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Abstract

A bias-adjusted estimator for small samples and a hybrid estimator, which

combines the guaranteed invertibility of the MLE with original non-hybridised

estimators, are introduced in Chapter 2. Their performance is extensively com-

pared with that of the Maximum Gaussian Likelihood and several Instrumental

Variable-type estimators in the context of the spatial error model (SEM). We

show that the bias-adjusted estimator is effective across various sample sizes

and the hybridised forms of the estimators outperform even the best of the

IV methods across a majority of the cases examined. Chapter 3 introduces

a sub-model for spatial weights and estimates a variable weight matrix for

the mixed regressive, spatial autoregressive (MR-SAR) model by maximum

Gaussian likelihood. We establish the identifiability of the weight parameter,

the consistency and the asymptotic normality of the QMLE under appropriate

conditions that extend those given by Lee (2004a). Finite properties of our

estimator are investigated in a Monte Carlo study and we show that it outper-

forms other competing estimators in many cases considered. Its applicability

is illustrated in Chapter 4, where the estimator using two types of sub-models

for the spatial weights is applied to the cross-sectional data set used in Er-

tur and Koch (2007) in the framework of the MR-SAR model to study the

impact of saving, population growth and interdependence among countries on

growth. It is shown that our QML estimator is able to capture positive spatial

spillovers of growth among countries and provide significant estimates of other

parameters of the model including the parameter defining the spatial weights.
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Chapter 1

Introduction

Spatial econometrics is a sub-field of econometrics that combines economet-

rics with spatial analysis. The term ‘spatial econometrics’ was originated by

Jean Paelinck. It deals with estimation and specification of models that in-

volve interactions between units, or with data that have spatial autocorre-

lation or neighbourhood effects. Paelinck and Klaassen (1979) discuss the

following distinct features that separate spatial econometrics from (standard)

econometrics; spatial interdependence in spatial models, asymmetry among

observations, space-distant explanatory factors, ex ante and ex post distance

interaction, and space in spatial models. Standard econometric techniques are

not always applicable for dealing with these features so they were often ignored

or assumed away in the literature of econometrics.

Anselin and Rey (1997) provide a collection of papers on spatial economet-

rics to emphasise the importance of this field. An overview of development

of spatial econometrics in the past three decades and challenging directions

of future research can be found in Anselin (2010). Pinkse and Slade (2010)

provide an overview of the direction of spatial econometrics and recognise prob-

lems still unsolved in this field. They recommend that researchers should begin

with concrete empirical problems when trying to establish a new methodology.

Partridge et al. (2012) discuss three papers that address problems in spatial
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econometrics when estimating geographic spillovers and propose alternative

approaches to deal with these problems.

1.1 Spatial Effects

Spatial effects contained in spatial data can be divided into two types; spatial

dependence and spatial heterogeneity. Spatial dependence is the dependence

among data observations in cross-section and can be either positive or negative.

Comparing to time series with dependence in time dimension only, spatial

dependence can be multidimensional with dependence both in time and space

dimensions. Anselin (1988a) argues that this dependence may be caused by (i)

measurement problems and (ii) complex patterns of spatial interactions. As

spatial dependence can be multidirectional, standard econometric techniques

are not applicable and results obtained from these techniques are often not

valid. Spatial econometric techniques, therefore, need to be developed.

The second type of spatial effects is spatial heterogeneity, which can be

seen as observations being distributed unevenly in the area. It can lead to

heteroskedasticity if it is reflected in measurement errors. However, this aspect

of spatial effects can often be dealt with by standard econometric techniques

and a separate estimation method is not always necessary (Anselin, 1988a and

2010).

1.2 Spatial Weight Matrix

The specification of a spatial weight matrix is one of the most important issues

in the analysis of spatial econometric models of the type described briefly in

the following sections. It is a square matrix with weight elements capturing de-

pendence or interaction between spatial units. Earlier forms of spatial weight

matrix in the literature are based on binary contiguity between spatial units
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(Moran, 1948 and Geary, 1954), which use values 0 − 1 to capture the inter-

actions. Value 1 represents two spatial units having a common border, and 0

otherwise. Moran (1948) first assigns B (“black”) to a county if an event has

occurred in that particular county, and W (“white”) otherwise. Then, if two

contiguous counties are both “black”, the value 1 is assigned, and 0 otherwise.

Weight matrices based on the binary contiguity are of, for example, Rook con-

tiguity where the weights equal 1 if the two regions share common border, and

0 otherwise. Another form is of Queen contiguity where the weights equal 1

if the two regions share common side or vertex, and 0 otherwise. If cities or

points are considered as spatial units, then two cities are neighbours if they

are within a chosen distance from each other.

As the binary contiguity is sometimes not sufficient to represent a more

complex spatial interaction, general weight matrices have been proposed to in-

clude (relative) distances between spatial units. One of the well-known weight

matrices is the Cliff-Ord weight matrix introduced in Cliff and Ord (1973,

1981), where the weight elements are a combination of distances and relative

border length of common border between units. Distances in these contexts

are geographic. However, Case et al. (1993) discuss that the distances between

neighbours are not limited to only geographic distances but can represent eco-

nomic or demographic distances as well. Other forms of the weights are of, for

instance, inverse distance, n-nearest neighbours, or geostatistical whose form

is a function of values derived empirically (Getis and Aldstadt, 2004). Some of

the weight matrices in this category are in the forms of Spherical Variogram,

Gaussian Variogram, and Exponential Variogram. A nice overview of the spa-

tial weight matrices can be found in Anselin (1988a) and Anselin and Bera

(1998).

Specification of the spatial weights is an important issue as different weight

matrices yield different results and, hence, different interpretation of the re-

sults. Anselin (1988a) discusses that the weights are generally chosen to be

18



exogenous and the parameter values are determined a priori, which may cause

spurious correlation if the pre-determined spatial structure is not correctly

specified. Moreover, Anselin (1980, 1984) argues that spatial weights should

be selected based on spatial interaction theory. Proper choice of the weights

improves an estimator’s efficiency whereas inappropriate choice of the weights

creates inefficiency of the estimator (Cliff and Ord, 1973). However, proper

specification of the weight matrix has been regarded as difficult and controver-

sial (Bavaud, 1998). Practitioners sometimes choose a weight matrix based on

empirical convenience that may not capture the dependence structure prop-

erly. Paez et al. (2008) show that errors in the weight matrix can lead to

biased estimates. Besides, Plumper and Neumayer (2010) study specification

issues relating to the spatial weight matrix and argue that row-standardising

and changes in a functional form of the weight matrix can lead to significantly

different estimated results of the spatial effect.

Researchers have tried to construct the weight matrix using computer soft-

ware. For example, Can (1996) develops software to construct the weight

matrix in C programming language, and Aldstadt and Getis (2006) suggest

an algorithm called ‘A Multidirectional Optimal Ecotope-Based Algorithm’

(AMOEBA) using empirical data that can distinguish clusters of weighted

spatial units. GeoDa has also become a useful tool for constructing the weight

matrix. Other studies attempt to find a proper weight matrix using differ-

ent techniques and approaches. Bavaud (1998) gives a theoretical overview of

general properties of spatial weight models and discusses several examples de-

picting these properties. Leenders (2002) discusses the four steps that should

be taken when constructing a weight matrix and provides specification tests

for choosing the most appropriate models for network autocorrelation. Mur

et al. (2012) provide an overview of literature on the criteria for specifying a

weight matrix and propose a simple nonparametric approach for selecting the

appropriate weight matrix from a set of matrices.
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Estimating the weight matrix has recently become a challenging alternative

for specifying the weight matrix properly. Souza (2012) proposes an estima-

tion technique for estimating networks using the Least Absolute Shrinkage and

Selection Operator (Lasso), and shows that the estimator is consistent under

sparsity requirements. Geniaux (2012) introduces a parametric approach to

endogenously estimate the spatial weight matrix based on geographical dis-

tances in the spatial lag model using the iterated IV estimation method. Kele-

jian and Piras (2012) provide an estimator for regression parameters in the

spatial panel data model that incorporates an endogenous weight matrix as a

spatially lagged dependent variable, and show that the estimator is consistent

and asymptotically normal.

1.3 Regression Models in Spatial Economet-

rics

Several regression models have been introduced in the literature to deal with

the spatial effects. For the spatial dependence, two groups of regression mod-

els have been introduced. The first group consists of the regression models

that include the spatial lag dependence, which is the dependence in variables

associated with different spatial units. An example of models in this group is

the spatial autoregressive (SAR) model (Anselin, 1988a):

Y = ¸WY + " (1.1)

where Y is an n × 1 vector of observations of the dependent variable, " is an

n × 1 vector of disturbances, ¸ is the spatial autoregressive parameter, and

W is an n × n weight matrix of fixed non-negative constants. This model is

also called the spatial lag model. If the model includes regressors X, then it

is called the mixed regressive, spatial autoregressive (MR-SAR) model (Ord,
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1975 and Anselin, 1988a). The MR-SAR model is described as

Y = X¯ + ¸WY + " (1.2)

where X is an n × k matrix of values of k exogenous explanatory variables,

and ¯ is a k × 1 vector of parameters.

The second group of the regression models deals with the spatial error

dependence, which is the dependence in the error terms. The most common

model is the spatial error model (SEM) (Cliff and Ord, 1973):

Y = X¯ + U (1.3)

with U an n× 1 disturbance vector defined as

U = ½MU + " (1.4)

where M is an n×n weight matrix of fixed non-negative constants, ½ is a scalar

parameter, and " is an n× 1 vector of innovations that are homoskedastic and

independently distributed.

A model that contains both the spatial lag dependence and the spatial

error dependence is the spatial autoregressive model with spatial autoregressive

disturbance (SARAR) described below.

Y = X¯ + ¸WY + U (1.5)

with

U = ½MU + " (1.6)

where W and M can be the same or different. This model can also be extended

to capture higher order spatial processes (Lee et al., 2010).

1.4 Spatial Panel Data Model

Panel data models have recently received much attention in spatial economet-

rics and several studies, both theoretical and applied, have been carried out in
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this framework. For example, Kapoor et al. (2007) suggest generalisations of

the GM estimator introduced in Kelejian and Prucha (1999) to estimate the

spatial autoregressive parameter and variances of the disturbance process in

the framework of panel data models. Elhorst (2003) investigates eight panel

data models with fixed effects, random effects, fixed coefficients, and random

coefficients extended for the spatial error models (SEM) as well as the spatial

lag models (SAR) respectively. This survey provides a nice overview of the

spatial panel data models and concentrates on the model specification and

the comparison between the estimation methods. Lee and Yu (2010) discuss

recent developments in the spatial panel data models for static and dynamic

cases. Finite sample properties are studied in Monte Carlo experiments and ef-

fects of misspecification are provided. Elhorst (2011) surveys the literature on

the static and dynamic spatial panel data models, and shows that incorporat-

ing lags of the dependent and independent variables into spatial econometric

models can be useful to assess direct and indirect effects.

1.5 Estimation Methods

The least squares estimator is generally an inconsistent estimator for the MR-

SAR model whether or not the disturbances are spatially correlated, because

the spatial lagged variables are correlated with the disturbances (Ord, 1975

and Anselin, 1988a). Incorporating the spatial dependence in the error terms,

on the other hand, results in the OLS estimates being unbiased but inefficient

(Anselin and Bera, 1998). However, Lee (2002) shows that the OLS estimator

can be a consistent and asymptotically efficient estimator for the MR-SAR

models when each spatial unit is aggregately influenced by a significant number

of other spatial units. In this situation, the OLS estimator possesses advantage

over the ML and IV estimators as it is computationally easier. Nevertheless,

the OLS estimator is still inconsistent for the SAR model without exogenous
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regressors.

Consequently, several estimation methods have been proposed in the liter-

ature as alternatives to the OLS estimator. We discuss some of them in the

following subsections.

1.5.1 Maximum Likelihood Estimation

As the least squares estimators are not suitable for estimating a spatial process

with spatial dependence, the maximum likelihood estimation has widely been

used as an alternative. The ML estimator in spatial regression models with

Gaussian shocks is studied by Ord (1975), Anselin (1988a) and Anselin and

Bera (1998). Ord (1975) also presents a computational scheme extended to

the MR-SAR model and compares the MLE with other alternative estimators.

Dubin (1988) simultaneously estimates regression coefficients and parameters

of the correlation function by the maximum likelihood estimation. Asymptotic

properties of the MLE are developed by Lee (2004a) for spatial autoregressive

models with fixed sequences of weights. He also argues that the MLE method

is still applicable when applied on the pure SAR model, while alternatives

such as the IV estimation method will break down. Exact properties of the

MLE in the spatial autoregressive models are derived by Hillier and Martel-

losio (2012). Lee, Liu and Lin (2010) suggest a QML estimation approach for

social interaction models with network structures as well as endogenous and

correlated effects. Asymptotic distribution of the estimator is derived and its

small sample performance is investigated in a Monte Carlo study.

Nevertheless, the ML method may run into numerical problems associated

with matrix inversion and eigenvalue calculations at least in the Gaussian case

and especially with large numbers of observations. To avoid this problem, sev-

eral alternative methods including the GMM estimation have been proposed.

We discuss the GMM/IV estimation in the next subsection.
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1.5.2 GMM/IV Estimation

The GMM estimation method has been introduced as an alternative to avoid

numerical problems of the MLE method, which are due to the matrix inver-

sion and especially when the number of observations is large. Various GMM

estimators found in the literature are generally computationally feasible and

consistent under appropriate conditions. A summary of these alternatives is

presented below.

Among the alternatives are the GMM estimators introduced by Kelejian

and Prucha (1998, 1999). Kelejian and Prucha (1998) introduce a generalised

spatial two-stage least squares (GS2SLS) procedure for estimating the spatial

autoregressive model with autoregressive disturbances, and show that their fea-

sible estimator is consistent and asymptotically normal. However, Lee (2003)

argues that this estimator may not be asymptotically optimal. He proposes

a best spatial two-stage least squares estimator for this model and provides a

three-step procedure similar to that given by Kelejian and Prucha (1998). Fin-

gleton and Le Gallo (2008b) propose an estimation method which extends the

GMM/IV estimators introduced by Kelejian and Prucha (1998) and Fingleton

and Le Gallo (2008a) to include an endogenous spatial lag, other endogenous

variables and a spatial error process, and investigate its finite sample properties

in a Monte Carlo study. Drukker et al. (2011) extend the work by Kelejian and

Prucha (1998, 1999) and propose a two-step GMM and IV estimation methods

for the spatial autoregressive model with spatial autoregressive error terms and

endogenous variables. The joint asymptotic distribution for the estimators is

also derived.

Kelejian and Prucha (1999) propose a generalised moments (GM) estima-

tor for the spatial autoregressive parameter in the SAR model and prove the

consistency of the estimator under a set of conditions. Bell and Bockstael

(2000) apply this method to microlevel data, whose feature concerns large
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numbers of observations scattered irregularly on the landscape that can cause

problems with the ML estimation. They also compare its performance with

that of the ML estimator and find that the GM estimator performs relatively

well. A small-sample adjustment to the method of Kelejian and Prucha (1999)

is introduced by Arnold and Wied (2010a).

Kelejian and Prucha (2002) show that the 2SLS and OLS estimators of

linear Cliff-Ord type spatial models are not consistent in single cross section

data if the weight matrix is row-normalised and has equal weights, whereas

these estimators are consistent and efficient if two or more cross-sections of

data are used. Liu et al. (2006) propose the best GMM estimator for the

MR-SAR model and model with spatial autoregressive disturbances, and in-

clude potential skewness and kurtosis of the disturbances into the moment

conditions. They show that this estimator is asymptotically as efficient as

the ML estimator with normal disturbances and more efficient otherwise. Lee

(2007a) proposes a GMM estimator that is superior to the 2SLS estimator for

estimating the MR-SAR model. This GMM estimator is a combination of the

moments in the 2SLS estimator and those obtained from the pure SAR model.

He shows that this GMM estimator can be asymptotically more efficient than

the 2SLS estimator and as efficient as the ML estimator. Lee and Liu (2010)

expand the GMM estimator proposed by Lee (2007a) for the MR-SAR model

to estimate a high order MR-SAR model with spatial autoregressive distur-

bances and show that this estimator is consistent and asymptotically normal.

They also derive the best GMM estimator based on linear and quadratic mo-

ment conditions of the error terms and show that the best GMM estimator

is asymptotically as efficient as the ML estimator when the disturbances are

normally distributed, more efficient than the MLE in other cases, and efficient

relative to the G2SLS estimator.

The ML estimator of the spatial autoregressive parameter for the SAR

model can be inconsistent if the disturbances are heteroskedastic and several
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alternative estimators have been suggested. Kelejian and Prucha (2007) pro-

pose a robust spatial HAC estimator of a variance-covariance matrix and show

that this estimator is consistent. Lin and Lee (2010) introduce a GMM es-

timator acquired from certain moment conditions that take into account the

heteroskedasticity. They show that this estimator is consistent, asymptoti-

cally normal and robust, and the efficiency of the estimator can be improved

by including an optimal weight matrix. Kelejian and Prucha (2010) intro-

duce a GM estimator for the autoregressive parameter in the Cliff-Ord model

(SARAR(1,1)) with heteroskedastic innovations of unknown form in the dis-

turbance process and show that their GM estimator is consistent. They also

specify IV estimators for the regression parameters in the model and provide

the joint asymptotic distribution of the GM estimator for the spatial autore-

gressive parameter in the disturbance process and of the IV estimator for the

model regression parameters. Badinger and Egger (2011) extend the two-step

GM estimation procedure introduced in Kelejian and Prucha (2010) to the

case of higher order (SARAR(R,S)) and establish the consistency of the esti-

mator and provide the joint asymptotic distribution of the GM and the TSLS

estimator as well. Arraiz et al. (2010) describes a multi-step GMM/IV type es-

timation procedure for estimating the linear Cliff-Ord-type model with spatial

lagged dependent variable and heteroskedastic innovations of unknown form

in the disturbance process. Their results also show that the ML estimator

of the autoregressive parameter can be biased when the disturbances are het-

eroskedastic. Arnold and Wied (2010b) propose a two-step GMM estimation

approach to estimate parameters in a spatial model with three kinds of spatial

dependence as well as heteroskedastic innovations and apply their approach to

daily stock returns of the Euro Stoxx 50 members.

Pinkse et al. (2002) introduce an IV estimator for the price response co-

efficients and provide the consistency and asymptotic distribution of this IV

estimator. It is then applied to data of wholesales gasoline markets in the
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United States. Das et al. (2003) investigate finite sample properties of several

estimators in the SARAR (1,1) model. The estimators they consider are the

maximum likelihood estimator, least squares estimator, two-stage least squares

(2SLS) estimator, generalised spatial two-stage least squares (GS2SLS) estima-

tor, feasible generalised spatial two-stage least squares (FGS2SLS) estimator,

and iterated FGS2SLS estimator. Their results suggest that there is small dif-

ference in finite sample efficiency between the ML and FGS2SLS estimators so

the latter can be considered with small cost. Moreover, for the autoregressive

parameter in the disturbance process, there is also small difference in finite

sample efficiency between the ML and GM estimators.

1.5.3 Bayesian Approach

Bayesian approaches have been applied in spatial econometrics to help re-

searchers make choice between models. LeSage (1997) suggests a Bayesian

approach based on Gibbs sampling for the spatial autoregressive models. Mur

et al. (2012) use the Bayesian as one of the approaches to study performance of

different weight matrices in their research. As least squares estimator may be

biased and inconsistent when spatial dependence is present, the Markov Chain

Monte Carlo model composition (MC3) procedure and the Bayesian Model

Averaging (BMA) method using least squares estimates will also be invalid

in such cases. Therefore, LeSage and Parent (2007) introduce a MC3 proce-

dure and extend the Bayesian estimation for the spatial autoregressive (SAR)

model and the spatial error model (SEM), focusing on comparing models with

different matrices of explanatory variables. Efficient computational algorithms

are also provided.
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1.6 Hypothesis Tests

Well-known hypothesis tests on the parameters of the spatial models based on

Maximum Likelihood are the Wald (W), Likelihood Ratio (LR) and Lagrange

Multiplier (LM) tests. Another test also frequently used in spatial economet-

rics is Moran’s I test. We discuss in brief these tests below. See Anselin (1988a)

for an overview of these tests.

1.6.1 Wald Test

The Wald test can be applied to test the significance of an individual parameter

or the joint significance of the parameter vector. Suppose that we want to test

the significance of the spatial autoregressive parameter ¸, the test statistic is

described as

Wald = ˆ̧2/v̂¸,

where ˆ̧ is the ML estimate for ¸, and v̂¸ is the diagonal element corresponding

to ¸ in the variance matrix obtained from the unrestricted model. This test

only uses information obtained from the unrestricted model and is, under

H0 : g(µ) = 0, asymptotically distributed as Â2 with 1 degree of freedom.

When testing for the joint significance of all parameters, the test statistic

becomes

Wald = g′[G′V G]−1g,

where g is a q × 1 vector of ML estimates, G is a z × q matrix of partial

derivatives evaluated for the parameter estimates with z the number of total

parameters in the model, and V is the variance matrix obtained from the

unrestricted model. This test is, under H0, asymptotically distributed as Â2

with q degrees of freedom. See Anselin (1988a) for more details.
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1.6.2 Likelihood Ratio Test

The Likelihood Ratio (LR) test statistic is described as

LR = 2[lnL(µ)− lnL(µr)]

where lnL(µ) is the log-likelihood for the unrestricted model with parameter

vector µ and lnL(µr) is the log-likelihood for the restricted model with pa-

rameter vector µr. Note that the LR test uses log-likelihood values for both

the restricted and unrestricted models. It is, under H0, asymptotically dis-

tributed as Â2
q, where q is the degree of freedom corresponding to the number

of constraints.

1.6.3 Lagrange Multiplier Test

The Lagrange Multiplier (LM) test, or the Rao Score (RS) test, only uses

information from the restricted model. The test statistic is described as

LM = s′rI(µr)
−1sr

where sr is the score vector of the model evaluated at the null and I(µr) is

a consistent estimator for the information matrix evaluated at the null. This

test is, under H0, asymptotically distributed as Â2 with q degrees of freedom.

Note that, asymptotically, the Wald, LR and LM tests are equivalent (Engle

(1984)). However, these tests yield different test statistics in finite samples. In

particular, Berndt and Savin (1977) show that when the model is linear, these

test statistics follow the following inequalities,

LM ≤ LR ≤ Wald.

The Wald and LR tests have received more attention in the literature than

the LM test. However, the likelihood approach has been exploited to cre-

ate a battery of LM-type specification tests for spatial regression models with
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Gaussian shocks, examples of which can be found in Burridge (1980), Anselin

(1988b), and Anselin et al. (1996). Burridge (1980) shows, in particular, that

the test for the spatial autoregressive parameter in the disturbance process

can be derived by the application of Silvey’s (1959) LM method. Anselin et

al. (1996) apply the LM test introduced by Bera and Yoon (1993) to the

spatial models and provide simple tests based on the OLS residuals for the

spatial dependence. They claim that these tests are robust and computation-

ally simple. Debarsy and Ertur (2010) suggest a number of LM and LR test

statistics to distinguish between models with endogenous spatial lag and those

with spatially autocorrelated errors in a fixed effects panel data model. Finite

sample performance of these tests is investigated in Monte Carlo experiments.

Based on this work and Bera and Yoon (1993), He (2011) introduces locally

adjusted LM tests for spatially lagged dependent variable with spatially corre-

lated error and for spatially correlated error with spatially lagged dependent

variable, respectively, and investigates the tests’ finite sample performance in

Monte Carlo experiments.

Anselin (2001) delivers an overview of Rao’s score test applied on the spa-

tial autoregressive and moving average processes, spatial error components and

direct representation models, and introduces new Rao’s Score tests for the last

two spatial processes. Monte Carlo experiments are carried out and he finds

that the test does not have standard asymptotic properties for the spatial er-

ror components models. For the direct representation models, in which the

error covariance between two observations is a direct function of the distance

between them, the nuisance parameter is identified only under the alternative.

Baltagi et al. (2003) derive the Breusch and Pagan (1980)’s LM test for the

panel data models that incorporate the spatial error correlation and random

region effects, and test for their joint significance. Two conditional LM tests

are also given for the existence of spatial error correlation while random re-

gion effects are present, and vice versa. They show that when testing for the
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existence of random regional effects in panel data, one should not ignore the

spatial error correlation.

1.6.4 Moran’s I Test

Moran’s I test is one of the most popular tests for spatial correlation in a linear

regression model. Applying Moran’s I to regression residuals can be used to

test spatial autocorrelation. The test statistic is described as

I =
n∑

i

∑
j wij

e′We

e′e

where n is the number of observations, e is a vector of OLS residuals, W is

a weight matrix, and wij is the element of the weight matrix. Note that if

the weight matrix is standardised with row sums equal to 1, the test statistic

becomes I = e′We
e′e . Moran’s I can yield values ranging from -1 to 1, where neg-

ative (positive) I indicates negative (positive) spatial autocorrelation. When I

is equal to zero, there is no spatial dependence.

The asymptotic distribution of Moran’s I statistic is developed by Cliff

and Ord (1972, 1973, 1981). Anselin and Rey (1991) compare Moran’s I and

LM tests for spatial error autocorrelation and for a spatially lagged dependent

variable based on several sample sizes, weight matrices and error distribu-

tions. They provide sample sizes for which the asymptotic properties of the

tests would provide good approximations to the sampling distributions and

power of the LM tests to discriminate between spatial lag and error autocorre-

lation. For the case when endogenous variables are included in the regression

specification, the asymptotic distribution of Moran’s I statistic is derived by

Anselin and Kelejian (1997). This test statistic is based on residuals obtained

from an IV procedure, and its small sample performance is evaluated in Monte

Carlo experiments and compared with several other approaches. This test

is the only acceptable test among all tests considered when spatially lagged

dependent variables are present. Kelejian and Prucha (2001) provide large
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sample distribution of Moran’s I test statistics in general and for specific spa-

tial models. A new central limit theorem for linear-quadratic forms is also

provided. Finite sample properties of Moran’s I test for spatial autocorrela-

tion in Tobit models are studied by Amaral and Anselin (2013) using Monte

Carlo simulations. They find that the test statistic is unbiased and approxi-

mately normally distributed confirming the results obtained by Kelejian and

Prucha (2001). They also find that the test statistic is, however, sensitive to

misspecification of heteroskedasticity.

Saavedra (2003) introduces the Wald, LR and LM tests based on the work

of Newey and West (1987) and the GMM estimator suggested by Kelejian and

Robinson (1993), for spatial lag dependence in the spatial lag model with auto-

correlated errors. The finite sample performance of these tests is investigated

in a Monte Carlo experiment and compared with tests based on least squares

and generalised least squares estimation.

Kelejian and Robinson (1992) introduce a test for the spatial correlation

of the disturbances in large sample. They suggest that the test is compu-

tationally simple and does not need linearity of the model nor normality of

the disturbances. Martellosio (2012) investigates the Cliff-Ord test and point

optimal invariant tests in the framework of the spatial error model. Results

show that for any fixed sample size, any fixed size of the tests, and almost any

fixed weight matrix, there exists a positive measure set of regression spaces

such that the limiting power disappears. In other words, it is always possible

that the tests will not detect large autocorrelation in practice.

1.7 Applied Work

Spatial econometrics has been used in applied work in many fields, especially in

regional science as it is able to account for spillovers while traditional economet-

rics is not. Some of the applied studies in spatial econometrics are summarised
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below.

Can (1990) extends an econometric model to include spatial neighbour-

hood dynamics in the hedonic housing price models. Case (1991) investigates

spatial patterns in data and suggests an estimation method that allows for

spatial random effects. The model is applied to demand for rice in Indonesia.

Anselin et al. (1997) empirically study the degree of spatial spillovers between

university research and high technology innovations. This work is broadened

to the disaggregated level and the measures of local geographic spillovers are

suggested in Anselin et al. (2000). Bolduc et al. (1992) propose an efficient

estimation procedure using the maximum likelihood estimation to deal with

the spatial autocorrelation in the error terms in travel flow models. Case et

al. (1993) examine whether or not a state’s spending depends on spending of

its neighbouring states and find that it is positively and significantly affected

by its neighbours’ spending levels. Brett and Pinkse (1997) suggest a test

for spatial independence in the local tax rates in British Columbia, Canada.

Overmars et al. (2003) use the MR-SAR model to deal with the spatial auto-

correlation in land use data. Moreno et al. (2003) investigate the spreading

of innovative activity in Europe and provide a structure of this activity at the

regional level. Le Gallo (2004) uses spatial markov chains approach to study

the GDP disparities in the European regions. Holly et al. (2011) use gener-

alised spatio-temporal impulse responses to study the effect of shocks on house

prices in the UK.

Spatial econometric models have also been used in estimating social interac-

tions and social network, foreign direct investment (FDI) as well as in political

economy. For instance, Lee (2007b) uses the SAR model as a group effect

model and estimates structural interaction effects in a social interaction model

by the conditional maximum likelihood and instrumental variables methods.

Bramoulle et al. (2009) define network interaction, with and without the pres-

ence of correlated effects, which yield the identified endogenous and exogenous
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effects. Coughlin and Segev (2000) study the FDI of the United States in Chi-

nese provinces. Baltagi et al. (2007) include spatially weighted third-country

determinants when estimating the FDI, and Blonigen et al. (2007) examine

the spatial interactions in the FDI models using outbound FDI of the United

States. Beck et al. (2006) discuss the use of spatial econometric models in

political science and suggest that economic distances such as relative trade

should be considered.

1.8 Outline of the Thesis

The thesis is organised as follows. In Chapter 2 we introduce a bias-adjusted

estimator for small samples and extensively compare its performance with that

of the Maximum Gaussian Likelihood and several Instrumental Variable-type

estimators in the context of the spatial error model. The bias-adjusted esti-

mator for small samples is effective across various sample sizes, being virtually

mean and median unbiased. This improvement, however, comes at the cost of

increasing the frequency of non-invertible estimates, which is our motivation

to develop a hybrid estimator that combines the guaranteed invertibility of

the MLE with the original non-hybridised estimators. We show that the hy-

bridised forms of the estimators outperform even the best of the IV methods

across a majority of the cases examined.

In Chapter 3 we introduce a sub-model for spatial weights and estimate

a variable spatial weight matrix for the mixed regressive, spatial autoregres-

sive (MR-SAR) model using maximum likelihood estimation. We establish the

identifiability of the parameter defining the weights as well as the consistency

and the asymptotic normality of the QMLE of the MR-SAR model under ap-

propriate conditions that extend those given by Lee (2004a). Finite sample

properties of the QMLE are investigated in a Monte Carlo study. The per-

formance of the estimator is subsequently compared with that of other QML
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estimators using various fixed spatial weight matrices.

In Chapter 4 we apply our QML estimator with freely-estimated weight ma-

trix using two types of sub-models for the spatial weights satisfying the identifi-

ability, consistency and asymptotic normality conditions to the cross-sectional

data set used in Ertur and Koch (2007) in the framework of the MR-SAR

model to study the impact of saving, population growth and interdependence

among countries on growth. Our QML estimator using freely-estimated weight

matrices is also compared with other QML estimators using weight matrices

with weight parameter values adopted in previous work. Asymptotic variances

are evaluated and Wald test for our estimator is carried out.

Chapter 5 concludes. Additional results as well as detailed proofs to Chap-

ters 2, 3 and 4 are presented in Appendices A, B and C, respectively.
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Chapter 2

Improved Estimators for the

Spatial Error Model

2.1 Introduction

The maximum likelihood estimator in spatial regression models with Gaussian

shocks is studied by Ord (1975), Anselin (1988a) and Anselin and Bera (1998).

Its asymptotic properties are developed by Lee (2004a), and those of alterna-

tive estimators have been explored in recent papers by a number of authors,

examples being the spatial two-stage least squares and GMM estimators of

Kelejian and Prucha (1998, 1999), a small-sample adjustment to the method

of Kelejian and Prucha (1999) introduced by Arnold and Wied (2010a), the

optimal instrumental variable estimator of Lee (2003), the robust HAC esti-

mator and weighted GMM estimator of Kelejian and Prucha (2007, 2010), and

the efficient GMM estimators of Lee and Liu (2010). Over the same period, the

likelihood approach has been exploited to create a battery of LM-type spec-

ification tests for such models, examples of which can be found in Burridge

(1980), Anselin (1988b), and Anselin, Bera, Florax and Yoon (1996). At least

in the Gaussian case, and especially with large numbers of observations, the
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maximum likelihood method may run into numerical problems associated with

matrix inversion and eigenvalue calculations, the avoidance of which is a major

motivation for most of the alternative methods that have been proposed.1

The various GMM/IV-type estimators found in the literature are generally

computationally feasible and consistent under appropriate conditions; how-

ever, they may all give non-invertible estimates of the spatial autocorrelation

parameter(s) and exhibit bias in finite samples. Moreover, there is no obvious

ranking of their performance in such a case. In this chapter we introduce a

bias-adjusted estimator for small samples, designated [BB], and provide ev-

idence on the small sample performance of the leading methods in a simple

spatial error model.

We initially consider seven different estimators of the parameters in a spa-

tial error model: Maximum Gaussian Likelihood [ML], the method of Kelejian

and Prucha (1999) [KP], the Kelejian and Prucha method with weighting ma-

trix (Kelejian and Prucha, 2009) [KPW], a small-sample adjustment to the

KPW method [BB], the Lee and Liu (2010) method [LL], a small-sample ad-

justment to the KP method introduced by Arnold and Wied (2010a) [AW],

and the Arnold and Wied method with an optimal weighting matrix included

[AWW].2 We define and then compare these approaches in the context of the

widely employed spatial error model, SEM, an important special case of the

general SARAR model. As we shall see, the adjustment to the KP and KPW

estimators introduced in BB, AW, and AWW is very effective in reducing the

small-sample bias. However, it tends to increase the number of samples that

lead to a non-invertible estimate of the spatial error parameter. For this reason

1It is worth noting, however, that the dramatic reduction in computing costs over the

past two decades, together with development of efficient numerical methods have reduced

the importance of such obstacles: see LeSage and Pace (2009, Ch3) and Bivand (2010) for

evidence on the current state of the art.
2We became aware of the related work of Arnold and Wied (2010a) at a late stage. In this

chapter we have included two methods based on their work in our numerical experiments.
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we find that a further improvement is possible by switching to an invertible

estimator in such cases. This motivates a hybrid estimator that exploits the

guaranteed invertibility of the parameter estimates that maximise the Gaus-

sian likelihood to improve small-sample efficiency. The hybridisation method,

which can be applied to all estimators considered, combines the guaranteed

invertibility of the MLE with the original non-hybridised estimator, in which

all the parameters’ estimates are replaced with the MLE estimates when the

original non-hybridised estimator produces a non-invertible estimate of the

spatial error parameter. We find that the hybridised forms of the BB, AW and

AWW estimators are superior to the other estimators considered in reducing

the small-sample bias.

Reducing the mean square errors of parameter estimates is of course an

important objective, but since in practice such parameter estimates will usually

be reported with their associated standard errors or in the form of t− statistics,

it is equally important to assess the reliability of the inferences which may then

be drawn. We therefore provide evidence on this, finding the hybridised forms

of BB, AW, and AWW estimators perform extremely well.

The chapter is organised as follows. Section 2.2 introduces the model and

defines the estimators, Section 2.3 describes the experimental results, and Sec-

tion 2.4 concludes.

2.2 The Model and Estimators

2.2.1 The Spatial Error Regression Model

The spatial error model, SEM, is described as follows:

Y = X¯ + U (2.1)

where Y is an n× 1 vector of observations of the dependent variable, X is an

n×k matrix of values of k exogenous explanatory variables, ¯ is a k×1 vector
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of parameters, and U is the n× 1 disturbance vector defined as

U = ½MU + " (2.2)

with M an n× n matrix of fixed non-negative constants, mi,j, where for each

row i,
∑n

j=1mi,j = 1 andmi,i = 0, ½ is a scalar parameter, and " an n×1 vector

of innovations that are independently distributed with mean 0 and variance

¾2I, independent of X. The objective is to estimate ¯, ½ and ¾2 from a single

sample of n observations taken at the spatial units indexed by i = 1, ..., n. If

the innovations, " are Gaussian, the log-likelihood function is given by

ln(L) = −n

2
[ln(¾2)+ln(2¼)]− 1

2¾2
U ′(¯)B′(½)B(½)U(¯)+ln ∣det(B(½))∣, (2.3)

where U(¯) = Y −X¯, B(½) = I − ½M , and ∣det(B(½))∣ denotes the absolute

value of the determinant of B(½). To avoid degeneracy it is necessary that

the matrix, B(½) be non-singular. Commonly, M will have been constructed

from a symmetric matrix of positive elements, by row-standardisation; as is

well known, (see Ord, 1975, p.125) in such a case all the eigenvalues of M are

real, and so will be those of B(½); taking [− 1
!min

< ½ < 1], where ½ lies in the

‘invertible region’ and !min is the largest negative eigenvalue in absolute value

of matrix M ,3 will then ensure that B(½) is non-singular, as required; see for

example Lee and Liu (2010, Endnote #6).

For the case of ½ lying outside the invertible region, i.e. outside (− 1
!min

, 1),

it is then called ‘non-invertible’ and can result in B(½) being singular.

3See Anselin (1988a, p. 78-79, Endnote #10).
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2.2.2 The Maximum Likelihood Estimator

The maximum likelihood estimator is obtained by maximising (2.3) with re-

spect to ¯, ½ and ¾2. The score vector is:

∂ ln(L)

∂¯
=

1

¾2
X ′B′BU (2.4)

∂ ln(L)

∂½
= − 1

2¾2
U ′[2½M ′M −M −M ′]U − tr[MB−1]

∂ ln(L)

∂¾2
= − n

2¾2
+

1

2¾4
U ′B′BU

where we have suppressed the dependence of U and B on the parameters to

enhance legibility. A little manipulation and rearrangement yields the more

transparent forms for the f.o.c.:

X ′B′BU = 0 (2.5)

U ′B′[MB−1 − tr[MB−1]

n
.In]BU = 0 (2.6)

¾̂2
ML =

1

n
U ′B′BU. (2.7)

Introducing the notation, µ̂ML = ( ˆ̄ML, ½̂ML, ¾̂
2
ML)

′ would enable (2.7) to be

written as ¾̂2
ML = 1

n
"(µ̂ML)

′"(µ̂ML) and so on. Finding the solution to these

moment conditions is a numerical problem that in practice may be solved to

whatever degree of accuracy can be obtained in the evaluation of ln ∣det(B(½))∣.
Notice that the MLE of ½, ½̂ML, will be forced to lie in the invertible region by

the behaviour of ln ∣det(B(½))∣ near the invertibility boundary.4 We return to

these conditions when we discuss the LL estimator, below.

The asymptotic covariance matrix of (½̂ML, ¾̂
2
ML) is given by

AsyV ar(½̂ML, ¾̂
2
ML) = ¾4

⎡
⎣ ¾4tr((MB−1)2 +B−1′M ′MB−1) ¾2tr(MB−1)

¾2tr(MB−1) n/2

⎤
⎦

−1

,

and the estimator of ¯ is asymptotically uncorrelated with (½̂ML, ¾̂
2
ML) with

4At the invertibility boundary, ln ∣det(B(½))∣ = −∞.
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asymptotic variance given by

AsyV ar( ˆ̄ML) = ¾2(X ′B′BX)−1, (2.8)

see Ord (1975, p.125, eq. B3, after correcting the sign on his ®). Compu-

tational aspects of maximising (2.3) are discussed in LeSage and Pace (2009,

Ch.3).

2.2.3 The KP and KPW Estimators

Kelejian and Prucha (1999) suggest a multi-step estimation procedure: an ini-

tial consistent estimator of ¯ is used to obtain a vector of residuals; a method-

of-moments estimator is applied to the first step residuals to estimate ¾2 and

the autoregressive parameter ½, and in the final step a feasible GLS estimator

is used to re-estimate ¯.

To estimate ½ and ¾2 Kelejian and Prucha (1999) use three moment con-

ditions:

E[
1

n
"′"] = ¾2 (2.9)

E[
1

n
"′M ′M"] =

¾2

n
tr(M ′M) (2.10)

E[
1

n
"′M ′"] =

¾2

n
tr(M ′) = 0 (2.11)

These moment conditions imply that

E{Γn

⎡
⎢⎢⎢⎣

½

½2

¾2

⎤
⎥⎥⎥⎦− °n} = 0 (2.12)

where

Γn =

⎡
⎢⎢⎢⎣

2
n
(U ′MU) − 1

n
(U ′M ′MU) 1

2
n
(U ′M ′M ′MU) − 1

n
(U ′M ′M ′MMU) 1

n
tr(M ′M)

1
n
(U ′[MM +M ′M ]U) − 1

n
(U ′M ′MMU) 0

⎤
⎥⎥⎥⎦
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°n =

⎡
⎢⎢⎢⎣

1
n
(U ′U)

1
n
(U ′M ′MU)

1
n
(U ′MU)

⎤
⎥⎥⎥⎦ .

For use later, suppose limn→∞E(Γn) = Γ, a finite matrix of constants.

To implement these moment conditions U is required; however, U is not

directly observed, and so in the [KP] estimator it is replaced by Û the vector

of ordinary least squares residuals from the equation

Y = X ˆ̄
OLS + Û .

Writing Gn and gn for Γn and °n with Û in place of U define the 3× 1 vector

of moment residuals,

ºn(½, ¾
2) = Gn

⎡
⎢⎢⎢⎣

½

½2

¾2

⎤
⎥⎥⎥⎦− gn (2.13)

Then the [KP] generalised moments estimators for ½ and ¾2 are obtained by

minimising the sum of squares of ºn:

(½̂KP , ¾̂
2
KP ) = argmin[ºn(½, ¾

2)′ºn(½, ¾2)]. (2.14)

The final step is a feasible GLS estimator of ¯ obtained by performing an OLS

regression of B(½̂KP )Y on B(½̂KP )X.

Kelejian and Prucha (1999) give conditions under which the above method

provides consistent estimates for ½, ¾2 and ¯. However, their method is not

efficient. In particular, note that the sum of squares in (2.14) is unweighted,

so that one direct way to improve efficiency is to include an optimal weighting

matrix in the method of moments procedure. This is done in Kelejian and

Prucha (2010).

The required optimal weighting matrix, Ψopt
n say, has probability limit

equal to the inverse of the asymptotic variance of the moment residuals.
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So, in our finite sample implementation, we choose the weighting matrix

Ψn = {NV ar[ºn(½, ¾
2, ¯)]}−1, which corresponds to that given in Kelejian

and Prucha (2010) after specialising to the present SEM case:

Ψn =
1

¾4

⎡
⎢⎢⎢⎣

2 2
n
tr(M ′M) 0

2
n
tr(M ′M) 2

n
tr(M ′MM ′M) 2

n
tr(M ′MM ′)

0 2
n
tr(M ′MM ′) 1

n
tr((M +M ′)M)

⎤
⎥⎥⎥⎦

−1

.

Suppose limn→∞Ψn = Ψ a finite positive definite matrix. Observe that Ψn

is parameter free, apart from a scalar division by ¾4 which is irrelevant to

the minimisation. The estimators for ½ and ¾2 for the [KPW] approach are

obtained as

(½̂KPW , ¾̂2
KPW ) = argmin[ºn(½, ¾

2)′Ψnºn(½, ¾
2)] (2.15)

and an estimate of ¯ is again obtained by performing an OLS regression of

B(½̂KPW )Y on B(½̂KPW )X. We denote this second estimator as [KPW].

The asymptotic distribution of generalisations of the estimator of Kelejian

and Prucha (1999) has recently been derived under appropriate conditions in

Kelejian and Prucha (2010). In the case of the two estimators described above

µ̂KP = ( ˆ̄KP , ½̂KP , ¾̂
2
KP )

′ and µ̂KPW = ( ˆ̄KPW , ½̂KPW , ¾̂2
KPW )′ the asymptotic

distribution is as follows.

Define

Jn =
∂ºn(½, ¾

2)

∂(½, ¾2)
= Γn

⎡
⎢⎢⎢⎣

1 0

2½ 0

0 1

⎤
⎥⎥⎥⎦ (2.16)

with limn→∞ Jn = J .

Then the asymptotic distribution of (½̂KP , ¾̂
2
KP )

′ is

n1/2

⎛
⎝
⎡
⎣ ½̂KP

¾̂2
KP

⎤
⎦−

⎡
⎣ ½

¾2

⎤
⎦
⎞
⎠ a∼ N(0,ΩKP ) (2.17)

with

ΩKP = (J ′J)−1J ′ΨJ(J ′J)−1 (2.18)
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whereas the asymptotic distribution of (½̂KPW , ¾̂2
KPW )′ is

n1/2

⎛
⎝
⎡
⎣ ½̂KPW

¾̂2
KPW

⎤
⎦−

⎡
⎣ ½

¾2

⎤
⎦
⎞
⎠ a∼ N(0,ΩKPW ) (2.19)

with

ΩKPW = (J ′Ψ−1J)−1. (2.20)

Estimates of ¯ obtained from an OLS regression of B(½̂KP )Y on B(½̂KP )X

or from an OLS regression of B(½̂KPW )Y on B(½̂KPW )X are asymptotically

uncorrelated with (½̂KP , ¾̂
2
KP ) or (½̂KPW , ¾̂2

KPW ), and the asymptotic variance

is given by

AsyV ar( ˜̄) = ¾2(X ′B′(½)B(½)X)−1 (2.21)

which is the same as that of the MLE (2.8); see Kelejian and Prucha (2010)

for details.

2.2.4 The Bias-Adjusted Estimators, BB, AW, and AWW

Both the KP and KPW estimators use an initial consistent estimate of ¯ in

order to construct residuals, Û , that are substituted for the unobservable U in

the evaluation of the moment conditions used to estimate ½ and ¾2. Although

this leads to a consistent estimate of ½ and ¾2, there may be a substantial bias

in small samples, because, as we show below, the expectation of ºn in (2.13) is

not zero. Therefore, we propose a simple bias adjustment, and designate the

modified estimator, BB.

Recall that " has been assumed independent of X with E{"} = 0 and

V ar{"} = ¾2In. Estimating ¯ using OLS we obtain

ˆ̄
OLS = (X ′X)−1X ′(X¯ + U) (2.22)

giving the residual

Û = (I −X(X ′X)−1X ′)U (2.23)

= AU = AB−1", say
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where we drop the explicit dependence of B on ½ for readability.

Substituting from (2.23) into G and g and taking expectations we find,

with a little routine algebra, and writing C = AB−1 that

E{Gn

⎡
⎢⎢⎢⎣

½

½2

¾2

⎤
⎥⎥⎥⎦− gn} =

¾2

n

⎡
⎢⎢⎢⎣

n− tr(C ′B′BC)

tr(M ′M − C ′B′M ′MBC)

−tr(C ′B′MBC)

⎤
⎥⎥⎥⎦ (2.24)

=
¾2

n

⎡
⎢⎢⎢⎣

T1

T2

T3

⎤
⎥⎥⎥⎦ , say. (2.25)

We may adjust for this bias in the moment conditions by replacing Gn by

Ĝn(½) =
1

n

⎡
⎢⎢⎢⎣

2Û ′MÛ −Û ′M ′MÛ tr(C ′B′BC)

2Û ′M ′M ′MÛ −Û ′M ′M ′MMÛ tr(C ′B′M ′MBC)

Û ′[MM +M ′M ]Û −Û ′M ′MMÛ tr(C ′B′MBC)

⎤
⎥⎥⎥⎦

(2.26)

in which B and C are functions of ½. Writing

º̂n(½, ¾
2) = Ĝn(½)

⎡
⎢⎢⎢⎣

½

½2

¾2

⎤
⎥⎥⎥⎦− gn (2.27)

and equation (2.15) then becomes

(½̂BB, ¾̂
2
BB) = argmin{º̂n(½, ¾2)′Ψnº̂n(½, ¾

2)} (2.28)

The estimate of ¯ is obtained as before by performing an OLS regression of

B(½̂BB)Y on B(½̂BB)X. The asymptotic distribution of (½̂BB, ¾̂
2
BB)

′ is the same

as that of (½̂KPW , ¾̂2
KPW )′ as in (2.19).

Our BB estimator is developed independently of a similar method intro-

duced by Arnold and Wied (2010a) [AW]. This estimator may be considered

to lie between the KP and BB estimators. The KP and BB estimators start

with using " in the moment conditions (2.9) - (2.11), which imply (2.12). Then
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the KP estimator replaces U with Û to obtain the moment residuals in (2.13),

whose expectation is not zero in finite sample. The BB estimator, instead,

substitutes Û = AU = AB−1" into Gn and g to obtain the moment residuals

in (2.27).

The AW estimator, on the other hand, starts with ²̂ = A² = AU − ½AMU ,

instead of ², in the moment conditions such that

E{Γ̌n

⎡
⎢⎢⎢⎣

½

½2

¾2

⎤
⎥⎥⎥⎦− gn} = 0 (2.29)

where

Γ̌n =
1

n

⎡
⎢⎢⎢⎣

2U ′AMU −U ′M ′AMU tr(A)

2U ′M ′MAMAU −U ′M ′AM ′MAMU tr(AM ′M)

(U ′A[M +M ′]AMU) −(U ′M ′AMAMU) tr(MA)

⎤
⎥⎥⎥⎦

and calculates the expectation in (2.29) above based on A" while, for the KP

estimator, the expectation in (2.12) is calculated based on ". Then the AW

estimator replaces U with Û = AU and applies tr(A) = n−k
n

to obtain the

following moment residuals

º̌n(½, ¾
2) = Ǧn(½)

⎡
⎢⎢⎢⎣

½

½2

¾2

⎤
⎥⎥⎥⎦− gn (2.30)

where

Ǧn(½) =
1

n

⎡
⎢⎢⎢⎣

2Û ′MÛ −Û ′M ′AMÛ n− k

2Û ′M ′MAMÛ −Û ′M ′AM ′MAMÛ tr(AM ′M)

Û ′[MAM +M ′AM ]Û −Û ′M ′AMAMÛ tr(MA)

⎤
⎥⎥⎥⎦ .

(2.31)

So equation (2.15) becomes

(½̂AW , ¾̂2
AW ) = argmin{º̌n(½, ¾2)′º̌n(½, ¾2)} (2.32)
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and the asymptotic distribution of (½̂AW , ¾̂2
AW )′ is the same as that of (½̂KP , ¾̂

2
KP )

′

as in equation (2.17).

While the expectation in (2.29) is zero, the expectation of the moment

residuals in (2.30) may not be zero in finite sample as the AW method uses "̂

in the moment conditions in the first step and subsequently replaces U with

Û , which could lead to a bias in small samples.

Note that Arnold and Wied (2010a) do not include the optimal weighting

matrix Ψn in their estimator AW, which also makes this method not efficient.

To make the AW estimator efficient, and to be able to compare its performance

with other estimators, we also include the optimal weighting matrix Ψn in their

AW estimator, designated [AWW], and compare both the AW and the AWW

estimators separately with the other estimators in Section 2.3.

The asymptotic distribution of (½̂AWW , ¾̂2
AWW )′ is the same as that of

(½̂KPW , ¾̂2
KPW )′ as in equation (2.19).

2.2.5 The Lee and Liu (2010) Estimator, LL

The main difference between the approaches of Kelejian and Prucha (1999),

and Lee and Liu (2010) lies in the nature of the moment conditions. The model

studied by Lee and Liu (2010) is a mixed regression-spatial autoregression with

spatially autoregressive disturbances, of which the SEM in this chapter is a spe-

cial case. Lee and Liu introduce an infeasible GMM estimator that is the best

in the class determined by linear and quadratic moment conditions as in their

Proposition 3 (Lee and Liu, 2010, p.196) and surrounding discussion. That is,

the infeasible estimator delivers the smallest asymptotic variance-covariance

matrix. The motivation for considering this class of moment conditions is to

imitate the structure of the score function of the Gaussian likelihood (see Lee

and Liu 2010, p.192). To implement their “best GMM” estimator in the mixed

regressive, spatially autoregressive model, in a numerical experiment, Lee and
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Liu define a feasible two-step approximation to it in which the first step uses

the KP estimator for that model, the so-called “generalised two stage least

squares estimator” of Kelejian and Prucha (1998), to generate the parameter-

dependent matrices appearing in the moment conditions (Lee and Liu 2010

p.200 and Endnote 27).

Specialising their analysis to the Gaussian SEM case, the relevant moment

conditions are

E[
1

n
"(½, ¯)′"(½, ¯)] = ¾2 (2.33)

E[
1

n
"(½, ¯)′P1"(½, ¯)] =

¾2

n
tr(P1) (2.34)

E[
1

n
Q′"(½, ¯)] = 0 (2.35)

where

"(½, ¯) = BU = (I − ½M)(Y −X¯)

P1 = MB−1

and

Q = BX

Notice there are now 2 + k moment conditions and 2 + k parameters, so the

model is exactly identified under the conditions specified in Lee and Liu (2010)

and the system of moment conditions (2.33) - (2.35) could be solved exactly.

However, Q and P1 both depend on the unknown true parameter ½. To obtain

a simple feasible estimator in the spirit of Lee and Liu, an initial consistent

estimator of ½, say (½̃), is used in order to obtain an estimate of Q and P1,

that is, Q̃ = B(½̃)X and P̃1 = MB(½̃)−1. In our simulations we have used the

KPW estimator for ½ as the initial consistent estimator ½̃.

Then, the following nonlinear system of equations is solved to obtain the

final estimators for parameters ½, ¾2, and ¯. That is, define µ ≡ (¯′, ½, ¾2)′ as

above and g(µ) ≡ (g1(µ), g2(µ), g3(µ))
′ with

g1(µ) =
1

n
"(½, ¯)′"(½, ¯)− ¾2 (2.36)
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g2(µ) =
1

n
"(½, ¯)′P̃1"(½, ¯)− ¾2

n
tr(P̃1) (2.37)

g3(µ) =
1

n
Q̃′"(½, ¯). (2.38)

Then the LL estimator for µ is obtained by solving g(µ) = 0. Observe that

by making the substitution, " = BU in (2.5) to (2.7) we recover equations

with the same structure as (2.33) to (2.35), thus the LL moment conditions,

if solved exactly, would yield the Gaussian MLE for the present model. The

asymptotic efficiency of the LL estimator is thus the same as that of the MLE

in the Gaussian case, as proved in general in LL (2010, Propositions 5 and 6).

2.2.6 The Hybrid Estimator

In the numerical experiments to be reported in the next section we find that

the bias-adjusted estimators BB, AW, and AWW reduce the bias of the KP and

KPW estimators, but at the cost of increasing the frequency of non-invertible

estimates of the ½ parameter. This situation may be explained as follows.

When small-sample bias is not corrected for, it pushes the estimator’s distri-

bution to the left, causing the estimates to be biased downward. Correcting

for small-sample bias by a bias-adjusted estimator, on the other hand, shifts

the estimator’s distribution back to the right, resulting in more estimates of ½

becoming non-invertible.

The only estimator that is guaranteed to yield invertible ½̂ values is the

MLE; this motivates the hybrid estimator, which will be applied to all esti-

mators considered in the next section. The hybrid estimator is equal to the

original non-hybridised estimator when that gives an invertible estimate of ½,

but is equal to the MLE otherwise. Note that when the original non-hybridised

estimator produces non-invertible estimates of ½, we not only replace the esti-

mates of ½, but also estimates of all other parameters with the MLE estimates.

In the experiments, the hybridised forms of the BB, KP, KPW, LL, AW, and
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AWW estimators are designated BB2, KP2, KPW2, LL2, AW2, and AWW2,

respectively.

2.3 Simulation Results

2.3.1 Experiment Design

We perform experiments for two sets of spatial weight matrices: the first set is

for n = 20, 50, 100, 245, and 490, and the second set is for n = 49. For the first

set, the matrix M is generated by randomly drawing n pairs of coordinates

from a standard bivariate Normal distribution to which the Delaunay routine

is then applied to produce Voronoi polygons. The contiguity weights are then

based on the set of nearest neighbouring polygons, and subsequently row-

standardised; for n = 49 the matrix M is a row-standardised form of the

Columbus weights used by Anselin (1988a). For each n in the first set we draw

three different M using each one in 1000 replications which are then pooled.

For n = 49 a single set of 3000 replications is used.

For each M the matrix X consists of 3 columns with associated coefficients,

¯1 = 1, ¯2 = 0, ¯3 = −1. The first column of X is the constant vector, 1,

and the other two columns are 1000 independent draws from the standard n−
variate Normal distribution. For eachM and X we draw a further independent

standard Normal vector of disturbances, ". For each M , X and " draw for

n ∈ (20, 50, 100, 245, 490) the variance of " is fixed at 1; for n = 49 " is scaled

to have variance equal to 0.25, 0.5, 1.0, or 2.0, and in each case we form

U = B(½)−1" using values of ½ ∈ (0.0, 0.1, 0.2, ..., 0.9).

As we look at the problem in the region where [− 1
!min

< ½ < 1], with

!min the largest negative eigenvalue in absolute value of matrix M, we impose

bounds on ½ to be ∣½∣ ≤ 0.99 in the simulations to ensure that B(½)−1 exists
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and to speed up the simulation.5 Note that for the MLE, the likelihood is

heavily penalised as the boundary is approached, and the estimator never hits

the upper bound. The results obtained for the randomly generated spatial

weight matrices were compared for consistency across weight structures; we

found no significant variation and so the three samples of 1000 replications for

each n are combined into a single sample of 3000 in the tables that follow.

In this chapter we only report the simulation results for a selection of cases.

In particular, t statistics and estimates of ½ from all non-hybridised and hy-

bridised estimators for various values of n are reported in the next subsection.

Estimates of other parameters obtained for ¾2 fixed at unity and various val-

ues of n are also reported in this chapter. For the results for these parameters

obtained for other values of ¾2 for the case of n = 49, see Appendix A. All

other results not reported in this thesis are available on request.

2.3.2 Estimates of ½

Tables 2.1 - 2.6 give the mean, median, standard deviation and root mean

square error of the estimators of ½ for n ∈ (20, 100, 245). Tables 2.1, 2.3, 2.5

give results for the non-hybridised estimators, while Tables 2.2, 2.4, 2.6 show

the effects of hybridising each of the estimators with the MLE whenever the

boundary constraint ∣½̂∣ ≤ 0.99 is binding. Note that BB1, KP1, KPW1, LL1,

AW1, and AWW1 stand for the non-hybridised BB, KP, KPW, LL, AW, and

AWW estimators, whereas BB2, KP2, KPW2, LL2, AW2, and AWW2 stand

for the hybridised BB, KP, KPW, LL, AW, and AWW estimators. The results

given in bold show the lowest bias among all estimators for each measurement

category. The summary tables, 2.7 and 2.8 show the best non-hybridised and

hybridised estimators, respectively, with the relative efficiencies of the BB1 or

5The purpose was to speed up the simulations, which would crash numerically at search

points very close to the boundary. This modification is costless given that the final estimate

of ½ cannot lie close to the boundary.
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BB2 estimators given in parentheses; in these tables, a * indicates that the

mean squared error of the best method is significantly lower than that of the

second-best method as measured by a z-test at 5%.

Looking first at Tables 2.1 and 2.2, notice that for n = 20 the bias adjust-

ment implemented in BB1, AW1, and AWW1 is highly effective, producing an

estimator with very much smaller bias than any of the others across all the

½ values considered. However, all the estimators, except the MLE, produce

a significant proportion of non-invertible estimates, especially for ½ = 0.9 as

evidenced in Figure 2.1, where the histograms in the left column show that

this proportion is particularly high for BB1, AW1, and AWW1. For practical

use, therefore, we introduce the hybrid estimators in Table 2.2, where all esti-

mators are hybridised if they produce non-invertible estimates of ½. Here we

see a similar pattern repeated, though with, obviously, a less striking reduction

in bias. Notice that although the hybrid BB2, AW2, and AWW2 have larger

bias than their non-hybridised ones, they have lower bias than any of the other

hybridised estimators. Moreover, as evidenced in Figure 2.1, the histograms in

the right column show that all hybridised estimators no longer produce non-

invertible estimates. When the sample size is increased to 100 the BB1 and

AWW1 estimators are almost unbiased, and retain their clear advantage over

the other non-hybrid estimators. After hybridising, as shown in Table 2.4, the

BB2, AW2, and AWW2 estimators have very small increase in bias and re-

main much superior to the other hybridised estimators. Figure 2.2 shows that

the non-hybridised bias-adjusted estimators hit the invertibility constraint less

often than the case for n = 20.
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½ Method Mean Med. St.D. RMSE ½ Method Mean Med. St.D. RMSE

0.0 BB1 0.032 0.034 0.499 0.500 0.5 BB1 0.471 0.526 0.415 0.416

ML -0.251 -0.233 0.446 0.511 ML 0.212 0.299 0.418 0.508

KP1 -0.237 -0.215 0.423 0.485 KP1 0.205 0.262 0.417 0.511

KPW1 -0.092 -0.091 0.452 0.462 KPW1 0.332 0.366 0.409 0.443

LL1 -0.276 -0.271 0.455 0.532 LL1 0.175 0.244 0.473 0.574

AW1 -0.055 -0.020 0.474 0.477 AW1 0.421 0.497 0.429 0.436

AWW1 0.021 0.027 0.494 0.494 AWW1 0.477 0.545 0.421 0.421

0.1 BB1 0.121 0.133 0.489 0.490 0.7 BB1 0.636 0.718 0.354 0.359

ML -0.163 -0.122 0.449 0.521 ML 0.410 0.511 0.375 0.475

KP1 -0.155 -0.124 0.429 0.499 KP1 0.401 0.468 0.386 0.489

KPW1 -0.009 -0.003 0.451 0.464 KPW1 0.504 0.553 0.366 0.415

LL1 -0.191 -0.172 0.464 0.548 LL1 0.376 0.472 0.459 0.561

AW1 0.038 0.080 0.473 0.477 AW1 0.617 0.714 0.376 0.385

AWW1 0.112 0.131 0.487 0.487 AWW1 0.656 0.753 0.361 0.364

0.3 BB1 0.298 0.333 0.460 0.460 0.9 BB1 0.803 0.917 0.260 0.278

ML 0.021 0.088 0.442 0.522 ML 0.611 0.703 0.309 0.423

KP1 0.019 0.063 0.431 0.514 KP1 0.606 0.681 0.330 0.443

KPW1 0.160 0.184 0.438 0.460 KPW1 0.674 0.741 0.303 0.378

LL1 -0.014 0.028 0.475 0.570 LL1 0.591 0.697 0.410 0.513

AW1 0.227 0.286 0.460 0.465 AW1 0.799 0.944 0.290 0.306

AWW1 0.295 0.338 0.462 0.462 AWW1 0.818 0.973 0.275 0.287

Table 2.1: Non-hybridised estimators of ½ for n = 20, ¾2 = 1.
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½ Method Mean Med. St.D. RMSE ½ Method Mean Med. St.D. RMSE

0.0 BB2 -0.004 0.022 0.459 0.459 0.5 BB2 0.414 0.477 0.381 0.391

ML -0.251 -0.233 0.446 0.511 ML 0.212 0.299 0.418 0.508

KP2 -0.232 -0.215 0.416 0.477 KP2 0.203 0.262 0.409 0.506

KPW2 -0.104 -0.091 0.430 0.443 KPW2 0.303 0.354 0.380 0.428

LL2 -0.271 -0.258 0.441 0.517 LL2 0.169 0.249 0.437 0.548

AW2 -0.058 -0.020 0.466 0.470 AW2 0.397 0.489 0.404 0.417

AWW2 -0.006 0.023 0.459 0.459 AWW2 0.418 0.493 0.379 0.388

0.1 BB2 0.082 0.117 0.450 0.450 0.7 BB2 0.566 0.644 0.325 0.351

ML -0.163 -0.122 0.449 0.521 ML 0.410 0.511 0.375 0.475

KP2 -0.151 -0.124 0.422 0.491 KP2 0.395 0.468 0.378 0.485

KPW2 -0.023 -0.004 0.428 0.446 KPW2 0.468 0.529 0.337 0.409

LL2 -0.186 -0.162 0.446 0.529 LL2 0.366 0.470 0.406 0.526

AW2 0.031 0.080 0.461 0.466 AW2 0.574 0.682 0.346 0.368

AWW2 0.081 0.120 0.451 0.452 AWW2 0.575 0.662 0.325 0.348

0.3 BB2 0.250 0.300 0.422 0.425 0.9 BB2 0.710 0.790 0.262 0.324

ML 0.021 0.088 0.442 0.522 ML 0.611 0.703 0.309 0.423

KP2 0.020 0.063 0.424 0.508 KP2 0.594 0.678 0.320 0.443

KPW2 0.140 0.178 0.412 0.442 KPW2 0.634 0.707 0.281 0.387

LL2 -0.011 0.041 0.444 0.542 LL2 0.569 0.673 0.356 0.486

AW2 0.213 0.285 0.442 0.450 AW2 0.725 0.809 0.259 0.313

AWW2 0.251 0.312 0.422 0.424 AWW2 0.716 0.800 0.251 0.312

Table 2.2: Hybridised estimators of ½ for n = 20, ¾2 = 1.
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½ Method Mean Med. St.D. RMSE ½ Method Mean Med. St.D. RMSE

0.0 BB1 -0.000 0.006 0.183 0.183 0.5 BB1 0.494 0.504 0.143 0.143

ML -0.049 -0.040 0.179 0.186 ML 0.450 0.465 0.136 0.144

KP1 -0.053 -0.041 0.179 0.187 KP1 0.446 0.458 0.139 0.149

KPW1 -0.028 -0.022 0.178 0.180 KPW1 0.459 0.469 0.140 0.146

LL1 -0.050 -0.039 0.179 0.185 LL1 0.447 0.462 0.137 0.146

AW1 -0.019 -0.006 0.181 0.182 AW1 0.484 0.497 0.140 0.141

AWW1 -0.000 0.005 0.182 0.182 AWW1 0.496 0.508 0.142 0.142

0.1 BB1 0.099 0.106 0.177 0.177 0.7 BB1 0.693 0.702 0.115 0.115

ML 0.051 0.063 0.174 0.181 ML 0.651 0.666 0.107 0.117

KP1 0.045 0.058 0.174 0.182 KP1 0.650 0.662 0.113 0.123

KPW1 0.069 0.076 0.173 0.176 KPW1 0.658 0.667 0.113 0.121

LL1 0.049 0.062 0.173 0.180 LL1 0.646 0.662 0.110 0.123

AW1 0.081 0.094 0.175 0.176 AW1 0.690 0.701 0.113 0.113

AWW1 0.098 0.106 0.177 0.177 AWW1 0.698 0.709 0.114 0.114

0.3 BB1 0.296 0.306 0.163 0.163 0.9 BB1 0.891 0.900 0.072 0.073

ML 0.250 0.264 0.158 0.165 ML 0.854 0.869 0.065 0.080

KP1 0.244 0.257 0.159 0.169 KP1 0.857 0.866 0.074 0.086

KPW1 0.263 0.273 0.159 0.163 KPW1 0.860 0.869 0.073 0.083

LL1 0.248 0.263 0.157 0.166 LL1 0.844 0.860 0.080 0.098

AW1 0.281 0.295 0.160 0.161 AW1 0.899 0.908 0.072 0.072

AWW1 0.297 0.306 0.162 0.162 AWW1 0.902 0.913 0.070 0.070

Table 2.3: Non-hybridised estimators of ½ for n = 100, ¾2 = 1.
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½ Method Mean Med. St.D. RMSE ½ Method Mean Med. St.D. RMSE

0.0 BB2 -0.000 0.006 0.183 0.183 0.5 BB2 0.493 0.504 0.141 0.141

ML -0.049 -0.040 0.179 0.186 ML 0.450 0.465 0.136 0.144

KP2 -0.053 -0.041 0.179 0.187 KP2 0.446 0.458 0.139 0.149

KPW2 -0.028 -0.022 0.178 0.180 KPW2 0.459 0.469 0.140 0.145

LL2 -0.050 -0.039 0.179 0.185 LL2 0.447 0.462 0.137 0.146

AW2 -0.019 -0.006 0.181 0.182 AW2 0.484 0.497 0.140 0.141

AWW2 -0.000 0.005 0.182 0.182 AWW2 0.496 0.508 0.142 0.142

0.1 BB2 0.099 0.106 0.177 0.177 0.7 BB2 0.691 0.701 0.112 0.112

ML 0.051 0.063 0.174 0.181 ML 0.651 0.666 0.107 0.117

KP2 0.045 0.058 0.174 0.182 KP2 0.650 0.662 0.113 0.123

KPW2 0.069 0.076 0.173 0.176 KPW2 0.658 0.667 0.112 0.120

LL2 0.049 0.062 0.173 0.180 LL2 0.646 0.662 0.110 0.123

AW2 0.081 0.094 0.175 0.176 AW2 0.690 0.701 0.113 0.113

AWW2 0.098 0.106 0.177 0.177 AWW2 0.697 0.709 0.113 0.113

0.3 BB2 0.296 0.306 0.162 0.162 0.9 BB2 0.884 0.896 0.066 0.068

ML 0.250 0.264 0.158 0.165 ML 0.854 0.869 0.065 0.080

KP2 0.244 0.257 0.159 0.169 KP2 0.855 0.866 0.072 0.085

KPW2 0.263 0.273 0.159 0.163 KPW2 0.858 0.869 0.071 0.083

LL2 0.248 0.263 0.157 0.166 LL2 0.844 0.860 0.080 0.098

AW2 0.281 0.295 0.160 0.161 AW2 0.891 0.904 0.066 0.067

AWW2 0.297 0.306 0.162 0.162 AWW2 0.894 0.907 0.065 0.065

Table 2.4: Hybridised estimators of ½ for n = 100, ¾2 = 1.
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½ Method Mean Med. St.D. RMSE ½ Method Mean Med. St.D. RMSE

0.0 BB1 -0.000 0.002 0.113 0.113 0.5 BB1 0.496 0.501 0.085 0.085

ML -0.020 -0.016 0.114 0.115 ML 0.480 0.487 0.084 0.086

KP1 -0.022 -0.018 0.114 0.116 KP1 0.478 0.482 0.086 0.088

KPW1 -0.012 -0.009 0.112 0.112 KPW1 0.482 0.486 0.085 0.087

LL1 -0.019 -0.016 0.113 0.115 LL1 0.480 0.485 0.084 0.086

AW1 -0.008 -0.005 0.114 0.114 AW1 0.494 0.497 0.086 0.086

AWW1 -0.000 0.001 0.113 0.113 AWW1 0.497 0.502 0.085 0.085

0.1 BB1 0.099 0.101 0.109 0.109 0.7 BB1 0.695 0.700 0.067 0.067

ML 0.080 0.083 0.110 0.111 ML 0.680 0.689 0.065 0.068

KP1 0.078 0.082 0.110 0.112 KP1 0.680 0.684 0.067 0.070

KPW1 0.086 0.088 0.108 0.109 KPW1 0.682 0.687 0.067 0.069

LL1 0.081 0.084 0.109 0.111 LL1 0.680 0.686 0.065 0.068

AW1 0.092 0.095 0.110 0.110 AW1 0.696 0.700 0.068 0.068

AWW1 0.099 0.101 0.109 0.109 AWW1 0.698 0.703 0.067 0.067

0.3 BB1 0.298 0.301 0.099 0.099 0.9 BB1 0.896 0.900 0.041 0.041

ML 0.280 0.283 0.098 0.100 ML 0.881 0.884 0.037 0.041

KP1 0.278 0.281 0.099 0.102 KP1 0.883 0.886 0.042 0.045

KPW1 0.284 0.288 0.099 0.100 KPW1 0.884 0.888 0.041 0.044

LL1 0.280 0.284 0.099 0.101 LL1 0.881 0.886 0.037 0.041

AW1 0.292 0.296 0.100 0.100 AW1 0.901 0.904 0.042 0.042

AWW1 0.298 0.302 0.099 0.099 AWW1 0.902 0.905 0.041 0.041

Table 2.5: Non-hybridised estimators of ½ for n = 245, ¾2 = 1.
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½ Method Mean Med. St.D. RMSE ½ Method Mean Med. St.D. RMSE

0.0 BB2 -0.000 0.002 0.113 0.113 0.5 BB2 0.496 0.501 0.085 0.085

ML -0.020 -0.016 0.114 0.115 ML 0.480 0.487 0.084 0.086

KP2 -0.022 -0.018 0.114 0.116 KP2 0.478 0.482 0.086 0.088

KPW2 -0.012 -0.009 0.112 0.112 KPW2 0.482 0.486 0.085 0.087

LL2 -0.019 -0.016 0.113 0.115 LL2 0.480 0.485 0.084 0.086

AW2 -0.008 -0.005 0.114 0.114 AW2 0.494 0.497 0.086 0.086

AWW2 -0.000 0.001 0.113 0.113 AWW2 0.497 0.502 0.085 0.085

0.1 BB2 0.099 0.101 0.109 0.109 0.7 BB2 0.695 0.700 0.067 0.067

ML 0.080 0.083 0.110 0.111 ML 0.680 0.689 0.065 0.068

KP2 0.078 0.082 0.110 0.112 KP2 0.680 0.684 0.067 0.070

KPW2 0.086 0.088 0.108 0.109 KPW2 0.682 0.687 0.067 0.069

LL2 0.081 0.084 0.109 0.111 LL2 0.680 0.686 0.065 0.068

AW2 0.092 0.095 0.110 0.110 AW2 0.696 0.700 0.068 0.068

AWW2 0.099 0.101 0.109 0.109 AWW2 0.698 0.703 0.067 0.067

0.3 BB2 0.298 0.301 0.099 0.099 0.9 BB2 0.895 0.900 0.040 0.040

ML 0.280 0.283 0.098 0.100 ML 0.881 0.884 0.037 0.041

KP2 0.278 0.281 0.099 0.102 KP2 0.883 0.886 0.042 0.045

KPW2 0.284 0.288 0.099 0.100 KPW2 0.884 0.888 0.040 0.044

LL2 0.280 0.284 0.099 0.101 LL2 0.881 0.886 0.037 0.041

AW2 0.292 0.296 0.100 0.100 AW2 0.900 0.904 0.041 0.041

AWW2 0.298 0.302 0.099 0.099 AWW2 0.901 0.905 0.040 0.040

Table 2.6: Hybridised estimators of ½ for n = 245, ¾2 = 1.
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Figure 2.1: Histograms of non-hybridised and hybridised estimators of ½ for n = 20,

¾2 = 1 and the true value of ½ = 0.9.
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Figure 2.2: Histograms of non-hybridised and hybridised estimators of ½ for

n = 100, ¾2 = 1 and the true value of ½ = 0.9.
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Figure 2.3: Histograms of non-hybridised and hybridised estimators of ½ for

n = 245, ¾2 = 1 and the true value of ½ = 0.9.
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Figure 2.4: Histograms of non-hybridised and hybridised estimators of ½ for n = 49,

¾2 = 1 and the true value of ½ = 0.9.
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For n = 245 a similar pattern emerges in Tables 2.5 and 2.6, with BB and

AWW performing equally well in most cases. Though the various estimators’

performance now much closer together, the BB, AW, and AWW are still ahead

in their classes as shown in summary form in Tables 2.7 and 2.8. Notice

that as non-hybridised estimators rarely produce non-invertible estimates for

large n, results shown in Tables 2.5 and 2.6, and Figure 2.3 are more-or-less

identical. Moreover, differences in estimators’ performance for n = 490 are

less significant, as shown in Tables 2.7 and 2.8, where only LL1 and LL2 are

significantly better than the second-best when ½ ≥ 0.7.

From the results for non-hybridised estimators, we can see that the MLE

does not seem to perform well especially for small n. This situation may be

explained as follows. As we mentioned earlier, the MLE and estimators that

are not bias-adjusted for small samples are biased downward. The estimates

obtained for these estimators are therefore much lower than those obtained

for the bias-adjusted estimators such as the BB, AW and AWW, as well as

lower than the true parameter values. Note that the differences between the

estimates obtained for the MLE and bias-adjusted estimators are less striking

for the hybridised cases, especially for small n and large true values of ½.

n

True ½ 20 50 100 245 490

0.0 KPW1* (0.923) KPW1* (0.944) KPW1* (0.986) KPW1* (0.996) KPW1 (0.998)

0.1 KPW1* (0.947) KPW1* (0.956) KPW1* (0.993) KPW1 (0.999) BB1 (1.000)

0.3 KPW1 (0.999) AW1* (0.963) AW1 (0.990) BB1* (1.000) ML (0.998)

0.5 BB1* (1.000) AW1* (0.972) AW1* (0.983) BB1* (1.000) ML (0.993)

0.7 BB1* (1.000) AWW1 (0.998) AW1* (0.987) BB1 (1.000) LL1* (0.990)

0.9 BB1* (1.000) AWW1* (0.952) AWW1* (0.971) AWW1 (0.987) LL1* (0.940)

Table 2.7: Estimation of ½. For each ½ and n combination, the table entry is

the non-hybridised estimator of ½ giving the smallest RMSE with ¾2 = 1. The

figure in parentheses is the relative efficiency of BB1.

Tables 2.1 - 2.8 record results for a model in which ¾2, the variance of ",
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is fixed at unity and in which the spatial weight matrices were created from

randomly generated Voronoi polygons. To safeguard against unanticipated

effects of using such random weight matrices and to reveal any sensitivity to

variation in R2 we conducted the experiment for n = 49 using the Columbus

weights with ¾2 = 0.25, 0.5, 1.0, and 2.0.

Tables A.1 and A.2 in Appendix A show the mean, median, standard de-

viation and root mean square error of the non-hybridised and hybridised esti-

mators, respectively, of ½ for n = 49 and ¾2 = 1.0. The results are reassuring,

being little different from the corresponding tables for n = 50 obtained using

the random weights. For the case ½ = 0 the R2 values corresponding to the

innovation variances are: 1
1+¾2 = 0.5, 0.8, 0.66 and 0.33 respectively. Inspec-

tion of Tables A.3 - A.8 in Appendix A confirms the previous patterns where

the bias-adjusted estimators take turn in having the smallest bias among all

estimators in both the non-hybridised and hybridised forms.

The summaries, Tables 2.9 and 2.10, show that the bias-adjusted estimators

are the most efficient estimators across different values of ¾2, except for when

½ ≤ 0.2 where the KPW estimator is most efficient.

n

True ½ 20 50 100 245 490

0.0 KPW2* (0.964) KPW2* (0.974) KPW2* (0.986) KPW2* (0.996) KPW2 (0.998)

0.1 KPW2 (0.990) KPW2 (0.992) KPW2* (0.993) KPW2 (0.999) BB2 (1.000)

0.3 AWW2 (0.999) BB2* (1.000) AW2 (0.995) BB2* (1.000) ML (0.998)

0.5 AWW2 (0.993) BB2* (1.000) AW2 (0.999) BB2* (1.000) ML (0.993)

0.7 AWW2 (0.992) AWW2 (0.995) BB2* (1.000) BB2 (1.000) LL2* (0.990)

0.9 AWW2 (0.963) AWW2* (0.924) AWW2* (0.953) AWW2 (0.990) LL2* (0.940)

Table 2.8: Estimation of ½. For each ½ and n combination, the table entry

is the hybridised estimator of ½ giving the smallest RMSE with ¾2 = 1. The

figure in parentheses is the relative efficiency of BB2.
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¾2

True ½ 0.25 0.5 1 2

0.0 KPW1* (0.958) KPW1* (0.966) KPW1* (0.956) KPW1* (0.959)

0.1 KPW1* (0.971) KPW1* (0.963) KPW1* (0.964) KPW1* (0.976)

0.3 AW1 (0.968) AW1* (0.964) AW1 (0.984) AWW1 (0.982)

0.5 AW1* (0.956) AW1* (0.952) AW1* (0.961) AW1* (0.973)

0.7 AW1* (0.962) AW1* (0.952) AW1* (0.968) AW1* (0.961)

0.9 AWW1 (0.992) BB1* (1.000) BB1* (1.000) AWW1 (0.995)

Table 2.9: Estimation of ½. For each ½ and ¾2 combination, the table entry is

the non-hybridised estimator of ½ giving the smallest RMSE for n = 49. The

figure in parentheses is the relative efficiency of BB1.

¾2

True ½ 0.25 0.5 1 2

0.0 KPW2* (0.966) KPW2* (0.971) KPW2* (0.969) KPW2* (0.971)

0.1 KPW2* (0.980) KPW2* (0.979) KPW2* (0.982) KPW2* (0.983)

0.3 AW2 (0.989) AW2 (0.989) AWW2 (0.995) BB2 (1.000)

0.5 AW2* (0.978) AWW2 (0.981) AWW2 (0.977) AWW2 (0.993)

0.7 AWW2* (0.975) AWW2* (0.966) AWW2* (0.976) AWW2* (0.984)

0.9 AWW2 (0.897) AWW2 (0.899) AWW2* (0.911) AWW2 (0.909)

Table 2.10: Estimation of ½. For each ½ and ¾2 combination, the table entry

is the hybridised estimator of ½ giving the smallest RMSE for n = 49. The

figure in parentheses is the relative efficiency of BB2.

2.3.3 Estimates of ¯1

The intercept is rarely a parameter of interest in spatial regression models, but

of course good estimates are preferable to bad ones. Somewhat surprisingly,

none of the bias-adjusted estimators does well on the mean square error crite-

rion; as shown in Tables A.9 and A.10 in Appendix A where the ML and the

LL estimators are most efficient in the majority of cases across all values of

¾2 considered. Note that the most efficient estimator is, however, not signifi-

cantly better than the second-best estimator. For n = 20 and 50, as shown in

Tables A.11 and A.12, MLE is again the most efficient estimator of ¯1 in most
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cases. For n = 100, the AW and the AWW estimators are most efficient, even

though not significantly better than the second-best, only when ½ ≤ 0.5. For

n = 245 and 490, the differences in estimators’ performance are less significant,

and the relative efficiency of the BB is at least 0.97.

The news is much better for the BB, AW, and AWW estimators when the

focus is inference about ¯1. The t statistics are calculated using the asymp-

totic standard errors described in Section 2.2; for the hybrid estimators, the

standard error is calculated from either the MLE or the alternative method as

appropriate. For n = 20, Table 2.11 reveals that rejection rates for the two-

sided true null hypothesis, ¯1 = 1 are much closer to nominal significance levels

for the bias-adjusted estimators than for the others, although all estimators

give badly over-sized t statistics when ½ is large. Note that the OLS estimator

performs better than the other estimators when ½ = 0.0, as in that case the

OLS assumption that Ui is independently distributed, is indeed correct. For

n = 100 as seen in Table 2.12 the bias-adjusted estimators give more-or-less

correctly sized two-sided t tests while the other estimators are clearly less sat-

isfactory on this criterion. For n = 490, as seen in Table 2.13, they also give

more-or-less correctly sized two-sided t tests, while the other estimators, even

the OLS estimator in some cases when ½ = 0.0, are less satisfactory although

with smaller differences.
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Rejection rates

Non-hybridised Hybridised

¯1 ¯2 ¯3 ¯1 ¯2 ¯3

True ½ Method 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

0.0 BB 7.8 12.2 7.1 12.5 8.3 14.0 8.0 12.5 7.0 12.3 8.2 14.1

ML 14.9 20.9 10.2 16.7 11.8 18.7 14.9 20.9 10.2 16.7 11.8 18.7

KP 13.8 20.1 9.0 15.0 10.2 16.9 13.8 20.0 9.0 15.1 10.2 16.9

KPW 11.5 17.0 8.6 14.5 10.3 16.4 11.5 17.0 8.6 14.5 10.2 16.2

LL 15.2 21.6 9.3 15.5 11.0 17.5 15.1 21.6 9.5 16.0 11.1 17.6

AW 9.3 13.4 7.2 12.1 8.1 14.2 9.4 13.6 7.4 12.3 8.2 14.2

AWW 7.7 12.3 7.0 12.5 8.3 13.9 7.9 12.5 7.0 12.5 8.3 13.9

OLS 4.4 9.0 4.7 9.0 5.5 10.6 4.4 9.0 4.7 9.0 5.5 10.6

0.5 BB 11.4 15.7 6.7 12.3 7.7 13.6 12.4 17.2 6.6 11.7 7.5 13.3

ML 21.1 26.8 8.8 14.3 9.8 16.0 21.1 26.8 8.8 14.3 9.8 16.0

KP 21.7 27.9 8.3 13.5 9.0 15.3 21.6 27.9 8.2 13.6 9.0 15.3

KPW 17.7 23.4 7.9 13.1 8.9 15.0 18.0 23.9 7.5 12.8 8.6 14.8

LL 22.8 29.1 8.5 13.5 9.6 15.5 22.7 29.1 8.2 13.3 9.3 15.2

AW 12.6 17.0 6.7 11.6 6.9 12.9 12.8 17.3 6.5 11.5 6.9 12.8

AWW 11.2 15.2 6.3 11.5 7.2 12.8 11.8 16.3 6.2 11.3 7.2 12.9

OLS 25.4 34.4 4.6 9.0 5.3 10.7 25.4 34.4 4.6 9.0 5.3 10.7

0.9 BB 23.2 26.6 5.4 10.3 6.1 11.5 35.6 42.0 5.2 10.4 5.7 11.5

ML 47.9 54.7 6.5 11.5 6.7 12.6 47.9 54.7 6.5 11.5 6.7 12.6

KP 46.1 51.4 5.6 10.7 6.3 11.5 47.6 53.5 5.5 10.6 6.2 11.4

KPW 38.8 43.8 5.4 10.3 6.2 11.5 44.6 50.8 5.3 10.3 6.0 11.5

LL 44.9 49.6 6.6 11.6 7.0 12.5 49.7 55.7 6.4 11.2 6.6 12.2

AW 21.8 25.0 5.0 9.1 5.4 10.0 33.0 39.6 5.4 10.1 6.0 10.9

AWW 20.7 23.3 5.0 9.3 5.2 10.2 35.5 41.7 5.4 10.2 6.0 11.1

OLS 78.0 81.4 4.7 9.3 4.9 10.2 78.0 81.4 4.7 9.3 4.9 10.2

Table 2.11: Size of non-hybridised and hybridised t-statistics for n = 20,

¾2 = 1. The table entry is the rejection percentage of the two-sided t test.
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Rejection rates

Non-hybridised Hybridised

¯1 ¯2 ¯3 ¯1 ¯2 ¯3

True ½ Method 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

0.0 BB 5.8 11.4 4.6 10.2 5.3 10.4 5.8 11.4 4.6 10.2 5.3 10.4

ML 7.6 12.9 5.2 10.6 5.9 10.9 7.6 12.9 5.2 10.6 5.9 10.9

KP 7.8 12.9 5.2 10.6 6.0 10.8 7.8 12.9 5.2 10.6 6.0 10.8

KPW 7.2 12.4 5.1 10.6 5.9 10.9 7.2 12.4 5.1 10.6 5.9 10.9

LL 7.6 13.0 5.2 10.6 6.0 10.9 7.6 13.0 5.2 10.6 6.0 10.9

AW 6.3 11.8 4.7 10.1 5.4 10.3 6.3 11.8 4.7 10.1 5.4 10.3

AWW 6.0 11.4 4.6 10.2 5.3 10.4 6.0 11.4 4.6 10.2 5.3 10.4

OLS 5.2 10.4 4.1 9.1 4.8 9.9 5.2 10.4 4.1 9.1 4.8 9.9

0.5 BB 6.7 12.0 4.5 9.9 4.8 10.1 6.7 12.0 4.5 9.9 4.8 10.0

ML 8.9 14.4 4.8 10.3 4.9 10.3 8.9 14.4 4.8 10.3 4.9 10.3

KP 9.1 14.5 4.7 9.9 4.9 10.3 9.1 14.5 4.7 9.9 4.9 10.3

KPW 8.6 13.9 4.6 10.1 5.0 10.3 8.6 13.9 4.6 10.1 5.0 10.3

LL 9.1 14.6 4.8 10.3 4.9 10.3 9.1 14.6 4.8 10.3 4.9 10.3

AW 7.0 12.1 4.5 9.8 4.5 9.8 7.0 12.1 4.5 9.8 4.5 9.8

AWW 6.5 11.6 4.4 9.9 4.7 9.9 6.5 11.6 4.4 9.9 4.7 9.9

OLS 28.4 36.8 4.8 9.6 5.0 9.9 28.4 36.8 4.8 9.6 5.0 9.9

0.9 BB 11.3 15.3 4.7 9.9 5.0 9.0 11.7 16.0 4.5 9.5 4.8 8.8

ML 17.1 23.7 4.4 9.5 4.4 9.0 17.1 23.7 4.4 9.5 4.4 9.0

KP 16.7 22.9 3.9 8.6 4.4 8.3 16.8 23.1 3.9 8.6 4.3 8.3

KPW 16.4 22.1 4.0 8.6 4.4 8.4 16.5 22.3 4.0 8.6 4.4 8.4

LL 18.9 26.1 4.3 9.3 4.4 8.8 18.9 26.1 4.3 9.3 4.4 8.8

AW 10.0 13.8 4.3 9.3 4.5 8.6 10.3 14.3 4.2 9.3 4.5 8.6

AWW 9.4 12.6 4.4 9.5 4.5 8.7 9.8 13.3 4.3 9.5 4.5 8.7

OLS 72.7 76.9 4.9 10.1 5.0 9.9 72.7 76.9 4.9 10.1 5.0 9.9

Table 2.12: Size of non-hybridised and hybridised t-statistics for n = 100,

¾2 = 1. The table entry is the rejection percentage of the two-sided t test.
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Rejection rates

Non-hybridised Hybridised

¯1 ¯2 ¯3 ¯1 ¯2 ¯3

True ½ Method 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

0.0 BB 5.1 10.7 5.1 9.7 5.5 11.3 5.1 10.7 5.1 9.7 5.5 11.3

ML 5.5 11.4 5.2 9.8 5.6 11.5 5.5 11.4 5.2 9.8 5.6 11.5

KP 5.5 11.4 5.2 9.8 5.6 11.4 5.5 11.4 5.2 9.8 5.6 11.4

KPW 5.4 11.3 5.2 9.8 5.5 11.4 5.4 11.3 5.2 9.8 5.5 11.4

LL 5.4 11.5 5.2 9.8 5.6 11.5 5.4 11.5 5.2 9.8 5.6 11.5

AW 5.3 11.1 5.2 9.8 5.6 11.3 5.3 11.1 5.2 9.8 5.6 11.3

AWW 5.1 10.6 5.1 9.7 5.5 11.3 5.1 10.6 5.1 9.7 5.5 11.3

OLS 4.9 10.8 5.1 9.6 5.6 11.2 4.9 10.8 5.1 9.6 5.6 11.2

0.5 BB 5.3 11.0 5.2 9.8 5.5 11.3 5.3 11.0 5.2 9.8 5.5 11.3

ML 5.7 11.4 5.3 9.9 5.5 11.5 5.7 11.4 5.3 9.9 5.5 11.5

KP 5.7 11.7 5.3 10.0 5.5 11.3 5.7 11.7 5.3 10.0 5.5 11.3

KPW 5.5 11.7 5.3 9.9 5.5 11.3 5.5 11.7 5.3 9.9 5.5 11.3

LL 5.7 11.5 5.3 10.0 5.5 11.3 5.7 11.5 5.3 10.0 5.5 11.3

AW 5.4 11.0 5.2 9.8 5.4 11.3 5.4 11.0 5.2 9.8 5.4 11.3

AWW 5.3 10.8 5.2 9.8 5.5 11.3 5.3 10.8 5.2 9.8 5.5 11.3

OLS 28.9 37.7 4.8 9.4 5.3 10.9 28.9 37.7 4.8 9.4 5.3 10.9

0.9 BB 6.7 11.4 5.6 9.9 5.4 11.0 6.7 11.4 5.6 9.9 5.4 11.0

ML 8.1 13.7 5.5 9.8 5.3 11.0 8.1 13.7 5.5 9.8 5.3 11.0

KP 8.0 13.3 5.5 9.7 5.3 10.6 8.0 13.3 5.5 9.7 5.3 10.6

KPW 7.9 12.9 5.4 9.7 5.3 10.6 7.9 12.9 5.4 9.7 5.3 10.6

LL 8.1 13.2 5.5 9.8 5.3 11.0 8.1 13.2 5.5 9.8 5.3 11.0

AW 6.3 10.6 5.5 9.9 5.3 10.9 6.3 10.6 5.5 9.9 5.3 10.9

AWW 6.2 10.5 5.5 9.9 5.4 11.0 6.2 10.5 5.5 9.9 5.4 11.0

OLS 72.1 76.8 5.4 9.6 4.9 10.5 72.1 76.8 5.4 9.6 4.9 10.5

Table 2.13: Size of non-hybridised and hybridised t-statistics for n = 490,

¾2 = 1. The table entry is the rejection percentage of the two-sided t test.

2.3.4 Estimates of ¯2 and ¯3

Consider ¯2 first; the true value is 0.0 so the associated explanatory variable is

redundant. The empirical significance levels for t tests reported in Table 2.11

suggests there is little to choose between the estimators, most resulting in

slightly liberal inferences, while in Tables 2.12 - 2.13, for n = 100 and n =
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490 respectively, we see that all the estimators are approximately correctly

sized. For ¯3 the pattern is similar, with BB, AW, and AWW essentially

indistinguishable from their competitors.

The summary tables 2.14 and 2.15 show that BB1 and BB2 perform very

well, especially for n = 20 and 50 where they are (significantly) the most

efficient estimators in several cases. For larger n, estimators’ performance

is much closer together as expected and the most efficient estimator is not

significantly better than the second-best. Notice that the relative efficiency

of BB1 and BB2 is at least 0.99 for n = 20 and 50, and 1.0 for n ≥ 100.

Tables A.13 and A.14 in Appendix A show that for n = 49, in most cases, the

KPW performs the best for small ½ values, the MLE and the AWW for large

½ values, and the BB when ½ values are between the two extremes. Note that

the differences between the best and the second-best methods disappear with

the relative efficiency of BB very close to the best estimators.

n

True ½ 20 50 100 245 490

0.0 KPW1 (0.990) KPW1 (0.997) KPW1 (1.000) AW1 (1.000) KPW1 (1.000)

0.1 KPW1 (0.993) KPW1 (0.998) AW1 (1.000) AW1 (1.000) KPW1 (1.000)

0.3 KPW1 (1.000) BB1 (1.000) AW1 (1.000) AW1 (1.000) KPW1 (1.000)

0.5 BB1* (1.000) BB1 (1.000) AW1 (1.000) AW1 (1.000) LL1 (1.000)

0.7 BB1* (1.000) AWW1 (1.000) ML (1.000) AWW1 (1.000) ML (1.000)

0.9 BB1* (1.000) AWW1 (0.997) LL1 (1.000) AWW1 (1.000) ML (1.000)

Table 2.14: Estimation of ¯2. For each ½ and n combination, the table entry

is the non-hybridised estimator of ¯2 giving the smallest RMSE with ¾2 = 1.

The figure in parentheses is the relative efficiency of BB1.

For ¯3 as shown in Tables 2.16 and 2.17, BB1/2 are significantly most effi-

cient in several cases for n = 20. For n ≥ 50, the bias-adjusted estimators still

outperform other estimators for the majority of cases, though not significantly

better than the second-best. Tables A.15 and A.16 in Appendix A confirm the

similarity of pattern of ¯3 with that of ¯2 where the bias-adjusted estimators
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n

True ½ 20 50 100 245 490

0.0 KPW2 (0.998) KPW2 (0.999) KPW2 (1.000) AW2 (1.000) KPW2 (1.000)

0.1 KPW2 (0.999) KPW2 (1.000) AW2 (1.000) AW2 (1.000) KPW2 (1.000)

0.3 BB2 (1.000) BB2 (1.000) AW2 (1.000) AW2 (1.000) KPW2 (1.000)

0.5 BB2* (1.000) BB2* (1.000) AW2 (1.000) AW2 (1.000) LL2 (1.000)

0.7 BB2* (1.000) AWW2 (1.000) AWW2 (1.000) AWW2 (1.000) ML (1.000)

0.9 AW2* (0.990) AWW2* (0.996) AWW2 (1.000) AWW2 (1.000) ML (1.000)

Table 2.15: Estimation of ¯2. For each ½ and n combination, the table entry

is the hybridised estimator of ¯2 giving the smallest RMSE with ¾2 = 1. The

figure in parentheses is the relative efficiency of BB2.

take it in turn to perform the best in most cases, except for small ½ values.

n

True ½ 20 50 100 245 490

0.0 KPW1 (0.993) KPW1 (0.997) BB1 (1.000) BB1 (1.000) KPW1 (1.000)

0.1 KPW1 (0.997) KPW1 (0.998) BB1 (1.000) BB1 (1.000) KPW1 (1.000)

0.3 BB1 (1.000) KPW1 (0.999) AW1 (1.000) BB1 (1.000) KPW1 (1.000)

0.5 BB1* (1.000) BB1 (1.000) AW1 (1.000) AW1 (1.000) ML (1.000)

0.7 AWW1 (0.998) BB1 (1.000) AW1 (0.999) AW1 (1.000) AW1 (1.000)

0.9 AWW1 (0.993) AWW1 (0.999) AWW1 (0.999) ML (1.000) AW1 (1.000)

Table 2.16: Estimation of ¯3. For each ½ and n combination, the table entry

is the non-hybridised estimator of ¯3 giving the smallest RMSE with ¾2 = 1.

The figure in parentheses is the relative efficiency of BB1.

2.3.5 Estimates of ¾2

Like ¯1 in this model, the innovation variance is seldom a key parameter.

However, the relative performance of the various estimators is still of some

interest. Tables 2.18 and 2.19 below show that AW and AWW are most efficient

for small ½ values, KP and KPW for moderate ½, and MLE for ½ ≥ 0.7. Note

that for the larger sample sizes the LL estimator makes an appearance. The
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n

True ½ 20 50 100 245 490

0.0 KPW2* (0.996) KPW2 (0.998) BB2 (1.000) BB2 (1.000) KPW2 (1.000)

0.1 KPW2 (1.000) KPW2 (1.000) BB2 (1.000) BB2 (1.000) KPW2 (1.000)

0.3 BB2* (1.000) BB2 (1.000) AW2 (1.000) BB2 (1.000) KPW2 (1.000)

0.5 BB2* (1.000) BB2 (1.000) AW2 (1.000) AW2 (1.000) ML (1.000)

0.7 AWW2 (0.995) AWW2 (0.999) AWW2 (0.999) AW2 (1.000) AW2 (1.000)

0.9 AW2* (0.988) AW2 (0.998) AWW2 (0.999) ML (1.000) AW2 (1.000)

Table 2.17: Estimation of ¯3. For each ½ and n combination, the table entry

is the hybridised estimator of ¯3 giving the smallest RMSE with ¾2 = 1. The

figure in parentheses is the relative efficiency of BB2.

relative efficiencies suggest that except perhaps at the largest ½ values and for

small n, there is little to choose between the estimators.

Tables A.17 and A.18 in Appendix A repeat similar pattern for the Colum-

bus weight matrix with n = 49 and various ¾2. Detailed results are available

on request.

n

True ½ 20 50 100 245 490

0.0 AW1* (0.987) AW1* (0.995) AW1 (0.999) AWW1* (1.000) AWW1 (1.000)

0.1 AW1* (0.988) AW1* (0.995) AW1 (0.999) AWW1 (1.000) AWW1 (1.000)

0.3 AW1* (0.991) AW1* (0.989) AW1 (0.998) AWW1 (1.000) AWW1 (1.000)

0.5 AW1 (0.990) KP1 (0.976) KP1 (0.990) KPW1 (0.999) ML (0.999)

0.7 ML (0.971) ML (0.948) ML (0.969) ML (0.990) LL1 (0.994)

0.9 ML* (0.877) ML* (0.871) ML* (0.859) ML (0.915) LL1 (0.951)

Table 2.18: Estimation of ¾2. For each ½ and n combination, the table entry

is the non-hybridised estimator of ¾2 giving the smallest RMSE with ¾2 = 1.

The figure in parentheses is the relative efficiency of BB1.

72



n

True ½ 20 50 100 245 490

0.0 AW2 (0.997) AW2 (0.997) AW2 (0.999) AWW2* (1.000) AWW2 (1.000)

0.1 AW2 (0.996) AW2 (0.997) AW2 (0.999) AWW2 (1.000) AWW2 (1.000)

0.3 BB2 (1.000) AW2* (0.994) AW2 (0.999) AWW2 (1.000) AWW2 (1.000)

0.5 KPW2 (0.994) KP2 (0.988) KP2 (0.993) KPW2 (0.999) ML (0.999)

0.7 KPW2 (0.981) KPW2 (0.966) ML (0.974) ML (0.990) LL2 (0.994)

0.9 ML* (0.911) ML* (0.897) ML* (0.898) ML (0.932) LL2 (0.951)

Table 2.19: Estimation of ¾2. For each ½ and n combination, the table entry

is the hybridised estimator of ¾2 giving the smallest RMSE with ¾2 = 1. The

figure in parentheses is the relative efficiency of BB2.

2.4 Conclusion

Small sample performance of six existing estimators and the bias-adjusted es-

timator BB introduced in this chapter are compared in the spatial error model

framework. The existing estimators considered are the Maximum Gaussian

Likelihood [ML], the method of Kelejian and Prucha (1999) [KP], the Kele-

jian and Prucha method with weighting matrix (Kelejian and Prucha, 2009)

[KPW], the Lee and Liu (2010) method [LL], the small-sample adjustment to

the KP method introduced by Arnold and Wied (2010a) [AW], and the Arnold

and Wied method with weighting matrix included [AWW]. We show that the

BB estimator is robust and its performance does not depend on a particular

spatial weighting matrix M. An optimal weighting matrix W should also be

incorporated in the method of moments procedure to improve the efficiency

of the estimators. Furthermore, the bias-adjusted estimators; the BB, AW,

and AWW, perform extremely well in reducing the small-sample bias, being

virtually mean and median unbiased. Nevertheless, all estimators except the

MLE produce a significant proportion of non-invertible estimates.

This motivates us to develop the hybrid estimator for the spatial auto-

correlation parameter to improve the small-sample efficiency. This method
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combines the original non-hybridised estimator with the maximum likelihood

estimator when the former delivers non-invertible parameter estimates. The

hybridised forms of the BB, AW and AWW estimators are clearly superior to

other estimators in small samples and, in our experiments, the use of the hy-

brid estimator in the first step of a feasible GLS estimator leads to inferences

about the regression coefficients in the second stage that are at least as robust

as those of competing estimators.
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Chapter 3

QML Estimation of the Spatial

Weight Matrix in the MR-SAR

Model

3.1 Introduction

In this chapter we introduce a sub-model for the spatial weights and estimate

a variable spatial weight matrix for the mixed regressive, spatial autoregressive

(MR-SAR) model by the maximum Gaussian likelihood. The maximum likeli-

hood estimator in spatial regression models is studied by Ord (1975), Anselin

(1988a) and Anselin and Bera (1998). Ord (1975) also presents a computa-

tional scheme extended to the MR-SAR models. Asymptotic properties of

the MLE and QMLE are developed by Lee (2004a) for the spatial autoregres-

sive models with fixed sequences of weights. Our approach relies heavily on

the approach carried out in Lee (2004a) and Lee (2002), and we establish the

identifiability of the parameter defining the weights and the consistency as well

as the asymptotic distribution of the QMLE under appropriate conditions that

extend those given by Lee (2004a). Small sample properties of the estimator
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are studied in a Monte Carlo experiment. The performance of the estimator

is subsequently compared with other QML estimators using various fixed spa-

tial weight matrices. Our results show that our QML estimator using a freely

estimated weight matrix is able to estimate the parameter defining the spatial

weights reasonably well. It outperforms other competing estimators in many

cases considered in this chapter. Our results also show that using a wrong

weight matrix strongly affects the estimation performance of the estimators,

especially when estimating the spatial autoregressive parameter.

This chapter is constructed as follows. Section 3.2 describes the mixed

regressive spatial autoregressive model and introduces a sub-model for spatial

weights. Assumptions are listed in Section 3.3. Section 3.6 provides figures

of the shape of the concentrated log-likelihood. Section 3.4 analyses the iden-

tifiability of the parameters and the consistency of the QML estimator. The

asymptotic normality of the QMLE is derived in Section 3.5. Section 3.7

explains how the Monte Carlo experiment is conducted and presents the cor-

responding results. Section 3.8 concludes. Detailed proofs can be found in

Appendix B.

3.2 Mixed Regressive, Spatial Autoregressive

Model

The first-order mixed regressive, spatial autoregressive model (Ord, 1975 and

Anselin, 1988a) is described as follows

Yn = Xn¯ + ¸Wn(°)Yn + "n (3.2.1)

where Yn is an n × 1 vector of observations of the dependent variable, Xn is

an n× k matrix of values of k exogenous explanatory variables with only ones

in the first column, ¯ is a k × 1 vector of parameters, "n is an n × 1 vector

of disturbances that are independently distributed with mean 0 and variance
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¾2 and independent of Xn, ¸ is the spatial autoregressive parameter, and n is

the total number of spatial units. Wn(°) is an n×n matrix of spatial weights,

which represent the degree of possible interaction of location j on location i

(Ord, 1975). The elements are specified as

wn,ij(°) =
w∗

n,ij(°)∑
j w

∗
n,ij(°)

with

w∗
n,ij(°) =

⎧
⎨
⎩
0 for i = j

f(°, dij) for i ∕= j

(3.2.2)

where f(°, dij) is a function of distances, dij is a fixed nonnegative distance

between spatial units i and j, ° is a positive scalar parameter, and
∑

j w
∗
n,ij(°)

is a row sum for all i. This spatial weight matrix is row-standardised such that
∑

j wn,ij(°) = 1 for all i, with zeros on the main diagonal, and the off-diagonal

elements take values between 0 and 1. In the case of row-standardisation, the

weights can be interpreted as an average of neighbouring values (Anselin and

Bera, 1998) and they are perceived as relative values instead of absolute ones.

Closer units are given relatively greater weights than farther units. Note that

row-standardised matrices are usually asymmetric even though the original

matrices, with elements w∗
n,ij(°), are symmetric.

The term Wn(°)Yn in (3.2.1) is the spatially lagged dependent variable cor-

responding to the weight matrix Wn(°). A distinct characteristic of this model

in spatial econometrics as opposed to time-series context is that (Wn(°)Yn)i

may be correlated not only with "i, but also with the error terms at all other lo-

cations. The subscript n indicates that each component of the model depends

on n, which is the total number of spatial units.

The objective is to estimate µ = (¯′, ¸, °, ¾2)′. Our approach follows the

approach in Lee (2004a) and Lee (2002), and we extend their notations as
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follows. Let Sn(¸, °) = In − ¸Wn(°), equation (3.2.1) becomes

Sn(¸, °)Yn = Xn¯ + "n

Yn = S−1
n (¸, °)(Xn¯ + "n) (3.2.3)

where Sn(¸, °)Yn is a spatially filtered dependent variable. Denote µ0 =

(¯′
0, ¸0, °0, ¾

2
0)

′ the vector of true parameter values. At the true values, we

shall write Sn = Sn(¸0, °0) and Wn = Wn(°0) for notational convenience. The

log-likelihood function of equation (3.2.1) is given by

lnLn(µ) = −n

2
ln(2¼)− n

2
ln(¾2) + ln ∣det(Sn(¸, °))∣ − 1

2¾2
"′n(±)"n(±) (3.2.4)

where "n(±) = Yn−Xn¯−¸Wn(°)Yn, with ± = (¯′, ¸, °)′ and µ = (¯′, ¸, °, ¾2)′.

Note that the term ln ∣det(Sn(¸, °))∣ stands for the natural logarithm of

the absolute value of the determinant of Sn(¸, °). We take the absolute value

of the determinant of Sn(¸, °) before taking the logarithm.

The quasi-maximum likelihood estimator is obtained by maximising (3.2.4)

with respect to the parameters. To obtain the concentrated log-likelihood

function, we first concentrate out ¯ and ¾2. Then, for given ¸ and °, the

QMLE of ¯ is

ˆ̄
n(¸, °) = (X ′

nXn)
−1(X ′

nYn − ¸X ′
nWn(°)Yn) = (X ′

nXn)
−1X ′

nSn(¸, °)Yn

(3.2.5)

Insert this ˆ̄
n(¸, °) into the first-order derivative of the log-likelihood function

with respect to ¾2
n, then the QMLE of ¾2 is given by

¾̂2
n(¸, °) =

1

n
[(Sn(¸, °)Yn −Xn

ˆ̄(¸, °))′(Sn(¸, °)Yn −Xn
ˆ̄(¸, °)]

=
1

n
[Y ′

nS
′
n(¸, °)MnSn(¸, °)Yn] (3.2.6)

where Mn = In − Xn(X
′
nXn)

−1X ′
n. Insert (3.2.5) and (3.2.6) back into the

log-likelihood function and obtain the following concentrated log-likelihood

function of ¸ and °.

lnLn(¸, °) = −n

2
(ln(2¼) + 1) + ln ∣det(Sn(¸, °))∣ − n

2
ln ¾̂2

n(¸, °). (3.2.7)
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To obtain the QMLEs ˆ̧
n and °̂n, maximise (3.2.7) with respect to ¸ and °.

Then, the QMLEs of ¯ and ¾2 become ˆ̄
n(ˆ̧n, °̂n) and ¾̂2

n(
ˆ̧
n, °̂n).

3.3 Assumptions

Before we proceed, we list the assumptions necessary for analysing asymptotic

properties of the QML estimator µ̂n below.

Assumption 1. "1, . . . , "n are independently and identically distributed with

mean 0 and finite variance ¾2 for all n. The third and fourth moments of "n

exist and are denoted by ¹3 and ¹4.

Assumption 2. Let Θ = Λ ⊗ Γ be the compact and continuous parameter

space in which the concentrated log-likelihood function is concave. The true

values of ¸ and ° denoted by ¸0 and °0 respectively, are in the interior of Θ.

Assumption 3. The elements xn,ij of Xn for i, j = 1, . . . , n, are uniformly

bounded constants for all n. The limn→∞
X′

nXn

n
is finite and nonsingular.

Assumption 4. The distance dij between spatial units i and j is a bounded

nonnegative constant for all n, and ° is bounded away from zero.

Assumption 5. The elements wn,ij(°) of Wn(°) are O( 1
ℎn
) uniformly in all

i and j, where ℎn is the rate whose sequence, {ℎn}, is nonrandom and can be

bounded or divergent. There exists an open neighbourhood ´n(°0) of °0 such

that wn,ij(°) for i ∕= j is continuous in ° ∈ ´n(°0) uniformly in n. The first-,

second-, and third-order derivatives of Wn(°) with respect to ° are uniformly

bounded and continuous on ´n(°0).

Assumption 6. Ratio ℎn

n
→ 0 as n → ∞, where n is the total number of

spatial units.

Assumption 7. The matrix Sn = In − ¸0Wn is nonsingular on Λ⊗ Γ, where

0 < ∣¸0∣ < 1.
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Assumption 8. The sequences {Wn} and {S−1
n } are uniformly bounded in

both row and column sums.1

Assumption 9. {S−1
n (¸, °)} and {Wn(°)} are uniformly bounded in either

row or column sums, uniformly in ¸ and ° in Λ⊗ Γ. The true ¸0 and °0 are

in the interior of Λ⊗ Γ.

Assumption 1 is a basic assumption of the disturbances. Assumption 2 im-

poses a restriction on the parameter space. The compactness of the parameter

space is needed because we work with the concentrated log-likelihood function,

which is nonlinear in ¸ and °. It is also one of the two sufficient conditions

to assure that the maximum of the limit of the log-likelihood is the limit of

the maximum likelihood estimator, of which the second condition is that the

convergence is uniform (Amemiya, 1985). Note that we do not need to im-

pose any restriction on the parameter space for ¯ and ¾2 as QML estimates

for ¯ and ¾2 can be obtained from (3.2.5) and (3.2.6), and their identifiable

uniqueness follows that of ¸0 and °0.

Assumption 3 ensures that there is no multicollinearity among the regres-

sors and Lee (2004a) shows that this implies that Mn = In −Xn(X
′
nXn)

−1X ′
n

and (In−Mn) are uniformly bounded in both row and column sums. Assump-

tions 4 and 5 provide the characteristics of the spatial weight matrix and the

functional form of its elements. Assumption 6 rules out the case of
∑

j w
∗
n,ij

diverging to infinity at a rate equal to or faster than the rate of sample size n.

Assumption 7 is sufficient to ensure that Sn is nonsingular such that (3.2.1)

has an equilibruim with the equilibrium vector Yn = S−1
n (Xn¯0+"n), the mean

S−1
n Xn¯0 and the variance ¾2

0S
−1
n S−1

n
′, where ¾2

0 is the true variance of "n. As-

sumption 8 assures that the degree of spatial correlation (Kelejian and Prucha,

1999), which is captured in S−1
n , is limited. The uniform boundedness of S−1

n

at (¸0, °0), and of Wn at °0 implies that S−1
n (¸, °) and Wn(°) are uniformly

1See Horn and Johnson (1985)
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bounded in both row and column sums, uniformly in the neighbourhood of

¸0 and °0. Finally, as our weight matrix is nonnegative and row-normalised,

Assumption 9 implies that S−1
n (¸, °) is uniformly bounded in row sums uni-

formly in ¸ and ° in Λ ⊗ Γ where Λ is a closed subset in (−1, 1) (Lee 2003,

Lemma 1). See Appendix B.2 for more detail of Lemmas used in this chapter.

3.4 Consistency of the QMLE

In this section we establish the identifiability of the parameters and the con-

sistency of the QML estimator. At the true values, S−1
n = (In − ¸0Wn)

−1 =

In + ¸0Gn where Gn = WnS
−1
n (Lee, 2004a). Then, equation (3.2.3) can be

rewritten as

Yn = (In + ¸0Gn)(Xn¯0 + "n) = Xn¯0 + ¸0GnXn¯0 + S−1
n "n (3.4.1)

Let Qn(¸, °) = max¯,¾2E[lnLn(µ)]. To prove that the QML estimator µ̂n is

consistent, we need to show that the identifiable uniqueness condition holds

and that 1
n
lnLn(¸, °) − 1

n
Qn(¸, °) converges to zero in probability uniformly

on the parameter space (White 1996, Theorem 3.4). Formally, 1
n
lnLn(¸, °)

converges in probability uniformly to 1
n
Qn(¸, °) if sup(¸,°)∈Λ⊗Γ∣ 1n lnLn(¸, °)−

1
n
Qn(¸, °)∣ = op(1). An intuition behind this is that the log-likelihood will be

close to the expected log-likelihood, so we may expect the QML estimator to

be close to the maximum of the expected log-likelihood as well.

As already mentioned in Section 3.3, the second sufficient condition for the

maximum of the limit to be the limit of the maximum is that the convergence

is uniform. It ensures that the maximum is close to the true value for all ¸

and °, that is, 1
n
lnLn(¸, °) will be uniformly close to 1

n
Qn(¸, °). Uniform

convergence also maintains that if lnLn(¸, °) is continuous on the parameter

space, then the limit function Qn(¸, °) is continuous on the parameter space

as well.

81



We make the following additional assumption.

Assumption 10. The following limits exist and are nonsingular.

lim
n→∞

1

n
(Xn, GnXn¯0)

′(Xn, GnXn¯0), lim
n→∞

1

n
(Xn, TnXn¯0)

′(Xn, TnXn¯0) and

lim
n→∞

1

n
(Xn, GnXn¯0)

′(Xn, TnXn¯0)

where Tn = ZnS
−1
n , and Zn = ∂Wn(°0)

∂°
is the first-order derivative of the W -

matrix at °0, the true value of °. This assumption ensures that GnXn¯0 in

(3.4.1) and TnXn¯0 are not asymptotically multicollinear with Xn. It implies

that limn→∞ 1
n
(GnXn¯0)

′Mn(GnXn¯0) and limn→∞ 1
n
(TnXn¯0)

′Mn(TnXn¯0) are

positive, and limn→∞ 1
n
(GnXn¯0)

′Mn(TnXn¯0) is not zero. Note that the condi-

tion that limn→∞ 1
n
(GnXn¯0)

′Mn(GnXn¯0) exists and is positive is a sufficient

condition for identification of µ0.

Maximise E[lnLn(µ)] with respect to ¯ and ¾2 and, as in Lee (2004a), we

get the following solutions

¯∗
n(¸, °) = (X ′

nXn)
−1X ′

nSn(¸, °)S
−1
n Xn¯0 (3.4.2)

and

¾2∗
n (¸, °) =

1

n
[(¸0−¸)2(GnXn¯0)

′Mn(GnXn¯0)+¾2
0tr(S

−1
n

′S ′
n(¸, °)Sn(¸, °)S

−1
n )]

(3.4.3)

Substitute (3.4.2) and (3.4.3) into the log-likelihood, then we get

Qn(¸, °) = −n

2
(ln(2¼) + 1) + ln ∣det(Sn(¸, °))∣ − n

2
ln ¾2∗

n (¸, °) (3.4.4)

and it is concave and continuous in µ ∈ Θ. We establish our theorems below.

See Appendix B for detailed proofs of these theorems.

Theorem 1. Under Assumptions 1 - 10, µ0 is identifiably unique.

This theorem guarantees that no other value or sequence of values of µ

yields Qn(¸, °) arbitrarily close to Qn when n → ∞ (White 1996, Definition

3.3). Therefore, Qn(¸, °) is uniquely maximised at µ0.

Theorem 2. Under Assumptions 1 - 10, µ̂n is a consistent estimator of µ0.
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3.5 Asymptotic Normality of the QMLE

In this section we analyse the issue of asymptotic normality of the QML esti-

mator µ̂n. In other words, we show that a consistent root of ∂ lnLn(µ̂n)
∂µ

= 0 at

µ0 is asymptotically normal.

The first-order derivatives of the log-likelihood function at µ0 are derived

below.

1√
n

∂ lnLn(µ0)

∂¯
=

1

¾2
0

√
n
X ′

n"n (3.5.1)

1√
n

∂ lnLn(µ0)

∂¸
=

1

¾2
0

√
n
[(GnXn¯0)

′"n + "′nGn"n − ¾2
0tr(Gn)] (3.5.2)

1√
n

∂ lnLn(µ0)

∂°
=

¸0

¾2
0

√
n
[(TnXn¯0)

′"n + "′nTn"n − ¾2
0tr(Tn)] (3.5.3)

1√
n

∂ lnLn(µ0)

∂¾2
=

1

2¾4
0

√
n
("′n"n − n¾2

0) (3.5.4)

where Gn and Tn are as defined in Section 3.4.

These first-order derivatives appear in linear and quadratic forms of "n. As

the elements of Xn are bounded and the matrices Gn and Tn are uniformly

bounded in row sums, the elements of GnXn¯0 and TnXn¯0 for all n are uni-

formly bounded by Lemma A.6 in Lee (2004b). See Appendix B.2 for more

detail of Lemmas used in this chapter.

If {ℎn} is a bounded process, then we can use the central limit theorem

introduced in Kelejian and Prucha (2001) to derive the asymptotic distribu-

tion of the estimator. If {ℎn} is a divergent process, then we can apply the

Kolmogorov central limit theorem to
√
n
n

∂ lnLn(µ0)
∂µ

(Lee, 2004a).

With µ0 = (¯′
0, ¸0, °0, ¾

2
0)

′, we obtain

V ar(
1√
n

∂ lnLn(µ0)

∂µ
) =

⎧
⎨
⎩
−E( 1

n
∂2 lnLn(µ0)

∂µ∂µ′ ) if "i’s are normally distributed

−E( 1
n
∂2 lnLn(µ0)

∂µ∂µ′ ) + Ωµ,n if "i’s are i.i.d.

where

Ωµ,n = E(
1√
n

∂ lnLn(µ0)

∂µ
⋅ 1√

n

∂ lnLn(µ0)

∂µ′
) + E(

1

n

∂2 lnLn(µ0)

∂µ∂µ′
). (3.5.5)
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Introduce Pn = GnXn¯0 and Rn = TnXn¯0, then we have

− E(
1

n

∂2 lnLn(µ0)

∂µ∂µ′
) = (3.5.6)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
¾2
0n
X ′

nXn
1

¾2
0n
X ′

nPn
¸0

¾2
0n
X ′

nRn 0

1
¾2
0n
P ′
nXn

1
¾2
0n
P ′
nPn +

1
n
tr(GS

nGn)
¸0

¾2
0n
[P ′

nRn + ¾2
0tr(G

S
nTn)]

1
¾2
0n
tr(Gn)

¸0

¾2
0n
R′

nXn
¸0

¾2
0n
[R′

nPn + ¾2
0tr(T

S
n Gn)]

¸2
0

¾2
0n
[R′

nRn + ¾2
0tr(T

S
n Tn)]

¸0

¾2
0n
tr(Tn)

0 1
¾2
0n
tr(Gn)

¸0

¾2
0n
tr(Tn)

1
2¾4

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with Gs
n = Gn + G′

n and T s
n = Tn + T ′

n, and the matrix Ωµ,n is derived as

follows.

Ωµ,n = (3.5.7)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ∗ ∗ ∗

¹3

¾4
0n

∑n
i=1Gn,iixn,i

2¹3

¾4
0n

∑n
i=1Gn,iiGn,iXn¯0 ∗ ∗

+
(¹4−3¾4

0)

¾4
0n

∑n
i=1G

2
n,ii

¸0¹3

¾4
0n

∑n
i=1 Tn,iixn,i

¸0

¾4
0n
[(¹4 − 3¾4

0)
∑n

i=1 Tn,iiGn,ii
¸2
0

¾4
0n
[(¹4 − 3¾4

0)
∑n

i=1 T
2
n,ii ∗

+¹3

∑n
i=1Gn,iiTn,iXn¯0 +2¹3

∑n
i=1 Tn,iiTn,iXn¯0]

+¹3

∑n
i=1 Tn,iiGn,iXn¯0]

¹3

2¾6
0n
l′nXn

1
2¾6

0n
[¹3l

′
nGnXn¯0

¸0

2¾6
0n
[¹3l

′
nTnXn¯0

(¹4−3¾4
0)

4¾8
0

+(¹4 − 3¾4
0)tr(Gn)] +(¹4 − 3¾4

0)tr(Tn)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The matrix Ωµ,n above is symmetric and the asterisks (*) above the main
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diagonal stand for their symmetric entries with respect to the main diagonal.

Note that ¹3 and ¹4 are the third and fourth moments of "n, respectively. Gn,ij

and Tn,ij are the (i, j) entries of Gn and Tn, and Gn,i and xn,i are the i-th rows

of Gn and Xn, respectively.

If "i’s are i.i.d.,

1√
n

∂ lnLn(µ0)

∂µ

D→ N [0,−E(
1

n

∂2 lnLn(µ0)

∂µ∂µ′
) + Ωµ,n]. (3.5.8)

and, consequently,

√
n(µ̂n − µ0)

D→ N [0,Σ−1
µ + Σ−1

µ Ωµ,nΣ
−1
µ ] (3.5.9)

with Σµ = − limn→∞E( 1
n
∂2 lnLn(µ0)

∂µ∂µ′ ). Note that Assumption 10 ensures that

Σµ is nonsingular. For normally distributed "i’s, Ωµ,n disappears and we get

1√
n

∂ lnLn(µ0)

∂µ

D→ N [0,Σµ]

and, hence,
√
n(µ̂n − µ0)

D→ N [0,Σ−1
µ ]. (3.5.10)

Given the above results and assumptions, we state the following theorem.

Theorem 3. Under Assumptions 1 - 10, the QML estimator µ̂n satisfies

√
n(µ̂n − µ0)

D→ N [0,Σ−1
µ + Σ−1

µ ΩµΣ
−1
µ ] (3.5.11)

where Ωµ = limn→∞Ωµ,n and Σµ = − limn→∞E( 1
n
∂2 lnLn(µ0)

∂µ∂µ′ ) exist. If "i’s are

normally distributed, then

√
n(µ̂n − µ0)

D→ N [0,Σ−1
µ ]. (3.5.12)

Results obtained from Theorems 1 - 3 are valid for both bounded and

divergent {ℎn}. Note that when {ℎn} is divergent, the matrices in (3.5.6) and

(3.5.7) can be simplified to

Σµ = − lim
n→∞

E(
1

n

∂2 lnLn(µ0)

∂µ∂µ′
) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
¾2
0n
X ′

nXn
1

¾2
0n
X ′

nPn
¸0

¾2
0n
X ′

nRn 0

1
¾2
0n
P ′
nXn

1
¾2
0n
P ′
nPn

¸0

¾2
0n
P ′
nRn 0

¸0

¾2
0n
R′

nXn
¸0

¾2
0n
R′

nPn
¸2
0

¾2
0n
R′
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where Pn = GnXn¯0 and Rn = TnXn¯0, and

Ωµ = lim
n→∞

Ωµ,n =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 ¹3
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.

This is because when {ℎn} is divergent, Gn,ij and Tn,ij are O( 1
ℎn
) and, con-

sequently, limn→∞ 1
n
tr(Gn) and limn→∞ 1

n
tr(Tn) become zero. Then the QMLE

ˆ̧
n and °̂n become asymptotically independent of ¾̂2

n, whereas they are asymp-

totically dependent on ¾̂2
n when {ℎn} is bounded because limn→∞ 1

n
tr(Gn) and

limn→∞ 1
n
tr(Tn) may not be zero.

3.6 Shape of the Concentrated Log-Likelihood

This section shows three-dimensional shape of the concentrated log-likelihood

evaluated at several values of (¸, °) coordinates for different numbers of obser-

vations. So far we have not specified a functional form of the sub-model for the

spatial weights and, instead, have kept it general. To illustrate a shape of the

concentrated log-likelihood, we now specify a functional form of the sub-model

for the weights below. Recall first that the elements of the row-standardised

weight matrix Wn(°) are

wn,ij(°) =
w∗

n,ij(°)

Σjw∗
n,ij(°)

(3.6.1)

where w∗
n,ij(°) = 0 for i = j and w∗

n,ij(°) = f(°, dij) for i ∕= j with ° a positive

scalar parameter specifying the weights and dij a fixed nonnegative distance

between spatial units i and j. Then if f(°, dij) = e−°dij the elements wn,ij(°)

of the weight matrix Wn(°) become

wn,ij(°) =

⎧
⎨
⎩
0 if i = j

e−°dij∑
j e

−°dij
≥ 0 if i ∕= j

(3.6.2)
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where
∑

j e
−°dij is a row sum for all i. The distances dij between units

i and j are generated by randomly drawing n pairs of coordinates from a

standard uniform distribution from which the Euclidean distances are pro-

duced. Then we draw an independent standard Normal vector of distur-

bances, of which the variance ¾2
n is fixed at 1.0, and generate the matrix Xn

which consists of 3 columns with associated coefficients ¯1 = 1, ¯2 = 0, and

¯3 = −1. The first column of the matrix X is the vector of ones and the other

2 columns are draws from the standard n−variate Normal distribution. The

row-standardised weight matrix is created based on equation (3.6.2) with true

values of ° = 0, 0.5, 1, 2, 5, and 10, and the matrix Sn(¸, °) is generated using

this weight matrix and true value of ¸ = 0 and 0.5.

Figures 3.1 - 3.6 below show three-dimensional shape of the concentrated

log-likelihood evaluated at ¸ ranging from -0.99 to 0.99 and ° from -20 to 20 for

n = 400, 200, 100, and 50. We can see that the shape of the concentrated log-

likelihood is concave and continuous, even though it is generally flat, especially

when (¸, °) coordinates are around zero or around the true value of °. This

feature may be due to the chosen functional form of the sub-model for the

weights and how the distances dij are generated. On the other hand, the

shape of the concentrated log-likelihood becomes much steeper towards the

extreme values of ° and ¸. Differences between the maximum and minimum

values of the likelihood in each graph vary considerably, with larger differences

for large n and smaller differences for small n. Peaks are generally at or close

to the DGP values of ° and ¸.
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n = 400 n = 200

n = 100 n = 50

Figure 3.1: Shape of the concentrated log-likelihood based on DGP ° = 2 and

¸ = 0.5, evaluated at ¸ ranging from -0.99 to 0.99 and ° from -20 to 20 for n = 400,

200, 100 and 50, and ¾2 = 1.
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n = 400 n = 200

n = 100 n = 50

Figure 3.2: Shape of the concentrated log-likelihood based on DGP ° = 0 and

¸ = 0, evaluated at ¸ ranging from -0.99 to 0.99 and ° from -20 to 20 for n = 400,

200, 100 and 50, and ¾2 = 1.
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n = 400 n = 200

n = 100 n = 50

Figure 3.3: Shape of the concentrated log-likelihood based on DGP ° = 0.5 and

¸ = 0.5, evaluated at ¸ ranging from -0.99 to 0.99 and ° from -20 to 20 for n = 400,

200, 100 and 50, and ¾2 = 1.
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n = 400 n = 200

n = 100 n = 50

Figure 3.4: Shape of the concentrated log-likelihood based on DGP ° = 1 and

¸ = 0.5, evaluated at ¸ ranging from -0.99 to 0.99 and ° from -20 to 20 for n = 400,

200, 100 and 50, and ¾2 = 1.
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n = 400 n = 200

n = 100 n = 50

Figure 3.5: Shape of the concentrated log-likelihood based on DGP ° = 5 and

¸ = 0.5, evaluated at ¸ ranging from -0.99 to 0.99 and ° from -20 to 20 for n = 400,

200, 100 and 50, and ¾2 = 1.

92



n = 400 n = 200

n = 100 n = 50

Figure 3.6: Shape of the concentrated log-likelihood based on DGP ° = 10 and

¸ = 0.5, evaluated at ¸ ranging from -0.99 to 0.99 and ° from -20 to 20 for n = 400,

200, 100 and 50, and ¾2 = 1.
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3.7 Monte Carlo Results

3.7.1 Experiment Design

We investigate small sample properties of our estimator using the freely esti-

mated weight matrix as in (3.6.2) and compare its performance with several

QML estimators using a randomly generated weight matrix, and weight matri-

ces with the same weight structure based on pre-determined ° values including

the true ° value in a Monte Carlo study.

We perform experiments for n = 200, 400 and 800 for 1000 replications.

The row-standardised weight matrix is created following equation (3.6.2), with

associated ° values = 3, 5, and 7. The distances dij between units i and j are

generated by randomly drawing n pairs of coordinates from a standard uniform

distribution from which the Euclidean distances are produced. For each weight

matrix, we generate the matrix Xn which consists of 3 columns with associated

coefficients; ¯1 = 1, ¯2 = 0, and ¯3 = −1. The first column of the matrix X is

the vector of ones and the other 2 columns are 1000 independent draws from

the standard n− variate Normal distribution. For each Wn and Xn we draw

a further independent standard Normal vector of disturbances, of which the

variance ¾2
n is fixed at 1.0. The matrix Sn(¸, °) is generated for each W, ¸ and

°, with ¸ ∈ (0.1, 0.3, 0.5, 0.7, 0.9).

In the simulations, we impose bounds on ¸ estimates to be ∣ˆ̧∣ ≤ 0.99, to

ensure that the matrix Sn(¸, °) is nonsingular and to speed up the simulation,

and on ° estimates to be °̂ ≥ 0.01. The simulation results are reported in the

following subsections.

3.7.2 Estimates of ¸

Tables 3.1 - 3.3 show the mean, median, standard deviation and root mean

squares error of estimates obtained from different estimators of ¸ for n = 200,
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400, and 800. The estimators are our QML estimator using the freely estimated

weight matrix and 4 competing QML estimators using fixed weight matrices

obtained from different values of °. Looking first at Table 3.1, there are 2

panels of results. The results on the left panel of the table are obtained from

the DGP based on ° = 5, ¸ ∈ (0.1, 0.3, 0.5, 0.7, 0.9) and ¾2 = 1 for n = 200,

while the results on the right panel of the table are obtained from the DGP

based on ° = 7. The first 2 columns list the true values of ¸ and the weight

matrices used for each estimator. The next 4 columns show the mean, median,

standard deviation and the RMSE of estimates obtained for each estimator.

The structure of the right panel of the table is the same as that of the left

panel.

For each true value of ¸, the first row shows results for the QML estimator

with a fixed and correctly chosen weight matrix, which we use as a benchmark

estimator. The second row gives results for our QML estimator with the

weight matrix from equation (3.6.2) which freely estimates the parameter °

that defines the weight matrix. This weight matrix is denoted by W(°̂) in the

tables below. The third to fifth rows give results for competing QML estimators

using wrongly chosen weight matrices. W(3) and W(7) in the second column

of the left panel stand for weight matrices obtained from equation (3.6.2)

with associated values of ° = 3 and 7, respectively. For each true value of

¸, the last competing estimator in the last row uses a fixed weight matrix

‘Wrand’, which is generated by randomly drawing n pairs of coordinates from

a standard bivariate Normal distribution to which the Delaunay routine is

applied to produce Voronoi polygons, and subsequently row-standardised. The

right panel is constructed in the same way with competing estimators using

the weight matrices W(3), W(5) and Wrand.

Table 3.1 below shows that our QML estimator performs well, producing

estimates for ¸ with smaller bias than any other estimators for most cases

across true values of ¸. The associated estimates are close to the true values
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of ¸ and to the results obtained for the benchmark estimator which uses fixed

and correctly chosen weight matrix. Especially for a large true value of ¸,

¸ = 7 here, our QML estimator is able to estimate ¸ clearly better than other

estimators. Even though the standard deviation and the RMSE are quite

large for smaller ¸ and true values of °, they decrease significantly when ¸

increases. Looking at the last row associated with each true value of ¸, we see

that the estimates obtained for the QML estimator using a randomly generated

weight matrix have the largest bias in most cases. Moreover, these estimates

suggest that the randomly generated weight matrix does not seem to be able to

properly capture the dependence between spatial units. All estimates obtained

in the last row are negative and close to zero regardless of the true values of

¸. For small ¸, this situation may seem to suggest that the estimator based

on the random weight matrix is better than other methods. However, this

could be merely a coincidence for small ¸ since all estimates obtained for this

estimator are negative and close to zero.

For n = 400 and 800, similar patterns emerge in Tables 3.2 and 3.3 re-

spectively, with our QML estimator performing better than other competing

estimators in most cases across the true values of ¸. The QML estimator using

the randomly generated weight matrix, again, has the largest bias in the mean

and median in most cases. Even though the other competing QML estimators

using the wrong weight matrices have smaller bias than the estimator in the

last row, they produce larger bias in the mean and median than our QML

estimator in most cases. These results clearly show that using a wrongly cho-

sen weight matrix strongly affects the estimates of the spatial autoregressive

parameter, ¸.
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True ¸ W Mean Med. St.D. RMSE W Mean Med. St.D. RMSE

0.1 W(5) -0.067 -0.065 0.518 0.544 W(7) 0.078 0.092 0.304 0.305

W(°̂) -0.244 -0.155 0.648 0.733 W(°̂) 0.015 0.107 0.425 0.433

W(3) -0.376 -0.663 0.702 0.848 W(3) -0.293 -0.481 0.712 0.813

W(7) 0.009 0.006 0.297 0.310 W(5) 0.033 0.064 0.511 0.515

Wrand -0.028 -0.027 0.142 0.191 Wrand -0.027 -0.025 0.147 0.195

0.3 W(5) 0.186 0.213 0.505 0.518 W(7) 0.351 0.376 0.298 0.302

W(°̂) 0.042 0.216 0.624 0.675 W(°̂) 0.332 0.330 0.364 0.365

W(3) -0.049 -0.092 0.753 0.830 W(3) 0.243 0.424 0.741 0.742

W(7) 0.148 0.157 0.295 0.332 W(5) 0.467 0.549 0.469 0.497

Wrand -0.022 -0.019 0.143 0.352 Wrand -0.033 -0.025 0.151 0.366

0.5 W(5) 0.454 0.522 0.467 0.469 W(7) 0.605 0.624 0.275 0.294

W(°̂) 0.323 0.414 0.558 0.585 W(°̂) 0.557 0.543 0.302 0.307

W(3) 0.299 0.541 0.737 0.763 W(3) 0.660 0.990 0.573 0.595

W(7) 0.315 0.327 0.292 0.346 W(5) 0.773 0.990 0.337 0.434

Wrand -0.021 -0.018 0.145 0.541 Wrand -0.031 -0.029 0.151 0.552

0.7 W(5) 0.639 0.774 0.400 0.404 W(7) 0.814 0.868 0.197 0.228

W(°̂) 0.525 0.596 0.467 0.499 W(°̂) 0.739 0.752 0.223 0.226

W(3) 0.549 0.990 0.637 0.654 W(3) 0.915 0.990 0.266 0.342

W(7) 0.443 0.451 0.285 0.384 W(5) 0.942 0.990 0.145 0.282

Wrand -0.021 -0.012 0.152 0.737 Wrand -0.015 -0.010 0.153 0.731

0.9 W(5) 0.800 0.990 0.307 0.323 W(7) 0.940 0.990 0.118 0.124

W(°̂) 0.699 0.806 0.369 0.420 W(°̂) 0.872 0.984 0.167 0.169

W(3) 0.778 0.990 0.467 0.483 W(3) 0.971 0.990 0.151 0.167

W(7) 0.576 0.589 0.270 0.422 W(5) 0.979 0.990 0.077 0.111

Wrand -0.019 -0.015 0.143 0.930 Wrand -0.018 -0.006 0.155 0.931

Table 3.1: Estimation of ¸ for n = 200, ¾2 = 1, and ¸ ∈ (0.1, 0.3, 0.5, 0.7, 0.9).

For the left panel, the true value of ° = 5 and for the competing estimators,

° = 3, 7. For the right panel, the true value of ° = 7 and for the competing

estimators, ° = 3, 5.
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True ¸ W Mean Med. St.D. RMSE W Mean Med. St.D. RMSE

0.1 W(5) -0.040 -0.034 0.523 0.541 W(7) 0.078 0.092 0.274 0.274

W(°̂) -0.204 0.030 0.648 0.715 W(°̂) 0.018 0.092 0.414 0.422

W(3) -0.346 -0.631 0.714 0.842 W(3) -0.292 -0.527 0.730 0.829

W(7) 0.023 0.034 0.289 0.299 W(5) 0.039 0.044 0.503 0.506

Wrand -0.016 -0.015 0.105 0.156 Wrand -0.014 -0.010 0.104 0.154

0.3 W(5) 0.196 0.223 0.513 0.523 W(7) 0.344 0.356 0.272 0.275

W(°̂) 0.043 0.222 0.627 0.677 W(°̂) 0.320 0.299 0.342 0.343

W(3) -0.065 -0.111 0.761 0.844 W(3) 0.233 0.382 0.738 0.741

W(7) 0.155 0.165 0.290 0.324 W(5) 0.476 0.532 0.446 0.479

Wrand -0.007 -0.001 0.106 0.325 Wrand -0.008 -0.004 0.105 0.326

0.5 W(5) 0.427 0.479 0.463 0.469 W(7) 0.618 0.625 0.249 0.276

W(°̂) 0.303 0.389 0.547 0.582 W(°̂) 0.575 0.542 0.279 0.289

W(3) 0.257 0.432 0.725 0.764 W(3) 0.720 0.990 0.512 0.557

W(7) 0.280 0.287 0.279 0.356 W(5) 0.822 0.990 0.286 0.431

Wrand -0.010 -0.004 0.104 0.521 Wrand -0.012 -0.006 0.102 0.522

0.7 W(5) 0.649 0.793 0.396 0.399 W(7) 0.818 0.872 0.188 0.222

W(°̂) 0.536 0.606 0.454 0.482 W(°̂) 0.734 0.744 0.231 0.233

W(3) 0.569 0.990 0.619 0.632 W(3) 0.907 0.990 0.282 0.350

W(7) 0.421 0.422 0.272 0.390 W(5) 0.950 0.990 0.129 0.281

Wrand -0.013 -0.009 0.107 0.721 Wrand -0.011 -0.010 0.102 0.719

0.9 W(5) 0.811 0.990 0.294 0.307 W(7) 0.949 0.990 0.092 0.104

W(°̂) 0.708 0.779 0.334 0.385 W(°̂) 0.874 0.990 0.160 0.162

W(3) 0.781 0.990 0.450 0.465 W(3) 0.981 0.990 0.085 0.118

W(7) 0.568 0.581 0.259 0.421 W(5) 0.988 0.990 0.026 0.091

Wrand -0.013 -0.011 0.101 0.919 Wrand -0.014 -0.007 0.106 0.920

Table 3.2: Estimation of ¸ for n = 400, ¾2 = 1, and ¸ ∈ (0.1, 0.3, 0.5, 0.7, 0.9).

For the left panel, the true value of ° = 5 and for the competing estimators,

° = 3, 7. For the right panel, the true value of ° = 7 and for the competing

estimators, ° = 3, 5.
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True ¸ W Mean Med. St.D. RMSE W Mean Med. St.D. RMSE

0.1 W(5) -0.087 -0.085 0.524 0.556 W(7) 0.071 0.081 0.268 0.269

W(°̂) -0.256 -0.176 0.645 0.737 W(°̂) 0.003 0.092 0.414 0.426

W(3) -0.399 -0.723 0.690 0.852 W(3) -0.328 -0.562 0.705 0.825

W(7) 0.002 0.008 0.272 0.289 W(5) 0.015 0.018 0.511 0.518

Wrand -0.002 -0.001 0.072 0.125 Wrand -0.005 -0.001 0.071 0.127

0.3 W(5) 0.187 0.206 0.518 0.530 W(7) 0.348 0.347 0.271 0.275

W(°̂) 0.048 0.206 0.630 0.678 W(°̂) 0.324 0.296 0.358 0.358

W(3) -0.069 -0.129 0.767 0.850 W(3) 0.246 0.453 0.743 0.745

W(7) 0.143 0.146 0.276 0.317 W(5) 0.487 0.571 0.461 0.497

Wrand -0.004 -0.003 0.073 0.312 Wrand -0.007 -0.006 0.072 0.315

0.5 W(5) 0.431 0.475 0.472 0.476 W(7) 0.610 0.619 0.244 0.267

W(°̂) 0.304 0.377 0.553 0.587 W(°̂) 0.571 0.511 0.291 0.300

W(3) 0.264 0.441 0.731 0.768 W(3) 0.685 0.990 0.527 0.559

W(7) 0.276 0.279 0.275 0.355 W(5) 0.814 0.990 0.283 0.423

Wrand -0.009 -0.010 0.076 0.514 Wrand -0.004 -0.003 0.076 0.510

0.7 W(5) 0.644 0.794 0.399 0.402 W(7) 0.829 0.890 0.187 0.228

W(°̂) 0.531 0.590 0.466 0.496 W(°̂) 0.746 0.784 0.242 0.246

W(3) 0.548 0.990 0.627 0.645 W(3) 0.902 0.990 0.299 0.361

W(7) 0.411 0.418 0.270 0.396 W(5) 0.951 0.990 0.134 0.284

Wrand -0.005 -0.001 0.072 0.709 Wrand -0.010 -0.006 0.075 0.714

0.9 W(5) 0.799 0.990 0.297 0.314 W(7) 0.950 0.990 0.097 0.109

W(°̂) 0.696 0.778 0.342 0.398 W(°̂) 0.872 0.990 0.173 0.176

W(3) 0.762 0.990 0.456 0.477 W(3) 0.978 0.990 0.093 0.121

W(7) 0.542 0.543 0.260 0.442 W(5) 0.986 0.990 0.033 0.092

Wrand -0.005 -0.006 0.073 0.908 Wrand -0.007 -0.005 0.074 0.910

Table 3.3: Estimation of ¸ for n = 800, ¾2 = 1, and ¸ ∈ (0.1, 0.3, 0.5, 0.7, 0.9).

For the left panel, the true value of ° = 5 and for the competing estimators,

° = 3, 7. For the right panel, the true value of ° = 7 and for the competing

estimators, ° = 3, 5.
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3.7.3 Estimates of °

Another parameter of interest is ° which defines the spatial weights according

to equation (3.6.2). In Tables 3.4 - 3.6 we report the mean, median, stan-

dard deviation and root mean square error of our QML estimator of ° for

n ∈ (200, 400, 800), ¾2 = 1 and ¸ ∈ (0.1, 0.3, 0.5, 0.7, 0.9) for true values of

° = 3, 5, and 7.

For a small true value of °; ° = 3, Table 3.4 shows that our QML estimator

performs reasonably well in estimating °. For each value of n, bias of the mean

and median of the estimates decreases as ¸ increases. The standard deviation

and RMSE also decrease when ¸ becomes larger. When we compare the results

associated with each value of ¸ across all n, we see that the performance of our

QML estimator slightly improves for some values of ¸ as n becomes larger.

True ° n ¸ Mean Med. St.D. RMSE

3 200 0.1 3.807 4.135 0.875 1.189

0.3 3.815 4.091 0.920 1.229

0.5 3.768 3.912 0.892 1.177

0.7 3.745 3.878 0.912 1.177

0.9 3.786 3.807 0.813 1.131

400 0.1 3.865 4.219 0.818 1.190

0.3 3.803 4.043 0.890 1.199

0.5 3.758 3.900 0.887 1.166

0.7 3.653 3.748 0.906 1.117

0.9 3.798 3.867 0.802 1.131

800 0.1 3.812 4.181 0.899 1.211

0.3 3.809 4.034 0.898 1.208

0.5 3.761 3.847 0.870 1.156

0.7 3.662 3.760 0.911 1.126

0.9 3.721 3.703 0.791 1.070

Table 3.4: Estimation of ° for the true value of ° = 3, n = 200, 400, 800,

¾2 = 1, and ¸ ∈ (0.1, 0.3, 0.5, 0.7, 0.9).

Looking at results in Table 3.5 obtained for the true value of ° equals 5, the

same pattern appears with the standard deviation and RMSE of the estimates
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for each n clearly reduce when ¸ becomes larger. Looking at the results across

different n, we see that the bias of the mean and median as well as the errors

of the estimates associated with each ¸ become smaller when n increases.

True ° n ¸ Mean Med. St.D. RMSE

5 200 0.1 5.369 5.349 0.647 0.745

0.3 5.267 5.320 0.702 0.750

0.5 5.131 5.169 0.682 0.694

0.7 5.112 5.127 0.612 0.622

0.9 5.142 4.989 0.500 0.520

400 0.1 5.274 5.266 0.635 0.691

0.3 5.212 5.242 0.627 0.662

0.5 5.105 5.182 0.616 0.624

0.7 5.065 5.112 0.578 0.582

0.9 5.095 4.951 0.468 0.477

800 0.1 5.341 5.347 0.615 0.703

0.3 5.230 5.257 0.615 0.657

0.5 5.099 5.145 0.604 0.612

0.7 5.004 5.037 0.585 0.585

0.9 5.115 4.950 0.467 0.480

Table 3.5: Estimation of ° for the true value of ° = 5, n = 200, 400, 800,

¾2 = 1, and ¸ ∈ (0.1, 0.3, 0.5, 0.7, 0.9).

For results corresponding to a larger true value of ° in Table 3.6, we see

a similar pattern repeated for the true value of ° = 7. Note that the perfor-

mance of the QML estimator in this case strongly improves compared to those

obtained for smaller true values of ° we report earlier. Here there is a clear

reduction in bias of the mean and median and smaller standard deviation and

RMSE.
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True ° n ¸ Mean Med. St.D. RMSE

7 200 0.1 7.221 7.230 0.400 0.456

0.3 7.084 7.115 0.442 0.450

0.5 6.976 7.019 0.475 0.475

0.7 6.860 6.816 0.444 0.465

0.9 6.942 6.951 0.321 0.326

400 0.1 7.177 7.194 0.341 0.384

0.3 7.104 7.107 0.383 0.397

0.5 7.002 7.033 0.448 0.447

0.7 6.874 6.864 0.422 0.440

0.9 6.904 6.944 0.287 0.303

800 0.1 7.165 7.163 0.329 0.368

0.3 7.053 7.076 0.369 0.372

0.5 6.973 7.028 0.414 0.415

0.7 6.824 6.772 0.428 0.463

0.9 6.889 6.950 0.288 0.308

Table 3.6: Estimation of ° for the true value of ° = 7, n = 200, 400, 800,

¾2 = 1, and ¸ ∈ (0.1, 0.3, 0.5, 0.7, 0.9).
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3.7.4 Estimates of ¯

In this subsection we report the mean, median, standard deviation and the

RMSE of the benchmark estimator, our QML estimator, and three competing

estimators for estimating ¯’s for n = 200, 400, and 800, ¾2 = 1, and ¸ = 0.5.

The true values of ¯’s are ¯1 = 1.0, ¯2 = 0.0, and ¯3 = −1.0, and the true

values of ° used in this experiment are 5 and 7, respectively. Note that the

results shown below are rounded to the nearest third decimal. All other results

in our Monte Carlo experiment not reported here are available on request.

True ¸ n True ¯ W Mean Med. St.D. RMSE

0.5 200 ¯1 = 1 W(5) 1.089 0.954 0.941 0.945

W(°̂) 1.350 1.144 1.136 1.188

W(3) 1.403 0.925 1.489 1.542

W(7) 1.365 1.335 0.597 0.700

Wrand 2.039 2.019 0.337 1.093

¯2 = 0 W(5) 0.002 -0.000 0.070 0.070

W(°̂) 0.002 0.000 0.070 0.070

W(3) 0.002 0.000 0.070 0.070

W(7) 0.002 0.001 0.070 0.070

Wrand 0.002 -0.000 0.071 0.071

¯3 = −1 W(5) -0.997 -0.997 0.071 0.071

W(°̂) -0.997 -0.998 0.072 0.072

W(3) -0.998 -0.998 0.072 0.072

W(7) -0.996 -0.998 0.071 0.071

Wrand -0.997 -0.998 0.073 0.073

Table 3.7: Estimation of ¯1, ¯2, and ¯3 for the true value of ° = 5, n = 200,

¾2 = 1, ¸ = 0.5, and the true values of ¯1 = 1, ¯2 = 0, and ¯3 = −1.

Tables 3.7 - 3.9 show that our QML estimator, the benchmark estimator

and other competing estimators perform equally well in estimating ¯1, ¯2 and

¯3, except the QML estimator using randomly generated weight matrix, re-

ported on the last row for the true value of ¯1. The standard deviation and

the RMSE are small, except for the estimates for ¯1, the intercept. Note that

when the true values of ° and ¸ are large, or when both are small, all estima-
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tors including the benchmark estimator tend to produce estimates for ¯1 with

larger bias in the mean and median. However, the estimates produced for ¯2

and ¯3 are still robust across different values of ¸ and n.

For larger value of °, ° = 7 here, Tables 3.10 - 3.12 show that there is a

larger bias in the mean and median of the estimates for ¯1 even when ¸ is

moderate and n is large, whereas the estimates for ¯2 and ¯3 seem to improve,

especially when n is large.

True ¸ n True ¯ W Mean Med. St.D. RMSE

0.5 400 ¯1 = 1 W(5) 1.139 1.031 0.923 0.933

W(°̂) 1.385 1.201 1.089 1.155

W(3) 1.475 1.144 1.443 1.518

W(7) 1.433 1.417 0.560 0.707

Wrand 2.015 1.998 0.242 1.043

¯2 = 0 W(5) 0.001 0.002 0.050 0.050

W(°̂) 0.001 0.003 0.050 0.050

W(3) 0.001 0.002 0.050 0.050

W(7) 0.001 0.003 0.050 0.050

Wrand 0.001 0.001 0.050 0.050

¯3 = −1 W(5) -0.999 -0.999 0.049 0.049

W(°̂) -0.999 -0.999 0.049 0.049

W(3) -1.000 -1.000 0.049 0.049

W(7) -0.999 -0.998 0.049 0.049

Wrand -0.999 -0.999 0.049 0.049

Table 3.8: Estimation of ¯1, ¯2, and ¯3 for the true value of ° = 5, n = 400,

¾2 = 1, ¸ = 0.5, and the true values of ¯1 = 1, ¯2 = 0, and ¯3 = −1.
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True ¸ n True ¯ W Mean Med. St.D. RMSE

0.5 800 ¯1 = 1 W(5) 1.136 1.038 0.944 0.954

W(°̂) 1.393 1.232 1.114 1.181

W(3) 1.472 1.132 1.466 1.540

W(7) 1.446 1.419 0.552 0.710

Wrand 2.015 2.004 0.176 1.031

¯2 = 0 W(5) 0.001 -0.000 0.036 0.036

W(°̂) 0.001 -0.000 0.036 0.036

W(3) 0.001 0.000 0.036 0.036

W(7) 0.001 -0.000 0.036 0.036

Wrand 0.001 0.000 0.036 0.036

¯3 = −1 W(5) -0.999 -0.998 0.036 0.036

W(°̂) -0.998 -0.998 0.036 0.036

W(3) -0.999 -0.998 0.036 0.036

W(7) -0.998 -0.998 0.036 0.036

Wrand -0.998 -0.998 0.036 0.036

Table 3.9: Estimation of ¯1, ¯2, and ¯3 for the true value of ° = 5, n = 800,

¾2 = 1, ¸ = 0.5, and the true values of ¯1 = 1, ¯2 = 0, and ¯3 = −1.

True ¸ n True ¯ W Mean Med. St.D. RMSE

0.5 200 ¯1 = 1 W(7) 0.792 0.753 0.558 0.595

W(°̂) 0.889 0.910 0.613 0.622

W(3) 0.678 0.075 1.149 1.193

W(5) 0.453 0.114 0.680 0.873

Wrand 2.069 2.042 0.353 1.126

¯2 = 0 W(7) 0.000 -0.000 0.073 0.073

W(°̂) 0.000 -0.000 0.073 0.073

W(3) 0.002 0.000 0.070 0.070

W(5) 0.000 0.001 0.073 0.073

Wrand -0.000 -0.001 0.074 0.073

¯3 = −1 W(7) -0.996 -0.993 0.072 0.072

W(°̂) -0.996 -0.995 0.071 0.071

W(3) -1.004 -1.002 0.072 0.072

W(5) -1.000 -0.998 0.071 0.071

Wrand -1.001 -1.000 0.073 0.073

Table 3.10: Estimation of ¯1, ¯2, and ¯3 for the true value of ° = 7, n = 200,

¾2 = 1, ¸ = 0.5, and the true values of ¯1 = 1, ¯2 = 0, and ¯3 = −1.
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True ¸ n True ¯ W Mean Med. St.D. RMSE

0.5 400 ¯1 = 1 W(7) 0.763 0.744 0.503 0.556

W(°̂) 0.848 0.910 0.563 0.583

W(3) 0.559 0.053 1.030 1.120

W(5) 0.355 0.077 0.576 0.865

Wrand 2.022 2.010 0.236 1.049

¯2 = 0 W(7) -0.001 -0.001 0.051 0.051

W(°̂) -0.001 -0.001 0.051 0.051

W(3) -0.001 -0.001 0.051 0.051

W(5) -0.001 -0.001 0.051 0.051

Wrand -0.001 -0.001 0.051 0.051

¯3 = −1 W(7) -1.000 -1.001 0.051 0.051

W(°̂) -1.000 -1.000 0.051 0.051

W(3) -1.004 -1.005 0.051 0.052

W(5) -1.002 -1.003 0.051 0.051

Wrand -1.003 -1.003 0.052 0.052

Table 3.11: Estimation of ¯1, ¯2, and ¯3 for the true value of ° = 7, n = 400,

¾2 = 1, ¸ = 0.5, and the true values of ¯1 = 1, ¯2 = 0, and ¯3 = −1.

True ¸ n True ¯ W Mean Med. St.D. RMSE

0.5 800 ¯1 = 1 W(7) 0.779 0.756 0.489 0.536

W(°̂) 0.855 0.977 0.583 0.601

W(3) 0.626 0.048 1.051 1.115

W(5) 0.372 0.062 0.566 0.845

Wrand 2.004 2.001 0.176 1.019

¯2 = 0 W(7) 0.001 0.000 0.035 0.035

W(°̂) -0.001 -0.001 0.051 0.051

W(3) 0.001 0.001 0.035 0.035

W(5) 0.001 0.000 0.035 0.035

Wrand 0.001 -0.000 0.035 0.035

¯3 = −1 W(7) -0.998 -0.999 0.035 0.035

W(°̂) -0.998 -0.999 0.035 0.035

W(3) -1.000 -1.001 0.035 0.035

W(5) -1.000 -1.001 0.035 0.035

Wrand -1.000 -1.000 0.035 0.035

Table 3.12: Estimation of ¯1, ¯2, and ¯3 for the true value of ° = 7, n = 800,

¾2 = 1, ¸ = 0.5, and the true values of ¯1 = 1, ¯2 = 0, and ¯3 = −1.
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3.7.5 Estimates of ¾2

As ¾2 is not a key parameter and all estimators perform equally well in es-

timating ¾2 across all values of ¸ and n, regardless of the weight matrices

used in the experiment, we only report the results for a selection of cases we

have carried out in this chapter. Tables 3.13 and 3.14 below show the mean,

median, standard deviation and the RMSE of the benchmark estimator, our

QML estimator, and three competing estimators for estimating ¾2 for n = 200,

400, and 800, ¾2 = 1, and ¸ = 0.5. The true values of ° used are 5 and 7,

respectively. Note that the results shown below are rounded to the nearest

third decimal.

From the results we see that the performance of the estimators are compa-

rable, producing estimates with small bias in the mean and median and small

standard deviation and RMSE. The standard deviation and the RMSE of the

estimates also become smaller when n increases.

True ¾2 True ¸ n W Mean Med. St.D. RMSE

1.0 0.5 200 W(5) 0.979 0.978 0.100 0.102

W(°̂) 0.981 0.980 0.100 0.101

W(3) 0.985 0.986 0.100 0.101

W(7) 0.977 0.977 0.100 0.102

Wrand 0.985 0.985 0.100 0.101

400 W(5) 0.992 0.991 0.068 0.069

W(°̂) 0.993 0.993 0.069 0.069

W(3) 0.995 0.995 0.069 0.069

W(7) 0.991 0.990 0.069 0.069

Wrand 0.995 0.995 0.069 0.070

800 W(5) 0.994 0.992 0.051 0.051

W(°̂) 0.995 0.993 0.051 0.051

W(3) 0.995 0.994 0.051 0.051

W(7) 0.994 0.992 0.051 0.051

Wrand 0.995 0.994 0.051 0.051

Table 3.13: Estimation of ¾2 for the true value of ° = 5, n = 200, 400, 800,

¾2 = 1, and ¸ = 0.5.
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True ¾2 True ¸ n W Mean Med. St.D. RMSE

1.0 0.5 200 W(7) 0.982 0.976 0.098 0.100

W(°̂) 0.985 0.979 0.098 0.100

W(3) 1.009 1.004 0.102 0.102

W(5) 0.991 0.985 0.099 0.100

Wrand 1.013 1.006 0.104 0.105

400 W(7) 0.988 0.985 0.068 0.069

W(°̂) 0.990 0.988 0.069 0.069

W(3) 1.003 1.002 0.070 0.070

W(5) 0.993 0.991 0.069 0.069

Wrand 1.006 1.005 0.070 0.071

800 W(7) 0.994 0.993 0.051 0.051

W(°̂) 0.995 0.993 0.051 0.051

W(3) 1.002 1.001 0.052 0.052

W(5) 0.997 0.996 0.051 0.051

Wrand 1.003 1.002 0.052 0.052

Table 3.14: Estimation of ¾2 for the true value of ° = 7, n = 200, 400, 800,

¾2 = 1, and ¸ = 0.5.

3.8 Conclusion

In this chapter we introduce a sub-model for the spatial weights and estimate

a variable spatial weight matrix in the mixed regressive, spatial autoregres-

sive (MR-SAR) model by the maximum Gaussian likelihood. We establish the

identifiability of the parameter defining the weights as well as the consistency

and the asymptotic distribution of the QML estimator under appropriate con-

ditions that extend those given in Lee (2004a). Finite sample properties of

the QMLE are studied in a Monte Carlo experiment. The performance of the

estimator is subsequently compared with other QML estimators using various

fixed spatial weight matrices.

The Monte Carlo results show that our QML estimator using a freely es-

timated weight matrix is able to estimate the parameter defining the spatial

weights, °, reasonably well. It outperforms other competing estimators in

many cases considered in this chapter. Our results also show that using a
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wrong weight matrix strongly affects the estimation performance of the esti-

mators, especially when estimating the spatial autoregressive parameter, ¸.
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Chapter 4

QML Estimation of the Spatial

Weight Matrix in the MR-SAR

Model: Empirical Evidence

4.1 Introduction

Spatial econometrics has been used in applied work in many fields including the

field of economic growth as it is able to account for spillovers between spatial

units. Some of the applied studies related to economic growth are summarised

below.

Abreu, De Groot and Florax (2005) present a survey of the empirical liter-

ature on growth and space. They differentiate models into models of absolute

and relative location and concentrate their survey on regression techniques ap-

plied to growth processes, and suggest that models in spatial econometrics and

results should relate more closely to theory. An overview of the literature on

regional economic growth and convergence is given by Bode and Rey (2006).

They particularly discuss papers that involve open-economy models, the role of

space in convergence dynamics, innovative framework towards regional interac-
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tions, and new spatial tool-kits for applied work on regional growth. Fingleton

(2004) also provides a survey of the literature on growth and introduces an it-

erative approach for the stochastic equilibrium. He uses a spatial econometric

model to study the productivity growth variations and computes the steady-

states and stochastic equilibrium for the manufacturing productivity ratios of

the EU regions.

Henry, Schmitt and Piguet (2001) compare several spatial econometric

models of small region growth applied to data on French rural community

to investigate the determinants of population and employment change in the

rural areas. They test for the impacts of urban growth on rural communi-

ties and find robust evidence of dispersion of population from neighbouring

communities. Lundberg (2006) examines the determinants of average income

growth and net migration in Swedish municipalities and tests the hypothesis

if growth and net migration rates of one municipality depend on growth rates

of nearby municipalities. He finds spatial spillovers of net migration as well

as spatial dependence in the error terms for the average income growth rates.

Ying (2003) investigates China’s growth from a spatial econometric perspec-

tive and presents new insights of the Chinese economy. The author analyses

the determinants of growth and takes into account spatial effects to provide a

better understanding of the spatial process underlying the Chinese economy.

Ertur and Koch (2007) extend the Solow model to include technological

interdependence among countries and investigate the impact of spillover effects.

Dall’erba and Le Gallo (2008) also use a neoclassical growth model to study

the impact of structural funds on the convergence process among the European

regions while taking into account the presence of spillover effects and possible

risk of endogeneity of the funds.

Next, we discuss some studies related to regional income and foreign di-

rect investment (FDI). Rey and Montouri (1999) use exploratory spatial data

analysis and spatial econometric methods to study the US’s regional income
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convergence patterns. They take into account spatial effects and geographical

aspects of the income growth, and find strong spatial autocorrelation in the

regional income convergence. Their results also indicate that omitting spatial

error dependence can result in model misspecification. LeSage and Fischer

(2008) demonstrate that long-run regional income level not only depends on

its own characteristics, but also on neighbouring’s characteristics, connectivity

structure and spatial dependence, and suggest the use of spatial econometric

methods that take into account these spatial aspects. For the FDI, Madariaga

and Poncet (2007) include spatial effects and spatially lagged levels of the FDI

and per capita GDP in their cross-section, pooling, panel and GMM estima-

tions to study the impact of FDI on China’s economic growth. They find

spillover effects of the FDI inflows and income per capita among 180 Chinese

cities considered and conclude that economic growth of one city is affected

positively by its own as well as neighbours’ FDI.

The following studies by Fingleton involve increasing returns to scale. Fin-

gleton and McCombie (1998) investigate the effect of increasing returns to

scale on economic growth rate disparities among the EU regions. They esti-

mate the effect of spatial spillovers of technical change and find large increasing

returns to scale. Fingleton (2001a) develops a model that assumes increasing

returns and spatially varying technical progress, and applies this model to data

on the EU regions. The results indicate spillover effects of productivity and

growth rates among the EU regions. Fingleton (2001b) uses 3SLS estimation

method to manufacturing productivity growth data for the EU regions. The

results report increasing returns, which support the new economic geography

theory, and indicate that across-region spillovers are, among others, ones of

the determinants of regional productivity growth variations.

Our focus in this chapter is to illustrate the applicability of our QML es-

timator developed in Chapter 3 to a real spatial data set. To do this, we

first specify two forms of sub-models for the spatial weights that satisfy the
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identifiability, consistency and asymptotic normality conditions established in

Chapter 3. Then we apply our QML estimator using these two sub-models

for the weights to the cross-sectional data set of 91 countries used in Ertur

and Koch (2007) in the framework of the mixed regressive, spatial autoregres-

sive (MR-SAR) model, to study the impact of saving, population growth and

interdependence among countries on growth. We evaluate and compare our

estimator using freely-estimated spatial weight matrices with other QML es-

timators using fixed weight matrices. Asymptotic variances are evaluated and

the Wald test for our estimator is carried out. Other hypothesis tests for our

estimator are for future work, as the nuisance parameter problem is present.

The results show that our QML estimator with freely-estimated weight

matrices in the framework of the MR-SAR model introduced in Chapter 3 is

applicable to a real data set. It is able to capture positive spatial spillovers of

growth among countries and provides significant estimates of other parameters,

including the parameter defining the weights, with predicted signs. Moreover,

our estimator yields an estimate which is significantly different from its fixed

counterpart for the weight matrix with exponential distances. We conclude

that our QML estimator with freely-estimated weight matrix is able to provide

an estimate of the weight parameter that is comparable to, and in one case

testably different from, the value previously assumed.

This chapter is constructed as follows. Section 4.2 describes two sub-models

for the spatial weights in the framework of the MR-SAR model. Section 4.3

discusses the data set used in this chapter. Section 4.4 presents the empirical

results for the QMLEs using fixed and freely-estimated weight matrices. Sec-

tion 4.5 concludes. A list of the countries considered in this chapter can be

found in Appendix C.
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4.2 MR-SAR Model and Spatial Weight Ma-

trices

Recall that the first-order mixed regressive, spatial autoregressive (MR-SAR)

model in (3.2.1) is described as

Yn = Xn¯ + ¸Wn(°)Yn + "n

and the elements of the row-standardised weight matrix Wn(°) is as follows

wn,ij(°) =
w∗

n,ij(°)∑
j w

∗
n,ij(°)

.

All elements in the equations above are described as in Chapter 3. We specify

two sub-models for the spatial weights as follows.

w1∗n,ij(°1) =

⎧
⎨
⎩
0 if i = j

e−°1dij if i ∕= j

and

w2∗n,ij(°2) =

⎧
⎨
⎩
0 if i = j

d−°2
ij if i ∕= j

where °1 and °2 are positive scalar parameters specifying the weights, and

dij is a fixed nonnegative distance between spatial units i and j. Then, the

elements w1n,ij(°1) of the weight matrix W1n(°1) become

w1n,ij(°1) =

⎧
⎨
⎩
0 if i = j

e−°1dij∑
j e

−°1dij
≥ 0 if i ∕= j

(4.2.1)

where
∑

j e
−°1dij is a row sum for all i. For the weight matrix W2n(°2), its

elements w2n,ij(°2) become

w2n,ij(°2) =

⎧
⎨
⎩
0 if i = j

d
−°2
ij∑
j d

−°2
ij

≥ 0 if i ∕= j
(4.2.2)
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where
∑

j d
−°2
ij is a row sum for all i. These matrices W1n(°1) and W2n(°2)

are row-standardised so weight elements on the main diagonal are zero whereas

all other elements are nonnegative.

Recall that the log-likelihood function of equation (3.2.1) is given by

lnLn(µ) = −n

2
ln(2¼)− n

2
ln(¾2) + ln ∣det(Sn(¸, °))∣ − 1

2¾2
"′n(±)"n(±)

where "n(±) = Yn−Xn¯−¸Wn(°)Yn, with ± = (¯′, ¸, °)′ and µ = (¯′, ¸, °, ¾2)′.

Finally, the concentrated log-likelihood function of ¸ and ° is described as

lnLn(¸, °) = −n

2
(ln(2¼) + 1) + ln ∣det(Sn(¸, °))∣ − n

2
ln ¾̂2

n(¸, °)

Maximising the above equation with respect to ¸ and ° yields the QMLEs

ˆ̧
n and °̂n. Then, the QMLEs of ¯ and ¾2 become ˆ̄

n(ˆ̧n, °̂n) and ¾̂2
n(
ˆ̧
n, °̂n),

respectively.

4.3 Data Analysis

Data set used in this chapter is obtained from Ertur and Koch (2007)1, of

which the data are originally acquired from the Penn World Tables version 6.1

(Heston et al. (2002)). It consists of cross-sectional data of 7 variables for 91

countries for the period of 1960-1995. These countries are from the non-oil

sample in Mankiw et al. (1992), see Table C.1 in Appendix C for a list of

these countries and their ISO codes. Table 4.1 below presents the variables

and their abbreviations used in this chapter.

The first five variables in Table 4.1 are used to evaluate the impact of

saving, population growth and interdependence among countries on growth.

The last two variables, i.e. longitude of capital and latitude of capital, are

used to construct the distance matrix of which the elements dij are great-

circle, geographical distances between country capitals. This distance matrix

1See http://qed.econ.queensu.ca/jae/2007-v22.6/ertur-koch/ for detail.
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No Variable Code

1 initial level of per worker income (in 1960) lny60

2 level of per worker income in 1995 lny95

3 average rate of growth between 1960 and 1995 gy

4 average investment rate of the period 1960-1995 lns

5 average rate of growth of working-age population (np) plus (g + ±) lnngd

6 longitude of capital xlong

7 latitude of capital ylat

Table 4.1: List of variables and their acronyms.

is subsequently used to build weight matrices W1(°1) and W2(°2) described

in Section 4.2. We discuss each of the main variables below.

Logarithms of real income in 1960 and 1995 for 91 countries are illustrated

in Figure 4.1. Countries’ ISO codes are listed on the horizontal axis in the order

according to Table C.1 in Appendix C. The dotted and solid bars represent

the initial level of real income (in 1960) and the level of real income in 1995,

respectively. The figure shows that the levels of real income differ very strongly

across countries. However, within each country, the levels of real income in

1960 and 1995 stay close to each other with those in 1995 are usually higher

for most countries.

Figure 4.2 shows the average rates of growth between 1960 and 1995 for

91 countries. The figure shows that the average rates of growth indeed differ

strongly across countries. Out of 91 countries considered in this chapter, 17

countries have negative average rates of growth. Hong Kong has the highest

rate of growth between 1960 and 1995, with the average rate of growth of

6.24%, and Democratic Republic of the Congo has the lowest rate of growth

between 1960 and 1995, with the average rate of −3.43%.

Next, we look at the average investment rates of the period 1960-1995.

These are measured as the average shares of real investment, including gov-
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Figure 4.1: Logarithms of the levels of per worker income in 1960 and 1995 for

91 countries.

Figure 4.2: Average rates of growth between 1960 and 1995 for 91 countries.

ernment investment, in real GDP. Note that the average investment rates of

the period 1960-1995 for 91 countries are shown in Figure 4.3 while we use

the logarithm values of this variable in our empirical study. We can see that

the average investment rates vary sharply across countries. Singapore has the

highest average investment rate with its share of real investment in real GDP

of 41%, whereas Uganda has the lowest average investment rate with its share

of real investment of 1.9%.

Finally, the average rates of growth of the working-age population np plus
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Figure 4.3: Average investment rates of the period 1960-1995 for 91 countries.

Figure 4.4: Average rates of growth of working-age population plus 0.05 for

91 countries.

0.05 (g + ±) are shown in Figure 4.4. Note that this figure shows the average

rates of growth while we use their logarithm values in our empirical study. The

working age is restricted to 15-64 years old. The figure shows that there are

large differences in the population growth rates among countries considered

here. Countries with the highest and the lowest growth rates of working-age

population plus 0.05 are Jordan (9.3%) and Austria (5.3%), respectively.
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4.4 Empirical Results

In this section, we apply our QML estimator using two types of sub-models

for the spatial weights with fixed and freely-estimated parameters defining

the weights, °, to the data set from Ertur and Koch (2007) discussed in the

previous section. Then, we evaluate the impact of saving, population growth

and interdependence among countries on growth for each type of these weight

matrices. The corresponding empirical results including the Wald test results

are reported in the following subsections.

We first explain how the model is constructed. As the MR-SAR model is a

special case of the spatial durbin model (SDM), we modify the spatial durbin

model used in Ertur and Koch (2007) to suit our MR-SAR case. The extension

of our work to the SDM model is for future work and is non-trivial. Here, for

country i, with i = 1, . . . , 91, our MR-SAR model is described as follows

gyi = ¯1 + ¯2lny60i + ¯3lnsi + ¯4lnngdi + ¸

n∑

j ∕=i

wij(°l)gyj + "i. (4.4.1)

The dependent variable is the average rate of growth between the year 1960

and 1995 for country i, computed as (lny95i − lny60i)/35, where lny95i is

logarithm of the level of per worker income in 1995 for country i, lny60i is

logarithm of the initial level of per worker income (in 1960) for country i, and

35 is the number of years.

For the explanatory variables for country i, x1,i consists of ones, x2,i is

logarithm of the initial level of per worker income (lny60i), x3,i is logarithm of

the average investment rate of the period 1960-1995 (lnsi), and x4,i is logarithm

of the average rate of growth of working-age population (np) plus 0.05 (lnngdi).

"i is country i’s shock. ¯1, . . . , ¯4 are parameters associated with X1, . . . , X4,

respectively, and assumed to be the same for all countries. ¸ is the spatial

autoregressive parameter which is assumed to be the same for all countries.

wij(°l) is the spatial weight of countries i and j following two parametric sub-
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models for the weights as in equations (4.2.1) and (4.2.2), with °l, for l = 1

and 2, fixed across countries for each type of the weight matrices.

Note that in our model, the parameter defining the weights, °, is a nuisance

parameter. It is not identified under the null hypothesis. Work on inference

about ° and ¸ based on hypothesis tests other than the Wald test is for future

work. See Davies (1977 and 1987), Andrews and Ploberger (1994), and Hansen

(1996), among others, for more details about hypothesis tests when a nuisance

parameter is present only under the alternative.

We first report empirical results obtained from fixed weight matrices below.

4.4.1 With Fixed Spatial Weight Matrices

In this subsection we present the results obtained by evaluating the log-likelihood

function derived from equation (4.4.1) above based on two types of sub-models

for the spatial weights. The evaluation is carried out using a one-dimensional

grid search. Table 4.2 reports the QML estimates of parameters ¯, ¸, and

¾2 for two weight matrices W1(°1) and W2(°2) with °1 and °2 fixed at 2 as

in Ertur and Koch (2007). The variables are listed in the first column. The

second and third columns show the QML estimates obtained based on weight

matrices W1(°1) and W2(°2), respectively.

Variable W1(2) W2(2)

constant 0.0322 0.0348

lny60 -0.0066 -0.0070

lns 0.0181 0.0192

lnngd -0.0277 -0.0291

W(2) gy 0.3 0.28

¾2 0.0001 0.0002

log-likelihood 271.1240 269.4306

Table 4.2: QML estimates for the MR-SAR model based on weight matrices

W1(°1) and W2(°2), with °1 and °2 fixed at 2.
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From the results, we can see that the coefficients of the initial level of per

worker income (lny60) and the average rate of growth of working-age popula-

tion (lnngd) are both negative. The negative coefficient of the initial level of

income indicates that there exists conditional ¯−convergence, i.e. a country’s

growth rate declines as it approaches its steady state. On the other hand, the

coefficient of the average investment rate of the period 1960-1995 (lns) and

the spatial autoregressive parameter are both positive as expected. The aver-

age investment rate has positive effect on growth, so higher investment rate

leads to higher growth and positive coefficient of the spatial autoregressive

parameter suggests positive spillovers of growth across countries.

Variable constant lny60 lns lnngd W1(2) gy ¾2

constant 0.886 -0.012 0.027 0.275 0.364 -0.000

lny60 -0.012 0.003 -0.002 0.006 0.014 -0.000

lns 0.027 -0.002 0.006 -0.002 -0.068 0.000

lnngd 0.275 0.006 -0.002 0.127 0.295 -0.000

W1(2) gy 0.364 0.014 -0.068 0.295 9.776 -0.000

¾2 -0.000 -0.000 0.000 -0.000 -0.000 0.000

Table 4.3: Estimated asymptotic variance matrix for all coefficients based on

weight matrix W1(°1), with °1 fixed at 2.

In Tables 4.3 and 4.4 we report the estimated asymptotic variances for

the coefficients, based on weight matrices W1(°1) and W2(°2) with °1 and

°2 fixed at 2, respectively. These variance matrices are obtained from taking

the inverse of the average Hessian matrix in equation (3.5.6) and dividing by

n. Then, we multiply these variances by 103 and round them to the nearest

3th decimal before reporting them in these tables to improve the readability.

Note that there may be a computing error in calculating these variances. This

doubt will be re-checked and removed later.
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Variable constant lny60 lns lnngd W2(2) gy ¾2

constant 0.926 -0.013 0.029 0.287 0.420 -0.000

lny60 -0.013 0.003 -0.002 0.006 0.011 -0.000

lns 0.029 -0.002 0.006 -0.001 -0.070 0.000

lnngd 0.287 0.006 -0.001 0.132 0.325 -0.000

W2(2) gy 0.420 0.011 -0.070 0.325 12.894 -0.000

¾2 -0.000 -0.000 0.000 -0.000 -0.000 0.000

Table 4.4: Estimated asymptotic variance matrix for all coefficients based on

weight matrix W2(°2), with °2 fixed at 2.

4.4.2 With Freely Estimated Spatial Weight Matrices

In this subsection we present empirical results obtained by evaluating the log-

likelihood function based on two types of sub-models for the spatial weights,

where the weight parameters ° are freely estimated. The evaluation is carried

out using a two-dimensional grid search. Table 4.5 shows the QML estimates

of parameters °, ¯, ¸, and ¾2 for two weight matrices W1(°1) and W2(°2)

with freely-estimated °1 and °2.

Variable W1(°1) W2(°2)

° 0.81 2.49

constant 0.0363 0.0336

lny60 -0.0063 -0.0069

lns 0.0169 0.0191

lnngd -0.0231 -0.0292

W(°) gy 0.47 0.25

¾2 0.0001 0.0002

log-likelihood 273.3922 269.6053

Table 4.5: QML estimates for the MR-SAR model based on weight matrices

W1(°1) and W2(°2), with freely-estimated °1 and °2.

The first row reports estimates of °1 and °2 and we can see that they both

have positive signs as predicted. The rest of the results in Table 4.5 are sim-

ilar to those in Table 4.2. As expected, the coefficients of the initial level of
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per worker income (in 1960) and the average rate of growth of working-age

population are negative for both types of weight matrices used. The nega-

tive coefficient of the initial level of income again confirms the conditional

¯−convergence. For the average investment rate of the period 1960-1995 and

the spatial autoregressive parameter, their coefficients are both positive and

there are positive spillovers of growth across countries.

In Tables 4.6 and 4.7 we report the estimated asymptotic variances for the

coefficients based on weight matrices W1(°1) and W2(°2) with freely-estimated

°1 = 0.81 and °2 = 2.49, respectively. Similarly to the results reported in

Tables 4.3 and 4.4, we multiply the variances by 103 and round them to the

nearest 3th decimal to improve the readability of the tables. Note also that

there may be a computing error in calculating these variances and the doubt

will be re-checked and removed later.

Variable constant lny60 lns lnngd W1(°1) gy °1 ¾2

constant 0.864 -0.012 0.026 0.266 -0.078 2.150 -0.000

lny60 -0.012 0.003 -0.002 0.006 0.046 -0.078 -0.000

lns 0.026 -0.002 0.006 -0.002 -0.099 0.051 0.000

lnngd 0.266 0.006 -0.002 0.124 0.385 0.141 -0.000

W1(°1) gy -0.078 0.046 -0.099 0.385 30.106 -59.157 -0.000

°1 2.150 -0.078 0.051 0.141 -59.157 229.510 0.000

¾2 -0.000 -0.000 0.000 -0.000 -0.000 0.000 0.000

Table 4.6: Estimated asymptotic variance matrix for all coefficients based on

weight matrix W1(°1), with freely-estimated °1 = 0.81.

4.4.3 Wald Test

For each form of the weight matrices, we now carry out the Wald test to test

whether the spatial autoregressive parameter ¸ is significantly greater than

zero for fixed and freely estimated parameter defining the weights, °. We

report the results of Wald tests on the significance of ¸ for each type of the
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Variable constant lny60 lns lnngd W2(°2) gy °2 ¾2

constant 0.939 -0.014 0.030 0.291 0.790 -8.452 -0.000

lny60 -0.014 0.003 -0.002 0.006 -0.004 0.284 - 0.000

lns 0.030 -0.002 0.006 -0.001 -0.047 -0.321 0.000

lnngd 0.291 0.006 -0.001 0.133 0.436 -3.025 -0.000

W2(°2) gy 0.790 -0.004 -0.047 0.436 20.173 -183.883 -0.000

°2 -8.452 0.284 -0.321 -3.025 -183.883 3307.032 -0.000

¾2 -0.000 -0.000 0.000 -0.000 -0.000 -0.000 0.000

Table 4.7: Estimated asymptotic variance matrix for all coefficients based on

weight matrix W2(°2), with freely-estimated °2 = 2.49.

weight matrices in Table 4.8. The first row of the table reports the QML

estimates of ¸ obtained using different weight matrices. The second row lists

the diagonal elements corresponding to ¸ in the estimated asymptotic variance

matrices obtained from Tables 4.3 - 4.4 and 4.6 - 4.7. The last two rows report

the Wald statistics and their associated p-values for each case considered here.

QML with

W1(2) W1(°1) W2(2) W2(°2)

¸ 0.3 0.47 0.28 0.25

v¸ 0.0098 0.0301 0.0129 0.0202

Wald 9.2064 7.3373 6.0804 3.0983

p-value 0.0024 0.0068 0.0137 0.0784

Table 4.8: Wald tests on significance of the spatial autoregressive parameter

¸, based on two different weight matrices with pre-determined and freely-

estimated weight parameter °.

As the critical value at 5% significance level for a one-sided test is 3.841,

the results show that we can reject the null hypotheses for all cases except for

the case of W2(°2) with freely-estimated °2. The associated p-values for the

first three cases also confirm the significance of ¸ and we conclude that, the

first three QML estimators can account for spatial spillover effects in the data,

while the data cannot reject the null hypothesis of the estimated value of ¸ at

124



0.25 for the case of freely-estimated W2(°2).

Next, we use Wald test to test whether freely-estimated °l is significantly

different from the pre-determined value of °l fixed at 2 for both forms of the

weight matrices. Results of Wald tests on °l for each type of the weight

matrices are presented in Table 4.9 below.

The first row lists the pre-determined values and QML estimates of ° for

both forms of the weight matrices. The second row reports the diagonal ele-

ments corresponding to ° in the estimated asymptotic variance matrices ob-

tained from Tables 4.3 - 4.4 and 4.6 - 4.7. The last two rows report the Wald

statistics and their associated p-values, respectively.

QML with

W1(2) W1(°1) W2(2) W2(°2)

° 2 0.81 2 2.49

v° - 0.2295 - 3.3070

Wald - 6.1701 - 0.0726

p-value - 0.0260 - 0.4248

Table 4.9: Wald tests on restrictions on the parameters defining the weights,

°1 and °2.

As the critical values at 5% significance level for a two-sided test are 5.024

and 0.001, the results suggest that we can reject the null hypothesis in the

case based on weight matrix W1(°1). The Wald statistic is 6.1701, greater

than the critical value of 5.024. The associated p-value also confirms this out-

come. For the case based on weight matrix W2, the null hypothesis cannot

be rejected. We conclude that at 5% significance level, the freely-estimated

parameter defining the weights for the QMLE with weight matrix W1 is sig-

nificantly different from its pre-determined counterpart fixed at 2, whereas it

seems that we cannot choose between fixed and freely-estimated weight pa-

rameter for the QML estimators with weight matrix W2.
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4.5 Conclusion

Spatial econometrics has been used in applied work in many fields including

the field of economic growth as it is able to account for spillovers between

spatial units. To illustrate the applicability of our QML estimator, we apply

our QML estimator introduced in Chapter 3, using two functional forms of the

weight matrices, to a real data set to study the impact of saving, population

growth and interdependence among countries on growth in the framework of

the mixed regressive, spatial autoregressive (MR-SAR) model. We evaluate

and compare our estimator using freely-estimated spatial weight matrices with

other QML estimators using weight matrices with the parameter defining the

weights adopted in previous work. Asymptotic variances are evaluated and

the Wald test is carried out. Hypothesis tests other than the Wald test will be

carried out in future work as the nuisance parameter problem is present.

The empirical results show that our QML estimator with freely-estimated

weight matrices in the framework of the MR-SAR model introduced in Chap-

ter 3 is applicable to a real data set. It is able to capture positive spatial

spillovers of growth among countries and provides significant estimates of other

parameters including the parameter defining the weights, with predicted signs.

Moreover, our estimator yields an estimate which is significantly different from

its pre-determined counterpart for weight matrix W1 with exponential dis-

tances. We conclude that our QML estimator with freely-estimated weight

matrix is able to provide an estimate of the weight parameter that is compara-

ble to, and in one case testably different from, the value previously assumed.
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Chapter 5

Conclusion

This thesis explores two issues in spatial econometrics. The first issue involves

a bias-adjusted estimator for small samples and the second issue is in regard to

the spatial weight matrix. Chapter 1 provides an introduction to and a review

of the literature in the field of spatial econometrics.

The maximum likelihood has widely been used as an estimation method in

spatial econometrics since it is consistent and asymptotically efficient. How-

ever, this method involves matrix inversion and eigenvalue calculations, which

may cause numerical problems when the sample size is large. Several alter-

native methods have been proposed, among which are the GMM/IV-type es-

timators that are consistent and computationally feasible under appropriate

conditions. Even though the GMM estimators are consistent, they may have

large bias in finite samples. Besides, it is not clear which estimator performs

better in such a case.

Chapter 2 introduces a bias-adjusted estimator [BB] for small samples and

extensively compares its performance with that of six existing estimators in

the context of a spatial error model. We show that the BB estimator is robust

and its performance does not depend on a particular spatial weight matrix M.

An optimal weight matrix W should also be incorporated in the method of

moments procedure to improve the efficiency of the estimators. Furthermore,
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the bias-adjusted estimators; BB, AW, and AWW, perform extremely well in

reducing small-sample bias, being virtually mean and median unbiased. Nev-

ertheless, all estimators except the MLE produce a significant proportion of

non-invertible estimates. This motivates us to develop the hybrid estimator for

the spatial autocorrelation parameter to improve the small-sample efficiency.

The hybridised forms of the BB, AW and AWW estimators are clearly superior

to other estimators in small samples and, in our experiments, the use of the

hybrid estimator in the first stage of a feasible GLS estimator leads to infer-

ences about the regression coefficients in the second stage that are at least as

robust as those of competing estimators.

For future research based on Chapter 2, the bias-adjusted estimator for

small samples may be extended to the general spatial process model that in-

cludes both the spatial lag dependence as well as the spatial error dependence.

Chapter 3 deals with the second focal issue of this thesis; the spatial weight

matrix. This issue is one of the most important issues in spatial econometrics

and it has received much attention, especially in the past few years. As the

weight matrix captures the dependence structure between spatial units, it is

crucial to specify the elements of the weights properly. Different weight matrix

leads to different results and different interpretations of the results. While spa-

tial weights should be chosen based on spatial interaction theory (Anselin, 1980

and 1984), practitioners sometimes choose a weight matrix based on empirical

convenience, that may not properly capture the dependence structure.

In Chapter 3 we introduce a sub-model for the spatial weights and estimate

the variable spatial weight matrix in the mixed regressive, spatial autoregres-

sive (MR-SAR) model by the quasi-maximum likelihood. We establish the

identifiability of the parameter defining the weights as well as the consistency

and the asymptotic distribution of the QML estimator under appropriate con-

ditions that extend those given in Lee (2004a). Its small sample properties

are studied in a Monte Carlo experiment. The performance of the estimator
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is subsequently compared with that of other QML estimators using various

fixed spatial weight matrices. The results show that our QML estimator using

a freely estimated weight matrix is able to estimate the parameter defining

the spatial weights, °, reasonably well. It outperforms other competing es-

timators in many cases considered in Chapter 3. The results also show that

using a wrong weight matrix strongly affects the estimation performance of the

estimators, especially when estimating the spatial autoregressive parameter, ¸.

Extending the QML estimator to a panel/dynamic setting and/or to the

framework of the spatial autoregressive model with spatial autoregressive dis-

turbance is an interesting path for future research.

Finally, in Chapter 4, we apply our QML estimator using freely-estimated

weight matrix based on two functional forms of sub-models for the weights to

cross-sectional data set to study the impact of saving, population growth and

interdependence among countries on growth in the framework of the MR-SAR

model. Our QML estimator using freely-estimated weight matrices is compared

with other QML estimators using weight matrices with the weight parameter

values adopted in previous work. Asymptotic variances are evaluated and the

Wald test is carried out. Other hypothesis tests for our estimator are for

future research as the nuisance parameter problem is present. The results

show that our QML estimator with freely-estimated weight matrices in the

framework of the MR-SAR model is able to capture positive spatial spillovers of

growth among countries and provides significant estimates of other parameters

of the model including the parameter defining the spatial weights. The QML

estimator with freely-estimated weight matrix is able to provide an estimate of

the weight parameter that is comparable to, and in one case testably different

from, the value previously assumed.

For future research based on Chapter 4, we may apply our QML estimator

using variable weight matrices to data sets in other fields of economics such as

social interactions, foreign direct investment, migration or trade. Developing

129



hypothesis tests for our estimator when a nuisance parameter is present under

the alternative is also an interesting topic for future work.
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Appendix A

Appendix to Chapter 2

A.1 Simulation Results

This section presents the simulation results obtained for Chapter 2 - Improved

Estimators for the Spatial Error Model. The results listed in this section show

the performance of the non-hybridised and hybridised estimators considered in

Chapter 2, obtained for various values of ¾2 for the case of n = 49. All other

results not reported in this thesis are available on request.
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½ Method Mean Med. St.D. RMSE ½ Method Mean Med. St.D. RMSE

0.0 BB1 0.006 0.011 0.237 0.237 0.5 BB1 0.501 0.508 0.193 0.193

ML -0.071 -0.062 0.228 0.239 ML 0.429 0.450 0.175 0.189

KP1 -0.077 -0.064 0.227 0.240 KP1 0.412 0.432 0.181 0.201

KPW1 -0.045 -0.040 0.222 0.226 KPW1 0.435 0.447 0.180 0.192

LL1 -0.072 -0.063 0.226 0.237 LL1 0.421 0.443 0.181 0.197

AW1 -0.025 -0.011 0.235 0.236 AW1 0.481 0.500 0.184 0.185

AWW1 0.002 0.009 0.234 0.234 AWW1 0.502 0.513 0.187 0.187

0.1 BB1 0.104 0.113 0.231 0.231 0.7 BB1 0.697 0.707 0.153 0.153

ML 0.028 0.041 0.222 0.233 ML 0.633 0.655 0.137 0.152

KP1 0.018 0.032 0.222 0.237 KP1 0.616 0.633 0.145 0.167

KPW1 0.050 0.055 0.217 0.223 KPW1 0.632 0.646 0.146 0.161

LL1 0.026 0.038 0.220 0.233 LL1 0.623 0.648 0.155 0.173

AW1 0.074 0.090 0.229 0.230 AW1 0.692 0.711 0.148 0.148

AWW1 0.101 0.111 0.228 0.228 AWW1 0.707 0.722 0.150 0.150

0.3 BB1 0.301 0.310 0.215 0.215 0.9 BB1 0.898 0.913 0.084 0.084

ML 0.228 0.245 0.203 0.216 ML 0.845 0.867 0.081 0.098

KP1 0.212 0.229 0.206 0.224 KP1 0.822 0.833 0.093 0.121

KPW1 0.241 0.250 0.203 0.212 KPW1 0.830 0.841 0.093 0.116

LL1 0.222 0.240 0.204 0.218 LL1 0.835 0.858 0.110 0.128

AW1 0.275 0.293 0.210 0.212 AW1 0.906 0.926 0.087 0.087

AWW1 0.300 0.311 0.212 0.212 AWW1 0.912 0.934 0.085 0.086

Table A.1: Non-hybridised estimators of ½ for n = 49, ¾2 = 1.
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½ Method Mean Med. St.D. RMSE ½ Method Mean Med. St.D. RMSE

0.0 BB2 0.004 0.011 0.233 0.233 0.5 BB2 0.496 0.506 0.188 0.188

ML -0.071 -0.062 0.228 0.239 ML 0.429 0.450 0.175 0.189

KP2 -0.077 -0.064 0.226 0.239 KP2 0.412 0.432 0.181 0.201

KPW2 -0.045 -0.040 0.222 0.226 KPW2 0.434 0.447 0.179 0.191

LL2 -0.072 -0.063 0.226 0.237 LL2 0.421 0.443 0.179 0.195

AW2 -0.025 -0.011 0.235 0.236 AW2 0.481 0.500 0.184 0.185

AWW2 0.002 0.009 0.234 0.234 AWW2 0.499 0.513 0.183 0.183

0.1 BB2 0.102 0.113 0.227 0.227 0.7 BB2 0.690 0.704 0.147 0.147

ML 0.028 0.041 0.222 0.233 ML 0.633 0.655 0.137 0.152

KP2 0.018 0.032 0.221 0.236 KP2 0.616 0.633 0.145 0.167

KPW2 0.050 0.055 0.217 0.223 KPW2 0.630 0.645 0.143 0.159

LL2 0.026 0.038 0.220 0.233 LL2 0.624 0.648 0.149 0.167

AW2 0.075 0.090 0.228 0.230 AW2 0.691 0.711 0.146 0.147

AWW2 0.101 0.111 0.228 0.228 AWW2 0.701 0.719 0.144 0.144

0.3 BB2 0.299 0.309 0.212 0.212 0.9 BB2 0.877 0.892 0.081 0.084

ML 0.228 0.245 0.203 0.216 ML 0.845 0.867 0.081 0.098

KP2 0.212 0.229 0.206 0.224 KP2 0.821 0.833 0.091 0.121

KPW2 0.240 0.250 0.203 0.211 KPW2 0.827 0.840 0.090 0.116

LL2 0.223 0.240 0.203 0.217 LL2 0.836 0.858 0.105 0.123

AW2 0.275 0.293 0.210 0.212 AW2 0.889 0.906 0.078 0.079

AWW2 0.299 0.310 0.211 0.211 AWW2 0.889 0.906 0.076 0.077

Table A.2: Hybridised estimators of ½ for n = 49, ¾2 = 1.
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½ Method Mean Med. St.D. RMSE ½ Method Mean Med. St.D. RMSE

0.0 BB1 0.001 0.009 0.241 0.241 0.5 BB1 0.495 0.506 0.197 0.197

ML -0.075 -0.064 0.234 0.246 ML 0.426 0.452 0.179 0.194

KP1 -0.081 -0.063 0.229 0.243 KP1 0.408 0.427 0.183 0.205

KPW1 -0.048 -0.039 0.226 0.231 KPW1 0.430 0.446 0.184 0.197

LL1 -0.077 -0.064 0.232 0.244 LL1 0.419 0.444 0.184 0.201

AW1 -0.029 -0.011 0.238 0.240 AW1 0.477 0.500 0.187 0.189

AWW1 -0.001 0.008 0.239 0.239 AWW1 0.497 0.514 0.191 0.191

0.1 BB1 0.099 0.109 0.235 0.235 0.7 BB1 0.692 0.701 0.157 0.157

ML 0.024 0.041 0.228 0.241 ML 0.631 0.656 0.140 0.156

KP1 0.014 0.032 0.224 0.240 KP1 0.613 0.630 0.148 0.172

KPW1 0.046 0.057 0.222 0.228 KPW1 0.628 0.641 0.149 0.166

LL1 0.021 0.038 0.226 0.240 LL1 0.622 0.650 0.151 0.170

AW1 0.071 0.089 0.232 0.234 AW1 0.689 0.708 0.151 0.151

AWW1 0.097 0.110 0.234 0.234 AWW1 0.703 0.721 0.154 0.154

0.3 BB1 0.298 0.308 0.223 0.223 0.9 BB1 0.891 0.906 0.088 0.088

ML 0.224 0.246 0.209 0.222 ML 0.845 0.867 0.084 0.101

KP1 0.208 0.227 0.208 0.227 KP1 0.820 0.830 0.096 0.125

KPW1 0.236 0.252 0.207 0.217 KPW1 0.827 0.837 0.095 0.120

LL1 0.218 0.244 0.210 0.225 LL1 0.837 0.860 0.098 0.117

AW1 0.271 0.293 0.214 0.215 AW1 0.904 0.923 0.089 0.089

AWW1 0.296 0.312 0.217 0.217 AWW1 0.909 0.928 0.087 0.088

Table A.3: Non-hybridised estimators of ½ for n = 49, ¾2 = 0.25.
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½ Method Mean Med. St.D. RMSE ½ Method Mean Med. St.D. RMSE

0.0 BB2 0.001 0.009 0.240 0.239 0.5 BB2 0.491 0.504 0.193 0.193

ML -0.075 -0.064 0.234 0.246 ML 0.426 0.452 0.179 0.194

KP2 -0.081 -0.063 0.229 0.243 KP2 0.408 0.427 0.183 0.205

KPW2 -0.048 -0.039 0.226 0.231 KPW2 0.429 0.446 0.183 0.196

LL2 -0.077 -0.064 0.232 0.244 LL2 0.419 0.444 0.184 0.201

AW2 -0.029 -0.011 0.238 0.240 AW2 0.477 0.500 0.187 0.188

AWW2 -0.001 0.008 0.239 0.239 AWW2 0.495 0.514 0.189 0.189

0.1 BB2 0.098 0.109 0.233 0.233 0.7 BB2 0.685 0.698 0.151 0.152

ML 0.024 0.041 0.228 0.241 ML 0.631 0.656 0.140 0.156

KP2 0.014 0.032 0.224 0.240 KP2 0.613 0.630 0.148 0.172

KPW2 0.046 0.057 0.222 0.228 KPW2 0.626 0.641 0.147 0.164

LL2 0.021 0.038 0.226 0.240 LL2 0.622 0.650 0.151 0.170

AW2 0.071 0.089 0.232 0.234 AW2 0.688 0.708 0.149 0.150

AWW2 0.097 0.110 0.234 0.234 AWW2 0.697 0.717 0.148 0.148

0.3 BB2 0.295 0.307 0.218 0.218 0.9 BB2 0.874 0.890 0.085 0.089

ML 0.224 0.246 0.209 0.222 ML 0.845 0.867 0.084 0.101

KP2 0.208 0.227 0.208 0.227 KP2 0.819 0.830 0.094 0.124

KPW2 0.235 0.252 0.206 0.216 KPW2 0.824 0.836 0.093 0.120

LL2 0.218 0.244 0.210 0.225 LL2 0.837 0.860 0.098 0.116

AW2 0.271 0.293 0.214 0.215 AW2 0.887 0.906 0.079 0.080

AWW2 0.295 0.312 0.215 0.216 AWW2 0.887 0.907 0.079 0.080

Table A.4: Hybridised estimators of ½ for n = 49, ¾2 = 0.25.
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½ Method Mean Med. St.D. RMSE ½ Method Mean Med. St.D. RMSE

0.0 BB1 -0.001 0.006 0.239 0.239 0.5 BB1 0.496 0.502 0.197 0.197

ML -0.076 -0.064 0.232 0.244 ML 0.424 0.446 0.178 0.193

KP1 -0.081 -0.067 0.228 0.242 KP1 0.408 0.426 0.183 0.204

KPW1 -0.050 -0.042 0.226 0.231 KPW1 0.431 0.443 0.184 0.196

LL1 -0.078 -0.066 0.229 0.242 LL1 0.415 0.439 0.189 0.207

AW1 -0.029 -0.015 0.237 0.238 AW1 0.476 0.496 0.186 0.187

AWW1 -0.003 0.003 0.238 0.238 AWW1 0.496 0.509 0.190 0.190

0.1 BB1 0.099 0.106 0.237 0.237 0.7 BB1 0.695 0.702 0.158 0.158

ML 0.023 0.040 0.226 0.238 ML 0.629 0.653 0.139 0.156

KP1 0.014 0.027 0.223 0.239 KP1 0.613 0.631 0.147 0.171

KPW1 0.045 0.055 0.221 0.228 KPW1 0.629 0.645 0.148 0.165

LL1 0.020 0.035 0.223 0.237 LL1 0.617 0.645 0.165 0.185

AW1 0.070 0.087 0.230 0.232 AW1 0.688 0.706 0.150 0.150

AWW1 0.095 0.104 0.232 0.232 AWW1 0.702 0.718 0.152 0.152

0.3 BB1 0.297 0.304 0.222 0.222 0.9 BB1 0.896 0.912 0.088 0.088

ML 0.222 0.242 0.206 0.220 ML 0.843 0.862 0.085 0.102

KP1 0.208 0.223 0.207 0.227 KP1 0.821 0.836 0.095 0.124

KPW1 0.236 0.247 0.207 0.216 KPW1 0.829 0.842 0.095 0.119

LL1 0.216 0.237 0.207 0.224 LL1 0.831 0.856 0.115 0.134

AW1 0.271 0.290 0.212 0.214 AW1 0.903 0.922 0.089 0.089

AWW1 0.294 0.307 0.216 0.216 AWW1 0.909 0.929 0.088 0.088

Table A.5: Non-hybridised estimators of ½ for n = 49, ¾2 = 0.5.
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½ Method Mean Med. St.D. RMSE ½ Method Mean Med. St.D. RMSE

0.0 BB2 -0.001 0.006 0.238 0.238 0.5 BB2 0.490 0.500 0.190 0.190

ML -0.076 -0.064 0.232 0.244 ML 0.424 0.446 0.178 0.193

KP2 -0.081 -0.067 0.228 0.242 KP2 0.408 0.426 0.183 0.204

KPW2 -0.050 -0.042 0.226 0.231 KPW2 0.430 0.443 0.182 0.195

LL2 -0.078 -0.066 0.229 0.242 LL2 0.417 0.439 0.184 0.202

AW2 -0.029 -0.015 0.236 0.238 AW2 0.476 0.496 0.185 0.187

AWW2 -0.003 0.003 0.238 0.238 AWW2 0.494 0.508 0.186 0.186

0.1 BB2 0.097 0.106 0.233 0.233 0.7 BB2 0.688 0.699 0.151 0.151

ML 0.023 0.040 0.226 0.238 ML 0.629 0.653 0.139 0.156

KP2 0.014 0.027 0.223 0.239 KP2 0.613 0.631 0.147 0.171

KPW2 0.045 0.055 0.221 0.228 KPW2 0.626 0.644 0.145 0.162

LL2 0.020 0.035 0.223 0.237 LL2 0.620 0.645 0.152 0.172

AW2 0.070 0.087 0.230 0.232 AW2 0.686 0.706 0.148 0.149

AWW2 0.095 0.104 0.232 0.232 AWW2 0.697 0.715 0.146 0.146

0.3 BB2 0.294 0.304 0.216 0.216 0.9 BB2 0.876 0.892 0.086 0.090

ML 0.222 0.242 0.206 0.220 ML 0.843 0.862 0.085 0.102

KP2 0.208 0.223 0.207 0.227 KP2 0.820 0.836 0.094 0.124

KPW2 0.236 0.247 0.206 0.216 KPW2 0.826 0.841 0.093 0.119

LL2 0.217 0.237 0.206 0.222 LL2 0.832 0.856 0.110 0.129

AW2 0.271 0.290 0.211 0.213 AW2 0.886 0.903 0.080 0.081

AWW2 0.294 0.307 0.215 0.215 AWW2 0.887 0.904 0.079 0.081

Table A.6: Hybridised estimators of ½ for n = 49, ¾2 = 0.5.

137



½ Method Mean Med. St.D. RMSE ½ Method Mean Med. St.D. RMSE

0.0 BB1 0.000 0.007 0.243 0.243 0.5 BB1 0.494 0.507 0.196 0.196

ML -0.074 -0.063 0.234 0.245 ML 0.426 0.449 0.181 0.196

KP1 -0.081 -0.063 0.232 0.246 KP1 0.408 0.431 0.186 0.208

KPW1 -0.050 -0.041 0.227 0.233 KPW1 0.430 0.447 0.185 0.198

LL1 -0.076 -0.063 0.232 0.244 LL1 0.417 0.444 0.191 0.208

AW1 -0.029 -0.010 0.241 0.243 AW1 0.476 0.499 0.189 0.191

AWW1 -0.003 0.004 0.240 0.240 AWW1 0.496 0.515 0.192 0.192

0.1 BB1 0.098 0.106 0.235 0.235 0.7 BB1 0.694 0.705 0.159 0.159

ML 0.025 0.042 0.228 0.240 ML 0.631 0.656 0.142 0.158

KP1 0.014 0.033 0.227 0.243 KP1 0.613 0.633 0.150 0.174

KPW1 0.045 0.054 0.223 0.230 KPW1 0.628 0.645 0.150 0.167

LL1 0.021 0.038 0.227 0.241 LL1 0.620 0.648 0.160 0.179

AW1 0.070 0.090 0.234 0.236 AW1 0.688 0.709 0.153 0.153

AWW1 0.096 0.105 0.234 0.234 AWW1 0.702 0.721 0.154 0.154

0.3 BB1 0.296 0.308 0.221 0.221 0.9 BB1 0.894 0.913 0.090 0.090

ML 0.224 0.245 0.209 0.223 ML 0.843 0.866 0.086 0.103

KP1 0.208 0.231 0.211 0.230 KP1 0.820 0.834 0.097 0.126

KPW1 0.235 0.249 0.208 0.218 KPW1 0.828 0.841 0.097 0.121

LL1 0.218 0.240 0.213 0.228 LL1 0.833 0.859 0.118 0.136

AW1 0.271 0.294 0.216 0.218 AW1 0.903 0.925 0.090 0.090

AWW1 0.294 0.310 0.217 0.217 AWW1 0.909 0.932 0.089 0.089

Table A.7: Non-hybridised estimators of ½ for n = 49, ¾2 = 2.
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½ Method Mean Med. St.D. RMSE ½ Method Mean Med. St.D. RMSE

0.0 BB2 -0.001 0.007 0.239 0.239 0.5 BB2 0.489 0.504 0.190 0.190

ML -0.074 -0.063 0.234 0.245 ML 0.426 0.449 0.181 0.196

KP2 -0.081 -0.063 0.232 0.246 KP2 0.408 0.431 0.186 0.208

KPW2 -0.050 -0.041 0.227 0.232 KPW2 0.429 0.446 0.183 0.196

LL2 -0.076 -0.063 0.232 0.244 LL2 0.419 0.444 0.184 0.201

AW2 -0.029 -0.010 0.240 0.242 AW2 0.476 0.499 0.189 0.191

AWW2 -0.003 0.004 0.240 0.240 AWW2 0.494 0.514 0.189 0.189

0.1 BB2 0.097 0.106 0.234 0.234 0.7 BB2 0.685 0.698 0.151 0.151

ML 0.025 0.042 0.228 0.240 ML 0.631 0.656 0.142 0.158

KP2 0.014 0.033 0.227 0.242 KP2 0.613 0.633 0.150 0.174

KPW2 0.045 0.054 0.223 0.230 KPW2 0.626 0.645 0.147 0.165

LL2 0.021 0.038 0.227 0.241 LL2 0.619 0.648 0.160 0.179

AW2 0.070 0.090 0.234 0.236 AW2 0.687 0.709 0.151 0.151

AWW2 0.095 0.105 0.233 0.233 AWW2 0.696 0.718 0.149 0.149

0.3 BB2 0.293 0.307 0.216 0.216 0.9 BB2 0.875 0.891 0.086 0.090

ML 0.224 0.245 0.209 0.223 ML 0.843 0.866 0.086 0.103

KP2 0.208 0.231 0.211 0.230 KP2 0.819 0.834 0.095 0.125

KPW2 0.235 0.249 0.207 0.217 KPW2 0.824 0.839 0.094 0.121

LL2 0.219 0.240 0.211 0.225 LL2 0.832 0.858 0.118 0.136

AW2 0.271 0.294 0.216 0.218 AW2 0.887 0.907 0.081 0.082

AWW2 0.293 0.310 0.216 0.216 AWW2 0.887 0.905 0.081 0.082

Table A.8: Hybridised estimators of ½ for n = 49, ¾2 = 2.
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¾2

True ½ 0.25 0.5 1 2

0.0 KPW1 (0.741) KPW1 (0.940) LL1 (0.471) KP1 (0.551)

0.1 KPW1 (0.705) KPW1 (0.716) LL1 (0.580) KP1 (0.871)

0.3 KP1 (0.570) ML (0.598) LL1 (0.486) LL1 (0.584)

0.5 ML (0.579) ML (0.525) LL1 (0.537) LL1 (0.573)

0.7 ML (0.540) ML (0.464) ML (0.493) ML (0.472)

0.9 ML (0.613) ML* (0.596) ML* (0.566) ML (0.580)

Table A.9: Estimation of ¯1. For each ½ and ¾2 combination, the table entry

is the non-hybridised estimator of ¯1 giving the smallest RMSE for n = 49.

The figure in parentheses is the relative efficiency of BB1.

¾2

True ½ 0.25 0.5 1 2

0.0 KPW2 (0.984) KPW2 (0.999) LL2 (0.965) KP2 (0.959)

0.1 KPW2 (0.993) KPW2 (0.964) LL2 (0.975) KP2 (0.951)

0.3 KP2 (0.775) ML (0.932) LL2 (0.761) LL2 (0.888)

0.5 ML (0.779) ML (0.851) LL2 (0.764) ML (0.868)

0.7 ML (0.847) ML (0.786) ML (0.807) ML (0.863)

0.9 ML (0.905) ML (0.900) ML (0.885) ML (0.910)

Table A.10: Estimation of ¯1. For each ½ and ¾2 combination, the table entry

is the hybridised estimator of ¯1 giving the smallest RMSE for n = 49. The

figure in parentheses is the relative efficiency of BB2.
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n

True ½ 20 50 100 245 490

0.0 ML (0.244) AW1 (0.471) AWW1 (1.000) KPW1 (1.000) KP1 (1.000)

0.1 ML (0.249) ML (0.457) AW1 (1.000) KPW1 (1.000) KP1 (1.000)

0.3 ML* (0.258) ML (0.510) AW1 (0.903) BB1 (1.000) ML (1.000)

0.5 ML* (0.284) ML (0.482) AW1 (0.849) KP1 (1.000) LL1 (1.000)

0.7 ML* (0.346) ML* (0.526) ML (0.870) KP1 (0.994) ML (1.000)

0.9 ML* (0.647) ML* (0.709) ML (0.860) LL1 (0.966) LL1 (0.995)

Table A.11: Estimation of ¯1. For each ½ and n combination, the table entry

is the non-hybridised estimator of ¯1 giving the smallest RMSE with ¾2 = 1.

The figure in parentheses is the relative efficiency of BB1.

n

True ½ 20 50 100 245 490

0.0 KP2 (0.835) AW2 (0.885) AWW2 (1.000) KPW2 (1.000) KP2 (1.000)

0.1 ML (0.771) ML (0.809) AW2 (1.000) KPW2 (1.000) KP2 (1.000)

0.3 ML* (0.814) ML (0.962) AW2 (1.000) BB2 (1.000) ML (1.000)

0.5 ML* (0.794) ML (0.969) AW2 (0.991) KP2 (1.000) LL2 (1.000)

0.7 ML* (0.891) LL2 (0.912) ML (0.971) KP2 (0.994) ML (1.000)

0.9 ML (0.982) ML (0.981) ML (0.981) LL2 (0.995) LL2 (0.995)

Table A.12: Estimation of ¯1. For each ½ and n combination, the table entry

is the hybridised estimator of ¯1 giving the smallest RMSE with ¾2 = 1. The

figure in parentheses is the relative efficiency of BB2.
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¾2

True ½ 0.25 0.5 1 2

0.0 KPW1 (0.999) KPW1 (0.998) KPW1 (0.999) KP1 (0.997)

0.1 KPW1 (1.000) KPW1 (0.999) BB1 (1.000) KP1 (0.998)

0.3 BB1 (1.000) BB1 (1.000) BB1 (1.000) AW1 (0.999)

0.5 BB1 (1.000) BB1 (1.000) BB1 (1.000) AW1 (0.998)

0.7 ML (1.000) AW1 (0.999) AWW1 (1.000) ML* (0.996)

0.9 ML (0.999) AW1 (0.998) LL1 (0.998) ML (0.998)

Table A.13: Estimation of ¯2. For each ½ and ¾2 combination, the table entry

is the non-hybridised estimator of ¯2 giving the smallest RMSE for n = 49.

The figure in parentheses is the relative efficiency of BB1.

¾2

True ½ 0.25 0.5 1 2

0.0 KPW2 (0.999) KPW2 (0.998) KPW2 (0.999) KP2 (0.997)

0.1 KPW2 (1.000) KPW2 (0.999) KPW2 (0.999) KP2 (0.998)

0.3 BB2 (1.000) BB2 (1.000) BB2 (1.000) AW2 (0.999)

0.5 BB2 (1.000) BB2 (1.000) BB2 (1.000) AW2 (0.998)

0.7 BB2 (1.000) AWW2 (0.999) AWW2 (1.000) ML* (0.996)

0.9 BB2 (1.000) AW2 (0.997) LL2 (1.000) AWW2 (0.997)

Table A.14: Estimation of ¯2. For each ½ and ¾2 combination, the table entry

is the hybridised estimator of ¯2 giving the smallest RMSE for n = 49. The

figure in parentheses is the relative efficiency of BB2.
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¾2

True ½ 0.25 0.5 1 2

0.0 KPW1 (0.999) KP1 (0.998) KPW1 (0.998) KPW1 (0.999)

0.1 BB1 (1.000) KPW1 (0.999) KPW1 (0.999) BB1 (1.000)

0.3 BB1 (1.000) AW1 (1.000) BB1 (1.000) BB1 (1.000)

0.5 AWW1 (1.000) AW1 (0.999) BB1 (1.000) BB1 (1.000)

0.7 AWW1 (0.999) AW1 (0.999) AWW1 (0.999) AWW1 (0.998)

0.9 AW1 (0.998) AWW1 (1.000) ML (0.999) AWW1 (0.996)

Table A.15: Estimation of ¯3. For each ½ and ¾2 combination, the table entry

is the non-hybridised estimator of ¯3 giving the smallest RMSE for n = 49.

The figure in parentheses is the relative efficiency of BB1.

¾2

True ½ 0.25 0.5 1 2

0.0 KPW2 (0.999) KP2 (0.999) KPW2 (0.999) KPW2 (1.000)

0.1 BB2 (1.000) KPW2 (0.999) KPW2 (1.000) BB2 (1.000)

0.3 BB2 (1.000) BB2 (1.000) BB2 (1.000) BB2 (1.000)

0.5 AWW2 (0.999) AW2 (1.000) BB2 (1.000) AWW2 (1.000)

0.7 AW2 (0.999) AWW2 (0.999) AWW2 (0.999) AWW2 (0.999)

0.9 BB2 (1.000) AW2 (0.999) AWW2 (0.998) AWW2 (0.998)

Table A.16: Estimation of ¯3. For each ½ and ¾2 combination, the table entry

is the hybridised estimator of ¯3 giving the smallest RMSE for n = 49. The

figure in parentheses is the relative efficiency of BB2.
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¾2

True ½ 0.25 0.5 1 2

0.0 AW1* (0.993) AWW1 (0.996) AWW1 (0.994) AWW1 (0.996)

0.1 AW1* (0.993) AWW1 (0.987) AW1* (0.994) AWW1 (0.993)

0.3 AW1* (0.971) AWW1 (0.970) AW1 (0.985) AWW1 (0.977)

0.5 KP1 (0.936) KPW1 (0.935) KP1 (0.943) KPW1 (0.945)

0.7 ML* (0.849) ML* (0.845) ML* (0.853) ML (0.847)

0.9 ML* (0.627) ML* (0.648) ML* (0.630) ML* (0.629)

Table A.17: Estimation of ¾2. For each ½ and ¾2 combination, the table entry

is the non-hybridised estimator of ¾2 giving the smallest RMSE for n = 49.

The figure in parentheses is the relative efficiency of BB1.

¾2

True ½ 0.25 0.5 1 2

0.0 AW2 (0.995) AWW2 (0.998) AWW2 (0.998) AWW2 (0.997)

0.1 AW2* (0.995) AWW2 (0.992) AW2 (0.998) AWW2 (0.995)

0.3 AW2* (0.984) AWW2 (0.985) AW2 (0.988) AWW2 (0.987)

0.5 KP2 (0.953) KPW2 (0.959) KPW2 (0.959) KPW2 (0.963)

0.7 ML* (0.888) ML* (0.889) ML* (0.889) ML (0.892)

0.9 ML* (0.683) ML* (0.712) ML* (0.686) ML* (0.685)

Table A.18: Estimation of ¾2. For each ½ and ¾2 combination, the table entry

is the hybridised estimator of ¾2 giving the smallest RMSE for n = 49. The

figure in parentheses is the relative efficiency of BB2.
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Appendix B

Appendix to Chapter 3

B.1 List of Notations

The list below presents the notations frequently used in Chapter 3 and Ap-

pendix B, most of which are extensions of Lee (2004a)’s notations.

lnLn(µ) = −n

2
ln(2¼)− n

2
ln ¾2 + ln ∣det(Sn(¸, °))∣

− 1

2¾2
(Sn(¸, °)Yn −Xn¯)

′(Sn(¸, °)Yn −Xn¯)

lnLn(¸, °) = −n

2
(ln(2¼) + 1) + ln ∣det(Sn(¸, °))∣ − n

2
ln ¾̂2

n(¸, °)

Sn(¸, °) = In − ¸Wn(°)

Sn = In − ¸0Wn

Gn = WnS
−1
n

Tn = ZnS
−1
n

Cn = AnS
−1
n

Vn = BnS
−1
n
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Zn =
∂Wn

∂°

An =
∂Zn

∂°

Bn =
∂An

∂°

Qn(¸, °) = max¯,¾2E[lnLn(µ)] = −n

2
(ln(2¼) + 1) + ln ∣det(Sn(¸, °))∣ − n

2
ln ¾2∗

n (¸, °)

¾̂2
n(¸, °) =

1

n
[Y ′

nS
′
n(¸, °)MnSn(¸, °)Yn]

¾2∗
n (¸, °) =

1

n
[(¸0 − ¸)2(GnXn¯0)

′Mn(GnXn¯0) + ¾2
0tr(S

−1
n

′S ′
n(¸, °)Sn(¸, °)S

−1
n )]

¾2
n(¸, °) =

¾2
0

n
tr[S−1

n
′S ′

n(¸, °)Sn(¸, °)S
−1
n ]

Mn = In −Xn(X
′
nXn)

−1X ′
n

B.2 List of Lemmas, Theorem and Definition

For convenience, we gather and list the existing Lemmas, Definition and The-

orem that are used frequently in Chapter 3 and Appendix B in this section.

Note that these Lemmas, Definition and Theorem below are written exactly

as the originals appearing in the references.

B.2.1 Lemmas in Lee (2002, 2003, 2004b)

Lee (2002) - Lemma A.2: Suppose that An is a square matrix with its

column sums being uniformly bounded and elements of the n×k matrix Cn are

uniformly bounded. Then, (1/
√
n)C ′

nAnVn = O(1). Furthermore, if the limit

of (1/n)C ′
nAnA

′
nCn exists and it is positive definite, then (1/

√
n)C ′

nAnVn
D→

N(0, ¾2 limn→∞(1/n)C ′
nAnA

′
nCn).

Proof: Let an,j denote the jth column ofAn. It follows that (1/
√
n)C ′

nAnVn

= (1/
√
n)

∑n
j=1 qnjºj where qnj = C ′

nan,j. The first result follows from Cheby-

shev’s inequality because qnj are uniformly bounded and var((1/
√
n)C ′

nAnVn =

(¾2/n)
∑n

j=1 qnjq
′
nj. The second result follows from the Liapounov double
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array CLT and the Cramér-Wold device (Billingsley, 1995, Theorem 27.3

and Theorem 29.4). To check the Liapounov condition, let ® be a nonzero

row vector of constants and Bn = var(®C ′
nAnVn) = ¾2®C ′

nAnA
′
nCn®

′. The

assumptions imply that limn→∞(1/n)B2
n > 0 and there exists a constant

c such that ∣®qnj∣ < c, for all n and j. Hence, the Liapounov condition
∑n

j=1(1/B
3
n)E(∣®qnjºj∣3) ≤ c3E∣º3∣/((1/n)B2

n)
3/2n1/2 → 0 holds. ■

Lee (2003) - Lemma 1: Suppose that all elements of the spatial weights

matrices Wn are nonnegative. If Wn are row-normalized, then (In − ´Wn)
−1

are uniformly bounded in row sums uniformly in ´ in Λ, where Λ is any closed

set in (−1, 1).

Lee (2004b) - Lemma A.6: Suppose that the elements of the sequences of

vectors Pn = (pn1, ⋅ ⋅ ⋅ , pnn)′ and Qn = (qn1, ⋅ ⋅ ⋅ , qnn)′ are uniformly bounded

for all n.

1. If {An} are uniformly bounded in either row or column sums, then

∣Q′
nAnPn∣ = O(n).

2. If the row sums of {An} and {Zn} are uniformly bounded, ∣zi,nAnPn∣ =
O(1) uniformly in i, where zi,n is the ith row of Zn.

Proof: Let constants c1 and c2 such that ∣pni∣ ≤ c1 and ∣qni∣ ≤ c2.

For 1), there exists a constant such that 1
n

∑n
i=1

∑n
j=1 ∣an,ij∣ ≤ c3. Hence,

∣Q′
nAnPn∣ = ∣∑n

i=1

∑n
j=1 an,ijqnipnj∣ ≤ c1c2

∑n
i=1

∑n
j=1 ∣an,ij∣ ≤ nc1c2c3. For

2), let c4 be a constant such that
∑n

j=1 ∣an,ij∣ ≤ c4 for all n and i. It

follows that ∣e′niAnPn∣ = ∣∑n
j=1 an,ijpnj∣ ≤ c1

∑n
j=1 ∣an,ij∣ ≤ c1c4 where eni

is the ith unit column vector. Because {Zn} is uniformly bounded in row

sums,
∑n

j=1 ∣zn,ij∣ ≤ cz for some constant cz. It follows that ∣zi,nAnPn∣ ≤
∑n

j=1 ∣zn,ij∣ ⋅ ∣e′njAnPn∣ ≤ (
∑n

j=1 ∣zn,ij∣)c1c4 ≤ czc1c4. Q.E.D.
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Lee (2004b) - Lemma A.8: Suppose that the elements an,ij of the sequence

of n×n matrices {An}, where An = [an,ij], are O( 1
ℎn
) uniformly in all i and j;

and {Bn} is a sequence of conformable n× n matrices.

1. If {Bn} are uniformly bounded in column sums, the elements of AnBn

have the uniform order O( 1
ℎn
).

2. If {Bn} are uniformly bounded in row sums, the elements of BnAn have

the uniform order O( 1
ℎn
).

For both cases (1) and (2), tr(AnBn) = tr(BnAn) = O( n
ℎn
).

Proof: Consider (1). Let an,ij =
cn,ij

ℎn
. Because an,ij = O( 1

ℎn
) uni-

formly in i and j, there exists a constant c1 so that ∣cn,ij∣ ≤ c1 for all i, j

and n. Because {Bn} is uniformly bounded in column sums, there exists

a constant c2 so that
∑n

k=1 ∣bn,kj∣ ≤ c2 for all n and j. Let ai,n be the

ith row of An and bn,l be the lth column of Bn. It follows that ∣ai,nbn,l∣ ≤
1
ℎn

∑n
j=1 ∣cn,ijbn,jl∣ ≤ c1

ℎn

∑n
j=1 ∣bn,jl∣ ≤ c1c2

ℎn
, for all i and l. Furthermore,

∣tr(AnBn)∣ = ∣∑n
i=1 ai,nbn,i∣ ≤

∑n
i=1 ∣ai,nbn,i∣ ≤ c1c2

n
ℎn
. These prove the re-

sults in (1). The results in (2) follow from (1) because (BnAn)
′ = A′

nB
′
n and

the uniform boundedness in row sums of {Bn} is equivalent to the uniform

boundedness in column sums of {B′
n}. Q.E.D.

Lee (2004b) - Lemma A.11: Let An = [aij] be an n-dimensional square

matrix. Then

1. E(V ′
nAnVn) = ¾2tr(An),

2. E(V ′
nAnVn)

2 = (¹4 − 3¾4)
∑n

i=1 a
2
ii + ¾4[tr2(An) + tr(AnA

′
n) + tr(A2

n)],

3. var(V ′
nAnVn) = (¹4 − 3¾4)

∑n
i=1 a

2
ii + ¾4[tr(AnA

′
n) + tr(A2

n)].

In particular, if º’s are normally distributed, then E(V ′
nAnVn)

2 = ¾4[tr2(An)+

tr(AnA
′
n) + tr(A2

n)] and var(V ′
nAnVn) = ¾4[tr(AnA

′
n) + tr(A2

n)].
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Proof: The result in 1) is trivial. For the second moment,

E(V ′
nAnVn)

2 = E(
n∑

i=1

n∑
j=1

aijºiºj)
2 = E(

n∑
i=1

n∑
j=1

n∑

k=1

n∑

l=1

aijaklºiºjºkºl).

Because º’s are i.i.d. with zero mean, E(ºiºjºkºl) will not vanish only when

i = j = k = l, (i = j) ∕= (k = l), (i = k) ∕= (j = l), and (i = l) ∕= (j = k).

Therefore,

E(V ′
nAnVn)

2 =
n∑

i=1

a2iiE(º4
i ) +

n∑
i=1

n∑

j ∕=i

aiiajjE(º2
i º

2
j ) +

n∑
i=1

n∑

j ∕=i

a2ijE(º2
i º

2
j )

+
n∑

i=1

n∑

j ∕=i

aijajiE(º2
i º

2
j )

= (¹4 − 3¾4)
n∑

i=1

a2ii + ¾4[
n∑

i=1

n∑
j=1

aiiajj +
n∑

i=1

n∑
j=1

a2ij +
n∑

i=1

n∑
j=1

aijaji]

= (¹4 − 3¾4)
n∑

i=1

a2ii + ¾4[tr2(An) + tr(AnA
′
n) + tr(A2

n)]

The result 3) follows from var(V ′
nAnVn) = E(V ′

nAnVn)
2 − E2(V ′

nAnVn) and

those of 1) and 2). When º’s are normally distributed, ¹4 = 3¾2. Q.E.D.

Lee (2004b) - Lemma A.12: Suppose that {An} are uniformly bounded

in either row and column sums, and the elements an,ij of An are O( 1
ℎn
) uni-

formly in all i and j. Then, E(V ′
nAnVn) = O( n

ℎn
), var(V ′

nAnVn) = O( n
ℎn
) and

V ′
nAnVn = Op(

n
ℎn
). Furthermore, if limn→∞ ℎn

n
= 0, ℎn

n
V ′
nAnVn − ℎn

n
E(V ′

nAnVn)

= op(1).

Proof: E(V ′
nAnVn) = ¾2tr(An) = O( n

ℎn
). From Lemma A.11, the variance

of V ′
nAnVn is var(V ′

nAnVn) = (¹4 − 3¾4)
∑n

i=1 a
2
n,ii + ¾4[tr(AnA

′
n) + tr(A2

n)].

Lemma A.8 implies that tr(A2
n) and tr(AnA

′
n) are O( n

ℎn
). As

∑n
i=1 a

2
n,ii ≤

tr(AnA
′
n), it follows that

∑n
i=1 a

2
n,ii = O( n

ℎn
). Hence, var(V ′

nAnVn) = O( n
ℎn
).

As E((V ′
nAnVn)

2) = var(V ′
nAnVn) + E2(V ′

nAnVn) = O(( n
ℎn
)2), the generalized

Chebyshev inequality implies that P (ℎn

n
∣V ′

nAnVn∣ ≥ M) ≤ 1
M2 (

ℎn

n
)2E((V ′

nAnVn)
2)

= 1
M2O(1) and, hence, ℎn

n
V ′
nAnVn = Op(1).
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Finally, because var(ℎn

n
V ′
nAnVn) = O(ℎn

n
) = o(1) when limn→∞ ℎn

n
= 0, the

Chebyshev inequality implies that ℎn

n
V ′
nAnVn− ℎn

n
E(V ′

nAnVn) = op(1). Q.E.D.

B.2.2 Definition in White (1996)

Definition 3.3 (Identifiable Uniqueness): Let Q̄n : Θ → ℜ̄ be continuous

on Θ, a compact subset of ℜp, p ∈ ℵ, and let Θn be a non-empty compact

subset of Θ, n = 1, 2, . . . . Suppose that Q̄n(µ) has a maximum on Θn at µ∗n,

n = 1, 2, . . . . Let sn(") be an open sphere in ℜp centered at µ∗n with fixed radius

" > 0. For each n = 1, 2, . . . define the neighborhood ´n(") = sn(") ∩Θn with

compact complement ´cn(") in Θn. The sequence of maximizers µ∗ ≡ {µ∗n} is

said to be identifiably unique on {Θn} if either for all " > 0 and all n´cn(") is

empty, or for all " > 0

lim
n→∞

sup[ max
µ∈´cn(")

Q̄n(µ)− Q̄n(µ
∗
n)] < 0.

□

B.2.3 Theorem in White (1996)

Theorem 3.4: Let (Ω, F, P ) be a complete probability space, let Θ be a

compact subset of ℜp, p ∈ ℵ and let {Θn} be a sequence of compact subset

of Θ. Let {Qn} be a sequence of random functions continuous on Θ a.s. - P

and let µ̂n = argmaxΘnQn(⋅, µ) a.s. - P. If Qn(⋅, µ) − Q̄n(µ) → 0 as n → ∞
a.s. - P (prob-P) uniformly on Θ and if {Q̄n : Θ → ℜ̄} has identifiably unique

maximizers µ∗ on {Θn} then µ̂n − µ∗n → 0 as n → ∞ a.s. - P (prob - P). □

B.3 Useful Properties

In this section, we first state some properties that we frequently use in our

proofs. We show the properties of ln ∣det(Sn(¸, °))∣, ¾2
n(¸, °), Qn(¸, °), and an
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auxiliary model Qp,n(¸, °). Detailed proofs of the identifiable uniqueness, con-

sistency and normality of the QML estimator µ̂n are shown in the subsequent

sections. The proofs are carried out following the approach in Lee (2004a).

Note that, for notational convenience, we omit the parameters in the paren-

theses when the parameters are at their true values. For example, we write

Wn for Wn(°0).

B.3.1 Properties of ln ∣det(Sn(¸, °))∣
Let ¸1 and ¸2 be in Λ and °1 and °2 in Γ, and all of them belong to Λ ⊗ Γ.

By mean value theorem,

1

n
(ln ∣det(Sn(¸2, °2))∣ − ln ∣det(Sn(¸1, °1))∣)

= − 1

n
tr(Wn(°̄n)S

−1
n (¯̧n, °̄n))[¸2 − ¸1]−

¯̧
n

n
tr(Zn(°̄n)S

−1
n (¯̧n, °̄n))[°2 − °1]

= − 1

n
tr(Gn(¯̧n, °̄n))[¸2 − ¸1]−

¯̧
n

n
tr(Tn(¯̧n, °̄n))[°2 − °1] (B.3.1)

where ¯̧n lies between ¸1 and ¸2, and °̄n lies between °1 and °2. Note that Gn =

WnS
−1
n and Tn = ZnS

−1
n . As {S−1

n (¸, °)} is uniformly bounded in either row or

column sums uniformly in ¸ and ° by Assumption 9, and elements ofWn(°) are

assumed to be O( 1
ℎn
) by Assumption 5, then Lemma A.8 in Lee (2004b) implies

that 1
n
tr(Gn(¯̧, °̄)) = O( 1

ℎn
). See Appendix B.2 for more detail of Lemmas

frequently used in this Appendix. The term Zn(°̄n) on the right hand side of

(B.3.1), which is the first-order derivative of Wn(°) with respect to ° at °̄n,

is continuous and uniformly bounded by Assumption 5, then
¯̧
n

n
tr(Tn(¯̧, °̄)) =

O( 1
ℎn
) as well. Hence, 1

n
ln ∣det(Sn(¸, °))∣ is uniformly equicontinuous in ¸

and ° in Λ ⊗ Γ. Because Λ ⊗ Γ is a compact set, 1
n
(ln ∣det(Sn(¸2, °2))∣ −

ln ∣det(Sn(¸1, °1))∣) = O(1) uniformly in ¸1 and ¸2, and °1 and °2 in Λ⊗ Γ.
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B.3.2 Auxiliary Model Qp,n(¸, °)

We describe the following auxiliary model as follows

Qp,n(¸, °) = −n

2
(ln 2¼ + 1)− n

2
ln¾2

n(¸, °) + ln ∣det(Sn(¸, °))∣ (B.3.2)

and the log likelihood of a SARmodel Yn = ¸WnYn+"n, where "n ∼ N(0, ¾2
0In),

is as follows

lnLp,n(¸, °, ¾
2) =− n

2
ln(2¼)− n

2
ln¾2 + ln ∣det(Sn(¸, °))∣

− 1

2¾2
Y ′
nS

′
n(¸, °)Sn(¸, °)Yn.

Note that Qp,n(¸, °) = max¾2 E[lnLp,n(¸, °, ¾
2)] and, by Jensen inequality, we

have Qp,n(¸, °) ≤ E[lnLp,n(¸0, °0, ¾
2
0)] = Qp,n for all ¸ and °, which implies

that 1
n
[Qp,n(¸, °)−Qp,n] ≤ 0 for all ¸ and °.

B.3.3 Properties of ¾2
n(¸, °)

For ¾2
n(¸, °), note that

¾2
n(¸, °) =

¾2
0

n
tr(S−1

n
′S ′

n(¸, °)Sn(¸, °)S
−1
n )

= ¾2
0[1 + 2(¸0 − ¸)

1

n
tr(Gn) + (¸0 − ¸)2

1

n
tr(GnG

′
n)]. (B.3.3)

We show that ¾2
n(¸, °) is uniformly bounded away from zero on Λ⊗Γ. We prove

this by a counter argument. If ¾2
n(¸, °) were not uniformly bounded away from

zero on Λ⊗ Γ, then there would exist sequences {¸n} and {°n} in Λ⊗ Γ such

that limn→∞ ¾2
n(¸n, °n) = 0. As established earlier, 1

n
[Qp,n(¸, °) − Qp,n] ≤ 0

for all ¸ and °. This means that

−1

2
ln¾2

n(¸, °) ≤ −1

2
ln ¾2

0 +
1

n
(ln ∣det(Sn)∣ − ln ∣det(Sn(¸, °))∣). (B.3.4)

We have shown that 1
n
(ln ∣det(Sn)∣ − ln ∣det(Sn(¸, °))∣) = O(1) and it implies

that−1
2
ln¾2

n(¸n, °n) is bounded from above. This contradicts limn→∞ ¾2
n(¸n, °n)

= 0, which implies that − limn→∞ ln¾2
n(¸n, °n) = ∞. Therefore, ¾2

n(¸, °) must

be bounded away from zero uniformly on Λ⊗ Γ.
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B.3.4 Properties of Qn(¸, °)

Finally, we show that 1
n
Qn(¸, °) is uniformly equicontinuous on Λ ⊗ Γ. Note

that 1
n
Qn(¸, °) = −1

2
(ln(2¼) + 1)− 1

2
ln¾∗2

n (¸, °) + 1
n
ln ∣det(Sn(¸, °))∣. Substi-

tute (B.3.3) into ¾∗2
n , we have

¾∗2
n (¸, °) =

1

n
[(¸0 − ¸)2(GnXn¯0)

′Mn(GnXn¯0)

+ ¾2
0[1 + 2(¸0 − ¸)

1

n
tr(Gn) + (¸0 − ¸)2

1

n
tr(GnG

′
n)]

=
1

n
[(¸0 − ¸)2(GnXn¯0)

′Mn(GnXn¯0) + ¾2
n(¸, °)]

It is quadratic in ¸ and its coefficients 1
n
(GnXn¯0)

′Mn(GnXn¯0),
1
n
tr(Gn),

and 1
n
tr(GnG

′
n) are bounded by Lemma A.6 and Lemma A.8 in Lee (2004b),

so ¾∗2
n (¸, °) is uniformly continuous on Λ ⊗ Γ. The uniform continuity of

ln¾∗2
n (¸, °) on Λ⊗Γ follows because 1

¾∗2
n (¸,°)

is uniformly bounded on Λ⊗Γ. It

will also be shown later that ¾∗2
n (¸, °) is uniformly bounded away from zero.

Therefore, 1
n
Qn(¸, °) is uniformly equicontinuous on Λ⊗ Γ.

In the following sections, we show detailed proofs of the identifiable unique-

ness, consistency and asymptotic normality of µ̂n.

B.4 Proof of Theorem 1: Identifiable Unique-

ness

We show that

lim
n→∞

sup[ max
µ∈´cn(º)

{ 1
n
Qn(¸, °)− 1

n
Qn}] < 0 (B.4.1)

where ´cn(º) is the compact complement of the neighbourhood ´n(º) = sn(º)∩
Θn, with sn(º) an open sphere centred at µ0 with fixed radius º > 0. Note that,

for notational convenience, we omit the parameters in the parentheses when

the functions are at the true values. For example, we write Qn for Qn(¸0, °0).
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We have

1

n
Qn(¸, °)− 1

n
Qn =

1

n
(ln ∣det(Sn(¸, °))∣−ln ∣det(Sn)∣)− 1

2
(ln ¾∗2

n (¸, °)−ln¾∗2
n ).

Note that ¾∗2
n (¸0, °0) =

¾2
0

n
tr[S−1

n
′Sn(¸0, °0)

′Sn(¸0, °0)S
−1
n ] =

¾2
0

n
tr[S−1

n
′S ′

nSnS
−1
n ]

= ¾2
0. Add

1
2
ln¾2

n(¸, °) to both sides of the above equation and rearrange the

terms, then it becomes

1

n
Qn(¸, °)− 1

n
Qn =

1

n
(ln ∣det(Sn(¸, °))∣ − ln ∣det(Sn)∣)− 1

2
(ln¾2

n(¸, °)− ln¾2
n)

− 1

2
(ln ¾∗2

n (¸, °)− ln¾2
n(¸, °))

=
1

n
(Qp,n(¸, °)−Qp,n)− 1

2
(ln ¾∗2

n (¸, °)− ln¾2
n(¸, °))

We prove this theorem by a counter example. Suppose that the condition

of identifiable uniqueness would not hold, then there would exist º > 0 and

sequences {¸n} and {°n} in ´cn(º) such that limn→∞( 1
n
Qn(¸n, °n)− 1

n
Qn) = 0.

As ´cn(º) is the compact complement set of ´n(º), there exist convergent

subsequences {¸nm} of {¸n}, and {°nm} of {°n}. Let ¸+ and °+ denote the

limit points of {¸nm} and {°nm} in Λ⊗ Γ, respectively. Because 1
n
Qn(¸, °) is

uniformly equicontinuous in ¸ and °, then limnm→∞( 1
nm

Qnm(¸+, °+)− 1
nm

Qnm)

= 0. However, because −(ln¾∗2
n (¸, °) − ln¾2

n(¸, °)) ≤ 0 and 1
n
(Qp,n(¸, °) −

Qp,n) ≤ 0, which lead to limn→∞( 1
n
Qn(¸, °) − 1

n
Qn) ≤ 0, this limit can

be equal to zero only when limnm→∞( 1
nm

Qp,nm(¸+, °+) − 1
nm

Qp,nm) = 0 and

limnm→∞(¾∗2
nm

(¸+, °+) − ¾2
nm

(¸+, °+)) = 0. However, limnm→∞(¾∗2
nm

(¸+, °+) −
¾2
nm

(¸+, °+)) = 0, contradicts Assumption 10 that guarantees that

limn→∞ 1
n
(GnXn¯0)

′Mn(GnXn¯0) exists and is positive. Hence, the identifiable

uniqueness must hold. Q.E.D.

B.5 Proof of Theorem 2: Consistency

The consistency of µ̂n follows from the identifiable uniqueness and uniform

convergence (White 1996, Theorem 3.4). We have proved that µ0 is uniquely
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identifiable, so we now need to prove that 1
n
lnLn(¸, °)− 1

n
Qn(¸, °) converges

to zero in probability uniformly on Λ ⊗ Γ. In other words, we show that

sup(¸,°)∈Λ⊗Γ∣ 1n lnLn(¸, °) − 1
n
Qn(¸, °)∣ = op(1). The first step is to show that

¾̂2
n(¸, °)−¾∗2

n (¸, °) = op(1) uniformly on Λ⊗Γ, then we show that ∣ ln ¾̂2
n(¸, °)−

ln¾∗2
n (¸, °)∣ = op(1).

Clearly, 1
n
lnLn(¸, °) − 1

n
Qn(¸, °) = −1

2
(ln ¾̂2

n(¸, °) − ln¾∗2
n (¸, °)), and we

show that ¾̂2
n(¸, °)− ¾∗2

n (¸, °) = op(1) uniformly on Λ⊗ Γ. Recall that

¾∗2
n (¸, °) = (¸0−¸)2

1

n
(GnXn¯0)

′Mn(GnXn¯0)+
¾2
0

n
tr(S−1

n S ′
n(¸, °)Sn(¸, °)S

−1
n )

and

¾̂2
n(¸, °) =

1

n
Y ′
nS

′
n(¸, °)MnSn(¸, °)Yn =

1

n
(MnSn(¸, °)Yn)

′(MnSn(¸, °)Yn)

Because MnSn(¸, °)Yn = (¸0 − ¸)MnGnXn¯0 +MnSn(¸, °)S
−1
n "n, then

¾̂2
n(¸, °) = (¸0−¸)2

1

n
(GnXn¯0)

′Mn(GnXn¯0)+2(¸0−¸)H1n(¸, °)+H2n(¸, °)

where

H1n(¸, °) =
1

n
(GnXn¯0)

′MnSn(¸, °)S
−1
n "n (B.5.1)

and

H2n(¸, °) =
1

n
"′nS

−1
n

′S ′
n(¸, °)MnSn(¸, °)S

−1
n "n. (B.5.2)

Thus,

¾̂2
n(¸, °)−¾∗2

n (¸, °) = 2(¸0−¸)H1n(¸, °)+H2n(¸, °)−¾2
0

n
tr(S−1

n
′S ′

n(¸, °)Sn(¸, °)S
−1
n )

and we show that the terms on the right hand side are all op(1). We split

(B.5.1) as follows

H1n(¸, °) =
1

n
(GnXn¯0)

′Mn"n + (¸0 − ¸)
1

n
(GnXn¯0)

′MnGn"n (B.5.3)

and by Lemma A.2 in Lee (2002) and linearity of H1n(¸, °) in ¸, we have

H1n(¸, °) = op(1) uniformly in (¸, °) ∈ Λ ⊗ Γ. See Appendix B.2 for more
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detail of Lemmas used in this Appendix. Next,

H2n(¸, °)− ¾2
n(¸, °) =

1

n
"′nS

−1
n

′S ′
n(¸, °)MnSn(¸, °)S

−1"n − ¾2
n(¸, °)

=
1

n
"′nS

−1
n

′S ′
n(¸, °)Sn(¸, °)S

−1"n

− ¾2
0

n
tr(S−1

n
′S ′

n(¸, °)Sn(¸, °)S
−1
n )−H3n(¸, °) (B.5.4)

where H3n(¸, °) =
1
n
"′nS

−1
n

′S ′
n(¸, °)Xn(X

′
nXn)

−1X ′
nSn(¸, °)S

−1
n "n. Note that,

by Lemma A.2 in Lee (2002), we have

1√
n
X ′

nSn(¸, °)S
−1
n "n =

1√
n
X ′

nS
−1
n "n − ¸√

n
X ′

nGn"n = Op(1) (B.5.5)

Therefore,H3n(¸, °) =
1
n
[( 1√

n
X ′

nSn(¸, °)S
−1
n "n)

′(X
′
nXn

n
)−1( 1√

n
X ′

nSn(¸, °)S
−1
n "n)]

= op(1). Finally, by Lemma A.12 in Lee (2004b),

1

n
["′nS

−1
n

′S ′
n(¸, °)Sn(¸, °)S

−1
n "n − ¾2

0tr(S
−1
n

′S ′
n(¸, °)Sn(¸, °)S

−1
n )] = op(1)

(B.5.6)

uniformly in (¸, °) ∈ Λ⊗Γ. Subsequently, we haveH2n(¸, °)−¾2
n(¸, °) = op(1).

We have shown earlier that H1n(¸, °) = op(1), therefore, ¾̂
2
n(¸, °)−¾∗2

n (¸, °) =

op(1) uniformly on Λ⊗ Γ.

Next, we show that ∣ ln ¾̂2
n(¸, °) − ln ¾∗2

n (¸, °)∣ = op(1). Expand the Tay-

lor series, ∣ ln ¾̂2
n(¸, °) − ln ¾∗2

n (¸, °)∣ = ∣¾̂2
n(¸,°)−¾∗2

n (¸,°)∣
¾̃2
n(¸,°)

, where ¾̃2
n(¸, °) lies be-

tween ¾̂2
n(¸, °) and ¾∗2

n (¸, °). We have shown above that ¾2
n(¸, °) is uniformly

bounded away from zero on Λ ⊗ Γ, then ¾∗2
n (¸, °) is also uniformly bounded

away from zero on Λ ⊗ Γ. This is because ¾∗2
n (¸, °) ≥ ¾2

n(¸, °) as ¾
∗2
n (¸, °) =

(¸0 − ¸)2 1
n
(GnXn¯0)

′Mn(GnXn¯0) +
¾2
0

n
tr(S−1

n
′S ′

n(¸, °)Sn(¸, °)S
−1
n ) = (¸0 −

¸)2 1
n
(GnXn¯0)

′Mn(GnXn¯0)+¾2
n(¸, °). Besides, as we have shown that ¾̂2

n(¸, °)

− ¾∗2
n (¸, °) = op(1) uniformly on Λ ⊗ Γ, and ¾∗2

n (¸, °) is uniformly bounded

away from zero on Λ⊗Γ, then so is ¾̂2
n(¸, °). Finally, these yield ∣ ln ¾̂2

n(¸, °)−
ln¾∗2

n (¸, °)∣ = op(1) uniformly on Λ⊗Γ and, hence, sup(¸,°)∈Λ⊗Γ ∣ 1n lnLn(¸, °)−
1
n
Qn(¸, °)∣ = op(1).
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We have proved that the identifiable uniqueness holds and that 1
n
lnLn(¸, °)

− 1
n
Qn(¸, °) converges in probability to zero uniformly on Λ⊗Γ. Consequently,

the consistency of ˆ̧n and °̂n, and thus, µ̂n follow. Q.E.D.

B.6 Proof of Theorem 3: Asymptotic Normal-

ity

To prove the asymptotic normality of the QML estimator µ̂n, we need to show

that Σµ = − limn→∞E( 1
n
∂2 lnLn(µ0)

∂µ∂µ′ ) is nonsingular, 1
n
∂2 lnLn(µ̂n)

∂µ∂µ′ − 1
n
∂2 lnLn(µ0)

∂µ∂µ′
p→

0, and 1
n
∂2 lnLn(µ0)

∂µ∂µ′ − E( 1
n
∂2 lnLn(µ0)

∂µ∂µ′ )
p→ 0.

B.6.1 Nonsingularity of Σµ

First we show that Σµ is nonsingular. Let ® = (®1, ®2, ®3, ®4)
′ be a column

vector of constants such that Σµ® = 0. Here we need to show that ® = 0. From

the first row block of the linear equation system Σµ® = 0 based on (3.5.6), we

have

0 = lim
n→∞

1

¾2
0n

X ′
nXn®1 +

1

¾2
0n

lim
n→∞

X ′
nGnXn¯0®2 + lim

n→∞
¸0

¾2
0n

X ′
n(TnXn¯0)®3

Consequently,

®1 = − lim
n→∞

(X ′
nXn)

−1X ′
n(GnXn¯0)®2 − lim

n→∞
¸0(X

′
nXn)

−1X ′
n(TnXn¯0)®3

(B.6.1)

From the fourth equation of the linear system, we have

0 = lim
n→∞

1

¾2
0n

tr(Gn)®2 + lim
n→∞

¸0

¾2
0n

tr(Tn)®3 + lim
n→∞

1

2¾4
0

®4

Rearrange the terms and solve for ®4, we get

®4 = − lim
n→∞

2¾2
0

n
tr(Gn)®2 − lim

n→∞
2¸0¾

2
0

n
tr(Tn)®3 (B.6.2)
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From the second equation of the linear system, we have

0 = lim
n→∞

1

¾2
0n

(GnXn¯0)
′Xn®1 + lim

n→∞
[
1

¾2
0n

(GnXn¯0)
′(GnXn¯0) +

1

n
tr(GS

nGn)]®2

+ lim
n→∞

¸0

¾2
0n

[(GnXn¯0)
′(TnXn¯0) + ¾2

0tr(G
S
nTn)]®3 + lim

n→∞
1

¾2
0n

tr(Gn)®4

for ¸0 ∕= 0 and GS
n = Gn +G′

n. Substitute ®1 in (B.6.1) and ®4 in (B.6.2) into

the above equation, we get

0 =
[
lim
n→∞

1

¾2
0n

(GnXn¯0)
′Mn(GnXn¯0) + lim

n→∞
1

n
[tr(GS

nGn)− 2

n
tr2(Gn)]

]
®2

+
[
lim
n→∞

¸0

¾2
0n

(GnXn¯0)
′Mn(TnXn¯0) + lim

n→∞
¸0

n
[tr(GS

nTn)− 2

n
tr(Gn)tr(Tn)]

]
®3

(B.6.3)

Rearrange the terms and solve for ®2

®2 =−
[
lim
n→∞

1

¾2
0n

(GnXn¯0)
′Mn(GnXn¯0) + lim

n→∞
1

n
[tr(GS

nGn)− 2

n
tr2(Gn)]

]−1

×
[
lim
n→∞

¸0

¾2
0n

(GnXn¯0)
′Mn(TnXn¯0) + lim

n→∞
¸0

n
[tr(GS

nTn)− 2

n
tr(Gn)tr(Tn)]

]
®3

(B.6.4)

Note that the inverse in equation (B.6.4) above exists as Assumption 10 im-

plies that limn→∞ 1
n
(GnXn¯0)

′Mn(GnXn¯0) is positive and that [tr(GS
nGn) −

2
n
tr2(Gn)] =

1
2
tr[(Ψ′

n + Ψn)(Ψ
′
n + Ψn)

′] ≥ 0, where Ψn = Gn − (tr(Gn)/n)In

(Lee, 2004a).

From the third equation of the linear system, we have

0 = lim
n→∞

¸0

¾2
0n

(TnXn¯0)
′Xn®1 + lim

n→∞
¸0

¾2
0n

[(TnXn¯0)
′(GnXn¯0) + ¾2

0tr(T
S
n Gn)]®2

+ lim
n→∞

¸2
0

¾2
0n

[(TnXn¯0)
′(TnXn¯0) + ¾2

0tr(T
S
n Tn)]®3 + lim

n→∞
¸0

¾2
0n

tr(Tn)®4

where T S
n = Tn + T ′

n. Substitute ®1 and ®4 into the above equation, we get

0 =
[
lim
n→∞

¸0

¾2
0n

(TnXn¯0)
′Mn(GnXn¯0) + lim

n→∞
¸0

n
[tr(T S

n Gn)− 2

n
tr(Tn)tr(Gn)]

]
®2

+
[
lim
n→∞

¸2
0

¾2
0n

(TnXn¯0)
′Mn(TnXn¯0) + lim

n→∞
¸2
0

n
[tr(T S

n Tn)− 2

n
tr2(Tn)]

]
®3
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Rearrange the terms and solve for ®2

®2 =−
[
lim
n→∞

¸0

¾2
0n

(TnXn¯0)
′Mn(GnXn¯0) + lim

n→∞
¸0

n
[tr(T S

n Gn)− 2

n
tr(Tn)tr(Gn)]

]−1

×
[
lim
n→∞

¸2
0

¾2
0n

(TnXn¯0)
′Mn(TnXn¯0) + lim

n→∞
¸2
0

n
[tr(T S

n Tn)− 2

n
tr2(Tn)]

]
®3

(B.6.5)

The inverse in equation (B.6.5) above exists for ¸0 ∕= 0 as Assumption 10

implies that limn→∞ 1
n
(TnXn¯0)

′Mn(GnXn¯0) exists. If this limit is positive,

then the sum of the terms in the inverse will exist and be positive whereas if

this limit is negative, then the sum of the terms in the inverse will exist and

be either negative or positive. Finally, combine equations (B.6.4) with (B.6.5),

we get

0 =

{[
lim
n→∞

1

¾2
0n

(GnXn¯0)
′Mn(GnXn¯0) + lim

n→∞
1

n
[tr(GS

nGn)− 2

n
tr2(Gn)]

]−1

×
[
lim
n→∞

¸0

¾2
0n

(GnXn¯0)
′Mn(TnXn¯0) + lim

n→∞
¸0

n
[tr(GS

nTn)− 2

n
tr(Gn)tr(Tn)]

]

−
[
lim
n→∞

¸0

¾2
0n

(TnXn¯0)
′Mn(GnXn¯0) + lim

n→∞
¸0

n
[tr(T S

n Gn)− 2

n
tr(Tn)tr(Gn)]

]−1

×
[
lim
n→∞

¸2
0

¾2
0n

(TnXn¯0)
′Mn(TnXn¯0) + lim

n→∞
¸2
0

n
[tr(T S

n Tn)− 2

n
tr2(Tn)]

]}
®3

(B.6.6)

We show that the products of the above equation are nonzero. First of

all, Assumption 10 implies that limn→∞ 1
n
(TnXn¯0)

′Mn(GnXn¯0) exists, and

limn→∞ 1
n
(GnXn¯0)

′Mn(GnXn¯0) and limn→∞ 1
n
(TnXn¯0)

′Mn(TnXn¯0) are pos-

itive. As stated earlier, because [tr(GS
nGn)− 2

n
tr2(Gn)] =

1
2
tr[(Ψ′

n +Ψn)(Ψ
′
n +

Ψn)
′] ≥ 0, then the first and fourth lines of equation (B.6.7) above are positive

while the second and third lines exist and can be either positive or negative.

Next, as the limits above are scalars, rearrange the terms to eliminate the
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inverses as follows.

0 =

{[
lim
n→∞

¸0

¾2
0n

(GnXn¯0)
′Mn(TnXn¯0) + lim

n→∞
¸0

n
[tr(GS

nTn)− 2

n
tr(Gn)tr(Tn)]

]

×
[
lim
n→∞

¸0

¾2
0n

(TnXn¯0)
′Mn(GnXn¯0) + lim

n→∞
¸0

n
[tr(T S

n Gn)− 2

n
tr(Tn)tr(Gn)]

]

−
[
lim
n→∞

1

¾2
0n

(GnXn¯0)
′Mn(GnXn¯0) + lim

n→∞
1

n
[tr(GS

nGn)− 2

n
tr2(Gn)]

]

×
[
lim
n→∞

¸2
0

¾2
0n

(TnXn¯0)
′Mn(TnXn¯0) + lim

n→∞
¸2
0

n
[tr(T S

n Tn)− 2

n
tr2(Tn)]

]}
®3

(B.6.7)

Recall that Gn = WnS
−1
n and Tn = ZnS

−1
n , where Zn is the first order

derivative of Wn with respect to ° and Zn ∕= Wn, the product of the first two

lines is not equal to the product of the third and fourth lines. Thus, ®3 must

be zero. This leads to ®2 = 0 and, consequently, ® = 0 as well.

B.6.2 1
n
∂2 lnLn(µ̂n)

∂µ∂µ′ − 1
n
∂2 lnLn(µ0)

∂µ∂µ′
p→ 0

In this subsection we show that 1
n
∂2 lnLn(µ̂n)

∂µ∂µ′ − 1
n
∂2 lnLn(µ0)

∂µ∂µ′ converges in probabil-

ity to zero. In other words, we show that differences between the second-order

derivatives of the log-likelihood function at µ̂n and µ0 with respect to each pa-

rameter converge in probability to zero. The second-order derivatives, which

are assumed to exist and be continuous in the neighbourhood of µ0, for each

parameter are as follows.

∂2 lnLn(µ)

∂¯∂¯′ = − 1

¾2
X ′

nXn, (B.6.8)

∂2 lnLn(µ)

∂¯∂¸
= − 1

¾2
X ′

nWn(°)Yn, (B.6.9)

∂2 lnLn(µ)

∂¯∂°
= − ¸

¾2
X ′

nZn(°)Yn, (B.6.10)

∂2 lnLn(µ)

∂¯∂¾2
= − 1

¾4
X ′

n"n(±), (B.6.11)

∂2 lnLn(µ)

∂¸2
= −tr(G2

n(¸, °))−
1

¾2
Y ′
nW

′
n(°)Wn(°)Yn, (B.6.12)
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∂2 lnLn(µ)

∂¸∂°
=− tr(Tn(¸, °))− ¸tr(Gn(¸, °)Tn(¸, °))

− ¸

¾2
Y ′
nZ

′
n(°)Wn(°)Yn, (B.6.13)

∂2 lnLn(µ)

∂¸∂¾2
= − 1

¾4
Y ′
nW

′
n(°)"n(±), (B.6.14)

∂2 lnLn(µ)

∂°2
=− ¸tr(Cn(¸, °))− ¸2tr(T 2

n(¸, °))

− ¸2

¾2
Y ′
nZ

′
n(°)Zn(°)Yn, (B.6.15)

∂2 lnLn(µ)

∂°∂¾2
= − ¸

¾4
Y ′
nZ

′
n(°)"n(±), (B.6.16)

∂2 lnLn(µ)

∂(¾2)2
=

n

2¾4
− 1

¾6
"′n(±)"n(±) (B.6.17)

We now show that the differences between each of the above derivatives at

µ̂n and their counterparts at µ0 converge in probability to zero. First, as

1
n
X ′

nXn = O(1) and µ̂n
p→ µ0, the difference between (B.6.8) at µ̂n and its

counterpart at µ0 becomes

1

n

∂2 lnLn(µ̂n)

∂¯∂¯′ − 1

n

∂2 lnLn(µ0)

∂¯∂¯′ = (
1

¾2
0

− 1

¾̂2
n

)
X ′

nXn

n
= op(1).

Next, the difference between (B.6.9) at µ̂n and at µ0 is

1

n

∂2 lnLn(µ̂n)

∂¯∂¸
− 1

n

∂2 lnLn(µ0)

∂¯∂¸
=

1

¾2
0

X ′
nWnYn

n
− 1

¾̂2
n

X ′
nWn(°̂n)Yn

n
(B.6.18)

To show that 1
n
X ′

nWn(°̂n)Yn
p→ 1

n
X ′

nWnYn, we use the mean value theorem for

vector-valued function. Then, for °̄n that lies between °̂n and °0, we have
∣∣∣
∣∣∣X

′
nWn(°̂n)Yn

n
− X ′

nWnYn

n

∣∣∣
∣∣∣ ≤ sup

°∈Γ

∣∣∣
∣∣∣X

′
nZn(°̄n)Yn

n

∣∣∣
∣∣∣∣°̂n − °0∣ (B.6.19)

where Zn(°) is the first-order derivative of Wn(°) and ∣∣ ⋅ ∣∣ is a matrix norm.

As 1
n
X ′

nZn(°̄n)Yn = Op(1) and °̂n
p→ °0,

∣∣∣
∣∣∣X′

nWn(°̂n)Yn

n
− X′

nWnYn

n

∣∣∣
∣∣∣ p→ 0. This

implies that 1
n
X ′

nWn(°̂n)Yn
p→ 1

n
X ′

nWnYn. Then, (B.6.18) above becomes

1

n

∂2 lnLn(µ̂)

∂¯∂¸
− 1

n

∂2 lnLn(µ0)

∂¯∂¸
=

1

¾2
0

X ′
nWnYn

n
− 1

¾̂2
n

X ′
nWnYn

n
+ op(1)

= (
1

¾2
0

− 1

¾̂2
n

)
X ′

nWnYn

n
+ op(1) = op(1).
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Next, for (B.6.10), we first show that

∣∣∣
∣∣∣X

′
nZn(°̂n)Yn

n
− X ′

nZnYn

n

∣∣∣
∣∣∣ ≤ sup

°∈Γ

∣∣∣
∣∣∣X

′
nAn(°̄n)Yn

n

∣∣∣
∣∣∣∣°̂n − °0∣ = op(1) (B.6.20)

where An(°) =
∂Zn(°)

∂°
and 1

n
X ′

nAn(°̄n)Yn = Op(1). Therefore,

1

n

∂2 lnLn(µ̂n)

∂¯∂°
− 1

n

∂2 lnLn(µ0)

∂¯∂°
=

¸0

¾2
0

X ′
nZnYn

n
−

ˆ̧
n

¾̂2
n

X ′
nZn(°̂n)Yn

n

= (
¸0

¾2
0

−
ˆ̧
n

¾̂2
n

)
X ′

nZnYn

n
+ op(1) = op(1).

For the above equation, note that as ˆ̧
n

p→ ¸0 and ¾̂2
n

p→ ¾2
0, the continuous

mapping theorem implies that
ˆ̧
n

¾̂2
n

p→ ¸0

¾2
0
, provided that ¾2

0 and ¾̂2
n are nonzero.

Further, for (B.6.11), we first look at the following equation.

"n(±n) = Yn−Xn¯n−¸nWn(°n)Yn = Xn(¯0−¯n)+[¸0Wn−¸nWn(°n)]Yn+"n,

where ±n = (¯′
n, ¸n, °n)

′. Substitute this equation into (B.6.11) and as we have

shown in (B.6.19) that 1
n
X ′

nWn(°̂n)Yn
p→ 1

n
X ′

nWnYn, the difference of (B.6.11)

evaluated at µ̂n and µ0 becomes

1

n

∂2 lnLn(µ̂n)

∂¯∂¾2
− 1

n

∂2 lnLn(µ0)

∂¯∂¾2

= (
1

¾4
0

− 1

¾̂4
n

)
X ′

n"n
n

+
X ′

nXn

¾̂4
nn

( ˆ̄n − ¯0) +
1

¾̂4
nn

[ˆ̧nX
′
nWn(°̂n)Yn − ¸0X

′
nWnYn]

= (
1

¾4
0

− 1

¾̂4
n

)
X ′

n"n
n

+
X ′

nXn

¾̂4
nn

( ˆ̄n − ¯0) + (ˆ̧n − ¸0)
X ′

nWnYn

¾̂4
nn

+ op(1) = op(1)

for µ̂n
p→ µ0. Next, for (B.6.14), we have

1

n

∂2 lnLn(µ̂n)

∂¸∂¾2
− 1

n

∂2 lnLn(µ0)

∂¸∂¾2
=

1

¾4
0n

Y ′
nW

′
n"n −

1

¾̂4
nn

Y ′
nW

′
n(°̂n)"n(±̂n)

=
1

n
[
Y ′
nW

′
n"n

¾4
0

− Y ′
nW

′
n(°̂n)"n
¾̂4
n

] +
1

¾̂4
nn

Y ′
nW

′
n(°̂n)Xn( ˆ̄n − ¯0)

+
1

¾̂4
nn

[ˆ̧nY
′
nW

′
n(°̂n)Wn(°̂n)Yn − ¸0Y

′
nW

′
n(°̂n)WnYn].

To show that the difference above converges in probability to zero, we first

apply the mean value theorem and show that 1
n
Y ′
nW

′
n(°̂n)"n

p→ 1
n
Y ′
nW

′
n"n.

∣∣∣
∣∣∣Y

′
nW

′
n(°̂n)"n
n

− Y ′
nW

′
n"n

n

∣∣∣
∣∣∣ ≤ sup

°∈Γ

∣∣∣
∣∣∣Y

′
nZ

′
n(°̄n)"n
n

∣∣∣
∣∣∣∣°̂n − °0∣ = op(1). (B.6.21)
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For °̂n
p→ °0 and °̄n lies between °̂n and °0, (B.6.21) above implies that

1
n
Y ′
nW

′
n(°̂n)"n

p→ 1
n
Y ′
nW

′
n"n. Next, we show that 1

n
Y ′
nW

′
n(°̂n)Wn(°̂n)Yn and

1
n
Y ′
nW

′
n(°̂n)WnYn converge in probability to 1

n
Y ′
nW

′
nWnYn. Apply the mean

value theorem for vector-valued function, we have

∣∣∣
∣∣∣Y

′
nW

′
n(°̂n)Wn(°̂n)Yn

n
− Y ′

nW
′
nWnYn

n

∣∣∣
∣∣∣ (B.6.22)

≤ sup
°∈Γ

∣∣∣
∣∣∣Y

′
nZ

′
n(°̄n)Wn(°̄n)Yn

n
+

Y ′
nW

′
n(°̄n)Zn(°̄n)Yn

n

∣∣∣
∣∣∣∣°̂n − °0∣ = op(1)

and

∣∣∣
∣∣∣Y

′
nW

′
n(°̂n)WnYn

n
− Y ′

nW
′
nWnYn

n

∣∣∣
∣∣∣ ≤ sup

°∈Γ

∣∣∣
∣∣∣Y

′
nZ

′
n(°̄n)WnYn

n

∣∣∣
∣∣∣∣°̂n − °0∣ = op(1),

(B.6.23)

where 1
n
Y ′
nZ

′
n(°̄n)Wn(°̄n)Yn + 1

n
Y ′
nW

′
n(°̄n)Zn(°̄n)Yn and 1

n
Y ′
nZ

′
n(°̄n)WnYn are

Op(
1
ℎn
). Hence, by (B.6.19) and µ̂n

p→ µ0, the difference of (B.6.14) evaluated

at µ̂n and µ0 becomes

1

n

∂2 lnLn(µ̂n)

∂¸∂¾2
− 1

n

∂2 lnLn(µ0)

∂¸∂¾2
= (

1

¾4
0

− 1

¾̂4
n

)
Y ′
nW

′
n"n

n

+
1

¾̂4
nn

Y ′
nW

′
nXn( ˆ̄n − ¯0) + (ˆ̧n − ¸0)

Y ′
nW

′
nWnYn

¾̂4
nn

+ op(1) = op(1).

For (B.6.16), the convergence is as follows

1

n

∂2 lnLn(µ̂n)

∂°∂¾2
− 1

n

∂2 lnLn(µ0)

∂°∂¾2
=

¸0

¾4
0n

Y ′
nZ

′
n"n −

ˆ̧
n

¾̂4
nn

Y ′
nZ

′
n(°̂n)"n(±̂)

= [
¸0

¾4
0

Y ′
nZ

′
n"n
n

−
ˆ̧
n

¾̂4
n

Y ′
nZ

′
n(°̂n)"n
n

]−
ˆ̧
n

¾̂4
n

Y ′
nZ

′
n(°̂n)Xn(¯0 − ˆ̄

n)

− [
ˆ̧
n¸0

¾̂4
n

Y ′
nZ

′
n(°̂n)WnYn

n
−

ˆ̧2
n

¾̂4
n

Y ′
nZ

′
n(°̂n)Wn(°̂n)Yn

n
]

The same intuition as in (B.6.14) above applies here as well. By the mean

value theorem, we first show that 1
n
Y ′
nZ

′
n(°̂n)"n

p→ 1
n
Y ′
nZ

′
n"n.

∣∣∣
∣∣∣Y

′
nZ

′
n(°̂n)"n
n

− Y ′
nZ

′
n"n
n

∣∣∣
∣∣∣ ≤ sup

°∈Γ

∣∣∣
∣∣∣Y

′
nA

′
n(°̄n)"n
n

∣∣∣
∣∣∣∣°̂n − °0∣ = op(1). (B.6.24)
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Then we show that 1
n
Y ′
nZ

′
n(°̂n)Wn(°̂n)Yn and 1

n
Y ′
nZ

′
n(°̂n)WnYn converge in

probability to 1
n
Y ′
nZ

′
nWnYn. By the mean value theorem,

∣∣∣
∣∣∣Y

′
nZ

′
n(°̂n)WnYn

n
− Y ′

nZ
′
nWnYn

n

∣∣∣
∣∣∣ ≤ sup

°∈Γ

∣∣∣
∣∣∣Y

′
nA

′
n(°̄n)WnYn

n

∣∣∣
∣∣∣∣°̂n − °0∣ = op(1)

(B.6.25)

and

∣∣∣
∣∣∣Y

′
nZ

′
n(°̂n)Wn(°̂n)Yn

n
− Y ′

nZ
′
nWnYn

n

∣∣∣
∣∣∣ (B.6.26)

≤ sup
°∈Γ

∣∣∣
∣∣∣Y

′
nA

′
n(°̄n)Wn(°̄n)Yn

n
+

Y ′
nZ

′
n(°̄n)Zn(°̄n)Yn

n

∣∣∣
∣∣∣∣°̂n − °0∣ = op(1),

where 1
n
Y ′
nA

′
n(°̂n)WnYn and 1

n
Y ′
nA

′
n(°̂n)Wn(°̂n)Yn + 1

n
Y ′
nZ

′
n(°̄n)Zn(°̄n)Yn are

Op(
1
ℎn
). Then, with (B.6.24) - (B.6.26) and (B.6.20), the convergence of

(B.6.16) becomes

1

n

∂2 lnLn(µ̂n)

∂°∂¾2
− 1

n

∂2 lnLn(µ0)

∂°∂¾2
= (

¸0

¾4
0

−
ˆ̧
n

¾̂4
n

)
Y ′
nZ

′
n"n
n

−
ˆ̧
n

¾̂4
n

Y ′
nZ

′
nXn(¯0 − ˆ̄

n)

− (ˆ̧n¸0 − ˆ̧2
n)
Y ′
nZ

′
nWnYn

¾̂4
nn

+ op(1) = op(1).

Note that by the continuous mapping theorem and µ̂n
p→ µ0, we have

ˆ̧
n

¾̂4
n

p→ ¸0

¾4
0

and ˆ̧2
n

p→ ˆ̧
n¸0, and the above difference converges in probability to zero.

For (B.6.12), (B.6.13) and (B.6.15), the second-order derivatives involve the

trace of matrices G2
n(¸, °), Tn(¸, °), Gn(¸, °)Tn(¸, °), Cn(¸, °), and T 2

n(¸, °).

Note thatGn(¸, °) = Wn(°)S
−1
n (¸, °), Tn(¸, °) = Zn(°)S

−1
n (¸, °), and Cn(¸, °)

= An(°)S
−1
n (¸, °). The difference between the second-order derivatives in

(B.6.12) at µ̂n and µ0 is

1

n

∂2 lnLn(µ̂n)

∂¸2
− 1

n

∂2 lnLn(µ0)

∂¸2
=

1

¾2
0

Y ′
nW

′
nWnYn

n
− 1

¾̂2
n

Y ′
nW

′
n(°̂n)Wn(°̂n)Yn

n

+
1

n
tr(G2

n)−
1

n
tr(G2

n(
ˆ̧
n, °̂n)).

As we have already shown in (B.6.22), 1
n
Y ′
nW

′
n(°̂n)Wn(°̂n)Yn

p→ 1
n
Y ′
nW

′
nWnYn.

Next, we apply the mean value theorem to show that the differences between

164



these traces at µ̂n and µ0 are op(1). Let ¯̧
n lie between ˆ̧

n and ¸0, and °̄n

between °̂n and °0, respectively. By the mean value theorem,

tr(G2
n(
ˆ̧
n, °̂n))− tr(G2

n) = 2tr(G3
n(
¯̧
n, °̄n))[ˆ̧n − ¸0]

+ 2tr(Gn(¯̧n, °̄n)Tn(¯̧n, °̄n) + ¯̧
nG

2
n(
¯̧
n, °̄n)Tn(¯̧n, °̄n))[°̂n − °0].

As Gn(¯̧n, °̄n) is uniformly bounded in both row and column sums uniformly in

a neighbourhood of ¸0 and °0 by Assumption 8, then tr(G3
n(
¯̧
n, °̄n)) = O( n

ℎn
).

Further, Lemma A.8 in Lee (2004b) implies that tr(Gn(¯̧n, °̄n)Tn(¯̧n, °̄n) =

O( n
ℎn
) and tr(G2

n(
¯̧
n, °̄n)Tn(¯̧n, °̄n)) = O( n

ℎn
). Since ˆ̧

n
p→ ¸0 and °̂n

p→ °0, all

trace terms on the right hand side of the above equation become op(1). Then,

the difference of the second-order derivatives in (B.6.12) becomes

1

n

∂2 lnLn(µ̂n)

∂¸2
− 1

n

∂2 lnLn(µ0)

∂¸2
= (

1

¾2
0

− 1

¾̂2
n

)
Y ′
nW

′
nWnYn

n
+ op(1) = op(1).

For (B.6.13), the same technique applies. By mean value theorem,

tr(Tn(ˆ̧n, °̂n))− tr(Tn) = tr(Tn(¯̧n, °̄n)Gn(¯̧n, °̄n))[ˆ̧n − ¸0]

+ tr(Cn(¯̧n, °̄n) + ¯̧
nT

2
n(
¯̧
n, °̄n))[°̂n − °0]

and

tr(ˆ̧nGn(ˆ̧n, °̂n)Tn(ˆ̧n, °̂n))− tr(¸0GnTn) = tr(Gn(¯̧n, °̄n)Tn(¯̧n, °̄n)

+ 2¯̧nG
2
n(
¯̧
n, °̄n)Tn(¯̧n, °̄n))[ˆ̧n − ¸0] + ¯̧

ntr(T
2
n(
¯̧
n, °̄n)

+ 2¯̧nGn(¯̧n, °̄n)T
2
n(
¯̧
n, °̄n) +Gn(¯̧n, °̄n)Cn(¯̧n, °̄n))[°̂n − °0].

Hence, the convergence of (B.6.13) becomes

1

n

∂2 lnLn(µ̂n)

∂¸∂°
− 1

n

∂2 lnLn(µ0)

∂¸∂°
=

¸0

¾2
0

Y ′
nZ

′
nWnYn

n
−

ˆ̧
n

¾̂2
n

Y ′
nZ

′
n(°̂n)Wn(°̂n)Yn

n

− 1

n
[tr(Tn(¯̧n, °̄n)Gn(¯̧n, °̄n))(ˆ̧n − ¸0) + tr(Cn(¯̧n, °̄n) + ¯̧

nT
2
n(
¯̧
n, °̄n))(°̂n − °0)]

− 1

n
[tr(Gn(¯̧n, °̄n)Tn(¯̧n, °̄n) + 2¯̧nG

2
n(
¯̧
n, °̄n)Tn(¯̧n, °̄n))(ˆ̧n − ¸0)

+ ¯̧
ntr(T

2
n(
¯̧
n, °̄n) + 2¯̧nGn(¯̧n, °̄n)T

2
n(
¯̧
n, °̄n) +Gn(¯̧n, °̄n)Cn(¯̧n, °̄n))(°̂n − °0)].
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Since S−1
n (¸, °) is uniformly bounded in row and column sums uniformly in a

neighbourhood of ¸0 and °0, then tr(Cn(¯̧n, °̄n)) = O( n
ℎn
) by Lemma A.8 in Lee

(2004b). Note that as ˆ̧n
p→ ¸0 and °̂n

p→ °0, therefore, the trace terms become

op(1). As we have already shown in (B.6.26) that 1
n
Y ′
nZ

′
n(°̂n)Wn(°̂n)Yn

p→
Y ′
nZ

′
nWnYn, then

1

n

∂2 lnLn(µ̂n)

∂¸∂°
− 1

n

∂2 lnLn(µ0)

∂¸∂°
= (

¸0

¾2
0

−
ˆ̧
n

¾̂2
n

)
Y ′
nZ

′
nWnYn

n
+ op(1) = op(1).

Next, for equation (B.6.15), apply the mean value theorem to the traces as

follows.

tr(ˆ̧nT
2
n(
ˆ̧
n, °̂n))− tr(¸0T

2
n) = 2¯̧ntr(T

2
n(
¯̧
n, °̄n) + ¯̧

nT
2
n(
¯̧
n, °̄n)Gn(¯̧n, °̄n))[ˆ̧n − ¸0]

+ 2¯̧2ntr(Tn(¯̧n, °̄n)Cn(¯̧n, °̄n) + ¯̧
nT

3
n(
¯̧
n, °̄n))[°̂n − °0]

and

tr(ˆ̧nCn(ˆ̧n, °̂n))− tr(¸0Cn) = tr(Cn(¯̧n, °̄n) + ¯̧
nCn(¯̧n, °̄n)Gn(¯̧n, °̄n))[ˆ̧n − ¸0]

+ ¯̧
ntr(Vn(¯̧n, °̄n) + ¯̧

nCn(¯̧n, °̄n)Tn(¯̧n, °̄n))[°̂n − °0]

where Vn(¸, °) = Bn(°)S
−1
n (¸, °) and Bn(°) = ∂An(°)

∂°
. The difference of

(B.6.15) evaluated at µ̂n and µ0 is

1

n

∂2 lnLn(µ̂n)

∂°2
− 1

n

∂2 lnLn(µ0)

∂°2
=

¸2
0

¾2
0

Y ′
nZ

′
nZnYn

n
−

ˆ̧2
n

¾̂2
n

Y ′
nZ

′
n(°̂n)Zn(°̂n)Yn

n

− 1

n
[tr(Cn(¯̧n, °̄n) + ¯̧

nCn(¯̧n, °̄n)Gn(¯̧n, °̄n))(ˆ̧n − ¸0)

+ ¯̧
ntr(Vn(¯̧n, °̄n) + ¯̧

nCn(¯̧n, °̄n)Tn(¯̧n, °̄n))(°̂n − °0)]

− 1

n
[2¯̧ntr(T

2
n(
¯̧
n, °̄n) + 2¯̧nT

2
n(
¯̧
n, °̄n)Gn(¯̧n, °̄n))(ˆ̧n − ¸0)

+ 2¯̧2ntr(Tn(¯̧n, °̄n)Cn(¯̧n, °̄n) + ¯̧
nT

3
n(
¯̧
n, °̄n))(°̂n − °0)].

Note that the elements of Bn(°) are uniformly bounded by Assumption 5.

Next, we show that 1
n
Y ′
nZ

′
n(°̂n)Zn(°̂n)Yn

p→ 1
n
Y ′
nZ

′
nZnYn. By the mean value

166



theorem,

∣∣∣
∣∣∣Y

′
nZ

′
n(°̂n)Zn(°̂n)Yn

n
− Y ′

nZ
′
nZnYn

n

∣∣∣
∣∣∣ (B.6.27)

≤ sup
°∈Γ

∣∣∣
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′
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′
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n
+
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nZ

′
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where 1
n
Y ′
nA

′
n(°̄n)Zn(°̄n)Yn+

1
n
Y ′
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′
n(°̄n)An(°̄n)Yn = Op(

1
ℎn
). Hence, the differ-

ence of (B.6.15) becomes

1

n
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n
+ op(1) = op(1).

Finally, for the last derivative (B.6.17), we have

1

n

∂2 lnLn(µ̂n)

∂(¾2)2
− 1

n

∂2 lnLn(µ0)
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1
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1
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n
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′
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n
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′
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n
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X ′
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]
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′
nWnYn

n
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′
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n
]

− [¸0
ˆ̧
n
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′
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n
− ˆ̧2

n
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′
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n
]

+ 2[¸0
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′
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n
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n
Y ′
nW

′
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n
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As µ̂n
p→ µ0 and by equations (B.6.19) and (B.6.21) - (B.6.23), the above

equation can be written as

1

n
"′n(±̂n)"n(±̂n) =

"′n"n
n

+ ( ˆ̄n − ¯0)
′X

′
nXn

n
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n
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′
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n
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′
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n
+ op(1)

=
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n

+ op(1).

Then the difference of (B.6.17) becomes

1

n
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n
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1
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0
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1
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n

+ op(1) = op(1).

167



We have now shown that all of the differences between the second-order

derivatives at µ̂n and those at the true values converge in probability to zero

uniformly on Λ⊗ Γ.

B.6.3 1
n
∂2 lnLn(µ0)

∂µ∂µ′ − E( 1n
∂2 lnLn(µ0)

∂µ∂µ′ )
p→ 0

For the final step, we show that 1
n
∂2 lnLn(µ0)

∂µ∂µ′ − E( 1
n
∂2 lnLn(µ0)

∂µ∂µ′ ) converges in

probability to zero. By Lemma A.2 in Lee (2002), we have 1
n
X ′

nGn"n =

op(1),
1
n
(GnXn¯0)

′"n = op(1),
1
n
(GnXn¯0)

′Gn"n = op(1),
1
n
X ′

nTn"n = op(1),

1
n
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′Gn"n = op(1),
1
n
"′nT

′
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1
n
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′Tn"n = op(1),

1
n
"′nT

′
n(TnXn¯0) = op(1), and

1
n
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′"n = op(1). It follows that,

1

n
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1

n
[X ′
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nGn"n] =

1

n
X ′

n(GnXn¯0) + op(1),

1

n
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nZnYn =
1

n
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n(TnXn¯0) +X ′
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1

n
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1

n
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′
n"n =

1

n
["′nG

′
n"n + (GnXn¯0)

′"n] =
1

n
"′nG

′
n"n + op(1)

where, by Lemmas A.8 and A.11 in Lee (2004b), and the Law of Large Number,

E("′nG
′
n"n) = ¾2

0tr(Gn) and
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1

n
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′
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¹4 − 3¾4
0
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i=1G
2
n,ii +

¾4
0
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′
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n)] = O(
1

nℎn
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Next,

1

n
Y ′
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′
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1
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′
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1
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′
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2
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0
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1
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Following,

1

n
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′
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1
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where E("′nT
′
nGn"n) = ¾2

0tr(T
′
nGn) and
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1
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= O(
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′
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1
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′
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′Tn"n +
1
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′
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=
1

n
(TnXn¯0)
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where E("′nT
′
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0tr(T
′
nTn) and

var(
1

n
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′
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′
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2
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Finally,

1
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Y ′
nZ

′
n"n =

1

n
"′nT

′
n"n +

1

n
(TnXn¯0)

′"n =
1

n
"′nT

′
n"n + op(1)

where E("′nT
′
n"n) = ¾2
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1
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2
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1
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With the above results, we have shown that 1
n
∂2 lnLn(µ0)

∂µ∂µ′ −E( 1
n
∂2 lnLn(µ0)

∂µ∂µ′ )
p→ 0.

Hence, from
√
n(µ̂n − µ0) = −( 1

n
∂2 lnLn(µ̂)

∂µ∂µ′ )−1 ⋅ 1√
n
∂ lnLn(µ0)

∂µ
, the asymptotic dis-

tribution of the QMLE µ̂n follows. Q.E.D.

169



Appendix C

Appendix to Chapter 4

C.1 List of Countries

Table C.1 below presents a list of 91 countries and their isocodes.1

1See http://qed.econ.queensu.ca/jae/2007-v22.6/ertur-koch/ for detail.
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No Country Code No Country Code No Country Code

1 Angola AGO 32 Greece GRC 63 Pakistan PAK

2 Argentina ARG 33 Guatemala GTM 64 Panama PAN

3 Australia AUS 34 Hong Kong HKG 65 Peru PER

4 Austria AUT 35 Honduras HND 66 Philippines PHL

5 Burundi BDI 36 Indonesia IDN 67 Papua New Guinea PNG

6 Belgium BEL 37 India IND 68 Portugal PRT

7 Benin BEN 38 Ireland IRL 69 Paraguay PRY

8 Burkina Faso BFA 39 Israel ISR 70 Rwanda RWA

9 Bangladesh BGD 40 Italy ITA 71 Senegal SEN

10 Bolivia BOL 41 Jamaica JAM 72 Singapore SGP

11 Brazil BRA 42 Jordan JOR 73 Sierra Leone SLE

12 Botswana BWA 43 Japan JPN 74 El Salvador SLV

13 Cent. African Rep. CAF 44 Kenya KEN 75 Sweden SWE

14 Canada CAN 45 Korea, Rep. of KOR 76 Syria SYR

15 Congo, Rep. of COG 46 Sri Lanka LKA 77 Chad TCD

16 Switzerland CHE 47 Morocco MAR 78 Togo TGO

17 Chile CHL 48 Madagascar MDG 79 Thailand THA

18 Cote d‘Ivoire CIV 49 Mexico MEX 80 Trinidad & Tobago TTO

19 Cameroon CMR 50 Mali MLI 81 Tunisia TUN

20 Colombia COL 51 Mozambique MOZ 82 Turkey TUR

21 Costa Rica CRI 52 Mauritania MRT 83 Tanzania TZA

22 Denmark DNK 53 Mauritius MUS 84 Uganda UGA

23 Dominican Rep. DOM 54 Malawi MWI 85 Uruguay URY

24 Ecuador ECU 55 Malaysia MYS 86 USA USA

25 Egypt EGY 56 Niger NER 87 Venezuela VEN

26 Spain ESP 57 Nigeria NGA 88 South Africa ZAF

27 Ethiopia ETH 58 Nicaragua NIC 89 Congo, Dem. Rep. ZAR

28 Finland FIN 59 Netherlands NLD 90 Zambia ZMB

29 France FRA 60 Norway NOR 91 Zimbabwe ZWE

30 United Kingdom GBR 61 Nepal NPL

31 Ghana GHA 62 New Zealand NZL

Table C.1: List of 91 countries and their isocodes.
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