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Abstract 

 

Mast cells form an integral part of both innate and adaptive immunity; they help to 

orchestrate the inflammatory immune response through the release of a variety of 

inflammatory mediators [1]. Adverse reaction to allergens can lead to activation of 

mast cells, causing degranulation and release of a range of pro-inflammatory 

mediators contributing to the onset of allergy [2]. The most studied activation 

pathway in the adaptive immune response of mast cells is through the 

Immunoglobulin E (IgE) cell surface receptor FcεRI. Crosslinking of FcεRI leads to 

degranulation and de novo synthesis of mediators [3].  

 

Every eukaryotic cell undergoes constitutive secretion. Alongside this general 

process, cells such as neuronal endocrine and immune cells, including mast cells, 

perform regulated secretion. This enables the cell to rapidly release mediators 

stored in secretory granules upon stimulation by a particular extracellular ligand. 

Mediators released fall into two categories; pre-formed, contained within these 

secretory granules; monoamines such as histamine as well as many proteases [4, 5], 

and de novo synthesized that are released through the constitutive secretory 

pathway, including prostaglandins, leukotrienes, cytokines and chemokines [6, 7]. 

Elucidating the mechanisms of mast cell mediator release is imperative for 

understanding many disease processes; however, knowledge of the precise 

mechanisms by which mast cell exocytosis is controlled remains elusive.   

 

The aim of this study was to identify and characterise Soluble NSF attachment 

protein receptor (SNARE) proteins involved in the release of inflammatory 

mediators in human mast cells. Using LAD 2 human mast cells and primary human 

lung mast cells (HLMCS), expression of a variety of syntaxins and Vesicle associated 

membrane proteins (VAMPs), as well as the ubiquitously expressed SNAP-23 were 

found. To study the roles of individual VAMPs in exocytosis a novel technique 

utilising pH sensitive pHluorins was developed. Using VAMPs tagged with 

pHluorins, the cellular distribution of VAMP-3 and VAMP-8 containing vesicles and 

their behaviour upon IgE stimulation in live cells was monitored. In unstimulated 

cells, VAMP- 3 and 8 were found to have distinct cellular distributions. Upon IgE 

stimulation both VAMP-3 and VAMP-8 containing vesicles translocated to the 



membrane and underwent membrane fusion, consistent with roles in exocytosis. 

However, their responses showed distinct time courses and calcium dependences. 

Importantly the VAMP-3 vesicle pool could be selectively targeted with a botulinum 

neurotoxin serotype B (BoNT)/B LC construct and in doing so inhibited the release 

of IL-6. The findings in this study support the notion that distinct vesicle pools, 

defined in part by expression of VAMP-3 and VAMP-8, regulate the release of 

inflammatory mediators from mast cells and that BoNTs might provide a novel 

means of targeting the release of chronic inflammatory mediators from mast cells 

for treatment of chronic inflammatory diseases. 
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Chapter 1: Introduction 

 
Mast cells form an integral part of both innate and adaptive immunity, playing an 

important role in the inflammatory response. Adverse reaction to allergens can lead 

to activation of mast cells, causing degranulation and release of a range of pro-

inflammatory mediators contributing to the onset of pathology. Mast cells have 

been further implicated in many other diseases associated with aberrant mediator 

release including irritable bowl disease (IBD) [8]. SNARE proteins have been 

identified as essential proteins for the exocytosis of all non-lipid derived mediators. 

Inhibiting secretion though disruption of SNARE-mediated vesicle fusion could 

provide a novel therapeutic approach for the treatment of a variety of mast cell 

mediated inflammatory diseases.  

1.1 The Mast cell 

 

1.1.1 Mast cell development 

 

Paul Ehrlich first described mast cells over one hundred years ago. He observed 

unique staining of “protoplasmic deposits” by aniline dyes and named the cells 

“mastzellen” for fat, well-fed cells [9]. Having identified the cells in connective 

tissue, Ehrilch wrongly proposed the cells differentiated from fibroblasts. It is now 

known mast cells are derived from haematopoietic progenitors in the bone marrow 

and, unlike other blood cells, complete differentiation within their target tissue [10]. 

There is still conjecture as to their exact origin; work performed in murine models 

suggests potentially two alternate pathways for development (Figure. 1.1).  
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Figure 1.1 

The two suggested developmental pathways of mast cells[11]. 

 A. Chen et al [12] suggested mast cell progenitors are derived directly from multipotent progenitors 

(MPP), B. [13] showed that MCs can develop from committed myeloid progenitors notably from 

granulocyte/monocyte progenitors (GMPs) producing a common mast cell and basophil progenitor. 

Image taken from Arinobu et al 2009. Long-term Hematopoietic stem cells (LT-HSCs), common 

myeloid progenitor (CMP), megakaryocyte/erythrocyte progenitors (MEPs), common lymphoid 

progenitors (CLPs), basophil/mast cell progenitor (BMCP), basophil progenitor (BaP), mast cell 

commited progenitor (MCP), eosinophil commited progenitor (EoP). 

 

Once in the blood, mast cell precursors can be identified through their expression 

profile of cluster of differentiation (CD) proteins. These are proteins that are 

present on the cell surface of leukocytes and are used for identification and 

classification of specific cell types [14]. For mast cell precursors these include: 

CD34+ a cell surface antigen that is present on human hematopoietic progenitor 

cells, CD13+ also termed aminopeptidase N, a zinc dependent exopeptidase that can 

cleave neuropeptides and cytokines, and C-kit+/CD117 a receptor for Stem cell 

factor (SCF).  

 

Tissues mast cells are targeted to include those where there is a considerable host-

environment interaction, for example in the skin and mucosas of the respiratory 

and gastrointestinal tracks [15]. Their homing to target tissues requires a mixture of 

chemokines, integrins and SCF [16]. Maturation and survival of both human and 

murine mast cells are dependent on SCF; mice with mutations to either KIT or SCF 

have greatly reduced numbers of tissue mast cells [17, 18]. There are numerous 
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other factors that regulate SCF-mediated mast cell development, some of these are 

summarised in Table 1.1.   

 

Table 1.1 

Factors that affect mast cell development [16] | 
Adapted from Yoshimichi Okayama and Toshiaki Kawakami 2006. CT stands for connective tissue. 

 

Exposure to specific cytokines and chemokines within the target tissues triggers 

maturation, and most probably accounts for the heterogeneity between mast cell 

populations. This heterogeneity enables the mast cell to produce distinct secretory 

responses to a diverse number of stimuli in different tissue locations. The tissue 

specific nature of mast cells can be defined in many ways. Murine mast cells are 

classed by their tissue specific location, as either mucosal or connective tissue type 

mast cells. In humans the main criterion used to distinguish mast cell types is 

through their mast cell specific protease content. MCTC are those that express 

tryptase and chymase in secretory granules, while MCT express tryptase but little or 

no chymase. There is even evidence that there are sub-populations of mast cells 

within specific tissues. HLMCs, for example vary depending on the particular region 

of the lung they reside. Using immunohistochemistry it was found that MCTC mast 

cells present in pulmonary vessels were larger than those in small airway walls. 

Furthermore, there were significant differences in FcεRI expression, so much so that 

it is almost absent from mast cells present in alveolar parenchyma [19]. Table 1.2 

summarises some of the heterogeneity in receptors and medaitors found in mast 

cell subtypes. These are discussed in greater detail thoughout this chapter. 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Okayama%20Y%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kawakami%20T%5Bauth%5D
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Table 1.2 

Mast cell subtype heterogeneity 

The table highlights how the two mast cell subtypes differ in mediator content and receptor 

expression.  Leukotriene C4 (LTC4), Prostaglandin D2 (PGD2), Toll like receptor (TLR), 

Carboxypeptidase A (CPA), Calcitonin gene related peptide (CGRP),  [20-26]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subtype MCT MCTC

Mast cell location Intestinal mucosa, Lung Skin

Granule content Histamine, Typtase Histamine, Tryptase, Chymase, CPA

Nueropeptide activation none reported Substance P, CGRP, VIP

TLR expression TLR 2,3,4,7,10 TLR 2,3,4,9

Complement receptor expression none reported C5a, C3a

Known difference in Cytokine profile IL-5 and IL-6 high IL-4 high

LTC4 release High No

PGD2 release High High

Human mast cells
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1.1.2 Mast cell mediators 

 

Mast cell function relies on the release of a plethora of mediators following 

activation; these mediators allow mast cells to signal to and regulate the function of 

many other types of cells in the body. Mediators released can be broadly classed 

into three categories; (1) pre-formed and contained within secretory granules such 

as histamine and proteases [4, 5], (2) de novo synthesized cytokines and 

chemokines [6, 7] and (3) de novo synthesized lipid mediators including 

prostaglandins and leukotrienes. Some mediators, such as tumour necrosis factor 

alpha (TNF-α) are contained within pre-stored vesicle populations, and are newly 

synthesised upon activation [6, 27]. Figure 1.2 shows the numerous mediators 

released from mast cells. The combination of mediators secreted by a mast cell will 

depend on both the tissue in which it is resident as well as the receptors that are 

activated in any one situation.

 

Figure. 1.2 

Mast cell mediators  

Diagram depicts mediators released by mast cells.  Granule associated mediators are released within 

minutes of stimulation, while many growth factors and cytokines are de novo synthesised and can be 

released hours after stimulation. 
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Histamine 

Preformed mediators present in secretory granules (SGs) are released within 

minutes of activation through a reaction termed degranulation [28]. The biogenic 

amine histamine is one of the most well-known and studied preformed mediators 

present in mast cell SGs. It is formed from L-histidine by the enzyme histidine 

decarboxylase [29]. Storage of positively charged histamine in SGs requires 

negatively charged serglycan proteoglycans [30], these are discussed in greater 

detail below. Histamine exerts a number of effects, including vasodilation and 

bronchoconstriction. 

 

Serotonin  

Serotonin was identified in murine mast cell granules in the 50s [31]. It was 

originally thought that it wasn’t expressed in human mast cells until recently, when 

limited evidence suggests it might be present in small quantities [32]. Due to the 

more ubiquitous expression of serotonin deciphering the function of mast cell 

derived serotonin has proven difficult and given the little evidence of the presence 

of human mast cell serotonin, serotonin released from mast cells in humans might 

be limited.   

 

Vesicle Monoamine Transporters (VMAT) 1 and 2 mediate monoamine transport 

into secretory vesicles from the cytoplasm. They act through an ATPase generated 

proton gradient [33, 34], where the inward transport of monoamines is coupled 

with the efflux of two protons per amine molecule [35, 36]. VMATS and their 

importance in serotonin transport have been described in RBL-2H3 cells [37]. 

However, only one study has described expression of these transporters in human 

cells[38]. Both studies identified the expression of VMAT 2 and not 1.  

 

Proteases  

Proteases are stored at very high levels in SGs in their active forms. Three proteases 

are specifically expressed in mast cells; Tryptase, Chymase and Mast cell 

carboxypeptidase A (MC-CPA), although there are proteases present in mast cells 

that are expressed in other cell types as well, such as cathepsins and granzymes [39, 

40]. Mast cell proteases are synthesised as prepropeptides, which are subsequently 

cleaved intracellularly, therefore active forms of these proteases are stored within 
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granules. Storage of these proteases, as with histamine, requires Serglycan 

proteoglycans. These consist of a protein core to which sulphated negatively 

charged glycosaminoglycans bind, for mast cells this is sulphated heparin [41, 42]. 

Alongside storage of proteases, serglycan proteoglycans are also required for 

tryptase activation and modulate activity of chymase and MC-CPA. The requirement 

of serglycan proteoglycans in tryptase activation is thought to be through the fact 

that tryptase consists as tetrameric structure [43] and serglycan proteoglycans 

mediate the formation of this, while SGs help to mediate the cleavage of proMC-CPA 

to its active form [44] and allow more efficient presentation of substrates to 

chymase [45]. After mast cell proteases are released into the extracellular 

environment, the higher pH results in tryptase becoming dissociated from serglycan 

proteoglycans while MC-CPA and chymase remain in complex. This complex has 

been reported to hinder their diffusion and so keep protease induced inflammation 

and protease action near their site of release [46]. 

 

Tryptase is a serine class peptidase and cleaves peptides after lysine and arginine. 

There are four groups of tryptases present in human mast cells α, β, γ and .   

tryptase is membrane anchored and could resemble the ancestral form from which 

the soluble forms are derived [47]. Of the soluble tryptases only β seems to have an 

important role outside the cell, where the catalytic domains of α and delta have 

greatly reduced catalytic activity [48].  Tryptase is the best studied of the tryptases 

and can activate PAR-2 receptors in nerves [49, 50], suggesting a role in 

hypersensitivity. Other actions of tryptase include acting as a mitogen to fibroblasts, 

again through PAR-2 [51, 52], acting as an anticoagulant through degradation of 

fibrinogen [53, 54] and even to act on other immune cells including mast cells 

inducing degranulation.   

 

Chymase is a chymotrypsin-like serine proteinase. In humans there is only one 

gene, while in rodents these have expanded into five [55]. One possible explanation 

to this is that chymases have been shown to confer defence against venoms [56] 

that are non-lethal in humans but lethal in rodents. This proliferation of proteases 

might be the result of acquired defence against a range of venoms. Due to the inter-

species differences of rodent and human chymases, translating work from rodents 

into human has proven hard. However they have provided useful insights. 
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Chymases have wider protease activity than the tryptases and can degrade matrix 

proteins, evidence suggests a role in tissue remodelling and homeostasis [57].  

MC-CPA is a metallocarboxypeptidase. Only one gene has been found for MC-CPA in 

either humans or murine models. Knockout of MC-CPA results in impaired granule 

storage of chymase and is suggestive of a role of MC-PCA in granule homeostasis 

possibly through effects on compounds stored within the granules [58]. MC-CPA has 

also been shown to be important in degrading the snake venom sarafotoxin [59].  

 

Lysosomal enzymes  

Mast cell granules contain many lysosomal associated enzymes. These include -

hexosaminidase, which is thought to be involved in carbohydrate processing [60]. It 

is expressed ubiquitously in all subtypes of mast cells [61]. Cathepsins, are 

lysosomal associated proteases [62] that can be released upon immunoglobulin E 

(IgE) mediated stimulation. Although thought to be only active in the low pH of the 

granules, some evidence suggests that these enzymes might be functional after 

release [63]. -hexosaminidase release is often used to monitor mast cell 

degranulation through its ability to catalyse the hydrolysis of -glycosidically linked 

N-acetylglucosamine and N-acetylgalactosamine residues from a number of 

glycoconjugates [64]. 4-Nitrophenyl N-acetyl-β-D-glucosaminide can be used as a 

substrate to monitor release, where it is converted to 4-nitrophenol by β-

hexosaminidase and absorbance can be measured at 405nm to determine enzyme 

activity using spectroscopy.  

 

 

Pre-formed cytokines and chemokines 

Mast cells can pre-store cytokines within their granules or in small vesicles [27]. 

This has been well defined for TNF-α and even functional roles for this have been 

described, including the induction of lymph node hypertrophy seen in bacterial 

infection [65]. Other cytokines and growth factors identified in mast cell granules 

include Vascular endothelial growth factor (VEGF) [66, 67] and Il-4 [68]. The 

evidence for this and the possible trafficking pathways are discussed in detail in 

section 1.3.2 
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Lipid Mediators 

Cysteinyl leukotriene and prostaglandins are eicosanoids derived from arachidonic 

acid metabolism, as illustrated in Figure 1.3. Mast cells can synthesize and release 

PGE2 and PGD2 as well as the leukotriene LTB4, and LTC4. These mediators are pro-

inflammatory and lead to leukocyte chemotaxis, bronchoconstriction, vasodilation 

and platelet activation. Eicosanoid production is thought be carried out in part 

within lipid bodies [69]. These cytoplasmic organelles are present in mast cells. 

Arachidonic acid is incorporated into lipid bodies and could act as a store for 

eicosanoid production. Furthermore eicosanoid-forming enzymes localise to lipid 

bodies and eicosanoid formation occurs within them [70].  

 

 

Figure 1.3 

Prostaglandin and leukotriene synthesis [71] 

 

Cytokines, chemokines and Growth factors 

Alongside degranulation mast cells synthesise and subsequently release many 

cytokines, chemokines and growth factors over the course of a number of hours 

post stimulation. The list of factors released can be seen in Figure 1.2. The large 

numbers of cytokine and chemokines released by mast cells have many functions. 
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Cytokines are classed by their function; initially many were termed interleukins 

based on the assumption that they were produced by and targeted leukocytes. 

However it has become clear that interleukins are produce by a wide number of 

cells. The interleukin nomenclature represents the biological activities of individual 

cytokines although there are overlapping functions [72]. Cytokines can promote 

angiogenesis and act as growth factors, survival factors and mitogens.  

Chemokines are cytokines that mediate chemoattraction directing the traffic of 

leukocytes to the sites of inflammation [73, 74]. They can be classed into four 

groups based on structure and function. The CC chemokines are the largest group 

and are so called due to the first two of the first four cysteine residues being 

adjacent to one another, these attract mononuclear cells to sites of chronic 

inflammation[75]. CXC chemokines contain a single amino acid between the 

cysteine molecules and attract leukocytes during acute inflammation[75]. The last 

two groups (XCL and CX3C) only have one member each [74]. The possible 

pathways that govern cytokine release in mast cells are discussed in detail in 

section 1.3.2 

 

1.1.3 Mast cell models 

 

The large degree of heterogeneity between mast cell populations means utilising 

primary mast cells for in vitro work can provide novel insights into differences and 

similarities between these populations. For example HLMCs are widely used, as well 

as mast cells derived from skin and the intestines. There are however, some notable 

issues related to using primary mast cells, including the expense of their isolation 

from resected tissue, limitations in performing many experiments due to low cell 

number and the various sub-populations within native tissues. Coupled to the 

difficulty of genetically manipulating primary mast cells, model mast cell lines have 

provided a useful tool in deciphering the workings of these multifaceted cells. 

 

RBL 2H3 

The first cell line most commonly used as a mast cell model was the RBL-2H3 cell. 

These were in fact derived from cells isolated from a basophilic tumor in the 1970s 

from rats treated with a potent carcinogen [76] and therefore are basophil in origin. 

RBL-2H3 cells were developed from further cloning of these cells [77, 78]. RBL-2H3 
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cells are an easily cultivated line, relatively cheap to maintain and are fast dividing 

as a result of a mutation in KIT that results in constitutive activation of the receptor 

[79, 80]. Consequently they have become widely used as models for mast cells 

despite their basophilic origins. These cells can be stimulated through cross-linking 

of FcεRI in response to antigen-bound IgE and release mediators such as histamine 

and serotonin. Their phenotype is thought to be most similar to mucosal mast cells, 

however, there are differences; for example they differ in their responses to 

lipopolysaccarides (LPS) and in their expression of certain receptors [81, 82]. It has 

also been shown that there is a degree of heterogeneity between RBL cell lines [83]. 

Therefore, despite the wide use of these cells within the mast cell community they 

are not an ideal model in studying mast cell biology as they lie phenotypically 

somewhere in between a mast cell and basophil, and do not consistently express 

many mast cell associated factors and receptors. Furthermore, considering murine 

and human mast cells differ considerably in mediator content, tissue specificity and 

receptor expression care must be taken when extrapolating knowledge gained 

through the use of these models into humans. 

 

HMC-1 

HMC-1 cells are a human mast cell line, established from a patient with mast cell 

leukaemia [79]. These cells express a constitutively phosphorylated tyrosine 

residue on KIT and therefore do not require the growth factor SCF for survival in 

culture and have a comparable doubling time to RBL-2H3 cells. They lack consistent 

expression of FcεRI [84] and as a result don’t readily respond to IgE stimulation. 

This has meant that non-physiological stimuli such as the calcium ionophore, 

ionomycin are often used to monitor activity in these cells, which are of limited use 

when modelling allergic responses. HMC-1 cells only contain small amounts of 

preformed granule mediators such as histamine, tryptase and ß-hexosaminase and 

no chymase. HMC-1 cells can produce and release cytokines upon stimulation, 

including TNF- and Il-8 [85]. However, their profile of release is much smaller than 

that of primary mast cells [86], for example they do not release IL-5 or Il-4 and the 

amount of preformed mediators released are much lower [87]. With HMC-1 cells 

inability to respond to normal physiological stimuli, and containing and releasing 

minimal amounts of mast cell associated mediators, they can be considered an 
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immature cell line; not possessing all of the attributes of fully differentiated mast 

cells. 

 

LAD 2 

As with HMC-1 cells, LAD 2 cells were isolated from a patient with mast cell 

leukaemia [88]. They express a functional FcεR receptor and contain and release 

granule contained mast cell mediators such as histamine, tryptase and chymase. 

Unlike HMC-1 and RBL-2H3 cells, LAD 2 cells respond to SCF and are dependent of 

SCF for proliferation and survival. LAD 2 cells also have a doubling time of weeks 

rather than days. They can release a number of cytokines and chemokines including 

a number of interleukins, TNF-, Regulated on activation normal T cell expressed 

and secreted (RANTES) and MCP-1, in particular in response to non-immulogical 

stimuli such as neuropeptides [89]. These characteristics are suggestive of a more 

differentiated cell than the lines described above. Despite these characteristics, LAD 

2 cells do not represent a fully differentiated model; although containing and 

releasing greater amounts of preformed mediators than HMC-1 cells, their release is 

still small when compared to primary skin mast cells amounts of proteases such as 

tryptase [90]. Furthermore stimulation of FcRI results in limited cytokine release. 

This might be due to reduced FcRI subunit expression or a lack of fully mature 

signaling or cytokine production pathways.  LAD 2 cells can therefore be regarded 

as an intermediately differentiated mast cell model providing a more robust tool 

than previously used models but still not fully representing a mature mast cell.  

 

LUVA 

LUVA cells are a recently described mast cell line [91]. They arose spontaneously 

from a culture of non-transformed hematopoietic progenitor cells. They possess 

numerous granule-associated mediators, such as histamine, tryptase and ß-

hexosaminidase and express a functional FcεR receptor, activation of which induces 

degranulation, synthesis of prostaglandins and stimulates production and release of 

cytokines at much greater levels than LAD 2 cells. Like LAD 2 cells they also respond 

to SCF, although this is not needed for survival, and again are thought to represent 

an intermediately differentiated mast cell model. Being a newly development model 

many questions remain; such as their ability to maintain their phenotype in culture 

over time, and how they are able to respond to SCF but not require it for 
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proliferation or survival. No mutation in Kit is present and it is not 

autophosphoylated so the how they are able to survive without SCF is unknown. 

With probable mutations occurring elsewhere-conferring survival and propagation- 

it is impossible to determine the functional consequences of these mutations and 

how they affect their usefulness as a mast cell model. 

 

In conclusion all mast cell models have their advantages and disadvantages. The 

most common problems with them are the amounts and variety of mast cell 

associated mediators released and the variable expression of mast cell associated 

receptors. The best models currently available to study mast cell biology are LAD 2 

and LUVA cells, although the latter remain to be fully defined.  

 

1.1.4 Mast cells in health and disease 

 

The multitude of factors released by mast cells allow them to perform a diverse 

array of functions, some of these functions are described in the next section. 

 

Innate and adaptive immune response to pathogens 

Mast cells are best known for their involvement in the allergic response. However, it 

has become evident that they have important roles in both immune and non-

immune processes. The innate immune system acts as the first line of defence to 

infections. The mucosal location of mast cells places them at an ideal position to 

respond to bacteria, virus and parasitic infection [92, 93]. Mast cell deficient mice 

show decreased survival to infections from numerous species of bacteria, which can 

be reversed upon reconstitution with bone marrow derived mast cells [94, 95]. 

Mast cells exert their protection only after activation through pathogen or host 

derived signals, such as compliment components. Release of mediators such as TNF-

α results in the recruitment of other inflammatory cells, including neutrophils, that 

target the pathogens [96]. Mast cells might play a direct role in the clearance of 

pathogens themselves; in vitro they have been shown to phagocytose bacteria and 

release antimicrobial peptides [97, 98]. However, their low mobility and low 

numbers in tissues puts the in vivo relevance of this in question. Nevertheless these 

findings suggest the mast cell plays at least a supporting role in the clearance of 

bacterial infections. Mast cells have been postulated to have a role in the protective 



Page 14 

immunity of parasitic infections. Mast cells are functionally active during immune 

elimination of nematodes [99] and mice lacking mast cell chymase show delayed 

removal of the nematode Trichinella Spiralis [100]. Mast cells can also release a 

number of chemokines and cytokines in response to virus associated stimuli [101, 

102] and mast cell numbers increase around the site of viral infection [103].  

 

Mast cells are also important in the adaptive immune responses to pathogens. Mast 

cell derrived TNF-α  enhances the recuitement of T-cells [65] to lymph nodes. 

Furthermore, mast cells express major histocompatablilty complex (MHC) 

molecules and can act as antigen presenting cells [104, 105].  They have been shown 

to process and present bacterial antigens to T cells [97].   

 

It is clear that mast cells contribute to the immune response to pathogens, whether 

directly through release of proteases and phagocytosis or indirectly, through the 

release of chemokines and cytokines that recuit other immune cells to the sites of 

infection.  

 

Wound healing  

Mast cells can release numerous growth factors, such as VEGF, nerve growth factor 

(NGF), fibroblast growth factor (FGF) as well as tryptase and histamine [106-108]. 

These factors can induce the proliferation of epithelial cells and fibroblasts, 

suggesting a role for the mast cell in wound healing through re-epithelialisation and 

re-vascularization, acting alongside the function of the mast cell in the initial 

inflammatory response in response to wounds [109]. Further evidence of the 

wound healing function of mast cells comes from the observation that mice deficient 

in mast cells show impaired wound healing [110].  

The knockout mice strain used in the study, (kit w/wv), have impaired melanogenesis 

and are anaemic and sterile [111]. It is not fully clear how much these deficiencies 

in the model affect wound healing, although reconstitution with mast cells did 

restore much of the wound healing function.  Another strain Kit w-sh , which have an 

inversion mutation upstream of c-kit are thought to have less ‘off target’ effects that 

the kit w/wv mice. They have still been found to show some hematopoietic 

abnormalities [112] and highlight the pitfalls of using knockout models. 
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Reconstitution experiments, where a functional defect can be rescued by the 

engraftment of mast cells, are a must when using these models.  

 

Mast cells and allergy  
The first documented allergic response was Pharaoh Menes in 2640 BC, who 

according to hieroglyphic records, died from a wasp sting [113]. The first scientific 

observation came from Charles Blakey in 1864. He performed the first skin test on 

himself, testing and confirming that pollen caused his hay fever [114]. Anaphylaxis 

was described by Richet and Portir in 1902, while the term allergy was coined by 

Clemens von Pirquet in 1906, where he described the immune response itself 

causing disease through the formation of a pathogen-interacting “antibody” [115]. 

The “antibody” in question was IgE, although this wasn’t identified until 1967 by 

Ishizaka and Ishizaka [116]. Histamine was identified in 1907 and was initially 

called -iminazolyethylamine [117], three years later it was proven to induce a 

shock-like syndrome when injected into mammals [118]. Histamine was shown to 

reside in mast cells through studies in the 1950s by Riley and West [119] and 

subsequently shown to lead to wheal and flare reactions, connecting it to 

anaphylaxis. Allergic reactions are multiphasic, consisting of this acute response 

and also a late phase response. The early phase is caused by FcεRI activation; this is 

produced by sensitisation of the immune system with allergen leading to the 

production of large amounts of IgE [120]. Upon a second challenge the IgE-bound 

FcεRIs become cross-linked, leading to activation of the mast cell. This allergic 

response mediated through IgE is termed type 1 hypersensitivity. The early phase 

response consists of degranulation and the release of pro-inflammatory, granule-

associated mediators, such as histamine and proteases, and lipid mediators, 

together leading to the wheal and flare response within minutes. After this first 

phase the mast cells start to synthesise mediators such as cytokines and 

chemokines that recruit and lead to the infiltration of other immune cells, such as 

neutrophils and eosinophils, to the site of inflammation, resulting in the late phase 

response that can last for hours after the initial response [2].  

 

Chronic allergic inflammation occurs when this response repeats over time. The 

most studied of these allergic diseases is asthma. Asthma is associated with 

excessive production of mucus, hyper-responsiveness of the airways, 

bronchoconstriction and infiltration of other immune cells into the lungs. Large 
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numbers of mast cells are seen associated with airway smooth muscle in asthmatic 

patients and secreted preformed mediators such as histamine and tryptase induce 

contraction of these muscle cells, thereby contributing to hyper-responsiveness. 

Mast cells are also present around mucous glands and mast cell mediators can 

induce secretion from these [120, 121].  

 

In the GI tract mast cells are responsible for many of the symptoms seen in food 

allergy. Patients have increased levels of mast cell mediators such as histamine and 

tryptase in stool and gut lavage fluid [8]. In the gut, mast cell mediators lead to 

changes in gut function, inflammation and contribute to intestinal pain [8].  Mast 

cells are thought to be key players in irritable bowel disease and irritable bowel 

syndrome (IBD and IBS, respectively). Although the exact role that histamine, 

proteases and neuropeptides released by mast cells play in these diseases is not 

fully understood [8] 

 

Tumour development 

There is a growing body of evidence that mast cells are associated with and have an 

active role in the growth and development of tumors; large numbers of mast cells 

accumulate around the sites of tumors [122, 123]. Considering mast cells are 

capable of releasing both pro- and anti-tumor factors, the question arises as to 

whether the mast cell aids tumor development or is detrimental to the tumor. Mast 

cells are attracted to the site of tumors through the release of chemo-attractants 

such as RANTES and SCF [124]; large mast cell numbers correlate to poor prognosis 

[125]. Activation of Myc, a transcription factor that is overexpressed in many 

tumours, leads to recruitment of mast cells to the tumour site and this is required 

for tumour expansion in pancreatic islet tumours [126]. 

 

As mentioned briefly above, mast cells can release many factors that could both aid 

and hinder tumour development. Mediators such as VEGF, II-8, MCP-1, Platelet 

derived growth factor (PDGF) and Il-6 are pro-tumour factors released by mast cells 

that can stimulate angiogenesis and tumour growth[127, 128]. Differential release 

of mast cell mediators through activation of different receptors could lead to 

selective release of these pro-tumour factors by mast cells over anti-tumour factors. 

In hypoxic conditions, such as those encountered within the tumour 
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microenvironment, mast cells are selectively stimulated to release pro-tumour 

factors, including VEGF and IL-6 [129-131]. Furthermore, factors released from 

damaged tumour cells, such as SCF and toll like receptor (TLR) 4 ligands, inhibit 

degranulation and induce production of pro-tumour factors such as VEGF and PDGF 

[132]. Mast cell often accumulate at the periphery of tumours, near to the 

vasculature [133] and there is a correlation between mast cells and angiogenesis in 

breast, colorectal, lung and uterine cancers [134, 135]. VEGF and FGF over 

expression in mast cells often results in poor prognosis [136, 137]. Mast cells are 

also a source of many proteases and tissue-remodelling factors that serve an 

important function in wound healing; these factors lead to remodelling of the 

extracellular matrix (ECM) and increase vascular permeability. Within the context 

of tumour development, these factors could aid tumour metastasis and progression 

[133, 138] particularly as mast cells lie at the interface of tumour and healthy tissue.  

 

Clearly mast cells can also release factors that will lead to an immune response 

detrimental to the tumour, such as chymase and many cytokines. Mast cells can 

recruit eosinophils and neutrophils as well as activate adaptive B and T cell 

responses [133].  However, once in the tumour microenvironment mast cells might 

become agents for tumour growth and invasion through exposure to factors 

described above and these findings provide a possible means by which the tumour 

microenvironment modifies mast cell function, aiding tumour growth through 

release of pro-tumour factors while inhibiting anti-tumour factor release.  

  

1.2 Mast Cell activation 

 
The functions of mast cells described above require the mast cell to detect 

environmental signals. Mast cells possess a number of receptors that through 

differing signalling pathways lead to the differential release of mast cell factors. 

 

1.2.1 FcεRI activation 
 

The most studied activation pathway in mast cells is activation through the IgE cell 

surface receptor FcεRI. Cross-linking of FcεRI leads to degranulation and de novo 

synthesis of mediators [3]. The FcεRI receptor consists of three subunits; α, β and 
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disulphide linked γ units.  The α subunit binds IgE but doesn’t participate in 

downstream signalling. The γ subunits contain a cytoplasmic immuno-receptor 

tyrosine-based activation motif (ITAM) that initiates downstream signalling, the β 

subunit also contains this motif and is thought to act to amplify the signal [139]. 

Aggregation of the receptor results in trans-phosphorylation of the ITAMS by Lyn 

and Syc family kinases [140]. The phosphorylated ITAM then acts as a scaffold, 

allowing the binding of enzymes and adaptors including phosphatidyl 3-OH kinase 

(PI3K)[141]. A parallel pathway involves Fyn and leads to activation of PI3K by 

phosphorylation of Gab2. The Fyn signalling cascade eventually leads to the 

activation of Phospholipase C (PLC)-γ and subsequent production of Inositol 

trisphosphate (IP3) and diaglycerol (DAG) [142]. DAG activates protein kinase C 

(PKC), while IP3 induces release of calcium from the endoplasmic reticulum (ER) 

through activation of IP3R. STIM1, acting as a calcium sensor of ER calcium levels, 

then redistributes to parts of the ER proximal to the plasma membrane [143]. 

STIM1 acts to activate the highly selective calcium release activated channel (CRAC) 

ORAI1, opening the channel pore through the interaction of a positively charged 

sequence on STIM1 with the acidic coiled-coil of ORAI1 [144]. The activation of 

ORAI1 leads to a large influx of extracellular calcium into the cell and subsequent 

degranulation. ORAI 2 and 3 have been shown to be expressed in mast cells [145] 

but their functional roles have not yet been determined; ORAI1-/- liver derived 

mast cells lack calcium release activated current (CRAC) currents suggesting there 

is no redundancy.  

 

The fact that some calcium entry remains in ORAI1 -/- mast cells and other divalent 

ions can permeate and support degranulation suggests other channels are acting 

alongside ORAI1, most likely the TRP channels. In RBL-2H3 cells TRPC5 has been 

shown to contribute to calcium entry by acting alongside ORAI 1 [146] and mast 

cells express a number of TRP channels [147].  These channels could act to modify 

CRAC channel calcium entry in cells when expressed in a ‘mix and match’ manner, 

forming channels with different properties allowing differential responses to 

different stimuli. 
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Figure. 1.4  

FcεRI signalling in mast cells 

Upon cross linking of FcεRI by IgE the src-family kinases Syk, Fyn and Lyn become activated, leading 

to a signalling cascade that ultimately gives rise to large increases in cytosolic Ca2+ [142] through 

production of IP3 and the resulting release of Ca2+ from the ER. This in turn leads to the influx of 

external Ca2+ through CRAC channels and results in mediator release. Figure from Kalesnikoff et al 

(2008) 

 

1.2.2 IgE independent receptor activation pathways 

 

Alongside the IgE receptor, mast cells possess numerous receptors that contribute 

to the ability of mast cells to respond to diverse stimuli. Some of which are 

discussed below 

  

C-kit 

The c-kit receptor has been shown to be vital to mast cell development and survival; 

mice with impaired SCF and C-kit have greatly reduced numbers of tissue mast cells 

[16]. In other cell types the expression is down regulated as they mature, mast cells 

are the exception to this and express high levels of the receptor after maturity. The 

receptor has intrinsic tyrosine kinase activity that is activated upon ligand binding 

and subsequent receptor dimerisation. Autophosphorylation creates binding sites 

for molecules such as the src family kinases and PLC [148]. The resulting 

downstream signalling cascade leads to the production of transcription factors 
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important for mast cell migration, survival, growth and cytokine production [16, 

149, 150].   

 

Complement receptors  

Complement receptors are G-protein coupled receptors, activated by the potent 

inflammatory mediators, anaphylatoxins C3a and C5a. Mast cells have been shown 

to express both C3aR and C5aR but there is significant tissue specific heterogeneity; 

for example human skin mast cells respond to C5a [151] while human lung and 

tonsilar cells do not [152, 153]. C3aR are expressed in both primary mast cells and 

the mast cell line LAD 2 [154, 155] and can induce calcium mobilisation and 

subsequent degranulation, chemotaxis and production and release of chemokines 

[154]; in the same study C5a induced only a small rise in intracellular calcium and 

didn’t induce degranulation but did lead to a small rise in MCP-1 production. Both 

C3aR and C5aR couple to the Gαi family of heterotrimeric G proteins and their 

effects can be inhibited with pertussis toxin [156]. Interestingly there seems to be 

separate signalling pathways for release of chemokines and degranulation through 

complement activation. Addition of a PI3K inhibitor blocks C3a mediated MCP-1 

generation while leaving RANTES production intact, while inhibiting Extracellular 

signal Regulated Kinase (ERK) phosphorylation blocks release of both [154]. No 

further evidence exists as yet but given mast cells exhibit differential release it is 

plausible that activation of certain receptors, such as C3a, leads to activation of 

numerous downstream pathways resulting in release of a wide number of 

mediators. While other receptors, known to induce selective release of mediators, 

only activate the particular pathway for certain mediators for example a PI3K 

pathway leading to MCP-1 release but not RANTES. IgE or LPS stimulated Il-6 

release is not inhibited by wortmannin, the PI3K inhibitor, but degranulation is 

[157, 158]. The effect on other cytokines was not tested but this still highlights the 

different downstream signalling pathways used by the same receptor in releasing 

certain mediators. 

 

Toll like receptors (TLRs) 

Response to bacteria and viruses are mediated through pathogen recognition 

receptors, the best studied are TLRs. TLRs recognise a large number of pattern 

associated membrane proteins. There are 10 human TLRs [159] each one 
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recognises one of a number of PAMPs. Some are expressed on the cell surface, such 

as TLR 2, 4 and 5 and often recognise bacterial components such as 

lipopolysaccharide (LPS) and flagellin. Others are present on endocytic 

compartments and detect nucleic acids, for example TLR 3 responds to double 

stranded RNA [160]. Mast cells have been shown to express the majority of TLRs 

[161]. Different TLRs induce different responses in mast cells [24, 162] and suggests 

activation of different TLRs activates different signalling pathways. For example in 

Bone marrow derived mast cells (BMMC) TLR 2 activation induces the release of IL-

4 and 5 but not IL-1 whilst TLR 4 activation leads to production of IL-1 but not IL-4 

or 5[163]. One signalling pathway of TLRs in mast cells is through a MyD88-

dependant pathway [164]. The MyD88 leads to production of pro-inflammatory 

cytokines through transcription factors NF-KB and AP-1. How activation of 

particular TLRs leads to differential release is still not known. The expression of 

TLRs in mast cells means care has to be taken when looking at performing genetic 

modifications. Viral and siRNA mediated gene knockdown are common ways of 

monitoring gene function, but given mast cells have been shown to express TLR 3 

and 9, which recognise viral PAMPS, there is a possibility of unwanted activation 

[26]. Antagonists to TLRs exist which could reduce any the effects of shRNA or 

siRNA but if assessing innate immune responses in mast cells then these would be 

counter productive. This highlights the importance of using scramble controls as a 

means of testing any potential affects not directly associated with gene knockdown. 

 

Peptide receptors 

Mast cells are often positioned near to neurons and are capable of responding to 

factors they release [165]. Substance P, vasoactive intestinal peptide (VIP) and 

somatostatin induce human skin mast cells to degranulate [166].  It must be noted 

that there are large differences in the expression of these receptors depending on 

the tissue location of the mast cell. For example, neuropeptides do not cause 

histamine release from human gut mast cells (HGMC) [167]. However, HGMCs do 

express neurokinin-1 receptor, a target of neuropeptide substance P, upon 

stimulation with IgE crosslinking, indicating that mast cells may become primed to 

respond to neuropeptides during allergic inflammation. In vitro differentiated 

primary mast cells and LAD 2 cells have been shown to express neurokinin 

receptors 1, 2 and 3 as well as VPAC2, and these cells release cytokines different to 
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those of cells stimulated through FcεRI and degranulate when stimulated with 

substance P or VIP[89].  Activation through these peptides is sensitive to pertussis 

toxin and wortmannin, identifying a G-protein/PI3K pathway but is insensitive to 

PKC inhibition. The receptor activation pathways for both Substance P and VIP do 

differ; forskolin inhibits VIP-induced but not Substance P-induced activation 

suggesting VIP is more sensitive to high levels of cAMP [89].  

 

Stimulation of other receptors can induce selective release of mediators: 

Corticotrophin release hormone (CRH) can induce the selective release of VEGF.  

PGE2, is also able to induce selective release, which also inhibits FcεRI induced 

histamine release [60]. Activation through the PKC activator Phorbol myristate 

acetate (PMA) alone in mast cells induces selective release of mediators such as 

MCP-1 and VEGF [168, 169]. Il-6 can be selectively released through stimulation of 

cord blood derived mast cells with Il-1 [170]. What these experiments highlight is 

the multitude of ways mast cells can respond to different stimuli that enable them 

to modulate their responses according changes in their local microenvironment.  

 

1.3 Mast cell Secretory pathway 
 

1.3.1 Secretory granule biogenesis  

 

Every eukaryotic cell has a constitutive secretory pathway. Alongside this general 

process, cells such as neuronal, endocrine and immune cells, including mast cells, 

perform regulated secretion. This enables the cell to rapidly release mediators 

stored in secretory granules upon stimulation by a particular extracellular ligand. 

The endocytic pathway can be regarded as the opposite, through which material is 

removed from the cell surface to be recycled or degraded. Regulated secretion and 

endocytosis in most cells can be generally regarded as separate processes but in 

certain cell types, including mast cells, the two processes overlap. The resulting 

secretory granules formed by this interaction of the endocytic and exocytotic 

pathways, are often termed secretory lysosomes [171]. These secretory lysosomes 

have an acidic pH and contain lysosomal proteins, as found in regular lysosomes 

[172-174] and degranulation of mast cells is often measured using the lysosomal 
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associated ß-hexosaminidase. Lysosomes in non-specialised secretory cells can also 

undergo exocytosis [175]. In non-secretory cells, lysosomal exocytosis is important 

for plasma membrane repair, enabling the resealing of damaged sites [176]. 

Secretory lysosomes differ by their ability to undergo regulated secretion [177]. The 

evidence that these processes require different machinery comes from genetic 

diseases that affect secretory lysosomes, without affecting membrane repair. This 

includes Griselli’s syndrome, caused by mutations in RAB 27a [177].  

 

In BMMC, three distinct SGs have been defined [178]. Type I granules contain MHC 

class II molecules as well as lysosomal markers but not serotonin, type II granules 

contain MHC class II molecules, lysosomal markers and serotonin. Type III granules 

do not contain lysosomal markers but contain serotonin suggesting that type II 

granules are formed by fusion of type I and type III granules. It is not clear whether 

these represent different granule subtypes or immature non-functional 

intermediates. Other cell types containing secretory lysosomes, such as platelets, 

also contain conventional lysosomes. They contain three granules: Dense granules, 

alpha granules and lysosomal granules. These three are well defined and contain 

distinct contents from one another [179]. The fact that type I and III granules 

described above contain a mix of contents that are then combined in type II 

granules is more suggestive of non-functional intermediates fusing to produce a 

mature granule. An important point to note is that human mast cells contain very 

little if any serotonin [32] and so this type of granule, or granule intermediate, 

might not be relevant in describing human mast cell SGs.   

 

Very little is known about the sorting mechanisms that lead to granule targeting in 

mast cells. Possible mechanisms might include the mannose-6-phosphate system 

whereby proteins are “tagged” with a mannose-6-phosphate moiety that is 

recognised by mannose-6-phosphate receptors. These cycle between late 

endosomes and the trans-Golgi network (TGN) carrying proteins to lysosomes 

[177]. Another possible mechanism is through serglycin, that could act as an 

intracellular carrier [61]. Another feasible mechanism is P-selectin meditated 

targeting. This is a type I membrane protein and adhesion receptor for leukocytes. It 

contains targeting signals for secretory granules and lysosomes; expression of an 

HRP-P-selectin results in targeting to secretory granules in RBL-2H3 cells [180]. 
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Finally, proteins bound for secretory granules might be trafficked directly from the 

Golgi to the granules. One protein has been identified to do this is the Fas Ligand. In 

T-lymphocytes and natural killer cells Fas ligand is sorted directly to secretory 

granules through a proline-rich domain [181].  

 

1.3.2 Cytokine trafficking 

 

In other immune cells such as macrophages, the adaptation of the 

endosomal/lysosomal pathway is not limited to the release of preformed mediators, 

but to newly synthesised mediators such as cytokines. TNF-α and Il-6 are delivered 

to the plasma membrane from the TGN through the recycling endosome [182, 183], 

furthermore, Il-6 and TNF-α are released in a different temporal and special pattern 

from the recycling endosome, suggesting the recycling endosome is used as a key 

sorting mechanism for cytokine release. The recycling endosome is also utilised in 

GLUT4 transport. GLUT4 is found in the recycling endosomes of unstimulated 

adipocytes acting as a pre-stored pool to be released through insulin stimulation 

[184-186]. It is possible that in mast cells a similar pathway could exist. In mast 

cells the cytokine trafficking pathways are not well defined, and studies are few and 

lacking sufficient detail. Il-6 can be differentially released by mast cells through 

stimulation by IL-1 [87]. Ultra structural studies in HMC-1 and hCBMCS found pools 

of IL-6 present in vesicles 40 to 80 nm in size, distinct from SGs. Interestingly some 

of these pools were present in resting cells. It is not clear from this study whether 

mast cells are constitutively trafficking and releasing IL-6 in resting conditions or 

represent a resting store, distinct from SGs. Release of Il-6 is brefeldin A sensitive 

[187] and so most probably involves vesicles budding from the Golgi but, as with 

macrophage release, it might be a two-step process by which vesicles are trafficked 

to the plasma membrane via the TGN and the endosomal pathway. Perhaps the 

pools seen in resting cells is Il-6 residing in an endosomal compartment in a manner 

similar to GLUT4. 

 

TNF-is a cytokine where there is strong evidence showing it is both de novo 

synthesised and pre-stored. Evidence for pre-stored release is based on the fact that 

small amounts are released within minutes of stimulation, too shorter a time for de-

novo synthesised release [27]. TNF- is present in SGs and overexpressed TNF-
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colocalises to SGs when transfected into RBL-2H3 and LAD 2 cells [247]. After this 

initial release, TNF- mRNA expression increases and newly produced TNF- is 

trafficking through a brefeldin A sensitive pathway hours after initial stimulation.  

 

VEGF is also reported to be present in pre-stored pools; immuno-gold labelling 

identified VEGF in resting cells in SG like structures in human skin mast cells [107]. 

VEGF can also be selectively released without full degranulation [69,114,181] but 

whether this release is confined to only de novo synthesized or also involves 

selective release of preformed pools has not been determined. Given the limited 

evidence (a single ultra-structural image) no complete conclusions can be drawn. 

However, not all granules seemed to contain VEGF and so subsets of SGs, containing 

both preformed traditional granule mediators, such as histamine, might co-exist 

with another form containing additional cytokines and growth factors. An 

alternative, described above, is that these cytokines are not actually present in SGs 

at all and exist in pools residing in a recycling endosomal compartment that can be 

differentially released to SGs. 

Many other de-novo secreted cytokines are thought to be release through a more 

direct pathway, through small vesicles budding from the TGN and passing directly 

to the cell surface [188].  

 

Mast cell granule contents can be released by piecemeal degranulation. In this 

process small vesicles bud off from larger granules and fuse with the plasma 

membrane [189]. This mechanism might permit the release of selected mediators 

from granules without the need for full fusion. It must be noted that the only 

evidence for this in mast cells is through ultrastructural studies where mast cell 

granules appear partially empty. In other immune cells, such as eosinophils, this 

mechanism is accepted as a means of selective release of cytokines. For example, 

pre-stored cytokines, such as RANTES and Il-4 stored in granules can be selectively 

released in this process through small vesicles [190, 191]. Evidence for how this is 

achieved comes from EM studies where vesiculotubular structures could be seen 

within emptying granules and immuno-gold labelling identified RANTES present 

within granule sub-compartments, another study identified Il-4 in distinct granule 

vesicular compartments [192],[193]. As has been described in detail above, mast 

cells contain numerous pre-stored cytokines. Piecemeal degranulation might 
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provide the means by which mast cells can selectively release mediators, such as 

VEGF, in a process similar to eosinophils, alongside or as an alternative mechanism 

to the pathways described above.   
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Figure 1.5 

Possible mechanisms of cytokine release  

1: Direct trafficking from the TGN to the plasma membrane. 2: Vesicles containing cytokines budding 

off from a recycling endosomal store. 3: Release of cytokines by piecemeal degranulation, with 

cytokines stored and sequestered in granules. 

 

In mast cells a large proportion of secretory granules fuse to one another, as well as 

with the plasma membrane, in a process termed compound exocytosis [194]. Mast 

cell granules have been shown to fuse sequentially; whereby firstly a granule fuses 

to the plasma membrane and then other granules subsequently fuse to it, and fuse 

homeotypically; where vesicles fuse together and then undergo plasma membrane 

fusion [195, 196]. Compound exocytosis was first identified in mast cells by electron 

microscopy [107]. Evidence for homeotypic fusion relies on capacitance recordings  

[195]. Homeotypic fusions were stated to occur where large increases in 

capacitance were seen that were too large to be explained by sequential fusion of 

granules. There is currently no microscopic evidence for homeotypic fusion, one 

would expect to see fused SGs that are not fused with the plasma membrane and 

possibly exist in resting cells. Compound exocytosis allows for quick and complete 

release of granule contents within a relatively short period of time.  
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Finally, there is also some putative evidence of mast cell granules undergoing kiss 

and run fusion, in this process the granule contents are partially released and 

recloses not completing full fusion [197]. Assessed using fluorescent dextrans 

loaded into RBL-2H3 cells kiss and run fusion was determined to occur when a 

prolonged period of secretion of dextran was seen after an initial peak as the 

dextran loaded SGs passed up to the membrane and partially released contents. A 

full fusion event was defined as a large spike in fluorescence that was rapidly 

released. This is not convincing as the prolonged period of release might represent a 

larger granule containing more dextran or a granule loaded with more dextran 

leading to a longer release period. Furthermore determining the differences 

between piecemeal and kiss and run fusion of mast cell granules is difficult; the 

partially empty granules described above, seemingly showing SGs after piecemeal 

degranulation, might have emptied as a result of kiss and run.  

 

1.3.3 SNAREs- mediators of fusion 

 
Release of amine, peptide or non-lipid mediators from mast cells requires the fusion 

of secretory vesicles with the plasma membrane. SNAREs are fundamental to 

membrane fusion and exocytotic mediator release. SNARE proteins were first 

purified and described in the late eighties. Synaptobrevin, or vesicle associated 

membrane protein 2 (VAMP-2), named after the Latin brevis (short) was identified 

in synaptic vesicles (SV) in rat brains [198], while VAMP-1 was purified from 

Torpedo californica [199]. Around the same time two other proteins present on the 

neuronal plasma membrane were identified, these were termed p35 or syntaxin 

[200, 201] and synapse associated protein of 25 kDa (SNAP-25 )[202]. It quickly 

became apparent that these proteins were highly conserved across species [203-

205] and therefore thought to be of high importance in neurotransmitter release. 

This functional importance was confirmed through the discovery that SNARE 

proteins are the targets of Clostridial neurotoxins [206-210], which inhibit synaptic 

neurotransmitter release and are discussed in greater detail below. Furthermore, it 

was shown that these proteins could form a protein complex [211]. Over the next 

few years more SNAREs were identified and were subsequently shown to be 

ubiquitously expressed in many cell types, their expression not just confined to 
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neuronal cells [212-214]. It is now clear that SNARE are important sfor all forms of 

membrane fusion within the cell, there are 36 identified mammalian SNAREs to date 

Figure 1.6 shows the localisation of SNAREs to particular trafficking pathways. 

 

     

Figure 1.6. 

Intracellular organisation of SNARE proteins in mammalian cells. [215] 

Figure from Jahn and Scheller 2006 

 

SNARE proteins are classically grouped according to the membrane at which they 

are localised; t-SNAREs on target membranes and v-SNAREs when present on 

vesicle membranes. The syntaxins and SNAPS are generally regarded as t-SNARES 

while VAMPs are categorised as v-SNAREs.  SNARE mediated membrane fusion 

occurs through the formation of a four α -helix bundle [216], three of these helices 

are supplied through t-SNAREs and one from the opposing v-SNARE. The majority 

of SNARE proteins contain a trans-membrane domain within their C-termini that is 

connected to the SNARE domain by a short linker. Some exceptions to this include 

synapse associated protein of 23 kDa (SNAP-23) and SNAP-25 that lack trans-

membrane domains. These SNAREs are tethered to the plasma membrane through 

palmitoylated cysteine residues. 

 
Each SNARE protein contains a conserved SNARE domain of 60 to 70 amino acids 

that mediates complex formation.  Within the SNARE motif there is a highly 

conserved central area containing either one of three glutamine (Q) residues or an 
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arginine (R) residue. Mutations in these amino acids cause trafficking defects [217]. 

A more complete grouping of SNAREs is achieved through classification based on 

Q/R SNARE classification. Where SNARE motifs can be classified as Qa, Qb, Qc and R 

depending on the particular amino acid present in this highly conserved region. The 

4 helical complex formed by these motifs requires each one of these subfamilies. 

There are exceptions, however, those complexes formed from different 

combinations are less stable and might not be able to facilitate membrane fusion. 

[215].  Most SNARE proteins contain one SNARE domain, although some including 

SNAP-23 and SNAP-25 have two. These SNAREs are classed as Qbc SNAREs which 

flank the palmitoylated residues anchoring the SNAREs to the membrane.  

 

 
 
Figure. 1.7. 

 SNARE mediated membrane fusion.  [215]  

Figure from Jahn and Scheller 2006 

 
To drive membrane fusion the SNARE bundle containing the four SNARE helices 

forms a ‘trans’ SNARE complex spanning both membranes. This so called 

‘SNAREpin’ consequently zips together from the N-terminal through to the C-

terminal leading to fusion of the two opposed membranes. Once this fusion has 

occurred and a fusion pore formed, the SNAREs are no longer exerting a driving 

force and the complex is now present on the same membrane, it is said to be in a 

stable cis-conformation. The SNAREpin is the minimal requirement for fusion of two 
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lipid membranes [218]. This process requires many supporting regulators that 

enable the cell to exert control of the fusion process, some of which will be 

discussed later. Disassembly of the SNARE complex requires considerable energy; 

the AAA ATPase N-ethylmaleimide-sensitive factor (NSF) catalyses this disassembly 

[219]. Structural studies [220, 221] have shown that NSF doesn’t bind to the SNARE 

complex directly but requires adaptor molecules; these are termed Soluble NSF 

attachment proteins (SNAPS).  SNAPS bind directly to SNARE proteins and mediate 

the unwinding of the SNARE complex by NSF [222]. The SNARE cycle is shown in 

Figure. 1.7. 

 

The N-terminal domains of SNARE proteins, unlike SNARE domains, are highly 

variable and are thought to confer functional differences between SNARE isoforms. 

Syntaxin possesses an N-terminal extension that is independently folded, termed 

the Habc domain; an antiparallel three helix bundle [223, 224]. In neuronal cells a 

model has been proposed, where the Habc domain folds back on the SNARE motif 

resulting in the “closed conformation” of syntaxin, whereby it cannot interact with 

other SNARE proteins. In this closed formation the Habc domain exhibits a high 

affinity to Mammalian uncoordinated-18-1 (Munc18-1) [225]. Munc18-1 can 

displace SNAP-25 from syntaxin 1 with the help of NSF-SNAPS [226] and holds 

syntaxin in a closed conformation. Then Munc13-1 binds to the syntaxin/Munc18-1 

complex to “open” syntaxin and along with Munc18-1 mediates trans-SNARE 

complex assembly. These observations were made in reconstitution experiments 

using liposomes and eight key components of the neuronal secretory machinery to 

try and give physiologically relevant results. This highlights the issues with 

monitoring these interactions and being able to obtain physiologically relevant data. 

For example; neurotransmission is abolished in the absence of Munc18-1 or 

Munc13-1 [227] but in vitro SNAP-25-syntaxin 1-lipsosomes can fuse with VAMP-2-

liposomes in the presence of synaptotagmin (syt) I and calcium without Muncs. 

Therefore a lot more work needs to be done to bring together the in vitro and in 

vivo data for membrane fusion. Munc proteins are described in more in section 

1.3.5. 

 

VAMP-7 is one of the largest R-SNAREs, it’s size due to a large N-terminal longin 

domain [228]. This domain is important for localisation of the protein and it’s 
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function. For example the interaction of the VAMP-7 longin domain with the AP3 

adaptor complex is important for sorting to endosomal compartments. The longin 

domain binds to the -adaptin subunit of AP3 and VAMP-7 is the only VAMP that co-

precipitates with -adaptin, secondly it regulates the ability of VAMP-7 to 

participate in SNARE complexes [229-231].  

 

 The role of the longin domain highlights the way in which the structure of 

individual SNAREs can lead to their distinct intracellular targeting, and ultimately 

give rise to the function each SNARE has in membrane fusion events within a cell. 

 

1.3.4 SNARE proteins and mast cells 

 

Despite the wealth of knowledge and understanding of the function of SNARE 

proteins in neuronal exocytosis, less is understood of their functions in immune 

cells.  Much of the work of identifying SNARE proteins present in mast cells, and 

their importance for mediator release, has been performed in murine mast cell 

models.  

 

Experiments in RBL-2H3 cells at the beginning of 2000 started to define SNAREs 

present on mast cell granules. VAMP-7 and syntaxin 3 were shown to be expressed 

by reverse transcription-polymerase chain reaction (RT-PCR) and fluorescently 

tagged forms of these proteins translocated towards the membrane upon 

stimulation [232].  However, the images of this translocation are not clear and there 

was no assessment of endogenous levels so the validity of this experiment is 

dubious. Another group identified syntaxin 4, SNAP-23 and VAMP-8 involvement in 

mast cell degranulation [233]. Localisation of VAMP-8 with serotonin was shown by 

immunostaining in RBL-2H3 cells. In the same study overexpression of syntaxin 4 

by transient transfection caused inhibition of degranulation, measured by flow 

cytometry. Syntaxin 2 and 3 over expression had no effect. There was evidence of 

SNAREs localizing to distinct secretory vesicles in the same study, VAMP-2 and 

VAMP-7 partially localised with secretory granules that were dissimilar to VAMP-8 

in size. This highlights the possibility of distinct subsets of SGs, possibly 

differentially released. It must be stated that these results are not conclusive; 

immunostaining alone cannot be used to define the SNARE involved in a particular 
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pathway and for a more complete assessment overexpression studies should be 

supplemented with knockdown experiments to look for contrasting affects. What 

these initial studies did do though was to pave the way for more detailed analysis of 

the SNAREs involved in mast cell exocytosis.   

 

Further evidence for VAMP-8 involvement in SG exocytosis does come from 

knockdown experiments. Knocking out VAMP-8 in murine bone marrow derived 

mast cells reduces serotonin and cathepsin D release, while histamine and TNF-α 

release are unaffected [234]. [235] Tiwari et al have also shown VAMP-8 deficient 

bone marrow derived mast cells do not have reduced release of cytokines, whereby 

TNF-α and IL-6 release remained intact, however, they saw reduced histamine 

release in the same cell line producing conflicting results. Both studies used FcεRI 

stimulation on BMMC that were treated in a similar manner. FcεRI mediated 

histamine release in Puri et al was only 10% in control cells, lower than serotonin 

(40%) and much lower than FcεRI mediated release in Tiwari et al (50%). 

Furthermore, Tiwari et al performed additional in vivo experiments whereby they 

found reduced plasma histamine after anaphylactic challenge. The reasons for such 

low histamine release are not clear but with histamine release being so low it is not 

surprising no significant decrease was seen in VAMP-8 knockdown if histamine 

release was already compromised. Also, how the differential control of serotonin 

release relates to human mast cells is open to conjecture, as they express very little 

if any serotonin [32].  

 

The results identifying the key SNAREs involved in preformed mediator release 

have been augmented with recent work utilising a siRNA approach to knockdown 

SNAREs in RBL-2H3 cells, identifying VAMP-7 and -8 as well as SNAP-23 and 

syntaxin 4 as key SNAREs in pre-formed mediator release [236]. Knockdown of 

these SNAREs inhibited release of antigen-induced histamine and -hexosaminidase 

release. They did not determine any compensatory expression of other SNAREs 

upon knockdown, which might explain why a full inhibition of degranulation was 

not seen. VAMP-8 and syntaxin 4 co-precipitated with SNAP-23, which was 

expressed at high levels determined by qPCR, while VAMP-7 could not. 

The findings from all these studies in murine mast cells together suggest a model 

whereby SG release is mediated through the actions of SNAP-23, syntaxin 4 and 
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VAMP-8.  In other non-immune cell types, such as HeLa cells, VAMP-7 has been 

shown to mediate the trafficking from the late endosome to the lysosome [237] and 

although VAMP-7 knockdown inhibits degranulation and partially colocaslises with 

SGs, the fact that it does not co-precipitate with other SNARE heavily implicated in 

SG exocytosis suggests that it is not directly mediating the fusion of SGs to the 

plasma membrane. VAMP-7 might represent a trafficking compartment that is 

important for maturation of granules or trafficking granule components to granules, 

in this instance release of preformed mediators would still be compromised upon 

knockdown.  

 

What is clear from the experiments above is that VAMP-8 knockdown has no effect 

on TNF-α and IL-6 release [235], therefore another SNARE must be important for 

the trafficking of these mediators. Knockout of VAMP-2 and VAMP-3 has no effect on 

-hexosaminase release [234]. Whether or not knockdown of these SNAREs affects 

the release of other mediators has not been determined, however, VAMP-3 was 

shown to localise with TNF-α upon stimulation with IL-1B by immunostaining. This 

observation suggests a possible role for VAMP-3 in TNF trafficking. IL-1B doesn’t 

induce degranulation, so the role of VAMP-3 in mast cell exocytosis might just 

extend to trafficking of newly synthesized TNF rather than pre-stored pools, or it 

could be present on a subset of differentially released preformed vesicles. VAMP-3 

increases association with SNAP-23 when VAMP-8 is knocked down, determined by 

immunoprecipitation [238]. This highlights issues with knockdown experiments, 

where compensation is known to occur through overexpression of other SNAREs. It 

is therefore important to take a combinatorial approach to assessing SNARE 

function and care must be taken when interpreting these studies. This might explain 

how in the above experiments using knockdown of SNAREs no complete inhibition 

of mediator release was seen. It is possible that other SNARE were asble to 

compensate in part for the loss of a particular SNARE.  

 

Many of the SNAREs utilised for exocytosis in murine mast cells have a conserved 

function in human mast cells. VAMP-7 and VAMP-8 translocate to the membrane 

upon stimulation and inhibition of these two SNAREs, as well as SNAP-23 and 

syntaxin 4, through inhibitory antibodies inhibit pre-formed histamine release 

[239]. This effect is not seen with inhibition of VAMP-3 or VAMP-2. A more recent 



Page 35 

study has shown the release of many chemokines, including IL-8, CCL2 and CCL4 

[240], is mediated through SNAP-23 and syntaxin 3, while a small proportion is 

mediated by syntaxin 6 and another by the SNAREs important for pre-formed 

mediator release VAMP-8 and syntaxin 4. The method of inhibition used (inhibitory 

antibodies) is not ideal. The membrane needs to be permeablised and the specificity 

of the antibodies once inside the cell could be questioned. Even so these results 

would imply that many factors in mast cells are released through a diverse set of 

pathways under the control of multiple SNARE complexes. The eventual release of 

all mediators from the plasma membrane requires the Qbc SNARE SNAP-23, 

neuronal SNAREs do not seem to be utilised by mast cells and SNAP-25 is not 

expressed [239, 240]. One caveat to the notion of SNAP-23 mediating these events is 

the relatively recent discovery of multiple SNAP proteins, including SNAP-29 and 

SNAP-47 [241-243]. SNAP-29 localises to the endosomal membrane [244], has been 

implicated in FcεRI mediated exocytosis [245] and has been suggested to function in 

mast cell phagocytosis [246]. SNAP-47 has high levels of expression in nervous 

tissue and is enriched in SV fractions [241]. Both these SNAPS don’t have 

palmitolyated cysteine clusters and seemly lack a membrane anchor, although it is 

not known for sure whether there are post-translational modifications that lead to 

membrane association as SNAP-47 is membrane bound. Rather than being present 

at the plasma membrane they are most probably important for intracellular 

trafficking, where both seem to have a broad intracellular distribution [243, 247].   

 

VAMP-3 is known to be important in cytokine release in LPS activated macrophages. 

As has been discussed above, macrophages release TNF-α and Il-6 through a 

pathway that utilises the recycling endosome. VAMP-3 localises to this and mediates 

the trafficking of these cytokines to the cell surface [182]. GarcÌa-Roman et al [248] 

have shown that VEGF secretion is sensitive to tetanus toxin in mast cells, while 

degranulation remains unaffected. This would imply that one of the tetanus 

sensitive VAMPs (VAMP-1 2 or 3) is important for VEGF release. Considering human 

mast cells express little or no VAMP-1 and 2 and the fact that VAMP-3 is prominent 

in cytokine release in other immune cells, VAMP-3 is a likely candidate for release of 

certain growth factors and cytokines and could potentially be added to the plethora 

of SNAREs important for mast cell mediator release.  
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The variety of SNAREs residing on secretory vesicles, and their numerous 

regulatory proteins, might form the basis for their differential trafficking and 

release. Many of these regulatory proteins help to confer selectivity of vesicles to 

respond differentially to cytosolic cues, such as syts, which act as calcium sensors 

and allow the cell to impart a greater control on the release of mediators. Some of 

these regulatory proteins are discussed below. 

 

1.3.5 SNARE interacting proteins 

  

Synaptotagmins  

Synaptotagmins (Syts), as with much of the exocytotic fusion machinery, were first 

identified in neurons [217]. They are integral membrane proteins containing two C2 

domains C2a and C2b within their C termini, important for calcium dependent and 

independent protein-protein interactions [249]. The C2a domain  of a number of Syt 

iosoforms can bind syntaxin I and phospholipids in the presence of calcium, as well 

as the adaptor complex AP-2 [174].  

 

So far 17 mammalian isoforms of syt have been identified [250]. Different isoforms 

of syts have differing calcium sensitivities and can be classed into groups 

accordingly [251, 252]. Syts I II and III have low affinities to calcium and are 

important in fast release in the presence of high calcium concentrations in neurons. 

Syts V VI IX and X are intermediate in their affinities while Syt VII shows high 

affinity and mediates slow release. These differing calcium sensitivities have been 

shown to facilitate differential responses in neuronal exocytosis [253]. A study in 

PC12 cells has shown that different sized dense core vesicles (DVCs) harbor 

different syt isoforms [254]. For example small DCVs contain large amounts of syt I, 

which has a low calcium affinity, it confers onto them a greater propensity to 

undergo kiss and run fusion rather than full fusion, while vesicles expressing IX or 

VII isoforms show intermediate or low propensity to undergo kiss and run, 

respectively. These results would be expected when considering the relative 

affinities to calcium of these three isoforms and highlight the mechanisms by which 

cells can control differential release of vesicle populations based on differing 

calcium signals.  
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In murine mast cells four isoforms of syt are known to be expressed: syt II, III, V and 

IX [255-258]. Different isoforms have been shown to have unique localizations and 

exert diverse effects within the mast cell; over-expression of the neuronal syt I was 

shown to localize to secretory granules containing histamine and result in a 

potentiation of calcium triggered exocytosis [259], although syt 1 is not expressed 

at any great level in mast cells and so these results do not give any great insight into 

endogenous syt control of exocytosis.  

 

Syt II was found to negatively regulate calcium regulated exocytosis upon 

overexpression [255] , while histamine release was reduced in knockout mice 

(Baram,Adachi et al. 1999). In more recent studies the role syt II plays in mast cell 

exocytosis has become even more apparent; Syt II has been found to negatively 

regulate MHC class II presentation [174] and another recent study found Syt II to 

control, exclusively, regulated exocytosis in BMMCS [260]. Whereby, using syt II 

knockout mice, release of SG mediators such as histamine were reduced while 

prostaglandin and TNF- release was unaffected. Mast cells appeared normal in 

morphology and tissue location and stimulated calcium rises were not affected.  

 

Syt III co-localizes to early endosomal markers including syntaxin 7, and also to 

early SG markers including histamine [261]. Knock down of syt III causes recycling 

of transferrin to the ERC to be impaired (internalisation and trafficking into early 

endosomes was unaffected) and enlargement of SG, suggesting a role in recycling 

from early SG.  Syt IX in murine mast cells also has a role in the endocytic pathway. 

It is thought to be important in the correct sorting of SG proteins; knock down 

results in mis-targeting of TGN38, which normally cycles between the plasma 

membrane, endocytic recycling compartment (ERC)and TGN, to SG (Haberman, Ziv 

et al. 2005; Haberman, Ziv et al. 2007). The complex interplay of the endocytic 

pathway and release of cytokines in other immune cells, such as TNF-α in 

macrophages, suggests that many of these syntaptotagmin isoforms might form part 

of the complex system that controls the release of cytokines.  

 

Given the roles different isoforms of syts have in regulating differential release in 

neurons, and the fact that mast cells express numerous isoforms with differing 

calcium sensitivities, differential syt and SNARE expression might be of key 
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importance in conferring the release of a particular subset of vesicles in response to 

different external stimuli. 

 

Complexins 

Complexins are small proteins that contain an α helical region that is important for 

high affinity SNARE binding [262]. Complexin was initially thought to mediate 

SNARE complex zippering through binding of its central region as an anti-parallel α 

helix to the SNARE N-terminal coil-coil [263].  The N-terminal portions of the 

SNARE complex are ‘zippered’ but the complex is then clamped, whereby the C-

terminal portions are stopped from zippering by a part of the complexin molecule 

called the accessory helix which competes with the VAMP-2 C-terminus for binding 

to the t-SNARE [264, 265]. A further level of inhibition might also occur through the 

cross-linking of SNARE complexes; the accessory helix extends from the SNAREpin 

and can bind to other SNARE complexes. This crosslinking might allow additional 

inhibition through the formation of a ‘zigzag’ array (figure 1.8) [266]. Upon calcium 

influx after stimulation, this clamp is then released as calcium binds to syt which 

competes with complexin, displaces it and allows for full fusion to occur [267].  

Figure 1.8 

The complexin clamp 

A. Complexin clamps the half zippered SNARE complex. B. Shows the model for the ‘zigzag’ array 

whereby the accessory helix of complexin molecules can bind to other SNARE complexes and 

crosslink adding an additional layer of control. Figure from Kummel et al 2011.  

 

There are four complexin isoforms, with complexin III and IV exclusively expressed 

in retinal ribbon synapses [268]. Complexin studies in mast cells have only been 

carried out in RBL cells. Knockdown of complexin II reduces degranulation and 

complexin II translocates to the membrane after stimulation through FcεRI [269]. 

Complexin II has been postulated to regulate degranulation through interaction of 
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the site near the central a-helix region with syntaxin 3, SNAP-23 and VAMP-8, 

determined by GST pull down and the use of mutagenesis of the complexin II 

molecule [270]. Interestingly no interaction was seen with syntaxin 4 despite it 

being a SNARE heavily implicated in mast cell exocytosis. This might be explained 

by exocytosis through syntaxin 4 being dependent on other regulatory proteins, not 

complexin II. Complexin in neurons is known to facilitate rapid fusion of docked 

vesicles [271]. The mast cell doesn’t undergo such rapid exocytosis and so this 

might explain the apparent lack of interaction with syntaxin 4. Complexin might 

have differing roles in the mast cell as to that in neurons. Syntaxin 3 is reported to 

be present on SGs as well as the plasma membrane, it is possible that the role of 

complexin II in the mast cell lies predominantly in granule to granule fusion. This 

would occur during compound exocytosis and most probably only under large 

sustained increases in calcium. Compound exocytosis can occur rapidly (seconds) 

after stimulation in mast cells [195]. The authors explained the rapid time course by 

suggesting granules are fused before simulation. Perhaps complexin II, present on 

mast cell granules, actually allows rapid granule-to-granule fusion to occur after 

stimulation to enable the mast cell to release SG contents at a much greater rate. 

 

Mammalian Uncoordinated proteins  

Munc 18 proteins have been briefly described in section 1.3.  There are three Munc 

18 members, members of the SM family that are exclusively implicated in 

exocytosis. Munc 18-1 is thought of as a neuronal specific isoform while Munc 18-2 

and Munc 18-3 show more ubiquitous expression. They have different specificities 

for different syntaxins, Munc18-1 interacts with syntaxins 1, 2 and 3, 18-2 with 1 

and 3 and 18-3 with 2 and 4 [272]. Knockout mice for Munc 18s have severe defects 

in exocytosis and are born live but die [273]. Munc18 proteins have a horseshoe like 

structure that can hold syntaxin in its closed conformation and exert actions 

described in section 1.3.3. The end terminal peptide motif of syntaxin recuits 

Munc18 into the SNARE bundle through physical tethering, thus acting as an 

initiating factor for the SNARE-SM membrane fusion complex [274]. This N-peptide 

has a distinct role from the Habc domain whereby the N-pepide is postulated to be 

essential for vesicle fusion, whilst the Habc domain regulates fusion. Furthermore, 

only loss of the Habc domain reduces the amount of Munc18 present suggesting a 

role in stabilising Munc18[275]. Mast cells express all three isoforms of Munc 18 at 
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the mRNA level [276]. However, Munc18-1 protein, determined by western blot 

isn’t present in any great amount [277]. Munc18-2 seems to be the most 

predominant Munc in mast cells [276, 277]. It localises to granules, interacts with 

syntaxin 3 and knockdown of the protein inhibits degranulation [277, 278]. 

Interestingly Munc18-2 doesn’t interact with syntaxin 4, which has been heavily 

implicated in mast cell granule exocytosis. Munc18-3 does interact with syntaxin 4 

and is found on the plasma membrane in mast cells [277]. Therefore, the most likely 

set up is Munc 18-2 on mast cell granules and Munc18-3 on the plasma membrane, 

mediating granule-to-granule fusion and granule-to-plasma membrane fusion, 

respectively.  A more recent study in RBL-2H3 cells showed Munc18-2 interaction 

with syntaxin 11; knocking down Munc18-1 and 2 reduced syntaxin 11 expression 

but not its localisation and inhibited degranulation. The expression of other 

syntaxins was unaltered but what this study highlights is that altering one protein 

of the secretory machinery can have significant effects on the expression of others 

[279].  

 

Munc13s are also of key importance to vesicle fusion. They are important for 

opening the syntaxin molecule from its closed to its open conformation and interact 

with a host of other factors that are important for calcium-dependent exocytosis. 

There are four isoforms; -1, -2 and -3 are neuronal while 13-4 is more ubiquitously 

expressed. They contain multiple domains including calcium-sensing C2 domains 

and a DAG-sensing C1 domain [272]. Munc13-4 is highly expressed in mast cells, co-

localises with secretory granules and overexpression increases β-hexosaminidase 

release [280, 281].  Munc13s can interact with rabs; interactions with rab27a in T-

lymphocytes is required for tethering of vesicles to the plasma membrane[282]. In 

mast cells, Munc13-4 is a direct partner of rab27a and b [283], it also co-localises 

and interacts with Doc2α . Mutants lacking the Munc13-4 binding domain in Doc2a 

have inhibited exocytosis [284]. Mast cells derived from rab27a knockout mice have 

abnormal cortical F-actin distribution and the rab27b and rab27a/b knockout 

phenotypes mimic that of the Munc13-4 knockout [285]. These results suggest 

Munc13-4, with Doc2 and rab27 proteins might act to help dock and tether mast 

cell granules to the plasma membrane.  

 

Rabs 
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Rab proteins are a group of more than 60 that regulate vesicle trafficking. As with 

SNAREs, they are localised to distinct regions within the cell and help to organise 

and co-ordinate membrane traffic. They are GTPases that alternate between GTP-

bound or ‘on’ and GDP-bound or ‘off’’ [286]. Rabs are important for recruiting 

effectors that allow for vesicle movement along the cytoskeleton, vesicle tethering 

and vesicle un-coating [287]. The potential function of rab27 proteins in mast cells 

has already been discussed and is of key importance in mast cell granule exocytosis 

[288],  Rab 5a, an endosomal rab, has been implicated in regulation of FcεRI cell 

surface expression in BMMCs [289] 

 

1.4 Tools for monitoring exocytosis 
 

1.4.1 FM dyes 

 

Many optical methods exist to monitor exocytosis, they have proven key in 

developing understanding of this process. FM dyes have been used to monitor 

exocytosis and endocytosis for almost twenty years.  FM dyes are styryl dyes that 

have a lipophilic tail and a cationically charged head, linked via a double or triple 

bond bridge, termed the nucleus [290]. The head is an important determinant of the 

dyes ability to penetrate membranes, cationic dyes are the most useful for studies of 

exocytosis as these render the dye membrane impermeable [291]. The nucleus 

region determines the fluorescent properties of the dye.  One of the most widely 

used styryl dyes is FM1-43. Cell membranes can be loaded with the dye and the cells 

stimulated, upon compensatory endocytosis the dye is internalized and new 

secretory vesicles become stained with the dye. Then upon stimulation, dye loss can 

be used to monitor exocytosis[292]. 

 

1.4.2 Acridine Orange 

 

Acridine orange is a fluorescent cationic dye. The molecule exhibits pH sensitivity 

such that it can become trapped in the acidic compartments of secretory granules 

due to protonation. When the dye becomes de-protonated it becomes membrane 

permeable and so upon granule pH increases it would subsequently leave the 
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granule. Acridine orange also shows a concentration-dependant red shift [293] in 

fluorescence. These two properties can be used to monitor activation. Acridine 

orange can be loaded into secretory granules where it will accumulate and fluoresce 

red. Upon stimulation, the granule will alkalize, the dye leak out and there will be a 

burst of green fluorescence as the dye diffuses out[294]. The problem with this 

technique is targeting of the dye to other acidic compartments resulting in no 

selectivity for SGs. 

 

1.4.3 pH sensitive fluorescent proteins 

 

An alternative way of studying exocytosis is to use cells transfected with a pH-

sensitive fluorescent construct. Termed pHluorins, these proteins were formed 

through the mutation of the green fluorescent protein (GFP) molecule rendering 

them sensitive to pH [295]. There are two forms, ratiometric and ecliptic. In 

ratiometric pHluorin, the fluorescence intensity at one excitation wavelength 

(395nm) decreases with acidic pH changes while excitation at 475nm increases, 

both have an emission maximum of 509nm.  The ratiometric form has been a useful 

tool in monitoring the pH of cellular compartments and for studying endocytosis. 

Using the ecliptic form it becomes difficult to ascertain whether loss of signal is due 

to the tagged proteins being taken up into acidic vesicles or if the protein is being 

degraded [296]. The ecliptic form is however, ideal for visualising exocytosis. Its 

fluorescence is quenched in acidic pH environments, such as those encountered in 

resting vesicles (pH 5.6). These proteins can be tagged to the intravesicular domains 

of vesicle proteins, such as VAMPs. Upon fusion of these vesicles with the plasma 

membrane the extracellular solution mixes with the vesicular solution, this results 

in the pHluorin becoming exposed to more alkaline pH. This leads to de-quenching 

of the molecule and the resulting increase in fluorescence can be measured. More 

recently a new pH sensitive protein has been developed; a variant of dsRED termed 

mORANGE [297].  This has been used to perform dual-colour imaging and allows for 

the study of trafficking behaviours of multiple vesicle pools. For example one group 

has identified a distinct pool of vesicles defined by Vti1a that maintains 

spontaneous neurotransmitter release, using dual colour confocal imaging of 

pHluorin and mORANGE [298]. 
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1.4.4 Fluorescent false neurotransmitters 

 

Overexpression can often lead to miss targeting of proteins and these experiments 

are impossible to perform in cells refractory to transfection. Recently production of 

a novel dyes, termed fluorescent false neurotransmitters have led to an alternative 

means of effectively monitoring exocytosis in many cell types using fluorescent 

based assays. Fluorescent false neurotransmitter 511 (FFN511) and mini 202 are 

two optical probes that have recently been developed [299, 300]. These molecules 

are similar in structure to monoamines such as dopamine but have an additional 

aromatic moiety that gives the molecule enhanced fluorescent properties. They take 

advantage of the fact that VMATS are only fairly selective, less so than plasma 

membrane transporters. FFN511 is lipophilic enough to be passively transported 

across the plasma membrane, whereby it can then be loaded into secretory vesicles 

through the action of VMATS. FFN511 can be loaded into primary chromaffin cell 

dense core vesicles and upon stimulation of exocytosis the release of the dye 

measured through total external reflection fluorescence microscopy [299]. 

 

1.5 Botulinum neurotoxins  

 

1.5.1 Structure and mechanism of action 

 

BoNTs are clostridial neurotoxins produced by Clostridium botulinum. There are 

seven serotypes termed A–G. BoNT’s inhibit acetylcholine release at the 

neuromuscular junction causing paralysis [301, 302]. The structure of BoNT is 

illustrated in (Figure 1.9). BoNT consist of a heavy chain and a light chain bound 

together through disulphide bonds. The heavy chain can be subdivided into the Hc 

and Hn domains that are responsible for the two functions of the heavy chain [303]. 

The Hc is responsible for the binding to neuronal receptors through a double 

receptor mechanism; the toxins initially bind to gangliosides present on nerve cell 

membranes that allow accumulation of the toxin on the plasma membrane. Then, 

through binding to a protein receptor, the toxin is taken up into the cell through 

receptor-mediated endocytosis. Different serotypes bind different protein 

receptors. The specific receptors for four serotypes have been identified so far; 

BoNT/A binds SV protein 2 (SV2), BoNT/E binds to glycosylated forms of SV2 A and 
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B, while the binding proteins for BoNT/B and BoNT/G serotypes are syt I and syt II 

[304, 305]. Stimulation of neurons leads to increased activity of BoNT/A [304] 

suggesting increases of SV exocytosis leads to exposure of a greater number of 

receptors available for BoNT to bind to and subsequently  be taken up into the cell. 

 

 

Figure 1.9 

The structure of BoNTs 

BoNTs are produced as a single peptide that is proteolyticaly cleaved producing a heavy (HC) and a 

light (LC) chain. The two chains remain associated to each other through a disulphide bridge and 

non-covalent interactions. The HC is responsible for the binding to surface receptors and 

translocation of the toxin into a cells cytosol. The HC can be subdivided into the Hc and Hn domains 

that are responsible for the two functions of the heavy chain [303]. The blue/purple corresponds to 

the Hc domain of the HC important for neuronal binding. The Hn domain forms a channel in the acid 

environment of a vesicle to allow the translation of the catalytic domain (red) into the cytosol. [303] 

Figure adapted from Brunger and Rummel 2009. 

 

Once the toxin has been endocytosed, in the low pH environment of a vesicle, the 

toxin undergoes a conformational change that allows membrane insertion. The Hn 

domain forms a channel on the vesicle membrane that allows the light chain, LC to 

pass into the cytosol and there it cleaves its target, the SNARE proteins. The LCs of 

BoNTs are Zn2+ requiring endopeptidases that cleave neuronal SNAREs with high 

specificity to inhibit acetylcholine release. Different serotypes cleave different 

neuronal SNARE proteins (Figure 1.10). Subtypes B, D F and G can cleave VAMPs 1, 

2 and 3 with varying affinities. BoNT B, D and F surprisingly have been found to 

have a higher affinity to the non-neuronal VAMP-3 than VAMP-1 or 2, in fact BoNT D 

has a much lower affinity to VAMP-1 due to a single substitution of a Met with Ile at 
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residue 48 [306]. BoNT/A and /E cleave SNAP-25 whereas BoNT/C can cleave both 

SNAP-25 and syntaxin 1[307].  

 

Figure 1.10 

Cleavage sites of the BoNT serotypes 

 

BoNT/A and BoNT/E cleave SNAP25 at different sites, both cleave at the C-terminal 

but BoNT/A cleaves 9 amino acids of SNAP-25 while BoNT/E cleaves off 17[308]. 

This leads to differences in the duration of action; BoNT/A has a longer duration of 

action because it can still form a SNARE complex and so is stabilized despite it being 

nonfunctional. BoNT/E cleaved SNAP-25 cannot form the SNARE complex and so 

becomes removed much more rapidly leading to a shorter duration of action [309]. 

Expression of GFP tagged LCs in PC12 cells has shown BoNT/E has a more 

cytoplasmic localisation as opposed to BoNT/A LC, which was present in puncta on 

the PM. This might mean BoNT/E is more accessible to degradation pathways than 

BoNT/A and might contribute to the shorter duration of action [310].  

BoNT subtypes can be further differentiated into toxin variants; variability within 

subtypes can be as much as 31.6% [311].  There are four known BoNT/A variants, 

A1-4, and although all have highly conserved structures there are some notable 

differences. For example there is only 76% conservation between the LC of 
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subtypes 3 and 4 [312]. BoNT/E has 6 subtypes described [313], but despite most 

variations in the subtypes occurring in the catalytic and binding domains, the Zinc 

domain required for protease activity and the receptor-binding motif are conserved 

across the subtypes [313]. As with BoNT/A and BoNT/E, BoNT/B and /F have many 

subtypes described [314, 315] BoNT/F5 has a highly divergent LC but can still cause 

botulism and so is most probably active [314]. The functional implications of all 

these variants have yet to be fully determined, but the large number and surprising 

diversity within serotypes suggest some might be found.  

 

1.5.2 BoNT modification – avenues for novel therapeutics 

 

The high specificity of the BoNT receptor binding and SNARE cleavage limits their 

use therapeutically. Recent work has been focused on modifying the targeting and 

substrate specificity of these toxins to widen their therapeutic potential. A fragment 

of BoNT/A containing just the LC/Hn still has the ability to form permeable 

channels and has catalytic activity, but cannot bind neurons as it lacks the Hc 

domain. [316, 317]. Duggan et al [318] utilised a modified form of this construct 

conjugated to a lectin to switch the neuronal specificity to nociceptive spinal 

neurons [318]. Reduced sensory transmission was measured confirming the 

potential of retargeting BoNT for treatment of chronic pain. Further work identified 

calcitonin gene-related peptide (CGRP) release in trigeminal ganglionic neurons, a 

key mediator of inflammatory pain, being mediated by a cleavable SNARE protein 

[319], VAMP-2. Treatment with BoNT/D reduced calcitonin gene related peptide 

(CGRP) release. BoNT/A also inhibited release of CGRP but only upon release 

evoked by K+ depolarization not TRPV1; this is due to TRPV1 causing a more 

prolonged increase in calcium influx, whereby pre-fusion complexes of 

syntaxin/SNAP-25 and VAMP are destabilised by BoNT/A and as a result the 

probability of full fusion is reduced so that only a prolonged calcium influx can 

stimulate exocytosis. BoNT/E had no effect on release as it can’t bind; they express 

SV2C rather than A or B but it allows binding of BoNT/A. BoNT/E cleaves a larger 

number of residues from SNAP-25 than BoNT/A [320]. Combining the catalytic 

domain of serotype E with the binding domain of type A was postulated to allow 

entry of the BoNT/E LC into trigeminal ganglionic neurons and block CGRP release 

by all stimuli. A chimera termed chimera E/A containing BoNT/A HC with BoNT/E 
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LC was able to enter trigeminal ganglionic neurons and block TRPV1-mediated 

CGRP release [321]. This gave proof of principle that the serotype E toxin, as with 

serotype A, can be re-targeted to other neuronal targets. 

  

The results so far have shown the potential for the toxins to be retargeted to 

different neuron subtypes. Foster et al were able to re-engineer the specificity of 

BoNT to a non-neuronal target [322]. Here the LC/Hn domain of BoNT/C was 

coupled with epidermal growth factor to create a novel chimera. This construct was 

able to inhibit mucin secretion from A549 cells in a concentration-dependent 

manner through cleavage of syntaxin1. One key limitation still apparent with all 

these modified forms; they could only target neurons, or non neuronal cells utilizing 

the neuronal SNARE proteins SNAP-25, VAMP-1/2/3 or syntaxin 1.  

 

To extend the therapeutic potential of the toxins beyond a limited number of 

targets, modification of the LC is required to switch substrate specificity to non-

neuronal SNAREs. This has recently been achieved by a group using a modified form 

of the LC of BoNT/E [323]. Introduction of a single point mutation in LC/E was able 

to alter its substrate specificity to enable the modified toxin to cleave both its 

endogenous SNARE substrate SNAP-25 and SNAP-23. This modified toxin was 

shown to inhibit TNF-α induced mucin and IL-8 secretion when transfected or 

permeablised into HeLa cells. It has also been suggested that serotype F might be re-

targeted to VAMP-7 through the removal of negative charged amino acids 315 and 

310 and exchanging Arg133 [324]. 

 

These sets of experiments have allowed for a greater understanding of the workings 

of the BoNT. Altering BoNTs’ cell targeting and substrate specificity to inhibit 

secretion in non-neuronal cell types provides a novel therapeutic potential. SNAP-

23 is likely to be ubiquitously expressed in non-neuronal cells, therefore using a 

modified form of BoNT/E LC could have potential toxic effects. With SNAP-23 being 

a major constituent of membrane trafficking in non-immune cells, targeting this 

SNARE with a BoNT will no doubt show numerous off target effects and so care 

would have to be taken if pursuing this route. Targeting to specific cells types may 

circumvent this problem. The studies discussed above have proved that chimeras of 

BoNT containing modified HCs can be retargeted to non-neuronal cells. Combined 



Page 48 

with altered substrate specificity, this could provide a powerful therapeutic tool. 

The hyper secretion seen in mast cells in chronic inflammatory disease would place 

these cells as optimal targets for a modified toxin. Their expression of peptide 

receptors could be utilised as an entry point for a modified toxin while a modified 

LC could be used to cleave the potential SNAREs involved with mediator release. 

 

Thesis aims: 
 

The aim of this study is to identify and characterise the SNARE proteins expressed 

in human mast cells using the LAD 2 mast cell model and primary HLMCs. New 

assays will be developed to do this and used to assess the potential for 

therapeutically targeting the release of chronic inflammatory disease by targeting 

SNARE proteins with BoNTs. 
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Chapter 2: Materials and Methods 
 

2.1 HEK293 cell line 
 

Human embryonic kidney (HEK) 293 cells are a commonly used cell line derived 

from transformed human embryonic kidney cells in Alex van der Eb’s laboratory. 

Cells were cultured in DMEM/F12 media (Gibco Cat: 31331-028) supplemented 

with 10% foetal calf serum (FCS) and maintained at 37ºC in a humidified 

atmosphere of 5% CO2 incubator. Cells were split upon reaching confluency (twice 

weekly) using cell dissociation solution (CDS) (Sigma Cat: C5914) followed by 

centrifugation at 110g for 4 minutes. Cells were resuspended in new media and 1/5 

of the total cell number seeded onto a new 25cm2 Nunclontm surface tissue culture 

flask.  

 

2.2 LAD 2 mast cell line 
 

LAD 2 mast cells, derived from a patient with mast cell leukemia, were a kind gift 

from Dr. D Metcalfe (National Institute of Allergy and Infectious Diseases, National 

Institutes of Health, Bethesda, MD). The cell line is described in more detail in 

section 1.1.2 

 

2.2.1 LAD 2 cell culture 

 

Cells were cultured in StemPro-34 SFM serum-free complete medium (Invitrogen 

Life Technologies), supplemented with StemPro-34 nutrient supplement (supplied 

as 40X solution) and 2mM L-glutamine (Gibco Cat: 25030-032), making up “Total 

media”. 100ng/ml rhSCF. (R&D, Abingdon, UK) was added at weekly intervals from 

frozen aliquots of a 100µg/ml PBS with 0.1% Bovine Serum Albumin (BSA) (Sigma 

cat: A7906) solution. Cells were maintained at a density of 200,000 to 500,000 

cells/ml and were diluted with the appropriate amount of full media. Cells were 

maintained at 370C in a humidified atmosphere of 5% CO2 incubator. 
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To obtain frozen stocks of LAD 2 cells, 10 million cells were centrifuged at 100g and 

resuspended into 1.5ml of PZerve cryopreservative (Protide pharmaceuticals) 

supplemented with 200ng/ml rhSCF as described in [88]. Vials were place into a 

cryocontainer for 30 minutes at room temperature, 1 hour at -200C and 1 hour at -

800C before being placed into liquid nitrogen for long-term storage. For thawing, 

cells were removed from liquid nitrogen and 1.5ml total media was added 

containing 100ng/ml rhSCF at room temperature. Cells were transferred to a 6 well 

plate and rocked at room temperature for 6 hours, with large clumps of cell debris 

being removed by pipette. After this period cells were transferred to 75cm2 tissue 

culture flasks and placed at 370C in a humidified atmosphere of 5% CO2 incubator. 

 

2.3 HLMC  
 

HLMCS were obtained from non-lesional tissue from lung resections of lung cancer 

patients following surgery, in collaboration with Dr Peter Peachell, Department of 

Infection and Immunity, University of Sheffield. The provision of lung tissue and the 

use of the tissue in this study were approved by the National Research Ethics’ 

Committee.  

 

2.3.1 HLMC Isolation and Purification 

 

All steps were carried out in aseptic conditions. Lung tissue was cut into small 

pieces using scissors and tweezers and placed onto 100µm nylon gauze placed over 

a beaker. The tissue was washed with Dulbecco’s modified eagle medium (DMEM) 

(Gibco Cat: 32430-027 this type of DMEM was used for all HLMC work using DMEM) 

+ 2% heat inactivated FCS (Gibco cat: 10108) before being placed into a new beaker 

and chopped into a pulp using scissors, when the tissue was sufficiently chopped it 

was placed into fresh 100µM gauze and washed twice in DMEM + 2% FCS. The 

tissue was subsequently stored overnight at 4oC in a sterile screw top container 

containing 4ml of DMEM + 10% FCS + 1% antibiotic/antimycotic solution 

(containing 10 units/ml penicillin, 10 units/ml streptomycin and 25µg/ml 

amphotericin B) + 1% MEM non-essential amino acids (NEAA) (Gibco Cat: 11140-

035) per 1g of tissue.  
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The next day tissue was equilibrated to room temperature and lung tissue digested 

using 37.5mg hyaluronidase (Sigma) and 50mg collagenase type 1A (Sigma) per 10g 

tissue for 90 minutes at 37oC with stirring. After this time point the tissue was 

forced through a 50ml syringe at least 30 times to liberate cells. The pulp was then 

filtered three times through 100µM gauze with DMEM + 2% FCS and the filtrate 

collected in 50ml falcon tubes. The filtrate was washed three times by spinning cells 

at 160g, 4oC for 8 minutes, the supernatant being removed after each spin and cell 

being resuspended with fresh DMEM + 2% FCS. At this stage 5µl of cells were taken 

out and placed with 45µl Kimura stain to count the number of mast cells present. 

Kimura stain consisting of 0.05% Toluidine blue solution, 0.03% Light green, 

Saponin saturated in 50% ethanol, 0.067M/6.4pH Phosphate buffer. After the last 

wash the mixed population of cells were resuspended into 2ml cold Hanks balanced 

salt solution (HBSS) (Gibco Cat: 14170)/FCS placed into a screw top 2ml eppendorf 

and incubated at 4oC on a roller for 30 minutes to block cells to ensure minimal non-

specific binding of mouse anti-c-kit antibody (mAb YB5.B8). 

 

The remaining procedures were carried out with solutions at 4oC. HLMCS were 

purified using immunoaffinity magnetic selection. Anti-mouse IgG1 Dynabeads® 

coated with mouse anti-c-kit antibody (mAb YB5.B8) were used to positively select 

CD117-expressing HLMCS.  

 

After blocking, 20ml HBSS +2% FCS was added to cells and cells filtered through 

70µm bottle top filter into a 50ml falcon tube. The filter was subsequently washed 

to retain as many cells as possible up to the volume of 50ml. Cells were pelleted by 

centrifugation (160g 4oC for 8 minutes). Cells were resuspended into 1ml 

HBSS/FCS, transferred to a screw top 2ml eppendorf and dynabeads added at the 

appropriate concentration (5:1 ratio beads to mast cells). Cells were incubated with 

the coated beads for 1h 30 minutes at 4oC with rolling. After incubation cells were 

transferred to a 15ml falcon tube containing 10ml HBSS + 2% FCS and placed into a 

magnetic field for 3 mins to allow beads, with mast cell attached, to collect at the 

side of the tube. Supernatant containing other cell populations was removed by 

pipetting and mast cells attached to side of tube were subsequently resuspended 

into fresh HBSS +2% FCS. The process was repeated two more times. After the final 
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wash cells were suspended into culture media (see HLMC culture) and counted for a 

second time and placed into a Nunclontm surface tissue culture flask with the 

concentration of mast cells adjusted to 106/ml. Figure 2.1 gives an overview of the 

mast cell purification process. 

 

2.3.2 Antibody Coating of Dynabeads 

 

100l of beads were placed into 10ml HBSS + 2% FCS and washed twice in a 

magnetic field using the same process as for mast cell washing in 2.3.1. Beads were 

resuspended into 400l HBSS/FCS and transferred to a screw top 2ml eppendorf, 

8l (10g/ml) of mouse anti-c-kit antibody was added to mix. The beads were left 

to incubate with the antibody for 2 hours on a roller at 4oC. After this time the beads 

were washed three times in HBSS + 2% FCS and resupended into 100l 

HBSS/Protein and stored 4oC until use, typically 24hours or they were coated on the 

day.  
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Figure. 2.1 

Purification procedure for HLMCS 

Anti-Mouse IgG1 Dynabeads (red) are coated with mouse anti-c-kit antibody (green) and 

subsequently incubated with a mixed population of cells, containing HLMCS (blue). Beads bind to the 

c-kit expressing HLMCS and a magnetic field is applied by placing a tube containing the cells next to a 

magnet. HLMCS are purified from the mixed population of cells by being held by the magnetic field as 

other cells are washed away. 

 

2.3.3 HLMC culture 

 

HLMC were cultured in DMEM containing 1% antibiotic/antimycotic solution 

(Gibco), 1% NEAA and 10% FCS. Cytokines in a PBS 0.1% BSA solution were added 

on a weekly basis at the following final concentrations: 100 ng/ml SCF, 50 ng/ml IL-

6, and 10 ng/ml IL-10 (all from R&D systems). Cells were maintained at 370C in a 

humidified atmosphere of 5% CO2 incubator.  
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2.4 Polymerase Chain reaction (PCR) 
 

 

Figure. 2.2 

Primers used for RT-PCR 

 

Primer sequences of SNAREs from human syntaxin 1a through to SNAP-23 were 

taken from [239]. Syntaxin limited supplied SNAP-25 primers. VMAT primers are 

described in [325]. All primers were tested using Basic Local Alignment Search Tool 

(BLAST) to ensure the correct gene product was detected before use. Primers were 

dissolved into nuclease free H2O to 100µM and stored at -200C. Working stocks 

were made by adding 10µl of primers to 490µl nuclease free H2O. 

 

500,000 LAD 2 cells were centrifuged at 100g, 4mins at room temperature. Pelleted 

cells were washed once in PBS and centrifuged again using the same parameters.  
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Total RNA was extracted from cultured LAD 2 cells using a RNeasy Kit (Qiagen) 

according to manufacturers’ instructions and after extraction into RNase free H2O, 

RNA was stored at -800C. gR was subsequently transcribed into cDNA using 

iScriptTM cDNA synthesis kit (Bio-Rad). As a negative control H2O was added in 

equivalent volumes to reverse transcriptase (-RT). RNA quantity and quality was 

measured using a nanodrop (Thermo-scientific). The ratio of 260nm/280nm 

absorption was monitored to assess RNA quality and only RNA with ratios between 

1.8-2.0 was used. 

 

The reaction was carried out using a Mycycler thermo cycler (BioRAD) with the 

following protocol: 250C for 5mins, 420C for 30mins, 850C for 5 mins and then a 

holding temperature of 100C. The reverse transcription product was used for PCR. 

 

2.4.1 PCR reaction  

 

PCR reaction mix consisted of: 10X Taq polymersase buffer 2.5µl, 2mM dNPT, 

2.5mM MgCl2 1µl, H2O 12.5µl, Taq Polymerase (New England Biolabs) 0.5µl, cDNA 

1µl, Forward Primer 2 pmol/ml, Reverse Primer 2pmol/ml  

 

For SNARE primers, 35 cycles of (940C 30s, 600C 45s and 720C 35s) were performed 

and a final hold of 100C.    

 

For VMAT 1 and 2 primers, 40 PCR cycles after initial denaturing at 940C 2mins of 

(300C s  54, 720C 1 min and 940C 30 s). 

 

2.4.2 Gel electrophoresis 

 

For analysis, all PCR products were run on a 1% agarose gel containing 0.5µg/ml 

ethidium bromide. Bands were visualized using a UV transilluminator (UVP).  
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2.5 Quantitative (Q) PCR 
 

2.5.1 QPCR primer design and testing 

 

 

Figure. 2.3 

Primers used for QPCR experiments. 

 

Primers testing was performed to select optimal conditions for the QPCR reaction, 2 

primer pairs for each gene were tested. One set was designed using primer3plus 

tool (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/) the 

other primer sets were used from previously designed sequences deposited in 

primerdepot (http://primerdepot.nci.nih.gov/). All primers were tested using Basic 

Local Alignment Search Tool (BLAST) to ensure the correct gene product was 

detected before use. Forward and reverse primers were designed to have similar 

melting temperatures (Tms), the maximum 3’ self-complementarity was set to 1 in 

primers designed through primer 3 plus (Only one complementary base between 

the forward and reverse primers) to reduce the chance of primer dimers. The 

maximum allowed length of a mononucleotide repeat was 3.  

 

http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/
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Total RNA was extracted from cultured LAD 2 cells (500,000 cells) and cDNA 

produced in the same process as for section 2.4. 1µg of RNA was used for each cDNA 

reaction.  

 

2.5.2 QPCR reaction mix 

 

2XSensiMix SYBR reaction mix (Bioline) containing SYBR®Green 5µl, cDNA 1µl, 

Forward/reverse primer mix 1µl (100ng/µl), H2O 2.6 µl.  

 

The PCR reaction was run on a Rota-Gene 6000 real time PCR machine (Qiagen). 

Each primer set was tested at three different annealing temperatures (590C, 59.50C 

and 600C) with 6 repeats for each temperature and 2 non-template controls, 

replacing cDNA with H2O to ensure no reagent contamination. The subsequent cycle 

and melt curves were used to determine reliability and specificity of the primers 

(Figure 2.4). 

 

Figure. 2.4 

VAMP-3 primers cycle and melt curves  

Graphs show example results of qPCR primer testing, in this case for VAMP-3 primers at 600C. VAMP-

3p3 showed greatest specificity and was used for QPCR experiments. VAMP-2, VAMP-7 and VAMP-

8p3 primers at this annealing temperature were also used as they showed similar specificities.  A 

and B. VAMP-3p3 primer cycle and melt curves respectively. C and D VAMP-3 primer cycle and melt 

curves respectively. Each line represent each repeat. Blue arrows point to non-template controls. 

Red arrow points to different sizes amplicon for the VAMP-3 primer. 

 

The cycle curves (figure 2.4) show the increase of the PCR product through each 

PCR cycle by gain in fluorescence. SYBR® Green is a fluorescent dye that binds to 
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the minor groove of the DNA double helix and fluoresces strongly when bound to 

double stranded DNA. As the PCR product is produced the amount of double 

stranded DNA increase and so the fluorescence increases. This allows measurement 

of the amount of amplicon produced, which is exponential.  In the control 

experiments ideally all the cycling curves would be very close together for all 6 

repeats, giving a consistent readout for the amount of product. As the temperature 

is increased after the reaction, through the dissociation temperature, the dsDNA is 

broken down and the fluorescent signal decreases. The maximum point at which 

fluorescence is lost is the Tm (melting temperature), this is shown on the melt 

curves (figure 2.4). Different sized amplicons have different Tms and so the 

specificity of the primers, and the presence of dimers, can be determined by looking 

for only a single peak on the melt curve for all 6 repeats (multiple or misaligned 

peaks would imply multiple or different sized amplicons are being produced). An 

example of the process is show in Figure 2.4 for the VAMP-3 primers at 600C 

annealing temperature, this process was performed for all four VAMPs used. VAMP-

2 and VAMP-7 primers from primer depot while VAMP-3 and VAMP-8 primers from 

primer3plus were found to have the highest specificity and consistency and so were 

used in future experiments. The optimal conditions that produced single products 

for all four primer sets used are shown in Figure 2.5. The primer sets chosen were: 

VAMP-2, Vamp3p3, VAMP-7, VAMP-8p3.

 

Figure. 2.5 

QPCR cycling protocol.  

Step one denotes denaturation step where double stranded bonds are broken to produce single 

stranded DNA. Step two is the annealing step where primers bind to specific DNA sequences. The 

extension step is where Taq polymerase adds DNA nucleotides making two double stranded 

molecules from each one double stranded molecule that was denatured.  
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To quantify the levels of expression of each gene, levels were normalized to U1 a 

sn(small nuclear)RNA. This has been shown to be more stable in its expression than 

other more widely used normalisers such as GAPDH [326]. For every reaction a 

non-template control was used to show there was no cross contamination. For 

experiments comparing LAD 2 with HEK SNARE expression levels, –RT controls 

were also used to rule out DNA contamination. Due to limits on the number of wells 

for the stimulation experiments –RT controls couldn’t be used. However, primers 

designed from primer3plus were made so to span introns so any DNA 

contamination could be detected and RNA was treated with DNAse (Qiagen) to 

remove DNA. 

 

For stimulation experiments 500,000 LAD 2 cells were placed into 12 well plates at 

500,000/ml and incubated overnight with 300ng/ml Human-IgE Myeloma 

(Calbiochem) in full media. The next day cells were stimulated with l Anti-

Human IgE (Sigma) and 100ng/ml rhSCF for 2, 6 and 12 hours. Cells were collected 

at these time points and the samples processed as described in section 2.5.2. 

  

2.6 Microarray  
 

The microarray was performed in collaboration with Paul Heath (Sheffield Institute 

for Translational Neuroscience). Total RNA was extracted from 500,000-cultured 

LAD 2 and HLMCS using a RNeasy Kit (Qiagen) according to manufacturers’ 

instructions. After extraction into RNase free H2O, RNA was stored at -800C.  The 

microarray chip used was an Agilent SurePrint G3 Gene Expression 8X60K one-

colour microarray system. The system was chosen as it enables estimation of 

absolute levels of gene expression between arrays. Only a single dye is used to label 

RNA and so data collected represents absolute values. 

 

Microarray experiments were performed by Paul Heath. Data was extracted 

through Agilent feature extraction software and the data processed further using 

excel. To compare values across arrays each data set were normalised to the 75th 

percentile intensity of all non-control probes, as per manufacturer’s instructions.  
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2.7 Antibodies table 

 

Table 2.1 

Antibodies used for western blot and immunostaining. (WD refers to working dilution). 

 

2.8 Western Blot 
 

2.8.1 Bradford assay 

 
Cell lysate protein concentration was measured using Bradford assay.  Briefly 5l of 

protein standard of BSA (Sigma) at 0.1-1.4mg/ml were placed into 96 well plate 

wells other wells contained 5l of sample. 250μl of bradford reagent (sigma) was 

added to each well mixed and incubated at room temperature for 10 minutes. 

Absorbance was measured at 595nm using an Expert Plus Microplate reader 

(Biochrom Ltd).  Concentration of sample was derived from the standard curve 

produced from absorbance values of protein standard.  

 

2.8.2 Western blot protocol 
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For western blot lysate preparation 1million HEK and PC12 cells were washed once 

in cold PBS and subsequently lysed by treatment with lysate buffer, consisting of 

RIPA buffer (Sigma) and Protease inhibitor cocktail III (Fisher). For LAD 2 cell lysate 

preparation, cells were centrifuged at 100g for 4 minutes, the supernatant was 

removed and lysate buffer added at 1ml per 10 million cells. After application of 

lysate buffer samples were freeze-thawed twice at -200C and then centrifuged at 

20000g at 40C for 15minutes. Supernatants were removed and stored at either -

200C or -800C for storage of longer than a week. On day of western blot, laemeli 

buffer (Sigma) was added to thawed cell lysates in a 1:1 ratio. Samples were then 

heated at 950C for 5 minutes and after this time were centrifuged briefly to clear 

any precipitate from the samples.  

 

10g of samples were pipetted into stacking gel alongside a pre-stained 

recombinant protein ladder (Fisher Cat: BP3603-500) inside a Gel tank (Biorad) 

filled with Running buffer consisting of 250mM Glycine (Sigma), 25mM Tris-base 

(Sigma) and 0.1% SDS (Composition of SDS gels are described in section 2.8.3). The 

gels were run at 100mV until a good level of protein separation was achieved 

determined by separation of protein ladder. Proteins were transferred onto 

nitrocellulose membranes (Biorad) through wet transfer at room temperature for 

40 minutes in transfer buffer (25mM Tris base, 192mM Glycine, 15% methanol).  

Membranes were subsequently blocked in blocking buffer consisting of TBST 

(50mM Tris, 150mM NaCl and 0.05% Tween 20 (Sigma) containing 5% non-fat 

skimmed milk powder for 1 hour at room temperature. After this period 

membranes were incubated with primary antibodies (see antibody list above) in 

blocking buffer overnight at 40C on a rotating platform in heat-sealed plastic. The 

next day the membrane was removed and washed 3 times for 15 minutes in TBST 

before incubation with secondary antibodies in blocking buffer for 1 hour at room 

temperature in heat sealed plastic.  Membranes were then washed 3 times for 15 

minutes in TBTS and excess liquid removed before being place onto cling film and 

ELC plus detection reagent (GE Healthcare) was applied for 5 minutes. After this 

time excess liquid was removed and the membrane transferred to a film cassette. 

Chemiluminescence film (GE healthcare cat: RPN2132) was exposed to the 

membrane in the dark and developed using an X-ray developer.  
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2.8.3 SDS Gels 

 

SDS-PAGE running gel (12%) was made using 2.5ml Tris 1.5M pH 8.8, 200µL 10% 

SDS, 4ml 30% Acrilamide solution (BioRAD), 50µL 10% ammonium persulphate 

(APS) solution (Sigma), 5µL TMED and 3.5ml H2O.  

 

Stacking Gel (5%):  2.5ml Tris 0.5M pH 6.8 (BioRAD), 100 µL 10%SDS, 1.0ml 30% 

Acrilamide solution, 50µL 10% APS, 10µL TMED, 6.4ml H2O.  

 

2.9 Coverslip preparation 
 

16mm, thickness number 1 glass coverslips (VWR) were washed overnight in a 95% 

ethanol 5% acetic acid solution on a rocker before being washed copiously with 

dH2O and left to dry on filter paper in glass Petri dishes. Coverslips were autoclaved 

before use.  

 

HEK 293 cells were plated directly onto coverslips and allowed to adhere overnight 

before experiments were performed so at the time of fixing they would be 70% 

confluent. Non-adherent LAD 2 cells were plated onto 0.1% poly-l-lysine 

hydrobromide (Sigma) coated coverslips. To coat coverslips, Poly-l-lysine was 

dissolved in sterile H2O and 150µl, applied to the coverslips in 12 well plates for 30 

minutes at 370C and after this time were washed in H2O and dried in sterile 

conditions. To attach cells to coated coverslips, between 20 to 40l of cells were 

placed onto coverslips for 30 minutes prior to flooding with media.  

  

2.10 Immunostaining 
 

Adhered cells were washed in cold PBS and then fixed in PBS containing 4% 

Paraformaldehyde (PFA) and 4% sucrose by weight (pH 7.4) for 15 minutes. Cells 

were then washed once in PBS and permeablised in 0.1% triton-x (Sigma) in PBS 

with 50mM NH4CL for 10 minutes. Cells were washed once in blocking buffer (0.2% 

Fish skin gelatine (FSG) (Sigma) and 0.02 % triton-x in PBS) before being blocked 

for at least 1 hour at room temperature. Primary antibodies were diluted in 
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blocking buffer and 50µL spotted onto parafilm in a humidified chamber and 

coverslips containing cells were transferred from 12 well plates face down onto the 

spots of antibody and left overnight at 40C. The next day the coverslips were 

transferred back to the 12 well plate wells and washed 3 times for 15 minutes in 

blocking buffer, subsequently cells were incubated with secondary antibodies 

diluted in blocking buffer again in the humidified chamber for 1 hour room 

temperature in the dark. Finally coverslips were washed 3 times for 15 minutes in 

PBS and were mounted onto microscope slides (Fisher) using DAPI-Fluoromount G 

(Southern Biotech) and sealed with nail polish. Coverslips were stored at 4oC. 

Antibody concentrations are described in antibody table (section 2.7) 

 

For stimulation experiments cells were incubated overnight with 300ng/ml Human-

IgE Myeloma (Calbiochem) in full media. Cells were then adhered to coverslips and 

stimulated in 12 well plates with agonist present in 500L external solution minus 

BSA for 20 minutes, agonists used are described in the appropriate results section. 

After this time cells were processed as described earlier in this section.  

 

2.11 Confocal imaging  

 

Coverslips were mounted onto an Olympus FV1000 confocal with SIM-scanner on a 

BX61 upright microscope and viewed using a 60X oil objective (N.A. 1.42). Samples 

were illuminated at the required wavelength using 405nm (laser power 2%), 

488nm (2%) (argon), 561nm (20 %) lasers. Samples were acquired at a section 

thickness of 500nm using FV1000 software and analysed using Image J software. 

Any further analysis and graphing were performed using Prism (GraphPAD 

software).  

 

2.12 β-hexosaminidase assay 
 

β-hexosaminidase is a lysosomal enzyme present in mast cell granules and is 

regularly used to monitor mast cell degranulation. β-hexosaminidase catalyse the 

hydrolysis of -glycosidically linked N-acetylglucosamine and N-acetylgalactosamine 

residues from a number of glycoconjugates [64]. 4-Nitrophenyl N-acetyl-β-D-
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glucosaminide can be used as a substrate to monitor release, where it is converted 

to 4-nitrophenol by β-hexosaminidase and absorbance can be measured at 405nm 

to determine enzyme activity using spectroscopy.  

 

LAD 2 cells were incubated overnight with 300ng/ml Human myeloma IgE 

(Calbiochem). The following day 40,000 LAD-2 cells per well were plated in a 96 

well V bottomed plate in 40lexternal solution per well and incubated at 370C for 

10 minutes. Cells were incubated at 370C for 5-10 minutes before the addition of 

agonists; Crosslinking of FcεRI receptor was induced with Anti-Human IgE (Sigma) 

and cells were then incubated at 370C for an additional 20 minutes before being 

centrifuged (550g, 10mins, 40C) and the supernatants removed. Supernatants were 

incubated with 40l substrate (2mM final concentration of 4-Nitrophenyl N-acetyl-

β-D-glucosaminide diluted in 0.2M citrate buffer for 2 hours at 370C (Citrate buffer 

consists of: 0.2M critic acid and 0.2M sodium citrate pH 4.5). The reaction was 

stopped by the addition of Tris-HCl buffer (1M Trizma-HCL, pH 9.0) and absorbance 

at 405nm measured (Expert Plus Microplate reader, Biochrom Ltd).  Spontaneous β-

hexosaminidase release was determined by the addition of imaging solution only. 

Total β-hexosaminidase content was determined by the addition of Triton X-100 

(0.06%) to lyse the cells. Background readings were determined for later 

subtraction from wells containing only external solution and substrate. All test 

conditions were done in duplicate in a single experiment and each experiment 

repeated a minimum of three passages. Average background values and average 

spontaneous β-hexosaminidase release values were subtracted from the reading for 

each well. Release was then expressed as a percentage of the average total β-

hexosaminidase content determined from the Triton-treated wells. Results are 

displayed as mean ±SEM. Significance was assessed using one-way ANOVA of log-

transformed data with Tukey post-test.  

2.13 Calcium imaging  

 

To monitor intracellular calcium changes fluorescent calcium imaging was used.  

Fluorescent calcium dyes show a spectral response to calcium binding that allow for 

the monitoring of changes in intracellular calcium. The dyes can be grouped in a 

number of ways, one way is whether they are ratiometric or single wavelength 

[327]. One of the most commonly used ratiometric calcium indicators is Fura-2. AM 
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ester dyes, such as Fura-2AM, can be passively loaded into cells. Upon entry into the 

cell the ester is cleaved by esterases and the dye becomes membrane impermeable, 

this allows non-invasive measurement of intraceullar calcium activity. Fura-2 is 

ratiometric; this reduces the effects of leakage, and photobleaching. The dye is 

based on calcium chelators such as EGTA and were developed by Roger Y. Tsien 

[328]. Figure 2.6 shows the excitation profile of Fura-2 with varying calcium 

concentrations. Fura-2 has a single emission peak of 510nm but dual calcium 

dependant excitation peaks (340nm and 380nm). The 340nm signal increases with 

increasing concentrations of calcium while the 380 signal decreases. The two values 

can then be recorded as a ratio, which reduces the effects described above.

 

Figure. 2.6 

Diagram depicting the calcium sensitive nature of Fura-2 

A higher concentration of calcium results in an increase in the 340nm signal while inducing a 

decrease in the 380nm.  

Figure reproduced from: http://www.invitrogen.com/site/us/en/home/References/Molecular-

Probes-The-Handbook.html 

 

 

 
 

http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook.html
http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook.html
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2.13.1 Loading of cells with Fura-2 AM 

 
Cells were plated onto coverslips as described in section 2.9. Coverslips were 

subsequently flooded with full media and left for 10 minutes to become detached 

from the plate. After this time coverslips were placed into loading media, consisting 

of culture medium with 0.1% BSA and 1µM Fura-2AM (frozen aliquotes of 1mM 

made up in DMSO)  (Invitrogen Ltd, Paisley, UK) for 30 minutes in a 5% CO2 

humidified atmosphere at 37oC. Coverslips were then placed into loading media 

minus Fura-2AM for 15 minutes in a 5% CO2 humidified atmosphere at 37oC. Cells 

were then transferred to external solution for a further 15 minutes at room 

temperature (24oC). Coverslips were protected from light at all stages.   

 

2.13.2 Experimental set up and image acquisition  

 
Coverslips were placed into a Warner recording chamber (bath dimensions (lxWxH) 

24x13x4.1mm, volume by depth 133l/mm) (RC-25F, Warner instruments) and 

superfused with external imaging solution from a reservoir bottle. The time taken 

for the solution to reach the recording chamber was 40s, determined by monitoring 

the flow of a dye into the recording chamber, the flow rate being 3ml/min. Figures 

have been adjusted accordingly. Syringes present on a perfusion rack were used to 

apply additional solutions when required. Syringes were aligned at the same height 

as the inflow tubing from the reservoir bottle and stoppers with tubing were placed 

into the syringes to ensure a constant flow rate. Tubing passed through a peltier 

heating element to warm solutions and bath temperature was monitored with a 

thermometer. The outflow of the recording chamber was a bevelled needle 

connected to a length of silicone tubing, with a suction pump (Watson Marlow SciQ 

323) being used to draw the fluid into a waste bottle. Figure 2.7 shows a diagram of 

the recording set up used. 
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Figure 2.7 

Experimental set of superfusion system 

 

 Coverslips were mounted onto a Zeiss Axiovert S100TV inverted microscope and 

viewed using a 40X oil immersion objective (NA1.3, Zeiss), which enabled 

visualisation of individual cells. Cells were subsequently illuminated at 340nm and 

380nm and images taken at 2s intervals using a monochromator (Polychrome IV, 

TILL Photonice LPS-150). The emitted light was passed through a 510-540nm band-

pass filter before detection and detected using a cascade 512B CCD camera (Roper 

scientific, Photometrics UK). Images were analysed by regions of interest being 

placed around individual cells and analysed using Metamorph® software (Meta 

Imaging) and further analysis and graphing were performed using Prism 

(GraphPAD software). All data is background subtracted, the background 

fluorescence corresponding to each frame was digitally subtracted from the 

fluorescence value for each cell at each wavelength. 
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2.13.3 Imaging solution 

 

Imaging solution consisted of (in mM) 142 NaCl, 5 NaHCO3 10 HEPES, 16 Glucose, 2 

KCl, 2 CaCl2, 1 MgCl2 and 0.1% BSA (pH 7.3, NaOH). For calcium free experiments 

the solution consisted of: 142 NaCl, 5 NaHCO3 10 HEPES, 16 Glucose, 2 KCl, 3 MgCl2 

and 0.1% BSA (pH 7.3, NaOH). 

 

2.13.4 HLMC purity 

 

Assessment of purity was determined during imaging experiments.  Mouse Anti-

CD117-PE IgG1 was applied to cells following experiments. HLMCS expressing C-kit 

(CD117) were stained enabling determination of mast cell purity by exciting cells at 

488nm. Purity of all coverslips was >98% (Figure 2.8). 

 

 

Figure. 2.8 

HLMC population defined by CD117 staining for imaging experiments  

A, Fura-2 fluorescence. B. HLMCS in A treated with CD117 show staining around the plasma 

membrane. C. Isotype control antibody.  

 

2.14 FFN511 assay 
 

FFN511 is a fluorescent false neurotransmitter. These are fluorescent compounds 

that closely resemble neurotransmitters. They can be loaded into SVs and released 

as neurotransmitters [329] enabling visualisation of exocytosis. FFN511 is similar 

in structure to monoamine neurotransmitter such as dopamine/serotonin and acts 

as a substrate for the VMAT that transport monoamines from the cytoplasm into 

secretory vesicles [299].  In a pH 7 solution the excitation MAX is 406nm and the 

emission MAX is 501nm.  
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Figure. 2.9 

Structure of FFN511 

FFN511 is designed to be similar in structure to monoamines such as serotonin so it can be 

transported into vesicles through VMATS.  Figure adapted from [299]. 

 

2.14.1 Loading of FFN511 

 

For stimulation experiments, loading of HLMC and LAD 2 cells with FFN511 was 

achieved by incubating cells overnight with 1µM of the dye in total media + 

100ng/ml rhSCF. After this time point coverslips were washed with a dye-free 

external solution for 10 minutes in a 5% CO2 humidified atmosphere at 37oC.  

For inhibition studies of FFN551 (Ascent Scientific) uptake with the vesicle 

monoamine transporter inhibitor reserpine, LAD 2 cells were treated overnight 

with either 1µM reserpine (Tocris) or dimethyl sulphoxide (DMSO) as a control. The 

following day cells were immobilised on Poly-L-Lysine (0.1%) coated 16mm glass 

coverslips (VWR) and incubated with 1µM FFN511 in total media for 10 minutes 

before undergoing two 15 minute wash steps with dye-free imaging solution. For 

experiments using chloroquine (Sigma), FFN511 loaded cells were treated for 10 

minutes with 300µM chloroquine in imaging solution prior to imaging.  

Coverslips were mounted onto the recording chamber and imaging solution was 

perfused onto the cells as described for calcium imaging. Imaging solution was 
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maintained at 32oC by passing the silicone tubing through a peltier heating element, 

bath temperature was recorded during experiments to ensure a constant 

temperature was maintained.  

 

2.14.2 Image acquisition/ data processing  

 

Coverslips were viewed either a40X oil immersion objective (NA1.3, Zeiss) or a 

100X oil immersion objective (N.A. 1.6 Zeiss). Cells were illuminated at 400nm and 

images taken at 30s intervals. In FFN511 uptake experiments LAD 2 cells were 

perfused with 1μM FFN511 for the stated period and imaged at 2s intervals. The 

emitted light was passed through a 510-540nm band-pass filter before detection. 

All data is background subtracted, the background fluorescence corresponding to 

each frame was digitally subtracted from the fluorescence value for each cell. Cells 

were classified as ‘responding’ to a particular stimulus when FFN511 fluorescence, 

measured as a ROI placed over the whole cell, fell by more than 7 standard 

deviations over the baseline fluorescence Baseline fluorescence was measured as 

the average of the first five frames. Data is presented as a percentage of baseline 

fluorescence.  

 

2.15 Bacterial Transformations and DNA extraction 
 

DH5cells (Sigma) were transformed with plasmid DNA (see table) using the 

following protocol: 1μl of DNA was added to 20μl DH5cells and left on ice for 

30mins. After this time point cells were heat shocked for 30s at 42oC. Cells were 

then placed on Ice for 2mins. 250μl of SOC media was added to cells and placed in a 

shaking incubator (220rpm) 37oC for 1hour. 100l of cells were pippetted onto agar 

plates containing the appropriate antibiotic and left overnight at 37oC. The next day 

cells were sealed with parafilmTM and stored at 4oC. 

 

Single colonies were picked and a starter culture made by placing tips containing 

colonies into LB media (for composition see 2.15.1) (5ml), containing appropriate 

antibiotic, overnight in a shaking incubator (220rpm) 37oC. The next day 100μl of 

starter culture was transferred to 50ml of fresh LB media containing appropriate 
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antibiotic and cultured overnight at 37oC with shaking (220rpm). DNA was 

extracted the following day using GenEluteTM plasmid midiprep kit (Sigma) as per 

manufacturer’s instructions.  

 

2.15.1 Solutions 

 

LB: 10g Tryptone, 5g Yeast extract, 10g Nacl. (pH 7.5 NaOH). Volume made up to 1l 

using ddH2O. 

 

SOC: 20g Tryptone, 5g Yeast extract, 10mM Nacl, 2,5mM KCL, 10mM MgCl2, 20mM 

Glucose in 1l ddH2O.  

2.15.2 Sequencing 

 
10l of 100ng/l of purified plasmid DNA in water was sent to The University of 

Sheffield Core Genomic Facility to sequence plasmid DNA, to confirm there were no 

mutations or variations in sequences.  

 

2.16 Transfecting human mast cells 
 

LAD 2 cells are notoriously refractory to transfection through traditional liposomal-

based techniques.  Recently, numerous new transfection reagents utilising 

biodegradable polymers have been developed. These encapsulate plasmid DNA 

forming a nanoparticle that is rapidly degraded once endocytosed by the cell, 

delivering cargo into the cell. 

 

A number of these new non-liposomal transfection reagents were tested using a 

GFP reporter plasmid (GFP-V-RS) to identify a method of obtaining suitable levels of 

efficiency (Figure. 2.10). Transfection of LAD 2 cells using X-tremegene HP (Roche) 

showed promising levels of transfection in comparison to other reagents tested. 

Transfection was further optimised through varying cell concentrations and DNA: 

reagent ratios (Figure. 2.11). A cell concentration of 500,000 per ml and DNA: 

reagent ratio of 1:1 proved to provide the best levels of transfection. However, after 

initial success in transfecting LAD 2 cells, this method of transfection proved to be 
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highly variable and the same efficiency couldn’t be obtained. This was independent 

of cell passage number, DNA quality or lot number of reagent.  

 

2.16.1 Reagent transfection 

 

For reagent based transfection testing, the four reagents used are described in 

Figure 2.9. LAD 2 cells were plated at 1 million per ml into 500l total media and 

100ng/ml rhSCF left for 30 minutes to settle. Transfections were performed as per 

each manufacturer’s instruction with the following alterations: Reagents were 

added to cells and left to incubate for 5 hours. DNA/reagent combinations are 

described in Figure 2.11. The mixes were made up in Stem-pro media, apart from 

Xfect, which was made up in the buffer provided. After 5 hours fresh media was 

added to cells to take the total volume up to 1ml.  
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Figure. 2.10 

Optimisation of transfection in human mast cells using non-liposomal based transfection 

reagents. 

LAD 2 cells were transfected with a pGFP-V-RS vector using four transfection reagents and imaged 

for GFP expression 48 hours post transfection.  A. LAD 2 cells transfected with X-tremegene HP 

(Roche) at a DNA to reagent ratio of 1:1 (Ai) and 1:3(Aii). B. LAD2 cells transfected with X-

tremegene 9 (Roche) at a DNA to reagent ratio of 1:1 (Bi) and 1:3(Bii). C. LAD 2 cells transfected 

with Polyfect (Tebu-bio) at a DNA to reagent ratio of 1:2 (Ci) and 1:4(Cii). D. LAD 2 cells transfected 

with Xfect (Clontec) using 1μg DNA (Di) and 2μg DNA (Dii). Scale bars represent 100m 
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Figure. 2.11 

Optimisation of X-tremegene HP transfection.  

LAD 2 cells were seeded at either 200,000 500,00 or 1 million cells per ml and transfected with a GFP 

reporter construct with X-tremegene HP in ratios 1:1, 1:2,1:3 or 1:4 DNA:Reagent. A. LAD 2 cells 

transfected with a GFP reporter construct were imaged 24 hours post-transfection in both 

epifluorescence and bright field. B. Approximate transfection efficiencies were calculated by 

comparing both GFP and bright field images through image J cell counter.   

 

It has been reported that efficiency of transfection can vary greatly depending on 

the promoter used [330], to assess whether using a different promoter could 

provide a more reliable transfection efficiency, vectors expressing GFP under 

various promoters were tested (Figure. 2.12). Vectors expressing GFP under pCMV 

or pCAG promoters produced the greatest levels of expression. Considering the 

majority of vectors that we had available utilise the pCMV promoter, it was decided 

to continue to use vectors that contained this promoter. Transfection efficiencies 

continued to vary greatly between experiments and so a new reliable transfection 

method was sought.  
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Figure. 2.12 

Promotor expression in LAD 2 cells  

LAD 2 cells were seeded at 500,000 cells per ml and transfected with GFP reporter constructs 

utilising one of four expression promotors. pCAG and pCMV produced the highest numbers of GFP 

positive cells. 

 

2.16.2 Neon transfection 

 

Electroporation has been shown to be successful in a number of hard to transfect 

cells including LAD 2 cells [331]. There are a number of issues with electroporation; 

often the technique can be very damaging to cells and can result in low viability. 

Furthermore, many protocols require many millions of cells, which is a particular 

issue using human mast cells. A relatively new electroporation system developed by 

Invitrogen, the neon transfection system, uses gold coated tips to electroporate cells 

in a pipette tip chamber. The advantages of this system is that as few as 50,000 cells 

can be used per transfection, the resulting viability is reported to be much greater 

[332]. The method requires low cell numbers and should show less variability 

compared to reagent-based techniques. LAD 2 cells were transfected using the GFP-

V-RS GFP reporter plasmid used in previous experiments. A number of protocols 

were tested to assess the best conditions for transfection (Figure. 2.13). A pulse 

duration of 30ms and voltage of 1600mv provided 30% transfection efficiency and 

was used in future experiments. All further transfection experiments were 

performed using the neon transfecton system. 
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Figure. 2.13 

Optimisation of Neon transfection in LAD 2 cells   

LAD 2 cells were transfected using Neon transfection using the following conditions: A-E 10ms pulse 

of between 1200 to 2000mv, F-I 20ms pulse 1200-1800mv, J-M 30ms pulse 1200-1800mv. Graphs 

below show percentage of GFP positive cells from total cells.  

 

2.16.3 Neon transfection final protocol  

 

Neon transfection buffers E and R were warmed to room temperature. LAD 2 cells 

were counted before transfection and between 100,000 to 500,000 cells were used 

per transfection (no discernable differences could be seen in transfection 

efficiencies between these concentrations). Cells were centrifuged at 100g for 4 

minutes, media removed, PBS added and cells washed by centrifugation using the 

same centrifugation settings. PBS was aspirated off and cells were suspended in 

buffer R, at least 12µL per transfection, and transferred to an eppendorf. Plasmid 

DNA was added at a concentration of 1µg/transfection ensuring the amount added 

was no greater than 10% of the total volume.  The electroporation tube was placed 

into the neon station and 3ml of buffer E was pippetted into the tube. The cell 
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suspension was taken up into a 10µl reaction tip ensuring no bubbles were present 

and clicked into the electroporation tube. Cells were electroporated using a protocol 

of one pulse of 1600mv with 30ms pulse duration. Cells were dispensed into fresh 

total media containing 100ng/ml rhSFC. After transfection the tips were washed in 

100% ethanol and left to air dry in a sterile environment. Tips were reused 4 times 

before being discarded. Experiments were carried out 48 hours post transfection.  

 

2.17 Dual pHluorin and Calcium imaging  
 

pHluorin is a pH sensitive variant of GFP. The ecliptic form carries substitutions at   

S147D, N149Q, T161I, S202F, Q204T and A206T, which renders the molecule pH 

sensitive; fluorescence becomes lower as the pH is lowered until <6.0 where the 

excitation peak disappears [295].  Fusion of acidic vesicles with the plasma 

membrane results in alkalisation of the intravesicular compartment as they become 

exposed to the more alkaline extracellular environment [333]. Tagging VAMPs C-

terminally with pHluorin has allowed visualisation of vesicle fusion. Upon VAMP 

mediated membrane fusion, and subsequent alkalisation, the pHluorin tag becomes 

de-quenched. This increase in fluorescence can be used to monitor exocytosis [334]. 

 

These experiments were initially performed using SynaptopHluorin, a VAMP-2 

tagged form [295]. In this study, VAMP-2 super ecliptic pHluorin present in the pCI 

neo mammalian expression vector was kindly provided by G.Miesenböck. VAMP-3 

and VAMP-8 cDNA clones in Vector pOTB7 were purchased from Source Bioscience. 

Plasmids were sequenced upon arrival to ensure quality.  

 

VAMP-3 and VAMP-8-pHluorin constructs were produced by Mutagenex.  VAMP-2 

was replaced within the pCI neo backbone with VAMP-3 and VAMP-8 coding 

sequences, through EcoRI 5’-end ligation and chimeragenesis/recombination for 3’-

end ligation. Cells were transfected using the neon transfection system. For Dual 

pHluorin and BoNT LC experiments 1µg of BoNT LC and 500ng of pHluorin DNA 

was used and experiments carried out 48 hours post transfection. 
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2.17.1 Experimental set up and image acquisition  

 

Coverslips were prepared, loaded and superfused with external solution in the same 

manner as for calcium imaging described in section 2.13.2. Cells were subsequently 

illuminated at 340nm and 380nm and 50ms at 480nm and images taken at 2s 

intervals using a monochromator (Polychrome IV, TILL Photonice LPS-150).  Due to 

the possibility of excitation of pHluorin at 380nm (Figure 2.14) a short exposure 

time was used for Fura-2AM excitation  (10ms). Images taken at 380nm in 

pHluorin-transfected cells show there was no crossover of signal (Figure 2.15). Un-

transfected cells had a similar fluorescence value, both much lower than for Fura-

2AM loaded cells. 

 

 

Figure. 2.14 

Excitation wavelengths of Fura-2AM and GFP.  

Diagram depicts the excitation wavelengths of both the calcium free (yellow) and bound (green) 

Fura-2AM and of GFP (Blue). Some excitation of GFP occurs at 380nm. Values and graph obtained 

from Invitrogen spectral viewer. http://www.invitrogen.com/site/us/en/home/Products-and-

Services/Applications/Cell-Analysis/Labeling-Chemistry/Fluorescence-SpectraViewer.html 

 

 

 

 

 

 

 

 

http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Cell-Analysis/Labeling-Chemistry/Fluorescence-SpectraViewer.html
http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Cell-Analysis/Labeling-Chemistry/Fluorescence-SpectraViewer.html
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Figure. 2.15 

pHluorin signal does not interfere with 380nm recording of Fura-2AM 

LAD 2 cells transfected with pHluorin were illuminated at 380nm to assess possible interference 

with Fura-2AM signal. Ai-iv, representative coverslips from pHluorin transfected or Fura-2AM 

loaded cells, Ai excitation at 480nm, ii 380, iii bright field. Aiv representative coverslip of 

untransfected Fura-2AM loaded LAD 2 cells imaged at 380nm. B. Fluorescence intensity values at 

380nm excitation wavelength of background (n=5), pHluorin negative (n=42) and pHluorin positive 

(n=18) cells compared to Fura-2AM loaded cells (n=45). Data represents mean±SEM of individual 

cell fluorescence. Scale bars represent 20m.   

 

The emitted light was passed through a GFP/mCherry dual-band polychroic mirror 

with extended reflection down to 340nm and GFP/Cherry emission filter (Chroma). 

Images were acquired by regions of interest being placed around transfected 

individual cells and analysed using Metamorph® software (Meta Imaging) and 



Page 80 

further analysis and graphing were performed using Prism (GraphPAD software). 

The background fluorescence corresponding to each frame was digitally subtracted 

from the fluorescence value of each cell.  

 

2.17.2 Data analysis 

 

Cells were classified as ‘responding’ to a particular stimulus when fluorescence, 

measured as a ROI placed over the whole cell, increased by more than 10 standard 

deviations over the baseline fluorescence. Baseline fluorescence was measured as 

the average of the last 10 frames before application of drug. Data is presented as 

(Δf/f0)/fT , where Δf is the change in fluorescence and f0 represents the baseline 

fluorescence. Data was then normalised to total fluorescence fT, derived from NH4CL 

wash. This calculation was used to account for variations in the starting fluorescence 

and in the total amount of pHluorin present in individual cells.  

 

For acid wash experiments all individual transfected cells were selected and the 

proportion of intracellular to cell surface pHluorin fluorescence was determined. Firstly 

by calculating the cell surface fluorescence by subtracting the minimum fluorescent 

value (average of five frames) resulting from quenching of cell surface pHluorin by a pH 

5.6 acid (pH with HCL) wash from the baseline value. The intracellular fluorescence was 

determined by subtracting the baseline fluorescence from the maximum fluorescent 

value (average of 5 frames) resulting from de-quenching of intracellular pHluorin from 

an NH4CL wash. Total fluorescence was calculated by subtracting the minimum 

fluorescent value from the maximum fluorescent value. Percentage values were 

subsequently calculated by dividing the cell surface or intracellular fluorescence by the 

total fluorescence and multiplying by 100.  

2.18 VAMP-8 shRNA 

 

Short Hairpin RNA (shRNA) is a RNA sequence containing a hairpin turn or “loop’, 

mimicking micro RNA (miRNA). Once expressed through plasmid transfection or 

transduction into the cell, the shRNA molecule is transported out of the nucleus 

through the actions of Exportin 5.  Dicer, a ribonuclease III (RNase III) family 

member, chops the shRNA into siRNA and it is incorporated into the RNA-induced 



Page 81 

silencing complex (RISC).  This complex then targets the mRNA that the siRNA is 

identical to, resulting in the degradation of the target mRNA [335]. 

 

VAMP-8 HuSH shRNA plasmids were purchased from OriGene for VAMP-8 

knockdown. The pGFP-V-RS vector contains a pCMV driven tGFP gene to allow 

visualisation of transfected cells. The targeting shRNA sequence expression is 

driven under the human U6 promotor (Figure 2.16).  

 

 

Figure. 2.16 

pGFP-V-RS used for shRNA knockdown studies 

The U6 promotor drives expression of shRNA, while CMV drives GFP expression. Figure taken from 

OriGene HuSH shRNA application guide: 

http://www.origene.com/assets/Documents/HuSH/AppGuideHuSH29.pdf 

 

Four unique shRNA constructs were supplied alongside a non-targeting scramble 

control. Each construct was numbered 1-4 from top to bottom as seen in Figure 2.17 

and tested for knockdown using western blot (Figure. 2.18). Constructs were 

transfected using the neon transfection protocol outlined above. After transfection 

cells were left for 48 hours before experiments were performed.   

 

 

 

 

 

 

http://www.origene.com/assets/Documents/HuSH/AppGuideHuSH29.pdf
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Figure. 2.17 

VAMP-8 shRNA sequences 

Figure taken from OriGene HuSH shRNA application guide: 

http://www.origene.com/assets/Documents/HuSH/AppGuideHuSH29.pdf 

 

Figure. 2.18 

shRNA 4 produces greatest level of knockdown. 

LAD 2 cells were transfected with the above shRNA constructs using the neon transfection system. 

48 hours post transfection cells were lysed and VAMP-8 expression determined through western 

blot. -tubulin used as loading control.  

 

 

http://www.origene.com/assets/Documents/HuSH/AppGuideHuSH29.pdf
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2.19 IL-6 GFP construct  
 
Mast cells have been shown to differentially release IL-6 but the trafficking pathway 

of release remains elusive [336]. The pathway of release in macrophages is well 

defined and a fluorescent construct has been generated to assess Il-6 function [183].  

The IL-6 GFP construct was purchased from addgene, deposited by Jennifer Stow 

[183]. The construct contained Mouse Il-6 (genebank number: X54542) within the 

pEGFP-N1 vector resulting in a C-terminal GFP tag.  

 

2.19.1 IL-6 GFP release assay 

 

LAD 2 cells were transfected with mouse IL-6 GFP using the neon transfection 

protocol and left to recover for 24 hours. The following day LAD-2 cells were plated 

in a 96 well V bottomed plate in external solution at 1,000,000 cells/ml. 100,000 per 

well were used for each condition.  Cells were incubated at 370C for 10 minutes 

before addition of agonists. Crosslinking of FcεRI receptor was induced with anti-

IgE (Sigma). Cells were then incubated at 370C for an additional 6 hours before 

being centrifuged (550g, 10mins, 40C) and the supernatants removed. Supernatants 

were treated with protease inhibitor cocktail to reduce protease breakdown of IL-6 

GFP and stored at -200C before use. . Cell pellets were processed as samples in 

section 2.8 for western blotting and stored at -200C in RIPA buffer with protease 

inhibitor cocktail. Supernatant and lysates were subjected to western blotting using 

the protocol set out in section 2.8.  

 

Values for release were calculated by normalising band intensity values of IL-6 GFP 

in the supernatant to cell lysate values.  

 

2.20 BoNT LC constructs 
 

Syntaxin Ltd supplied BoNT light chain constructs used in this study. BoNT LCS 

were expressed in pcDNA4 Myc/His vectors under the pCMV promotor.  Light 

chains expressed include: BoNT serotypes E, B and the modified form of E (E 

K224D). 
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Chapter 3.Defining LAD 2 cells as a 
mast cell model 

 

3.1 Introduction 

 
Mast cells can be defined through their expression of numerous mast cell associated 

proteins. For example basophils, cells which closely resemble mast cells, express the 

high affinity IgE receptor FcεRI but don’t express C-kit, the receptor for SCF [337]. 

Mast cells express both and so by monitoring the cells expression of many of these 

markers a definitive picture of the cell type can be built. The main mechanism of 

activation in mast cells is through the interaction of antigen with IgE bound to 

FcεRI. The FcεRI receptor consists of three subunits  and  [338] with the a 

subunit binding IgE and the  subunits mediating downstream signalling, through 

the interaction of their associated enzymes, the src kinases [339]. The src family 

kinases are essential for functional coupling of FcεRI signalling [340, 341]. 

Numerous src kinase family members are present in mast cells and have differing 

signalling functions [342-345].  

 

Alongside the expression of mast cell associated receptors, mature mast cells 

express a number of pre-formed mediators stored within their granules. These 

include a number of proteases such as tryptase and MC-CPA, histamine and -

hexosaminidase and are discussed in detail in section 1.1.2 [60].  Traditional assays 

for measuring pre-formed mediator release in mast cells, for example ß-

hexosaminidase release assays, are performed on populations of cells and don’t 

permit visualisation of individual cell responses and therefore are inappropriate for 

potential diagnostic screens where cell numbers are limited. Finding an assay that is 

affordable, quantitative and can be used for real-time measurements even at the 

single cell level would be highly advantageous for elucidating the mechanisms and 

variations of pre-formed mediator release in mast cells. FFN511 is a fluorescent 

false neurotransmitter. FFN511 was originally developed to quantify exocytosis in 

dopaminergic terminals [346]. This fluorescent-based probe is similar in structure 

to monoamines such as dopamine and serotonin, acts as a substrate for the 

Vesicular Monoamine Transporters (VMATs) that transport monoamines from the 
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cytoplasm into SVs which enables loading of the dye into SVs [33]. There is evidence 

that human skin mast cells express VMAT 2 [38], suggesting that FFN511 may also 

be used to monitor mast cell degranulation. Using FFN511 in mast cells would allow 

the elucidation of single cell responses and enable detailed characterisation of their 

responses to stimulation.  

 

LAD 2 cells represent a well differentiated human mast cell model cell line, and have 

been shown to express mast cell specific proteins [88]. However, some studies have 

questioned their usefulness as a model and whether they truly represent mast cells 

[90]. Experiments in this chapter set out to define and assess the suitability of using 

LAD 2 cells as a mast cell model for studies on exocytosis. Using data obtained 

through gene microarray, LAD 2 cells were assessed for the expression of relevant 

mast cell associated receptors and mediators and compared to results obtained at 

the same time by microarray from mRNA isolated from a single HLMC donor. LAD 2 

response to FcεRI stimulation were also determined by calcium imaging and 

compared to HMLCs. To assess mast cell degranulation, a novel fluorescent-based 

assay using FFN511 was developed and characterised to investigate and 

comparisons were made between LAD 2 and HLMC responses to FcεRI mediated 

degranulation. 

 

3.02 Results 
 

3.2.1 Expression of mast cell associated receptors and mediators in LAD 
2 cells  

 
To determine how closely LAD 2 cells resemble primary HMLCs, and thereby 

evaluate how useful a model they are, microarray data obtained from LAD 2 cell 

mRNA was used to assess the levels of expression of mast cell associated receptors 

and mediators. These results were then compared to levels of mRNA expression of 

the same receptors and mediators in the HMLCs. Due to constraints of the 

microarray chip, tissue availability and expense, the HLMC data constitutes a single 

donor and so although informative, the data would need to be repeated to confirm 

results. However, it still provides a useful comparison and starting point to establish 

the similarity between LAD 2 cells and HLMCs. 
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Figure 3.1 

LAD 2 cells express mast cell associated genes 

Microarray analysis was performed on LAD 2 and HLMC to determine the expression pattern of mast 

cell associated genes. A. LAD 2 cells express mast cell associated receptors C-kit and FcεRI. B. LAD 2 

and HLMC expression of mast cell associated mediators. Clear bars represent LAD 2 mRNA 

expression from three independent RNA extractions ±SEM. Blue bars represent mRNA expression 

from one HLMC donor. CPA is carboxypeptidase and HDC is histidine decarboxylase.  

 

The most logical starting point in characterising the LAD 2 cell line was to assess the 

expression of mast cell associated receptors. LAD 2 cells have been shown to 

respond to SCF through expression of C-kit and have functional FcεRI receptors 

[88]. Using the microarray data mRNA expression of C-kit was confirmed at very 

high levels in the HMLCs and to a lesser extent in LAD 2 cells (Figure 3.1). As with C-

kit, LAD 2 cells expressed all subunits of the FCεRI receptor in a similar manner to 

that of HMLCs. The  subunit had much lower expression levels than the other 

subunits  and.  

 

After assessing receptor expression, the expression of a number of mast cell 

mediators such as tryptase were determined and compared to HMLCs (Figure 3.1). 

LAD 2 cells expressed all the granule associated mediators tested. In addition LAD 2 

cells expressed small levels of the serine protease chymase, which was not 

expressed in HMLCs.  
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Figure 3.2 

Mast cell expression of src family kinases 

Microarray analysis of LAD 2 and HLMC src kinase expression. Clear bars represent LAD 2 mRNA 

expression from three independent RNA extractions ±SEM. Blue bars represent mRNA expression 

from one HLMC donor.  

 

Microarray data was used to determine expression levels of the src family kinases in 

LAD 2 and HMLCs. In LAD 2 cells a number of src kinases were expressed in a 

pattern similar to the HLMC donor (Figure 3.2). The only difference was seen in Fyn 

kinase expression, LAD 2 cells expressed much lower amounts when compared to 

the HLMC donor. Further HLMC donors would be needed to determine whether this 

difference is significant as N only equals one.   

 

3.2.2 Calcium response of LAD 2 cells to FCεRI crosslinking 

 
Stimulation of mast cells through FcεRI and activation of src family kinases leads to 

downstream signalling events that give rise to large increases in intracellular 

calcium (see section 1.2.1). From the microarray data it is clear that LAD 2 cells 

express the mRNA for all subunits of FcεRI and previous studies have shown that 

LAD 2 cells respond to FcεRI crosslinking [88]. Calcium imaging was performed on 

LAD 2 cells to confirm they were able to respond to FCεRI stimulation and to 

compare the responses to HMLCs. There was a clear response upon crosslinking of 

the FcεRI receptor, almost all cells responded to stimulation (Figure 3.3). The 

majority of HMLCs responded to FCεRI stimulation but had a much larger response 
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size compared to LAD 2 cells (P<0.001). Upon activation calcium release is induced 

from the ER through the action of IP3, this release of calcium induces the activation 

of CRAC and the influx of extracellular calcium.  Experiments were performed in the 

absence of extracellular calcium to isolate calcium release of intracellular stores 

from the extracellular influx. Again response sizes were significantly larger in 

HLMCs than LAD 2 cells (P<0.001). 
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Figure 3.3 

IgE-induced calcium signals in LAD 2 cells and HMLCs 

Fura 2-loaded cells sensitised overnight with 300ng/ml IgE were stimulated with 3.3g/ml anti-IgE, 

which was bath applied as indicated by the horizontal bars. 

a: IgE-mediated calcium entry in LAD 2 cells, monitored at 340nm and 380nm, in the presence A. or 

absence B. of 2mM extracellular calcium. A. Traces in (i) show representative individual LAD 2 

responses (ii) show representative individual HLMC responses. Part (iii) shows mean ± SEM in LAD 

2 (black trace; n=75 cells, N=3 individual experiments, 96% of cell responded) or HLMC (Blue trace, 

n=33 N=4 donors. 100% cells responded). B. Experiments were carried out without the presence of 

extracellular calcium. (i) Shows representative individual LAD 2 and (ii) shows representative 

individual HLMC responses. (iii) Shows mean ± SEM in LAD 2 (Black trace, n=33 cells N=3, 81% of 

cells responded) or HLMCs (Blue trace, n=16 cells N=3, 88% of cells responded) in the absence of 

extracellular calcium. Results are representative of 2 separate donors. C shows mean calcium 

response size (i) in the presence or (ii) in the absence of extracellular calcium. *** Denotes 

significance of P<0.001. unpaired students’ T-test. Experiments were carried out by Claire Tree-

Brooker 
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3.2.3 Loading of FFN511 in human mast cells 

 

To determine whether LAD 2 cells could be loaded with FFN511, cells were initially 

incubated with 1M FFN511 for 15 minutes. Cells became loaded with the dye and 

showed a granular staining pattern (Figure 3.4). The dye was excited at 400nm and 

has a maximum emission of 501nm in 100mM sodium phosphate pH 7 buffer [299]. 

 

 

Figure 3.4  

FFN511 is loaded into mast cells 

Image of LAD 2 cells loaded with FFN511. LAD 2 cells were incubated with 1µM FFN511 and imaged 

at A, excitation l of 400nm, B. Bright field image. Scale bar represents 10µm. 

 

Upon initial application of FFN511 and sequent washing of LAD 2 cells there was 

considerable loss of dye in resting cells. Initially, it was thought to be due to photo 

bleaching. However, the levels of fluorescence of individual cells was varied for each 

coverslip and plotting the rate of decay of fluorescence of individual cells over 

starting fluorescence showed that the higher the levels of fluorescence, the greater 

the rate of decay (Figure 3.5.).  
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Figure 3.5  

FFN511 dye loss in LAD 2 cells  

A. There is a significant positive relationship between the starting fluorescence (1M dye loading) 

and the rate of loss of fluorescence. n=65 cells from 2 coverslips (y=0.126+0.0004937x, 

F=122.3,d.f=1,63, P<0.0001). Linear regression fit, R square value = 0.6601.  B. Effect of 

concentration and incubation time on dye loss. LAD 2 cells were imaged every 5 minutes at the 

concentrations and incubation times shown on the graph fluoresence is normalised to starting 

fluoresence defined as the average of the first five frames data represents mean±SEM. Yellow line 

0.01M 15 mins, Blue 0.01M 1hr, Green 0.1M 1hr, Black 0.1M 15 mins, Red 1M 1hr, Brown 1M 

overnight.  

 

Varying the intensity of excitatory light to minimize photobleaching by using 

different neutral density filters decreased but did not abolish the gradual decline in 

the emitted fluorescence. This suggests that the cells were becoming overloaded 

with the dye and then releasing the dye over time, or that the dye was not efficiently 

trapped within vesicular compartments. It should be noted a certain level of 

baseline release of dye would be expected, for example, in degranulation assays 

there is often a baseline release of at least 5%.  

 

Figure 3.5 shows how increasing the incubation time and reducing the dye 

concentration reduced the gradual loss of FFN511 fluorescence in resting cells. 

Despite 0.01µM showing the least rate of loss of dye, the staining was very weak. A 

similar level of loss is seen after a one hour incubation with 1 µM and 0.1 µM 

FFN511. Therefore, due to less loss and staining that looked more punctate, 1µM of 

FFN511 was used in all future experiments. Overnight incubation resulted in greatly 

reduced dye loss; therefore experiments were carried out using overnight 

incubation. Background was measured as release of dye from vehicle perfusion 
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controls and was subtracted from data to normalise for any dye loss. Figure 3.6 

shows uptake of the dye into punctate structures occurring within 150 seconds.  

To assess whether dye loss under resting conditions was due to FFN511 inducing 

premature degranulation of the mast cells, ß-hexosaminidase release assays were 

performed in cells loaded with FFN511 (Figure 3.7). FFN511 did not affect 

spontaneous or activated release of ß-hexosaminidase. The results indicate that loss 

of FFN511 is not through the dye overloading mast cell granules and inducing  

mast cell degranulation. 

 

 

Figure 3.6. 

FFN511 is taken up into vesicular structures in LAD 2 cells  

LAD-2 cells take up FFN511 into vesicular structures within 150 seconds of FFN511 application. A. 

Images of LAD-2 cells taking up 1μM FFN511 into vesicular structures. B. Graph quantifying the 

uptake of FFN551 into vesicles. Regions of interest were drawn around vesicles (grey) and 

cytoplasm (black) and intensity values were measured over the stated time period from FFN511 

application. Data presented as mean±SEM. Scale bar indicates 20μm. Experiments were performed at 

32oC n=7 from 2 passages.  
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Figure 3.7   

FFN511 does not induce degranulation in LAD 2 cells. 

No significant difference in β-hexosaminidase release was detected between cells incubated with 

FFN511 and untreated cells.  LAD-2 cells were incubated overnight with varying concentrations (0.1, 

1, 10M) of FFN511 and 300 ng/ml human IgE. The next day cells were stimulated with either A. 

unstimulated B. 1µg/ml anti-human IgE or C. 10µg/ml anti-human IgE. N=3±SEM. There was no 

significant difference between cells treated with FFN511 or DMSO control. One way ANOVA post hoc 

Tukey test, p>0.05. 

 

3.2.4 Pharmacological inhibition of FFN511 uptake and expression of 
VMATS  

 

To define the vesicular localisation of the FFN511, the weak lipophilic base 

chloroquine was applied to FFN551 loaded cells; this collapses the pH gradient in 

vesicles [347] (Figure 3.8). Fluorescence was almost completely abolished 

(P<0.001) showing that the FFN511 was localising to acidic organelles, such as SGs.  

 

To assess the mechanism by which LAD 2 cells might transport FFN511 into 

secretory granules, the expression of VMATS was determined in LAD 2 cells using 

RT-PCR and microarray data; both methods showed VMAT 2 but not VMAT 1 was 

expressed (Figure 3.9a and b).  To determine whether FFN511 was being loaded 
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into granules through VMAT 2 we applied the VMAT inhibitor reserpine at 1M, a 

concentration used to inhibit FFN uptake in VMAT 2 expressing HEK cell cultures 

[348], which inhibits the action of VMATS 1 and 2, to LAD 2 cells prior to FFN511 

loading (Fig 3.9). There was a significant reduction in total FFN511 uptake 

(P<0.0001), suggesting FFN551 is loaded into mast cell granules through VMAT 2.  

 

 

Figure 3.8   

Chloroquine abolishes vesicular staining in FFN511 loaded LAD-2 cells.  

The addition of the weak lipophilic base chloroquine, which collapses the vesicle pH gradient, 

abolishes accumulation of FFN511. A. Image showing LAD 2 cells untreated and B. treated with 

300μM Chloroquine (40x Scale bar indicates 40μm.). C. LAD 2 cells loaded with 1μM FFN511 were 

incubated with 300μM of the weak lipophilic base Chloroquine. All data is shown as ±SEM of 

averaged individual cell fluorescence. Control N=4, n=58 cells, 300μM Chloroquine N= 4. n=70 cells. 

*** Denotes significance of P<0.001. unpaired students’ T-test  
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Figure 3.9 

FFN511 is loaded into human mast cells granules through VMAT2.  

A. RT-PCR analysis of total RNA from LAD 2 and HLMC to determine VMAT expression in human 

mast cells. A band of the expected size was detected for VMAT 2, while no transcript was detected for 

VMAT1 in both LAD 2 and HLMC RNA. (+RT) and (-RT) indicated the presence or absence of reverse 

transcriptase.  VMAT1-GFP plasmid was used as a positive control for VMAT1. Data is representative 

of 3 HLMC donors. B. Microarray analysis of VMAT expression in LAD 2 cells and HLMCs produced 

similar results to that of the RT-PCR. VMAT 2 is the only VMAT expressed in human mast cells LAD 2 

mRNA expression from three independent RNA extractions ±SEM. Clear bars represent mRNA 

expression from one HLMC donor. Blue bars represent LAD 2 mRNA expression from three 

independent RNA extractions ±SEM. Values are normalised to the 75th percentile. C) Overnight 

incubation with 1μM reserpine prior to FFN511 loading reduces uptake of FFN511 into LAD 2 cells. 

LAD 2 cells were incubated overnight with either 1μM reserpine or DMSO as control.  Cells were 

subsequently loaded with FFN511 and fluorescence intensity measured. Data is shown as averaged 

single cell fluorescence ±SEM. N=3, reserpine n=54 cells, DMSO control n=48 cells. *** Denotes 

significance of P<0.001 unpaired students’ T-test. 

 

3.2.5 Stimulation dependent release of FFN511 and characterisation of 
human mast cell activation 

 

To establish the potential use of FFN511 as an assay for mast cell degranulation and 

to study LAD 2 secretion, we quantified the effect of known mast cell activators on 

FFN511 release. 1M ionomycin, a calcium ionophore widely used to induce mast 

cell degranulation, was used in addition to the more physiological agonist of the 
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high affinity FCεRI receptor (Figure. 3.10.). Both stimuli produced a rapid release of 

dye after application. Ionomycin, known to be a strong activator of mast cells, 

resulted in 41% stimulated dye loss of FFN511 with 100% of cells responding (N=4, 

n= 149). FCεRI receptor activation also stimulated rapid dye loss, although as 

expected, to a lesser degree than that observed with ionomycin, and in fewer cells, 

with only 33% of cells responding (N=3, n=41 responding cells out of 125 total). No 

dye loss was observed with either stimulus in nominally calcium free external 

solution. These experiments indicate that FFN511 is loaded into SGs through VMAT 

2 and can subsequently be released through calcium regulated exocytosis.  
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Figure 3.10  

Mast cell activators induce FFN511 release from LAD 2 cells. 

A. Stimulation with 1μM ionomycin induces a large loss of FFN511 in LAD 2 cells N=4, n= 149. 

Representative individual cell responses are shown in B. C. FcεRI induces release of FFN511. LAD 2 

cells were sensitised overnight with 300ng/ml of human IgE. FcεRI cross-linking was subsequently 

induced by perfusion of 10μg/ml anti-IgE N=3 n=41 responding cells (out of a total cell number of 

125). Single cell responses to anti-IgE shown in D. E. Application of ionomycin in calcium free 

conditions results in no release of FFN511 N=3, n=145. F) FcεRI cross-linking does not induce dye 

release in calcium free conditions N=3, n=105. Data presented as the mean of % starting 

fluorescence of individual responding cells ± SEM minus baseline release from an un-stimulated 

perfusion control normalised to starting fluorescence. All experiments were performed at 32oC. 
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To compare the activation of LAD 2 cells with a primary cells, FFN511 release 

following IgE stimulation was also examined in the HLMCs (Figure 3.11). 20% 

release of dye was induced upon activation with 74% of cells responding, as 

opposed to 33% of LAD-2 cells (N=3, n=73/104).  

 

Figure 3.11 

HLMC release FFN511 upon FCεRI stimulation. 

Release of FFN511 upon FcεRI stimulation was seen in the majority of HLMCs. HLMCs were 

sensitised overnight with 300ng/ml of human IgE myeloma and cross-linking of FCεRI subsequently 

induced through the application of anti-IgE. A. Grouped and B representative single cell responses. 

N=6 from three separate donors, n=73 responding cells out of 104 total cells. Data presented as 

mean fluorescence of individual responding cells ± SEM minus baseline release from an unstimulated 

perfusion control. All experiments were performed at 32oC. 

 

The comparison of LAD 2 and HLMCs FFN511 release in figure 3.12 makes it clear 

that both LAD 2 cells and HLMCs had a similar level of release of FFN511 when 

activated but a greater number of HLMCs respond to receptor activation.  
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Figure 3.12 

Comparison of LAD 2 and HLMC responses to IgE mediated FFN511 release.  

A. Overlay of traces show that FFN511 release in LAD-2 cells (black) is similar to release in HLMCs 

(blue). B. A greater proportion of HLMCs (74%) degranulate in response to IgE compared to only 

33% of LAD 2 cells. HLMC data represented as the mean ±SEM from 3 separate donors, LAD 2 data 

represented as mean ±SEM from 3 separate passages.  *** Denotes significance of P<0.001 unpaired 

T-test.  
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3.03 Discussion  
 

The experiments in the current chapter were performed to characterise LAD 2 cells 

and to determine their suitability as a human mast cell model. To do this mRNA 

expression levels of mast cell associated receptors and mediators were assessed by 

microarray and compared to a single HLMC donor. Further assessment of mast cell 

activation was performed through calcium imaging. Finally, a novel secretion assay 

using FFN511 was developed and used to assess mast cell degranulation in both 

LAD 2 cells and HLMCs. 

 

LAD 2 cells were found to express all the relevant mast cell markers tested and 

compared well with the single HLMC donor.  The FCεRI receptor consists of three 

subunits, all of which were expressed in LAD 2 cells. Interestingly RNA expression 

of the three subunits was not the same;  was expressed at lower levels than , 

while  had the highest levels of expression. These results are consistent with 

previous findings [338]. Knockdown of just the  subunit impairs FCεRI function in 

BMMCS [349] and the subunit is key for initiation of the downstream signalling 

events. The FcεRI receptor consists of two  subunits and one  and , so it was not 

a surprise that the  subunit had the highest expression levels. Low expression 

levels of the  subunit might be explained by its postulated function as an amplifier 

of downstream signalling events [350], acting in a supporting role that might have 

significant redundancy with function. The expression of the subunit might have 

an additional level of regulation; expression of the subunit mRNA is selectively 

suppressed through IgE signalling [351], in particular through actions of the src 

kinases Syk and Fyn, which are expressed at very high levels.  

 

The effects induced by FcεRI are dependent on the Src family kinases, these kinases 

act at the earliest steps of FcεRI signal transduction.  To date several have been 

shown to be present and functionally important in mast cell signalling, including 

Syk, Lyn and Fyn [142]. Unlike Fyn and Syk, Lyn expression was low. This was a 

surprise as it has been heavily implicated in mast cell signal transduction [345]. Lyn 

associates with the  subunit of the FcεRI receptor, and this association increases 

upon stimulation [179, 345]. It is interesting to note that the expression of this 

subunit, almost mirroring that of Lyn expression with the other common mast cell 
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associated src kinases, was low compared to the expression of the other subunits. 

Lyn is a key initiator of downstream FcεRI signalling [140]. The relatively low levels 

of expression of both Lyn and the  subunit of FCεRI might ensure there is no 

aberrant release of pro-inflammatory mediators, particularly after activation [351].  

 

Alongside FcεRI expression, mast cells are defined by their mast cell granule 

contents. LAD 2 cells expressed mast cell associated tryptases, MC-CPA, chymase 

and HDC, the enzyme that catalyses the production of histamine. Both LAD 2 cells 

and the HLMC donor expressed large amounts of  (both are encoded by the 

TPSAB1 gene[352]) and  tryptase mRNA. Of the tryptase subtypes, -tryptase is the 

most catalytically active released by mast cells and is thought to exert the majority 

of effects of mast cell tryptases [353]. Therefore, the high expression levels of  

seen in the microarray are an expected observation.  tryptase levels were lower 

than the other subunits, this subunit has a greatly reduced catalytic activity and 

might not be as functionally important [354].  tryptase is the membrane bound 

form and its functions are not fully understood, but the high expression levels seen 

here suggest it might play an important role for mast cells [355]. If  tryptase 

remains membrane bound then it might exert pericellular actions, with the 

diffusible forms acting at more distant sites.  

 

In line with previous studies, LAD 2 cells were found to have mRNA expression of a 

small amount of chymase [88], and so they represent a MCTC type mast cell. This is 

opposed to the HLMC donor, where no expression was seen. Chymase expression in 

HLMCs is not ubiquitous in the lung and can vary significantly depending on their 

tissue location, with subpopulations of MCTC and MCT existing  in specific sites 

within the lung [356, 357]. The results obtained from the single donor in this study 

suggest these cells are MCT and most probably from bronchi or bronchioles, where 

MCT are known to be enriched and are the predominant mast cell type in the lung 

[357]. What this highlights is the limited comparison of LAD 2 cells with HLMCs that 

can be drawn from a single HLMC donor where additional experiments would need 

to be performed on HLMCs to determine whether there is significant variability 

between HLMC donors and cells extracted from different regions of the lung.  

Protein expression can differ from mRNA expression and so further experiments 

assessing protein levels would give a more complete picture of expression levels.  
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However, from the microarray data and functional data shown in this study it is 

clear that LAD 2 cells express many mast cell associated factors that correlate well 

with primary human mast cells. Previous microarrays in human mast cells have 

provided useful insights and starting points that have subsequently been confirmed 

by determining protein expression levels. For example Sayama et al found Il-11 up 

regulation in stimulated cord blood-derived mast cells that was confirmed with an 

ELISA [358]. 

 

This study is the first to explore usage of FFN511 to monitor degranulation in mast 

cells. FFN511 was able to be loaded into human mast cells and actively released 

upon stimulation by either ionomycin or FCεRI crosslinking in a calcium-dependent 

manner. No dye loss was observed with either stimulus in nominally calcium free 

external solution, indicating that the release of FFN511 is dependent on calcium 

influx and that the dye is released via calcium-regulated exocytosis, consistent with 

its accumulation in secretory granules.  

 

FFN511 had a concentration dependent loss of dye that was not due to overloading 

of the granules (Figure 3.5). FFN511 is lypophilc enough to pass through the PM and 

so this loss might be from free dye present in the cytoplasm being transported out 

of the cell. This loss was compensated for in the results by the subtraction of a 

perfusion control from the data.  Both LAD 2 cells and HLMCs expressed VMAT 2 

but not VMAT 1. These results are in agreement with previous work identifying 

VMAT 2 as the vesicle monoamine transporter present in human skin mast cells 

[38].  The loading and subsequent loss of dye from LAD 2 cells could be the result of 

a dynamic equilibrium between the extracellular environment, the cytosol and 

granules involving the vesicle monoamine transporter VMAT 2 and passive 

transport through the plasma membrane. The fact that the VMAT inhibitor 

reserpine inhibited uptake of FFN511 supports this view. Only one concentration of 

reserpine was used, one that has shown to inhibit the uptake of FFNS in PC-12 cell 

cultures and peritoneal macrophages [348, 359]. A greater inhibition would have 

most probably been seen if a full dose response to reserpine was performed. The 

fact that less loss of fluorescence was seen upon overnight storage might be 

explained by the granular catecholamine storage mechanisms in mast cells. 

Histamine and serotonin storage in BMMC is dependent on serglycin proteoglycan; 
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storage of them, as well as proteases, is impaired in serglycin knockout mice but 

mRNA levels are normal suggesting storage not expression is affected [30, 360]. 

Also, mast cells lacking the heparan-synthesizing enzyme, N-deacetylase/N-

sulfotransferase–2 have reduced histamine content [361]. Storage might occur 

through a direct interaction with a granule matrix consisting of serglycin 

proteoglycan, where histamine can directly interact electrostatically with heparin, a 

glycosaminoglycan that might be attached to the serglycin core present in mast cells 

[30]. It is possible the positively charged ammonium group in FFN511 interacts 

with the negatively charged glycosaminoglycan group to hold FFN511 in the 

granule and overnight incubation increases this association with the granule matrix 

resulting in less dye loss. Serglycan and the heparan synthesizing enzyme, N-

deacetylase/N-sulfotransferase–2 were expressed at high levels in both LAD 2 cells 

and HLMCS in the microarray data (Appendix figures 5-8)  

 

In this study similar levels of FFN511 release were seen in individual HLMCs 

compared to LAD 2 cells but a larger proportion of HLMCs underwent degranulation 

(74% compared to 33%). Previous work has shown that LAD 2 cells exhibit a lower 

level of mediator release upon FCεRI stimulation than primary skin mast cells [90].  

The results shown here suggest that greater release seen with primary mast cells is 

due to a greater proportion of cells undergoing degranulation. This observation 

implies that individual LAD 2 cells show heterogeneity in their ability to 

degranulate in response to FCεRI crosslinking. Phenotypic heterogeneity within in 

vitro cell cultures is common [362] and is likely to arise through differences within a 

culture of cell cycle stage and length, degree of cell death and concentration 

gradients of growth factors/nutrients. One would expect these to be more 

pronounced within a cell line population showing a faster growth rate and longer 

duration in culture than its primary counterparts. Variation can also be seen in the 

release of FFN511 in individual responding cells within a culture. Populations of 

both LAD 2 cells and HLMCs responded to IgE stimulation to varying degrees 

(Figure 3.6D and 3.7B). This variation in release is not seen to such a great extent in 

the non-receptor mediated release induced by ionomycin, suggesting that the 

majority of cells are capable of releasing mediators to the same extent, but 

variations in receptor and the downstream signalling pathways as well as factors 

described above contribute to the diversity in response to physiological stimuli.  
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Hints as to how the difference in release might occur can be drawn from the 

microarray data. Similar levels of FCεRI subunit expression were seen in the LAD 2 

cells and HLMCs; either all individual LAD 2 cells and HLMCs express similar 

amount of the FCεRI receptor, or some LAD 2 cells might express very high levels 

while others within the same culture express very low amounts leading to an 

overall similar levels of expression. The functional data obtained from the FFN511 

assay shows a much greater heterogeneity in the ability of LAD 2 cells to 

degranulate in response to receptor mediated stimulation. The calcium imaging 

results show that the majority of LAD 2 cells produce a calcium response to FCεRI 

crosslinking, proving nearly all LAD 2 cells are expressing functional FCεRI to some 

extent. Unfortunately it wasn’t possible to perform dual FFN511 and Fura 2 calcium 

imaging, due to significant overlap of the excitation and emission spectra. This 

would have answered the question of whether there is a correlation of the size of 

the calcium rise to the level of release.  

 

Fyn kinase acts through a signalling pathway complementary to that of Lyn and 

Syk,[343]. Fyn deficiency, although impairing degranulation, does not affect Lyn 

downstream signalling or intracellular calcium release in mast cells (Parravicini et 

al., 2002[363]. Fyn might connect IgE stimulation of FCεRI to the trafficking of TRPC 

channels to the plasma membrane to permit full extracellular calcium entry, and 

mediate microtubule-dependant translocation of granules to the plasma membrane 

[344, 364]. Fyn was expressed at much lower levels in the LAD 2 cells and this might 

explain why the majority of LAD 2 cells have a calcium response to FCεRI activation 

but at levels lower than that of HLMCs, and why they do not have such high levels of 

release of FFN511 as HLMCs. LAD 2 cells expressed the majority of factors 

associated with granule matrix proteoglycans involved in storage of histamine and 

proteases that were expressed in the HLMC donor (Appendix figures A5-A8) and so 

at least at the mRNA level LAD 2 cells express mature granule markers and should 

be capable of storing granule mediators.  

 

One caveat to conclusions drawn from the FFN511 experiments is that both LAD 2 

and HLMCs were actively loaded with FFN511, and if both cells transport the dye 

through the same mechanism then it might be expected that they would release the 
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same amount of dye upon activation, as both could load the same amount of dye 

into their granules. The data in the microarray suggest that granule mediators might 

be present at lower levels in LAD 2 cells, so this artificial system might be obscuring 

the fact that individual LAD 2 cells do release fewer amounts of granule mediators 

as well as having a reduced response. The most likely explanation is a combination 

of both leading to a response that is lower than that of primary mast cells.  

 

To conclude, the above results show that LAD 2 cells express all the relevant mast 

cell markers and can respond to antigen stimulation, but there are some potential 

differences that need to be taken into consideration when interpreting results. For 

example the FFN511 assay showed lower numbers of LAD 2 cells are able to 

undergo degranulation in response to FceRI receptor crosslinking and data from the 

microarray suggests they have potentially lower expression levels of mediators.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 106 

Chapter 4: Identification of SNARE 
proteins in human mast cells 

 

4.1 Introduction 

 

SNARE proteins are key in driving the fusion of two opposing membranes. Work in 

animal models has made it clear that SNARE proteins are important in the fusion of 

SGs with the plasma membrane in mast cells [234, 235, 238]. Only two studies have 

assessed SNARE proteins involved in inflammatory mediator release in human mast 

cells, using only HGMCs [239, 240]. No attempt has been made to define the SNARE 

proteins present in other human mast cells, including LAD 2 cells and HLMCS.  

 

The aim of the current set of experiments was to identify the SNARE and SNARE 

interacting proteins present in human mast cells, with particular focus on VsPs. A 

microarray was performed on LAD 2 cells and RNA from a single HLMC donor to 

determine expression of all SNAREs and SNARE interacting proteins. Expression of 

4 VAMP isoforms expressed at the highest levels in LAD 2 cells were then confirmed 

through qPCR.  Finally, protein expression and localisation with mediators and 

organelle markers were examined using western blotting and immunostaining.  
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4.2 Results 
 

4.2.1 Assessment of SNARE protein expression in HEK and LAD 2 mast 
cells through RT-PCR  

 

Initial experiments set out to determine SNARE protein mRNA expression in mast 

cells using RT-PCR. VAMP-2, -3, -7 and -8, SNAP-23 and -25 and syntaxin 1-6 have 

been implicated in exocytosis in a number of secretory cell types, including mast 

cells [239, 365] and so this provided a logical starting point in determining SNARE 

expression in LAD 2 cells. In order to identify SNARE proteins whose expression is 

less ubiquitous and therefore more likely to be important in regulated secretion of 

mast cell SGs, data obtained from mast cells was compared with that from HEK cells, 

a non-haematopoietic endothelial derived cell line. Both cell lines showed 

expression for the majority SNAREs examined with bands at the expected molecular 

weight markers (Figure 4.1 and 4.2). One result that was expected was the lack of 

expression of the neuronal SNAP-25 in LAD 2 cells, present in the human brain 

control cDNA (Figure 4.1 and 4.2). Syntaxin 1a mRNA had a different band size in 

HEK and LAD 2 cells than in the human brain control cells, having a higher 

molecular weight than that for the human brain control. This might represent the 

alternative spice variant of syntaxin, known as syntaxin 1c [366], as the syntaxin 1a 

primers used in this study do not differentiate between the two. For syntaxin 1b in 

both LAD 2 cells and HEK cells a faint band was present in the –RT control. This 

makes it hard to draw any conclusions for the expression of syntaxin 1b using this 

data as it is possible there was contamination of that particular well. Overall, these 

results did not give much insight on any potential mast cell specific SNAREs as 

expression was similar for HEK and LAD 2 cells.  

 

RT-PCR for the 4 VAMPs, SNAP-23 and SNAP-25 was also performed on HLMC 

mRNA to compare with the cell line data. Unlike LAD 2 cells, no VAMP-2 was 

expressed, while other SNAREs had a similar pattern of expression; SNAP-25 could 

not be detected and VAMPs-3, -7 and -8 and SNAP-23 were present (Fig.4.3). Bands 

appeared fainter than in LAD 2 or HEK cells but the same amount of RNA was used 

for all experiments (1g) and so this was not due to the amount of RNA present. 

There were also variations in intensity’s of different SNAREs within samples but 
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this technique is not quantitative and so it is impossible to draw conclusions from 

this.  

 

 

 

           

Figure. 4.1 

SNARE mRNA expression in LAD 2 human mast cell line.  

Non-quantitative RT-PCR of 12 of the 36 mammalian SNAREs present shows that the mRNA of all 

tested SNAREs apart from the neuronal SNAP-25 are present in the LAD 2 cell line. RT = Reverse 

transcriptase. HB = Human brain cDNA control. N=3. 
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Figure. 4.2 

SNARE mRNA expression in HEK293 cells.  

Non-quantitative RT-PCR of 12 of the 36 mammalian SNAREs present shows that the mRNA of all 

tested SNAREs apart from the neuronal SNAP-25 are present in the HEK cell line. RT = Reverse 

transcriptase. HB = Human brain cDNA control. N=3  

 

 

Figure. 4.3 

SNARE mRNA expression in HLMCS. 

Non-quantitative RT-PCR of 4 VAMPs and the two plasma membrane residing Qbc SNAREs SNAP-23 

and 25 shows that the mRNA of all tested SNARE apart from the neuronal VAMP-2 and SNAP-25 are 

present. RT = Reverse transcriptase. Data representative of 3 HLMsdonors. 
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4.2.2 Microarray identification and comparison of SNARE protein 
expression in human mast cells. 

 

The results obtained from RT-PCR alone do not faithfully represent relative levels of 

expression of these genes, just that they are transcribed to some extent. 

Furthermore, there are many more SNAREs that might be expressed that were not 

tested through RT-PCR. Therefore, to identify the expression pattern of all SNAREs, 

a microarray analysis was performed to assess gene expression levels of the 

syntaxins, SNAPS and VAMPs in LAD 2 cells and in a single HLMC donor.  

 

Syntaxin expression in LAD 2 cells and the HLMC donor correlated well with each 

other. In LAD 2 cells syntaxins 3 and 4 were the predominant syntaxins, as they 

were in the HLMC donor, although there were not expressed to such a great extent 

(figure 4.4). A number of other syntaxins showed an intermediate level of 

expression, including syntaxins 8, 10 and 16 in both LAD 2 cells and HLMCs (figure 

4.4). The neuronal syntaxin 1a was expressed in both mast cells but at higher levels 

in the HLMC donor, while syntaxin 1b was not expressed. This does not match up 

with the RT-PCR data showing syntaxin 1b expression but the possible 

contamination of the sample, as seen by a faint band in the –RT control, might 

explain this discrepancy. Further work was not performed on syntaxin expression 

in this study but western blot of protein levels would give a more definitive answer. 

 

Of the Qbc SNARE, surprisingly, SNAP-23 was not expressed at very high levels in 

either LAD 2 cells or HLMCS (figure 4.5)s. It has been heavily implicated in mast cell 

exocytosis in studies on HGMCs [239], and in RBL-2H3 cells qPCR has shown SNAP-

23 mRNA levels to be high [365]. The neuronal isoform, SNAP-25, had very low 

levels of expression in two out of the three RNA extractions for LAD 2 cells, but was 

expressed at higher levels in one sample (this can be seen in the larger error bars) 

resulting in an overall similar expression level to SNAP-23. In HLMCs it was the 

lowest expressed Qbc SNARE, which was similar to the two LAD 2 extractions and 

suggests that the single extraction in LAD 2 cells producing the higher expression of 

SNAP-25 was an anomaly. This does highlight the need for further repeats of the 

HLMC donor for future experiments to produce a more reliable result. The RT-PCR 

data showed no SNAP-25 mRNA expression suggesting that SNAP 25 does not have 

an important role in mast cells, and the differences in the resuts might be due to a 
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greater sensitivity of the microarray. Out of all the Qbc SNAREs, SNAP-47 had by far 

the greatest levels of expression. It does not have a defined role in mast cells and 

very little is known about its function, but given the high expression levels it might 

have an important role, possibly in channel trafficking, which is discussed in detail 

in section 4.3.  

 

VAMPs are present on vesicles, such as those containing inflammatory mediators 

and so were of particular interest. VAMPs showing high levels of expression might 

define these vesicles. VAMP-8 had the greatest levels of expression of all SNAREs 

monitored whilst VAMPs-2, -3 and -7 were expressed at intermediate levels. As with 

SNAP-25, VAMP-2 was not detected in RT-PCR in HLMCs but was in the microarray. 

Similarly to SNAP-25 this could be due to a greater sensitivity of the microarray. 

The neuronal VAMP-1 was not expressed in either cell and highlights the limited 

expression of neuronal SNAREs in mast cells. The more ubiquitously expressed 

VAMP-4 and the VAMP mostly enriched in muscle, VAMP-5, had low expression 

levels in LAD 2 cells. However, in HLMCS, VAMP-5 was expressed at a much higher 

level. This might be due to a small amount of contaminating cells expressing VAMP-

5 at very high levels. The samples contained over 99% HLMCs (section 2.3), so there 

would still be a small amount of contaminating cells, VAMP-5 has an identified role 

in myogenesis [367] and possibly with only a few contaminating cells, if it is highly 

expressed, it might result in expression on the microarray. Despite this difference 

the expression pattern of the other VAMPs was similar between LAD 2 cells and 

HLMCS. 

 

To summarise, the microarray data suggests that human mast cells express, at the 

mRNA level, a number of SNARE isoforms. Syntaxins 3 and 4 are expressed to 

greatest extent out of all syntaxins, while VAMP-8 is the predominantly expressed 

VAMP.  Finally, results in the LAD 2 cells mirror closely the expression patterns of 

SNAREs in the HLMC donor.   
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Figure. 4.4  

Human mast cells express multiple syntaxins  

Syntaxin 3 and 4 are expressed at much greater levels than other syntaxins in LAD 2 cells and are 

also have the greatest expression in HLMCS. Gene expression values were normalized to the 75th 

percentile according to Agilent instructions.  A. Clear bars represent LAD 2 mRNA expression from 

three independent RNA extractions ±SEM. B. Blue bars represent mRNA expression from one HLMC 

donor 

 

 

 

 

Figure. 4.5 Qb and bc SNARE expression in LAD 2 cells.  

SNAP-47 has the highest levels of expression. Gene expression values were normalized to the 75th 

percentile according to Agilent instructions. A. Clear bars represent LAD 2 mRNA expression from 

three independent RNA extractions ±SEM. B. Blue bars represent mRNA expression from one HLMC 

donor 
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Figure. 4.6 

VAMP mRNA expression 

VAMP-8 was expressed at the greatest extent out of all SNAREs monitored. Gene expression values 

were normalized to the 75th percentile according to Agilent instructions. A. Clear bars represent LAD 

2 mRNA expression from three independent RNA extractions ±SEM. B. Blue bars represent mRNA 

expression from one HLMC donor 

 

4.2.3 QPCR characterization of VAMP-2, 3, 7 and 8  

 

Experiments in this section set out to confirm microarray and RT-PCR results and 

further define VAMP mRNA expression in LAD 2 cells using qPCR. Results of the 

microarray experiment identified VAMPs-2, -3, -7 and -8 as the main VAMPs present 

in LAD 2 human mast cells. These SNARE were alsso expressed at high levels in 

HLMCs. To validate the results obtained from the microarray qPCR was performed 

to determine relative levels of VAMPs-2, 3, 7 and 8 in LAD 2 and HEK cell lines.  HEK 

cells were used as a comparison as they are non-haematopoietic and have limited 

regulated exocytosis but a developed constitutive secretory pathway.  Any VAMP 

expressed at much greater levels in the LAD 2 cells could give clues as to any VAMP 

important in SG release and VAMPs with similar levels of expression might be 

important in constitutive trafficking. VAMP-5 was expressed at levels similar to 

VAMP-7 in the HLMC donor, but given the low expression levels in LAD 2 cells and 

the identified functional role of VAMP-5 in myogenesis [367] further work 

concentrated on VAMPs-2, -3, -7 and -8.  

 

Results showed that VAMP-8 mRNA is present at considerably higher levels in LAD 

2 cells compared to HEK, as well as being expressed at much higher levels than any 

other VAMP tested in the LAD 2 cell line (Figure 4.7). This result mirrors the 
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microarray data and the literature identifying this SNARE as a key component of 

SGs in human mast cells [239]. VAMP-3, as in the microarray, was expressed at 

intermediate levels and was expressed at the highest levels out of all four VAMPs in 

HEK cells. The expression of VAMPs-2 and -7 were similar to VAMP-3, although they 

had slightly lower levels of expression.  

 

Figure. 4.7 

Relative QPCR of VAMPs in LAD 2 and HEK cells.  

A. Relative expression levels of VAMPs in LAD 2 cells: VAMP-8 is expressed at very high levels 

compared to any other VAMP measured. B. Relative expression levels of VAMPs in HEK cells: VAMP-

3 is expressed at a much higher levels than any other VAMP.  mRNA levels were normalized to U1 

snRNA to obtain relative expression levels.  Data is presented as ±SEM from 3 separate RNA 

extractions.  

 

Having determined the levels of mRNA expression of VAMPs-2, -3, -7 and -8 through 

qPCR further experiments were performed to assess whether VAMP expression 

changes when mast cells become activated. Upon mast cell FcRI activation 

numerous genes associated with the inflammatory response become up-regulated 

[368]. To evaluate possible activation regulated VAMP mRNA expression, VAMP 

mRNA was measured at specific time points following FcRI stimulation of LAD 2 

cells (figure 4.8a). After two hours all mRNA expression increased in the four 

VAMPs, although VAMP-2 expression increase was minimal. VAMP-7 levels 

increased 4-fold, the most out of the four, while VAMP-3 and -8 increased 2 and 3 

fold respectively. At 6 hours post stimulation expression started to return to resting 

levels. Further analysis of FcRI SNARE regulation was assessed using the 

microarray data. LAD 2 cells and cells from the same HLMC donor were stimulated 

fby FcRI crosslinking for the time point (two hours) which produced the largest 

increase in VAMP expresssion in qPCR. Changes in VAMP expression were less 
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prominant, only small changes in VAMP-7 and VAMP-8 were apparant in both LAD 2 

cells and the HLMC donor. However, SNAP-23 expression increased 4 fold in 

stimulated HLMCs and a number of syntaxins also increased in expression, 

including syntaxins 2, 8 and 9. 

 

Figure. 4.8  

mRNA expression of VAMPs increases after stimulation through IgE receptor crosslinking.  

A. LAD 2 cells were incubated overnight with 300ng IgE. Receptor crosslinking was induced through 

the application of anti-IgE and RNA extracted at the stated time points post stimulation.  Data is 

presented as ± SEM from 3 separate RNA extractions. mRNA levels were normalized to U1 snRNA to 

obtain relative expression levels. Values at the time points shown were normalised to time point 0.  

B.i. LAD 2 cells and, ii, single HLMC donor were stimulated for two hours by FcRI crosslinking, the 

time at which VAMP expression reached its maximum in A, and mRNA harvested. mRNA levels of 

SNARE proteins assessed using microarray analysis. Values represent fold change of stimulated cells 

compared to non-stimulated cells of same passage number (LAD 2 cells N=2) or same donor (HLMC 

N=1).  

 

These set of results confirm that VAMP-8 is the predominant VAMP in human mast 

cells and its high level of expression is not replicated in a non-haematopoietic 

immune cell. VAMP-3 is expressed at intermediate levels in LAD 2 cells and in HEK 

cells and so might represent a VAMP isoform important for constitutive secretion, 

given the expression levels in a cell with high metabolic activity. In addition VAMPs 
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show stimulation dependent increases in expression when activated through the 

FCRI receptor.  

 

4.2.4 Protein expression of VAMPs-2, -3, -7 and -8 

 

In the above experiments, expression of SNARE proteins had only been assessed at 

the mRNA level. mRNA expression does not always correlate well with protein 

expression and so to determine protein expression of VAMPs-2, -3, -7 and -8 

western blotting was used (Figure 4.9). No expression was seen for VAMP-2 in 

either LAD 2 cells or HLMCS, but clear bands were seen for VAMPs-3, -7 and -8 at 

the expected molecular weights, although in LAD 2 cells there was an additional 

band using the VAMP-8 antibody. The size of the band (below 26kda) is similar to 

double the molecular weight of the native protein (11.5kda) and might be a VAMP-8 

dimer or VAMP chaperone protein. This was not present in HLMCs, this discrepancy 

might be due to higher turnover of LAD 2 cells, a dividing cell line. Although 

confirming findings in previous studies showing no VAMP-2 protein expression, this 

result does not correlate with the microarray results showing VAMP-2 mRNA 

expression. The possible reasons for this are described in section 4.3.  
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Figure. 4.9 

Western blot of VAMPs-2, 3 and 8 in LAD 2 cells and HLMCS 

Western blotting confirmed LAD 2 cell and HLMCS express VAMP-3, -7 and VAMP-8 but do not 

express VAMP-2 protein. PC12 cells are a neuronal cell line, the lysate used as a positive control for 

the VAMP-2 antibody. Positions of marker proteins run parallel are given.  

4.2.5 Localisation and trafficking of VAMPs 

 

Having confirmed expression of VAMPs-3, -7 and -8 through western blotting and 

mRNA analysis the next set of experiments set out to determine the localisation of 

these VAMPs within the mast cell. VAMP-2 was not assessed as no protein was 

detected in western blot despite mRNA being present.  

 

Mast cells contain large amounts of tryptase within their SGs and so this is 

commonly used to identify SGs in co-immunostaining studies [369]. 

Immunostaining of VAMPs-3, -7 and -8 with tryptase was performed to identify the 

VAMP localising to SGs. In LAD 2 cells VAMP-8 colocalised with tryptase while small 

amounts of VAMP-7 colocalised. VAMP-3 was observed in vesicular structures but 

did not colocalise with tryptase (Figures 4.10 and 4.11).  
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Figure. 4.10 

VAMP-8 and VAMP-7 colocalise to the mast cell granule marker tryptase.  

LAD 2 cells were labelled using antibodies to VAMP-3, -7 and -8 (Green) and co-stained with anti-

tryptase (Red). A. VAMP-3 and tryptase. B. VAMP-7 and tryptase. C. VAMP-8 and tryptase in LAD 2 

cells. D. Cells incubated with secondary antibodies alone and imaged using the same acquisition 

settings, excited at 488 and 568nm. Scale bars represent 5m. 

 

VAMPs present on vesicles whose contents will be released upon stimulation would 

be expected to translocate to the plasma membrane following fusion. Previous 
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studies have shown VAMP-8 trafficking to the plasma membrane in ionomycin 

activated HGMCs but not VAMP-3 [239]. To identify whether this was also the case 

in LAD 2 cells, cells were stimulated with either the calcium ionophore, ionomycin, 

or through FcεRI crosslinking and then fixed and processed for immunostaining. 

Intensity values across cells were measured to determine the distribution of each 

VAMP (figure 4.11 Aii and Bii). Ionomycin is known to produce high levels of 

granule mediator release in mast cells and it was clear that this secretagogue also 

stimulated translocation of VAMP-8 to the periphery of the cell upon stimulation. 

Intensity values peaked at the edge of cells compared to a more even distribution in 

un-stimulated cells. VAMP-3 also distributed to the membrane, again seen by the 

measured intensity values across the cell. Stimulation through FceRI did not 

produce such pronounced trafficking and the results were inconclusive (Figure 

4.11). 

 

To determine whether VAMP trafficking was similar in HLMCS, HLMCS were co-

stained with VAMP-3 or VAMP-8 and tryptase. As with LAD 2 cells, VAMP-8 co-

localised with tryptase, VAMP3 did not (Figure 4.12). In HLMCS a much clearer 

response was seen in the trafficking of VAMP-3 and VAMP-8 in stimulated cells, 

with both VAMP-3 and VAMP-8 vesicles trafficking to the plasma membrane 

following stimulation with either ionomycin or FcRI crosslinking in the majority of 

cells (Figure 4.13.). In HLMCs VAMP-3 positive vesicles were larger and more 

punctate than VAMP-8. This was not the case in LAD 2 cells and might be indicative 

of the cell line representing a less mature cell that its primary counterpart, not 

containing fully developed compartments. 

 

The time course of 20 minutes was chosento monitor trafficking of VAMPs involved 

in regulated release as upon stimulation mast cells secrete preformed mediators for 

up to 20 minutes post stimulation and recycling of SGs can take hours [370]. Any 

VAMP involved in this pathway would have reached and remained at the plasma 

membrane in this time. What these results do not show is the trafficking of any 

SNAREs mediating the fusion of vesicles carrying newly synthesised mediators, or 

any compartments possibily storing pre-formed cytokines that might undergo more 

rapid fusion and endocytosis. A time course post stimulation covering a shorter and 

longer time period might enable visualisation of these. 
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Figure. 4.11 

VAMP-3 and VAMP-8 traffic to the membrane upon stimulation in LAD 2 cells 

LAD 2 cells were stimulated with either 1µM ionomycin or 10µg/ml Anti-IgE for 20mins then fixed 

and stained for either A. VAMP-3, B. VAMP-7 or C VAMP-8 to assess trafficking of these SNAREs to 

the plasma membrane. Figures Ai, Bi and Ci are representative of experiments performed 3 times. 

Figures Aii, Bii and Cii show superimposed, intensity values cross-sections from multiple cells. Scale 

bars represent 5m. Cells were selected at random. 
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Figure. 4.12 

VAMP-8 colocalises to the mast cell granule marker tryptase in HLMCs. 

HLMCS were labelled using antibodies to VAMP-3 and -8 and co-stained with anti-tryptase. A. 

Expression of VAMP-3 and tryptase. B. Expression of VAMP-8 and tryptase. Scale bars represent 

5m. Data representative of 3 donors. 
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Figure. 4.13 

VAMP-3 and VAMP-8 traffic to the membrane upon stimulation in HLMCS 

HLMCS were stimulated with either 1µM ionomycin or 10µg/ml Anti-IgE for 20mins then fixed and 

stained for either A. VAMP-3 or B. VAMP-8 to assess trafficking of these SNAREs to the plasma 

membrane. Figures of HLMCS in Ai and Bi are representative cells of experiments performed in 2 

donors. Figures Aii and Bii show superimposed intensity values across multiple cells. Scale bars 

represent 5m. 

 

Although present in mast cells, the above experiments show that VAMP-3 does not 

localise to tryptase. VAMP-3 resides in the recycling endosomal compartment in 

macrophages, Il-6 and TNF-have been shown to reside within [182, 371] and the 

release of these mediators is directed through this compartment. In mast cells a 

similar system might be present by which mast cells release certain cytokines. 

Therefore, to assess potential localisation of VAMP-3 to the recycling endosomal 

compartment in mast cells, localisation of VAMP-3 with rab11, a recycling 

endosome marker [372], was examined in LAD 2 cells.  

 

Imaging of fixed cells, indicate VAMP-3 does co-localise to some extent with rab11 

while VAMP-8, previously shown to localise to tryptase-positive granules, did not 



Page 123 

(Figure 4.14). LAD 2 cells were subsequently transfected with a chimera of IL-6 and 

GFP to determine whether this modified cytokine also localises to recycling 

endosomes labelled with rab11.  A representative image from a transfected cell is 

shown in Figure 4.15, as can be seen the GFP tagged IL-6 co-localizes with rab11 

positive structures but not with mast cell granules labelled with anti-tryptase. It 

was not possible to perform dual staining of IL-6 GFP and VAMP-3 due to antibodies 

of the two being of that same species. Future experiments using another set of 

antibodies will provide more conclusive evidence as to whether VAMP-3 colcalises 

with Il-6. However, these results suggest VAMP-3 localises to the same subcellular 

compartment as IL-6, defined by rab11.  

 

The results show VAMP-8 and to some extent VAMP-7 colocalise with the mast cell 

granule marker tryptase, while VAMP-3 does not but localises to a rab11 positive 

compartment, as does an overexpressed IL-6 construct. In LAD 2 cells VAMP-3 and 

VAMP-8 vesicles traffic to the plasma membrane upon stimulation with ionomycin 

but VAMP-7 does not, while trafficking of VAMPs upon stimulation of the FcRI 

receptor is inconclusive, possibility due to LAD 2 cells producing a small 

degranulation response to FcRI crosslinking (see FFN511 results in chapter 3).  

However, in HLMCs both VAMP-3 and VAMP-8 traffic to the plasma membrane upon 

stimulation with either ionomycin or FcRI. 
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Figure 4.14 

VAMP-3 colocalises to recycling endosomes in LAD 2 cells 

LAD 2 cells were labelled using antibodies to VAMP-3 and VAMP-8 (green) and co-stained with anti-

rab11 (red). A. VAMP-3 labelled cells, i, VAMP-3, ii, rab11 and iii overlaid image. B. VAMP- labelled 

cells, i, VAMP-8, ii, rab11 and iii overlaid image. Scale bars represent 5m.  
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Figure 4.15 

Il-6 GFP colocalises to recycling endosomes 

LAD 2 cells were transfected with IL-6 GFP, fixed and probed using and Anti-GFP antibody and co-

stained with Anti-rab11 orAnti-tryptase. A IL-6 GFP and rab11 staining, i, Il-6, ii rab11 and iii 

overlaid image. B Il-6 and tryptase staining. i,Il-6, ii, tryptase and iii overlaid image. Scale bars 

represent 5m. 

 

4.2.6 Expression of plasma membrane Qbc SNAREs 

  

Vesicles require interactions with SNAREs present on target membranes to undergo 

fusion. At the plasma membrane, syntaxins and the Qbc family of SNAREs form 

complexes with VAMPs present on vesicles to form the SNARE bundle that drives 

membrane fusion. The Qbc family of SNARE proteins lack transmembrane domains 

and contain two SNARE motifs [373]. Four members exist, SNAP-23, -25, -29 and -

47. SNAP-29 and -47 are not known to be enriched at the plasma membrane and 

lack membrane anchors [241]. SNAP-23 and -25 are the Qbc SNARE implicated in 

exocytosis in non-neuronal and neuronal cells, respectively [215]. Previous studies 

have identified SNAP-23 as nesessary for fusion of mast cell granules at the plasma 

membrane [233, 365, 374, 375].  



Page 126 

 

PCR and Microarray data suggested that multiple Qbc SNAREs are expressed in LAD 

2 and HLMCS  (Figure. 4.5). Furthermore, SNAP-23 expression increased four fold in 

stimulated HLMCs (figure 4.8bii). Therefore experiments were performed to assess 

protein expression of SNAP 23 and SNAP 25 in LAD 2 and HLMCS using western 

blotting and to determine localisation in mast cells by immunostaining. As predicted 

SNAP-23 protein was expressed (Figure. 4.16) and SNAP-23 localised to the plasma 

membrane of both LAD 2 and HLMCS (Figure. 4.17). However, the neuonal Qbc 

SNARE SNAP-25 was not present in LAD 2 or HLMCs, showing the neuronal SNARE 

has no role in human mast cells. This data is in agreement with previous studies 

showing mast cells do not expressed neuronal SNAREs and that SNAP-23 is highly 

expressed on the plasma membrane of mast cells. 

 

Figure. 4.16 

LAD 2 and HLMCS express SNAP-23 but not SNAP-25 

Western blotting of LAD 2 and HLMCS lysates of the plasma membrane Qbc SNAREs SNAP-25 and 

SNAP-23 show that human mast cells express SNAP-23 but not SNAP-25. PC12 neuronal cell line 

lysate used as positive control for SNAP-25 antibody. 
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Figure. 4.17 

SNAP-23 resides on the membrane of human mast cells  

LAD 2 and HLMCS co-stained with tryptase (red) and SNAP-23 (green) show SNAP-23 around the 

plasma membrane. A. LAD 2, B. HLMC. Scale bar represents 10m 

 

4.2.7 SNARE regulator expression 

 

A large number of proteins act either directly or indirectly with SNARE proteins to 

help the cell exert tight control over membrane fusion (Discussed in detail in 

section 1.3.5). Complexins, Munc13s and Munc18s have well defined roles in 

neuronal exocytosis, and putative roles in murine mast cell secretion [282, 284, 

376].   

 

The expression pattern of these regulators in LAD 2 cells and mRNA isolated from 

the HLMC donor, as determind by microarray analysis, is shown in figure 4.18. The 

data indicates that human mast cells express significant levels of the non-neuronal 

SNARE regulatory proteins, Munc18-3 and Munc 13-4 compared with the neuronal 

isforms, and that with the possibile exception of complexin II, complexins are not 

expressed in these cells. Taken together this data agrees with the lack of expression 

of neuronal SNARE proteins found in human mast cells consistant  with their 

haematopoetic origins and consolidates the view that some of the specialisations 

required for fast synaptic vesicular release in neurotransmission are not present in 

mast cells.  
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Figure.  4.18. 

LAD 2 and HLMCS express high levels of non-neuronal Munc13 and Munc18 isoforms and low 

expression of complexin II 

Gene expression values were normalized to the 75th percentile according to Agilent instructions. A. 

Clear bars represent LAD 2 mRNA expression from three independent RNA extractions ±SEM. B. Blue 

bars represent mRNA expression from one HLMC donor 

 
However, like in neurons and endocrine cells, calcium is still a critical regulator of 

exocytosis. The calcium dependent nature of mast cell degranulation suggests that a 

calcium sensor may be recruited to vesicles. Tandem C2 domain-containing proteins 

that contain C2A and C2B domains are involved in vesicle trafficking and impart 

calcium sensitivity to vesicles [377, 378].  There are four groups of tandem C2 

domain-containing proteins: syts, rabphilin-3 (RPH), doc2 and syt-like proteins 

(SLP) [379]. Numerous studies have identified the expression of syts and the 

expression of doc2 proteins in murine mast cells [260, 261, 380, 381]. However, no 

studies have assessed C2 domain-containing protein expression in human mast 

cells. Analysis of our microarray data shows that LAD 2 cells and HLMCs express 

mRNA for syt III, XI and XV. Slps, in particular slp2, showed high expression levels in 

either LAD 2 cells or HLMCs. Doc2 and  and RPH however, were not expressed to 

any great extent. 

 

Previous studies in murine mast cells provided functional evidence for a role of syt 

II in regulating degranulation. Suprisingly, as can be seen in figure 4.18, the 

apparant expression of this isoform in human mast cells is very low. Suggesting that 

one of the other calcium sensing isoforms of syt, possibly syt III may fullfill the role 
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of calcium sensor for degranulation in LAD 2 and HLMCs. It is equally plausable 

another set of tandem C2 domain containing proteins might fullfill this role, 

especially considering slp expression in both LAD 2 cells and HLMC was much 

higher than syt expression levels (Figure 4.19 C and D). Given the low levels of syt II, 

mRNA from stimulated cells was analysed to look for any changes in syt expression 

to see if any syt implicated in murine mast cell exocytosis becomes upregulated in 

human mast cells (figure 4.20). Changes were very varied and inconclusive in the 

two LAD 2 cell samples. In the HLMC donor the non-calcium binding isoforms syt IV 

and XII had increases in expression, but in both LAD 2 cells and HLMCs syt II, 

heavily implicated in murine mast cell exocytosis, was not upregulated.  This result, 

taken together with figure 4.19, suggests that the syt associated with murine mast 

cell SG exocytosis is not involved in human mast cell exocytosis and another C2 

domain containing protein, a syt or slp, is invovled in this process. 
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Figure.  4.19. 

LAD 2 and HLMC calcium sensor expression 

Microarray data was analysed to detemine calcium sensor expression in human mast cells. A LAD 2 

syt expression. B HLMC syt expression. C and D show LAD 2 and HLMC slp expression. Human mast 

cells express syt III XI and XV and express a number of slps. slp2 had the highest expression of all 

Tandem C2 domain-containing proteins. Gene expression values were normalized to the 75th 

percentile according to Agilent instructions. Clear bars represent LAD 2 mRNA expression from three 

independent RNA extractions ±SEM. Blue bars represent mRNA expression from one HLMC donor 
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Figure 4.20 

FceRI crosslinking induces changes in syt expression 

A. LAD 2 cells and, B, single HLMC donor were stimulated for two hours by FceRI crosslinking, the 

time at which VAMP expression reached its maximum in qPCR experiments, and mRNA harvested. 

mRNA levels of syts were assessed by analysis of microarray data. Values represent fold change of 

stimulated cells compared to non-stimulated cells of same passage number (LAD 2 cells N=2) or 

same donor (HLMC N=1).  
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4.3 Discussion 
 

Results in this chapter have identified the expression of numerous SNARE proteins 

in LAD 2 cells and HLMCs at the mRNA level through microarray analysis and PCR.  

Additional experiments determining protein expression and localisation have been 

confirmed. From these results two VAMPs, VAMP-3 and VAMP-8 have been 

identified as potential candidate SNAREs residing on vesicles mediating the release 

of inflammatory mediators. Additional analysis of microarray data has also 

determined the level of mRNA expression of a number of SNARE regulators. This 

has highlighted potential differences in expression, particularly with syts, from 

murine mast cells. 

 

Analysis of the microarray data shows that mRNA for syntaxins 3 and 4 are highly 

expressed in LAD 2 cells, more so than any other syntaxin. Previous studies have 

implicated syntaxins 3 and 4 in mast cell exocytosis [233, 239]. Immunostainging 

has shown syntaxin 4 localises to the plasma membrane in both murine and HGMCs, 

and experiments inhibiting function in RBL-2H3 cells through siRNA and HGMCs 

using inhibitory antibodies result in reduced histamine and -hexosaminidase 

release [232, 233, 239, 365]. Further evidence exists in other cell types of a role in 

regulated exocytosis; syntaxin 4 knockout mice have reduced insulin release from 

pancreatic -cells that can be restored by the addition of recombinant syntaxin 4 

[382.]. Whilst in another immune cell, neutrophils, syntaxin 4 has been shown to 

mediate fusion of tertiary and azurophilic granules with the plasma membrane 

[383]. For syntaxin 3 contradictory evidence exists as to its role in mast cells. 

Immunostaining of an overexpressed syntaxin 3 construct in RBL-2H3 cells was 

found on SGs and in unstimulated BMMCs partial colocalisation with serotonin is 

seen. However, in stimulated BMMC syntaxin 3 localises to the plasma membrane 

[235, 277] and in HGMCs, immunostaining has found syntaxin 3 to localise 

exclusively to the plasma membrane in unstimulated cells [240]. Further evidence 

of a role of syntaxin 3 in HGMCs has also been shown; CCL2, 3 and 4 secretion was 

found to be inhibited by the use of syntaxin 3 targeting antibodies [240].  RBL-2H3 

cells are not a reliable mast cell model (section 1) and overexpression of syntaxin 

might have lead to miss targeting to SG. Furthermore, BMMCs are differentiated in 

culture and so are a more artifical system and serotonin is not expressed to any 



Page 133 

great extent in human mast cells so the relevance of these studies to human mast 

cells is limited. HGMCs are primary cells derived directly from human patients and 

represent the most similar cell type to those used in this study and so findings from 

these cells are most likely to be replicated in LAD 2 and HLMCs.  

 

Given the prominent expression in LAD 2 cells and HLMCS of both syntaxin 4 and 

syntaxin 3 mRNA found in this study, it is likely that they have prominant functions 

in LAD 2 and HLMCs, with roles similar to that in HGMCs. Syntaxin 4 mediating SG 

fusion, syntaxin 3 possibily having a role in cytokine secretion. Further experiments 

using immunostaining and mediator release assays in cells with knocked down 

expression of these syntaxins would give a more definitive answer as to their role in 

exocytosis.  

 

Many other isoforms of syntaxins were also expressed in LAD 2 and HLMCs, 

including syntaxin 10 and 16, which had the third and fourth highest expression 

levels. Syntaxin 10 has been reported to function in retrograde transport from the 

late endosome to Golgi and siRNA deletion and expression of a soluble form of 

syntaxin 10 leads to hyper-secretion of hexosaminidase in HeLa and HEK293 cells 

[384]. Given these findings, in mast cells, syntaxin 10 might have a role in 

retrograde transport from SGs and regulate SG contents. Knockdown of syntaxin 10 

might lead to enlargement of SGs and the miss targeting of proteins to them. 

Syntaxin 16 on the other hand has been reported to have an ubiqtious role in early 

endosome to Golgi trafficking [385]. However, there is a reported tissue specific role 

in adipocytes, whereby syntaxin 16 is involved in the intracellular sequestering of 

GLUT4 in the abscence of insulin [386]. It is possible that syntaxin 16 might have a 

similar sequestering role in mast cells that could act as a store for pre-formed 

cytokines allowing rapid release after stimulation.  

 

 The wide expression of syntaxins is not surprising given the diverse trafficking 

pathways that exist within a cell. Further experiments determining syntaxin 

localisation and functional studies were beyond the scope of this study but the 

results show the expression of multiple syntaxins, and there is the possibility of a 

number of syntaxins mediating the regulated release of inflammatory mediators in 

human mast cells.  
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SNAP-23 protein was found to be abundantly present in this study and localized to 

the plasma membrane. SNAP-23 has been identified as the plasma membrane Qbc 

SNARE in that mediates the fusion of exocytotic vesicles in non-neuronal secretory 

cells. In mast cells it is present at the plasma membrane and numerous studies have 

shown it is vital in mediating release of mast cell mediators, through the use of 

siRNA and inhibitory antibodies [240, 387, 388]. RBL-2H3 cells have high levels of 

mRNA expression of SNAP-23 mRNA [365]. However, the mRNA levels of SNAP-23 

in this study were not very high when compared to other SNAREs implicated in 

mast cell exocytosis, such as VAMP-8 and syntaxin 4 [365], although a four fold 

increase was seen in mRNA expression in stimulated HLMCs. A possible explanation 

is that the SNAP-23 protein could have a very low turnover and high half-life in 

human mast cells. Housekeeping proteins are often longer lived and have a greater 

protein to mRNA ratio [389]. This might explain the apparent discrepancy from 

mRNA to protein levels. However, although SNAP-23 is expressed in all non-

neuronal tissues, it has been reported not be essential for constitutive exocytosis in 

HeLa cells [390]. This study used siRNA knockdown and a dominant negative 

mutant SNAP-23. There might have been possibile compensatory effects by other 

SNAPS, or just that another SNAP mediates constituitive traffic. SNAP 25 wasn’t 

expressed but SNAP-29 or -47, not normally residing on the plasma membrane, 

might be able to participate in the final fusion steps of constituitive release. This 

argument is particularly relevant given a recent siRNA screen has implicated SNAP-

29 in constituitive exocytosis in C1 cells [391] and adds further evidence for a 

limited role of SNAP-23 in constituitive exocytosis. Alternatively, as 10% of SNAP-

23 protein remained upon knockdown in the former study, small amounts of SNAP-

23 might be sufficient to support exocytosis. Also, Gorden et al showed a number of 

SNAREs involved in constitutive traffic. Multiple constitutive pathways might exist, 

some of which were not detected in the two studies, which might utilise SNAP-23 

and so SNAP-23 might mediate the fusion of both regulated and constitutive traffic. 

Alternatively, given the findings of both studies, it is possible that SNAP-23 is only 

important for regulated secretion. In highly specialised secretory cells that use 

SNAP-23 for regulated secretion, a high level of regulation of expression levels 

might be required. As a result, in unstimulated cells, mRNA levels remain low and a 

high level of mRNA expression is only required upon stimulation.  
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SNAP-25 protein was not expressed in either LAD 2 or HLMCS, confirming previous 

studies in HGMCs and murine mast cells showing no expression of SNAP-25 protein 

[239].  

 

The Qbc SNARE with by far the highest expression levels is SNAP-47. SNAP-47 is 

ubiquitously expressed SNARE that has been shown to be present in unidentified 

intracellular compartment, not on the plasma membrane and enriched in SV 

fractions [241]. In neurons it has been reported to mediate trafficking of AMPAR 

regulated exocytosis in Long-Term Potentiation (LTP) with syntaxin 3, but is not 

required for synaptic transmission [392]. The apparent lack of a membrane anchor 

to SNAP-47 might allow more transient trafficking in SNAP-47 to the plasma 

membrane. It would be interesting to identify where SNAP-47 is localizing to in 

resting and activated mast cells and determine whether it has a role in receptor 

trafficking or mediator secretion in immune cells. This might form part of the 

process by which other channels or receptors are trafficked to the plasma 

membrane in activated cells, such as TRP channels, which are through to be 

important in the development of sustained calcium rises in activated mast 

cells[393]. The fact that syntaxin 3 was also expressed at relatively high levels and 

has been shown to interact with SNAP-47 in AMPAR trafficking suggests a 

potentially similar mechanism of receptor trafficking could exist in mast cells. 

Further focused functional studies are needed to assess the protein expression of 

SNAP-47 along with other Qbc SNAREs to address the role of distinct syntaxin and 

SNAP protein isoforms in mast cell biology.  

 

Results in this chapter have identified the expression of VAMPs-3, -7 and -8 in LAD 2 

cells and HLMCs. VAMP-1 was not expressed in mast cells. VAMP-2, although 

expressed at relatively high levels in the microarray and qPCR, wasn’t found in 

western blotting. Interestingly the single previous study assessing mRNA and 

protein expression of VAMP-2 in human mast cells had a similar observation; 

VAMP-2 was expressed in PCR but not through western blot [239] and this is not 

due to problems with antibody detection as strong staining was observed in PC12 

cells. In embryonic rat hippocampal neurons VAMP-2 mRNA is synthesised at a 

constant rate throughout neuronal development but levels of protein increase 
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steadily, suggesting that for VAMP-2 in neurons there is a high level of post-

translational control of expression and that mRNA levels don’t correlate to protein 

levels [394]. VAMP-2 protein might have a short half-life in mast cells, resulting in 

the relatively high levels of mRNA with no protein expression.  Given no SNAP-25 

protein was expressed either, these results confirm that human mast cells, although 

expressing some neuronal SNAREs at the mRNA level, are not likely to utilize 

neuronal SNAREs for regulated exocytosis of inflammatory mediators.  

 

Of other non-neuronal associated VAMPs, microarray data identified VAMP-8 as the 

most highly expressed in LAD 2 cells and HLMCs. This was confirmed with qPCR 

and the non-haematopoetic secretory cell line, HEK 294, did not have such high 

levels of expression. Immunostaining showed VAMP-8 localised with the mast cell 

granule marker tryptase and translocated to the membrane upon stimulation. These 

observations point to VAMP-8 having a key role in mast cell SG release. This would 

agree with current evidence, whereby inhibition of VAMP-8 function in HGMCs with 

inhibitory antibodies or knockdown in murine mast cells leads to reduced 

histamine release [235, 239]. Although a large amount of VAMP-8 colocalised with 

tryptase a large portion of VAMP-8 did not. The tryptase negative proportion that 

didn’t might represent an immature SG pool or non-secretory lysosomes. In murine 

mast cells three types of granules have been reported; type I containing lysosomal 

markers, and type III containing serotonin and type II containing both. Type I and II 

might represent immature granules or type I normal lysosomes [178]. VAMP-8 

might be present on both type I and II but not type III representing a pool that does 

not colocalise to mast cell granule markers. Whether they are immature granules or 

non-secretory lysosomes remains to be determined. Further colocalisation analysis 

using lysosomal markers such as the LAMPS could be performed to determine 

whether the large non-tryptase localising pool is present in lysosomes.  Another 

explanation is that tryptase positive granules might only represent a subpopulation 

of granules, a more detailed proteomic analysis of SG isolated from mast cells is 

needed to identify the nature of possible function of these VAMP-8 positive 

granules. What is clear from the results in this study is that VAMP-8 is the 

predominant VAMP in human mast cells and most probably mediates the fusion of 

SG with the plasma membrane. Functional studies in chapter 5 address this role in 

greater detail. 
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Like VAMP-8, VAMP-7 has also been reported to mediate the release of mast cell 

granule mediators [240]. In this study the microarray data identified a high level of 

VAMP-7 mRNA expression when compared to the majority of other VAMPs (Figure. 

4.6).  All VAMPs increased mRNA expression within 2 hours of stimulation. VAMP-7 

expression increased 4 fold, the most out of all SNAREs tested. VAMP-7, as with 

VAMP-8, colocalised with tryptase. Previous reports have shown both VAMP-8 and 

VAMP-7 colocalise with SG markers and inhibition of function through inhibitory 

antibodies attenuates secretion of histamine [239, 395].  In this study, only a small 

proportion of VAMP-7 colocalised with tryptase and VAMP-7 exhibited minimal 

trafficking to the plasma membrane upon stimulation in LAD 2 cells. In other cell 

types, such as HeLa cells, VAMP-7 has been shown to mediate the trafficking from 

the late endosome to the lysosome [237]. VAMP-7 might regulate a trafficking 

vesicle that is important for maturation of granules. siRNA knockdown of VAMP-7 in 

RBL-2H3 cells results in reduced granular release but VAMP-7 does not significantly 

colocalise with serotonin containing granules and does not co-precipitate with 

SNAP-23, while VAMP-8 does [365, 396]. The large increase in expression might 

indicate a role in replenishing granules, where there would be a greater need for 

VAMP-7 after stimulation to aid recovery and refilling of granules. This process 

takes hours [397] and this time course could indicate changes at the transcriptional 

level as shown here. The reduction in mediator release could be explained by an 

inability of the cell to form fully mature granules. Further experiments determining 

whether inhibition of VAMP-7 results in immature granules and the accumulation of 

SG associated factors might help to provide this evidence. This could be done by 

using high resolution imaging to follow vesicle synthesis and maturation with 

VAMP-7 and VAMP-8 GFP and RFP-tryptase constructs. Assessment of granule 

morpholgy could also be performed using electron microscopy.  

 

In my study VAMP-3 was expressed at intermediate levels in mast cells and was 

clearly present in pools distinct to VAMP-8. Furthermore, there were clear 

differences in VAMP3 and VAMP-8 vesicle size in HLMCS, VAMP-3 being present on 

much larger vesicles or clusters of small ones, the resolution of the images is not 

high enough to differentiate. LAD 2 cells did not show such as stark variation in the 

size of the two sets of vesicles. LAD 2 cells are described as a well-differentiated 
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mast cell model, and data in chapter 3 is suggestive of this. However, the variation 

seen might be indicative of the cell line not representing a fully differentiated 

model. Another observation leading to a similar conclusion is the fact that VAMP-3 

or VAMP-8 showed little trafficking to the plasma membrane in LAD 2 cells 

stimulated through FcεRI crosslinking, but clear trafficking with ionomycin 

stimulation. This discrepancy might be explained by results in chapter 3. 

Stimulation by ionomycin results in release of large amounts of FFN511 release in 

all mast cells, whilst less than half of LAD 2 cells respond to FcεRI crosslinking and 

so changes to the distributions of SNAREs in LAD 2 cells stimulated in this manner 

might be too small to identify using immunostaining. In contrast VAMP-3 and 

VAMP-8 both trafficked to the plasma membrane upon ionomycin and FcεRI 

mediated stimulation in HLMCs. The FFN511 data in chapter 3 shows many more 

HLMCs produce a degranuation response to FcεRI crosslinkning and so changes in 

distribution of VAMPs might be more prominant.  

 

Previous studies in human mast cells found VAMP-8 vesicles translocating to the 

membrane but not VAMP-3, and VAMP-3 to not be important in mediator release 

[239]. The translocation of VAMP-3 seen upon stimulation in my studies suggests 

that at least a proportion of these vesicles undergo stimulus dependent 

translocation to the plasma membrane. Differences in the observations made 

between the stimulus dependent translocation of VAMP-3 to the plasma membrane 

in the study by Biscoff et al and myself could result from phenotypic differences 

between mast cell populations in the gut and lung. For example intestinal mast cells 

can be phenotypically altered in culture by exposing the culture to Il-4, producing 

Th2-type response [398]. The differing cocktail of factors mast cells are exposed to 

at different tissue locations results in phenotypical differences, discussed in detail in 

section 1.1. Some evidence suggests that cytokine expression also varies in cells 

differentially expressing proteases. MCT cells express IL-5 and IL-6 while only a very 

small number MCTC do in the lung [20].  In cells releasing differential sets of 

mediators, it is possible that the release of these might be controlled by a different 

combination of SNAREs that vary in mast cell subpopulations. Another explanation 

might lie in the types of experiments performed in each study.  In the study of Frank 

et al only the release of histamine and four chemokines were assessed. Within the 

four chemokines, differences were observed in the effect of VAMP immobilisation. 
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For example anti-VAMP-8 inhibited CXCL8 release but not CCL4, CCL4 release was 

not inhibited by either VAMP-3, -7 or -8 immobilisation. The effectivness of the 

antibody technique was not verfied with any other approaches. Cytokine release 

was not measured and considering different combinations of SNAREs were found to 

mediate the release of just four chemokines, mast cells might utilize other SNARE 

combinations to control the release of different cytokines and chemokines. Previous 

studies in macrophages have identified a secretory pathway within which TNF- 

and Il-6 are trafficked from the Golgi to the plasma membrane through the recycling 

endosome, with VAMP-3 mediating the release from the plasma membrane [182, 

183]. In murine mast cells, VAMP-3 has been shown to reside in a pool distinct to 

that of VAMP-8 that colocalises with TNF- [235]. Moreover VAMP-3 was found to 

complex with SNAP-23 and syntaxin 4 [399]. In agreement with these studies, 

VAMP-3 colocalised to recycling endosomes, as did Il-6. The IL-6 monitored was 

overexpressed and so it is possible that there was some miss-targeting as a result of 

overexpression but minimal amounts were present in SGs, supporting the notion 

that VAMP-3 is involved in IL-6 secretion and that VAMP-3 recycles through the 

rab11 positive recyling endosome.  

 

What is clear from the findings in my study is that mast cells express a number of 

VAMPs that localise to different mast cell compartments. VAMP-8 is the best 

candidate for mediating the fusion of SG with the plasma membrane whilst VAMP-7 

could have a role in granule maturation. VAMP-3, as of yet having no defined role in 

mast cells, is present in significant quantities and might well represent a vesicle 

subset that mediates the release of cytokines. Given more time further analysis of 

colocalisation would have been performed.  Determining the colocalisation with 

other subcellular markers would have enabled a better picture of VAMP localisation 

to be built. Furthermore in this study no colocalisation analysis was performed. 

Using analysis such as pearsons coefficient to quantify the levels of colocalisation 

would give a more definitive evidence of the findings described above.  Also, this 

study has not provided conclusive evidence that the antibodies used for 

immunostaining are specific. Further experiments showing a loss of staining after 

knockdown of a particular VAMP would give some evidence for specificity. Despite 

these drawbacks, the results described here give a great starting point and insights 

for the functional studies performed in chapter 5.  
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Complexins are small helical containing proteins that mediate rapid fusion of 

exocytotic vesicles in neurons [271]. Mast cells do not undergo such rapid fusion 

and, despite reports suggesting the importance of complexin II in mast cell 

exocytosis [400], very little mRNA expression was seen in mast cells in this study. 

Murine models have been used in the majority of studies assessing the exocytotic 

machinery in mast cells, including complexin. Many of the proteins expressed in 

these cells have clearly defined roles in neuronal exocytosis, including: Munc18-1 

and 2, VAMP-2 and SNAP-25 [233, 235, 376, 401]. In the single study performed in 

HGMCs and data shown here in LAD 2 and HLMCS makes it clear human mast cells 

do not express SNAP-25 or VAMP-2 protein [239]. Differences of expression of 

other exocytotic components were also found in the microarray data.  

 

Munc13-1-3 are isoforms of Munc13 predominantly found in neuronal systems and 

were not expressed to any great extent in LAD 2 cells or the HLMC donor. Munc13-4 

was expressed at much higher levels. These results do mirror work performed in 

murine models, where Munc13-4 is expressed at high levels and is thought to 

mediate the docking and tethering of mast cell granules to the plasma membrane 

[282].   

 

Syt XI had the greatest expression out of all syts. Little is known of the function of 

syt XI in mast cells but in macrophages it is reported to regulate phagocytosis and 

cytokine secretion[402]. Syt XI and IV belong to a group of syts that have an altered 

C2 domain that renders them insensitive to calcium binding [403]. Syt XI acts as a 

negative regulator of cytokine secretion; it localises to recycling endosomes and 

lysosomes, over expression inhibits TNF and Il-6 release and knockdown increases 

it [402]. Syt XI might add an additional level of control to cytokine secretion 

preventing the aberrant release of cytokines. Syt XI is expressed at high levels when 

compared to other syts in mast cells and could possess a similar function in mast 

cells as in macrophages.  Very little is known of syt XV. It is not expressed in 

neurons but is more ubiquitously expressed in non-neuronal tissue and is also 

postulated to be calcium insensitive [404]. 

Syt II is expressed at high levels in murine mast cells, localises to SGs and mediates 

the release of preformed mediators [255, 260]. Surprisingly, little expression was 
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seen in the microarray. All the work characterising syts in mast cells has been 

performed using murine mast cells. As discussed in the previous paragraphs, they 

possess high levels of many proteins of the neuronal exocytotic machinery. Syt II is 

highly expressed in neurons and so, as with complexin, the functional relevance in 

human mast cells might be limited. Syt I, II and IX have high sequence similarity 

within their two C2 domains and have been termed Class A syts [405]. They are 

differentially expressed in neurons and all act as fast calcium sensors, the only syts 

able to rescue fast synchronous release [406] and have the lowest affinity to calcium 

and so allow cells to respond to high calcium concentrations (~10M) at the active 

zone [253]. Exocytosis in mast cells occurs within minutes rather than milliseconds 

[397] and lack the voltage gated calcium channels that give rise to large local 

calcium concentrations. So the ability to respond as rapidly is not required and 

might explain the lack of expression of these isoforms.   

 

Syt III has been termed a class B syt [405] and was expressed at levels similar to syt 

XI in LAD 2 cells. Syt III has a higher affinity to calcium than the class A syts [253]. 

Previous studies have shown syt III localises to the Early Endosome and SGs and 

report a putative role in the formation of the ERC and delivery of material from the 

EE to the ERC and SGs rather than a direct role in exocytosis [261].   

 

The apparent lack of expression of a calcium sensitive syt isoform mediating the 

release of SGs might be explained by the expression of other tandem C2 domain-

containing proteins. Slps have been implicated in exocytosis in numerous cell types 

including platelets and pancreatic  cells [407-409]. They contain two c-terminal C2 

domains but no transmembrane sequences [410]. Slp1-3 can interact with rab27a 

and b, and slp 2 had been shown to mediate the peripheral trafficking of 

melansomes in melanocytes [411]. Murine mast cells express rab27a and b on SGs, 

assisting in docking and tethering granules to the plasma membrane in interaction 

with Munc13-4 and doc2 [284, 412]. High levels of expression of rab27b and Munc 

13-4 were seen in both LAD 2 cells and HLMCS but not rab27a or Doc2an 

expression table of rabs can be seen in the appendixSlp 2 was expressed at the 

highest levels of all tandem C2 domain-containing proteins in LAD 2 cells and 

HLMCS. Slp2 might have a role in granule docking and tethering in human mast cells 

and act as calcium sensors for exocytosis in mast cells.  A calcium insensitive syt 
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isoform might act with an slp to bend the plasma membrane, a critical step in 

calcium-dependent exocytosis [413]. 

 

In conclusion using the microarray data it has been possible to determine the 

expression of SNARE regulators in human mast cells. Finding suggest that mast cells 

express large amounts of the non-neuronal isoforms of Muncs, while express 

relatively little syts but express at high levels other tandem C2 domain proteins, the 

slps.  
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Chapter 5: Functional characterisation 
of VAMP-3 and VAMP-8 in human mast 
cells 

5.1 Introduction 
 
pHluorins are variants of GFP rendered sensitive to pH through a cluster of 

mutations [295]. The fluorescence of ecliptic forms is quenched at acidic pHs 

(pH<6), conditions encountered in secretory vesicles, and shows peak fluorescence 

at neutral pHs. Vesicular SNARE proteins can be tagged with pHluorin on their C-

termini, resulting in an intra-vesicular tag that becomes unquenched upon vesicle 

fusion with the plasma membrane as the pHluorin is exposed to the more alkaline 

extracellular environment. In Chapter 4, the predominant vesicular SNARE proteins 

present in human mast cells likely to contribute to inflammatory mediator secretion 

were identified as VAMP-3 and VAMP-8. Here I describe the results from functional 

experiments that were performed to further elucidate the roles these two v-SNARE 

play in mast cell exocytosis. VAMP-3 and VAMP-8, each tagged with pHluorin, were 

stransfected into LAD 2 cells to monitor vesicle fusion in living cells before and after 

stimulation.  Dual imaging experiments combining measurements of fluorescence 

emission from pHluorin with ratiometric measurements of intracellular calcium, as 

assessed with Fura-2, were performed to examine the relationship between VAMP-

3 vesicle fusion or VAMP-8 vesicle fusion and calcium signalling. Targeting of VAMP-

3 with BoNT/B or VAMP-8 with shRNA was used to identify the functional role each 

plays in mast cell mediator secretion.  The results of these experiments provide 

insight as to the feasibility of controlling the release of cytokines from human mast 

cells through BoNTs, which could  be exploited as a novel treatment for chronic 

inflammatory diseases.  

 

5.2 Results 

 

5.2.1 VAMP-pHluorins as tools to monitor exocytosis  

 

Given the reported role of VAMP-8 in mast cell granule exocytosis and VAMP-3 in 

cytokine secretion in other immune cells [182, 183], the decision was made to 
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produce VAMP-3 and VAMP-8 ecliptic pHluorin constructs to monitor vesicle fusion 

in human mast cells. A diagram depicting the pHluorin constructs and their pH 

sensitive nature is in Figure 5.1  

 

 

Figure. 5.1 

VAMP pHluorin constructs. 

A. Diagram of SNARE-pHluorin fusion proteins, the pHluorin tag is present on the C-terminal end of 

VAMP. B. Diagram depicting the pH sensitive nature of the VAMP-pHluorin constructs. Upon 

stimulation acidic secretory vesicles fuse with the plasma membrane and become alkalised as they 

are exposed to the more neutral extracellular environment. pHluorin, intravesicularly tagged to a 

membrane protein, is initially quenched in the acidic conditions of resting vesicles. After the vesicle 

undergoes membrane fusion the tag becomes de-quenched and this increase in fluorescence can be 

monitored (adapted from Dreosti et al Exp Physiol 2011[414]. C. Live cell image of LAD 2 cell 

transfected with VAMP-8-pHluorin i) before and ii) following stimulation with 10g/ml of anti-IgE 

for 3 minutes. 
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The VAMP-3 and VAMP-8-pHluorin constructs were transfected in to LAD 2 cells 

using the neon transfection system, the protocol is described in detail in section 

2.16. Over-expression of proteins can result in miss targeting to cellular 

compartments. Therefore initial experiments using the pHluorin constructs sought 

to determine whether the pHluorin constructs were localising to similar 

intracellular compartments as the endogenous VAMPs. To do this immunostaining 

was performed on LAD 2 cells expressing the pHluorin constructs. Cells were co-

stained using anti-GFP, to detect pHluorin and anti-tryptase, where endogenous 

VAMP-8 colocalised to, or with or anti-rab11, the compartment to which 

endogenous VAMP-3 localised. Representative images of fixed, transfected cells are 

shown in Figure 5.2. As can be seen VAMP-8 pHluorin colocalised with tryptase but 

very little colocalised to rab11, while VAMP-3-pHluorin colocalised with rab11 but 

did not colocalised to tryptase, indicating that the tagged VAMPs trafficked to the 

same intracellular compartments as their endogenous counterparts (see also 

chapter 4, figure 4.15). 
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Figure. 5.2 

VAMP-8 pHluorin and VAMP-3 pHluorin localise to different cellular compartments 

LAD 2 cells were transfected with either VAMP-3 or VAMP-8-pHluorin for 24 hours and then, fixed 

and co-stained with anti-GFP (green) and anti-tryptase or rab11 (red), as indicated below each 

image. Colocalistion can be seen as yellow in the overlaid figures. A. VAMP-3 does not colocalise with 

mast cell granules marker tryptase but does with rab11. B. VAMP-8-pHluorin colocalising with 

tryptase, the mast cell granule marker .C No staining for GFP is seen in un-transfected cells, only 

tryptase staining can be seen (Red). Scale bar represents 5m. Representative images from two 

transfections.  

 

To identify the cellular distribution of the VAMP-pHluorins an acid wash 

experiment was performed in resting cells expressing either VAMP 3 or VAMP 8 

pHluorin. Ecliptic forms of pHluorin are non-fluorescent at pH<6[295], these 

conditions are encountered in resting vesicles and so in resting cells only pHluorin 

present on the cell surface will fluoresce if tagged intra-vesicularly. A small amount 

of background fluorescence from pHluorin may also come through pHluorin present 

in the Golgi (pH 6.2) and ER (pH7.0)[415]. The proportion of VAMP-pHluorin on the 

cell surface was calculated in non-stimulated cells by washing the cells in a pH 5.6 

external solution to quench cell surface fluorescence. Cells were subsequently 

washed in 50mM ammonium chloride (NH4Cl) external solution to determine 

intracellular fluorescence. NH4Cl is a weak lypophilic base, whereby the neutral NH3 

can cross cellular membranes and bind free intracellular protons resulting in 
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alkalisation and subsequent de-quenching of the pHluorin contained within [415, 

416]. The proportion of cell surface to intracellular VAMP-pHluorin can be 

estimated from these two values (details in chapter 2 section 2.17.2). Upon 

application of the pH 5.6 external solution, clear decreases in fluorescence were 

produced indicative of quenching of cell surface pHluorin (figure 5.3 A and B) 

Application of NH4CL resulted in large rises in pHluorin fluorescence as intracellular 

pHluorin became de-quenched. From the resulting traces, the proportion of cell 

surface to intracellular pHluorin was calculated (figures 5.3 C and D) (details in 

section 2.17.2). A significantly greater proportion of VAMP-8 pHluorin was 

intracellular (>60%, P<0.0001) compared to the amount present at the cell surface 

(figure 5.2 B and D). VAMP-3-pHluorin was evenly distributed between the cell 

surface and intracellular compartments with no significant difference being 

measured between the distribution of the two compartments (P=0.97). These 

results highlight that VAMP-3 and VAMP-8-pHluorin have differing distributions 

within the cells. And that VAMP-3 may be cycling between the plasma membrane 

and an intracellular compartment in ‘resting’ cells, while VAMP-8 remains largely 

trapped in an intracellular compartment until the cells are activated. 
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Figure. 5.3 

VAMP-3 and VAMP-8 pHluorins have distinct cell surface and intracellular distributions 

A. Plot of mean total cellular fluorescence over time during the superfusion of external solution with 

the application of an adjusted pH external solution or NH4CL indicated above the traces. A greater 

proportion of VAMP-3 is present at the cell surface compared to VAMP-8, which shows a more 

intracellular distribution. Blue line indicates VAMP-3-pHluorin fluorescence, black line VAMP-8- 

pHluorin fluorescence. C and D show calculated percentage distribution of VAMP-3 and VAMP-8 

pHluorins calculated from the cellular fluorescent values shown in figures A and B (details of 

calculation in section2.17.2) VAMP-8-pHluorin n=58 cells ± SEM. B. VAMP-3-pHluorin n=88 cells ± 

SEM. *** denotes P<0.0001 unpaired students T-test. Data from three separate transfections of LAD 2 

cells at three different passage numbers. 

 

As described in chapter 4, and others have shown that VAMPs reported to be 

present on secretory vesicles in mast cells and other secretory cell types translocate 

to the membrane upon stimulation [239]. To ascertain whether VAMP-3 and VAMP-

8 vesicles not only translocate, but also undergo fusion with the plasma membrane 

in a stimulus dependent manner VAMP-3 and VAMP-8 pHluorin expressing LAD 2 

cells were activated by FCεRI crosslinking and whole cell fluorescence monitored 

over time. Cells were loaded with the calcium dye Fura-2AM and calcium levels and 
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pHluorin fluorescence monitored at the same time. Both VAMP-3-pHluorin and 

VAMP-8-pHluorin transfected cells showed pronounced increases in pHluorin 

fluorescence within seconds of application of anti-IgE, showing that both VAMP-3 

and VAMP-8 pHluorin vesicles undergo fusion with the plasma membrane upon 

stimulation (Figure 5.4). There was however, cell to cell variability. n=33/57 of 

VAMP-8-pHluorin and 28/53 of VAMP-3-pHluorin cells monitored showed 

stimulus-dependent increases in fluorescence. Furthermore, within the cohort of 

responding cells there were variations in the size of responses, as can be seen in 

example individual cell traces (figure 5.4 D and F). These results mirror the FFN511 

findings in chapter 3, where individual mast cells have a varied degranulation 

response to FCεRI activation.  
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Figure. 5.4 

VAMP-3 and VAMP-8-pHluorin cells undergo membrane fusion upon FcεRI cross-linking. 

LAD 2 cells were transfected with either VAMP-8 or VAMP-3 pHluorin, sensitised overnight with 

300ng/ml of human IgE. The next day cells were loaded with 1M fura-2AM.and FCεRI cross-linking 

was subsequently induced by perfusion of 10μg/ml anti-IgE shown by horizontal bars above graphs. 

A. Mean R340/380  values representing calcium responses and B. Mean normalised pHluorin 

fluorescence over time from individual responding cells. Blue lines represent data obtained from 

VAMP-3 pHluorin expressing LAD2 cells, black lines represent data obtained from VAMP-8 pHluorin 

expressing cells.  VAMP-8 n=33/57±SEM. VAMP-3 n=28/53±SEM. C Calcium and D Changes pHluorin 

emission fluorescence measured in representative individual cells expressing VAMP-3 pHluorin 

before and after cell stimulation (indicated by the bar above the traces). E. Calcium and F. pHluorin 

representative individual cell responses of VAMP-8 pHluorin expressing cells. Data from three 

transfections. pHluorin values are given as normalized fluorescence values, normalized to total 

fluorescence determined by fluorescence resulting from NH4CL wash which is superfused at the end 

of each experiment (details can be found in section 2.17.2 in chapter 2)  
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Figure. 5.5 

pHluorin expression does not determine the VAMP-pHluorin response size  

Data from the same cohort of cells used in figure 5.4 was analysed to determine whether there was a 

significant correlation of the amount of pHluorin expressed in individual cells to the maximum 

response size. Response size is the maximum change in fluorescence following stimulation, total 

fluorescence is determined by NH4CL wash at the end of each experiment. No significant correlation 

was seen between the response size and the total amount of pHluorin present in mast cells. For 

either VAMP-3 (B) or VAMP-8. (A) VAMP-8 r=-0.057 P =0.63 VAMP-3 r=-0.206 P=0.11. 

 

The ability of a cell to produce an increase in fluorescence following stimulation and 

the response elicited might be dependent on the amount of pHluorin expressed in 

the cell. If this was the case then differences in the size of pHluorin responses might 

be artifactual and caused by differences in the amount of pHluorin expressed in 

each cell, rather than differences in the level of receptor signalling evoked upon 

stimulation. To assess whether this was the case, correlation analysis was 

performed on cells stimulated with anti-IgE to determine whether response size 

correlated with the total fluorescence (determined by NH4Cl wash, Figure. 5.5). No 

significant correlation was seen for either VAMP-3-pHluorin or VAMP-8-pHlourin 

expressing cells (P=0.63, P=0.11), meaning that differences in the size of VAMP-

pHluorin responses are not due to the amount of pHluorin expressed, but more 

likely due to cell to cell variability in receptor signalling. 
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Figure. 5.6 

VAMP-3 vesicles have greater calcium sensitivity than VAMP-8 vesicles.  

Data from the same cohort of cells used in figure 5.4 was analysed to determine whether VAMP-3 

and VAMP-8 vesicles differed in their sensitivity to calcium. A, Shows a scatter plot of the maximum 

pHluorin (y axis) and calcium (x axis) response sizes of individual cells. Blue dots represent VAMP-3 

pHluorin expressing cells and blue line shows linear regression (best fit) line, Black dots VAMP-8 

pHluorin expressing cells. And black line shows linear regression line. Both VAMP-3 and VAMP-8 

vesicles had sensitivity to calcium, where pHluorin response sizes significantly correlated to calcium 

response sizes, determined by linear regression analysis P<0.0001. B. VAMP-3 vesicles had a greater 

sensitivity to calcium than VAMP-8. Graph shows the slope values of linear regression lines shown in 

A calculated using Graphpad Prism software, blue bar represent VAMP-3, black VAMP-8. , 

Significance was determined through ANCOVA. VAMP-3 slope value: 0.25±SEM, VAMP-8 slope value 

0.14±SEM, * denotes significance between groups of P<0.05.  

 

The release of mast cell mediators such as Il- 6, TNF- and VEGF have been 

reported to be independent from degranulation and without the need for 

extracellular calcium [60] suggesting a distinct population of vesicles containing 

these mediators could exist, and that the fusion of these vesicles is regulated 

independently of calcium, or is sensitive to calcium signals ensuing from an 

intracellular store. To examine the calcium sensitivity of VAMP-3 and VAMP-8 

vesicle fusion, calcium levels (Ratio 340/380) were monitored at the same time as 

pHluorin fluorescence before and after cell activation and correlation analysis 

performed. Both VAMP-3 and VAMP-8 (P<0.0001) pHluorin response size had a 

significant correlation to the size of the calcium signal (figure 5.6). This suggests 

that exocytosis of VAMP-3 and VAMP-8 vesicles are regulated by calcium. However, 

VAMP-3-pHluorin and VAMP-8-pHluorin vesicles displayed differing calcium 

dependencies. Analysis of figure 5.6 was fitted by linear regression and analysis of 

covariance (ANCOVA) shows there was a significant difference (P=0.04954) in the 
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co-dependence of exocytosis of VAMP-3 and VAMP-8 pHluorin expressing vesicles. 

The higher slope value of VAMP-3 (0.2529±0.055) to VAMP-8 (0.1425±0.025) 

identified VAMP-3 vesicles as having a greater sensitivity to calcium, whereby a 

greater pHluorin response size would be produced from the same concentration of 

calcium.    

 

Given VAMP-3-pHluorin vesicles seemingly have different calcium dependencies to 

VAMP-8-pHluorin vesicles, one might expect that stimulation with the same ligand 

(Anti-IgE) would result in different distributions of pHluorin response sizes 

between VAMP-3 and VAMP-8-pHluorins. This is hinted at in the traces of figure5.4 

B where the normalised VAMP-3-pHluorin fluorescence trace is larger than VAMP-

8-pHluorin trace.  To assess this the individual cell maximum pHluorin responses 

were calculated and the number of cells classed as high responders (∆pHluorin 

between 0.5-1), mid responders (0.25-0.5) and low responders (0.25-0) were 

plotted (figure 5.7) VAMP-3 responses had a more even distribution in their 

response size than VAMP-8; there were equal numbers of low, mid and high 

responders, whereas in VAMP-8 pHluorin cells the majority of cells were low 

responders (Figure. 5.7). This difference was not due to differences in the overall 

calcium responses as the average size of responses in VAMP-8-pHluorin cells were 

higher than in VAMP-3, although not significantly (Figure. 5.7c).  These results again 

point to VAMP-3-pHluorin vesicles having differing calcium dependences as, for the 

same intracellular calcium rise, a greater response is elicited in VAMP-3-pHluorin 

vesicles. From this data it is not possible to differentiate whether the larger 

responses of VAMP-3 pHluorin vesicles constitute more vesicles undergoing 

exocytosis, more vesicles with a higher amount of pHluorin per vesicle undergoing 

exocytosis or whether there is more full fusion and less kiss and run exocytosis. 

TIRF microscopy would give a definitive answer as the technique used here 

measured whole cell fluorescence and cannot differentiate single vesicles.  

 

From the graph in Figure 5.4 it looked as though VAMP-3-pHluorin expressing cells 

displayed a more rapid rise in cytosolic calcium to FCεRI crosslinking that VAMP-8-

pHluorin expressing cells. To determine whether this observation was significant 

the Ratio 340/380 was measured at time points of 0, 120 and 240 seconds post 

stimulation and compared for both sets of cells. At resting conditions there was no 
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significant difference in the Ratio 340/380 between VAMP-3-pHluorin and VAMP-8-

pHluorin transfected cells, showing that pHluorin expression does not affect basal 

calcium concentrations. However, at 120 seconds VAMP-3-pHluorin cells had a 

significantly larger Ratio 340/380  than VAMP-8-pHluorin cells, showing that there 

was a greater increase of cytosolic calcium at this time point. After this time at 240 

seconds the VAMP 8-pHluorin Ratio 340/380  caught up to reach the same level as 

VAMP-3-pHluorin expressing cells. Therefore the overall calcium response sizes are 

the same but VAMP-3-pHluorin calcium rises occur more rapidly, suggesting that 

overexpression of VAMP-3-pHluorin results in a more rapid calcium influx after 

FCεRI crosslinking. This could be due to an increase in the rate of calcium channel 

trafficking to the plasma membrane, possibly TRP channels. Due to time constraints 

this hypothesis was not tested further. 

 

Figure. 5.7 

pHluorin response sizes in VAMP-3-pHluorin transfected cells are more evenly distributed 

than VAMP-8 

The maximum increases in normalised pHluorin fluorescence from data in figure 5.4 were grouped 

as either low (-0.25) med (0.25-0.5) or high (0.5-1) responders to determine the distribution of 

pHluorin response sizes. A.VAMP-3-pHluorin response sizes grouped as low med or  determined by 

subtracting the baseline fluorescence (average of the last 5 frames before stimulation) from the 

maximum fluorescence (average 5 frames of frame with maximum response). B. VAMP-8-pHluorin 

response sizes grouped as low (-0.25) med (0.25-0.5) or high (0.5-1). C. Average calcium response 

sizes (∆ Ratio340/380 ) in VAMP-3-pHluorin  (blue) and VAMP-8-pHluorin (black) transfected cells 

were not significantly different. Data was from the same cohort of cells used in figure 5.4, data 

presented as mean± SEM from individual cells. Data Unpaired students T-test P=0.11. 
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Figure 5.8 

VAMP-3-pHluorin cells have a faster calcium rise in response to FCεRI crosslinking than 

VAMP-8-pHluorin cells 

Fura-2AM ratios were monitored at A. 0 sec, B. 120 sec and C. 240 sec post stimulation with FCεRI 

crosslinking  to assess differences in the time course of FCεRI crosslinking induced calcium rises. 

Data presented as mean± SEM from individual cells, data was from the same cohort of cells used in 

figure 5.4. **denotes P<0.01, unpaired students T-test.  

 

Results so far in this study have highlighted the possibility that VAMP-3 vesicles have a 

greater sensitivity to cytosolic calcium concentrations than VAMP-8 vesicles. The higher 

sensitivity to calcium of VAMP-3 vesicles suggests that the sensor(s) regulating fusion of 

these vesicles could detect calcium which has diffused from entry at the plasma membrane 

or to calcium release from intracellular stores. The release of calcium from intracellular 

stores could form a microdomain of calcium, defined by a localised rise/plume of calcium 

within a particular part of the cell, and microdomains of calcium can lead to regulation of 

specific cellular events [417]. In this instance this localised increase in calcium 

concentration might be large enough to lead to selective release of VAMP-3 vesicles that 

could possibly localise near to calcium stores, while VAMP-8 exocytosis requires global 

increases in calcium, independent of the need for microdomains, or localised increases of 

calcium at the plasma membrane. 

 

To gather further evidence of differing calcium sensitivities, VAMP-pHluorin responses to 

FCεRI stimulation in a nominally calcium free external solution were assessed to determine 

whether stimulation in the presence of no external calcium influx could still induce VAMP-

3 vesicle exocytosis.   
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Figure. 5.9 

VAMP-8 and VAMP-3 vesicles show distinct calcium sensitivities 

LAD 2 cells transfected with either VAMP-8 or VAMP-3 pHluorin were sensitised overnight with 

300ng/ml of human IgE. The next day cells were loaded with fura-2am and  FCεRI cross-linking was 

subsequently induced by perfusion of 10μg/ml anti-IgE in nominally calcium free external solution 

(as indicated by the bar above each trace). A. Mean individual cell traces, R340/380 , representing 

calcium responses and B. Mean individual traces of normalised pHluorin fluorescence. Blue lines 

represent data measured in VAMP-3-pHluorin transfected cells, black lines represent data measured 

in VAMP-8-pHluorin transfected cells. C Calcium and D pHluorin representative individual cell 

responses of VAMP-3 pHluorin expressing cells. E. Calcium and F. pHluorin representative individual 

cell responses of VAMP-8 pHluorin expressing cells. VAMP-8-pHluorin n=33± SEM, VAMP-3-

pHluorin n=49± SEM. Data from three transfections. 

 

As expected, VAMP-8 vesicles underwent minimal exocytosis in calcium free 

conditions in comparison to their responses when external calcium was added back 

into the external solution (figure 5.9). This confirms that exocytosis of VAMP-8 

positive vesicles is highly regulated by calcium influx or plasmalemmal calcium 

channels and may well be triggered by local calcium microdomains acting on a low 

affinity calcium sensor. VAMP-3 vesicles showed similar sized responses with or 

without the presence of external calcium. From this data it is clear that VAMP-3-

pHluorin vesicles do not require extracellular calcium influx, and release from 

intracellular stores could be sufficient to induce exocytosis. What is not clear from 

these experiments is whether VAMP-3-pHluorin vesicles require calcium at all. 

However, given the results in figure 5.6 showing a significant correlation between 
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the pHluorin and calcium response sizes of VAMP-3 vesicles, the results would be 

consistent with the view that VAMP-3 vesicles are sensitive to smaller 

concentrations in intracellular calcium concentrations than VAMP-8 containing 

vesicles. Alternatively, there might be no difference in the sensitivity of each vesicle 

to calcium, just that VAMP-3 localises near to intracellular stores and gets exposed 

to high localised calcium concentrations present near IP3 receptors. Further studies 

to identify the calcium sensors regulating exocytosis of VAMP-3 and VAMP-8 

containing vesicles are required to distinguish between these possibilities. 

  

5.2.5 Retargeted BoNT/E to target mast cell degranulation 

 

Mast cells have been implicated in a number of allergic diseases, including asthma 

and IBD [2]. Targeting the release of inflammatory mediators through inhibition of 

SNARE mediated membrane fusion could provide a novel therapy for inflammatory 

disease. BoNTs cleave SNARE proteins (section 1.5) and so might provide a way of 

targeting mast cell mediator release. One BoNT serotype, BoNT/E, cleaves the 

neuronal plasma membrane SNARE SNAP-25, which is not expressed in human 

mast cells (figure 4.16) However, a modified form of BoNT/E has been developed 

that, with a single point mutation to the LC (K224D), has been successfully 

retargeted to SNAP-23, referred to as BoNT/E(K224D) [323]. This SNARE is present 

in mast cells (figure 4.16) and is essential for degranulation [239, 365, 388].  

Therefore using this toxin it might be possible to target release of  

VAMP-8 vesicles indirectly by cleaving SNAP-23 and thus stopping VAMP-8 fusion 

with the plasma membrane.  Western blot of SNAP-23 in BoNT/E (K224D) LC 

transfected LAD-2 cells showed a reduced band size and lower KD band compared 

to native BoNT/E LC transfected cells, suggesting the toxin was cleaving SNAP-23 

(Figure 5.10). To determine whether this construct could inhibit VAMP-8 vesicle 

exocytosis, LAD 2 cells were transfected with VAMP-8-pHluorin along with either 

BoNT/E LC or the SNAP-23 cleaving BoNT/E (K224D) LC in a dual transfection. 

Cells expressing BoNT/E(K224D) LC showed a reduced level of exocytosis 

compared to BoNT/E LC in  FCεRI  stimulated cells as measured by increases in 

pHluorin fluorescence (Figure 5.11). However, the calcium response to anti-IgE was 

also reduced suggesting effects on receptor signalling. No difference in exocytosis 
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was seen following stimulation with the calcium ionophore ionomycin (Figure 

5.12). 

 

Taken together these results suggest the toxin is affecting cell signalling, either by 

inhibiting the trafficking of calcium channels to the plasma membrane or affecting 

the trafficking of the FceRI to the cell surface directly. It is not directly inhibiting 

VAMP-8-pHluorin exocytosis. Results from the ionomycin experiments, suggests it 

is not. Whether in the absence of SNAP-23 another Qbc SNARE (SNAP-29,-47) 

regulates exocytosis in mast cells remains to be determined. Or as a result of  

incomplete cleavage, the remaining SNAP-23 might be enough to mediate 

ionomycin induced exocytosis (figure 5.10).  As a result of these observations there 

was no point in continuing using this mutant construct. Alternative methods for 

inhibiting the release of mast cell mediators were sought. 
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Figure. 5.10 

BoNT/E(K224D) cleavage of SNAP-23 in LAD 2 cells 

Western blot of SNAP-23 in BoNT/E and BoNT/E(K224) LC expressing cells. Figure representative of 

3 transfections. Top bands represent -tubulin expression, bottom SNAP-23. 
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Figure. 5.11 

BoNT/E(K224D) LC has no effect on ionomycin induced exocytosis of VAMP-8-pHluorin.  

LAD2 cells were transfected with VAMP-8-pHuorin and either BoNT/E LC or BoNT/E(K224D) LC. 

Cells were then sensitised overnight with 300ng/ml of human IgE myeloma. The next day cells were 

loaded with Fura2 calcium dye and imaged at 340,380 and 480nM. Cells were stimulated through the 

perfusion of 1µM ionomycin  as indicated in bars above trace. A. Grouped single cell fluorescence 

shows calcium responses of BoNT/E(K224D) (red) and BoNT/E  LC (Black) responding to the non-

receptor mediated stimulation of ionomycin. B. Grouped single cell pHluorin responses in the same 

cells as in A. C. Calcium response sizes. D. pHluorin response sizes. E. Percentage of responding cells. 

BoNT/E n=43± SEM, BoNT(K224d) n=44± SEM. Data from 3 transfections. 
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Figure. 5.12 

BoNT/E(K224D) LC inhibits FCεRI induced exocytosis of VAMP-8-pHluorin.  

LAD 2 cells were transfected with VAMP-8-pHuorin and either BoNT/E LC or BoNT/E(K224D) LC. 

Cells were then sensitised overnight with 300ng/ml of human IgE myeloma. The next day cells were 

loaded with Fura2 calcium dye and imaged at 340,380 and 480nM. Cross-linking of FCεRI 

subsequently induced through the application of 10μg/ml anti-IgE as indicated in bars above traces. 

A. Grouped single cell fluorescence shows calcium responses of BoNT/E(K224D) (red) and BoNT/E  

LC (Black) responding to the non-receptor mediated stimulation of Ionomycin.. B. Grouped single 

cell pHluorin responses in the same cells as in A. C. Calcium response sizes. D. pHluorin response 

sizes. E. Percentage of responding cells BoNT/E n=42/51± SEM, BoNT(K224d) n=22/44± SEM. Data 

from 3 transfections. ** denotes P<0.01 *** denotes p<0.001, unpaired students T-test.  
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5.2.2 Selective targeting of VAMP-3 vesicles by BoNT/B 

 

The data presented in this chapter and in chapter 4 identifies VAMP-3 positive 

vesicles that undergo plasma membrane fusion upon mast cell activation. BoNT/B 

cleaves VAMPs- 1, 2 and 3 [418]. Work in chapter 4 confirmed human mast cells do 

not express VAMP-1 and 2 and so VAMP-3 is the only BoNT/B targetable SNARE 

expressed in LAD 2 cells.  Therefore, it is possible to assess the functional role of 

VAMP-3 in mast cells by using BoNT/B to cleave and therefore inhibit VAMP-3 

dependent fusion. To do this LAD 2 cells were transfected with the LC of BoNT/B. 

Western blot was performed on BoNT/B LC transfected cells to confirm BoNT 

cleavage of VAMP-3 (as shown in figure 5.13). Cells transfected with the BoNT/B LC 

construct had significantly reduced VAMP-3 protein compared to a non-transfected 

control, showing that the construct could cleave VAMP-3 in LAD 2 cells and could be 

useful in subsequent functional studies. 

 

Figure. 5.13 

BoNT/B cleaves VAMP-3 in LAD 2 cells  

LAD 2 cells were transfected with a BoNT/B LC expressing plasmid. After 48 hours cells were lysed 

and protein levels of VAMP-3 were compares to an untransfected cell lysate control through western 

blot. A. Western blot confirms cleavage of VAMP-3 by BoNT/B LC,, above bands show -tubulin 

loading control expression, below bands indicate VAMP-3 expression. B. Band intensity values of 

VAMP-3 in figure A were normalised to -tubulin loading control, Intensity values measured using 

Image J software. Mean data from three separate BoNT/B LC transfections ± SEM. 

5.2.3 VAMP-8-shRNA knockdown  

 
VAMP-8 is insensitive to BoNTs  (section 1.5.1). Therefore, to assess the functional 

role VAMP-8 has in mast cell mediator release knockdown of VAMP-8 was 

performed through the use of shRNA. Four mammalian expression plasmids 

containing unique 29mer shRNA constructs were tested alongside a scramble 
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control for their ability to knockdown VAMP-8 gene expression (data presented in 

section 2.18). shRNA 4 produced the highest level of knockdown and was used in all 

future shRNA experiments. The experiment was repeated with shRNA 4 to confirm 

the knockdown (figure 5.14) and levels of VAMP-8 compared to LAD 2 cells 

transfected with a scramble control, normalised to -tubulin. VAMP-8 protein levels 

were reduced when compared to the scramble control. There was also a reduction 

in the band intensity of the higher molecular weight band, although less 

pronounced. This suggests this could be a VAMP chaperone or VAMP-8 dimer. 

 

Figure. 5.14 

VAMP-8 shRNA knocks down the expression of VAMP-8 protein in LAD 2 cells  

LAD 2 cells were transfected with either a VAMP-8 shRNA plasmid or a scramble control. After 48 

hours cells were lysed and expression levels of VAMP-8 monitored through western blotting.  A. 

Western blot of VAMP-8 shRNA expressing cells above bands show -tubulin loading control 

expression, below bands indicate VAMP-8 expression. B. Band intensity values of VAMP-8 

normalised to -tubulin loading control. Intensity values measured using Image J software. Mean 

data from two separate shRNA transfections ± SEM. 

 

5.2.4 Targeting VAMP-3 and VAMP-8 mediated exocytosis 

 

Having developed independent methods to knockdown VAMP-8 and VAMP-3 in 

human mast cells, functional experiments were performed to determine whether 

these SNAREs regulate the release of mast cell mediators. Previous studies have 

implicated VAMP-8 in mast cell granule release but found no role for VAMP-3 [239, 

395]. -hexosaminidase release from LAD 2 cells following FcεRI stimulation was 

monitored and compared in BoNT/B LC and VAMP-8 shRNA transfected cells to 

assess the role of VAMP-3 and 8 in mast cell granule release. -hexosaminidase is a 
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granule constituent that is regularly used to monitor degranulation in mast cells 

(section 1.1.2). -hexosaminidase release in cells transfected with either a 

scrambled shRNA construct, VAMP-8 shRNA or BoNT/B LC was normalised to 

release from un-transfected cells. (figure 5.15). Knockdown of VAMP-8 inhibited 

release of -hexosaminidase while BoNT/B LC or the scramble control had no 

significant effect. Combined with data from chapter 3 showing VAMP-8 colocalising 

with tryptase, a SG marker, the results here confirm that VAMP-8 regulates SG 

release in human mast cells, whilst VAMP-3 does not. 

 

Figure. 5.15 

Knockdown of VAMP-8 in LAD 2 cells inhibits mast cell degranulation 

LAD 2 cells were transfected with either VAMP-8 shRNA,(green bar)  a scramble control (white bar) 

or with BoNT/B LC (red bar) and after 48 hours were stimulated through the addition of 10μg/ml  

anti-IgE to induced FCεRI crosslinking for 20 minutes. Cells expressing VAMP-8 shRNA had a 

reduced degranulation response compared to scramble control cells and cells transfected with the 

VAMP-3 targeting BoNT/B LC. -Hexosaminidase release is expressed as percentage release from 

untransfected mast cells.  N=4 transfections ±SEM *denotes P<0.05, one way ANOVA post hoc Tukey 

test. 

 

From the -hexosaminidase assay it was clear that BoNT/B treatment had no 

significant effect on degranulation in human mast cells. To test whether BoNT/B 

could selectively inhibit VAMP-3 exocytosis, VAMP-3-pHluorin and VAMP-8-

pHluorin assays were performed in cells transfected with the BoNT/B LC. In 

ionomycin-stimulated cells, BoNT/B LC inhibited VAMP-3-pHluorin exocytosis 

(Figure 5.17) but had no effect on VAMP-8-pHluorin exocytosis (Figure 5.16). 
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However, Figure 5.17 C shows that BoNT/B LC expression only leads to a small 

reduction in the number of VAMP-3-pHluorin cells responding. This suggests not all 

VAMP-3-pHluorin is cleaved in each cell but that the reduction is sufficient to see a 

reduction in the size of the VAMP-3-pHluorin response. The calcium responses of 

both VAMP-3-pHluorin and VAMP-8-pHluorin cells were unaffected by BoNT/B LC 

expression, showing inhibition of VAMP-3-pHluorin vesicle exocytosis is due to 

direct cleavage of VAMP-3 and not the result in any off target effects on signalling 

pathways, as was the case with the modified BoNT/E toxin, E(K224D).  

 

Figure. 5.16 

BoNT/B LC does not significantly inhibit  ionomycin-induced exocytosis of VAMP-8-pHluorin.  

LAD 2 cells were transfected with either VAMP-8 pHluorin or VAMP-8 pHluorin and BoNT/B LC, 

sensitized overnight with 300ng/ml of human IgE and subsequently stimulated by perfusion of 1μM 

ionomycin, shown by horizontal bars above graphs. A. Calcium response in VAMP-8 pHluorin 

transfected cells. B. VAMP-8 pHluorin responses. C shows percentage responding cells for VAMP-8 

coverslips. D. Size of VAMP-8 pHluorin responses. Black lines and bar represent VAMP-8 pHluorin 

and red lines and bar represent dual pHluorin and BoNT/B transfected cells. Data represented as 

mean data from individual cells. VAMP-8 n=58± SEM, VAMP-8 BoNT/B LC n=54± SEM. Data from 3 

transfections. 
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Figure. 5.17 

BoNT/B LC inhibits exocytosis of ionomycin stimulated VAMP-3-pHluroin vesicles  

LAD 2 cells were transfected with either VAMP-3 pHluorin or VAMP-3 pHluorin and BoNT/B LC, 

sensitized overnight with 300ng/ml of human IgE and subsequently stimulated by perfusion of 1μM 

ionomycin, shown by horizontal bars above graphs. A. Fura2 ratio increase in VAMP-3 pHluorin 

transfected cells. B. VAMP-3 pHluorin responses. C. Percentage responding cells for VAMP-3 

coverslips. D. VAMP-3 pHluorin response sizes. Blue lines and bar represent VAMP-3 pHluorin and 

red lines represent dual pHluorin and BoNT/B LC transfected cells. Data represented as mean data 

from single cells. VAMP-3 n=34± SEM VAMP-3 BoNt/B LC n=45± SEM. *** denotes P<0.0001 

unpaired students T-test. Data from 3 transfections. 

 

Ionomycin is not a physiological stimulus and the results in figure 5.11 highlight 

how different results can be obtained by activation of mast cells through different 

stimuli. Therefore, BoNT/B LC experiments were repeated using the more 

physiological stimulus of FcεRI crosslinking. As with ionomycin, there was no 

inhibition of VAMP-8-pHluorin exocytosis (figure 5.18). In VAMP-3 pHluorin cells 

there was only a small reduction in the percentage of cells showing a pHluorin 

response (53 to 45) (figure 5.19 C) and there was no significant difference in the 

pHluorin response size of cells that did respond to receptor activation (figure 5.19). 

However, examination of the diary plots of the pHluorin fluorescence for non-

responding BoNT/B LC expressing VAMP-3-pHluorin cells, a negative change of 

fluorescence is detected, not seen in VAMP-3 pHluorin cells not expressing the toxin 
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construct or VAMP-8-pHluorin BoNT/B LC expressing cells (figure 5.19 E and F). 

This could indicate that following FCeRI crosslinking the balance between VAMP-3 

pHluorin exocytosis and endocytosis is altered in such a way that endocytosis 

predominates. The fact that this was not observed following ionomycin stimulation 

suggests that signalling molecules other than calcium are responsible for this 

receptor induced endocytosis. 

 

 Results in figure 5.8 showed VAMP-3-pHluorin expressing cells have a more rapid 

calcium rise than VAMP-8-pHluorin cells in response to FCεRI crosslinking. This 

process might be reversed in cells expressing the BoNT/B LC. To determine 

whether this was the case, Ratio340/380 values were monitored at the same time 

points post stimulation (0,120 and 240 seconds) as in figure 5.8.  In BoNT/B LC 

VAMP-3-pHluorin expressing cells the faster rise in intracellular calcium to FCεRI 

crosslinking is reversed, as VAMP-3 is cleaved, nullifying the effects of 

overexpression (figure 5.20)  
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Figure. 5.18 

BoNT/B LC does not significantly inhibit exocytosis of FcεRI VAMP-8 pHluorin vesicles  

LAD 2 cells were transfected with either VAMP-8 pHluorin or VAMP-8 pHluorin and BoNT/B 

LC and sensitized overnight with 300ng/ml of human IgE. The next day cells were loaded 

with Fura2AM calcium dye and imaged at 340,380 and 480nM. Cross-linking of FCεRI 

subsequently induced through the application of 10g/ml anti-IgE. A. Calcium response in 

VAMP-8 and VAMP-8 BoNT/B LC pHluorin cells. B. VAMP-8 and VAMP-8 BoNT/B LC 

pHluorin responses. C. Percentage responding cells for VAMP-8 coverslips. D. Size of VAMP-

8 pHluorin responses Black lines and bar represent VAMP-8 pHluorin and red lines 

represent dual pHluorin and BoNT/B transfected cells. Data represented as mean data from 

single cells. VAMP-8 n=±33 SEM, VAMP-8 BoNT/B LC n=30±SEM. Data from 3 transfections. 
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Figure. 5.19 

BoNT/B LC inhibits exocytosis of FCεRI stimulated VAMP-3 pHluroin vesicles 

 LAD 2 cells were transfected with either VAMP-3 pHluorin or VAMP-3 pHluorin and BoNT/B LC, 

sensitized overnight with 300ng/ml of human IgE, The next day cells were loaded with Fura2 

calcium dye and imaged at 340, 380 and 480nM. Cross-linking of FcεRI subsequently induced 

through the application of 10μg/ml anti-IgE, shown by horizontal bars above graphs. A. Calcium 

response in VAMP-3 pHluorin transfected cells. B. VAMP-3 and VAMP-3 BoNT/B LC pHluorin 

responses. C. Percentage responding cells for VAMP-3 coverslips. D. Size of VAMP-3 pHluorin 

responses. Blue lines and bar represent VAMP-3 pHluorin and red lines represent dual pHluorin and 

BoNT/B transfected cells. Data represented as mean data from single cells. VAMP-3 n=±34 SEM 

VAMP-3 BoNT/B LC n=±27 SEM, E shows pHluorin responses from non-responding VAMP-3 

pHluorin cells. Blue lines represent VAMP-3 pHluorin and red lines represent dual pHluorin and 

BoNT/B transfected cells. VAMP-3 non-responders n=26±SEM VAMP-3 BoNT/B LC non responders 

n=27±SEM, F shows pHluorin responses from non-responding VAMP-8 pHluorin cells. Black lines 

represent VAMP-8 pHluorin and red lines represent dual pHluorin and BoNT/B transfected cells. 

VAMP-8 non-responders n=23±SEM, VAMP-8 BoNT/B LC non-responders n=13±SEM. Data from 3 

transfections. 
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Figure. 5.20 

BoNT/B reverses VAMP-3-pHluorin induced fast calcium response to FCεRI crosslinking  

340nm/380nm ratios were monitored at A. 0 sec, B. 120 sec and C. 240 sec post stimulation to 

assess differences in the time course of FCεRI crosslinking induced calcium rises between VAMP-3-

pHluorin and VAMP-3-pHLuorin and BoNT/LC expressing cells. Data represented as mean data from 

single cells. VAMP-3 n=34±SEM VAMP-3 BoNt/B LC n=27±SEM, *** denotes p<0.001, unpaired 

students T-test.  

 

To gather a better understanding of the potential physiological effects of BoNT/B 

cleavage of VAMP-3 on secretion in mast cells, the effects of BoNT/B expression on 

IL-6 release was measured. Experiments in chapter 4 identified VAMP-3 vesicles 

and IL-6 GFP, colocalising to rab11, a recycling endosomal marker and studies in 

macrophages have identified a role of VAMP-3 in Il-6 release (Section 1.3.2). To 

evaluate the role of VAMP-3 in regulating IL-6 secretion from human mast cells, LAD 

2 cells were transfected with IL-6 GFP and BoNT/B LC, and stimulated through 

FcεRI crosslinking. Secretion of IL-6 was monitored by western blotting and 

normalising the band intensity values of IL-6 GFP released in the cell supernatant by 

the cell lysate. As shown in figure 5.21, expression of BoNT/B significantly inhibited 

IL-6 secretion from stimulated LAD 2 cells. In contrast, knocking down VAMP-8 

expression through shRNA did not attenuate IL-6 GFP secretion in similarly 

stimulated cells. This is the opposite of what was found with -hexosaminidase 

release (figure 5.15) where knockdown of VAMP-8, but not VAMP-3, resulted in 

reduced degranulation and suggests shows that VAMP-3 and VAMP-8 mediate the 

fusion of vesicles containing different types of mediators in mast cells. 
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Figure. 5.21 

BoNT/B inhibits IL-6 GFP release  

LAD 2 cells were transfected with IL-6 GFP and Il-6 GFP + BoNT/B LC or V8 shRNA. Cells were 

stimulated by FCεRI crosslinking and the cell supernatant collected after 6 hours and subjected to 

western blot using an anti-GFP antibody. Values represent supernatant band intensity values 

normalised to cell lysate band intensities. Red bar indicates normalised Il-6 release in BoNT/B 

expressing cells, while blue bar shows release in VAMP-8 shRNA expressing cells. Black shows 

release in control cells expressing the IL-6 GFP construct. N=3± SEM. One way ANOVA post hoc 

Tukey test, p<0.05). 

 

The results shown here identify two distinct pools of vesicles, defined in part by the 

expression of VAMP-3 or VAMP-8, mediating the release of inflammatory mediators 

from mast cells. One pool is characterised by the expression of VAMP-8 and 

mediates the fusion of SGs whose exocytosis is dependent on the influx of 

extracellular calcium. Another pool express VAMP-3 and mediate the secretion 

release of Il-6 and can be selectively targeted by BoNT/B. VAMP-3 vesicles display 

differing sensitivities to the levels and/or source of calcium to VAMP-8 vesicles. 

VAMP-3 vesicles are able to undergo fusion with the plasma membrane without the 

presence of extracellular calcium while VAMP-8 vesicle exocytosis under these 

conditions is minimal. These results highlight the differential control of secretory 

pathways in mast cells that can be defined, in part, by VAMP-3 and VAMP-8 

expression.  
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5.3 Discussion  

 
Using pHluorin tagged VAMP-3 and VAMP-8 has allowed further analysis of their 

function in mast cells. Results in chapter 4 identified these two VAMPs as possible 

mediators of fusion of vesicles containing inflammatory mediators. In this chapter 

using the pHluorin tagged forms of VAMP-3 and -8 it is clear both VAMP-3 and 

VAMP-8 vesicles traffic and fuse to the plasma membrane but display distinct 

calcium sensitivities. Furthermore utilising shRNA targeted to VAMP-8 it has been 

possible to inhibit the release of -hexosaminidase. It has been possible to 

selectively target VAMP-3 vesicles by BoNT/B and in doing so inhibit the release of 

IL-6 GFP. Finally preliminary experiments suggest it might also be possible to target 

the release of mast cell mediators by the use of BoNT/E(K224D) although this 

would result in significant off target effects.  

 

A greater proportion of VAMP-8 was present in intracellular compartments than 

VAMP-3, which has a significantly greater cell surface distribution. This observation 

might be explained by the roles each VAMP has in membrane trafficking and the 

mast cell. With VAMP-8 residing on mast cell granules, released in regulated 

exocytosis, one might expect the greatest proportion of the protein in resting 

conditions to reside within pre-formed granules awaiting a trigger to undergo 

exocytosis. VAMP-3, potentially mediating traffic of a more constitutive nature, 

might have a more dynamic distribution as there would be greater recycling to and 

from the membrane. One note of caution is that in both pHluorins the proportion of 

vesicles that were present at the membrane was high (50% VAMP-3, 40% VAMP-8). 

It is possible that with overexpression excess VAMP is trafficked out onto the 

plasma membrane as the pathways that are defined by each VAMP become 

saturated. However, the fact that there are still significant differences highlights the 

different distributions of VAMP-3-pHluorin and VAMP-8-pHluorin in LAD 2 cells.  

 

VAMP-8 was confirmed as the SNARE responsible for mediating granule fusion and 

the release of preformed granule mediators in human mast cells.  VAMP-8-pHluorin 

vesicles fuse with the plasma membrane in a calcium-dependent manner and 

shRNA knockdown of VAMP-8 function inhibited the release of granule -

hexosaminidase. This augments the evidence in chapter 4 showing colocalisation of 

VAMP-8 with tryptase and trafficking of the endogenous protein to the plasma 
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membrane. These results are in agreement with previous studies in both murine 

and human mast cells that have found knockdown or inhibition of VAMP-8 to inhibit 

histamine release [235, 239]. The incomplete ablation of -hexosaminidase 

secretion in VAMP-8 shRNA transfected cells is likely due to limited transfection 

efficiency (see section 2.16). With this efficiency it would be impossible to 

completely inhibit release. Also one has to consider the possibility of compensation 

of other VAMPs; upon knockdown of VAMP-8 in murine mast cells VAMP-3 

increases its association with other SNAREs such as SNAP-23 [238], this possibility 

has not been ruled out in this study. Furthermore, given a small amount of VAMP-7 

colocalised to tryptase, there might be a proportion of granules whose exocytosis is 

mediated by this SNARE and not VAMP-8. Knockdown of a SNARE of the exocytotic 

machinery can result in compensatory expression of another SNARE protein. In this 

study expression levels of other SNARE and SNARsE regulators upon VAMP-8 

knockdown was not assessed and so it is not possible to rule out the possibility of 

compensatory SNARE expression. Functional data including IL-6 GFP release and -

hexosaminidase release showed that inhibiting the function of VAMP-3 and VAMP-8 

did result in different functional effects. Comparing protein level or mRNA levels of 

the exocytotic machinery in shRNA expressing cells would give a more definitive 

answer as to whether certain SNAREs or SNARE regulators become overexpressed 

upon VAMP-8 knockdown. Further experiments could also be performed using 

dominant negative constructs to complement the knockdown experiments.  Overall 

these results still give strong evidence that VAMP-8 is present on SGs and mediates 

their release, but whether VAMP-8 is the sole VAMP responsible for mast cell 

degranulation requires further study.  

 

Release of preformed mediators contained within SGs requires large increases in 

cytosolic calcium [419]. VAMP-3 and VAMP-8 vesicle showed differences in their 

dependencies on calcium. Both VAMP-3 and VAMP-8 vesicles fused to the 

membrane upon stimulation and upon further analysis differences in the sensitivity 

to calcium were found.  VAMP-3-pHluorin responses were greater than VAMP-8; the 

distribution of pHluorin response sizes was more equal between low, mid and high 

responders, while the majority of VAMP-8-pHluorin cells were low responders. 

These differences were not a result of VAMP-3-pHluorin cells producing larger 

intracellular calcium rises as the average calcium responses in both sets of cells was 
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not significantly different. By monitoring the relationship between pHluorin 

response size and calcium response size through ANCOVA, there is some evidence 

VAMP-3 vesicles have a significantly greater sensitivity to calcium than VAMP-8 

(VAMP-3 (0.25±0.055) (0.14±0.025)). Further analyses of VAMP-pHluorin 

responses in a nominally calcium free solution confirmed that  VAMP-3 vesicle 

responses in the absence of calcium influx into the cell were similar to responses 

once calcium was added back, while VAMP-8 responses were blocked and it was 

only upon addition of external calcium that fusion could proceed.  

 

Explanations into how possible differing calcium sensitivities are conferred onto 

vesicles arise from the microarray data presented in chapter 4. Numerous calcium 

sensors were expressed in mast cells including slps 1,2 and 3 and syts III and XI. 

Studies have highlighted the differing calcium sensitivities of syt isoforms [253, 

420] and differential expression of isoforms has been shown to alter the calcium 

dependency of vesicles [421]. Less is known of slp calcium sensitivities but it is not 

a great leap of faith to suggest that these will also have differing sensitivities to 

calcium. No other studies have currently determined slp expression in mast cells 

but with human mast cell possessing a number of these, at least at the mRNA level, 

differential expression on VAMP-3 and VAMP-8 vesicle populations might lead to 

differing sensitivities to calcium. Alternatively, VAMP-3 and VAMP-8 vesicles could 

have similar calcium sensitivities and the different responses in the presence of no 

external calcium could arise from the location of calcium microdomains. 

Microdomains can lead to localised high concentrations of calcium [417]. VAMP-3 

vesicles might localise close to internal calcium stores with release from these 

stores controlling the secretion of cytokines, stored in VAMP-3 positive vesicles. 

VAMP-8 vesicles undergoing fusion on the other hand may be localised away from 

these stores and require a global cytosolic calcium rise to undergo exocytosis. To 

determine whether the fusion of VAMP-3 vesicles is dependent on calcium, pHluorin 

experiments in the presence of no external calcium could be performed with the 

addition of Bapta-AM, an intracellular calcium chelator. If VAMP-3 vesicles still fuse 

with Bapta-AM present then this would show they undergo fusion in a calcium 

independent manner.      
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Work in chapter 4 identified the expression of VAMP-3 but not VAMPs-1 or -2 and 

its colocalisation to a rab11 compartment, as with Il-6 GFP. Here, using VAMP 

targeting BoNT/B LC, it was possible to selectively target VAMP-3 vesicles and 

inhibit release of IL-6 GFP. The responses of VAMPs 3 and 8-pHluorins confirmed 

BoNT/B could selectively target VAMP-3 vesicle exocytosis; ionomycin VAMP-8-

pHluorin responses remained intact in the presence of BoNT/B LC but VAMP-3 

exocytosis was inhibited. With the IgE responses this was not as clear and in 

responding cells there was no significant difference in the response sizes. However, 

when analysing the pHluorin traces of non-responding cells there was a clear drop 

in fluorescence after application of anti-IgE. This could be the result of either 

endocytosis removing VAMP-3-pHluorin from the plasma membrane or 

degradation.  In activated cells VAMP-3 might become more exposed to the toxin 

resulting in a more rapid rate of cleavage resulting in the subsequent loss of 

pHluorin fluorescence.  It is known that the levels of cleavage of SNAREs by BoNT 

toxins is increased in stimulated cells, but this is currently thought to be due to a 

larger presentation of cell surface receptors on the plasma membrane that allows 

greater toxin entry [422]. Activation might also lead to intracellular changes that 

allows the toxin better access to its target SNARE. Thiss could occur through greater 

delivery of the LC of the toxin to regions near the plasma membrane as a result of 

activation of endosomal recycling pathways brought about by the need for receptor 

trafficking and recycling.  This might be an artefact of expressing the BoNT/B LC 

rather than using native protein, whereby the pathway of delivery does not require 

uptake of the toxin through endocytosis on the plasma membrane. This might also 

explain the mild phenotype whereby without the translocation domain the delivery 

of the light chain into the cytosol might be much less efficient. Alternatively cleavage 

of VAMP-3 by BoNT/B could disrupt the balance between exocytosis and 

endocytosis. Where VAMP-3 vesicles are no longer able to fuse with the plasma 

membrane they might be more rapidly recycled resulting in an increases in 

endocytosis and removal from the plasma membrane. It would be interesting to see 

whether endocytic inhibitors, such as the dynamin inhibitor Dyngo 4a [423] could 

reverse this loss. Finally, one cannot rule out the possibility that for some reason for 

this set of experiments the BoNT/B LC construct was not efficiently expressed and 

so only a minimal affect could be seen. This toxin did not have a fluorescent tag and 

so it was not possible to select only toxin expressing cells, however, given the 
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western blot data showing a loss of VAMP-3 and ionomycin pHluorin data showing 

an inhibition of exocytosis it seems unlikely. Despite the minimal effect on inhibiting 

VAMP-3 pHluorin exocyotsis in FCεRI stimulated cells, BoNT/LC was still able to 

inhibit the release of IL-6 GFP in FCεRI stimulated cells.  The time points of these 

experiments were different (6 hours for IL-6 GFP release, minutes for pHluorin 

responses) over a longer period of stimulation a greater effect might be seen. Also it 

is worth bearing in mind that for this set of experiments the toxin was only 

targeting native VAMP-3 while in pHluorin expressing cells VAMP-3 was greatly 

overexpressed giving the toxin much more VAMP-3 to cleave, which might have 

resulted in more uncleaved VAMP-3 being present compensating for the effects of 

the toxin. What was clear was that BoNT/B LC could significantly inhibit the release 

of Il-6-GFP and highlights a previously undefined pathway in mast cells, whereby 

vesicles defined by VAMP-3 control the release of IL-6. VAMP-3 colocalised with 

rab11. A dominant negative rab11 construct, one of which has already been used to 

disseminate trafficking pathways [424], could be used to functionally determine 

whether rab11 plays a part in Il-6 trafficking and it would be interesting to see 

whether the use of this dominant negative construct could inhibit VAMP-3-pHluorin 

exocytosis. 

 

Cytokine secretion in this study was assessed by the use of an overexpressed 

fluorescent construct. This is not ideal given potential miss-targeting of 

overexpressed proteins. Further experiments assessing the effect of BoNT/B on 

endogenous cytokines using ELISA and cytokine arrays would be needed to confirm 

the results shown here and also determine whether other cytokines could be 

targeted. Also, greater assessment of IL-6 GFP secretion would allow a more 

extensive elucidation of the mechanisms of secretion. For example determining 

release at different time points, in particular when determining pre-formed over de 

novo synthesised and assessing the effect of BoNT/B on release at these different 

time points. Given VAMP-3 exhibits considerable trafficking with no external 

calcium it would be interesting to see if IL-6 GFP is still secreted in these conditions 

and whether BoNT/B could target this release or whether preformed cytokine 

secretion utilises a different pathway. The fact that BoNT/B LC did not convincingly 

inhibit FCεRI mediated VAMP-3-pHluorin exocytosis, which most likely represents a 

pre-stored pool, suggests this might be the case. What these results do show is the 
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first evidence of VAMP-3 mediating the release of a cytokine in human mast cells 

and given this was achieved with BoNT/B this highlights the possibility of a novel 

way of therapeutically targeting inflammatory mediator release in human mast cells 

for the treatment of chronic inflammatory diseases.   

 

Overexpression of VAMP-3 surprisingly brought about a change in the rate of 

calcium influx into the cell and is suggestive of another role in mast cells. Cells 

expressing VAMP-3-pHluorin had a faster calcium rise in response to FCεRI 

crosslinking than in VAMP-8-pHluorin expressing cells. Furthermore, in BoNT/B LC 

transfected cells, where VAMP-3 would be cleaved, this faster response was 

reversed. Taken together these results suggest VAMP-3 might be playing a role in 

channel trafficking. TRP channels traffic to the plasma membrane upon stimulation 

in numerous cell types [425]. They are widely expressed in mast cells and are 

thought to contribute to calcium influx from the plasma membrane [393]. For 

example, knockdown of TRPC1 in murine mast cells results in impaired calcium 

influx and impaired degranulation [363]. TRP channel insertion into the plasma 

membrane requires SNARE proteins and in HEK293 cells, TRPC3 insertion is 

tetanus toxin sensitive [426]. Rab11 has also been implicated in TRP channel 

trafficking, reportedly having a role in TRPV5 and 6 trafficking to the plasma 

membrane in epithelial cells [427]. TRP channels might be present in a residual pool 

of the recycling endosome, that traffic to the membrane upon stimulation. In other 

systems, for example glucose transporter 4 (GLUT4) channel trafficking in 

adipocytes, overexpression of VAMP-3 decreases the amount of protein 

translocating to the plasma membrane [428]. The fact that in resting cells a greater 

proportion of VAMP-3-pHluorin is present on the plasma membrane than VAMP-8-

pHluorin might mean that a greater proportion of channels that VAMP-3 is 

important in trafficking, such as TRP channels, are also delivered to the plasma 

membrane so that upon stimulation the cell is able to produce a more rapid 

response. This effect is not seen in ionomycin stimulated cells which is not 

surprising given this is an ionophore and so transports calcium ions across the 

plasma membrane without relying on the subsequent trafficking of addition 

channels to the plasma membrane. These results highlight potential multiple roles 

of VAMP-3 in the mast cell, which through the recycling endosome mediates the 
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trafficking of cytokines and possibly calcium channels to the plasma membrane, 

contributing to mast cell activation and release of mast cell mediators. 

 

BoNT/B can only target a subset of vesicles in mast cells and the VAMP-8 vesicle 

pathway, governing SG release, remained intact. To look at the potential for 

targeting this vesicle pool, cells were transfected with the modified form of BoNT/E 

consisting of a single point mutation at amino acid position 224 that is reported to 

target SNAP-23. Cells expressing BoNT/E(K224D) LC showed reduced VAMP-8-

pHluroin exocytosis compared to BoNT/E LC, this shows the modified toxin can 

inhibit exocytosis in mast cells. The calcium response to IgE was also reduced but 

no difference in exocytosis was seen through activation with the non-receptor 

mediated calcium ionophore ionomycin. These results would suggest that the toxin 

could be affecting other trafficking pathways, for example trafficking of ion channels 

or even the FCεRI receptor to the plasma membrane, rather than the fusion of 

secretory vesicles. BoNTs cannot cleave, or show greatly reduced cleavage, of 

SNAREs in the assembled fusion complex [429]. The lack of inhibition of exocytosis 

seen with stimulation through ionomycin might have been a result of fusion of some 

SGs still docked with the plasma membrane and so the SNAREs are already in 

complex. Where ionomycin stimulation might differ from FCεRI is by the induction 

of greater amounts of compound degranulation, where vesicles undergo fusion with 

each other as well as the plasma membrane [196]. SNAP-23 is only present on the 

membrane, therefore a different set of SNAREs might mediate this vesicle to vesicle 

fusion and may be unaffected by BoNT cleavage, or SNAP-23 not at the plasma 

membrane might not be cleaved by BoNTs. Ionomycin induces greater release of SG 

mediators in mast cells and induces a larger and more artificial rise in calcium than 

IgE induced crosslinking, and might result in a great propensity for compound 

exocytosis. If there was still a large proportion of uncleaved SNAP-23 remaining, 

and if vesicles are undergoing compound fusion and fusing to the protected “pre-

docked” vesicles already present on the plasma membrane, then this would still 

lead to acidification of the vesicles and hence increase in pHluorin fluorescence. 

This could couple with the fact that ionomycin bypasses the need of ion channels, 

and hence even if ion channels such as TRP channels could not fuse to the plasma 

membrane this wouldn’t affect the ionomycin response. Another possibility is 

compensation by other SNAREs in ionomycin-stimulated cells. SNAP-47 was 
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expressed at very high levels in LAD 2 cells but most probably does not possess a 

membrane anchor. Stimulation with ionomycin it might be more likely for 

compensation to occur by a means that would not occur under physiological 

conditions. The results shown here are only exploratory and much more work 

would be needed to determine the effectiveness of BoNT/E (K224D) in inhibition of 

mast cell degranulation and possible cytokine secretion. Repeats of the same 

experiments performed in BoNT/B LC transfected cells in this study would need to 

be performed, where one would expect both IL-6 and hexosaminidase release to 

be inhibited given the prominent role SNAP-23 is reported to play in mast cell 

exocytosis. Given the problems encountered in this study with some obvious 

inhibition of signalling pathways by the modified construct the potential use of this 

construct, either as a tool to monitor SNAP-23 in exocytosis, or as a potential 

therapy is limited.  

 

In conclusion the results shown here identify two distinct pools of vesicles in human 

mast cells that are defined, in part, by VAMP-3 and VAMP-8. They display distinct 

calcium sensitivities and control the release of different sets of mediators, with the 

VAMP-3 pathway being able to be selectively targeted by BoNT/B, and regulates 

secretion of IL-6. VAMP-8 mediates the fusion of SGs and therefore the release of 

preformed mediators such as -hexosaminidase. Disruption of VAMP3-mediated 

vesicle fusion could provide a novel means of inhibiting the release of pro-

inflammatory cytokines. Together these experiments provide evidence for the 

possibility of new therapeutic strategies for the treatment of mast cell related 

disease 
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Chapter 6: Discussion and future 
directions  

 

This study demonstrates for the first time the SNAREs expressed in LAD and 

HLMCs. Of the SNAREs detected, a previously undescribed role for VAMP-3 has been 

shown. Looking at endogenous VAMPs and using VAMPs tagged with pHluorins, this 

study has assessed the cellular distribution of VAMP-3 and VAMP-8 containing 

vesicles, and their behaviour upon IgE stimulation in live cells. In unstimulated cells, 

VAMPs 3 and 8 were found to have distinct cellular distributions. Upon IgE 

stimulation both VAMP-3 and VAMP-8 containing vesicles translocate to the 

membrane and undergo membrane fusion, consistent with roles in exocytosis. 

However, their responses show distinct time courses and calcium dependences. 

Inhibition of VAMP-3 by BoNT/B inhibited the release of IL-6 GFP, while 

knockdown of VAMP-8 inhibited SG release. The data presented here supports the 

notion that distinct vesicle pools, defined in part by expression of VAMP-3 and 

VAMP-8, regulate the release of inflammatory mediators from mast cells. 

 

The notion of different pools of mediators, defined in part by different SNAREs, has 

only recently been described. In neuronal cells it is becoming accepted that multiple 

pools of vesicles exist that consist of different molecular constituents. The standard 

view of SV fusion being mediated solely by VAMP-2 positive vesicles is increasingly 

becoming dated and it is clear multiple SNAREs define different pools of vesicles. 

Vesicles that give rise to spontaneous release have been reported to be defined 

through the expression of Vti1a, a non-canonical SNARE that was not originally 

associated with exocytosis [298]. Further observations have found differences in 

the molecular makeup of the vesicle pools that govern synchronous and 

asynchronous release; the later defined through the expression of VAMP-4 [430]. 

With a picture starting to emmerge in neuronal cells of different pools of vesicles 

defined by unique molecular constituents, the question arises of whether other cells 

types might contain differential pools. Mast cells have long been known to 

differentially release cytokine and growth factors selectively without degranulation 

by activation of a number of stimuli; for example stimulation by Il-1 and CRH can 

induce the selective release of IL-6 and VEGF respectively [87, 431]  
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Many of these cytokines are both present in pre-stored pools and are de novo 

synthesised, TNF-, VEGF and IL-6 have all been found in resting cells either 

present in a small number of SGs or in separate small vesicles [87, 432]. The 

SNAREs that control the release of these mediators are not well defined and much 

work has been focussed on identifying the molecular makeup of SGs membrane 

fusion proteins, of which VAMP-7 and 8, syntaxin 4 and SNAP-23 are heavily 

implicated and VAMP-8s role in SG release was confirmed in this study. The fact that 

inhibiting VAMP-7 or 8 function has no effect on the release of many cytokines or 

growth factors makes it clear a different set of SNAREs are mediating the release of 

these mediators [235]. Only very recent studies have started to identify what these 

might be and interestingly a number of SNAREs have been implicated. In assessing 

the release of just four chemokines Frank et al 2013 implicated syntaxin 3 and 6, 

VAMP-7 and 8 (previously thought to only mediate SG release) and SNAP-23. 

Another recent study found VEGF release in murine mast cells to be tetanus toxin 

sensitive [248] and it is becoming clear that a number of combinations of SNAREs 

exist in mast cells on vesicles possessing different mediators.  

 

This is the first study to directly identify a role for VAMP-3 in mediator release in 

human mast cells. It is not clear whether this just represents de-novo synthesised or 

includes preformed mediators. Only an artificial system has been used as direct 

evidence for VAMP-3 involvement in cytokine release in this study, through the use 

of an IL-6 GFP construct. These results would need to be confirmed by determining 

the effects of the BoNT/B LC on endogenous cytokine release as overexpressed 

proteins can be miss-targeted and result in misleading observations. To 

differentiate whether VAMP-3 mediates preformed or de-novo synthesised cytokine 

release, release of endogenous cytokines at different time points could be 

monitored. Monitoring release after 10 minutes would measure only preformed 

release and so studying the effect of toxin treatment at this time point would 

determine if VAMP-3 pools represent pre-stored pools. Also, immunostaining of 

endogenous cytokines in resting cells with VAMP-3 might give an insight as to 

whether VAMP-3 localises to pre-stored cytokine pools.  

Given the findings in this study a putative picture of one possible pathway of VAMP-

3 mediated cytokine release can be built involving storage of cytokines within an 
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adapted endosomal pathway. VAMP-3 was seen to traffic to the plasma membrane 

within minutes of stimulation and colocalised to recycling endosomes. In 

macrophages a pathway exists whereby trafficking of IL-6 and TNF- involves 

trafficking through the recycling endosome before being transported to the plasma 

membrane in a VAMP-3 positive pathway[182]. It is possible that small amounts of 

cytokines and growth factors are stored preformed in this compartment ready to be 

released upon stimulation and this might represent the initial fusion of VAMP-3 

vesicles with the plasma membrane seen in this study. One mechanism that has 

parallels to this and is well defined is the GLUT4 transport mechanism in 

adipocytes.  GLUT4 resides in specialised storage reservoirs sequestered away from 

normal endosomal compartments by the action of the endosomal sorting complex 

[185, 428]. This store can limit the amount of GLUT4 at the plasma membrane and 

then be readily delivered to the plasma membrane. Preformed cytokines in mast 

cells could similarly be stored, in a rab11 positive compartment, and released 

rapidly upon stimulation. 

 

Syts and other calcium sensors such as the slps might provide a level of control in 

the release of cytokines. Recently a potential control mechanism has been found in 

macrophages whereby syt XI, localising to recycling endosomes, negatively 

regulates IL-6 and TNF- release and syt XI was a syt that had the greatest 

expression in LAD2 and HLMCS in the microarray in this study. Release of cytokines 

and growth factors are independent of extracellular calcium and in this study 

VAMP-3-pHluorin vesicles were found to have greater sensitivity to calcium than 

VAMP-8-pHluorin, a SNARE that mediates SG plasma membrane fusion. Different 

isoforms of syts have differing calcium sensitivities and can be broadly classed into 

three groups: Low calcium affinity (syt I II V), high calcium affinity (syt III and VII) 

and syts that do not bind SNAREs or phospholipids in a calcium-dependent manner, 

including IV and XI. As with SNARE expression differential syt expression on 

vesicles has been shown in neurons. Importantly, given the differences in calcium 

sensitivities, this differential expression can confer functional differences in the 

propensity of vesicles to undergo fusion. PC12 cells express numerous syts and the 

differential expression of these on dense core vesicles results in differences the 

propensity to undergo fusion and the type of fusion that occurs [254]. Syt I, which 

has a low calcium affinity, confers onto them a greater tendency to undergo kiss and 
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run fusion rather than full fusion. Vesicles expressing IX or VII isoforms show 

intermediate or low propensity respectively to undergo kiss and run fusion. This 

highlights how the expression of different calcium sensors might result in 

differential release, where they can modify a vesicles ability to respond to calcium 

signals. Furthermore each of these vesicles varied in their sensitivity to being 

inhibited to undergo fusion by syt IV, which lacks calcium binding and has been 

shown to negatively modulate Brain derived neurotrophic factor (BDNF) release in 

hippocampal neurons [433]. Syt XI is similar in structure to syt IV and given its role 

in regulating cytokine release in macrophages mirroring that of syt IV in BDNF 

release and it being the predominant syts in mast cells, it is possible that the 

differential expression of syts or other calcium sensors such as slps on mast cell 

vesicles might confer different calcium sensitivities. One could imagine expression 

of syt XI on vesicles modifying the calcium dependences by co-expression with 

another syt that is calcium sensitive and mast cells containing vesicles expressing 

different calcium sensors with different calcium sensitivities.  

 

This is the first time that the expression of such a wide range of calcium sensors has 

been determined in mast cells and it is interesting to note the low levels of syts 

compared to other calcium sensors such as slps. It is possible that rather than syts, 

slps have a greater role in mast cell exocytosis but this remains to be determined. 

Determining protein expression and localisation as well as functional studies 

assessing calcium sensitivities will be vital in elucidating the role if any these 

proteins have in mast cell exocytosis.  To address these possibilities determination 

of the expression of calcium sensor proteins through western blot and 

immunostaining to determine localization in human mast cells would be the most 

important starting point. This would confirm or disprove the microarray data in this 

study and murine cell data of previous studies [256, 260]. Once expression of the 

particular calcium sensors in confirmed, functional studies would then allow 

dissemination of their functions. Using the pHluorin assays with knockdown of 

particular sensors would enable assessment of any changes in calcium sensitivities 

and using mediator release assays allow determination of any roles in mediator 

release. The calcium sensors themselves could also be tagged with pHluorins to 

assess their presence on vesicles undergoing fusion with the plasma membrane.  
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In this study the main focus was on the four highest expressed VAMPs. From the 

microarray data it is clear than many other SNAREs are present including many 

syntaxins and Qb SNAREs whose function in mast cells has not be defined. How and 

whether these SNAREs and SNARE regulators control mast cell mediator release 

and how calcium sensitivities are differentially imparted onto vesicles are questions 

that are sure to be answered in the coming years. 

 

Chronic inflammatory disease is characterised by the aberrant release of cytokines 

over a prolonged period of time by mast cells and other immune cells. Il-6 has been 

shown to pivotal in many chronic inflammatory diseases such as rheumatoid 

arthritis, asthma and inflammatory bowel disease. It has also been implicated in 

cancer and Tocilizumab, a IL-6 receptor antibody, is effective in the treatment of 

rheumatoid arthritis [434]. The pathway for IL-6 release in mast cells, as with many 

other cytokines, had not previously been defined. Given the data in this study 

showing BoNT/B can target Il-6 release and moreover given the toxin did not affect 

normal granular release, BoNTs might provide a novel means of selectively 

targeting the release of chronic inflammatory mediators without affecting SG 

release. This study has shown that VAMP-3 is the most likely candidate SNARE for 

its release, and BoNT/B can target its release by cleaving this SNARE. Until recently 

the therapeutic use of BoNT was limited to neuronal cells due to the highly specific 

binding of the toxins to their target receptor. The work of Foster et al 2006 opened 

up the therapeutic potential of BoNTs by retargeting the toxin to non-neuronal cells. 

A modified form of BoNT/C was created whereby the Hc receptor binding domain 

was replaced with EGF domain and this was able to be taken up into epithelial cells, 

cleave syntaxin I and inhibit mucin secretion [435]. Much more recent work has 

highlighted the therapeutic potential of this strategy. Using a recombinant protein 

consisting of growth hormone releasing hormone and the Hn/LC domains of 

BoNT/D Somm et al showed this could selectively enter into pituitary somatotroph 

cells and target the release of growth hormone by cleavage of VAMP-2 and this 

proved a novel treatment strategy for acromegaly [436]. This strategy could be used 

in targeting mast cells for treatment of chronic inflammatory disease, although 

there are a number of challenges particularly when regarding mast cell specific 

targeting.    
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In targeting the toxin to mast cell, a suitable peptide receptor for toxin uptake 

would need to be found. When deciding on a suitable receptor target a number of 

considerations would need to be made. It is important the receptor is mast cell 

specific, or at least not widely expressed in other cell types as this would lead to off 

target effects. Another consideration is to ensure the peptide does not induce mast 

cell degranulation. This would produce an acute response when activating its 

receptor on mast cells and as only a subset of mediators would be targeted and SG 

release would remain intact, activation would lead to mast cells releasing factors 

such as proteases and histamine potentially inducing an early phase allergic 

response. Unfortunately this means that targeting mast cells through the FceRI 

receptor is not possible, which otherwise could have been a useful target receptor. 

From the microarray two peptide receptors expressed at the highest levels in both 

LAD 2 cells and the HLMC donor were galanin 3 and urotensin 2 receptors 

(appendix figure 3 and 4), but these receptors have fairly ubiquitous expression and 

so would not be ideal for selective targeting. One potential receptor that might 

provide a target for mast cell toxin entry is the melanocortin 1 receptor. Although 

the receptor is highly expressed in melanocytes the melanosomes present in them 

are lysosomal related organelles and so most likely utilise endosomal SNAREs for 

exocytosis such as VAMP-8 that are not affected by the toxin [437]. VAMP-3 does 

not seem to have a predominant role in these cells; a siRNA screen found knocking 

down VAMP-3 not to affect pigment production, however, VAMP-2 co-

immunoprecipitates with SNAP-23 from purified cell membranes [438]. Of course 

further off target effects might be seen in melanocytes depending on the role of 

VAMP-3 in these cells and also the receptor has not been defined in mast cells and 

so it is not known whether activation of the receptor induces degranulation. Also, as 

other studies have recently shown, numerous SNAREs seem to control the release of 

multiple cytokines. This method of targeting release might be too specific. Cleaving 

VAMP-3 might not ‘hit’ the release of enough mediators to have a physiological 

effect, if the mast cell can still release a wide number of inflammatory mediators 

then there might be minimal physiological effects. 
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Figure 6.1 

Targeting of mast cell cytokine release using modified BoNTs. 

Using an MC-1 liganded targeting domain of BoNT/B it might be possible to target mast cell cytokine 

release whilst having minimal side effects.  

 
Future experiments should firstly focus on defining in more detail expression of 

suitable receptors in human mast cells, and whether there are significant 

differences between mast cell populations that might limit the effectiveness of any 

particular treatment. After finding a suitable target receptor, testing of cell entry of 

these modified toxins and determining their ability to cleave and inhibit cytokine 

release using the assays described in this study should take place. In using calcium 

imaging, pHluorin and mediator release assays many steps along the secretory 

pathway could be monitored which would be important, particularly if looking for 

off target effects. For example the VAMP-8-pHluorin assay could be used to ensure 

specific targeting of the cytokine release pathway and calcium imaging to ensure the 

cells signalling pathways remain intact. Despite the potential pitfalls, the use of this 

‘magic bullet’ approach to treatment is appealing and could provide a highly 

effective way of treating chronic inflammatory diseases.  
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Figure 1. 
Table of RAB expression in LAD 2 cells in order of expression level 
Values are normalised to the 75th percentile  
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Figure 2. 
Table of RAB expression in HLMC donor in order of expression levels 
Values are normalised to the 75th percentile 
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Figure 3. 
LAD 2 cell GPCR expression 
Table lists the top 30 expressed GPCRS in LAD 2 cells. Values are normalised to the 75th percentile 

 

 
Figure 4. 
HLMC donor GPCR expression 
Table lists the top 30 expressed GPCRS in HLMCS. Values are normalised to the 75th percentile 
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Figure 6. 
Proteoglycan core protein expression in LAD 2 cells  
Values are normalised to the 75th percentile 

 

 
Figure 7. 
Proteoglycan core protein expression in HLMCS  
Values are normalised to the 75th percentile 
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Figure 8. 
Enzymes associated with glycosaminoglycan synthesis in LAD 2 cells.  
Values are normalised to the 75th percentile 
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Figure 9. 
Enzymes associated with glycosaminoglycan synthesis in HLMCS. 
Values are normalised to the 75th percentile 

 


