
 

 

 

Ecology, Impacts and Management of Pest Birds 
 

 

 

 

 

 

John Paul Tracey 

 

 

 

 

 

 

 

PhD 

 

 

 

 

 

University of York 

Environment Department 

September 2012 

 



 

 



i 

Abstract 

Pests can impact significantly upon the economy, the environment and on human and 

animal health. However, for pest birds there are surprisingly few studies of these impacts 

and how to reduce them. The aim of this thesis is to advance our understanding of the 

ecology, impacts, and management of pest birds using case studies for each of the three 

main impacts. 

 

In considering economic impacts I estimate pest bird abundance, describe a novel method 

for measuring bird damage, and evaluate the efficacy of lethal and non-lethal methods in 

vineyards and orchards.  Using data across 185 property years, netting was found to be the 

most effective in reducing bird damage. Shooting was not as effective but was one-third of 

the cost and had 13% lower damage compared with nil-treatments. Scaring with electronic 

devices and visual deterrents had no effect on bird damage. Despite their widespread use, 

lethal methods had limited effectiveness for reducing pest abundance. 

 

In considering environmental impacts introduced mallards on Lord Howe Island were used 

as a case study. Phenotypic characteristics suggest that mallards have supplanted the native 

Pacific black duck on Lord Howe Island. Management alternatives are evaluated and 

discussed.   

 

In considering health-related impacts wild birds and avian influenza in Australia was used 

as a case study. Here, the ecology of Australia’s Anseriformes, and the epidemiology, 

modes of transmission, and the factors influencing the prevalence of avian influenza in 

Australia’s wild birds are investigated. Risk profiles to improve the efficiency and 

relevance of wild-bird surveillance are also provided. 

 

The case studies presented demonstrate that an understanding of a pest’s ecology, efficient 

measures of impacts, and thorough evaluations of surveillance and management strategies 

are essential for effectively managing their economic, environmental and health-related 

impacts. 
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INTRODUCTION 

1. General introduction 

 

‘Pests can be defined as organisms that cause harm: economic, environmental or 

epidemiological’ (Hone, 1994). 

 

For vertebrates, economic impacts are usually associated with damage to agricultural 

production, including predation of livestock animals (foxes and lambs: Lugton, 1993; feral 

pigs and lambs: Choquenot et al., 1997; Europe: Cowan and Feare, 1999); and damage to 

crops (mice and sunflower: Saunders and Robards, 1983; quelea and grain: Bruggers and 

Elliot, 1989). 

 

Environmental impacts include competition with other species (invasive, Hemidactylus 

frenatus, vs native, Lepidodactylus lugubris, geckos in Hawaii: Petren and Case, 1996), 

interbreeding with native species (domestic dogs and wolves: Blanco et al., 1992; Boitani, 

1992), or disturbance of the environment (feral pigs in pasture and forests: Hone, 1980; 

Singer et al., 1984; Hone, 1988). Invasive species can also lead to extinctions (Clavero and 

García-Berthou, 2005), and can affect ecosystem function (crazy ants on oceanic islands: 

O'Dowd et al., 2003; Argentine ants in northern California: Sanders et al., 2003). 

Biodiversity impacts of pests on the environment are difficult to separate from other causes 

of habitat loss or disturbance (MacDougall and Turkington, 2005). Although various 

methods can be used to estimate costs of environmental impacts (Sinden, 1994), the true 

value of the extinction of a species is impossible to determine (Pimentel, 2002).  

 

Epidemiological or health-related impacts include the transmission of infectious diseases 

involving humans, livestock or wildlife. There are many infectious diseases that originate 

in wildlife that have substantial impacts on human health, agricultural production, and the 

environment (Bengis et al., 2004; King, 2004). The increasing emergence of these diseases 

is usually attributed to international increases in human population, movements and trade 

(Brown, 2004; MacDiarmid, 2011). However, increased interaction between wildlife, 

humans and livestock as a result of changes in distribution of wildlife hosts (Bengis et al., 
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2004) and changes in agricultural practices (Slingenbergh et al., 2004) may be more 

important. 

 

Management of wildlife as pests needs to be underpinned by good scientific understanding 

of the problems. This includes the underlying ecology, but also requires robust methods of 

monitoring and evaluation, both in terms of quantifying the problems and evaluating 

success of management. Decisions for managing pests should be made on the basis of the 

level of impact (Parker et al., 1999) and evaluations of management alternatives (Mumford 

and Norton, 1984) incorporating uncertainty or risk (Lane and Stephenson, 1998). 

Adaptive management or ‘learning by doing’ (Walters and Holling, 1990) allows improved 

decisions where there is uncertainty (Shea et al., 2002). For pests, adaptive management 

requires reliable and on-going measures of pest abundance or impact and management 

effectiveness. Inaccurate measurements of impact can result in poor management 

decisions. For example, the cost-effectiveness of many rodent control programs in Hawaii 

are questionable where the 10% damage recorded annually (Tobin et al., 1993) has no 

measurable impact on the yields of mature nuts (Tobin et al., 1997). In practice 

measurements of pest abundance or impacts are rarely conducted, or are complex, 

qualitative, correlative, or anecdotal (Bomford and O'Brien, 1995; Reddiex and Forsyth, 

2006; Tracey et al., 2007). For example 67.5% of pest control conducted in Australia does 

not involve monitoring of either the pest or biodiversity (Reddiex and Forsyth, 2006).  

 

Most valuable information about a species relies on some measure of population size. 

However, the reliability and cost of many techniques to measure pest abundance and 

impact are major limitations to adaptive management of pest populations. Pest abundance 

can be measured as an absolute number or density, or as an index– one population relative 

to another (Caughley, 1980). Indices or relative measures are often more useful in practice 

than absolute measures (Ruscoe et al., 2001; Caley and Morley, 2002; Tracey et al., 

2005b). There are many techniques used to measure pest abundance including capture-

recapture (Pollock et al., 1990), removal methods (Eberhardt, 1969), distance sampling 

(Barry and Welsh, 2001; Buckland et al., 2004) and aerial surveys (Caughley, 1974; 

Tracey et al., 2008a). Measures of pest abundance can be used to evaluate the effects of 

management (e.g. shooting, Saunders and Bryant, 1988; and baiting, Fleming et al., 2000 

for feral pigs), or to predict damage (e.g. impact of rabbits on pasture and wool production: 

Croft et al., 2002; Fleming et al., 2002a).  
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While for some pests, measuring damage directly can be simpler and more accurate than 

estimating abundance and inferring impacts (e.g. pest birds in horticulture: Tracey et al., 

2007), measuring impacts is difficult and time-consuming. Pest impact can be measured in 

a range of ways including: monitoring threatened species, measuring predation to 

livestock, counting, weighing or visual assessment of damage to crops, estimating losses to 

pasture or crops or predicting risks of disease. 

 

Vertebrate pests cause significant impacts in Australia and New Zealand (McLeod, 2004; 

Gong et al., 2009). In Australia 33 mammals are regarded pests, 16 of these are introduced; 

and New Zealand has 25 introduced pest mammals (Cowan and Tyndale-Biscoe, 1997). 

Costs of managing these species are significant. For example Government conservation 

agencies in New Zealand spend 20% of their annual budgets on introduced mammals 

(Parkes et al., 2006). In addition, over 100 bird species are regarded as pests in Australia 

and New Zealand (Tracey et al., 2005; Tracey et al., 2007), which cause significant costs to 

agriculture (Gong et al., 2009) and pose unmeasured risks to the environment, and human 

and animal health. 

 

Most studies on vertebrate pests have focused on mammals (Europe: Cowan and Feare, 

1999; North America: Timm and Fagerstone, 2010; Australasia: Saunders and Lane, 2011). 

While considerable ecological and behavioural research has been performed on birds 

(Handbook of Australian New Zealand and Antarctic Birds Volume 1-7; Handbook of the 

Birds of the World, Volume 1-14), relatively little has been done on birds as pests. The aim 

of this thesis is therefore to advance our understanding of the ecology and management of 

pest birds, using case studies for each of the three main pest impacts – economic, 

environmental and health-related. This thesis provides improved, efficient methods to 

estimate pest abundance and impact, and empirical evaluations of strategies to manage 

these impacts, in agricultural crops, on native fauna and in evaluating risk of disease. It 

also demonstrates the importance of incorporating pest ecology in estimating and 

managing the impacts of pests. 

 

After a review of methods to assess the impacts and control of bird pests (Chapter 2), the 

thesis is divided into three parts to reflect economic, environmental and health-related 

impacts. Part A addresses the economic impacts of bird pests and the effectiveness of their 
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control in reducing damage. Firstly, a technique to measure the damage caused to wine 

grapes by native and introduced birds is developed (Chapter 3), and then the effectiveness 

of lethal and non-lethal methods in reducing damage to fruit is measured and contrasted 

(Chapter 4). The hybridisation of a native species with an introduced Northern Hemisphere 

anatid (Chapter 5) is used as an example of the environmental impacts of pest birds (Part 

B). To demonstrate the health impacts of birds (Part C), an ecological framework is used to 

investigate the potential role of wild birds in the introduction of a zoonotic disease, highly 

pathogenic avian influenza, which is currently exotic to Australasia (Chapter 6). Chapter 7 

is a risk assessment of the potential avian vectors undertaken as an aid to contingency 

planning and management of avian influenza. The final chapter uses the case studies to 

provide a synthesis of the three impacts of bird pests in Australasia and makes suggestions 

for future research. 

 



 

2. A review of methods to measure and manage pest bird 

impacts 

2.1 Publication bias 

When reviewing literature authors need to consider the possibility of publication bias, 

which is caused by the selective reporting of scientific results (Dickersin 1990; Moller and 

Jennions 2001). There are various ways to test and correct for this bias (Rosenthal 1979; 

Moller & Jennions 2001). While the influence of this bias for pest birds is currently likely 

to be minimal with few rigorous field evaluations available (This chapter; Tracey et al., 

2001), future consideration of this bias may become increasing important. For example 

selective reporting of positive management action may lead to an over-emphasis on active 

control of bird populations where it is not warranted. 

2.2 Methods to measure impact 

Appropriate impact assessment is a critical step in the effective management of pests 

(Hone, 2007). Assessment allows for comparison of control effectiveness and for improved 

planning and evaluation. The methods used for measuring pest bird impacts include: 

questionnaires: face-to-face interviews, phone interviews and mail surveys; direct 

measures to estimate damage to crops; and environmental and health-related impacts; and 

indirect measures: monitoring bird numbers and energy demands. These are reviewed 

below. The benefits of birds should also be considered in assessing their overall impact 

(Section 2.4). 

2.2.1 Questionnaires  

Questionnaires about damage and control methods used are useful in defining the problem 

and for setting research and management priorities over large areas. Face-to-face 

interviews (Bennett, 1984), phone interviews (O'Donnell and Vandruff, 1983) and mail 

surveys (Atwood, 1956; Dawson, 1970; Crase and De Haven, 1973; Stickley et al., 1979; 

Wakeley and Mitchell, 1981; Bomford, 1992; Johnston and Marks, 1997; Graham et al., 

1999) can all be used to gather damage information (Bryman, 2012; Fleming et al., In 

Press). There is a trade-off between obtaining specific information and the time and cost 

involved (Miller, 1983; Crabb et al., 1988). Face-to-face interviews are more useful when 

complex information from specific groups is required (Orlich, 1979), but they are more 



2. A review of methods to measure and manage pest bird impacts  

6 

time-consuming and costly than mail or phone surveys. Mail surveys can be used over 

larger areas and have the lowest cost per response.  

 

All questionnaires have potential biases. For example, biases can occur when a proportion 

of the targeted sample does not respond (Dawson and Bull, 1970), when the survey is 

conducted too long after the impacts have occurred (Sen, 1972), or when respondents 

overestimate or underestimate damage (MacDonald and Dillman, 1968). Other errors can 

be reduced by carefully wording questions to avoid leading particular responses. Correct 

and objective phrasing and ordering of questions has been reviewed by a number of 

authors (Kahn and Cannell, 1967; Orlich, 1979; Filion, 1981; Chadwick et al., 1984; Crabb 

et al., 1988). 

 

In some cases, biases associated with questionnaires can be corrected (MacDonald and 

Dillman, 1968; Sen, 1972). For example, fruit growers with significant bird damage may 

be more likely to respond to a questionnaire about birds (Dawson and Bull, 1970). This 

‘non-response’ bias can be estimated by re-sampling a proportion of the candidates that did 

not reply. Rankings of damage can be correlated with actual damage determined with 

direct measures (Martin and Crabb, 1979; Somers and Morris, 2002).  

2.2.2 Estimating damage to crops 

Without counting and evaluating all plants within a crop, estimation of bird damage 

requires the taking of a representative sample from which total damage is predicted. 

Standard random and systematic sampling procedures (Granett et al., 1974; Caughley and 

Sinclair, 1994) are used to achieve accurate and precise measures. The desired degree of 

accuracy or precision will determine time and cost required. Direct measures of damage 

include weighing, counting and visual indices. Counting and weighing are time consuming 

but can be used to calibrate standardised visual approximations. These techniques have 

been used for cereal crops (Dawson, 1970; Khan and Ahmad, 1990) and for apples, pears 

and stone fruits in orchards (Long, 1985). Weighing and counting often fail to account for 

losses due to secondary spoilage.  

 

The decision to use weighing, counting or visual estimates will depend on the type of crop 

as well as the available resources. For example, when measuring damage to grapes it is 

often not practical to count all the individual berries on each bunch, so a visual estimate 
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may be preferred. However, for larger horticultural crops such as vegetables and stone 

(such as peaches and cherries) and pome fruits (such as apples and pears), counting may be 

just as efficient — and more accurate. Where damage is patchy within an orchard block, 

stratification will increase precision and decrease sampling effort. If sampling is being 

conducted over larger areas, stratification according to the age of the crop, geographic area, 

variety, and early or late maturing date can also increase sampling efficiency and accuracy 

(DeHaven, 1974b). 

Weighing  

Calculating bird damage by weighing involves cutting off and weighing a representative 

sample (plot) of individual fruits. This method has been used for measuring damage to 

grain crops (Khan and Ahmad, 1990). The undamaged weight of a fruit or bunch is 

calculated from the mean weight of the undamaged samples in the plot. An estimate of the 

damage in each plot is then calculated from the difference between this weight and the 

actual weight of the whole sample from the plot. However, in most horticultural situations 

weighing is impractical because of the variable weights of fruits and failure to take into 

account pecked and partly damaged fruits or plants.  

 

An alternative weighing method can be used when distinct areas of the crop have been 

damaged exclusively and are therefore unharvestable. For example, consider several rows 

of wine grapes that are severely damaged by starlings+ (Sturnus vulgaris) to the extent that 

they have become uneconomic to pick. The weight of fruit or nuts lost from rows not 

harvested could be estimated from the average weight of harvested fruit or nuts from 

undamaged rows of an equivalent variety and age. Although this provides estimates 

quickly, it also assumes negligible damage has occurred in other areas.  

Counting 

Estimates can also be calculated by counting the number of damaged and undamaged 

samples within a crop. Although counting has been used to estimate total damage (Burton, 

1990), a common use of this method is to calibrate visual estimation methods (Stevenson 

and Virgo, 1971; DeHaven and Hothem, 1979; Somers and Morris, 2002). 

 
+‘starling’ in this thesis refers to the European starling, Sturnus vulgaris.  
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Visual assessment 

Visual estimation is rapid and a widely used method for measuring damage to agricultural 

crops by vertebrates (Stevenson and Virgo, 1971; DeHaven, 1974a; Dolbeer, 1975; 

DeHaven and Hothem, 1979; Somers and Morris, 2002). This is achieved by using 

experienced observers to estimate percentage loss, or by assigning a damage ranking to 

individual fruits or plants. To improve accuracy, estimates may be calibrated by counting 

or weighing samples that have been visually assessed. Sample cards or templates 

containing examples of damage levels can be useful guides for measuring losses visually 

and standardising between observers (Fleming et al., 2002b).  

Measuring secondary damage and compensation  

In addition to the direct loss caused by birds consuming fruit, crops can suffer secondary 

losses through spoilage to previously undamaged fruit from moulds, yeasts, bacteria and 

insects attracted to damaged fruit. This secondary damage is not easily measured in terms 

of cost, as it is associated with down-grading of fruit by purchasers, extra staff costs to 

remove bird-damaged fruit and increased costs for fungicide application. Timing and type 

of bird damage may also be a factor. For example, when wine grapes are damaged 

immediately before harvest by birds that peck grapes (such as silvereyes and honeyeaters, 

Meliphagidae), rather than remove them, disease is unlikely to establish and wine quality is 

uncompromised. There is a need to record the timing and type of secondary damage, as 

well as the costs incurred.  

 

In some crops, a certain level of bird activity can be tolerated without any significant 

impact on final yield. This is because plants compensate for fruit or bud loss by increasing 

the size of remaining fruit (Stephenson, 1981b, a). Compensation for loss to bird pests is 

measured by comparing yields of damaged and undamaged plants rather than by 

calculating the percentage of damaged fruit. In many horticultural crops, remaining buds 

can compensate for damaged buds. For example, in South Australian cherry orchards, 

removal of some buds can result in larger fruit, which attract a premium price for quality, 

and lower production costs by reducing the labour required for picking. That is, fewer large 

fruits are worth a lot more than an equivalent weight of smaller fruits. Therefore some bud 

damage may, in effect, be similar to the normal horticultural practice of thinning and may 

result in economic benefits (Sinclair and Bird, 1987). 
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Conversely, when birds damage the growing shoots of production plants, the secondary 

shoots are often less productive and are likely to yield more numerous, but smaller, fruit. 

Damage to growing shoots can also cause reduced productivity from the tree or vine in 

subsequent seasons (Rawnsley and Collins, 2003). When peas have their emerging shoots 

nipped off, mainly by sparrows (Passer domesticus), the missing shoot is often replaced by 

two new ones from the seed, but this causes the crop to ripen unevenly and be downgraded 

by the processing factory (Porter et al., 1994).  

 

An isolated assessment of bird numbers or damage needs to be considered in the context of 

the effects of damage on the critical stages of crop development and on final production. 

For example, Tobin et al., (1993) found that macadamia nut trees compensated for rat 

damage by producing more nuts, and overall yields were unaffected. In this example there 

are no economic benefits of pest control.  

 

Woronecki et al. (1979, 1980) found that estimates of primary bird damage to corn were 

affected by: the state of development of the kernels at the time of damage, the amount of 

compensatory growth, and the environmental factors that influenced secondary loss. For 

cherries, a reasonably accurate estimate of bud damage could be achieved by a single 

estimate just before flowering, as new buds are not initiated after flowering.  

 

In many cases, estimates of direct percentage loss will be sufficient as a basis for 

management decisions. However, these estimates are likely to be conservative when there 

is a high percentage of pecked or partly damaged fruit; or overestimated where damage 

takes place early in the season and compensation is likely to occur.  

 

The most appropriate time to measure damage by birds will vary between crops and 

situations. For example, damage should be measured as close as practicable before harvest 

when the majority of damage usually occurs late in the season and all damage is easily 

identified at this time. The situation is more complex when damage is occurring at 

different stages of growth before ripening, and when damage early in the season is no 

longer detectable before harvest. In these circumstances, damage should be measured in 

separate stages and collate the results to obtain overall damage estimates.  

+‘sparrow’ in this thesis refers to the House sparrow, Passer domesticus, except when preceded by another word to 

describe the species. 
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2.2.3 Estimating environmental impacts 

Environmental impacts can be measured by estimating change in abundance or distribution 

of native animal and plant species at risk, competition (e.g. mynas, Acridotheres tristis, 

with native species in Australia: Grarock et al., 2012) or interbreeding with native species 

(e.g. anatids in New Zealand: Williams and Basse, 2006) or disturbance of the environment 

(e.g. little corella, Cacatua sanguinea, damage to eucalypts: St John 1991)  

 

Biodiversity impacts of pest animals are mainly attributed to mammalian predators or 

insects, rather than birds. For example, in New South Wales, Coutts–Smith et al., (2007) 

identified only three pest bird species as a threat to biodiversity, and none of these were on 

the mainland. However, pest birds are implicated in causing the decline of native fauna and 

flora. For example bell miners (Manorina melanophrys) are implicated in canopy dieback 

of eucalypts, as a result of excluding other insectivorous birds and the invertebrate 

predators and parasitoids (Stone, 1996), and the establishment of mynas in Canberra has 

been linked to the decline in native species (Grarock et al., 2012).  

 

Impacts of pests on the environment are difficult to separate from other causes of habitat 

loss or disturbance (MacDougall and Turkington, 2005). These impacts are often not 

obvious and may occur over considerable time frames (Davis, 2003). Pest species 

themselves evoluting with their interaction with native species (Mooney and Cleland, 

2001). Hybridisation (Huxel, 1999) and introgression between invasive and native species 

can lead to extinction (Rhymer and Simberloff, 1996). However, establishing evidence of 

environmental impacts based on cause and effect (e.g. Conroy et al., 1989) (rather than 

correlations in species abundance) is difficult, and rarely conducted for pest birds. 

 

Birds can also damage native vegetation directly. For example, large roosting colonies of 

little corellas (Cacatua sanguinea) (often exceeding 10,000 individuals) along 

watercourses of the Flinders Ranges are known to cause significant damage to many 

mature Eucalyptus spp., particularly river red gum (Eucalyptus camaldulensis), but also 

native pine (Callitris columellaris), peppermint box (E. odorata) and long-leaved box (E.               

goniocalyx) (St John, 1991).  
+‘myna’ in this thesis refers to the common myna, Acridotheres tristis. 
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Hone (2007) outlines 6 principles for measuring and managing pest impacts for 

biodiversity. This includes 3 principles for the conservation of a species; population 

limitation, reintroductions and threshold population, and 3 principles for the conservation 

of communities; threshold habitats, community effects, multiple pests. These principles 

rely on estimates abundance or occurrence (e.g. proportion of suitable habitats occupied by 

a species) (Section 2.1.5).  

 

These principles are useful as they allow us to consider the impacts of pests (as populations 

and to communities) on biodiversity in different ways, generalising across species, location 

and time. For pest birds, population limitation and threshold population are relevant when 

considering the direct impacts of pests on a wildlife species. The impacts of mynas, 

Acridotheres tristis, on native species in Australia (Grarock et al., 2012) or the extent of 

hybridisation between mallards and native anatids in New Zealand (Williams and Basse, 

2006) are some examples. However, hybridisation between native and introduced pests 

warrants further consideration. Will a hybrid fulfil an ecological function equivalent to 

native precedcesor? It is important to consider the ecology and population level effects of 

pests, as well as their individual impacts on wildlife. For example, consideration of 

threshold habitats and the conservation of eucalypt communities is useful when managing 

little corella, Cacatua sanguinea, damage to red gum (Eucalyptus camaldulensis) (St John 

1991). While damage to these plant communities are a concern to the community, a causal 

link to tree dieback has not been established (St John 1994; Voller and Eddie 1995) and 

tree canopy restoration is possible in the short term in favourable conditions (St John 

1994). While further exploration of these principles for pest birds are beyond the scope of 

this thesis, they provide important context to Chapter 5 which is an investigation of the 

impacts of Mallard on native fauna. 

2.2.4 Estimating health-related impacts 

Diseases can significantly impact upon economies (Bennett et al., 2009), the environment 

(Daszak et al., 2000) and human (Binder et al., 1999) and animal (Gortázar et al., 2007) 

health. Disease events are increasing in frequency and most originate in wildlife (Jones et 

al., 2008). These are linked to a range of socio-economic, environmental and ecological 

factors (Jones et al., 2008).  
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Estimating the impact of diseases involves an understanding of transmission and the effect 

of the pathogen on the host (McCallum, 2000). The most accurate way to estimate these 

impacts is through manipulative experiments where pathogens are introduced (McCallum 

and Dobson, 1995). However, these are rarely practical. Instead surveillance provides 

information on prevalence and clinical signs provide information on likely affect on 

mortality. Alternatively diseases in wildlife are modelled with transmission coefficients 

(spread from infectious to susceptible hosts), which largely depend on contact rates 

between individuals (Grenfell and Dobson, 1995) and the infectivity of pathogen 

(Thrusfield, 1995). Infectivity is usually measured in the laboratory (Thrusfield, 1995), 

however, field contact rates are often difficult to measure (Caley and Ramsey, 2001) 

particularly in birds that form large and mobile flocks. 

 

Techniques to estimate impact so far have focussed on estimating impact after it has 

occurred. However, this often prevents adequate management preparation. Although 

impacts of diseases can be highly variable an understanding of virus epidemiology and 

ecology of hosts can be used to assess the likelihood of impacts occurring. This is 

important in assessing likely threats, and provides a basis for improved surveillance and 

management of wildlife diseases. 

2.2.5 Indirect measures  

Bird abundance 

Many reviews are available of methods to estimate wildlife abundance (e.g. Lancia et al., 

1996; Schwarz and Seber, 1999), and occupancy modelling (McKenzie et al., 2006) is 

becoming popular for estimating species occurrence (e.g. marsh birds, Rush et al., 2009). 

A variety of techniques can be used to estimate the number of birds or bird species within a 

given area i.e density (Bibby et al., 2000). A commonly used method that simply identifies 

the species present is the 20-minute, two-hectare search commonly used in citizen science 

(Barrett et al., 2003). An estimate population density or an index of abundance is much 

more useful than the number of species recorded. 

 

Point counts (Lack, 1954), where the numbers of birds of each species are recorded for 

five- or ten-minute intervals, is one method used to estimate relative or absolute abundance 

(e.g. Hutto et al., 1986). These counts are usually recorded after first light, when birds are 
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most active. Caution must be taken to count birds that are more active in orchards at 

different times of the day, and to take into account differences in detectability between 

species. There is also a variety of ways to correct for bias associated with detection, such 

as using sighting distance to estimate the probability of detecting a bird by an observer 

(Buckland et al., 2001). This method assumes the probability of detecting a bird declines 

with distance from the observer and that all birds at the observation point are observed 

with certainty.  

 

The success of a management campaign can be measured in terms of reduced numbers of 

pest birds (e.g. Conover and Dolbeer, 2007). This type of information can be used in a 

cost-effectiveness analysis (Hone, 1994). If changes in bird numbers are being used to 

evaluate management or control effectiveness, the same measurement methods must be 

used before and after implementation to enable an accurate comparison (Hone 1994).  

Relationship between bird population density and damage  

Bird population density can be used to predict bird damage without directly measuring the 

damage. This can be achieved by using the relationship between density and damage 

(Figure 2.1). Unfortunately this relationship is rarely known and is often difficult to obtain.  

Any prediction of damage from the number of birds relies on assumptions about density-

damage relationships. There is little published information about these relationships for 

pest birds. Pest density-damage relationships are rarely simple proportional equations 

whereby halving the pest density halves damage (Figure 2.1). Measurements of density and 

damage taken over time need to be assessed to determine this relationship.  
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Figure 2.1. Some possible relationships between bird density and damage (After 

Choquenot et al., 1996).  

 

In Figure 2.1:  

• A represents a situation where low numbers of birds still cause high levels of 

damage. Blackbirds+ (Turdus merula) may damage fruit in this way, where a few 

resident birds can inflict continuous levels of damage over the season.  

• B represents a situation where damage is proportionally higher when there are 

higher numbers of birds. This has been shown to occur with bird damage to 

pistachios, where damage increases directly with increasing numbers of crows per 

unit area (Crabb et al., 1986).  

• C represents a situation when damage does not occur until birds reach a certain 

threshold density. This could occur, for example, when native honeyeaters exhaust 

a preferred native food source before damaging fruit. This relationship could also 

occur if cherry trees compensate for a certain level of bud damage by rosellas 

before production yields are reduced (Sinclair and Bird, 1987). 

 

Even if these relationships are determined, they may be applicable only to a specific 

situation and often cannot be generalised. Unlike urban and environmental impacts of 

birds, direct measures of bird damage in agriculture can be simpler, less time-consuming 

and more accurate than estimating bird density and inferring the impact.  

 
+‘blackbird’ in this thesis refers to the European blackbird, Turdus merula, unless preceded by ‘American’ or another 

word describing the species. 
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Estimating bird damage from energy requirements  

Information on feeding and energy requirements of target species can also be used to 

estimate potential impacts. These methods predict damage by translating bird abundance 

and daily energy requirements of individual birds (Kendeigh, 1970) into the amount of the 

resource removed.  

Bird damage can be estimated as:  

Daily amount of crop consumed = [number of birds] x [daily energy 

requirements of individual birds] x [proportion of energy obtained from the crop 

relative to all items consumed] x [energy available per weight of crop].  

 

For example if we have 10 birds, each requiring 70 kilojoules of energy per day, and half 

the energy comes from grapes, which have 2.15 kilojoules of energy per gram, then the 

total weight of grape consumed by the ten birds is:  

10 birds x [70 kilojoules/(day bird)] x [1/2] x [2.15 kilojoules/gram]  

= 163 grams/day  

 

If these 10 birds were of species that remove whole grapes, then the 163 grams/day is 

approximately equivalent to 163 grapes (wine grapes average approximately 1 gram each) 

and this is an estimate of the loss. However, if the 10 birds were of species that only peck 

grapes, the 163 grams may come from many more than 163 grapes and thus under-estimate 

damage. 

 

More complex approaches using other determinants of energy (such as age class, annual 

and daily change in abundance and behaviour, temperature and body weight) have been 

used to predict damage to corn and grain crops by starlings and American blackbirds 

(Icteridae) (Wiens and Innis, 1974; Wiens and Dyer, 1975; Weatherhead et al., 1982; 

White et al., 1985).  

 

Considerable ecological information is required for energy and density measurement 

methods. This requires long-term research, which in most cases is not available (Otis, 

1989). Methods using energy requirements also do not take into account the natural 

variation in damage (Otis, 1989; Hone, 1994); nor do they take into account losses due to 

secondary spoilage. Despite these difficulties, an enclosure study of American blackbirds 
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and grain found that estimates of damage using energy requirements and bird density were 

equivalent to direct measures (Weatherhead et al., 1982).  

 

Estimates of damage using energy are more useful when estimating damage over broad 

agricultural areas: for example, when density and feeding habits are already known, easily 

obtained, or being determined for other reasons. When applying these methods to the 

estimation of damage, factors such as uneven distribution of damage, opportunistic feeding 

habits and diets, and damage caused by different age classes should be considered. These 

factors are particularly important in horticulture, where fruit is often only a small 

proportion of a pest bird’s diet (e.g. Adelaide rosellas (Platycercus elegans adelaidae) in 

cherry orchards: Reynolds, 2003). 

 

In the case of bird damage, a number of factors make it difficult to estimate potential 

damage from observed bird numbers — required for any of the above -mentioned 

techniques. These include:  

• unpredictability of bird movements, e.g. for species that do not maintain feeding 

pressure on a particular crop throughout ripening;  

• difficulty in assessing bird numbers, particularly for small, mobile species or those 

that form large flocks when foraging;  

• patchiness of bird feeding throughout a crop and between crops, and resultant 

spatially variable impacts;  

• indirect impacts (for example, mould developing on pecked grape bunches); and  

• compensatory production, so that the crop partly or wholly recovers from damage 

that occurs during development.  

2.3. Control techniques 

2.3.1 Bird scaring 

Scaring and shooting are the most common approaches to pest bird control (Tracey, 2008). 

Birds are scared by unusual, sudden, unexpected, unfamiliar or dangerous events (scare 

stimulus), or by something that mimics a predator or the response to a predator (such as 

bird alarm calls). A bird’s first reaction to being scared is flight. This is often followed by a 

period of curiosity, during which the bird tries to gather information about the scaring 

stimulus. Each time it encounters the stimulus, it gains more information. Eventually, it 
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accumulates enough information to know that unless the stimulus presents a real threat, it 

can be ignored — that is, the bird has become habituated to the stimulus (Thompson and 

Spencer, 1966). The time taken for habituation will vary, depending on a suite of factors, 

including species, surrounding habitat and the regularity and type of noise. Habituation is 

the single factor that most limits the effectiveness of scaring. It is also possible that once 

birds habituate to a stimulus, it could then work as a cue indicating the presence of 

available food (Conover and Perito, 1981). Under these circumstances it would attract 

birds to a crop and have the opposite effect to that desired. 

 

Scaring is also likely to be more effective when alternative attractive feeding sites are 

available (Jarman, 1990; Crossfield, 2000). Most successful scaring of pest birds is 

achieved by using a variety of different scaring devices (Bishop et al., 2003), starting them 

as soon as birds show an interest in a crop and before the birds get into the habit of feeding 

there. Changing devices and moving them around frequently will also help to avoid 

habituation (Marsh et al., 1991).  

Visual scaring methods 

A wide variety of visual scarers are used. They include plastic shopping bags; car-yard 

bunting; spinning metal strips; reflective mirrors or tape; balloons displaying big eyes; and 

predator models such as scarecrows (human effigies), plastic silhouettes of birds of prey, 

or kites in the shape of predatory birds.  

 

Balls or balloons with large eyespots are inexpensive scaring devices. Helium-or air-filled 

balloons with eyespots are tied to vegetation or to long poles. Tests of the effectiveness of 

eyespot balloons are mainly inconclusive (Marsh et al., 1991). McLennan et al., (1995) 

found that a commercial ball with a reflective eye that appeared to move as the ball rotated 

was significantly (P < 0.01) more effective at repelling sparrows from a feeding table than 

a beach ball with an eye painted on it, although the deterrent effect was minimal at 40 

metres and ceased after nine days.  

 

Kites shaped like birds of prey (often falcons or hawks) are another type of inexpensive 

visual scaring device. These are usually tethered to the ground, or may be suspended from 

helium-filled balloons that are tethered to a stake by a long monofilament line 30–60 

metres above the ground. Ground-tethered kites require constant, low-velocity wind to 
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keep them aloft, but often in the early morning and late afternoon there is little wind and 

these are the times when some birds tend to feed. Winds of over eight kilometres per hour 

can blow down kites and balloons (Hothem and DeHaven, 1982), which may also be 

damaged when they become entangled in trellises or vegetation.  

 

Predatory bird kites suspended from helium-filled balloons have successfully reduced bird 

damage to blueberries (damage reduced by 35%), vineyards (by 48%; range 32%–88%) 

and cornfields (by 83%) in North America (Conover, 1982; Hothem and DeHaven, 1982; 

Conover, 1984).  

 

To be effective, the predator kites were used at a density of about one per hectare. The 

main cost when using the predator kites was maintaining the helium balloons, as most 

lasted only a few days. The kites were more effective against some pest bird species than 

others. The effectiveness of predator kites may be improved by selecting a model that 

closely resembles a predator species that occurs in the local area (Marsh et al., 1991).  

 

Another inexpensive scaring device used is a predatory bird model mounted on a pole or 

building. For example, Conover (1985a) used animated owl models to protect vegetable 

plots from damage caused by American crows (Corvus brachyrhynchos). The owl model, 

grasping a crow model in its talons, was mounted on a weather vane so that it moved in the 

wind. The wings of the model also moved, either by the wind or by a battery-operated 

motor. This animated predator model reduced crop damage by 81% compared with an 

unprotected control plot and was relatively cheap to build.  

 

In general, visual scarers offer only short-term protection, as birds quickly realise that they 

pose no real threat and then become habituated (Long et al., 1990; Marsh et al., 1991; 

McLennan et al., 1995). For example, some birds habituate to predator kites after only five 

hours’ exposure (Conover, 1982). Visual scarers are simply something new and unusual in 

the birds’ environment, and they soon learn to ignore them. This is particularly true for 

devices that are not kept in motion by wind or motor. Effectiveness also declines with 

distance from the scarer. For example, McLennan et al. (1995) found the effectiveness of 

eyespot balloons in keeping sparrows away from a feeding table was greatest at the closest 

distance measured (ten metres) and negligible at 40 metres.  
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Marsh et al. (1991, 1992) made some generalisations about scaring with scarecrow and 

predatory bird models on the basis of their review of the world literature on this topic. For 

best results, scarecrow and predatory bird models should:  

• appear lifelike;  

• have motion (for example, pop-up scarecrows and windblown predator models);  

• be highly visible;  

• be moved frequently to new locations in and around the crop to help prevent 

habituation;  

• be supported by additional control methods, such as shooting to scare, or other 

acoustic scaring devices; and  

• be started before birds develop a feeding habit in a crop.  

 

Despite some old and resilient myths, birds do not seem to be scared by bird carcasses 

(Naef-Daenzer, 1983) unless they are life-like or in a threatening pose, and even then 

habituation develops rapidly (Bishop et al., 2003). Snake and cat models are equally 

ineffective (Marsh et al., 1991).  

 

The major limitation of attempting to scare birds using reflectors, bright spinning or 

flapping objects, or similar devices is rapid habituation (Marsh et al., 1991). Wind 

conditions are important, because wind creates motion and sometimes sound, which 

increases the effectiveness of visual scaring devices (Tobin et al., 1988; Marsh et al., 

1991). For example, CDs (compact discs) hanging on string in fruit trees cause random 

light flashes in the wind. However, high winds can break, or even blow away, scaring 

devices.  

 

Once birds habituate they will fly between scaring devices or even perch on them before 

entering a crop to feed. Different pest bird species may have different responses to scaring 

devices. For example, in Ohio, red-winged blackbirds (Agelaius phoeniceus) and sparrows 

were effectively scared from grain and sunflower crops by reflecting tape, but American 

goldfinches (Carduelis tristis) and mourning doves (Zenaida macroura) were not (Dolbeer 

et al., 1986). Reflecting tape was also found to be ineffective for repelling starlings, 

American robins (Turdus migratorius), house finches (Carpodacus mexicanus), 

mockingbirds (Mimus polyglottos) and grey catbirds (Dumetella carolinensis) feeding in 
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blueberry plots (Tobin et al., 1988). Dolbeer et al. (1986) speculated that reflecting tape 

might be more effective against flock-feeding birds than those that feed solitarily or in 

small groups.  

Acoustic scaring methods  

Scaring with acoustic (sound-producing) devices, including ultrasonic devices, is often 

promoted as effective, scientific, humane, cheap and simple to operate (Bomford and 

O'Brien, 1990). The most commonly used acoustic devices rely on startling or fear for their 

scaring effects. Most are non-biological sounds generated by mechanical, electronic or 

explosive means and may include wind or mechanically powered noise generators, a range 

of electronically amplified sounds, propane gas cannons, crackers and firearms. Some 

devices produce bioacoustic sounds and others produce ultrasound (sound beyond human 

reception).  

 

Sound travels through air in waves, and the loudness of sound, usually measured in 

decibels, declines with the square of the distance from the source. This means that the 

loudness of a signal drops away rapidly with distance. Sound shadows also form behind 

objects, such as trees or bushes, which further decrease sound signal strength (Marsh et al., 

1991).  

 

The most common form of scaring with sound relies on shooting to scare or harass, or 

devices such as gas guns. Shooting can reduce habituation (Baxter and Allan, 2008) and 

should be initiated before other scarers so that birds make a connection between the loud 

noise and danger. 

 

Most electronic acoustic devices such as gas guns are set to go off automatically at either 

regular or random intervals; others are triggered by the movement of birds. As with visual 

methods of control, birds become habituated to, and then ignore, sounds after a time if they 

are repetitive, emanate from the same point source, or pose no physical threat. An extreme 

example is the lack of response shown by birds adjacent to airport runways as jet aircraft 

take off or land, often only metres away, with noise levels well over 100 decibels. A 

scaring and chemical repellent system that operates only when birds fly through a radio 

beam was shown to be more resistant to habituation than alternative systems that operated 

at regular or random intervals for keeping waterfowl away from contaminated ponds 
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(Stevens et al., 2000). There is at least one commercial device available in Australia that is 

triggered by radar detection of the birds and bioacoustic deterrent calls are activated by 

radio transmission (Muehlebach and Bracher, 1998). However, the effectiveness of such 

devices in crops has not been scientifically assessed. 

 

Bioacoustic or biosonic sounds are broadcasts of recorded calls used in animal 

communication: usually alarm, distress or predator calls, or electronic mimics of such 

calls, are used in a variety of acoustic devices available on the market. The calls are 

recorded, sometimes digitised and modified, amplified, and then broadcast through 

speakers (Aubin, 1990; Marsh et al., 1991). 

 

Some birds give alarm calls when they see a predator or something they perceive as a 

threat. Alarm calls alert nearby birds to the presence of danger, and the usual response is 

immediate flight. Alarm calls are often species-specific, although some species will 

respond to other species’ alarm calls (Baxter et al., 1999). When taped alarm calls, or 

electronic imitations of alarm calls, are broadcast, they may have a similar effect to a real 

alarm call. The effectiveness of broadcast alarm calls for scaring birds away is likely 

determined mainly by the quality of the sound and by how often it is repeated. 

 

Distress calls are usually loud ‘squawks’ given by birds held captive, either in a net or by a 

predator. The common response to a distress call is for surrounding birds to be attracted to 

the site, where they often fly around making a lot of noise in what is called mobbing 

behaviour (Conover and Perito, 1981; Conover, 1994a, b). Generally, distress calls are 

likely to be less effective for scaring birds than alarm calls, but distress calls are sometimes 

used because they are easier to record, and they have been shown to be effective for 

dispersing herons (Ardeidae), gulls (Larus spp.) and crows (Naef-Daenzer, 1983; Gorenzel 

and Salmon, 1993; Bishop et al., 2003). 

 

Birds habituate rapidly and start to ignore a broadcast alarm or distress calls if the same 

call or call sequence is frequently repeated (Aubin, 1990; Martin and Bateson, 1993; 

Yokoyama and Nakamura, 1993; Harris and Davis, 1998). They may take flight, but 

rapidly return to continue feeding. The quality of the broadcast sound is determined by the 

quality of the recording and the quality of the amplifier and speakers used to broadcast the 

call. The broadcast calls generally need to be those of the bird species present, or at least 
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calls from species the local birds usually respond to. Birds have dialects, and the alarm call 

of a bird from an area with a different dialect may be less effective than a locally recorded 

call (Marsh et al., 1991).  

 

The calls of birds of prey or imitations are sometimes used to scare birds. There is little 

evidence in peer-reviewed literature that such sounds are effective. In fact, many predators 

do not call when they hunt, as it would make little sense for them to call out and warn 

potential prey. In cage tests, Yokoyama and Nakamura (1993) found that for young tree 

sparrows (Passer montanus), the sound produced by a paper flag was significantly (P < 

0.05) more aversive than a broadcast distress call of their own species. The distress calls 

were also subject to rapid habituation. 

 

Bird vocalisations, including alarm and distress calls, are extremely intricate. Birds are 

more likely to accurately interpret pre-recorded amplified sounds when high-quality 

recording, amplifying and broadcasting equipment is used (Aubin, 1990; Marsh et al., 

1991). In addition, if calls are recorded, digitised, stored on a computer chip and then 

amplified through speakers, there may be a marked reduction in the aversive stimuli 

contained in the calls. It is possible that such bioacoustic sounds represent little more than 

something new and unusual in the birds’ environment, and different devices simply present 

different sounds.  

 

It is possible that ‘communication jamming’ occurs when sounds with a similar frequency 

range to birds’ communication calls are broadcast (Rooke, 1983). This supposedly inhibits 

some flock-feeding birds such as silvereyes from hearing each other so they become 

confused. Some devices are designed to produce sounds that irritate, rather than scare or 

distress, to limit habituation. However, this has not been investigated. 

 

Ultrasound is very high frequency sound above the range of human hearing (greater than or 

equal to 20 kilohertz). Most bird species cannot hear ultrasound, or they can hear only the 

lower frequencies (Beuter and Weiss, 1986; Marsh et al., 1991). Even for birds that can 

hear ultrasound, there is no reason for it to be more effective for scaring than audible 

sound. Despite anecdotal user testimonials and unsubstantiated claims from advertisers, 

manufacturers and distributors, no scientific field experiments have indicated that 

ultrasound is of value for reducing bird damage to crops. In fact, experiments have shown 
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that ultrasonic devices are ineffective (Bomford, 1990a; Bomford and O'Brien, 1990; 

Erickson et al., 1992; Haag-Wackernagel, 2000). 

 

Few reliable scientific experiments have been conducted on the value of acoustic devices 

for reducing bird damage to crops. However, on the basis of reviews of the world literature 

on this topic, Bomford and O’Brien (1990) and Bishop et al., (2003) drew some 

generalisations about scaring with sound.  

They suggest that the best effect is obtained when:  

• the sound is presented at random intervals;  

• a range of different sounds is used;  

• sounds are broadcast for the minimum time needed to get a response;  

• the sound source is moved frequently;  

• the sound is supported by other control methods; and  

• the sound is reinforced by real danger, for example, shooting.  

 

Bomford and O’Brien (1990) and Bishop et al., (2003) also suggest that:  

• loud sounds are more aversive than quiet sounds (if the frequencies are within the 

birds’ hearing range);  

• sounds with a wide frequency range are more aversive than pure tones;  

• loud sounds produced by simple, inexpensive methods can be as effective as 

sounds produced by expensive devices;  

• adult birds are more easily scared than juveniles;  

• hunted species take longer to habituate to bangs;  

• broadcast alarm and distress calls can be effective but are subject to habituation and 

are often species-specific; and  

• all species eventually habituate to nearly all sounds tested.  

Combining visual and acoustic scaring methods  

The best results are likely to be obtained if different control methods are combined to 

prevent habituation (Bishop et al., 2003). For example, distress calls can attract birds 

(Conover, 1994a) and starlings and American crows habituated less to plastic owl models 

when they appeared to be grasping a struggling bird (Conover and Perito, 1981; Conover, 

1985a). Nakamura (1997) found that playbacks of taped calls of jungle crows (Corvus 
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macrorhynchos) were largely ineffective for scaring rufous turtle doves (Streptopelia 

orientalis), as was the presentation of a stuffed jungle crow. However, the combined 

stimuli of a stuffed crow with a crow call were highly effective and were resilient to 

habituation in the three successive trials conducted.  

 

Cummings et al., (1986) evaluated a mechanical, gas-operated, pop-up, life-size, human 

scarecrow model coupled with a propane exploder for reducing red-winged blackbird 

damage to sunflower crops. The device was set so that the exploder went off 15 to 30 

seconds after the scarecrow popped up (Cummings et al., 1986). In three fields, damage 

was reduced by an average of 84% in the first five-day treatment period and by 59% in a 

subsequent five-day treatment period. In two other fields near roost sites where red-winged 

blackbirds were well established, damage was reduced by only 8% and 31%. Cummings et 

al., (1986) concluded that the scarecrow-exploder device would be economically 

worthwhile for crops in which damage levels exceeded 18%, which was about 1.2% of 

crops.  

Scaring with aircraft 

The use of model aircraft, ultralights or full-sized aircraft to chase birds from crops is an 

example of combining visual and auditory stimuli. Garrity and Pearce (1973) found that 

model airplanes controlled by skilled operators reduced the numbers of robins in blueberry 

fields, but they also achieved only partial coverage of the crop at risk. The robins resumed 

feeding during refuelling and soon after flights ceased. 

Birds of prey 

Falconry or ways of attracting true predatory species to remain close to a crop is often the 

subject of inquiry. Trained falcons and hawks are sometimes used to keep birds away from 

overseas airports (Erickson et al., 1990). However, the efficacy of this has rarely been 

evaluated. In one study, trained falcons used at O’Hare International Airport to keep birds 

away from the runways were not as cost effective as two men with shotguns (Dolbeer, 

2003). Previous attempts to use falconry to protect agricultural crops have mostly been 

unsuccessful.  

 

In North America, artificial perches and nest boxes were provided in orchards in an 

unsuccessful attempt to attract birds of prey to reduce vole populations (Askham, 1990). 
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To attract birds of prey to vineyards, Howard et al., (1985) hung live decoy prey birds in 

cages from artificial perches. Hawks attacked the caged birds, but nearby feeding birds 

simply moved a short distance to other sections of the vineyards and grape damage was not 

reduced. Perches placed around the perimeter of irrigated soybean crops to enhance house 

mouse predation significantly (P < 0.001) increased the number of diurnal raptors visiting 

and hunting over these crops, compared with untreated crops (Kay et al., 1994).  

 

Encouraging raptors to specific areas is problematic, as different species occupy different 

ecological niches. For example, sparrowhawks and goshawks (Accipiter spp.) prefer 

hunting amongst trees and tall shrubs to surprise prey. Conversely, most falcons prefer 

open country, and Australian hobbies prefer lightly timbered country along watercourses 

(Marchant and Higgins, 1993). The most effective predators of adult pest birds are also 

unlikely to be attracted by carrion or other food sources. Species most likely to be attracted 

to carrion (such as wedge-tailed eagles, Aquila audax, little eagles, Hieraaetus 

morphnoides, and whistling kites, Milvus sphenurus, do not normally hunt birds in flight. 

Some studies have shown that providing perches increases the numbers of birds of prey 

(Kay et al., 1994). However, this has not yet been demonstrated to reduce the number of 

pest birds or the damage they cause.  

2.3.2 Population reduction  

Most attempts to reduce damage by reducing pest bird populations have been in-effective 

(Dyer and Ward, 1977; Feare et al., 1988; Feare, 1991). To attempt long-term population 

control for any species, a good understanding of their population dynamics (Murton, 1968; 

Dolbeer, 1998) and the subsequent effects on the environment is essential. In many 

circumstances it is not uncommon for up to 65% of young birds born each year to die 

before they are one year old (Feare, 1984). 

 

Lethal control is often ineffective for species with high reproductive capacity and high 

rates of annual mortality. For example in Belgium, seven years of substantial effort using 

explosives resulted in almost 750,000 starlings being killed at their roosts in an attempt to 

reduce damage to cherry orchards (Tahon, 1980). However, because of high immigration 

and recruitment rates this had little medium- or long-term influence on starling populations 

or crop damage. 
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For pest birds with high reproductive rates, control during breeding may be more effective 

than control at other times of the year (Paton et al., 2005). This may be the case for 

starlings, because large numbers of juveniles congregate after breeding (Feare, 1984), 

which coincides with the grape-ripening season. However, for birds with low reproductive 

potential, lethal control can be up to six times more efficient than reproductive control 

(Dolbeer, 1998). Hence population dynamics and targeting of the timing of control are 

important considerations. 

 

Feare (1991) suggests that there are two fundamental reasons why attempts to reduce pest 

bird populations over broad areas have failed. First, most pests have a wide geographical 

range and much of the population is inaccessible to control operations. Second, control 

attempts can be counteracted by compensatory increases in breeding and survival. There 

are many examples where population control has not been successful for these reasons. 

Some examples are the aerial application of organophosphate for controlling quelea 

(Quelea quelea) in Africa (Ward, 1979); shooting wood-pigeons (Columba palumbus) to 

reduce damage to grain and clover in Cambridgeshire, United Kingdom (Murton et al., 

1974); application of the surfactant PA-14 to large roosts of common grackles (Quiscalus 

quiscula), red-winged blackbirds and starlings to reduce agricultural damage in Tennessee, 

North America (White et al., 1985); and the use of explosives to control starlings at roosts 

to reduce damage to cherries in Belgium (Tahon, 1980). However, when dealing with a 

small, isolated population where immigration is preventable, a substantial reduction in 

numbers may be achievable (Feare 1991; Dolbeer 1998).  

 

Short-term population reduction, such as concentrated efforts in small areas during critical 

ripening periods just before crop damage occurs, may be effective. Ward (1979) proposed 

that an ‘immediate crop protection’ strategy for quelea around cereal crops would be 

preferable than the previous ‘total reduction strategy’. This was proposed after an 

estimated one billion quelea were killed annually by aerial spraying with avicides, with no 

indication of long-term reductions in population levels or damage. No published evidence 

could be found showing either short-term or long-term population reduction leading to 

reduced crop damage.  

 

While shooting is commonly used (Fleming et al., 1990b), few studies have evaluated its 

efficacy. For example, studies of wood pigeons and damage to brassica crops showed that 
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an intensive shooting campaign in the experimental area did not result in less damage than 

at control sites (Murton and Jones, 1973). Further, studies showed that shooting did not 

increase the winter mortality of wood pigeons above the level experienced in the absence 

of shooting Murton 1974 (Murton et al., 1974). 

 

Many devices have been used over the centuries to trap or snare live birds (MacPherson, 

1897; McClure, 1984; Bub, 1995). Traps have allowed the capture of birds for many 

purposes including harvesting (Dei, 1989), control and management of localised (Conover 

and Dolbeer, 2007; Tracey et al., 2008b) or establishing (Campbell et al., 2012) pest 

populations, research, banding and monitoring (Lowe, 1989; Dieter et al., 2009; Krementz 

et al., 2011) and for disease surveillance (Tracey, 2010). 

 

On the basis of a nationwide questionnaire conducted in the USA, Gorenzel et al., (2000) 

reviewed trapping for pest bird control. Most respondents (57%) considered that trapping 

was not important overall for bird control in crops. However, in California, some 

respondents thought trapping was important for control of starlings and house finches in 

grapes. Gorenzel et al., (2000) found no rigorous evaluations of the effectiveness of 

trapping or the factors influencing results. Most evaluations of trapping put an emphasis on 

the numbers of birds caught rather than on damage levels in relation to the cost of control.  

The most common trapping mistakes listed by respondents were failure to conduct 

adequate free-feeding and poor trap placement (Gorenzel et al., 2000). Free-feeding (also 

called pre-baiting or pre-feeding) is where bait is placed out for several days before traps 

are activated. Poor trap placement was probably due to inadequate observations of flight 

paths and roosting and feeding areas. Failure to use decoy or call birds in traps can also 

influence their effectiveness (Williams and Schwab, 1974). 

 

A trap that has been used with some success on a variety of bird species is the modified 

Australian crow (MAC) trap (Elliott, 1964; Larsen and Mott, 1970; Moran, 1991; Moran et 

al., 2004; Conover and Dolbeer, 2007). This design was first developed to capture crows 

(Woodbury, 1961). The V-shaped entrances of this trap can be adjusted for different 

species (Gadd, 1996).  

 

A variety of single-catch nest box traps have been used to capture hole-nesting species 

(DeHaven and Guarino, 1969; Stewart, 1971; Blums et al., 2000). Dehaven and Guarino 
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(1969) used a spring-loaded trap door that closed over the entrance of the nest box when 

triggered by a treadle inside the box. More sophisticated designs use electronics for 

monitoring captures (Stewart 1971). Stewart (1973) operated a single nest box trap during 

a 124-day period and captured 56 starlings. Knittle and Guarino (1976) used 26 nest box 

traps in approximately 80 hectares (200 acres) and captured 294 starlings in 57 days. On 

the basis of the reproductive capacity for the area (Dehaven and Guarino, 1970), they 

concluded that this achieved an overall reduction of about 959 birds from the post-breeding 

population (Knittle and Guarino, 1976). They also suggested that a multi-catch design 

would greatly improve the efficiency of catching starlings and may be of benefit for small 

fruit orchards.  

Poisoning 

The main limitations with avicides are illegal poisoning (Du Guesclin et al., 1983); 

community resistance to their use; their impacts on non-target species; animal welfare 

concerns; and (depending on the poison used) their residual or secondary effects in the 

food chain. Ensuring adequate free-feeding is the most effective way to reduce bait-

shyness (Nelson, 1994) and limit non-target effects. 

 

A range of poisons has been used to kill birds. They include organophosphates (Ridpath et 

al., 1961), endrin (Stickel et al., 1979), 1080 (Balcomb et al., 1983), nicotine (Ridpath et 

al., 1961), strychnine (Long and Vagg, 1960; Ochs, 1976; Redig et al., 1982), PA-14 

(Heisterberg et al., 1987) and brodifacoum (Godfrey, 1986; Porter, 1996). Poisons 

currently registered for pest bird control overseas (DRC-1339) or in Australia (4-

aminopyridine, alpha-chloralose and fenthion) are discussed in more detail below. 

 

Most of the avicides discussed in this section have not been demonstrated to effectively 

reduce damage caused by pest birds. There are also animal welfare and target specificity 

concerns associated with many avicides, and there has been little assessment of their 

potential non-target effects on Australian species.  

DRC-1339  

DRC-1339 (3-chloro-4-methylaniline hydro chloride, Flockoff® or Starlicide®) is a 

poison that affects renal function in birds. It is currently not registered for use in Australia. 

This poison was identified by the Denver Research Centre (DRC) after evaluating more 



2. A review of methods to measure and manage pest bird impacts  

29 

than 2000 chemicals for pest bird control between the 1940s and the 1980s (Spurr, 2002). 

In North America and New Zealand it has been used for over 30 years (Bull, 1965; Besser 

et al., 1967), and it is currently applied to cereals, cereal pellets, bread and dripping, and 

sultanas for controlling starlings, red-winged blackbirds, crows, ravens and gulls. 

 

In New Zealand it has been used for many years to control rooks. Initially, ground baiting 

of rooks was conducted using bread and dripping at carefully selected times of the year 

when their preferred foods were lacking. These control operations were very successful in 

terms of numbers of birds killed (over 86,000 were killed in the first 15 years) (Porter, 

1987). More recently, a jellied form of DRC-1339 has been applied to the edges of nests by 

an operator hanging from a helicopter (Porter et al., 2008). 

 

DRC-1339 is unique among avicides, as it has selective toxicity for different bird species. 

Many species that are regarded as pests, including starlings, pigeons, gulls, crows and 

ravens, are highly sensitive (United States Department of Agriculture, 2001; Eisemann et 

al., 2003). Conversely, DRC-1339 has been shown to have low toxicity to most mammals 

(except cats) and many bird species native to North America (Eisemann et al., 2003). Of 

the 55 bird species tested, two are native to Australia: the budgerigar (Melopsittacus 

undulatus) and the barn owl (Tyto alba). As this toxin is metabolised rapidly there is 

minimal risk of secondary exposure. The mode of action is irreversible kidney and heart 

damage, which causes death three to 50 hours after ingestion (United States Environmental 

Protection Agency 1995 (United States Environmental Protection Agency, 1995). 

Aminopyridine  

Aminopyridine (also called 4-aminopyridine or Scatterbird®) has effects similar to those 

of central nervous system stimulants. When birds consume treated grain, it causes them to 

behave erratically and to give off distress calls before death (Goodhue and Baumgartner, 

1965; Gadd, 1992). This may frighten away nearby birds or cause them to mob the affected 

bird. Hence this chemical is also considered a secondary chemical repellent. There are 

animal welfare, social perception, target specificity and human safety concerns about the 

use of this chemical, and it is unlikely to gain registration in other States and Territories.  

Alpha-chloralose  
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Alpha-chloralose (or α-chloralose) is a chloral derivative of glucose that acts as a soporific 

or narcotic by depressing the cortical centres of the brain. As a soporific it is the most 

humane of the avicides. Alpha-chloralose can be mixed with grain bait at a concentration 

of around 2% and offered to birds after a period of free-feeding (Nelson 1994). 

Alternatively it can be added to drinking water. Care needs to be exercised with the use of 

alpha-chloralose to avoid bait shyness. An advantage of alpha-chloralose, particularly 

where non-target species may be at risk, is that the dose can be reduced so that birds are 

immobilised and not killed. Non-target species can be revived and released and target birds 

can be killed humanely. The dose rate that causes mortality varies with the species, the size 

of the bird, and the ambient temperature. Higher mortality is evident in smaller birds and at 

low (< 12 °C) or high (> 30 °C) air temperatures.  

 

The main use of alpha-chloralose is for controlling feral pigeons around buildings. It has 

also been useful for removing small or establishing populations of sparrows, starlings, 

mynas and crows. When used for bird control, alpha-chloralose usually kills few 

individuals but causes the bulk of the population to disperse, and this may last long enough 

for a crop to ripen. Hence, it may be considered to act more as a chemical repellent than as 

a poison. However, non-target species may be at risk. Sinclair and Cerchez (1992) trialled 

alpha-chloralose on sparrows in apricot and grape crops and on starlings in a cattle feedlot. 

With sparrows, they found that 0.5% weight/weight alpha-chloralose on mixed canary seed 

resulted in variable mortality rates between trials. However, the baiting caused dispersal of 

local flocks away from the crops. The dispersal lasted up to 90 days, which was long 

enough for the crops to be harvested (Sinclair and Cerchez, 1992). At the cattle feedlot, 

starlings were successfully dispersed using 1.5% weight/volume alpha-chloralose in water 

or 1.5% weight/weight alpha-chloralose in cattle feed placed outside but adjacent to the 

feedlot troughs where the birds were foraging on split food.  

Fenthion methyl  

Fenthion methyl (commercial names include Control-a-Bird®, Rid-a-Bird®, Avigel® and 

Avigrease®) is an organophosphate that acts as a cholinesterase inhibitor and neurotoxin. 

The chemical is usually mixed in a special grease or gel for surface application inside 

buildings and on structures such as bridges and steel girders. Birds get the grease on their 

feet and the poison is absorbed through the skin. The chemical is rapidly metabolised in 

birds, thus reducing the risk of secondary poisoning. Non-target species may succumb to 
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primary poisoning if they consume the feet or beaks of birds poisoned by the grease (Hunt 

et al., 1991, 1992). This chemical is not available as an oral toxin, and its use has non-

target (Bruggers et al., 1989), welfare (Spurr, 2002) and human health (Jeremiah and 

Parker, 1985) concerns. Because of these issues, it is unsuitable for protecting horticultural 

crops.  

Chemical fertility control  

A number of chemical products cause infertility in birds when added to their food. 

Reproduction is also prevented when chemicals or oils are sprayed on their eggs. No 

published evidence could be found demonstrating that fertility control chemicals can 

reduce pest bird damage to crops. A drawback of many fertility control agents is that they 

require several doses. There is little information about the effects of these products on 

offspring that do hatch but may have received a partial dose. Oestrogen-based products are 

likely to affect the fertility and sexual development of any non-target species taking bait. 

 

Bomford (1990b) reviewed chemical fertility control techniques and assessed the potential 

value of several chemicals that reduce fertility in birds, including the following:  

Mestranol  

Mestranol (17-ethynyl-3-methyl ether) is an orally active oestrogen. In a cage trial, 

spraying the eggs of Japanese quail (Coturnix coturnix) with mestranol increased embryo 

and chick mortality, and made all quail that hatched irreversibly sterile (Wentworth et al., 

1968). Force-feeding mestranol-impregnated grit to adult quail reduced their fertility, but 

this was not developed as a technique suitable for use on wild birds (Wentworth et al., 

1968).  

BDH 10131  

BDH 10131 (the 3-cyclopentyl ether of 17αhexa-1′,3′diynyloestra-1,3,5(10)-trien-17β-ol) 

is a synthetic oestrogen that was investigated as an alternative to mestranol or quinoestrol 

because it was shown to be active for a longer period in laboratory rats (Kendle et al., 

1973). In laboratory trials on birds, Kendle et al., (1973) fed BDH 10131 to caged pigeons 

(Columba livia) for two days and found that fertile egg production dropped to less than 

20% of that in untreated birds.  
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Ornitrol®  

Ornitrol® (20, 25-diazocholesterol hydrochloride) is a steroid that is a long-acting inhibitor 

of ovulation in many bird species and also inhibits testicular growth. When added to food 

at 0.1% it has been shown to delay or reduce egg production in caged and wild pigeons for 

up to six months (Elder, 1964; Wofford and Elder, 1967; Woulfe, 1968). At this 

concentration it took seven days for birds to ingest an adequate dose, but at a 1% 

concentration the birds refused to consume enough grain to be effective. Higher doses can 

also be toxic to birds (Lofts et al., 1968), and the signs described could have welfare 

implications. Wofford and Elder (1967) concluded that two treatments a year at 0.1% 

would control fertility if both treatments were timed to coincide with the breeding season.  

Ornitrol® at 0.1% or 0.05% on grain fed to field populations of red-winged blackbirds had 

variable success, reducing hatch success by between 7% and 61% in various trials (Fringer 

and Granett, 1970). Timing of baiting, variable uptake of bait and promiscuity were 

proposed as factors reducing success rates. Canary seed impregnated with Ornitrol® at 

0.1% and fed to captive sparrows resulted in 0% hatch success compared with 64% in a 

control group (Mitchell et al., 1979). This effect is not permanent, as a fertile egg was 

produced about a week after treatment ceased. Within a month hatch success was similar to 

that in the control group.  

Triethylenemelamine  

Triethylenemelamine (TEM) (2,4,6-tris(ethyle– nimino)-s-triazine) arrests spermatogenesis 

through inhibition of meiosis. Vandenbergh and Davis (1962) field-tested TEM on a 

breeding population of red-winged blackbirds in a marsh for two years. In both years the 

hatch rate was significantly reduced relative to that at a control site. In contrast, Fringer 

and Granett (1970) and Guarino and Schafer (1974) field-tested TEM on territorial male 

red-winged blackbirds and found that it did not reduce breeding success. Davis (1961) 

found that caged starlings orally dosed with TEM in winter, when the testes were fully 

regressed, did not recover their fertility for several months. A small field trial of TEM on 

male starlings, which were captured, dosed with TEM and released, showed that their 

breeding success was reduced. However, the production of some fertile eggs in the 

territories of sterilised males indicated that their female partners were occasionally mating 

with other males.  
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ThioTEPA  

ThioTEPA is the abbreviation for triethyleneth iophosphoramide (tris (1-aziridinyl) 

phosphine sulfide). Potvin et al. (1982a, b) sterilised wild male red-winged blackbirds by 

feeding them thioTEPA-treated corn for ten days. The hatch rate was 46%, which was 

significantly lower than the average hatch rate of 85% in the control area. The fertility of 

some female partners of treated male red-winged blackbirds was suggested to have been a 

result of females copulating with males from other territories.  

Nicarbazin  

Nicarbazin (CH N O ), is a complex of two compounds, 4,4’-dinitrocarbanilide (DNC) and 

4,6-dimethyl-2-pyrimidinol (HDP). Nicarbazin is an oral contraceptive for birds and is 

registered by the United States Environmental Protection Agency for use against pest geese 

and pigeons. DNC is the active component but it is very poorly absorbed and requires HDP 

for absorption and to achieve a contraceptive blood level. Once absorbed, nicarbazin 

interferes with the formation of the vitelline membrane, separating the egg yolk and egg 

white. The effect on hatchability is a function of time and dose and is reversible. 

Nicarbazin must be consumed daily, consistently and in adequate quantity to achieve a 

contraceptive effect and a single or intermittent dose will not affect egg hatchability.  

 

Smaller birds, including passerines, have the most inefficient absorption of nicarbazin, 

requiring a higher bait concentration and dose (Avery et al., 2008). A pigeon requires a 

dose rate of 83 mg/kg bodyweight/day. Assuming similar values for passerines, a 150 gram 

passerine would need to consume 5 g of 0.25% nicarbazin bait/day to obtain the 

recommended dose for effective contraception. Many passerines might require even higher 

doses. Delivering such high, consistent daily doses throughout the breeding season would 

be difficult for most birds that damage horticulture.  

Egg oils  

Vegetable and mineral oils can be used to prevent hatching when the oils are applied 

directly to eggs in the nest. An advantage of applying oils, rather than destroying eggs or 

nests, is that birds may continue incubating, in some cases beyond the normal time for 

hatching (Christens and Blokpoel 1991; Cummings et al., 1997). For many bird species re-

nesting is common after nests and eggs are destroyed. Vegetable and mineral oils prevent 

the hatching of 96% to 100% of the eggs of chickens (Gallus gallus), ring-billed gulls 
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(Larus delawarensis), herring gulls (Larus argentatus) and Canada geese (Branta 

canadensis) (Blokpoel and Hamilton, 1989; Christens and Blokpoel, 1991; Baker et al., 

1993; Christens et al., 1995; Cummings et al., 1997; Pochop et al., 1998a; Pochop et al., 

1998b). 

 

A study comparing mineral oil with commercially available oils (including castor, corn, 

linseed, safflower and soybean) found that they were equally effective (Pochop et al., 

1998a). Preventing the hatching of eggs by using oils is effective, but may have a high 

labour cost due to the inaccessibility of many bird nests. Therefore this technique may only 

be useful for small or isolated pest populations (Miller, 2002). There may be an application 

for reducing small urban populations of pest birds with extended breeding seasons, such as 

ibis (Threskiornithidae) (Martin and Dawes, 2005). 

2.3.3 Habitat management and decoy feeding  

With increasing regulatory and social restrictions on killing birds or using noisy scaring 

devices, there is greater interest in manipulating habitat quality as an alternative means of 

reducing bird damage (Van Vuren, 1998). A number of approaches (reviewed by Bishop et 

al., 2003) can be applied. Habitat quality can be reduced so that fewer resources are 

available for a pest species and their numbers decline, or the crop can be made less 

attractive to pests. Alternatively, pest birds can be lured away from an area by providing 

more attractive habitats or food elsewhere.  

Reducing habitat quality 

St John (1991) found that modifying access to food and water reduced the number of little 

corellas roosting in river red gums (Eucalyptus camaldulensis), and alleviated damage. 

Experimental trimming of roost trees in Houston, Texas to reduce the urban impacts of 

brown-headed cowbirds (Molothrus ater), starlings, grackles (Quiscalus quiscula and 

Cassidix mexicanus), red-winged blackbirds and American robins was effective in 

preventing roosting (Good and Johnson, 1976, 1978). Trimming consisted of removing 

one-third of the canopy; this is considered a ‘heavy’ trim by professional tree surgeons. 

Stands of pruned trees were not occupied, whereas trees that were not pruned were 

occupied to the same level as in previous seasons (Good and Johnson 1976, 1978). 

Removing nearby food sources may also reduce damage on a local scale. For example, 
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removing blackberry bushes that are exploited by starlings, rosellas and silvereyes may 

help reduce damage to nearby fruit.  

 

Some bird problems can be reduced by decreasing the attractiveness of sites. For 

horticulture, the varieties of fruit grown can be important with respect to both time of 

maturity, sugar content and type, fruit size, colour and texture. Depending on the main 

species of pest birds in an area, some varieties of fruit may be less prone to damage. For 

example, the fruit of some olive varieties may be too small or too large to suffer high levels 

of bird damage from particular species (Mladovan, 1998; Spennemann and Allen, 2000). 

Growers may be able to avoid growing varieties most prone to damage from information 

obtained from established growers in an area.  

 

There is a range of factors that influence the severity of bird impacts. These factors may 

provide opportunities for reducing bird problems. For example, the only crop in an area or 

the first (Baker, 1980a,b) or last crop in a district to have fruit maturing are more likely to 

sustain bird damage. Orchard location can be important. For example, proximity of the 

orchard to either native vegetation, windbreaks consisting of exotic species, or powerlines 

may increase fruit losses caused by some species (Stevenson and Virgo, 1971; Graham, 

1996). Land use around an orchard will also be important, as it will influence the 

availability of alternative foods. For example, there may be an association between 

livestock and starlings, as these birds regularly feed on ground-dwelling insects and 

grazing makes these insects more accessible to the birds. Isolated orchards tend to suffer 

more damage than those surrounded by other orchards producing similar fruit. 

 

The pasture sward in an orchard and the surrounding area may influence damage levels. 

When planted in an adjacent field it may offer an alternative (decoy) food that helps to 

attract the birds away from the fruit. Conversely, pasture within orchard rows may provide 

food that attracts birds, and when the crop ripens it becomes an additional food item for 

birds. For example, in New Zealand, orchards that have a sward of grass that seeds in late 

winter or early spring attract birds such as sparrows and greenfinches (Carduelis chloris), 

and these species will nip the fruiting buds of apples and pears, causing losses as high as 

90% (Richard Porter, Havelock North, New Zealand, pers. comm. 2005). Regular 

management and maintenance of pasture swards between rows can reduce the alternative 

food for some pest species.  
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Depending on the grass species and height, the pasture sward can either increase or 

decrease the abundance or availability of certain insects, and this in turn may influence 

bird damage in different ways. For example, starlings prefer short (Whitehead et al., 1995) 

and freshly mown (Tinbergen, 1981) grass where insects are more accessible. Woronecki 

et al. (1981) and Woronecki and Dolbeer (1980) found a strong and consistent relationship 

between reduced insect populations and reduced corn damage by red-winged blackbirds in 

Ohio. Conversely, in New York, reduced damage by the same bird species in corn was 

found to be related to increases in insect populations (Bollinger and Caslick, 1985b).  

 

It is important to observe the birds responsible for crop damage and their behaviour 

patterns. Forde (1989) recommended planting rows of alternative food such as sudax grass 

to reduce damage to fruit by regent parrots (Polytelis anthopeplus) and yellow rosellas 

(Platycercus elegans flaveolus) because he observed that the birds preferred sudax seed to 

other native seeds, commercial seeds, fruit or nuts. Reynolds (2003) observed Adelaide 

rosellas foraging on soursob bulbs (Oxalis pescaprae) in cherry orchards and showed that 

the birds could be attracted to feed plots where the bulbs had been made available by light 

cultivation. He concluded that a number of weed or pasture species could be similarly 

manipulated to act as decoy foods but suggested that measures encouraging birds to feed 

elsewhere should be counter-balanced by an integrated approach, discouraging them from 

feeding in the susceptible crop. 

Decoy food 

Growing decoy crops has been successfully used to reduce bird damage to sunflower crops 

(Broome, 1979; Allen, 1982, 1984; Cummings et al., 1987). Providing alternative food 

sources for horticulture requires careful consideration of the pest species and their 

preferences and feeding behaviour.  

 

A decoy crop needs to be at a stage of maturity where birds will feed on it just before the 

grower’s commercial crop becomes vulnerable to attack, so that the birds’ feeding patterns 

are established on the decoy food. Scaring can be used in conjunction with decoy feeding 

and should be concentrated around the orchard and kept well away from the decoy site. It 

may take more than one season to develop established feeding patterns on a particular 

decoy site. If decoy food (rather than a decoy crop) is supplied, it must be highly palatable 
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and at least as nutritious as the commercial crop, otherwise there is little reason for birds to 

be attracted to it.  

 

The strong attraction starlings have for soil insects may offer an opportunity to exploit a 

particular feature of a pest species’ diet by using a ‘decoy feeding’ strategy. When fruit 

matures in late summer or autumn, soil insects are often largely inaccessible to starlings 

because the soil is dry and hard. Keeping an area of ground moist may improve access to 

soil insects, the preferred food source. However, this strategy has not yet been proven to 

reduce fruit losses, and omnivorous birds may still consume fruit preferentially when it is 

available.  

Native vegetation  

Native flowering plants can be planted to act as decoy food sources for native honeyeaters. 

Increasing plant diversity and the extent of native vegetation on farmland is known to 

increase the diversity of birds, particularly native species (Green, 1986; MacDonald and 

Johnson, 1995). This leads to the perception that damage to fruit crops will be amplified 

with increased plantings of native vegetation. However, many pest birds, including crows, 

ravens, starlings, cockatoos and corellas, prefer open agricultural areas. Other species, such 

as blackbirds (Turdus merula) and mynas, thrive in urban environments. Pied currawongs 

(Strepera graculina) and noisy miners (Manorina melanocephala) thrive in fragmented 

habitats with little structural diversity. Increasing the extent of well-structured and diverse 

native vegetation may not increase the abundance of these species. The bird species, the 

plant species and their times of flowering, and the structure and extent of vegetation will 

determine whether plantings serve as decoy food sources or whether they attract more 

damaging species.  

 

Many birds, including honeyeaters and silvereyes, are attracted to nectar-producing trees 

and shrubs. They will preferentially feed on these plants rather than on fruit crops. When 

the surrounding vegetation produces good quality nectar, bird damage is often low. When 

investigating nectar flows in the Margaret River, Rooke (1983) found that higher average 

yield of honey per hive corresponded with lower damage by silvereyes to grapes. Bird 

damage was lowest during good nectar years, which coincided with warm springs and 

autumns and relatively cool periods during February and March. Further research 

suggested that silvereyes prefer alternatives to grapes, including sugar-water and plants 
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such as marri, seaberry saltbush (Rhagodia candolleana), nightshade (Solanum spp.), 

berries and figs. Research has also found that birds damaging grapes were usually in poor 

physical condition, possibly because of a lack of natural food sources. Rooke (1983) also 

discovered that providing additional food did not increase the number of silvereyes. 

 

Native flowering plants also attract insectivores, including many honeyeaters. These bird 

species may be beneficial in the vineyard throughout the year by controlling insect pests. 

Providing well-structured native vegetation can serve to provide shelter for insectivores, 

support bird diversity, and supply an effective decoy food source. Selecting the most 

appropriate plant species is crucial to ensure that the nectar source is acting as a diversion 

from the orchard rather than attracting more pest birds. Habitats with exotic flowering 

plants can be preferred by introduced bird species such as starlings and blackbirds (Turdus 

merula)  (Green, 1986; Williams and Karl, 1996; Kinross, 2000) and native frugivores 

(Recher and Lim, 1990) that damage fruit. Many birds beneficial in vineyards are absent 

from introduced vegetation such as pines. The absent species include specialist predators, 

Eucalyptus canopy feeders, obligate cavity-nesters and insectivores (Suckling et al., 1976). 

These species can control harmful insects or compete with, or prey on, pest birds. 

 

A balance of native shrubs and trees of varying heights is recommended for conservation 

and may reduce the numbers of pest birds. To avoid colonisation by aggressive edge-

specialist honeyeaters (for example, noisy miners), O’Neill (1999) suggests that 

revegetation should not include more than 20% of nectar-producing shrubs. Providing 

excess nectar in winter may also cause normally non-sedentary species, such as silvereyes 

or lorikeets, to overwinter in orchards. Plantings of marri, figs, banksia and seaberry 

saltbush are recommended to reduce silvereye damage to grapes in the south-west of 

Western Australia (Rooke 1983).  

 

An awareness of the main bird species in an area is important in deciding the most suitable 

plant species and where to plant them. Plantings should be located where they are most 

likely to attract birds and far enough away from the orchard to avoid damage. Ideal decoys 

for honeyeaters will be those plants that flower before a commercial crop becomes 

vulnerable to attack and that continue to produce nectar throughout the ripening period. 
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The flowering periods of decoy plantings and how this relates to the ripening times of the 

varieties present on the property need to be considered. Abundant nectar just before or 

after ripening can inadvertently result in increased damage. For example, large numbers of 

noisy friarbirds damaging vineyards in Orange, New South Wales, have been linked to 

heavy flowering of red stringybark (Eucalyptus macrorhyncha) in the same season (Tracey 

and Saunders, 2003). In that season, harvesting was delayed by adverse weather. Noisy 

friarbirds attracted to flowering red stringybark in the area, then switched to feeding on 

mature wine grapes after nectar loads were exhausted. Hence it is important to select decoy 

trees and shrubs that are productive for the whole period that crops are vulnerable to bird 

damage. For honeyeaters, the preferred species for decoy plantings include Eucalyptus 

spp., Melaleuca spp., Callistemon spp., Banksia spp. and Grevillea spp.. These plants may 

attract insectivores and serve as decoy food sources for native honeyeaters and silvereyes.  

In summary, the most appropriate plants to act as a decoy food source will depend upon; 

the pest bird species; the time of ripening for the varieties grown; climate; and soil type.  

 

Locally indigenous plant species are less likely to become weed problems and are more 

likely to be attractive to local bird species. The use of decoy plantings can be risky because 

of seasonal variations in the timing of flowering. This control technique should be used 

with caution and in conjunction with other control methods.  

2.3.4 Exclusion  

Netting  

Exclusion netting is widely used and is an effective way of reducing or preventing damage 

(Stucky, 1974; Foster, 1979; Fuller-Perrine and Tobin, 1993; Tracey and Vere, 2007). As 

bird damage is often variable and difficult to predict, one of the attractive features of 

exclusion netting is that it reduces uncertainty and the need to monitor the bird problem. 

Netting also overcomes increasing concerns about the use of chemicals, animal welfare 

issues, and restrictions on the use of acoustic devices under noise pollution control 

legislation.  

 

Netting is not the best solution in all situations. It is an acceptable solution when the 

benefits from excluding birds and not having to carry out any other bird control exceed the 

costs of netting. Permanent netting is unlikely to be an economic solution for low-value 
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crops or for crops that usually sustain only a low level of bird damage (Hector, 1989; 

Sinclair, 1990; Slack and Reilly, 1994). 

 

Drape-over or throw-over nets, although previously used mainly in home gardens and on 

small hobby farm tree crops, are now becoming increasingly common on commercial 

horticulture crops — particularly high-value grape and berry crops. They offer short-term 

protection over the ripening season. Drape-over nets are lightweight, relatively 

inexpensive, extruded or loosely knitted fabrics that are available in a variety of colours, 

mesh sizes and widths (Duffy, 2000). Laying nets over a crop and removing them for re-

use can be labour-intensive, but a number of labour saving methods have been developed 

(Fuller-Perrine and Tobin, 1993; Taber and Martin, 1998; Duffy, 2000) and are now 

commonly used. Because of the fixed cost of the equipment required to apply and remove 

nets efficiently, it is more economical to use drape-over nets on large or high-value crops 

where bird damage levels are generally high (Fuller-Perrine and Tobin, 1993). On small or 

low-value crops the value gained from avoiding the damage may not outweigh the cost of 

netting.  

 

Alternative drape-over netting options include one-, two- , four- or six-row netting or a 

‘lockout’ system, whereby nets are draped over orchard trees or vines and then joined 

together to create a complete cover. The ‘lockout’ method requires more labour but less 

material, as the netting does not drape to the ground on the inside rows of the block. When 

spraying for botrytis and other diseases or to reduce fruit splitting, some growers use small 

tractors to enable them to spray underneath the netting, particularly for ‘lock-out’ and 

multiple-row netting systems. Less netting is also required when covering multiple rows, 

rather than a single row, and this improves cost-effectiveness. 

 

Some growers construct lightweight total-exclusion netting systems, using second-hand 

water pipe for poles, star-droppers for anchors, and soft wire or baling twine to hold up 

low-cost, short-lived nets, such as fish gill nets. These systems have a high maintenance 

component and usually require replacing every one to three years. For crops that need only 

short-term protection, these lightweight systems may be appropriate if a low-cost source of 

labour is available for maintenance.  
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In Australia, permanent total exclusion systems are a popular form of bird exclusion for 

some tree crops. The basic design is simple, involving a pole and wire or cable structure 

supporting roof and side netting. Most structures now consist of panels of net that are 

individually erected, with each panel stretched tightly between wires joined at the 

selvedged edges. The perimeter poles are usually wood, although steel can be used. The 

structures are designed so that loads that develop on the structure from wind, rain, hail or 

snow are transferred back to the ground anchors guying back the perimeter poles.  

 

According to netting manufacturers, some black nets have life expectancies of over ten 

years, and white nets last five to eight years. The supporting structure should outlast 

several nets with minimal maintenance if it is well designed and erected. In New Zealand, 

some wire netting has lasted even longer (45 years) and is resistant to chewing and 

breaching by birds. 

 

Permanent netting may not be feasible for older established orchards or for crops planted 

on steeply sloping ground. Even where netting is technically feasible, it is a significant 

expense to purchase and erect. The most economical option is to incorporate the costs of 

design and erection of full netting into farm plans at the early establishment stage. There 

are considerable economies of scale as the area netted increases. An awareness of the main 

species responsible or potentially responsible for damage is necessary to determine the 

appropriate mesh size. Where bird damage is most severe around the edges of a vineyard, 

Taber and Martin (1998) suggest it may be worthwhile netting just the edges of a large 

crop. 

Effects of netting on production and management  

Netting can benefit fruit quality by reducing the prevalence of blemishes, sunburn and 

wind rub. Netting can, however, also increase the vigour of foliage and affect the size and 

colour of fruit by altering the microclimate. For example, hail netting, which has a much 

finer mesh (two millimetres) than that required for birds, reduces light levels by 20%–25% 

if black, 18% if grey and 12%–15% if white (Middleton and McWaters, 1996). Under hail 

netting, wind speed can also be reduced by up to 50% and humidity can increase by more 

than 50%. Despite a perceived change in temperature under nets, netting has little or no 

effect on temperature and does not offer frost protection (Middleton and McWaters, 1996).  
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Altered conditions under netting are likely to necessitate changes to management practices 

to ensure maximum productivity. Changes in the choice of rootstock and in pruning and 

irrigation practices may need to be considered, especially in the case of vigorously growing 

varieties. Disease management may also require further consideration in cooler climates, 

for slow-ripening varieties, and in disease-prone regions.  

 

In Middleton and McWalter’s (1996) study of the effects of hail netting in apple orchards 

in Stanthorpe (Queensland), Orange (New South Wales), and Drouin (Victoria), less fruit 

was produced under netting. Reductions in fruit set were not large and were beneficial in 

this study, as less thinning was required. Reduced fruit size and increased shoot growth 

occurred on vigorous trees under netting. The effects on fruit colour depend on the variety 

and fruit position. Pollination may also be affected by netting; fewer bees are observed on 

trees under black netting than on uncovered trees (Middleton and McWaters, 1996). 

Exclusion of insects has also been considered a benefit in orchards, for example by 

limiting fruit-fly damage to stone fruit (Lloyd et al., 2005). Placing beehives in the netted 

areas may overcome poor pollination. 

 

For low-chill stone fruits, exclusion netting (hail net of two millimetres hole diameter) was 

found to enhance fruit development by seven to ten days and to improve fruit quality by 

increasing sugar concentration by 20%–30% and increasing colour intensity by 20% 

(Lloyd et al., 2005).  

Other methods of exclusion 

Attempts have been made to protect crops by using monofilament lines strung over crops. 

Knight (2000) found that birds were repelled about 25 centimetres from filament erected 

like a tepee over fruit trees. However, a field experiment to test monofilament lines placed 

at 30-centimetre intervals over a grape crop showed that they were ineffective in 

preventing damage by starlings and other species (Steinegger et al., 1991). There are also 

welfare concerns with monofilament lines, as injuries to birds can occur. 

 

In a field experiment, Chambers (1993) demonstrated that covering individual table grape 

bunches with polyester sleeves significantly (P < 0.05) reduced the damage caused by 

Cape sparrows (Passer melanurus). The polyester sleeves did not reduce grape quality or 

yield. The obvious disadvantage of this approach is that it is labour-intensive and hence 
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costly. Although damage was reduced to almost negligible levels in this experiment, not all 

bunches were covered, so the birds had access to uncovered grapes. It is possible that if all 

bunches were covered the birds would have pecked through the sleeves, as occurred in one 

instance.  

2.3.5 Chemical repellents  

Chemical repellents (or deterrents) are aversive substances that are usually sprayed onto 

crops because their taste, smell, colour or physiological effect makes the treated fruit 

unattractive to birds (Mason and Clark, 1997). Many chemicals used or tested as bird 

repellents were originally registered as agricultural products such as insecticides or 

fungicides (Clark, 1998). Currently there are few available chemical repellents that can be 

use to prevent loss of fruit caused by birds. One limitation is that chemical repellents can 

leave residues in fruit that make them unsuitable for human consumption (Porter et al., 

1996b). In addition, some chemical repellents are phytotoxic and damage sprayed plants. A 

further problem is the small size of the market for such chemicals. The cost of obtaining 

and keeping registration of agricultural chemicals has meant that neither industry nor 

government is prepared invest in minor-use chemicals such as bird repellents.  

Primary repellents 

Primary bird repellents are agents that produce an immediate avoidance response by birds 

because of their unpleasant smell or taste, or because they cause irritation or pain (Clark 

1998). Considerable work has been conducted in the United States in the last 20 years on 

primary chemical repellents to protect agricultural crops from birds (Avery, 1992; 

Cummings et al., 1994; Curtis et al., 1994; Cummings et al., 1995; Avery et al., 1996b; 

Watkins, 1996; Watkins et al., 1996; Cummings et al., 1998a; Cummings et al., 1998b; 

Dolbeer et al., 1998; Gill et al., 1999; Askham, 2000). Much of this work has focused on 

methyl anthranilate, a human food-flavouring additive that occurs naturally in many plants. 

This work showed that some formulations of methyl anthranilate are effective in reducing 

bird damage to some horticultural crops, but that their effectiveness is variable.  

 

In Australia, Sinclair and Campbell (1995) conducted cage trials testing the repellency of 

methyl anthranilate on four species of pest bird: the Adelaide rosella, silvereye, little 

corella and starling. They found that when alternative food was provided methyl 

anthranilate was highly repellent to all four species. However, field trials with the chemical 
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on apricots, grapes, cherries, and apples did not demonstrate effective repellency at 

application rates that were not phytotoxic (Sinclair and Campbell, unpublished). Staples et 

al. (1998) found that the chemical was phytotoxic to rice seeds and seedlings and also 

warned of its potential toxicity to marine animals if the chemical was applied in marine 

environments. 

 

Naphthalene and capsaicin, although marketed in the United States as bird repellents, have 

not been shown to be effective in deterring birds (Dolbeer et al., 1988; Mason et al., 1991a; 

Clark, 1997). Mint derivatives (Avery et al., 1996a) and caffeine (Avery et al., 2005b) are 

other repellents that have undergone preliminary testing. However, field investigations 

have not been conducted. 

 

Secondary repellents  

Secondary repellents work by making birds feel ill, so that they subsequently develop a 

conditioned aversion to the food to which the repellents have been applied (Clark 1998). 

Methiocarb (Mesurol-75®) is a carbamate insecticide that is also used as a snail and slug 

poison. It acts by inhibiting the activity of acetylcholinesterase, an enzyme that catalyses 

the breakdown of the neurotransmitter acetylcholine. In the 1970s methiocarb was trialled 

in Australia as a bird repellent. It provided good protection against blackbird and silvereye 

damage over two seasons in trials in the Riverland region of South Australia, with the yield 

harvested from treated areas being almost double that of untreated areas (Bailey and Smith, 

1979).  

 

Porter (1982) compared the effectiveness of methiocarb and netting individual trees to 

protect sweet cherries from exotic bird species in New Zealand. The pest species present 

were mynas, starlings, blackbirds and song thrushes. Spraying with methiocarb 

significantly (P < 0.001) reduced damage: sprayed trees lost 10% of their fruit to birds, 

whereas unsprayed trees lost 80%. Sprayed and netted trees lost only 2% of their fruit to 

birds. Over a 12-year repayment period, spraying alone, without the high cost of netting 

trees, gave better financial returns. Methiocarb residues on the fruit were reduced by 50% 

(to within the New Zealand Agricultural Chemical Board limit of seven parts per million) 

after the fruit had been washed in water. Residues were reduced by 66% after washing in 

dilute detergent (Porter 1982). 
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Tobin et al. (1989a) tested the effectiveness of methiocarb spray in protecting cherries 

from pest birds (mainly starlings, American robins, and house and common grackles). 

Although they found that sprayed blocks had significantly (P = 0.03) less damage (6.5%) 

than unsprayed blocks (8.8%), the level of reduction in damage was not sufficient to justify 

the cost of spraying. In a later field trial, Tobin et al. (1991) found that spraying cherries 

with methiocarb did not significantly (P > 0.5) affect the average percentage of cherries 

damaged by starlings and 14 other species of birds. 

In aviary trials, Cummings et al. (1998b) found that spraying with methiocarb significantly 

(P < 0.01) reduced the consumption of lettuce seedlings by horned larks (Eremophila 

alpestris). Topical application of methiocarb to sprouting tomato seedlings reduced skylark 

(Alauda arvensis) damage to minimal levels (Anonymous, 1970). 

 

Hardy et al. (1993) conducted field trials to assess the safety of spray applications of 

methiocarb. They concluded that even heavy repeated spraying did not pose a hazard to 

wildlife, despite the fact that mammals and birds were exposed to the compound.  

 

Methiocarb as a seed-dressing has had mixed results and is not generally recommended. 

Holding (1995) applied methiocarb to canola seed and recorded good deterrence against 

skylarks with a doubling of the yield in treated versus untreated plots. However, delayed 

germination may cause insufficient chemical to be absorbed by the sprouting seedlings, 

which may lead to increased bird damage. This has been found in the case of treated 

tomato seed (Bergman, 1970). 

 

Porter and McLennan (1995) tested the effectiveness of cinnamamide (a secondary plant 

compound) and netting for protecting grapes from pest birds. The pest species present were 

mainly sparrows, silvereyes, greenfinches, blackbirds and song thrushes. Both treatments 

significantly (P < 0.01) reduced the numbers of pecked and missing grapes. Cinnamamide 

reduced damage by 40% and netting by 84%; however, neither treatment significantly 

increased mean bunch weight or mean yield. This was possibly because the vines 

compensated for missing grapes by increasing the size of the surviving fruit. Porter and 

McLennan (1995) found residues of cinnamamide in wine made from treated grapes, and 

this chemical also left a ‘plastic-like’ flavour on grapes, making them unacceptable for 

making wine. 
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Other secondary bird repellents that have been used in North America are lindane (an 

insecticide that stimulates the central nervous system) and captan and thiram (originally 

fungicides), which depress the central nervous system (Clark 1998). There is also 

Kocide®, which is a copper-based fungicide (Avery et al., 1994b); and fipronil, an 

insecticide developed for use on rice seed and other crops (Avery et al., 1998). Brugger et 

al., (1993) and Martinez del Rio et al., (1997) suggested that sucrose (household sugar) in 

high concentrations on fruit might act as an effective secondary repellent for starlings and 

other pest birds because they lack the enzymes necessary for its digestion. Avery et al., 

(1995a) found that caged starlings and cedar waxwings (Bombycilla cedrorum) consumed 

significantly (P < 0.1) more artificial fruit containing hexose (a mixture of glucose and 

fructose) than artificial fruit containing sucrose, and this preference overrode pre-existing 

preferences for fruit colour. However, tests conducted by Askham (1996) on starlings do 

not support the theory that birds are intolerant to sucrose. 

 

Anthraquinone, commercially known as Flight Control®, is a polycyclic aromatic 

hydrocarbon that occurs naturally in insects, plants and fungi. Although commonly used in 

the manufacture of dyes and as a catalyst in the paper industry, this chemical has also been 

used as a grazing repellent to deter birds (particularly Canada geese) from golf courses, 

airports, urban and industrial areas and landfills, and as a seed coating and repellent to 

protect crops. Anthraquinone and related compounds have been shown to reduce 

consumption of rice, millet, sorghum and maize by red-winged blackbirds, brown-headed 

cow-birds and dickcissels (Spiza americana) (Wright 1962; Avery et al., 1997; Dolbeer et 

al., 1998; Avery et al., 2001; Cummings et al., 2002). Cage trials with horned larks 

indicated that high levels of damage (60%) still occurred to treated lettuce (York et al., 

2000). However, York et al., (2000) suggested that bird damage was artificially high 

because of the nature of the enclosure situation and indicated that field trials were required.  

Delivery of primary and secondary repellents  

Repellents that are consumed target oral receptors if they are primary repellents, or 

gastrointestinal receptors if they are secondary repellents (Clark 1998). Chemical 

repellents are rarely delivered in raw form, but are combined with other substances and 

applied in accordance with label instructions (Clark 1998). Carriers, spreaders, stickers and 

wetting agents improve the deposition of the repellent. These products ensure even 
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coverage and improve retention by slowing environmental degradation and weathering 

losses. The stability of the repellent can be affected by carriers, stabilisers, solvents, 

binders, biocides and antioxidants (Clark 1998). The concentrations of the repellent agent 

and additives are important, as these will influence efficacy and cost. For some agents, 

concentrated applications can leave unacceptable residues. If toxic repellents are used, 

concentrated applications can cause blemishes on the crop, damage the foliage, or kill non-

target species (Staples et al., 1998).  

Tactile repellents  

Clark (1998) investigated the use of contact tactile repellents applied to perches to irritate 

birds’ feet. Starlings avoided perches painted with tactile repellents containing plant 

extracts or methiocarb. None of the substances tested caused illness in birds. Clark (1998) 

concluded that further work was needed to see whether such non-lethal repellents are 

useful for pest bird control. 

 

A number of non-toxic, sticky or oily substances are used for bird control (Clark 1998). 

When applied to surfaces where birds perch, they avoid them. Some problems may occur 

with short-legged species (for example, welcome swallows, Hirundo neoxena, whose 

wing-tips sometimes become glued to the surfaces to which the gel has been applied.  

Seed coating  

Coating seeds with substances such as clay, cement, plaster (Dolbeer and Ickes 1994), 

diatomaceous earth (containing sharp particles), or starch can make it more difficult or 

unpleasant for birds to crack them open, thus reducing damage. Handling time increases, 

making the seeds less attractive to the birds. In cage tests, Cummings et al., (1998b) found 

that coating lettuce seeds with clay significantly (P < 0.01) reduced seed consumption by 

horned larks. These treatments have the potential to reduce damage to newly sown crops.  

2.4 Benefits of birds 

Birds can also provide many economic and environmental benefits including the control of 

insects, competition with, or predation of, pest birds and enhancement of environmental 

health and aesthetics. Many birds found in horticultural crops are insectivorous, including 

honeyeaters. These species may play important roles in controlling insect pests. For 

example, the most important factor influencing the mortality of the codling moth (Cydia 
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pomonella) is predation of the caterpillars by birds in autumn (Chapman et al. 1992). Birds 

are known to consume soil insects such as cockchafers and underground grass caterpillars 

(Subfamilies: Melolonthinae and Scarabaeidae), as well as codling moth pupae and the 

light brown apple moth (Epiphyas postvittana). Results show that bird predation can 

reduce grasshopper densities by 30%–50% (Joern 1986; Fowler et al. 1991; Bock et al. 

1992). An integrated approach to managing birds and insects is likely to provide ongoing 

benefits in terms of reduced insect damage and reduced pesticide use. In some cases, 

insecticide spraying has been shown to increase the number of insect pests by inadvertently 

removing natural predatory insects (Prischmann et al. 2005). Birds also regulate harmful 

insects (Strong et al. 2000; Sanz 2001; Tremblay et al. 2001; Mols and Visser 2002).  

 

In a study in Spain, caterpillar damage to oak leaves was significantly less at sites where 

breeding birds were encouraged, compared with control sites (Sanz 2001). In another 

study, bird predation reduced pest insects by 50% and resulted in a 30% increase in the 

growth of oak trees in the Missouri Ozark deciduous forest (Marquis and Whelan 1994). In 

Canada and Europe, birds have been shown to benefit orchards by controlling 

overwintering Lepidoptera (Solomon and Glen 1979; MacLellan 1971). In a study in 

northern Sweden (Atlegrim 1989) the total density of insect larvae was 63% lower where 

birds had access to larvae than where exclosures were used; this resulted in significantly 

less insect damage to the annual shoots of bilberry. In the Netherlands, great tits (Parus 

major) have been shown to reduce caterpillar damage to apple orchards (Mols and Visser 

2002, 2007). In Mils and Visser’s (2007) study in areas with breeding great tits, apples had 

50% of the caterpillar damage of the control areas. 

 

However, the ability of birds to regulate insect populations and reduce insect damage 

depends on a number of variables, including bird population density (East and Pottinger 

1975), insect life cycle (East and Pottinger 1975), habitat (Belovsky et al. 1990) and insect 

population dynamics. Despite feeding on harmful insects, birds in some situations may 

have a negligible effect on insect populations or the damage they cause (East and Pottinger 

1975; McLennan and MacMillan 1983).  

 

Birds of prey and species that compete or exclude pest birds are desirable in horticultural 

settings. For example, magpies (Gymnorhina tibicen) are territorial and occasionally 

display agonistic behaviour towards, and attack, pest birds including sparrows (Barr 1986; 
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Morgan et al. 2006), starlings (Morgan et al. 2006) and sulphur-crested cockatoos (Cilento 

and Jones 1999). Raptors (Accipitriformes and Falconiformes), particularly sparrowhawks, 

goshawks, falcons and hobbies, are known predators of a range of pest birds. Attracting 

these birds to crops might provide economic benefits by reducing the numbers of pest birds 

and the damage they cause. However, providing habitat to attract desirable birds requires 

careful consideration and management.  

 

Controlling bird populations may also have other unintended consequences to ecosystem 

function. For example disturbance and a decline in biodiversity, may increase risks of 

infectious diseases (Derne et al. 2001; Mills 2006). This has been attributed to the ‘dilution 

affect’ (Ostfeld and Keesing 2000). However, several other factors may be more important, 

and overide the effects of biodiversity on disease prevalence, e.g. the traits of particular 

species (Schmid and Ostfeld 2001). 

2.5 Priorities for future research on pest birds 

In contrast to the situation with pest mammals (e.g. Lever, 1985; Putman, 1989), there are 

fundamental deficiencies in our knowledge of pest bird species, their impacts, how to 

measure them and the costs and efficacy of commonly used management practices. 

 

There are few techniques available for measuring impacts of birds (Dehaven, 1974a; 

Dolbeer, 1975; Dehaven and Hothem, 1979; Nemtzov, 2004) and these are time-

consuming, or can be unreliable and inaccurate. Realistic economic assessments of damage 

and of social and environment costs are required before investments are made to manage 

perceived problems. Robust information on the extent, pattern and cost of bird impacts and 

the effectiveness of control methods is required. These data are essential for identifying the 

main species involved, identifying industries and regions most at risk, and assessing the 

benefits of bird control. 

 

Measuring health-related impacts of birds usually involves estimates of economic and 

social impacts after epizootics or epidemics have occurred. However, preventative 

measures will require an understanding of the likelihood and risks posed by future disease 

outbreaks. There have been global increases in incidents of emerging diseases (Jones et al., 

2008) that threaten the economy, environment and human and animal health. Wildlife is 

source for the majority of these (Jones et al., 2008). An understanding of epidemiology of 
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viruses in wildlife and their interaction with humans and livestock are important in 

assessing their risks. There has been a significant increase in surveillance for diseases in 

wildlife, particularly in wild birds. However, broad-scale surveillance is logistically 

difficult and costly because of natural low prevalence of viruses, and wide variety and 

abundance of potential hosts. Improvements are needed in targeting surveillance according 

to associated risks, and to improve efficiency. 

 

Current techniques used for managing birds have rarely been rigorously evaluated in terms 

of their ability to reduce abundance or impact. There is high variability in bird crop 

systems between bird species, their abundance (Dyer, 1967; Tracey et al., 2001; Tracey et 

al., 2007), and the extent of damage they cause (Wiens and Dyer, 1977; Whitehead et al., 

1995). Large samples sizes are therefore required to confident assess management 

treatments. For example, in studies of birds in vineyards, >80 replicates were required to 

ensure that a 10% reduction in damage is detected (Tracey et al., 2001). There are no 

known evaluations of bird management methods with this number of replicates. Empirical 

studies with sufficient sample sizes are required to assess even the most commonly used 

techniques for managing birds, including shooting, trapping, netting and acoustic and 

visual deterrents.  

 

 



 

PART A: ECONOMIC IMPACTS 

Preface 

Part A considers the economic impacts of birds using bird damage to fruit as a case study. 

In Chapter 3 I describe a method for measuring bird damage in wine grapes. In Chapter 4 I 

evaluate the efficacy of lethal (nest removal, shooting, trapping, poisoning) and non-lethal 

(scaring, netting) methods in reducing damage to fruit, using experiments to reduce bird 

damage and pest bird abundance. 
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Abstract 

Birds cause damage in many agricultural systems around the world. Measurement of such 

damage is an important first step in its effective management. We develop a visual 

assessment technique and a progressive sampling strategy using 5 strata and suggest 

sample sizes necessary to achieve an estimate of bird damage within a standard error of 

5%. This strategy improved sampling efficiency by 67%, 79% and 80% compared to 

stratified systematic, standard systematic and random sampling. With an average cost of 

under $(AUS) 6 per block, this technique is a rapid inexpensive method to estimate bird 

damage to vineyards and has application to most crop-bird situations. 

3.1 Introduction 

Birds cause damage in many agricultural systems around the world (United States: De 

Grazio, 1978; Africa: Bruggers and Elliot, 1989; Europe: Mooij, 2001; Canada: Somers 

and Morris, 2002; Asia: Nemtzov, 2004; Australia: Tracey et al., 2007). Accurate and 

efficient damage assessment techniques underpin any research and management efforts to 
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reduce damage. Assessment techniques currently available to researchers and managers are 

either unverified, or are time consuming and therefore costly. Previous studies use standard 

random or systematic sampling procedures by counting individual fruits or plants 

(Nemtzov, 2004), or by weighing or visually assessing them (De Grazio et al., 1969; 

Stevenson and Virgo, 1971; Dolbeer, 1975; DeHaven and Hothem, 1979). In this paper we 

describe a visual assessment technique and progressive sampling strategy to estimate bird 

damage in wine grapes and discuss applications to other crops. 

3.2 Methods 

Random bunch selection 

To avoid over-sampling of more visible bunches of grapes a technique for selecting 

bunches on each vine at random was used. A pole marked at 10 cm intervals was placed 

vertically in one of seven (0–6) locations along each selected vine. Random numbers were 

generated between 7 and 12 for the vertical axis and 0 and 6 for the horizontal axis. The 

vertical numbers corresponded to all harvestable bunches occurring between 70 and 120 

cm above ground level. Grapes were grown within this height for all vineyards sampled, 

except one with lower trellises where a height of between 50 and 100 cm was selected. A 

horizontal number of 3 required placement of the pole at the vine stem; 0 at the left hand 

edge; 6 at the right hand edge; and 1 through to 5 at equidistance between the extremes 

(see Figure 3.1). The closest bunch to the pole was selected. Once the vine was located, 

one observer could locate and assess a bunch in approximately 10 seconds. 
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Figure 3.1. Technique for selecting random bunches of grapes for assessment of damage.  

 

Visual assessment 

Grape bunches (n = 26,500) were visually assessed by eleven observers to determine mean 

percentage bird damage. Visual estimates of bird damage to each bunch included both 

pecked and missing grapes, and were initially made to the nearest 1 percent, then to the 

nearest 5 percent if the damage estimate was between 10 to 90 percent, and to the nearest 1 

percent otherwise, as assessment accuracy is higher at the extreme levels of damage. This 

overcame difficulties associated with ranking scales (DeHaven, 1974a). In an attempt to 

minimise error, observers practiced on bird-damaged bunches and used a chart of bunches 

displaying different levels of damage (Appendix I). Presence of disease was also recorded, 

and where possible damage was differentiated for different species. For example silvereyes 

(Zosterops lateralis), yellow-faced honeyeaters (Lichenostomus chrysops) and other small 

honeyeaters caused small punctures in the fruit; noisy friarbirds (Philemon corniculatus), 

noisy miners (Manorina melanocephala) and red wattlebirds (Anthochaera carunculata) 

caused larger angular punctures, with both these groups of species often hollowing out 

fruit. Crimson (Platycercus elegans elegans) and eastern (Platycercus eximinius) rosellas 

left small triangular marks made by their lower bill, and sulphur-crested cockatoos 

(Cacatua galleria) and galahs removed large chunks of fruit relative to their bill size, or for 

stone or pome fruits would split the fruit to access the seed (Section 4.2). Lorikeets (musk, 
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Glossopsitta concinna, little, Glossopsitta pusilla) were rarely observed in this study, but 

for stone and pome fruit left horseshoe-shaped marks made by the lower part of their bill 

and triangular marks made by the upper part of their bill (see Temby 2002 for a further 

description). Damage can also be caused by animals other than birds, including insects, 

flying foxes, mice, foxes, and dogs. Non-bird damage was excluded whenever identified. 

Insect damage from bees, European wasps, ants etc. occurred occasionally (41 of 32,381 

bunches assessed), and was easily distinguished from bird damage. Flying fox (grey-

headed, Pteropus poliocephalus, and little red, Pteropus scapulatus) damage was not 

observed during this study but is distinguished from bird damage by the teeth marks in the 

fruit and the size of the spats (fragments of skin and fruit pulp compressed together), which 

are much larger than the remnants of fruit dropped by birds (Temby 2002). Mouse (Mus 

musculus) damage was rarely observed (<0.1%, 13 of 32,381 bunches assessed), and 

identified by their teeth marks in the fruit. Damage to bunches close to the ground (30-50 

cm, Figure 3.1) was also rarely attributed to foxes (Vulpes vulpes) and dogs (Canis lupis 

familiaris) (3 of 32,381 bunches assessed), where grapes were stripped from bunches from 

underneath and tracks and faeces were observed. 

 

The visual assessment procedure was tested in the field by comparing visual estimates (n = 

594, 8 observers) with actual percent damage. Actual percentage damage to individual 

bunches was calculated by counting the number of missing, pecked and remaining grapes 

on each bunch. 

Initial sampling strategy 

One hundred and twenty-nine blocks of grapes on nine properties were sampled for bird 

damage, with a block being a continuous planting of a single variety sampled in a 

particular time period. Thirteen grape varieties were sampled: six red and seven white. 

Sixty blocks were sampled immediately prior to harvest, twenty-one of which were also 

sampled between veraison, when grapes first change colour, and one week before harvest. 

The first and last rows from each block were sampled sequentially from a randomly chosen 

vine. Interior rows and vines were also systematically sampled. One bunch was selected 

from each interior vine and two bunches from all edge vines on sampled rows. 

 

A new progressive sampling strategy was developed for estimating bird damage and 

compared with three other methods. The efficiency of the four sampling strategies were 
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then compared; (1) the progressive sampling strategy, (2) a stratified systematic sample 

using the same 5 proposed strata, (3) a standard systematic sample and (4) a random 

sample, necessary to achieve an estimate of damage, within a 5% standard error, to 261 

vineyard blocks sampled. Cost of labour was assumed to be $AUS 18.26 per hour (Farm 

and/or Orchard Hand – Level 4 Casual: Tasmanian Industrial Commission, 2006). 

 

3.3 Results 

Evaluation of visual assessment methods 

The majority of bird damage was by missing grapes (68.6 ± 1.5 %, n=11,384 damaged 

bunches), with 18.8 ± 0.80% of bunches pecked, and 12.5 ± 0.65 % of bunches both 

pecked and missing. 

 

Despite training, observers under-estimated bird damage to individual bunches, 

particularly at mid percentages (40–60%). To allow correction of damage data, observer 

effects were treated as random and data was pooled for all observers. An inverse estimator 

for the calibration data was also used for simplicity in calculating confidence intervals 

(Armitage and Colton, 1998). 

 

To determine a correction model, percentages of actual (X) and estimated (Y) damage were 

first logit transformed to linearise the response and to remove variance heterogeneity. By 

definition, logit(Y) = log(Y/(100 − Y)). 

 

The prediction model for logit(X) is then logit(X) = 0.708 + 0.811 × logit(Y), or 

equivalently 

 

X=100/(1+exp(−[0.708+0.811×logit(Y)])) 

Development of a progressive sampling strategy 

In all cases, damage inside a block was less than the damage observed on the boundary, 

except when overall damage was less than 5% (n = 129 blocks; Figure 3.3). 
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To estimate the mean percent damage for a block we assumed an equal number of bunches 

per vine in each block. A weighted average of the estimated means within each stratum 

was then determined, with the weights proportional to the number of vines in each stratum; 

∑idipi, where, for i = 1,…,5, di = mean damage for stratum i and pi = proportion of total 

number of vines in block that are in stratum i. To determine appropriate sample sizes we 

examined the standard deviation of the results versus the mean within each stratum (Figure 

3.4). The least squares fit for the line (Figure 3.4) as: SD = α [Mean(100 − Mean)]β, where 

α = 0.079 and β = 0.778. 

 
 

 

Figure 3.2. Standard deviation versus mean percent bird damage for each stratum (1-5).  

 

Based on the above model for the variation of results within strata we can determine the 

minimum sample size needed to estimate the mean percentage damage within a stratum so 

as to place an upper bound on its standard error. For example, should the mean percent 

damage within a stratum need to be estimated with a standard error of 3% or less, then the 

sample size needed, n say, must satisfy:  

0.079 [Mean (100 − Mean)]0.778/√n ≤ 2.  

 

If Mean is 20% say, then n must be at least 80. Figure 3.5 plots the minimum sample size 

versus mean for when the standard error of the mean equal 3%, 5%, 7% and 10%. 
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Figure 3.3. Sample sizes needed for estimating damage per stratum with standard error 

(3%, 5%, 7% and 10%).  

 

When estimating the percentage damage of a block based on a weighted average of the 

mean damage within each of the separate strata, the standard error of the overall mean 

estimate will depend on the relative sizes of the strata. Let pi denote the proportion of vines 

in stratum i (i = 1, 2,…, 5) relative to the total number of vines in all five strata and τi equal 

the corresponding standard error of the percent damage estimate in that stratum. Then the 

standard error of the estimated mean percent damage for the block, τ say, is given by:  

τ = √(∑ipi2τi2). Hence τ is influenced by the maximum pi (i = 1, 2, …, 5). 

 

The progressive sampling procedure is based on the results of Figure 3.5 for any desired 

standard error. We aimed at achieving a standard error of 5% and assumed the underlying 

percent damage was 10%. Hence n=10 vines was chosen from each outside stratum (1–4). 

If damage was less than 5% in any outside stratum, then no more sampling was necessary 

as we could be confident that overall damage was less than 5% (Figure 3.3). If any stratum 

was greater than 5% in any outside stratum, the interior of the block was also sampled in 

the same way (Stratum 5). If damage was greater than the assumed 10% in any stratum 

Minimum 

sample size 

Mean percent bird damage 
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then more samples were taken from that stratum relative to the estimated percent damage 

(Table 3.1). 

 

Progressive sampling strategy: a new method 

This section summarises the progressive sampling strategy, based on the information 

above. To estimate the mean percent damage within a vineyard each block was stratified 

into 5 strata (Figure 3.4). 

 

 
 

Figure 3.4. Stratification scheme for vineyard blocks adopted in this study.  

 

The stratification scheme above is based on results showing that damage is more severe at 

the boundaries of the block (Figure 3.3), but not always uniform between boundary strata. 

For example, end rows of a block contained within rows of other grape varieties were not 

as severely damaged as outside rows adjacent to perching habitat. Hence the separate strata 

for each of the four boundaries. 
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Figure 3.5. Bird damage (%) in the interior strata versus bird damage (%) to boundary 

strata within individual blocks of grapes. 

 

For each block, mean bunch damage for bunches within each stratum was estimated 

separately. Here the percent damage per bunch was assumed to be a linear combination of 

overall mean percentage damage, a random component due to the vine and the bunch. 

These means, and associated standard errors, were estimated using ASREML (Gilmour et 

al., 2002). 

 

One bunch was randomly selected from 10 systematically selected vines in each outside 

stratum (1–4) of sampled blocks. If mean damage exceeded 5% in any outside stratum 10 

samples were taken from the interior of the block (Stratum 5). If damage was greater than 

10% in any of the 5 strata, additional bunches were also sampled from those strata. In each 

case, Table 3.1 was used to determine the extra number of samples required. 

 

Table 3.1. Sample sizes needed to estimate percent damage with 5% standard error 

(derived from Figure 3.5). 

Bird damage (%) 5 10 20 30 40 50 60 70 80 90 95 

Sample size 4 10 24 37 46 49 46 37 24 10 4 

 

Percent 

damage in 

the interior 

of the block 

(Stratum 5) 

Maximum percent damage over four boundary strata (Stratum 1-4) 
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Efficiency of damage assessment techniques 

The mean time taken to sample a block using the progressive sampling strategy was 

significantly less than when using stratified systematic, standard systematic and random 

sampling (P < 0.001, df = 520, t statistic = −46.4, −39.3, −20.2, Figure 3.6), improving 

sampling efficiency by 67%, 79% and 80% respectively. On average the cost of sampling a 

vineyard block using the progressive sampling technique was $AUS 5.77 ± $0.35 (n = 261, 

range $0.97–$18.95). 
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Figure 3.6. Mean time (minutes) taken to sample a block using progressive, stratified 

systematic, systematic and random sampling with 95% confidence intervals.  

3.4 Discussion 

Random bunch selection 

Random bunch selection is necessary to avoid over-sampling of more visible bunches, 

which has been achieved previously using a combination of ropes, several poles or hoops 

and two or more observers (DeHaven and Hothem, 1979; Martin and Crabb, 1979). The 

selection procedure developed was simple and efficient in selecting random bunches. The 

same pole could be used in vineyards of any trellis height, provided random numbers were 

generated separately for different heights of vines. Once the vine was located, one observer 

could locate and assess a bunch in approximately 10 seconds. This was six to 18 times 



3. A technique to estimate bird damage in wine grapes 

61 

more efficient than previous techniques which took between 30 and 60 seconds with two or 

three observers (DeHaven and Hothem, 1979; Martin and Crabb, 1979). 

Evaluation of visual assessment methods 

Despite training, all eight observers underestimated percent damage to selected bunches, 

particularly at mid percentages (40–60%). This emphasises the importance of calibrating 

visual estimates. Most other studies which visually estimated bird damage to wine grapes 

used either a damage class or a pre-transformed ranking scale (Table 3.2). In studies that 

compared visually estimated damage with known damage, most concluded that damage 

was accurately classified after a period of training. However, large classes were used (e.g. 

rank 1 = 0–5%; 2 = 5–20%; 3 = 20–50%; 4 = 50–80%; 5 = 80–95%; 6 = 95–100%, 

Stevenson and Virgo, 1971; Somers and Morris, 2002), and with the exception of Somers 

and Morris (2002), accuracy within classes was not reported. 

 

We recommend estimating percent damage to individual bunches as described rather than 

using a ranking scale, as this is equally efficient, overcomes difficulties with uneven 

distribution of damage within classes (DeHaven, 1974b), and allows corrections of likely 

errors. If damage classes are to be used, we suggest testing the accuracy of classes and 

distribution of estimates within classes and using, where possible, bunches with actual 

rather than simulated damage for validation. This maybe particularly important where birds 

peck grapes as well as remove them. Our study suggests that pecked damage can be 

common (31.6 ± 1.03 % of bunches with pecked or both missing and pecked grapes; cf. 

<1%, Somers and Morris 2002). Where this occurs, we recommend training and validation 

with bunches containing both missing and pecked grapes. 

 



3. A technique to estimate bird damage in wine grapes 

62 

Table 3.2 Type of assessments used to estimate bird damage to wine grapes. 

Type of assessment  Accuracy measured  Source 

Counting NA (Askham, 1992) 

Counting  NA (Toor and Ramzan, 1974) 

Weighing  NA  (Porter and McLennan, 1995) 

Ranking scale, 

counting and weighing 

No, NA  (Hothem and DeHaven, 1982) 

Percent estimate  No  (Chambers, 1993) 

Percent estimate No  (Curtis et al., 1994) 

Percent estimate  Yes (n = 594, 8 observers) This Study 

Ranking scale  Yes  (Martin and Crabb, 1979) 

Ranking scale  No  (DeHaven 1974a)  

Ranking scale  No  (Bailey and Smith, 1979) 

Ranking scale  Previously tested  (Martin and Jarvis, 1980) 

Ranking scale  Yes (n = 10, 85% of 

bunches scored within the 

damage class)  

(Stevenson and Virgo, 1971) 

Ranking scale  No  (Yim and Kang, 1982) 

Ranking scale  Yes (n = 400, 2 observers)  (DeHaven and Hothem, 1979) 

Ranking scale  Previously tested  (DeHaven and Hothem, 1981) 

Ranking scale Previously tested (Hothem et al., 1981) 

Ranking scale  Yes (n=104)  (Somers and Morris, 2002) 

 

Progressive sampling strategy 

This study found bird damage was always higher in at least one outside edge than in the 

interior of the block, except when overall damage is low (<5%). Higher damage on the 

edges of the crop is consistently observed for many bird species and crop situations. For 

example, starlings, cedar waxwings, Bombycilla cedrorum, and American robins, Turdus 

migratorius, in wine grapes (Somers and Morris, 2002); sulphur-crested cockatoos, 

Cacatua galerita, and galahs, Eolophus roseicapilla, in sunflowers (Fleming et al., 2002b); 

and grackles, Quiscalus mexicanus, in grapefruit (Johnson et al., 1989). The progressive 

sampling strategy is significantly more efficient than other methods of sampling (P < 
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0.001), with this difference likely to be even greater in larger blocks, and where there is a 

highly skewed spatial distribution of damage. This is commonly observed in bird-crop 

conflicts (corn: Dyer, 1967; wine grapes: DeHaven, 1974b; apples: Halse, 1986; cherries: 

Sinclair and Bird, 1986; rice and sunflowers: Subramanya, 1994). The progressive 

sampling strategy presented here is likely to provide similar or increased improvements in 

efficiency in most bird-crop situations. With an average cost of sampling a block under 

$AUS6, this strategy could be routinely implemented to improve bird damage management 

decisions in viticulture and other agricultural crops. 
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4. Assessing lethal and non-lethal methods for reducing bird 

damage to fruit 

Abstract 

 

Context:  

(1) Birds are well known pests of fruit and other horticultural crops, and many lethal and 

non-lethal methods are used to reduce their damage. However, there is considerable 

variability in bird-crop systems and measurements of damage and abundance are rarely 

used to evaluate the efficacy of control methods.  

Aims:  

(2) We estimate pest bird abundance in orchards and vineyards and evaluate the efficacy of 

lethal (nest removal, shooting, trapping, poisoning) and non-lethal (scaring, netting) 

methods in reducing damage to fruit. 

Methods:  

(3) A field study was conducted across 101 orchards and vineyards over seven years to test 

the efficacy of netting, shooting and scaring treatments in reducing bird damage. 

Generalised linear mixed model analyses were used to test for the effects of these 

treatments when used either individually or in combination, on percent bird damage across 

185 property year records.  

(3) The short-term effects of nest removal (using systematic searches and breeding data in 

9 vineyards in one breeding season and 1 vineyard over four breeding seasons) and 

shooting on the abundance of starlings; and the effects of trapping (76 trapping events, 21 

seasons, 22 sites) on the abundance of starlings, blackbirds, silvereyes and sparrows was 

also investigated in fruit crops. Bird abundance was estimated using variable circular plots 

and a Horvitz-Thompson type estimator to account for differences in detection with 

distance, species, group size and activity.  

(4) Consumption of novel food types and estimated proportions of birds feeding were used 

to evaluate the feasibility of poisoning for starlings and corvids. The main factors 

influencing the proportion of birds captured and the number of birds feeding were 

investigated using generalised linear mixed models. 
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Key results:  

(5) One-hundred and forty bird species were observed in vineyards and orchards of which 

29 native and 7 introduced species damaged fruit. Starlings were the most common pest 

(70.4%, mean density 419+ 112 starlings/ km2). Netting was the most effective treatment 

in reducing damage, but birds breached nets through holes or gaps and consumed fruit 

through netting, with damage as high as 56+ 4.8% recorded under netting. Shooting (20.5+ 

3.8%) was not as effective as netting (10.7+ 2.8%), but less than a third of the cost ($538 

vs $1,903/ha/property) and had 13% lower damage compared to nil treatments (33.2+ 

5.6%). This was likely to be a result of scaring birds away from the crop, as the number of 

birds shot was unrelated to damage caused and the numbers shot were low in relation to 

population size (35.0+7.9%). However, scaring with electronic devices and visual 

deterrents had no effect on bird damage, indicating that although birds may respond 

initially to scarers, they quickly acclimatise to new stimuli that do no pose a physical 

threat. Property size was significant in the final model with smaller crops more susceptible 

to damage, but crop type (grapes, cherries, apples, pears) and control effort had no affect 

on damage.  

(6) Systematic nest searches indicate that nest removal would be highly effective (82%) in 

limiting starling reproduction, but other methods of lethal control had limited success 

(poisoning, shooting, trapping), had likely but un-measured non-target risks (poisoning, 

trapping) and were expensive ($25-$133 / starling). Overall effectiveness of trapping was 

low (5%) but varied with species and trap type. 

 

Conclusions and Implications:  

(7) Despite their widespread use, lethal methods used to control starlings, blackbirds, 

sparrows, silvereyes, and corvids had limited effectiveness for reducing pest populations in 

vineyards and orchards. However, shooting as a method to scare birds from the crop, rather 

than to control populations, was effective in reducing damage. In addition, results suggest 

nest removal would significantly reduce reproduction and could have benefits for the long-

term management of starling populations.  

 

(8) Netting was the most effective method in reducing damage and has considerable 

advantages when large numbers of native species are present. However, damage under 

netting can be significant and should be considered before investing in nets. Selecting 
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appropriate netting for the species involved, avoiding nets in direct contact with fruit and 

improved applications and maintenance of netting is likely to improve their effectiveness. 

 

(9) The effectiveness of non-lethal and lethal controls was highly variable between control 

methods and combinations, bird species, abundance, trap types, and food presented. Large 

sample sizes and/or consideration of the variability in effectiveness, bird species, 

abundance and damage over time and between sites are recommended in evaluations of 

bird management methods. 

4.1 Introduction 

Around the world bird pests such as starlings (Sturnus vulgaris) (Conover and Dolbeer, 

2007), mynas (Acridotheres tristis) (Dawson and Bull, 1970; Dhileepan, 1989), blackbirds 

(Turdus merula) (Moran et al., 2004), wood –pigeons (Columba palumbus) (Murton and 

Jones, 1973), corvids (Corvidae) (Weatherhead et al., 1980; Sinclair, 1998), silvereyes 

(Zosterops lateralis) (Rooke, 1983), honeyeaters (Meliphagidae) (Tracey et al., 2001), 

lorikeets (Loriinae) (Tracey et al., 2007), rosellas (Platycercus spp.) (Fisher, 1991), 

cockatoos and corellas (Cacatuidae) (Environment and Natural Resources Committee, 

1995) are known to cause significant damage to horticultural crops. Some of these species 

also cause damage to cereal crops (Dolbeer et al., 1978), feedlots and grain storage areas 

(Feare, 1975); and are potential hosts of parasites and diseases (Weber, 1979). Pest birds 

also have environmental impacts, for example, they can prey upon seabirds and their eggs 

(Byrd, 1979; Watson et al., 1992) and usurp native hole-nesting birds (Green, 1983; Pell 

and Tidemann, 1997). However many are also native and locally protected species and can 

have ecological and agricultural benefits (Tracey et al., 2007; Triplett et al., 2012). 

 

The most commonly used methods to reduce impacts of birds include netting (Draulans, 

1987), scaring (Bomford and O'Brien, 1990), shooting (Murton et al., 1974; Dolbeer et al., 

1993) and trapping (Weatherhead et al., 1980; Conover and Dolbeer, 2007). Chemicals are 

also used occasionally to repel or poison birds (Spurr, 2002). Netting is increasingly used 

to protect orchards, and despite high up-front and on-going costs (Slack and Reilly, 1994), 

it can be cost-effective in vineyards where bird damage exceeds 15% (Tracey and Vere, 

2007). While scaring with visual or acoustic devices, is usually ineffective (Bomford and 

O'Brien, 1990; Bishop et al., 2003; Tracey et al., 2007 for review).  
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Lethal controls for pest birds are often used, but most attempts fail to reduce pest bird 

populations or damage. For example, shooting to reduce wood pigeon impacts in 

Cambridgeshire UK (Murton et al., 1974), organophosphate for controlling quelea (Quelea 

quelea) in Africa (Ward, 1979), PA-14 (a-Alkyl [Cll-C15]- omegahydroxypoly 

[oxyethylene], a non-ionic avian lethal surfactant with wetting characteristics) to control 

starlings and red-winged blackbirds (Agelaius phoeniceus) in Tennessee, North America 

(White et al., 1985), and explosives to reduce starling damage to cherries (Tahon, 1980) all 

failed to achieve management objectives. Feare (1991) suggests two main reasons for this, 

(1) that pest birds usually have a wide geographic range and much of the population is 

inaccessible to control and (2) that control attempts can be counter-acted by compensatory 

increases in breeding and survival.  

 

In comparison, the use of lethal control where most of the population is accessible, where 

the species has low reproductive rates, (e.g. laughing gulls, Larus atricilla, Dolbeer, 1998), 

or where they are highly concentrated can result in large population reductions in the short-

term (Besser et al., 1967; West, 1968; Besser et al., 1984; Blanton et al., 1992) and long-

term (Porter et al., 2008a).  

 

The effectiveness of poisoning and most trapping programs depends on the attractiveness 

and acceptability of novel food types to pest birds and other non-target species. Feeding 

behaviour and diet of pest birds have been well documented (Marchant and Higgins, 1990; 

Higgins, 1999; Higgins et al., 2006) and there have been several studies investigating the 

cues for detecting and assessing food. For example, while birds use colour to select food, 

they can also adapt their visual choices over time according to taste (Cowe and Skelhorn 

2005). They also develop preferences for, or aversion to foods using social cues (Mason 

and Reidinger 1981, 1982; Mason et al. 1984), with flocking species more successful at 

locating quality food, because individuals use feeding by others as a cue to detect and 

select food (Ekman and Hake 1988). 

 

In North America and New Zealand avicides are currently applied to cereal grains, cereal 

pellets, bread and dripping, sultanas and nuts for controlling starlings, red-winged 

blackbirds, corvids, ravens and gulls, and magpies (Gymnorhina tibicen) (Bull, 1965; 

Besser et al., 1967). Avicides are also used occasionally in Australia (alphachloralose, 1,4-

aminopyridine and fenthion) for restricted purposes (Tracey et al., 2007). Effectiveness 
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(Porter et al., 2008a), community attitudes (Tracey et al., 2007), impacts on non-target 

species (Bruggers et al., 1989; Cummings et al., 2002; Custer et al., 2003), animal welfare 

concerns (Ministry of Agriculture Fisheries and Food, 1997); and residual or secondary 

effects in the food chain (Cunningham et al., 1979; Schafer, 1984) require careful 

consideration before avicides are considered. Preferences of non-target species to different 

food types are an important consideration as most avicides are toxic to all bird species. 

DRC-1339 (3-chloro-4-methylaniline hydro chloride, Flockoff® or Starlicide®) is an 

exception, where starlings, corvids and gulls are highly sensitive (Eisemann et al., 2003); 

while mammals (except cats) and many native North American birds are not susceptible 

(Eisemann et al., 2003). 

 

This paper will evaluate the efficacy of lethal (shooting, trapping, poisoning, nest removal) 

and non-lethal (scaring, netting) methods in causing short-term reductions in pest 

abundance and damage to fruit. 

4.2 Methods 

Study site 

The study was conducted in vineyards and apple, pear and cherry orchards of the Orange 

region of New South Wales (33.3° S,149.0° E). Sites are interspersed with eucalypts 

(Eucalyptus macrorhyncha, Eucalyptus seeana, Eucalyptus tereticornis, Eucalyptus 

viminalas), pine (Pinus radiata) plantations, mixed farming, and sheep and cattle grazing 

country. The area has a cool climate (mean temperature: 7° C to 18° C) with medium to 

high rainfall (mean annual rainfall: 920 mm). Vineyards and orchards range in size from 

0.3 to 480 hectares, but the majority are less than 20 ha. Most vineyards have five or more 

varieties of grapes. The main types include cabernet sauvignon, cabernet franc, merlot, 

shiraz, pinot noir, sauvignon blanc and chardonnay. Orchards include cherries (Lapins, 

Sweetheart, Sunburst, Chelan, Merchant, Rons, Kordia, Simone, Regina), apples 

(Jonagold, Sun-Downer, Pink Lady, Braeburn, Granny Smith, Fuji) and pears (Beurré 

Bosc, Corella, Packham’s Triumph, Williams, Sensation and Winter Nelis). 

Bird abundance 

Bird abundance was estimated using variable circular plots (Bibby et al., 2000). Fifteen 

experienced bird observers counted all species seen or heard for 10 minutes from fixed 
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locations at each site. Locations were selected using stratified random sampling, with 

vegetation type (vineyard or orchard, grassland, woodland, introduced vegetation) used to 

define the strata. Between 6 and 34 locations were selected on each site (not closer than 

100 metres apart), with the same locations used for consecutive counts to maximise 

precision when comparing change of abundance over time. On average 54.7 (s.d. = 57.1) 

locations were sampled per season per site. Counts were conducted within the first 3 hours 

after sunrise, with the exception of those carried out during bait preference trials, which 

were completed each daylight hour. Numbers of individuals, distance, vegetation type, 

activity, wind direction and speed, and temperature were recorded to allow examination of 

their effects on the probability of detection (g) (n=153,352 birds counted, 27,044 

individual sightings, 2,466 point locations, 344 count days, 101 sites). Predictions for the 

empirical detection, Y, were obtained from Poisson generalised linear models for 

significant variables (P<0.05), which included distance, species, group size, activity and 

first order interactions. The final detection models were obtained by including distance, 

spline of distance, species and activity in two models, determined separately according to 

group size. Detection was assumed to be certain out to 10 metres. For the remaining 

distances, the predicted Y values are divided by Y10 (the predicted value of Y at Dist = 10) 

to obtain g. A Horvitz-Thompson type estimator was then used to estimate abundance, 

which allows the detection probability (g) to be applied to each observation according to 

the covariates for that observation, as follows:- 

 

∑
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where mj is the size of cluster j, gj is the probability of detecting cluster j, NC is the number 

of clusters and A is the search area. The estimates are determined sample by sample and 

then averaged over locations, dates, and sites to obtain an average bird density. Abundance 

was estimated using density and size of each site. Note that the constraints g>0.1 (all 

clusters) and g≥ 0.5 (clusters≥50) were used to reduce variability in the Horvitz-Thompson 

estimates, and sightings were included up to 300 metres from the observer when estimating 

area sampled and density. This method uses Poisson generalised linear models to estimate 

the likelihood of detecting a flock of birds according to a range of variables, and then 

corrects each individual record accordingly. While the ‘Distance’ Program (Thomas et al. 
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2010) can be used where distances are recorded, the approach taken here is much more 

flexible in modelling the detection data. It also uses the estimated detection probabilities 

associated with each observation to obtain Horvitz-Thompson estimates of population size, 

rather than obtaining marginal estimates of detection probability, which are then converted 

to population estimates. That is, for this study, each flock of birds observed was corrected 

using a different probability of detection according to the distance it was observed from the 

point, which species it was, the size of the flock and its activity. Much of the bird data in 

this study could not be modelled using the ‘Distance’ program owing to the issue of sparse 

cells which leads to convergence and other numerical problems with the program. A 

further difference is that while the 'Distance' Program uses specific parametric models 

(with or without polynomial adjustment terms) this approach uses smoothing splines which 

are fitted as a random term in a mixed model and therefore the shape of the detection 

function is essentially nonparametric. 

 

Estimating bird damage 

Bird damage was estimated in wine grapes and cherry, apple and pear orchards using 

methods described in Tracey and Saunders (2010) with the following differences. For 

cherries the numbers of damaged and undamaged cherries were counted in three cherry 

clusters, selected from one of 16 randomly selected zones in each selected tree. Trees from 

each block were systematically selected, with outside stratums sampled more intensively. 

To assess different types of damage, sampling occurred at various stage of flower, bud and 

fruit development. In apple and pear orchards the numbers of damaged and undamaged 

fruits were counted from one of six randomly allocated zones on each selected tree, with 

trees from each block systematically selected. To account for damage caused early in the 

season (especially by Sulphur-crested cockatoos, Cacatua galerita), old fruit on the ground 

under the tree was inspected for signs of damage. Cockatoo damage is distinct from 

damage by other species as they split the fruit in half to retrieve the seeds in the core.  

 

Between 2000 and 2008, approximately 39,000 bunches of grapes, 31,000 apples and 

pears, and 27,000 cherries were sampled for bird damage in 326 blocks and 49 sites. 
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Experiments to reduce bird damage 

Using the methods previously described, a field study was conducted across 101 orchards 

and vineyards over seven years (2000, 2001, 2004 – 2008) to test the efficacy of netting, 

shooting and scaring treatments in reducing bird damage. Generalised linear mixed model 

analyses were used to test for the effects of these treatments when either individually or in 

combination, on percent bird damage across 185 property year records. Included in the 

model as fixed effects, to account for variation, were crop type (grapes, apples, pears, 

cherries), square root of property size and treatment expenditure per hectare (where 

available, and allowing extra variation across results where not available). Random effects 

in the model were property (101), year (7), interactions between treatment and property 

and treatment and year, and finally random error. Stepwise regression was performed to 

remove non-significant terms (>0.05). LSD ranking across treatment levels was used to 

show significant differences. Generalised linear mixed model analyses were also used for 

netting, shooting and scaring separately, to test the effects of net type (extruded, black and 

green; drape-over, single, double, triple and quad; and permanent), the number of birds 

shot (shooting model) and compare scaring treatments (gas guns, electronic devices and 

visual deterrents), including interaction terms and significant fixed and random effects 

identified in the initial analysis. Generalised linear mixed models were fitted using the 

package asreml (Butler et al., 2009) under R (R Core Team, 2013). Wald tests were used to 

examine fixed effects and non-marginal terms not significant at the P = 0.05 level were 

dropped sequentially.  

 

Expenditure per hectare for treatments included all anticipated direct up-front and on-going 

costs associated with the technique including labour ($AUS18.26/hour, Tasmanian 

Industrial Commission, 2006). Machine and vehicle hire and running costs (maintenance, 

fuel, labour) were included where appropriate. Up-front capital costs of netting as provided 

by the manufacturer (single drape-over $4356/ha, double row drape-over $4860/ha, triple 

row drape-over $4212/ha, side nets $3200/ha, extruded netting $2000), and were 

depreciated over 7 years. Netting machines were depreciated over 25 years, their life 

expectancy. Other costs included post caps for netting, labour in repairing and removing 

nets for spraying, and tying nets down where applicable. However, indirect costs 

associated with netting such as any changes to orchard management, increased pruning or 

spraying, removal of prunings from between rows etc. were not included. For shooting, 
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vehicle running costs were based on 60 cents per kilometre for a Ute or 4WD and 20 cents 

per kilometre for motorbikes. Ammunition was estimated to cost 38 cents per shell (7 ½ g 

shot). 

 

Detailed information was collected to determine the ongoing and up-front costs of 

shooting, including number of shooters, time and duration of shooting activities, the 

number of shots fired, cost of ammunition, cost and type of firearm, number of birds shot, 

bird species, costs of vehicle (if applicable), location and habitat. 

 

Scaring treatments involved the use of LPG and acetylene gas guns; electronic noise 

generating devices, using radar or automatic timing systems and predator, distress and 

alarm calls and artificial sounds; and visual deterrents, including kites with hawk 

silhouettes, reflective pyramids and CDs. 

Experiments to reduce bird abundance 

The relationship between bird density and damage for nil treatments (n=61 vineyards and 

orchards) was examined using a linear model with transformations of the data in Program 

R (R Core Team, 2013). A global test was also used to examine the linear model 

assumptions using the gvlma package (Pena and Slate 2006). 

 

Short-term effects of nest removal (estimated using systematic nest searches and breeding 

data) and shooting on the abundance of starlings; and the effects of trapping on the 

abundance of starlings, blackbirds, silvereyes and sparrows (Passer domesticus) in fruit 

crops were investigated. Consumption of novel food types and estimated proportions of 

birds feeding were also used to evaluate the feasibility of poisoning for starlings and 

corvids. 

Nest searches 

Systematic searches and breeding behaviour of starlings in vineyards and orchards was 

used to investigate the efficacy of nest removal in reducing local populations of starlings. 

Searches of all potential starling nest sites were conducted in 9 vineyards in one breeding 

season and 1 vineyard over four breeding seasons, commencing in September. Subsequent 

searches and checking of nests occurred at least every 15 days, from September until 

February. All fence posts, buildings and accessible limbs and branches of every tree on 
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each site were systematically searched, and hollows individually marked and numbered. 

Measurements taken included entrance diameter, cavity depth, internal cavity diameter, 

hole orientation, circumference of tree below nest hole, tree species, tree height, diameter 

at breast height, and tree position. Investigation of nests was aided by a small torch and a 

borescope. Searches of native and introduced vegetation first occurred from the ground, 

then with binoculars, and then by climbing into each tree to search individual limbs with 

the aid of a 5 metre ladder. Where branches were inaccessible (>10 metres) searching was 

restricted to the use of binoculars from the ground, or from other accessible parts of the 

tree. Labour ($AUS18.26 per hour) was recorded during searches and for checking and 

marking of natural nest hollows. 

 

To estimate the accuracy of nest searches in detecting starling nests more intensive 

observations (3-20 person days/week) were carried out on one site in two seasons. 

Frequent observations occurred during other detailed studies of starling behaviour, where 

nest use, flock size, habitat use, movements (banded and radio-tagged birds), and 

encounters between starlings and native species were regularly recorded through-out the 

day from September to February. During these studies one to four people frequently 

undertook observations (3-20 person days/week) in vineyards and the surrounding areas, 

and any un-marked starling nests were recorded. 

Trapping 

To evaluate the efficacy of trapping to reduce pest bird abundance, 76 trapping events were 

conducted for starlings, sparrows, blackbirds and silvereyes. A trapping event being a 

period of trapping during a season (a three month period: Summer, Autumn, Winter or 

Spring) over eight years (2000 - 2008) with trapping occurring in 21 season years on 22 

sites. Birds were captured using mist nets, modified Australian crow (MAC) traps, 

Tidemann two-stage traps, and smaller walk-in cage traps using methods of Lukins and 

Tracey (2013). During Spring and Summer (September- February, 6 season years on 7 

sites) adult starlings were also captured in nest box traps, and by hand from natural nest 

sites and nest boxes with the aid of a plywood panel with a drop-down door, which was 

transportable and was placed inside boxes or outside natural entrances to capture starlings 

where they were known to be nesting. Nest boxes (40 x 25 x 25 mm) were constructed 

from 10mm plywood and painted for weather protection. Perches of 12mm dowel were 

attached below the 80mm diameter entrances, and a hinged roof allowed investigation of 
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nesting activity. Boxes were fastened to trees using tech screws and holes were drilled in 

the base of the boxes for drainage purposes. All boxes were attached with a southern facing 

orientation (Pell and Tidemann, 1997). Labour ($AUS18.26 per hour) was recorded for 

checking and marking of natural nest hollows, free-feeding and checking of cage traps, 

nest boxes and nest box traps. Percent and proportional reduction in pest bird populations 

were estimated separately for starlings, blackbirds, silvereyes and sparrows using the 

number of birds captured and abundance estimated for each site and season (as described). 

Introduced species (starlings, blackbirds, sparrows) were removed after capture, while 

silvereyes were banded, to account for recaptures (5.8%, n=51), prior to release. Many 

non-target species were captured, particularly when using mist nets, including Australian 

magpie (Cracticus tibicen), Australian raven (Corvus coronoides) , Australian reed warbler 

(Acrocephalus australis), brown falcon (Falco berigora), brown goshawk (Accipiter 

fasciatus), brown thornbill (Acanthiza pusilla), buff-rumped thornbill (Acanthiza 

reguloides), Cunningham’s skink (Egernia cunninghami), crested pigeon (Ocyphaps 

lophotes), crimson rosella (Platycercus elegans), diamond firetail (Stagonopleura guttata), 

Eastern blue-tongue lizard (Tiliqua scincoides), eastern rosella (Platycercus eximius), 

eastern spinebill (Acanthorhynchus tenuirostris), golden whistler (Pachycephala 

pectoralis), grey butcherbird (Cracticus torquatus), grey fantail (Rhipidura albiscapa), 

grey shrike thrush (Colluricincla harmonica), laughing kookaburra (Dacelo 

novaeguineae), magpie lark (Grallina cyanoleuca), Pacific black duck (Anas superciliosa), 

pied currawong (Strepera graculina), red browed finch (Neochmia temporalis), red 

wattlebird (Anthochaera carunculata), red-rumped parrot (Psephotus haematonotus), 

speckled warbler (Chthonicola sagittatus), spiny cheeked honeyeater (Acanthagenys 

rufogularis), spotted pardalote (Pardalotus punctatus), striated pardalote (Pardalotus 

striatus), striated thornbill (Acanthiza lineata), superb fairy wren (Malurus cyaneus), white 

browed scrub wren (Sericornis frontalis), white plumed honeyeater (Lichenostomus 

penicillatus), white-browed babbler (Pomatostomus superciliosus), willie wagtail 

(Rhipidura leucophrys), yellow faced honeyeater (Lichenostomus chrysops), yellow 

rumped thornbill (Acanthiza chrysorrhoa), and yellow thornbill (Acanthiza nana). These 

were released at the capture location. 

 

Generalised linear mixed model analyses were used to examine the effects of species 

captured (4), season (4), trap type (4), trap days (12-749), size of site (2- 500.9 ha) and 
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interactions on the proportion of birds captured (n=76 trapping events). A logit (log (p/1-

p)) transformation was used for the proportion of birds captured (p) to remove 

heterogeneity of variance. generalised linear mixed models were fitted using the package 

asreml (Butler et al., 2009) under R (R Core Team, 2013). Stepwise regression was 

performed to remove non-significant terms (P>0.05). Wald tests were used to examine 

fixed effects and non-marginal terms not significant at the P = 0.05 level were dropped 

sequentially. A t-test with equal variances was used to compare the large cage traps (MAC, 

Tidemann two-stage) for starlings. 

Bait consumption and preferences 

For starlings, bait consumption and preferences were estimated for six bait types: dog 

biscuits; poultry layer pellets; sultanas; table grapes (cage trial only); whole wheat and 

bread and dripping. Bread was cut into pieces 8-12mm square and then dipped in hot 

dripping and rolled in flour. All bait materials, with the exception of bread and grapes, 

were coated with a small quantity of vegetable oil. The oil was added to simulate the 

condition of material containing a toxin – vegetable oil is used to bind the chemical to the 

bait material when poison baits are prepared. 

In cage trials, twenty starlings, captured in the wild with two-stage cage traps, were placed 

in 5 cages (800 x 800 x 900 (h) mm from 1.2mm weld mesh 25mm x 25mm); with two 

males and two females per cage. Six types of bait media, provided in individual trays, were 

replenished and weighed daily for 16 days to determine the quantities of bait consumed per 

day. 

The justification for use of animals, the number of animals used, assessment of the 

animal’s well being, free-feeding and capture, handling, housing, care were approved and 

monitored by the NSW Animal Care and Ethics Committee. Animal Research Authorities 

(ORA 99/ 014; ORA 01/003; ORA 05004; ORA 04008) were received, as required under 

the Animal Research Act 1985. Standard operating procedures (Lowe 1989; Sharp and 

Saunders 2004a, b, c; Lukins and Tracey 2013) were followed for pre-feeding, timing, trap 

operation, housing, and handling, care and euthanasia of birds and welfare, safety and legal 

requirements were met. 

Experienced bird handlers conducted all procedures. Standard measurements of weight, 

head-body (HB), bill (BK) and tarsus with foot (TZ) lengths were taken as described in the 
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Australian Bird Banders Manual (Lowe 1989). Initial trapping was not conducted in 

excessively windy or hot periods or during rain, and traps were continuously monitored 

and checked during trapping periods. Maximum time between checking of traps varied 

with capture method (Lukins and Tracey 2013) from 20 minutes (mist net) to two days 

(large cage traps). Transport of birds from the field occurred using a holding cage or soft 

calico bag. Suitable shade and an adequate number of perches were available in holding 

cages, and daily servicing took place to ensure clean water and food, and to monitor bird 

health. At the completion of the study birds were removed from the cage by hand or a hand 

held net and euthanased by cervical dislocation or carbon dioxide (CO2).  

In field trials, continuous observations of birds visiting non-toxic bait trays were conducted 

at four sites over a 25 day period. At each site galvanised steel trays (measuring 1000 x 

500 x 25 mm), or later round black plastic trays (360 mm in diameter) were laid out and 

held in place by pegs. A group of five trays were placed on the ground spaced 0.5 m apart. 

At each site, groups of trays were placed in two or three separate locations, 50-400 m apart 

with the same locations chosen throughout the trial. Any pasture surrounding the trays 

(within approximately 1 m) was trimmed using a brushcutter. 

Bait substrates were weighed and placed in a mound on the feed trays in the following 

order; bread and dripping, dog biscuits, sultanas, pellets and wheat. At the end of each 

observation, bait substrates that had been visited by birds were again weighed and change 

in mass was recorded. Bait material was topped up or replaced to the required weight (500 

g ± 1%) as necessary. Observations of 1 hour duration from a bird hide were conducted 

through-out the day (6:00 – 18:00) with a total of 318 hours. All feeding and non-feeding 

visitations by any species to each bait type were recorded, with number of birds and length 

or feeding recorded. 

In the field trials, standardised counts were also conducted hourly during daylight on each 

site, and abundance estimated. The proportion of birds feeding was estimated using the 

maximum number of birds observed feeding from trays after 20 days of free-feeding, and 

estimated total bird abundance.  

The effects of bait type, abundance, number of days of feeding, site, time of day on the 

number of birds visiting feeding trays were examined using generalised linear mixed 

models in Program R (as described above). Analyses were conducted separately for each of 
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the 3 species; starlings, corvids (Australian and little ravens) and magpies. The Poisson 

distribution was used in all analyses, and a dispersion argument included for the starling 

model, as this data was over-dispersed. 

4.3 Results 

Bird species 

One-hundred and forty bird species were observed in vineyards and orchards during the 

study (n= 2,466 point locations, 101 sites), including nine introduced species. Of these 29 

native and 7 introduced species are known to consume fruit (Tracey et al., 2007). The main 

pest species were starlings (70.4%, mean density 419+ 112 starlings/ km2), eastern rosellas 

(Platycercus eximius) (4.7%), pied currawongs (Strepera graculina) (4.3%), corvids 

(Australian ravens, Corvus coronoides and little ravens, C. mellori) (3.9%), silvereyes 

(3.5%), sulphur-crested cockatoos (3.4%), red wattlebirds (Anthochaera carunculata) 

(3.1%), black-faced cuckoo-shrikes (Coracina novaehollandiae) (2.3%), crimson rosellas 

(Platycercus elegans) (2.1%), noisy miners (Manorina melanocephala) (1.9%), yellow-

faced honeyeaters (Lichenostomus chrysops) (1.6%), noisy friarbirds (Philemon 

corniculatus) (0.4%) and blackbirds (0.2%). 

Experiments to reduce bird damage 

The generalised linear mixed model analyses indicated a significant effect for property size 

(Wald statistic: F(1, 138) = 4.901, P = 0.028) and a significant Net x Shooting interaction 

(Wald statistic: F(1, 78) = 6.716, P = 0.011). Bird damage was significantly lower on 

netting (10.7+ 2.8%) and shooting (20.5+ 3.8%) sites than nil treatments (33.2+ 5.6%); and 

netting was more effective than shooting. The mean cost of netting and shooting treatments 

was $1,903+327/ha/site and $538+199 /ha/site respectively. Scaring and control effort 

(measured by treatment expenditure per hectare) had no effect on bird damage and there 

were no significant differences in damage between crops (apples, pears, cherries or 

grapes). There were no significant differences between net types (permanent, drape over, 

extruded) and the number of birds shot had no effect on bird damage. Lower damage was 

reported on sites with gas guns compared to those with electronic devices and visual 

deterrents (Wald statistic: F(1,74)=7.158, P=0.028). 
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Table 4.1. Mean bird damage (%) across all crops of average property size (12.3 ha), 

associated standard errors and an LSD ranking across treatment levels where there were 

significant differences.  

 

Net Shooting 
Mean 

Damage (%)

Standard 

Error (%) 
LSD Rank 

No No 33.2 5.6 c 

No Yes 20.5 3.8 b 

Yes No 10.7 2.8 a 

Yes Yes 15.2 4.0 ab 
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Figure 4.1. Bird damage (%, standard error) in vineyards and orchards of average property 

size (12.3 ha) under shooting, netting and nil treatments. LSD rank [ ] shows significant 

differences across treatment levels.  
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Experiments to reduce bird abundance 

A significant positive linear relationship (y = 0.0003x + 0.8053) was found between bird 

density (x; birds per km2) and the log10 of bird damage (y) (Figure 4.2; F1,60 = 8.775, P = 

0.00437; adjusted r2 = 0.1131), with the linear model assumptions assessed as suitable 

(Table 4.2). The low adjusted r2 value and therefore predictive value of the linear 

relationship is likely a result of the high variability in damage when bird density is low. 

This indicates that high levels of damage were still evident in vineyards and orchards with 

low bird density, but that a high density of birds (>1000 birds per km2) is likely to result in 

significantly higher levels of damage. A log10 transformation of bird density reduced the 

scatter of points, but did not increase the predictive value (adjusted r2 = 0.10). 

 

Table 4.2. Assessment of the linear model assumptions using the global test (Pena and 

Slate 2006; Kabacoff 2001). Level of significance = 0.05. 

 Value p-value Decision 

Global Stat 4.71748 0.3175 Assumptions acceptable. 

Skewness 1.31872 0.2508 Assumptions acceptable. 

Kurtosis 0.01969 0.8884 Assumptions acceptable. 

Link Function 2.56074 0.1095 Assumptions acceptable. 

Heteroscedasticity 0.81832 0.3657 Assumptions acceptable. 
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Figure 4.2. Relationship between bird density (birds per km2) and log10 (bird damage) in 

vineyards and orchards of the Orange Region, New South Wales. 
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Nest searches 

Six hundred and twenty-two hollows were marked on ten sites (mean 62.2 + 26.9 per site); 

78.1 + 6.9% of these were accessible and 17.0 + 7.8% had starling nests. In addition, 

intensive observations on one site over two seasons indicated that 4.2 + 2.7% of starling 

nests were missed during total searches. Taking these into consideration, 81.9 + 8.7% 

(n=13 breeding season sites) of starling broods were accessible for removal. Starlings laid 

4.16 + 0.25 (range 1-6, n=85) eggs per nest, during September, October and November.  

 

Trapping 

The interaction between species and trap type was significant in the final trapping model 

(Wald statistic: F(1,202)=42.2, P<0.001), with walk-in traps more effective than other 

capture methods for blackbirds, mist nets for silvereyes, and large cage traps for starlings 

(Figure 4.3). Season, trap days and size of site had no effect on the proportion of birds 

captured. Capture rates of starlings for the MAC (mean 3.54 + 0.98 birds per trap day ) and 

Tidemann two stage traps (mean 3.61 + 0.83 birds per trap day ) were not significantly 

different (t statistic = 0.056, n=14 site season years, 334 trap days, P=0.477). 

 

For starlings, over 60% (46 of 76) of trapping events resulted in zero captures, 9.2% (7 of 

67) resulting in reductions of over 30%; and trapping reduced the local population of 

starlings by over 90% on 2 occasions. Mean costs per bird were $14.83 overall (1789 birds 

captured); $14.76 (1292 captured) for starlings in large cage traps, $32.66 (123 captured) 

for adult starlings captured in nests or nest box traps, $21.20 (134 captured) for blackbirds 

in walk-in traps, and $11.82 (51 captured) for silvereyes in mist nets. The majority of 

starlings captured in nest boxes were male (83%, n=24). 
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Figure 4.3. Reduction (%, standard error) in pest birds by species and capture method from 

trapping in vineyards and orchards of the Orange Region New South Wales.  

 

Bait consumption and preferences 

Sultanas (6.3+1.6 grams/starling/day), dog biscuits (6.0+2.7) and bread and dripping 

(4.8+0.8) were preferred food items for starlings during the cage trial, with approximately 

equal proportions consumed. Table grapes (1.26+ 1.2) and poultry pellets (1.17+ 0.96) 

were occasionally consumed, and wheat was avoided (0.32+0.18). The overall mean 

quantity consumed per starling per day was 19.90 ± 1.72 grams. Slight changes in diet 

were observed over the cage trial period, with starlings switching preferences from dog 

biscuits to sultanas (A power function for the proportion of bait media consumed by 

starlings, y versus the time in activity x, y = 0.17 x0.30, r2 = 0.66 for sultanas, and a log 

function, y = -0.12 ln(x) + 0.52 , r2 = 0.71, for dog biscuits showed a good fit to the data). 

Consumption of other food types was constant during this period.  

 

During bait field trials, starlings were most abundant and the most common species to visit 

(60%, n=1609) and feed from (53%, n=1564) bait trays. Magpies (23%, n=1564), corvids 

(12%, n=1564), magpie larks (5%, n=1564), and white-winged choughs (4%, n=1564), 

sulphur-crested cockatoos, crested pigeons and pied butcherbirds were the only other 

species observed feeding from trays.  
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For starlings, bait type, free-feed days and abundance were significant (P<0.0001) in the 

final model. Bread and dripping (1.95± 1.4 starlings/hr), sultanas (1.68± 0.97 starlings/hr), 

and dog biscuits (1.95± 1.4 starlings/hr) were preferred, while poultry pellets (0.02± 0.02 

starlings/hr) and wheat (0 starlings/hr) were avoided. The percentage of birds feeding and 

bait consumption increased after 20 days (Before 2.8+1.8% vs After 36.0+9.5%). 

 

For corvids, bait type and free-feed days were significant (P<0.0001) in the final model. 

Corvids displayed a clear preference for bread and dripping over other bait media 

presented, and visits increased gradually with days of free-feeding (Poisson: size of effect 

for free-feed days =0.0213). For magpies, bait type and property were significant 

(P<0.0001) in the final model, with an obvious preference for bread and dripping. A 

higher number of starlings visited trays (4.46 ± 0.85 per hour, n=194 observations), than 

corvids (1.08 ± 0.85) and magpies (2.01 ± 0.85). 

 

Systematic searches indicate that nest removal would be highly effective (81.9 + 8.7%) in 

reducing starling reproduction. Poisoning and shooting were equally effective and trapping 

least effective in reducing starling abundance (Figure 4.4a). Nest removal (estimated from 

systematic searches), poisoning and trapping were equally efficient ($/bird) and shooting 

most expensive ($/bird) for starlings (Figure 4.4b). 
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Figure 4.4. Effectiveness (a) and efficiency (b) of lethal controls for reducing starling 

abundance (poisoning, shooting, trapping) and reproduction (nest removal, estimated from 

systematic searches) in vineyards and orchards. 
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4.4 Discussion 

Experiments to reduce bird damage 

Netting is often assumed to offer complete protection from bird damage (Stucky, 1974; 

Foster, 1979; Fuller-Perrine and Tobin, 1993; Tracey and Vere, 2007). However, whenever 

measured, damage is commonly reported under nets and was often observed in my study 

(mean 10.7+ 2.8 %) with damage as high as 56.4+ 4.8%. Birds breached nets through holes 

or gaps in netting, created as a result of catching on posts and wire, wind or in-complete 

installation. They also consumed fruit through nets, while smaller species entered through 

nets with large mesh size. For example, pied currawongs were observed consuming fruit 

through nets, including finer mesh and silvereyes and yellow-faced honeyeaters entered 

through and were regularly observed under netting. Somers and Morris (2002) also 

reported high levels of damage through nets, even when mesh size was small. In some 

cases results are excluded from experimental studies as a consequence of the difficulties 

with netting installation (Berge et al., 2007). However, even with these difficulties netting 

was still found to be the most effective method in reducing damage. 

 

Despite its widespread use, there have been few evaluations of the efficacy of shooting in 

reducing bird damage. In my study shooting (20.5+ 3.8%) was not as effective as netting 

(10.7+ 2.8%), but less than one-third of the cost ($538 vs $1,903/ha/property) and reduced 

damage compared to nil treatments (33.2+ 5.6%) by 13%. In the only other study (Murton 

and Jones, 1973) intensive shooting of wood pigeons did not significantly reduce bird 

damage to brassica crops. In their study, shooting was conducted to reduce the overall 

population of wood-pigeons in a large area, rather than shooting to scare birds from 

individual crops. The benefits of shooting reported in my study, are likely to be a result of 

scaring birds from the crop, as the number of birds shot was unrelated to the extent of 

damage caused, and the numbers shot were low in relation to the pest bird population size 

(35.0+7.9%). 

 

Scaring with noise- generating and visual deterrents had no effect on bird damage 

indicating that although birds may respond initially to scarers, they quickly acclimatise to 

new stimuli that do not pose a physical threat, which is supported elsewhere (Bomford, 

1990a). Additional analyses of scaring indicated that gas guns were more effective than 
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electronic devices and visual deterrents. This is despite the use of radar-activated electronic 

systems and those with distress or alarm calls, which have been shown to decrease bird 

activity (Ronconi and St Clair, 2006: radar-activated for waterfowl on tailings ponds; Ribot 

et al., 2011: alarm calls for rosellas in apple orchards). 

 

Control effort was not the same on all sites, leading to potential bias if not considered, for 

example, growers experiencing high levels of damage may be more likely to apply 

increased controls. This would result in underestimation of treatment effectiveness. 

However, we found control effort, estimated by the treatment expenditure per hectare, had 

no effect on bird damage. Similarly Murton and Jones (1973) found that the amount of 

damage was not correlated with the amount spent on crop protection. 

 

The size of the crop was important in the current study, with increased damage on smaller 

plantings, which is commonly observed (e.g. grackle damage to grapefruit Johnson et al., 

1989). With equivalent bird abundance the proportion of fruit consumed by birds is 

expected to be less on larger vineyards and orchards, as more fruit is available. This effect 

may be exacerbated by birds’ preference for the outer edges, which is common in bird-crop 

conflicts (Johnson et al., 1989; Somers and Morris, 2002; Tracey and Saunders, 2010). 

Experiments to reduce bird abundance 

Measures to reduce pest bird abundance in the long-term or over large areas are rarely 

effective (Feare, 1991), and not desirable for native species (29 of 36 pest species in my 

study). However, short term reductions in pests may have benefits in reducing damage 

(Palmer, 1972; Ward, 1979) or in preventing pest establishment into new areas 

(Woolnough and Parry, 2007).  

 

A positive linear relationship between bird density and damage (log10) indicates that a 

reduction in bird density would be beneficial in reducing bird damage to orchards and 

vineyards. However, there was high variability in damage when bird density was low with 

poor predictive value. This is true also in other pest damage functions (e.g. wild dogs, 

Fleming et al. In Press) and emphasises the importance of monitoring damage directly 

where possible (Tracey et al. 2007), and targeting pests where damage is high, rather than 

broadscale control of pests wherever they occur. 
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Results indicate that nest removal would be highly effective (82%) and relatively efficient 

($30 / starling) in reducing starling reproduction. However, compensatory breeding 

(Newton, 1994) following nest removal and immigration was not estimated, which is likely 

to limit effectiveness, and capture of adults at nests and with nest box traps had limited 

success (5.34 ± 1.1% reduction). Starlings with unsuccessful clutches are likely to lay 

replacement eggs, but these are less successful (Feare, 1984). However, controls of adults 

during nesting, and the timing of nest removal are likely to affect these compensatory 

responses i.e. removing nests and euthanising juveniles just prior to fledging would reduce 

the likelihood of starlings raising a replacement brood.  

 

Starlings have high breeding potential (2 broods per year, 4.6 per pair, my study), high 

rates of increase (Feare 1984), and high rates of natural mortality, particularly in the first 

year (Feare 1984). Hence, control of breeding in late winter and spring is likely to result in 

longer term reductions in populations than control at other times of the year. Conversely, 

control during the ripening period (late summer, autumn), when large numbers of juveniles 

are present, may have immediate benefit (Conover and Dolbeer, 2007), but is unlikely to 

result in reduced recruitment in the following breeding season. While my results indicate 

high efficacy of nest removal, further investigation is needed to evaluate the longer-term 

effects on starling populations. 

 

The effectiveness of different traps varied with species. Walk-in traps were more effective 

for blackbirds, which is consistent with their foraging and social behaviour. Blackbirds 

forage for food in small numbers amongst shrubs or dense vegetation. Conversely starlings 

forage in large flocks preferring open agricultural areas, hence the large cage traps were 

more effective than other capture methods. Capture rates between MAC and Tidemann two 

stage traps were similar for starlings, which differs from Campbell et al., (2012) who found 

Tidemann two stage traps to be 1.5 times more effective.  

 

Mist nets were more effective than cage traps for silvereyes, which were captured along 

windrows or whilst flying into vineyards from adjacent habitat. Silvereyes were not 

attracted to cage traps or food presented. Plesser et al., (1983) reported the capture of 2754 

sparrows over 10 days in a vineyard, by placing 57 metres of net 2m from the outside 

vineyard row. They reported the elimination of damage to the vineyard as a result, and 

attributed their success to the relatively small area (1.4 out of 10ha) that had ripe grapes 
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during the trial. However, the use of mist nets as a continuous barrier to protect fruit would 

be time consuming and impractical for large vineyards and orchards. The checking of mist 

nets every 20 minutes is required to ensure birds are removed before they are heat stressed 

or attacked by predators (Lowe, 1989; Lukins and Tracey, 2013), and restrictions apply on 

their use in most countries. These nets are not target specific (with 33 non-target species 

captured during our study), and many native species may be present (Conover, 1982; 140 

species observed in our study). Mist nets, large cage traps and walkin traps were equally 

effective for sparrows. These species were caught in close proximity to buildings and 

sheds, which is consistent with their local movements and feeding behaviour (Plesser et al., 

1983; Higgins et al., 2006). 

 

The capture of adult starlings with nest box traps and at nest hollows was less effective 

than cage trapping. However, this capture method in combination with nest removal, could 

be used to reduce compensatory breeding; and target populations when their abundance is 

lowest. The majority of the starlings captured in nest box traps were male (83%, n=24), 

which is likely a consequence of their role in finding suitable nest sites and building nests. 

 

Overall, trapping was difficult and costly. Greater success has been reported elsewhere 

(Dolbeer, 1989). MAC traps, in particular, are commonly used by orchardists for corvids 

(Moran, 1991), blackbirds (Moran et al., 2004), starlings and house finches, where large 

numbers are captured. For example, Elliot (1964) reported the capture of 110,000 starlings 

to reduce damage to cherries in Washington; Larsen and Mott (1970) reported the capture 

of 3500 house finches in blueberries; and Palmer (1972) used trapping and poisoning to 

reduce finch damage to figs in California. However, independent measures of abundance 

or damage were not used to evaluate effectiveness. Conover and Dolbeer (2007) reported 

an immediate 80% ( >500 before vs <100 afterward) reduction in starlings foraging in a 

blueberry orchard using MAC traps. Conover and Dolbeer’s (2007) study however, is an 

example of success in one orchard. Similarly, in my study trapping was successful in 

reducing the local starling population by 90% on two sites, but overall effectiveness was 

low. This may emphasise the need to consider publication bias in future (Section 2.1), 

where authors maybe more likely to report positive results in isolated cases rather than 

considering efficacy across the range of situations where control methods are applied. 
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Trapping for starlings is usually conducted during summer when large flocks of juveniles 

are present, which also coincides with fruit ripening. Trapping success for starlings is often 

attributed to the naivety of juvenile birds, which comprise the majority of captures 

(Conover and Dolbeer 2007). However, season did not significantly affect the proportion 

of birds captured in my study. Presence and number of lure birds (3: Campbell et al., 2012; 

4-6: my study; 20-40 Conover and Dolbeer 2007) can also affect trap success. Conover and 

Dolbeer (2007) reported that MAC traps were only effective when 10-20 starlings were 

used. Food availability and preferences for food presented is also likely to affect trap 

success. 

 

Grain-based pellets using either poultry layer mash (Johnson and Glahn, 1994), corn 

(Knittle et al., 1980) or rice (Linz et al., 1995) are the recommended and most commonly 

used bait media for starlings and American blackbirds (red-winged blackbirds, Agelaius 

phoeniceus, yellow-headed blackbirds, Xanthocephalus xanthocephalus, and grackles, 

Quiscalus quiscula). While poultry pellets were consumed by starlings in my study, bread 

and dripping, sultanas and dog biscuits were consumed in preference in both field and/or 

cage trials. Sultanas were the most target-specific for starlings, with corvids and magpies 

commonly consuming bread and dripping and occasionally dog biscuits. Familiarity with 

food is important in trapping success, for example, poultry feed is preferred at feedlots 

(West and Besser, 1976), grain in grain growing and storage areas, fruit in vineyards, 

almonds in nut orchards (Sinclair, 1998), and bread or dog biscuits in residential areas 

(Nelson, 1994; Lukins and Tracey, 2013). 

 

Diluting poison bait with untreated feed has been recommended previously for reducing 

non-target impacts, for example 1:25 (Linz et al., 2002), or up to 1:200 is recommended 

(West et al., 1967). However starlings in my study were less abundant (e.g. mean 260 

starlings per property versus 77,000, Knittle et al., 1980), required longer periods of free-

feeding (23 days vs 1-4 days Johnson and Glahn, 1994) compared with other studies (West 

et al., 1967; Linz et al., 2002). My results indicate that high dilution rates may reduce 

effectiveness for starlings, while still exposing ravens and magpies, which fed more 

consistently and for longer periods than starlings. Although not assessed here in relation to 

non-target abundance and risk, observations suggest magpies, corvids and magpie larks 

would be the main non-target species from a starling trapping or baiting program. Results 

also indicate that a small number of white-winged choughs, sulphur-crested cockatoos, 
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crested pigeons and pied butcherbirds may also be exposed. Other non-target species may 

be at risk in other areas for example along watercourses or near dams. Coots (Fulica atra), 

mallards (Anas platyrhynchos), Pacific black ducks (Anas superciliosa), wood ducks 

(Chenonetta jubata), and grey teal (Anas gracilis) are easily attracted to grain or bread, and 

anatids are susceptible to the DRC-1339 (Eisemann et al., 2003), as well as other avicides.   

 

Murton and Jones (1973) showed that the likelihood of bait acceptance increased with bait 

density, which could have limited feeding activity and explain the length of free-feeding 

needed in my study, where relatively small amounts of feed were presented.  

 

Knittle et al., (1980) suggest that bait consumption estimated using cage and field trials is 

the most reliable method of estimating overall effectiveness of baiting compared to other 

methods, including using change in population estimates and/ or numbers of dead birds 

recovered during systematic searches. My results indicate a mean reduction of 36.0+9.5% 

could have been achieved after 20 days of free-feeding. This is likely to be conservative as 

individual birds were not able to be identified, and the maximum number of birds (not total 

birds) observed feeding from trays was used. While this period of free-feeding is longer 

than recommended in other studies (1-4 days, Johnson and Glahn, 1994), differences in the 

familiarity with food types, varying feeding rates, and therefore efficacy are expected in 

different locations.  

 

Increased baiting efficacy and higher feeding rates by starlings were recorded by Knittle et 

al., (1980), where there larger congregations of birds were present (77,000), larger amounts 

of food was presented (23 kg per site), and where baiting occurred during winter, when 

alternative foods were likely to be limited. In comparison, the current trial sites were 

located in a productive agricultural area (mean annual rainfall: 920 mm), where their 

preferred foods, including ground invertebrates (Coleman, 1977) and fruit are regularly 

available and widely distributed. Greater success may be expected in drier conditions, 

where pasture growth is limited and alternative foods are lacking. In addition many of the 

smaller orchards and vineyards would occupy only a proportion of a starling’s home range. 

Immigration of birds from surrounding areas is therefore likely, which could explain the 

limited effectiveness of lethal controls reported here. 
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Communication between birds is also likely to be important in finding food, which may 

increase with increased abundance. For example, birds find food more efficiently in a flock 

(Krebs et al., 1972), and large communal roosts may be important as ‘information centres’, 

particularly where food is unevenly distributed across the landscape (Ward and Zahavi, 

1973).  

 

Bread and dripping was the preferred bait type for corvids and magpies. These species 

often feed on carrion (Higgins et al., 2006); and meat baits, offal, small mammal carcases 

or eggs are regularly used to poison or capture them (Johnson, 1994; Lukins and Tracey, 

2013). However, other non-target species are also likely to be attracted to meat baits. For 

example in my study wedge-tailed eagles (Aquila audax), little eagles (Hieraaetus 

morphnoides), whistling kites (Haliastur sphenurus), black kites (Milvus migrans), pied 

(Cracticus nigrogularis) and grey (Cracticus torquatus) butcherbirds, pied currawongs, 

grey shrike thrush (Colluricincla harmonica) (eggs), and mammals including feral pigs 

(Sus scrofa), dogs (Canis lupus familiaris), foxes (Vulpes vulpes), cats (Felis catus), and 

native (Muridae) and introduced (Rattus rattus, Mus musculus) rodents were present in 

vineyards and orchards and surrounding vegetation during the study. Other food types are 

also used for corvids and magpies, such as crumbed cheese, butter, corn, milo heads, 

watermelon, and poultry feed (Johnson, 1994; Nelson, 1994; Lukins and Tracey, 2013).  

 

Results indicate that the use of poisons would be ineffective in vineyards and orchards. In 

addition, while the risks posed to non-target species was not assessed; many native species 

were present (131), with seven of these observed feeding from trays. Secondary risks of 

poisons would also need to be assessed prior to commencing a poisoning campaign, with at 

least seven birds of prey, five other bird species and six mammal species present that may 

be at risk by consuming sick and dying birds exposed to poisons. 

Conclusions  

Most studies of bird control measures have involved limited replication and/or failed to 

independently measure damage and pest bird abundance. Evaluations of bird management 

techniques require large sample sizes to account for the complexity of bird- crop systems 

and should incorporate, or attempt to control for, the variability in bird species, abundance 

and damage over time and between sites. 

 



 4. Assessing lethal and non-lethal methods for reducing bird damage to fruit 

92 

Despite their widespread use, results indicate that lethal methods used to control starlings, 

blackbirds, sparrows, silvereyes, and crows on vineyards and orchards have limited 

effectiveness in reducing pest populations in the short term. However, systematic searches 

indicate that nest removal would be highly effective at limiting reproduction and could 

have benefits for long-term management of starling populations. Results indicate also that 

shooting as a method to scare birds from the crop, rather than to control populations, is 

effective in reducing damage, while scaring with electronic devices and visual deterrents is 

ineffective.  

 

Results indicate use of poisons for birds in vineyards and orchards may have limited 

effectiveness and is problematic due to likely but un-measured non-target affects including 

primary and secondary poisoning. In my study 131 native species were recorded in 

vineyards and orchards. Long term reductions in these populations are not feasible or 

desirable. However, feeding trials indicate that magpies, corvids and magpie larks may be 

the main non-target species at risk from a starling trapping or baiting program, and use of 

sultanas for starlings may reduce this risk.  

 

Netting was the most effective method in reducing damage and has considerable 

advantages when large numbers of native species are present. However, damage under 

netting can be significant and should be considered before investing in nets over other 

methods. Selecting appropriate netting for the species involved, avoiding nets in direct 

contact with fruit and improved applications and maintenance of netting would improve 

effectiveness. 

 

The effectiveness of non-lethal and lethal controls was highly variable between control 

methods and combinations, bird species, abundance, trap types, and food presented. 

Careful consideration of the species involved, their abundance, movements, and feeding 

preferences will improve the effectiveness and target specificity of controls for pest birds.  

 

 



 

PART B: ENVIRONMENTAL IMPACTS 

Preface 

Part B considers environmental impacts of birds using introduced mallards on Lord Howe 

Island as a case study. In Chapter 5 I review the history of introduction and movements 

and provides current information on the abundance, distribution, activity, habitat use and 

breeding of Pacific black duck and mallard on Lord Howe Island. The extent of 

hybridisation between Pacific black duck and mallard is evaluated, and management 

options for mallards on the island are then considered. Pacific black duck and grey duck 

are both used as common names for Anas superciliosa. Pacific black duck has been used in 

this thesis. 

 

5. Hybridisation between mallard and Pacific black duck on 

Lord Howe Island and management options 
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Abstract 

Introduced mallards (Anas platyrhynchos) occur on many islands of the South Pacific, 

where they hybridise with the resident Pacific black duck (A. superciliosa). In October 

2007, we conducted systematic surveys of Lord Howe Island to estimate the abundance 

and distribution of Pacific black ducks, mallards, and their hybrids. Hybrids were common 

in areas of high public use, particularly where there was mown or grazed grass. Phenotypic 

characteristics suggest that mallards are now dominant and have supplanted the native 

Pacific black duck, with 81% of birds classified as mallard or mallard-like hybrids, 17% as 

intermediate hybrids and only 2% as Pacific black duck-like hybrids. No pure Pacific black 

duck were observed. These hybrids pose direct impacts to Pacific black ducks and 
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perceived but un-quantified indirect economic, social and environmental impacts to Lord 

Howe Island. A management program to remove mallards using trapping, shooting and 

opportunistic capture by hand was conducted in October 2007. Standardised indices of 

duck abundance before and after management indicates that the total population was 

reduced by 71.7%. If warranted, eradication of mallard and hybrids from Lord Howe 

Island is considered achievable with a program of education, monitoring, and continued 

control to prevent re-establishment. 

5.1 Introduction 

Pacific black duck (A. superciliosa) are widely distributed throughout the South Pacific 

(Marchant and Higgins, 1990). They favour fresh and brackish water and are uncommon in 

marine habitats, except during drought (Goodrick, 1979), or on oceanic islands (Horning 

and Horning, 1974; Norman, 1990). Movements on mainland Australia and New Zealand 

are associated with the availability of surface water (Roshier et al., 2001). Populations are 

sedentary near permanent water, and more dispersive in ephemeral wetlands and in times 

of drought (Frith, 1963, 1982). There are 3 subspecies of Pacific black duck (Amadon, 

1943a; cf. Marchant and Higgins, 1990; Rhymer et al., 2004); the nominate superciliosa 

found in New Zealand, and on Chatham, Bounty, Antipodes, Snares, Auckland and 

Campbell islands; rogersi found in Australia, New Guinea and Indonesia; and pelewensis 

found in New Guinea, Vanuatu, New Caledonia, Fiji, Solomon Islands and French 

Polynesia. The subspecies pelewensis is markedly smaller (Amadon, 1943a), but 

superciliosa and rogersi cannot be differentiated morphologically. However, recent DNA 

analyses have found 2 divergent lineages in these latter two taxa: one found only in New 

Zealand, the other found throughout Australia and New Zealand (Rhymer et al., 2004). 

Pacific black ducks on Lord Howe Island (159°05‘ E, 31°33‘ S) occur at the geographic 

intersection of all 3 subspecies (Figure 5.1) and their lineage is unknown. Pacific black 

duck have been observed on Lord Howe Island since 1852 (MacDonald, 1853). Breeding 

is likely although records are infrequent: 1887 (Australian Museum records cited in 

McAllan et al., 2004), 1941-1945 (Hindwood and Cunningham, 1950) and 1971 (Rogers, 

1972). A flock of 100 Pacific black ducks were observed in 1956, but this population 

subsequently declined (McKean and Hindwood, 1965).  
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Figure 5.1. Movements and distribution of Mallard (grey arrows, grey shading) and Pacific 

Black Duck (black arrows, black dotted lines) in the South Pacific. Source: Norman 1973; 

Hermes et al., 1986; Marchant & Higgins 1990; Barrett et al., 2003; Robertson et al., 2007; 

ABBBS 2008. Distribution of A. superciliosa subspecies was taken from Rhymer et al., 

(2004). Note however that Amadon (1943a) and Frith (1982) included the birds of 

Macquarie Island within the distribution of A. s. superciliosa. 

 

Mallard (Anas platyrhynchos) are native to the Holarctic and were introduced to Australia 

and New Zealand in the late 1860’s (Lever, 1987). Hybridisation between Pacific black 

duck and mallard is common throughout New Zealand (Gillespie, 1985) to the extent that 

the genetic integrity of the Pacific black duck has been compromised (Rhymer et al., 

1994). By 1982 only 4.5% pure Pacific black duck remained in Otago (Gillespie, 1985), 

and they now are thought to persist only in isolated, non-urban areas in New Zealand. 

Rhymer et al., (2004) suggested mallard should be eradicated from the Chatham Islands, 

and pure Pacific black duck be introduced to preserve its genetic integrity. Although rarely 
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quantified outside New Zealand, hybridisation between these two species also occurs 

elsewhere in the South Pacific, with the mallard implicated as a threat to the Pacific black 

duck where they co-occur (cf. Braithwaite and Miller, 1975; Williams and Basse, 2006),. 

Mallard were first recorded on Lord Howe Island in 1963 (McKean and Hindwood, 1965), 

and soon began hybridising with Pacific black duck (Rogers, 1976). The initial sightings of 

mallard coincide with major attempts to introduce this species to New Zealand: by 1963 

over 20,000 mallard were released throughout the North and South Islands (McDowall, 

1994). Mallard appear more sedentary than other ducks, although banding records 

demonstrate some long-range dispersal (Figure 5.1), and it is possible mallards on Lord 

Howe originated from New Zealand. Since 1975 reports of Pacific black duck on Lord 

Howe Island are likely to have been hybrids with mallards (Hutton, 1991). While Pacific 

black duck and mallard have been observed on Lord Howe Island since 1963 (McKean and 

Hindwood, 1965), there is no current information on their distribution and abundance, and 

few attempts have been made to manage these populations. 

 

This paper quantifies the extent of hybridisation between Pacific black duck and mallard 

on Lord Howe Island, provides information on their abundance, current distribution, 

habitat use, and investigates the potential for their management. 

 

5.2 Methods 

Twenty-two systematic surveys of ducks were conducted in October 2007. All ducks were 

recorded along a standardised route from Ned’s Beach and Old Settlement through to 

Evies and Kings Beach (Figure 5.3). Flock size, habitat type, location, activity, sex and age 

classes of birds were recorded. Detailed observations of plumage on 86 ducks were used to 

quantify the degree of hybridisation. This occurred both in the field (n=32 ducks) and with 

captured and shot individuals (n=54 ducks). Gillespie’s (1985) seven point scoring system 

was used to differentiate phenotypic characteristics of the two species. Individuals with a 

score of 0-9 were considered Pacific black duck; scores of 10-24 were considered hybrids; 

and scores of 25-35 were considered mallard. The hybrid score was also separated into 

Pacific black duck-like hybrids (10-14), intermediate hybrids (15-19) and mallard-like 

hybrids (20-24). The minimum number of ducks known to be alive was also calculated by 

differentiating, when possible, individuals and groups during repeated counts using 

differences in age and plumage. 
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To trial methods for future management of ducks on Lord Howe Island we removed 

mallards and hybrids by trapping, shooting and hand capture according to ethics approval 

(Animal Research Authority ORA 05/019) and standard operating procedures (Sharp and 

Saunders, 2004b, a, c). Surveys of duck abundance and distribution were conducted before 

(n=10), during (n=5) and after (n=7) control measures were implemented. The timing and 

frequency of operation, and costs and labour was also recorded. Eight funnel entrance cage 

traps (approximately 1800 x 900 x 900 mm) and a pull net were used following approved 

procedures for pre-feeding, timing, trap operation, and handling, care and euthanasia of 

birds; and safety and legal considerations (Sharp and Saunders 2004a, b, c; Lukins and 

Tracey 2013). Baiting with bread and poultry layer mash occurred for 6 days prior to 

setting the traps. Trapped birds were removed and placed in a plastic holding box. 

Euthanasia was performed using cervical dislocation and inhalation of carbon dioxide 

(CO2) following standard operating procedures (Sharp and Saunders, 2004a, b, c). Non-

target species were released at the capture location. To avoid dispersing flocks, a .22 

calibre rifle with silencer was used for shooting. Juveniles and chicks were also 

opportunistically captured by hand or handheld net. The percent reduction in mallards and 

mallard hybrids was estimated using 2 indices (standardised counts and minimum number 

alive) before and after management. An additional abundance estimate was calculated 

using index-manipulation-index (Riney, 1957; Caughley, 1980), with Eberhardt’s (1982) 

variance estimate. Pearson’s chi-squared tests were used to test habitat preferences 

separately for terrestrial and aquatic environments, using expected numbers estimated from 

the proportions of each habitat available within the searched area. 

 

5.3 Results 

Current extent of hybridisation 

No birds were classified as pure Pacific black duck, despite sampling over 90% of the 

entire population (86 birds classified out of approximately 100 ducks present, see below). 

Pacific black ducks appear to have hybridised extensively with mallards, with only 2% of 

birds classified as Pacific black duck-like hybrids, 17% as intermediate hybrids, 41% as 

mallard-like hybrids and 40% as pure mallard. The mean phenotypic score was 24.2 (se= 

0.59, range 1134, n=86), which is the upper limit of mallard-like hybrids (Figure 5.2).  
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Independent genetic study supports these phenotypic classifications, with sequencing of 5’-

end of the mitochondrial DNA control region using feather samples revealing significantly 

higher hybridisation scores for Mallard compared with than Pacific Black Duck genotypes, 

and low genetic diversity (P=0.019, n= 44; Nucleotide diversity (π) 0.0004 ± 0.0005. 

Haplotype diversity (H) 0.279 ± 0.124; Lord Howe Island, Guay and Tracey, unpublished 

data; vs Nucleotide diversity (π) 0.0120 ± 0.0062, Haplotype diversity (H) 0.985 ± 0.005 

of Mallards from the Western Palearctic, Kulikova et al. 2005) 
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Figure 5.2. Frequency of phenotypic scores used to evaluate hybridisation between Mallard 

and Pacific Black Duck on Lord Howe Island. 

 

Abundance, distribution and ecology of ducks on Lord Howe Island 

Prior to management, the mean number of ducks observed per survey was 52.1 (se= 8.7, 

n=10 surveys) and the total number estimated using the index-manipulation-index method 

was 100.4 (se= 11.7). The minimum number known to be alive prior to culling was 98 

ducks. 

 

Ducks were most commonly observed on the golf course (31%, n=906 groups of ducks), 

Ned’s Beach (25%) and Johnsons Creek area (17%; Figure 5.3). They also occurred in the 
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vicinity of Old Settlement (10%) and occasionally in residential areas and along roads 

(2%). Ducks regularly foraged on mown grass and pasture paddocks surrounding the 

airstrip (15%). None were observed in forested habitat, despite 1.58 km2 (67%) of forest 

occurring within the search area. Following rainfall, temporary waterholes in pastures 

attracted groups of ducks. Similar behaviour was observed in fresh water pools formed in 

drainage lines. Larger family groups of unfledged ducks were resident near 

permanent dams within the golf course. 

 

 
 

Figure 5.3. Distribution and abundance of Mallard x Pacific Black Duck hybrids on Lord 

Howe Island before (●) and after (●) control 8th- 18th October 2007. Flock size: 1-3, 4-6, 7-

11, 12-18, 19-26 (increasing dot size). Observation route: (·····). The wind rose shows the 

long term average wind speed and direction from records taken at Lord Howe Island 

airport between 1989-2006 (n=3,933 observations Source: Australian Government Bureau 

of Meteorology). 

 

When classified according to terrestrial habitat use, ducks preferred areas with mown grass 

(45%, n=654 groups of ducks, P<0.001, χ2=3254.7) to grazed grass (25%) or the 
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revegetation area (11%). The beach was also used (18%), primarily at Ned’s Beach where 

people feed fish. Observations of ducks on water indicated a strong preference for 

freshwater (72%, n=275 groups of ducks, P<0.001, χ2=11,586), but ducks were also 

regularly observed in the ocean (17%) and estuaries (11%). Ducks spent the majority of 

their time standing (32%, n=692), swimming (21%) and walking (18%). Other activities 

included foraging (11%), resting (8%), flying (2%) and preening (1%). Breeding was 

observed in October, with 10 clutches observed (mean=7.7 eggs per clutch, se=0.78, range 

412, n=10): nests were built close to fresh water in dense clumps of long grass. Recorded 

weights for mallard (male: mean=1040 grams, se=23.7, range 9101170, n=12; female: 

mean=930 grams, se=42.9, range 800-1040, n=6) were larger than those of the hybrids 

(female: mean=897 grams, se=19.6, range 730-990, n=13). 

Control of mallards and hybrids 

Seventy-two birds were captured and euthanased between 14-18 October 2007. The 

majority of these birds were shot (43%). Hand capture was the most cost-efficient 

technique (AUS$3.50/bird, cf. trapping AUS$19/bird and shooting AUS$22/bird) but was 

only used to capture juveniles and chicks when shooting adults. Trapping was hampered by 

the disturbance of traps by the public, and ducks did not become acclimatised to traps in 

some locations or bait was consumed by non-target species. Thirty-two birds of 5 non-

target species were captured in traps, sampled for diseases and released at the capture 

location including banded rail (Gallirallus philippensis) (15), pukeko (Porphyrio 

porphyrio) (11), Lord Howe woodhen (Gallirallus sylvestris) (3), magpie lark (Grallina 

cyanoleuca) (2), and blackbird (Turdus merula) (1). Using the index-manipulation-index 

method the combined duck population before management was estimated to be 100.4 birds 

(se=11.69, n=10 surveys), with an estimate of only 28 birds after the cull (se=3.3). 

Management significantly reduced the distribution of ducks (Figure 5.3) and the minimum 

number alive after management was 26 birds. Using the mean number of ducks observed 

after management of 14.8 birds (se=6.18, n=4), the reduction was estimated as 71.7%. 

Using the minimum number of ducks known to be alive (98 before, 26 after), the reduction 

was estimated as 73.5%. 
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5.4 Discussion 

Abundance – past and present 

The decline in number of Pacific black duck on Lord Howe Island reported after 1956 may 

have been a result of hunting by humans and/or predation by cats, and was concomitant 

with the first records of mallard on the island in 1963 (McKean and Hindwood, 1965). 

Birds, including ducks, were a principal source of food for early island inhabitants, and 

hunting continued until at least the 1970s (Hutton, 1991). It is likely that Pacific black 

duck were hunted although it is unknown how many were killed. Feral cats (Felis silvestris 

catus) and possibly introduced pigs (Sus scrofa), may also have limited duck populations, 

although both were subsequently eradicated by 1981(Hutton, 1991). Pukeko, king fish 

(Seriola lalandi) and Lord Howe Island Currawong (Strepera graculina crissalis) are also 

known to prey upon ducklings (C. Haselden, personal observation; Hutton, 1991) and may 

also limit recruitment. 

 

Hybridisation between Pacific black duck and mallard on Lord Howe Island was first 

reported in 1975 (Rogers, 1976). The total number of ducks has gradually increased from 

50 to 60 birds reported in 1978 (Hutton, 1991) to the current prior-control population of 

about 100 birds, probably due to the provision of permanent water, creation of open lawn 

and grazing, and feeding by visitors and residents. Our survey revealed that all of these 

ducks are either mallards or hybrids. The extent of hybridisation on Lord Howe Island is 

thus even more advanced than in New Zealand (51% hybrids, 4.5% pure Pacific black 

duck; Gillespie, 1985). Mallard x Pacific black duck hybrids on Lord Howe Island were 

initially found to occupy areas below Mt Lidgbird and Blinky Beach swamp (Hutton, 

1991). They were fed at Pine Trees Lodge and by 1987 began to regularly visit Ned’s 

Beach where bread is fed to fish (Hutton, 1991). These hybrids are now common in 

developed parts of the island. 

 

The origin of both Pacific black duck and mallard on Lord Howe Island is uncertain, but 

there are no records of deliberate introductions, and both species have the capacity to 

colonise new areas, either from the Australian mainland (Port Macquarie 586 km), New 

Zealand (1304 km), Norfolk Island (898 km), or New Caledonia (1258 km). Mallards are 

more likely to have arrived from New Zealand or Norfolk Island than the Australian 

mainland, as they are abundant in New Zealand (Gillespie, 1985) and banding has 



 5. Hybridisation between mallard and Pacific black duck on Lord Howe Island 

102 

confirmed their movements from Norfolk Island to New Zealand, Vanuatu and New 

Caledonia (Figure 5.1). However, the prevailing wind on Lord Howe Island is from the 

south–west during winter and spring (Figure 5.3), and it is possible either species could 

also travel from mainland Australia at this time of year. 

 

Birds classified as mallard were heavier than hybrids, but unusually were lighter than both 

mallard and Pacific black duck in New Zealand (Balham, 1952), Australia (Miller, 1971; 

Braithwaite and Miller, 1975), and North America (Kortright, 1942). This may indicate 

that the original source of A. superciliosa was from the north (pelewensis) rather than west 

(rogersi) or south (superciliosa). The weights recorded for A. superciliosa pelewensis were 

considerably lighter (Amadon, 1943a) than the weights of mallard or hybrids in the current 

study. The impacts of mallards in a broader ecological context (e.g. Hone 2007) should 

also be considered. For example hybrids and mallards may occupy a similar ecological 

niche to Pacific black duck on the island. However, the most direct and immediate threat of 

mallard on Lord Howe Island is the decline and evident extinction of resident Pacific black 

duck. Evidence from this study suggests that the introduced mallard has eliminated the 

Pacific black duck previously present. Existing hybrids are also likely to continue to 

suppress any arriving Pacific black ducks. Williams and Basse (2006) suggest that mallard 

will soon permanently displace the Pacific black duck throughout New Zealand as a 

consequence of the mallard’s greater survival, fecundity, physical domination, and 

willingness to exploit disturbed environments. Hybridisation with mallard has also been 

implicated as a major threat to anatids in other countries, including Canada and the United 

States (American black duck, A. rubripes, Ankney et al., 1989), Mexico (Mexican duck, A. 

platyrhynchos diazi; Hubbard, 1977; cf. Scott and Reynolds, 1984), Hawaii (Hawaiian 

duck, A. wyvilliana), and Madagascar (Meller’s duck, A. melleri, Jones, 1996). 

 

In the South Pacific co-occurrence of mallard and Pacific black duck has also been 

observed on Campbell Island (Bailey and Sorensen, 1962), Chatham Islands (Tennyson, 

1998), Snares Islands (Miskelly et al., 2001), Auckland Island (Marchant and Higgins, 

1990), Norfolk Island (Hermes et al., 1986) and Macquarie Island (Norman, 1990).  

Management options 

After our control program, a minimum of 21 adults (comprising 1 Pacific black duck-like 

hybrid, 3 intermediate hybrids, 9 mallard-like hybrids, and 8 mallard), 3 juveniles and 2 



 5. Hybridisation between mallard and Pacific black duck on Lord Howe Island 

103 

chicks were known to be alive. Bomford and O’Brien (1995) outline 6 criteria for 

successful eradication of a vertebrate pest. We believe that 5 of these criteria can be 

satisfied for mallard on Lord Howe Island: all animals are at risk by at least one method of 

control, rate of removal can exceed the rate of increase at all densities, the population can 

be monitored at all densities, discounted benefit-cost analysis is likely to favour 

eradication, and there is a suitable socio-political environment conducive to eradication. 

There is limited information on the benefits and costs of control, which are likely to 

increase as the population decreases. However, we believe the benefit-cost criteria are 

justified on the basis that control options are relatively inexpensive (currently AUS$3.50-

$22/bird) compared with the potential benefits of the re-establishment of the native Pacific 

black duck. The remaining criterion, which stipulates that immigration is zero, is unlikely 

to be met for mallard or hybrids. However, on the basis of previous records of 

introductions (McKean and Hindwood, 1965; Rogers, 1976; Ray Shick, cited in Hutton, 

1991), immigration is likely to be infrequent and preventing their re-establishment is 

considered manageable. 

 

Although we consider the eradication of mallards and their hybrids on Lord Howe Island  

feasible, it would not be straightforward. In particular, disturbance of traps by the public 

and the tendency of birds to become flighty may make removal of the last few individuals 

problematic, labour intensive and therefore expensive. For these reasons, a hand 

delivered poisoning campaign following free-feeding may be a feasible option, and as an 

adjunct to targeted shooting, maybe effective in achieving eradication. Alphachloralose, a 

soporific, is considered the most humane avicide (Tracey et al., 2007), has been used for 

anatids in the United States (Woronecki et al., 1990; Woronecki et al., 1992) and is 

currently registered for use in Tasmania. However, an assessment of the non-target risks of 

poisoning and measures to limit these risks would need to be conducted before using this 

method. On welfare grounds, control should be implemented before breeding (Oct, this 

study; Jul-Nov, Hutton, 1991; Sep-Oct, McAllan et al., 2004). If breeding has commenced, 

hand capture of ducklings and juveniles before fledging, when they are less mobile, is a 

priority as subsequent control is more expensive and time consuming. Given the current 

distribution of mallard in the South Pacific and their capacity to travel large distances, re-

colonisations following eradication are likely to occur. Equally the arrival of Pacific Black 

Ducks are likely and deliberate re-introductions of this species could be considered. If the 

eradication of mallards is pursued, ongoing monitoring and management will be necessary 
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to prevent their re-establishment and to protect the genetic integrity of any future 

population of Pacific black ducks. 

 

 



 

PART C: HEALTH IMPACTS 

Preface 

Part C considers health impacts of birds using avian influenza in Australia as a case study. 

Since the first cases of H5N1 HPAI in humans in 1997 in Hong Kong (Xu et al., 1999), 

avian influenza has become internationally recognised by the public health practitioners, 

the animal health community and the general public. This virus is considered the precursor 

to subsequent major epizootics in 2001-2 (Guan et al., 2004) and 2003-4 (Li et al., 2004). 

By March 2004 epizootics were confirmed in China, Cambodia, Indonesia, Japan, Laos, 

South Korea, Taiwan, Thailand and Vietnam. Epizootics of H5N1 in poultry have since 

occurred throughout Asia (Figure 5.1), Europe and Africa, and its eradication is considered 

unlikely (Li et al., 2004; Sims and Narrod, 2009). H5N1 has also caused disease and death 

in humans (Claas et al., 1998; Subbarao et al., 1998; Yuen et al., 1998) via avian-to-human 

transmission.  

 

The potential transmission of the H5N1, and other influenza A viruses from Asia to 

Australia via wild birds is of concern. There are many bird species known to undertake 

movements between Asia and Australia; the species involved, their movement behaviour, 

ecology and susceptibility to disease are all of importance when assessing the risks of 

avian influenza in Australia. In chapter 5 I review the epidemiology of avian influenza in 

wild birds, modes of transmission, and examine the factors influencing the prevalence of 

avian influenza in Australia’s wild birds. In chapter 6 I undertake more detailed analysis of 

the abundance, movements and breeding ecology of Australia’s Anseriformes in relation to 

the prevalence of low-pathogenicity avian influenza (LPAI) and provide risk profiles to 

improve the efficiency and relevance of wild-bird surveillance. 
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Abstract 

Waterbirds, particularly Anatidae are natural reservoirs for low pathogenic avian influenza 

(LPAI) and have been implicated as the primary source of infection in outbreaks of highly 

pathogenic avian influenza (HPAI). An understanding of the movements of birds and the 

ecology of avian influenza viruses within the wild bird population is essential in assessing 

the risks to human health and production industries. Marked differences in the movements 

of Australian birds from those of the northern Hemisphere emphasises the danger of 

generalising trends of disease prevalence to Australian conditions. Populations of Anatidae 

in Australia are not migratory as they are in the northern Hemisphere, but rather display 

typical nomadic traits sometimes moving large distances across continental Australia in 

response to flooding or drought. There is little known regular interchange of anatids 

between Australia and Asia. In contrast, species such as shorebirds and some seabirds are 

annual migrants to Australia along recognised flyways from breeding grounds in the 

northern Hemisphere. Movement into Australia by these species mainly occurs from the 

north-west and along the east coast over the Pacific Ocean. These species primarily arrive 

during the Australian spring and form large aggregations along the coastline and on inland 

wetlands. Other Australian migratory species (passerines, bee-eaters, dollar-birds, cuckoos, 

doves) regularly move to and from Asia through the Torres Strait Islands. The disease 
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status of these birds is unknown. The movements of some species, particularly Anatidae 

and Ardeidae, which have ranges including Australia and regions where the virus is known 

to occur, have been poorly studied and there is potential for introduction of avian influenza 

subtypes via this route. Avian influenza viruses are highly unpredictable and have an 

ability to undergo re-assortment to more pathogenic forms. There is insufficient knowledge 

of the epidemiology and transmission of these viruses in Australia and broad-scale 

surveillance of wild birds is logistically difficult. Long-term studies of anatids that co-habit 

with Charadriiformes are recommended. This would provide an indication of the spatial 

and temporal patterns of subtypes entering Australia and improve our understanding of the 

ecology of endemic viruses. Until such time as these data become available, Australia’s 

preparedness for avian influenza must focus on biosecurity at the wild bird-poultry 

interface. 

6.1 Introduction 

The biology and ecology of avian influenza viruses have previously been reviewed 

(Alexander, 1993). Influenza viruses are members of the Family Orthomyxoviridae and are 

characterised into types A, B or C on the basis of the antigenic character of the internal 

nucleoprotein antigen. Avian influenza is an infectious disease of birds caused by type A 

strains of the influenza virus (World Health Organisation Expert Committee, 1980). Only 

influenza A viruses have been isolated from avian species. The disease occurs worldwide 

and was first identified in Italy more than 100 years ago (Alexander, 1987). Avian 

influenza viruses normally do not infect species other than birds, but have been recorded 

infrequently in a range of other animal species including humans (Hinshaw et al., 1981; 

Alexander, 1982; Claas et al., 1998; Katz, 2003). 

 

Influenza A viruses are divided into subtypes determined by haemagglutinin (H) and 

neuraminidase (N) antigens. At present, 15 H subtypes and 9 N subtypes have been 

identified. Each virus has one of each subtype in any combination (Animal Health 

Australia, 2003). The reservoir for all avian influenza virus haemagglutinin (H) and 

neuraminidase (N) subtypes is aquatic birds, particularly waterfowl (Suss et al., 1994), in 

which they multiply in the gastrointestinal tract producing large amounts of virus (Webster 

et al., 1978; Hinshaw et al., 1980) usually without producing clinical signs (Kida et al., 

1980). In this environment, new combinations of H and N genes are generated and 

dispersed (Scholtissek et al., 1993). This process of exchanging genes between virus 
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strains is called re-assortment within influenza viruses and occurs when single cells of the 

host become co-infected with two genetically different viruses (Hinshaw et al., 1980). In 

wild waterbird hosts, the H and N subunits appear to be stable, and do not mutate (Sharp et 

al., 1997) like they do when the viruses infect domestic poultry and mammals. New virus 

combinations multiply readily in avian species and, in chickens and turkeys a proportion 

have a propensity to mutate and produce severe disease which in turn produce epizootics in 

poultry enterprises (Animal Health Australia, 2003). 

 

Infection in birds causes a wide spectrum of symptoms, and viruses can be divided into 

two groups according to their pathogenicity (Office International Epizooties, 2001). Some 

forms of these viruses, known as highly pathogenic avian influenza (HPAI), can cause 

severe illness and mortality approaching 100% (Alexander, 1993; Swayne and Suarez, 

2000). However, most strains of the virus are non-virulent, do not produce clinical signs or 

cause only mild respiratory or reproductive disease. These are known as low pathogenic 

avian influenza (LPAI) viruses which are commonly isolated from wild birds, particularly 

Anseriformes (swans, ducks and geese) (Slemons and Easterday, 1972; Stallknecht and 

Shane, 1988). Highly pathogenic influenza viruses, however, are not maintained by wild 

bird populations, but are occasionally isolated from wild birds during outbreaks in 

domestic poultry (Nestorowicz et al., 1987). The ability of LPAI to mutate into HPAI 

(Perdue et al., 1998), particularly in poultry, and the diversity of viruses circulating in wild 

bird populations (Webster et al., 1992) emphasises the potential importance of wild birds 

as a primary source of infection. 

 

Epizootics of avian influenza may occur when a HPAI virus (with either a H5 or H7 

haemagglutinin) is introduced to a naïve poultry population. Severe pandemics in humans 

occur when a major “antigenic shift” has occurred such as when the haemagglutinin is 

changed. Severe disease epidemics occur when there is “drift” with significant antigenic 

change in the haemagglutinin gene (Animal Health Australia, 2003). The presence of avian 

influenza viruses in wild birds thus has significance primarily for its potential to infect 

domestic poultry and humans, within which it can then undergo re-assortment to produce 

pathogenic forms (Webster et al., 1971, 1973). In addition, if humans are concurrently 

infected with both human and avian strains of influenza there is an increased risk of a new 

subtype emerging, which could result in the direct transmission between humans with the 
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possibility of a pandemic (Webster, 1998; Snacken et al., 1999; Baigent and McCauley, 

2003; Katz, 2003).  

 

There have been five known outbreaks of avian influenza in commercial bird flocks in 

Australia. Outbreaks occurred in 1976 (Turner, 1976), 1985 (Barr et al., 1986), and 1992 

(Selleck et al., 1997) in Victoria; 1994 in Queensland (Westbury, 1998); and in 1997 in 

Tamworth New South Wales (Selleck et al., 2003). Viruses identified have all been of 

subtype H7 (H7N7, H7N3 and H7N4). The 2003-2004 Asian epidemic of HPAI (subtype 

H5N1) commenced in August 2003 and by March 2004 was confirmed in China, 

Cambodia, Indonesia, Japan, Laos, South Korea, Taiwan, Thailand and Vietnam. H5N1 

has also caused disease and death in humans (Claas et al., 1998; Subbarao et al., 1998; 

Yuen et al., 1998) via direct avian-to-human transmission. Asia is of interest in particular, 

because of the frequency and distribution of highly pathogenic avian influenza (HPAI) 

epizootics (Figure 6.1) over an extended time period, and a range of other factors, such as 

high population density, poultry density and high levels of poultry- human interaction. 

 

The potential transmission of the H5N1, and other influenza A viruses from Asia to other 

countries via wild birds is of concern. There are many bird species known to undertake 

movements between Asia and Australia; the species involved, their movement behaviour, 

ecology and susceptibility to disease are all of importance when assessing the risk of 

introducing foreign disease into Australia. The objective of this paper is to review the 

movements of wild birds between Asia and Australia, investigate their role in the 

transmission of avian influenza, and suggest ways in which Australia’s management of 

avian influenza viruses associated with wild birds can be improved.  

6.2 Movements of birds between Australia and Asia 

Movements of wild birds into Australia from Asia occurs every year with the arrival of 

large flocks of migratory shorebirds and the movement of other species between the 

archipelagos of south-east Asia and northern Australia. Moreover, some species have 

distributions that extend to New Guinea and parts of south-east Asia were avian influenza 

is known to occur (Figure 6.1). Bird species known to travel between Asia and Australia 

are listed in Appendix II and discussed below. 
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Ducks, geese and magpie geese (Anseriformes) 

Avian influenza has been isolated from species of ducks and geese (Anatidae) more than 

any other avian family, but is unknown in magpie geese (Anseranatidae). Members of the 

Anatidae family are ubiquitous throughout Australia, but unlike their northern Hemisphere 

counterparts (Hestbeck et al., 1991) most populations do not undertake predictable 

migrations associated with seasonal changes in resource availability (Kingsford and 

Norman, 2002 for review). Instead, movements of waterfowl in Australia are less 

predictable and many populations are nomadic—moving large distances in response to 

prevailing climatic conditions such as flooding or drought (Lawler and Briggs, 1991). This 

is particularly characteristic of species that occur in arid and semi-arid regions where 

resources are localised, ephemeral and affected by aseasonal stochastic processes (Halse 

and Jaensch, 1989; Lawler et al., 1993; Roshier et al., 2001a). The movement and 

distribution of most waterbirds across the Australian continent is therefore largely 

determined by the distribution of surface waters in the dryland river systems and the many 

ephemeral lakes and water-bodies of inland Australia (Briggs, 1992; Lawler et al., 1993; 

Kingsford, 1995; Roshier et al., 2001b; Roshier et al., 2002). Several species are wide-

ranging and dispersive over most of the Australian continent, and are known to occur on 

the islands immediately to our north or have a geographic range that extends from northern 

Australia to parts of south-east Asia. 

 

Movements of waterfowl from Australia to Asia have not been well studied but are thought 

to be irregular and to occur mainly from northern Australia. Banding records have 

confirmed the occurrence of these movements by Grey Teal (Anas gracilis) (Frith, 1982). 

Grey Teal are among the most dispersive of Australian waterfowl and are widespread on 

inland wetlands and sheltered estuarine and marine waters (Marchant and Higgins, 1990). 

Grey Teal are capable of moving thousands of kilometres over several weeks (Frith, 1959, 

1963) and have been recorded moving from south-eastern Australia to Western Australia 

and New Zealand (Frith, 1957; Mills, 1976; Frith, 1982). In northern Australia, Grey Teal 

numbers peak in the dry season and are virtually absent in the wet season (December-

April) (Marchant and Higgins, 1990). Grey Teal numbers in northern Australia fluctuate 

markedly with the greatest concentrations occurring following irruptions of southern 

populations (Frith, 1982). When Grey Teal occur in large numbers on the northern coastal 

wetlands they are usually in poor condition and are regarded as not good eating by the 
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traditional owners (Peter Kristofferson, personal communication), suggesting that their 

occurrence in northern Australia is in part driven by adverse conditions elsewhere. This 

species is known to be a dry season visitor to islands in the Torres Strait (Draffan et al., 

1983) and may be a frequent traveller between New Guinea and northern Australia.  

 

The range of other waterfowl which extend to the floodplains of New Guinea include the 

Magpie Goose (Anseranas semipalmata), Wandering Whistling-duck (Dendrocygna 

arcuata), Plumed Whistling-Duck (Dendrocygna eytoni), Rajah Shelduck (Tadorna 

radjah), Cotton Pygmy-goose (Nettapus coromandelianus), Green Pygmy-goose (Nettapus 

pulchellas), Pacific Black Duck (Anas superciliosa) and Hardhead (Athya australis) 

(Marchant and Higgins, 1990; Wetlands International, 2002). Most of these species are 

dispersive with little known about the nature and extent of their movements (Marchant and 

Higgins, 1990). Only the Cotton Pygmy-goose is regarded as sedentary, while the Plumed 

Whistling-duck is regarded as a partial migrant within Australia with few records from 

New Guinea where it is a vagrant (Marchant and Higgins, 1990). The range of the 

Wandering Whistling-duck includes northern Australia, New Guinea, and Pacific, 

Indonesian and Philippine Islands (Marchant and Higgins, 1990; Wetlands International, 

2002). The East Indonesian and northern New Guinea populations are taxonomically 

distinct from those in Australia and southern New Guinea (Wetlands International, 2002; 

Dickinson, 2003), which suggests that the Australian subspecies does not extend north of 

New Guinea. Australian populations of Rajah Shelduck (Tadorna radjah rufitergum) are 

also taxonomically distinct from those that occur in New Guinea and the Moluccas Islands 

of Indonesia (Marchant and Higgins, 1990; Wetlands International, 2002; Dickinson, 

2003). The Australian subspecies is known to occur in the Torres Strait throughout the year 

and may move infrequently between Australia and southern New Guinea (Draffan et al., 

1983). The range of the Pacific Black Duck (Anas superciliosa) includes southern Sumatra, 

Java, Sulawesi, New Guinea, New Britain and islands of the southwest Pacific Ocean 

(Marchant and Higgins, 1990). There are three recognised subspecies, superciliosa 

(Australia, southern New Guinea, New Zealand), rogersi (Indonesian region) and 

pelewensis (northern New Guinea and islands of the southwest Pacific) (Marchant and 

Higgins, 1990; Dickinson, 2003). Pacific Black Duck are largely sedentary on permanent 

wetlands or in regions that are well watered, although they are dispersive from inland 

wetlands in summer. Birds banded at Griffith in southern New South Wales have been 

recovered as far afield as Tasmania, Queensland and New Zealand, but more than half of 
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all banded birds were recovered within 100 km of the point of release (Frith, 1959). 

Historically, Hardhead are known to occur in New Guinea and parts of Indonesia 

(Marchant and Higgins, 1990), but the most recent worldwide survey of waterbird 

populations does not recognise a population outside Australia, apart from that of the 

subspecies Aythya australis extima on Vanuatu and New Caledonia (Wetlands 

International, 2002; Dickinson, 2003). 

 

Although the movements of most Australian waterbirds are largely unpredictable or poorly 

known, some seasonal movement patterns are known for northern distributed species. 

Magpie Geese for example spread out onto floodplains of northern-Australia during the 

wet season then retreat to remnant wetlands in the dry season (Morton et al., 1990b). 

Similar patterns are evident in Wandering Whistling-duck and Green Pygmy-Goose 

(Marchant and Higgins, 1990). Magpie Geese and Wandering Whistling-duck have been 

recorded moving across Torres Strait into New Guinea (Ashford, 1979; Draffan et al., 

1983), and Green Pygmy-Goose are a dry season visitor to the Torres Strait (Marchant and 

Higgins, 1990). 

Shorebirds (Charadriiformes) 

Shorebirds (Family Scolopaciadae and Charadriidae) migrate annually between the 

northern and southern Hemispheres via known routes or flyways (Thomas, 1970; Tulp et 

al., 1994). There are around 3 million birds consisting of 35 species which regularly 

migrate from Australia each year (Wetlands International, 2002). Most depart from 

Australia in March to breeding areas, some as far as north-eastern Siberia and Alaska, 

although some juvenile birds will remain in Australia (Lane, 1987). Migrants return in 

September and spend late spring and summer in coastal and inland Australia (Tulp et al., 

1994) (Figure 6.1; Appendix II). Larger species migrate further and over greater 

continuous distances, some travelling to China before stopping. Smaller species and 

juveniles which do migrate have ‘stop-over’ areas in Asia and south-east Asia, and travel 

shorter distances. Eight major flyway routes have been defined for waders based on 

biological and geopolitical considerations (Asia-Pacific Migratory Waterbird 

Conservation, 2001). The East Asian-Australasian flyway is of relevance to Australia and 

highlights the importance of major routes into Australia in the north-west and along the 

central-east coastline (Figure 6.1). Major ‘stop-over’ locations for these flights include 

sites throughout Asia including provinces where HPAI has been confirmed during the 
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2003/2004 outbreaks (Figure 6.1). Interchange between Australia and Asia has been 

confirmed through sightings of flagged birds and recoveries of banded individuals 

(McClure, 1998). Avian influenza is found occasionally in Charadriiformes (Table 6.1) 

with frequent occurrence of the virus in some species during particular seasons. Of 

particular relevance is that Charadriiformes can congregate in extremely large 

concentrations on coastal floodplains and mainland wetlands (Morton et al., 1993), where 

they regularly interact with Anatidae (Morton et al., 1990a).  

  

Confirmed outbreaks of HPAI in 2003-4

Provinces where HPAI is confirmed

Important wetlands for Charadriiformes

Major routes of the East Asian-Australian flyway

 

Figure 6.1. Major routes of the East Asian-Australian flyway in relation to the 2003-4 

epizootic of highly pathogenic avian influenza (HPAI). Source: Wetlands International 

(Oceania) and Avian Influenza Map for Asia- situation on 18/02/04. (2004). 
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Grebes (Podicipediformes) 

Grebes are distinct from any other groups of waterbirds (Sibley and Ahlquist, 1990), 

differing in morphology and behaviour as they are totally reliant on wetlands for food 

(Fjeldsa, 1988), protection (Hobbs, 1958) and nesting (Dann, 1981). Movements of grebes 

are poorly known. Most species are nomadic (Hobbs, 1956; Masters and Milhinch, 1974) 

with some migratory patterns suggested in northern populations (Marchant and Higgins, 

1990). They are capable of travelling over large distances (Marchant and Higgins, 1990) 

but these movements are usually restricted to the Australian mainland. Movements into 

Asia are unknown but likely to be rare, despite evidence of breeding in the Torres Strait 

(Draffan et al., 1983). Australasian (Tachybaptus novaehollandiae) and Great-crested 

(Podiceps cristatus) Grebes are mainly solitary, although large flocks of several hundred 

can congregate in estuaries during winter (Wheeler, 1947). Hoary-headed Grebes 

(Poliopcephalus poliocephallus) are more gregarious with flocks up to several thousand 

(Fjeldsa, 1983), and up to 400 nests on a single wetland (Frith, 1976). 

Albatrosses, petrels and shearwaters (Procellariiformes) 

Procellariiformes spend most of their time on the open sea and only return to land to 

breed—mostly on off-shore islands. Their nesting sites in the Southern Ocean are among 

the remotest locations on Earth. Many species in this order are capable of extraordinarily 

long journeys across open water and some migrate to Australian waters in vast numbers. 

For example, the Short-tailed Shearwater (Puffinus tenuirostris) breed from October to 

February in south-eastern Australia and migrate in their millions to the north Pacific during 

March (Marshall and Serventy, 1961; Serventy, 1961). Many other shearwaters have 

similar movement patterns and breed in Australian waters in our summer (Harper and 

Kinsky, 1978). By contrast, Streaked Shearwater (Calonectris leucomelas) migrate from 

breeding islands off Japan and Korea and arrive in northern Australia in March (Gibson, 

1975; Reilly, 1988; McClure, 1998). 

 

Procellariiformes are generally restricted to the islands and open waters of the Pacific and 

Southern Oceans and are rarely observed closer than the continental shelf. Petrels in 

particular are seldom observed from the mainland and breed on Pacific islands 

considerable distances from the shoreline (Warham, 1990). The Shy Albatross (Diomedea 

cauta) is the only albatross to breed in Australia, also on off-shore islands (Harper and 
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Kinsky, 1978). Many species of this order regularly travel between Australia and Asia and 

are known to carry avian influenza (Downie and Laver, 1973).  

Cormorants, darter and pelicans (terrestrial Pelecaniformes) 

Cormorants, pelicans and the darter are nomadic and highly dispersive travelling large 

distances to exploit temporary resources wherever they occur (Llewellyn, 1983; Dorfman 

and Kingsford, 2001). Nesting of most species is colonial and frequently occurs with other 

species (Norman, 1974; Vestjens, 1977) increasing the likelihood of transmission of avian 

influenza between individuals and across species. Pelicans (Pelecanus conspicillatus) have 

been recorded moving into Papua New Guinea from South Australia (Marchant and 

Higgins, 1990) with large numbers recorded arriving in the Torres Strait (Draffan et al., 

1983). Members of this order have worldwide distributions. The Darter (Anhinga 

melanogaster) has populations of four subspecies distributed across Australia, New 

Guinea, south-east Asia, India and Africa (Dickinson, 2003), including the Australian 

subspecies Anhinga melanogaster novaehollandiae. This subspecies is confined to 

Australia and New Guinea and is recognised by some authors as a distinct species 

(Wetlands International, 2002). Movements of Darter are poorly known but they are 

dispersive and banding studies have recorded movements of over 2000 km within Australia 

(Marchant and Higgins, 1990). Great Cormorants (Phalacrocorax carbo) have a 

worldwide distribution with the Australian subspecies Phalacrocorax carbo 

novaehollandiae confined to Australia and New Zealand (Dickinson, 2003). Some authors 

recognise two subspecies for Australia and New Zealand (Wetlands International, 2002). 

All four common cormorant species in Australia, Great Cormorant, Pied Cormorant 

(Phalacrocorax varius), Little Pied Cormorant (Phalacrocorax melanoleucos) and Little 

Black Cormorant (Phalacrocorax sulcirostris) are dispersive with some individuals (P. 

carbo) recorded moving beyond the Australian mainland following large breeding events 

inland (Marchant and Higgins, 1990). Flocks of Great and Little Black Cormorants have 

reached the islands of the Torres Strait and New Guinea (Geering et al., 1998), but 

movements off southern Australia are more common. The Little Pied and Little Black 

Cormorants are sympatric across much of their ranges in Australia, eastern Indonesia, 

south-west Pacific, New Guinea and New Zealand, while the Pied Cormorant is confined 

to Australia and New Zealand (Wetlands International, 2002). The Little Pied Cormorant 

has three subspecies and the Australian subspecies extends to Indonesia and Melanesia. 

Populations of the Little Black Cormorant are now considered to be a single species whose 
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range extends from southern Australia and New Zealand into New Guinea and eastern 

Indonesia (Dickinson, 2003). The nature and extent of cormorant movements between 

Australia and the northern parts of their range is largely unknown but likely to be 

infrequent. 

Gannets, boobies, tropicbirds and frigatebirds (pelagic Pelecaniformes) 

As partial migrants, some species of this order regularly pass through the oceans of Asia 

and South-Asia, especially during autumn (Marchant and Higgins, 1990). Similar to 

Procellariiformes, they are marine species and breed on off-shore islands (Nelson, 1978). 

Mainland sightings have been associated with summer cyclones blowing individuals inland 

(Morris, 1979). Boobies occur most commonly in tropical and sub-tropical waters and 

gannets prefer southern–temperate waters (Nelson, 1978; Brooke, 2004). 

Egrets, heron, night heron, bitterns, stork, ibis, spoonbill (Ciconiiformes) 

Egrets, Little Bittern (Ixobrychus minutus), ibis, White-faced Heron (Egretta 

novaehollandiae) and Royal Spoonbills (Platalea regia) are nomadic but also considered 

occasional dry winter (June-August) migrants to New Guinea (Hancock and Elliott, 1978; 

Finch, 1982; Draffan et al., 1983). Little is known of the nature and extent of movements 

of species of this order. Great Egret (Ardea alba), Rufous Night-heron (Nycticorax 

caledonicus) and White-faced Heron are known to be dispersive (Marchant and Higgins, 

1990). Banding records have confirmed some interchange of Little Egret (Egretta garzetta) 

and Great Egret between Australia and New Guinea (Blakers et al., 1984; Marchant and 

Higgins, 1990). Striated Herons (Butorides striatus) are generally sedentary, although 

some Asian populations undertake a regular migration, for example to Christmas Island 

(Stokes et al., 1987). This species is highly differentiated taxonomically into 29 distinct 

subspecies or populations and there is little apparent movement between populations 

(Marchant and Higgins, 1990; Wetlands International, 2002). Large influxes of Rufous 

Night-heron in wetlands can occur after flooding (Hanscombe, 1915), with infrequent and 

erratic movements into New Guinea (Anonymous, 1977; Schodde and Mason, 1980; 

Draffan et al., 1983). Flocks of 50-100 Straw-necked Ibis (Threskiornis spinicollis) and 20-

500 Australian White Ibis (Threskiornis molucca) have been observed in the Torres Strait 

(Draffan et al., 1983). Australian White Ibis nestlings banded in Australia and recovered in 

New Guinea confirm occasional movements further north (Carrick, 1962). The Glossy Ibis 

(Plegadis falcinellus) has a wide distribution that includes Australia, south-east Asia, 
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Africa and the east coast of North America (Wetlands International, 2002; Dickinson, 

2003). Glossy Ibis are thought to be partial migrants in eastern Australia but movements 

elsewhere are thought to be erratic in response to rainfall (Marchant and Higgins, 1990). 

Black-necked Storks (Ephippiorhynchus asiaticus) are sedentary and have not been 

recorded moving north of the Australian mainland, except the occasional record in the 

Torres Strait (Draffan et al., 1983). 

Other non-passerines 

There are a variety of other non-passerines which regularly move between Asia and 

Australia. These include Rainbow Bee-eaters (Merops ornatus), Dollar-birds (Eurystomus 

orientalis), Brush (Cuculus variolosus) and Channel-billed (Scythrops novaehollandiae) 

Cuckoos, Common Koels (Eudynamis scolopacea), Superb Fruit Doves (Ptilinopus 

superbus), Pied Imperial Pigeons (Ducula bicolor) and the Kingfishers; Sacred 

(Todiramphus sanctus), Forest (Halcyon macleayii) and Buff-breasted Paradise 

(Tanysiptera sylvia). Most of these conduct regular migrations into Asia for the winter 

months (March-August).  

 

The main flyway route for these species is via the Torres Strait islands and New Guinea 

(Higgins, 1999; Griffioen and Clarke, 2002). Some species remain in New Guinea 

through-out winter (April-August) (Schodde et al., 1975) while others continue further 

north. For example, Rainbow Bee-eaters travel through to Micronesia and Japan (Blakers 

et al., 1984); Common Koels to Indonesia and as far north as the Philippines (Rand and 

Gillard, 1967; Blakers et al., 1984); Channel-billed Cuckoos to southern Indonesia, the 

Bismarck Archipelago and New Guinea (Hindwood, 1953; Mason, 1981; Draffan et al., 

1983); and Sacred Kingfishers to Timor, New Guinea, the Solomon islands and parts of 

Indonesia (Rand and Gillard, 1967; Bell, 1981; McClure, 1998). Some species display only 

partial migration, with individuals remaining in Australia throughout the year. This can 

vary with latitude, where southern populations of some species (e.g. Brush Cuckoos, Forest 

Kingfishers) are more migratory. All these species are observed migrating in flocks that are 

two orders of magnitude smaller than those of Charadriiformes (Lord, 1956; Hobbs, 1961; 

Warham, 1962; Gill, 1970; Lavery and Grimes, 1974; Draffan et al., 1983). 
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Passerines 

Few passerines are known to move between Asia and Australia. Those species which have 

been recorded moving between the continents include Metallic Starlings (Aplonis 

metallica), Cicada Birds (Coracina tenuirostris), Spangled Drongos (Dicrurus bracteatus), 

Olive-backed Orioles (Oriolus sagittatus), and Brown-backed Honeyeaters (Ramsayornis 

modestus). Metallic Starlings, Cicada Birds and Spangled Drongos regularly migrate to 

south-east Asia during the winter months through islands of the Torres Strait (Barnard, 

1911; Campbell and Barnard, 1917; Griffioen and Clarke, 2002). Southern populations of 

the Cicada Bird migrate north to New Guinea in autumn (Bell, 1982a; Draffan et al., 

1983), while northern populations are partial migrants. Spangled Drongos exhibit more 

varied movements with some individuals conducting similar northward movements, while 

others move south during winter (Mayr and Rand, 1937; Bell, 1982b). Metallic Starlings, 

which are restricted to northern Queensland, roost and nest colonially in large numbers, 

with flocks of up to 5000 observed prior to migration (Blakers et al., 1984). Migrating 

Spangled Drongos usually form flocks of approximately 20 (Draffan et al., 1983), but 

larger flocks have been observed over Thursday Island (Blakers et al., 1984). Movements 

of Olive-backed Orioles and Brown-backed Honeyeaters into Asia are uncommon and 

irregular, apparently fluctuating with the availability of ripe fruit or nectar (Officer, 1964; 

Gill, 1970; Storr, 1973; Draffan et al., 1983). 

6.3 Occurrence of avian influenza in wild birds 

There are a large number and variety of influenza viruses maintained in wild bird 

populations. Avian influenza viruses have been isolated from more than 88 species of wild 

birds from 12 orders comprising most of the major families Stallknecht and Shane 1988 

(Stallknecht and Shane, 1988; Alexander, 2000; Olsen et al., 2006; Tracey 2010) for 

review). The first isolation from wild birds occurred in South Africa from Common Terns 

(Sterna hirundo) in 1961 (Becker, 1966). An increase in surveillance during the late 1970s 

revealed ducks and geese (Anseriformes) as the main reservoir of the viruses, where 

prevalence exceeded 60% in some studies (Hinshaw et al., 1980). Overall prevalence rates 

estimated from 122,830 samples indicate around 7.9% of Anseriformes are infected with 

the virus at any one time (Table 6.1). However, many of these studies are only based on 

regular samples of Anseriformes and may be unrepresentative of region and species. In 

other studies Charadriiformes (shorebirds, plovers and lapwings) (Kawaoka et al., 1988) 

and spoonbills (Astorga et al., 1994) have also been found to have a high prevalence of the 
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virus, with isolation rates of up to 20% and 32% respectively. In Australia, prevalence of 

the virus is found to be much lower (Mackenzie et al., 1984; Mackenzie et al., 1985; 

Peroulis and O'Riley, 2004, Tracey et al., 2010). Isolation rates and subtypes vary 

considerably over time, region and between species (Kawaoka et al., 1988; Sharp et al., 

1993). This has been identified for Charadriiformes where sampling along the Atlantic 

coast and the Gulf of Mexico revealed 78% of isolates from Ruddy Turnstones (Arenaria 

interpres), with concentrations of the virus during one season (spring) and in one location 

(Delaware Bay) (Hanson, 2003). Anatini tribes of Anseriformes also exhibit higher 

prevalence of avian influenza than other species of the same order (Stallknecht and Shane, 

1988). Other species normally not associated with the maintenance of avian influenza 

viruses are also occasionally infected (Table 6.1; Stallknecht and Shane, 1988). This has 

also occurred during outbreaks of HPAI, for example, Starlings (Sturnus vulgaris) 

(Nestorowicz et al., 1987), ratites (Selleck et al., 2003) and flamingos, falcons and crows 

during the 2003-4 Asian epidemic. 

 

Seasonal infection patterns have emerged in Anseriformes, with the greatest prevalence 

during late autumn and winter (Sinnecker et al., 1982; Halvorson et al., 1985). This trend is 

consistent with the timing of outbreaks of human influenza, but differs from the spring 

epidemics evident in Charadriiformes (Hanson, 2003). Movements and age of birds also 

appear to be important and correlated with seasonal effects. For example, a significantly 

higher prevalence of the virus was recorded for juvenile mallards before migrating south 

for the winter (Deibel et al., 1985; Hinshaw et al., 1985; Hinshaw et al., 1986). 

 

Most subtypes have been detected in Australian wild birds (H1, H3, H4, H5, H6, H7, H11, 

H12) (Downie and Laver, 1973; Downie et al., 1977; Mackenzie et al., 1984; Mackenzie et 

al., 1985; Nestorowicz et al., 1987; Peroulis and O'Riley, 2004). In Australia, no 

quantitative links have been made to wild birds during the five previous HPAI outbreaks in 

poultry. In addition Australian isolates of HPAI have been found to be distinct from those 

in other parts of the world including Asia (Banks and Alexander 1997; see also Rohm et 

al., 1995 for an international perspective), which suggests an endemic rather than exotic 

source of infection. However, there is circumstantial evidence that waterfowl may have 

been involved in previous outbreaks; and sampling has been limited and on one occasion 

may have occurred too long after the epidemic (Westbury, 1998; Selleck et al., 2003). 

Direct and in-direct contact with waterfowl birds has been reported and has been suggested 
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as a potential cause of initial infection (Westbury, 1998). During the 1997 outbreak in 

Tamworth New South Wales, HPAI was isolated from an adjacent Emu (Dromaius 

novaehollandiae) farm which was suggested to have played a role in the transmission of 

the virus (Selleck et al., 2003). Some evidence also suggests the transmission of HPAI can 

occur between domestic poultry and passerine birds, following reports of the virus 

infection in starlings (Nestorowicz et al., 1987; Westbury, 1998). 

 

The unpredictability inherent in avian influenza viruses; the variation in prevalence 

between species (e.g. Becker, 1967) and temporal and spatial variation in virus occurrence 

makes generalisations across families difficult. However, to allow targeted surveillance, 

four prevalence classes have been identified to describe the relative occurrence of avian 

influenza virus (Table 6.1). Information contained in Table 6.1 was derived from 

information gathered from within Australia (Downie and Laver, 1973; Downie et al., 1977; 

Mackenzie et al., 1984; Mackenzie et al., 1985; Nestorowicz et al., 1987; Peroulis and 

O'Riley, 2004; Tracey 2010) and review publications of studies conducted in the northern 

Hemisphere (Stallknecht and Shane 1988; Stallknecht 1998; Hanson 2003; Olsen et al., 

2006). Of the 27 families known to move between Australia and Asia (Appendix II), avian 

influenza infection is suggested to commonly occur in Anatidae and Ardeidae (herons, 

egrets, night-herons and bitterns) and is occasional in Charadriidae (plovers, dotterels and 

lapwings), Laridae (skuas, jaegers, gulls and terns) and Scolopacidae (snipe, godwits, 

curlews, sandpipers, stints and phalaropes) (Table 6.1). The virus is rarely found in 

members of Threskiornithidae (ibis and spoonbills), Procellariidae (petrels, shearwaters 

and prions), Phalacrocoracidae (cormorants), Columbidae (pigeons and doves) and 

Sturnidae (starlings and mynas) families, and is unknown in the other 15 families (Table 

6.1).  
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Table 6.1. The relative occurrence of avian influenza in families of birds known to move 

between Australia and Asia 
Families were classified according to the relative prevalence of avian influenza (n=122,830 samples from 

wild birds) using a increasing scale: Unknown (0%), Rare (<1%), Occasional (1-5%), Common (>5%), 

derived from information in Downie and Laver, 1973 (1); Downie et al.1977 (2); Hanson 2003 (3); Kawaoka 

et al.1988 (4); Lipkind et al., 1982 (5); Mackenzie et al., 1984; 1985 (6); Morgan and Kelly 1990 (7); Olsen 

et al. 2006 (8); Peroulis and O'Riley 2004 (9); Romvary and Tanyi 1975 (10); Roslaya et al., 1974 (11); 

Slemons et al., 1973 (12); Stallknecht and Shane 1988 (13); and Tracey 2010 (14). 

 

Order Family Common Family 
Relative occurrence 

of avian influenza 
Source 

Anseriformes Anseranatidae Magpie Geese Unknown 6 

 Anatidae Waterfowl Common 
6, 8, 9, 13,, 

14 

Procellariiformes Procellariidae Shearwaters/Petrels Rare 1, 2, 6, 8, 14  

 Hydrobatidae Storm Petrels Unknown 8, 14 

Pelecaniformes Phaethontidae Tropicbirds Unknown  

 Sulidae Boobies/Gannets Unknown  

 Phalacrocoracidae Cormorants Rare 2, 8, 14 

 Pelecanidae Pelicans Unknown 8, 14 

 Fregatidae Frigatebirds Unknown  

Ciconiiformes Ardeidae Herons/Bitterns Common 2, 8, 11, 14 

 Threskiornithidae Ibises Rare 2, 8, 14 

Gruiformes Rallidae Rails Unknown  

Charadriiformes Scolopacidae Turnstones/Sandpipers/Phalaropes Occasional 3, 4, 8, 14 

 Charadriidae Plovers Occasional 3, 4, 8, 14 

 Glareolidae Pratincole Unknown  

 Laridae Gulls/Terns Occasional 3, 4, 8, 14 

Columbiformes Columbidae Pigeons/Doves Rare 10, 8, 14 

Cuculiformes Cuculidae Cuckoos Unknown  

Coraciiformes Halcyonidae Kingfishers Unknown  

 Meropidae Bee-eaters Unknown 12 

 Coraciidae Dollarbird Unknown  

Passeriformes Meliphagidae Honeyeaters Unknown  

 Dicruridae Drongoes Unknown  

 Campephagidae Cuckoo Shrikes Unknown  

 Oriolidae Orioles Unknown  

 Sturnidae Starlings Rare 5, 7, 8, 14 

6.4 Transmission 

Examining the spread of avian influenza is difficult, hence most information on 

transmissibility is based on laboratory experiments (Alexander, 1993). Factors contributing 

to virus transmission are complex, and variability exists between subtypes, bird species and 

environmental factors. 
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Subtypes of avian (type A) influenza are identified by the combination of H 

(haemagglutinin) and N (neuraminidase) proteins (Office International Epizooties, 2001) 

and are important when considering the potential for transmission and mutation. All 15 

subtypes are known to infect birds but in nearly all cases, only subtypes with H5 and H7 

are known to mutate to the highly pathogenic form (cf. Laudert et al., 1993; Office 

International Epizooties 2001). HPAIs have been documented to arise from LPAI viruses 

(Perdue et al., 1998), but are not normally known to change subtypes during an outbreak. 

However, evidence suggests recombination can occur when birds are infected with 

multiple subtypes (Webster et al., 1973; Sharp et al., 1997; Hoffmann et al., 2000). Further, 

some evidence indicates viruses which are better adapted to avian populations have a 

demonstrated ability to prevent infections of other strains (Sharp et al., 1997). This may 

imply that wild birds which currently maintain well-adapted LPAI viruses are less likely to 

transmit HPAI. 

 

In most cases mutation into highly virulent viruses takes place only in domestic poultry, 

which occurs after their exposure to LPAI viruses. The only known outbreak of HPAI in 

wild birds occurred in Common Terns in 1961 (Becker, 1966). Wild birds are implicated as 

important in this initial stage of transmission, but are not considered reservoirs of highly 

pathogenic strains. In comparison to wild birds, which do not normally show symptoms of 

disease, poultry are highly susceptible to H5 and H7 subtypes. Hence subtypes which do 

not appear to affect wild birds have caused fatal diseases in poultry and other domestic 

birds. Birds which become exposed and survive infection may excrete virus for up to 14 

days, orally and in faeces (Kida et al., 1980). While this, in theory, may provide 

opportunity for wild birds to spread the virus over a large distance, there is no documented 

evidence of this occurring for HPAI viruses. In most cases secondary spread of HPAI has 

been associated with human activity, including live poultry markets (Panigrahy et al., 

2002), rather than wild bird hosts (Wells, 1963; Alexander, 1993; Westbury, 1998; Swayne 

and Suarez, 2000). 

 

Water is a likely medium for the transfer of non-virulent avian influenza and partially 

explains the high prevalence of the virus in Anseriformes and Charadriiformes which 

congregate in large numbers in wetlands. The virus can remain infective in freshwater 

lakes for 4 days at 22°C, over 30 days at 0°C (Webster et al., 1978), or up to 200 days at 
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17°C at higher concentrations (Stallknecht et al., 1990b). This indicates a potential role in 

the transfer of the virus to poultry via contaminated water supplies sourced from dams, 

wetlands and other waterbird refuges. The duration of infectivity of water is also shown to 

decrease with increased salinity and pH (Stallknecht et al., 1990a), which may have 

implications for the maintenance of the virus in shorebirds and seabirds, and the 

management of water used in poultry production. 

 

In some studies, a high prevalence of the virus and antibodies have been recovered from 

the eggs of waterbirds (Narayan et al., 1969; Romvary et al., 1980); Cappucci et al., 1985). 

Breeding areas of Charadiiformes often involve large numbers of eggs at specific sites 

(Lane, 1987; Pringle, 1987), which may provide an opportunity for sampling for avian 

influenza. However, the role of eggs in the transmission or maintenance of the virus is 

unknown. 

6.5 Avian influenza in Australia 

The role of wild animals in the introduction, maintenance and transmission of disease is 

largely dependent on a range of ecological factors, including the distribution and density of 

susceptible wild animal disease hosts (Animal Health Australia, 2003). The risks 

associated with wild birds introducing H5N1 or other subtypes of avian influenza are 

virtually impossible to quantify with current information. There is insufficient knowledge 

of the epidemiology and transmission of avian influenza viruses and a lack of reliable 

information on the interchange of many birds between Asia and Australia, particularly of 

the Anatidae and Ardeidae. Moreover, avian influenza viruses are highly unpredictable and 

have a documented propensity for mutation. Review of current knowledge of bird 

movements and avian influenza in Australia is important for identifying the focus for 

future research and targeting species, timing and regions for surveillance. 

 

Ninety-nine bird species are known to move between Asia and Australia (Appendix II). 

Sixty-three of these undertake frequent migration, 20 travel occasionally and 16 rarely 

visit. Shorebirds (Charadriiformes) regularly migrate to Asia, but are mainly aggregated 

along Australian coastlines and at specific inland wetlands. In contrast ducks and geese 

(Anseriformes) and other nomadic waterbirds are widely distributed but rarely move from 

the Australian mainland. Pelagic birds (Procellariiformes and Pelecaniformes) are annual 

or partial migrants, and are occasionally known to carry the virus but are rarely observed 
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inside the continental shelf. Other migratory species of northern and north-eastern 

Australia, travel through the Torres Strait Islands during winter but are unlikely to carry 

avian influenza. The risk to Australia appears to be in the association between shorebirds, 

which are potentially harbouring avian influenza viruses, and Australian ducks and geese. 

If infected, these ducks and geese could potentially spread virus to poultry farms as they 

disperse from coastal areas. If affected, poultry would then have the ability to transmit 

virus to humans. However, to date the transmission of avian influenza from poultry to 

humans is rare and has only been associated with a small number of viruses, mainly of 

Asian origin (Horimoto and Kawaoka, 2001; Baigent and McCauley, 2003; Katz, 2003). 

 

By definition, highly pathogenic avian influenza (HPAI) has the potential for very serious 

and rapid spread, irrespective of borders, which is of serious socio-economic and public 

health consequence, and is of importance in the international trade of livestock and 

livestock products. In Australia, current procedures for the management of incursions of 

HPAI within the poultry industry involve eradication. The five previous outbreaks of HPAI 

in the Australian poultry industry were eradicated by ‘stamping out’ - a procedure 

involving the destruction of all potentially susceptible birds (Animal Health Australia, 

2003). However, the destruction of wild birds is unlikely to be effective, useful or practical 

in preventing the spread of the virus. Management of the virus should instead focus on 

ensuring wild birds do not come into contact with domestic birds, either by direct contact 

or by contaminated water (Animal Health Australia, 2003). Prevention and control 

measures can minimise, or eliminate the risk from contaminated water (World Health 

Organisation 2004). For example, influenza viruses are relatively susceptible to 

disinfectants (chlorine) and heating, so boiling would also be effective (World Health 

Organisation 2007). 

 

The Australian poultry industry is small in comparison to many other countries, including 

Hong Kong and China (Animal Quarantine Policy Branch 2001). The main areas within 

Australia for poultry production are usually sufficiently isolated from one another (Animal 

Health Australia, 1996) to provide some protection against widespread transmission of 

exotic disease. Where poultry (and susceptible animals) exhibit a contiguous or near-

contiguous population, the risk of widespread disease transmission may increase 

substantially. 
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There are no surveillance or vaccination programs currently in place for endemic avian 

influenza in poultry. The chances of detecting avian influenza viruses in shorebirds appears 

small, however, in other studies, the chance of detection increases five-fold if waterbirds 

that are in contact with shorebirds are targeted for surveillance (Suss et al., 1994). A 

number of potential models could be used for surveillance of wild birds. Surveillance may 

be more effective if set up where waterbirds have a greater risk of interacting with poultry, 

such as around free-range poultry establishments, ‘backyard’ operations or where 

biosecurity measures are lacking. The interaction between these farms and other 

commercial operations is also important in understanding the persistence of avian 

influenza viruses and their contact with poultry. Surveillance in remote aggregations of 

waterbirds in Australia may therefore be less important than where concentrations of 

domestic poultry occur, for example, near capital cities and key regional areas of NSW, 

Victoria and Queensland (Animal Quarantine Policy Branch 2001).  

 

As a result of their large population sizes, surveillance of wild birds is logistically difficult, 

and large sample sizes are required to provide statistically meaningful results. A more 

useful option might be to focus avian influenza work in wild birds on long-term, 

longitudinal studies in waterfowl, which share habitat with shorebirds (Suss et al., 1994). 

This would give an indication of the spatial and temporal patterns of subtypes entering 

Australia, and could act to significantly improve understanding of the ecology of these 

viruses within Australia.  

6.6 Conclusions 

An understanding of the ecology of the viruses within the wild bird population is essential 

in assessing the risks to human health and production industries. Long-term surveys for 

viruses in wild birds are required to improve our understanding of the prevalence of LPAI 

viruses and the role they play in the transmission of avian influenza to poultry and humans. 

These surveys should target Anatidae and Ardeidae where there are highest densities of 

Charadriiformes, and could be strategically coordinated between field naturalist societies, 

research groups (such as the Australian Wader Study Group) and government authorities. 

For detecting the introduction of exotic viruses, sampling should focus on coastal 

floodplains of the north-west, along the central-east coastline and other important wetlands 

for Charadriiformes (Figure 6.1). Knowledge of the interface between Anatidae and 

domestic poultry is needed for assessing the risks of virus transfer. The optimal time for 
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sampling would occur when shorebirds first arrive in Australia (August- October). This 

time period also coincides with suggestions that higher prevalence of avian influenza for 

these species occurs in spring. More accurate information is required on the movements of 

waterbirds between Asia and Australia, particularly Anatidiae and Ardeidae. This would 

aid our understanding of the importance of wild birds in introducing foreign subtypes of 

avian influenza as well as their potential to transmit other viruses, including Japanese 

encephalitis and Newcastle disease. Until such time as these data become available, 

Australia’s preparedness against HPAI must focus on biosecurity at the wild bird-poultry 

interface. 
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Abstract  

Context. The epidemiology of avian influenza and the ecology of wild birds are 

inextricably linked. An understanding of both is essential in assessing and managing the 

risks of highly pathogenic avian influenza (HPAI). 

 

Aims. This project investigates the abundance, movements and breeding ecology of 

Australia’s Anseriformes in relation to the prevalence of low-pathogenicity avian influenza 

(LPAI) and provides risk profiles to improve the efficiency and relevance of wild-bird 

surveillance. 

 

Methods. Generalised linear models and analysis of variance were used to examine the 

determinants of Anseriformes abundance and movements in Australia, and the observed 

prevalence of LPAI in Australia (n = 33,139) and overseas (n = 93,344). Risk profiles were 

developed using poultry density, estimated LPAI prevalence, the abundance of 

Anseriformes, and the probability of Anseriformes moving from areas of HPAI epizootics. 

 

Key results. Analysis of Australian wild-bird surveillance data strongly supports other 

studies that have found the prevalence of LPAI in wild birds to be much lower (1%) in 

Australia than that in other countries (4.7%). LPAI prevalence was highly variable among 

sampling periods and locations and significantly higher in dabbling ducks than in other 
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functional groups. Trends in Anseriformes movements, abundance and breeding are also 

variable, and correlated with rainfall, which could explain low prevalence and the failure to 

detect seasonal differences in LPAI in wild birds. Virus prevalence in faecal samples was 

significantly lower, whereas collecting faecal samples was 3–5 times less expensive and 

logistically simpler, than that of cloacal samples. Overall priority areas for on-going 

surveillance are provided for Australia. 

 

Conclusions. Previous surveillance has occurred in high-priority areas, with the exception 

of Mareeba (North Queensland), Brisbane and Darwin, and has provided valuable 

information on the role of wild birds in maintaining avian influenza viruses. However, 

several practical considerations need to be addressed for future surveillance. 

 

Implications. Long-term surveillance studies in wild birds in priority areas are required, 

which incorporate information on bird abundance, age, behaviour, breeding and 

movements, particularly for dabbling ducks. This is important to validate trends of LPAI 

prevalence, in understanding the main determinants for virus spread and persistence, and in 

predicting and managing future epizootics of HPAI in Australia. 

 

7.1 Introduction 
 

Highly pathogenic avian influenza (HPAI) has caused international concern during the past 

decade, particularly HPAI H5N1, because of its ability to infect and cause death in 

humans, its ability to cause significant mortality in wild birds (Liu et al., 2005), the 

longevity of HPAI circulation, the failure to isolate closely related precursor strains of low-

pathogenicity avian influenza (LPAI) in wild birds (Mukhtar et al., 2007), and subsequent 

evolving viruses remaining highly pathogenic for poultry (Sims et al., 2005; Sims and 

Narrod, 2009). 

 

Between 1997 and 2004, mutations in HPAI H5N1 were progressively becoming more 

lethal to birds and mammals and hardier in the environment (Chen et al., 2004). Although 

there is still debate as to whether an independent cycle of infection of HPAI H5N1 is 

present in wild birds (Feare, 2007; Wang et al., 2008), some evidence following wild-bird 

deaths suggests that wild birds, particularly anatids, can excrete virus without becoming ill 
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(Hulse-Post et al., 2005; Gaidet et al., 2008; Keawcharoen et al., 2008) and transmission 

appears to occur even if the virus is difficult to detect (Stallknecht and Brown, 2008). 

 

HPAI H5N1 has now been circulating in close proximity to Australia for over 11 years and 

the likelihood of achieving eradication is considered low (Sims and Narrod, 2009). With 

the exception of Antarctica, Australia remains the only continent that has not had a 

reported occurrence of HPAI since 1997 (Sims and Turner, 2008). There has been several 

possible explanations for this (McCallum et al., 2008) including (1) enhanced biosecurity 

for the trade of live wild and domestic birds (2) low prevalence of LPAI H5 or H7 in 

Australia’s wild birds (Haynes et al., 2009), (3) limited interchange of anatids between 

Australia and Asia (Tracey et al., 2004; McCallum et al., 2008), (4) few major waterbird 

breeding events and low waterbird abundance (Nebel et al., 2008), (5) low poultry-farm 

density (Westbury 1998; cf. Hamilton et al., 2009), and (6) high biosecurity of the 

commercial poultry industry. 

 

An understanding of avian influenza epidemiology in wild birds is important in assessing 

and managing the risks of HPAI of any type. Many H and N subtypes of LPAI have been 

reported in Australia’s wild birds, including H5 and H7 (Downie and Laver, 1973; Downie 

et al., 1977; Mackenzie et al., 1984; Mackenzie et al., 1985; Nestorowicz et al., 1987; 

Rohm et al., 1996; Peroulis and O'Riley, 2004; Hurt et al., 2006; Haynes et al., 2009). 

Anseriformes are the primary reservoir of LPAI (Stallknecht and Brown, 2008; Haynes et 

al., 2009), with high prevalence associated with foraging behaviour (Anas species), age, 

breeding and movements (Hinshaw et al., 1985; Olsen et al., 2006; Haynes et al., 2009); 

Munster and Fouchier 2009). Charadriiformes are also considered potentially important 

(Hurt et al., 2006) and regularly travel through infected areas (Tracey et al., 2004), 

although unique lineages of influenza viruses in Australia compared with viruses in Europe 

and the Americas (Banks and Alexander, 1997) suggest limited virus interchange via these 

species. 

 

Although the importance of wild birds in avian influenza epidemiology is now widely 

accepted by the international animal health community (OIE, FAO), broad-scale 

surveillance is logistically difficult and costly because of the natural low prevalence. Initial 

surveillance in Australia followed a targeted approach to improve sampling efficiency 

(Tracey 2005; Warner et al., 2006). East et al., (2008a , 2008b) and Hamilton et al., (2009) 
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have also applied useful approaches to classify risks of avian influenza in Australia. Since 

initial surveillance, there have been significant advancements in avian influenza 

epidemiology, particularly for HPAI H5N1; improved information on the abundance and 

movements of Australian waterfowl, although many gaps in knowledge remain (McCallum 

et al., 2008); and a substantial increase in wild-bird surveillance for avian influenza in 

Australia and internationally. This information can be used to maximise the efficiency and 

relevance of avian influenza wild-bird surveillance in Australia. The present project 

investigates trends of avian influenza in wild birds and waterfowl abundance and 

movements, identifies high-risk areas for avian influenza in Australia and provides 

recommendations for surveillance. 

7.2 Materials and methods  

Analysis of Anseriformes movements and abundance 

Generalised linear mixed models and analysis of variance were conducted using the asreml 

package (Butler et al., 2009) under R (R Core Team, 2013) to investigate the effects of the 

functional group, sex, age, the availability of permanent water (km2 per 1/4° grid from 

Geoscience Australia and National Water Commission data on rivers, dams and inland 

water), season, seasonal rainfall classification (a Bureau of Meteorology classification, 

identifying summer-dominant, summer, uniform, winter, winter-dominant, or arid rainfall), 

and a range of rainfall co-variates (annual rainfall, mean annual rainfall, seasonal rainfall, 

rainfall in the previous 2 and 3 months, monthly rainfall) from the Bureau of Meteorology 

and interactions on the distance moved (log-transformed to remove heterogeneity of 

variance) by Anseriformes after banding. Site and sampling event were included as random 

variables to account for multiple records from the same locations and sampling periods. 

Stepwise regression was performed to remove non-significant terms (P>0.05). Wald tests 

were used to examine fixed effects and non-marginal terms not significant at the P = 0.05 

level were dropped sequentially. Differences between terms for discrete variables are 

presented with 95% confidence intervals. A sampling event was defined as all captures 

occurring on the same site in the same month.   Distances moved for Anseriformes were 

estimated as kilometres travelled from the capture location, using banding data from the 

Australian Bird and Bat Banding Scheme 

(www.environment.gov.au/biodiversity/science/abbbs/, accessed 1 January 2009). 

Anseriformes were aggregated into functional groups based on behaviour and feeding 
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habits (after Kingsford, 1991 and Roshier 2002). For example, this allowed consideration 

of the propensity of dabbling ducks to skim surface water (e.g. Pacific Black Duck), 

compared with waterbirds of the same family that graze (e.g. Australian Wood Duck, 

Plumed Whistling Duck) or forage in deep water (e.g. Black Swans) (Table 7.1). 

 

The same analysis methods were used to investigate the effects of the percentage and 

availability of permanent water (km2 per 1/4° grid), seasonal rainfall classification and 

interactions on Anseriformes abundance (log-transformed to remove heterogeneity of 

variance). The abundance of Anseriformes was estimated using reporting rate and bird-

count data from Birds Australia (Barrett et al., 2003). Atlas data were collected during the 

‘New Altas of Australian Birds’ project 1998–2002 from 279 000 bird surveys by 7000 

observers. Australian Bird Count Data were collected during 79 000 surveys involving 

repeated counts of birds by 952 observers at 1681 sites between 1989 and 1995. Surveys 

for both datasets followed the standard methods for Birds Australia’s 20-min, 2-ha search 

(Barrett et al., 2003), with the Australian Bird Count Data including complete counts of all 

individual birds observed, as well as the number of species observed. The relationship 

between the number of birds and number of species per observation was examined to test 

the use of reporting rate (number of surveys a bird species was present divided by the total 

number of surveys for each 1/4° map grid) as an index of abundance. The overall predicted 

Anseriformes abundance was then estimated separately for each 1/4° grid cell for 

Australia. Temporal data was not available for these analyses. 

 

Analysis of LPAI surveillance data 

Published sources of avian influenza wild-bird surveillance data were collated for Australia 

(n = 33 139 wild birds: Downie and Laver 1973; Downie et al., 1977; Mackenzie et al., 

1984, 1985; Peroulis and O’Riley 2004; Hurt et al., 2006; Haynes et al., 2009) and 

overseas (n = 93 344 after Olsen et al., 2006). The first analysis used the global dataset to 

compare low pathogenic avian influenza (LPAI) prevalence between Australia and 

overseas and explored the effects of functional group, season and interactions. LPAI 

prevalence was estimated as the proportion of samples (cloacal, oropharyngeal or faecal 

swabs) from wild birds that were positive to low pathogenic Influenza A (via Polymerase 

chain reaction and / or virus isolations). Generalised linear mixed models and analysis of 

variance were again conducted using the asreml package (Butler et al., 2009) under R (R 
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Core Team, 2013) and site, sampling event and species were included as random variables. 

The second analysis used Australian avian influenza surveillance data to investigate the 

effects of bird species, functional group, log of the  abundance of Anseriformes,  the 

availability of permanent water, season, seasonal rainfall classification (a Bureau of 

Meteorology classification, identifying summer-dominant, summer, uniform, winter, 

winter-dominant, or arid rainfall) and interactions on the prevalence of LPAI in Australia, 

with site, sampling event and species included as random variables. For these two analyses 

bird species were aggregated into 14 functional groups (Figure 7.1). Stepwise regression 

was performed to remove non-significant terms (P>0.05). Wald tests were used to examine 

fixed effects and non-marginal terms not significant at the P = 0.05 level were dropped 

sequentially. Differences between terms for discrete variables are presented with 95% 

confidence intervals. 

Comparison of sample methods: field trial 

The estimates of prevalence of LPAI from cloacal, oropharyngeal and faecal samples were 

compared with quantitative real-time reverse transcriptase PCR (qRT–PCR) in a field trial 

in New South Wales where all three samples were collected from the same species at the 

same locations and sampling periods (n = 3242 samples from 2683 wild birds). These data 

are part of a larger surveillance dataset for eastern Australia (Hansbro et al., 2010), which 

were not included in the overall analysis of Australian surveillance data described above, 

but were used only to compare the three methods of sample collection. Transport media, 

storage, transport, operators, testing preparation and testing procedures were the same for 

all samples. 

 

Details of the data-collection methods, sampling techniques and testing procedures are 

described elsewhere (Tracey, 2005; Kirkland and Tracey, 2006; see also Rose et al., 2006). 

Briefly, swabs were taken from live-captured or recently shot birds by inserting a swab 

deeply into the vent (cloacal) or oropharynx and swabbing the mucosa. The tip of the 

plastic-shafted swab was placed into a vial containing phosphate-buffered gelatin saline 

(PBGS) transport media (8 g of NaCl, 0.2 g of KCl, 1.44 g of Na2HPO4, 0.24 g of KH2PO4 

dissolved in 800 mL of distilled H2O). The viral transport medium was stored frozen, or at 

4°C before use. Samples were maintained cold (4°C) throughout the transport process, and 

transported to the laboratory within 48 h of collection. Samples were either tested on 

delivery, or if not able to be completed within 48 h, were stored in a -80°C freezer (or -
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20°C for serum samples). Testing was conducted at Elizabeth McArthur Agricultural 

Institute with qRT–PCR (cloacal, oropharyngeal and faecal) and the Influenza A group 

reactive competitive enzyme-linked immunosorbent assay (cELISA, serum), based on the 

method and reagents supplied by the Australian Animal Health Laboratory, Geelong 

(www.csiro.au/places/AAHL.html). 

 

For faecal sampling, only freshly deposited moist samples were collected, the species or 

group of species were identified wherever possible, and a score given for the level of 

confidence in determining the species or group, as follows: Highly likely (sample collected 

immediately after a bird was observed defaecating), Likely (bird observed in the area 

immediately before collecting samples), Possible (bird observed in the area within 1 h of 

sampling), Unknown (birds known to occur in the area). The abundance of birds was 

estimated with point counts (Bibby et al., 2000) each morning before collecting samples at 

each site, which aided species identification. Size and shape of the faeces was 

distinguishable for different groups of species (ducks, large waders, small waders). The 

swab was lightly coated with faeces. Only samples where the species was identified as 

Likely or Highly likely were included when comparing sample techniques. 

 

Costs of collection methods were estimated and included labour ($15 h–1), costs of 

consumables (feed for traps, ammunition), and the average number of samples collected 

per hour. To allow for direct comparison of collection methods, cost of travel (vehicle, 

fuel, labour) to sites was not included. 

Risk profiles 

Ecological and epidemiological information has been used to assign risks of exposure by 

wild-bird species and location according to a range of variables to achieve the following 

two main aims: 

(1) to assess the risk of endemic LPAI viruses in wild birds becoming highly 

pathogenic through interactions with poultry (Surveillance Aim 1) and 

(2) to assess the risk of wild birds introducing foreign subtypes of avian influenza 

(Surveillance Aim 2). 

Risk profiles are consistent with ‘exposure assessment’ under the OIE risk analysis 

framework (Murray, 2002) and were developed for Surveillance Aim 1 by using (in order 

of importance): (a) log of poultry density (Robinson et al., 2007), (b) the estimated 
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prevalence of LPAI, and (c) the abundance of Anseriformes. Risk profiles developed for 

Surveillance Aim 2 used (in order of importance): (a) the probability of moving from areas 

where HPAI epizootics have occurred in 2003–09 (Food and Agriculture Organization of 

the United Nations, 2009; Office International Epizooties, 2009; World Health 

Organization, 2009), (b) the abundance of Anseriformes known to move into South-east 

Asia and (c) the estimated prevalence of LPAI. 

 

To classify the risks to poultry, the risk of incursion was assumed to be dependent on 

poultry density (Robinson et al., 2007), using the natural log of the number of birds (Snow 

et al., 2007). The abundance of Anseriformes was estimated by using reporting rate and 

bird-count data from Birds Australia (Barrett et al., 2003). Atlas data were collected during 

the ‘New Altas of Australian Birds’ project 1998–2002 from 279 000 bird surveys by 7000 

observers. Australian Bird Count Data were collected during 79 000 surveys involving 

repeated counts of birds by 952 observers at 1681 sites between 1989 and 1995. Surveys 

for both datasets followed the standard methods for Birds Australia’s 20-min, 2-ha search 

(Barrett et al., 2003), with the Australian Bird Count Data including complete counts of all 

individual birds observed, as well as the number of species observed. The relationship 

between the number of birds and number of species per observation was examined to test 

the use of reporting rate (number of surveys a bird species was present divided by the total 

number of surveys for each 1/4° map grid) as an index of abundance. For each 1/4° grid 

cell, abundance and prevalence was estimated separately for functional groups, which was 

found to be important in predicting LPAI prevalence (see Results). 

 

Distances moved and movement probabilities for Anseriformes were estimated using 

banding data from the Australian Bird and Bat Banding Scheme 

(www.environment.gov.au/biodiversity/science/abbbs/, accessed 1 January 2009). Spatial 

analyses were conducted in Arcview 3.2 (ESRI, Redlands, CA) and Manifold® (Carson 

City, NV). In addressing Surveillance Aim 2, movement probabilities were estimated for 

species identified as conducting regular or occasion movements in South-east Asia (after 

Tracey et al., 2004; Delaney and Scott, 2006; Table 6.1), using a movement probability 

model (see Results; y = 22 928 x –2.2541, where x is the distance to the current distribution of 

HPAI epizootics). 

Prevalence of LPAI for each grid cell (p total) was estimated by 
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where pf is the prevalence of LPAI according to the functional group, using Australian 

surveillance data (Table 7.1) and af is the abundance index for Anseriformes in each 

functional group in each 1/4° grid cell. 

The final scores were calculated with a normalised weight (wi ), by using a rank sum (2) 

(Malczewski, 1999), 
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where wi was the normalised weight for the jth criterion, n was the number of criteria 

under consideration (k = 1, 2, ...., n), and rj was the rank position of the criterion. Each 

criterion was weighted (n - rj + 1) and then normalised by the sum of all weights, i.e. ∑(n - 

rk + 1). 

The value for each criterion for each grid cell was normalised by using (3) before applying 

weights, as follows: 
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where δ is the normalised value and d is the original value. 
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Table 7.1. Prevalence of low-pathogenicity avian influenza (LPAI) of Australian 
Anseriformes 
aSuperscripts (after Christidis and Boles 2008): V = vagrant to Australia (fewer than 10 records); I = 
introduced to Australia; AAT = Australian Antarctic Territory; LH = Lord Howe Island; u = subfamily 
unresolved, based on Livezey (1986); Sraml et al., (1996); Johnson and Sorenson (1999). bestimated for 
functional groups (after Roshier et al., 2002). cafter Tracey et al., 2004; Delaney and Scott 2006. 
 

Common Namea Scientific Name 
Functional 
Group 

Prev 
(%) of 
LPAIb 

Movements 
into SE 
Asiac 

Anseranatidae 
  Magpie Goose Anseranas semipalmata Dabbling ducks 3.12 Regular 

Anatidae      
Anatinae (dabbling ducks)      

  Australian Wood DuckU Chenonetta jubata 
Grazing 
waterfowl 0.71 Unknown 

  Cotton Pygmy-gooseU Nettapus coromandelianus Dabbling ducks 3.12 Occasional 
  Green Pygmy-gooseU Nettapus pulchellus Dabbling ducks 3.12 Occasional 
  Garganey Anas querquedula Dabbling ducks 3.12 Rare 
  Australasian Shoveler Anas rhynchotis Dabbling ducks 3.12 Unknown 
  Northern ShovelerV Anas clypeate Dabbling ducks 3.12 Rare 
  Grey Teal Anas gracilis Dabbling ducks 3.12 Occasional 
  Chestnut Teal Anas castanea Dabbling ducks 3.12 Unknown 
  Northern PintailV  Anas acuta Dabbling ducks 3.12 Rare 
  Kerguelen PintailAAT/V Anas eatoni Dabbling ducks 3.12 Unknown 
  MallardI Anas platyrhynchos Dabbling ducks 3.12 Unknown 
  Pacific Black Duck Anas superciliosa Dabbling ducks 3.12 Occasional 

Anserinae (swans and geese)      

  Cape Barren GooseU Cereopsis novaehollandiae 
Grazing 
waterfowl 0.71 Unknown 

  Black Swan Cygnus atratus  
Deep-water 
foragers 0.94 Unknown 

  Mute SwanI Cygnus olor 
Deep-water 
foragers 0.94 Unknown 

  Canada GooseV/I Branta Canadensis 
Grazing 
waterfowl 0.71 Unknown 

Aythyinae (diving ducks)      

  Hardhead Aythya australis 
Deep-water 
foragers 0.94 Unknown 

Dendrocygninae (whistling ducks)      

  Spotted Whistling-Duck  Dendrocygna guttata 
Grazing 
waterfowl 0.71 Rare 

  Plumed Whistling-Duck Dendrocygna eytoni 
Grazing 
waterfowl 0.71 Rare 

  Wandering Whistling-Duck Dendrocygna arcuata Dabbling ducks 1 Regular 

Oxyurinae (stiff-tailed ducks)         

   Musk Duck Biziura lobata 
Deep-water 
foragers 0.94 Unknown 

   Blue-billed Duck Oxyura australis 
Deep-water 
foragers 0.94 Unknown 

Stictonettinae (freckled duck)      
  Freckled Duck Stictonetta naevosa Dabbling ducks 3.12 Unknown 

Tadorninae (shelducks)      
  Radjah Shelduck Tadorna radjah Dabbling ducks 3.12 Rare 

  Australian Shelduck Tadorna tadornoides 
Grazing 
waterfowl 0.71 Unknown 

  Paradise ShelduckLH/V Tadorna variegata 
Grazing 
waterfowl 0.71 Unknown 

  Pink-eared Duck Malacorhynchus membranaceus  Dabbling ducks 3.12 Unknown 
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7.3 Results 

Analysis of Anseriformes movements and abundance 

The number of species recorded during Australian Bird Counts was found to be sufficient 

in predicting the log of the number of birds per observation (y = 0.6913x + 1.4456, P < 

0.001). Movement probabilities were estimated for Anseriformes by using distance moved 

from recapture data (n = 8095), with a power model showing a good fit to the data (r2 = 

0.89, y = 22 928x–2.2541). From banding and recovery data, within 14 days of capture, 75% 

of birds remained within 5 km of capture, 80% within 10 km, 90% within 35 km, and 95% 

within 100 km; the maximum distance moved from the capture location was 2305 km (n= 

1314). Seasonal rainfall classification (Wald statistic F(6, 348) = 6.129, P<0.0001) and mean 

annual rainfall (Wald Statistic F(1,, 443) = 9.976, P=0.0017) was important in predicting the 

movements of Anseriformes (Appendix III), with greater movements in the summer 

dominant rainfall areas of northern Australia. 

 

The abundance of Anseriformes was correlated with the availability of permanent water 

(Wald statistic F(1, 13 424) = 265.8, P < 0.0001, y = 28.248x + 0.448, r 2 = 0.814) and 

seasonal rainfall classification (Wald statistic F(5, 13 424) = 55.8, P < 0.0001), as follows (in a 

decreasing order of abundance – mean reporting rate): uniform (0.57 ± 0.05, n=1 291), 

summer (0.47 ± 0.03, n=1 840), winter-dominant (0.46 ± 0.05, n=496), winter (0.42 ± 

0.02, n=2 631), summer-dominant (0.29 ± 0.03, n=2625) and arid (0.19 ± 0.02, n=4 548) 

rainfall zone. 

Analysis of Australian surveillance data 

LPAI prevalence was significantly greater in dabbling ducks than in all other functional 

groups for Australia and overseas (Wald statistic F(14, 208) = 3.236, P <0.0001, Appendix 

III, Figure 7.1). Prevalence of LPAI was significantly lower in Australia (1.04% ± 0.06, 

n=29,167) than that in other countries (4.67% ± 0.02, n=95,441) (Wald statistic F(1, 174) = 

8.630, P < 0.003, Appendix III), with the prevalence 2.6–4 times less for all functional 

groups, with the exception of seabirds, where there was no significant difference between 

Australia and overseas, and small migratory waders, where the prevalence was 11 times 

less in Australia than in overseas (Figure 7.1). However, sampling is unlikely to be 

representative across all species and locations, particularly for dabbling ducks in North 

America where many samples are regularly taken in areas of previous high virus activity. 
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In Australia and overseas, LPAI was either not detected or was of low prevalence for other 

functional groups (quail and wild Galliformes: 0/27, 4/899 (Australia, overseas); large 

waders: 0/58, 0/87; small resident waders: 0/260, 1/58; birds of prey: 0/6, 2/192; pigeons 

and doves: 0/1, 1/166; or bush birds: 0/34, 0/92). 
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Figure 7.1. Prevalence (% with s.e.) of low-pathogenicity avian influenza (LPAI) in wild 

birds by functional group from Australian (black) and global (white) surveillance data. 

Australia: n=29 167; Global: n=93 344 (after Olsen et al., 2006).  

Comparison of sample methods: field trial 

The cost of collecting faecal samples ($1.95 per sample) was less than the cost of 

collecting samples by shooting ($6.12 per bird) and trapping ($9.10 per bird). When 

compared on the same populations during the same time periods, detection of antibodies 

with cELISA from serum (18.45% ± 4.38, 95% confidence interval, n=374) was much 

more likely than detection of the virus (1.07% ± 2.16, n=2 868). Also, the prevalence of 

LPAI viruses detected with qRT–PCR was similar for cloacal (2.27% ± 0.97, n=948) and 

oropharyngeal (2.17% ± 2.3, n=185) samples, whereas it was significantly lower from 

faecal samples (0.29% ± 0.28, n=1 735). 

Risk profiles 

On the basis of risk profiles, highest priorities to assess risks of endemic viruses becoming 

highly pathogenic are in the region of state capitals, i.e. Melbourne, Sydney, Brisbane, 

Adelaide, Perth, Darwin and Hobart, and in the Mareeba area near Cairns, Queensland 

(Figure 7.2a). Current poultry densities for areas where previous HPAI epizootics occurred 

are 266 km–2 for Keysborough, Victoria (1976, Turner, 1976), 464 km–2 for Bendigo, 

Victoria (1985, Barr et al., 1986; 1992, Selleck et al., 1997), 222 km–2 for Lowood, 
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Queensland (1994, Westbury 1998), and 900 km–2 for Tamworth, New South Wales (1997, 

Selleck et al., 2003). Highest priorities to assess risks of wild birds introducing foreign 

viruses are the regions of north-western Australia from Broome through to Arnhem Land, 

particularly in the Kimberley, Western Australia (Figure 7.2b ). Combined ranks to address 

both surveillance aims include all these high-priority locations (Figure 7.2c ). Australian 

surveillance (1971–2007) has generally occurred in these priority areas, with the exception 

of Brisbane, Darwin and Mareeba, where surveillance is currently underway. 

 

(a) (b)

 
(c) 

Figure 7.2. Priorities for the surveillance of avian influenza in Australia’s wild birds: (a) to 

assess the risk of endemic low-pathogenicity avian influenza viruses in wild birds 
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becoming highly pathogenic through interactions with poultry (Surveillance Aim 1), (b) to 

assess the risk of wild birds introducing foreign subtypes of avian influenza (Surveillance 

Aim 2), and (c) a combined classification to address Surveillance Aims 1 and 2. Priorities 

(Rank 1 (highest) to 5 (lowest)) are based on risk profiles developed using the log of 

poultry density (Robinson et al., 2007), the estimated prevalence of low-pathogenicity 

avian influenza by functional group using Australian surveillance data (Downie and Laver, 

1973; Mackenzie et al., 1984; Mackenzie et al., 1985; Peroulis and O'Riley, 2004; Hurt et 

al., 2006; Haynes et al., 2009), the abundance of Anseriformes (source: Birds Australia), 

and the probability of Anseriformes moving from areas where HPAI epizootics have 

occurred in 2003–09 (FAO 2009; OIE 2009; WHO 2009; source: Australian Bird and Bat 

Banding Scheme).  

7.4 Discussion  

Anseriformes and avian influenza in Australia 

Abundance and movement patterns for Anseriformes are found to be irregular, varying 

with the availability of permanent water and seasonal rainfall, which is commonly reported 

for Australian anatids, with flood events and temporary rainfall particularly important 

(Roshier et al., 2001a, b). Anatids are often more dispersive in arid areas, and more 

sedentary and abundant on permanent water (Frith, 1982; Woodall, 1985). The greater 

Anseriformes movements in the summer dominant rainfall areas is likely a consequence of 

the distinct differences between wet and dry seasons of northern Australia, where most 

rainfall occurs in 3 months of the year. Large numbers of waterbirds can congregate during 

the late dry season (May–October) on persistent swamps and disperse very widely during 

the wet (November–April) (Morton et al., 1990a). However, cues for and patterns of anatid 

movements are complex, determined by individual behavioural strategies (Roshier et al., 

2008) as well as surface water over large spatial scales (Roshier et al., 2001a).  

 

The abundance and movements of waterbirds have implications for understanding 

persistence of LPAI in natural reservoirs and for managing HPAI epizootics. In Australia, 

LPAI would be expected to peak in Anseriformes during ‘boom’ breeding periods where 

thousands of birds congregate on major wetlands or floodplains. This occurs infrequently, 

with the largest breeding events occurring perhaps once every 10 years. In tropical 

Australia, LPAI may be more seasonal with peaks expected in the late dry season, and 
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greater potential for dispersal of LPAI during the wet. This is consistent with HPAI H5N1 

in tropical South-east Asia, where prevalence was significantly higher when large flocks of 

Anseriformes congregate during the dry season (=southern winter) (Siengsanan et al., 

2009). 

 

The lower prevalence of AI found in Australia than overseas (Olsen et al., 2006; Haynes et 

al., 2009); is likely to be a result of differences in the behaviour and movements of 

Australian Anseriformes from those overseas (Tracey et al., 2004; McCallum et al., 2008). 

Australia is dry with irregular rainfall and as a consequence breeding and movements of 

waterbirds are irregular. During the past 20 years, breeding has been infrequent and 

waterbird abundance has declined markedly in some areas (Porter et al., 2006), by up to 

80% for some species (Nebel et al., 2008). Loss of wetlands because of dams, water 

extractions and levee banks, particularly in south-eastern Australia, is likely to have 

contributed to these declines (Kingsford 2000; Nebel et al., 2008). 

 

The persistence of avian influenza viruses is likely to be affected by the regularity of 

breeding, as well as movement patterns, both being correlated with water availability (Frith 

1982). Hence, breeding occurs in southern Australia in spring and in northern Australia at 

the end of the wet season (April–May, southern autumn). During severe drought, most 

Australian anatids do not breed (Frith, 1982), which is likely to limit LPAI prevalence. 

Increased virus prevalence following breeding is often observed or assumed for animal 

pathogens, including avian influenza virus (Hinshaw et al., 1985; Alfonso et al., 1995), as a 

result of the boost in immunologically naïve individuals (juveniles) (Clark and Hall, 2006; 

Munster and Fouchier, 2009). 

 

LPAI in Australian wild birds was highly variable among sampling periods and locations 

and no seasonal trends were apparent. This is likely to be a consequence of a lack of long-

term studies (low sample sizes over time) coupled with a high variability in rainfall and 

Anseriformes movements and abundance between climatic zones (northern: wet season – 

summer-dominant rainfall v. southern: uniform or winter-dominant rainfall). 

 

Functional group was clearly important in predicting LPAI prevalence, with dabbling 

ducks identified as the main reservoir for Australia and overseas. The propensity of 

dabbling ducks to skim surface water is a likely explanation (Olsen et al., 2006). Avian 
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influenza viruses are known to persist in water (Webster et al., 1978; Stallknecht et al., 

1990a, b; Brown et al., 2009; Roche et al., 2009) and high levels of faecal material may 

occur on the surface (Lang et al., 2008). 

 

The substantial difference in prevalence (11 times) for small migratory waders between 

Australia and overseas may suggest that these species are unlikely to be responsible for 

transferring viruses into Australia. Rather, these species may act as a sentinel for endemic 

viruses maintained by dabbling ducks. Seabirds also conduct regular global travel but, in 

contrast, have similar prevalence between Australia and overseas. This may support the 

view that seabirds maintain viruses that are unique from viruses on mainland Australia, 

which is consistent with their behaviour and movements and phylogenetic differences 

among virus groups (Munster and Fouchier, 2009). Future investigations of genetic 

differences between Australian and Eurasian and American subtypes may confirm these 

trends. 

 

Practical considerations of sample-collection methods and testing procedures are important 

to consider when interpreting results of surveillance (Munster et al., 2009) and in 

preparation for future HPAI epizootics. The higher sero-prevalence (18.45% ± 4.38, 95% 

confidence interval, n=374) cf. virus prevalence (1.07% ± 2.16, n=2 868) reported here is 

typical of disease studies, with avian influenza virus normally detectable from swabs for up 

to 5 days, after which antibodies may then be detected for considerable periods, e.g. up to 

12 months, depending on dose at exposure (Calnek 1997). Although variable, faecal 

sampling was three and five times less expensive than sampling involving shooting and 

trapping respectively. However, the significantly lower prevalence from faecal samples 

than from cloacal samples highlights the need for reporting results separately. Possible 

reasons include degradation of samples (low volumes of RNA), or contamination as a 

result of excess faecal material or other substances from the environment. In comparison, 

Pannwitz et al., (2009) reported similar recovery rates from faecal and cloacal samples for 

some species (geese and swan, but not ducks). Pannwitz et al., (2009), however, compared 

recovery rates from different locations and time periods, which is problematic because of 

low prevalence and considerable variation in prevalence commonly reported between 

locations and over time. Improved collection procedures for faecal samples may increase 

the rate of detection, for example, by minimising the amount of faecal material, or 

collecting samples from hardened or more sterile surfaces (e.g. concrete, bitumen, 
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compacted soil or gravel, sand and decks). The prevalence from cloacal swabs was not 

significantly different from that from oropharyngeal swabs, which is consistent with 

Peroulis and O’Riley (2004). However, Ellström et al., (2008) and Munster et al., (2009) 

reported significantly higher LPAI prevalence from cloacal samples. In comparison, for 

HPAI H5N1, virus recovery was significantly higher from the respiratory tract than from 

the cloaca (Sturm-Ramirez et al., 2005; Keawcharoen et al., 2008). For on-going 

surveillance, faecal (environmental) samples may be collected as a rapid and cost-effective 

means of investigating virus presence. However, to verify virus prevalence, the collection 

of oropharyngeal and cloacal samples from hunted or captured birds is recommended. 

Risk profiles 

Risks posed by highly pathogenic avian influenza to poultry and humans and associated 

control measures have been considered by many authors (Alexander, 1993; Tracey et al., 

2004; Perdue and Swayne, 2005; Animal Health Australia 2011; Chapter 6). Of interest 

here is to improve the efficiency and relevance of low pathogenic avian influenza 

surveillance in wild birds, which is an important first step to understanding the ecology of 

avain influenza viruses.  

 

There is some uncertainty as to the role of poultry density in initiating HPAI in Australia. 

Although a shift in pathogenicity for avian influenza can occur rapidly (Brugh and Beck, 

1992; one or two passages; Arzey, 2005), population size or density is likely to be 

important in determining the levels of prevalence, transmissibility and mutation rates for 

many viruses, e.g. rabbit haemorrhagic disease virus in rabbits (Calvete and Estrada, 2000; 

Henzell et al., 2002), brucellosis in bison (Dobson and Meagher, 1996), Mycoplasma 

gallisepticum in house sparrows (Hochachka and Dhondt, 2000), including avian influenza  

(Bunn, 2004; Turner, 2004; Pfeiffer et al., 2007; Snow et al., 2007). Westbury (1998) 

suggested that poultry-farm density was low in the first four HPAI epizootics in Australia. 

However, the current study indicates that both poultry-farm density and poultry density are 

highest in the areas where previous epizootics occurred; areas where all five HPAI 

epizootics took place are ranked highest by using poultry population per 1/4° grid. 

Hamilton et al., (2009) identified the density of poultry farms as a risk factor for HPAI in 

Australia, listing five regions (the Sydney region, Central Coast NSW, Tamworth, 

Mornington Peninsula and Bendigo) that had poultry-farm density equal to or greater than 

regions of Canada and Italy affected by large epizootics of HPAI (>0.05 farms km–2), 
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which is consistent with the current study. Hamilton et al., (2009) also emphasised the 

importance of biosecurity measures to prevent the spread of the virus from infected farms 

in the event of an epizootic, resulting from service providers regularly contacting multiple 

farms. 

 

Although currently unavailable, future risk profiles could incorporate additional variables, 

including housing (caged, floor, free range, barn, deep litter; Pfeiffer 2006; Fossum et al., 

2009) and the type of operation (pullets, breeders, broilers, layers; Snow et al., 2007). 

Poultry-farm density may also be more appropriate than poultry density in predicting 

spread, once an epizootic occurs (Truscott et al., 2007; Hamilton et al., 2009). 

 

There has been considerable debate on the ability of wild birds to spread HPAI virus over 

large distances while infectious (up to 14 days, Kida et al., 1980), with several recent 

studies suggesting that this is likely to have occurred (Sabirovic et al., 2006; Stallknecht 

and Brown 2008). However, the persistence of virus in the environment, the connectivity 

of the landscape relevant to wild birds (particularly dabbling ducks, Roshier et al., 2001a) 

and the frequency of movements for multiple species (McCallum et al., 2008) are likely to 

be more important than individual bird movements within short periods. Bird populations 

can maintain avian influenza viruses despite low prevalence (Stallknecht and Brown 2008) 

and viruses can remain infective in freshwater lakes for 4 days at 22°C, more than 30 days 

at 0°C (Webster et al., 1978), or up to 200 days at 17°C, when virus concentrations are 

higher (Stallknecht et al., 1990b ). 

 

When estimating the distance moved from banding data, there are several biases that 

should be considered when interpreting risk profiles. In particular, individual ducks are 

more likely to be recaptured at the same location than elsewhere when consecutive 

trapping periods occur at the same location. This would create an underestimate of HPAI 

risk for these criteria. Recoveries may also be more likely where damage mitigation 

permits are issued to protect rice. Satellite transmitters have demonstrated that large 

movements of grey teal can occur within hours (up to 345 km) (Roshier et al., 2006), and 

within days (up to 1268 km) (Roshier et al., 2008), with some birds returning to their point 

of origin. These individual movements would have been difficult to detect with banding 

studies. However, movement probabilities estimated in the current study (y = 22 928x –

2.2541, see Results) are consistent with overall patterns of movement reported using satellite 



 7. Risk-based surveillance of avian influenza in Australia’s wild birds 

147 

transmitters (Roshier et al., 2006, 2008). For example, Roshier et al., (2006) found that 

78% and 83% of grey teal movements occurred within 5 km in the Riverina and Lake Eyre 

Basin respectively. 

 

To develop risk profiles for avian influenza in wild birds, a range of simple seasonal and 

climatic variables have been explored to explain the abundance of anatids and the 

likelihood of their movement over a large area. However, these ignore the finer-scale 

processes of wetland quality, the temporary availability of wetlands and flood events. 

These are known to be important in predicting anatid movements and abundance, 

particularly in arid Australia; however, they are difficult to incorporate when presenting 

spatial data that can be interpreted over time. 

 

Although highest priorities have been assigned to dabbling ducks, because they represent 

the major reservoir of LPAI in Australia, surveillance of other species should not be 

excluded. Migratory and resident Charadriiformes, seabirds (including pelagic gulls and 

terns and Procellariiformes), quail, ratites and other functional groups may also play a role 

in maintaining avian influenza viruses, including those with unique lineages (e.g. gulls and 

terns, Munster and Fouchier 2009). 

 

There are many uncertainties that affect the risks of an incursion of HPAI. Risk profiles 

developed here are not for predicting future epizootics, but rather, are a tool to maximise 

the efficiency and relevance of wild-bird surveillance, and to provide insights into patterns 

of LPAI occurrence. Hence, poultry producers should continue to maintain high 

biosecurity (including limiting contact with wild birds, regular treatment of water, rapid 

reporting of unusual mortalities), regardless of whether they are located in high- or low-

priority areas. The major risks for poultry operations are likely to be Anseriformes in the 

vicinity, a failure in biosecurity (e.g. water quality or entry of contaminated personnel) and 

confined poultry of sufficient density to allow development and dissemination of a 

pathogenic virus (Bunn 2004). However, there are other potential sources of LPAI, 

including live-bird markets and movements of domestic birds (poultry, turkeys, ducks, 

emus, quails) (Arzey 2004), and more important modes of transmission following 

outbreaks of HPAI (Sims et al., 2005; Feare 2007; Gilbert et al., 2008; Hamilton et al., 

2009). In Australia, service providers regularly contact multiple farms (Hamilton et al., 

2009) and are a direct potential source of secondary spread. 
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Previous surveillance for avian influenza in Australia has generally occurred in areas 

identified as highest priority, with the exception of Mareeba (northern Queensland), 

Brisbane and Darwin, with the current Avian Influenza Wild Bird Surveillance Program 

addressing these gaps. This surveillance has provided valuable information on the role of 

wild birds in maintaining LPAI viruses, and provides the basis for future insights into 

global patterns of avian influenza, in particular in the investigation of genetic similarities 

of subtypes between continents. However, surveillance has been sporadic, with a limited 

number of samples collected (35,000 samples in 1970–2007 in Australia v. 300,000 

samples per year in other countries, Munster and Fouchier 2009) and with information on 

bird abundance, age, behaviour, breeding and movements rarely being collected during 

surveillance activities. This limits our ability to offer explanations for the spatial and 

temporal variability of virus prevalence. Enhanced surveillance in priority areas that 

incorporates ecological information over a longer time frame is important to validate trends 

of LPAI prevalence, in understanding the main determinants for virus spread and 

persistence, and in predicting and managing future epizootics of HPAI in Australia. 

 



 

8. GENERAL DISCUSSION 

Invasive species cause significant economic, environmental and health-related impacts 

world-wide, and rates of invasion are increasing (Genovesi et al., 2009; Hulme, 2009). In 

the United States invasive species cost almost $120 billion per year, and are the primary 

threat to 42% of threatened and endangered species (Pimentel et al., 2005). Similarly in 

Australia, annual economic, environmental and social costs of pest animals ($1 billion: 

McLeod, 2004; Tracey et al., 2007) and weeds ($4 billion: Sinden et al., 2004) are 

substantial. Diseases of invasive species can also significantly impact upon economies 

(Bennett et al., 2009), the environment (Daszak et al., 2000) and human (Binder et al., 

1999) and animal (Gortázar et al., 2007) health. Disease events are increasing in frequency 

and most originate in wildlife (Jones et al., 2008). Quantifying these impacts and thorough 

evaluations of cost-effective management strategies are essential in dealing with the on-

going threats of invasive species. 

 

In this thesis I used case studies of pest birds to develop improved, efficient methods to 

estimate pest impact and disease risk, and evaluate strategies to manage these impacts, in 

agricultural crops, on native fauna and in relation to disease risk. As opposed to our 

knowledge of pest mammals (e.g. Lever, 1985; Putman, 1989), there are fundamental 

deficiencies in our knowledge of pest birds and their role in maintaining viruses, their 

impacts and how to measure them, and the costs and efficacy of commonly used 

management practices.  

 

Pest bird populations can increase rapidly, causing significant and localised impacts. Bird 

populations are particularly difficult to manage, often with many different species 

involved, high densities, high mobility, varied diet (Hasebe and Franklin, 2004) and rapid 

population fluctuations with changes to habitat, climatic conditions, food availability, nest 

sites and broad scale changes to agricultural practices (Chamberlain et al., 2000; Higgins et 

al., 2006; Rintala and Tiainen, 2008). These latter factors are often more important than 

direct interventions such as lethal controls in regulating populations and associated impacts 

(Murton et al., 1974) and without taking these into consideration, measures to control bird 

populations usually fail (Feare, 1991). 
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Pest species ecology and population dynamics will determine short term and long term 

impacts and efficacy of management strategies (Dolbeer, 1998; Hone, 2007). In my study, 

one-hundred and forty bird species were observed of which twenty-nine Australian natives 

and seven introduced species are known to damage fruit (Tracey et al., 2007). Their 

abundance and impacts varied significantly in time and space. This suite of species also 

have major differences in ecology, behaviour and movements, and are therefore unlikely to 

respond to management techniques in the same way. 

 

There are few established techniques available for measuring economic impacts of birds 

(DeHaven and Hothem, 1979; Nemtzov, 2004) and these are generally time-consuming, or 

can be unreliable and inaccurate. I developed a new method for estimating bird damage in 

wine grapes, which improved sampling efficiency by over 65% compared to other methods 

and has application to most crop-bird situations. 

 

Current strategies used for managing birds have rarely been rigorously evaluated in terms 

of their ability to reduce abundance or impact. Due to high variability in bird-crop systems, 

bird species, abundance (Dyer, 1967; Tracey et al., 2001; Tracey et al., 2007), and the 

extent of damage (Wiens and Dyer, 1977; Whitehead et al., 1995), large sample sizes are 

required to confidently assess management treatments (Tracey et al., 2001). Empirical 

studies with sufficient sample sizes had been lacking for even the most commonly used 

techniques for managing birds, including shooting, trapping, netting and acoustic and 

visual deterrents.  

 

In my study, generalised linear mixed models were used to test the effects of netting, 

shooting and scaring treatments on percent bird damage across 185 property year records. 

Netting was the most effective treatment, despite birds regularly breaching nets. Shooting 

was not as effective but was one-third of the cost and had 13% lower damage compared 

with nil-treatments. Scaring with electronic devices and visual deterrents had no effect on 

bird damage in fruit crops. Despite their widespread use, lethal methods had limited 

effectiveness for reducing pest populations in vineyards and orchards. However, shooting 

to scare birds from the crop, rather than to control populations was effective in reducing 

damage. In addition, systematic searches indicate that nest removal can significantly 

reduce starling reproduction and could have benefits for the long-term management of 
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starling populations. These findings have significant implications for producers in cost-

effectively managing the annual impacts of pest birds. 

 

While this thesis provides valuable information on the immediate effects of bird 

management, compensation and changes to bird populations over longer time frames were 

not considered. Further study is recommended to evaluate the timing for control and the 

carryover effects of management from one period to the next. Studies are required that 

measure compensation and incorporate natural changes in populations (growth and natural 

mortality) and timing of control (recruitment vs juvenile mortality) when evaluating 

management. This is particularly relevant for species that have a high rate of replacement 

and population turn-over (high rates of recruitment and mortality), such as starlings and 

mynas. For example any bird that escapes control in one period has the potential to 

reproduce and thus increase populations in later periods. When considering costs and 

benefits of control in this way a dynamic bio-economic framework can be developed and 

used (Clark, 1990; Ellner and Guckenheimer, 2006). This allows a change in the 

assumption of profit maximisation for pest bird control for a single season or year to an 

assumption of maximising returns over a longer period. 

 

Invasive species can cause significant environmental impacts leading to extinctions 

(Clavero and García-Berthou, 2005), and affecting ecosystem function (O'Dowd et al., 

2003; Sanders et al., 2003). While biodiversity impacts of pest animals are mainly 

attributed to mammalian predators (Coutts–Smith et al., 2007), pest birds also compete 

(Stone, 1996; Grarock et al., 2012) and hybridise (Williams and Basse, 2006) with native 

species. Impacts of pests on the environment are difficult to separate from other causes of 

habitat loss or disturbance (MacDougall and Turkington, 2005) and can occur over long 

time frames (Davis 2003). Establishing evidence of environmental impacts based on cause 

and effect (rather than correlations in species abundance) (e.g. Conroy et al., 1989) is 

difficult, and rarely conducted for pest birds. 

 

When considering environmental impacts on Lord Howe Island, phenotypic characteristics 

suggested that mallards have supplanted the native Pacific black duck, with 81% of birds 

classified as mallard or mallard-like hybrids, 17% as intermediate hybrids and only 2% as 

Pacific black duck-like hybrids. No pure Pacific black duck were observed. While these 

hybrids pose direct impacts to Pacific black duck, their indirect economic, social and 
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environmental impacts and their ecological role on Lord Howe Island requires further 

consideration. A management program to remove mallards using trapping, shooting and 

opportunistic capture by hand was conducted, with hand capture as the most cost-efficient 

technique (AUS$3.50/bird) followed by trapping (AUS$19/bird) and shooting 

(AUS$22/bird). Standardised indices of duck abundance before and after management 

indicate that the total population was reduced by over 70%. An understanding of the 

impacts and movements of mallards is essential in deciding the appropriate management 

action. If warranted the eradication of hybrid ducks on Lord Howe Island may be feasible 

if movements and reintroductions are infrequent and therefore able to be controlled.  

 

These findings demonstrate that some introduced species can significantly alter the genetic 

integrity of native fauna, leading to their extinction. While mallards are non- indigenous 

and widespread in the South Pacific and other parts of the world their impacts on native 

fauna are often unknown and rarely managed (Guay and Tracey 2009). Estimating impacts 

using phenotypic characteristics can also underestimate the extent of hybridisation 

(Braithwaite and Miller 1975; Green et al. 2000; Kulikova et al. 2004). It is also important 

also to consider the impacts of mallards and hybridisation in a broader ecological context 

(e.g. Hone 2007). Will a hybrid fulfil an ecological function equivalent to native 

precedcesor? Further study of the environmental impacts and management of mallards are 

recommended; including improved information on their indirect impacts, their distribution 

and abundance, and the use of genetic markers to verify the extent of hybridisation with 

native Anatidae. 

 

Health-related impacts of invasive species can be significant and high on the community 

agenda. Emerging disease events are increasing as a result of a range of socio-economic, 

environmental and ecological factors, with wildlife the source for the majority of these 

(Jones et al., 2008). Ten to 20 influenza pandemics have occurred since the 1700’s, with 

the ‘Spanish flu’ causing deaths to more than 20 million people, with wild aquatic birds the 

most likely source (Webster 1998). 

 

Estimating the impact of diseases involves an understanding of transmission and the effect 

of the pathogen on the host (McCallum 2000). Preventative measures will require an 

understanding of the likelihood and risks posed by future disease outbreaks. The 
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epidemiology of viruses in wildlife and their interaction with humans and livestock are 

important in assessing their risks. 

 

There has been a significant increase in surveillance for diseases in wildlife, particularly in 

wild birds. However, broad-scale surveillance is logistically difficult and costly because of 

natural low prevalence of viruses, and wide variety and abundance of potential hosts. 

Improvements are needed in targeting surveillance according to associated risks, and to 

improve efficiency. 

 

In this thesis health-related impacts of birds were considered using avian influenza in 

Australasia as a case study. Since the first cases of H5N1 highly pathogenic avian 

influenza (HPAI) in humans in 1997 in Hong Kong (Xu et al., 1999), avian influenza has 

become internationally recognised by the public health practitioners, the animal health 

community and the general public. This virus is considered the precursor to subsequent 

major epizootics in 2001-2 (Guan et al., 2004) and 2003-4 (Li et al., 2004). By March 2004 

epizootics were confirmed in China, Cambodia, Indonesia, Japan, Laos, South Korea, 

Taiwan, Thailand and Vietnam. Epizootics of H5N1 in poultry have since occurred 

throughout Asia, Europe and Africa, and its eradication is considered unlikely (Li et al., 

2004; Sims and Narrod, 2009). H5N1 has also caused disease and death in humans (Claas 

et al., 1998; Subbarao et al., 1998; Yuen et al., 1998) via avian-to-human transmission.  

 

The potential transmission of the H5N1, and other influenza A viruses from Asia to 

Australia via wild birds is of concern. There are many bird species known to undertake 

movements between Asia and Australia; the species involved, their movement behaviour, 

ecology and susceptibility to disease are all of importance when assessing the risks of 

avian influenza in Australia. I undertook detailed analysis of the abundance, movements 

and breeding ecology of Australia’s Anseriformes in relation to the prevalence of low-

pathogenic avian influenza (LPAI) and provide risk profiles to improve the efficiency and 

relevance of wild-bird surveillance. 

 

Analysis of Australian wild-bird surveillance data strongly supports other studies that have 

found the prevalence of LPAI in wild birds to be much lower (1%) in Australia than that in 

other countries (4.7%). LPAI prevalence was highly variable among sampling periods and 

locations and significantly higher in dabbling ducks than in other functional groups. Trends 
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in Anseriformes movements, abundance and breeding are also variable, and correlated with 

rainfall, which could explain low prevalence and the failure to detect seasonal differences 

in LPAI in wild birds.  

 

Risk profiles were developed to assess risks and to improve the efficiency and relevance of 

wild bird surveillance. These estimate risks based on likely interactions with poultry, 

poultry density, estimated LPAI prevalence, the abundance of Anseriformes, and the 

probability of Anseriformes moving from areas of HPAI epizootics. Overall priority areas 

for on-going surveillance are provided for Australia, which are used to guide current wild 

bird surveillance programs in Australia. Several practical considerations were also 

identified to improve future surveillance. 

 

Long-term surveillance studies in wild birds in priority areas are recommended, which 

incorporate information on bird abundance, age, behaviour, breeding and movements, 

particularly for dabbling ducks. This is important to validate trends of LPAI prevalence, in 

understanding the main determinants for virus spread and persistence, and in predicting 

and managing future epizootics of HPAI in Australasia. 

 

The case studies presented demonstrate that an understanding of a pest’s ecology, efficient 

measures of impacts, and thorough evaluations of surveillance and management strategies 

are essential for effectively managing their economic, environmental and health-related 

impacts. 

 

Future studies should include: (1) evaluations of the long-term benefits of management on 

pest bird populations, including optimal timing for control, and improved information on 

costs and benefits of controls over time; (2) assessing the environmental impacts of pests, 

including the use of genetic markers to quantify the extent of hybridisation between native 

and introduced species; and (3) long-term studies of diseases in wild birds in priority areas, 

which include the collection of ecological information. This is important in understanding 

and managing the impacts of avian diseases to human, animal and wildlife health. 

 



 

Appendix I: Examples of charts used to visually estimate bird 

damage 
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Appendix II: Movements, abundance and distribution of birds 

with Australian and Asian distributions 
Information in this table is derived from Blakers et al., 1984; Marchant and Higgins 1990, 1993; Higgins and Davies 1996; Higgins 

1999; Kingsford and Norman 2002 and Higgins and Peter 2003. For consistency categories of Kingsford and Norman 2002 were used 

where possible. Movements are categorised as Sedentary (S); Nomadic (N); Partial Migrant (PM); Annual Migrant (AM). Abundance: 

Abundant (A); Locally Abundant (LA); Common (C); Locally Common (LC); UnCommon (UC); Vagrant (V); Rare (R). Ecological 

Information: Good; Moderate; Poor. Distribution: Continental, Northern (N), Eastern (E), Southern (S), Western (W), Pelagic and 

Coastal. Nomenclature follows Christidis and Boles 1994. Asterisks indicate avian influenza virus isolations. 

 

Common name 

Scientific name 

Aust-Asia 

movements 
Movements 

Timing of 

movement to 

Australia 

Australian 

Abundance  

Ecological 

information 

Australian 

distribution 

ANSERIFORMES       

Anatidae       

Plumed Whistling-Duck* Rare N Variable LA Moderate N/SE  

    Dendrocygna eytoni        

Wandering Whistling-Duck Regular N Variable LA Poor N/NE 

    Dendrocygna arcuata        

Radjah Shelduck Rare N Variable MC Poor N 

    Tadorna radjah        

Cotton Pygmy-goose Occasional S Variable UC Poor NE 

    Nettapus coromandelianus        

Green Pygmy-goose Occasional S Variable C Poor N 

    Nettapus pulchellus        

Pacific Black Duck* Rare S - N Variable A Good Continental 

    Anas superciliosa        

Northern Shoveler* Rare AM Aug, Sept V Poor SW/SE 

    Anas clypeata        

Grey Teal* Occasional N Variable A Good Continental 

    Anas gracilis        

Northern Pintail* Rare AM Aug, Sept V Poor SW 

    Anas acuta        

Garganey* Rare AM - N Aug, Sept R - UC Poor N 

    Anas querquedula        

Hardhead Rare N Variable LA - C Moderate Continental 

    Aythya australis        

Anseranatidae       

Magpie Goose Regular N Variable LA - C Good N 

    Anseranas semipalmata        

PROCELLARIIFORMES       

Procellariidae       

Streaked Shearwater Regular AM May, Jun UC Poor Pelagic 

    Calonectris leucomelas       

Wedge-tailed Shearwater* Occasional AM Aug, Sept A Poor Pelagic 

    Puffinus pacificus       

Flesh-footed Shearwater Occasional AM Sept, Oct A Poor Pelagic 

    Puffinus carneipes       
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Appendix II.   Continued 

Common name 

Scientific name 

Aust-Asia 

movements 
Movements 

Timing of 

movement to 

Australia 

Australian 

Abundance  

Ecological 

information 

Australian 

distribution 

Sooty Shearwater Occasional AM Sept, Oct MC Poor Pelagic 

    Puffinus griseus       

Short-tailed Shearwater Regular AM Aug, Sept A Poor Pelagic 

    Puffinus tenuirostris        

Hydrobatidae       

Matsudaira's Storm-Petrel Regular AM Jul, Aug UC Poor Pelagic 

    Oceanodroma matsudairae        

PELECANIFORMES       

Phaethontidae       

Red-tailed Tropicbird Regular N Variable LA Poor Pelagic 

    Phaethon rubricauda        

White-tailed Tropicbird Regular N Variable UC Poor Pelagic 

    Phaethon lepturus        

Sulidae       

Masked Booby Regular PM Sep, Oct LA Poor Pelagic 

    Sula dactylatra        

Red-footed Booby Regular PM Jun, July LA Poor Pelagic 

    Sula sula        

Brown Booby Regular PM Variable LA Poor Pelagic 

    Sula leucogaster        

Anhingidae       

Darter Rare N Variable MC Moderate Continental 

    Anhinga melanogaster        

Phalacrocoracidae       

Little Pied Cormorant Occasional N Variable A Good Continental 

    Phalacrocorax melanoleucos        

Little Black Cormorant Occasional N Variable A Good Continental 

    Phalacrocorax sulcirostris        

Great Cormorant* Rare N Variable A Good Continental 

    Phalacrocorax carbo        

Pelecanidae       

Australian Pelican        

    Pelecanus conspicillatus  Occasional N Variable LA - C Good Continental 

Fregatidae       

Great Frigatebird Regular N Variable LA Poor Pelagic 

    Fregata minor        

Lesser Frigatebird Regular N Variable LA Poor Pelagic 

    Fregata ariel        

CICONIIFORMES       

Ardeidae       

White-faced Heron Occasional S - N Variable C Moderate Continental 

    Egretta novaehollandiae       

Little Egret Occasional S - N Variable C Good N/E/SE 

    Egretta garzetta       
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Appendix II.   Continued 

Common name 

Scientific name 

Aust-Asia 

movements 
Movements 

Timing of 

movement to 

Australia 

Australian 

Abundance  

Ecological 

information 

Australian 

distribution 

Eastern Reef Egret Occasional  Variable C Poor Coastal 

    Egretta sacra  S     

White-necked Heron Rare N Variable MC Moderate Continental 

    Ardea pacifica        

Pied Heron Regular S - N Dec, Feb LA-C Moderate N 

    Ardea picata        

Great Egret Occasional N Variable C Good Continental 

    Ardea alba        

Intermediate Egret Rare PM - N Unknown C Moderate N/E/SE 

    Ardea intermedia        

Cattle Egret Rare PM Unknown LA -C Moderate SW/N/E/SE 

    Ardea ibis        

Striated Heron Rare S Variable LC Poor Coastal 

    Butorides striatus       

Nankeen Night Heron Occasional N - S Variable C Poor N/E/SE/W 

    Nycticorax caledonicus        

Little Bittern Occasional AM Aug UC Poor SW/SE/E 

    Ixobrychus minutus        

Black Bittern Unknown S - N Variable LC - UC Poor N/E 

    Ixobrychus flavicollis        

Threskiornithidae       

Glossy Ibis* Occasional N Variable LA Moderate Continental 

    Plegadis falcinellus        

Australian White Ibis Occasional S - N Variable LA - C Good Continental 

    Threskiornis molucca        

Straw-necked Ibis Occasional S - N Variable C Good Continental 

    Threskiornis spinicollis        

Royal Spoonbill Occasional S - N Variable C Moderate N/E/SE/W 

    Platalea regia        

GRUIFORMES       

Rallidae       

Spotless Crake Unknown S - N Unknown C - UC Poor SW/SE 

    Porzana tabuensis       

White-browed Crake Unknown S Unknown LC Poor N 

    Porzana cinerea       

Purple Swamphen Unknown N Unknown C Moderate SW/E 

    Porphyrio porphyrio       

CHARADRIIFORMES       

Scolopacidae       

Latham's Snipe Regular AM Aug LC Poor SE/E 

    Gallinago hardwickii       

Swinhoe's Snipe Regular AM Aug MC Poor SE/E 

    Gallinago megala       

Black-tailed Godwit Regular AM Sept, Oct MC Moderate Continental 

    Limosa limosa        
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Appendix II.   Continued 

Common name 

Scientific name 

Aust-Asia 

movements 
Movements 

Timing of 

movement to 

Australia 

Australian 

Abundance  

Ecological 

information 

Australian 

distribution 

Bar-tailed Godwit Regular AM Sept, Oct C Moderate Continental 

    Limosa lapponica        

Little Curlew Regular AM Oct LA - MC Moderate N 

    Numenius minutus       

Whimbrel Regular AM Sept, Oct MC Poor Coastal 

    Numenius phaeopus        

Eastern Curlew Regular AM Sept, Oct MC Moderate Coastal 

    Numenius madagascariensis        

Marsh Sandpiper Regular AM Oct, Nov MC - UC Moderate Continental 

    Tringa stagnatilis       

Common Greenshank Regular AM Oct, Nov C Moderate Continental 

    Tringa nebularia       

Wood Sandpiper Regular AM Jul, Oct MC - UC Moderate Continental 

    Tringa glareola       

Terek Sandpiper Regular AM Sept, Oct MC - UC Moderate Coastal 

    Xenus cinereus        

Common Sandpiper Regular AM Sept, Oct MC - UC Moderate Continental 

    Actitis hypoleucos        

Grey-tailed Tattler Regular AM Sept, Oct C Poor Coastal 

    Heteroscelus brevipes        

Wandering Tattler Regular AM Nov UC Poor Coastal 

    Heteroscelus incanus       

Ruddy Turnstone* Regular AM Sept, Oct MC Moderate Continental 

    Arenaria interpres        

Asian Dowitcher Regular AM Sept, Oct R Poor Coastal 

    Limnodromus semipalmatus        

Great Knot Regular AM Sept, Oct LA - UC Moderate Coastal 

    Calidris tenuirostris        

Red Knot* Regular AM Sept, Oct C Poor Coastal 

    Calidris canutus       

Sanderling Regular AM Sept, Oct MC Poor Coastal 

    Calidris alba       

Red-necked Stint* Regular AM Sept, Oct A - C Moderate Continental 

    Calidris ruficollis        

Long-toed Stint Regular AM Aug UC Moderate Continental 

    Calidris subminuta       

Pectoral Sandpiper Occasional AM Oct, Nov UC Poor Continental 

    Calidris melanotos       

Sharp-tailed Sandpiper Regular AM Sept, Oct C Moderate Continental 

    Calidris acuminata       

Curlew Sandpiper Regular AM Sept, Oct A - C Moderate Continental 

    Calidris ferruginea        

Broad-billed Sandpiper Regular AM Sept, Oct MC - UC Poor Coastal 

    Limicola falcinellus        
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Appendix II.   Continued 

Common name 

Scientific name 

Aust-Asia 

movements 
Movements 

Timing of 

movement to 

Australia 

Australian 

Abundance  

Ecological 

information 

Australian 

distribution 

Jacanidae       

Comb-crested Jacana Rare S Variable C Poor N/NE 

    Irediparra gallinacea       

Charadriidae       

Grey Plover Regular AM Sept, Oct MC Moderate Coastal 

    Pluvialis squatarola        

Lesser Sand Plover Regular AM Sept, Oct MC Poor Coastal 

    Charadrius mongolus        

Greater Sand Plover Regular AM Sept, Oct UC Moderate Coastal 

    Charadrius leschenaultii        

Oriental Plover Regular AM Oct, Nov LA - UC Poor N/SE 

    Charadrius veredus       

Masked Lapwing Unknown S – N Unknown C Good N/E/SE 

    Vanellus miles       

Glareolidae       

Oriental Pratincole Regular AM Nov LA - UC Moderate N/W 

    Glareola maldivarum       

Australian Pratincole Regular AM Aug, Sep C - UC Moderate Continental 

    Stiltia isabella       

Laridae       

Lesser Crested Tern Unknown S Unknown C Poor Coastal 

    Sterna bengalensis        

Crested Tern Unknown S Unknown C Poor Coastal 

    Sterna bergii        

Roseate Tern Regular S – N Variable C - UC Poor Coastal 

    Sterna dougallii       

Black-naped Tern Unknown S – N Unknown LC Poor Coastal 

    Sterna sumatrana       

Common Tern* Regular AM Sept, Oct MC Good Coastal 

    Sterna hirundo        

Little Tern Regular AM Variable MC - UC Moderate Coastal 

    Sterna albifrons       

Bridled Tern Regular AM Jan, Feb C Poor Coastal 

    Sterna anaethetus       

Sooty Tern* Regular AM Variable A Moderate Coastal 

    Sterna fuscata       

Whiskered Tern Regular AM – N Sept, Oct A - C Moderate Continental 

    Chlidonias hybridus        

White-winged Black Tern Regular AM – N Sept, Oct MC - UC Poor Continental 

    Chlidonias leucopterus        

COLUMBIFORMES       

Columbidae       

Superb Fruit-Dove Regular N Sept, Oct UC Moderate E 

    Ptilinopus superbus       

Pied Imperial-Pigeon Regular AM Aug, Sept C - MC Moderate N 

    Ducula bicolor       
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Appendix II.   Continued 

Common name 

Scientific name 

Aust-Asia 

movements 
Movements 

Timing of 

movement to 

Australia 

Australian 

Abundance  

Ecological 

information 

Australian 

distribution 

CUCULIFORMES       

Cuculidae       

Brush Cuckoo Regular AM Sept, Oct MC Moderate N/E 

    Cacomantis variolosus        

Common Koel Regular PM Sept, Oct MC Moderate N/E 

    Eudynamys scolopacea        

Channel-billed Cuckoo Regular PM Sept, Oct MC Moderate N/S 

    Scythrops novaehollandiae       

CORACIIFORMES       

Halcyonidae       

Buff-breasted Paradise-

Kingfisher 
Regular AM Sept, Oct UC Moderate NE 

    Tanysiptera sylvia        

Forest Kingfisher Regular AM Sept, Oct C Good NE/E 

    Todiramphus macleayii        

Sacred Kingfisher Regular AM Sept, Oct C Good Continental 

    Todiramphus sanctus        

Meropidae       

Rainbow Bee-eater Regular AM Sept, Oct C Good Continental 

    Merops ornatus       

Coraciidae       

Dollarbird Regular AM Sept, Oct MC Good N/E 

    Eurystomus orientalis       

PASSERIFORMES       

Meliphagidae       

Brown-backed Honeyeater Occasional S Sept, Oct LC Poor NE 

    Ramsayornis modestus        

Dicruridae       

Spangled Drongo Regular S – AM Sept, Oct C Moderate NE 

    Dicrurus bracteatus       

Campephagidae       

Cicadabird Regular AM Sept, Oct UC - MC Poor NE 

    Coracina tenuirostris        

Oriolidae       

Olive-backed Oriole Occasional PM - AM Sept, Oct C - MC Moderate N/E 

    Oriolus sagittatus        

Sturnidae       

Metallic Starling Regular AM Sept, Oct C - LC Moderate NE 

    Aplonis metallica       
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Appendix III: Analyses* of Anseriformes movements and 

abundance and avian influenza surveillance data.  
Response 

variable 

Ln 

(Anseriformes 

distance moved1) 

Ln 

(Anseriformes 

abundance2) 

LPAI 

prevalence3 

Global 

LPAI prevalence3 

Australia 

Dependent 

variable 

Wald 

statistic 

P Wald 

statistic 

P Wald 

statistic 

P Wald 

statistic 

P 

Continent 

(Australia, 

overseas) 

NA NA NA NA F(1, 

174) = 

8.630 

0.003 NA NA 

Functional 

group4 

NS NS NA NA F(14, 

208) = 

3.236 

0.0001 F(14, 

550) = 

2.079 

0.009 

Ln 

(Anseriformes 

abundance) 

NA NA NA NA NA NA F(1, 

536) = 

15.640 

<0.0001

Species NS NS NA NA NA NA NA NA 
Sex NS NS NA NA NA NA NA NA 
Age NS NS NA NA NA NA NA NA 
Season NS NS NA NA NS NS NS NS 
Seasonal rainfall 

classification5 

F(6, 

348) = 

6.129 

<0.0001 F(5, 13 

424) = 

55.8 

<0.0001 NA NA F(5, 

533) = 

3.377 

0.003 

Availability of 

permanent 

water6 (km2 per 

1/4° grid)  

NS NS F(1, 13 

424) = 

265.8 

<0.0001 NA NA F(1, 

579) = 

30.220 

<0.0001

Percentage of 

permanent 

water6 (% of 

1/4° grid) 

NS NS NS NS NA NA NA NA 

Annual rainfall7 NS NS NA NA NA NA NA NA 
Mean annual 

rainfall7 

 

F(1, 

443) = 

9.976 

0.0017 NA NA NA NA NA NA 

Seasonal 

rainfall7 

NS NS NA NA NA NA NA NA 
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Response 

variable 

Ln 

(Anseriformes 

distance moved1) 

Ln 

(Anseriformes 

abundance2) 

LPAI 

prevalence3 

Global 

LPAI prevalence3 

Australia 

Dependent 

variable 

Wald 

statistic 

P Wald 

statistic 

P Wald 

statistic 

P Wald 

statistic 

P 

Rainfall in the 

previous two 

months7 

NS NS NA NA NA NA NA NA 

Rainfall in the 

previous three 

months7 

NS NS NA NA NA NA NA NA 

Functional 

Group:Continent 

NA NA NA NA F(13, 

628) = 

5.521 

<0.0001 NA NA 

Ln 

(Anseriformes 

abundance): 

Availability of 

permanent water 

NA NA NA NA NA NA F(1, 

579) = 

15.720 

<0.0001

Other 

interactions 

NS NS NS NS NS NS NS NS 

Random 

variables 

Site, sampling 

event 

NA Site, sampling 

event, species 

Site, sampling 

event, species 

* Generalised linear mixed models and analysis of variance were conducted using the asreml package (Butler et al., 

2009) under R (R Core Team, 2013). NA indicates the variables that were not included in the analyses, where data was 

not available and NS indicates variables that were not significant at the P = 0.05 level that were dropped sequentially. 
 1Distances moved for Anseriformes were estimated as kilometres travelled from the capture location, using banding data 

from the Australian Bird and Bat Banding Scheme (www.environment.gov.au/biodiversity/science/abbbs/, accessed 1 

January 2009) 
2The abundance of Anseriformes was estimated from the relationship between the number of birds and number of species 

per observation ( see Results 7.3) using Birds Australia’s 20-min, 2-ha search for species reporting rate and bird-count 

data (Barrett et al., 2003). 
3LPAI prevalence was estimated as the proportion of samples (cloacal, oropharyngeal or faecal swabs) from wild birds 

that were positive to Influenza A (via Polymerase chain reaction and / or virus isolations)  
4Functional group were groupings of species based on behaviour and feeding habits (after Kingsford, 1991 and Roshier et 

al., 2002) 
5Seasonal rainfall classification: a Bureau of Meteorology classification, identifying summer-dominant, summer, 

uniform, winter, winter-dominant, or arid rainfall 
6Permanent water Geoscience Australia and National Water Commission data on rivers, dams and inland water 

 7Rainfall data from the Bureau of Meteorology 



 

167 

References 
Alexander, D.J. (1982) Ecological aspects of influenza viruses in animals and their relationship to 

human influenza: a review. Journal of the Royal Society of Medicine, 75, 799–811. 

Alexander, D.J. (1987) Avian influenza - historical aspects. Proceedings of the Second 

International Symposium on Avian Influenza, 1986. University of Wisconsin, Madison, 4–13. 

Alexander, D.J. (1993). Orthomyxovirus infections. In Virus infections of birds (eds J.B. McFerran 

& M.S. McNulty). Elsevier Science, London. 

Alexander, D.J. (2000) A review of avian influenza in different bird species. Veterinary 

Microbiology, 74(1-2), 3–13. 

Alexander, P.A. (1990). Progress report on investigations in Long-billed Corellas and other ground 

feeding cockatoos in the south-east of Australia, 1988-89. In National Bird Pest Workshop 

Proceedings (eds P. Fleming, I. Temby & J. Thompson), pp. 25–33. NSW Agriculture and 

Fisheries, Armidale. 

Alfonso, C.P., Cowen, B.S. & van Campen, H. (1995) Influenza A viruses isolated from waterfowl 

in two wildlife management areas of Pennsylvania. Journal of Wildlife Diseases, 31(2), 179-

85. 

Allen, L.R. (1982) An innovation in the control of Galahs (Cacatua roseicapilla) and Sulphur-

crested Cockatoos (Cacatua galerita) in sunflower. Proceedings of the 10th International 

Sunflower Conference, 187–92. 

Allen, L.R. (1984) The use of forage sorghum screens as a bird control measure. Sunflower, 5(l), 

10–12. 

Amadon, D. (1943a) Birds collected during the Whitney south sea expedition. 52. American 

Museum Novitates, 1237, 1-22. 

Amadon, D. (1943b) The genera of starlings and their relationships. American Museum Novitates, 

1247, 1–16. 

Animal Health Australia. (1996) Enterprise Manual: Poultry Industry. Australian Veterinary 

Emergency Plan (AUSVETPLAN), Edition 2. Animal Health Australia, Canberra, ACT. 

Animal Health Australia. (2003) Wild Animal Response Strategy (Version 3.0). Australian 

Veterinary Emergency Plan (AUSVETPLAN), Edition 3. Primary Industries Ministerial 

Council of Australia and New Zealand., Canberra, ACT. 

Animal Health Australia (2011) Disease strategy: Avian influenza (Version 3.4). Australian 

Veterinary Emergency Plan (AUSVETPLAN), Edition 3. Primary Industries Ministerial 

Council, Canberra, ACT. 

 



 

168 

Ankney, C.D., Dennis, D.G. & Bailey, R.C. (1989) Increasing mallards, decreasing American 

Black Ducks: no evidence for cause and effect: A Reply. Journal of Wildlife Management, 

53(4), 1072-75  

Anonymous. (1970) Methiocarb trails: skylark (Alauda arvensis) damage to tomato seedlings. 

Ecology Division, New Zealand Department of Scientific and Industrial Research, Auckand. 

Armitage, P. & Colton, T. (1998) Encyclopedia of Biostatistics. John Wiley and Sons Ltd, West 

Sussex, England. 

Arzey, G. (2005) The role of wild waterfowl in the epidemiology of AI in Australia. Australian 

Veterinary Journal, 83(7), 445. 

Ashford, R.W. (1979). Bird migration across the Torres Strait with relevance to arbovirus 

dissemination. In Ecology of the Purari River Catchment. Purari River (WABO) Hydroelectric 

Scheme Environmental Studies 10 (ed Petr.T), pp. 9–30. Office of Environment and 

Conservation, Waigani. 

Asia-Pacific Migratory Waterbird Conservation, C. (2001) Asia-Pacific Migratory Waterbird 

Conservation Strategy: 2001-2005. Wetlands International -Asia Pacific, Kuala Lumpur, 

Malaysia. 

Askham, L.R. (1990). Effect of artificial perches and nests in attracting raptors to orchards. In 

Proceedings of the 14th Vertebrate Pest Conference (eds L.R. Davis & R.E. Marsh), pp. 144–

48. University of California, Davis. 

Askham, L.R. (1992). Efficacy of methyl anthranilate as a bird repellent on cherries, blueberries 

and grapes. In Proceedings of the 15th Vertebrate Pest Conference (eds J.E. Borrecco & R.E. 

Marsh), pp. 137–44. University of California, Davis. 

Askham, L.R. (1996). Disaccharide intolerance of European Starlings. In Proceedings of the 17th 

Vertebrate Pest Conference (eds R.M. Timm & A.C. Crabb), pp. 99–102. University of 

California, Davis. 

Askham, L.R. (2000). Efficacy of the aerial application of methyl anthranilate in reducing bird 

damage to sweet corn, sunflowers, and cherries. In Proceedings of the 19th Vertebrate Pest 

Conference (eds T.P. Salmon & A.C. Crabb), pp. 22–25. University of California, Davis. 

Astorga, R.J., Leon, L., Cubero, M.J., Arenas, A., Maldonado, A., Tarradas, M.C. & Perea, A. 

(1994) Avian influenza in wild waterfowl and shorebirds in the Donana National Park: 

serological survey using the enzyme-linked immunosorbent assay. Avian Pathology, 23(2), 

339–44. 

Atwood, E.L. (1956) Validity of mail survey data on bagged waterfowl. Journal of Wildlife 

Management, 20(1), 1–16. 

Aubin, T. (1990) Synthetic bird calls and their application to scaring methods. Ibis, 132, 290–99. 



 

169 

Avery, M.L. (1992). Evaluation of methyl anthranilate as a bird repellent in fruit crops. In 

Proceedings of the 15th Vertebrate Pest Conference (eds J.E. Borrecco & R.E. Marsh), pp. 

130–33. University of California, Davis. 

Avery, M.L., Decker, D. & Humphrey, J.S. (1998) Development of seed treatments to control 

blackbirds. Proceedings of the Eighteenth Vertebrate Pest Conference held March 2 5, 1998 

in Costa Mesa, California, 354–58. 

Avery, M.L., Decker, D.G. & Fischer, D.L. (1994a) Cage and flight pen evaluation of avian 

repellency and hazard associated with imidacloprid-treated rice seed. Crop Protection, 13(7), 

535–40. 

Avery, M.L., Decker, D.G., Humphrey, J.S., Aronov, E., Linscombe, S.D. & Way, M.O. (1995a) 

Methyl anthranilate as a rice seed treatment to deter birds. Journal of Wildlife Management, 

59(1), 50–56. 

Avery, M.L., Decker, D.G., Humphrey, J.S., Hayes, A.A. & Laukert, C.C. (1995b) Color, size, and 

location of artificial fruits affect sucrose avoidance by Cedar Waxwings and European 

Starlings. The Auk, 112(2), 436–44. 

Avery, M.L., Decker, D.G., Humphrey, J.S. & Laukert, C.C. (1996a) Mint plants derivatives as 

blackbird feeding deterrents. Crop Protection, 15(5), 461–64. 

Avery, M.L., Decker, D.G. & Way, M.O. (1994b). Field tests of a copper-based fungicide as a bird 

repellent rice seed treatment. In Proceedings of the 16th Vertebrate Pest Conference, pp. 250–

55. 

Avery, M.L., Humphrey, J.S. & Decker, D.G. (1997) Feeding deterrence of anthraquinone, 

anthracene, and anthrone to rice-eating birds. Journal of Wildlife Management, 61(4), 1359–

65. 

Avery, M.L., Keacher, K.L. & Tillman, E.A. (2008) Nicarbazin bait reduces reproduction by 

pigeons (Columba livia). Wildlife Research, 35(1), 80-85. 

Avery, M.L., Primus, T.M., Defrancesco, J., Cummings, J.L., Decker, D.G., Humprey, J.S., Davis, 

J.E. & Deacon, R. (1996b) Field evaluation of methyl anthranilate for deterring birds eating 

blueberries. Journal of Wildlife Management, 60(4), 929–34. 

Avery, M.L., Tillman, E.A. & Laukert, C.C. (2001) Evaluation of chemical repellents for reducing 

crop damage by dickcissels in Venezuela. International Journal of Pest Management, 47(4), 

311–14. 

Avery, M.L., Werner, S.J., Cummings, J.L., Humphrey, J.S., Milleson, M.P., Carlson, J.C., Primus, 

T.M. & Goodall, M.J. (2005) Caffeine for reducing bird damage to newly seeded rice. Crop 

Protection, 24(7), 651–57. 

Baigent, S.J. & McCauley, J.W. (2003) Influenza type A in humans, mammals and birds: 

Determinants of virus virulence, host-range and interspecies transmission. BioEssays, 25(7), 

657–71. 



 

170 

Bailey, A.M. & Sorensen, J.H. (1962) Subantarctic Campbell Island. Proceedings of Denver 

Museum of Natural History, 10, 305. 

Bailey, P.T. & Smith, G. (1979) Methiocarb as a bird repellent on wine grapes. Australian Journal 

of Experimental Agriculture and Animal Husbandry, 19(97), 247–50. 

Baker, R.T. (1980a) Bird damage to apples. Orchardist of New Zealand, 53(5), 145–46. 

Baker, R.T. (1980b) Birds in an apple orchard. Notornis, 27, 331–34. 

Baker, S.J., Feare, C.J., Wilson, C.J., Malam, D.S. & Sellars, G.R. (1993) Prevention of breeding 

of canada geese by coating eggs with liquid paraffin. International Journal of Pest 

Management, 39(2), 246-49. 

Balcomb, R., Bowen, C.A. & Williamson, H.O. (1983) Acute and sublethal effects of 1080 

[sodium monofluoroacetate] on starlings. Bulletin of Environmental Contamination and 

Toxicology, 31(6), 692–98. 

Balham, R.W. (1952) Grey and mallard ducks in the Manawatu district, New Zealand. Emu, 52, 

163-91. 

Banks, J. & Alexander, D.J. (1997). Molecular epidemiology of the H5 and H7 avian influenza 

viruses submitted to the international reference laboratory, Weybridge. In Fourth International 

Symposium on Avian Influenza (eds D.E. Swayne & R.D. Slemons), pp. 105–09. United States 

Animal Health Association, Athens, Georgia. 

Barnard, H.G. (1911) Field notes from Cape York. Emu, 11, 17–32. 

Barr, D.A., Kelly, A.P., Badman, R.T. & Campey, A.R. (1986) Avian influenza on a multi-age 

chicken farm. Australian Veterinary Journal, 63, 195–96. 

Barrett, G., Silcocks, A., Barry, S., Cunningham, R. & Poulter, R. (2003) New Atlas of Australian 

Birds. CSIRO, Canberra. 

Barry, S.C. & Welsh, A.H. (2001) Distance sampling methodology. Journal of the Royal Statistical 

Society: Series B (Statistical Methodology), 63(1), 31–53. 

Baxter, A.T. & Allan, J.R. (2008) Use of lethal control to reduce habituation to blank rounds by 

scavenging birds. Journal of Wildlife Management, 72(7), 1653-57. 

Baxter, A.T., Bell, J.C., Allan, J.R. & Fairclough, J. (1999). The interspecificity of distress calls. In 

Bird Strike Committee Proceedings. First Joint Annual Meeting, Vancouver., pp. 2–10. 

University of Nebraska, Lincoln. 

Becker, W.B. (1966) The isolation and classification of tern virus. Influenza virus A/tern/South 

Africa/1961. Journal of Hygiene, 64, 309–20. 

Becker, W.B. (1967) Experimental infection of common terns with tern virus: Influenza virus 

A/tern/South Africa //1961. Journal of Hygiene, 65, 61–65. 

Bell, H.L. (1981) Information on New Guinean Kingfishers Alcedinidae. Ibis, 123, 51–61. 

Bell, H.L. (1982a) Abundance and seasonality of the savanna avifauna at Port Moresby, Papua 

New Guinea. Ibis, 124, 252–74. 



 

171 

Bell, H.L. (1982b) A bird community of lowland rainforest in New Guinea I-V. Emu, 82, 24–41, 

65–74, 143–62, 217–24, 56–75. 

Bengis, R.G., Leighton, F.A., Fischer, J.R., Artois, M., Mörner, T. & Tate, C.M. (2004) The role of 

wildlife in emerging and re-emerging zoonoses. Revue Scientifique et Technique. Office 

International des Epizooties, 23(2), 497-511. 

Bennett, J.W. (1984) Using direct questioning to value the existence benefits of preserved natural 

areas. Australian Journal of Agricultural Economics, 28(2,3), 136–52. 

Bennett, R., Smith, G.C. & Willis, K. (2009). An economic perspective on wildlife disease 

management. In Management of Disease in Wild Mammals (eds R.J. Delahay & M.R. 

Hutchings), pp. 79-96. Springer, Tokyo. 

Berge, A., Delwiche, M., Gorenzel, W.P. & Salmon, T. (2007) Bird control in vineyards using 

alarm and distress calls. American Journal of Enology & Viticulture, 58(1), 135–43. 

Bergman, J. (1970) Trials on methiocarb to reduce bird damage to tomato seed. New Zealand 

Department of Agriculture and Fisheries, Wellington. 

Besser, J.F., Brady, D.J., Burst, T.L. & Funderberg, T.P. (1984) 4-aminopyridine baits on baiting 

lanes to protect sunflower fields from blackbirds. Agriculture, Ecosystems, and Environment, 

11, 281–90. 

Besser, J.F., Royall, W.C. & DeGrazio, J.W. (1967) Baiting starlings with DRC-1339 at a cattle 

feedlot. Journal of Wildlife Management, 31, 48–51. 

Beuter, K.J. & Weiss, R. (1986) Properties of the auditory system in birds and the effectiveness of 

acoustic scaring signals. Bird Strike Committee Meeting, 60–73. 

Bibby, C.J., Burgess, N.D., Hill, D.A. & Mustoe, S.H. (2000) Bird Census Techniques. Academic 

Press, San Diego California. 

Binder, S., Levitt, A.M., Sacks, J.J. & Hughes, J.M. (1999) Emerging infectious diseases: public 

health issues for the 21st century. Science, 284(5418), 1311-13. 

Bishop, J., McKay, H., Parrott, D. & Allan, D. (2003) Review of International Research Literature 

Regarding the Effectiveness of Auditory Bird Scaring Techniques and Potential Alternatives. 

Department for Environment, Food and Rural Affairs, York, UK. 

Blakers, M., Davies, S.J.J.F. & Reilly, P.N. (1984) The Atlas of Australian Birds. Melbourne 

University Press, Melbourne. 

Blanco, J.C., Reig, S. & Cuesta, L.d.l. (1992) Distribution, status and conservation problems of the 

wolf Canis lupus in Spain. Biological Conservation, 60, 73-80. 

Blanton, E.M., Constantin, B.U. & Williams, G.L. (1992). Efficacy and methodology of urban 

pigeon control with DRC-1339. In Proceedings of the Eastern Wildlife Damage Control 

Conference, pp. 58–62. 

Blokpoel, H. & Hamilton, R.M.G. (1989) Effects of applying white mineral oil to chicken and gull 

eggs. Wildlife Society Bulletin, 17, 435–41. 



 

172 

Blums, P., Shaiffer, C.W. & Fredrickson, L.H. (2000) Automatic multi-capture nest box trap for 

cavity nesting ducks. Wildlife Society Bulletin, 28(3), 592–96. 

Boitani, L. (1992) Wolf research and conservation in Italy. Biological Conservation, 61, 125-32. 

Bollinger, E.K. & Caslick, J.W. (1985a) Factors influencing blackbird damage to field corn. 

Journal of Wildlife Management, 49(4), 1109–15. 

Bollinger, E.K. & Caslick, J.W. (1985b) Red winged blackbird predation on northern corn 

rootworm beetles in field corn. Journal of Applied Ecology, 22, 39–48. 

Bomford, M. (1990a) Ineffectiveness of a sonic device for deterring starlings. Wildlife Society 

Bulletin, 18(2), 151–56. 

Bomford, M. (1990b) A role for fertility control in wildlife management. Bulletin No.7. Bureau of 

Rural Resources and the Australian Government Publishing Service, Canberra. 

Bomford, M. (1992) Bird pest impact and research in Australia: a survey and bibliography. 

Working Paper No. Wp/3/92. Bureau of Rural Resources, Canberra. 

Bomford, M. & O'Brien, P. (1990) Sonic deterrents in animal damage control: a review of device 

tests and effectiveness. Wildlife Society Bulletin, 18, 411-22. 

Bomford, M. & O'Brien, P. (1995) Eradication or control for vertebrate pests? Wildlife Society 

Bulletin, 23, 249–55. 

Braithwaite, L.W. & Miller, B. (1975) The Mallard, Anas platyrhynchos, and Mallard-Black Duck, 

Anas superciliosa rogersi, hybridization. Australian Wildlife Research, 2(1), 47-61. 

Briggs, S.V. (1992) Movement patterns and breeding characteristics of arid zone ducks. Corella, 

16, 15–22. 

Brooke, M. (2004) Albatrosses and petrels across the world. Oxford University Press, Oxford. 

Broome, L.S. (1979) The Use of Decoy Crops to Combat the Bird Pest Problem on Sunflower 

Crops. Report to Oilseeds Marketing Board of NSW. Department of Ecosystem Management, 

University of New England, Armidale. 

Brown, C. (2004) Emerging zoonoses and pathogens of public health significance – an overview 

Revue Scientifique et Technique. Office International des Epizooties, 23(2), 435-42. 

Brown, J.D., Goekjian, G., Poulson, R., Valeika, S. & Stallknecht, D.E. (2009) Avian influenza 

virus in water: Infectivity is dependent on pH, salinity and temperature. Veterinary 

Microbiology, 136(1-2), 20-26. 

Brugger, K.E., Nol, P. & Phillips, C.I. (1993) Sucrose repellency to European Starlings: will high-

sucrose cultivars deter bird damage to fruit? Ecological Applications, 3(2), 256–61. 

Bruggers, R.L. (1989). Assessment of bird repellent chemicals in Africa. In Quelea quelea - 

Africa's bird pest (eds R.L. Bruggers & C.C.H. Elliot), pp. 262–80. Oxford University Press, 

Oxford, England. 

Bruggers, R.L. & Elliot, C.C.H. (1989) Quelea quelea - Africa's bird pest. Oxford University Press, 

Oxford, England. 



 

173 

Bruggers, R.L., Jaeger, M., Keith, J.O., Hegdal, P.L., Bourassa, J.B., Latigo, A.A. & Gillis, J.N. 

(1989) Impact of fenthion on non-target birds during quelea control in Kenya. Wildlife Society 

Bulletin, 17, 149–60. 

Brugh, M. & Beck, J.R. (1992). Recovery of minority subpopulation of highly pathogenic avian 

influenza virus. In Proceedings of the Third International Symposium on Avian Influenza (ed 

B.C. Easterday), pp. 166-74. University of Wisconsin, Madison. 

Bryman, A. (2012) Social Research Methods. Oxford University Press, Oxford. 

Bub, H. (1995) Bird Trapping and Bird Banding. A Handbook for Trapping Methods all Over the 

World. Cornell University Press, Ithaca, New York. 

Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L. & Thomas, L. (2001) 

Introduction to Distance Sampling: Estimating Abundance of Biological Populations. Oxford 

University Press, London. 

Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L. & Thomas, L. (2004) 

Advanced Distance Sampling: Estimating Abundance of Biological Populations. Oxford 

University Press, London. 

Bull, P.C. (1965) Controlling rooks in Hawkes Bay. Agricultural Pest Destruction Council 

Newsletter, 1, 2. 

Burton, T. (1990). Bird damage near vineyards in Bendigo. In National Bird Pest Workshop 

Proceedings (eds P. Fleming, I. Temby & J. Thompson), pp. 51–54. NSW Agriculture and 

Fisheries, Armidale. 

Butler, D.G., Cullis, B.R., Gilmour, A.R. & Gogel, B.J. (2009) ASReml-R reference manual. 

Version 3. Department of Primary Industries and Fisheries, Toowoomba, Queensland. 

Byrd, G.V. (1979) Common Myna predation on wedge-tailed Shearwater eggs. Elepaio, 39, 69–70. 

Caley, P. & Ramsey, D. (2001) Estimating disease transmission in wildlife, with emphasis on 

leptospirosis and bovine tuberculosis in possums, and effects of fertility control. Journal of 

Applied Ecology, 38, 1362–70. 

Calvete, C. & Estrada, R. (2000) Epidemiología de Enfermedad Hemorrágica (VHD) y 

Mixomatosis en el conejo silvestre en el Valle medio del Ebro. –Herramientas de gestión-. 

Consejo de Protección de la Naturaleza, Zaragoza, Spain. 

Campbell, A.J. & Barnard, H.G. (1917) Birds of the Rockingham Bay district, North Queensland. 

Emu, 17, 2–38. 

Campbell, S., Cook, S., Mortimer, L., Palmer, G., Sinclair, R. & Woolnough, A.P. (2012) To catch 

a starling: testing the effectiveness of different trap and lure types. Wildlife Research, 39(3), 

183-91. 

Capucci, D.T., Johnson, D.C., Brugh, M., Smith, T.M., Jackson, C.F., Pearson, J.E. & Senne, D.A. 

(1985) Isolation of avian influenza virus (subtype H5N2) from chicken eggs during a natural 

outbreak. Avian Diseases, 29, 1195–200. 



 

174 

Carrick, R. (1962) Breeding, movement and conservation of ibises (Threskiornithidae) in Australia. 

Wildlife Research, 7, 71–90. 

Caughley, G. (1974) Bias in aerial survey. Journal of Wildlife Management, 38(4), 921–33. 

Caughley, G. (1980) Analysis of Vertebrate Populations. Reprinted with corrections. John Wiley 

and Sons, London. 

Caughley, G. & Sinclair, A.R.E. (1994) Wildlife Ecology and Management. Blackwell Sciences, 

Cambridge, Massachusetts. 

Chadwick, B.A., Bahr, H.M. & Albrecht, S.L. (1984) Social Science Research Methods. Prentice 

Hall, New Jersey. 

Chamberlain, D.E., Fuller, R.J., Bunce, R.G.H., Duckworth, J.C. & Shrubb, M. (2000) Changes in 

the abundance of farmland birds in relation to the timing of agricultural intensification in 

England and Wales. Journal of Applied Ecology, 37(5), 771–88. 

Chambers, K.R. (1993) Preventing bird damage on two table grape cultivars by covering the 

bunches with polyester sleeves. Deciduous Fruit Grower, 43(1), 30–35. 

Chen, H., Deng, G., Li, Z., Tian, G., Li, Y., Jiao, P., Zhang, L., Liu, Z., Webster, R.G. & Yu, K. 

(2004) The evolution of H5N1 influenza viruses in ducks in southern China. Proceedings 

National Academy of Science of the U.S.A, 101(28), 10452-57. 

Choquenot, D., Lukins, B. & Curran, G. (1997) Assessing lamb predation by feral pigs in 

Australia's semi-arid rangelands. Journal of Applied Ecology, 34, 1445–54. 

Choquenot, D., McIlroy, J. & Korn, T. (1996) Managing Vertebrate Pests: Feral Pigs. Bureau of 

Resource Sciences, Australian Government Publishing Service, Canberra. 

Christens, E. & Blokpoel, H. (1991) Operational spraying of white mineral oil to prevent hatching 

of gull eggs. Wildlife Society Bulletin, 19, 423–30. 

Christens, E., Blokpoel, H., Rason, G. & Jarvie, S.W.D. (1995) Spraying white mineral oil on 

Canada Goose eggs to prevent hatching. Wildlife Society Bulletin, 23, 228–30. 

Christidis, L. & Boles, W.E. (1994) The Taxonomy and Species of Birds of Australia and its 

Territories. RAOU, Melbourne. 

Christidis, L. & Boles, W.E. (2008) Systematics and Taxonomy of Australian Birds. CSIRO 

Publishing, Melbourne. 

Claas, C.J., Osterhaus, A.D.M., Beek, R., De Jong, J., Rimmelzwaan, G.F., Senne, D.A., Krausse, 

S., Shortridge, K.F. & Webster, R.G. (1998) Human influenza A H5N1 virus related to a 

highly pathogenic avian influenza virus. Lancet British Edition, 351, 472–77. 

Clark, C.W. (1990) Mathematical Bioeconomics. John Wiley and Sons, New York. 

Clark, L. (1997). A review of the bird repellent effects of 117 carbocyclic compounds. In 

Repellents in Wildlife (ed R.J. Mason), pp. 343–52. National Wildlife Research Centre, Fort 

Collins, Colorado. 



 

175 

Clark, L. (1998). Review of bird repellents. In Proceedings of the 18th Vertebrate Pest Conference 

(eds T.P. Salmon & A.C. Crabb), pp. 330–37. University of California, Davis. 

Clark, L. & Hall, J. (2006) Avian influenza in wild birds: status as reservoirs, and risks to humans 

and agriculture. Ornithological Monographs, 60, 3-29. 

Clavero, M. & García-Berthou, E. (2005) Invasive species are a leading cause of animal 

extinctions. Trends in Ecology and Evolution, 20, 110. 

Coleman, J.D. (1977) The foods and feeding of Starlings in Canterbury. Proceedings of the New 

Zealand Ecological Society, 24, 94–109. 

Conover, M.R. (1982) Behavioural techniques to reduce bird damage to blueberries: methiocarb 

and a hawk-kite predator model. Wildlife Society Bulletin, 10, 211–16. 

Conover, M.R. (1984) Comparative effectiveness of avitrol, exploders, and hawk-kites in reducing 

blackbird damage to corn. Journal of Wildlife Management, 48, 109–16. 

Conover, M.R. (1985a) Protecting vegetables from crows using an animated crow-killing owl 

model. Journal of Wildlife Management, 49(3), 643–45. 

Conover, M.R. (1985b) Using conditioned food aversions to protect blueberries from birds: 

comparison of two carbamate repellents. Applied Animal Behaviour Science, 13(4), 383–86. 

Conover, M.R. (1994a). How birds interpret distress calls: implications for applied uses of distress 

call playbacks. In Proceedings of the 16th Vertebrate Pest Conference (eds W.S. Halverson & 

A.C. Crabb), pp. 233–34. University of California, Davis. 

Conover, M.R. (1994b) Stimuli eliciting distress calls in adult passerines and response of predators 

and birds to their broadcast. Behaviour, 131(1-2), 19–37. 

Conover, M.R. & Dolbeer, R.A. (2007) Use of decoy traps to protect blueberries from juvenile 

European starlings. Human–Wildlife Conflicts, 1(2), 265–70. 

Conover, M.R. & Perito, J.J. (1981) Response of starlings to distress calls and predator models 

holding conspecific prey. Zeitschrift fuer Tierpsychologie, 57, 163–72. 

Conroy, M.J., Barnes, G., Bethke, R.W. & Nudds, T.D. (1989) Increasing Mallards, Decreasing 

American Black Ducks: No Evidence for Cause and Effect: A Comment. Journal of Wildlife 

Management, 53(4), 1065-71. 

Coutts-Smith, A.J., Mahon, P.S., Letnic, M. & Downey, P.O. (2007) The Threat Posed by Pest 

Animals to Biodiversity in New South Wales. Invasive Animals CRC, Canberra. 

Cowan, D.P. & Feare, C.J. (1999) Advances in Vertebrate Pest Management. Filander Verlag, 

Furth. 

Cowan, P.E. & Tyndale-Biscoe, C.H. (1997) Australian and New Zealand mammal species 

considered to be pests or problems. Reproduction, Fertility and Development, 9(1), 27-36. 

Crabb, A.C., Salmon, T.P. & Marsh, R.E. (1986). Bird problems in California pistachio production. 

In Proceedings of the 12th Vertebrate Pest Conference (ed T.P. Salmon), pp. 295–302. 

University of California, Davis. 



 

176 

Crabb, C.A., Salmon, T.P. & Marsh, R.E. (1988). Surveys as an approach to gathering animal 

damage information. In Vertebrate Pest Control and Management Materials: 5th Symposium 

(eds S.A. Shumake & R.W. Ballard), pp. 12–24. American Society for Testing and Materials, 

Philadelphia. 

Crase, F.T. & De Haven, R.W. (1973) Questionnaire survey of bird damage to grapes in 

California. Denver Wildlife Research Centre Report Number 9. Denver Wildlife Research 

Centre, Denver. 

Croft, J.D., Fleming, P.J.S. & van de Ven, R. (2002) The impact of rabbits on a grazing system in 

eastern New South Wales.1. Ground cover and pastures. Australian Journal of Experimental 

Agriculture, 42(7), 909-16. 

Crossfield, E. (2000) Assessment of bird damage to grape crops in the Adelaide Hills. Report to the 

Adelaide Hills Grape Growers and Winemakers Association. Department of Zoology, 

University of Adelaide, Adelaide SA. 

Cummings, J.L., Avery, M.L., Pochop, P.A., Davis Jr, J.E., Decker, D.G., Krupa, H.W. & Johnson, 

J.W. (1995) Evaluation of methyl anthranilate formulation for reducing bird damage to 

blueberries. Crop Protection, 14(3), 257–59. 

Cummings, J.L., Clark, L., Pochop, P.A. & Davis, J.E., Jr. (1998a) Laboratory evaluation of a 

methyl anthranilate bead formulation on mallard feeding behavior. Journal of Wildlife 

Management, 62(2), 581–84. 

Cummings, J.L., Guarino, J.L., Knittle, C.E. & Royal, W.C. (1987) Decoy plantings for reducing 

blackbird damage to nearby commercial sunflower fields. Crop Protection, 6, 56–60. 

Cummings, J.L., Knittle, C.E. & Guarino, J.L. (1986). Evaluating a pop-up scarecrow coupled with 

a propane exploder for reducing blackbird damage to ripening sunflower. In Proceedings of 

the 12th Vertebrate Pest Conference (ed T.P. Salmon), pp. 286–91. University of California, 

Davis. 

Cummings, J.L., Mason, J.R., Otis, D.L., Davis Jr, J.E. & Ohashi, T.J. (1994) Evaluation of 

methiocarb, ziram, and methyl anthranilate as bird repellents applied to dendrobium orchids. 

Wildlife Society Bulletin, 22(4), 633–38. 

Cummings, J.L., Otis, D.L., Davis, J.J.E. & Crane, K.A. (1998b). Evaluation of methyl anthranilate 

and DRC-156 as Canada Goose grazing repellent. In Biology and management of Canada 

Geese. Proceedings of the International Canada Goose Symposium, Milwaukee, Wls (eds D.H. 

Husch, M.D. Samuel, D.D. Humburg & B.D. Sullivan). 

Cummings, J.L., Pitzler, M.E., Pochop, P.A., Krupa, H.W., Pugh, T.L. & May, J.A. (1997). Field 

evaluation of white mineral oil to reduce hatching in Canada goose eggs. In Thirteenth Great 

Plains Wildlife Damage Control Workshop Proceedings. April 16-19, 1997, Nebraska City, 

NE (eds C.D. Lee & S.E. Hygnstrom), pp. 67–72. Kansas State University. Agricultural 

Experiment Station and Cooperative Extension Service., Manhatten, KS. 



 

177 

Cummings, J.L., Pochop, P.A., Engeman, R.M., Davis, J.E., Jr. & Primus, T.M. (2002) Evaluation 

of Flight ControlR to reduce blackbird damage to newly planted rice in Louisiana. 

International Biodeterioration and Biodegradation, 49(2-3), 169–73. 

Cummings, J.L., Pochop, P.A., Yoder, C.A. & Davis Jr, J.E. (1998c). Potential bird repellents to 

reduce bird damage to lettuce seed and seedlings. In Proceedings of the 18th Vertebrate Pest 

Conference (eds R.O. Baker & A.C. Crabb), pp. 350–53. University of California, Davis. 

Cunningham, D.J., Schafer, E.W. & McConnell, L.K. (1979). DRC-1339 and DRC-2698 residues 

in starlings:preliminary evaluation of their effects on secondary hazard potential. In 

Proceedings 8th Bird Control Seminar (ed W.B. Jackson), pp. 31–37. Bowling Green State 

University, Bowling Green, Ohio. 

Curtis, P.D., Merwin, I.A., Pritts, M.P. & Peterson, D.V. (1994) Chemical repellents and plastic 

netting for reducing bird damage to sweet cherries, blueberries, and grapes. HortScience, 

29(10), 1151–55. 

Custer, T.W., Custer, C.M., Dummer, P.M., Linz, G.M., Sileo, L., Stahl, R.S. & Johnston, J.J. 

(2003). Non-target bird exposure to DRC-1339 during fall in North Dakota and spring in 

South Dakota. In Management of North American Blackbirds. Proceedings of a special 

symposium of The Wildlife Society 9th Annual Conference September 27, 2002Bismarck, 

North Dakota (ed G.M. Linz), pp. 64–70. National Wildlife Research Center, Fort Collins, 

CO. 

Dann, P. (1981) Breeding of the Banded and Masked Lapwings in southern Victoria. Emu, 81, 

121–27. 

Daszak, P., Cunningham, A.A. & Hyatt, A.D. (2000) Emerging infectious diseases of wildlife-- 

threats to biodiversity and human health. Science, 287(5452), 443-49. 

Davis, D.E. (1961) Principles for population control by gametocides. Transactions of the North 

American Wildlife and Natural Resources Conference, 26, 160–67. 

Davis, M.A. (2003) Biotic globalization: Does competition from introduced species threaten 

biodiversity? BioScience, 53, 481–89. 

Dawson, D.G. (1970) Estimation of grain loss due to sparrows (Passer domesticus) in New 

Zealand. New Zealand Journal of Agricultural Research, 13, 681–88. 

Dawson, D.G. & Bull, P.C. (1970) A questionnaire survey of bird damage to fruit. New Zealand 

Journal of Agricultural Research, 13, 362–71. 

De Grazio, J.W. (1978). World bird damage problems. In Proceedings of the 8th Vertebrate Pest 

Conference (ed W.E. Howard), pp. 9–24. University of California, Davis. 

De Grazio, J.W., Besser, J.F., Guarino, J.L., Loveless, C.M. & Oldmeyer, J.L. (1969) A method for 

appraising blackbird damage to corn. Journal of Wildlife Management, 33, 988-94. 



 

178 

DeHaven, R.W. (1974a). Bird appraisal methods in some agricultural crops. In Proceedings of the 

6th Vertebrate Pest Conference (ed W.V. Johnson), pp. 246–48. University of California, 

Davis. 

DeHaven, R.W. (1974b). Bird damage to wine grapes in central California. In Proceedings of the 

6th Vertebrate Pest Conference (ed W.V. Johnson), pp. 248–52. University of California, 

Davis. 

DeHaven, R.W. & Guarino, J.L. (1969) A nest-box trap for starlings. Bird Banding, 49–50. 

Dehaven, R.W. & Guarino, J.L. (1970) Breeding of Starlings using nest boxes at Denver, 

Colorado. Colorado Field Ornithologist, 8, 1–10. 

DeHaven, R.W. & Hothem, R.L. (1979). Procedure for visually estimating bird damage to grapes. 

In Vertebrate Pest Control and Management Materials: 2nd Symposium (ed J.R. Beck), pp. 

198–204. American Society for Testing and Materials, Philadelphia. 

DeHaven, R.W. & Hothem, R.L. (1981) Estimating bird damage from damage incidence in wine 

grape vineyards. American Journal of Enology and Viticulture, 32(1), 1–4. 

Dei, G.J.S. (1989) Hunting and gathering in a Ghanaian rain forest community. Ecology of Food 

and Nutrition, 22(3), 225-43. 

Deibel, R., Emord, D.E., Dukelow, W., Hinshaw, V.S. & Wood, J.M. (1985) Influenza viruses and 

paramyxovirus in ducks in the Atlantic flyway, 1977-1983, including a H5N2 isolate related to 

the virulent chicken virus. Avian Diseases, 29, 970–85. 

Delaney, S. & Scott, D. (2006) Waterbird Population Estimates. Fourth Edition. Wageningen, The 

Netherlands. 

Derne, B. T., Fearnley, E. J., Lau, C. L., Paynter, S. & Weinstein, P. (2001) Biodiversity and 

leptospirosis risk: A case of pathogen regulation? Medical Hypotheses, 77, 339-344. 

Dhileepan, K. (1989) Investigations on avian pests of oil palm, Elaeis guineensis in India. Tropical 

Pest Management, 35(3), 273–77. 

Dickersin, K. (1990) The existence of publication bias and risk factors for its occurrence. JAMA, 

263, 1385-1389. 

Dickinson, E.C. (2003) The Howard and Moore Complete Checklist of the Birds of the World. 3rd 

Edn. Christopher Helm, London. 

Dieter, C.D., Murano, R.J. & Galster, D. (2009) Capture and mortality rates of ducks in selected 

trap types. Journal of Wildlife Management, 73(7), 1223-28. 

Dobson, A. & Meagher, M. (1996) The population dynamics of Brucellosis in the Yellowstone 

National Park. Ecology, 77(4), 1026-36. 

Dolbeer, R.A. (1975) A comparison of two methods for estimating bird damage to sunflowers. 

Journal of Wildlife Management, 39(4), 802–06. 

Dolbeer, R.A. (1989) Current status and potential lethal means of reducing bird damage in 

agriculture. Proceedings International Ornithological Congress. H. Ouellet (Ed.), 19, 474–83. 



 

179 

Dolbeer, R.A. (1998). Population dynamics: the foundation of wildlife damage management for the 

21st century. In Proceedings of the 18th Vertebrate Pest Conference (eds R.O. Baker & A.C. 

Crabb), pp. 2–11. University of California, Davis. 

Dolbeer, R.A. (2003). Managing wildlife hazards at North America airports: the challenge posed 

by population increases of large-bird species. In 3th International Wildlife Management 

Congress 1-5 December 2003, p 249. Landcare Research, Christchurch New Zealand. 

Dolbeer, R.A., Avery, M.L. & Tobin, M.E. (1988a) Assessment of field hazards to birds and 

mammals from methiocarb to fruit crops. Bird Section Research Report. Denver Wildlife 

Research Centre Report, 421, 42. 

Dolbeer, R.A., Belant, J.L. & Sillings, J.L. (1993) Shooting gulls reduces strikes with aircraft at 

John F. Kennedy international airport. Wildlife Society Bulletin, 21, 442–50. 

Dolbeer, R.A. & Ickes, S. (1994). Red-winged blackbird feeding preferences and response to wild 

rice treated with portland cement or plaster. In Proceedings of the 16th Vertebrate Pest 

Conference (eds W.S. Halverson & A.C. Crabb), pp. 279–82. University of California, Davis. 

Dolbeer, R.A., Link, M.L. & Woronecki, P.P. (1988b) Naphthalene shows no repellency for 

starlings. Wildlife Society Bulletin, 16(1), 62–64. 

Dolbeer, R.A., Seamans, T.W., Blackwell, B.F. & Belant, J.L. (1998) Anthraquinone formulation 

(flight control tm) shows promise as avian feeding repellent. Journal of Wildlife Management, 

62(4), 1558–64. 

Dolbeer, R.A., Woronecki, P.P. & Bruggers, R.L. (1986) Reflecting tapes repel blackbirds from 

millet, sunflower and sweetcorn. Wildlife Society Bulletin, 14(4), 418–25. 

Dolbeer, R.A., Woronecki, P.P., Stickley, A.R. & White, S.B. (1978) Agricultural impact of a 

winter population of blackbirds and starlings. The Wilson Bulletin, 90(1), 31–44. 

Dorfman, E.J. & Kingsford, M.J. (2001) Environmental determinants of distribution and foraging 

behaviour of cormorants (Phalacrocorax spp.) in temperate estuarine habitats. Marine 

Biology, 138, 1–10. 

Downie, J.C., Hinshaw, V.S. & Laver, W.G. (1977) The ecology of influenza. Isolation of type A 

influenza viruses from Australian pelagic birds. Australian Journal of Experimental Biology 

and Medical Science, 55, 635–43. 

Downie, J.C. & Laver, W.G. (1973) Isolation of type A influenza virus from an Australian pelagic 

bird. Virology, 51, 259–69. 

Draffan, R.D.W., Garnett, S.T. & Malone, G.W. (1983) Birds of the Torres Strait: an annotated list 

and biogeographical analysis. Emu, 83, 207–34. 

Draulans, D. (1987) The effectiveness of attempts to reduce predation by fish-eating birds: a 

review. Biological Conservation, 41, 219-32. 

Du Guesclin, P.B., Emison, W.B. & Temby, I.D. (1983) Deliberate misuse of organophosphorous 

pesticide, fenthion-ethyl, to poison birds in Victoria. Corella, 7, 37–39. 



 

180 

Duffy, L. (2000) Netting for vineyard bird control. The Australian Grapegrower and Winemaker, 

October, 62–64. 

Dyer, M.I. (1967) An analysis of blackbird flocking behaviour. Canadian Journal of Zoology, 765–

72. 

Dyer, M.I. & Ward, P. (1977). Management of pest situations. In Granivorous birds in Ecosystems 

(eds J. Pinowski & S.C. Kendeigh), pp. 267–300. Cambridge University Press, Cambridge. 

East, I.J., Hamilton, S.A. & Garner, G. (2008a) Identifying areas of Australia at risk of H5N1 avian 

influenza infection from exposure to migratory birds: a spatial analysis. Geospatial Health, 

2(2), 203-13. 

East, I.J., Hamilton, S.A., Sharp, L.A. & Garner, G. (2008b) Identifying areas of Australia at risk 

for H5N1 avian influenza infection from exposure to nomadic waterfowl moving throughout 

the Australo-Papuan region. Geospatial Health, 3(1), 17-27. 

Eberhardt, L.L. (1969) Population estimates from recapture frequencies. Journal of Wildlife 

Management, 33, 28–39. 

Eberhardt, L.L. (1982) Calibrating an index by using removal data. Journal of Wildlife 

Management, 463(3), 734–40. 

Eisemann, J.D., Pipas, P.A. & Cummings, J.L. (2003). Acute and chronic toxicity of compound 

DRC-1339 (3-chloro-4-methylaniline hydrochloride) to birds. In Management of North 

American Blackbirds. Proceedings of a Special Symposium of the Wildlife Society (ed G.M. 

Linz), pp. 49–63. National Wildlife Research Center, Fort Collins, CO. 

Ekman, J. & Hake, M. (1988) Avian flocking reduces starvation risk: an experimental 

demonstration. Behavioral Ecology and Sociobiology, 22, 91-94. 

Elder, W.H. (1964) Chemical inhibitors of ovulation in the pigeon. Journal of Wildlife 

Management, 28(3), 556–75. 

Elliott, N.H. (1964). Starling in the pacific northwest. In Proceedings of the 2nd Vertebrate Pest 

Conference, pp. 29–39. University of California, Davis. 

Ellner, S.P. & Guckenheimer, J. (2006) Dynamic models in biology. Princeton University Press, 

Princeton. 

Ellström, P., Latorre-Margalef, N., Griekspoor, P., Waldenström, J., Olofsson, J., Wahlgren, J. & 

Olsen, B. (2008) Sampling for low-pathogenic avian influenza A virus in wild Mallard ducks: 

Oropharyngeal versus cloacal swabbing. Vaccine, 26(35), 4414-16. 

Environment and Natural Resources Committee. (1995) Report on problems in Victoria caused by 

Long-billed Corellas, Sulphur-crested Cockatoos and Galahs. Victorian Government Printer, 

Melbourne. 

Erickson, W.A., Marsh, R.E. & Salmon, T.P. (1990). A review of falconry as a bird-hazing 

technique. In Proceedings of the 14th Vertebrate Pest Conference (eds L.R. Davis & R.E. 

Marsh), pp. 314–16. University of California, Davis. 



 

181 

Erickson, W.A., Marsh, R.E. & Salmon, T.P. (1992). High frequency sound devices lack efficacy 

repelling birds. In Proceedings of the 15th Vertebrate Pest Conference (eds J.E. Borrecco & 

R.E. Marsh), pp. 103–04. University of California, Davis. 

Feare, C. (2007) The spread of avian influenza. Ibis, 149, 424-25. 

Feare, C.J. (1975) Cost of starling damage at an intensive animal husbandry unit [Losses caused by 

starlings eating feed pellets intended for cattle]. Proceedings of the British Insecticide and 

Fungicide Conference, 8th, 253–59. 

Feare, C.J. (1984) The starling. Oxford University Press, New York. 

Feare, C.J. (1991). Control of bird pest populations. In Bird population studies (eds C.M. Perrins, 

D.D. Lebreton & G.J.M. Hirons), pp. 463–78. 

Feare, C.J., Greig-Smith, P.W. & Inglis, I.R. (1988) Current status and potential of non-lethal 

control for reducing bird damage in agriculture. Proceedings of the XIX International 

Ornithological Congress, Ottawa, 493–506. 

Filion, F.L. (1981) Importance of question wording and response burden in Hunter surveys. 

Journal of Wildlife Management, 45(4), 873–82. 

Finch, B.W. (1982) Notes on the migration patterns of some common migrants in the Port Moresby 

area. PNG Bird society newsletter, 189-190: 3-6. 

Fisher, A.M. (1991) Bud damage by Adelaide rosellas (Platycercus elegans adelaidae) to different 

varieties of sweet cherry (Prunus avium) grown in the southern Mt Lofty ranges. Honours 

thesis. University of Adelaide, Adelaide. 

Fisher, A.M. (1992) Vigilance and variation: the key to victory in the vineyard. Australian and 

New Zealand Wine Industry Journal, 7(3), 140–43. 

Fjeldsa, J. (1983) Social behaviour and displays of the hoary-headed grebe (Poliocephalus 

poliocephalus). Emu, 83(3), 129–40. 

Fjeldsa, J. (1988) Comparative ecology of Australian grebes (Aves: Podicipedidae). RAOU Report 

54: 1 30. Royal Australian Ornithological Union, Victoria. 

Fleming, P. (1990). Some other bird control techniques. In National Bird Pest Workshop 

Proceedings (eds P. Fleming, I. Temby & J. Thompson), pp. 143–45. NSW Agriculture and 

Fisheries, Armidale. 

Fleming, P., Temby, I. & Thompson, J. (1990) National Bird Pest Workshop Proceedings. NSW 

Agriculture and Fisheries, Armidale. 

Fleming, P.J.S., Allen, B.L., Allen, L.R., Ballard, G., Bengsen, A.J., Gentle, M.N., McLeod, L.J., 

Meek, P.D. & Saunders, G.R. (In Press). Management of wild canids in Australia: free-

ranging dogs and red foxes. In Carnivores of Australia: past, present and future (eds A.S. 

Glen & C.R. Dickman). CSIRO Publishing, Collingwood. 



 

182 

Fleming, P.J.S., Choquenot, D. & Mason, R.J. (2000) Aerial baiting of feral pigs (Sus scrofa) for 

the control of exotic disease in the semi-arid rangelands of New South Wales. Wildlife 

Research, 27, 531–37. 

Fleming, P.J.S., Croft, J.D. & Nicol, H.I. (2002a) The impact of rabbits on a grazing system in 

eastern New South Wales. 2. Sheep production. Australian Journal of Experimental 

Agriculture, 42(7), 917-23. 

Fleming, P.J.S., Gilmour, A. & Thompson, J.A. (2002b) Chronology and spatial distribution of 

cockatoo damage to two sunflower hybrids in south-eastern Australia, and the influence of 

plant morphology on damage. Agriculture Ecosystems and Environment, 91(1-3), 127–37. 

Fleming, P. J. S., Allen, B. L., Allen, L. R., Ballard, G., Bengsen, A. J., Gentle, M. N., McLeod, L. 

J., Meek, P. D. & Saunders, G. R. (In Press) Management of wild canids in Australia: free-

ranging dogs and red foxes. Carnivores of Australia: past, present and future (eds A. S. Glen 

& C. R. Dickman). CSIRO Publishing, Collingwood. 

Food and Agriculture Organization of the United Nations. (2009) Highly Pathogenic Avian 

Influenza confirmed outbreaks. http://www.fao.org/avianflu/en/maps.html. 

Ford, J.R. (1958) Seasonal variation in populations of Anatidae at the Bibra Lake District, Western 

Australia. Emu, 58, 31-41. 

Forde, N. (1989) An ecologist's view of bird damage to commercial fruit crops. Australian Dried 

Fruits News, 16(4), 13–15. 

Fossum, O., Jansson, D., Etterlin, P. & Vagsholm, I. (2009) Causes of mortality in laying hens in 

different housing systems in 2001 to 2004. Acta Veterinaria Scandinavica, 51(1), 3. 

Foster, T.S. (1979). Crop protection with xironet. In Proceedings 8th Bird Control Seminar (ed 

W.B. Jackson), pp. 254–55. Bowling Green State University, Bowling Green, Ohio. 

Fringer, R.C. & Granett, P. (1970). The effects of Ornitrol on wild populations of Red-winged 

Blackbirds and Grackles. In Proceedings 5th Bird Control Seminar (eds D.L. Rintamaa & 

W.B. Jackson), pp. 163–76. Bowling Green State University, Bowling Green, Ohio. 

Frith, H.J. (1957) Breeding and movements of wild ducks in inland New South Wales. Wildlife 

Research, 2, 19–31. 

Frith, H.J. (1959) The ecology of wild ducks in inland New South Wales II. Movements. Wildlife 

Research, 4, 108–30. 

Frith, H.J. (1963) Movements and mortality rates of the black duck and grey teal in south-eastern 

Australia. CSIRO Wildlife Research, 8, 119–31. 

Frith, H.J. (1976) Birds in the Australian High Country. A.H. and A.W. Reed, Sydney Australia. 

Frith, H.J. (1982) Waterfowl in Australia. Revised Edition. Angus and Robertson, Sydney. 

Fuller-Perrine, L.D. & Tobin, M.E. (1993) A method for applying and removing bird-exclusion 

netting in commercial vineyards. Wildlife Society Bulletin, 21(1), 47–52. 



 

183 

Gadd, P. (1992). Avitrol use in the protection of wine grapes from the House Finch (linnet) in 

Sonoma County. In Proceedings of the 15th Vertebrate Pest Conference (eds J.E. Borrecco & 

R.E. Marsh), pp. 89–92. University of California, Davis. 

Gadd, P. (1996). Use of the Modified Australian Crow (MAC) trap for the control of depredating 

birds in Sonoma county. In Proceedings of the 17th Vertebrate Pest Conference (eds R.M. 

Timm & A.C. Crabb), pp. 103–07. University of California, Davis. 

Gaidet, N., Cattoli, G., Hammoumi, S., Newman, S.H., Hagemeijer, W., Takekawa, J.Y., Cappelle, 

J., Dodman, T., Joannis, T., Gil, P., Monne, I., Fusaro, A., Capua, I., Manu, S., Micheloni, P., 

Ottosson, U., Mshelbwala, J.H., Lubroth, J., Domenech, J. & Monicat, F. (2008) Evidence of 

infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl. Plos 

pathogens, 4(8), 1-9. 

Garrity, M. & Pearce, P.A. (1973) Study of robin control in blueberry fields by use of a radio-

controlled model aircraft. Canadian Wildlife Service, 11. 

Geering, D.J., Maddock, M., Cam, G., Ireland, C., Halse, S.A. & Pearson, G.B. (1998) Movement 

patterns of Great, Intermediate and Little Egrets from Australian breeding colonies. Corella, 

22, 37–46. 

Gibson, J.D. (1975) Streaked shearwaters (Calonectris leucomelas) in the Coral Sea. Notornis, 22, 

176–77. 

Gilbert, M., Xiao, X., Pfeiffer, D.U., Epprecht, M., Boles, S., Czarnecki, C., Chaitaweesub, P., 

Kalpravidh, W., Minh, P.Q., Otte, M.J., Martin, V. & Slingenbergh, J. (2008) Mapping H5N1 

highly pathogenic avian influenza risk in Southeast Asia. Proceedings of the National 

Academy of Science USA, 105(12), 4769–74. 

Gill, E.L., Cotterill, J.V., Cowman, D.P., Grey, C.B., Gurney, J.E., Moore, N.P., Nadian, A.K. & 

Watkins, R.W. (1999). All in the worst possible taste: Chemical repellents in vertebrate pest 

management. In Advances in vertebrate pest management (eds D.P. Cowan & C.J. Feare), pp. 

283–95. Filander-Verl, Furth. 

Gill, R.G. (1970) Birds of Innisfail and hinterland. Emu, 70, 105–16. 

Gillespie, G.D. (1985) Hybridization, introgression, and morphometric differentiation between 

mallard (Anas platyrhynchos) and grey duck (Anas superciliosa) in Otago, New Zealand. Auk, 

102(3), 459-69. 

Gilmour, A.R., Gogel, B.J., Cullis, B.R., Welham, S.J. & Thompson, R. (2002) ASReml User 

Guide Release 1. VSN International Ltd, Hemel Hempstead, HP1 1ES UK. 

Godfrey, M.E.R. (1986). An evaluation of the acute oral toxicity of brodifacoum to birds. In 

Proceedings of the 12th Vertebrate Pest Conference (ed T.P. Salmon), pp. 78–81. University 

of California, Davis. 

Gong, W., Sinden, J., Braysher, M. & Jones, R. (2009) The economic impacts of vertebrate pests in 

Australia. . Invasive Animals Cooperative Research Centre, Canberra. 



 

184 

Good, H.B. & Johnson, D.M. (1976). Experimental tree trimming to control an urban winter 

blackbird roost. In Proceedings 7th Bird Control Seminar (ed W.B. Jackson), pp. 54–64. 

Bowling Green State University, Bowling Green, Ohio. 

Good, H.B. & Johnson, D.M. (1978) Non lethal blackbird roost control. Pest Control, 46, 14. 

Goodhue, L.D. & Baumgartner, F.M. (1965) Application of new bird control chemicals. Journal of 

Wildlife Management, 29(4), 830–37. 

Goodrick, G.N. (1979) Food of the black duck and grey teal in coastal northern New South Wales. 

Australian Wildlife Research, 6, 319-24. 

Gorenzel, W.P. & Salmon, T.P. (1993) Tape-recorded calls disperse American Crows from urban 

roosts. Wildlife Society Bulletin, 21(3), 334. 

Gorenzel, W.P., Salmon.T.P & Crabb, C. (2000). A national review of the status of trapping for 

bird control. In Proceedings of the 19th Vertebrate Pest Conference (eds T.P. Salmon & A.C. 

Crabb), pp. 5–21. University of California, Davis. 

Gortázar, C., Ferroglio, E., Höfle, U., Frölich, K. & Vicente, J. (2007) Diseases shared between 

wildlife and livestock: a European perspective. European Journal of Wildlife Research, 53(4), 

241-56. 

Graham, A. (1996) Towards an integrated management approach for the common starling 

(Sturnus vulgaris) in South Australia. Masters of Science Thesis. Department of Zoology and 

Botany University of Adelaide., South Australia. 

Graham, A., Paton, D.C. & Berry, O. (1999) Survey of the incidence of bird damage to apples, 

pears, cherries and grapes and methods of control in the Mt Lofty Ranges, South Australia. 

Final report to the Cherry, Apple, Pear and Grape Growers of the Mt Lofty Ranges. 

University of Adelaide, Adelaide. (Available on request from david.paton@adelaide.edu.au.). 

Granett, P., Trout, R.J., Messersmith, D.H. & Stockdale, T.M. (1974) Sampling corn for bird 

damage. Journal of Wildlife Management, 38(4), 903–09. 

Grarock, K., Tidemann, C.R., Wood, J. & Lindenmayer, D.B. (2012) Is it benign or is it a pariah? 

Empirical evidence for the impact of the common myna (Acridotheres tristis) on Australian 

birds. PLoS ONE, 7(7), e40622. 

Green, R.H. (1983) The decline of eastern rosella (Platycercus-eximius-diemenensis) and other 

Psittaciformes in Tasmania concomitant with the establishment of the introduced European 

starling (Sturnus vulgaris). Records of the Queen Victoria Museum, Launceston, 82, 1–5. 

Green, R.J. (1986). Native and exotic birds in the suburban habitat. In The Dynamic Partnership: 

Birds and Plants in South Australia (eds H.A. Ford & D.C. Paton). Government Printer, 

Adelaide. 

Green, J., Wallis, G. & Williams, M. (2000) Determining the extent of grey duck x mallard 

hybridisation in New Zealand. Science Poster No. 32. . Department of Conservation, 

Wellington, NZ. 



 

185 

Grenfell, B.T. & Dobson, A.P. (1995) Ecology of Infectious Diseases in Natural Populations. 

Cambridge University Press, Cambridge. 

Griffioen, P.A. & Clarke, M.F. (2002) Large-scale bird-movement patterns evident in eastern 

Australian atlas data. Emu, 102(1), 99–125. 

Guan, Y., Poon, L.L.M., Cheung, C.Y., Ellis, T.M., Lim, W., Lipatov, A.S., Chan, K.H., Sturm-

Ramirez, K.M., Cheung, C.L., Leung, Y.H.C., Yuen, K.Y., Webster, R.G. & Peiris, J.S.M. 

(2004) H5N1 influenza: A protean pandemic threat. Proceedings of the National Academy of 

Sciences of the United States of America, 101(21), 8156-61. 

Guarino, J.L. & Schafer, E.W. (1974). A program for developing male chemosterilants for Red-

winged Blackbirds and Grackles. In Proceedings 6th Bird Control Seminar (eds H.N. Cones, 

Jr. & W.B. Jackson), pp. 201–05. Bowling Green State University, Bowling Green, Ohio. 

Guay, P.-J. & Tracey, J.P. (2009) Feral Mallards – A risk for hybridisation with wild Pacific Black 

Ducks in Australia? Victorian Naturalist, 126(3), 87-91. 

Haag-Wackernagel, D. (2000) Behavioural responses of the feral pigeon (Columbidae) to deterring 

systems. Folia Zoologica, 49(2), 101–14. 

Halse, S.A. (1986) Parrot damage in apple orchards in south-western Australia - a review. 

Technical Report No. 8. Department of Conservation and Land Management,Western 

Australia. 

Halse, S.A. & Jaensch, R.P. (1989) Breeding seasons of waterbirds in south-western Australia - the 

importance of rainfall. Emu, 89, 232–49. 

Halvorson, D.A., Kelleher, C.J. & Senne, D.A. (1985) Epizootiology of avian influenza: effect of 

season on incidence in sentinel ducks and domestic turkeys in Minnesota. Applied 

Environmental Microbiology, 49(4), 914–19. 

Hamilton, S.A., East, I.J., Toribio, J.-A. & Garner, M.G. (2009) Are the Australian poultry 

industries vulnerable to large outbreaks of highly pathogenic avian influenza? Australian 

Veterinary Journal, 87(5), 165-74. 

Hancock, J. & Elliott, H. (1978) The Herons of the world. London Editions, London. 

Hansbro, P.M., Warner, S., Tracey, J.P., Arzey, K.E., Selleck, P., O’Riley, K., Beckett, E.L., Bunn, 

C., Kirkland, P.D., Vijaykrishna, D., Olsen, B. & Hurt, A.C. (2010) Surveillance and analysis 

of avian influenza viruses, Australia. Emerging Infectious Diseases, 16(12), 1896-904. 

Hanscombe, S.A. (1915) Observations on the nankeen night-heron (Nycticorax caledonicus). Emu, 

15, 132–34. 

Hanson, B.A. (2003) Temporal, spatial and species patterns of avian influenza viruses among wild 

birds. Masters of Science Dissertation. 95pp. University of Georgia, Georgia. 

Hardy, A.R., Westlake, G.E., Lloyd, G.A., Brown, P.M., Greig-Smith, P.W., Fletcher, M.R., 

Tarrant, K.A. & Stanley, P.I. (1993) An intensive field trial to assess hazards to birds and 



 

186 

mammals from the use of methiocarb as a bird repellent on ripening cherries. Ecotoxicology, 

2, 1–31. 

Harper, P.C. & Kinsky, F.C. (1978) Southern albatrosses and petrels. Prince Milburn and Co., 

Wellington New Zealand. 

Harris, R.E. & Davis, R.A. (1998) Evaluation of the Efficacy of Products and Techniques for 

Airport Bird Control. Aerodrome Safety Branch, Transport Canada, Ottawa, Canada. 

Hasebe, M. & Franklin, D.C. (2004) Food sources of the rainbow lorikeet during the early wet 

season on the urban fringe of Darwin, Northern Australia. Corella, 28(3), 68-74. 

Haynes, L., Arzey, E., Bell, C., Buchanan, N., Burgess, G., Cronan, V., Dickason, C., Field, H., 

Gibbs, S., Hansbro, P.M., Hollingsworth, T., Hurt, A.C., Kirkland, P., McCracken, H., 

O’Connor, J., Tracey, J.P., Wallner, J., Warner, S., Woods, R. & Bunn, C. (2009) Australian 

surveillance for avian influenza viruses in wild birds (July 2005 to June 2007). Australian 

Veterinary Journal, 87(7), 266-72. 

Hector, J.M. (1989) An economic analysis of bird damage in the south-west of Western Australia. 

Discussion Paper 1. Agricultural Protection Board of Western Australia, Perth. 

Heisterberg, J.F., Stickley, A.R., Garner, K.M. & Foster, P.D., Jr. (1987) Controlling blackbirds 

and starlings at winter roosts using PA-14. Proceedings of the Eastern Wildlife Damage 

Control Conference, 3, 177–83. 

Henzell, R.P., Cunningham, R.B. & Neave, H.M. (2002) Factors affecting the survival of 

Australian wild rabbits exposed to rabbit haemorrhagic disease. Wildlife Research, 29(6), 523-

42. 

Hermes, N., Evans, O. & Evans, B. (1986) Norfolk Island birds: a review 1985. Notornis, 33(3), 

141-49. 

Hestbeck, J.B., Nichols, J.D. & Malecki, R.A. (1991) Estimates of movement and site fidelity 

using mark resight data, of wintering Canada geese. Ecology, 72, 523–33. 

Higgins, P.J. (1999) Handbook of Australian New Zealand and Antarctic Birds (HANZAB) Volume 

4: Parrots to Dollarbirds. Oxford University Press, Melbourne. 

Higgins, P.J. & Davies, S.J.J.F. (1996) Handbook of Australian New Zealand and Antarctic Birds 

(HANZAB) Volume 3: Snipe to Pigeons. Oxford University Press, Melbourne. 

Higgins, P.J. & Peter, J.M. (2003) Handbook of Australian New Zealand and Antarctic Birds 

(HANZAB) Volume 6: Pardalotes to Spangled Drongo. Oxford University Press, Melbourne. 

Higgins, P.J., Peter, J.M. & Cowling, S.J. (2006) Handbook of Australian, New Zealand and 

Antarctic Birds (HANZAB). Volume 7: Boatbill to Starlings. Oxford University Press, 

Melbourne. 

Hindwood, K.A. (1953) Channel-billed cuckoo in New Caledonia. Emu, 53, 334–35. 

Hindwood, K.A. & Cunningham, J.M. (1950) Notes on the birds of Lord Howe Island. Emu, 50, 

23-35. 



 

187 

Hinshaw, V.S., Nettles, V.F., Schorr, L.F., Wood, J.W. & Webster, R.G. (1986) Influenza virus 

surveillance in waterfowl in Pennsylvania after the H5N2 avian outbreak. Avian Diseases, 30, 

207–12. 

Hinshaw, V.S., Webster, R.G. & Rodriguez, R.J. (1981) Influenza A viruses: combinations of 

hemagglutinin and neuraminidase subtypes isolated from animals and other sources. Archives 

Virology, 67, 191–206. 

Hinshaw, V.S., Webster, R.G. & Turner, B. (1980) The perpetuation of orthomyxoviruses and 

paramyxoviruses in Canadian waterfowl. Canadian Journal of Microbiology, 26, 622–29. 

Hinshaw, V.S., Wood, J.M., Webster, R.G., Deible, R. & Turner, B. (1985) Circulation of 

influenza viruses and paramyxoviruses in waterfowl originating from two different areas of 

North America. Bulletin of the World Health Organization, 63, 711–19. 

Hobbs, J.N. (1956) A flood year in the Riverina. Emu, 56, 349–52. 

Hobbs, J.N. (1958) Some notes on Grebes. Emu, 58, 129–32. 

Hobbs, J.N. (1961) The birds of south-west New South Wales. Emu, 61, 21–55. 

Hochachka, W.M. & Dhondt, A.A. (2000) Density-dependent decline of host abundance resulting 

from a new infectious disease. Proceedings of the National Academy of Sciences of the United 

States of America, 97(10), 5303-06. 

Hoffmann, E., Stech, J., Leneva, I., Krauss, S., Scholtissek, C., Chin, P.S., Peiris, M., Shortridge, 

K.F. & Webster, R.G. (2000) Characterization of the influenza a virus gene pool in avian 

species in southern China: was H6N1 a derivative or a precursor of H5N1? Journal of 

Virology, 74(14), 6309–15. 

Holding, R. (1995) Seed dressings - Canola. Ciba Agricultural Division Experimental Trial 

Report. Ciba Australia, Perth, WA. 

Hone, J. (1980) Effect of feral pig rooting on introduced and native pasture in north-eastern New 

South Wales. The Journal of the Australian Institute of Agricultural Science, 130-32. 

Hone, J. (1988) Feral pig rooting in a mountain forest and woodland: distribution, abundance and 

relationships with environmental variables. Australian Journal of Ecology, 13, 393-400. 

Hone, J. (1994) Analysis of Vertebrate Pest Control. Cambridge University Press, Cambridge. 

Hone, J. (2007) Wildlife Damage Control. CSIRO Publishing, Collingwood, Victoria. 

Horimoto, T. & Kawaoka, Y. (2001) Pandemic threat posed by avian influenza A viruses. Clinical 

Microbiology Reviews, 14(1), 129–49. 

Horning, D.S. & Horning, C.J. (1974) Bird records of the 1971-1973 Snares Islands, New Zealand 

expedition. Notornis, 21, 13-24. 

Hothem, R.L. & DeHaven, R.W. (1982). Raptor mimicking kites for reducing bird damage to wine 

grapes. In Proceedings of the 10th Vertebrate Pest Conference (ed R.E. Marsh), pp. 171–78. 

University of California, Davis. 



 

188 

Hothem, R.L., Mott, D.F., DeHaven, R.W. & Guarino, J.L. (1981) Mesurol as a bird repellent of 

wine grapes in Oregon and California. American Journal of Enology and Viticulture, 32(2), 

150–54. 

Howard, W.E., Marsh, R.E. & Corbett, C.W. (1985) Raptor perches: their influence on crop 

protection. Alta Zoologica Fennica, 173, 191–92. 

Hubbard, J.P. (1977) The biological and taxonomic status of the Mexican Duck. New Mexico 

Department of Game and Fish Bulletin, 16, 1-56. 

Hulse-Post, D.J., Sturm-Ramirez, K.M., Humberd, J., Seiler, P., Govorkova, E.A., Krauss, S., 

Scholtissek, C., Puthavathana, P., Buranathai, C., Nguyen, T.D., Long, H.T., Naipospos, 

T.S.P., Chen, H., Ellis, T.M., Guan, Y., Peiris, J.S.M. & Webster, R.G. (2005) Role of 

domestic ducks in the propagation and biological evolution of highly pathogenic H5N1 

influenza viruses in Asia. Proceedings of the National Academy of Sciences of the United 

States of America, 102(30), 10682-87. 

Hunt, K.E., Bird, D.M., Mineau, P. & Shutt, L. (1991) Secondary poisoning hazard of fenthion to 

American kestrels. Archives of Environmental Contamination And Toxicology, 21, 84–91. 

Hunt, K.E., Bird, D.M., Mineau, P. & Shutt, L. (1992) Selective predation of fenthion-exposed 

prey by American kestrels. Animal Behaviour, 43, 971–76. 

Hurt, A.C., Hansbro, P., Selleck, P., Olsen, B., Minton, C., Hampson, A.W. & Barr, I.G. (2006) 

Isolation of avian influenza viruses from two different transhemispheric migratory shorebird 

species in Australia. Archives of Virology, 151(11), 2301-09. 

Hutto, R.L., Pletschet, S.M. & Hendricks, P. (1986) A fixed-radius point count method for non-

breeding and breeding season use. The Auk, 103, 593-602. 

Hutton, I. (1991) Birds of Lord Howe Island: Past and Present. Hutton, Coffs Harbour NSW. 

Huxel, G.R. (1999) Rapid displacement of native species by invasive species: effects of 

hybridization. Biological Conservation, 89(2), 143-52. 

Jarman, P.J. (1990). Bird pest research: the gap between research and application. In National Bird 

Pest Workshop Proceedings (eds P. Fleming, I. Temby & J. Thompson), pp. 7–12. NSW 

Agriculture and Fisheries, Armidale. 

Jeremiah, H.E. & Parker, J.D. (1985). Health hazard aspects of fenthion residues in quelea birds. In 

International Centre for the Application of Pesticides. Cranfield Institutue of Technology U.K. 

Johnson, D.B., Guthery, F.S. & Koerth, N.E. (1989) Grackle damage to grapefruit in the lower Rio 

Grande Valley. Wildlife Society Bulletin, 17(1), 46–50. 

Johnson, K.P. & Sorenson, M.D. (1999) Phylogeny and biogeography of dabbling ducks (genus 

Anas): a comparison of molecular and morphological evidence. Auk, 116(3), 792–805. 

Johnson, R. (1994). American crows. In Prevention and Control of Wildlife Damage (eds S.E. 

Hyngstrom, R.M. Timm & G.E. Larson), pp. E33-40. University of Nebraska, Lincoln, 

Nebraska. 



 

189 

Johnson, R.J. & Glahn, J.F. (1994). European Starlings. In Prevention and Control of Wildlife 

Damage (eds S.E. Hyngstrom, R.M. Timm & G.E. Larson), pp. E109-20. University of 

Nebraska, Lincoln, Nebraska. 

Johnston, M.J. & Marks, C.A. (1997) Attitudinal survey on vertebrate pest management in 

Victoria. Report Series No. 3. Department of Natural Resources and Environment, Frankston, 

Victoria. 

Jones, C.G. (1996). Bird introductions to Mauritius: status and relationships with native birds. In 

The introduction and naturalisation of birds (eds J.S. Holmes & J.R. Simons), pp. 113–23. 

Her Majesty’s Stationery Office, London. 

Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L. & Daszak, P. (2008) 

Global trends in emerging infectious diseases. Nature, 451(7181), 990-93. 

Kabacoff, R. I. (2001) R in Action: Data analysis and graphics with R. Manning Publications Co., 

Greenwich, CT, USA. 

Kahn, R.L. & Cannell, C.F. (1967) The Dynamics of Interviewing. Whiley, New York. 

Katz, J.M. (2003) The impact of avian influenza viruses on public health. Avian Diseases, 47(3), 

914–20. 

Kawaoka, Y., Chambers, T.M., Sladen, W.L. & Webster, R.G. (1988) Is the gene pool of influenza 

viruses in shorebirds and gulls different from that in wild ducks? Virology, 163(1), 247–50. 

Kay, B.J., Twigg, L.E., Nicol, H.I. & Korn, T.J. (1994) The use of artificial perches to increase 

predation on house mice (Mus domesticus) by raptors. Wildlife Research, 21(1), 95–106. 

Keawcharoen, J., van Riel, D., van Amerongen, G., Bestebroer, T., Beyer, W.E., van Lavieren, R., 

Osterhaus, A., Fouchier, R.A.M. & Kuiken, T. (2008) Wild ducks as long-distance vectors of 

highly pathogenic avian influenza virus (H5N1). Emerging Infectious Diseases, 14, 600-07. 

Kendeigh, S.C. (1970) Energy requirements for existence in relation to size of bird. Condor, 50–65. 

Kendle, K.E., Lazarus, A., Rowe, F.P., Telford, J.M. & Vallance, D.K. (1973) Sterilization of 

rodent and other pests using a synthetic oestrogen. Nature, 244(5411), 105–08. 

Khan, A.A. & Ahmad, E. (1990). Damage pattern of pest birds and assessment methods. In A 

Training Manual on Vertebrate Pest Management. National Agricultural Research Centre 

(eds J.E. Brooks, E. Ahmad, I. Hussain, S. Munir & A.A. Khan), pp. 181–86. Pakistan 

Agricultural Research Council., Islamabad. 

Kida, H., Yanagawa, R. & Matsuoka, Y. (1980) Duck influenza lacking evidence of disease signs 

and immune response. Infection And Immunity, 30(2), 547–53. 

King, L.J. (2004) Emerging zoonoses and pathogens of public health concern. Scientific and 

Technical Review 23 (2). Office International des Epizooties, Paris, France. 

Kingsford, R.T. (1995) Occurrence of high concentrations of waterbirds in arid Australia. Journal 

of Arid Environments, 29, 421–25. 



 

190 

Kingsford , R.T. (2000) Ecological impacts of dams, water diversions and river management on 

floodplain wetlands in Australia. Austral Ecology, 25, 109-27. 

Kingsford, R.T. & Norman, F.I. (2002) Australian waterbirds- products of the continent's ecology. 

Emu, 102(1), 47–69. 

Kinross, C.M. (2000) The ecology of bird communities in windbreaks and other avian habitats on 

farms. PhD Thesis. Charles Sturt University, Bathurst, NSW. 

Kirkland, P.D. & Tracey, J.P. (2006) Detecting avian influenza in wild birds in New South Wales. 

Final report to the Department of Agriculture, Fisheries and Forestry, Wildlife and Exotic 

Disease Preparedness Program. NSW Department of Primary Industries, Orange. 

Knight, J.E. (2000) Repelling birds with monofilament lines. Montguide Information Sheet. 

Montatna State University Extension Service, Bozeman, Montana. 

Knittle, C.E. & Guarino, J.L. (1976). Reducing a local population of starlings with nest -box traps. 

In Proceedings 7th Bird Control Seminar (ed W.B. Jackson), pp. 65–66. Bowling Green State 

University, Bowling Green, Ohio. 

Knittle, C.E., Guarino, J.L., Nelson, P.C., Dehaven, R.W. & Twedt, D.J. (1980). Baiting blackbird 

and starling congregating areas in Kentucky and Tennessee. In Proceedings of the 9th 

Vertebrate Pest Conference (ed J.P. Clarke), pp. 31–37. University of California, Davis. 

Kortright, F.H. (1942) The Ducks, Geese and Swans of North America. Stackpole Co., Harrisburg, 

Pennsylvania. 

Krebs, J.R., MacRoberts, M.H. & Cullen, J.M. (1972) Flocking and feeding in the Great Tit, Parus 

major, and experimental study. Ibis, 507–30. 

Krementz, D.G., Asante, K. & Naylor, L.W. (2011) Spring migration of mallards from Arkansas as 

determined by satellite telemetry. Journal of Fish and Wildlife Management, 2(2), 156–68. 

Kulikova, I.V., Zhuravlev, Y.N. & McCracken, K.G. (2004) Asymmetric hybridization and sex-

biased gene flow between Eastern Spot-billed Ducks (Anas zonorhyncha) and Mallards (A. 

platyrhynchos) in the Russian far east. . Auk, 121(930-949). 

Kulikova, I. V., Drovetski, S. V., Gibson, D. D., Harrigan, R. J., Rohwer, S., Sorenson, M. D., 

Winker, K., Zhuravlev, Y. N., McCracken, K. G. & Haukos, D. A. (2005) Phylogeography 

of the mallard (Anas platyrhynchos): hybridization, dispersal, and lineage sorting 

contribute to complex geographic structure. The Auk, 122, 949-965. 

Lack, D. (1954) The natural regulation of animal numbers. Clarendon Press, Oxford. 

Lancia, R.A., Nichols, J.D. & Pollock, K.H. (1996). Estimating the numbers of animals in wildlife 

populations. In Research and Management Techniques for Wildlife and Habitats. 5th edition 

(ed T.A. Bookout), pp. 215–53. The Wildlife Society, Bethesda, Md. 

Lane, B.A. (1987) Shorebirds of Australia. Nelson, Melbourne. 

Lane, D.E. & Stephenson, R.L. (1998) A framework for risk analysis in fisheries decision-making. 

ICES Journal of Marine Science: Journal du Conseil, 55(1), 1-13. 



 

191 

Lang, A.S., Kelly, A. & Runstadler, J.A. (2008) Prevalence and diversity of avian influenza viruses 

in environmental reservoirs. Journal of General Virology, 89(2), 509-19. 

Larsen, K.H. & Mott, D.F. (1970) House finch removal from a western Oregon blueberry planting. 

Murrelet, 51(2), 15–16. 

Laudert, E., Sivanandan, V., Halvorson, D., Shaw, D. & Webster, R.G. (1993) Biological and 

molecular characterization of H13N2 influenza type A viruses isolated from turkeys and 

surface water. Avian Diseases, 37(3), 793–99. 

Lavery, H.J. & Grimes, R.J. (1974) Purple-crowned Pigeon at Townsville, Queensland. Emu, 74, 

53–54. 

Lawler, W. & Briggs, S.V. (1991) Breeding of maned duck and other waterbirds on ephemeral 

wetlands in north-western new South Wales. Corella, 15, 65–76. 

Lawler, W., Kingsford, R.T. & Briggs, S.V. (1993) Movements of grey teal Anas gracilis from a 

drying, arid zone wetland. Corella, 17, 58–60. 

Lever, C. (1985) Naturalized mammals of the world. Longman, London. 

Lever, C. (1987) Naturalized Birds of the World. Wiley and Sons, New York. 

Li, K.S., Guan, Y., Wang, J., Smith, G.J.D., Xu, K.M., Duan, L., Rahardjo, A.P., Puthavathana, P., 

Buranathai, C., Nguyen, T.D., Estoepangestie, A.T.S., Chaisingh, A., Auewarakul, P., Long, 

H.T., Hanh, N.T.H., Webby, R.J., Poon, L.L.M., Chen, H., Shortridge, K.F., Yuen, K.Y., 

Webster, R.G. & Peiris, J.S.M. (2004) Genesis of a highly pathogenic and potentially 

pandemic H5N1 influenza virus in eastern Asia. Nature, 430(6996), 209-13. 

Linz, G.M., Kenyon, M.J., Homan, H.J. & Bleier, W.J. (2002) Avian use of rice-baited corn 

stubble in east-central South Dakota. International Biodeterioration and Biodegradation, 49, 

179–84. 

Linz, G.M., Mendoza, L.A., Bergman, D.L. & Bleier, W.J. (1995) Preferences of three blackbird 

species for sunflower meats, cracked corn and brown rice. Crop Protection, 14(5), 375–78. 

Lipkind, M., Shihmanter, E. & Shoham, D. (1982) Further characterization of H7N7 avian 

influenza virus isolated from migrating starlings wintering in Israel. Zentralblatt fuer 

Veterinaermedizin Beiheft, 29(7), 566–72. 

Liu, J., Xiao, H., Lei, F., Zhu, Q., Qin, K., Zhang, X.-w., Zhang, X.-l., Zhao, D., Wang, G., Feng, 

Y., Ma, J., Liu, W., Wang, J. & Gao, G.F. (2005) Highly pathogenic H5N1 influenza virus 

infection in migratory birds. Science, 309, 1206. 

Livezey, B.C. (1986) A phylogenetic analysis of recent anseriform genera using morphological 

characters. Auk, 103(4), 737-54. 

Llewellyn, L.C. (1983) Movements of cormorants in south-eastern Australia and the influence of 

floods on breeding. Wildlife Research, 10, 149–67. 

Lloyd, A., Hamacek, E., George, A.P., Nissen, R.J. & Waite, G. (2005). Evaluation of exclusion 

netting for insect pest control and fruit quality enhancement in tree crops. In International 



 

192 

Symposium on Harnessing the Potential of Horticulture in the Asian-Pacific Region. ISHS 

Acta Horticulturae 694 (ed R. Drew). International Society for Horticultural Science, Coolum, 

Queensland. 

Lofts, B., Murton, R.K. & Thearle, J.P. (1968) The effects of 22,25-Diazacholestrol 

dihydrochloride on the pigeon testes and reproductive behaviour. Journal of Reproduction and 

Fertility, 15, 145-48. 

Long, J.L. (1985) Damage to cultivated fruit by parrots in the south of Western Australia. 

Australian Wildlife Research, 12(1), 75–80. 

Long, J.L., Mawson, P.R. & Littley, M. (1990) Evaluation of some scaring devices for preventing 

damage by parrots to cultivated fruit. Technical Series 5. Agricultural Protection Board of 

Western Australia, Perth. 

Long, J.L. & Vagg, F. (1960). Galah poisoning. In Journal of Agriculture, pp. 1125–26. 

Department of Agriculture, Western Australia, Perth. 

Lord, E.A.R. (1956) The birds of the Murphy's Creek district, southern Queensland. Emu, 56, 100–

28. 

Lowe, K.W. (1989) The Australian Bird Banders Manual. Australian National Parks and Wildlife 

Service, Canberra. 

Lugton, I.W. (1993) Diet of red foxes (Vulpes vulpes) in south-west New South Wales, with 

relevance to lamb predation. Rangelands Journal, 15(1), 39–47. 

Lukins, B.S. & Tracey, J.P. (2013) Trapping Birds in Australia: a practical guide. Department of 

Primary Industries, Orange, New South Wales. 

MacDiarmid, S.C. (2011) The spread of pathogens through international trade. Scientific and 

Technical Review 30 (1). Office International des Epizooties, Paris, France. 

MacDonald, D. & Dillman, E.G. (1968) Techniques for estimating non-statistical bias in big game 

harvest surveys. Journal of Wildlife Management, 32(1), 119–29. 

MacDonald, D.W. & Johnson, P.J. (1995) The relationship between bird distribution and the 

botanical and structural characteristics of hedges. Journal of Applied Ecology, 32, 492–505. 

MacDonald, J.D. (1853). Remarks on the natural history and capabilities of Lord Howe Island. In 

Proposed Penal Settlement (ed L. Council), pp. 13-17. Legislative Council, Sydney. 

MacDougall, A.S. & Turkington, R. (2005) Are invasive species the drivers or passengers of 

change in degraded ecosystems? Ecology, 86(1), 42-55. 

Mackenzie, J.S., Britten, D., Hinshaw, V.S. & Wood, J. (1985). Isolation of avian influenza and 

paramyxoviruses from wild birds in Western Australia. In Veterinary viral diseases: their 

significance in south-east Asia and the western Pacific (ed A.J. Della-Porta), pp. 336–39. 

Academic Press, Sydney. 

Mackenzie, J.S., Edwards, E.C., Holmes, R.M. & Hinshaw, V.S. (1984) Isolation of ortho- and 

paramyxoviruses from wild birds in Western Australia and the characterisation of novel 



 

193 

influenza A viruses. Australian Journal of Experimental Biology and Medical Science, 62, 89–

99. 

MacPherson, H.A. (1897) A History of Fowling. David Douglas, Edinburg. 

Malczewski, J. (1999) GIS and Multicriteria Decision Analysis. John Wiley and Sons, New York. 

Marchant, S. & Higgins, P.J. (1990) Handbook of Australian New Zealand and Antarctic Birds 

(HANZAB) Volume 1 (Part A and B): Ratites to Ducks. Oxford University Press, Australia. 

Marchant, S. & Higgins, P.J. (1993) Handbook of Australian New Zealand and Antarctic Birds 

(HANZAB) Volume 2: Raptors to Lapwings. Oxford University Press, Australia. 

Marsh, R.E., Erickson, W.A. & Salmon, T.P. (1991) Bird hazing and frightening methods and 

techniques. University of California, Davis. 

Marsh, R.E., Erickson, W.A. & Salmon, T.P. (1992). Scarecrows and predator models for 

frightening birds from specific areas. In Proceedings of the 15th Vertebrate Pest Conference 

(eds J.E. Borrecco & R.E. Marsh), pp. 112–14. University of California, Davis. 

Marshall, A.J. & Serventy, D.L. (1961) The breeding cycle of the Short-tailed Shearwater, Puffinus 

tenuirostris (Temminck), in relation to trans-equatorial migration and its environment. 

Proceedings of the Zoological Society of London, 127(4), 489–510. 

Martin, J. & Dawes, J. (2005). Egg oil: a tool for the management of pest bird populations. In 13th 

Australasian Vertebrate Pest Conference Proceedings. New Zealand, Wellington. 

Martin, L.R. (1986). Barn Owls and industry : problems and solutions. In Proceedings of the 12th 

Vertebrate Pest Conference (ed T.P. Salmon), pp. 281–85. University of California, Davis. 

Martin, L.R. & Crabb, A.C. (1979). Preliminary studies of a bird damage assessment technique for 

trellised grapes. In Vertebrate Pest Control and Management Materials: 2nd Symposium (ed 

J.R. Beck), pp. 205–10. American Society for Testing and Materials, Philadelphia. 

Martin, L.R. & Jarvis, W.T. (1980). Avitrol-treated bait for protection of grapes from house finch 

damage. In Proceedings of the 9th Vertebrate Pest Conference (ed J.P. Clarke), pp. 17–20. 

University of California, Davis. 

Martin, P. & Bateson, P. (1993) Measuring Behaviour: An Introductory Guide. Cambridge 

University Press, Cambridge. 

Martinez del Rio, C., Avery, M.L. & Brugger, K.E. (1997). Sucrose as a feeding deterrent for fruit-

eating birds. In Repellents in Wildlife Management (ed R.J. Mason), pp. 353–69. National 

Wildlife Research Centre, For Collins, Colorado. 

Mason, I. (1981) Letter to the editor. Royal Australian Ornithological Union Newsletter, 50, 10. 

Mason, J. R., Arzt, A. H. & Reidinger, R. F. (1984) Comparative assessment of food preferences 

and aversions acquired by blackbirds via observational learning. The Auk, 101, 796-803. 

Mason, J.R., Avery, M.L., Glahn, J., Otis, D.L., Matteson, R.E. & Nelms, C.O. (1991a) Evaluation 

of methyl anthranilate and starch - plated dimethyl anthranilate as bird repellent feed additives. 

Journal of Wildlife Management, 55(1), 182–87. 



 

194 

Mason, J.R. & Clark, L. (1997). Avian repellents: options, modes of action, and economic 

considerations. In Repellents in Wildlife Management, pp. 371–91. National Wildlife Research 

Centre, Fort Collins, Colorado. 

Mason, J.R., Nuechterlein, G.L., Linz, G., Dolbeer, R.A. & Otis, D.L. (1991b) Oil concentration 

differences among sunflower achenes and feeding preferences of red-winged blackbirds. Crop 

Protection, 10, 299-304. 

Masters, J.R. & Milhinch, A.L. (1974) Birds of the shire of Northam, about 100 km east of Perth, 

W.A. Emu, 74, 228–44. 

Mayr, E. & Rand, A.L. (1937) Results of the Archibald Expeditions. 14. Birds of the 1933-1934 

Papuan expedition. Bulletin of the American Museum of Natural History, 73, 1–248. 

McAllan, I.A.W., Curtis, B.R., Hutton, I. & Cooper, R.M. (2004) The birds of the Lord Howe 

Island Group: a review of records. Australian Field Ornithology, 21 Supplement, 1-82. 

McCallum, H. (2000) Population Parameters: Estimation for Ecological Models. Blackwell, 

Oxford. 

McCallum, H. & Dobson, A. (1995) Detecting disease and parasite threats to endangered species 

and ecosystems. Trends in Ecology and Evolution, 10(5), 190-94. 

McCallum, H., Roshier, D., Tracey, J.P., Joseph, L. & Heinsohn, R. (2008) Will Wallace’s line 

save Australia from Avian Influenza? Ecology and Society, 13(2), 41-56. 

McClure, E. (1984) Bird Banding. Boxwood Press, Pacific Grove, USA. 

McClure, H.E. (1998) Migration and Survival of the Birds of Asia. White Lotus Company, 

Bangkok. 

McDowall, R.W. (1994) Gamekeepers for the Nation. Canterbury University Press, Christchurch. 

McKean, J.L. & Hindwood, K.A. (1965) Additional notes on the birds of Lord Howe Island. Emu, 

64, 79-97. 

McKenzie, D.I., Nichols, J.D., Pollock, K.H., Bailey, L.L. & Hines, J.E. (2006) Occupancy 

estimation and modelling: Inferring patterns and dynamics of species occurrence. Academic 

Press/ Elsevier, Amsterdam. 

McLennan, J.A., Langham, N.P.E. & Porter, R.E.R. (1995) Deterrent effect of eye-spot balls on 

birds. New Zealand Journal of Crop and Horticultural Science, 23(2), 139–44. 

McLeod, R. (2004) Counting the cost: Impact of invasive animals in Australia. Cooperative 

Research Centre for Pest Animal Control., Canberra. 

Middleton, S.G. & McWaters, A.D. (1996) Hail Netting to Increase Apple Orchard Productivity. 

Department of Primary Industries, Qld. 

Miller, B. (1971) Hybridisation of the domestic mallard and black duck in the Sydney district. 

Honours thesis. Department of Biological Sciences, University of Sydney  

Miller, D.C. (1983) Handbook of Research, Design and Social Measurement. Longman, New 

York. 



 

195 

Miller, L.A. (2002). Reproductive control methods. In Encyclopedia of pest management (ed D. 

Pimental), pp. 701–04. Marcel Dekker, New York. 

Mills, J.A. (1976) Status, mortality, and movements of grey teal (Anas gibberifrons) in New 

Zealand. New Zealand Journal of Zoology, 3, 261–67. 

Mills, J. N. (2006) Biodiversity loss and emerging infectious disease: An example from the rodent-

borne hemorrhagic fevers. Biodiversity, 7, 9-17. 

Ministry of Agriculture Fisheries and Food. (1997) Assessment of humaneness of vertebrate control 

agents. Pesticide Safety Director, York. 

Miskelly, C.M., Sagar, P.M., Tennyson, A.J.D. & Scofield, R.P. (2001) Birds of the Snares Islands, 

New Zealand. Notornis, 48(1), 1-40. 

Mitchell, C.J., Hayes, R.O. & Hughes Jr, T.B. (1979) Effects of the chemosterilant Ornitrol on 

house sparrow reproduction. American Midland Naturalist, 101, 443–46. 

Mladovan, L. (1998) Avian Dispersal of the European Olive Olea europaea, Especially by the 

Common Starling Sturnus vulgaris: Ecological Implications for Weed Management. Bachelor 

of Sciences (Hons) Thesis. Department of Zoology, University of Adelaide, Adelaide. 

Moller, A. P. & Jennions, M. D. (2001) Testing and adjusting for publication bias. Trends in 

Ecology & Evolution, 16, 580-586. 

Mooij, J.H. (2001). Population trends of wintering goose populations in western Europe and their 

influence on agriculture. In Advances in Vertebrate Pest Management. Volume II (eds H.J. 

Pelz, C.J. Feare & D.P. Cowan), pp. 231-62. Filander Verlag, Furth. 

Mooney, H.A. & Cleland, E.E. (2001) The evolutionary impact of invasive species. Proceedings of 

the National Academy of Sciences, 98(10), 5446-51. 

Moran, S. (1991) Control of hooded crows by modified Australian traps. Phytoparasitica, 19, 95–

101. 

Moran, S., Gottlieb, Y. & Refael, A. (2004). Modification of the Australian crow trap for Eurasian 

jay (Garrulus glandarius) and Eurasian blackbird (Turdus merula) control. In Advances in 

Vertebrate Pest Management. Volume III (eds C.J. Feare & D.P. Cowan), pp. 101–07. 

Filander Verlag, Furth. 

Morgan, I.R. & Kelly, A.P. (1990) Epidemiology of an avian influenza outbreak in Victoria in 

1985. Australian Veterinary Journal, 67(4), 125–28. 

Morris, A.K. (1979) The inland occurrence of Tropic-Birds in NSW during March 1978. 

Australian Birds, 13, 51–54. 

Morton, S.R., Brennan, K.G. & Armstrong, M.D. (1990a) Distribution and abundance of ducks in 

the Alligator Rivers region, Northern Territory. Wildlife Research, 17, 573–90. 

Morton, S.R., Brennan, K.G. & Armstrong, M.D. (1990b) Distribution and abundance of magpie 

geese, Anseranas semipalmata, in the Alligator Rivers region, Northern Territory. Australian 

Journal of Ecology, 15, 307–20. 



 

196 

Morton, S.R., Brennan, K.G. & Armstrong, M.D. (1993) Distribution and abundance of grebes, 

pelicans, darters, cormorants, rails and terns in the Alligator Rivers Region, Northern 

Territory. Wildlife Research, 20, 203–17. 

Muehlebach, J. & Bracher, P. (1998) Using electronics to keep birds away from grapes. Australian 

Grapegrower and Winemaker(417), 65–67. 

Muktar, M.M., Rasool, S.T., Song, D., Zhu, C., Hao, Q., Zhu, Y. & Wu, J. (2007) Origin of highly 

pathogenic H5N1 avian influenza virus in China and genetic characterization of donor and 

recipient viruses. Journal of General Virology, 88(11), 3094-99. 

Mumford, J.D. & Norton, G.A. (1984) Economics of decision making in pest management. Annual 

Review of Entomology, 29, 157–74. 

Munster, V.J., Baas, C., Lexmond, P., Bestebroer, T.M., Guldemeester, J., Beyer, W.E.P., de Wit, 

E., Schutten, M., Rimmelzwaan, G.F., Osterhaus, A.D.M.E. & Fouchier, R.A.M. (2009) 

Practical considerations for high-throughput influenza A virus surveillance studies of wild 

birds by use of molecular diagnostic tests. Journal of Clinical Microbiology, 666–73. 

Munster, V.J. & Fouchier, R.A.M. (2009) Avian influenza virus: of virus and bird ecology. 

Vaccine, 27(45), 6340-44. 

Murray, N. (2002) Import risk analysis: animals and animal products. Ministry of Agriculture and 

Forestry, Wellington. 

Murton, R.K. (1968). Some predator-prey relationships in bird damage and population control. In 

The Problems of Birds as Pests (eds R.K. Murton & E.N. Wright). Academic Press, London. 

Murton, R.K. & Jones, B.E. (1973) The ecology and economics of damage to brassicae by Wood 

Pigeons (Columba palumbus). Annals of Applied Biology, 75, 107–22. 

Murton, R.K., Westwood, N.J. & Isaacson, A.J. (1974) A study of wood-pigeon shooting: the 

exploitation of a natural animal population. Journal of Applied Ecology, 11, 61–81. 

Naef-Daenzer, L. (1983). Scaring of carrion crows (Corvus corone corone) by species-specific 

distress calls and suspended bodies of dead crows. In Proceedings 9th Bird Control Seminar 

(eds W.B. Jackson & B.J. Dodd), pp. 91–95. Bowling Green State University, Ohio. 

Nakamura, K. (1997) Estimation of effective area of bird scarers. Journal of Wildlife Management, 

61(3), 925–34. 

Narayan, O., Lang, G. & Rouse, S.T. (1969) A new influenza virus infection in turkeys. IV 

Experimental susceptibility of domestic birds to virus strain ty/Ontario/7732/1966. Archiv Fur 

Die Gesamte Virusforschung, 26, 149–65. 

Nebel, S., Porter, J.L. & Kingsford , R.T. (2008) Long-term trends of shorebird populations in 

eastern Australia and impacts of freshwater extraction. Biological Conservation, 141, 971-80. 

Nelson, J.B. (1978) The Sulidae, gannets and boobies. Oxford University Press, London. 



 

197 

Nelson, P.C. (1994). Bird control in New Zealand using alpha-chloralose and DRC1339. In 

Proceedings of the 16th Vertebrate Pest Conference (eds W.S. Halverson & A.C. Crabb), pp. 

259–64. University of California, Davis. 

Nemtzov, S.C. (2004). Assessment of the actual cost of bird damage to cherries in Israel. In 

Advances in Vertebrate Pest Management. Volume III (eds C.J. Feare & D.P. Cowan), pp. 

109–16. Filander Verlag, Furth. 

Nestorowicz, A., Kawaoka, Y., Bean, W.J. & Webster, R.G. (1987) Molecular analysis of the 

hemagglutinin genes of Australian H7N7 influenza viruses: role of passerine birds in 

maintenance or transmission. Virology, 160(2), 411–18. 

Newton, I. (1994) The role of nest sites in limiting the numbers of hole-nesting birds: a review. 

Biological Conservation, 70, 265–76. 

Norman, F.I. (1973) Movement and mortality patterns of Black Ducks and Mountain Ducks banded 

in Victoria. Proceedings of the Royal Society of Victoria, 86, 1–14. 

Norman, F.I. (1974) Notes on the breeding of the Pied Cormorant near Werribee, Victoria, in 1971, 

1972 and 1973. Emu, 74, 223–27. 

Norman, F.I. (1990) Macquarie Island ducks: habitats and hybrids. Notornis, 37, 53-58. 

O'Donnell, M.A. & Vandruff, L.W. (1983). Wildlife conflicts an urban area: occurrence of 

problems and human attitudes towards wildlife. In Proceedings of the First Eastern Wildlife 

Damage Control Conference (ed D.J. Decker), pp. 315–23. Cornell University, Ithaca, New 

York. 

O'Dowd, D.J., Green, P.T. & Lake, P.S. (2003) Invasional ‘meltdown’ on an oceanic island. 

Ecology letters, 6(9), 812-17. 

O'Neill, G. (1999) Renaissance on Lanark. Wingspan, Supplement 9, 1–15. 

Ochs, P. (1976). Strychnine. In Proceedings 7th Bird Control Seminar (ed W.B. Jackson), pp. 108–

10. Bowling Green State University, Bowling Green, Ohio. 

Office International Epizooties. (2001). Highly pathogenic avian influenza. In Manual of standards 

for diagnostic tests and vaccines, pp. 212–20. Office of International des Epizooties, Paris 

France. 

Office International Epizooties. (2009) Update on highly pathogenic avian influenza in animals 

(Type H5 and H7). Available online at: 

http://www.oie.int/downld/AVIAN%20INFLUENZA/A_AI-Asia.htm. 

Officer, H.R. (1964) Australian Honeyeaters. Bird Observers Club, Melbourne. 

Olsen, B., Munster, V.J., Wallensten, A., Waldernstrom, J., Osterhaus, A.D.M.E. & Fouchier, 

R.A.M. (2006) Global patterns of influenza A virus in wild birds. Science, 312, 384–88. 

Orlich, D.C. (1979) Designing sensible surveys. Redgrave Publishing Company, New York. 

Ostfeld, R. S. & Keesing, F. (2000) Biodiversity and disease risk: the case of Lyme disease. 

Conservation Biology, 14, 722-728. 



 

198 

Otis, D.L. (1989). Damage assessments - estimation methods and sampling design. In Quelea 

quelea - Africa's bird pest (eds R.L. Bruggers & C.C.H. Elliot), pp. 78–101. Oxford University 

Press, Oxford. 

Palmer, T.K. (1972). The house finch and starling in relation to California's agriculture. In 

Proceedings of the General Meeting of Working Group on Grainivorous Birds, 1970, pp. 275-

90, Holland. 

Panigrahy, B., Senne, D.A. & Pedersen, C. (2002) Avian influenza virus subtypes inside and 

outside the live bird markets, 1993-2000:A spatial and temporal relationship. Avian Diseases, 

46, 298–307. 

Pannwitz, G., Wolf, C. & Harder, T. (2009) Active surveillance for avian influenza virus infection 

in wild birds by analysis of avian fecal samples from the environment. Journal of Wildlife 

Diseases, 45(2), 512-18. 

Parker, I.M., Simberloff, D., Lonsdale, W.M., Goodell, K., Wonham, M., Kareiva, P.M., 

Williamson, M.H., Von Holle, B., Moyle, P.B., Byers, J.E. & Goldwasser, L. (1999) Impact: 

toward a framework for understanding the ecological effects of invaders. Biological Invasions, 

1(1), 3-19. 

Parkes, J.P., Robley, A., Forsyth, D.M. & Choquenot, D. (2006) Adaptive management 

experiments in vertebrate pest control in New Zealand and Australia. Wildlife Society Bulletin, 

34(1), 229-36. 

Paton, D.C., Sinclair, R.G. & Bentz, C.M. (2005) Ecology and management of the Common 

Starling (Sturnus vulgaris) in the McLaren Vale region. Final Report to Grape and Wine 

Research and Development Corporation, Project number UA 01/05. University of Adelaide, 

Adelaide. 

Pell, A.S. & Tidemann, C.R. (1997) The impact of two exotic hollow-nesting birds on two native 

parrots in savannah and woodland in eastern Australia. Biological Conservation, 79(2-3), 145–

53. 

Pena, E. A. & Slate, E. H. (2006) Global validation of linear model assumptions. Journal of the 

American Statistical Association, 101, 341-354. 

Perdue, M., Crawford, J., Garcia, M., Latimer, J. & Swayne, D. (1998). Occurrence and possible 

mechanisms of cleavage site insertions in the avian influenza hemagglutinin gene. In 

Proceedings of the Fourth International Symposium on Avian Influenza (eds D.E. Swayne & 

R.D. Slemons), pp. 182–93. US Animal Health Association, Athens, Georgia. 

Perdue, M. L. & Swayne, D. E. (2005) Public health risk from avian influenza viruses. Avian 

Diseases, 49, 317-327. 

Peroulis, I. & O'Riley, K. (2004) Detection of avian paramyxoviruses and influenza viruses 

amongst wild bird populations in Victoria. Australian Veterinary Journal, 82(1 and 2), 79–82. 



 

199 

Petren, K. & Case, T.J. (1996) An experimental demonstration of exploitation competition in an 

ongoing invasion. Ecology, 77(1), 118-32. 

Pfeiffer, D.U. (2006) Assessment of H5N1 risk and the importance of wild birds. Journal of 

Wildlife Diseases, 43, S47-S50. 

Pimentel, D. (2002) Biological Invasions: Economic and Environmental Costs of Alien Plant, 

Animal and Microbe species. CRC Press, New York. 

Pimentel, D., Zuniga, R. & Monison, D. (2005) Update on the environmental and economic costs 

associated with alien-invasive species in the United States. Ecological Economics, 52(3), 273–

88. 

Plesser, H., Omasi, S. & Yom-Tov, Y. (1983) Mist nets as a means of eliminating bird damage to 

vineyards. Crop Protection, 2(4), 503–06. 

Pochop, P.A., Cummings, J.L., Steuber, J.E. & Yoder, C.A. (1998a) Effectiveness of several oils to 

reduce hatchability of chicken eggs. Journal of Wildlife Management, 62, 395–98. 

Pochop, P.A., Cummings, J.L., Yoder, C.A. & Steuber, J.E. (1998b). Comparison of white mineral 

oil and corn oil to reduce hatchability in ring-billed gull eggs. In Proceedings of the 18th 

Vertebrate Pest Conference (eds T.P. Salmon & A.C. Crabb), pp. 411–13. University of 

California, Davis. 

Pollock, K.H., Nichols, J.D., Brownie, C. & Hines, J.E. (1990) Statistical inference for capture-

recapture experiments. Wildlife Monographs, 107, 1–97. 

Porter, J.L., Kingsford, R.T. & Hunter, S.J. (2006) Aerial Surveys of Wetland Birds in Eastern 

Australia. October 2003-2005. Occasional Paper No 37. Department of Environment and 

Conservation, Hurstville, NSW. 

Porter, R.E.R. (1982) Comparison of exclosure and methiocarb for protecting sweet cherries from 

birds, and the effect of washing on residues. New Zealand Journal of Experimental 

Agriculture, 10(4), 413–18. 

Porter, R.E.R. (1987) Science and poison win war against rooks. New Zealand Journal of 

Agriculture, 152(6), 38–40. 

Porter, R.E.R. (1996a) Aviary and Field Trials to Find a New Toxin and Bait for Rook Control. 

Landcare Research Contract Report LC 9596/128. Landcare Research, Havelock North, NZ. 

Porter, R.E.R. (1996b) Testing efficacy of C1 to repel birds from ripening strawberries. Landcare 

Research Contract Report LC9596 / 127. Landcare Research, Havelock North, NZ. 

Porter, R.E.R., Clapperton, B.K. & Coleman, J.D. (2008) Distribution, abundance and control of 

the rook (Corvus frugilegus L.) in Hawke’s Bay, New Zealand, 1969–2006. Journal of the 

Royal Society of New Zealand, 38(8), 25–36. 

Porter, R.E.R. & McLennan, J.A. (1995) A comparison of a non-toxic bird repellent and netting as 

methods for reducing bird damage to wine grapes. Australian Vertebrate Pest Conference 

Proceedings, 10, 341–45. 



 

200 

Porter, R.E.R., Rudge, M.R. & McLennan, J.A. (1994) Birds and small mammals: a pest control 

manual. Manaaki Whenua Press, Lincoln, New Zealand. 

Porter, R.E.R., Wright, G.R.G. & Fisher, B.M. (1996) The residues from cinnamamide found on 

wine grapes and in wines. Pesticide Science. 

Potvin, N., Bergeron, J.M., Norman, M. & Cyr, A. (1982a) Evaluating the sterile male method on 

Red-winged Blackbirds: clinical evaluation of thiotepa as a sterilant bird crop pests. Canadian 

Journal of Zoology, 60(3), 460–65. 

Potvin, N., Bergeron, J.M., Norman, M. & Cyr, A. (1982b) Evaluating the sterile male method on 

red-winged blackbirds: effects of the chemosterilant thiotepa on the reproduction of clinically 

treated birds under field conditions. Canadian Journal of Zoology, 60(10), 2337-43. 

Pringle, J.D. (1987) The Shorebirds of Australia. Angus and Robertson., Sydney. 

Putman, R.J. (1989) Mammals as Pests. Chapman and Hall, London. 

R Core Team (2013) R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. 

R Development Core Team. (2010) R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. 

Rand, A.L. & Gillard, E.T. (1967) Handbook of New Guinea birds. Weidenfield and Nicolson, 

London. 

Rawnsley, B. & Collins, C. (2003) Birds eat shoots not just fruit. The Australian and New Zealand 

Grapegrower and Winemaker, 25–27. 

Recher, H.F. & Lim, L. (1990) A review of current ideas of the extinction, conservation and 

management of Australia's terrestrial vertebrate fauna. Proceedings of the Ecological Society 

of Australia, 16, 287–301. 

Reddiex, B. & Forsyth, D.M. (2006) Control of pest mammals for biodiversity protection in 

Australia. II. Reliability of knowledge. Wildlife Research, 33(8), 711-17. 

Redig, P.T., Stowe, C.M., Arendt, T.D. & Duncan, D.H. (1982) Relay toxicity of strychnine in 

raptors in relation to a pigeon eradication program. Veterinary and Human Toxicology, 24, 

335. 

Reilly, P.N. (1988) Australian Bird Watcher, 12, 206. 

Reynolds, T.M. (2003) The Feeding Ecology of the Adelaide Rosella in Cherry Growing Districts 

of the Adelaide Hills. Master Science Thesis. University of Adelaide, Adelaide. 

Rhymer, J.M. & Simberloff, D. (1996) Extinction by hybridization and introgression. Annual 

Review of Ecology and Systematics, 27, 83-109. 

Rhymer, J.M., Williams, M.J. & Braun, M.J. (1994) Mitochondrial analysis of gene flow between 

New Zealand Mallards (Anas platyrhynchos) and Grey Ducks (A. superciliosa). Auk, 111(4), 

970-78. 



 

201 

Rhymer, J.M., Williams, M.J. & Kingsford, R.T. (2004) Implications of phylogeography and 

population genetics for subspecies taxonomy of Grey (Pacific Black) Duck Anas superciliosa 

and its conservation in New Zealand. Pacific Conservation Biology, 10, 57-66. 

Ribot, R.F.H., Berg, M.L., Buchanan, K.L. & Bennett, A.T.D. (2011) Fruitful use of bioacoustic 

alarm stimuli as a deterrent for Crimson Rosellas (Platycercus elegans). Emu, 111(4), 360-67. 

Ridpath, M.G., Thearle, R.J.P., McGowan, D. & Jones, F.J.S. (1961) Experiments on the value of 

stupefying and lethal substances in the control of harmful birds. Annals of Applied Biology, 

49, 77–101. 

Riney, T. (1957) The use of faeces counts in studies of several free-ranging mammals in New 

Zealand. New Zealand Journal of Science and Technology, B38, 507–22. 

Rintala, J. & Tiainen, J. (2008) A model incorporating a reduction in carrying capacity translates 

brood size trends into a population decline: the case of Finnish starlings, 1951-2005. Oikos, 

117(1), 47-59. 

Robertson, C.J.R., Hyvonen, P., Fraser, M.J. & Pickard, C.R. (2007) Atlas of Bird Distribution in 

New Zealand 1999-2004. Ornithological Society of NZ, Wellington. 

Robinson, T.P., Franceschini, G. & Wint, W. (2007) The Food and Agriculture Organisation's 

gridded livestock of the world. Veterinaria Italiana, 43(3), 745-51. 

Roche, B., Lebarbenchon, C., Gauthier-Clerc, M., Chang, C.-M., Thomas, F., Renaud, F., van der 

Werf, S. & Guégan, J.-F. (2009) Water-borne transmission drives avian influenza dynamics in 

wild birds: The case of the 2005-2006 epidemics in the Camargue area. Infection, Genetics 

and Evolution, 9(5), 800-05. 

Rogers, A.E.F. (1972) NSW bird report for 1971. Birds, 6, 77–99. 

Rogers, A.E.F. (1976) NSW bird report for 1975. Australian Birds, 10, 61-84. 

Rohm, C., Horimoto, T., Kawaoka, Y., Suss, J. & Webster, R.G. (1995) Do hemagglutinin genes of 

highly pathogenic avian influenza viruses constitute unique phylogenetic lineages? Virology, 

209(2), 664–70. 

Rohm, C., Zhou, N., Suss, J., Mackenzie, J. & Webster, R.G. (1996) Characterization of a novel 

influenza hemagglutinin, H15: criteria for determination of influenza A subtypes. Virology, 

217(2), 508–16. 

Romvary, J., Meszaros, J., Barb, K. & Matskasi, I. (1980) The role of wild birds in the spread of 

influenza viruses. Acta Microbiologica Hungarica, 27(4), 269–77. 

Romvary, J. & Tanyi, J. (1975) Occurrence of Hong Kong influenza A (H3N2) virus infection in 

the Budapest Zoo. Acta Veterinaria Hungarica, 25, 251–54. 

Ronconi, R.A. & St Clair, C.C. (2006) Efficacy of a radar-activated on-demand system for 

deterring waterfowl from oil sands tailings ponds. Journal of Applied Ecology, 43(1), 111–19. 



 

202 

Rooke, I.J. (1983) Research into the biology of the Silvereye leading to methods for minimizing 

grape damage in vineyards of south-west Australia. Technical Series No. 2. Agricultural 

Protection Board of Western Australia, Perth. 

Rose, K., Newman, S., Uhart, M. & Lubroth, J. (2006) Wild Bird HPAI Surveillance: sample 

collection from healthy, sick and dead birds. FAO, Rome. 

Roshier, D., Asmus, M. & Klaassen, M. (2008) What drives long-distance movements in the 

nomadic Grey Teal Anas gracilis in Australia? Ibis, 150(3), 474-84. 

Roshier, D.A., Klomp, N.I. & Asmus, M. (2006) Movements of nomadic waterfowl, Grey Teal 

Anas gracilis, across inland Australia - results from satellite telemetry spanning fifteen 

months. Ardea, 94(3), 461–75. 

Roshier, D.A., Robertson, A.I. & Kingsford, R.T. (2002) Responses of waterbirds to flooding in an 

arid region of Australia and implications for conservation. Biological Conservation, 106, 399–

411. 

Roshier, D.A., Robertson, A.I., Kingsford, R.T. & Green, D.G. (2001a) Continental-scale 

interactions with temporary resources may explain the paradox of large populations of desert 

waterbirds in Australia. Landscape Ecology, 16, 547–56. 

Roshier, D.A., Whetton, P.H., Allan, R.J. & Robertson, A.I. (2001b) Distribution and persistence 

of temporary wetland habitats in arid Australia in relation to climate. Austral Ecology, 26(4), 

371-84. 

Roslaya, I.G., Roslyakov, G.E., Lvov, D.K., Isachenko, J.A., Zakstelskaya, L. & Ya.Trop, I.E. 

(1974) Circulation of arbo- and myxoviruses in populations of waterfowl and shore birds of 

the lower Amur (in Russian). Ivanovsky Institute of Virology, AMS, USSR, 2, 148–56. 

Rush, S.A., Soehren, E.C., Woodrey, M.S., Graydon, C.L. & Cooper, R.J. (2009) Occupancy of 

select marsh birds within northern Gulf of Mexico tidal marsh: current estimates and projected 

change. Wetlands, 29, 798-808. 

Sabirovic, M., Wilesmith, J., Hall, S., Coulson, N. & Landeg, F. (2006) Outbreaks of HPAI H5N1 

virus in Europe during 2005/2006. International Animal Health Division, London. 

Sanders, N.J., Gotelli, N.J., Heller, N.E. & Gordon, D.M. (2003) Community disassembly by an 

invasive species. Proceedings of the National Academy of Sciences, 100(5), 2474-77. 

Saunders, G. & Bryant, H. (1988) The evaluation of a feral pig eradication program during a 

simulated exotic disease outbreak. Australian Wildlife Research, 15, 73–81. 

Saunders, G.R. & Lane, C. (2011) Proceedings of the 15th Australasian Vertebrate Pest 

Conference. Sydney. Invasive Animals Cooperative Research Centre, Canberra. 

Saunders, G.R. & Robards, G.E. (1983) Economic considerations of mouse plague control in 

irrigated sunflower crops. Crop Protection, 2(2), 153–58. 

Schafer, E.W. (1984). Potential primary and secondary hazards of avicides. In Proceedings of the 

11th Vertebrate Pest Conference (ed D.O. Clark), pp. 217–22. University of California, Davis. 



 

203 

Schodde, R. & Mason, I.J. (1980) Nocturnal birds of Australia. Lansdowne, Melbourne. 

Schodde, R., Van Tets, G.F., Champion, C.R. & Hope, G.S. (1975) Observations on birds at glacial 

altitudes on the Carstensz Massif, western New Guinea. Emu, 75, 65–72. 

Scholtissek, C., Ludwig, S. & Fitch, W.M. (1993) Analysis of influenza A virus nucleoproteins for 

the assessment of molecular genetic mechanisms leading to new phylogenetic virus lineages. 

Archives of Virology, 131(3-4), 237–50. 

Schwarz, C.J. & Seber, G.A.F. (1999) Estimating animal abundance: review III. Statistical Science, 

14, 427–56. 

Scott, N.J., Jr. & Reynolds, R.P. (1984) Phenotypic variation of the Mexican Duck (Anas 

platyrhynchos diazi) in Mexico. The Condor, 86(3), 266-74. 

Selleck, P.W., Arzey, G., Kirkland, P.D., Reece, R.L., Gould, A.R., Daniels, P.W. & Westbury, 

H.A. (2003) An outbreak of highly pathogenic avian influenza in Australia in 1997 caused by 

an H7N4 virus. Avian Disease, 47(3), 806–11. 

Selleck, P.W., Gleeson, L.J., Hooper, P.T., Westbury, H.A. & Hansson, E. (1997) Identification 

and characterisation of an H7N3 influenza A virus from an outbreak of virulent avian 

influenza in Victoria. Australian Veterinary Journal, 75(4), 289. 

Sen, A.R. (1972) Some nonsampling errors in the Canadian Waterfowl mail survey. Journal of 

Wildlife Management, 36(3), 951–54. 

Serventy, D.L. (1961) The banding programme on Puffinus tenuirostris (Temminck). II. Second 

report, 1956-1960. C.S.I.R.O. Wildlife Research, 6(1), 42–55. 

Sharp, G.B., Kawaoka, Y., Jones, D.J., Bean, W.J., Pryor, P., Hinshaw, V. & Webster, R.G. (1997) 

Co-infection of wild ducks by influenza a viruses: distribution patterns and biological 

significance. Journal of Virology, 71(8), 6128–35. 

Sharp, G.B., Kawaoka, Y., Wright, S.M., Turner, B., Hinshaw, V. & Webster, R.G. (1993) Wild 

ducks are the reservoir for only a limited number of influenza A-subtypes. Epidemiology 

infections, 110, 161–76. 

Shea, K., Possingham, H.P., Murdoch, W.W. & Roush, R. (2002) Active adaptive management in 

insect pest and weed control: intervention with a plan for learning. Ecological Applications, 

12(3), 927-36. 

Sibley, C.G. & Ahlquist, J.E. (1990) Phylogeny and classification of birds : a study in molecular 

evolution. Yale University Press, New Haven. 

Siengsanan, J., Chaichoune, K., Phonaknguen, R., Sariya, L., Prompiram, P., Kocharin, W., 

Tangsudjai, S., Suwanpukdee, S., Wiriyarat, W., Pattanarangsan, R., Robertson, I., Blacksell, 

S.D. & Ratanakorn, P. (2009) Comparison of outbreaks of H5N1 highly pathogenic avian 

influenza in wild birds and poultry in Thailand. Journal of Wildlife Diseases, 45(3), 740-47. 



 

204 

Sims, L.D., DomèNech, J., Benigno, C., Kahn, S., Kamata, A., Lubroth, J., Matrtin, V. & Roeder, 

P. (2005) Origin and evolution of highly pathogenic H5N1 avian influenza in Asia. Veterinary 

Record, 157(6), 159-64. 

Sims, L.D. & Narrod, C. (2009) Understanding Avian Influenza. Food and Agriculture 

Organization of the United Nations, Rome. 

Sims, L.D. & Turner, A.J. (2008). Avian Influenza in Australia. In Avian Influenza (ed D.E. 

Swayne), pp. 239-50. Blackwell Publishing Ltd, Ames, Iowa. 

Sinclair, R. (1998). Management of raven damage to an almond crop. In Australia's Pest Animals. 

New Solutions to Old Problems (ed P. Olsen), pp. 133–36. Bureau of Resource Sciences and 

Kangaroo Press, Sydney. 

Sinclair, R. & Campbell, K. (1995) Cage trials on the repellency of methyl anthranilate to four 

species of pest birds. Australian Vertebrate Pest Conference Proceedings, 10, 346–51. 

Sinclair, R.G. (1990). The economics of netting for bird control. In Workshop on Bird Control in 

Agricultural Crops. Victoria College of Agriculture and Horticulture, Dookie. 

Sinclair, R.G. & Bird, P.L. (1986). The Adelaide Rosella as a pest of the cherry industry in the 

Adelaide Hills of South Australia. In Proceedings Annual Ornithologica Congress, Adelaide. 

Sinclair, R.G. & Bird, P.L. (1987). An assessment of bird damage in cherry orchards in South 

Australia. In 8th Australian Vertebrate Pest Control Conference, pp. 275–78. Queensland 

Rural Lands Protection Board, Coolangatta Qld. 

Sinclair, R.G. & Cerchez, K.N. (1992). Alpha chloralose for bird control. In Proceedings 3rd 

Biennial Proclaimed Animal and Plant Conference, pp. 104–07. Animal and Plant Control 

Commission, Adelaide. 

Sinden, J., Jones, R., Hesterba, S., Odomba, D., Kalischda, C., James, R. & Cacho, O. (2004) The 

economic impact of weeds in Australia. CRC for Australian Weed Management, Glen 

Osmond, SA. 

Sinden, J.A. (1994) A review of environmental valuation in Australia. Review of Marketing and 

Agricultural Economics, 62(3), 337-68. 

Singer, F.J., Swank, W.T. & Clebsch, E.E.C. (1984) Effects of wild pig rooting in a deciduous 

forest. Journal of Wildlife Management, 48(2), 464-73. 

Sinnecker, H., Sinnecker, R. & Zilke, E. (1982) Detection of influenza A viruses by sentinel ducks 

in an ecological survey. Acta Virologiaca, 26, 102–04. 

Slack, J. & Reilly, T. (1994). The economics of orchard netting. In Proceedings of the Bird and Bat 

Control for Horticulture and Aquaculture Seminar, pp. 42–54. Queensland Department of 

Primary Industries, Nambour Qld. 

Slemons, R.D., Cooper, R.S. & Osborn, J.S. (1973) Isolation of type-A influenza viruses from 

imported exotic birds. Avian Diseases, 17, 746–51. 



 

205 

Slemons, R.D. & Easterday, B.C. (1972) Host response differences among five avian species to an 

avian influenza virus - A/turkey/Ontario/7732/66 (Hav 5 N). Bulletin of the World Health 

Organization, 47, 521–25. 

Slingenbergh, J., Gilbert, M., de Balogh, K. & Wint, W. (2004) Ecological sources of zoonotic 

diseases. Revue Scientifique et Technique. Office International des Epizooties, 23(2), 467-84. 

Snacken, R., Kendal, A.P., Haaheim, L.R. & Wood, J.M. (1999) The next influenza pandemic: 

lessons from Hong Kong, 1997. Emerging Infectious Diseases, 5(2). 

Snow, L.C., Newson, S.E., Musgrove, A.J., Cranswick, P.A., Crick, H.Q.P. & Wilesmith, J.W. 

(2007) Risk-based surveillance for H5N1 avian influenza virus in wild birds in Great Britain. 

The Veterinary Record, 161, 775-81. 

Somers, C.M. & Morris, R.D. (2002) Birds and wine grapes: foraging activity causes small-scale 

damage patterns in single vineyards. Journal of Applied Ecology, 39(3), 511–23. 

Spennemann, D.H.R. & Allen, L.R. (2000) The avian dispersal of olives Olea europaea: 

implications for Australia. Emu, 100, 264–73. 

Spurr, E.B. (2002). Bird Control Chemicals. In Encyclopedia of Pest Management (ed D. 

Pimentel), pp. 1–4. Marcell Dekker, New York, USA. 

Sraml, M., Christidis, L., Easteal, S., Horn, P. & Collet, C. (1996) Molecular relationships within 

Australasian waterfowl (Anseriformes). Australian Journal of Zoology, 44(1), 47-58. 

St John, B. (1991) Management of Little Corellas in the Flinders Ranges: Discussion paper. 

National Parks and Wildlife Service, Adelaide, South Australia. 

Stallknecht, D.E. (1998) Ecology and epidemiology of avian influenza viruses in wild bird 

populations: waterfowl, shorebirds, pelicans, cormorants etc. 4th International symposium on 

avian influenza. 61–69. 

Stallknecht, D.E. & Brown, J.D. (2008). Ecology of avian influenza in wild birds. In Avian 

Influenza (ed D.E. Swayne), pp. 43-58. Blackwell Publishing Ltd, Iowa. 

Stallknecht, D.E., Kearney, M.T., Shane, S.M. & Zwank, P.J. (1990a) Effects of pH, temperature, 

and salinity on persistence of avian influenza viruses in water. Avian Diseases, 34(2), 412–18. 

Stallknecht, D.E. & Shane, S.M. (1988) Host range of avian influenza virus in free-living birds. 

Veterinary Research Communications, 12, 125–41. 

Stallknecht, D.E., Shane, S.M., Kearney, M.T. & Zwank, P.J. (1990b) Persistence of avian 

influenza viruses in water. Avian Diseases, 34(2), 406–11. 

Staples, L., Taylor, M., Crawford, R., Harding, I., Jenkinson, S. & Sinclair, R. (1998). Methyl 

anthranilate: bird repellent of environmental risk? In 11th Australian Vertebrate Pest 

Conference Proceedings, pp. 301–04. 

Steinegger, D.H., Aguero, D.A., Johnson, R.J. & Eskridge, K.M. (1991) Monofilament lines fail to 

protect grapes from bird damage. HortScience, 26(7), 924. 



 

206 

Stephenson, A.G. (1981) Flower and Fruit Abortion: Proximate Causes and Ultimate Functions. 

Annual Review of Ecology and Systematics, 12(ArticleType: research-article / Full publication 

date: 1981 / Copyright © 1981 Annual Reviews), 253-79. 

Stevens, G.R., Rogue, J., Weber, R. & Clark, L. (2000) Evaluation of a radar-activated, demand-

performance bird hazing system. International Biodeterioration &amp; Biodegradation, 45(3–

4), 129-37. 

Stevenson, A.B. & Virgo, B.B. (1971) Damage by robins and starlings to grapes in Ontario. 

Canadian Journal of Plant Science, 51(3), 201–10. 

Stewart, P.A. (1971) An automatic trap for use on bird nesting boxes. Bird Banding, 42, 121–22. 

Stickel, W.H., Reichol, W.L. & Hughes, D.L. (1979) Endrin in birds: lethal residues and secondary 

poisoning. Developments in Toxicology and Environmental Science, 4, 397. 

Stickley, A.R., Otis, D.L. & Palmer, D.T. (1979). Blackbird and mammal damage survey of mature 

field corn over a large (three-state area). In Test Methods for Vertebrate Pest Control and 

Management Materials (ed J.R. Beck), pp. 169–77. American Society for Testing and 

Materials, Philadelphia. 

Stokes, T., Merton, D., Hicks, J. & Tranter, J. (1987) Additional records of birds from Christmas 

Island, Indian Ocean. Australian Bird Watcher, 12(1), 1–7. 

Stone, C. (1996) The role of psyllids (Hemiptera: Psyllidae) and bell miners (Manorina 

melanophrys) in canopy dieback of Sydney blue gum (Eucalyptus saligna). Australian Journal 

of Ecology, 21(4), 450-58. 

Storr, G.M. (1973) List of Queensland Birds. Special Publication Western Australian Museum, 5, 

1–177. 

Stucky, J.T. (1974). Use of plastic netting. In Proceedings 6th Bird Control Seminar (eds H.N. 

Cones, Jr. & W.B. Jackson), pp. 195–97. Bowling Green State University, Bowling Green, 

Ohio. 

Sturm-Ramirez, K.M., Hulse-Post, D.J., Govorkova, E.A., Humberd, J., Seiler, P., Puthavathana, 

P., Buranathai, C., Nguyen, T.D., Chaisingh, A., Long, H.T., Naipospos, T.S.P., Chen, H., 

Ellis, T.M., Guan, Y., Peiris, J.S.M. & Webster, R.G. (2005) Are ducks contributing to the 

endemicity of highly pathogenic H5N1 influenza virus in Asia? Journal of Virology, 79, 

11269–79. 

Subbarao, K., Klimov, A., Katz, J., Regnery, H., Lim, W., Hall, H., Perdue, M., Swayne, D., 

Bender, C., Huang, J., Hemphill, M., Rowe, T., Shaw, M., Xu, X., Fukuda, K. & Cox, N. 

(1998) Characterization of an avian influenza A (H5N1) virus isolated from a child with a 

fatal respiratory illness. Science, 279((5349)), :324. 

Subramanya, S. (1994) Non-random foraging in certain bird pests of field crops. Journal of 

Biosciences, 19(4), 369–80. 



 

207 

Suckling, G.C., Backen, E., Heislers, A. & Neumann, F.G. (1976) The Flora and Fauna of Radiata 

Pine Plantations in North-eastern Victoria. Bulletin Number 24. Forests Commission, 

Melbourne. 

Suss, J., Schafer, J., Sinnecker, H. & Webster, R.G. (1994) Influenza virus subtypes in aquatic 

birds of eastern Germany. Archives of Virology, 135(1/2), 101–14. 

Swayne, D.E. & Suarez, D.L. (2000) Highly pathogenic avian influenza. Revue Scientifique et 

Technique. Office International des Epizooties, 19(2), 463–82. 

Taber, M.R. & Martin, L.R. (1998). The use of netting as a bird management tool in vineyards. In 

Proceedings of the 18th Vertebrate Pest Conference (eds R.O. Baker & A.C. Crabb), pp. 43–

45. University of California, Davis. 

Tahon, J. (1980). Attempts to control starlings at roosts using explosives. In Bird Problems in 

Agriculture (eds E.N. Wright, I.R. Inglis & C.J. Feare), pp. 56–68. British Crop Protection 

Council, Croydon, UK. 

Tasmanian Industrial Commission. (2006) Farming and Fruit Growing Award - AN170032 

Commonwealth Government Printer, Canberra. 

Tennyson, A. (1998) Chestnut-breasted shelducks and other wetland birds at Tupuangi, Chatham 

Islands. Notornis, 45, 226-28. 

Thomas, D.G. (1970) Wader migration across Australia. Emu, 70, 145–54. 

Thompson, R.F. & Spencer, W.A. (1966) Habituation : a model phenomenon for the study of 

neural substrates of behaviour. Psychology Review, 73, 16–43. 

Thrusfield, M. (1995) Veterinary epidemiology. Second edition. Blackwell Science, Oxford. 

Timm, R.M. & Fagerstone, K.A. (2010) Proceedings of the 24th Vertebrate Pest Conference. 

University of California, Davis. 

Tinbergen, J.M. (1981) Foraging decisions in Starlings (Sturnus vulgaris L.). Ardea, 69, 1–67. 

Tobin, M.E., Dolbeer, R.A. & Webster, C.M. (1989a) Alternate-row treatment with the repellent 

methiocarb to protect cherry orchards from birds. Crop Protection, 8(6), 461–65. 

Tobin, M.E., Dolbeer, R.A. & Woronecki, P.P. (1989b) Bird damage to apples in the mid-Hudson 

valley of New York. HortScience, 24(5), 859. 

Tobin, M.E., Dolbeer, R.A., Webster, C.M. & Seamans, T.W. (1991) Cultivar differences in bird 

damage to cherries. Wildlife Society Bulletin, 19(2), 190–94. 

Tobin, M.E., Koehler, A.E. & Sugihara, R.T. (1997) Effects of simulated rat damage on yields of 

macadamia trees. Crop Protection, 16(3), 203-08. 

Tobin, M.E., Koehler, A.E., Sugihara, R.T., Ueunten, G.R. & Yamaguchi, A.M. (1993) Effects of 

trapping on rat populations and subsequent damage and yields of macadamia nuts. Crop 

Protection, 12, 243–48. 

Tobin, M.E., Woronecki, P.P., Dolbeer, R.A. & Bruggers, R.L. (1988) Reflecting tape fails to 

protect ripening blueberries from bird damage. Wildlife Society Bulletin, 16(3), 300–03. 



 

208 

Toor, H.S. & Ramzan, M. (1974) The extent of losses to sunflower due to Rose-ringed Parakeet, 

psittacula krameri (scopoli) at Ludhiana. Journal of Research. Punjab Agricultural University, 

11(2), 197–99. 

Tracey, J., Bomford, M., Hart, Q., Saunders, G. & Sinclair, R. (2005). National guidelines and 

research priorities for managing pest birds. In 3rd International Wildlife Management 

Congress, Wellington, NZ, pp. 212-16. Manaaki Whenua Press, Landcare Research, Lincoln. 

Tracey, J.P. (2005) Targeting surveillance for avian influenza in wild birds: a pilot investigation in 

New South Wales. Final report to the Department of Agriculture, Fisheries and Forestry, 

Wildlife and Exotic Disease Preparedness Program. NSW Department of Primary Industries, 

Orange. 

Tracey, J.P. (2008) Towards national best practice strategies for bird pests of horticulture. Report 

to the Bureau of Rural Sciences, Department of Agriculture, Fisheries and Forestry. NSW 

Agriculture, Orange NSW. 

Tracey, J.P. (2010) Risk based surveillance of avian influenza in Australia’s wild birds. Wildlife 

Research, 37(2), 134–44. 

Tracey, J.P., Bomford, M., Hart, Q., Saunders, G. & Sinclair, R. (2007) Managing Bird Damage to 

Fruit and Other Horticultural Crops. Bureau of Rural Sciences, Canberra. 

Tracey, J.P., Fleming, P.J.S. & Melville, G.J. (2008a) Accuracy of some aerial survey estimators: 

contrasts with known numbers. Wildlife Research, 35(4), 377-42. 

Tracey, J.P., Lukins, B.S. & Haselden, C. (2008b) Hybridisation between mallard (Anas 

platyrhynchos) and grey duck (A. superciliosa) on Lord Howe Island and management 

options. Notornis, 55, 1-7. 

Tracey, J.P. & Saunders, G. (2003) Bird Damage to the Wine Grape Industry. Report to the Bureau 

of Rural Sciences, Department of Agriculture, Fisheries and Forestry. NSW Agriculture, 

Orange NSW. 

Tracey, J.P., Saunders, G., Jones, G., West, P. & van de Ven, R. (2001) Fluctuations in bird 

species, abundance and damage to wine grapes: a complex environment for evaluating 

management strategies. 12th Australasian Vertebrate Pest Conference Proceedings, 21-25 

May Melbourne, Victoria, 297–301. 

Tracey, J.P. & Saunders, G.R. (2010) A technique to estimate bird damage to wine grapes. Crop 

Protection, 29(5), 435–39. 

Tracey, J.P. & Vere, D.T. (2007). Cost-benefit analysis for bird netting in vineyards. In Managing 

Bird Damage to Fruit and Other Horticultural Crops (eds J.P. Tracey, M. Bomford, Q. Hart, 

G. Saunders & R. Sinclair), pp. 75-77. Bureau of Rural Sciences, Canberra. 

Tracey, J.P., Woods, R., Roshier, D., West, P. & Saunders, G.R. (2004) The role of wild birds in 

the transmission of avian influenza for Australia: an ecological perspective. Emu, 104(2), 109–

24. 



 

209 

Triplett, S., Luck, G.W. & Spooner, P. (2012) The importance of managing the costs and benefits 

of bird activity for agricultural sustainability. International Journal of Agricultural 

Sustainability, 1-21. 

Truscott, J., Garske, T., Chis-Ster, I., Guitian, J., Pfeiffer, D., Snow, L., Wilesmith, J., Ferguson, 

N.M. & Ghani, A.C. (2007) Control of a highly pathogenic H5N1 avian influenza outbreak in 

the GB poultry flock. Proceedings of the Royal Society of London Series B: Biological 

Sciences, 274, 2287-95. 

Tulp, I., McChesney, S. & Degoeij, P. (1994) Migratory departures of waders from north-western 

Australia: behaviour, timing and possible migration routes. Ardea, 82, 201–21. 

Turner, A.J. (1976) The isolation of fowl plague virus in Victoria. Australian Veterinary Journal, 

52, 384. 

United States Department of Agriculture. (2001) DRC-1339 (Starlicide). USDA Wildlife Services, 

Animal and Plant Health Inspection Service (APHIS) Technical Note. 

United States Environmental Protection Agency. (1995) Starlicide (3-chloro-p-toluidine 

hydrochloride). R.E.D. (Registration Eligibility Decision) FACTS EPA 738 F 96 003, 1–4. 

Van Vuren, D. (1998). Manipulating habitat quality to manage vertebrate pests. In Proceedings of 

the 18th Vertebrate Pest Conference (eds T.P. Salmon & A.C. Crabb), pp. 383–90. University 

of California, Davis. 

Vandenbergh, J.G. & Davis, D.E. (1962) Gametocidal effects of triethylenemelamine on a breeding 

population of Redwinged Blackbirds. Journal of Wildlife Management, 26(4), 366–71. 

Vestjens, W.J.M. (1977) Breeding behaviour and ecology of the Australian pelican (Pelecanus 

conspicillatus) in NSW. Australian Wildlife Research, 4, 37–58. 

Voller, P. & Eddie, C. (1995) The influence of possum and cockatoo damage on tree decline in 

drought affected riparian forests of the upper Condamine River south Queensland. Australian 

Vertebrate Pest Control Conference., 224–227. 

Wakeley, J.S. & Mitchell, R.C. (1981) Blackbird damage to ripening field corn in Pennsylvania. 

Wildlife Society Bulletin, 9(1), 52–55. 

Walters, C.J. & Holling, C.S. (1990) Large-scale management experiments and learning by doing. 

Ecology, 71, 2060–68. 

Wang, J., Vijaykrishna, D., Duan, L., Bahl, J., Zhang, J.X., Webster, R.G., Peiris, J.S.M., Chen, H., 

Smith, G.J.D. & Guan, Y. (2008) Identification of the progenitors of Indonesia 1 and Vietnam 

avian influenza A (H5N1) viruses from southern China. Journal of Virology. 

Ward, P. (1979) Rational strategies for the control of queleas and other migrant bird pests in 

Africa. Philosophical Transactions of the Royal Society of London, 287, 289–300. 

Ward, P. & Zahavi, A. (1973) The importance of certain assemblages of birds as information-

centres for food finding. Ibis, 115, 517–34. 

Warham, J. (1962) Bird islands within the Barrier Reef and Torres Strait. Emu, 62, 99–111. 



 

210 

Warham, J. (1990) The petrels: their ecology and breeding systems. Harcourt Brace Jovanovich, 

Sydney. 

Warner, S., Welch, A., Ainsworth, C., Tracey, J.P., Zikesch, F., Saunders, G.R. & Lukins, B. 

(2006) Application of rapid diagnostic tests in the targeted surveillance of Avian Influenza 

Virus within Victorian wild bird populations. Final Report to the Wildlife and Exotic Disease 

Preparedness Program. Primary Industries Research Victoria, Attwood. 

Watkins, R.W. (1996) Efficacy of cinnamamide as a repellent for vertebrate and invertebrate pests. 

Pesticide Outlook, 21–24. 

Watkins, R.W., Mosson, H.J., Gurney, J.E., Cowan, D.P. & Edwards, J.P. (1996) Cinnamic acid 

derivatives: novel repellent seed dressing for the protection of wheat seed against damage by 

the field slug, (deroceras reticulatum). Crop Protection, 15, 77–84. 

Watson, J., Warman, C., Todd, D. & Laboudallon, V. (1992) The Seycheles Magpie Robin 

(Copsychus sechellarum): ecology and conservation of an endangered species. Biological 

Conservation, 61, 93–106. 

Weatherhead, P.J., Greenwood, H., Tinker, S.H. & Bi Der, J.R. (1980) Decoy traps and the control 

of blackbird populations. Phytoprotection, 60(2), 65–71. 

Weatherhead, P.J., Tinker, S. & Greenwood, H. (1982) Indirect assessment of avian damage to 

agriculture. Journal of Applied Ecology, 19(3), 773–82. 

Weber, W.J. (1979) Health Hazards from Pigeons, Starlings and English Sparrows. Thomson 

Publications, California. 

Webster, R.G. (1998) Influenza: an emerging disease. Emerging Infectious Diseases, 4, 436–41. 

Webster, R.G., Bean, W.J., Gorman, O.T., Chambers, T.M. & Kawaoka, Y. (1992) Evolution and 

ecology of influenza A viruses. Microbiology Review, 56, 152–79. 

Webster, R.G., Campbell, C.H. & Granoff, A. (1971) The in vivo production of 'new' influenza 

viruses. I Genetic recombination between avian and mammalian influenza viruses. Virology, 

44, 317–28. 

Webster, R.G., Campbell, C.H. & Granoff, A. (1973) The in vivo production of 'new' influenza 

viruses. III. Isolation of recombinant influenza viruses under simulated conditions of natural 

transmission. Virology, 51, 149–62. 

Webster, R.G., Yakhno, M., Hinshaw, V.S., Bean, W.J. & Murti, K.G. (1978) Intestinal influenza: 

Replication and characterization of influenza virus in ducks. Virology, 84, 268–76. 

Wells, R.J.H. (1963) An outbreak of fowl plague in turkeys. Veterinary Record, 75, 783–86. 

Wentworth, B.C. (1968) Avian birth control potentialities with synthetic grit. Nature, 220, 1243–

45. 

Wentworth, B.C., Hendricks, B. & Sturtevant, J. (1968) Sterility induced in Japanese quail by 

spray treatment of eggs with mestranol. Journal of Wildlife Management, 32, 879–87. 



 

211 

West, R.R. (1968) Reduction of a winter starling population by baiting its pre-roosting areas. 

Journal of Wildlife Management, 32, 637–40. 

West, R.R. & Besser, J.F. (1976). Selection of toxic poultry pellets from cattle rations by starlings. 

In Proceedings 7th Bird Control Seminar (ed W.B. Jackson), pp. 242–44. Bowling Green 

State University, Bowling Green, Ohio. 

West, R.R., Besser, J.F. & DeGrazio, J.W. (1967). Starling control in livestock feeding areas. In 

Proceedings of the 3rd Vertebrate Pest Conference, pp. 89–93. University of California, 

Davis. 

Westbury, H.A. (1998). History of high pathogenic avian influenza in Australia and the H7N3 

outbreak (1995). In Proceedings of the Fourth International Symposium on Avian Influenza, 

May 29-31 1997 (eds D.E. Swayne & R.D. Slemons), pp. 23–30. United States Animal Health 

Association, Athens, Georgia. 

Wetlands International. (2002) Waterbird Population Estimates - Third Edition. Wetlands 

International Global Series No. 12. Wageningen, The Netherlands. 

Wheeler, R. (1947) Birds of Barmah Lake and Kulkyne National Forest areas. Birds Observers' 

Club Monthly Notes. 

White, S.B., Dolbeer, R.A. & Bookhout, T.A. (1985) Ecology, bioenergetics, and agricultural 

impacts of a winter-roosting population of blackbirds and starlings. Wildlife Monographs, 93, 

42. 

Whitehead, S.C., Wright, J. & Cotton, P.A. (1995) Winter field use by the European starling 

(Sturnus vulgaris): habitat preferences and the availability of prey. Journal of Avian Biology, 

26(3), 193–202. 

Wiens, J.A. & Dyer, M.I. (1975) Simulation modelling of red-winged blackbird impact on grain 

crops. Journal of Applied Ecology, 12, 63–82. 

Wiens, J.A. & Dyer, M.I. (1977). Assessing the potential impact of granivorous birds in 

ecosystems. In Granivorous Birds in Ecosystems (ed J.P.a.S.C.K. Eds), pp. 205–66. 

Cambridge University Press, London. 

Wiens, J.A. & Innis, G.S. (1974) Estimation of energy flow in bird communities: a population 

bioenergetics model. Ecology, 55, 730–46. 

Williams, M. & Basse, B. (2006) Indigenous gray ducks, Anas superciliosa, and introduced 

mallards, A. platyrhynchos, in New Zealand: processes and outcome of a deliberate encounter. 

Acta Zoologica Sinica, 52, 579-82. 

Williams, P.A. & Karl, B.J. (1996) Fleshy fruits of indigenous and adventive plants in the diet of 

birds in forest remnants, Nelson, New Zealand. New Zealand Journal of Ecology, 20(2), 127–

45. 



 

212 

Williams, R.E. & Schwab, R.G. (1974). Tests of a potential method for decoying starlings to bait 

stations. In Proceedings 6th Bird Control Seminar (eds H.N. Cones, Jr. & W.B. Jackson), pp. 

164–68. University of Nebraska, Lincoln. 

Wofford, J.E. & Elder, W.H. (1967) Field trials of the chemosterilant, SC-12937, in feral pigeon 

control. Journal of Wildlife Management, 31(3), 507–15. 

Woodall, P.F. (1985) Waterbird populations in the Brisbane region, 1972-83, and correlates with 

rainfall and water heights. Australian Wildlife Research, 12(3), 495. 

Woodbury, C.J. (1961). Local control of crows by trapping. In Journal of Agriculture, pp. 1–4. 

Department of Agriculture, Western Australia, Perth. 

Woolnough, A. & Parry, C. (2007). Eradicating starlings at Manypeaks, Western Australia. In 

Managing Bird Damage to Fruit and Other Horticultural Crops (eds J.P. Tracey, M. 

Bomford, Q. Hart, G. Saunders & R. Sinclair), pp. 102-03. Bureau of Rural Sciences, 

Canberra. 

World Health Organisation Expert Committee. (1980) A revision of the system of nomenclature for 

influenza viruses. Bulletin of the World Health Organization, 58, 585-91. 

World Health Organisation (2004) Guidelines for Drinking Water Quality, Third Edition. Water, 

Sanitation and Health Public Health and Environment Geneva  

World Health Organisation (2007) Review of latest available evidence on potential transmission of 

avian influenza (H5N1) through water and sewage and ways to reduce the risks to human 

health. Water, Sanitation and Health Public Health and Environment Geneva  

World Health Organization. (2009) Areas reporting confirmed occurrence of H5N1 avian influenza 

in poultry and wild birds since 2003. Available online at: http://gamapserver.who.int/. 

Woronecki, P.P. & Dolbeer, R.A. (1980). The influence of insects in bird damage control. In 

Proceedings of the 9th Vertebrate Pest Conference (ed J.P. Clarke), pp. 53–59. University of 

California, Davis. 

Woronecki, P.P., Dolbeer, R.A. & Seamans, T.W. (1990). Use of alpha-chloralose to remove 

waterfowl from nuisance and damage situations. In Proceedings of the 14th Vertebrate Pest 

Conference (eds L.R. Davis & R.E. Marsh), pp. 343–49. University of California, Davis. 

Woronecki, P.P., Dolbeer, R.A., Seamans, T.W. & Lance, W.R. (1992). Alpha-chloralose efficacy 

in capturing nuisance waterfowl and pigeons and current status of FDA registration. In 

Proceedings of the 15th Vertebrate Pest Conference (eds J.E. Borrecco & R.E. Marsh), pp. 

72–78. University of California, Davis. 

Woronecki, P.P., Dolbeer, R.A. & Stehn, R.A. (1981) Response of blackbirds to Mesurol and 

Sevin applications on sweet corn. Journal of Wildlife Management, 45, 693–701. 

Woronecki, P.P., Stehn, R.A. & Dolbeer, R.A. (1979). Primary and secondary losses in corn 

following simulated bird damage. In Proceedings 8th Bird Control Seminar (ed W.B. 

Jackson), pp. 306–15. University of Nebraska, Lincoln. 



 

213 

Woronecki, P.P., Stehn, R.A. & Dolbeer, R.A. (1980) Compensatory response of maturing corn 

kernels following simulated damage by birds. Journal of Applied Ecology, 17, 737–46. 

Woulfe, M.R. (1968). Chemosterilants and bird control. In Proceedings 4th Bird Control Seminar 

(eds D.E. Schneider & W.B. Jackson), pp. 146–52. Bowling Green State University, Bowling 

Green, Ohio. 

Wright, E.N. (1962) Experiments with anthraquinone and thiram to protect germinating maize 

against damage by birds. Annalsdes Epiphytes, 13, 27–31. 

Xu, X., Subbarao, K., Cox, N.J. & Guo, Y. (1999) Genetic Characterization of the Pathogenic 

Influenza A/Goose/Guangdong/1/96 (H5N1) Virus: Similarity of Its Hemagglutinin Gene to 

Those of H5N1 Viruses from the 1997 Outbreaks in Hong Kong. Virology, 261(1), 15-19. 

Yim, Y.J. & Kang, S.J. (1982) Control of bird damage in the vineyard. Research Reports, Office of 

Rural Development, S. Korea, Horticulture, 24(12), 102–05. 

Yokoyama, H. & Nakamura, K. (1993) Aversive response of tree sparrows Passer montanus to 

distress call and the sound of paper flag. Applied Entomology and Zoology, 28(3), 359-70. 

York, D.L., Cummings, J.L., Engeman, R.M. & Davis, J.E. (2000) Evaluation of Flight control™ 

and Mesurol® as repellents to reduce horned lark (Eremophila alpestris) damage to lettuce 

seedlings. Crop Protection, 19(3), 201–03. 

Yuen, K.Y., Chan, P.K.S., Peiris, M., Tsang, D.N.C., Que, T.L., Shortridge, K.F., Cheung, P.T., 

To, W.K., Ho, E.T.F., Sung, R. & Cheng, A.F.B. (1998) Clinical features and rapid viral 

diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet British 

Edition, 351, 467–71. 

 

 

 

 

 




