction with GST-Rrp6NT (Fig. 

3.25 C) before using the proteins in the RNA-binding assays. The mutant proteins were pulled 

down by the GST-Rrp6NT fusion protein (C, lanes 2, 4, 6, and 8) to a comparable extent, but 

not by the GST control (lanes 1, 3, 5, and 7).  

Parallel filter binding assays of the G181X and the G181X N*mutant were performed and slot 

blots are shown in Figure 3.26 A. The sextuple mutant (N*) bound RNA slightly less efficiently 

than the wild-type protein. However, the mutations within the Sas10 domain combined with 

the G181X truncation had a much greater effect on RNA binding than the G181X truncation or 

the multiple mutant (N*) on its own. Protein-bound RNA on the C-filter is greatly reduced in 

the combined N- and C-terminal mutants. Earlier experiments comparing binding of the G181X 

mm and the G181X mutants using SLAU RNA (stem loop from the ITS2 spacer with an AU-rich 

tail) showed a similar pattern with the RNA binding of the combined mutant considerably 

decreased (3.16 A right). Notably, binding of G181X to the SLAU substrate was clearly reduced 

compared to wild-type Rrp47 which was also seen for G181X in experiments done by 

J. Costello with other RNA substrates (unpublished data). The filter binding saturation curves 

for wild-type or mutant Rrp47 proteins for the tRNAPhe substrate showed considerably 

decreased RNA binding for the G181X N* mutant whereas RNA binding by the sextuple N* or 

G181X mutant alone is only slightly affected compared to the wild-type protein (Fig. 3.26 B). 

This confirms that both the C-terminus and the N-terminal domain of Rp47 are required for 

and cooperate in stable RNA binding. 
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Figure 3.25 Architecture, protein expression and Rrp6 binding of multiple point and C-
terminal mutations. (A) Schematic of Rrp47 mutants combining multiple mutations within the 
putative N-terminal RNA binding domain in combination with the short C-terminal truncation 
G181X (p302). Mutants were generated by SDM on the previously tested quadruple mutant 
“mm” (p386) E79A, R82G (to glycine), K84I (to isoleucine) and Y86S (to serine). The sextuple 
mutant N* (p528) has two additional mutations in positions K89M (to methionine) and K91I (to 
isoleucine). Combinations of these multiple mutations with the 181X C-terminal deletion were 
generated, “G181X mm” (p437) and “G181X N*” (p526). (B) Coomassie Blue-stain of the 
purified recombinant Rrp47 mutants resolved by 12.5 % SDS PAGE. (C) Pull-down-assays of the 
mutant Rrp47 proteins (upper panel) on the GST-Rrp6NT fusion protein or GST control (lower 
panel) were performed as described in before in Fig. 3.8 and 3.16.  
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B 

 
 
 
 
 
Figure 3.26 N-terminus and C-terminus of Rrp47 cooperate in RNA binding.  
RNA binding assays of Rrp47 mutants combining N- and C-terminal mutations. (A) Slot blots of 
N- and C-terminal Rrp47 mutants with radio-labelled tRNAPhe and SLAU RNA substrates. Filter 
binding assays were performed as described before. Results were visualised using a phosphor 
imager. (B) Filter binding saturation curves for wild-type and mutant Rrp47 proteins with 
tRNA-Phe. Slot blot data was quantified using ImageQuant software. The amount of protein-
bound radio-labelled tRNA was plotted against the concentration of Rrp47 protein.  
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Combined G181X truncation and mutiple N-terminal mutations were generated by SDM in the 

yeast shuffle plasmid carrying the RRP47 wild-type allele (p262) and transformed into the 

rrp47∆ strain (P368). The vector control (lane 1) showed the typical accumulation of the 5’ETS 

fragment (A), the 5.8S +30 species (B and C) and 3’ extended snoRNAs U3 (E), snR38 (F) and 

snR13 (H) and snRNA U6 (G), as well as degradation intermediates for U3, U6 and snR13. In 

contrast, the G181X mutant, the multiple mutants Rrp47 mm and Rrp47 N* and the combined 

C- and N-terminal mutants did not display any RNA processing defects seen in the rrp47∆ 

mutant (vector control). Only a very mild accumulation of the 5.8S +30 RNA could be observed 

for the multiple mutations mm and N*, as well as for the combined mutants G181X mm and 

G181X N* using the ITS2-probe (C) which is complementary to the 5.8S-ITS2 boundary. Thus, 

despite the loss of RNA binding in the G181X mm and G181X N* mutants in filter binding 

assays, RNA analyses of the mutants showed no discernible effect of the combined mutations 

on RNA processing in vivo. 

 

     
 
 
Figure 3.27 RNA processing in the combined G181X N* mutant is not affected. 
Northern analyses of rrp47∆ strains (P368) carrying the Rrp47 mutants G181X , the multiple 
mutants mm (p380) and N* (p452), G181X mm (631), G181X N* (p632) mutants, wild-type 
RRP47 (p262) or vector control (pRS314). Total RNA of these strains was extracted and 
resolved through an 8 % denaturing polyacrylamide gel followed by successive northern 
hybridisations using probes complementary to various stable RNAs as indicated on the right of 
the autoradiographs A-H. SCR1 RNA (D) serves as a loading control. The band above U6 snRNA 
is a retained signal from a previous hybridisation (marked with an asterisk). 
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The G181X and N-terminal combination and single mutants were then transformed into the 

rex1∆ rrp47∆ plasmid shuffle strain to test for complementation of the synthetic lethal growth 

phenotype. Colony sectoring relies on the expression of a functional Rrp47 protein and was 

observed for all the mutants tested, but not for the vector control which does not carry an 

RRP47 allele (Fig. 3.28 A). Consistent with the colony sectoring, all the mutants tested grew on 

5’FOA which counter-selects against the shuffle plasmid with the wild-type RRP47 and URA3 

alleles. This allows the observation of growth depending on complementation of the synthetic 

lethal rex1∆ rrp47∆ strain with the plasmid carrying the rrp47 mutant allele only. In contrast, 

the vector control showed no growth on 5’FOA.  

 

A 

 

B 

 

 

Figure 3.28 Combined C- and N-terminal mutants complement rex1∆ rrp47∆ synthetic 
lethality. (A) Colony sectoring of the Rrp47 mutants compared to the vector control using the 
plasmid shuffle assay (compare Fig. 3.13). (B) Growth assay of Rrp47 mutants shown on SD-trp 
versus 5’FOA. The schematic shows the arrangement of the strains carrying the RRP47 wild-
type and mutant alleles. 
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Taken together the data gathered for the combined N- and C-terminal mutants, both the 

putative RNA binding region (75-91) and the basic C-terminus of the protein clearly showed 

cooperation in RNA binding in vitro. However, growth and complementation of the rrp47∆ 

strain or the synthetic lethal rex1∆ rrp47∆ strain were not affected, neither was the processing 

of RNA species that are typically affected in the absence of Rrp47. The combined mutations 

therefore still produce a functional Rrp47 protein in vivo in terms of growth and 

complementation of rrp47∆ mutants.  

 

 

 

 

 

Figure 3.29 Summary of results of mutational analysis of Rrp47. 
Schematic of Rrp47 annotated with domains and features revealed by the mutational analyses. 
The N-terminus of Rrp47 containing the Sas10 domain is crucial for Rrp6 binding. Mutations in 
this region affect growth and RNA processing similar to an RRP47 deletion. The less conserved 
basic C-terminus is not required for growth or RNA processing in vivo, however mutants 
lacking the C-terminal domain showed a specific defect in snoRNA 3’ maturation and loss of 
stable RNA binding in vitro. Combining mutations in the putative RNA binding region 
encompassing helix 3 (75-91) with the short C-terminal truncation G181X also led to a loss in 
stable RNA binding in vitro and indicate that both regions of the protein cooperate in RNA 
binding. 
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3.3  Discussion 

Rrp47 is an evolutionarily conserved eukaryotic co-factor of the nuclear exosome exonuclease 

Rrp6. The precise function of the protein is as yet unknown. The purpose of this mutational 

analysis was to identify conserved features and map regions and residues within Rrp47 critical 

for its function in exosome-mediated RNA processing. Bioinformatics analyses suggest a role 

for Rrp47 in nucleic acid binding. This is consistent with in vitro RNA and DNA binding studies 

(Stead et al. 2007) and reports that the human Rrp47 homologue C1D also binds to DNA and 

structured RNA (Nehls et al. 1998, Schilders et al. 2007). However, Rrp47 has no sequence 

homology to any characterised DNA or RNA binding protein, no known RNA recognition motif 

(RRM) or specific DNA/RNA target sequences suggesting that Rrp47 recognises 3D RNA-

structures or RNA-protein conformations rather than one-dimensional RNA sequences. As 

such, Rrp47 may represent a novel class of RNA binding protein with structural motif and 

mode for RNA recognition still to be identified. Rrp47 preferentially binds to structured as 

opposed to single-stranded RNA or DNA in vitro and Rrp47 binds to RNA and Rrp6 

concomitantly (Stead et al. 2007). Since Rrp6 has been shown to process structured RNAs 

poorly in vitro (Liu et al. 2006, Burkard and Butler 2000), Rrp47 is thought to aid Rrp6 in the 

processing of structured RNA substrates either by modulating Rrp6 activity in vivo or by 

recruitment and stable binding of structured RNA substrates.  

Multiple sequence alignments of Rrp47 homologues across a wide range of species revealed 

that the N-terminus of the protein is highly conserved and predicted to fold into 4 putative α-

helices. Many of the conserved residues are either positively charged (17 % lysines) or 

hydrophobic (25 % leucines) (Mitchell 2010). Hydrophobic amino acids are known to play a 

role in protein interactions and dimerisation, whereas basic amino acids like lysines and 

arginines, many of them clustered in the highly basic tail of Rrp47, again point to nucleic acid 

binding consistent with the prediction of three putative RNA/DNA binding regions; an 

amphipathic helix at the N-terminus of Rrp47 further points to DNA binding or dimerisation. 

Consistent with this, the lab has recently shown that Rrp47 is expressed as a homodimer and 

forms a heterodimer with Rrp6 (Feigenbutz et al. 2013).  

The N-terminus of Rrp47 contains a homology-domain identified by bioinformatics which is 

also found in its human counterpart C1D and other proteins like Sas10/Utp3 and Lcp5 which 

are involved in 18S rRNA processing. This so-called Sas10/C1D domain spans the first three 

putative α-helices predicted for Rrp47 (residues 10-89). Against expectations, single mutations 

of well conserved charged or aromatic residues within the Rrp47 N-terminal region identified 

by multiple sequence alignment did not show any effect on growth, Rrp6-binding, RNA 

processing or in vitro RNA binding; even multiple mutations targeting a cluster of well 

conserved amino acid residues within the putative RNA binding domain in helix 3 (75-91), 
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namely Glu-79, Arg-82, Lys-84, Tyr-86, Lys-89 and Lys-91, showed no discernible effect. 

However, further analysis of Rrp47 truncations revealed that the well conserved N-terminal 

domain of Rrp47 (residues 10-100) is critical and sufficient for Rrp6 binding and, more 

generally, critical for Rrp47 function and normal growth. The ability of Rrp47 to interact with 

Rrp6 therefore appears to be key to its function. Rrp47 truncations that do not include the 

complete Sas10/C1D domain (Δ2–19, L40X, I50X, L60X, V70X, L80X) displayed RNA-processing 

defects characteristic for rrp47Δ and rrp6∆ mutants and could not be stably expressed as 

proteins. The conserved Sas10/C1D homology domain could therefore represent an Rrp6 

binding domain. However, Sas10/Utp3 or Lcp5 have not been found to bind to Rrp6 (M. 

Turner, unpublished data), yet an interaction with PMC2NT-like domains of other proteins is a 

possibility.  

Alternatively (or in addition), the Sas10/C1D family of proteins could function in RNA binding in 

a similar manner to Rrp47. Notably, Sas10/Utp3 and Lcp5 associate with U3 snoRNA, whereas 

neuroguidin associates with proteins found in mRNP particles. Moreover, all three proteins 

have basic clusters at their C-terminus (Kamakaka et al. 1998, Wiederkehr et al. 1998, Jung et 

al. 2006) and basic residues (lysine or arginine) are conserved across the Sas10/C1D domain 

family at positions equivalent to K84 and K89 of Rrp47. It remains to be seen whether these 

proteins have a common mode of action, especially in view of their functional links. Rrp6 is 

required for the turnover of aberrant 23S pre-rRNA processing intermediates that accumulate 

in the absence of Sas10/Utp3 or Lcp5 (Lafontaine and Tollervey 1999). And more strikingly, 

overexpression of Sas10 or loss of Rrp6 blocks heterochromatin silencing (Lafontaine 

andTollervey 2000, Reinisch et al. 2007, Doma and Parker 2007). 

In contrast, the C-terminal region of Rrp47 is poorly conserved and truncating the protein to its 

100 N-terminal residues did not affect Rrp6 binding or growth. Even though the C-terminus 

contains the most potential RNA binding sites and is required for stable RNA binding in vitro. 

RNA binding assays in this study have demonstrated that N- and C-terminus cooperate in RNA 

binding in vitro and that binding considerably decreases when mutations in the putative RNA 

binding region and the C-terminus of Rrp47 are combined. This strongly suggests that for 

efficient and stable RNA binding in vitro residues in both the C-terminus and N-terminus are 

required. However, short C-terminal truncations that diminished stable RNA binding in vitro 

(e.g. the I162X mutant) did not significantly affect RNA-processing in vivo and neither did the 

combined C- and N-terminal mutations (G181X mm, G181X N*). The basic C-terminus 

therefore is dispensable for the main RNA-processing functions in vivo. The human 

counterpart C1D is also characterised as a DNA and RNA binding protein with a basic C-

terminus, however it does not possess an extended C-terminal region like Rrp47. Taken 

together, this suggests that RNA-binding of Rrp47 might not be critical for its function in stable 
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RNA-processing, perhaps due to redundancy with other RNA-binding proteins or due to 

interactions with other proteins that also mediate stable RNA-binding.  

 

Interestingly, deletion of the C-terminal region of Rrp47 (∆C1) resulted in a specific defect in 

snoRNA maturation with the accumulation of a short extended precursor (+3 nucleotides). This 

defect in the final step of snoRNA maturation was exacerbated in the absence of the 

exonuclease Rex1, where the Rrp47∆C1 mutant accumulated longer, more heterogeneous 3’ 

extensions and the production of mature snoRNA was reduced. This indicates that producing 

the ‘+3’ intermediate or mature snoRNA in the absence of Rrp47-Rrp6 requires the activity of 

Rex1, suggesting that this redundant function in snoRNA processing and related pathways 

(CUTs, snRNAs, Nrd1 terminated transcripts) could be the reason for the synthetic lethality of 

the rex1∆ rrp47∆ double mutant.  

Short snoRNA 3’ extensions have also been reported in strains expressing mutant alleles of the 

box C/D snoRNP proteins Nop1 and Nop58 (Lafontaine and Tollervey 2000, Gautier et al. 

1997). The +3 extensions on snoRNAs have been shown not to be encoded but to be added by 

the TRAMP poly(A) polymerase Trf4 after Nrd1 termination (Grzechnik and Kufel 2008). The 

oligoadenylation by TRAMP is now thought to be an intrinsic part of 3’ end processing of 

snoRNAs which involves several rounds of oligoadenylation and trimming by the exosome. This 

is seen as part of a kinetic process which allows time for maturation of properly assembled 

snoRNPs and results in degradation of stalled or misassembled snoRNP. Further studies by J. 

Costello have determined the critical residues F142 and F135 in the C-terminus of Rrp47 

required for the final step in the 3’ maturation of box C/D snoRNAs and revealed that the C-

terminal domain of Rrp47 interacts with Nop56 and Nop58 in an RNA/DNA independent 

manner. This strongly indicates a role for Rrp47 in snoRNP assembly (Costello et al. 2011). 

Nop56/58 are finalising the assembly into the mature snoRNP and an interaction with Rrp47 

could serve to protect and differentiate properly matured snoRNPs from improperly 

assembled snoRNAs which are rapidly degraded by Rrp6 due to the lack of protective 

structures or protein interactions (Fig. 3.30). Rrp47 could have a function in sensing correctly 

assembled mature snoRNPs and trigger their release upon contact with the snoRNP proteins, 

thus preventing degradation by Rrp6.  
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Figure 3.31 Extended Model for Rrp47-Rrp6 function in snoRNA processing. 
The two modes of snoRNA termination are depicted at the top of the schematic. Nrd1-
dependent termination (left) uses an early terminator (site TI) and Nrd1-Nab3 heterodimers 
bind to the nascent RNA which is oligoadenylated by the TRAMP polyA polymerase Trf4 which 
leads to recruitment of Rrp6-Rrp47 and/or the exosome. Fail-safe termination at site II uses 
the polyadenylation-dependent pathway where termination and polyadenylation by Pap1 are 
driven by the canonical mRNA 3’end processing machinery. Transcripts from both termination 
sites are processed by Rrp6/exosome and TRAMP complexes. Rrp47 could make the initial 
contact with the substrate enabling Rrp6 processing. If the snoRNP is correctly assembled, the 
contact of Rrp47 with the Nop56/58 proteins leads to the release of Rrp6-Rrp47 from the 
substrate. In contrast, when the snoRNP is incorrectly assembled or assembly takes too long, 
Rrp6 proceeds to degrade the RNA which lacks protection from snoRNP proteins. 
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Chapter 4   

Investigating the Assembly of the Rrp47-Rrp6 complex 

 

4.1 Introduction  

Assembly pathways of exosome complexes and their associated ribonuclease activities and co-

factors are as yet poorly understood. Yeast Rrp47 and Rrp6 are restricted to the nucleus and 

herein are found in the nucleoplasm and the nucleolus, a region specialised on rRNA 

transcription, processing and assembly of pre-ribosomal subunits (Allmang et al. 1999, Burkard 

and Butler 2000). However, minor amounts of cytoplasmic Rrp6 have been reported in 

Drosophila melanogaster, Arabidopsis thaliana, Trypanosoma brucei and humans (Lejeune et 

al. 2003, Graham et al. 2006, Haile et al. 2007, Lange et al. 2008). Whilst Rrp6 has widely been 

presumed as the main nuclear exosome activity and used as a marker for nuclear exosome 

activity, there is mounting evidence for exosome independent functions of Rrp6 and Rrp6-

specific substrates (Callahan and Butler 2008). The loss of Rrp6 interaction with the core 

exosome does not interfere with RNA 3’ end processing, but inhibits degradation of rRNA 

substrates that require both Rrp6 and the core exosome. Since rrp47∆ and rrp6∆ strains show 

the same RNA processing phenotypes, Rrp47 is thought to be required for both exosome core-

dependent and core-independent functions of Rrp6 such as the degradation of the 5’ ETS 

fragment derived from initial cleavage of the 35S pre-rRNA and the 3’ maturation of 5.8S rRNA 

and snoRNAs, respectively.  

A key biochemical activity of Rrp47 is its ability to directly interact with Rrp6 as shown by 

affinity capture analyses of protein complexes in yeast (Mitchell et al. 2003, Synowsky et al. 

2006) and by in vitro reconstitution studies (Stead et al. 2007, Costello et al. 2011). Notably, 

deletion of the PMC2NT interaction domain results in similar phenotypes to the loss of Rrp47 

and led to the discovery that the interaction with Rrp6 is required for normal expression levels 

of Rrp47 (Stead et al. 2007). More recent hydrodynamic and protein cross-linking studies could 

establish that recombinant Rrp47 assumes a non-globular structure and is expressed as a 

homodimer (Feigenbutz et al. 2013a). Yet, analysis of the Rrp47-Rrp6 complex revealed a 

stable Rrp47-Rrp6 heterodimer with a 1:1 stoichiometry. This implies that Rrp47 requires 

structural remodelling from homodimer to heterodimer either before or through interaction 

with Rrp6. These observations strongly suggest that nuclear localisation and assembly of the 

Rrp6-Rrp47 complex are important steps to ensure proper functional competence of Rrp6 and 

Rrp47 heterodimers, as well as exosome complexes. The following work has set out to answer 

how Rrp47 expression is controlled by Rrp6 and to give insights into how and where Rrp47-

Rrp6 assembly occurs. 
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Described here are studies on Rrp47 stability, localisation and the assembly with its partner 

Rrp6, which in concert with the exosome plays a pivotal role in the processing, quality control 

and degradation of RNAs. The data presented here shows that rapid Rrp47 depletion in the 

absence of Rrp6 is due to protein instability and establishes Rrp47 as a substrate of 

proteasome-dependent protein degradation. Consistent with this, Rrp47 could be shielded 

from degradation in the absence of Rrp6 by tagging its N-terminus which determines protein 

stability according to the N-end rule (Varshavsky 1996 and 2011). Analysis of Rrp6 mutants 

further revealed that the N-terminal Rrp6 heterodimerisation domain (Rrp6NT) is sufficient to 

recover Rrp47 expression in an rrp6∆ mutant. Moreover, Rrp47 can be titrated out of Rrp6 

heterodimers by exogenous overexpression of the Rrp6NT domain providing a useful tool to 

study Rrp47 functions independently of Rrp6. Further, pull-down-assays on cell extracts 

confirmed that Rrp47 cannot be found associated with the Rrp6-Srp1 (importin-α) import 

complex, and GFP fusions of Rrp6 or Rrp47 localise to the cell nucleus separately and in the 

absence of one another. Moreover, in the absence of Rrp6, Rrp47-GFP accumulates as a 

proteolytic degradation intermediate in the nucleus. This indicates that localisation of Rrp47 is 

independent of Rrp6 and that Rrp6-Rrp47 assembly occurs after independent nuclear import 

of both proteins to the nucleus where a proteasome-dependent mechanism prevents Rrp47 

expression in the absence of Rrp6. The major results presented in this chapter were published 

in Feigenbutz et al. 2013a and Garland et al. 2013. 

 

 

4.2 Results 

 

4.2.1 Rrp47 levels are reduced more than 15-fold in the absence of Rrp6  

The lab has reported previously that Rrp47 expression levels are effectively depleted in the 

absence of Rrp6 or in yeast strains expressing an Rrp6NT mutant lacking the N-terminal 

PMC2NT domain required for Rrp47 interaction (Stead et al. 2007). To readdress and quantify 

this observation, steady state levels of Rrp47 protein of an rrp6∆ and an isogenic RRP6 strain 

from denatured cell extracts were resolved by 12 % SDS-PAGE and analysed by western 

blotting (Fig 4.1 A). Rrp47 bands were quantified and adjusted against the internal control 

Pgk1. Data from five independent experiments was averaged. Rrp47 protein was reduced 

more than 15-fold in the rrp6∆ mutant compared to the wild-type strain (6.1%, SE=2.1%, n=5). 

Parallel experiments were performed for Rrp6-TAP expression in dependence of Rrp47 (Fig. 4.1 

B), however Rrp6 protein levels were only slightly decreased in the absence of Rrp47 to 

approximately 70 per cent of the wild-type strain (Rrp6 protein 73.11 %, SE= 7.5, n=6). Figure 

4.1 shows representative western data for both proteins. 
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A       B 

   

 

Figure 4.1 Rrp47 protein is depleted in the absence of Rrp6. 
Representative images are shown for western analyses of Rrp47 and Rrp6 expression levels in 
the presence and absence of their respective partner. Denatured cell extracts of wild-type 
RRP47-zz (P414) and RRP6-TAP (P539) strains, as well as the isogenic deletion strains RRP6 
rrp47∆ (P540) and RRP47 rrp6∆ (P439) were resolved by 12 % SDS-PAGE and analysed by 
western blotting with peroxidase-anti-peroxidase (PAP) antibody to detect Rrp47-zz and Rrp6-
TAP followed by anti-Pgk1 antibody as loading control. (A) Rrp47-zz expression levels in wt 
RRP6 and rrp6∆ strain. (B) Rrp6-TAP expression levels in the wild-type RRP47 and rrp47∆ 
strain. 

 

 

4.2.2 Depletion of Rrp47 levels in rrp6∆ strains is due to protein instability  

As concluded from the western analysis, Rrp47 expression is clearly dependent on Rrp6. In 

order to investigate this dependency and determine whether Rrp47 depletion in the absence 

of Rrp6 is due to protein instability or a decrease in mRNA expression levels (or turnover), 

steady state levels of RRP47 mRNA transcripts were determined by real-time quantitative PCR 

(RT-qPCR). Total RNA was extracted from strains expressing RRP47-zz and RRP6-TAP along with 

their isogenic deletion strains RRP47-zz rrp6∆ and RRP6-TAP rrp47∆ grown at 30 ˚C and column 

purified for use in RT-PCR. RNAs were DNAse I treated and cDNAs were prepared in triplicates 

for the qPCR analysis. Controls in preparation for RT-qPCR are shown in Figure 4.2. RNAs were 

resolved through a 1.5 % agarose gel to show they are intact (A). RNAs were also resolved 

through an 8 % polyacrylamide gel and analysed by northern blotting with a probe 

complementary to snR38 snoRNA (B). The RNA analyses showed the strain-specific 

phenotypes, mature snR38 species in the wild-type, the characteristic 3 nucleotide extended 

‘snR38+3’ species in the rrp6∆ mutant and an intermediate phenotype with both mature and 

‘+3’ species in the rrp47∆ mutant.  
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Primers were shown to be specific for the appropriate gene product in a test PCR using qPCR 

conditions (C) showing that only the cDNAs (+RT) produce a PCR product of the expected size 

but not the “no enzyme” (-RT) and water controls. Melt curves for the used qPCR primers were 

shown to be uniform as required (D). SCR1 is commonly used as internal control in northern 

blot analyses and its suitability as internal standard was confirmed using the ALG1 mRNA and 

TCF1 mRNA as comparison (E) which have been shown to be suitable internal standards for use 

in qPCR for a wide range of conditions (Teste et al. 2009). Parallel qPCR results for RRP6 mRNA 

levels for SCR1, TCF1 and ALG9 are shown in Figure 4.2 (E) testing triplicate samples of cDNAs 

in an RRP47 and rrp47∆ strain. The results of all three internal standards are in very good 

agreement and confirm SCR1 as a suitable internal control for the qPCR analyses. 

 

 

                       

 

- 100 bp  

D 
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Figure 4.2 Controls for Real-Time quantitative PCR (RT-qPCR).  

Total RNA preparations of three independent biological samples of each strain (P414 RRP47-zz, 
P439 RRP47-zz rrp6∆, P539 RRP6-TAP, P540 RRP6-TAP rrp47∆) were checked for quality and 
integrity (A) 10 µg RNA resolved through a 1 % agarose gel and (B) 5 µg resolved through an 8 
% PAA gel followed by northern hybridisation with a snR38 probe (o272). (C) A control PCR was 
performed with triplicate cDNAs, as well as no enzyme (-RT) and water controls to check the 
specificity of the chosen qPCR primers, samples were resolved through 2 % agarose. (D) Melt 
curve analysis of the qPCR primers ALG9 (o744/o745), RRP6 (o650/o651), RRP47 (o701/o702), 
TCF1 (o749/o748), SCR1 (o654/o655). (E) RRP6 mRNA levels determined by RT-qPCR on the 
tested RNAs using three different internal controls SCR1, ALG9 and TCF1 for comparative 
quantitation (∆∆CT method). 
 

 

 

Having performed the necessary controls on cDNAs and primers, RRP47 and RRP6 mRNA levels 

were determined by RT-qPCR using SCR1 as internal standard for comparative quantitation. 

Results of quantitative western and RT-qPCR analyses are combined in graphs in Figure 4.3. 

RRP47 transcript levels were only slightly lower (70.7 %, SE=8.6 %, n=6) in rrp6∆ compared to 

the wild-type strain and thus cannot account for the drastic reduction in Rrp47 protein. Rrp6 

mRNA transcript levels were slightly decreased in the absence of Rrp47 to approximately 70 

per cent of the wild-type strain, consistent with the mildly reduced steady state protein levels 

(Rrp6 protein 73.11 %, SE=3.4, n=6, RRP6 mRNA 70.5 %, SE=7.0, n=6). Taken together, the 

absence of Rrp6 has a drastic effect on Rrp47 protein but not on RRP47 mRNA transcript levels, 

whereas Rrp6 mRNA and protein levels are only mildly affected by the absence of Rrp47. 
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Figure 4.3 Rrp47 protein but not mRNA is depleted in the absence of Rrp6. 
Quantitative RT-PCR and western analyses of relative Rrp47 and Rrp6 mRNA and protein 
expression levels observed in RRP6 and RRP47 wild-type strains and the respective isogenic 
rrp6∆ or rrp47∆ strains. RRP6 and RRP47 mRNA levels were determined by RT-qPCR in 6 
triplicate assays and standardised to SCR1 levels. Western analyses were performed on 
alkaline lysed cells from 5 biological replicates resolved through 12 % SDS PAGE and probed 
with PAP and anti-Pgk1 antibodies. Western bands were quantified and standardised to Pgk1 
levels. Error bars indicate the positive and negative ranges of the standard error of the mean 
values. (A) RRP47 mRNA and protein expression levels in dependence of Rrp6. (B) RRP6 mRNA 
and protein expression levels in dependence of Rrp47. 
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Rrp47 protein is unstable in the absence of Rrp6 

To further determine the effect of Rrp6 on Rrp47 protein stability, a translational shut-off 

experiment (Fig 4.4) was conducted by Phil Mitchell and is included here for its centrality to 

this study. To ensure “normal” Rrp47 expression levels in the absence of Rrp6, an rrp6∆ strain 

was created by PCR mediated integration of the rrp6∆::kanMX4 cassette into a strain which 

expresses the Rrp47-zz fusion protein under the control of the GAL promoter (P957). The 

isogenic GAL-regulated RRP6 and rrp6∆ strains were pre-grown in raffinose-based medium and 

galactose was added to induce Rrp47-zz expression to wild-type levels in the rrp6∆ strain. New 

protein synthesis was then inhibited by adding cycloheximide and the effect on Rrp47-zz levels 

was followed over a period of 40 minutes and visualised by western analysis. In the rrp6∆ 

strain, Rrp47 protein was effectively depleted within 20 minutes after addition of 

cycloheximide (lower panels) while Pgk1 levels appeared unaffected. In contrast, Rrp47 levels 

in the wild-type RRP6 strain (upper panels) remained relatively constant for the duration of the 

time course (upper panels). The lower band on the Rrp47 westerns (marked with an asterisk) is 

a proteolytic degradation fragment of Rrp47 which is typically observed in native yeast cell 

extracts (but not in alkaline lysed cells). In conclusion, Rrp47 is rapidly depleted in rrp6∆ strains 

due to protein instability in the absence of Rrp6.  

 

 

 

Figure 4.4 Rrp47 protein is unstable in the absence of Rrp6. 

Rrp47 protein stability dependent on Rrp6 was assessed in a translation shut-off experiment. 
GAL-regulated Rrp47-zz RRP6 (P957) and isogenic rrp6∆ strains were pre-grown in raffinose-
based medium and Rrp47-zz expression was induced to “normal” levels in rrp6∆ by adding 
galactose. New protein synthesis was blocked by addition of cycloheximide and samples were 
taken at the time points indicated above from 0 to 40 minutes after addition of the inhibitor. 
Samples were resolved by 12 % SDS-PAGE and analysed by western blotting with a PAP 
antibody followed by anti-Pgk1 as internal control. The lower band (asterisk) on the Rrp47 
panels is a proteolytic degradation product of Rrp47 typically observed in native cell extracts.  
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4.2.3 Proteasome inhibition recovers Rrp47 expression in the absence of Rrp6 

 

The proposition that Rrp47-Rrp6 assembly and Rrp47 degradation in the absence of Rrp6 are 

spatially linked, led to the investigation of the mechanism by which Rrp47 is degraded. The 

two major eukaryotic protein degradation machineries are the cytoplasmic vacuole for mainly 

non-selective proteolysis and the proteasome for the majority of selective regulated 

proteolysis in nucleus and cytoplasm. Vacuolar degradation is typically blocked by the serine 

protease inhibitor phenylmethanesulfonylfluoride (PMSF), which inhibits the vacuolar 

proteinase A (Pep4 in yeast), or by deletion of the PEP4 allele. The proteasome can be 

inhibited by short peptide aldehydes like Z-Leu-Leu-Leu-al (MG132) that block active sites of 

the proteasome (Lee and Goldberg 1996). Due to low drug permeability of the yeast cell wall, 

experiments with proteasome inhibitors are carried out in strains which are more permeable 

and therefore more sensitive to drugs like the erg6Δ mutant.  

 
Accordingly, erg6∆ deletions were created in RRP6 and isogenic rrp6∆ strains expressing the 

Rrp47-zz fusion protein. The erg6∆::kanMX4 deletion cassette (Euroscarf, Brachmann et al. 

1998) was amplified by PCR as shown in the schematic (Fig. 4.5 A) with primers using ERG6 

ORF outlying sequences (o664/o665, ORF + 500b). Control PCRs were performed to confirm 

sizes of the PCR products from wild-type ERG6 and donor erg6∆ strain (Fig. 4.5 B left panel) 

with the chosen primers. The gel-purified erg6∆ PCR fragment (2.5 kb) was then transformed 

into the target strains for homologous recombination with the ERG6 allele. Cells were grown 

up on rich medium before selection of transformants on plates containing the drug geneticin 

(G418), which is tolerated upon expression of the kanamycin resistence gene. Using further 

outlying primers of the ERG6 locus (o668/o669, ORF + 1kb), putative candidates were screened 

(Fig 4.5 B right panel) and confirmed by PCR to be 3.5 kb in size compared to the wild-type 

allele (3kb); growth of the mutant strains was checked to be unaffected compared to RRP47 

wild-type and rrp47∆ strains (Fig. 4.5 C).  

 

A 
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B          C 

 
 

 

Figure 4.5 Creating gene deletions by PCR-mediated gene disruption in S. cerevisiae. 

(A) Schematic of a typical gene disruption in S. cerevisiae using a kanMX4 cassette (Wach et al. 
1994) exemplified by the deletion of the ERG6 allele. The deletion cassette erg6∆::kanMX4 
(Euroscarf) was amplified from genomic DNA by PCR using primers o664/o665 (+500b). The 
PCR product was transformed into the RRP47-zz (P414) and RRP47-zz rrp6∆ (P439) strains. 
Transformants were grown up on YPD and replica plated onto G418 to select for candidates 
expressing the kanamycin resistance gene. (B) PCR products for primer set 1 (o664/o665) on 
erg6∆ for transformation and primer set 2 (o668/o669) on erg6∆ and ERG6 for screening (left) 
resolved on 1 % agarose. Putative candidates, erg6∆-1 and erg6∆-2, were screened by colony 
PCR using the primers o668/o669 (+1kb) against the ERG6 wild-type strain (B, right panel). (C) 
Positive transformants, here erg6∆ and pep4∆, were grown up on YPD for 2 days at 30˚C to 
check for normal growth compared to the RRP47 wild-type and rrp47∆ strain. 
 

 

 

Inhibition of the proteasome, but not the vacuole, recovers Rrp47 expression in rrp6∆ 
 
The RRP6 and rrp6∆ strains carrying the Rrp47-zz fusion protein and the erg6∆ deletion were 

cultured and treated with either PMSF or MG132 or the control solvents isopropanol and 

DMSO, respectively. The effect of the inhibitors on Rrp47 expression levels was followed over 

90 minutes by western analysis of cell lysates (Fig. 4.6). Rrp47 expression levels in the RRP6 

strain (A and B, left panels) were not adversely affected by any of the inhibitors or control 

solvents, and stayed at a constant level comparable to the untreated control (0’). In the rrp6Δ 

strain, Rrp47 expression was reduced as expected pre-treatment (0’, lane 1, right panel) and 

was not recovered during the time course by addition of PMSF or the control solvents. In 

contrast, treatment with the proteasome inhibitor MG132 (B, right panel) showed a 

considerable increase in Rrp47 expression in the rrp6∆ strain compared to the untreated or 

PMSF treated cells which showed no noticeable effects. Interestingly, the Rrp47 degradation  
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fragment typically observed in native cell extracts (compare Fig. 4.3) was observed in all RRP6 

cell extracts as a smaller fainter band (A and B left panels) except the MG132 treated sample. 

This confirms that proteasome inhibition clearly stabilises Rrp47 and prevents its degradation. 

In contrast, Pgk1 is a known substrate of the vacuolar autophagy pathway (Welter et al. 2010) 

and accumulates truncated proteolytic fragments in untreated cells which disappear when 

treated with the Pep4/vacuole inhibitor PMSF (data not shown). In conclusion, Rrp47 

expression can be recovered by proteasome inhibition, but not by inhibition of the vacuole, 

therefore Rrp47 is most likely a substrate of proteasome-mediated degradation.  

 

 

 

 
 

 

Figure 4.6  Proteasome inhibition recovers Rrp47 expression in rrp6Δ mutants. 

Western analysis of Rrp47-zz expression in isogenic RRP6 erg6∆ and rrp6∆ erg6∆ strains after 
treatment with the protease inhibitor PMSF (A), the proteasome inhibitor MG132 (B) or the 
respective vehicle solvents isopropanol and DMSO. Cells of both strains were grown up at 
30 ˚C to 1 OD600 and 10 ml samples were harvested by centrifugation marking time point zero 
(0’). PMSF (A), MG132 (B) or the respective vehicle solvents were added, and 10 ml samples 
were harvested at 30, 60 and 90 minutes after addition. Cell extracts were resolved by SDS-
PAGE and analysed by Western blotting with PAP followed by anti-Pgk1 antibodies to visualise 
Rrp47-zz protein levels compared to Pgk1 levels as internal reference. The arrows on the Pgk1 
panels (B left, A right) point to Rrp47 bands retained from the PAP western. The asterisks 
below Rrp47-zz mark a proteolytic Rrp47 degradation fragment typically observed in native cell 
extracts. 
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Blocking vacuolar degradation does not recover Rrp47 expression. 

Proteasomal, rather than vacuolar degradation of Rrp47 was further confirmed by deleting the 

PEP4 wild-type allele in the RRP6 and rrp6∆ strains by homologous recombination with the 

pep4∆ cassette (Euroscarf). Pep4 encodes the vacuolar proteinase A which is required for the 

maturation of numerous vacuolar proteases and is generally used as a marker for vacuolar 

degradation (Charity et al. 2007). Consistent with the inhibition experiments, blocking vacuolar 

degradation by deletion of PEP4 could not recover Rrp47 expression in an rrp6∆ strain in two 

independent pep4∆ mutants (Fig. 4.7, lanes 4 and 5). There is no increase in Rrp47 expression 

compared to the PEP4 rrp6∆ strain (lane 3). The Rrp47 expression level in the RRP6 pep4∆ 

strain is not affected (lane 1 and 2). 

 

Figure 4.7  Blocking vacuolar degradation does not recover Rrp47 expression.  

Western analysis of pep4∆ mutants created in isogenic RRP6 wild-type (P414) and rrp6∆ (P439) 
strains by PCR-mediated replacement of the wild-type PEP4 allele with the pep4∆-kanMX4 
cassette. Strains were grown up alongside PEP4 wild-type strains, subjected to alkaline lysis 
and resolved by 12.5 % SDS-PAGE for western analysis with PAP followed by anti-Pgk1 
antibodies to detect Rrp47-zz (upper panel) and Pgk1 (loading control, lower panel).   
 

In eukaryotes, control of protein stability is to a large extent mediated by the proteasome-

ubiquitin system which targets proteins for proteolysis by conjugation with ubiquitin. 

According to the N-end rule for protein degradation (Varshavsky 1996), the N-terminal amino 

acid of a protein determines its half-life. As a consequence, shielding the N-terminus should 

avoid or interfere with proteasomal degradation. To test this hypothesis, a plasmid expressing 

an N-terminally zz-tagged Rrp47 fusion protein was transformed into an RRP6 wild-type and an 

isogenic rrp6∆ strain. Rrp47 expression levels were analysed in three independent 

transformants for each strain (Fig. 4.8). Adding the N-terminally tagged zz-Rrp47 protein (in 

addition to the endogenous RRP47 copy) clearly recovers Rrp47 expression in an rrp6∆ strain 

(lanes 4-6) to at least the same or slightly higher levels compared to the wild-type strain (lanes 

1-3). This is in stark contrast to the depletion of Rrp47 seen in rrp6∆ strains expressing a C-

terminally tagged Rrp47 fusion protein (compare Fig 4.1, 4.3B, 4.7). Taken together, these 

experiments are consistent with proteasome-mediated degradation of Rrp47 according to the 

N-end rule in the absence of Rrp6. 

http://en.wikipedia.org/wiki/N-terminus
http://en.wikipedia.org/wiki/N-terminus
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Figure 4.8 Shielding the Rrp47 N-terminus recovers protein expression in rrp6∆ cells. 

Western analysis of RRP6 (P414, lanes 1-3) and rrp6∆ strains (P439, lanes 4-6) transformed 
with a plasmid expressing an N-terminally tagged zz-Rrp47 fusion protein (p622). Alkaline lysed 
cell extracts were resolved by 12 % SDS PAGE and analysed by western blotting with PAP and 
Pgk1 antibodies. Triplicate samples are shown of each strain. Pgk1 serves as loading control. A 
comparison of zz-Rrp47 transformed and non-transformed wild-type (P364), rrp47∆ (P356) and 
rrp6∆ (P781) strains expressing endogenous Rrp47 is shown in Figure 5.12. 
 

 

4.2.4 The Rrp6NT domain is sufficient to recover Rrp47 expression in an rrp6∆ strain 

The lab has previously shown that Rrp47 directly interacts with the N-terminal PMC2NT 

domain of Rrp6, and deletion of the domain produces similar phenotypes to the loss of Rrp47 

(Stead et al. 2007). Further, Rrp47 expression is significantly reduced in Rrp6∆NT mutants, 

whereas the Rrp6NT domain is necessary and sufficient to recover Rrp47 expression. This 

indicates that Rrp47 interaction with the Rrp6NT domain directly stabilises Rrp47 to avoid 

degradation. Earlier experiments used GAL regulated fusion proteins to increase expression 

levels of the Rrp6NT mutant. Moreover, N-terminal zz-tagged Rrp6 mutants driven by a Rrp4 

promoter (Allmang et al. 1999) were used in these studies due to a centromer (CEN) element 

in the Rrp6 promoter which causes problems during plasmid replication. However, the 

different promoter and protein-tag could potentially affect protein levels and stability and 

therefore give misleading results (compare Fig. 4.8).   

Plasmids carrying a RRP6 wild-type allele, but differing in promoter constitution (Fig. 4.9 A, 

Rrp6 promoter; B and C Rrp4 promoter) and epitope tag (A and B untagged, C zz-tagged) were 

compared for growth complementation in an rrp6∆ strain (P781) at 18 ˚C, 30 ˚C and 37 ˚C for 

the time indicated. Strains lacking Rrp6 are temperature sensitive (ts) at 37 °C and display slow 

growth at permissive temperature (30 °C) as demonstrated by the vector control (pRS416). All 

tested constructs carrying wild-type RRP6 alleles complemented the rrp6∆ strain in a similar 

manner. Growth at 18 °C and 30 °C observed was similar to the wild-type strain (P364). 

Complementation of the rrp6∆ strain with the untagged RRP6 wild-type allele was slightly 

worse at 37 °C. 
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Figure 4.9 Schematics and growth comparison of Rrp6 constructs.  

Rrp6 constructs commonly used in the lab were analysed for growth. All constructs carry a 
copy of the RRP6 wild-type allele in the pRS416 vector. They differ with regard to promoter 
constitution and epitope tag. (A) RRP6 is expressed under its endogenous promoter (p436), (B 
and C) RRP6 is expressed under the RRP4 promoter (*RRP6, p390)) and (C) the RRP6 allele 
contains an N-terminal protein A-tag (zz-*RRP6, p263). (D) Growth comparison of the three 
RRP6 constructs transformed into the routinely used rrp6∆ deletion strain (P781) at 18 ˚C, 
30 ˚C, and 37˚ C and spotted onto selective medium against a wild-type strain and vector 
controls. 
 

 

To readdress and further investigate the requirements within Rrp6 for Rrp47 expression, Rrp6 

mutants were analysed and a complementary set of untagged Rrp6 mutants driven by the 

RRP6 promoter was created in addition to the zz-tagged fusion proteins expressed from the 

RRP4 promoter. The centromer sequence (CEN) of the pRS416 plasmid encoding the RRP6 

wild-type allele was deleted for this purpose to avoid conflicts due to the additional CEN 

present in the Rrp6 promoter (Fig 4.10 A). A HpaI restriction site was introduced by SDM either 

side of the pRS416 CEN, the CEN sequence was removed by restriction digestion and the 

vector was religated. Mutant untagged rrp6* sequences were subcloned into the polylinker of 

this construct, replacing the wild-type RRP6 sequence.  

D 

RRP6 

*RRP6 

zz-*RRP6 
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Figure 4.10 (A) Removal of the pRS416 CEN sequence in dicentromeric RRP6 constructs. 
In order to analyse the mutants under the endogenous RRP6 promoter which harbours a CEN 
sequence, the essential CEN6 sequences (125 nts) from the pRS416 vector were removed by 
introducing a HpaI restriction site either side of the pRS416 CEN sequence by SDM. After 
restriction digestion with HpaI, the plasmid was religated. The mutant rrp6* alleles were 
subcloned into this vector, replacing the wild-type RRP6 sequence. The RRP6 genomic 
sequence and mutant rrp6* sequences are denoted as blue arrows; scissors represent 
restriction sites used for cloning. 
 

 

 

Figure 4.10 (B) Schematic of Rrp6 domain structure and Rrp6 mutants analysed. 
Rrp6 wild-type protein architecture (top) and mutants investigated in this study. Rrp6 contains 
an N-terminal PMC2NT domain, a catalytic exonuclease domain, an HRDC domains and a 
consensus bipartite nuclear localisation signal (NLS) at its C-terminus. Rrp6.1 carries the D238N 
point mutation which renders the protein catalytically inactive (Burkard and Butler 2000); 
Rrp6NT1 and Rrp6NT2 are truncation mutants reduced to their N-terminal domain spanning 
residues 1-197 and 1-176, respectively; Rrp6∆NT lacks the N-terminal domain including the 
PMC2NT domain crucial for Rrp47 interaction (∆1-212); Rrp6∆C lacks the C-terminal domain 
(523-733).  
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An overview of Rrp6 domain structure is shown (Fig. 4.9 B), as well as the Rrp6 mutants 

investigated. Rrp6 wild-type protein (top) consists of 733 amino acids with a molecular weight 

of 84 kDa. Rrp6 contains an N-terminal domain termed PMC2NT domain spanning residues 13-

102 which is present in eukaryotes, but not in bacteria (Staub et al. 2004), an exonuclease 

domain (EXO 213-381) and an HRDC (helicase and RNase D C-terminal) domain (435-515). The 

C-terminus is required for association with the core exosome (Callahan and Butler 2008) and 

also contains a consensus bipartite nuclear localisation signal (NLS) (Briggs et al. 1998). The 

mutants depicted in Fig. 4.9 (B) were analysed as untagged proteins expressed from the RRP6 

promoter compared to the previously used zz-tagged proteins expressed from the RRP4 

promoter. The D238N mutant, termed rrp6.1, is a full-length, catalytically inactive protein with 

a single amino acid substitution in the exonuclease active site (Burkard and Butler 2000). The 

C-terminal 197X and 176X truncation mutants rrp6NT1 and rrp6NT2 reduce the protein to its 

N-terminal Rrp47 interaction domain with either 197 residues (L197X NT1) or 176 residues 

(P176X NT2). The rrp6∆NT mutant lacks the N-terminal 211 residues of Rrp6 including the 

PMC2NT domain which is required for interaction with Rrp47. The C-terminal truncation P523X 

removes the NLS (Briggs et al. 1998) and a region which is thought to tether Rrp6 to the 

exosome (Makino et al. 2013a).  

 

 

The Rrp6NT domain is sufficient to recover Rrp47 expression in an rrp6∆ strain 

The tagged and untagged RRP6 wild-type constructs (Fig. 4.9 A and C), as well as the mutant 

rrp6 alleles (Fig. 4.10B) introduced into the tagged and untagged plasmids were transformed 

into an rrp6∆ strain expressing the Rrp47-zz fusion protein (P439) to assess the effect of the 

mutations on Rrp6 protein levels, Rrp47-zz expression (Fig. 4.11) and growth (Fig. 4.12). 

Denatured cell extracts of the Rrp6 mutant strains were resolved by 12 % SDS-PAGE and 

analysed for Rrp47-zz expression by western blotting using a PAP antibody (Fig. 4.11 upper 

panels A and B). Rrp6 expression was analysed in parallel (A and B middle panels) using an 

Rrp6 specific antibody raised against the Rrp6 N-terminus (Mitchell et al. 2003a).  

Due to the zz-tag, which is recognised by the Rrp6 antibody, a direct comparison of expression 

levels in untagged and tagged mutants is difficult, since the combined signal for Rrp6 and zz-

tag is stronger than for the Rrp6 protein by itself. However the zz-rrp6∆NT mutant lacks the N-

terminal domain recognised by the Rrp6 antibody, the signal in (A) therefore represents the 

sole contribution of the zz-tag to the western signal for tagged Rrp6 proteins (A, lane 5), 

therefore most of the signal seen for the other tagged mutants stems from Rrp6 protein and 

not the tag. For the untagged mutants (B, lane 5, right panel) Rrp6∆NT is not detected by the 

Rrp6 antibody raised against the Rrp6 N-terminus. The analysis confirmed that Rrp6 protein 
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levels are higher in the zz-tagged Rrp4 promoter mutants compared to the wild-type RRP6 

strain (compare A, lane 1 to lane 3 tagged mutants and B, lane 1 to lane 3 untagged mutants). 

Expression of wild-type strain (P364, lane 1) and complemented wild-type (lane 3), as well as 

mutant proteins (B) are at similar levels in the untagged set and mirror physiological protein 

levels more accurately than the tagged Rrp4 promoter-driven constructs (A) which led to an 

overexpression of the RRP6/rrp6 alleles.  

Further analysis of the effects of the mutations on Rrp47-zz expression showed that Rrp47 is 

effectively depleted in the rrp6∆ strains transformed with the vector control (lanes 2) 

compared to the wild-type strain (lanes 1). All mutant Rrp6 proteins recover Rrp47-zz 

expression in the rrp6∆ strain apart from the Rrp6∆NT mutant (lanes 5), which lacks the N-

terminal Rrp47 interaction domain. Notably, in both tagged and untagged sets of proteins, the 

Rrp6NT interaction domain on its own is sufficient to recover Rrp47 expression to normal 

levels in the rrp6∆ strain (lanes 6). In conclusion, the direct interaction of Rrp47 with the 

Rrp6NT domain is required to prevent Rrp47 degradation. 

A      B 

  tagged           untagged 

 
 

 
Figure 4.11 The Rrp6NT domain is sufficient to recover Rrp47 levels in an rrp6∆ strain. 
Western complementation analysis of an RRP47-zz rrp6∆ deletion strain (P439) with (A) zz-

tagged and (B) untagged Rrp6 mutants. Wild-type and mutant rrp6 alleles were transformed 

into P439. Alkaline lysed cell extracts were resolved through 12 % SDS-PAGE and analysed for 

Rrp47-zz expression (upper panel) by PAP Western and for Rrp6 expression (middle panel) 

using an Rrp6 antibody raised against the Rrp6 N-terminus (Mitchell et al. 2003a). Pgk1 serves 

as internal control (bottom panel). (1) RRP6 wild-type control (P414), (2) pRS416 vector control 

(3) RRP6 (p263/p645), (4) rrp6.1 (p389, p651), (5) rrp6ΔNT (p260/p652), (6) rrp6 NT 

(p287/p653), (7) rrp6 ∆C (p627/p654). 
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Lack of the Rrp6 N-terminus affects growth worse than disconnecting Rrp6 from the exosome  

To investigate the effects of the Rrp6 mutants on growth, spot growth analyses were 

performed over 3 days at 37 °C and 30 °C and 5 days at 18 °C on minimal medium (Figure 

4.12). Tagged and untagged sets of Rrp6 mutants were assayed separately with differing 

starting ODs and can therefore not be compared directly but only within their set. Strains 

lacking Rrp6 display slow growth at 30 °C and are known to be temperature sensitive at 37 °C 

(Burkard and Butler 2000). However, the effect of Rrp6 on growth is dependent on strain 

background and here the widely available BY4741 strain was used to assess Rrp6 mutants 

where the growth effect at 30 ˚C is only minor in the rrp6∆ strain compared to the W303-1A 

related strains used in the above cited study. The spot growth assays confirmed a slow growth 

phenotype at 37 °C (and 18 °C) for strains lacking Rrp6 and strains carrying the catalytically 

inactive rrp6.1 allele were cold-sensitive as reported previously (Burkard and Butler 2000). 

Growth at the permissive temperature (30 °C) was very similar for all untagged mutants (B), 

whereas growth was slightly slower for strains expressing tagged Rrp6 mutants compared to 

tagged wild-type protein (A). In the tagged set (A), only the wild-type RRP6 allele showed 

improved growth and complementation of the slow growth rrp6Δ phenotype whereas the 

other mutants displayed a similar slow growth phenotype to rrp6Δ strains expressing the 

vector control. This could be due to a beneficial effect of overexpressing or stabilising the fully 

functional wild-type protein as opposed to stabilising the compromised mutants. 

In the untagged set, only the rrp6.1 mutant showed slow growth at 18 °C whereas the other 

Rrp6 mutants were not significantly affected by the lower temperature. In contrast, growth of 

the tagged mutants except for Rrp6∆C was generally worse compared to wild-type at 18 °C. 

Most striking is the difference in growth phenotypes at 37 °C, where only full length Rrp6 and 

Rrp6∆C display normal growth, the Rrp6NT domain is clearly non-functional on its own to 

support growth at 37 °C and both the Rrp6ΔNT and Rrp6.1 proteins displayed slowed growth 

at 37 °C with good agreement in both sets. At the higher temperature, therefore, deletion of 

the Rrp47 interaction domain had significant effects on growth and survival. The differences 

between tagged and untagged sets can be explained by the overexpression or stabilisation of 

tagged proteins as observed in the western analyses. Overexpression of the tagged wild-type 

protein seemed beneficial as seen in the bigger differences between complemented wild-type 

versus mutant alleles in the tagged set. In contrast, overexpression of mutant proteins 

adversely affected growth at the non-permissive temperatures compared to the observations 

made in the untagged set.  
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Figure 4.12 Losing the Rrp6-Rrp47 interaction affects growth.  

Spot growth analysis of tagged (A) and untagged (B) RRP6 wild-type and rrp6 mutant alleles 
transformed into an rrp6Δ strain (P781) along with wild-type (P364) and vector controls 
(pRS416). Freshly grown liquid cultures adjusted for equal OD600 were 10-fold serially diluted 
and 4 µl of each dilution was spotted onto selective medium (SD-ura). Growth was observed 
over 3 days at 30 °C and 37 °C and over 5 days on 18 °C. From top to bottom RRP6 wild-type 
strain (B only, P364), (A and B) vector control (pRS416), full length RRP6 (p263/p645), rrp6.1 
(p448/p651), rrp6ΔNT (p449/p652), rrp6NT (p287/p653), rrp6 ∆C (p627/p654).  

 

 

In conclusion, growth effects of a RRP6 deletion were milder in the BY4741 strain background 

at 30 ˚C than previously reported for the BMA38 strain. However, only the wild-type allele, but 

none of the Rrp6 mutant alleles complemented the rrp6Δ growth phenotype fully at the 

temperatures observed. Despite linking Rrp6 to the core exosome and containing an NLS for 

nuclear localisation, loss of the C-terminal domain Rrp6∆C affected growth the least at any 

temperature. Lack of the Rrp6 catalytic activity showed the strongest effects on growth as 

seen for Rrp6.1 and the Rrp6NT truncation mutants at the non-permissive temperatures at 

18 ˚C and 37 ˚C. Rrp6NT by itself did not complement slow or ts growth at the permissive and 

non-permissive temperatures. However, Rrp6∆NT which lacks the N-terminal Rrp47 

interaction domain clearly had an effect on growth, similar to losing the catalytic activity of 

Rrp6 at the non-permissive temperature.   

A 

B 
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rrp6∆NT mutants display a complete rrp6∆ RNA processing phenotype 

Parallel to the growth analyses, the strains carrying Rrp6 mutants were assessed for typical 

defects seen in rrp6∆ strains in pre-rRNA and sn/snoRNA processing by northern blot analyses. 

Cells were grown up to OD600 < 0.5, total RNA was extracted and resolved through an 8 % 

denaturing polyacrylamide gel and transferred onto Hybond N+-membrane which was 

successively probed with oligonucleotides complementary to certain target RNA species (Fig. 

4.13 A-C). A comparison of the rrp6∆ vector control (lane 2) with the isogenic wild-type strain 

(lane 1) shows the characteristic RNA processing defects of rrp6∆ strains. RNA processing 

intermediates which accumulate in the absence of Rrp6 include 3’ extended polyadenylated 

precursors of snoRNAs and snRNAs (lane 1, A+B), cryptic unstable transcripts (CUTs, C), as well 

as aberrant species derived from rRNA processing, such as the 5’ETS fragment, the 5.8S +30 

rRNA and the 5S degradation intermediate (D). Table 1 shows a summary of the results. CUTs 

are fairly short (median size 440 bases) non-coding transcripts produced by RNAPII and 

terminated by the Nrd1 pathway which are rapidly and efficiently degraded by the exosome 

and therefore not easily detectable in wild-type strains. However, they accumulate in rrp6∆ 

strains and other exosome mutants (Wyers et al. 2005, Arigo et al. 2006a). In order to test the 

Rrp6 mutants for a CUT accumulation phenotype a probe specific for the model CUT NEL025c 

(Thiebaut et al. 2006) was used (o809). 

All the full-length RRP6 alleles (lanes 3-5) expressed from plasmids complemented the rrp6∆ 

phenotype fully despite the tag or the difference in promoter constitution (asterisk in RRP6* 

denotes RRP4 promoter) compared to the RRP6 wild-type strain (lane 1). In contrast, the 

catalytically inactive rrp6.1 allele, the rrp6NT and the rrp6∆NT allele lacking the Rrp47 

interaction domain displayed rrp6∆ phenotypes for all RNA species tested (A-D, lanes 6, 7 and 

8), except for the CUT NEL025c which accumulated in the rrp6∆ strain and to a lesser degree in 

the rrp6NT and the rrp6∆C mutant, but not in the rrp6.1 and rrp6∆NT mutant. This is 

consistent with recent observations that Rrp6, independent of its catalytic activity, modulates 

the activity of the core exosome exo-/endonuclease Dis3/Rrp44 which is involved in the 

degradation of CUTs (Wasmuth et al. 2012).  

Short (A2) and long (A1) exposures of the intron-encoded snR38 probe revealed the discrete 

‘+3’ nucleotide extended (snR38+3) and longer unprocessed 3’ extensions (snR38-3’ I-pA and 

II-pA) typically seen in rrp6∆ mutants (lane 2) which represent polyadenylated precursors of 

snoRNA transcript terminated at site I via the Nrd1 pathway and site II via the fail-safe 

terminator (Grzechnik and Kufel 2008). Other snoRNAs and snRNAs like snR13, U6 and U1 

showed short, but more diffuse 3’ extensions visible as a smear above the band of the mature 

RNA species (A and B, lane 2, lane 6, 7, 8) or longer 3’ extended processing intermediates as 

seen for U14 (B2).  
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The snoRNA13 and U3 species also showed accumulation of a degradation intermediate, seen 

as a band below the mature species (A4 and B4). The rrp6NT domain by itself lacks the 

exonuclease and HRDC domains and is therefore not expected to be functional in RNA 

processing, however for some RNA species the phenotype was not as strong as a complete 

rrp6∆ null phenotype, e.g. and snR50 (A, lane 8), or was stronger than rrp6∆ as for the 5S and 

U3 degradation intermediates and the CUT (C). This could indicate independent functions of 

the rrp6NT domain possibly together with Rrp47, but separate from the Rrp6-Rrp47-exosome 

complex.  

Surprisingly, the rrp6∆C (Rrp6 P523X) mutant which has previously been reported not to affect 

RNA processing (Callahan and Butler 2008) clearly showed effects on certain RNA species 

tested here. The snR38 and snR50 snoRNAs (A, lane 9) showed half mature and half sn38+3 

and snR50+3 species. The rrp6∆C mutant clearly accumulated the 5’ETS by-product from the 

initial cleavage of the pre-rRNA (D, lane 9). A weak phenotype was also observed for U3 and 5S 

rRNA with a degradation intermediate visible as in the other mutants with null phenotypes (B, 

lane 9, and D, lane 9). Again, these phenotypes in mutants disrupting the association of Rrp6 

with the exosome could be explained by the modulation of Rrp6 and core exosome Rrp44/Dis3 

activities in each other’s presence or absence (Wasmuth et al. 2012). Despite the zz-tag and 

expression of the rrp6 alleles from the RRP4 promoter, RNA analyses of zz-tagged and 

untagged Rrp6 mutants were identical, therefore only the set of data obtained from untagged 

Rrp6 constructs expressed from the RRP6 promoter is shown in Fig 4.13. 

 

Table 4.1  RNA processing phenotypes of RRP6/rrp6 mutants and growth at 37 ˚C  

 snR38+3 snR38-3’ U6 pA 5’ETS 5.S+30 5S CUT 37 ˚C 

RRP6 - - - - - - - ++++ 

rrp6∆ + + + + + + + + 

rrp6.1 + + + + + + - ++ 

rrp6∆NT + + + + + + - ++ 

rrp6NT + + + + + + + + 

rrp6∆C + - - + - +/- + +++ 

 

 

In conclusion, the lack of the Rrp47 interaction domain Rrp6∆NT results in a complete rrp6∆ 

RNA processing phenotype, as does the lack of Rrp6 catalytic activity. This indicates an 

inhibition of the Rrp6-Rrp47 pathway due to either absence of Rrp47 or lack of Rrp6 catalytic 

activity.  
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Figure 4.13 Rrp6∆NT mutants display a complete rrp6∆ RNA processing phenotype. 

Northern blot analyses of rrp6∆ strains expressing Rrp6 full length and mutant alleles as in Fig. 
4.11. RRP6 wild-type (P364) and rrp6∆ (P781) strains complemented with vector control and 
rrp6 alleles were grown at 30 ˚C to 0.5 OD600. Total RNA was extracted, resolved through an 8 
% polyacrylamide gel and analysed by northern hybridisation with probes specific for the RNA 
species indicated to the right of the panels (A+B) snoRNAs and snRNAs (C) NEL025c CUT and 
(D) pre-rRNAs. SCR1 (A-D, bottom panel) serves as loading control. Extended polyadenylated 
precursors are marked 3’-pA (A1, B2), I and II denote the termination sites (A1) for the longer 
snR38 exposure. Defined +3 (A, B) and +30 nucleotide extensions (D) are indicated. More 
diffuse 3’ extensions seen for U6 are marked with an asterisk (B1). Degradation intermediates 
are denoted snR13T (A4), U3T (B4) and 5ST (D3).   

A B 

C D 
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4.2.5  Overexpressing Rrp6NT titrates Rrp47 out of Rrp6-Rrp47 complexes 

Rrp47 can be found in Rrp6-containing exosome complexes (Mitchell et al. 2003, Peng et al. 

2003). Having established that Rrp6NT is sufficient for expression and interaction with Rrp47, it 

appeared feasible to remove Rrp47 out of Rrp47-Rrp6 complexes by overexpressing Rrp6NT. 

This would allow to investigate potential effects of Rrp47 independent of catalytic Rrp6 

complexes. In order to address this, Rrp47 complexes were analysed using glycerol gradient 

density centrifugation. The procedure is presented in Figure 4.14. Gradients were prepared in 

lysis buffer with a glycerol concentration from 10 % at the top to 30 % at the bottom using a 

gradient mixer. Freshly prepared native cell extracts were loaded onto the gradients and 

sedimented for 24 hours in an ultracentrifuge. Then, 18 fractions were collected and analysed 

for protein concentration (Fig. 4.14 A, B) and protein distribution (Fig 4.14 C Coomassie gel) to 

ensure comparability of gradients run in parallel before western analysis. Protein 

concentration was determined using the Bradford Assay; for Coomassie stains, samples were 

resolved by 10 % SDS-PAGE and stained with Coomassie Instant Blue. 

 

C 
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Figure 4.14 Separation of protein complexes in glycerol gradients. 

(A) Schematic of a 10 to 30 % glycerol gradient prepared with yeast lysis buffer using a gradient 
mixer. The finished gradient has the highest concentration of glycerol at the bottom (30 %) 
with glycerol concentration gradually decreasing to 10 % at the top. Native yeast cell extracts 
were loaded and resolved in an SW41 rotor in a Beckmann ultracentrifuge at 36000 rpm, 4 ˚C 
for 24 hours. 18 fractions were collected from the top of each gradient and the protein 
concentration was determined using the Bradford assay. (B) Protein concentration curves of 
gradients run in parallel were plotted in a graph against the fraction number to ensure similar 
distribution of total protein for separate gradients. (C) Two sets of the fractionated samples 
were resolved by 10 % SDS-PAGE, one analysed by western blotting with a relevant specific 
antibody, here detection of the Rrp47-zz protein with the PAP antibody (C upper panel). The 
second gel was stained with Coomassie colloidal stain to further compare and confirm total 
protein distribution patterns (C, lower panel) with other gradients run in parallel.  
 

 

In an initial experiment, it was established that the commonly used Rrp47-zz strain (P414) 

gives the same Rrp47 sedimentation profile as the wild-type strain (P575). Gradients of 

isogenic rrp47∆, untagged RRP47 wild-type and RRP47-zz strains were run in parallel with a 

strain expressing Csl4-TAP, one of the cap proteins of the yeast core exosome used here as 

marker for exosome complexes. Along with the yeast lysates, a mix of standard molecular 

weight markers with known sedimentation coefficients was fractionated containing BSA, 

ovalbumin and catalase as indicated (Fig. 4.15) to use as size markers.  

Western analysis confirmed that Rrp47 and Rrp47-zz gradients result in the same 

sedimentation profile with a peak in fractions 9 and 10 (ranging from 8-12 and from 6-14, 

respectively). The signal from the PAP antibody is stronger and therefore observed over a 

wider range of the gradient than that obtained with an Rrp47-specific antibody for the wild-

type protein. Also, results obtained with Rrp47 and Rrp47-zz were in good agreement which 

means the C-terminal tag does not affect inclusion of Rrp47 into higher molecular weight 

complexes. In conclusion, most of the Rrp47 protein is seen in larger complexes close to 

catalase (11.3 S, app. 250 kDa) and not as “free” protein. The higher molecular weight 

complexes are in good agreement with the profile seen for Csl4-TAP which displayed two 

peaks, one at around 11-13 which is representative of higher molecular weight complexes i.e. 

Csl4-TAP incorporated into exosome complexes with a sedimentation coefficient of 14S 

(Mitchell et al. 1997) and another peak around fraction 5 representing a fraction of Csl4-TAP 

protein not associated with the exosome (app. 70 kDa).  
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Figure 4.15 Rrp47 wild-type and Rrp47-zz proteins sediment within the same range.  

Native yeast cell lysates of an RRP47 wild-type strain (P575) and an RRP47-zz tagged strain 
(P414) were resolved through 10 to 30 % glycerol gradients along with an rrp47∆ strain, the 
CSL4-TAP strain and a mix of standard molecular weight markers (A, top panel) with sizes (in 
kDa) as indicated. 18 fractions with increasing glycerol concentration from left to right were 
resolved by 10 % SDS-PAGE and analysed for distribution and content of total protein by 
Coomassie stain and Bradford assay (as shown in Fig 4.13 B). Fractionated gradients were 
analysed by western blotting using an Rrp47-specific antibody (B) and a PAP antibody to detect 
Rrp47-zz (C) and Csl4-TAP (D).   
 

 

Overexpression of Rrp6NT shifts Rrp47 into Rrp6NT-Rrp47 complexes 

 

Due to the lack of Rrp47 expression in rrp6∆ mutants, it is difficult to investigate the function 

or contribution of Rrp47 in exosome- and Rrp6-mediated RNA processing independently of 

Rrp6. The lab has previously shown that Rrp6NT directly interacts with Rrp47 and can be stably 

overexpressed in yeast as a GST-tagged fusion protein driven by a galactose-inducible (GAL) 

promoter (Stead et al. 2007). To investigate whether overexpression of the Rrp6NT domain 

could segregate Rrp47 from Rrp47-Rrp6 complexes and to address functions of Rrp47 

independently of catalytic Rrp6, multi-copy plasmids carrying the GST-Rrp6NT fusion protein or 

the GST control were transformed into an Rrp47-GFP strain (see 4.7). Cell lysates were 

fractionated as before. Shown are also gradients with lysates from Rrp47-zz strains grown in 

minimal medium based on either glucose or galactose as medium controls. Matching total 

cellular protein profiles were confirmed by SDS-PAGE and Coomassie stains of the fractionated 

samples. Parallel western analyses were performed to compare the sedimentation profiles of 

Rrp47-zz protein under the various growth conditions (Fig. 4.16).  

As described above, cells expressing Rrp47-zz grown in rich medium (A, YPD) peaked in fraction 

9 /10 as part of higher molecular weight complexes. In control cells grown in minimal medium 

based on either glucose (B, SD) or galactose (C, SGal), Rrp47-zz sedimented with a major peak 

in fraction 7 (range 6-9), which represents a clear shift into lower molecular weight complexes 
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for cells grown in minimal medium. In cells grown in galactose-based medium expressing GFP-

tagged Rrp47 in addition to the GST domain (D, upper panel), a similar sedimentation profile 

for Rrp47-GFP was observed as for Rrp47-zz in minimal medium; GST peaked in fraction 3-4, 

similar to ovalbumin which was in good agreement with the size of the GST-dimer (D, lower 

panel). Both GST and GST-Rrp6NT form a GST dimer in the absence of Rrp47 and ran at the 

expected molecular weight for these dimers. The shift of Rrp47 with a peak in fraction 7 

observed with the GST control (D upper panel) is due to growth in minimal medium (compare 

SD-Gal, SD minimal medium controls).  

In cells where the GST-Rrp6NT domain was overexpressed (Fig. 4.16 E, upper panel), the 

profile of Rrp47 and GST-Rrp6NT proteins showed clearly overlapping peaks in fraction 5 and a 

similar sedimentation to that of BSA (4.3 S, 67 kDa). Here, Rrp47-GFP shifted into even smaller 

complexes which correspond to the size of a GST-Rrp6NT-Rrp47-GFP dimer. Pull-down assays 

by P. Mitchell confirmed that upon overexpression of the GST-Rrp6NT domain, Rrp47 was 

mainly associated with the Rrp6NT-GST fusion protein and the interaction between Rrp47 and 

Rrp6 was effectively disrupted and reduced to around 4 % (Garland et al. 2013).  

 

 

 

 

Figure 4.16 Overexpression of Rrp6NT shifts Rrp47 into smaller complexes. 

Western analysis of native cell extracts from Rrp47-zz strains after fractionation through 
glycerol gradients. Extracts were prepared from Rrp47-zz strains grown in A complete medium 
(YPD), B glucose based minimal medium (SD), C galactose based minimal medium (SGal) and 
Rrp47-GFP strains transformed with a GST-tag (as control, D) or GST-Rrp6NT (E), an N-terminal 
GST fusion of Rrp6 that lacks residues 212 to 721 (Stead et al. 2007) on a multi copy plasmid 
grown in minimal medium (SD). Fractionated samples were resolved by 10 % SDS PAGE and 
analysed by western blotting using either PAP/GFP or anti-GST antibodies to detect zz-Rrp47 
(A, B, C) /Rrp47-GFP (D, E upper panel) or GST (fusion) proteins (D, E lower panel), respectively. 
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Taken together, the data from glycerol gradient analyses and subsequent pull-down 

experiments demonstrate that Rrp47 is effectively titrated out of Rrp6-containing complexes 

upon overexpression of the Rrp6NT domain. Rrp47 is shifted from higher molecular weight 

complexes into smaller complexes which correspond to the expected size for an Rrp47-GST-

Rrp6NT heterodimer. The segregation of Rrp47 from Rrp6 complexes by overexpression of 

GST-Rrp6NT was subsequently used as a tool to study functions of Rrp47 when uncoupled 

from the catalytic activity of Rrp6 (Garland et al. 2013). 

 

 
4.2.6 Rrp47 does not require Rrp6 for nuclear import 

Considering the dependency of Rrp47 on Rrp6 for expression and the fact that of the two 

proteins only Rrp6 is known to carry a nuclear localisation signal (NLS) (Briggs et al. 1998), it is 

likely that Rrp47 binding to Rrp6 might be required for Rrp47 to be imported into the nucleus. 

Proteins are synthesised in the cytoplasm and need to pass through nuclear pore complexes 

(NPCs) to reach the nucleus. Most macromolecules (> 60 kDa) require a nuclear localisation 

signal (NLS) for import (Mohr et al. 2009) which is recognised and bound by transport 

receptors, many of them belong to the karyopherin (importin and exportin) families. In yeast, 

Srp1 (karyopherin /importin-α, 60 kDa) binds the NLS of its protein substrates and forms a 

cargo-complex with Kap 95 (karyopherin β) to mediate translocation of the proteins through 

the NPC from cytoplasm to nucleus (Tabb et al. 2000, Gruenwald et al. 2011). Rrp6 carries two 

sequences similar to consensus NLS at its C-terminus (Briggs et al. 1998) which, if deleted, 

mislocalise a fraction of Rrp6 to the cytoplasm (Phillips and Butler 2003). Further, a stable 

association between TAP-tagged Rrp6 and the Srp1-Kap95 (importin α-β) complex has been 

reported from pull-down experiments (Peng et al. 2003, Synowsky et al. 2009). These 

observations suggest that Rrp6 uses the importin-/β pathway for nuclear import. Rrp47 and 

its human homologue C1D also localise to the nucleus (Nehls et al. 1998, Kumar et al. 2002), 

however, no nuclear localisation signal has been documented for Rrp47 and analogous pull-

down experiments have not reported an association of Rrp47 with Srp1 (Peng et al. 2003). As a 

likely scenario, Rrp47 needs Rrp6 for nuclear import, therefore Rrp47-Rrp6 assembly could 

occur in the cytoplasm following translation for joint import and Rrp47 is degraded if Rrp6 is 

not available to facilitate import.  

Rrp47 is not part of the Rrp6-Srp1-import complex 

 

To test this hypothesis and investigate whether Rrp6 and Rrp47 can be found together in the 

Rrp6-Srp1-import complex, Rrp6 and Rrp47 proteins from yeast cell lysates were directly 

compared for Srp1 association. Yeast cell lysates expressing protein A-fusion proteins of Rrp47 

and Rrp6 were bound to IgG-Sepharose beads and retained protein was eluted and resolved by 
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SDS-PAGE followed by western analyses using an Srp1-specific antibody (Fig. 4.17). Srp1 levels 

were comparable in input (lanes 1-3, upper panel) and supernatant fractions (lanes 4-6, upper 

panel). The eluate fractions represent the amount of Srp1 bound to the respective bait (lane 7 

untagged control, lane 8 Rrp6-TAP, lane 9 Rrp47-zz, upper panel) and reproducibly showed 

increased levels of Srp1 associated with Rrp6 compared to the wild-type control strain, which 

accounts for non-specific background binding. The signal obtained for Srp1 binding to Rrp47 

was close to background, despite the much greater amount of Rrp47 bound to IgG compared 

to Rrp6 (lane 6 vs. lane 5 and lane 9 vs. lane 8, lower panel). The efficiency of the Rrp6 pull-

down on IgG was generally much lower than for Rrp47 as seen in the amounts of protein left in 

the supernatant (SN), as well as the amounts of protein recovered in the eluates (lower panel). 

Additional bands visible in the bound fractions result from traces of IgG heavy and light chains 

detected with the PAP antibody (lane 7, 8, 9, marked with asterisks), as well as proteolytic 

fragments of Rrp6 and Rrp47 typically observed in native cell extracts. These results suggest 

that a significant fraction of Rrp6, but not Rrp47, is stably associated with Srp1. Therefore, 

Rrp47 is not part of the Rrp6-Srp1-import complex and does not use this nuclear import 

pathway. As a consequence, unless Rrp6 uses additional import pathways, Rrp6 and Rrp47 are 

most likely imported into the nucleus separately.  

 

 

 

Figure 4.17 Rrp47 is not associated with the Rrp6-Srp1-import complex. 
Western analysis of co-immunoprecipitation assays using yeast cell extracts from strains 
carrying tagged Rrp6-TAP (P539) and Rrp47-zz (P414) fusion proteins versus a wild-type strain 
(P575). The yeast cell extracts were incubated with IgG Sepharose and equal amounts of input, 
supernatant (SN) and eluate fractions were resolved by 12 % SDS-PAGE and analysed by 
western blotting with an Srp1-specific antibody (α-importin-α, upper panel) and a PAP 
antibody (lower panel) to detect bait protein. The PAP blot shows additional bands which are 
typical Rrp6 and Rrp47 proteolytic fragments in the respective lanes and IgG proteins (marked 
with an asterisk) in all eluate fractions which are detected by the PAP antibody.  
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Rrp47-GFP and Rrp6-GFP localise to the nucleus independently of one another 

 

To further address the influence of Rrp6 on Rrp47 localisation, a C-terminally tagged Rrp47-

GFP strain was created. The GFP tag was amplified from GFP (S65T) protein-tagging modules 

(Longtine et al. 1998) carrying either a HIS3MX6 or kanMX6 selectable marker. The GFP 

primers (o578/o579) were designed with homology sequences to the RRP47 ORF and flanking 

sequences, which target the PCR product to the RRP47 locus for homologous recombination. 

Transformants were screened by colony PCR for the appropriate size of the RRP47-GFP allele 

All candidates tested expressed the Rrp47-GFP protein as confirmed by western analysis using 

an anti-GFP antibody (Fig. 4.18 A). Plate assays confirmed that growth of the Rrp47-GFP strains 

was not affected by the GFP tag (Fig. 4.18 B). Cells were grown to OD600 < 1 in minimal medium 

for fluorescence microscopy along with a commercially available Rrp6-GFP strain and a wild-

type strain (P364). Nuclei were stained with 4', 6-diamidino-2-phenylindole (DAPI) to confirm 

overlap of the nuclear and the Rrp47-GFP signal when merged. Live-images were taken using a 

Delta Vision microscope (GE Healthcare, Applied Precision) with a 100 x objective (Olympus). 

Both proteins, Rrp47-GFP and Rrp6-GFP, clearly localised to the nucleus as previously reported 

(Fig. 4.18 C). A GFP signal of similar strength is obtained for the Rrp47-GFP (P1160) strain as for 

the commercial Rrp6-GFP strain. On close inspection, the GFP signal in both strains is polarised 

and focused in a specific area of the nucleus consistent with nucleolar localisation (Fig. 4.18). 

The wild-type strain shows background signal only.  

 

 

 A     B 

            

 

 

 

Figure 4.18 The Rrp47-GFP fusion protein is localised to the nucleus.  
(A) Western analysis of Rrp47-GFP transformants for protein expression using a GFP-specific 
antibody. Cell lysates of candidates were resolved by 12 % SDS-PAGE (B) Growth assay to 
compare RRP47 wild-type and GFP-tagged strains at 30˚ C for 3 days on complete medium. 

 

 

 

RRP47-GFP-HIS (3)         RRP47-GFP-KAN (5) 

 

RRP47 
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C 

 

 

Figure 4.18 The Rrp47-GFP fusion protein is localised to the nucleus.  
(C) Localisation of Rrp47-GFP vs. Rrp6-GFP and wild-type protein. Cells of the newly created 
RRP47-GFP strain (P1160) were grown up alongside a commercial RRP6-GFP strain (Roche) and 
a wild-type control (P364) in minimal medium to OD600 < 1. Cells (1ml) were harvested, 
resuspended in 100 µl medium and stained with DAPI for 1 minute before analysis in a 
DeltaVision microscope using a 100 x Olympus objective. Representative images (stack 
projections) are shown from both strains for GFP, DAPI and merged signals. The bottom panel 
shows the isogenic wild-type strain (P364). The scale bar corresponds to 2 µm. 

 

 

RRP6 deletion leads to a decrease but not loss of the Rrp47-GFP signal in the nucleus 

In order to assess whether Rrp47 localisation is dependent on Rrp6, the RRP6 wild-type allele 

in the RRP47-GFP strain was replaced with a rrp6∆::kanMX4 cassette by PCR-mediated 

homologous recombination using oligos o457/o458 (Rothstein 1983). Transformants were 

screened and confirmed by colony PCR for the rrp6∆::kanMX4 cassette, as well as the RRP47-

GFP allele. Cells were prepared for live-imaging and localisation analysis as before. The loss of 

Rrp6 led to a decrease, but not to a complete loss of the Rrp47-GFP signal in the nucleus (Fig. 

4.19 C). However, a clear nuclear signal was still observed in the rrp6∆ mutant compared to 

the wild-type control (A) which is surprisingly strong given the low expression levels of Rrp47 

expected in an rrp6∆ strain. This strongly indicates that Rrp47-GFP is imported into the nucleus 

in the absence and thus independent of Rrp6. Adding any of the full length tagged and 

untagged RRP6 expression constructs back to the rrp6∆ mutant, reinstated the fluorescence 

signal of the Rrp47-GFP fusion protein to wild-type levels (Fig. 4.19 D, E, F).  
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Figure 4.19 The Rrp47-GFP signal in rrp6∆ mutants is reduced but not lost.  
Immunofluorescence of RRP47-GFP and RRP47-GFP rrp6∆ strains complemented with wild-
type RRP6 alleles to assess Rrp47 localisation in dependence of Rrp6. Representative GFP, DAPI 
and merged images (stack projections) are shown of A wild-type (P364), B RRP47-GFP (P1160) 
and C RRP47-GFP rrp6∆ strain (P1161), as well as RRP47-GFP rrp6∆ complemented with D 
untagged RRP6 (p436) and the pRRP4 promoter constructs E tagged zz-RRP6* (p263) and F 
untagged RRP6* (p390). The scale bar measures 2 µm.  
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Rrp47-GFP rrp6∆ mutants accumulate a Rrp47-GFP degradation intermediate 

To further investigate a possible link between localisation of Rrp6 and Rrp47, the RRP47-GFP 

rrp6∆ strain was transformed with plasmids harbouring either full length zz-tagged Rrp6 

proteins, Rrp6 mutants (rrp6.1, rrp6∆NT, rrp6NT1 and rrp6NT2) or the vector control (pRS416). 

Western analyses were performed to assess recovery of Rrp47-zz expression using the anti-

GFP antibody (Fig. 4.20 A). As expected, no GFP signal was detected for the wild-type control 

(lane 1), in contrast to the strong western signal obtained for the Rrp47-GFP strain (lane 2). 

Deletion of RRP6 (lane 3) depleted the Rrp47-GFP signal, at the same time accumulating a 

smaller protein species the size of GFP (GFP*) detected by the GFP antibody. The GFP domain 

has a half-life of around 7 hours in yeast and is known to be resistant to proteolysis in vivo 

(Mateus and Avery 2000, Welter et al. 2010). The observed GFP* species is therefore most 

likely a Rrp47-GFP degradation intermediate since it is absent in the control (lane1), but also 

appears in the rrp6∆NT mutant (lane 7) which does not stably express Rrp47 due to the lack of 

the Rrp6NT domain (see also Fig. 4.11). The full-length wild-type tagged and untagged Rrp6 

constructs recovered Rrp47-GFP expression, as does the Rrp6.1 catalytically inactive protein. 

Notably, the Rrp6NT domain was sufficient to recover expression of the Rrp47-GFP protein, 

consistent with previous experiments using zz-tagged Rrp47 (Fig 4.11). A parallel western 

analysis of the zz-tagged Rrp6 proteins used in Fig. 4.20 A expressed in an rrp6∆ strain (P781) is 

shown in Figure 4.20 B showing sizes and expression levels of the mutant rrp6 alleles. Notably, 

even the Rrp6NT2 mutant which is expressed at much lower levels compared to the other Rrp6 

species fully recovered Rrp47 expression (compare Fig. 4.20 A lane 8 to B lane 5). 

 

 

The Rrp6NT domain recovers Rrp47-GFP expression in the nucleus fully  

Next, localisation of Rrp47-GFP was assessed in the rrp6∆ strains transformed with the mutant 

Rrp6 alleles (Fig. 4.21). The comparison of wild-type (panel 1) and Rrp47-GFP strain (panel 2) 

showed again a clear nuclear signal for Rrp47 which is depleted but not completely lost in the 

Rrp47-GFP rrp6∆ strain (vector control, panel 3). The Rrp47-GFP signal in the rrp6∆ strain could 

be recovered by expressing wild-type Rrp6 (panel 4) or Rrp6.1 (panel 5), but not with Rrp6∆NT 

which lacks the Rrp47 interaction domain and therefore Rrp47-GFP expression and shows a 

reduced nuclear signal like rrp6∆. Also, consistent with the western data, the Rrp6NT 

heterodimerisation domain is sufficient to recover Rrp47-GFP expression in the nucleus with a 

signal comparable in strength to the full-length Rrp6 protein. Thus, recovery of Rrp47 

expression through interaction with Rrp6 or the Rrp6NT domain (Fig. 4.20) correlates with an 

increase in the nuclear GFP signal (Fig. 4.21 panel 4 and 7). 
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Figure 4.20 A Rrp47-GFP degradation intermediate accumulates in rrp6∆ mutants.  
(A) Western analysis of Rrp47-GFP expression in wild-type (P364), RRP47-GFP (1160) and 
RRP47-GFP rrp6∆ strains (P1161) transformed with vector control (pRS416, lane 3) and 
plasmids encoding zz-tagged Rrp6 alleles (lanes 4-9, zz-RRP6 p263, zz-rrp6.1 p389, zz-rrp6∆NT 
p260, zz-rrp6NT1 p287, zz-rrp6NT2 p285). Alkaline lysed cell extracts were resolved by 12 % 
SDS-PAGE and analysed by western blotting with anti-GFP (upper panel) and anti-Pgk1 
antibodies. An Rrp47-GFP degradation intermediate (lane 3, 7 and weaker in lanes 6, 8, 9) is 
marked GFP*. The middle panel (A) shows both antibody signals on the same blot, as they 
were too difficult to separate. A separate panel for Pgk1 is shown at the bottom. (B) Western 
analysis of the same zz-tagged Rrp6 mutants as in (A) transformed into an rrp6∆ strain (P781) 
and probed with PAP followed by anti-Pgk1 antibodies. Rrp6NT1=Rrp6 197X, Rrp6NT2=Rrp6 
285X (compare Fig. 4.10B and 4.11).  
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Figure 4.21 Rrp6NT is sufficient to recover Rrp47-GFP signal in the nucleus. 
Localisation of the Rrp47-GFP fusion protein using fluorescence microscopy. RRP47-GFP rrp6∆ 
strains were transformed with either vector control or zz-Rrp6 alleles as indicated. Cell nuclei 
were stained with DAPI before live-imaging. Stack projections of GFP, DAPI and merged images 
are shown representative for cells of the tested strains; wild-type (no GFP fusion, P364); 
RRP47-GFP (P1160); RRP47-GFP rrp6∆ (1161) complemented with vector (pRS416), full-length 
zz-RRP6 (p263), zz-rrp6.1 (p389), zz-rrp6∆NT (p260), and zz-rrp6NT1 (p287).   
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In summary, the western and fluorescence microscopy analyses indicate that Rrp47-GFP is 

imported into the nucleus independently of Rrp6. If after import of Rrp47, Rrp6 is not available 

for interaction, Rrp47-GFP is degraded, as confirmed by the appearance of an Rrp47-GFP 

degradation intermediate detected in western analyses of both, the rrp6∆ strain and the 

rrp6NT strain (Fig. 4.20 A GFP*). Given the strength of the GFP signal in the nucleus of rrp6∆ 

cells, it is likely that the GFP degradation intermediate accumulates in the nucleus and 

contributes to the nuclear signal. GFP itself does not localise to the nucleus (Niedenthal et al. 

1996). Therefore, the nuclear signal observed in the rrp6∆ mutant can only originate from 

imported Rrp47-GFP and/or its degradation intermediates. 

 

4.2.7 Rrp47-GFP is degraded in the nucleus in rrp6∆ strains. 

Assuming that Rrp47-GFP is degraded in the nucleus, and a GFP* degradation intermediate is 

stabilised in the nucleus, this intermediate should be more abundant than the full length 

Rrp47-GFP protein. In order to determine the amount of both species, six independent 

biological samples from rrp47-GFP rrp6∆ strains (Fig. 4.22) were quantified by GFP western 

using GeneTools software. Values were adjusted against the internal loading control (Pgk1). 

From these data, the average ratio of truncated protein to full-length protein was calculated to 

be 1.8:1 confirming that the amount of truncated protein was consistently more abundant 

than the full-length Rrp47-GFP fusion protein. All signals were within the linear range. 

 

 

 

 
 

 
Figure 4.22 The GFP* fragment is more abundant than Rrp47-GFP in rrp6∆ strains. 
Quantitative western analyses of six independent biological samples from RRP47-GFP rrp6∆ 
strains (P1161) alongside the RRP47 GFP RRP6 (P1160) and the wild-type control strain (P364). 
Bands for the full-length Rrp47-GFP protein and the truncated degradation product (denoted 
GFP*) were quantified using GeneTools software and adjusted with Pgk1 (not shown). The 
ratios of GFP*:Rrp47-GFP for the 6 independent biological extracts from the rrp47-GFP rrp6∆ 
strain (calculated using GeneTools software) are 1.79, 1.47, 1.54, 1.89, 2.50 and 1.75 to 1 
(average = 1.8 : 1, SEM = 0.15). 
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Fluorescence of the Rrp47-GFP rrp6∆ strain is predominantly nuclear  

Moreover, trace quantification data was obtained from the microscopy images and Figure 4.23 

shows plot profiles from traces obtained for strains shown in Figure 4.20. The position of the 

lines and traces obtained for each image are shown and the minimum and maximum pixel 

values are given with the strain name. Traces were compared from lines drawn (i) through the 

background, through (ii) the cell avoiding the nucleus (=cytoplasm) and (iii) through the 

nucleus. Results are summarised in Table 4.2. Peak values for the nucleus were obtained by 

subtracting peak values of the cytoplasmic trace from the peak value of the nuclear trace. Cells 

from an additional Rrp47-GFP rrp6∆ image were included (C2) to confirm consistency of data. 

Cytoplasmic trace lines were placed close to the nucleus to minimise any distance effects. 

Trace quantification data of the microscopy images (Fig. 4.23) further confirmed that the rrp6∆ 

mutant displays around 30 % of the nuclear GFP signal seen in wild-type cells, which is 

considerably higher than the level of full-length Rrp47-GFP protein in this strain (approximately 

6 %). Also, the strength of the cytoplasmic signal in the rrp6∆ strain is only slightly above the 

background fluorescence seen in the cytoplasm of wild-type cells, and is not clearly different to 

that seen in the RRP6 wild-type strain (Fig. 4.23 B) or in the rrp6∆ strains complemented with 

either zz-tagged full-length Rrp6 or Rrp6NT domain (Fig. 4.23 D, E). In summary, these 

observations strongly indicate that the Rrp6-Rrp47-GFP is assembled in the nucleus after 

independent import of both proteins and that Rrp47 is degraded in the nucleus in the absence 

of Rrp6.  

 

Table 4.2 Summary of trace quantification data of microscopic images 

  Back- 
ground 

Cyto- 
plasm 

Cyt -bkg  
(∆ peak) 

Nucleus  Nuc -cyt 
(∆ peak) 

A RRP47 wt control 125-129 126-134.5 5.5 125-134.5 0 

B Rrp47-GFP 133-136 135-145 
134-145 

9 
9 

135-177 32 

C1 Rrp47- GFP rrp6∆ vector 128-133 130-141 
130-139.5 

8 
6.5 

130-151 10-11.5 

C2 Rrp47- GFP rrp6∆ vector 130-134 135-142.5 
137-142.5 

8.5 
8.5 

130-151 8.5 

D Rrp47-GFP rrp6∆ RRP6 125-129 126-134 
127-134 

5 133-168 34 

E Rrp47-GFP rrp6∆ rrp6NT 127-130 128-137 
128-135 

5-7 135-168 
135-168 

31 
33 
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  A   

 

  B   

 

  C   

 

  D   

 

  E    

 

 
 
Figure 4.23 The rrp6∆ mutant still displays 30 % of the nuclear signal of RRP6. 
Trace quantification of micrographs and plot profiles obtained for the Rrp47-GFP strains 
analysed in Figure 4.20. Traces were drawn through average intensity projections of the 
micrographs and plots with pixel values were obtained using the ImageJ MacBiophotonics 
software package. Shown are images and plot profiles from traces starting in the background 
through the cytoplasm and cutting through the centre of the nuclei and giving the minimum to 
maximum values obtained.  

  

Rrp47-GFP rrp6∆ + zz-RRP6 

128-168 

Rrp47-GFP rrp6∆ + zz-rrp6NT 

128-168 

Rrp47-GFP rrp6∆ 

132-151 

Rrp47-GFP 

133-177 

RRP47 
125-135 
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4.2.8  Deletion of Rrp47 does not affect nuclear import of Rrp6  

To confirm independent import of Rrp47 and Rrp6, corresponding localisation experiments 

were performed with Rrp6-GFP in an RRP47 wild-type versus an rrp47∆ strain. An rrp47 

deletion was generated in the commercial Rrp6-GFP strain by homologous recombination with 

the rrp47∆::kanMX4 cassette (Euroscarf). Mutants were checked for effects on expression and 

localisation of Rrp6-GFP compared to the strain wild-type for RRP47 using western analyses 

and fluorescence microscopy as before. Denatured cell extracts of three independent rrp47∆ 

mutants along with the RRP47 strain were analysed by western blotting using the anti-GFP 

antibody (Figure 4.24). Levels of Rrp6-GFP were not drastically reduced but were consistently 

lower in the rrp47∆ mutants (lanes 2-4) being reduced to around 70 % of the signal in the 

strain with the wild-type RRP47 allele (lane 1 and 5). Notably, the rrp47 deletion strains also 

accumulated degradation intermediates which were detected by the GFP antibody (marked 

with asterisks), the smaller one of these was just only detectable in the RRP47 control. This 

indicates that Rrp47 also plays a role in Rrp6 stability, albeit to a minor extent and is not as 

critical as Rrp6 is for Rrp47 stability. Localisation studies showed that the absence of Rrp47 

does not impede Rrp6 localisation to the nucleus, since a strong polarisation is still observed in 

the nuclear Rrp6-GFP signal in the rrp47∆ mutant (Fig. 4.24 B lower panel).  

 A          B 

  
 

Figure 4.24  Nuclear localisation of Rrp6 is independent of Rrp47. 
(A) Western analysis of three independent rrp47∆ deletion mutants (lane 2, 3, 4) created in the 
RRP6-GFP strain (lane 1 and 5) by PCR-mediated integration of an rrp47∆::hphMX4 cassette 
into the RRP47 locus. Alkaline lysed cell extracts were resolved by 12 % SDS-PAGE and western 
analysis was performed with anti-GFP. Rrp6-GFP degradation products are marked with an 

asterisk. (B) Immunofluorescence of yeast cells expressing an Rrp6-GFP fusion protein that are 
either wild-type for the RRP47 gene or carry an rrp47∆ deletion. Stack projections of GFP, DAPI 
and merged images are shown for representative cells of each strain. The scale bar denotes a 
length of 2 µm.  
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To further address whether the absence of Rrp47 affects the rate of Rrp6 import into the 

nucleus, a Fluorescence Recovery After Photobleaching (FRAP) experiment was attempted. 

However, despite keeping cells under optimal conditions by immobilising on 1 % agarose 

containing minimal medium and keeping the microscope environment at 30 ˚C, recovery of the 

Rrp6-GFP signal in the nucleus after photobleaching took more than 1 hour in the wild-type 

strain and suggested that there is no dynamic exchange between cytoplasmic and nuclear Rrp6 

pools.  

 

 

The absence of Rrp47 has no effect on Rrp6 complexes 

The effects of the Rrp47 deletion on the Rrp6 sedimentation profile and its association with 

other proteins or complexes were analysed using glycerol gradients, as before for Rrp47 (Fig. 

4.25). Cell lysates from strains grown in complete medium were fractionated as described (see 

Fig. 4.14). Western analyses of the RRP47 and rrp47∆ gradients using a PAP antibody to detect 

Rrp6-TAP showed no significant difference between the sedimentation profiles of the two 

strains. Rrp6-TAP gives a peak in fraction 9-10 as previously observed for Rrp47-zz. In 

conclusion, the absence of Rrp47 has no significant effect on the Rrp6-TAP sedimentation 

profile or more specifically, the inclusion of Rrp6 into exosome complexes. Taken together, the 

studies on import and localisation give strong evidence that Rrp47 and Rrp6 are imported into 

the nucleus independently of one another. The nuclear Rrp47-GFP signal in strains lacking Rrp6 

indicates that Rrp47 is most likely degraded in the nucleus in the absence of Rrp6.  

 

 

 

 

Figure 4.25 Rrp47 deletion has no effect on Rrp6 complexes. 
Separation of Rrp6-TAP complexes in 10-30 % glycerol gradients in an RRP47 wild-type (middle 
panel, P539) and the isogenic rrp47∆ strain (bottom panel, P540) compared to an RRP47-zz 
strain (top panel, P414). Gradient fractions (lane 1-18) were resolved by 10 % SDS-PAGE and 
analysed by western blotting with a PAP antibody detecting Rrp47-zz and Rrp6-TAP as 
indicated. 
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4.3 Discussion 

Rrp47 forms a stable heterodimer with Rrp6 and is required for both exosome-mediated RNA 

degradation, as well as exosome-independent RNA 3’ end processing functions of Rrp6 

(Callahan and Butler 2008, Butler and Mitchell 2010). Rrp47 and Rrp6 are specifically required 

for the maturation of 5.8S rRNA and snoRNAs, and for the degradation of RNA processing 

intermediates and cryptic unstable transcripts (Arigo et al. 2006a, Wyers et al. 2005). In this 

study, the dependency of Rrp47 on Rrp6 has been addressed, and more specifically, the 

assembly of the Rrp47-Rrp6 complex. Quantitative western and RT-qPCR analyses, as well as 

protein synthesis inhibition experiments have revealed that Rrp47 is rapidly degraded in cells 

lacking Rrp6. Co-expression of the two proteins which have been shown to form a heterodimer 

(Feigenbutz et al. 2013a) is therefore not primarily regulated on the transcriptional level, as for 

example seen for ribosomal proteins, but determined by the presumably more important 

partner in the complex, the exonuclease Rrp6, and its direct effect on Rrp47 stability.  

Expression of Rrp47 in the absence of its exonuclease partner Rrp6 is most likely not only 

unnecessary, but could have detrimental effects due to interference with redundant pathways 

e.g. by blocking access to RNA substrates for 3’ end processing. Protein capture experiments 

have previously revealed that Rrp47 can interact with other proteins associated with snoRNA 

processing and Nrd1 termination e.g. Nop56, Nop58 and Nrd1 (Arigo et al. 2006b, Costello et 

al. 2011 and our unpublished data). In the absence of Rrp6, Rrp47 expression could potentially 

lead to the depletion of these associated proteins from active complexes or to a block in 

snoRNP assembly and maturation. Rrp47 has also been shown to function in the Nrd1 

termination pathway (Arigo et al. 2006b) and without Rrp6 could have negative effects on the 

efficiency of termination. Notably, overexpression of the human Rrp47 homologue C1D in 

human tumour cell lines leads to an increased incidence of apoptosis and is prevented by 

proteasome-mediated degradation (Rothbarth et al. 1999 and 2002).  

The data presented here strongly indicates that Rrp47 degradation in the absence of Rrp6 also 

occurs by a vacuole-independent, proteasome-mediated pathway. At steady state, after 

cleavage of the N-terminal methionine residue, Rrp47 is left with a destabilising N-terminal 

glutamate (Synowsky 2006) and is therefore a target for degradation according to the N-end 

rule pathway (Varshavsky 1996 and 2011). Inhibition of vacuolar proteases either using a 

chemical inhibitor or through gene deletion did not show an effect on Rrp47 expression levels 

in rrp6∆ strains. In contrast, recovery of Rrp47 expression in the absence of Rrp6 could be 

observed upon inhibition of the proteasome and also by shielding the destabilising N-terminus 

of Rrp47 with a protein-A tag. This latter discovery could be indeed of general importance 

when interpreting data where N-terminally tagged proteins are used, since other proteasome 

substrates could be stabilised by N-terminal tagging in a similar manner in the absence of a 
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binding partner. The zz-Rrp47 fusion will also provide a useful tool for future experiments, 

since it allows stable expression of Rrp47 in the absence of Rrp6 and therefore the 

investigation of Rrp47 functions independently of Rrp6.  

To address the requirements within Rrp6 for Rrp47 expression, complementation studies were 

performed with various Rrp6 mutants expressed in an rrp6∆ strain. These studies show that 

the N-terminal Rrp47 interaction domain of Rrp6 is not only required, but also sufficient to 

maintain normal Rrp47 expression levels. This strongly suggests that the direct interaction with 

Rrp6 is required for stable expression of Rrp47 protein in yeast and protects the protein from 

degradation. Availability of Rrp6 thus provides a simple regulatory mechanism to ensure 

matching adequate levels of Rrp47 protein. Consequently, when Rrp6 levels are down-

regulated as observed during meiosis (Lardenois et al. 2011) Rrp47 levels will be adjusted 

accordingly. Furthermore, RNA processing profiles of the Rrp6 mutants confirm that deletion 

of the Rrp47 interaction domain has a similar effect on RNA processing to rendering Rrp6 

catalytically inactive. In contrast, deletion of the C-terminus which disrupts the interaction of 

Rrp6 with the core exosome clearly has very little effect on stable RNA processing consistent 

with previously published data (Callahan and Butler 2008). In conclusion, for RNA 3’ end 

maturation the interaction of Rrp6 with Rrp47 seems more important than the interaction of 

Rrp6 with the core exosome. The C-terminal deletion also removes the Rrp6 NLS which has 

been reported to cause its mislocalisation to the cytoplasm, but does not impact on the role of 

Rrp6 in nuclear RNA processing and degradation (Briggs et al. 1998, Phillips and Butler 2003, 

Callahan and Butler 2008).  

Analysis of Rrp47 complexes in glycerol density gradients confirmed a matching sedimentation 

profile for C-terminally protein A-tagged and untagged Rrp47 from cells grown in complete 

medium (YPD). Consistent with previous reports, both Rrp47 proteins were observed in larger 

complexes and co-sedimented with the exosome core subunit Csl4. However, a clear shift of 

Rrp47 into smaller complexes was observed in cells grown in glucose- or galactose-based 

minimal medium. This suggests that the association of the Rrp6-Rrp47 complex with the 

exosome may be influenced by cell growth conditions or nutrient availability. Crucially, 

overexpression of the GST-Rrp6NT heterodimerisation domain shifted Rrp47 into smaller 

molecular weight fractions. Moreover, clearly overlapping sedimentation profiles were 

obtained for GST-Rrp6NT and Rrp47 indicating the formation of a Rrp6NT-Rrp47 heterodimer 

and consequently segregation of Rrp47 from Rrp6 complexes. Further proof for titration of 

Rrp47 out of Rrp6 complexes by overexpression of Rrp6NT was obtained in pull down-

experiments. Rrp6NT overexpression was subsequently used as a tool to investigate Rrp47 

functions and contributions to RNA processing independently of catalytic Rrp6 and presented 

as the DECOID method (Decreased expression of complexes by overexpression of interaction 
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domains) with general application to investigate independent functions of proteins segregated 

from their complexes (Garland et al. 2013).  

Further studies on Rrp6-Rrp47 assembly addressing nuclear import of Rrp6 and Rrp47 indicate 

that the proteins are imported into the nucleus independently of each other. A fraction of Rrp6 

is associated with Srp1 presumably in a complex primed for translocation across the 

membrane or ready to be released within the nucleus. However, Rrp47 could not be detected 

in the Rrp6-Srp1-import-complex. Independent import routes were further confirmed by 

localisation studies using fluorescent GFP-fusions of Rrp47 and Rrp6. Both GFP-tagged Rrp47 

and Rrp6 were imported into the nucleus in the absence of their respective partner. Rrp47-GFP 

still gave a clear, albeit weaker nuclear signal in the absence of Rrp6 compared to wild-type 

cells and was expressed mainly as a degradation fragment the size of GFP as determined in 

western analyses with GFP-specific antibodies. GFP by itself is known not to accumulate in the 

nucleus; therefore, the nuclear GFP-signal in the rrp6∆ strain can only be the result of Rrp47-

GFP degradation in the nucleus which was confirmed by quantification of western analyses 

and GFP traces. Interestingly, the interaction between Rrp6 and Rrp47 might be important for 

their nucleolar localisation as indicated by observations in human cells and plants. In 

Arabidopsis thaliana, Rrp6 homologues with an N-terminal PMC2NT domain are localised to 

the nucleolus, as opposed to Rrp6 proteins lacking a PMC2NT domain which are localised to 

the nucleoplasm (Lange et al. 2008). Also, the human Rrp47 homologue C1D no longer 

localises to the nucleolus of human HEp-2 cells upon depletion of PM/Scl100 (Schilders et al. 

2007).  

In summary, the data presented here strongly supports the model that assembly of the Rrp6-

Rrp47 complex occurs after independent import of Rrp6 and Rrp47 into the yeast cell nucleus 

(Fig. 4.24). Since Rrp47 is shown to be expressed as a homodimer, structural rearrangement 

and interaction of Rrp47 with Rrp6 are required to form active heterodimers thereby avoiding 

Rrp47 degradation. In the absence of its associated exonuclease Rrp6, Rrp47 degradation 

provides a simple form of Rrp47 regulation preventing inappropriate expression and potential 

detrimental effects to the cell due to independent expression of Rrp47. Independent import 

pathways could spatially limit RNA degradation competent complexes and ensure that 

assembly of such activated complexes only occurs in the nucleus where they function. How the 

proteins are prevented from association in the cytoplasm is unclear. The use of separate 

importins is a possibility. The association of Rrp6 with Srp1 in the cytoplasm may serve to block 

the interaction and prevent premature assembly of the Rrp47-Rrp6 heterodimer. Notably, 

some importins are thought to also function as chaperone proteins for highly basic RNA-

binding proteins such as Rrp47 (Jäkel et al. 2002). However, Rrp47 might not need an importin 

due to its small size and import might be facilitated by its homodimeric conformation.  
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Other chaperone proteins, conformational changes due to interactions or chemical 

modifications that only occur after or during import could be necessary to enable complex 

formation. Rrp6 can be phosphorylated at multiple sites (Albuquerque 2008) and nuclear 

translocation is often regulated by phosphorylation, but it is also feasible that such 

modifications suppress the ability of Rrp6 to interact with Rrp47. The zz-Rrp47 N-terminal 

fusion which is stably expressed in the absence of Rrp6 will provide a useful tool for more 

detailed future studies on the Rrp6-independent nuclear import and functions of Rrp47.  

 

 

 

 

 

 

Figure 4.26 Model for the assembly of the Rrp47-Rrp6 heterodimer. 
Rrp47 is expressed as a homodimer and can be imported into the nucleus independently of 
Rrp6. Rrp6 uses at least partly the Srp1-Kap95 importin adaptors for nuclear import through 
the nuclear pore complex (NPC). If Rrp6 is not available in the nucleus to form a Rrp47-Rrp6 
heterodimer, Rrp47 is degraded by the nuclear proteasome. 
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Chapter 5 

Dependency of Rrp6 expression on its co-factor Rrp47 

 

5.1 Introduction 

Unlike the core exosome subunits and Rrp44/Dis3, the exonuclease Rrp6 is not essential for 

viability, however it is required for optimal mitotic growth (Briggs et al. 1998). Deletion of Rrp6 

or loss of catalytic activity not only leads to slowed 3’ maturation of small stable RNAs and 

affects RNA maturation and turnover (Briggs et al. 1998, Allmang et al. 1999, van Hoof et al. 

2000), but also, most likely as a result, leads to slowed growth at the permissive temperature 

of 30 ˚C and temperature sensitivity at 37 ˚C. As reported, functions of Rrp6 in pre-rRNA 

processing, 3’ maturation of stable RNAs, degradation of cryptic unstable transcripts (CUTs) 

and RNA surveillance depend on its co-factor Rrp47 (Mitchell et al. 2003, Peng et al. 2003, 

Arigo et al. 2006a).  

 

Again, the direct interaction of Rrp47 with Rrp6 which is critical for Rrp47 stability appears 

critical for Rrp6 functions, since deletion of the PMC2NT domain elicits similar phenotypes to 

the loss of Rrp47 (Stead et al. 2007). The partial structure obtained for yeast Rrp6 suggests 

that the PMC2NT domain folds over the Rrp6 catalytic exonuclease domain (Midtgaard et al. 

2006) and could thus have an effect on Rrp6 activity or block the catalytic centre from 

uncontrolled RNA digestion providing substrate specificity mediated by Rrp47. It has been 

previously reported that Rrp47 does not appear to significantly affect Rrp6 expression levels 

(Mitchell et al. 2003, Stead et al. 2007). Therefore, the observed growth and RNA processing 

phenotypes in rrp47∆ mutants were not attributed to changes in Rrp6 levels or stability. 

However, in a number of experiments in this study (chapter 4 see Fig. 4.1, 4.3 B, 4.23) and 

previous investigations by Martin Turner in our lab, Rrp6 protein levels were observed to be 

decreased in the absence of Rrp47. Since previous studies were non-quantitative and used 

native yeast cell extracts for analysis, we re-addressed the influence of Rrp47 on Rrp6 steady 

state expression levels with more sensitive methods.  

Described here are quantitative western and RT-qPCR analyses to address the effect of Rrp47 

on Rrp6 protein and mRNA expression levels. As previously reported, Rrp6 levels are mildly 

decreased in the absence of Rrp47 in cells grown in complete medium. However, this decrease 

in Rrp6 protein levels is exacerbated in minimal medium, strongly indicating a link between 

Rrp6 expression and nutrient availability. Moreover, Rrp6 stability is clearly reduced in the 

absence of Rrp47 as demonstrated in ‘translation shut-off’ experiments.  
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The significance of this finding was further strengthened by raising Rrp6 levels in rrp47∆ 

mutants which led to the suppression of snoRNA processing defects and CUTS accumulation in 

rrp47∆ mutants.  

Overexpression of Rrp6 could also suppress synthetic lethality in an rex1∆ rrp47∆ strain and, as 

observed in the single rrp47∆ mutant, specifically alleviated 3’ snoRNA processing defects. 

Termination of snoRNAs and CUTs is dependent on Nrd1 and an investigation of Nrd1 levels 

showed that the around 5-fold increased Nrd1 protein levels in rrp47∆ mutants could also be 

normalised by Rrp6 overexpression indicating that a disruption of this pathway could be the 

reason for rex1∆ rrp47∆ synthetic lethality. In summary, this data shows that Rrp47 is critical 

for Rrp6 expression levels and that at least some effects seen in rrp47∆ mutants are due to 

reduced Rrp6 stability and reduced expression levels in the absence of Rrp47. Moreover, 

nutrient availability has a significant effect on Rrp6 expression and thus on levels of Nrd1-

terminated RNAs like snoRNAs needed for ribosome biosynthesis, as well as CUTs and other 

ncRNAs with potentially significant and wide ranging effects on gene regulation. The main 

results of this study have been accepted for publishing (Feigenbutz et al. 2013b). 

 

 

5.2 Results 

In order to obtain quantifiable data from western analysis, cell extracts were prepared using 

an alkaline lysis protocol which due to immediate complete denaturation minimises 

degradation of the samples during preparation (Motley et al. 2012). For chemiluminescence 

imaging the Syngene G:BOX iChemi XL gel doc system was used to obtain data from western 

analyses, as opposed to the previously used chemiluminescent film which is unsuitable for 

quantification. Images were analysed using the associated GeneTools software. In addition to 

the commonly used tagged Rrp6 constructs, analyses were performed on a wild-type RRP6 

(P364) strain and its isogenic rrp47∆ strain (P356) to avoid misleading results due to potential 

effects of a tag on protein stability.  

 

5.2.1 Rrp6 levels are significantly decreased in rrp47∆ strains in minimal medium 

As a first point of reference, expression levels of either Rrp47-zz (Fig. 5.1 A) or Rrp6-TAP (Fig. 

5.1 B) in the absence of their respective partner were compared when grown in minimal (MM) 

or complete medium (YPD) at 30 ˚C to 1 OD600. Western analysis showed that Rrp6 affects 

Rrp47 expression levels much more drastically than vice versa; Rrp47-zz is effectively depleted 

in the absence of Rrp6, as shown before (Fig. 4.1).  
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Furthermore, this depletion occurs to a similar extent when grown in minimal (MM) or rich 

medium (YPD). In contrast, the absence of Rrp47 has only a small effect on Rrp6 expression in 

cells grown in rich medium, reducing Rrp6 expression levels to approximately 80 % of wild-

type levels. However, cells grown in minimal medium show a much greater decrease in Rrp6 

levels in an rrp47∆ strain. Only 30 % of Rrp6 protein is present at steady state in cells grown in 

minimal medium as compared to wild-type cells grown in rich medium. It should be noted 

however that both wild-type strains showed an approximately 20 % reduction of Rrp47 or Rrp6 

expression levels in minimal medium compared to rich medium. In summary, Rrp6-TAP levels 

are affected by the absence of Rrp47, however to a milder extent when cells are grown in rich 

medium. A much stronger depletion of Rrp6-TAP levels was observed in rrp47∆ strains grown 

in minimal medium. 

 

A             B 

      

              

 Relative Rrp47-zz levels    Relative Rrp6-TAP levels 

 

Figure 5.1 Rrp6-TAP levels are greatly reduced in rrp47∆ cells grown in minimal medium. 
Quantitative western analysis of A RRP47-zz (P414) and B RRP6-TAP strains (P539) and their 
isogenic rrp6∆ (P439) and rrp47∆ strains (P540), respectively, in minimal (MM) versus 
complete (YPD) medium. Upper panels show primary western data using PAP and Pgk1 
antibodies. Corresponding graphs are shown below with the quantification of Rrp47-zz and 
Rrp6-TAP levels from 2 experiments adjusted against Pgk1 as internal control.  
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Next, to exclude effects of the TAP-tag on protein stability, Rrp6 expression levels and changes 

in the absence of Rrp47 were confirmed in an untagged RRP6 wild-type strain (P364) and its 

isogenic rrp47∆ strain (P356). Three independent samples each were quantified by western 

analysis using an Rrp6-specific antibody (Fig. 5.2 A). The Rrp6 protein levels showed a very 

similar pattern to that observed before with TAP-tagged Rrp6, confirming a striking reduction 

of Rrp6 protein levels in the absence of Rrp47 in minimal medium against a much milder 

decrease in rich medium. 

To further investigate the effect of Rrp47 on Rrp6 expression, steady-state levels of RRP6 

mRNA were determined by quantitative Real-Time PCR (Fig.5.2 B), as described in chapter 4. 

RRP6 mRNA levels were determined relative to the internal control SCR1 using comparative 

quantitation (∆∆CT method, Schmittgen et al. 2008). Comparison of the RRP47 and rrp47∆ 

strains revealed that RRP6 mRNA levels are not much altered in the absence of Rrp47 in rich 

medium (bottom graph); if at all, they appeared slightly increased (113 %, n=4, SEM=8.7). In 

contrast, mRNA levels were reduced to around 60 % of wild-type levels in rrp47∆ in minimal 

medium (62.5 %, SEM=3.6, n=4). To assess the effect of the culture medium, the data was re-

plotted to compare RRP6 mRNA levels in the same strains in minimal versus rich medium (Fig. 

5.2 B, top graph). This showed that the reduction in mRNA levels is partly due to the growth 

conditions and not only due to the lack of Rrp47. In the wild-type strain RRP6 mRNA levels 

were down to 65 % of levels when cells were grown in complete medium (SEM=1.4, n=4) and 

further reduced in the rrp47∆ strain to 36.3 % (SEM=1.3, n=4). The minimal medium effect on 

RRP6 mRNA levels in the rrp47∆ strain is exacerbated since RRP6 mRNA levels are increased in 

rrp47∆ cells in rich medium, but reduced in rrp47∆ cells in minimal medium compared to cells 

expressing wild-type RRP47.  

In conclusion, results from quantification of tagged and untagged Rrp6 levels were consistent 

with regard to ratios of protein levels in the presence and absence of Rrp47, as well as growth 

in minimal or rich medium. The greatly reduced Rrp6 protein levels observed in rrp47∆ cells 

grown in minimal medium are partly due to decreased RRP6 mRNA levels in minimal medium 

as compared to rich medium. However, the decrease in steady-state mRNA levels cannot 

account solely for the reduction seen in Rrp47 protein levels, therefore protein or mRNA 

stability is most likely affected, too. 
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Figure 5.2 Rrp6 expression is reduced in the absence of Rrp47 in minimal medium. 
Quantitative western (A) and RT-qPCR (B) analyses of Rrp6 protein (84 kDa) and RRP6 mRNA 
steady state levels in an untagged wild-type strain (P364) and an isogenic rrp47∆ strain (P356) 
grown in minimal medium (MM, left) or complete medium (YPD, right). Data from 4 
experiments with triplicate samples was collected for quantification. (A top) Representative 
western images of Rrp6 protein expression in denatured yeast cell extracts of strains indicated 
using an Rrp6-specific antibody and showing duplicate samples only. (A bottom) Quantification 
of western data adjusted against Pgk1 and displayed in the graph below. (B) RT-qPCR analysis 
of RRP6 mRNA levels using SCR1 as internal reference for comparative quantitation (∆∆CT). The 
top graph shows RRP6 mRNA levels depending on growth conditions, the lower graph shows 
mRNA levels in the presence or absence of Rrp47 (B). Error bars indicate the standard error of 
the data set. 
 

 

5.2.2 Rrp6 protein stability is decreased in the absence of Rrp47. 

Having demonstrated that Rrp47 is unstable in the nucleus without its partner protein Rrp6, a 

similar effect of Rrp47 on Rrp6 stability seemed likely. Therefore, a translation-shut off 

experiment was performed, comparing Rrp6 protein stability in the RRP47 and rrp47∆ strain. 

Cells were cultured in minimal or rich medium and treated with the protein synthesis inhibitor 

cycloheximide. Samples were taken at time points up to 80 minutes after drug addition and 

analysed by western blotting using an Rrp6-specific antibody (Fig. 5.3). Strikingly, Rrp6 protein 

levels decreased markedly within 30 minutes of drug addition in the absence of Rrp47. The 

Rrp6 depletion occurred to a similar degree when cultured in minimal or rich medium.  
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In contrast, Rrp6 levels remained fairly stable throughout the time course in the wild-type 

strain, comparable to the internal control Pgk1. The absence of Rrp47 clearly has a 

destabilising effect on Rrp6 protein levels reducing the half-life of the protein from over 90 

minutes to around 20 to 30 minutes. However, the type of culture medium did not affect Rrp6 

stability any further. 

 

 
 

Relative Rrp6 protein levels 

 

 
 

 

Figure 5.3 Rrp6 is unstable in the absence of Rrp47. 
Western analysis of Rrp6 expression after translation shut-off induced by cycloheximide in an 
RRP47 wild-type strain (P364, right panels) and an rrp47∆ strain (P356, left panels). Cells were 
grown in complete medium (YPD, top) or minimal medium (MM, bottom) at 30 ˚C to 1 OD600. A 
10 ml sample was taken marking the start (0’) of the time course, cycloheximide was added 
and 10 ml samples were harvested every 10 minutes as indicated above the panels. Samples 
were prepared by alkaline lysis and resolved by 10 % SDS PAGE for western analysis with an 
Rrp6-specific antibody, followed by analysis with anti-Pgk1 as internal control. Results from 
two datasets were averaged and are displayed in the graph below   
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In order to directly compare and quantify Rrp6 expression levels before and after translation 

shut-off under the different conditions applied, samples taken before and 1 hour after 

cycloheximide addition were analysed side-by-side on the same gel (Fig. 5.4). Again, Rrp6 

protein levels observed at steady state in minimal medium were lower compared to rich 

medium in the RRP47 control strain (compare lane 1 to lane 5). After 60 minutes around a 

third of the protein was lost in the wild-type strain (compare lane 1 to 2 and lane 5 to 6). The 

absence of Rrp47 had a clear effect on Rrp6 stability, with an already reduced steady state 

level of Rrp6 at the start of the time course (compare lane 1 to 3 and lane 5 to lane 7). This 

effect was exacerbated in minimal medium, where Rrp6 protein levels were already depleted 

by more than half at the start of the time course. In both complete and minimal medium, Rrp6 

levels were effectively depleted in the absence of Rrp47 after 60 minutes to below 10 %. Rrp6 

expression followed a similar pattern for 0’ and 60’ minute time points in minimal and 

complete medium, indicating that nutrient availability had no effect on Rrp6 stability.  

 

 

Figure 5.4 Rrp6 protein levels are depleted in the absence of Rrp47.  
Western analysis and quantification of Rrp6 expression before (0’) and 60 minutes after 
translation shut-off with cycloheximide in RRP47 and rrp47∆ strains in YPD (lanes/columns 1-4) 
and minimal medium (MM, lanes/columns 5-8). The 0’ and 60’ minute time points of the time 
course in Fig. 5.3 were analysed side by side for comparison and quantification by western 
blotting with the anti-Rrp6NT antibody adjusted against the internal standard Pgk1. Relative 
Rrp6 expression levels from 2 experiments were plotted on the graph (below).   
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Taken together, the steady state protein and mRNA quantification, as well as the protein 

stability assay showed that Rrp6 is unstable in the absence of Rrp47. However, Rrp6 expression 

is also sensitive to nutrient availability which led to a decrease in RRP6 mRNA levels in minimal 

medium. The exacerbated effect in rrp47∆ cells cultured in restrictive conditions is therefore 

due to an additive effect of reduced mRNA levels and decreased Rrp6 protein stability in the 

absence of Rrp47. Thus, the influence of Rrp47 on Rrp6 expression could represent a major 

function of Rrp47 in ensuring adequate amounts of Rrp6 in the nucleus.  

 

 

5.2.3 Rrp6 can readily be overexpressed in wild-type and rrp47∆ cells.  

 

Considering that Rrp6 levels are reduced in the absence of Rrp47, the effects observed on RNA 

processing in rrp47∆ strains could be due to the reduced amounts and availability of the 

exosome exonuclease Rrp6. To determine whether Rrp6 levels could be increased in wild-type 

strains and expressed to “normal levels” in rrp47∆ strains, additional copies of Rrp6 were 

introduced into these strains on single copy (sc) and multi copy (mc) 2µ plasmids which add 

one or more copies of Rrp6 to the endogenously expressed Rrp6. Isogenic RRP47 (P575) and 

rrp47∆ (P368) strains were transformed with single and multi-copy plasmids carrying either the 

wild-type RRP6 allele or the zz-tagged RRP6 fusion protein (Allmang et al. 1999). Cell extracts 

were analysed by western blotting using an Rrp6-specific antibody (Fig. 5.5). Western analyses 

revealed a clear correlation between the type of plasmid and Rrp6 levels detected, with a clear 

increase of Rrp6 protein in cells transformed with the multi-copy plasmids compared to the 

single-copy. However, signals obtained for untagged Rrp6 and zz-tagged Rrp6 need to be 

interpreted independently since the protein-A zz-domain recognises IgG molecules non-

specifically and thus leads to an additive signal for tagged proteins. Similar expression profiles 

were obtained in both RRP47 and rrp47∆ strains confirming that Rrp6 can readily be 

overexpressed in both strains. Exogenous expression of RRP6 from the multi-copy vector 

increased the Rrp6 protein levels in the rrp47∆ strain around 5-fold reaching expression levels 

at least as high as in wild-type cells (compare lanes 1-4). This shows that Rrp6 expression is 

clearly not limited by Rrp47. 
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Figure 5.5 Overexpression of Rrp6 in an RRP47 and an isogenic rrp47∆ strain. 
Western analysis of an RRP47 wild-type (left panel) and isogenic rrp47∆ strain (right panel) 
transformed with vector controls (lane 1 pRS416, lane 2 pRS426) and single copy (lane 3 p645, 
lane 5 p263) and multi-copy (lane 4 p503, lane 6 p322) plasmids bearing untagged (lanes 3,4)  
and zz-tagged (lanes 5,6) RRP6 wild-type alleles. Cells were grown at 30 ˚C, subjected to 
alkaline lysis and resolved by 10 % SDS-PAGE. Western analysis was performed using an Rrp6 

antibody (upper panels) followed by anti-Pgk1 (lower panels) as loading control.  
 

 

5.2.4  Overexpression of Rrp6 does not adversely affect RNA processing  

 

In order to assess any effects of Rrp6 overexpression on RNA processing and degradation, total 

RNA extracted from the strains (from Fig. 5.5) overexpressing Rrp6 was analysed along with 

controls. As before, RNA species which show characteristic defects in rrp6 and rrp47 mutants 

were tested to see whether RNA processing defects are due to Rrp6 protein levels rather than 

lack of Rrp47. As shown here, overexpression of Rrp6 had no significant effect on RNA 

processing or degradation in the wild-type strain as revealed by northern blot analyses and 

ethidium staining of the total RNA resolved on an 8 % denaturing polyacrylamide gel (Fig. 5.6, 

A-E lane 1-7). Only mature, correctly 3’ processed species of the snR38, U6, 5S and 5.8S RNAs 

were observed and there was no accumulation of the 5’ ETS degradation fragment. In contrast, 

the transformed rrp47∆ strains (lane 8 -14) showed typical RNA processing defects for rrp47 

mutants such as accumulation of 5’ ETS fragments (A) and 3’ extended snoRNA species (B and 

C), as well as 5.8 S processing intermediates (E). In conclusion, Rrp6 overexpression has no 

detrimental effect on RNA processing in the wild-type strain. On close inspection, there was a 

decrease in the 3’ extended snR38 species when Rrp6 was overexpressed from the multi-copy 

vector (lane 11). This led to further investigation of this suppression effect in other snoRNAs 

with a direct comparison to an RRP47-complemented strain (Fig. 5.7).  
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Figure 5.6 Rrp6 overexpression has no effect on RNA processing in a wild-type strain. 
Total RNA analysis of an RRP47 wild-type (P575) and an rrp47∆ strain (P368) expressing 
additional single and multiple copies of untagged (p436, p503) and zz-tagged Rrp6 (p263, 
p322) as indicated or single and multi-copy vector controls (pRS416, pRS426 lanes 1, 2, 8, 9). 
5 µg RNA of each strain was resolved through a denaturing 8 % polyacrylamide gel and 
analysed by northern hybridisation with probes specific for (A) the 5’ ETS fragment, (B) snR38, 
(C) U6 snRNA and (D) SCR1 which serves as loading control. (E) Section of the ethidium 
bromide stained RNA gel with the 5S rRNA at the bottom and the 5.8S rRNA above, as well as 
the 5.8S +30 3’ extended species in the rrp47∆ strain background. An asterisk points to the U6 
3’ extended species in the rrp47∆ mutant. 
 

 

5.2.5 Rrp6 overexpression in rrp47∆ cells suppresses defects in snoRNA processing  

To further investigate the mild suppression of snoRNA processing defects when overexpressing 

Rrp6 in the rrp47∆ strain, additional snoRNAs and the model cryptic unstable transcript (CUT) 

NEL025c (Wyers et al. 2005, Thiebaut et al. 2006) were probed in the same way. For a direct 

comparison, an rrp47∆ strain complemented with an RRP47 wild-type allele was included in 

the northern analysis. As observed for snR38 in Fig. 5.6, additional copies of Rrp6 clearly 

reduced defects in snoRNA and CUT processing in rrp47∆ mutants (Fig. 5.7 A, B, D), whilst the 

amount of mature RNA (C) seemed unaffected.  

*
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The longer 3’ extended species seen in the rrp47∆ vector controls (lanes 2 and 3), but not in 

the wild-type strain (lane 1), represent 3’ extended polyadenylated snoRNA precursors 

terminated at site I using the Nrd1 pathway (3’ I) or site II using a fail-safe terminator (3’ II) in 

conjunction with the canonical 3’end mRNA termination/polyadenylation machinery (Mitchell 

et al. 2003, Grzechnik and Kufel 2008). Oligo- or polyadenylated (pA) pre-RNA species appear 

as a smear rather than a discrete band due to the varying length of the poly A tails. Besides the 

3’ extended precursors, rrp47∆ strains also accumulate truncated degradation intermediates 

(T) of snR13 and U3 snoRNAs (Mitchell et al. 2003). In rrp47∆ cells overexpressing Rrp6 (A-C, 

lanes 4 and 5) levels of all 3’ extended species of the snR38, snR13, U14 snoRNAs (+3, 3’I and 

3’II) decreased substantially, as did truncated degradation fragments observed for snR13 (A) 

and U3 (B) indicated below the mature RNA species (U3T, snR13T). The observed suppression 

effect was most prominent in cells expressing the multi-copy RRP6 plasmid (lane 5) where 3’ 

extensions decreased to almost the same levels as in rrp47∆ cells complemented with an 

RRP47 allele (A, B lane 6).  

Moreover, a decrease in the amount of accumulated NEL025c CUT (D) could be observed (-

pNEL025c). In rrp6∆ and exosome mutants CUTs accumulate as short (300–600 nt) transcripts 

generally with a defined 5’ end and heterogeneous 3’ ends resulting from Trf4 dependent 

polyadenylation. The here used model CUT NEL025c has been well characterised (Wyers et al. 

2005, Thiebaut et al. 2006). For better resolution of the CUTs accumulation phenotype, the 

genomic sequence of the CUT (coordinates 15,638–16,048 of chromosome V obtained by PCR 

using oligos o636/o637) was cloned into a multi-copy vector (pRS425) and expressed 

exogenously (+pNEL025C, upper panel). The rrp47∆ strain transformed with the vector control 

and the NEL025c CUT plasmid showed a very strong accumulation of the heterogeneous 

polyadenylated CUT providing a much clearer result compared to the strain without the 

NEL025c plasmid. This CUT signal was greatly reduced in the strains overexpressing Rrp6 (lanes 

3 and 4) and was not detectable in the wild-type strain or the rrp47∆ mutant complemented 

with wild-type RRP47. 

In contrast to the suppression of RNA processing defects observed for snoRNAs and CUTS, 

Rrp6 overexpression did not affect rRNA processing (Fig. 5.7 C). The accumulation of the 5’ ETS 

fragment or the 3’ extended 5.8 S rRNA precursors 7S and 58S +30 observed in rrp47∆ strains 

was not suppressed by increasing Rrp6 levels and is therefore clearly dependent on an 

activity/function provided by or in concert with Rrp47. In conclusion, these results suggest that 

expression of additional copies of Rrp6 specifically alleviates snoRNA processing defects and 

CUTs accumulation observed in rrp47∆ strains, particularly affecting site I transcripts that are 

generally terminated via the Nrd1 pathway. Thus, overexpression of Rrp6 can partly overcome 

the requirement for Rrp47 in snoRNA processing and CUTs degradation. 
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Figure 5.7 Rrp6 overexpression in rrp47∆ strains restores snoRNA 3’ and CUTs processing.  
Northern analysis of an rrp47∆ strain (P368) carrying single and multiple copies of the RRP6 
wild-type allele (lane 4 and 5) along with vector and wild-type RRP47 controls (lanes 2, 3, 6). 
Total RNA (5 µg) of each strain was resolved through an 8 % polyacrylamide gel and analysed 
by successive northern hybridisations with probes specific for (A) snR38 and snR13, (B) U14, U6 
and U3 snoRNAs, (C) rRNA processing intermediates 5’ ETS, ITS2 (detecting 5.8S+30 and 7S), 
5.8S, 5S. (D) The same strains were probed for the model cryptic unstable transcript (CUT) 
NEL025c (Thiebaut et al. 2006) with (+pNEL025c) or without (-pNEL025c, lower panel) the CUT 
expressed from a multi-copy plasmid (pRS425). SCR1 serves as loading control. Black vertical 
bars denote 3’ polyadenylated (pA) precursors of varying length terminated at site I (IpA) or II 
(IIpA), T denotes truncated RNAs. 

 D 
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5.2.6 Overexpression of Rrp6 suppresses rex1∆ rrp47∆ synthetic lethality 

To investigate whether overexpression of Rrp6 could also overcome synthetic lethality of the 

rex1∆ rrp47∆ double mutant, the previously employed plasmid shuffle assay was used (see Fig. 

4.13). Single and multi-copy plasmids carrying wild-type and mutant RRP6 alleles were 

transformed into the rex1∆ rrp47∆ double mutant carrying a RRP47 allele and a counter-

selectable URA3 marker. Transformants were assessed for growth on medium containing 5’ 

FOA which is toxic to cells expressing URA3 and thus selective for transformants that can grow 

without the original complementing RRP47/URA3 plasmid (Fig. 5.8). Strikingly, growth was 

observed for all mutants expressing additional copies of the tagged or untagged RRP6 wild-

type allele, thus adding just one additional copy of RRP6 to a rex1∆ rrp47∆ double mutant 

suppresses synthetic lethality (A, B, C). No growth was observed for the vector control. Growth 

complementation was also investigated for an rrp6.1 catalytically inactive mutant (B) which did 

not suppress rex1∆ rrp47∆ synthetic lethality even when expressed from a multi-copy plasmid; 

neither did expression of the Rrp6NT domain (C). To further analyse whether differences in 

growth observed on 5’ FOA correlate with Rrp6 expression levels, spot growth assays on 

minimal medium and YPD were performed on cells selected via 5’FOA (D). However, there was 

no obvious difference in growth for cells expressing RRP6 from single or multi-copy plasmids 

when grown on minimal or complete medium.  

In conclusion, overexpression of just one additional copy of catalytically active Rrp6 can 

overcome rex1∆ rrp47∆ synthetic lethality without the need for Rrp47. Thus, the suppression 

of rex1∆ rrp47∆ synthetic lethality is dependent on sufficient amounts of the active 

exonuclease Rrp6. This indicates an important function of Rrp47 in controlling adequate Rrp6 

expression, availability or activity at the subnuclear location where it is needed.  
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Figure 5.8 Overexpression of Rrp6 recovers growth in an rex1∆ rrp47∆ strain. 
Growth analysis of RRP6 wild-type and mutant alleles on single copy (sc, pRS314) and multi 
copy (mc, pRS425) plasmids transformed into a synthetic lethal (sl) rrp47∆ rex1∆ (P596) 
plasmid shuffle strain. Schematics at the top show the order of the strains analysed below. 
Strains were grown at 30 ˚C on 5’FOA (upper panel) to select for viable mutants without the 
URA3/RRP47 alleles, and on SD-trp (lower panel) as a control. Complementation of the sl strain 
was assayed using (A) zz-tagged (sc p427, mc p494) and untagged (sc p552, mc p553) RRP6 
wild-type alleles, (B) zz-tagged wild-type RRP6 and catalytically inactive rrp6.1 alleles (sc p429, 
mc p495) and (C) wild-type RRP6 or zz-tagged rrp6NT domain (sc p513, mc p496). (D) Spot 
growth assay of cells selected over 5’FOA and grown on SD-trp and YPD at 30 ˚C for 3 days. 
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5.2.7  Overexpression of Rrp6 alleviates RNA defects in rex1∆ rrp47∆ mutants  

To assess the effect of Rrp6 overexpression on RNA processing in the rrp47∆ rex1∆ mutants, 

northern blot analyses were performed on total RNA extracts from the strains assessed for 

growth in Fig. 5.8. RNA processing phenotypes of rrp47∆ rex1∆ rrp6(+) mutants expressing 

additional copies of Rrp6 were compared to wild-type, rex1∆ and rrp47∆ single mutants and 

the RRP47 complemented double mutant (Fig. 5.9). Mild to moderate overexpression of Rrp6 

from untagged single and multi-copy plasmids (A, B lanes 5 and 6) resulted in an exacerbated 

accumulation (relative to the rrp47∆ single mutant) of heterogeneous adenylated 3’ extended 

snoRNA species terminated at site I (3’ I), and mature snoRNA species for snR38, snR13, U14 

and snR50 were considerably depleted. Moreover, no “+3” species and less “3’ II” species were 

observed as compared to the single rrp47∆ mutant (compare lane 3 to lanes 5-8). Interestingly, 

the extent of the snoRNA processing phenotypes correlated roughly with the amount of Rrp6 

expressed (A, B, lanes 5-8). With increased Rrp6 expression from the zz-tagged constructs 

(lanes 7 and 8), snoRNA processing defects decreased and mature snoRNA levels were 

restored to near wild-type levels (A, B lanes 7 and 8). Overexpression of Rrp6 thus restores 

final maturation of snoRNAs in an rrp47∆ rex1∆ strain without the requirement for Rrp47.  

As seen for the rrp47∆ single mutant, Rrp6 overexpression had no effect on pre-rRNA 

processing (C, D), the rrp47∆ rex1∆ rrp6(+) mutants showed the same defects in 5.8 S rRNA 

processing as the rrp47∆ single mutant with accumulated 5’ETS and 5S degradation fragments, 

as well as 7S and 5.8S +30 processing intermediates. The differences observed in the strength 

of the 5’ETS signal is most likely due to the different strain background of the rrp47∆ and the 

rex1∆ rrp47∆ strain, since no effect was observed in the single rrp47∆ mutant (Fig 5.7 C). 

Some snoRNAs are required for the synthesis of 18S rRNA and are essential for mitotic growth 

(Venema and Tollervey 1999). These include U14 snoRNA which showed a strong accumulation 

of 3’ extended precursors in the Rrp6 supplemented rrp47Δ rex1Δ strain (Fig. 5.9 A lanes 5-8). 

The reason for the synthetic lethality of rrp47Δ rex1Δ mutants could therefore lie in the 

reduced production of 18S rRNA in these mutants. The northern analysis of 25S and 18S rRNA 

levels (Fig. 5.9 D), however showed no significant difference in the ratios of 25S to 18S rRNA 

and therefore no specific depletion of 18S rRNA in the rrp47Δ rex1Δ strains overexpressing 

Rrp6. Notably, both stable rRNAs were reduced in these mutants (lanes 5-8) when compared 

to wild-type or single mutants (lanes 1-4).  
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Figure 5.9 Rrp6 overexpression in rex1∆ rrp47∆ alleviates snoRNA 3’ processing defects. 
Northern analyses of an rex1∆ rrp47∆ strain carrying single and multiple copies of untagged 
RRP6, zz-tagged RRP6, and RRP47 (p262, lane 4) alleles. 5 µg total RNA of each strain was 
resolved through a denaturing 8 % polyacrylamide gel (A-C) or 1.5 % agarose gel (D) along with 
wild-type (P575, lane 1), rex1∆ (P550, lane 2) and rrp47∆ (P368, lane 3) controls. Successive 
northern hybridisations were performed with probes against (A) snR38, snR13 and U14; short 
and long exposures are shown for either mature/+3 or 3’extended species 3’I and 3’II, (B) 
snR50 snoRNA and U6 snRNA, (C) pre-rRNA species 5’ETS, 5S rRNA and ITS2/5.8S rRNA (SCR1 
serves as loading control in panels A-C). (D) 18S and 25S rRNA. 
 

A 
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In summary, growth and northern analyses of rex1∆ rrp47∆ strains supplemented with 

increasing amounts of Rrp6 showed that the synthetic lethality of this double mutant can be 

overcome by overexpression of Rrp6. Exacerbated RNA processing defects observed in those 

strains were restricted to the processing of snRNA/snoRNA transcripts terminated via the Nrd1 

pathway and could be alleviated by expression of Rrp6 in a concentration-dependent manner. 

The mutants accumulated snoRNA species whose size is consistent with adenylation after 

termination at site I (Grzechnik and Kufel 2008). This strongly indicates that the observed 

defects in snRNA and snoRNA processing and possibly CUTs degradation or more generally the 

accumulation of Nrd1 terminated transcripts could be the basis for the rex1∆ rrp47∆ synthetic 

lethality. 

 

 

5.2.8  Overexpression of Rrp6 in an rrp47∆ strains restores wild-type Nrd1 levels  

As seen in experiments so far, Rrp6 overexpression in the absence of Rrp47 appeared to affect 

mainly transcripts produced via the Nrd1 termination pathway (Fig. 5.7-5.9). The exosome co-

purifies with Nrd1 (Vasiljeva and Buratowski 2006), therefore it was interesting to assess 

whether the exosome needs Rrp47 or Rrp6 to associate with Nrd1 and to process Nrd1 

transcripts. To this end, a yeast co-immunoprecipitation experiment was performed with Rrp4-

TAP as exosome marker expressed in isogenic wild-type, rrp47∆ and rrp6∆ strains. Native yeast 

cell extracts of the three strains were incubated with IgG Sepharose and proteins associated 

with Rrp4-TAP were eluted with 0.5 M acetic acid (Fig. 5.10). Western analysis of input, non-

bound and bound fractions using an Nrd1-specific antibody showed a similar 4-5 fold 

enrichment of Nrd1 in the rrp47∆ and rrp6∆ mutants. This suggests that Nrd1 associates with 

Rrp4-TAP and exosome complexes independently of Rrp47 and Rrp6. However, Nrd1 levels 

appear generally increased in the rrp47∆ and rrp6∆ mutants as seen in the input fractions 

(compare lane 2, 3 to lane 1).  

It was previously reported that Nrd1 auto-regulates its own mRNA levels via Nrd1 termination 

and Rrp6-exosome mediated degradation (Arigo et al. 2006b). Nrd1 mRNA levels were 

reported to be significantly increased in Rrp47 mutants, but not Rrp6 mutants. Also, several 

studies working with TAP-tagged Nrd1 have reported similar Nrd1-TAP protein levels in wild-

type and rrp47∆/rrp6∆ strains (Grzechnik and Kufel 2008, Castelnuovo et al. 2013, Coy et al. 

2013). To address and clarify the effect of Rrp47 and Rrp6 on Nrd1 protein levels, steady state 

levels of untagged wild-type Nrd1 protein were assessed by quantitative western analysis 

using an Nrd1-specific antibody to compare a wild-type strain to rrp47∆ and rrp6∆ single 

mutants. Nrd1 protein levels proved to be reproducibly 4-5 fold increased in both rrp47∆ and 

rrp6∆ mutants compared to the wild-type Rrp4-TAP strain (Fig 5.11). Relative Nrd1 levels in 

rrp6∆ and rrp47∆ strains were at 23 % of the wild-type strain set at 100 % (n=3, SEM = 1.1). 
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Figure 5.10 Nrd1 associates with exosome complexes independently of Rrp6 and Rrp47. 
Western analysis of Nrd1 levels after co-immunoprecipitation of Nrd1 protein (64 kDa) with 

the exosome cap protein Rrp4-TAP (60 kDa) in a wild-type (P246), rrp47∆ (P369) and rrp6∆ 

(P589) strain. Native yeast cell extracts of the three strains were incubated with IgG sepharose. 

Bound Rrp4-TAP and associated proteins were eluted with 0.5 M acetic acid. Equal amounts of 

input, non-bound and eluted bound fractions were resolved by 10 % SDS-PAGE and analysed 

by western blotting using anti Nrd1 (upper panel) and PAP antibodies (lower panel). 

 

 

 

       
    

 

 

Figure 5.11 Nrd1 protein levels are 4- to 5-fold increased in rrp47∆ and rrp6∆ strains. 
Quantitative western analysis of Nrd1 levels from triplicate samples of 1 OD600 of alkaline lysed 
samples of the strains shown in (Fig. 5.10) resolved by 10 % SDS-PAGE. Nrd1 levels were 
analysed by western blotting with an Nrd1-specific antibody followed by a Pgk1 antibody. 
Bands were measured and adjusted against the internal control Pgk1. Relative Nrd1 levels are 
displayed in the graph (right). 
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To further address the contribution of Rrp47 or Rrp6 to the change in Nrd1 protein expression, 

a wild-type strain, isogenic rrp47∆ an rrp6∆ single mutants and an rrp47∆ rrp6∆ double mutant 

were transformed with a vector control or N-terminally tagged zz-Rrp47 which restores Rrp47 

expression in an rrp6∆ mutant otherwise devoid of Rrp47 (Fig. 5.12). Again, levels of Nrd1 

protein were 4 to 5-fold lower in the wild-type strain as compared to the rrp47∆ and rrp6∆ 

single and double mutants. Additionally expressing zz-Rrp47 did not affect Nrd1 levels in the 

wild-type strain, however, zz-Rrp47 expression restored Nrd1 levels close to wild-type levels in 

the rrp47∆ mutant (lane 4). In contrast, zz-Rrp47 expression had no effect on Nrd1 levels in the 

rrp6∆ single and rrp47∆ rrp6∆ double mutant (lane 6 and 8), which is not surprising since Rrp6 

provides the actual catalytic activity for the degradation of Nrd1 terminated transcripts 

including Nrd1 mRNA. This indicates that Rrp47 has a connective function in Nrd1 termination 

or Rrp6-mediated processing of Nrd1 terminated mRNA transcripts. Contrary to previous 

reports, these transcripts which most likely accumulate in both mutants (not just in Rrp47 as 

reported), are translated and result in elevated protein levels as observed here for Nrd1 itself. 

 

 

 

Figure 5.12 Rrp47 interrupts Rrp6 processing of Nrd1 terminated transcripts.  
Western analysis of Nrd1 levels in wild-type (P364), rrp47∆ (P356), rrp6∆ (P1528) and rrp47∆ 
rrp6∆ double mutants (P1599) transformed with either vector control (pRS416) or N-terminally 
tagged zz-Rrp47 allele (p622) which is stably expressed in rrp6∆ cells. Pgk1 serves as loading 
control. Samples were prepared by alkaline lysis and western analysis was performed as 
described above. 
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To investigate whether overexpression of Rrp6 can overcome the rrp47∆ effect on Nrd1 levels 

and thus the requirement for Rrp47 in the Nrd1 pathway, denatured cell extracts of rrp47∆ 

mutants and an isogenic wild-type strain carrying single and/or multi-copy Rrp6 plasmids were 

probed with an Nrd1-specific antibody (Fig. 5.13). Overexpressing Rrp6 in the P575 wild-type 

strain had no effect on Nrd1 protein levels as compared to the vector control (lanes 1-3). As 

before in the P364 strain background (Fig. 5.11), elevated Nrd1 levels were observed in the 

rrp47∆ vector control and in the strain carrying an RRP6 single copy plasmid. Strikingly, Nrd1 

levels decreased correlating with increasing Rrp6 expression (lanes 5-8) and were similar to 

wild-type levels in the strain expressing multi-copy zz-Rrp6 (lane 8). Results from both strain 

backgrounds were consistent and showed that Nrd1 levels are up to 5-fold increased in rrp47∆ 

and rrp6∆ strains. In contrast, only mildly increased levels could be observed when using TAP-

tagged Nrd1 (data not shown) which might explain why previous studies by other labs failed to 

observe an effect on Nrd1 levels. Taken together, overexpression of Rrp6 can alleviate the 

requirement for Rrp47 in the regulation of Nrd1 levels and more generally in the Nrd1 

pathway.  

 

 

 

 
 
 
Figure 5.13 Nrd1 protein levels are restored in rrp47∆ strains by Rrp6 overexpression. 
Western analysis of Nrd1 levels in an RRP47 wild-type (P575) and isogenic rrp47∆ strain (P368) 
carrying tagged and untagged single and multi-copy Rrp6 expression plasmids (compare Fig. 
5.5-7). Alkaline lysed cells were resolved by 10 % SDS-PAGE followed by successive western 
analysis with anti-Nrd1 antibody and anti-Pgk1 as internal control.  
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5.3 Discussion 

 
The data presented here shows a clear and significant effect of Rrp47 on Rrp6 protein 

expression levels and stability. This effect has escaped previous investigations since it is only 

minor in cells grown in complete medium. However, the reduction of Rrp6 expression levels in 

the absence of Rrp47 is exacerbated when cells are cultured in minimal medium due to an 

additive effect of Rrp6 instability and reduced RRP6 mRNA levels. Consistent with these 

observations, transcriptional activity of both genes is regulated by factors in response to 

nutrient availability (Lee et al. 2002, Nishizawa et al. 2008, Sattleger et al. 2011, Zaman et al. 

2008 and 2009). Overexpression of Rrp6 in wild-type cells showed no detrimental effects and 

appears to allow optimal growth.  

 

As observed in this study, overexpression of Rrp6 in rrp47∆ strains could recover Rrp6 protein 

levels to wild-type levels and above and strikingly, the defects in snoRNA processing or CUTs 

degradation observed in the rrp47∆ strain could at least partially be overcome by additional 

copies of Rrp6. Therefore, the defects seen in rrp47∆ mutants are at least partially due to 

reduced Rrp6 expression, availability or affinity. Assuming a role for Rrp47 in substrate 

recognition or recruitment, increasing the affinity and/or effective concentration of Rrp6 could 

make contact with substrates more likely in the absence of a mediator/adaptor like Rrp47. The 

role of Rrp47 in the 3’ processing of 5.8S rRNA and 5’ETS degradation seems more direct, since 

overexpression of Rrp6 cannot alleviate these processing defects in the rrp47∆ strain. Both 

substrates are known to have extensive secondary structures at their 3’ ends (Yeh et al. 1990) 

and the defects seen in the absence of Rrp47 are consistent with its assumed role in the 

processing of structured RNA substrates (Stead et al. 2007).  

Surprisingly, overexpression of catalytically active Rrp6 in the rex1∆ rrp47∆ strain could 

suppress the synthetic lethality of the mutations and recover growth. The effects on RNA 

processing were again restricted to substrates terminated via the Nrd1-pathway. The Rrp6 

supplemented double mutants showed an accumulation of 3’ extended snoRNA precursors of 

varying length and notably, depletion of the mature snoRNAs. The RNA processing defects 

decreased with increasing amounts of Rrp6 expressed in the rex1∆ rrp47∆ strain. These 

observations are consistent with a functional redundancy between Rex1 and Rrp6 in snoRNA 

processing and the proposed model by Grzechnik and Kufel (2008) whereby snoRNA 

termination at site I is followed by multiple rounds of polyadenylation and 3’ exonucleolytic 

processing in a kinetic proofreading competition (Grzechnik and Kufel 2008). Suppression of 

the specific snoRNA processing defect in rrp47∆ rex1∆ mutants by overexpression of Rrp6 

indicates that the synthetic lethality could be due to a block in snoRNA maturation or CUTs 

degradation. This is supported by analyses of conditional rex1 rrp6 mutants (Garland et al. 
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2013) where overexpression of Rrp6 also led to a suppression of synthetic lethality of the 

rrp47∆ mpp6∆ double mutant. In this case, however, complementation was independent of 

Rrp6 catalytic activity (W. Garland, personal communication). This is consistent with a non-

catalytical function of Rrp6 proposed in mRNA surveillance (Milligan et al. 2005) which could 

result from the postulated allosteric effects of Rrp6 on Rrp44 activity (Wasmuth and Lima 

2012, Makino et al. 2013a).  

Finally, overexpression of Rrp6 in an rrp47∆ strain restored Nrd1 protein to levels observed in 

the wild-type strain. Since the effects of Rrp6 overexpression were restricted to snoRNAs and 

CUTs terminated via Nrd1, it was interesting to see how Nrd1 expression is affected. If Nrd1 is 

available in excess, it binds to its own mRNA resulting in premature transcription termination 

and the mRNA is degraded by the Rrp6-exosome thus auto-regulating its own levels (Arigo et 

al. 2006b). In rrp47∆ strains, the Nrd1 pathway and thus Nrd1 auto-regulation is disrupted and 

Nrd1 levels are 4- to 5-fold increased implying a critical role for Rrp47 in Nrd1-dependent 

termination. However, as for the Nrd1 substrates, overexpression of Rrp6 could compensate 

for the lack of Rrp47. Notably, Nrd1 has also been implied in regulating the cellular response to 

nutrient availability with a number of new mRNA targets of the Nrd1-Nab3 pathway that are 

rapidly repressed in response to nutrient availability (Thiebaut et al. 2008, Darby et al. 2012). 

Considering more recent studies, the transcriptional repression is most likely due to Rrp6-

dependent processing of shortened transcripts which then function as transcriptional 

repressors. Recent reports indicate that Rrp6 is involved in RNAPII pausing and transcriptional 

repression of the HIV TAR RNA by producing such a regulatory transcript (Wagschal et al. 

2012). Such selective degradation of RNAs to regulate gene expression, physiology and 

ultimately cellular phenotypes is widely exploited in bacteria (Gripenland et al. 2010, Mackie 

2013). Rrp6 is also known to degrade distinct classes of ncRNAs during vegetative growth 

which are induced at the onset of meiosis when Rrp6 is depleted and the cell is reprogrammed 

for its new task (Lardenois et al. 2011). This indicates a critical role for Rrp6 in differential 

ncRNA expression and explains the requirement for tight control of Rrp6 levels and activity to 

modulate the cellular response to changing growth conditions.   

Taken together, Rrp6 has critical roles in transcription termination, stable and ncRNA 

processing and surveillance, and as a result a multitude of secondary effects on other 

pathways by affecting expression levels of mRNA targets like Nrd1 and Nab2 (Arigo et al. 

2006b, Roth et al. 2005) or by modulating the activity of the core exosome (Wasmuth and 

Lima 2012, Makino et al. 2013a). In the absence of Rrp6 or reduced Rrp6 levels, stable RNA 

processing and turnover is slowed most likely due to the use of redundant, less efficient 

processing pathways. Moreover, CUTs with potential regulatory functions in gene expression 

and other processes accumulate which could lead to a comprehensive change in the pattern of 

gene expression of the affected cells. Rrp6 can therefore be regarded as a molecular switch 
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that quickly adapts cells to changing conditions. The lack of Rrp6 shifts cells into economy 

mode, whereas sufficient levels of Rrp6 provide conditions for optimum growth.  

Given that RNA is now widely regarded as the ancestral molecule, preceding DNA and proteins, 

ribozymes and later RNases would have been at the centre of all regulatory processes with 

RNA fragments, structures or non-coding RNAs as the main regulators of gene expression. 

Over time these have been replaced or supplemented by increasingly specific proteins acting 

as transcription factors and modulators. However, the importance of regulatory non-coding 

RNAs and the significance of RNases in their production and regulation are now re-emerging. 

Notably, higher organisms have evolved mechanisms to shield and modulate RNase activities 

with adaptor and modulator proteins, the exosome being a prime example for its substrates 

have to be channelled through a catalytically inactive core to reach the enzymatic activity of 

the complex (Bonneau et al. 2009, Wasmuth and Lima 2012). In this respect, the most likely 

function for Rrp47 and other exosome co-factors can be seen in conferring substrate specificity 

and act as adaptors and modulators of RNase efficiency or expression to keep a crucial activity 

in the cell and specifically in the nucleus under tight control. 

On a final and general note, rrp6∆ mutants have long been used as a marker for nuclear 

exosome function. However, care must be taken when interpreting data from rrp6∆ mutants, 

not only because Rrp6 has core exosome-independent targets and functions (Callahan and 

Butler 2008, Graham et al. 2009, Gudipati et al. 2008, 2012, Schneider et al. 2012). As 

importantly, Rrp6 mutants cause a wide range of secondary effects such as Rrp47 depletion, 

decrease in core exosome/Rrp44 activity (Wasmuth and Lima 2012), differential ncRNA 

expression (Lardenois et al. 2011), as well as effects on levels of other proteins like Nrd1, Nab2 

and other mRNAs targeted and regulated via Rrp47-Rrp6 and Nrd1 (Arigo et al. 2006b, Roth et 

al. 2005, Castelnuovo et al. 2013).  
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Chapter 6 

Conclusions and future studies 

 
We successfully used a mutagenesis approach to reveal regions within Rrp47 critical for 

binding to Rrp6 and RNA. More specifically, we empirically determined the Sas10/C1D domain 

which so far had only been defined by bioinformatics and we demonstrated its importance for 

the main functions of Rrp47 in Rrp6 binding, RNA processing as well as normal growth. We 

could also show that the Sas10 domain and the C-terminus of Rrp47 cooperate in stable RNA 

binding. However, whilst the basic C terminus is required for stable RNA binding in vitro, it 

appears to be dispensable for RNA-processing functions in vivo suggesting the existence of 

alternative agents in this pathway. Residues in the C-terminal domain of Rrp47 have been 

found to be specifically required for the final step of box C/D snoRNA maturation and possibly 

snoRNP assembly. Protein capture experiments in our lab by J. Costello using recombinant 

Rrp47 and yeast cell lysates demonstrated interactions between Rrp47 and the yeast snoRNP 

proteins Nop56 and Nop58 suggesting a function for Rrp47 as sensor and checkpoint for 

snoRNP assembly (Costello et al. 2011). Moreover, titrating Rrp47 out of catalytically active 

Rrp6 complexes also recently confirmed a critical function for the Rrp47 C-terminus in snoRNA 

and CUTs processing (Garland et al. 2013).  

In addition to snoRNP proteins, protein capture assays also revealed weak interactions of 

Rrp47 with the Nrd1-Nab3 heterodimer responsible for termination of sn/snoRNAs and CUTs 

(J. Costello, personal communication). Further investigation of Rrp47 function in this pathway 

is of great interest due to its links to exosome-mediated degradation of pervasive transcripts 

with potential roles in regulation of gene expression and silencing. Mutations within Nrd1 and 

Nab3 have so far not led to the satisfactory mapping of Rrp47 binding to either Nrd1 or Nab3 

(my unpublished data). However, the effects of Rrp47 depletion on Nrd1 levels presented in 

this study show a clear and important function of Rrp47 in this termination pathway. We have 

shown that Nrd1 termination is disrupted in the absence of Rrp47 alone, suggesting that Rrp47 

makes the critical connection or guarantees localised accumulation of Rrp6 necessary for Nrd1 

termination (seeing it can be overcome by overexpression of Rrp6). Contrary to previous 

reports using TAP-tagged Nrd1, we have found around 4 to 5-fold elevated Nrd1 protein levels 

in rrp6∆ and rrp47∆ strains. This is consistent with Nrd1 transcription being auto-regulated by 

surplus Nrd1 binding to Nrd1 mRNA causing pre-mature termination and degradation of Nrd1 

mRNA by Rrp6 (Arigo et al. 2006b). Again it would be interesting to confirm these findings with 

data on Nrd1 mRNA levels in wild-type versus rrp6∆ and rrp47∆ strains which could be 

produced by RT-qPCR and the same could be investigated for Nab3 and Sen1, the partner 

proteins of Nrd1 in the complex.  
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Over the course of this study, the association of Rrp47 with Rrp6 has been more closely 

characterised in a cooperation with the Harding lab, revealing that recombinant Rrp47 forms a 

homodimer, however in the presence of Rrp6 is found as a stable Rrp47-Rrp6 heterodimer 

(Feigenbutz et al. 2013). This implies a structural reconfiguration of Rrp47 to join its partner 

protein. The interdependency of expression of the protein partners has been demonstrated 

with almost complete depletion of Rrp47 in the absence of Rrp6 and a weaker but significant 

effect of Rrp47 on Rrp6 expression and stability. The discovery that an N-terminally tagged zz-

Rrp47 construct is protected from degradation in the absence of Rrp6 opens up a number of 

possibilities to further investigate Rrp47 functions independently of its exonuclease Rrp6. 

Initially confirmation is needed that zz-Rrp47 sediments within the same range and forms the 

same complexes as its untagged wild-type counterpart. This could be done by fractionation of 

native cell extracts from wild-type strains and rrp6∆ mutants expressing zz-Rrp47, as 

described. Further, the effects of zz-Rrp47 on RNA processing and localisation could be 

established. Attempts to reveal in vivo RNA substrates of Rrp47 by UV cross-linking using 

“CRAC” in cooperation with D. Tollervey and S. Grannemann have so far been unsuccessful (my 

unpublished data) and might be worth revisiting using zz-Rrp47 protein as bait in an rrp6∆ 

mutant and a catalytically inactive rrp6.1 strain.  

Furthermore, critical effects of Rrp47 on Rrp6 expression have been established which are 

exacerbated in minimal medium. A more comprehensive analysis of Rrp6 protein expression 

levels and RNA processing phenotypes under various growth conditions could give crucial 

insights into gene expression reprogramming through changes in Rrp6 levels and the resulting 

effects on CUTs and ncRNA expression dependent on nutrient status. A parallel analysis of 

sedimentation profiles of Rrp6 and the identification of associated proteins could also give 

clues to changes in complex formations under different growth conditions. Rrp6 

overexpression has been shown to alleviate certain rrp47∆ phenotypes connected to Nrd1 

terminated transcripts like snoRNAs and CUTs implying that Rrp47 is not necessarily required 

for these functions if enough Rrp6 is available. However, this indicates a role for Rrp47 in 

maintaining appropriate Rrp6 levels, be it due to simply maintaining Rrp6 stability or increasing 

substrate affinity. Another possibility is that Rrp47 is involved in the subnuclear accumulation 

of Rrp6 in the nucleolus as seen for C1D. This could be investigated by co-localisation 

experiments of Rrp6-GFP with a nucleolar protein like Nop56 or Nop1 in the presence or 

absence of Rrp47. Taken together, despite crucial new insights into Rrp47 interactions with 

Rrp6 and RNA and assembly of the Rrp47-Rrp6 heterodimer, it is still unclear how exactly 

Rrp47 functions. However, this study has provided a number of promising new leads to follow 

and particularly the recently obtained Rrp47-Rrp6NT crystal structure obtained in Elena Conti’s 

lab and analysis of mutants in our lab will add new momentum to unravelling how Rrp47 

regulates the activity and functions of its associated exonuclease Rrp6. 
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