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Abstract

Using the Silicon And GErmanium array (SAGE) at the University of Jyväskylä (JYFL),

E0 transition strengths in 154Sm were measured as a test case for further measurements

in the rare-earth region. A large degree of collectivity is expected in nuclear excitations of

even-even rare-earth nuclei and the nature of excited 0+ states in these nuclei is of partic-

ular interest. SAGE was employed to measure the E0 transition strength of the 0+
2 → 0+

1

and 2+
2 → 2+

1 transitions in 154Sm. Such transition strengths provide a key observable to

differentiate between nuclear models. To facilitate this measurement, peak-fitting tech-

niques were developed to improve the analysis of the particular peak shapes observed in

electron spectra from SAGE. A method of background subtraction was developed to re-

move time-random coincidences using the timing information available from the JYFL

Total Data Readout (TDR) system.

An isotopically enriched samarium target was bombarded by a 65 MeV beam of 16O,

populating states of interest via Coulomb excitation (CoulEx), after which de-excitation

via internal conversion and γ-ray emission were observed. The 0+
2 → 0+

1 E0 transition

could not be measured in this work due to the background found in the current experi-

mental setup. The equally important 2+
2 → 2+

1 E0 transition strength could be studied by

implementation of background subtraction to remove false-coincidences. The experiment

was normalised by measurement of conversion coefficients for known transitions in 154Sm

and in the contaminants 152Sm, 166Yb and 167Yb.

An electron peak associated with the 2+
2 → 2+

1 transition in 154Sm was not observable,

but a stringent upper-limit was placed on the E0 transition strength. The measurement

was compared to the Interacting Boson Approximation (IBA) and Bohr and Mottleson

collective models and was found to be smaller than predicted by both collective interpre-

tations. The usefulness of SAGE and this measurement technique was proved and the

direction for future research in this area is discussed.
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1
Introduction

The atomic nucleus represents one of the most varied and complex quantum system avail-

able to scientists. Nuclear physics aims to understand how the many-bodied nuclear force

acts in this environment and to explain how it governs the behaviour of the nucleons in-

volved. Doing so requires a wealth of experimental data, combined with a multifaceted

theoretical knowledge-base. A plethora of phenomena have been uncovered, from the spin-

orbit and pairing interactions, which dominate shell theory, to the giant dipole resonance

in 197Au and the halo nucleus 11Be. However, scientific understanding is far from com-

plete and complementary development of experimental knowledge and theoretical models

remains paramount.

Starting from the classically-based liquid-drop model, the lowest energy state of a

nucleus would always be expected to be spherical. However the occurrence of deformed

ground states in nuclei are well-documented and widespread throughout the nuclear chart.

The pairing interaction makes it energetically favourable for pairs of nucleons to be coupled

to zero angular momentum and even parity. The strength of the pairing interaction and

coupling result in a 0+ ground state of all even-even nuclei. As a result of pairing, the

ground state and low energy structure is not dominated by behaviour of single nucleons in

such nuclei. In even-even nuclei, deformation is largest in the mid-region between major

shell closures; a return to sphericity is observed at closed shells. Figure 1.1 shows ground

state quadrupole deformation in even-even nuclei across the nuclear landscape. As atomic

number, Z, or neutron number, N , approaches a shell closure, the Pauli exclusion principle

prevents excitation without expending a large about of energy to promote nucleons across

the shell gap to create particle-hole excitations. This requires either the energy to excite

a pair of nucleons or to separate a coupled pair. Whereas, in the mid-shell region valence

nucleons are free to interact and recouple. Thus it seems that the many interactions

between the two types of valence nucleon drive deformation and lead to a lower energy

state than would be expected if nucleons minimised energy by simply filling, in order, the

lowest energy single particle states. It is observed experimentally that nuclei are typically

quadrupole-prolate deformed but there are also quadrupole-oblate deformed nuclei (74Kr)

and even octupole-deformed pear-shaped nuclei (224Ra).

As well as deformed ground states, excitations are also observed in nuclei attributed

to rotations and vibrations of deformed shapes. These collective excitations are found to

dominate the low energy spectrum of medium- to high-mass nuclei (A & 50). Microscopic

models, such as the shell model or ab initio models, which attempt to describe the nucleus

from effective nucleon-nucleon interactions, struggle to function due to the large valence

spaces required to describe these collective excitations. The Bohr and Mottelson collective
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Figure 1.1: Absolute value of the quadrupole deformation parameter β2 for even-even
nuclei across the nuclear chart, calculated from B(E2) measurements. The major shell
gaps seen for protons and neutrons near stability are highlighted.

model, and developments upon it, remains one of the best ways to describe the excitations

of medium- to high-mass nuclei. Continued work is needed to amend the model and

understand where the approximations made are inadequate. In doing so we will advance

the knowledge of the collective behaviour of nuclear matter.

1.1 Nuclear Experimentation

The technique of γ-ray spectroscopy has become the mainstay of nuclear structure physics.

As the emission of a γ ray is the most common mode of de-excitation between nuclear

states, their detection is an ideal tool to observe and measure the properties of excited

states in nuclei. The measurement of the emitted quantum of a transition gives information

about the difference between the two linked states. By linking back to the ground state,

or another known state, of the nucleus, the properties of the states can be inferred. Hence,

a level scheme showing the ground state, excited states and the linking transitions can

be produced from the observation of emitted γ rays. The energy of a γ ray gives the

energy difference between two states, and from the angular distribution and polarization

of the emitted γ rays spin and parity changes can be deduced. The rate at which a

given transition occurs, which is related to the observed half-life, can give direct insight

into the nuclear wavefunctions of the two states. Owing to a complete understanding of

the electromagnetic force that governs the interaction, all energy and angular momentum

dependence can accounted for in the calculations and an experimentally-measured value
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related directly to the nuclear structure dependence. The nuclear structure dependence

here is realised as the quantum mechanical nuclear matrix element of transition, 〈Ψf |T̂ |Ψi〉,
which is the expectation value of the operator for the transition between the initial and

final state wavefunctions. The term ‘matrix elements’ refers to the complete set of all

possible eigenstate pairs, represented as a symmetric matrix.

The lowest order electromagnetic transitions, E0 transitions, cannot proceed by simple

γ-ray emission. E0 transitions provide crucial insight into nuclear charge radii, which is a

key observable for nuclear shape deformation. For excited 0+ states in even-even nuclei, the

E0 transitions from the excited state to the ground 0+ state can yield crucial information

on the nature of the excitation. The nature of such 0+ states is of continued interest as

different kinds of 0+ states are predicted in collective and microscopic models. Thus E0

transition strengths represent a fundamental piece of nuclear structure information which

would be lost without ancillary detectors in γ-ray experiments. One such detector is the

Silicon And GErmanium array (SAGE) system at the University of Jyväskylä (JYFL).

This detector system, shown in Figure 1.2, is a purpose-built electron spectrometer for

the measurement of electrons from internal conversion. This is the main decay mode by

which an E0 type nuclear transition may proceed. A solenoidal magnet is utilised for

electron transport, such that electrons over a broad range of energies can be detected in

a single setup. SAGE is designed to operate alongside the JUROGAMII γ-ray detector

array so that both electron emission and γ-ray emission associated with nuclear transitions

can be detected in a single experiment, allowing coincident events to be identified. By

simultaneous study of transition strengths of 0+
i → 0+

f E0 transitions, alongside competing

γ-ray branches, great insight can be gained into the collective nature of nuclei.

Figure 1.2: Cut-through of the SAGE electron spectrometer (left) and JUROGAMII γ-ray
detector array (right). The ion beam enters from the left and passes through the SAGE
solenoid (shown in brown) and is focused onto a target at the focus of JUROGAMII.
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1.2 Thesis Overview

In this work the SAGE spectrometer is used to measure E0 transition strengths in 154Sm.

This is done as a test of collective interpretations of the 0+
2 band in 154Sm, from which

strong E0 transitions to the ground state band are predict. The measurement is per-

formed by means of Coulomb excitation (CoulEx) of a samarium target and recording

subsequently emitted conversion electrons and γ rays. Gating on coincident γ-rays tran-

sitions is used to cleanly identify experimental transitions of interest. Relative intensities

of transition modes are then used to determine the transition strengths. Considerable

effort is given to understanding of the SAGE system, including development of electron

peak fitting and time-based background subtraction techniques, in order to facilitate the

measurement.

In Chapter 2 an overview of theory relevant to the subsequent work is presented.

Firstly, the link between experimental observables for electromagnetic transitions and

the associated nuclear matrix elements is discussed. The focus is on single γ rays and

conversion electrons. Secondly, a brief overview of relevant nuclear models is given. In

each case the interpretation of E0 matrix elements within the model is given.

Chapter 3 and Chapter 4 provides a guide to equipment and data processing with the

SAGE setup. A discussion of all the equipment associated with SAGE is presented, as

well as descriptions of the peak fitting and background subtraction techniques developed

for use in this work.

In Chapter 5 the scientific motivation for exploration of E0 transitions in the rare-

earth nuclei is presented. Subsequently, the test case experiment of 154Sm is presented,

details of the experiment are given and the preliminary results are shown.

Chapter 6 contains discussion of the analysis for the test case experiment. An upper

limit result for an E0 transition in 154Sm is given and discussion of the measured value in

relation to competing theoretical models is presented.

Chapter 7 concludes the work with a discussion of the success of the test case experi-

ment and suggestions for improvement and future work.
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2
Theory

The nucleus is a many-bodied quantum mechanical system, which must exist in one of a

series of orthogonal energy and angular momentum eigenstates. The lowest energy state

is known as the ground state. A nucleus in any other state than the ground state will

transition towards lower energy states, due to energetic favourability, wherever a physically

allowed mode of transition exists. Study of the properties of transitions between two states

yields information on the states involved, their spin, energy, parity and more detailed

structure. In order to extract more detailed structural information, it is convenient to

study transitions in which it is possible to separate the unknown nuclear state dependence

from the force governing the transition.

2.1 Electromagnetic Transitions

A nucleus in an excited state may decay to a lower energy state in the nucleus via an

electromagnetic transition. During such a transition, the angular momentum and the

energy difference between the two states is transferred away from the nucleus by an emitted

quanta. In this work, a discussion of single γ-ray emission and single electron emission is

presented. Because the electromagnetic force is well understood these transition modes

are particularly useful for extracting the nuclear dependence of the transition between

states.

Electromagnetic interactions in the nucleus are categorised as electric multipole or

magnetic multipole transitions of order l,m, where l and m are the angular momentum

and projection of the transfer respectively. The parity of the transition is defined as [1]:

Parity of electric multipole l,m = (−1)l (2.1)

Parity of magnetic multipole l,m = −(−1)l (2.2)

Standard angular momentum selection rules apply; for a transition between a state ψA

with angular momentum JA and projection MA and a state ψB with angular momentum

JB and projection MB, only transitions of multipole order which obey

|JA − JB| ≤ l ≤ JA + JB (2.3)

MA −MB = m (2.4)

are allowed.
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In general, the lowest-order multipole will be strongest. However, magnetic type tran-

sitions are generally weaker and an l = 2 electric transition may dominate over an l = 1

magnetic transition, for example [1].

2.1.1 Gamma-Ray Transitions

The most common form of electromagnetic transition is decay by emission of a γ-ray

photon. The change with time of charges and currents in the nucleus during a transition

between two states can create a radiating electromagnetic field, which can take away

energy and angular momentum from the nucleus in the form of a photon.

Multipole Radiation Fields

The electric, ε(r), and magnetic, H(r), multipole radiation fields produced by a system of

charges and currents can be expanded, outside the source of the radiation, as [1]:

ε(r) =
∞∑
l=1

l∑
m=−l

aE(lm)εE(lm; r) + aM (lm)εM (lm; r) (2.5)

H(r) =

∞∑
l=1

l∑
m=−l

aE(lm)HE(lm; r) + aM (lm)HM (lm; r) , (2.6)

where εE(lm; r) is the electric field andHE(lm; r) is the magnetic field for electric multipole

radiation of order l,m. Similarly εM (lm; r) and HM (lm; r) are the fields for magnetic

multipole radiation of order l,m. These functions are defined in Reference [1]. All ε(lm)

and H(lm) go to zero for l = 0, hence L = 0 transitions are strictly forbidden. The

coefficients a(lm) determine the amplitude of the corresponding multipole radiation and

depend on the source of the radiation. In the case of γ-ray emission they depend on the

nuclear transition. The coefficients, defined in Reference [1], are given by:

aσ(lm) = − 4π

(2l + 1)!!

(
l + 1

l

)1/2

kl+2Xσlm (2.7)

where k = Eγ/~c and Xσlm is the multipole moment of order l,m of the transition.

The symbol σ denotes the multipole type, E or M . This result is correct in the long

wavelength approximation, in which the radiating charges are constrained to a volume

much smaller than the wavelength of the emitted radiation. Given a typical nuclear

radius of R0 = 1.2A1/3 fm and the relation λγEγ ≈ 1240 fm MeV the long wavelength

approximation is valid in the energy range of most nuclear transitions.

Xσlm, which is denoted Qlm for an electric multipole moment and Mlm for a magnetic

multipole moment, contains all the nuclear information regarding the transition and is

equivalent to the nuclear matrix element:

Xlm = 〈ψB|M̂(lm)|ψA〉 , (2.8)

where M̂(lm) is the electric or magnetic multipole moment operator.
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Transition Probability

The probability for transition via the emission of a γ ray of a given multipole field can

be considered in terms of the energy carried by the field. The Poynting vector giving the

rate of flow of energy in a light wave is given by

S = ε×H . (2.9)

For a pure multipole field, the rate of energy being radiated away from the source into a

given solid angle, dΩ, is obtained as [1]:

Uσ(lm; Ω) =
c

2πk2
Zlm(θ, φ)|aσ(lm)|2 , (2.10)

where Zlm(θ, φ) is the angular distribution of the emitted energy. Z is a function of l, m

and the spherical harmonics Ylm(θ, φ), but independent of the electric or magnetic type of

the multipole field. As a result the angular distribution of emitted radiation can only yield

information on the order of the multipole. The type of the multipole can be determined

from the polarisation of ε and H which differs everywhere by 90° between the two types.

Integrating Uσ(lm; Ω) over all space gives the energy that would be radiated out of the

system per second by the pure multipole field. Dividing this by the transition energy, Eγ ,

gives the transition probability for the pure multipole γ-ray transition, Wγ(σlm), in units

of s−1. The full integral over all space of Zlm(θ, φ) = 1, the transition probability can be

written by the combination of Equations (2.7) and (2.10) as

Wγ(σlm) =
8π(l + 1)

l[(2l + 1)!!]2
k2l+1

~
|Xσlm|2 . (2.11)

The partial mean lifetime of the state, with respect to decay by the given multipole γ-ray

transition, is then given by

τγ(σlm) =
1

Wγ(σlm)
. (2.12)

Experimental Forms

For an experimentally measured transition between two states, the total γ-transition rate

will be a sum of all the possible decay modes,

τγ(ψA → ψB) =
1∑

σ,l,m

Wγ(σlm;ψA → ψB)
. (2.13)

It is convenient to define “reduced transition probability” between two states, B(σl), which

depends only on the angular momentum transferred, l, and the transition multipole type1

[2]. The value of B(σl) is defined as

B(σl;ψA → ψB) =
1

2JA + 1
|〈ψB||M̂(σl)||ψA〉|2 . (2.14)

1Clearly the multipole type and l are related by the parity of the transition, as defined in Equations (2.1)
and (2.2).
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where the double line denotes that this is the “reduced matrix element” and is independent

of m, MA and MB. Hence, one can write the equivalent relationship to Equation (2.11),

for the γ-ray transition probability between two states independent of initial polarisation

MA or transfer m,

Wγ(σl;ψA → ψB) =
8π(l + 1)

l[(2l + 1)!!]2
k2l+1

~
B(σl;ψA → ψB) . (2.15)

The value of B(σl) may be considered as the square of the individual transition matrix

elements (Equation (2.8)) averaged over the initial sub-states, MA, and summed over the

final sub-states, MB [2]. It is common to make use of the Wigner-Eckart theorem for a

spherical tensor operator [2, 3], such that the individual matrix elements may be written

as

〈ψB|M̂(σlm)|ψA〉 = 〈JAMAlm|JBMB〉
〈ψB||M̂(σl)||ψA〉√

2JB + 1
. (2.16)

The first term is a Clebsch-Gordan coefficient, containing all m dependence, and the

second term is the “reduced matrix element”.2,3.

Weisskopf Units

The native units for a reduced transition probability B(El) are e2fm2l and those for

B(Ml) are µ2
Nfm

2l−2 (both may also be expressed in e2bl), but it is common to make

use of the Weisskopf single particle estimates to express each in units which provide quan-

titative physical insight [5]. The Weisskopf single particle estimates solve the reduced

matrix element of the multipole moment operator assuming a single nucleon in a spherical

potential-well moving from a J = 1
2 to a J = 1

2 +l orbital. If the radius of the potential well

is taken to be 1.2A1/3 fm then single-particle estimates for reduced transition probability

are given by

B(El)sp =
1

4π

(
3

l + 3

)2

(1.2A1/3)2l in units of e2fm2l (2.17)

and

B(Ml)sp =
10

π

(
3

l + 2

)2

(1.2A1/3)2l−2 in units of µ2
Nfm

2l−2 . (2.18)

These single-particle estimates form the Weisskopf Units (W.u.) which are different for

each nuclear mass and transition multipole moment. It is usual to quote the reduced

transition probability for measured de-excitation in W.u. This gives a very rough estimate

of how like a single-particle transition a measurement is. A value of 1,000 W.u., for

example, appears very collective.

2In a basic model the reduced matrix element may be given implicitly by
〈ψB ||M̂(σl)||ψA〉 =

∑
MA

∑
MB

〈ψB |M̂(σlm)|ψA〉 [4].

3The factor of 1/
√

2JB + 1 may be absorbed into the definition of the reduced matrix element, depending
on the formalism used [2].
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2.1.2 Internal Conversion Electrons

As well as emission of a photon, an excited nucleus may alternatively decay to a lower

energy state by electromagnetic interaction with a bound atomic electron. In this process,

energy is transmitted directly to the electron causing it to transition to an unbound state.

The process is known as internal conversion. When first discovered, the process was

wrongly described as an internal photon effect, in which a photon emitted by the nucleus,

is absorbed by an atomic electron [6]. While governed by the exchange of virtual photons

which mediate the Coulomb force, no actual photons take part in the transition and the

process occurs independently of their emission [7, 3]. As a result, internal conversion is a

competing process to the emission of γ rays and the total transition probability is a sum

of both processes [8].

The kinetic energy of the emitted electron, Te, depends on the binding energy of the

electron, Be. Neglecting nuclear recoil, this is given by [5]

Te = Eγ −Be . (2.19)

As Be depends on the shell (and sub-shell) from which an electron is emitted, the conver-

sion electrons are labelled according to their origin shell e.g. K, L1,2,3, M1,2,3,4,5. Each will

have a different transition probability. Internal conversion is a threshold process, decay

by emission of the most bound electrons may not be possible for low-energy transitions.

Conversion electron spectra show discrete peaks for the different energy electrons from

different shells. Furthermore, characteristic energy X-rays are also observed in coincidence

with internal conversion. These correspond to the atomic transition of a valence electron

moving to fill the core vacancies left by internal conversion. Hence, the X-ray energy

depends on the shell of the converted electron electrons.

Transition Probability

For a given electron shell, the probability that a nuclear de-excitation proceeds via emission

of an electron from that shell, by an electric type interaction, is proportional to the

following matrix element [1]:

We(E) ∝ 〈ψB|〈ϕe,f |Φ|ϕe,i〉|ψA〉 , (2.20)

where Φ is the electric scalar potential, between the electron and nucleus, in the electro-

magnetic field of the transition. The wavefunctions ψA and ψB are the nuclear states and

ψe,i and ψe,f are the initial and final states of the electron. For a K-shell electron, the

initial bound wavefunctions, ϕe,i, is given by [1, 3]

ϕe,i = (πa3)exp

(
−r
a

)
(2.21)

where r = |~r|, ~r is the position vector of the electron, a = a0/Z and a0 is the Bohr radius

of the hydrogen atom. The final free wavefunctions of the electron, ϕe,f , can be given in



2.1. Electromagnetic Transitions 10

the plane wave approximation, when Te >> Be, as [1]

ϕe,f ∝ exp(i~k · ~r) , (2.22)

where ~k is the wave vector of the outgoing electron.

Equation (2.20) may be expanded as [3, 9]

We(E) ∝ Z

4πε0

∫
ψ∗B(~R)ϕ∗e,f (~r)

e2

|~r − ~R|
ϕe,i(~r)ψA(~R) d3R d3r , (2.23)

where the integral is over all space for both coordinates.

One can make use of the following expansions, which separate out the multipole de-

pendence of the interaction [1, 9]:

1

|~r − ~R|
=



1

r

∑
l

∑
m

(
R

r

)l 4π

2l + 1
Y ∗lm(~r)Ylm(~R), for R < r

1

R

∑
l

∑
m

( r
R

)l 4π

2l + 1
Y ∗lm(~r)Ylm(~R), for R > r .

(2.24)

Figure 2.1: Pictorial representation of the different length scales of nuclear (solid lines) and
electronic (dashed lines) wavefunctions [3]. The K electron shell has the most overlap with
the nucleus of any atomic electron, but its radial extent is much larger and the majority
of its probability distribution lies outside the nucleus. The L electron wavefunction has a
radial extent which is larger still, its wavefunction drops as r approaches 0, makings its
overlap with nucleus minimal.

From Figure 2.1, which shows the overlap of nuclear and bound electron wavefunctions,

it can be seen that the radial limit, at which ϕe,i(~r) tends to zero, is much larger than that

of ψA(~R). As a result, the main contribution to the integration comes from the region

r > R. Hence, by combining the r > R relation of Equation (2.24) with Equation (2.23)

and the relation [1]

Qlm = e

∫
RlYlm(~R)ψ∗B(~R)ψA(~R) d3R , (2.25)
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it can be shown that 4

We(Elm) ∝ Qlm . (2.26)

It is possible to separate all the nuclear dependence of an electron conversion, for a given

electron shell and multipole order, into a single nuclear matrix element, upon which the

equivalent γ-ray transition of the same multipolarity also depends.

Conversion Coefficients

As both internal conversion and γ-ray transitions depend on the same nuclear matrix

element, it is common experimentally to refer to the ratio of their intensities, α. The ratio

α is called the conversion coefficient and is a measure of which transition mode is preferred

[1]. It is defined as

αi(ψA → ψB) =
We,i

Wγ
, (2.27)

where the subscript i denotes one or a sum of electron shells. The total conversion coeffi-

cient, α, for a transition is the sum of all of the individual shell conversion coefficients, αi.

It is also useful to note the relationship between the total lifetime, τ , for the transition

and the partial lifetimes with respect to γ-emission, τγ ,

τγ(1 + α) = τ . (2.28)

For a given multipole transition, αi(σl) is independent of the nuclear properties of the

transition and depends only on a series of atomic and electromagnetic properties deemed

calculable. A non-relativistic calculation, assuming a point-like nucleus, gives the following

approximate electric and magnetic multipole conversion coefficients [5]

α(El) ∼=
Z3

n3

(
l

l + 1

)(
e2

4πε0~c

)4(
2mec

2

Eγ

)(l+5)/2

(2.29)

α(Ml) ∼=
Z3

n3

(
e2

4πε0~c

)4(
2mec

2

Eγ

)(l+3)/2

, (2.30)

where n is the principal quantum number for the bound electron wavefunction, nK=1,

nL=2, nM=3 and so on. These results are an oversimplification, as for transitions of

energy & 0.5 MeV, the emitted electrons are no longer in the classical limit Te << mec
2,

and therefore must be treated relativistically. Additionally these results do not account for

the effects produced as the electron wavefuction penetrates the nucleus, i.e. the nucleus

cannot be treated as point like. They serve to illustrate the important features of electron

conversion, which are consistent for more thorough calculations and can provide rough-

value estimates.

From Equations (2.29) and (2.30), it can be seen that internal conversion becomes

an increasingly important process in nuclei with large Z. For a 100 keV E2 transition

in neon (Z=10), internal conversion is almost negligible as αK ≈0.006, but for the same

4A full derivation, including both the electric scalar and magnetic vector potentials of the transition,
yields results for both electric and magnetic multipoles [9].
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type of transition in samarium (Z=62) internal conversion is the dominant process, with

αK ≈1.5. Conversion coefficients also decrease rapidly with increasing transition energy;

this is partly a feature of the increase of Wγ , as shown in Equation (2.11). High-order

multipole transitions of both types favour electron conversion. For example, a 200 keV

E2 transition in samarium yields αK ≈0.13 but for a 200 keV E4 transition, αK ≈0.83.

This effect can be considered in terms of the higher degrees of forbiddeness for a photon

to carry angular momentum L > 1, whereas the large radial extent of the initial electron

wavefunction allows for enhanced angular momentum transfer. The multipole dependence

of conversion coefficients can be used to great effect in experimental nuclear physics.

For a mixed multipole transition, the measured conversion coefficient can be used to

determine the fraction of each multipole in the transition. Furthermore, for a transition

of unknown multipolarity, the measurement of characteristic conversion coefficients can

provide an identification of both the multipole order and type, σl, of the transition. This

is an advantage over γ-ray angular distributions, which can only determine l and not the

parity. Finally it should be noted αi decreases for higher atomic shells. This follows

from the simple observation that the higher-shell electrons have the majority of their

bound probability distribution further from the nucleus and hence the electromagnetic

interaction is weaker.

Realistic definitions for internal conversion coefficients can be in found in Reference

[10], which uses the relativistic Hartree-Fock-Slater method to correct for the previously

omitted relativistic behaviour of electrons. Further work in Reference [9], using the Dirac-

Fock calculations, aim to account for the interaction when the electron is inside the nucleus.

A comparison of calculations to measured values is performed in Reference [11]. The

most accurate conversion coefficients are available from the BRICC conversion coefficient

calculator [12].

2.1.3 E0 Transitions

Electric monopole transitions are valid under angular momentum selection rules between

any states with matching spin, J , and parity, π. However, they are most important in

transitions between states with 0 angular momentum, where no other transition modes

are available.

Electric monopole γ-ray emission is strictly forbidden as photons have one unit of in-

trinsic angular momentum. Furthermore, the transition process is one where the Coloumb

field is acting and photons are only exchanged ‘vertically’ [3]. This is a purely radial

motion, or pulsation of the charges, which does not alter the electric fields at any point

external to the charge volume [5]. Thus, monopole transitions do not produce any electro-

magnetic field outside of the system of charges, there is no radiative field. Energy transfer

must take place inside the volume of the nucleus [1].

A small part of the atomic electron wavefunction does overlap with the nucleus, as

shown in Figure 2.1. As a result, E0 transitions by internal conversion are possible. As

single γ-ray emission is forbidden for E0 transitions, a conversion coefficient cannot be

defined. The electron transition probability can be approximated from Equation (2.23)

using expansion in Equation (2.24). In the region R < r, the expansion for l = 0 yields
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1/r and hence the contribution to We(E0) is zero,∫
ψ∗B(~R)ψA(~R) d3R = δAB . (2.31)

In the region R > r, the expansion for l = 0 yields 1/R and hence

We(E0) ∝
∫
ψ∗B(~R)ϕ∗e,f (~r)

1

R
ϕe,i(~r)ψA(~R) d3R d3r . (2.32)

The integral over the electron coordinate from 0 to R yields the result

We(E0) ∝ 〈ψB|R2|ψB〉 . (2.33)

More generally, monopole transition strengths are proportional to the nuclear matrix ele-

ments of the E0 operator, T̂ (E0).

The dimensionless monopole transition strength, ρ(E0), is introduced as

ρ(E0) =
〈ψB|T̂ (E0)|ψB〉

er2
0A

2/3
, (2.34)

which contains all of the nuclear structure information [13]. The monopole transition

probability for an allowed process, i, is then related by

Wi(E0) = ρ2(E0)Ωi (2.35)

where Ωi is the calculated electronic factor for the process i, which is independent of the

nuclear properties of the transition. For internal conversion, the electronic factors for

conversion of different electron shells are calculable with the BRICC conversion coefficient

calculator [12]. In cases where it is energetically allowed, the K electron shell dominates

E0 electron conversion due to its large overlap with the nucleus.

Other allowed process for E0 decays include pair-production and double γ-ray emission.

These processes are both of higher order than electron conversion and will not be discussed

in this work.
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2.2 E0 Transitions in Nuclear Models

In Section 2.1 the means of extracting nuclear matrix elements between two states for

given transition operators by the study of electromagnetic transition rates was discussed.

Direct interpretation of these nuclear matrix elements is not possible due to the absence of

a unified understanding of the nucleus. The nucleus is a complex many-body system made

up of protons and neutrons, collectively called nucleons, which are themselves composite

particles of quarks. A single nuclear state is the result of interactions between all of the

individual nucleons; a product of two body forces, three body forces and higher order

forces, for which there exists no complete analytical solution. There exist many different

nuclear models which match experimental data. Some are microscopic, describing the

behaviour of individual nucleons, and some are macroscopic, describing the bulk behaviour

of nuclear matter which result from the sum of the internal interactions. This section

briefly introduces some important nuclear models and discusses the interpretation of E0

matrix elements in each.

2.2.1 Shell Model

The shell model is a microscopic model which attempts to describe the nucleus in terms

of the individual nucleon wavefucntions and two-body nucleon-nucleon interactions. The

nucleus wavefunction is given as [14]

|Ψ〉 = |ϕ1ϕ2ϕ3...ϕA〉 , (2.36)

where the the multiplicative sum is in fact a Slater determinant, which is required as nucle-

ons are fermions and the wavefunction must be anti-symmetrised under particle exchange.

A full solution would require the Hamiltonian

H = T +
∑
i 6=j

Vij , (2.37)

where T is the sum kinetic energy and Vij is the potential due to interaction between the

ith and jth nucleons.

Figure 2.2: Schematic comparison
of simple harmonic oscillator and
Wood-Saxon potentials. The Wood-
Saxon is a more realistic finite po-
tential, with a diffuse edge and flat
interior, which mirror well the short
range of the nuclear force and incom-
pressibility of nuclear matter.
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The shell model makes the assumption that the nucleus can be described by non-

interacting nucleons in a simplified mean-field with the addition of a small residual inter-

action.

H = H0 +Hres , (2.38)

where the residual interaction Hres has the form
∑

i 6=j Vij . H0 is usually constructed from

a kinetic energy term, a Wood-Saxon potential and a spin-orbit term. The Wood-Saxon

potential is shown in Figure 2.2 and is used as a more realistic mean-field potential than

the harmonic oscillator potential [2]. The spin-orbit term is added to account for the

strong spin-orbit coupling, which favours parallel alignment of angular momentum so that

particles with j = |l| + |s| are more bound (lower energy states). The individual nucleon

wavefunctions ϕi are then taken as the solutions to H0.5 The ϕi form an orthonormal

basis set with quantum numbers n, l, j and mj . Their single particle energies, given

by 〈ϕi(nlj)|H0|ϕi(nlj)〉, are 2j + 1 degenerate and form the level scheme for the non-

interacting nucleon shells shown in Figure 2.3. The most notable feature, is the correct

recreation of the major shell gaps, or “magic numbers”, which are observed in stable nuclei

[3].

Figure 2.3: Illustration of the energy spacings
of the single particle orbitals produced by the
shell model. States of nl before the inclusion
of spin-orbit coupling are shown on the left
and states of nlj with coupling on the right.
The orbital occupancy 2j+1 is labelled on the
far right and the major shell gaps 2,8,20,28
and 50 are indicated.

A complete set of orthonormal basis states can be constructed for the nucleus in terms

of the non-interacting H0. These basis states are defined in terms of the occupied orbitals

and total spin and parity Jπ.6 The energies of the basis states depend only on the nucleon

occupancy and are energy degenerate with respect to Jπ [14]. This degeneracy is broken by

5The individual nucleon wavefunctions ϕi are usually constructed from a linear sum of oscillator wave-
functions, in which one dominates [15].

6The basis state wavefunctions may be constructed from a sum of Slater determinants of single particle
ϕ(nljmj).
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the introduction of the residual interaction Hres, the largest term in which is the pairing

interaction which strongly couples m+
j nucleons to m−j nucleons in the same orbital to

form 0+ pairs.

To a good approximation, the shell model can be solved by only considering valence

nucleons, that is the nucleons outside of a filled shell when all nucleons are in their lowest

energy configuration. The nucleons inside the closed shell are treated as an inert core of

total J+ = 0+ to which the valence nucleons couple.

State Mixing

State mixing can occur in any situation in which an additional perturbative interaction

is added to an established system. If one considers a complete set of orthonormal basis

states, Ψ1, Ψ2, Ψ3, for an initial Hamiltonian H0, one may expand the Hamiltonian matrix

elements as

〈jΨ|H0|Ψi〉 =

E11 0 0

0 E11 0

0 0 E22

 . (2.39)

The addition of a new interaction to the model space can produce off-diagonal matrix

elements, such as

〈Ψj |H|Ψi〉 =

E11 + V11 V12 0

V12 E11 + V22 0

0 0 E22

 . (2.40)

Here Vij gives the energy of the perturbative interaction between two basis states. In

the shell model, the addition of interactions between nucleons in different shells will not

only change the energy of basis states containing nucleons of both shells but also create

interactions between basis states of different configurations. The new Hamiltonian must

be diagonalised to determine the eigenstates that will be observed in the new system. The

new set of states consist of admixtures of the original basis states in the form

|Ψ̃〉 =
∑
i

ai|Ψi〉 . (2.41)

where
∑
|ai|2 = 1.

Microscopic E0 Operations

The monopole operator can be expressed in terms of single-nucleon degrees of freedom as

T̂ (E0) =
∑
k

ekr
2
k , (2.42)

where the sum is over all nucleons, ek is the effective charge of the kth nucleon and rk is

its position with respect to the centre of mass. Diagonal matrix elements of the operator

yield the mean-squared charge radius of a given state. The off-diagonal matrix elements
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yield the monopole transition strength between states, given as

ρ2
fi(E0) = |〈Ψ̃f |T̂ (E0)|Ψ̃i〉|2

1

e2r4
0A

4/3
(2.43)

Between initial state |Ψ̃i〉 and final state |Ψ̃f 〉, which are composite states in the form of

Equation (2.41), the E0 matrix element can be expanded in terms of basis states as [15]

〈Ψ̃f |T̂ (E0)|Ψ̃i〉 =
∑
h

∑
j

aiha
f∗
j 〈Ψj |

∑
k

ekr
2
k|Ψh〉 . (2.44)

Due to the scalar nature of r2
k and the orthogonality of the basis states, 〈Ψj |Ψh〉 = δhj ,

only h = j terms contribute to the sum.

Tfi =
∑
j

aija
f∗
j

∑
k

ek〈Ψj |r2
k|Ψj〉 . (2.45)

If one were to consider states constructed from nucleons confined to a single harmonic

oscillator shell, rk is the same for all nucleons and independent of |Ψj〉, hence

Tfi = Zr2
∑
j

aija
f∗
j . (2.46)

As orthogonality of initial and final state requires
∑

j a
i
ja
f∗
j = 0, the result is vanishing

E0 transition strength for states of nucleons confined to a single oscillator shell. Realistic

single nucleon wavefunctions include multiple harmonic oscillator shells and basis state

configurations may include several nucleon shells. Considering the situation restricted to

simple two-state mixing, giving the states

|Ψ̃i〉 = a|Ψ1〉 + b|Ψ2〉 (2.47)

|Ψ̃f 〉 = −b|Ψ1〉 + a|Ψ2〉 , (2.48)

Equation (2.45) can be written explicitly as

Tfi =
∑
k

ab
(
〈Ψ2|ekr2

k|Ψ2〉 − 〈Ψ1|ekr2
k|Ψ1〉

)
. (2.49)

If Ψ1 and Ψ2 differ in configuration only by a pair of protons moving between shells c and

d then

Tfi = 2epab
(
〈r2
c 〉 − 〈r2

d〉
)
. (2.50)

Real transitions involve more complex sums of many basis states, but these examples

serve to demonstrate the importance of mixing of different radii within state wavefunc-

tions, to achieve non-vanishing E0 transitions. The phenomenon of intruder orbitals, in

which additional interactions lower the energy of higher n shells, causing greater shell

mixing, is clearly important for E0 transitions. Such intruder orbitals can be seen in

Figure 2.3, where the addition of the spin-orbit interaction dramatically lowers some shell

energies. If Equation (2.50) is solved assuming maximal mixing (a = b = 1/
√

2) and radii



2.2. E0 Transitions in Nuclear Models 18

corresponding to adjacent harmonic oscillator shells, expected ρ2 values are given by [15]

ρ2(E0)fi = 0.5A−2/3 . (2.51)

This gives ρ2 × 103 values of 43 and 15 for A=40 and 200, respectively. However, the

following observation should be considered. The orbital radius of a particle bound in a

potential well, such as that shown in Figure 2.2, will decrease as the particle becomes

more bound. As such, the effect of intruder orbitals may not be as extreme as indicated

in Equation (2.51). However, this example still serves to show approximate values of ρ2

for single particle transitions and the expected scaling with respect to A.

2.2.2 Bohr and Mottleson Collective Model

When the behaviour of the nucleus is dominated by a large sum of many small interactions,

over a large number of nucleons, microscopic models can become limited. Instead these

nuclei may be described in macroscopic models, which consider the bulk behaviour of

the nucleus as a volume, with some corrections for individual nucleon behaviour such as

pairing.

The Bohr and Mottleson collective model builds on the liquid drop model [5] and

describes excitations in terms of surface vibrations and bulk rotation of nuclei. The starting

assumption is that the nucleus has a well defined surface, which can be described by an

expansion of spherical harmonics as

R(θ, φ, t) = R0

1 +
∑
λ≥1

+λ∑
µ=−λ

αλµ(t)Yλµ(θ, φ)

 , (2.52)

where αλµ are the time dependent amplitudes of the relevant harmonic and form the full

set of degrees of freedom of the system.

Figure 2.4: Illustration of the lowest 3 orders of deformation, shown as a slice through the
nucleus for one possible projection.

The lowest-order deformations are shown in Figure 2.4, where the order λ defines the

type of shape. The degrees of freedom with λ = 1, labelled dipole, correspond to a shift

of the centre of mass and may generally be neglected. Degrees of freedom with λ = 2

(quadrupole), which correspond to ellipsoid deformation, are the most important terms

of the expansion to consider, and will be considered exclusively in the remainder of this
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section. The λ = 3 (octupole) degrees of freedom break reflection symmetry and are

important for negative parity excitations.

Quadrupole Vibration

The energy associated with quadrupole degrees of freedom, about a spherical equilibrium,

may be described by the general harmonic Hamiltonian [16]

H = T + V =
2∑

µ=−2

{
− ~2

2B

d2

dα2
µ

+
C

2
|αµ|2

}
, (2.53)

where B is the mass parameter and C is the restoring force constant, or “nuclear stiffness”.

The eigenenergies associated with each degree of freedom are then [4]

Eαµ = ~ω(nαµ + 1
2) (2.54)

where ω =
√
C/B and nαµ = 0, 1, 2... is the number of quanta associated with the

excitation mode.

It is common to refer to excited states in terms of the quanta of the normal modes of

excitation [17]. For purely vibrational modes of excitation, the quanta are referred to as

phonons. Bohr states [17] that a vibrational mode is characterised by the property that

it can be repeated a large number of times. The nth excited state of a specified mode

can this be viewed as consisting of n individual quanta. The dynamic variables associated

with the degrees of freedom may be defined in terms of quanta creation and annihilation

operators. In the case of quadrupole vibration, one writes

αµ =

√
~

2Bω
(bµ + (−)µb†−µ) (2.55)

where b†µ and bµ are the operators that create and destroy an αµ quanta of excitation,

which is referred as a quadrupole phonon with projection µ [16]. Acting b†µ on the spherical

ground state creates the first excited αµ state with nαµ = 1:

|nαµ = 1〉 = b†µ|0〉 . (2.56)

This introduces a Y2µ dependence to the wavefunction, equating to two units of angular

momentum with a projection µ. Subsequently, it is said that the quadrupole phonon

associated with the excitation carries two units of angular momentum.

In the above description for a spherical equilibrium, the energies of the different αµ

quanta are degenerate. As such it is normal to refer only to the total number of quadrupole

phonons, n. Coupling to a 0+ ground state the degenerate n = 1 state clearly has spin

and parity 2+. For n = 2 three possible states 0+, 2+ and 4+ emerge from angular

momentum coupling. There are no n = 2, J = 1 or n = 2, J = 3 states, as only certain nµ

combinations are allowed due to symmetry requirements of the wavefunction [5].
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Quadrupole Deformation

It is convenient to make a transformation of coordinates {αλµ} → {aλµ}, such that the

principal axes of deformation are aligned with the axes of the spherical harmonics. For

λ = 2, one finds for the set {aµ} that a1 = a−1 = 0 and a2 = a−2. Following the

transform, the five coordinates {α2µ} are replaced by the new set {a0, a2, θ1, θ2, θ3}, in

which θ1, θ2, θ3 are the three Euler angles describing the orientation of the nucleus in

space and a0, a2 describe the ellipsoid surface by

R(θ′, φ′) = R0

(
1 + a0Y20(θ′, φ′) + a2[Y22(θ′, φ′) + Y2−2(θ′, φ′)]

)
. (2.57)

For pure quadrupole deformation one may express a0, a2 in terms of the Hill-Wheeler

coordinates β, γ giving

a0 = β cos(γ) , (2.58)

a2 = (β/
√

2) sin(γ) . (2.59)

The parameter β is a measure of total degree of deformation where
∑
|aµ|2 = β2, with

β = 0 presenting a sphere and β 6= 0 an ellipsoid . The angle γ describes the deviation from

axial symmetry; for γ = nπ/3 the system is symmetric about one of the three principal

axes else the ellipsoid is triaxial. The coordinates β, γ are shown in Figure 2.5.

Figure 2.5: Hill-Wheeler coordinates β and γ.
Parameter β extends radially from the spher-
ical value 0 and may be negative. The angle
γ rotates the deformation through triaxial to
axially symmetric along different axes. The
axial symmetric shapes for β = 0.4 are shown
at each of the γ = nπ/3 vertices [18].

In this system excitations are considered in terms of the Bohr-Mottleson Hamiltonian

which is given in the general form 7

H = Trot + Tvib + V . (2.60)

In this form Trot refers to the energy of rotation of the fixed shape body, Tvib is the energy

for vibration of the body fixed in space and V is the restoring potential for the shape

parameters [18].

Quadrupole Deformed Rotor

For a nucleus with a fixed quadrupole deformation given by β = β0 6= 0 and γ = γ0, the

rotational energy may be expanded as a sum of rotation about the three principal axes k

7In this more general discussion the more complex vibration-rotation term has been omitted.
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as [3]

Trot =
~
2

3∑
k=1

R2
k

Jk
(2.61)

Here Jk is the moment of inertia about the body-fixed axis k and Rk is the component

of rotational angular momentum R relative to the body-fixed axis. Moment of inertia Jk
can be given as

Jk = 4Bβ2 sin2(γ − 2
3πk) . (2.62)

Figure 2.6: Angular momentum projections on an axially-symmetric quadrupole deforma-
tion nucleus.

The total angular momentum I is the sum of the rotational angular momentum R and

intrinsic angular momentum J of the body-fixed system.

~I = ~R+ ~J (2.63)

For an axially-symmetric quadrupole deformation (γ = 0, β 6= 0), it is impossible to

distinguish rotations about the symmetry axis, defined as the k = 3 axis. As a result

R3 ≡ 0 and J1 = J2 = J and only the sum of rotations perpendicular the symmetry axis

need be considered. The projection of total angular momentum onto the symmetry axis

I3 = K must therefore be conserved with change of rotation R in a rotational band. The

relationship between the different angular momentum vectors is shown in Figure 2.6. In

the adiabatic approximation the intrinsic structure is assumed to be rigid and the energy

for rotations is given by [2]

Trot =
~2

2

[
I(I + 1)−K2

J

]
. (2.64)

As a consequence of reflection symmetry in k = 1, 2 plane, the |K, IM〉 and | −K, IM〉
states appear in a linear combination (where M is the projection Jz in the lab frame). If

the intrinsic wavefunction is symmetric under a π rotation about the k = 1 or 2 axis, then

the linear combination is given by [3]

1√
2

[|K, IM〉+ (−1)I+K | −K, IM〉] . (2.65)
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For a K = 0 band, the two parts cancel for odd values of I and one observes the spin

sequence I = 0, 2, 4... . For a K 6= 0 band, one observes the spin sequence I = |K|, |K|+
1, |K|+ 2... where the smallest possible value of I is naturally the projection K.

Rotational-Vibrational Spectra

In the case of a quadrupole-deformed equilibrium shape, the potential associated with

vibrations is different to that of Equation (2.53), as the minimum of the potential is at

a non-zero value of the shape parameters. For an axially-symmetric equilibrium shape

(γ = 0), the surface shape coordinates a0 and a2 can be written as

a0 = β0 + ξ (2.66)

a2 = 0 + η , (2.67)

where β0 is the magnitude of the static deformation ξ and η are the new dynamic degrees

of freedom. The magnitude of ξ and η is assumed to be small compared to β0:∣∣∣∣ ξβ0

∣∣∣∣� 1 and

∣∣∣∣ ηβ0

∣∣∣∣� 1 . (2.68)

Various parametrisations exist for the V terms of the Bohr Hamiltonian, which attempt

to separate β-and γ-dependence [18]. In terms of ξ and η, the potential is given as

V (ξ, η) = 1
2C0ξ

2 + C2η
2 (2.69)

where the restoring force constants C0 and C2 are not equal and have different associated

oscillation frequencies ωβ =
√
C0/B and ωγ =

√
C2/B [19].

Neglecting the rotation vibration interaction, the wavefunction can be separated into

a rotational part and parts dependent on ξ and η [4].

Ψ(ξ, η, θ) = ϕ(θ)g(ξ)χ(η) . (2.70)

As a result, the expected spectrum can be separated into two parts. Firstly, there will be

a series of states relating to excitation modes of ξ and η, in the body-fixed frame. And

secondly, a rotational band built on each of these states will be observed, with the rota-

tional sequence dependent on the intrinsic properties of the band head state, as described

in the previous section. Under the assumption of Equation (2.68), the energy spacing of

all the associated rotational bands should approximately follow Equation (2.64), giving

Trot =
~2

2

[
I(I + 1)−K2

3Bβ2
0

]
. (2.71)

Excitations corresponding to ξ are termed “β-vibrations” and those corresponding to η

are termed “γ-vibrations”. This nomenclature can be some what of a misnomer as β and

γ are not entirely separate as can be seen from Equations (2.58) and (2.59). The precise

labelling of quanta for the two modes of excitation, especially the use of term γ-phonon,
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Figure 2.7: Schematic illustration of “β-vibrations” (top) and “γ-vibrations” (bottom).
The diagrams to the left show side-on projection and cut-through of the k = 3 symmetry
axis. The models on the right show snapshots sequential in time.

differs in literature [3, 4, 17]. The nuclear surface in the system is described by

R(θ, φ) = R0 {1 + (β0 + ξ)Y20 + η[Y22 + Y2−2]} . (2.72)

Figure 2.7 shows the surface motion associated with the two excitation modes and Fig-

ure 2.8 shows the expected level scheme, for a symmetric quadrupole-deformed nucleus.

The β-vibrations (excitations in ξ) involve the motion of matter along the k = 3

axis, stretching the nucleus but preserving axial symmetry. The excitation quanta has

no angular momentum associated with it and produces series of 0+ states, each with

rotational bands I =0,2,4... 8.

The γ-vibrations (excitations in η) involve the motion of matter between the k = 1

and k = 2 axes. This breaks the axial symmetry, creating a small degree of triaxiality,

and allowing dynamic rotations about the k = 3 axis which are intimately coupled with

the dynamic shape change [4]. The excitation quanta has two units of angular momentum

associated with it and has a projection K = +2 or K = −2. The first excitation is thus

a 2+ state with rotational band I =2,3,4... . A second excitation may create either a 4+

state with I =4,5,6... band or a 0+ state band I =0,2,4... .

Collective E0 Transitions

The general definition of the monopole moment is given as [17]

m(E0) =

∫
ρ(r)r2dr . (2.73)

8A 0+ ground state is assumed as these collective behaviours are most important in even-even nuclei.
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Figure 2.8: Theoretically predicted rotational-vibrational level scheme for a symmetric
quadrupole deformed nucleus [4]. A second γ quanta can couple in two ways, producing
K = 0 and K = 4 bands.

If a uniform charge distribution is assumed over the volume of the nucleus described by

Equation (2.52) then the collective E0 operator is given by [15]

T̂ (E0) =
3

5
ZeR2

0

(
1 +

5

4π

∑
µ

|αµ|2
)
, (2.74)

in which, only the latter term will produce E0 transitions.

Spherical Vibrator. For the spherical vibrator, E0 transitions are only possible be-

tween states with ∆N = 2 or 0 change in vibration. This follows from angular momentum

selection rules and from Equation (2.55) which defines αµ in terms of creation and annihi-

lation operators. [The |αµ|2 dependence of T̂ (E0) means it depends on a sum of b†b†, bb†

and bb terms, and can only couple ∆N = 2 or 0 states.] The resultant matrix elements

are given by [15]

〈N, J |T̂ (E0)|N, J〉 =

(
N +

5

2

)
3

4π
ZeR2

0

~ω
C

(2.75)

and

〈N, J |T̂ (E0)|N − 2, J〉 =
∑
J ′

〈N, J ||b†||N − 1, J ′〉〈N − 1, J ′||b†||N − 2, J〉

× (−1)J+J ′
{
N +

1

2
√

2J + 1

}
3

4π
ZeR2

0

~ω
C
.

(2.76)

The C and ω dependence can be removed by presenting the transition strength in terms

of experimental observables, such as E2 transitions, which also depend on the constants.

Doing this avoids using model-calculated values of the constants, which are generally found
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not to reproduce data. Thus, for a spherical vibrator, the E0 transition strength between

the 0+ ground state and the 0+ state with N = 2 can be given as

ρ2(E0; 0+
2 → 0+

1 ) =
2

5

|B(E2; 0+
1 → 2+

1 )|2(
3

4π

)2
Z2r8

0A
8/3

. (2.77)

Rigid Rotor. For transitions between states in a rotor band, which have increasing

values of I, E0 transitions are forbidden by angular momentum coupling. Additionally,

no part of the T̂ (E0) operator affects the rotational part of the wavefunction to couple

different rotationally excited states.

Transitions between states of the same I, in different rotational bands, may be con-

sidered. When the intrinsic states, upon which the rotational bands are built, cannot be

coupled by the T̂ (E0) operation, monopole transitions may still occur if there is mixing

between bands. From the discussion of two state mixing in Section 2.2.1, the monopole

transition strength between states |Ii〉 and |If 〉, which are superposition of the basis states

|I1〉 and |I2〉, can be given as

ρfi(E0) =
1

eR2

[
ab
(
〈I1|T̂ (E0)|I1〉 − 〈I2|T̂ (E0)|I2〉

)
+ (a2 − b2)〈I2|T̂ (E0)|I1〉

]
, (2.78)

where a and b are the mixing coefficients with a2 + b2 = 1. If the degree of mixing is large,

or when 〈I2|T̂ (E0)|I1〉 = 0, the last term disappears. From the definition β2 =
∑
|aµ|2 the

diagonal matrix elements may be solved explicitly and the monopole transition strength

subsequently given as

ρ2
fi(E0) = (ab)2

(
3

4π

)2

Z2(β2
1 − β2

2)2 . (2.79)

The result is very similar to the shell model case. Strong E0 transitions can be interpreted

as mixing between different deformations. Figure 2.9 shows the variation of strength E0

as a function of one of the two basis state deformations.

Figure 2.9: Expected monopole transition for Z=55 between two heavily mixed states,
one state near spherical and the other with deformation β. The β range shown is typical
for defomation observed in the A = 110− 120 mass region [15].
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Vibrating Rotor. For the vibrating rotor, the monopole operator can be expanded,

using Equations (2.66) and (2.67), in terms of the dynamic variables, ξ and η, as

T̂ (E0) =
3ZeR2

0

4π

(
β2

0 + 2ξβ0 + ξ2 + η2
)
. (2.80)

The β2
0 term corresponds to the equilibrium shape and will dominate static monopole mo-

ment but will not contribute to transitions. Neglecting higher order terms,Equation (2.80)

reduces to

T̂ (E0) =
3ZeR2

0

2π
ξβ0 , (2.81)

which allows transitions to the “β-vibration” states, but results in vanishing “γ-band”

transitions. This immediately shows that E0 transition from the ground to β band are

significantly stronger than those to the γ band. This follows logically from the behaviour

of the two excitation modes. The β-excitation mode corresponds to purely radial motion

of nuclear matter and the 0 order multipole acts purely radially. Whereas, the first γ mode

excitation has a rotational component and thus a transition of several excitation quanta

are needed to reach a state of pure radial motion.

Due to the separable nature of the wavefunction, the ground-band to β-band E0 matrix

element can be solved and the transition strength given as [20]

ρ2(E0;nβ = 1→ nβ = 0) =
1

2

(
3

2π

)2

Z2β2
0

~ωβ
C0

. (2.82)

As with the spherical vibrator case, dependence on the constants C and ω may be removed

by giving the transition strength in terms of other experimental observables that depend

on them, giving

ρ2(E0;nβ = 1→ nβ = 0) =
9

8π2
Z2β4

0

E(2+
1 )

E(0+
β )

=
B(E2; 0+

1 → 2+
β )4β2

0

e2r4
0A

4/3
.

(2.83)

It should be noted that the transition strength given here is independent of angular mo-

mentum, following from the assumption the rotational wavefunction is separable. As a

consequence, ρ2 is expected to be the same for 0+
β → 0+

1 , 2+
β → 2+

1 , 4+
β → 4+

1 etc.

2.2.3 The Interacting Boson Model

The Interacting Boson Approximation (IBA) is an algebraic model which can be used to

bridge the gap between shell model and collective models in medium and heavy even-

mass nuclei. The model, which was first proposed by Arima and Iachello [21], describes

low-level nuclear structure in terms of valence nucleons coupled to boson pairs. In the

IBA-1 no distinction is made between protons and neutrons. The total boson number

NB is given by half the number of valance protons and neutrons, each relative to nearest

closed shell, using the traditional magic numbers 50, 82 and 126.9 Boson number, NB, is

9This is to the nearest shell above or below, the bosons can be hole-like.
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a conserved quantity for all states of a given nucleus. Low-lying collective excitations are

then described by excitations of the bosonic pairs, that may either be s bosons (L = 0)

or d bosons (L = 2), where d bosons drive quadrupole deformation. The s boson has

one magnetic substate and the d bosons has five possible magnetic substates, hence the

sd-space of the IBA is a six-dimensional space, or a U(6) algebraic group. The model may

be extended to include g bosons, which are needed to describe high-order deformation, but

this is generally not required. The reasoning for the concentrating on s and d bosons is born

of generalised seniority arguments of shell-model predictions and empirical observations of

near-closed-shell nuclei, in which 0+ and 2+ states lie considerably lower in energy than

higher angular momentum states [22].

In this model space, bosons can be created with the respective s and d boson creation

operators, s† and d†, and can be destroyed by the respective annihilation operators, s̃ and

d̃. Transition operators in the model are defined in terms of these creation and annihilation

operators. The total boson number, NB, must be conserved throughout and can be given

in terms of the s and d boson number operators as

NB = n̂s + n̂d = s†s̃+ d†d̃ . (2.84)

The nuclear basis states are each defined by the number of d bosons, nd, total angular

momentum, L, and by the number of pairs and triplets of d bosons coupled to spin

0, respectively nβ and n∆.10 The IBA Hamiltonian must then be solved to calculate the

energies and composition of predicted eigenstates. Transition probabilities between states,

for different transition modes, can then be calculated from the matrix element between the

eigenstates with the IBA form of relevant operator. The full IBA Hamiltonian contains

many terms and adjustable parameters and it is usual to use a truncated form. The most

commonly used is that of the “Consistent Q Formalism”, so named because the quadrupole

operator, Q̂χ, is used in both the Hamiltonian and the E2 transition operator [23]. The

Hamiltonian is thus given as

H(ζ) = c

[
(1− ζ)n̂d +

ζ

4NB
Q̂χ · Q̂χ

]
, (2.85)

where the quadrupole operator, Q̂χ, is given by

Q̂χ = (s†d̃+ d†s̃) + χ(d†d̃)(2). (2.86)

The factor c is an energy scaling factor, which scales the entire model, and is usually set

to normalise predictions to the experimentally measured 2+
1 energy. Observables in the

IBA are predominately given as ratios, making them mostly insensitive to this value. The

parameters ζ and χ are the IBA control parameters, which dictate the behaviour of the

Hamiltonian and hence the eigenstates that will be calculated. The power of the IBA in

describing low-lying collective structure hinges on use of these parameters.

10Different sets of quantum numbers can be used to define the d-boson coupling. The differences are not
important to this discussion.
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Symmetries of the IBM

For any given Hamiltonian, an upper bound for the energy of the ground state can be given

in terms of classical shape parameters, by application of the “Intrinsic-State Formalism”,

detailed in References [24, 25]. Hence, for a Hamiltonian defined by Equation (2.85) and

fixed values of the control parameters ζ and χ, the ground-state energy may be expressed

in terms of the geometric parameters, β and γ, of the Bohr and Mottelson collective model

[26]. This gives a potential energy surface as a function of β and γ, which is equivalent to

the nuclear potential for the Hamiltonian of ζ and χ. By this method, direct analogues

can be drawn between the algebraic IBA and geometric Bohr and Mottelson model.

Figure 2.10: IBM dynamic symmetry trian-
gle, which maps the control parameters ζ and
χ as coordinates between the limiting cases.

Within the symmetry group of the IBA-1 sd-space, there are three separate subgroups,

U(5), SU(3) and O(6). Each group is a dynamic symmetry of the model in which a sym-

metry is broken, which in turn lifts a degeneracy. This introduces new quantum numbers

in each of subgroups and hence new selection rules and behaviours of both transitions and

state construction.

The control parameters ζ and χ effectively control what part of the model space is

accessible, with the terminal values selecting single subgroups. The “position” in the

space defined by ζ and χ can be tracked on the IBA dynamic symmetry triangle, as shown

in Figure 2.10. The parameter ζ ranges between the values 0 and 1, which correspond to

the U(5) limit and the SU(3)+O(6) limit. The parameter χ ranges between the values

−
√

7/2 and 0, which correspond to the SU(3) limit and the O(6) limit.11 The β and γ

potential energy surface for the three subgroup limits are shown in Figure 2.11. The U(5)

limit is analogous to the collective harmonic vibrator and the SU(3) limit is analogous to

the prolate rigid rotor. The O(6) limit is analogous to a γ-soft rotor, which describes a

nucleus with definite β 6= 0 deformation but poorly defined γ.

The power of the IBA lies in allowing ζ and χ to move away from the single group

limits. Because the control parameters may take any values in range, it is possible to study

transitional collective behaviour between the idealised cases of the Bohr and Mottelson

geometric interpretation.

11In a full parameter space χ ranges from −
√

7/2 to +
√

7/2 and the symmetry triangle is reflected in
the U(5)-O(6) vertex, with the reflected half corresponding to oblate deformation.
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Figure 2.11: Idealised β and γ potential energy surface for the three limits: U(5) (harmonic
vibrator), SU(3) (rigid rotor) and O(6) (γ-soft rotor).

IBM E0 Transitions

Starting from the general definition of the E0 operator,

T̂ (E0) =
A∑
k=1

ekr
2
k , (2.87)

it may be assumed that the operator can be given in terms of the mean-squared charge

radius operator, T̂ (r2), as [27]

T̂ (E0) = (ezZ + enN)T̂ (r2) , (2.88)

where ez and en are the effective charges for protons and neutrons. In the IBA-1, where

no distinction is made between neutrons and protons, the charge radius operator is given

by

T̂ (r2) = 〈r2〉c + αNB + η
n̂d
NB

, (2.89)

where 〈r2〉c is the radius of the core nucleus and α and η are model parameters with units

of length squared. The second term accounts for the increase in radius of charge from the

addition of two nucleons, which has been approximated to linear in this term. The third

term gives the contribution to the charge radius caused by deformation. The addition of

a 1/NB dependence, introduced in Reference [27], is performed because it is the fraction

〈n̂d〉/NB which can be equated to the measure of geometric deformation β2, and not 〈n̂d〉
itself. For E0 transition between states, 〈r2〉c is a constant and does not contribute. The

second term does not contribute either as NB is a conserved quantity across all states.

Hence E0 transition strength can be given as

ρ2(E0; i→ f) =
(ezZ + enN)2

e2R4
0

∣∣∣∣η 〈f |n̂d|i〉NB

∣∣∣∣2 , (2.90)

where all state dependence is condensed to the d boson matrix element 〈f |n̂d|i〉.
A general comment can be made on E0 transitions for the three dynamical symmetry

limits. In the U(5) limit nd is a good quantum number, hence n̂d and subsequently T̂ (E0)

are diagonal and E0 transitions are forbidden. In the SU(3) and O(6) limits, nd is not a

good quantum number and E0 transitions are allowed.

It was shown by Brentano [28] that, while some d-boson amplitude is clearly needed

in state wavefunction for deformation and E0 transitions, large ρ2(E0) are not simply a
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consequence of large 〈n̂d〉 values. It was shown that E0 strength depends on the fluctua-

tion, or “spreading”, of nd values in the wavefunctions. Brentano says “It is the specific

d-boson coherence in the wave functions that control the resultant ρ values.” This is

analogous to the observations made for previous model E0 transitions, that it is not just

the differing radii in wavefunctions that cause strong E0 transitions, but crucially the

mixing of these radii between the two levels of a transition.



31

3
Equipment

The experiment discussed in this thesis was performed at the JYFL. The experiment was

concerned with the detection of coincident internal conversion electrons and γ rays. In this

chapter an overview of the detectors used, the SAGE setup and equipment surrounding it

will be presented.

3.1 Experimental Overview

A beam of stable ions from the JYFL K130 cyclotron was focused to a beam spot of a ∼ 4

millimetres diameter on thin metal targets mounted on a rotating target ladder. The target

is situated at the focal point of the a germanium array, JUROGAMII, and a conversion

electron detector system, SAGE. Following the interaction of the beam and target nuclei,

different reaction product nuclei may be produced at the target position in excited states,

moving with typical speeds of β =
v

c
∼ 0.02. These product nuclei will decay to their

ground or metastable state primarily by means of γ decay and internal conversion. Those

transitions occurring within a nanoseconds correspond to γ rays and conversion electrons

being produced < 1 centimetres downstream of the target, which may then be detected in

JUROGAMII and SAGE respectively. Downstream of the SAGE target chamber, product

nuclei and unreacted beam nuclei, as well as scattered target nuclei, pass into the Recoil

Ion Transport Unit (RITU). Reaction products pass through RITU and are implanted

in the Gamma Recoil Electron Alpha Tagging focal plane spectrometer (GREAT), where

the subsequent decay of radioactive nuclei or long lived isomer states may be detected.

An overview of the equipment layout is shown in Figure 3.1.
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Figure 3.1: The SAGE spectrometer coupled with the RITU gas-filled separator and the
GREAT focal plane spectrometer [29].

3.1.1 SAGE

The SAGE spectrometer is an in-beam electron detector, which utilises a water-cooled

solenoid and a high-voltage electric field barrier, to measure conversion electrons over a

range of energies. The experimental geometry is shown in Figure 3.2. SAGE has two

solenoid coils, one before and one after the target, to produce a magnetic field which

constrains emitted electrons to helical path, with a radius r defined by Equation (3.1),

r =
p⊥
eB

, (3.1)

where B is the magnetic field strength, e the electric charge and p⊥ is the momentum

of the electron perpendicular to the magnetic field. The perpendicular momentum p⊥ is

related to the electrons kinetic energy, T , by

p⊥ = cos θ

√
T 2

c2
+ 2Tme (3.2)

where θ is the angle of the electron trajectory with respect to the magnetic field axis and

me its rest mass. These coils direct electrons to a silicon detector upstream from the target

chamber.

Magnetic Field

The magnetic field produces a force given by ~F = e~v × ~B, which is perpendicular to the

movement of the electron. The field changes the trajectory of the electron, but the kinetic

energy that is to be measured remained unchanged. The magnetic field produced by the

solenoids of SAGE is shown in Figure 3.3. The coils of SAGE are arranged to provide

maximum access for the JUROGAMII detectors while still constraining the electrons.

Figure 3.3 shows that the magnetic field is weak at the target position, allowing electrons

to make wide, helical trajectories within the target chamber. However, the field increases

towards the SAGE detector, constraining electrons more tightly where they must pass

through the narrow parts of the equipment. The sharp change in field strength moving
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Figure 3.2: Cut-through illustration of the experimental geometry showing the relative
locations of JUROGAMII and the silicon detector that comprise the SAGE spectrometer.
The target is situated at the focal-point of JUROGAMII. Solenoid coils downstream and
upstream of the target create the magnetic field that transports electrons to the SAGE
silicon detector. The axis of the upstream solenoid is 3.2° from the beam axis to permit
passage of the beam beside the detector. A high-voltage potential barrier within the
upstream solenoid suppresses δ-electrons.

downstream of the target, towards RITU, or upstream, towards the SAGE detector, should

be noted. This produces a magnetic mirror effect resulting in some electrons without

sufficient transverse momentum being reflected back towards the target. See Section 3.2.1

for futher details of this behaviour in SAGE.

Electric Barrier

Delta electrons (or delta rays) are a major hindrance to electron spectroscopy and other

nuclear physics techniques, particularly for low statistics observations in high radiation flux

areas, such as solar laboratories [30] and some drift-tube counters [31]. Delta electrons

are atomic electrons knocked free by the impulse of the passing beam nucleus in a target

material. It is this interaction between atomic electrons and the beam nucleus which

accounts for the majority of the stopping power of a material, and not nuclear interactions.

At very close distances of approach the beam may impart many keV of energy to these

delta electrons up to a maximum [32], given by Equation (3.3),

E(δ)max = 4

(√
me

mα
EKEα +

me

mα
Eα

)
, (3.3)

where mα and Eα are the mass and energy of the beam and Ek is the atomic binding

energy of the target K-electron. For example, a beam of mass A=40 and energy 100 MeV

impinging on a Z=60 target may impart a maximum of 36 keV to a delta electron. Delta

electrons are produced over the range of energies up to this maximum, where the pro-
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duction cross-section σ(Ee) ∝ 1/Ee [33][34]. From an experimentalist point of view the

crucial conclusion is that there are many delta electrons of sufficient energy to trigger a

detector system for every one conversion electron event of interest. If all of these delta

electrons are allowed to reach the detector the count rate/dead time of the system would

be untenable.

Figure 3.3: Magnetic field
strength along the solenoid
axis of SAGE for two typi-
cal solenoid coil current settings
[35]. Note the minimum at the
target position leading to the
reflection effect refereed to in
the text.

SAGE boasts a high voltage electric field barrier midway between target and detector

within the solenoid. This electric barrier retards the motion of electrons along the solenoid

axis so that only electrons with transverse kinetic energy greater than the height of the

barrier potential can pass through. High-energy electrons will pass through the centre of

the barrier and regain their kinetic energy as they move away from the potential on the

other side. Low-energy electrons, or those that make a large angle with magnetic field

axis, are reflected back towards the target and will eventually stop in some inert part

of the equipment, playing no further part in the event. The overall effect of this barrier

is to repel the majority of the delta electrons, thereby keeping the number of electrons

reaching the detector to an acceptable rate, while allowing conversion electrons through

to the detector with their energy unchanged. A typical barrier height used in experiment

would be 20 kV, sufficient to repel the majority of delta electrons and low enough that

most conversion electrons are unhindered.

Detector

SAGE utilises a 1 mm thick, single sided, annular silicon strip detector. Semiconductor

detectors are discussed in Section 3.1.2, and more details can be found in Reference [36].

The circular projection of the electron’s helical path on to the detector will have a radius

dependent on Ee and emission angle θ. The position on the detector will be dependent

on emission angle φ but always making a tangent with the centre point, resulting in

higher rates towards the centre of the detector. The detector diameter is 48 mm and

there is a weaker magnetic field (∼0.1 T) at the detector position. For an electron moving

perpendicular to the B field, the energy must be below Ee = 114 keV in order for the

circular projection of the electron’s helical path to fall completely within the detector

radius.
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To improve the incident particle rate under which the detector can operate, the in-

ner section of the detector is more segmented, as all electrons can reach the centre of

the detector but only high-energy electrons reach the outer portions. Furthermore delta

electrons, electron scattering and the inverse energy dependence of electron conversion all

result in a far higher rate of incident electrons with low energies, which are constrained

by the magnetic field towards the centre of the detector, as described in Section 3.2.2.

The 90 element segmentation of the detector is shown in Figure 3.4. The inner region

of the detector is segmented into 58 pads with 1 mm pitch. Two semi-circular pads occupy

the very centre of the detector, whilst the remaining 56 pads have an annular width of π
4 .

The outer region of the detector is segmented into 32 pads with 2 mm pitch and annular

width π
2 . The 90 elements are instrumented by preamps mounted around the edge of

the detector The detector and preamps are mounted on a cooled plate, refrigerated with

ethanol, to provide resolution of a few keV even at high rates.

Figure 3.4: Illustration of the segmentation of the SAGE silicon detector, as described in
the text.

3.1.2 JUROGAMII

JUROGAMII is a Compton-suppressed High Purity Germanium (HPGe) detector array.

Consisting of 24 Clover detectors [37] and 15 Phase-I detectors [38] (detailed below) JU-

ROGAMII is the upgrade to JUROGAM (2003-2008). Prior to this the detectors were

part of EUROBALL (1997-2003).

Germanium Detectors

HPGe detectors consist of a germanium semi-conductor crystal inside a liquid nitrogen

cryostat with a high voltage (∼ 1 kV) applied across the crystal to fully deplete the detec-

tor. Incident γ rays liberate electrons from the crystal lattice by Compton scattering and

finally photoelectric absorption. These freed electrons move through the crystal exciting

electrons into the conduction band. The number of electrons excited before the freed

electrons come to rest is linearly proportional to energy imparted by the incident γ rays

i.e. collected charge ∝ Eγ [36]. Because germanium has a very small band gap (0.7eV) it

produces more electrons than other materials, resulting in superior energy resolution, as

the statistical counting error δ(E) ∝
√
N , where N is the number of charge carriers. How-

ever, the small band gap means germanium crystals must be cooled with liquid nitrogen
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to prevent electrons being thermally excited into the conduction band, resulting in noise

from the detector.

Compton Suppression

When a γ ray interacts with matter the interaction mode depends upon the γ ray energy,

an example of the variation is shown in Figure 3.5. The most likely interactions for Eγ ≤
4 MeV are Compton scattering on atomic electrons or photoelectric absorption. When

Compton scattering occurs inside a germanium detector crystal, the resultant photon may

scatter out of the crystal and the detector will record only the fraction of the γ-ray energy

deposited in the scattering event. The result of this effect is a Compton background of

incomplete energy measurement in the final spectrum, ranging from 0 to the maximum

energy ECompton Edge, given by

ECompton Edge =
2E2

γ

mec2+2Eγ
, (3.4)

where Eγ is the initial energy of the γ ray, me is the rest mass of an electron and c

is the speed of light. This is a typical effect seen in γ-ray spectra. An illustration of

this effect and further details can be seen in Ref [36]. This effect is undesirable as the

lower energy range of spectra acquire very large backgrounds from the built up Compton

continua of higher-energy γ rays. This can make the identification of low-intensity γ

rays difficult, especially when a peak area is statistically insignificant compared to the

background which the peak is on top of. Furthermore, when preforming γ-coincidence

measurements, these Compton background events contribute heavily to false coincidences.

In Compton-suppressed detectors a high absorption (high Z) detector material is placed

around the primary crystal and is used to detect such events. In JUROGAMII, Bismuth

Germanium Oxide (BGO) scintillator detectors (∼ 2 cm thickness) are placed around the

sides of the HPGe detectors (∼ 10 cm thickness). Due to its high density and Z of the

material, the mean free path of a given photon in BGO is significantly shorter than in

HPGe and so higher detection efficiencies are achieved with relatively small crystals, but

the energy resolution is an order of magnitude worse than HPGe. The BGOs are tapered

to allow close packing of the HPGe detectors around the target chamber, thus improving

geometric efficiency. If a γ ray is detected in the BGO cowl of a given HPGe in coincidence

with a γ ray in that detector, a Compton scatter and escape is assumed to have occurred

and the event is discarded.

The Array

When used with SAGE, JUROGAMII consists of 24 Clover detectors and 10 Phase-I

detectors. Here a Clover detector comprises 4 individually instrumented HPGe crystals

in a single cryostat. This saves on wasted volume taken up by thermal shielding between

detectors. Compton scatters between crystals can be added together offline to recover the

full γ-ray energy. A Phase-I detector is an individual tapered crystal detector; they are

used to fill the narrow region close to the beam pipe at θ =133.57°. A group of 12 Clover

detectors form a 2π ring in φ at θ =75.5°, the other 12 form a ring at θ =104.5°and the 10



3.1. Experimental Overview 37

Figure 3.5: The relative importance of the three major types of γ-ray interaction with
matter. Lines show the values of hν and Z for which neighbouring effects are equal [39].

tapered Phase-I detectors are mounted at θ =133.57°. Further details are in Appendix A.

A further ring of 5 Phase-I detectors at θ =157.6°is not compatible with SAGE because

of the space taken up by the solenoid.

3.1.3 RITU

The need for recoil separators is evident in considering all possible reactions in any given

experimental setup. When the centre of mass energy of the beam and target nuclei is

greater than their Coulomb barrier then Coulomb, direct (inelastic scattering, transfer)

and compound nucleus reactions all compete; for 16O(154Sm,X) this is 5.2 MeV/u. Centre

of mass Coulomb barrier height in MeV can be calculated by Equation (3.5) [40],

Ebarrier ≈ 1.44
Z1Z2

R1 +R2
≈ 1.2

Z1Z2

(A
1/3
1 +A

1/3
2 )

, (3.5)

where R1,2, Z1,2 and A1,2 are respective nuclear radii in femtometres (fm) and proton

and mass numbers for the recoil and target nuclei and the two numerical constants are

1.44 MeV fm and 1.2 MeV. Dependent on the exact energy regime one reaction may domi-

nate, but there may still be multiple channels of that reaction type available. For example,

a fusion evaporation (compound nucleus) reaction may have a dozen available channels;

each channel likelihood will be affected by many factors including energetic favourablity

(often making 2n, 2p, α evaporation channels more likely) and level density within the

daughter nucleus [1]. The reaction product of interest to the experiment might only be

accessible, due to beam and target limitations, in situations where it is orders of magni-

tude less likely than other reaction channels. In these situations a separator can be used

to disperse the reactants and trigger or gate on the product of interest.
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Rigidity and Gas-Filled Separators

In magnetic separators, dipoles magnets are used to divide incoming particles based on

the different curved trajectories they make in a magnetic field. For this purpose it is

useful to define the magnetic rigidity, Equation (3.6) [41], where it is common practice to

denote the radius of curvature ρ. Transmission through a separator will only occur for a

given range of ρ and so B must be set to select a certain magnetic rigidity, Bρ in units of

Teslametres (Tm),

Bρ =
mν

q
, (3.6)

for a particle of mass m, charge q and velocity ν. It is clear to see that different particles

may have the same rigidity, but when the difference in E is small compared to the differ-

ence in A or Z (where q∝Z) then different particles will be separated by a physical distance

through the separator. At the energies used with RITU it is unlikely that an ion will be

fully stripped of electrons following a nuclear reaction inside a target material. Instead,

for any given species, a range of charge states of q<Z will be produced [42]. Transmis-

sion through a separator can only be tuned for one of these charge states (dependent on

separator size) and so a considerable fraction of desired products will be lost. Gas-filled

separators offer improved transmission efficiency at the cost of reduced resolution [43]. By

filling the magnet cavity with a low-pressure gas (∼1 mbar) a passing ion will change its

charge through atomic collisions (100-1000 permetre) following a trajectory independent

of initial charge state [44]. This is illustrated in Figure 3.6. Optimum pressure for the

filling gas is determined by the trade-off between charge focusing and multiple scattering

in the filling gas [41]. If the ion velocity is in the range ν0 < ν < ν0Z
2/3 [41], where ν0 is

the Bohr velocity (2.19 · 106m/s), then the mean charge is given by Equation 3.7. This is

an approximation given by the Thomas-Fermi model of the atom [45]:

q̄ ≈ ν

ν0
Z1/3 . (3.7)

Figure 3.6: Schematic of heavy ion trajectories in a) vacuum b) gas-filled separators [46].

This velocity requirement can be more usefully written as 0.007 < β < 0.007Z2/3. By

using this averaging effect, not only is the collection efficiency enhanced but the rigidity

for a given species becomes approximately energy independent, as seen in Equation 3.8
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[41]:

Bρ ≈ 0.0227
A

Z1/3
. (3.8)

As this rigidity depends only on A and Z, Equation (3.8) can be easily manipulated to

give the limit of isobaric and isotopic separation in terms of a separator’s resolution ∆Bρ
Bρ ,

which typically lies in the range 1− 5% [43][47].

∆Z

Z
≥
(

∆Bρ

Bρ
+ 1

)3

− 1 Isobaric, and (3.9)

∆A

A
≥ ∆Bρ

Bρ
Isotopic. (3.10)

RITU

RITU is a helium-filled gas separator of the QDQQ configuration, designed for use with

heavy elements produced in fusion reactions. This means there is an initial vertical focusing

quadrupole Q (improving the total acceptance) followed by a horizontal-separating dipole

D, and then a quadrupole doublet to focus ions onto the focal plane detectors [48], this

layout is show in Figure 3.7.

Figure 3.7: RITU gas-filled separator and GREAT focal plane spectrometer. Schematic
of the separator optics are included for interest (right) where it can be seen the limit of
transmission in the horizontal direction x (shown in subfigure a) is the acceptance of the
Q2 quadrupole and the limit in vertical direction y (shown in subfigure b) is Q1. [49].
Focal plane detectors are also marked, see text for details.

RITU is operated with 1 mbar helium gas and its 1.85 m radius dipole can bend a

maximum rigidity 2.2 Tm [49]. Using Equation (3.8) it is clear that this rigidity is suffi-

cient for even the heaviest elements. Two 40µg/cm2 carbon foils upstream of the target

chamber and a differential pumping system isolate the beam line from the gas volume

[50]. Placing the foils upstream of the targets avoids the situation where product nuclei

may scatter in the foil before the separator, reducing the overall resolving power. RITU

has a mass-resolving power ∆A/A of 4-5% [43], which is sufficient to remove unreacted

and inelastically scattered beam, but isotopic contaminants will still compete with fusion-

evaporation channels of interest. When combined with additional techniques, RITU can

provide isolation of minor reaction channels with impressively high transmission-efficiency.
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3.1.4 GREAT

The GREAT spectrometer includes many detectors for the identification of recoils trans-

ported by RITU, including germanium Clovers detector and Si PIN diodes for the detec-

tion of electrons [51]. Most important use with SAGE are the Multi Wire Proportional

Counter (MWPC) for ion identification and Double Sided Silicon Strip Detector (DSSSD)

for implantation and decay tagging.

MWPC

A MWPC is a gas-filled transmission detector [52][53][54], where the gas in this case is

isobutane. Passing recoils leave in their wake a path of ionised gas and electrons, and

by placing high voltage anode and cathode grids at either end of the gas volume, these

charges can be separated and collected as a signal. The energy loss of an ion in matter

can be approximately calculated from the Bethe-Bloch formula, Equation 3.11,

dE

dx
=

4πe4Z2
i

meν2
NtZtln

(
2meν

2

I

)
, (3.11)

where Zi and ν are the atomic number and velocity of the ion; Zt, I and Nt are the atomic

number, mean excitation potential and number density of the target [36]. This can be

easily related to number of charge pairs created per unit length of a track. MWPCs op-

erate in a gas pressure regime where the initial ionisation would produce poor signals.

However, narrow ∼ 50µm wires are used to form the anode grid in such detectors. The

strong resultant electrical field close to the surface of the wires, proportional to 1/r, causes

acceleration of the electrons and large secondary ionization [55]. The advantage of oper-

ating in this regime is very fast electron movement and hence particularly good timing

resolution, of the order of 1 ns [56][57].

Implantation Decay Tagging

In experiments where the products of interest undergo radioactive decay with short half-

lives the process of recoil implantation decay tagging can be utilised to purge the data of

unwanted events [58][59]. The half-life of the product should be at least as long as the

transport time to the implantation medium plus the dead time of the decay detector (if

the same detector records the implantation), or else the decay events may be lost. The

maximum half-life usable is dependent on the implantation rate and the sensitivity of

decay detection.

Energy loss of heavy ions in a medium can be given by Equation 3.11 and some

examples of stopping ranges for various heavy products are given in Table 3.1. The values

in the table serve to illustrate that such products can be stopped in thin foils or solid state

detectors, and that characteristic stopping ranges can be used to help in the identification

of the products [60].

Following implantation, emission of charged particles (α, β, p+, or γ rays) from decay

to or by the daughter nucleus can be detected and used to identify the implanted ion as

the species of interest. This can be done by implanting the ion into a detector as is done in



3.1. Experimental Overview 41

Species β
Energy Range in
/MeV Si /µm

204Rn 0.05 240 21.8
204Rn 0.02 38 6.5
163Ta 0.05 194 20.2
163Ta 0.02 30 3.5
46V 0.05 54 20.2
46V 0.02 8 6.5
α 0.07 10 69.7
α 0.05 5 24.4

Table 3.1: Stopping ranges for various heavy ions in silicon as given by the program SRIM
[61].

GREAT or by using detectors neighbouring the implantation medium [62]. In the case of

low implantation rate, the linking of decay and implantation event can be achieved simply

with timing coincidence. For higher rates, the decay detector should should be segmented

to facilitate geometric coincidence.

In GREAT the incoming beam from RITU passes through the MWPC and is spread

over two adjacent 300µm thick DSSSDs, which are 240mm downstream of the MWPC.

GREAT has the capability of detecting electron and γ rays but the focus of this discussion

will be on the detection of α particles.

The two DSSSDs are segmented in to 1 mm strips, 40 on the front and 60 on the back,

giving a total 4,800 pixels. Table 3.1 also shows ranges for α particles in the energy range

for decay. In 300µm-thick silicon, even from a heavy ion that is implanted very close to

the surface, the majority of the solid angle for α particle emission will result in the full Eα

being deposited in the detector. It is worth noting here that Eα measured will be ∼50 keV

higher than the true value when using a calibration performed with an external source,

due to an absence of ‘dead layer’ energy loss [36]. Recoil implantation and α-decay events

are distinguished by the MWPC, which produces a signal only for implantation events.

When an α decay event occurs, Eα is measured alongside the DSSSD pixel in which the

decay occurred. If Eα corresponds to the decay of the chosen nucleus the ‘history’ of

the pixel is retrieved from the buffer. Here ‘history’ refers to the implantation events

immediately preceding the decay for which the implantation of the recoil was recorded in

the corresponding pixel. One can then take the SAGE and JUROGAMII data from these

historic events as decay gated events and populate spectra free of contaminants. If one

assumes the most recent implantation correctly corresponds to the decay and assume that

recoils are distributed evenly over the DSSSD pixels, then it is clear to see that ideally the

total implantation rate should be � 4,800/t1
2
. This technique can produce exceptionally

clean spectra, however if efficiency is more desirable it may be advantageous to identify

recoils using the Time of Flight (ToF) and ∆E/E methods.

Time of Flight and Energy Loss Recoil Identification

In GREAT using the MWPC and DSSSD, the techniques of ToF and Energy Loss (∆E/E)

ion identification can be used to separate out the nuclei that make it through RITU. This
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can be useful in situations where decay tagging is not possible or not desired, and as an

aid to this technique. For example, if one requires that these ion identification parameters

fall within set values, in order to be considered a valid implantation, then events for which

the implantation could not correspond to a given decay may be discarded. This increases

the effectiveness of the recoil tagging and increases the possible implantation rate. Events

in which an implanted pixel is struck by an invalid implantation ion before the subsequent

decay of the first implantation are hence recoverable.

ToF identification relies on the simple mass dependence of the relation between velocity

and energy. A timing signal is recorded for a passing ion at two points in the setup giving a

velocity; the ion is subsequently stopped in a detector recording its total energy [63]. Using

this information, different mass nuclei may be distinguished with a precision dependent on

energy and timing resolution [64]. In GREAT the MWPC acts as the start timer and the

DSSSD acts as the stop timer, and also provides Etotal measurement. Assuming velocities

are in the classical limit one can write a time-mass resolution relation for particles of

matching energy as: (
t+ ∆t

t

)2

=
∆A

A
+ 1 . (3.12)

Assuming ∆t is limited by detector timing resolutions of about 1 ns for β = 0.02 this gives

a mass resolution ∆A
A of 6%. This value is insufficient to separate neighbouring heavy

nuclei but sufficient to further suppress beam or spurious reaction products that do make

it through the separator.

Identification is also provided by the difference in energy loss dE
dx through a medium

for different ions. From Equation (3.11), it can be seen dE
dx or ‘stopping power’ depends

on Z and ν of an ion, i.e. for any given energy of a traversing ion, the stopping power

is characteristic of the species. If one can measure this rate of energy loss and the total

energy of the ion it can provide a unique tag. In Bragg detectors dE
dx is measured across the

full energy range as the ion is stopped in a gas [65], however similar results can be obtained

using a simple E-∆E telescope [66]. Such a telescope comprises a thin transmission detector

and a thick stopping detector. The transmission detector absorbs a small fraction of the

ion’s energy, ∆E, as a measure of the stopping power and the thick detector gives the Etotal

to which that stopping power corresponds. Identification of species by such means is often

achieved using a 2-dimensional plot such as is shown in Figure 3.8. In such measurements

the ∆E detector need not be calibrated in terms of MeV as it serves as a comparative

measurement.

In GREAT, E-∆E is provided by the E measurement in the DSSSD verses ∆E given

by the MWPC signal size. As with ToF measurement, E-∆E in GREAT does not pro-

vide unambiguous identification of reaction products and for the best results should be

combined with the other measured, species-dependent, quantities.
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Figure 3.8: Spectrum from a silicon-silicon-caesium iodide ∆E-∆E-E triple telescope (ar-
bitrary units). Seen are characteristic shapes from (a) 3t, (b) 2d and (v) 1p. The typical
back bend seen in the far right panel occurs as particle energy becomes high enough to
allow penetration of both silicon detectors. This figure is taken from the my masters
work [67] using the 11B(3He,X) reaction and is included as an ideal example of ∆E-E
identification.

3.2 Electron Detection Efficiency

Energies of conversion electrons can be measured in the SAGE silicon detector to within

a few keV, however to make these measurements have any physical meaning they must

be looked at not individually but as an ensemble. Rarely in nuclear physics are experi-

ments such that one can ask meaningful questions of a single nucleus or event. Instead

one may ask what fraction of a certain interaction produce a certain result. For example,

one may ask for a given nuclear transition what is the conversation coefficient, what is the

probability is that the transition proceed by γ ray emission or by internal conversion. To

answer such a question one must measure how many of each decay mode occur. The crux

of the matter here is that the number of γ rays and conversion electrons is greater than

the number that will detect be detected. In order to determine meaningful physical quan-

tities one must establish, of all emitted particles, what fraction do the detected particles

constitute.

3.2.1 Efficiency Effects

SAGE is a unique detector and as such the various competing effects on efficiency are worth

discussing. In this context the word ‘efficiency’ is concerned with the following question:

what is the probability that an electron emitted at the target position reaches the detector

with its full emission energy and that the full energy is measured? The probability is a

function of emission angle and energy. An isotropic distribution is assumed and as such

the detection efficiency is given by the probability distribution P (Ee).
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Orbital Radius

The helical path an electron follows was discussed in depth in Section 3.1.1. The diameter

of this path is directly dependent on energy and is a major contributing factor to electrons

failing to reach the detector. Between the target volume and the main solenoid volume are

two carbon foils to separate the RITU 4He filling gas from the high voltage barrier. This

is the narrowest point along the path of an electron, with a radius of 15 mm [68]. The field

at this point drops off rapidly, as seen in Figure 3.3, to approximately 0.1 T. Recall that

the helical path makes a tangent with the solenoid axis, where the orientation around the

axis is dependent on emission angle φ and the helical radius depends on emission angle

θ and magnetic field strength. The narrowest point is most problematic as θ approaches

90°(electrons perpendicular to the field) and radius is maximum. In this limiting case

electrons with energy above 50 keV would strike the foil frame. Of course the majority

of electrons will not be emitted perpendicular to the field, and higher energies than this

may pass through the bottle neck. The net result is that at higher electron energies, fewer

emission angles result in electrons reaching the detector and hence there is a reduced

transmission efficiency. Similarly, at the detector position the field is approximately 0.1 T,

resulting in higher energy electrons having dhelix > rdetector. For example, if one takes

the circular projection on to the detector of helical paths for Ee⊥ =200 keV only 48 %

fall within the circumference of the detector. If energy is increased to Ee⊥ =500 keV the

fraction of the path overlapping with the detector drops to only 27%.

Field Reflections

Another effect in transmission efficiency is the so called ‘magnetic mirror’ effect that can

occur in regions with magnetic field gradients. For a charged particle moving through a

field with a helical path, as described by Equation (3.1) the orbital period is given by

Equation 3.13,

tperiod =
2πm0γ

′

Bq
=

2πm0

Bq

√
1−

v2
⊥
c2

=
2πP⊥
Bqv⊥

, (3.13)

where γ′ is the Lorentz factor for motion perpendicular to the field. If the field varies

slowly in space or time relative to this orbital period (adiabatically), it can be shown [69]

that the flux linked by the orbit is a conserved quantity.

One result of this conservation has been used to describe the helical trajectories of

electrons and is explicitly stated as follows: if an electron is emitted from a point along

the axis of an axially-symmetric magnetic field, such as in SAGE, it will move with an orbit

that remains tangential to the symmetry axis if the field varies adiabatically, although its

outer extent will vary.

Furthermore, the adiabatic conservation can be expressed as conservation of the quan-

tity P⊥/B. It can clearly be seen that if B increases then P⊥ will increase, and hence P‖

will decrease. This can be qualitatively considered by noting that if B(Z) is increasing

along the symmetry axis Z the field must have a radial component, the force from which

will act to change P⊥ and P‖. For a sufficiently high field gradient, a particle may be
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reflected entirely. This is illustrated in Figure 3.9 and the criterion for reflection is given

by Equation 3.14 [69], given in terms of the initial/minimum field B0 and the momentum

at that point P0, ∣∣∣∣ P‖0P⊥0

∣∣∣∣ < (BmaxB0
− 1

)1/2

. (3.14)

Figure 3.9: Reflection of a charged particle out of a region of high field strength [69].

Referring to Figure 3.3, a very steep magnetic field gradient is observed either side

of the target position in SAGE. Using Equation 3.14 any electrons emitted at angles

greater than ∼55° from the field axis would be expected to be reflected by the field. Such

electrons would be trapped in the target region and never reach the detector accounting

for a sizeable transmission efficiency loss. However, if a 500 keV electron is emitted at such

an angle, in the weak field at the target position, this constitutes an orbital period of 0.41

ns, during which time the electron would move a longitudinal direction of 8.6 cm. Over

such a distance the field increases by ∼40 % illustrating that the field gradient in SAGE is

sufficiently steep it may not constitute an adiabatic change. As such the electron’s motion

may differ from the idealised case presented here, with the effect being greater at higher

energy.

In addition to the possibility of reflection by the magnetic field gradient it must also

be noted that electrons may also be reflected by the electric potential of SAGE’s electric

barrier. The electric potential gradient of the barrier is perpendicular to the magnetic field

axis, and so it is simple to see that the energy associated with the longitudinal motion of

an electron must be greater than the height of the barrier in order for the electron to pass.

Using Equation 3.2 one can formulate the maximum emission angle θ for a given kinetic

energy T and potential Vbarrier:

θ(T ) < cos−1

√(eVbar)
2 + 2eVbarmec

2

T 2 + 2Tmec2

 . (3.15)

Clearly this should have a greater effect on the transmission efficiency at lower energies, and
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for T< Vbarrier no electrons should be detected. An example of the competing transmission

efficiency effects is given in Figure 3.10 where the cut-off fraction imposed by each effect

is shown. Effectively each effect imposes a θmax(Ee) cut off for electron transmission and

the smallest angle determines the cut off at that energy.

Figure 3.10: Example calculations of the competing transmission efficiency effects for
electrons in SAGE, normalised for solid angle as each effect imposes a cut off in emission
angle θ. The total effect of the three restrictions combined is shown in red.

Energy Loss

Now following the consideration of transmission efficiency, the interactions of electrons

with matter must be considered. These interactions may contribute to transmission losses

or affect the full energy detection. Within the SAGE detector system we must consider

both the electron interaction with the silicon detector and any matter an electron may

interact with between the emitting nucleus and detector.

The targets used are typically thin foils of only a few mg/cm2 (a few µm) thickness. In

a thin target experiment, energy loss of the beam nucleus as it passes through the target

material is sufficiently small that the reaction cross section can be considered constant

throughout the target. Hence a reaction may happen at any depth through the target with

equal probability and so electrons emitted by recoiling nuclei will have to pass through

varying amounts of the target, ranging from near zero to the full target thickness. Due

to the helical trajectory of the electron, the effective thickness of the target seen by the

electrons will be greater than the linear dimension.

Figure 3.11 shows the fraction of an electron’s kinetic energy lost per mg/cm2 of

material traversed. This figure shows that for a 100 keV electron 2 % of the total energy is

lost in passing through the whole of a 1 mg/cm2 samarium or erbium target. For energies

below this a significant fraction of electrons will either reach the detector with far less than
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Figure 3.11: Fractional stopping powers for various materials. The fraction of total kinetic
energy lost by an electron per mg/cm2 of 4 different Z target materials. Data from National
Institute of Standards and Technology’s estar program [70].

their emission energy or never exit the target. Conversely, electrons with energies higher

than this will reach the detector with their energy intact, to within the resolution of the

detector, independent of emission position. The small energy loss need only be considered

if high-precision energy measurements are to be made from the electrons.

Recall that following emission from the target, electrons must also pass through two

40µg/cm2 carbon foils on the path to the detector. These foils are sufficiently thin that

an electron with energy as low as 30 keV may pass through both and only lose 2 % of

its energy. All electrons must pass through both foils independent of emission position.

These foils will only affect very low-energy electrons which are of little experimental use.

Electrons that impact the carbon foil mounts or target ladder may be assumed to be

lost as these aluminium pieces are too thick for even a high-energy electron to penetrate.

However, due to their low mass, electrons are easily scattered and there is a small proba-

bility they may scatter out of these parts and reach the detector with a reduced energy,

especially at low impact angles. The importance of scattering is discussed in Section 3.2.2.

Figure 3.12: Electron stopping ranges in crystalline silicon. Data from National Institute
of Standards and Technology’s estar program [70]
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3.2.2 Scattering and Addback

The range of an electron in silicon as a function of energy is shown in Figure 3.12. A

1 MeV electron has a range of 2.3 mm, as seen in this figure. The silicon detector in SAGE

is only 1 mm thick and the smallest elements have an area of 1.178mm2. For higher-energy

electrons the probability for complete energy deposition within the detector will be heavily

dependant on scattering effects.

Figure 3.13 shows a Monte-Carlo simulation of 50 electrons scattering in aluminium,

using the resources found in Reference [71]. Despite having sufficient energy to punch

through the target, this simulation shows the nearly half of the electrons stop within

the medium due to the a circuitous route they follow as a result of scattering. About

a fifth of the electrons are shown to backscatter out of the medium. This is important

because this loss mechanism is present even when electrons do not have sufficient energy

to punch through the silicon detector. The probability for electron scattering reduces with

increasing energy, so as electron energy increases the probability of backscatter decreases

and the probability of punch through increases.

Figure 3.13: Basic Monte-Carlo simulation of 300 keV electrons, with an incident angle of
45°, scattering through 0.3 mm of aluminium [71].

A SAGE spectrum from a 207Bi calibration source is shown in Figure 3.14. Clearly

shown in Figure 3.14 is a raised plateau extending at lower energies below each full-energy

peak. These distributions of electrons are the result of electrons depositing only part of

their full energy in the detector before scattering out of the detection medium and being

lost. This figure shows only singles events, those where a single detector element triggered,

and so it can be assumed that the electron scatters out of the detector (or scatters before

reaching the detector). Similarly, an electron may scatter between elements of the detector

resulting in multiple recorded signals, but with no one signal having the full energy. The

calibration source was of a sufficiently low activity, and 207Bi has a low branching ratio for

the emission of multiple electrons, that it can be assumed that the majority of multiple-hit

events from this source are from such scatter events.
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Figure 3.14: Energy calibrated SAGE electron singles spectrum for a 207Bi calibration
source, 1 keV/bin. Note the step in background plateau across each peak due additional
scattering contributions.

The range of electrons with energies approaching 1 MeV is greater than the detector

thickness and the width of many elements. Figure 3.14 shows that there are events where

such high-energy electrons deposit their full energy in one element. However, the detection

efficiencies could be improved at these energies if the events where the full energy is

deposited but over multiple elements could be recovered, hence an addback algorithm was

added to the sort code. Initially this code checked all electron hits in multiple-hit events

for pairs in neighbouring elements and when such a pair was found their energies were

summed. The results are shown in Figure 3.15.

Figure 3.15: SAGE electron spectrum from 207Bi calibration source. Shown in blue are
electrons which the algorithm identifies as neighbouring hits in multiplicity > 1 events .
Shown in red is spectrum produced when these neighbouring pairs are summed together.
Correctly and incorrectly reconstruct 976 keV K electron peaks are indicated.
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Initially the algorithm appears to be quite successful: many full-energy electron peaks

are correctly reconstructed. However, approximately 30 keV below each correct full-energy

peak a smaller, incorrectly-reconstructed peak appears. As this peak is not present in the

singles spectrum, it can be assumed it is not caused by anything outside of the detector.

The effect is only present in events where electrons have scattered between multiple ele-

ments and the energy difference is discrete. Logically it is an effect of the detector and

not of the scatter, perhaps due to a dead region between certain elements. To investigate

this hypothesis hit pattern maps of the SAGE detector segments for the correctly and

incorrectly constructed multiple hits were produced. Figure 3.16 shows these maps gated

on the K electron peaks at 976 keV. There is a clear pattern between which detector ele-

ments produce a correctly reconstructed energy and which do not, though it is not easily

explained. One explanation of the pattern would be that the small energy deficit is caused

by loss between different rings of detector elements. This would highlight areas of the

detector where there were fewer neighbouring elements of the same radius, due to dis-

abled elements, potentially matching the pattern. When only pairs of the same radius are

used in reconstructions the satellite peak is suppressed, but the majority of the correctly

reconstructed peak is also lost.

Figure 3.16: SAGE hit pattern map gated on 207Bi 976 keV electron. Red indicates high
intensity, empty dark blue areas of the image denote elements which have been disabled
because of preamp problems. A) Shows hit pattern when gated on 976 keV peak in raw
singles data, demonstrating the normal distribution one might expect B) Shows hit pattern
when gated on correctly reconstructed 976 keV peak in the addback spectrum shown in
Figure 3.15 C) Shows hit pattern when gated on poorly reconstructed peak at ∼950 keV
of the same spectrum

It was concluded that resolution of this error would require more detailed investiga-

tion of the detector itself and cannot be solved offline. Hence it is not possible to cleanly

produce such addback events at this time. Scattering events can be identified with this

procedure in order to remove them from otherwise contributing to background. The rejec-

tion of all multiple-electron events, in order to avoid spectra contamination, was decided

against as in-beam events are of higher multiplicity. Delta electrons are produced in

abundance and, despite the potential barrier in SAGE to suppress the delta electrons, any

conversion electron is quite likely to arrive in coincidence with one or more delta electrons.

Furthermore, the calibration isotope 207Bi may have a low branching ratio for multiple

emission of electrons in its decay, but a highly-excited product in a nuclear reaction may
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emit many electrons during its decay to the ground state. Efforts were redirected from

constructing addback events to correctly identifying scattering events for exclusion. A

balance must be reached in removing as many of the noise-contributing addback events as

possible without losing total energy peak events that occur in coincidence with another

electron.

The SAGE silicon detector was designed to optimise rate and is single sided, not a

DSSSD, as such the ‘Front vs Back’ method cannot be implemented. In such a method

energy measured in perpendicular front and back strips are compared to correctly identify

multiple-hit events, as detailed in Reference [72].

In addition to requiring the elements to be adjacent the investigation revealed several

other requirements that could be applied in order to optimise the selection.

Firstly a minimum energy threshold was imposed on detector elements, so that no en-

ergy under 15 keV would be considered. The potential barrier prevents the lowest energy

electrons reaching the detector. As such one might assume low-energy signals result from

scattering. However in events where the total energy of the electron is recorded in one

detector element a small amount of charge may be induced on neighbouring elements dur-

ing the charge collection process, appearing as a small neighbouring energy measurement

[36]. Secondly it was required energy be evenly distributed between elements (neither

should have more than 80% of the total). Thirdly a timing gate was used to further avoid

false identification scattering. In a true scattering event the charges are produced in the

elements simultaneously, and so a 70 ns maximum time difference was implemented. See

Section 3.3.3 for details on removing electronic timing differences.

In multiple-element events all possible combinations of pairs are checked against these

conditions and then removed from the event. Figure 3.17 demonstrates the effectiveness

of this method in removing background counts while leaving full-energy peaks intact.
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Figure 3.17: Electron energy spectrum obtained from SAGE using the multiple electron
events from a 207Bi source. The lower (red) line shows the result of removing identified
scattering pair events using the conditions described in the text. Note that the full-energy
peaks are unaffected.
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Following this a small further subtraction can be made. As discussed in Sections

3.1.1 and 3.2.1 the energy of an electron will determine the path of the electron in SAGE

and the region on the detector that it may reach. Events in which an electron scatters

before it enters the detector, scatters out of the detector, or scatters within an inactive

area of the detector may then be identified. If the measured energy is lower than the

minimum needed to reach a given point on the detector the event can be vetoed. This

subtraction provides a minimal effect and only acts for Ee ≤130 keV. The formulation

of this subtraction is detailed in Appendix B, but it was not used. Due to the discrete

radii of the detector elements the subtraction introduces discontinuities into the initially

continuous background, further complicating analysis.

3.3 Data Acquisition

3.3.1 Total Data Readout

At JYFL a Total Data Readout (TDR) system is implemented for the collection of data

[73]. The fundamental aspect of the TDR system is that detector elements are individually

instrumented and recorded without a common trigger. Conventional systems, which use

a signal in a pre-defined detector to trigger the Data Acquisition system (DAQ) to record

the event, suffer from large system dead-time losses. In recoil-decay tagging, where wide

common gates are used, these dead-time losses can be particularly large. An event gate

as wide as 1 ms would limit the data rate of all detectors to a maximum of 1 kHz. This

can be particularly problematic if the channel of interest is only a small fraction of the

implantation rate. The TDR system was developed to counter this effect, as well as

providing additional flexibility for offline analysis. A flowchart is provided in Figure 3.18

to illustrate the JYFL TDR system described below.

Each detector element, is individually instrumented. This corresponds to each element

of the silicon detector in SAGE, and each germanium core and each BGO shield, in the

case of JUROGAMII. It is worth noting here that the BGO Compton suppression is not

performed online. Hits in coupled germanium and BGO detectors are recorded separately

to disk, even when a vetoing event has occurred. Following pre-amplification, detectors

are fed into individual channel digitisers. All the digitisers are connected to a 100 MHz

clock which provides a time stamp of 10 ns precision throughout the system. Each channel

has its own adjustable threshold; if the input signal crosses this threshold level then the

channel triggers and the time stamp and other channel data are collected to the system

buffer.

The buffered data are passed through TDR Event Builder (TDREB) software which

may optionally filter the data before passing the data to disk for storage and Grain analysis

package for online analysis. TDREB may be used to filter out events of low multiplicity,

i.e. one can require that only data from the buffer in which at least 2 channels cross

threshold within a 100 ns window is kept. Such a filter may be used when performing a

γ-ray γ-ray coincidence study in which single γ-ray events are of little use. This allows

collection of data at a higher rate before disk write-speeds cause limitations. This filter
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forms the only system-wide online trigger, beyond this point data passed to Grain either

directly from TDREB online or from the disk offline are identical. The notation γγ will

be used to refer to an event in which two signals were recorded in JUROGAMII and e−γ

will refer to an event in which a signal was recorded in both JUROGAMII and the SAGE

silicon detector.
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Figure 3.18: Flow chart illustrating the Jyväskylä Total Data Readout data acquisition
system and Grain analysis package. A full description of the various stages of the system
is given in the text.

3.3.2 Grain

The Grain software package is used to construct events from stored TDR data and to

sort those events into histograms for further analysis. Grain also provides the facility for

post-sort gating of two-dimensional histograms and contains some basic fitting tools.

The user must first provide Grain with a trigger file. This file tells Grain which digitiser

channels should form part of the sort trigger, what multiplicity should be required, what

time extent to give the event and which detectors the channels correspond to. Data are

loaded to a buffer from disk chronologically based on the time stamp associated with each

detector entry. When a trigger detector entry is found in the data stream, Grain begins

event construction. The event parser searches backwards through the buffer as far as the

specified trigger delay time before the triggering entry. All entries are collected forward

in time from this point until the specified event width has passed. The entries form one

event. This system for event construction is demonstrated in Figure 3.19. At this point the

detectors to which each entry correspond are included, and any BGO vetoes are optionally

applied. Following this the user-defined time and energy calibrations are applied to the

elements and an event is then passed to the sorter as a collection of Java object arrays

for the various detector types. Recoil-decay tagging may then be implemented within the

Java sort code. Events identified as implantation events may be added to the ‘tagger’ and

stored in memory in order to be paired with later events identified as decay events.
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Figure 3.19: An example of trigger and event construction in the Grain event parser. Here
a Detector A is selected as the trigger with a delay time of 1µs and and event width of
1.4µs. The entries that occur significantly before the trigger for Detectors B and D are
included in the event along with the entry in Detector A that produced the trigger and
the later event in detector B.

3.3.3 Time Alignment

In addition to a standard energy calibration, in such a system it is important to perform

adequate time calibration. The 100 MHz clock disseminates global time throughout the

system but this does not guarantee that simultaneous events will be recorded with the

same time stamp in the data stream. Significant variation in cable length (3 ns delay

permetre), difference in element threshold levels and variation in hardware response to a

signal all contribute to time variation. It is important to eradicate these external time

differences in the data. The physical time difference between between say, a γ ray reaching

JUROGAMII and a conversion electron from the same nuclear cascade reaching SAGE,

should be preserved. Such a physical time difference may differ depending on the physical

process involved and may be used to analyse the data.

The signals from the individual elements of SAGE, however, should be aligned in

time with each other, and the detectors of JUROGAMII likewise. This is done my using

a known physical process, either from calibration or beam data, and construct events

triggered on a single detector outside of the array which is coincident with the selected

process. Next, histograms are produced for the timing of each array element relative to the

single trigger. The histogram for each array element has a clear peak for genuine coincident

events, the peak is approximately Gaussian with a width given by a combination of the

timing resolution of the detector, electronics and physical process. The centroid of the

timing peak for each array element is then recorded and a mean calculated. The timing

calibration is then defined by setting a time offset for each array element equivalent to the

difference between the elements time centroid and the mean. For the sorting of subsequent

data, the offset for an array element is added to the time value recorded for that element

in each event to give the calibrated time value. Following timing calibration, a sum of data

across the entire array may produce a total timing histogram with a coincidence peak of
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comparable resolution to that of an individual element.

The effect is small, only a few 10s of nanoseconds, but any improvement in timing

resolution improves time gating, which is very important for background suppression.

Figure 3.20 shows electron times relative to a GREAT focal plane trigger, taken from an

experiment in which RITU was used. It can be seen that the trigger must be extended

backwards in time as the electrons are detected 80 ns before the recoil nucleus is detected

at the focal plane at t=0. However, if all the electrons in this event are accepted as part

of the event, the spectrum would be dominated by background. Instead, a further time

gate is taken within the sample time of the triggered event and it is here that improved

time alignment will be vital. The nature of time background and its suppression will be

discussed in Section 4.4.4.

Figure 3.20: Spectrum showing the relative time of recoil-gated electrons in the SAGE
detector elements for events triggered on the GREAT focal plane gas detector taken from
an experiment in which RITU was used. A peak is seen at -80 ticks corresponding to
genuine coincidence events. An asymmetry in the peak indicated two genuine coincidence
processes with different timings. The peak sits on a large random background filling
the whole of the event window. Small perturbations in the background can be observed
corresponding to cyclotron pulses. The event window shown here is long due to the transit
time in RITU, timing spectra in Chapter 5 are shorted as RITU was not used.
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4
Analysis Techniques

Several of the analysis challenges faced and techniques developed in this work are, including

the peak fitting and random background subtraction, are general to a range of experiments.

In this chapter an review of the techniques implemented to move between experimental

data and meaningful physical results is presented.

4.1 Peak Fitting

For both the efficiency calibration and later experimental measurement an accurate method

of determining peak area is needed. In an idealised situation the area of an isolated peak

would be found by removing the background and then simply integrating over the remain-

ing peak. An algorithm which estimates the background by iteratively smoothing under

peaks can be used to achieve this, giving the area of the peak to the first order. When

more precise area measurements are required we must consider the nature of the peak

more carefully.

Simple background removal may provide consistent and accurate experimental results

for isolated peaks, however when peaks overlap, a full fit is required in order to de-convolute

their areas. If an arbitrary background removal is used across multiple peaks, subsequent

peak fitting is still required. Following an arbitrary background subtraction, that is not

physical in nature, the remainder may consist of irregular peaks. It is advantageous to

use a physical background calculation, where peaks are fitted simultaneously and the

background contribution of each peak can be directly related to its size and included in

the fit. This difference between the two approaches is illustrated in Figure 4.1

4.1.1 Background Step

In both electron and γ spectra, a step in background is seen across each full-energy peak,

as small scatters from the full-energy peak in question begin to contribute to background

at energies below the peak. For γ rays, this contribution is made up of small angle

Compton scatters into the detector as well as the escape of photo-electrons from the

detector medium. In SAGE, this background step is associated with electrons that have

scattered out of the detector or detector elements, or electrons that have had small-angle

collisions with part of the apparatus and have continued to reach the detector. These

contributions extend from the full peak energy down to zero and will have some distribution

shape depending on the various processes included and detector geometries. In electron,

spectra this contribution is significant and so the assumption of a simple background is
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Figure 4.1: For peaks with overlap the subtraction of an interpolated background (left) is
insufficient. A simultaneous fit of both peaks and background (right) should be used. The
centre panel shows the different backgrounds used, the interpolated background from a
smoothing algorithm is shown in red and the physical background from the simultaneous
fit is shown in blue.

not appropriate.

P

BP

B

Figure 4.2: Peak back-

ground contributions. See

text for details.

The ‘background’ counts originate from the same physical

transition in the nucleus as the full-energy peak and could be

considered legitimate counts. Indeed, in an ideal situation the

full scattering distribution and the full-energy peak would be

accumulated, but in realistic spectral analysis, only the region

of a full-energy peak can be clearly identified.

It is important to remain consistent in what is defined

as a peak area, i.e. whichever method of area calculation

is used must be consistently applied to both calibration and

experimental data. In this work only the area of the full-

energy peak will was used. This was done by defining the

background step in terms of the full-energy peak parameters

and fitting them together as a convolved function. Figure 4.2

shows a typical electron peak with three defined areas: full-

energy peak P , uncorrelated background B and peak back-

ground contribution BP .

The full-energy peak is characterised by a distribution,

nominally a Gaussian, due to the dominance of random sta-

tistical effects in detection involving noise and charge collection. The scattered events

that constitute the background step are also subject to these effects. Hence every point

in the scattering background between Epeak down to zero will have the same distribu-

tion. Alternatively one may think of this as each point, within a statistically broadened

full-energy peak, contributing to the background below that point. The result of this is

that the shape of the background step is expected to be given by the reverse Cumulative

Distribution Function (CDF) of the full energy peak distribution. For a Gaussian peak
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this is:

(1− CDF) =
1√
2π

∫ ∞
x

e
−
(
t−x0
σ
√
2

)2
dt =

1

2

[
1− erf

(
x− x0

σ
√

2

)]
(4.1)

where x0 is the peak centroid, σ its width and erf denotes the error function. This forms

a more physically accurate definition of the background step that is used throughout this

work. Subsequent peak fitting is performed using a peak function + a scaled reverse CDF

of the peak function + a linear background. An illustration of the improved background

is given in Figure 4.3. Note that when fitting real electron calibration data, allowing the

denominator of the error function in Equation (4.1) to vary freely resulted in the minimiser

returning a value equal to σ
√

2, as it should, supporting the physics behind this definition.
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Figure 4.3: Electron calibration peak showing two different background fits. Smoothed
interpolated background (solid red) and function fit background (dashed blue). For an
isolated peak the difference in calculated peak area is minimal, but establishing a physical
fit function is important for consistency when peaks overlap.

4.1.2 Peak Functions

A pure Gaussian peak (4 free parameters including a background step) fits the SAGE

electron data reasonably well, but underestimates the peak maximum and the tails on

both high-energy and low-energy sides of the peak, indicating that the peak is slightly non-

Gaussian. The combination of a sharper peak and long tails is indicative of a Lorentzian

contribution. An observed peak in nuclear spectroscopy will always have contributions

from the Lorentzian shape of the nuclear state width and a Gaussian broadening from

the many statistical effects involved in measurement and counting. The latter Gaussian

broadening often dominates and would be expected to do so in these data. As such the

non-Gaussian shape must be the result of another effect.

The SAGE spectra to which fits are performed are made up of the sum of data from

the individual detector elements. Each detector element is instrumented and calibrated

separately. The SAGE energy calibration was repeated to ensure misalignment of elements

was not the cause of the peak shape.

The sum of many Gaussian peaks distributed around a mean trend towards another,

broader, Gaussian. For a finite number of detector elements, each with their own Gaussian

signal, non-standard patterns become possible. A numerical code was written to show the

effect of combining a finite number of Gaussian peaks distributed around a set of mean
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values. From this it was found that a sum of Gaussian peaks with identical centroids

but varying widths resulted in the observed peak shape. Hence it was deduced that the

observed peak shape results from varied resolution across different SAGE elements or pre-

amplifiers. There are insufficient statistics to consider using the elements individually and

as such must select a peak function that fits the sum of all SAGE elements.

Given the Lorentzian characteristics previously observed, a convolution of Lorentzian

and Gaussian peaks would seem an appropriate trial function. A true convolution is given

by the Voigt profile, a simpler sum of the two functions produces a suitable approximation

[74]. The selected trial function consisted of a linear sum of Lorentzian and Gaussian

peaks with a joint centroid, normalised to matching FWHM :

y = h ·
(

e
−
(
x−x0
σ
√
2

)2
· η +

σ22 ln 2

(x0 − x)2 + σ22 ln 2
· (1− η)

)
, (4.2)

where h is the total peak height and η is the mixing ratio limited to the range 0 to 1. This

function minimises the number of free parameters (5 parameters including a step), while

optimising the fit to the physical shape of the data, so it offers significant improvement

over the single Gaussian (4 parameters).

An additional function was trialled, consisting of a sum of two Gaussians with matching

centroids (6 parameters) given by :

y = h ·

(
e
−
(
x−x0
σ1
√

2

)2
· η + e

−
(
x−x0
σ2
√
2

)2
· (1− η)

)
, (4.3)

where the mixing ratio η is again limited to the range 0 to 1, and the two different widths σ1

and σ2 are such that one is narrower than the mean width (σ1 < σ̄) and the other broader

(σ2 > σ̄). Having deduced that the data are the sum of many different width Gaussian

peaks, this function offers obvious benefits, and the logical extension is to proceed to a

sum of N Gaussians.

For both of these functions, the background step across the peak is determined from

the reverse CDF of the peak function as defined previously. A comparison of the trial

functions is shown in Figure 4.4 and a deconvolution of their component peaks is shown

in Figure 4.5.

For the fitting of overlapping peaks, the values of width σ and mixing η are fixed

between neighbouring peaks, as both are dominated by detector behaviour at a given

energy and expected not to vary appreciably over the short range of overlapped peaks.

Additionally the ratio between each peak area and each background step is fixed across

such a fit, as this would be expected to depend on energy alone. For two overlapping

spectral peaks, this leaves 7 free parameters for the Voigt fit and 8 free parameters for

double Gaussian fit.
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Figure 4.4: Three peak function fits
to data. Single Gaussian (black),
double Gaussian (blue) and Gaus-
sian + Lorentzian (red). The lat-
ter functions have sufficient agree-
ment that they are difficult to re-
solve. The lower part of the figure
shows the residuals from subtrac-
tion of each function, highlighting
the fit improvement over the single
Gaussian.
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Figure 4.5: Separation of the
two peaks making up each fit-
ting function are shown for
Double Gaussian (left) and
Gaussian + Lorentzian (right).

4.1.3 Peak Area and Error

Fitting was performed using the χ2 minimization routine “TMinuit” [75] taking a
√
N

counting error on each individual histogram bin.

Following fitting, the area of the defined peak can be determined from the fit param-

eters. For the Voigt approximation the area is given by:

A = h
(
σ
√

2πη + πσ
√

2 ln 2(1− η)
)

= hσ
√

2π
(
η
(

1−
√
π ln 2

)
+
√
π ln 2

)
(4.4)

and for the double Gaussian, it is simply :

A = h
√

2π (σ1η + σ2(1− η)) (4.5)

The error on the calculated peak area σ(A) is then calculated by application of the error

formula:

V (f) =
∑
j

(
∂f

∂xj

)2

V (xj) +
∑
j

∑
k 6=j

(
∂f

∂xj

)(
∂f

∂xk

)
cov(xj , xk) , (4.6)

given here in its general form for a function f and a set of parameters x. For a quantity X,
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the variance V (X) = σ(X)2. The uncertainty σ(X) on a quantity X should not be con-

fused with the distribution parameter σ in this context. The variances (and covariances)

of the parameters are determined from the fit minimisation.

As an example, application of the error function to the Voigt approximation function

yields the simple but rather cumbersome:

V (A) =

(
A

h

)2

V (h) +

(
A

σ

)2

V (σ)

+ (hσβ)2 V (η)

+ 2

(
A2

hσ

)
cov(h, σ)

+ 2 (Aσβ) cov(h, η)

+ 2 (Ahβ) cov(η, σ) ,

(4.7)

where β is the numerical constant
√

2π
(

1−
√
π ln 2

)
and V and cov are the variances and

covariance elements from the covariance matrix of the minimiser. This σfit(A) comprises

both the uncertainty in the fit and statistical counting error, accounted for by the choice

of minimisation and histogram bin errors. The uncertainty in the area is only dependent

on the covariances between parameters on which it directly depends. Other parameter

pairs, such as peak height and step height, will have very strong correlations which may

indirectly affect the uncertainty in the area in the form of larger individual parameter

uncertainties.

It should be clarified that this uncertainty does not reflect how well the chosen function

describes the data, but the uncertainty that each parameter of the chosen function is

optimised to achieve the best fit to data. A sensible choice of fit function must be made

in order for the error on calculated quantities (such as area) to be meaningful. Hence

there is an intrinsic systematic error associated with choice of function not represented by

this value. This systematic error is most clearly seen in the χ2 value or the residuals as

shown in Figure 4.4, for which the trial function offers a factor of five improvement for the

electron data over a pure Gaussian.

It is crucial, in minimising the effect of such systematic errors, to remain consistent in

peak fitting, especially between calibration and experiment, so that the systematic errors

cancel. The double Gaussian fit was selected as the primary peak function to be used as it

offered the optimum physical fit to data with only 2 additional parameters over the single

Gaussian. Investigations showed the Voigt approximation resulted in underestimation of

background beneath the peak and the background step in some fits, thus its rejection.

4.1.4 Asymmetric Peaks

For the very lowest energy electrons, a departure from the standard fitting method is

required. In Section 3.2.1 energy loss of electrons was discussed, in Figure 3.11 it is shown

that as energy decreases below 1 MeV the fraction of energy lost passing through a material

increases logarithmically. The result of this is notable energy loss during transmission

through the foils for the low-energy electrons, resulting in an exponential tail on the low-
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energy side of the full-energy peak. This is notable only in the lowest energy peak at

45.0 keV in the 133Ba calibration source; the next peak at 75.3 keV is fit suitably by the

double Gaussian peak, as shown in Figure 4.6. In experimental data, the tail is significant

in peaks below 200 keV. This difference is caused by the addition of the target foil the

electrons must pass through between emission and the SAGE detector.
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Figure 4.6: Lowest energy 133Ba electron calibration peaks showing double Gaussian (solid
red) and single Gaussian (dashed black) peak fits.

Consistency with the peak definitions remains paramount. As every full-energy peak

electron must pass through the foils, this is not a random contribution and the energy-loss

tail is defined as part of the full-energy peak. It is not included in the processes that

contribute to the random scatter background step. As before, the background step is

defined by the reverse CDF of the full energy peak function.

An initial trial function was taken from Reference [76], the “Crystal Ball” function for

high energy physics. This is a two-part function consisting of a Gaussian peak above a

cut off and a power-law tail below the cut. The tail is intended to account for “lossy”

processes [76]. This function has previously been suggested as suitable for SAGE data

[77]. It is given by :

y = h ·


e
−
(
x−x0
σ
√
2

)2
, for x−x0

σ > −α(
n
|α|

)n
· e
−
(
|α|2
2

)
·
([

n
|α| − |α|

]
− x−x0

σ

)−n
, for x−x0

σ ≤ −α
(4.8)

where α marks the transition to the power-law tail and n is the order of the tail. The

function and its first derivative are both continuous.

Figure 4.7 shows the improvement of the Crystal Ball function over a basic Gaussian

fit. The fit is still imperfect as it overestimates the peak and lower end of the tail.

Additionally, due to the nature of the tail part of the peak function the background

step can be absorbed into the full energy peak if the background step size is left as a free
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Figure 4.7: Lowest energy 133Ba electron calibration peak showing ‘Crystal Ball’ (solid
red) and Gaussian (dashed black) peak fits.

parameter. The background step height can be fixed to a physically acceptable value, thus

preventing this problem. Doing so yields a fit in keeping with the chosen peak definition,

but manually fixing the parameter is not ideal as this is not always possible.

A further trial function was taken from Reference [78]. The Radware peak consists of a

sum of a regular Gaussian peak and an exponential convolved with a Gaussian broadening.

This function is designed for fitting the small tails caused by charge trapping in germanium

detectors but can be utilised for this purpose. The peak function is given by:

y = h ·
(

e
−
(
x−x0
σ
√
2

)2
· η + e

(
x−x0
β

)
· erfc

[
x− x0

σ
√

2
+

σ

β
√

2

]
· (1− η)

)
(4.9)

where the complementary error function erfc(x)=1-erf(x) and β controls the length of the

tail. The background step used in Reference [78] is the simple one-Gaussian step as given

in Equation 4.1. This is a reasonable approximation where the Gaussian term dominates

as it does in γ-ray fitting, however for application to the low energy electron peaks from

SAGE the second term dominates (η ≈ 0). Hence the function is improved by setting the

background step as the reverse CDF per our formalism. For the Radware peak this leads

to the following equation :

(1− CDF) = 1− 1

2

[
erfc

(
x0 − x
σ
√

2

)
+ e

(
x−x0
β

+ σ2

2β2

)
· erfc

(
β(x− x0) + σ2

βσ
√

2

)
· (1− η)

]
(4.10)

The difference of the new background and the effectiveness of the improved Radware peak

is shown in Figure 4.8. This produces a significantly improved fit to the data over the

Crystal Ball function and minimises to a physical background without constraint. Using
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this improved Radware fit the electron peak area is then give by:

A = h ·
[
σ
√

2π · η + 2βe

(
− σ2

2β2

)
· (1− η)

]
(4.11)
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Figure 4.8: Lowest energy 133Ba electron calibration peak showing Radware peak fit with
improved background (solid red) and original background (dashed black) for comparison.

As both the low-energy tail and the multiple resolution summing effect are present

to some degree at all energies, further improvements were achieved by combining the

improved Radware peak with the double Gaussian to create a function that fits the electron

peaks in all regions. However, as shown in Figure 4.6, the low-energy tail changes from

negligible to dominant over a very short energy range, and as such the benefits from

such a combination would be minimal for a large additional complication in fitting. The

Radware peak (Equation 4.9) is applied to electron peaks with Ee ≤200 keV and the

double Gaussian (Equation 4.3) is applied to electron peaks with Ee >200 keV.

4.2 Calibration

In order to measure electron conversion coefficients, α, with SAGE a known absolute

detection efficiency for electrons in SAGE, εe, and an absolute detection efficiency for γ

rays, εγ , in JUROGAMII are required in order to relate the measured counts of a quanta

to the total number emitted. Both efficiencies are functions of the energy of the quanta

being detected, εγ(Eγ) and εe(Ee). The function must be determined for each of the two

detectors. In order to achieve this, a calibration source of known intensity is placed at

the target position. During energy calibration the fields of SAGE may be adjusted to

ensure all detector elements receive sufficient energy distribution of calibration electrons.

For efficiency calibration the source must be at the target position with the SAGE field

set to their experiment values in order to get the correct electron transport efficiency in
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SAGE, and to get the correct γ-ray attenuation and geometric effects for the calibration

of JUROGAMII.

The DAQ must be operated in singles mode and the sort code and detector selection

should match that used for the experimental data. Using the known intensity and branch-

ing ratios of the calibration source, and an accurate run time measurement (provided by

the system’s 100 MHz clock), the expected full energy peak intensities can be calculated.

The measured peak intensity for each transition can then be used to calculate the absolute

efficiency at the peak energy ε(Epeak).

This method of efficiency calibration gives the absolute peak efficiency, εabs(E), for

the emission of an isotropic distribution centred at the target position. Geometric effects,

electron transport, intrinsic detector efficiency and the effects of other interactions such

as Compton scattering are all folded into this efficiency.

The largest sources of error are the counting error of fitted peaks and the intensity of

the calibration sources. In some circumstances a particular source, such as 152Eu for γ

rays, might be used to produce a relative efficiency curve across the complete experimental

energy range, which relies only on knowledge of branching ratios and removes the source

intensity from the calculation. Following this, a different source can be used to scale the

relative efficiency curve to an absolute efficiency curve.

The efficiency calibration of JUROGAMII and SAGE can be performed simultaneously

from the same source. This is ideal as, strictly speaking, only a relative efficiency between

the two is required to calculate α, and any systematic errors from uncertainty in source

intensity will cancel. In these experiments calibrations were performed using an open
133Ba source for energies below 0.5 MeV and 207Bi for energies up to 1 MeV.

4.2.1 Gamma-Ray Efficiency Curve

For HPGe γ-ray detectors, the efficiency effects are well understood and have been heavily

studied and parametrised. At high energies the peak detection efficiency is affected by an

increase in Compton scattering and pair production γ-ray interactions that may result in

incomplete energy deposition, as shown in Figure 3.5. The peak detection efficiency is also

affected by attenuation length, which is the probability that a γ ray will interact with the

matter of the crystal without passing though it. At low energies, the efficiency becomes

dominated by attenuation in the cryostat surrounding the detection crystal. Geometric

coverage of the detectors affects the efficiency as an energy independent scaling. Using

the formalism of D. Radford et al. [79], at low energies the efficiency εγ is given by :

log10(εγ) = A+B · log10

(
Eγ
E1

)
= α (4.12)

and at high energies by :

log10(εγ) = D + E · log10

(
Eγ
E2

)
+ F · log10

(
Eγ
E2

)2

= β , (4.13)
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where the constants E1 and E2 are 100 keV and 1 MeV respectively and A to F are con-

stants to be determined. The complete function is given by :

log10(εγ) =
1

G

√
1

αG
+

1

βG

. (4.14)

G is an interaction parameter between the two regions. G should be positive, hence

whichever of α or β is smallest at a given energy will dominate, this is shown in Figure 4.9.1.
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Figure 4.9: A typical efficiency curve for a HPGe γ-ray detector. The low-energy and
high-energy components α and β have been separated and overlain as dashed lines.

The uncertainty from the efficiency curve can be determined from the covariance matrix

of the parameters, returned by the fit minimiser, in a similar way to the peak fit error.

For the increased number of parameters it is helpful to use the matrix form of Equation

4.6,

Vf = GVxG
> , (4.15)

where Vx is the covariance matrix with comprised of the element cov(xi, xj) for the set of

parameters x. Vf is a matrix of the variances for a set of functions f of the parameters x.

The ‘G matrix’ is a matrix comprised of the elements
∂fk
∂xi

. Expanding Equation 4.15 to

show the elements of the matrices gives :

[
V (f1) V (f2)

]
=

∂f1

∂x1

∂f1

∂x2
...

∂f2

∂x1

∂f2

∂x2
...


 V (x1) cov(x1, x2) ...

cov(x2, x1) V (x2) ...

... ... ...



∂f1

∂x1

∂f2

∂x2
∂f1

∂x1

∂f2

∂x2

... ...


(4.16)

1For an absolute efficiency log10(ε) lies in the range −∞ to 0 which causes G to become negative and
Equation (4.14) to become complex. So instead Equation (4.14) is solved for log10(ε+ 1), which lies in the
range 0 to log10(2), with a restricted minimum value of 0.
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V (f) =

[
∂f

∂x1

∂f

∂x2
...

] V (x1) cov(x1, x2) ...

cov(x2, x1) V (x2) ...

... ... ...



∂f1

∂x1
∂f1

∂x1

...

 (4.17)

For the efficiency function Equation (4.14), the ∂f
∂xi

components are non-trivial to derive

and so the elements of the G matrix are solved numerically.

4.2.2 Electron Efficiency Curve

The various effects involved in the efficiency of SAGE have been discussed in detail. In

Figure 3.10 an approximate parametrisation of the different efficiency effects was shown.

The functions used there do not account for the complex effects cause by reflection of

downstream electrons by the B field of SAGE, or by electrons with high energy or in-

creasingly perpendicular emission angles for which approximations made are no longer

valid.

For SAGE the most detailed parametrisation of the efficiency curve comes from Geant4

simulations performed by researchers at JYFL and Liverpool’s Oliver Lodge Laboratory

[68][77][80]. Simulated data are shown alongside calibration points in Figure 4.10.

In the simulations shown, 50,000 electrons were emitted isotropically for each energy

data point. Discrepancies between simulation and data at higher energies are explained

by differences in the way in which full-energy peak electrons are defined in the simulations

and in the experimentally obtained full-energy peak fitting.
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Figure 4.10: SAGE efficiency calibration data (red squares), from 133Ba and 207Bi con-
version electron sources, alongside simulation (black circles), without scaling applied to
either data set. Both calibration and simulation are with 800 A coil current and no HV.
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Above 300 keV, efficiency is dominated by orbital radius limitations imposed by the

apparatus. In this region, both the data and the simulation show a smooth exponential

trend. This region is fit with the same function used for high energy γ-ray photopeak

efficiency, Equation (4.13), which allows for perturbations away from a pure exponential

due to higher-order effects.

Below 300 keV, complex field reflection effects are anticipated to dominate the shape

of the efficiency curve. However, there is a large deviation from the simulation in this

region. Particularly, a downwards trend appears below 200 keV. As discussed in Reference

[80], this is mostly likely due to limitations of the electronics used in SAGE in addition

to noise which is not being fully accounted for in simulations. Hence in this work the

small-order perturbations shown in the simulation will not be included in the efficiency

determination. A simplified smooth fit to the experimental data was used instead. Hence

the same functional form used for γ-ray detection efficiency curve, Equation 4.14, will be

used for the full electron energy range. This is reasonable as there are two main regions

of behaviour for electron efficiency, between which a smooth transition must be assumed.

There are insufficient data to determine any other conclusion. The fit result is shown in

Figure 4.11; a large uncertainty is seen at low energy where there are insufficient data

points to constrain the function around the turning point.
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Figure 4.11: Electron full-energy peak efficiency curve as a function of electron energy,
with error band. Data are from 133Ba and 207Bi calibration sources.
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4.3 Kinematic Correction

Electrons and γ rays emitted by recoiling nuclei and detected in the laboratory frame will

be recorded with a different energy to the nuclear frame due to the Lorentz boost. The

Lorentz transformation for an emitted particle between the lab (E, p) and nuclear(E′, p′)

frame is given by: 
E +m0

p1

p2

p3




γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1

 =


E′ +m0

p′1
p′2
p′3

 , (4.18)

where the recoiling nucleus is moving in a direction aligned along the axis of p1 with a

velocity of v = βc and where γ =
1√

1− β2
. If the angle between the recoil and emitted

particle trajectories is θ, giving p cos θ = p1, then by application of p2 = E2 + 2m0E the

following relation can be defined :

E′ =
E +m0 − β cos θ

√
E2 + 2m0E√

1− β2
−m0 . (4.19)

Hence only knowledge of θ and β is required to correct the measured energy. The effect is

smallest when θ =90°, and negligible when β is small.

4.3.1 Gamma-Ray Correction

For γ rays the formula collapses to the compact Doppler correction formula,

E′ =
E(1− β cos θ)√

1− β2
. (4.20)

When recoils are detected in RITU they have both a clearly defined β and direction along

the beam axis. The angle θ can then defined from the JUROGAMII detector polar angles

in order to apply a Doppler correction. However, due to the angular acceptance of both the

JUROGAMII crystals and RITU, only an average correction can be made and a Doppler

broadening effect will be seen in Doppler-corrected energy spectra. As an example: if

a 500 keV γ ray is measured in a crystal with a central polar angle of 71° emitted from

a nucleus moving with β = 0.03, a mean Doppler correction of -4.9 keV is calculated.

Due to the combined angular acceptance of RITU and JUROGAMII, the maximum and

minimum accepted θ are 80.4° and 61.6° and the difference between the Doppler correction

for these two angles is 4.6 keV.

4.3.2 Electron Correction

In SAGE, angular information is extremely limited. Due to the helical nature of electron

trajectories, the pixel of detection cannot be uniquely correlated with angle of emission.

For low-energy electrons, a limitation can be placed on those electrons detected in outer
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pixels. This applies to a small fraction of possible events. Furthermore, the SAGE axis

and the beam axis differ by 3.2° therefore such limitations poorly constrain the lorentz

correction angle θ. As a result all that can be stated is the angular acceptance as a

function of electron energy. Figure 4.12 shows a plot of transmission efficiency through

SAGE versus emission angle and electron energy. From this, a normalisation for solid

angle can be performed and hence the average emission angle θ is established for kinematic

correction. As a result, the entire spectrum can be stretched in such a way as to correct

centroid energies but a large peak broadening cannot be avoided.

Table 4.1 gives the calculated average emission angle for electrons that will be trans-

ported through SAGE at 10 energies and the subsequent kinematic correction calculated

for a recoiling nucleus of β = 0.03. The average θ does not change simply with energy due

to the different competing angular limitations on electron transmission, as discussed in

Section 3.2.1. It can be seen in Figure 4.13 that despite the complex behaviour of average

θ the kinematic correction factor is near linear with respect to energy. A linear function

fit to these data can be used to correct experimentally measured energies to within 1 keV.
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Figure 4.12: SAGE angular transmission fraction as a function of emission angle θ from
beam axis and electron energy. Calculated from efficiency simulation data [68].
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Lab Energy [keV] Average θ [degrees] kinematic Correction [keV]

100 159.2 9.7
150 148.7 11.1
200 147.2 12.8
250 157.1 15.9
300 161.1 18.2
350 163.2 20.3
400 164.9 22.3
450 166.1 24.1
500 167.1 26.0
550 168.1 27.8

Table 4.1: Calculated average emission angle θ and kinematic correction factor for electrons
detected in SAGE at 10 energies, assuming a recoiling nucleus of β = 0.03.

Figure 4.13: Kinematic correction factor for electrons detected in SAGE assuming a re-
coiling nucleus of β = 0.03. A linear fit is shown.

4.4 Background Suppression

4.4.1 Formalism

In any experimental measurement one must discern the signal from the noise. When

dealing with a set of discrete events, one must contend with background events, which are

any events that are not directly related to the measurement of interest and obscure data

which is. These can be events from a different physical process producing radiation in the

detectors that is detected identically to events of interest. Hence, without an additional

data handle, these are inseparable in the ensemble of data from the detector. Background

events may also be events from the desired physical process in which a problem arose in

the detection process, such as particles scattering in detectors depositing only part of their

full energy as discussed in Section 3.2.2.

The aim when dealing with background is to suppress or remove it to a level at which

the measurement of interest can be resolved. For instance, the RITU separator can be

used as a trigger so that events from reaction channels with cross-sections that may be
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many orders of magnitude greater than the channel of interest are rejected and do not

swamp the resulting data. BGO Compton suppressions shields in JUROGAMII reduce

the number of scattered γ rays recorded in the data, increasing the peak-to-background

ratio, so the low intensity γ-ray peaks can be resolved, as shown in Figure 4.14.
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Figure 4.14: Data from 207Bi calibration source in JUROGAMII showing raw data (top,
black), data with BGO suppression (middle, red) and data with BGO suppression and
clover addback (bottom, blue).

Beyond these suppression techniques one may require a coincidence between multiple

detectors and, in addition, gate on a known peak in one or more detectors. Such selection

methods will always allow some fraction of the unwanted background events through. The

subtraction of these events from the spectra is defined as such:

Sp(j) = St(j) +B(j) , (4.21)

where St(j) is the jth bin of the histogram containing the selected data, Sp(j) is the jth

bin of the resulting spectrum and B(j) the jth bin of the scaled background spectrum.

B(j) is then defined as

B(j) = Sb(j) ·
Ntbg
Nb

, (4.22)

where Sb is the background spectrum (to be determined), Nt is the total number of counts

in the spectrum St, Nb is the total number of counts in spectrum Sb and bg is the fraction of

background events in spectrum St (also to be determined) [81]. Subtraction is performed

with histograms at their initial binning from the raw data to avoid loss of information,

appropriate re-binning can then be performed afterwards.2

The final spectrum Sp will have individual bin errors inherited from a combination of

the bin errors
√
Sb(j) and

√
St(j) and errors in the scaling factor

Ntbg
Nb

given by
√
Nb,

√
Nt and σ(bg). Very large values for the scaling factor will result in a large uncertainty

in the background spectrum subtraction and so a sufficiently large sample is needed to

determine Sb.

2Selection of a suitable initial binning is dependent on joint resolution of detector and electronics. For
SAGE an initial binning of 1 keV per bin was used and for JUROGAMII 0.5 keV per bin was used.
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It is common to select Sb in such a way that the scaling factor is equal to 1 and can

be neglected.

Specific Sb will be discussed in Section 6.1, but in general Sb may be determined by

the reverse of the requirements used to select St.

4.4.2 Gamma Gating

Clean electron and γ spectra are produced in this work by γ-gating and background

subtraction on e−γ and γγ matrices.

The primary spectrum St is produced from a gate on a coincident γ-ray transition, γA.

Such a gate also accepts coincidences from background events that fall within the gate.

For another γ ray, γB, where EA < EB the peak of γA will appear on top of the Compton

continuum from γB. Consequently a gate on the peak of γA will return events coincident

with γA and γB. When the background beneath a peak is uncorrelated and linear, the

same size gate may be taken to the right (higher-energy side) of the peak on a smooth

region of the spectrum, and the resultant spectrum defined as Sb ≡ B [82]. Such Compton

coincidence and the effect of such background subtraction is demonstrated in Figure 4.15.
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Figure 4.15: Background subtraction is demonstrated here with γγ data from 133Ba, 152Eu
and 207Bi calibration sources. Spectra shown are the total projection with coincidence gate
marked in green and background gate marked in red (top), gated spectrum (middle) and
background subtracted spectrum (bottom).

This simple subtraction has the disadvantage that it requires a subjective choice of the

smooth background region. For this work a more generalised definition of Sb is used for

γ-gating.

A common simplification is to assume the spectrum in coincidence with the background

is approximately the same for the background at all energies, and can be well represented

by the total matrix projection [83][81].

This simplification may be appropriate when the background coincidence is dominated

by false coincidences rather than Compton, and when there are no abnormally intense

coincident transitions. However, in this work false coincidences are removed by time gated
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subtraction and a few exceptionally intense peaks are present at low energies. The result

is over-subtraction if the full projection is taken as Sb. Sb is defined as the projection of

the matrix for all Eγ > Egate.

The background fraction, bg, is determined by fitting the peak on which the gate was

placed in the matrix projection. Fitting used for spectral peaks were discussed in Section

4.1.2. The background fraction bg is given by

bg = 1−
Agated
Asum

, (4.23)

where Agated is the peak area within the gate and Asum the total counts within the gate

and where Asum ≡ Nt. The area Agated is not the full peak area as the gate width

does not extend to infinity, indeed it is often beneficial to use a narrow gate which will

reduce statistics but minimise bg [84]. For a Gaussian peak a gate width of only ±2σ will

accept 95.4 % of coincidences, increasing this the gate width to ±3σ will accept 99.7% of

coincidences but bg will be 1.4 times larger. Figure 4.16 demonstrates such a gate selection.

For a Gaussian distribution α(x):

0 Time  

Figure 4.16: Illustration of peak gating fraction showing a gate of width ±1.5σ on a
Gaussian shaped timing peak (arbitrary units).

∫ x2

x1

α(x)dx = σαhα

√
π

2

[
erf

(
x−Xα

σα
√

2

)]x2
x1

. (4.24)

By setting x1 and x2 to the upper and lower bounds of the gate Agated and its uncertainty

can be used to calculated from fit parameters of the gating transition peak. Subsequently

bg and σ(bg) can be calculated from Equation 4.23.

For improved precision in calculation of bg, one should consider not only the peak area

within the gate, but also the small fraction of background contributed by scattering from

the full energy peak. Directly under a γ peak this fraction is very small, but represents

genuine coincidence counts This is not part of Pb, and thus these counts should not be

wrongly assigned as background in this context. In Section 4.1.2 it was discussed that

such contributions manifest in the data as a step underneath the full-energy peak. The

step was defined such that its function can be written as

f(x) = S
1

2

(
1 + erf

(
x0 − x
σ
√

2

))
(4.25)
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where the constant S is the total height of the step, which may be defined as a fraction

of the total peak height. Hence the contribution of the step to the genuine coincidence in

the gate may be written as

Astepgate =

∫ x2

x1

f(x)dx

= S
1

2

(x2 − x1)−

(x0 − x)erf

(
x0 − x
σ
√

2

)
+

√
2σ√
π

e
−
(
x0 − x
σ
√

2

)2
x2

x1

 (4.26)

and

bg = 1−
Agated +Astepgate

Asum
. (4.27)

This addition is only small for γ-gating and reduces bg by less than its uncertainty. It is

presented here for completeness as the additional term is significantly more important if

one were to perform electron gating on such a matrix.

4.4.3 Coincidence Timing

When performing coincident measurements between multiple detectors, such as e−γ be-

tween SAGE and JUROGAMII, γγ between two detectors in JUROGAMII or recoil · γ
between JUROGAMII and GREAT, additional subtraction can be performed. Here e−γ

coincidences will be discussed, but the principle is the same for the other examples.

By fully understanding the timing spectra between detectors, one can not only more

precisely constrain the event window to cut out random events, but also remove these ran-

dom events from within the window. The coincidence time is defined as the time difference

between the time stamp of the two detectors tco = Te− −Tγ . For beam experimental data

the tco spectra can be deconvolved into several components. Each aspect of the spectra is

explained in the following list along side an illustration:
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Combined Timing Resolution

0 Time  

Genuine Coincidence: If both the e− and γ ray

are from the same nuclear cascade, following a

beam interaction or target decay, a prompt timing

peak will be observed. The peak will be centred

around tco with a Gaussian distribution of width

given by the combined timing resolution of both

detectors.

0 Time  

Cyclotron Frequency

Prompt False: If the e− and γ ray are both from

prompt beam events, but have no other corre-

lation, a series of such peaks will be observed

(dashed line). Each peak is separated by the cy-

clotron beam pulse period, corresponding to the

e− being from an interaction in one beam pulse

and the γ ray being from an interaction in a

later, or previous pulse. Every combination of

beam pulses within the width of a single event are

equally likely. The resultant spectrum from sum-

mation appears a continuous ripple (solid line).

0 Time  

Random False: If either, but only one, of the e− or

γ ray are from a decay event the timing spectrum

will be featureless as the decay is equally likely

for all tco.

Selected Event Width

0 Time  

Event Shaping: Events are defined by a timing

window which specifies a tcoMax and tcoMin which

imposes step function cut off on timing spectra

(black). Timing alignment occurs after event se-

lection and so the step function is blurred as a

result of the individual detector elements timing

differences (red).

0 Time  

Total Spectrum: The total timing spectrum (up-

per curve) will be the sum of the genuine and false

components all scaled by the blurred event step

function.
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An example of experimental data fit with a function defined from the deconvolved

components is shown in Figure 4.17. The figure features a small genuine coincident peak

the extent of which would not be apparent by simple inspection, as the background is both

significantly larger and oscillating on the same scale.
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Figure 4.17: e−γ coincidence timing spectrum from beam data, with a fit with the de-
convolved components described in the text. Limited to events with Eγ corresponding to
152Sm 4+

1 → 2+
1 .

4.4.4 Time-Gated Subtraction

Figure 4.18: Graphic illustration of the sort of data cube one might be considering when
performing the subtraction described in the text. Constructed using 3 data from each
event: electron energy, γ ray energy and e−γ coincidence time. A gate on one of the three
data reduces the cube to a matrix of the other two.

One may construct a data cube of Ee− , Eγ and tco for all e−γ events, graphically

demonstrated in Figure 4.18. By placing a timing gate on the region of the genuine

coincidence peak one produces a matrix St(i, j) containing both genuine coincidence and
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background false coincidence events. Figure 4.19 serves to illustrate the difficulties in

setting the width of this gate to optimise statistics and minimise peak to background.

To determine the background fraction bg, timing spectra were fitted with a piece-

meal function combining the different contributions Stime(t) = [SGenuine(t) + SPromptFalse(t) +

SRandomFalse(t)] · FEventShaping(t). Fitting to calibration data, in which only genuine and a

small amount of random false coincidence are present, was performed first in order to con-

strain fit parameters. The blur at the edge of the event windows was trialled as a cosine

function, but found to be fit best with a high-order polynomial in four parts, with the two

parts at the upper boundary naturally being the inverse of the two at the lower. Slight

differences are to be expected with beam data due to differences in relative intensities

between detector elements. The timing peak was found to be asymmetric, having a long

exponential tail. This was found to be associated with low-energy electrons and assumed

to be a result from slower rise times or longer time of flight through the SAGE solenoid.

The shape of the prompt background was kept as a series of simple Gaussian peaks and

following initial testing the separation was fixed to the known cyclotron pulse period of

70 ns. The relative heights of the genuine peak, prompt and random backgrounds and the

size of the prompt peak tail were then left as the free fitting parameters. Following on

from this fitting, bg can be determined from the area of the genuine peak inside the gate

and Nt as for γ-gated backgrounds.

A further timing gate (or gates), placed away from the genuine coincidence, produces a

matrix Sb(i, j) containing only the false coincidence background events. Ideally the event

width should be wide enough so that the background gate (gates) can be placed away

from the genuine peak and that the fitting to determine bg can ignore the blur at the ends

of the event window, but this is not always possible. Due to the oscillations of the prompt

false background, the ratio of prompt and random background in St(i, j) is sensitive to

the placement of the first time gate and this should be considered when selecting the

background gate position. When either of the two background contributions dominates

this becomes a smaller effect, however it was found that the ratio of the two contributions

could not be unambiguously determined from the fitting of the timing spectrum alone.

From Sb(i, j) one defines B(i, j), which is subtracted from St(i, j) to produce a back-

ground subtracted Sp(i, j) in the same way as for one-dimensional histograms. By using

this procedure we produce e−γ matrices free of false coincidences (and by an analogous

process, γγ matrices).

Following this timing subtraction, normal γ-ray gating and background subtraction, as

described in Section 4.4.2, may be performed on the matrices to produce final 1D spectra.

If a target peak is obscured by a contaminant peak, which appears very nearby along both

axis of the matrix, it may be beneficial to forgo γ-ray gating and instead fit the matrix

directly. Such a fit is shown in Figure 4.20 for an isolated peak.
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0 Time  

Figure 4.19: e−γ coincidence timing spectrum peak-to-background illustration. The Gaus-
sian true coincidence timing peak (green) is revealed by deconvolution of the random
cyclotron frequency background (red). The deconvolution shows that the peak tails ex-
tend beyond the indicated gate, but including them would significantly worsen the gated
peak-to-background ratio.

Figure 4.20: Experimental 2D
fit to peaks in the eγ matrix,
following a row by row subtrac-
tion for Compton background
along the γ axis.
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4.5 Low Statistics Fitting

When the size of the peaks to be measured are on the scale of or smaller than the variance of

the background the idealised fitting presented in Section 4.1.2 becomes unsuitable. Instead,

confidence levels are considered on a simple normalised-Gaussian-plus-background fit. An

example of such data and fit is given in Figure 4.21.
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Figure 4.21: Low statistics spectrum example showing a fit to the 154Sm 2+
2 → 4+

1 K
electron.

To extract a measurement of the smallest peak areas in this work, normalised-Gaussian-

plus-background fits were performed. The use of a normalised Gaussian contains the

peak area, not height, as a fitting parameter, simplifying error analysis. Due to the

appropriately propagated bin errors the background can be fit consistently with a simple

second order polynomial or an exponential. Background fits were performed to a few

hundred keV above and below target peaks. Exponential and polynomial backgrounds

were found to be relatively insensitive to the inclusion of one or two peaks of the scale

discussed in this section or to exclusion of the peak area. In all low statistics fits of this

work both exponential and polynomial background functions were trialled with minimal

difference.

4.5.1 Confidence Limit Calculations

For the smallest peaks presenting the fit area with a one sigma error is inappropriate.

Instead, calculated confidence limits on the measurement are presented.

In order to define such confidence limits one must establish a probability distribution

P (x|µ) for the measurement of counts x for given true mean value µ. Recall that the

probability of the measurement depends on the unknown fixed value of µ and measurement

error σx and not the reverse.

Ideally one might choose to measure the counts in the peak region and define this as

peak plus known background x = p+ b, where both are Poissonian quantities and hence :

P (x|µ) = (µ+ b)xe
−
µ+ b

x! . (4.28)

However, in the situation presented in this work the uncertainties in the spectral counts
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are significantly larger than Poissonian, following the combination (subtraction) of several

sets of initially Poissonian data. Hence the Central Limit Theorem is applied and the

subtracted data are assumed to follow a Normal distribution. P (x|µ) is then given by a

Normal distribution with some variance to be determined. The individual data bins are

taken each to be normally distributed values with variance given by their error bars (which

have been properly propagated throughout any subtractions).

Fitting of a sensibly chosen function using a Pearson’s χ2 test remains the best choice

to extract a measurement of peak area, the χ2-distribution being directly related to the

probability distribution of Normal random variables [85],[86].

χ2 Distribution Limits

For Normally distributed random variables, the values of the χ2 distributions are clearly

defined in terms of the variable’s probability. For example: for one degree of freedom,

if χ2(x) = 3.84 then the probability that a measurement x0 would be as far, or further,

from the mean x̂ is only 5 %, P (|x − x̂| ≤ |x0 − x̂|) = 0.05, and of course the inverse is

also true P (|x− x̂| > |x0 − x̂|) = 0.95. Alternatively, if one finds the value of x for which

χ2(x) = 1 then P (|x − x̂| > |x0 − x̂|) = 68.2 % hence |x − x̂| = σ. This stated relation

between confidence interval and standard deviation σ is only for the Normal distribution.

Following fitting of presented experimental data, an area is measured for the peak in

consideration. This area may be zero or even negative due to fluctuations in background,

this is allowed and does not stop a confidence limit calculation. It has been reasoned

that the measurement of the peak area x will be Normally distributed (P (x|µ) will be

Gaussian) and so the properties of the χ2 distribution may be used to establish the spread

of the distribution.

By fixing the value of x to successive values around the χ2 fit minimum value x̂ and

performing a further fit minimisation to any free parameters at each step, a map is pro-

duced of the function χ2(x); this distribution may be shifted such that χ2(x̂) = 0, which

represents the χ2 distribution for the single degree of freedom x, shown in Figure 4.22.

Then σ is determined for the Normally distributed measurement of peak area x by finding

the values of x for which χ2(x) = 1. This procedure can be performed automatically by

the MINOS routine [87], but the manual derivation of these quantities is explained here

to aid understanding of the concepts on which the experimental method rests.

One could now proceed to find the values of x for which χ2(x) equates to the appro-

priate confidence level and state these x as the confidence interval. But here χ2(x) is used

only to determine the variance of the normally distributed measurement x. The reason

for doing so is to avoid underestimation when the measurement of a quantity, whose real

(unknown) value must be positive, approaches zero or is found to be negative.

FC Confidence Interval

The method that will be followed is detailed by Feldman and Cousins [88]. The reason for

the approach and an outline of the method will be presented.

In general one may write that for a given physical value µ the probability of a measure-
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Figure 4.22: χ2 distribution for a sin-
gle parameter, the data corresponds
to measurement of the peak area from
Figure 4.21. Horizontal bands mark
the 68% and 90% confidence intervals.
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ment yielding the result x is given by P (x|µ). Hence one defines the confidence interval

[x1, x2] such that P (x ∈ [x1, x2]|µ) = α where α is the confidence level. One then defines

a measurement confidence interval [x1, x2] for all possible values of the real parameter µ,

producing a confidence band such as the one shown in Figure 4.23. Next, the line that

intersects the measurement x0 is taken and the points at which this crosses the bands give

the µ confidence interval of [µ1, µ2]. In other words, the confidence region is all values

of µ for which the measurement x0 falls within the confidence level α. Hence for µt, the

unknown true value, we have P (µt ∈ [µ1, µ2]) = α.

Consider a large number N of x measurements for the true unknown value µt. By

definition the fraction in the range P (x ∈ [x1, x2]|µt) = α. For x values in the range

x1 ≤ x ≤ x2, µt will fall within all confidence intervals ([µ1, µ2]|x). Hence the fraction of

the N measurements x for which µt will be within the confidence intervals ([µ1, µ2]|x) = α.

The particular problem Feldman and Cousins [88] address appears when confidence

bands are used near a physical boundary. For instance, when the real parameter µ cannot

be negative but the measurement may be. If a value is measured for x lower than the

bottom of the band (x1|µ = 0) then one must say the confidence interval is the empty

interval, it contains no physically allowed values of µ. A valid confidence belt should not

yield any empty intervals [89].

Feldman and Cousins introduce an ordering principle based on likelihood ratios for the

construction of the interval (x ∈ [x1, x2]|µ). For each value of µ it is still required that

P (x ∈ [x1, x2]|µ) = α, which leaves the inversion of the confidence bands to determine

confidence on µ̂ untouched. However, we do not require that [x1, x2] be symmetric about

x = µ. Instead, for each given value of µ each element x+ dx is considered for addition to

the range based on the ratio of likelihoods R. The elements are added to the range in order

of descending R until P (x ∈ [x1, x2]|µ) = α (the range is not required to be continuous).

The ratio of likelihoods is given by R = P (x|µ)/P (x|µbest) where µbest is the value of µ

which maximises the probability of P (x|µ) for each value of x.

For a Gaussian-distributed measurement x with measurement error σx :

P (x|µ) =
1

σx
√

2π
e
−

(x− µ)2

2σ2
x , (4.29)
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Figure 4.23: Confidence bands for Gaussian measurement x, the data corresponds to the
90% confidence level for measurement of the peak area from Figure 4.21. Red lines show
the FC confidence bands deviating at small and negative values of x. This measurement
x0 is large on the scale in discussion and in the range where the FC confidence band
converges with classical confidence band and the χ2 estimates.

then µbest = x for x ≥ 0 and µbest = 0 for x < 0. The likelihood ratio then R is then :

R =

exp(−(x− µ)2/2σ2
x), for x ≥ 0 and

exp((2xµ− µ2)/2σ2
x), for x < 0 .

(4.30)

The use of this confidence interval construction ensures that for all values of x a valid

interval is generated at the required confidence. Under-coverage is avoided and as µ→ 0,

x1 → −∞.

As µ and x move away from the physical boundary the standard form of the confidence

interval is returned and one expects the confidence limits to converge with that of χ2.

The FC method also removes problems introduced by arbitrarily switching between

upper limit and central confidence bands, which are not discussed here. A desired percent-

age central confidence limit is given far from the boundary and this smoothly transitions

to an upper confidence limit at the desired percentage as the lower limit approaches the

boundary.

“As in the Poisson case, particular caution is necessary when interpreting limits ob-

tained from measured values of x which are unlikely for all physical µ.”[88].
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4.6 Conversion Coefficient Calculation

The conversion coefficient for a measured transition Γ is given by

αK,exp =
Ie,K,exp
Iγ,exp

, (4.31)

where the subscript K indicated the measurement for the K electron and may be replaced

with another electron shell or total conversion across all shell.

When intensities are from a γ-gated eγ and γγ the experimental data, γ and electron

transition intensities Iexp are calculated from the measured peak areas Aexp by :

Iγ,exp =
Aγ,exp

ε(Eγ) ·Θγγ(L1, L2) · τγ ·∆γγ
and (4.32)

Ie,exp =
Ae,exp

ε(Ee) ·Θeγ(L1, L2) · τe ·∆eγ
, (4.33)

where ε is the calibrated detector efficiency at the peak energy, ΘAB is the correction for

a non-isotropic angular distributions, τ is the detector live time and ∆ is the fraction of

events within the timing window.

Efficiency and live time for detection of the gating γ ray are omitted as an identical

gate is used for eγ and γγ and the decay mode of the following (or prefacing) transition Γ

has no influence on the isotropic detection efficiency of the gating γ, which cancel in the

calculation of αexp.

Combining Equations 4.31, 4.32 and 4.33 gives :

αexp =
Ae,exp · ε(Eγ)

Aγ,exp · ε(Ee)
· Λ ·Θ , (4.34)

where the normalisation factors Λ and Θ defined as :

Λ =
τγ ·∆γγ

τe ·∆eγ
and Θ =

Θγγ(L1, L2)

Θeγ(L1, L2)
. (4.35)

4.6.1 Angular Correction Factor

The correction factor Θ is needed to correct for increase or decrease in detection efficiency

caused by any angular distribution of emitted radiation. In this work it is an effect

we wish to remove for known multi-polarity transition, not one that is to be measured.

Investigations revealed the importance of the Θ factor to be minimal and so an overview

is given in lieu of the full mathematical formalism. A cut through of the detector setup is

provided in Figure 4.24 for reference.

For an isotropic emission distribution there is a probability PA(iso) that a quanta of

radiation is emitted towards the detector A. For a distribution given by the emission of

an L quanta from an ensemble with average initial alignment i, the probability radiation

is emitted towards the detector is PA(L|i). The factor ΘAB(L1, L2) may then be defined

for the detection of the first emitted quanta L1 in detector A followed by detection of the
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Figure 4.24: Cut through illustration of the experimental geometry showing detector ac-
ceptance angles. JUROGAMII spans 65 ≤ θ ≤ 140. The SAGE acceptance angle is energy
dependant, θ ≥ 155 is shown.

second quanta L2 in detector B, given as

ΘAB(L1, L2) =
PA(L1|i)
PA(iso)

· PB(L2|j)
PB(iso)

, (4.36)

where j is the intermediate state ensemble before the emission of L2, defined by the

detection of L1 in detector A. The definition has been kept general such that the two

quanta may be electrons or γ rays and detectors A and B may be the same or different.

Importantly, L1 and L2 are defined by the order of emission (which transition is used for

gating is of no relevance here).

If the initial state ensemble i is uniformly oriented the following simplifications can

be made: Subsequently PA(L1|i) ≡ PA(iso) for all L1 and subsequently Equation 4.36

reduces to

ΘAB(L1, L2) =
PB(L2|j)
PB(iso)

. (4.37)

If either of L1 or L2 are an E0 quanta then PB(L2|j) ≡ PB(iso) and ΘAB = 1.

If L1 and L2 are known (M1, E2 etc) and the quanta are emitted consecutively,

PB(L2|j) can be calculated from Reference [90, Eq. 12.204]. This calculation was per-

formed in Reference [91] and a summary of the conclusions is presented here.

When detector A is defined as the entire JUROGAMII array one finds that the angular

acceptance (65 ≤ θ ≤ 140) is sufficiently large that j ≈ uniform and hence Θγγ ≈ 1

independently of the second quanta or detector B.

If detector A is taken to be SAGE, the angular acceptance (Ee dependant ∼ θ > 130)

results in a poorly defined, but non-zero, orientation of the sub-states of j. Sub-states

have sufficiently broad population distribution that when detector B is JUROGAMII the

wide acceptance results in PB(L2|j) ≈ PB(iso) and then Θeγ ≈ 1.
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If L1 and L2 are not sequential and there are one or more undetected transitions

between them, for example L1 = Γ4 and L2 = Γ1, then the alignment of j becomes more

uniformly oriented and the approximation ΘAB ≈ 1 becomes more accurate.

It has been shown that for a uniformly oriented initial state, Θγγ ≈ 1 and Θeγ ≈ 1 is

a valid assumption, resulting in Θ ≈ 1. However, for work where an initial orientation of

the ensemble is defined or higher precision is required, a more rigorous approach to this

factor must be taken.

Subsequently only the timing normalisation factor, Λ, is needed to calculate experi-

mental conversion coefficients. This can be determined experimentally.

4.6.2 ρ(E0) Calculation

General Definition

We wish to calculate the quantity ρ(E0), the dimensionless monopole transition strength.

ρ(E0) contains all the information about the nuclear structure from the monopole matrix

element [13] related by:

ρ(E0) =
〈ψf |T̂ (E0)|ψi〉

eR2
. (4.38)

The square of ρ(E0) can be directly calculated from the partial mean lifetime τ(E0) :

ρ2(E0) =
1

[Ωic(E0) + Ωπ(E0) + Ωγγ(E0)] · τ(E0)
, (4.39)

where Ω are the electronic factors. Ωic(E0) is the electronic factor for internal conversion

and Ωπ(E0) is the electronic factor for internal pair production. Ωic(E0) is equal to the

sum of the individual shell electronic factors [ΩK(E0) + ΩL1(E0) + ...]. These electronic

factors are functions of the atomic number and transition energy, and may be calculated

independently of nuclear properties. The higher order Ωγγ term for two photon emission

is usually omitted from the sum as the strength of the 2γ transition is typically 10−3 that

of internal conversion and pair production [92].

The partial lifetime, τ , is related to the E0 transition probability by W (E0) = 1/τ(E0)

where W (E0) = [Wic(E0) +Wπ(E0) +Wγγ(E0)]. The component transition probabilities

are related to the total by the ratio of electronic factors, (W (E0)/
∑

i Ωi) · Ωj = Wj .

When the partial mean lifetime is not known ρ2(E0) can be calculated directly from the

individual component transition probabilities:

ρ2(E0) =
WK(E0)

ΩK(E0)
. (4.40)

This is perhaps the more useful form for the calculation of ρ2(E0) in electron spectroscopy,

as one may indirectly measure the transition probability WK(E0). It is often easier to

extract (or calculate from other quantities) the the ratio q2
k :

q2
K(E0/E2) =

WK(E0)

WK(E2)
. (4.41)
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When the γ-ray transition probability Wγ(E2) is known, either from lifetime or B(E2)

measurements, the definition WK(E2) = Wγ(E2) ·αK(E2) can be used and Equation 4.40

can be written as :

ρ2(E0) = q2
K ·

αK(E2)

ΩK(E0)
·Wγ(E2) . (4.42)

In the case of 0+
i → 0+

f E0 measurements the WK(E2) and Wγ(E2) may refer to any

arbitrary E2 transition from the initial state and q2
K(E0/E2) may be determined directly

from a ratio of electron peaks.

E0+M1+E2

For a mixed (E0+M1+E2) Ji → Jf transition, the conversion coefficient is defined by [93]

:

αexp =
We(E0) +We(M1) +We(E2)

Wγ(M1) +Wγ(E2)
. (4.43)

When the mixing ratio δ2 = Wγ(E2)/Wγ(M1) is known from angular correlations q2 may

be calculated. By use of the definitions of α(E2), α(M1), q2(E2/E0) and δ2(E2/M1)

Equation 4.43 may be rewritten as [94] :

αexp =
1

1 + δ2
[δ2(1 + q2)α(E2) + α(M1)] (4.44)

and hence rearrange to give q2
K :

q2
K =

αK,exp(1 + δ2)− αK(M1)

δ2αK(E2)
− 1 , (4.45)

which in turn can be used with Equations 4.42 to determine ρ2(E0).



88

5
154Sm Experimental Details

5.1 Motivation

The even-even rare-earth nuclei show rapid changes in deformation across their isotopic

chains. Particularly the N∼90 isotones in which a change from spherical ground state

nuclei, through transitional nuclei, to deformed ground state nuclei is seen with the addi-

tion of just a few neutrons [95]. There is much controversy over the understanding of the

low lying excited states in these nuclei. Most notably understanding of the nature of the

low-lying 0+ states is not complete [96, 97].

5.1.1 Bohr and Mottelson Beta-Vibrational States

The first excited 0+ state has traditionally been interpreted as a collective excitation of

the ground state [98]. As introduced in Section 2.2.2, the surface of quadrupole deformed

can be described

R(θ, φ) = R0 {1 + (β0 + η)Y20(θ, φ) + ζ[Y22(θ, φ) + Y2−2(θ, φ)]} , (5.1)

where β0 is a constant of the equilibrium deformation and η and ζ are dynamic variables

describing the change of the nuclear shape around the equilibrium static deformation.

Subsequently, the solutions of the the Bohr-Mottelson Hamiltonian include harmonic os-

cillations in the β and γ degrees of freedom. Bohr and Mottelson then described low-lying

0+ and 2+ excitations as “one-phonon” β-vibrational and γ-vibrational modes [17]. Ro-

tational bands are then built on the deformed ground state and each of these one-phonon

collective shape oscillations, producing a rotational-vibrational spectrum.

These rotational-vibrational bands are characterised by large, collective, E2 transitions

to the ground band. Using the collective quadrupole operator [99]

Q̂coll
2µ =

3Z

4πR3
0

∫
r4Y ∗2µdrdΩ , (5.2)

the following B(E2) strengths are calculated in the model [19] :

B(E2; Iβ → I1,f ) = K2β2
0〈Iβ020|If0〉2y2(1 + 2α)2 (5.3)

B(E2; Iγ → I1,f ) = K2β2
0〈Iγ222|If0〉2x2(1− 2α)2 (5.4)

B(E2; I1,i → I1,f ) = K2β2
0〈Ii020|If0〉2(1 + α)2 (5.5)
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where

K =
3ZR2

0

4π
α =

2

7

√
5

π
β0 y =

√
3ε

2Eβ
x =

√
3ε

Eγ
. (5.6)

The static deformation (β0), vibrational energies (Eβ, Eγ) and moment of inertia (~2/ε)

can be determined experimentally. Using typical values1, transition strengths B(E2; Iβ →
I1) of the order ∼ 10 W.u. are expected from a β band (see Section 2.1.1 for explanation

of W.u.).

The intrinsic matrix element can provide a better measure of collectivity than the

absolute B(E2) strength as this removes the dependence on the Clebsch-Gordan coefficient

for spin coupling. One expect similar E2 collectivity for β and γ bands as both are

quadrupole vibrations which merely differ in projection on to the symmetry axis [97].

Very small B(E2; 0+
β → 2+

γ ) should be observed as this transition is forbidden due to the

simultaneous creation of a γ excitation quanta and annihilation of a β excitation quanta

[15]. Due to their collective nature, these vibrational states should have little quasi-particle

structure and hence should have small cross sections for population by particle-transfer

reactions.

Finally, for transitions from the β-band the collective monopole operator, given in

Section 2.2.2, predicts large monopole transition strengths, ρ2(E0; Iβ → I1) ≈ 100× 10−3,

given by

ρ2(E0; Iβ → I1) =
9

8π2
Z2β4

0

E(2+
1 )

E(0+
β )

=
B(E2; 0+

1 → 2+
β )4β2

0

e2r4
0A

4/3
.

(5.7)

The collective E0 operator does not allow γ-band to ground-band transitions; this follows

logically as the γ band has projection Kπ = 2+ which an E0 transition cannot couple to

the ground band projection Kπ = 0+.

Whereas γ vibrational states have been identified systematically in a range of deformed

nuclei, clear experimental identification of β vibrations has proven elusive [100]. The first

excited 0+ state in a quadrupole deformed nucleus may not be the β-vibrational state, and

should not be considered so by default [97]. The lowest excited 0+ state in a nucleus may be

a phase-coexisting collective state [101], a non-collective quasi-particle state dominated by

Kπ = 0+ particle pairs [102] or even a shape-coexisting particle-hole state from excitation

to intruder orbitals [103]. Rather than a pure β-vibrational state, the 0+
β state may mix

with another 0+ state, or many 0+ states, to form the observed 0+
2 state in a nucleus.

Strong mixing may degrade the characteristics of the 0+
β state to the point where the label

is no longer appropriate [97].

5.1.2 IBM in the Rare-Earth Region

It is desirable to have a model that spans the rare-earth region and is capable of explaining

the various behaviours the nuclei exhibit. The IBA-1 has proved particularly effective

1Typical values can be seen in the calculation for 154Sm on page 93
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in this regard [104]. By use of a simplified Hamiltonian with two control parameters

ζ and χ, the IBA can reproduce the properties of low-lying, collective, positive-parity

excitations. Including producing β-like and γ-like collective excited states. The IBA

control parameters, ζ and χ, can be adjusted to match the calculated states and transitions

with those observed experimentally and these parameters tracked across an isotopic chain

[105]. For matching of observed and model-predicted states, the first excited 0+ is generally

assumed to be collective in nature. The model-predicted γ-like 2+ state is compared to the

band head for the γ band in rotational nuclei, and is observed to transition to a member

of the 2-phonon multiplet as one moves towards spherical nuclei.

IBA trajectories for several rare-earth isotope chains, calculated in Reference [104], are

shown in Figure 5.1. In the referenced work, emphasis was placed on adjusting control

parameters to match observables in the ground, 0+
2 and 2+

γ bands, deemed to be the most

important in the region. Emphasis was placed on the energy ratios R4/2 ≡ E(4+
1 )/E(2+

1 ),

E(0+
2 )/E(2+

1 ) and E(2+
γ )/E(2+

1 ), and on the transition ratios

B2γ = B(E2; 2+
γ → 0+

1 )/B(E2; 2+
1 → 0+

1 ) and R2γ = B(E2; 2+
γ → 0+

1 )/B(E2; 2+
γ → 2+

1 ).

The results of Reference [104] differ from previous calculations in which less importance

was given to the 0+
2 state [106]. Furthermore, very different trajectories are observed for

the heavy isotopes of ytterbium and hafnium where E(0+
2 ) < E(2+

γ ), smoother trends are

produced for N ≥ 100 if it is assumed that the 0+
3 state is the first excited IBA collective

0+ state, suggesting the 0+
2 state belongs to an intruder structure.

Figure 5.1: Calculated trajectories of rare-earth isotope chains on the IBA symmetry
triangle [104].

Transition Critical Point

Nuclei are particularly difficult to describe where they fall in the phase transitional re-

gion, as deformation moves between spherical U(5) and deformed SU(3). This region is

highlighted in Figure 5.2. In this small critical region of the IBA control parameter ζ the

phenomena of phase coexistence is predicted, as the potential energy surface E(β, γ) has

two minima [107]. Physically observed states in this region may be described by mixing

between the two coexisting collective phases [101].

Nuclei which fall within this region may be described by the X(5) dynamic symmetry

model [108]; an analytical solution which decouples the β-and γ-deformation degrees of
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Figure 5.2: IBM symmetry triangle
showing the schematic critical re-
gion in which phase coexistence is
predicted [107].

freedom.2X(5) nuclei are easily identified by the characteristic observables of R4/2 = 2.91,

E(0+
2 )/E(2+

1 ) = 5.67 and ground state band B(E2) value intermediate between vibrator

and rotor [110]. There is limited application of this description, as nuclei are integer system

and few land exactly at the critical point. The N=90 isotones 156Dy, 154Gd, 152Sm and
150Nd have been suggested as possible X(5) nuclei as the energy of 0+

2 states are correctly

predicted, however the model fails to fit the energy spacing of the excited states or the

B(E2) transition strengths [111].

Clearly in this region, further development of models and the measurement of critical

observables is paramount. Particularly measurement of the sparsely measured monopole

transition strengths ρ2(E0) which are sensitive to both changes in nuclear shape and state

mixing.

5.1.3 The Nature of 152Sm and 154Sm

Historically, the 0+
2 states in 152Sm and 154Sm have viewed as ideal examples of β-

vibrational one-phonon states, as described by Bohr and Mottelson [112, 113, 114]. How-

ever many measurements have challenged this assignment and suggest either one or both

of these nuclei do not represent pure β-vibrators or that this assignment is entirely spu-

rious. No single model has uniquely explained the behaviour of the nuclear states to a

satisfactory level. The nature of the 0+
2 states in 152Sm and its neighbour 154Sm remain

unclear.

152Sm Interpretations

The transitional nucleus 152Sm, sitting between spherical 150Sm and well-deformed 154Sm

(β=0.339), is a subject of continued debate. In the IBA the nucleus is found to sit close

to the transition critical point in which coexisting collective phases are expected. It has

been suggested that the 0+
2 state in 152Sm should be described as a near spherical phase

coexisting state [115]. Consequently higher-lying excited states would be reordered as

multiphonon vibrational states built on the phase coexisting 0+
2 state, this is shown in

Figure 5.3. In Reference [116] it was shown that the experimental data are explained at

2For the U(5) to O(6) transitional region the E(5) model may be used[109]; in which the potential at
the critical point is replaced by a five-dimensional square well.



5.1. Motivation 92

Figure 5.3: Positive-parity levels are of 152Sm are shown with the traditional interpretation
(left) and the reordering corresponding to a phase coexisting 0+

2 state (right) [116].

least as successfully in the traditional picture. The 2+
2 to 0+

2 spacing is only 126 keV, which

is significantly closer to the 122 keV rotation of the ground band than to the ∼300 keV

multiphonon prediction or the ∼334 keV 2+ phonon energy in spherical 150Sm [117]. The

B(E2 : 2+
2 → 0+

2 ) value of ∼111 W.u. is comparable to rotational values and larger than

expected vibration excitations. The R
(2)
4/2 value, defined as [E(4+

2 ) − E(0+
2 )]/[E(2+

2 ) −
E(0+

2 )], of 2.69 is well above the 2.0 pure vibrator limit, though equally below the 3.33

rigid rotor limit. Finally, population of the suggested multiphonon states by one-and two-

nucleon transfer reactions is observed to be far stronger than should be possible for such

a forbidden transition.

A following interpretation (Reference [118]) showed that energy spacings and B(E2)

from the 0+
2 band in 152Sm could be described by the mixing of two coexisting Kπ = 0+

rotational bands of similar deformation. Using the prescription of Reference [17] the

mixing amplitude for a ∆K = 0 coupling between two rotational bands may be given

as b ≈ V/∆E where ∆E is the energy difference between unperturbed states |01〉 and

|02〉. The interaction matrix element V may subsequently be expanded as V ≈ h1I(I+1),

where h1 is the intrinsic mixing matrix element between bands. If a small amount of mixing

occurs between the two rotational bands (perturbative case) this leads to the resultant

states

|Ĩ1〉 ≈ |I1〉 − ε0I(I + 1)|I2〉 and (5.8)

|Ĩ2〉 ≈ |I2〉+ ε0I(I + 1)|I1〉 , (5.9)

where the coefficient ε0 = h1/∆E. Interband B(E2) transitions strengths are then given

by

B(E2; Ii → If ) = 〈Ii020|If0〉2 × {M1 +M2[Ii(Ii + 1)− If (If + 1)]}2 , (5.10)

where M1 is intrinsic matrix element between unperturbed states and M2 is the contri-

bution due to mixing. Assuming two unperturbed bands of approximately equal intrinsic
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quadrupole moment, Q0, the rigid-rotor value for in-band transitions [2]

〈I ± 2||M̂(E2)||I〉 =

√
5

16π
eQ0 (5.11)

can be used for both unperturbed bands. Hence, M2 is given by:

M2 = ε0

√
5

16π
eQ0 . (5.12)

Using Q0 = 5.90 b, the 0+
2 band to 0+

1 band B(E2) values in 152Sm were found to fit this

model well, for a mixing coefficient ε0 = −0.007.

Other work [119], investigating negative parity states in 152Sm, suggested a series

of rotational bands built on the 0+
2 indicating a complex example of shape coexistence.

It is also highlighted that the large two-neutron transfer cross section of the 0+
2 state

indicates a significant, or even dominant, pairing component. Combined with the absence

of candidates for the 2-phonon β-vibrational state, this seems to show that the 0+
2 state

in 152Sm is a state of limited collectivity that should not be interpreted as the 0+
β state.

154Sm Interpretations

The nucleus 154Sm, which has value of R4/2 = 3.25, is further from the IBA critical point

than 152Sm, sitting towards the SU(3) rigid rotor limit, at which one expects R4/2 = 3.33.

As a result, a simpler level structure with reduced or negligible contribution from coexisting

collective phases is expected. The 0+
2 state in 154Sm remains a prime candidate for a pure

0+
β β-vibrational band head.

The 0+
2 state in 154Sm at 1099 keV is significantly higher in energy than the 0+

2 state in
152Sm at 685 keV and so negligible mixing with the ground band is expected compared with

that described for 152Sm. However, the third 0+
3 state in 154Sm is located at 1202 keV and

significant mixing between this and the 0+
2 could be possible. From the results of a CoulEx

experiment [114] values of B(E2; 0+
2 → 2+

1 ) = 12 W.u. and B(E2; 0+
3 → 2+

1 ) = 0.3 W.u.

were determined for 154Sm. The large difference indicates a significant mixing of the

two 0+ excited states can be excluded, despite their proximity. An upper limit on the

mixing amplitude yields the B(E2) of the two unmixed states differ by at a factor of

24. This shows the 0+
3 state has no collective transition to ground, whereas the strong

B(E2; 0+
2 → 2+

1 ) is consistent with an assignment of the 0+
2 state as the β-vibrational

band head. This can be shown by combining Equations (5.3) and (5.5) to give:

B(E2; Iβ → I1,f )

B(E2; 2+
1 → 0+

1 )
= 5〈Iβ020|If0〉2 y

2(1 + 2α)2

(1 + α)2
. (5.13)

Using the values for 154Sm of Eβ = 1099 keV, ~2/J = ε = 27.3 keV, B(E2; 2+
1 → 0+

1 ) =

176 W.u. and β=0.339, one expects B(E2; 0+
β → 2+

1 ) ≈ 40 W.u., compared to which the

experimentally measured value is of the correct magnitude.

Reduced parameter space IBA calculations, also presented in Reference [114], correctly

place the energy of the 0+
2 state and reproduce the large B(E2), the comparison is shown
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Figure 5.4: Experimental results and
model predictions from Reference [114].
Excited states are assigned in the ref-
erence as the 2+

γ band, 0+
β band and

0+
3 coexisting spherical state. Transition

strengths are indicated in W.u..

in Figure 5.4. In the IBA, a very broad distribution of wave function amplitude as a

function of the number of d bosons, nd, is observed, consistent with a β-like state. The

0+
3 state is found to be dominated by nd = 0, leading to the interpretation as a phase

coexisting spherical state which has moved up in energy for deformed 154Sm (towards the

SU(3) limit) compared to its position in 152Sm and 150Sm.

Further CoulEx studies [120] measured B(E2) values for 154Sm of B(E2; 2+
2 → 0+

1 ) =

0.32, B(E2; 2+
2 → 2+

1 ) = 0.72 and B(E2; 2+
2 → 4+

1 ) = 1.32 W.u.. From Equation (5.13)

the expected β-band values should be of the order 8, 11.5 and 20.7 W.u. respectively. The

values are smaller but not inconsistent with a β-band interpretation, due to the possibility

of mixing between the 2+
β and 2+

γ states [97].

Identifying the two-phonon β-vibrational band of 154Sm, which would decay more

strongly to the one-phonon band than the ground band, would be a desirable step in

confirming such an assignment for the 0+
2 band.

Further information can be gained from the ρ2(E0) monopole transitions strengths

from the band. From the first form of Equation (5.7) a value of ρ2(E0; 0+
β → 0+

1 ) ≈
400× 10−3 is predicted for a pure β-vibrational band in the Bohr-Mottelson model.3,4 In

the Bohr-Mottelson model there is no angular momentum dependence for the monopole

transition strength and hence ρ2(E0; 0+
β → 0+

1 ) ≡ ρ2(E0; 2+
β → 2+

1 )[15].

In the IBA ρ2(E0) strengths can be approached in a more general way, such that the

strengths in neighbouring 150Sm, 152Sm and 154Sm may be related in a cohesive picture [28,

27]. In this approach the rapidly rising ρ2(E0) between 150Sm ρ2(E0; 0+
2 → 0+

1 ) = 18×10−3

and 152Sm ρ2(E0; 0+
2 → 0+

1 ) = 58× 10−3 is explained by a move away from the U(5) limit

and more fluctuation of nd in the wave function of transitional 152Sm. This assumes a

collective picture without the need for mixing of intruder states. As ζ further increases

for 154Sm, strengths of ρ2(E0; 0+
2 → 0+

1 ) ≈ 100 × 10−3 are predicted for the 0+
2 β-like

collective state [28], this is shown in Figure 5.5.

A more recent IBA parametrisation predicts ρ2(E0; 0+
2 → 0+

1 ) = 41 and ρ2(E0; 2+
2 →

2+
1 ) = 39 [27, 121].

3The values of ρ2(E0) are presented in the format ×10−3 by convention.
4Using the form of Equation (5.7) which depends on B(E2; 0+

1 → 2+
β ), measured value 78.4 e2fm4, a

value of ρ2(E0; 0+
β → 0+

1 ) ≈ 20× 10−3 is predicted. For a perfect β-band these two forms should match.
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Figure 5.5: IBM monopole transition calculations from Reference [28]. The top three
images demonstrate that there is little change with boson number N. The main image
shows measured values (dashed lines) alongside IBM prediction (solid line) for N=10 and
χ = −

√
7/2.

5.1.4 Summary

Low-lying states in deformed even-even nuclei, particularly the 0+
2 states, are not fully un-

derstood. Traditionally these 0+
2 states were interpreted as a pure β-vibrational collective

states in a geometrical picture. However a rich variety of excitation modes may mix with

or displace the 0+
β state to form the 0+

2 state in such nuclei.

For the β-vibrator candidate 154Sm, a monopole transition strength, ρ2(E0; 0+
2 → 0+

1 ),

between the 0+
2 and ground 0+

1 states of the order 100 × 10−3 is expected for 0+
2 = 0+

β .

IBA calculations, which span the range of rare-earth nuclei, predict for 154Sm, a 0+
2 β-like

collective state and expect ρ2(E0; 0+
2 → 0+

1 ) values of ∼ 100 × 10−3 [28] and 41 × 10−3

[27].

Measurement of ρ2(E0) values in 154Sm will provide a crucial piece of evidence as to

whether the nucleus can be described as a Bohr-Mottelson vibrating-rotor, or if the IBA

can describe the low level structure of 154Sm and its neighbour 152Sm.
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5.2 Aim and Setup

5.2.1 Experimental Aim

82.0 (E2)

78.0 (E2)

1095.9 (E0,M1,E2)

1017.9 (E2)

1099.9 (E0)

0

2

0

2

Figure 5.6: 154Sm level scheme show-
ing just the levels and transitions of im-
portance to this work. Intensities (rela-
tive arrow widths) and conversion coeffi-
cients (fraction of arrow that is white)
have been exaggerated for illustrative
purposes.

The principal experimental aim was to determine if electric monopole transition strengths,

ρ(E0), in the isotope 154Sm can be measured using the SAGE spectrometer and determine

the feasibility of this method for further measurements in this region. Doing so involves

measuring high-energy electrons (∼1 MeV), for which SAGE is not optimised, and per-

forming e−γ-coincidence measurements for which SAGE is a particularly well-designed

piece of equipment.

The electric monopole transition strengths, ρ(E0), between the first excited 0+
2 state

and the ground 0+
1 state can be determined from the ratio of the different decay branches

of the 0+
2 state. A measurement must be made of the ratio between the two internal-

conversion branches, the intensity of electrons from the 1099 keV 0+
2 → 0+

1 transition,

Ie(E0), and the intensity of electrons from the 1017 keV 0+
2 → 2+

1 transition, Ie(E2).

This, combined with the known γ-ray transition probability Wγ(E2) for the 0+
2 → 2+

1

transition, can be used to calculate ρ(E0).

However the 2+
2 → 2+

1 and 0+
2 → 0+

1 transitions differ in energy by only 4 keV, as

shown in Figure 5.6. As a result, electron peaks from the two transitions in a raw electron

singles spectrum are too close together to be confidently separated, due to limitations of the

detector resolution. Hence the experimentally measured electron intensity Ie,exp is a sum of

both transitions Ie,exp = Ie(E0)0+2→0+1
+Ie(E2+M1+E0)2+2→2+1

. The two intensities may

be separated by performing an e−γ-coincidence measurement. Measurement of electrons

coincident with the 82 keV 2+
1 → 0+

1 γ ray allows clean determination of Ie(E2 + M1 +
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E0)2+2→2+1
and hence separation of Ie(E0)0+2→0+1

. Also, the conversion coefficient α2+2→2+1

for the mixed E2+M1+E0 transition may be determined.

Although the 2+
1 → 0+

1 and 2+
2 → 0+

2 transitions also differ in energy by only 4 keV,

the intensity of the 2+
2 → 0+

2 branch from the 2+
2 state is so small it has not be observed,

and so the 2+
2 → 0+

2 → 0+
1 decay path may be ignored.

Similar attempts to make ρ(E0) measurements using mini-orange detectors coupled to

germanium clovers have been attempted [122, 123]. However the good transport efficiency

over a broad energy range of the electron spectrometer component of SAGE coupled to the

nearly 4π coverage of JUROGAMII allows a sufficient e−γ yield to decouple the 2+
2 → 2+

1

and 0+
2 → 0+

1 in the manner described.

5.2.2 Initial Setup

Three 99% enriched targets of 154Sm, each of thickness 1.5 mg/cm2, were mounted on

the target wheel at the centre of JUROGAMII, an aliuminium backing on one target was

discover after the experiment. An 16O beam was used to CoulEx the target over a beam

spot of ∼ 4 millimetres. The beam was chosen because of the ease with which it could be

obtained from the accelerator, its high excitation threshold of 6 MeV avoids additional γ

rays from beam excitations and a Z of 8 provides a moderate cross-section for multi-step

CoulEx but is not dominated by many step reactions rising high up the yrast band.

The 1099 keV 0+
2 level is predominantly populated by two-step CoulEx via the 82 keV

2+
1 level; one-step excitation is not possible. The 1178 keV 2+

2 level is predominantly popu-

lated by one-step and two-step excitations. An initial beam energy of 55 MeV was selected;

this corresponds to a centre-of-mass energy of 49.82 MeV, which is significantly below the

Coulomb barrier height of 60.97 MeV (as given by fusion-evaporation code PACE4 [124]).

As such, only ‘safe’ CoulEx reactions are expected and the CoulEx code CLX [125] can

be used to calculate the expected populations of states.5 Following population of the ex-

cited states electron and γ-ray emission from de-excitation were detected in SAGE and

JUROGAMII. No separator or particle detectors were used to measure the recoiling target

nuclei or inelastically scattered beam particles. An initially low beam intensity of 1 parti-

cles nano Amp (pnA) or 6.2× 109 particles per second (pps) corresponding to 3 electrical

nano Amps as a +3 charge state for the 16O beam was selected from the ion source. The

system ran in its standard triggerless mode recording every individual detector event to

disk with a time stamp, with higher multiplicity events being reconstructed from that data

stream offline.

5.2.3 Expected Rates

In order to calculate the CoulEx population of states the spin, parity and energy of the

states must be known. In addition the set of transition matrix elements between pairs of

states are needed. The electromagnetic transition matrix elements can be calculated using

5‘safe’ CoulEx refers to a reaction in which the centre-of-mass energy is sufficiently below the mutual
Coulomb barrier of beam and target nuclei as to ensure that penetrability is low and the nuclear force may
be neglected.
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the reduced transition rate, B(σL), given by

1

τγ(σL)
=

2(L+ 1)

~ε0L[(2L+ 1)!!]2

(
Eγ
~c

)2L+1

B(σL) (5.14)

and using following form of the reduced matrix element

B(σL) =
1

2Ji + 1
|Mfi(σL)|2 . (5.15)

Hence, the partial lifetimes of the individual γ-ray transitions (and components in the case

of mixed transitions) are needed for these calculations.

The 0+
2 and 2+

2 state lifetimes were measured using the Doppler-shift Attenuation

Method (DSAM) in Reference [114] to be 1.3(3)ps and >3.5ps respectively. The lifetimes

are calculated from τγ = τ(1 + α) where for both states it has been assumed ρ(E0) = 0

for the calculation of the conversion coefficient α. While this is an over-simplification, it

is estimated to be at most a 10% error [114] on the lifetimes.

For states such as the 2+
2 , where there are multiple γ branches, the partial life-

times for one γ-ray transition is related to the total state lifetime τ by τ/Iγ22→41
=

τγ22→41
, where Iγ22→41

is the fractional intensity of the transition. The 22 → 21 γ-ray

transition is a mixed E2,M1 transition where the mixing ratio, δ, is determined from

measurement of γ-ray angular distributions to be +60+130
−30 (an alternative -0.42±2 is

also reported [126]), where I(E2)=
δ2

1 + δ2
and I(M1)=

1

1 + δ2
, indicating a predominantly

E2 transition in this case. From these data the following magnitudes of the transi-

tion matrix elements for particular electric or magnetic multipole orders are calculated:

|M(E2)02→21 | = 0.108 eb,

|M(E2)22→01 | < 0.266 eb,

|M(E2)22→41 | < 0.181 eb,

|M(E2)22→21 | < 0.179 eb and

|M(M1)22→21 | < 6.5E − 5 eb0.5.

The limit δ = 60 has been taken to caculate |M(E2)22→21 | and |M(M1)22→21 |. The code

CLX was used to determine initial nuclear state populations by CoulEx. For these calcula-

tions, the differential cross section was integrated over all possible centre-of-mass scattering

angles because of the absence of recoil particle detectors and the selectivity this imposes

on a measurement. Matrix elements from known B(E2)s for the yrast band in 154Sm were

included up to the 10+
1 state. Matrix elements for reorientation were not included. A

change of matrix element sign between bands had minimal effect on populations.

The resulting population cross sections for the 0+
2 and 2+

2 states were estimated to be

σg→0+2
=0.9 mb and σg→20+2

=4.7 mb respectively. Assuming a similar X(E0; 0+
2 → 0+

1

/E2;0+
2 → 2+

1 ) to 152Sm of ∼ 6 % for the 0+
2 → 0+

1 transition ∼ 1.7 × 105 electrons/day

are expected, and for the 2+
2 → 2+

1 transition ∼ 3.7 × 105 electrons/day are expected,

assuming a beam current of 1 pnA.
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Efficiency

The absolute isotropic efficiency of SAGE was calculated per the definition in Section

4.2, using calibration source data obtained at the beginning and end of the experiment.

Three sources were used; a mixed 152Eu and 133Ba γ-ray only source, a e−γ 207Bi source,

producing electron peaks from 480 to 1050 keV and an open e−γ 133Ba source provided a

high density of electron peaks from 40 to 380 keV. JUROGAMII was initially calibrated

without the open 133Ba source, which unfortunately had a poorly calibrated intensity. The

e−γ 133Ba source was then scaled to match the γ intensities and subsequently included in

γ and e− calibrations. Further details of the sources and calibration peaks used, as well

as spectral fits and resultant efficiency curves, are given in Appendix C.

An additional correction was required to get the true experimental efficiency, as the

high voltage potential barrier of SAGE was not active during calibration.6 This only has

an effect on the lowest energy electrons, as shown in Figure 3.10, outside the primary

region of interest.

Detailed simulations have previously been performed for field efficiency effects in

SAGE, as detailed in Section 4.2. Effects from the electronics meant that the simulated

efficiencies differ from that which was measured experimentally. However, it is reasonable

to assume that when only the field is changed, the ratio of efficiency between the two field

settings is accurately recreated by the simulation, which focuses on these effects. Hence

the experimental field change can be determined by the ratio of the simulated efficiencies:

εexp(E) = εcal(E)ρ(E) where ρ is the ratio between simulations for the two field settings.

The uncertainty in ρ is a combination of the simulation uncertainties for both field set-

tings at the given energy. This unavoidably adds a large additional uncertainty even as

ρ approaches 1. Above 500 keV, the scaling and its associated error may be neglected as

the potential barrier has no effect. The calibrated efficiency curve and the result of the

scaling to account for the potential barrier is shown in Figure 5.7.

Using the measured peak efficiency, the total isotropic detection efficiency for the

2+
2 → 2+

1 1049 keV K-electron of 154Sm is 0.14%. For the combined K-electron peak for

both transitions of interest, which cannot be experimentally resolved, ∼800 counts/day

were expected in the raw spectrum.

5.2.4 Preliminary Run

Twelve hours of data were collected using the initial settings. Based on the online analysis

of this run, revised beam and DAQ settings were selected to optimise the experiment.

These settings were then fixed for the remainder of the experiment due to operator con-

straints. An electron spectrum from this preliminary data is shown in Figure 5.8, here

a 154Sm conversion-electron spectrum is the dominant feature at low energies. K-shell

electron peaks and L+M shell peaks are visible for the 2+
1 → 0+

1 , 4+
1 → 2+

1 and 6+
1 → 4+

1

transitions. L-shell and M-shell electrons from samarium are not separable as they differ

in energy by only 5 keV; typical L:M conversion ratio for such E2 are in the region of 4:1.

6This was an experimental oversight. The high voltage barrier is not required for an energy calibration
that is most often required, it is only needed for the absolute efficiency calibration.
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Figure 5.7: Scaling of electron efficiency curve to account for field change. Shown are the
curves from calibration data (black) and the experimental curve (red) simulation scaled
from 0 to 20 kV barrier with associated error.

The lowest energy K-shell electron sits at 35 keV and is sufficiently low in energy that this

peak is dominated by the scattering background step and is also swamped by δ electrons.
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Figure 5.8: Raw electron spectrum from the preliminary run showing clear peaks for the
154Sm yrast band transitions. An exponential tail is observed at high energies, see text
for details.

At higher energies an abnormal distribution is seen. An exponential slope is observed,

not in keeping with scatter from higher-energy electron peaks as seen from the 207Bi

calibration source (Figure 5.9). This distribution was shown to result from the presence
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Figure 5.9: Raw electron spectrum from the preliminary run (red) against 207Bi calibration
data (black).

of β particles. Both β+ and β− emitted at the target position will be detected in SAGE

identically to conversion electrons, with the exception that β+ particles will be unhindered

by the potential barrier. Coincident pairs of 511 keV γ rays were observed in JUROGAMII

indicating the presence of β+ particles either from radioactive decay in the target chamber

or pair production from high-energy γ transitions, neither of which should be produced

by the CoulEx reaction of 154Sm.

Aluminium Contamination

It was determined that fusion evaporation on an aluminium backing to the first target was

responsible for the large β background; Figure 5.10 shows production cross sections for

the reaction. Amongst the products the β+ emitters 34Cl and 38K were produced, which

were confirmed in the γ spectrum.

The strength of cascades in the light products go predominately to the ground state

through high-energy γ transitions (> 2 MeV) outside the region of interest. The light

products 37,38Ar, 37,40K and 41Ca were all produced in such an abundance that a few

low-energy γ transitions in their cascades were observed even more strongly than those

of samarium. Furthermore, the 41Ca K-shell conversion electron of the 460 keV transition

from the 3830 keV 15/2+ state can be seen in the raw electron spectra, despite a low Z

resulting in small conversion coefficients. Performing γ coincidence gating on 168 keV,

1389 keV and 1607 keV coincident transitions produced a clear electron peak, as shown in

Figure 5.11.

In the preliminary run, no electron peaks were visible for the transitions from the 0+
2

and 2+
2 states of interest in 154Sm. Population of these was verified by detection of their

γ-ray decays. Raw γ-ray spectra yield ambiguous results due to contamination. Gating

on the 82 keV 2+
1 → 0+

1
154Sm γ ray yields a coincidence spectrum in which the 911 keV

2+
2 → 4+

1 , 1096 keV 2+
2 → 2+

1 and 1017 keV 0+
2 → 2+

1 transitions are identifiable, as shown

in Figure 5.12.
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Figure 5.10: PACE4 [124] calculation results for fusion evaporation of 16O beam impacting
on 27Al. Two β+ emitters are highlighted in red.

Electron Energy [keV]
200 300 400 500 600 700 800

C
ou

nt
s

0

50

100

150

200

250

300
Ca 460 keV 41

K-shell peak

Figure 5.11: Conversion-electron peak from 41Ca is clearly seen in this γ-gated electron
spectrum. This spectrum is produced by gating on the coincident 168 keV, 1389 keV and
1607 keV γ rays from 41Ca.

From this preliminary run it was established that the states of interest were being

populated, but insufficiently. Furthermore, it was clear that experimental complications,

which contribute to the high-energy electron background, would make observing the an-

ticipated small electron peaks in a raw spectrum infeasible.

5.2.5 Revised Setup

The E0 transition of interest between 0+
2 → 0+

1 has no coincident γ transitions and

appears only as a single SAGE event. From the preliminary run it was clear that such a

weak transition would not be visible in the raw SAGE spectrum against the experimental
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Figure 5.12: Transitions from the 0+
2 band, gated on the energy of the 82 keV 2+

1 → 0+
1

154Sm transition. The gate contains some 40K contamination.

noise. With no particle (beam/recoil) gate in the experiment and no beam signal there

is no possible way to produce a clean spectrum for these events. It was decided to focus

on e−γ events and hence the 2+
2 → 2+

1 transition which has the coincident 2+
1 → 0+

1

transition.

The beam current was increased to 20 pnA, which was at the limit for both target

heating and data recording. In order to accommodate the increased data rate the DAQ

was moved to a multiplicity fold two trigger, so only events in which 2 or more detec-

tors/elements trigger within 200 ns of each other were recorded to disk. This setting

reduced the data rate to a level which the disk write speed could accommodate. This

trigger condition limits the available data to e−γ, γγ and e−e− coincidences (as well as

higher multiplicities). No true raw spectra are available for individual detectors, they can

only be inferred. There is of course no requirement in the data stream for the coincidence

to be genuine, thus this must be determined offline. Indeed, due to the high data rate of

the experiment, false coincidences are found to be abundant, as will be shown.

In order to maximise the population of the states-of-interest, the energy of the beam

was increased to 65 MeV. This corresponds to a centre of mass energy of 58.88 MeV, which

is sufficiently close to the predicted barrier height that a significant nuclear contribution

to the reaction is anticipated. Thus a pure CoulEx calculation is not valid and optical

model calculations would be needed. However, the experiment is insensitive to the means

of excitation as we do not attempt to extract information from the population process.

(Hence such calculations are beyond our requirements, simple CoulEx calculations are

sufficient to estimate the magnitude of the population increase.) Using CLX an increased

cross section for the 2+
2 state of σg→2+2

=7.2 mb for pure electromagnetic excitation is

calculated.
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The target wheel was rotated to use a target of the same specification with no backing,

produced by Daresbury Laboratory, UK. The initial target had been one available at JYFL

used because of concerns of oxidation of the Daresbury targets. The aluminium backing of

the JYFL target was not identified until after the experiment. Data from the aluminium

backed first target were not used in further analysis due to the very large β background

and will not be included beyond this point.

5.3 Experimental Results

Beam data were collected for 2.7 days at beam energy 65 MeV and beam current between

10 and 20 pnA. A multiplicity two trigger was in effect for the data written to disk. The

data were sorted into e−-γ-time and γ-γ-time data cubes in the manner described in

Section 4.4.4. Data selection to discard events associated with scattering in the SAGE

silicon detector, as described in Section 3.2.2, was applied, as were vetoes by the BGO

Compton suppression shields in JUROGAMII.

First, discussion of the content of the data will be presented, what states were pop-

ulated, which decays can be observed and what background is present. This is predomi-

nantly achieved using γγ data in conjunction with data tables and level schemes. Electron

data are shown in the context of background identification but is less useful when iden-

tifying state population. Discussion of the gating and subtractions used to tackle the

background, particularly in electron data where there is still a β-decay background prob-

lem, will be discussed in Section 6.1. Although background subtraction and identification

of states are fundamentally linked, indeed it will be shown that low intensity transition

from some states can only be seen following background removal. The order of presen-

tation is intended to guide the reader through what was actually an iterative process.

Following these discussions a review of the conversion-electron measurements and analysis

will be presented.
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Figure 5.13: Projection of γ rays from the raw γγ cube. The highest intensity 154Sm γ
rays are highlighted as well as the 511 keV annihilation peak.
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1 γ ray. This spectrum
is produced following background subtraction.

5.3.1 154Sm State Population

Population of the yrast band of 154Sm up to the 8+ state at 902.8 keV can be identified

in the raw projection of the γγ-data (Figure 5.13). With careful gating on γγ-data, a

transition from the yrast 10+ state at 1333.0 keV can be identified, as shown in Figure 5.14.

The additional beam energy increases population of the first-excited even-parity band

states of interest. The γ decays from these states are seen in Figure 5.15, which shows

γγ-data gated on the 82.0 keV 2+
1 → 0+

1 transition. Present are the 1017.2 keV 0+
2 → 2+

1
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transition from the 1099.3 keV 0+
2 state, 911.0 keV 2+

2 → 4+
1 and 1095.9 keV 2+

2 → 2+
1

transitions from the 1177.8 keV 2+
2 state and the 1070.7 keV 4+

2 → 4+
1 transition from the

1337.6 keV 4+
2 state. The 794.9 keV 4+

2 → 6+
1 and 1255.6 keV 4+

2 → 2+
1 transitions from

the 1337.6 keV 4+
2 state are observed but not shown in the figure.

Also seen in Figure 5.15 are transitions from negative-parity band states. The 839.4 keV

1−1 → 2+
1 transition from the 921.4 keV 1−1 state, 745.5 keV 3−1 → 4+

1 and 930.4 keV

3−1 → 2+
1 transitions from the 1012.4 keV 3−1 state are shown. Further gating on the

184.8 keV 4+
1 → 2+

1 and 277.3 keV 4+
1 → 2+

1 transitions yield transitions from the 5−1 and

7−1 states at 1181.26 and 1430.9 keV respectively. Using the data-table lifetime of 21 fs for

the 1−1 state [127], matrix elements for population of the state were added to the earlier

CoulEx calculation. From the calculated CoulEx cross section, relative population of the

1−1 state to the 0+
2 state of 0.38 is predicted. However, from the γ rays shown in Figure

5.15, assuming no feeding from higher states and accounting for relative efficiencies and

branching ratios, an experimentally measured population ratio 1−1 : 0+
2 of 0.95 was found.

This enhanced population of the negative-parity band is perhaps a signature of the fact

that the beam energy is in the region of unsafe CoulEx where the nuclear force comes into

play in the reaction. The transitions from this negative-parity band are exclusively of E1

type and have small electron conversion coefficients, these are not negligible however and

must be accounted for where there is overlap with other states.

Population of the 1440.0 keV 2+
4 band head was observed from the 1173.1 keV 2+

4 → 4+
1

and 1358.0 keV 4+
4 → 2+

1 transitions. The 3+ and 4+ states in this band were also

tentatively observed. The energies of the transitions from this band are sufficiently high

that they are of no interest to this work, being well beyond the limit that is to be tested

for the effectiveness of SAGE.

A negligible population was seen for the 0+
3 and 2+

3 levels at 1202.44 and 1286.3 keV,

this is to be expected as seen from other work [114]. These states will not be investigated

further in this work. A complete set of 154Sm levels and γ transitions that can be observed

in the data set is indicated in the reduced level scheme in Figure 5.16.

5.3.2 152Sm Contaminant

The enriched samarium target still included . 1 % of 152Sm, the exact fraction is unknown.

This is sufficiently large that a measurable quantity of γ rays and electrons resulting from

the excitation of 152Sm were observed, shown in Figure 5.17.

As a result, a parallel analysis of 152Sm can be performed to provide a direct source

of comparison with the 154Sm measurements. Owing to a significantly smaller amount of

data, only a small fraction of the 152Sm level scheme can be discerned. The 0+
2 and 2+

2

levels sit significantly lower in energy for 152Sm at 684.7 and 810.5 keV respectively, as a

result significant population of each is observed.

The 121.8 keV 2+
1 → 0+

1 and 244.7 keV 4+
1 → 2+

1 transitions from the 121.8 keV 2+
1

and 366.5 keV 4+
1 levels are both clearly visible in the raw γγ projection. The 340.4 keV

6+
1 → 4+

1 transition from the 684.7 keV 6+
1 state is not visible in the raw projection due

to a large 166Yb contaminant peak at the same energy, higher lying transitions cannot be

discerned from background. Gating on the 2+
1 → 0+

1 and 4+
1 → 2+

1 transitions yields the
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Figure 5.16: 154Sm level scheme showing the levels for which population was observed and
the γ-ray transitions that can be observed in γγ data. Energies are in keV. Original level
scheme data obtained from Reference [127].
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spectrum shown in Figure 5.18. The 340.4 keV 6+
1 → 4+

1 , 562.9 keV 0+
2 → 2+

1 , 444.0 keV

2+
2 → 4+

1 and 688.7 keV 2+
2 → 2+

1 transitions are clearly identifiable. The resolution of the

spectra is sufficient that the 125.7 keV 2+
2 → 0+

2 and 121.8 keV 2+
1 → 0+

1 γ-ray transitions

would be separable. However, the 2+
2 → 0+

2 transition, which would allow observation of

the 684.9 keV 0+
2 → 0+

1 E0 electron transition, is not observed as the 2+
2 → 0+

2 transition

takes only 1.1% of the decay strength from the 2+
2 state.

0 0

2 122

4 366

6 707 0685

2811

Figure 5.17: 152Sm level scheme
showing the levels for which popu-
lation was observed and the γ tran-
sitions that can be seen in γγ data.
Energies are in keV. Original level
scheme data obtained from Refer-
ence [127].
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1 → 0+

1 and 4+
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1

transitions, background subtracted. The first three yrast-band transitions are seen as
well as three transitions from the first excited positive-parity band. The right side of the
spectrum is on an increased vertical scale.

5.3.3 Sub-Barrier Fusion

Figure 5.19 shows the electron projection of the e−γ data cube. In addition to the β

tail, that is still present, there are numerous extra peaks compared with the raw electron

spectrum from the preliminary data, in which only 154Sm electron peaks were observed.

The additional electron peaks come from 166,167Yb isotopes. With a beam energy of

65 MeV to boost 2+
2 state population in 154Sm, there is sufficient energy for a significant

sub-barrier fusion cross section. 166,167Yb are produced through the 4n and 3n fusion

evaporation channels from 16O+154Sm (in which the compound nucleus is 170Yb).
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Figure 5.19: Electron projection of the e−γ data cube. Preliminary run electron data are
shown beneath in red.

The two ytterbium isotopes are produced with a maximum excitation of 40 MeV and

maximum spin of 80 ~, although the actual production state in each case will have values

significantly less than these. In both cases, decays to the ground state occur by multi-

step processes through many intermediate levels. The important result of this high event

multiplicity is that the experimental trigger actually preferentially selects the ytterbium

events. The trigger used requires the detection of two emitted particles to record an event.

Assuming a uniform efficiency for particle detection ε, then the trigger probability is given

by:

Ptrig(N ; 2) = 1−
[
N(ε(1− ε)N−1) + (1− ε)N

]
, (5.16)

where N is the multiplicity of the event. For a realistic ε = 0.05, one finds P (2) = 0.0025

and P (5) = 0.0226, which is nine times larger. For a general m fold trigger, the probability

is given by:

Ptrig(N,m) = 1−
m−1∑
i=0

N !

i!(N − i)!
· εi · (1− ε)N−i . (5.17)

The additional protons in ytterbium mean it has larger conversion coefficients than samar-

ium further increasing the relative presence of ytterbium in the e−γ data.

The higher-lying states in 166Yb strongly feed the yrast band. As a result, the yrast

band is strongly observable up to the 2779.5 keV 14+
1 state, as shown in Figure 5.20. The

feeding of the yrast band, from the initially fragmented strength of fusion-evaporation pop-

ulation, produce sufficient conversion electrons that the yrast transitions may be used as

another source of normalisation for the conversion-coefficient measurements. The strength

through the non-yrast states is sufficiently fragmented to be of little benefit or interest, a

few exceptions are highlighted in Section 6.4.2.

The even-odd nucleus 167Yb has a significantly fragmented decay scheme, the levels

observable through gating of the γγ data are shown in Figure 5.21. Population of states is
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Figure 5.20: 166Yb yrast spectrum from gated γγ data and the corresponding section of
the 166Yb level scheme. Energies are in keV

observed across bands up to energies of 4 MeV, an example of a band observable in the data

is shown in Figure 5.22. These bands decay predominately down by in-band transitions,

inter-band transitions are more frequent at lower energies and a large amount of mixing

is present near the ground state. The division of strength through many transitions

makes 167Yb unprofitable for normalisation, however in Section 6.3 further investigation

of 167Yb contamination is conducted to use SAGE to confirm some uncertain spin-parity

assignments.
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Figure 5.21: 167Yb observable levels and γ transitions from γγ data. Expanded views of
portions of this level scheme are shown in Section 6.3. Full level scheme from Reference
[78] and original assignments taken from Reference [127].
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Figure 5.22: 167Yb spectrum gated on transitions in the positive-parity band below the
3400 keV (41/2+) state. Peaks corresponding to the in-band transitions are marked.

5.3.4 Target Decay

Ytterbium

Both isotopes of ytterbium are radioactive with half-lives shorter than the experiment

run time. The decay chain to stable 166,167Er is shown in Figure 5.23. From the relative

half-lives it can be seen that the 167Yb→167Tm decay rate will quickly equilibrate with the

production rate of 167Yb, the 167Tm→167Er decay will be small and a build-up of 167Tm

will occur. Conversely the 166Yb→166Tm decay rate will not equilibrate due to 166Yb’s

longer half-life and the 166Tm→166Er decay will be of similar rate with little build-up of
166Tm. Calculated decay rates and build up of the daughter nuclei is shown in Figure

5.24. The decay cascades are low-multiplicity events and as such will be less prevalent in

the multiplicity triggered beam data, as described in Equation (5.16). Four hours of decay

data were collected immediately following the experimental beam time and the expected

γ transitions following ytterbium decays were clearly observed.7

Of particular importance are the β branches of 166Tm and 167Yb, as the β background

is a serious point of concern for the electron measurement. The endpoint energy of the
167Yb decay is 639 keV, so while it may contribute to the background at lower energies

it is of no concern in the region of interest. The 166Tm β-endpoint energy is sufficiently

high at 1935 keV. Figure 5.25 shows an electron spectrum from the decaying target; the

conversion-electron peaks from the 166Tm decay are significantly smaller than expected

relative to the β background (after accounting for detection efficiency), indicating a sig-

nificant additional β contribution.8

7The first ninety minutes used the same multiplicity trigger as the experiment and raw data were
collected following this.

8The shape of the β background was found to be dominated by the SAGE efficiency function.
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Figure 5.23: Decay chain for the fusion-evaporation products 166,167Yb, t1/2 and β branches
are shown.

Figure 5.24: Build-up and decay rates for 166,167Yb isotopes and decay products assuming
constant beam current for 65 hours. Rates are relative to Yb fusion evaporation production
rate.

Light β Emitters

The light products from the fusion-evaporation reaction of 16O+27Al, listed in Figure 5.10,

remain present in the experimental data following the change of target, with a heavily-

reduced relative intensity. The continued presence is explained by a small beam halo

clipping the aluminium target frame. Although only a small fraction of the beam intensity

impinges on the frame, the reaction benefits from a large amount of target material relative

to the samarium target foil. Figure 5.10 shows the cross section as a function of energy as

the beam particles will be fully stopped in the frame and have the entire stopping length

(∼ 46µm) in which to interact. The light products are predominantly observed more
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Figure 5.25: Raw electron spectrum of 4 hours of target decay data. Conversion-electron
peaks expected from the decay chains of 166,167Yb are highlighted.

weakly than the samarium in γγ data and are negligible in e−γ. However the β+ emitters
34Cl and 38K are of concern.

Gating on the 511 keV positron annihilation γ rays in the target decay spectrum pro-

duces a coincident spectrum of the β+ decaying nuclei, shown in Figure 5.27. The most

intense γ rays associated with the β+ decay branches of 166Tm and 167Yb, 80.6 keV and

113.3 keV respectively, are barely present. The γ rays 1176.7, 2127.5 and 3304.0 keV from

the β+ decay of the 3+ isomer in 34Cl, along with 2167.5 keV γ ray from the β+ decay

of 38K, are observed to be the strongest peaks in spectrum (aside from the other 511 keV

annihilation γ ray). The origin of these peaks is confirmed by fitting their decay lifetimes,

Figure 5.28, yielding 32.0 minutes for the 34Cl isomer (data table value 31.99 m) and 7.9

minutes for 38K (data table value 7.636 m). Furthermore both a 0+ isomer in 38K and the

ground state of 34Cl β decay directly to the ground states of their respective daughters

with half-lives of 924.0 ms and 1.5266 s, their contribution cannot be determined from the

decay data.

Also present in the γγ decay data were coincident 2754 and 1368 keV γ rays from the

β− emitter 24Na, the source of which is unknown but is only present in small quantities.

A 1461 keV line from the known lab background 40K was also visible.

Figure 5.26: Predominant β decay branches and associated γ rays for 34Cl and 38K ground
state and isomers. The energies of the daughter nuclei are not relatively aligned.
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Figure 5.27: Decay γ spectrum, 511 keV coincidence gated.34Cl and 38K decay γ rays are
indicated.

Figure 5.28: Decay γ spectrum with time, 511 keV coincidence gated. γ rays from 34Cl
and 38K are confirmed with lifetime fits.

5.3.5 Experimental Summary

In summary, considerable population of the states of interest in 154Sm was observed as

well as analogous states in the 152Sm target contaminant. Additionally a large amount of
166,167Yb were produced, the electron conversions from which may also be studied. The

high-energy electron transitions of interest were not observed and remain hindered by a

large β background in SAGE. The majority of the β background can be confidently at-

tributed to result from activation of the target frame producing 34Cl and 38K, both of

which decay 100% by β+ emission with endpoint energies >1 MeV. The precise contribu-

tion from decays from the ground state or isomer of each cannot be established.
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6
154Sm Analysis and Results

In this analysis, methods of background suppression and subtraction are applied, as dis-

cussed in Section 4.4.4, in order to produce clean data sets for fitting. Fitting is then

performed on the strong yrast transitions, these easily measured and well-known E2 tran-

sitions allow normalisation of the conversion coefficient calculations. The chosen confidence

limit calculations, used where there is less data, will be explained and the effectiveness

when applied to non-yrast E2 transitions demonstrated. Following on from this the pre-

cision of the method will be shown on known E0 transitions, before finally calculating an

upper limit measurement for the target E0 transition in 154Sm.

6.1 Background Subtraction

From the preliminary data it was established there is a need to clean raw spectra using

coincidence measurements and additional information to remove background. Firstly, a

coincidence timing gate is placed on both data cubes (eγt and γγt) collapsing each cube

to a matrix, and then a γ-gate is placed on the resultant matrix to produce a final spectra.

Identical γ-gates are placed on both eγ and γγ data. Following each gate a background

subtraction is performed as detailed in Section 4.4.4. An example of the effectiveness of

the subtraction is given in Figure 6.1.
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Figure 6.1: Electron spectrum from eγt data cube gated on prompt time (170 ns gate)
and 154Sm 2+

1 → 0+
1 82 keV γ-ray transition. Shown before (top) and after (bottom)

background subtraction. Markers indicate 154Sm electron peaks.
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6.1.1 Time Gate

The time gate is intended to focus on only genuine coincidence events. It is understood

that some false coincidences fall within the gate time. The time background subtraction

is designed to remove these counts, and the nature of false coincidences in the experiment

must be understood in order to understand the importance of the subtraction. A false

coincidence is any count in our γγ or eγ matrix in which the two data did not originate

from the same physical process. The cause of this is that one datum or both of the

data are from an intense process in the experiment and so the probability of it randomly

occurring alongside a different process is high. False coincidences should in fact simply

be a reflection of the raw singles spectrum, however due to the multiplicity-two trigger

used in the experiment, this information is lost to us and must be inferred. The strongest

examples of these intense processes are X-rays and δ electrons.

X-Rays

Every beam pulse produces X-rays and δ electrons from the electromagnetic interaction

with the target atoms independent of any nuclear process. In addition to the beam in-

teraction, X-rays also accompany every internal conversion or electron capture and can

even be produced by the ionisation of β particles. With the attenuation plates removed

Electrons widthttttt γ rays

Target IC Target γ

Beam Prompt Contaminant IC Contaminant γ

δ Electron X-rays

Target Decay
β Particle Daughter γ

Daughter IC X-rays

Figure 6.2: This map shows all genuine e−γ coincides events. The line in red represents
the events of interest and the dashed lines indicate those suppressed by the threshold
discussed in the text.

from JUROGAMII, to increase detection efficiency at low energy for the 154Sm 2+
1 → 0+

1

γ transition, X-rays account for 2
3 of all ‘γ rays’ (both random and genuine) in the eγt

data cube, see Figure 5.13. Shown in Figure 6.3 is the effect on the timing spectrum of

placing a 50 keV threshold on both electron and γ energies to suppress X-rays and δ elec-

trons. From the figure it is clear that both of these processes contribute more to random

coincidences than to the genuine coincidence peak. The removal of these events notably

improves the background fraction in the timing gate, making separation of genuine events

using timing data more tenable. Because each of these processes are at the bottom of the

energy range, a threshold is sufficient to suppress them (one need not be concerned with

scatter contributions). The thresholds also suppress events which are genuine coincidences

but not of interest, as shown in Figure 6.2.
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Figure 6.3: γ electron coincidence time with (left) and without (right) application of
50 keV thresholds on both electron and γ rays to suppress the large flux of X-rays and δ
electrons.

Beta Particles

In the previous chapter it was established that the main sources of the β particles obscuring

the high energy electron measurement were 34Cl and 38K. The decay of which are low

multiplicity events accompanied by one, two or zero γ rays. As a result, it was deduced that

their presence in γ gated electron spectra are mainly the result of false coincidence and not

contamination of the γ gate by an identical energy γ transition or Compton background.

Figure 6.4 serves to illustrated this point and the importance of time subtraction for β

background suppression.
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Figure 6.4: Effect of time subtraction on
β background. An electron spectra time
gated and γ gated on 154Sm 2+

1 → 0+
1

is shown with no subtraction (blue) and
with time randoms subtracted (red).

Gating Gamma Transition

It is crucial to acknowledge that the γ-ray transition on which one gates may also be

the high intensity process producing false coincidence. This is the very situation faced

with 154Sm. The 82 keV 2+
1 → 0+

1 in 154Sm on which gating must be done in order to

perform the target measurement is a poor choice of gating transition.1 In addition to

the major deficiency that the transition is 83% electron converted, it is also massively

weighted towards multiplicity one events. The cross section for direct population of the

2+
1 state resulting in a multiplicity one event of just the 2+

1 → 0+
1 transition is the largest

1This is not a choice, we are forced to use this transition by the aim of the experiment.
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of any process in the experiment at approximately 7.8 barns. The next most intense

process is population of the 4+
1 state at approximately 1.0 barns. Further processes are at

least an order of magnitude smaller. Hence, real physical processes involving the 82 keV

2+
1 → 0+

1 γ ray are very likely for any given beam pulse and also most likely a multiplicity

one event. Figure 6.5 shows the change in the γ projection of the eγ matrix with time

random subtraction. The large reduction of the 82 keV 2+
1 → 0+

1 γ ray is immediately

obvious. Following the subtraction the 185 keV 4+
1 → 2+

1 γ ray has become the most

prominent peak. This logically follows from the knowledge that a genuine coincidence

event containing either of the transitions is most likely to be the 4+
1 → 2+

1 → 0+
1 process

containing both transition, in which the 82 keV is more heavily converted. The 152Sm

122 keV 2+
1 → 0+

1 γ ray is also suppressed for the same reason as that of 154Sm.
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Figure 6.5: Time gated eγ-matrix γ projection, shown with (red) and without (black)
background subtraction.
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Figure 6.6: Time spectrum for e−γ coincidence, with time gate, time fit and extracted
genuine coincidence peak shown.
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Time Gate and Background Fraction

The selection of a time gate to define spectra St and Sb is discussed in Section 4.4.4, where

it is noted that the timing gate should be optimised to minimise the background fraction,

bg, while maximising counts and that the background gate should ideally be placed away

from the timing peak. However, in this experiment the event window was set to only 200

ns, limiting the selection of both gates. In order that the background spectrum, Sb, be

a good representative sample of the background, the data used in its construction should

be maximised, and to this end it was necessary to set the background gate as the inverse

of the genuine gate. The placement of the gate, shown for eγ in Figure 6.6, was then a

compromise between minimising bg (by narrowing the gate) and reducing the amount of

the genuine peak that lies outside of the gate to improve Sb (by widening the gate).

Time gates were set at −60 < tco < 60 ns for γγ data and −110 < tco < 60 ns for

eγ data to accommodate the asymmetric timing peak observed in eγ coincidences, see

Section 4.4.4.

In order to determine the background fraction, bg, an initial estimate was obtained

from the time fit function. Spectra were produced, gated and subtracted on coincidence

time and γ-ray energy for each observable yrast transition in 152,154Sm and 166Yb. These

spectra were created for consecutive values of the timing bg, an exampled is show in Figure

6.7. The optimum value of bg was determined by observing the reduction of the 82 and

185 keV transitions in 154Sm and the 122 keV transition in 152Sm, each of which was

identified as highly random. The value of bg was set to that which removed the peaks

from spectra in which each transition should not be genuinely coincident but did not

over-subtraction them. The uncertainty on bg was defined as the minimum step size at

which difference could be discerned. The value of bg for the γγ time gate was found to

be 0.15 ± 0.01 and for the eγ time gate 0.55 ± 0.02. The uncertainty on bg translates

to slightly larger bin errors in the subtracted spectra rather than directly affecting any

measurement.

Figure 6.7: Electron spectra gated on
the 154Sm 185 keV 4+

1 → 2+
1 γ transition

and background subtracted with values
of time bg from 0.1 to 0.9. The falsely co-
incident K and L electron peaks from the
154Sm 4+

1 → 2+
1 transition change from

present to over-subtracted.
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6.1.2 Resultant Spectra

Following time background subtraction both data cubes were reduced to matrices, with

individual bin errors >
√
N , free of random coincidences, shown in Figure 6.9. Upon these

matrices identical γ gates were placed to produce pairs of electron spectra and γ spectra

for conversion coefficient calculations. The background subtraction for the individual γ

gates follow the procedure of Section 4.4.2. The cumulative effect of both subtractions is

shown in Figure 6.8.
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Figure 6.8: Gamma spectrum from γγt data cube gated on prompt time and 154Sm
2+

1 → 0+
1 γ transition. Shown with and without background subtraction. The inset shows

the importance of the propagated error bars for the most heavily subtracted part of the
spectrum. Error bars include a contribution to account for the unknown systematic error
added by background subtraction, as well as random counting errors.
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Figure 6.9: Projection of the eγ matrix following subtraction of random coincidence back-
ground. The large tails from scattering below each electron peak mark clear lines of their
coincident γ rays.

6.2 Yrast Conversion Coefficients

The in-band yrast transition for 152,154Sm and 166Yb are well known, unmixed, E2 transi-

tions. As such the conversion coefficients can be calculated with BRICC to a reasonable

degree of certainty. Following gating, the full energy peaks from these transitions can be

clearly identified and peak area measured for both electron and γ spectra. When com-
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bined with the known detector efficiencies the measured areas can be used to calculate

experimental conversion coefficients and these αexp can then be compared to calculations

in order to normalise any remaining factors. For convenience the in-band yrast transitions

will be refereed to as follows : Γ1 = 2+
1 → 0+

1 , Γ2 = 4+
1 → 2+

1 , etc.

6.2.1 Kinematic Shifts

Particles emitted from a recoiling nucleus can suffer a kinematic energy shift when mea-

sured in the lab frame, as discussed in Section 4.3. An understanding of the factors

involved is needed for use in the non-trivial low statistics fits that follow in Section 6.4.

As both JUROGAMII and SAGE are (approximately) cylindrically symmetric only βz is

of concern for kinematic peak shifts. The bulk of JUROGAMII is situated either side of

90° resulting in only Doppler centroid shifts but a large Doppler broadening. SAGE is an

axial detector and as such is maximally sensitive to kinematic centroid shift but minimal

broadening is anticipated.
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Figure 6.10: Coulex population cross section for yrast states in 154Sm, shown as a function
of recoil beam axis velocity βz. For context a secondary axis denoting values of impact
parameter b is shown (red).

The target was a 1.5 mg/cm2 (2.1 µm) thick samarium foil. The 65 MeV 16O beam

will lose 3.2 MeV passing through the target. Subsequently, Sub-barrier fusion producing

ytterbium will be heavily weighted towards the front of the target. The compound nucleus

will be produced with β ≡ βz = 0.0088 and subsequent evaporation of neutrons produce

only a small perturbation. The stopping range for the product ytterbium isotopes is 1.05

µm and the majority of ytterbium stops within the target, coming to rest in ∼ 0.8 ps.

Conversely the maximum momentum that can be imparted to a target samarium

nucleus, given by a head-on elastic collision, is βz ≤ 0.0176.2 At this maximal βz the

stopping range for the recoil is 4.07 µm and a recoil would punch-through through the

target in . 0.5 ps. However the CoulEx cross-section for the maximal momentum transfer

2The small excitation energies seen in samarium E < 2 MeV are only a small perturbation on the elastic
case.
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is small, as shown in Figure 6.10, The increased geometric cross-section at large impact

parameters results in a lower average βz << 0.0176, except for high momentum transfer

(multi-step) CoulEx transitions need to reach high spin states.

For both reactions mechanisms longer lived states will decay while moving at reduced

velocities or stationary. To perform a full kinematic correction for the data set is both

impractical and uninformative, as there is no consistent βz, as a result one is not performed.

This poses no problem for the fitting of yrast states, the lifetimes of which are given in

Table 6.1. For the presented yrast states kinematic shifts are small because of long lifetimes

Jπ τ 166Yb τ 154Sm τ 152Sm

2+ 1.79 ns 4.36 ns 1.403 ns
4+ 76.3 ps 148 ps 57.7 ps
6+ 11.3 ps 32.8 ps 10.29 ps
8+ 3.09 ps 8.51 ps 3.06 ps
10+ 1.44 ps 3.53 ps
12+ 0.74 ps

Table 6.1: Yrast state lifetimes for the three nuclei under discussion.

and present no challenge to the identification and fitting of individual peaks.

The observed kinematic shifts of yrast electrons are shown in Figure 6.11 and are much

lower than that resulting from maximal βz. Even when emitted from a stationary nucleus

the measured energy of electrons have some shift due to energy loss through the target

(energy loss of electrons was discussed in Sections 3.2.1 and 4.1.4). This effect is minimal

at 1 MeV and increases for lower or higher energies.

For the measured yrast transitions no notable shift or broadening was seen in γ spectra.

It is only in decays from the very short lived negative parity states in 154Sm where Doppler

effects in γ rays are observed. Lifetimes of around 20 fs lead to clearly Doppler broadened

peaks in JUROGAMII.

Figure 6.11: Observed peak shifts for the conversion electron of in-band yrast transitions
for 152,154Sm and 166Yb. Lines show the maximum possible kinematic shift for the two
population mechanism involved. See text for additional detail.
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6.2.2 Fitting

Individual spectra were produced by gating on the Γ1, Γ2 and Γ3 transitions of 154Sm,

Γ1,Γ2,Γ3 and Γ4 of 166Yb and the Γ1 and Γ2 of 152Sm.3

Initially, fitting was performed for the individual spectra, producing multiple measure-

ments for each α(Γ)exp. However, it was decided that using the combined spectra from

multiple gates to produce a single measurement for each α(Γ)exp produced the optimum

results. This minimised background fluctuation, maximised counts for small peaks at high

energy and reduced systematic errors from gate contamination.

Fitting was performed following the methods outlined in Section 4.1. The full set of

fits are shown in Figures 6.12 - 6.14. Where significant overlap of peaks was observed,

they were fitted together and the individual areas extracted. K electron peaks were pre-

dominately isolated, but L, M and higher order electron peaks are nearly degenerate. For

samarium the L-M energy difference is 5.7 keV, for ytterbium it is 7.6 keV at which point

the M electron peak becomes discernible as a shoulder on the larger L electron peak. In

both cases L and M peak areas cannot be disentangled with confidence and so the total

area of both is used to calculate a combined αL+M . N, O and higher order electron con-

tributions were found to be smaller than the measurement error (αL+M ≈ αL+M+N+O)

and so their contributions were neglected.

3A gate on the Γ152
3 was not used as it was dominated by the tail of Γ166

3 .
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Figure 6.12: 154Sm yrast electron spectrum (above) and γ-ray spectrum (below). Produced
following time-gated background subtraction and gating on the 154Sm Γ1, Γ2 and Γ3 γ-ray
transitions. Data is shown in black with fits overlain in red. The inset expands the fit on
the lowest intensity electron peaks.
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Figure 6.13: 166Yb yrast electron spectrum (above) and γ-ray spectrum (below). Produced
following time-gated background subtraction and gating on the 166Yb Γ1, Γ2, Γ3 and Γ4

γ-ray transitions. Data is shown in black with fits overlain in red. The inset expands the
6+

1 → 4+
1 L electron peak, a clear M electron shoulder can be seen and the displayed fit

account for both components.
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Figure 6.14: 152Sm yrast electron spectrum (above) and γ-ray spectrum (below). Produced
following time-gated background subtraction and gating on the 152Sm Γ1 and Γ2 γ-ray
transitions. Data is shown in black with fits overlain in red.
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6.2.3 Normalisation Factors

Recall from Section 4.6 that experimental conversion coefficients are calculated using:

αexp =
Ae,exp · ε(Eγ)

Aγ,exp · ε(Ee)
· Λ ·Θ , (6.1)

where ε is the calibrated detector efficiency at the peak energy, Aexp is the measured peak

area and Λ and Θ are timing and angular normalisation factors respectively.

In this work the observed ytterbium states are predominately fed from higher lying

states via unobserved transitions. Conversely states in samarium are populated directly,

but neither the direction of the beam or recoil is detected, resulting in an averaged ensemble

being observed and not a selected subset. As a result there are insufficient restrictions to

confer a preferential alignment of the magnetic sub-states in either case and initial state

ensemble is assumed to be uniformly oriented. As a result the simplification Θ ≈ 1 is

valid.

The timing normalisation factors Λ is defined as

Λ =
τγ ·∆γγ

τe ·∆eγ
, (6.2)

where τ is the detector live time and ∆ is the fraction of events within the timing window.

∆eγ and ∆γγ are estimated from timing spectra to be ∼ 0.93 and ∼ 0.91. τγ and τe are

unmeasured.

The Λ factor is determined from the yrast data by requiring αBRICC ≡ αexp, where the

transitions are known to be purely E2 type. Figure 6.15 shows a plot of αexp/αBRICC for

the yrast measurements before normalisation (Λ = 1), from which Λ is then extracted to

normalise later results. One observes consistency across the different nuclei and, crucially,

no energy dependence. Consistent results are obtained for αK and αL+M . The main

source of error comes from the objective choice when setting the range of an electron fit,

especially when there are background features that are unclear or hidden by peaks. Peaks

in which there were background peculiarities, preventing confident fits, were not used.
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Figure 6.15: Yrast α normalisation αexp/αBRICC . On the left the points are ordered by en-
ergy and on the right by isotope. As a constant is expected, a second order polynomial fit is
shown to demonstrate linearity, yielding the result y = 1.91 + 1.7× 10−4x− 4.2× 10−7x2.
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The weighted mean of the set of αexp/αBRICC was taken to determine Λ and the

variance from the mean taken to give the error on Λ. From this a value of Λ = 0.52± 0.04

was found. This indicates τγ � 1, which can be attributed to high beam rate producing

a large X-ray flux coupled with the removal of the attenuators from JUROGAMII.

From the yrast data consistent α calculations across a wide energy range have been

shown, and the normalisation constant Λ needed for further experimental measurements

has been calculated.

6.3 167Yb Triple Coincidence Investigation

At this point in the analysis it is useful to demonstrate the effectiveness of the electron peak

fitting and conversion coefficient calculations on the fusion evaporation product 167Yb. In

doing so the strengths of SAGE not deonstrated in the primary experiment shall be shown

and useful physical quantities are extracted.

As well as its coupling to the RITU separator SAGE benefits from far higher γ-ray

detection efficiency than has been available in previous e−γ experiments, in which sin-

gle germanium detectors were coupled with mini-orange spectrometers [122, 128], thanks

to JUROGAMII. In the principal experimental measurement of this thesis, this γ-ray

detection efficiency is utilised extensively. However, the fundamental difference between

experiments using a single germanium detector or a full germanium array, is the ability

to measure multiple γ rays simultaneously in coincidence with an electron. This was not

applicable in the primary results, where the decay cascades of interest were primarily

only two-step processes. This advantage of SAGE can however be shown with the high

multiplicity events relating to the ytterbium contaminants.

6.3.1 167Yb Transitions of Interest

The states that were populated in the even-odd nucleus 167Yb are shown in Figure 5.22.

Highlighted selections of the populated level scheme with highlighted transitions of interest

are shown in Figures 6.17 and 6.16, of particular interest are the 263 keV, 314 keV and

175 keV transitions.

The (E2) 263 keV transition joins the 179 keV 9/2− and the 442 keV (13/2−) states.

These states are identified as members of the (π, α) = (−,+1
2) rotational band in cranked-

Nilsson model built on the unpaired valance neutron in the [523]5
2

−
orbital [129, 130].

The spin and parity of the 442 keV state remains tentative as the multipolarity of the

263 keV transition, determined from γ-ray angular distributions in Reference [131], is also

tentative. Measurement of the conversion coefficient for 263 keV the transition can confirm

the assignment of the transition and the state above. This will, by extension, confirm the

Jπ assignments of the following three states in the band at 784 keV, 1193 keV and 1657 keV,

which are linked by confirmed E2 transitions.

The (E2) 314 keV transition joins the 330 keV 15/2+ and the 644 keV (15/2+) states.

These states are identified as part of the (π, α) = (+,−1
2) rotational band built on the

[642]5
2

+
orbital [129, 130]. The spin and parity of the 644 keV state remains tentative as

the multipolarity of the 314 keV transition, also measured in Reference [131], is tentative.
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Measurement of the conversion coefficient for 314 keV the transition can confirm the as-

signment of the transition and the state above. This will, by extension, confirm the Jπ

assignments of the following 1061 keV state in the band which is linked by a confirmed E2

transition.

An additional example will be provided by measurement of the, as yet unassigned,

multipolarity of the 175 keV transition between the 902 keV (15/2−) and 727 keV (13/2−)

states identified as members of the (π, α) = (−,−1
2) and (−,+1

2) bands respectively built

one valance neutron in the [505]11
2

−
orbital [132].
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Figure 6.16: Highlighted section of the 167Yb level scheme for states populated in the
experiment. The inter-band transition highlighted in red are discussed in the text.
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Figure 6.17: Highlighted section of the 167Yb level scheme for states populated in the
experiment. The transition highlighted in red are discussed in the text.
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6.3.2 167Yb Analysis Method

From the main experimental data, sets of triple coincidence events were constructed for

γγγ and e−γγ. The same coincidence time requirement as used in Section 6.1.1 was

required between each e−γ and γγ permutation in order to suppress background. The

previously discussed background subtraction was not applied as triple coincidence data

were found to be sufficiently clean (large peak to total ratio) for the peaks of interest

to be easily resolved. Furthermore, background subtraction with high-fold gates is a

more involved process as it must account for correlations and thus the subtraction from

Section 4.4 would be insufficient [81].

A pair of γ-ray gates are applied to both γγγ and e−γγ data sets to produce double-

gated electron and double-gated γ-ray spectra. Identical gates are used for γγγ and

e−γγ. By requiring two γ-ray coincidences in same cascade as the target transition, clean

resultant spectra with little background are produced. Other transitions in the cascade of

the two gating transitions also appear in the resultant spectra but random background is

heavily suppressed. If either gate is heavily contaminated, the contaminant is suppressed

in the final spectra, unless it is coincident with a transition in the second gate as well.

In this section, gates directly above and below the transition of interest are used; this

preferentially selects the target transition over any other part of the cascade coincident

with the gates.

Peak fits as described in Section 4.1 were performed on the gated spectra to calculate

electron and γ full energy peak areas. The conversion coefficients were then determined

by using

αexp =
Ae,exp · ε(Eγ)

Aγ,exp · ε(Ee)
· Λ3 , (6.3)

where the triple timing factor Λ3 is defined here as

Λ3 =
τγ ·∆γγ ·∆γγ ·∆γγ

τe ·∆eγ ·∆eγ ·∆γγ
. (6.4)

The additional ∆ terms result from the three coincidence timing gates used for the possible

pairs in a triple event. This may be a slight overestimation if there are correlations between

the three ∆ terms from the timing of physical processes. The constant Λ3 is related to

the timing constant experimentally determined in Section 6.2.3 by

Λ3 = Λ · ∆γγ

∆eγ
. (6.5)

In Section 6.2.3 ∆eγ and ∆γγ were estimated to be 0.926 and 0.909 respectively. Combining

these ∆ values, with an assumed 5 % error, with the measured Λ = 0.522 ± 0.040 gives

a value of Λ3 = 0.512 ± 0.053, with which αexp may be determined. As discussed in

Section 6.2.2, L and M electron peak areas were summed to calculate a combined αL+M ,

resulting in improved accuracy.
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6.3.3 167Yb Results

To isolate the 263 keV transition, coincidence gates were placed on the 341 keV and 179 keV

in-band transitions directly above and below, highlighted in Figure 6.17. Double-gated

electron and γ-ray spectra for the 263 keV transition are shown in Figure 6.18. The

K, L and M electron features relating to the 263 keV transition are clearly observed, as

is the corresponding γ ray. There is notable contamination from the 227 keV 4+
1 → 2+

1

transition of 166Yb, which has a genuine coincidence with the upper gate and is of sufficient

intensity that Compton continuum in the lower gate results in the false triple coincidence

observed. The L and M electrons peaks of the contaminant were included in the fit of

the gated electron spectrum to improve accuracy. Values of αK,exp = 0.057 ± 0.011 and

αL+M,exp = 0.032± 0.016 were measured for the 263 keV transition.

-ray Energy [keV]γ
50 100 150 200 250 300 350 400 450

C
ou

nt
s

0

200

400

600

800

1
+2→1

+Yb 4166
    277 keV

-
9/2→)-(13/2

   263 keV

Electron Energy [keV]
50 100 150 200 250 300 350 400 450

C
ou

nt
s

0

10

20

30

40

50

60

70
K

L
MK

L
M

Figure 6.18: Double-gated electron and γ-ray spectra highlighting the 167Yb 263 keV tran-
sition. The 227 keV 4+

1 → 2+
1 transition of 166Yb is also prominent.

For the 314 keV a sum of data from two sets of γ-ray coincidence gates was used. Firstly

a coincidence with the 417 keV in-band transitions directly above was required. Then a fol-

lowing second coincidence was required with either the 204 keV in-band transitions directly

below, or the 144 keV inter-band transitions, also directly below, as highlighted in Fig-

ure 6.17. The resultant double-gated electron and γ-ray spectra are shown in Figure 6.19.

The data are particularly clear and yields measurements of αK,exp = 0.048 ± 0.006 and

αL+M,exp = 0.020± 0.003.

Finally, the 175 keV inter-band transitions was isolated by requiring coincidences with

the 193 keV and 155 keV inter-band transitions directly above and below, shown in Fig-
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Figure 6.19: Double-gated electron and γ-ray spectra highlighting the 167Yb 314 keV tran-
sition.

ure 6.16. Resultant electron and γ-ray spectra are shown in Figure 6.20. The 210 keV

inter-band transitions directly above the upper gating transition, shown in Figure 6.16,

is genuinely coincident with both gates and visible in the spectra. The K electron peak

from the 210 keV transitions is included in the electron fit to improve accuracy. Resultant

values of αK,exp = 0.192± 0.047 and αL+M,exp = 0.139± 0.046 were measured.

These three sets of conversion coefficient measurements are shown in Figure 6.21. The

conversion coefficient measurements for each transition are plotted alongside the BRICC

calculations for the different possible multipolarities of the transition. In all three cases a

pure E2 transition is clearly established. In these three examples, the αL+M measurements

do not unambiguously identify the transition type, but limit it to E2 or M1. The αK

measurements constrain the transition to E2 with negligible mixing, if any. The clarity of

these results, and the electron spectra shown, demonstrate the power of high-fold-gated

electron spectroscopy possible with SAGE.
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Figure 6.20: Double-gated electron and γ-ray spectra highlighting the 167Yb 175 keV tran-
sition. The 210 keV transition is also prominent.
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6.4 Non-Yrast Transitions

Following normalisation of the conversion coefficient calculations using yrast data, we pro-

ceed to look at inter-band transitions from non-yrast states in which mixed multi-polarities

and E0 enhancements can be observed. Transitions are observed in the energy range 500 -

1000 keV where the yrast structures do not dominate the electron spectra. Following the

gating and background subtraction a greatly reduced background is presented at these

higher energies. The remaining background is one which, while reduced, is not negligible

and has a large variance and large cumulative bin errors.

For the electron peaks under consideration in this region the statistics are low, only

those from the most intense transitions or from transitions with enhanced electron con-

version can be distinguished. Several such transitions can be identified in the data for

known transitions in the different nuclei 152,154Sm and 166Yb, conversion calculations are

performed for each as a test of the method.

In this section the size of the electron peaks to be measured are on the scale of or smaller

than the variance of the background, hence the idealised fitting presented in Section 4.1.2

is unsuitable and the confidence limit fits of Section 4.5 are used. When a clear peak could

not be distinguished, peak centroid and width were fixed leaving only the area variable

as a free parameter. Peak width and any kinematic centroid shifts were taken from the

nearest measurable neighbour. In such cases fitting was repeated with width and centroid

values varied around the ‘optimum’ value to check the measurement sensitivity to each

parameter.

For fitting of the low statistics peaks, rebining of data between the initial 1 keV bins

and a maximum of 5 keV bins was performed to aid identification of peaks and guide the

eye during fitting. In each case attention was paid to any difference in results between

different binning in order to avoid fit anomalies. 5 keV was selected as the maximum

physical binning as peak σ in the range ∼ 4 − 7 keV were expected, equating to FWHM

∼ 9− 16 keV and hence larger binning would result in a loss of peak information.

Using the above procedure we produce limits at the 95% confidence level, both from

FC bands and χ2. In each case the graphical representation of the confidence band is

produced so it can clearly be seen if convergence is expected between the two and if the

limit value x is accepted as a valid measurement.

Measurements of counterpart γ-peaks remain far simpler and are a negligible source

of error.

6.4.1 152Sm Conversion Coefficients for 0+
2 → 2+

1 and 2+
2 → 2+

1

Both the 0+
2 → 2+

1 and 2+
2 → 2+

1 transitions of 152Sm are sufficiently strong that they

can be observed in the low statistics regime of the electron data, using data gated on

the Γ1 transition. Measurement of both conversion coefficients provides a test of the low

statistics method that will be applied to the analogous states in 154Sm, but at significantly

lower energies where SAGE efficiency is significantly higher. The 2+
2 → 2+

1 transition is of

particular interest as it is the equivalent transition to that to be measured in 154Sm. In

all following cases focus is on the K electron measurement.



6.4. Non-Yrast Transitions 139

-ray Energy [keV]γ
400 450 500 550 600 650 700 750 800 850

 C
ou

nt
s

3
10

0

5

10

15

20

1
+2→2

+  2
689 keV

1
+2→2

+  0
563 keV

Figure 6.22: 152Sm high energy γ spectrum. Relevant transitions are indicated.

Figure 6.22 shows the appropriate region of the γ spectrum, in which a smoothing

algorithm has been applied to subtract Compton continuum. From the 562.9 keV 0+
2 → 2+

1

γ branch it can seen that the 0+
2 has been well populated, which will allow observation

of the conversion electrons. Just below the 688.7 keV 2+
2 → 2+

1 γ peak the 674.7 keV

3−1 → 4+
1 transition can be seen, this is a pure E1 transition and has a small conversion

coefficient of 0.0019 which will not be observed.
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Figure 6.23: 152Sm high energy electron spectrum. The peak fit used is shown (red) and
additional fit is shown (black) for interest as described in the text.

Figure 6.23 shows the electron spectrum fit. The 0+
2 → 2+

1 transition is a pure E2

transition but is sufficiently low in energy that it is suitably converted for observation.

For the 0+
2 → 2+

1 K electron peak a good fit minimum is reached without constraints. A

centroid shift of -5.9 keV is measured, in-keeping with a smaller impact parameter and

larger βz, which is expected as the 0+
2 state cannot be populated by a single step CoulEx

reaction. A peak area of 453(218) is measured at the 95% confidence level, the confidence

bands sit just in the convergent region away from the boundary, as shown in Figure 6.24.

Then peak area given is taken from Figure 6.23 where a 2 keV binning has been used.
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This is consistent with the mean across all considered binnings of 454(217). Using this

electron peak area and the measured γ peak area of 1.14(1)× 105 an αexp was calculated

using Equation (6.1), where the peak efficiency for electrons is 1.84(4) % and for γs it

is 6.15(2) %. It is found that the smaller 1σ uncertainties on efficiencies and γ peak are

negligible and only the 7.6% error on the measured value of Λ is of some small significance.

A final value of αK,exp = 0.0069(34) is determined for the 152Sm 0+
2 → 2+

1 transition. This

value is in very good agreement with the accepted data table value of αK(E2) = 0.0078(1),

upon which only a 1σ uncertainty is quoted.
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Figure 6.24: 152Sm electron peak area measurement confidence bands. K electron peak
areas for 0+

2 → 2+
1 (left) and 2+

2 → 2+
1 (right).

The 2+
2 → 2+

1 transition is Jπi = Jπf and benefits from enhanced electron conversion

from M1 and E0 contributions. In the electron spectrum the 2+
2 → 2+

1 K electron peak

is prominent, but less distinct than that of the 0+
2 → 2+

1 . An unconstrained fit leads

to a peak that is too broad (σ > 10 keV) and pulled down notably in energy. The

peak width was fixed to σ = 6 keV based on the neighbouring peaks, while the centroid

was left free. As a result, a good fit minimum was reached at an acceptable centroid,

leading to a peak shift of -3.3 keV. The 2+
2 K peak can in fact be fit well by a pair of

peaks, perhaps corresponding to an un-boosted component from CoulEx population and

a separable component from heavily Doppler shifted nuclear population. Such a fit is

unjustified at these levels of statistics and background fluctuations and is performed for

interest only. Using the single Gaussian fit a peak area of 562(135) is measured at the 95%

confidence level. The confidence bands, shown in Figure 6.24, are in the region where FC

and classical χ2 estimations converge. This area is taken at the 2 keV binning level and

is consistent with the mean value of 561(135). Combining this with the measured γ peak

area of 5.11(9)× 104 and using electrons and γ peak efficiency of 1.06(3)% and 5.49(2)%

respectively, a value of αK,exp = 0.0297(75) is measured for the 152Sm 2+
2 → 2+

1 mixed

E0+M1+E2 transition. This value is in remarkable agreement with the data table value

αK(E0 +M1 + E2) = 0.0359(13) as measured by several 152Eu decay experiments, most

recently in Reference [133].

It is worth noting this is considerably larger than either of αK(E2) = 0.0048 or

αK(M1) = 0.0083. The E0 enhancement We(E0) can be extracted if the mixing ratio

δ(E2/M1) is known (as it is for this transition) from angular correlations. Such analysis
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is applied to the later 154Sm measurement.

6.4.2 166Yb Conversion Coefficients for 8+
3 → 8+

1 and (6)+
2 → 6+

1

In the low statistics region, above the well-populated yrast transitions (>600 keV) and

below the maximum measurable electron energy (<1000 keV), there are many observable
166Yb γ rays belonging to yrast feeding transitions from states in higher lying bands,

the observable levels are shown in the scheme of Figure 6.25. The upper graph in Fig-

ure 6.26 shows the γ spectrum gated on 166Yb Γ2 and Γ3. Measurements of conversion

coefficients are performed as a test of the measurement method at yet higher energies

than 152Sm and for an entirely different population method. Of the transitions observed
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Figure 6.25: 166Yb observable levels and γ transitions from γγ data. Full level scheme
from Reference [78] and original assignments taken from Reference [127].

only a few are sufficiently intense or sufficiently converted that they have observable elec-

tron peaks. The small E1 and E2 transitions are negligible as none are seen strongly

enough to outweigh their smaller conversion coefficients. Measurements are focused on

the 754.8 keV E0+M1+E2 transition between the 1853 keV 8+ and 1098 keV 8+
1 states,

and the 814.5 keV M1 transition between the 1482 keV (6)+ and 668 keV 6+
1 states. Data

from the Γ4 gate is included for fitting of the 8→ 8 peaks as this gains a few vital counts.

The Γ1 gate however is not used, it is heavily converted (α = 2.97) and what little γ

peak remains is heavily contaminated by 38Ar; its peak to noise ratio makes its inclusion

unprofitable.

The 832.2 keV (4)+ → 4+
1 has a sizeable conversion coefficient, but the γ ray is poorly

distinguishable from adjacent peaks and an αexp calculation is not attempted. A peak

for the K electron of the transition is included to improve the electron fit as it is not

negligible for calculation of the neighbouring 6→ 6. The lower graph of Figure 6.26 shows

the electron data fit for the 6→ 6 K electron. A suitable fit minimum is reached without

constraint. Narrower peak widths in the range σ = 3.4−4.8 keV are measured from fitting

of the ytterbium electron peaks, this is in-keeping with the lower Doppler broadening for
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Figure 6.26: 166Yb high energy spectra for γ-ray transitions (above) and electrons (below),
gated on Γ2 and Γ3. Fits shown in red are detailed in the text.

the slower ytterbium nuclei and the higher energy electrons being closer to the energy

straggling minimum at ∼1 MeV.

Peak shifts of -2.5 keV and -0.8 keV are measured for the 6→ 6 and 8→ 8 K electron

peaks respectively. From the discussion in Section 6.2.1 this indicates a lifetime for the

1853 keV 8+ state of >> 1 ps, however the certainty on the centroids of the low statistics

peaks are insufficient to certify such a claim.

The 814.5 keV 6 → 6 transition’s K electron peak area is measured at the 95% con-

fidence level to be 385(129) using a 2 keV binning (average over all levels of binning

375(134)), shown in Figure 6.27. This peak includes a contribution from the K elec-

tron of the inseparable smaller 811.0 keV (11)− → 10+
1 E1 transition. For the counter-

part γ peaks, negligible Doppler shift or broadening of the peaks allows a simple two

Gaussian fit with fixed centroids to deconvolve the two peak areas, giving 1.93(1) × 105

counts from the 815 γ and 1.30(1)× 105 counts from the 811 γ. Using peak efficiencies of

0.63(2) % and 4.97(2) % for electrons and γs respectively, and taking αK(E1) = 0.00188

as known for the 811 transition, the E1 contribution to the electron peak is calculated to

be 60(5). Hence using an electron count of 325(129) a conversion coefficient is calculated

of αK,exp(815) = 0.0069(28). This is slightly lower than the previously measured value by
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Fields et al. of αK,exp(815) = 0.010(1) [128] on which the pure M1 assignment to the tran-

sition is based (αK(M1) = 0.0100, αK(E2) = 0.0047). This slightly lower measurements

hints at a possible E2 component 4. However, some underestimation in the measurement is

possible due to the the smaller, indistinguishable from background, electron peaks. These

were ignored and may have marginally driven the background fit up and hence electron

peak area measurement down.
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Figure 6.27: 166Yb electron peak area measurement confidence bands. K electron peak
areas for (6)+

2 → 6+
1 (left) and 8+

3 → 8+
1 (right).

For the calculation of αK for 754.8 keV 8 → 8 transition, a K electron peak area is

measured at the 95% confidence level to be 669(181) using a 2 keV binning (average over

all levels of binning 656(180)), shown in Figure 6.27. A γ peak area of 1.38(1) × 105 is

measured, this is easily separated from the neighbouring 761.9 keV peak. The neighbour

γ peak is unidentified. It is coincident with 166Yb Γ1,2,3,4,5, indicating an unknown higher

lying yrast feeding transition, but no states at matching energies are known. The 761.9 keV

neighbour is sufficiently separated that if any notable electron peak were produced it

would be separably identifiable, and such an electron peak is not seen. Peak efficiencies of

0.83(3)% and 5.20(2)% for electrons and γs are used. The result is a conversion coefficient

measurement of αK,exp = 0.0158(45). This is in good agreement with the Fields et al.

measurement of αK,exp = 0.017(3) [128], from which multi-polarity and α assignments to

the transition are taken, and is within error of the previous Fields et al. measurement of

αK,exp = 0.020(1) [134]. The E0 component is clearly confirmed as αK(M1) = 0.0121 and

αK(E2) = 0.0055 are both << αK,exp.

Both of these measurements support the effectiveness of the method, but the high

density of smaller transitions merging with background fluctuations cast doubt on the

small differences to previous measurements that might contain interesting physics.

6.4.3 154Sm Conversion Coefficients for 2+
2 → 4+

1

The K electron of the 911 keV 2+
2 → 4+

1 transition in 154Sm is the highest energy discernible

electron peak in the experimental data set. The electron peak appears just above the level

of the background fluctuation in the region. Measuring the pure E2 conversion coefficient

for this transition against the calculated BRICC E2 value provides the final test of the

4Without a δ measurement an E0 contribution cannot be ruled out for a Jπ → Jπ transition.
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method at the highest energy for which data are available, while also constraining the

properties of the population of 2+
2 state, which will allow for constraint of the behaviour

of the 2+
2 → 2+

1 decay branch from the state.

For the measurement of the 2+
2 → 4+

1 transition data from the Γ2 gate is used alone

as it offers far better peak to noise than the inclusion of the Γ1 gate otherwise would.
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Figure 6.28: 154Sm high energy spectra for γs (above) and electrons (below), gated on Γ2.
Fits shown in red are detailed in the text.

The gated γ ray spectrum is shown in the upper graph of Figure 6.28. The γ peak of

interest is heavily convoluted with the Doppler-broadened 914 keV 5−1 → 4+
1 transition.

Because the E1 transition from the negative parity states are broadened to non-Gaussian

shapes, and have very small centroid shifts, separation by peak fitting is ineffective. The

integrated area of the two convoluted peaks is measured to be 8.10(2)× 105 counts. The

smaller decay branch of the 51 state is clearly visible in the γ spectrum at 637 keV. This

5−1 → 6+
1 transition has 35.0(7) % of the intensity of the dominant 5−1 → 4+

1 branch. Decay

cascades following both the 5−1 → 6+
1 and 5−1 → 4+

1 decays pass Γ2 100 % and hence the

peaks in Figure 6.28 must have the relative intensities of the branching ratios, with scaling

for the efficiencies at the two energies. A peak area of 1.79(2) × 105 is measured for the

5−1 → 6+
1 . JUROGAMII peak efficiencies at corresponding energy to the high and low

peaks are 4.64(2)% and 5.75(2)% respectively.
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Total corrected counts are of 8.90(21)× 106 and 8.54(23)× 106 are calculated for the

5−1 → 4+
1 and 2+

2 → 4+
1 transitions respectively.

From the Doppler broadening observed in the negative parity state γ rays, Section

6.2.1, the electrons corresponding to the 5−1 → 4+
1 K electron peak will have a Doppler

shift of approximately -20 keV. The peak will also be broader and contain fewer electrons

as a result of being an E1 transition. For these reasons it is not necessary to include

contributions from the 5−1 → 4+
1 transition when measuring the 2+

2 → 4+
1 electron peak.

The gated electron spectrum is shown in the lower graph of Figure 6.28. An uncon-

strained fit fails to minimise to a physically acceptable minimum. The χ2 surface, shown

on the left in Figure 6.29, is found to be extremely flat in the direction of peak σ across the

range of reasonable values. The width minimum is driven towards broader peaks by the

large positive background fluctuation to the right of the peak. This particular fluctuation

is confirmed to be random and not some component of the peak, or another transition, as

it is at the incorrect energy for either.
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Figure 6.29: Parameter χ2 surface for the 154Sm 2+
2 → 4+

1 K electron fit, goodness of fit
is plotted as a function of peak width σ and peak centroid x0 (left). Confidence bands for
the peak measurement area of the final fit are also show (right).

From the 207Bi calibration source the intrinsic detector resolution at an equivalent

energy with no experimental broadening gives σ = 2.8 keV. The nearest experimental

peaks are the ytterbium 693 and 753 keV peaks with widths measured in the range σ =

3.4 − 4.8. The 864.1 keV 154Sm K electrons are closer to the energy straggling minimum

than the referenced ytterbium peaks, but may have some small Doppler broadening. A

peak width of σ = 3.5 keV was selected as a suitable value with which to proceed. Using

this value a peak area of 205(97) is measured at the 95% confidence level and a peak

centroid shift of -4.8 keV equivalent to βz = 0.0037. It is worth taking note that the fit

minimum is very broad with respect to centroid position, σ(x0) = 1.4 keV for the chosen

peak width.

Using an electron peak efficiency of 0.37(2)% the conversion is calculated as αK,exp =

0.0034(16). This is within error of the data table value αK(E2) = 0.00257(4), confirming

the validity of the method and estimations therein.

This is the smallest electron peak measured thus far in a region with the highest

relative background. A 45% uncertainty is quoted on the measurement and Figure 6.29

shows this is at the limit of convergence with the classic confidence estimator. At this level
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of uncertainty caution is needed, as it is the limits that become the physical measurement

and one should not extrapolate undue physical meaning from the modal value.

6.5 2+
2 → 2+

1 E0 Measurement

Following confirmation of the method by trial at lower energies, the primary experimental

measurement of the E0 strength in the 1096 keV 2+
2 → 2+

1 mixed E0+M1+E2 transition

of 154Sm is performed. Background subtracted data gated on the Γ1 transition is used as

it is the only observable coincident γ transition. Γ1 gated data are heavily background-

subtracted due to large levels of false coincidences, resulting in large uncertainties in the

resultant electron and γ spectra.

Figure 6.30 shows the gated γ spectrum with highlighted transitions. The surrounding

transitions are predominantly of type E1 or E2 and of lower intensity than the 2+
2 → 2+

1

transition of interest. As a result no notable conversion electron peaks corresponding to

the transitions would be expected to interfere with the 2+
2 → 2+

1 measurements. Decays

from the 2+
3 state can be seen indicating very strong population of the state. However,

the energy of the transitions down from the 2+
3 state are at higher energies than those of

the 2+
2 , in a region where electron efficiency is < 0.1% and hence beyond the scope of this

investigation. The 2+
2 → 2+

1 γ peak area in Figure 6.30 is measured to be 1.07(4) × 105.

The JUROGAMII γ peak efficiency at this energy is 4.14(2)%.
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Figure 6.30: 154Sm high energy γ spectrum gated on Γ1 transition. Relevant transitions
are indicated.

For the counterpart K electron peak, shown in Figure 6.31, no peak can be identified

in the gated spectrum. The level of background fluctuations are high and a small peak

can be easily obscured. A fit with constrained parameters for the peak under investigation

can yield a useful upper limit. The peak centroid shift and peak width are functions of the

transition energy and the population of the initial state. The 2+
2 → 4+

1 transition originates

from the same initial state and so the parameters obtained from the fit of that transitions

K electron can be used to constrain the 2+
2 → 2+

1 . The two states are sufficiently close in

energy that peak width σ is expected to be unchanged and centroid shift should be the

same to within 1 keV. Hence, a fit with fixed centroid shift -5 keV and fixed peak width
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σ = 3.5 keV was conducted for the 2+
2 → 2+

1 K electron.
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Figure 6.31: 154Sm high energy electron spectrum gated on Γ1 transition. The peak fit
is shown in red, giving a non-physical negative area due to large background fluctuations
resulting from heavy background subtraction. Marker shows expected peak location.

Figure 6.31 shows the electron fit at the 3 keV binning level. The figure shows that the

fit yields a non-physical peak area of −48.4 counts, this gives an electron measurement of

0+48.4 counts at the 95% confidence level, as shown in Figure 6.32.5 Clearly a measurement

of µ̄ = 0 will result in αK,exp = 0, which is known to be incorrect as a clear γ peak is

measured and the smallest value of α is given by αK,exp ≥ αK(E2) = 0.00174.
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Figure 6.32: 154Sm electron peak area
measurement confidence bands for the
2+

2 → 2+
1 K electron fit. Note the mea-

surement is in the region FC differs from
classic bands and where the 95% confi-
dence level has become an upper confi-
dence limit and not a central confidence
band.

With such a large uncertainty it is reasonable to consider the full range of the con-

fidence interval and not the modal value. The upper confidence bound +48.4 is taken

as the electron area to calculate an upper confidence limit for α and the quantities that

follow. Hence using an electron peak efficiency of 0.143(5)% an upper limit is calculated

of αK,exp =0.00672, where one may include a cumulative error from the other factors of

+9.2%. Adding the additional uncertainty from these factors to give an upper-upper limit

is valid but would be considered an over-cautious upper limit and so here the central value

will be calculated and the cumulative error from additional factors quoted separately.

5The identical numerical value is coincidental, the upper limit is properly computed.
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6.5.1 ρ2(E0) Calculation

Recall from Section 4.6.2 that a ρ2(E0) can be calculated using

ρ2(E0) = q2
K ·

αK(E2)

ΩK(E0)
·Wγ(E2) . (6.6)

For a a mixed (E0+M1+E2) Ji → Jf transition the q2
K is given by

q2
K =

αK,exp(1 + δ2)− αK(M1)

δ2αK(E2)
− 1 , (6.7)

For the calculations of transition strength for the 2+
2 → 2+

1 decay, the latest published

values are used of δ and B(E2), taken from T. Möller et al. [120]. These values are

calculated from angular correlations and CoulEx yields, offer an improvement over the

data table value taken from [114], which offers only an upper limit on B(E2) from lifetime

measurements.

A value of δ = −30(21) and B(E2) = 0.72(9) W.u. is reported [120], equating to

Wγ(E2) = 68.5(86) ns−1. An alternative ‘disfavoured’ solution to the angular distribution

gives δ = −0.48(2), B(E2) = 0.15(2) W.u. hence Wγ(E2) = 14.3(19) ns−1, for which

calculations of ρ2(E0) are also performed.

Using the upper limit value of αK,exp = 0.00672(62) and the BRICC values of αK(E2) =

0.001746(25) and αK(M1) = 0.00271(4), values are calculated for q2. The large error on

δ has only a small effect, clarified by use of the rearranged form of Equation 6.7 :

q2
K =

1

αK(E2)

(
αexp − αK(M1)

δ2
+ αexp

)
− 1 . (6.8)

The result is a value of q2 = 2.85(27) (disfavoured alternative q2 = 12.8(19)).

Finally, using an electronic factor of ΩK(E0) = 3.654 × 1010 s−1 and Equation 6.6

values of ρ2(E0) are calculated. The result is an upper limit of ρ2(E0) ≤ 9.4(15) × 10−3

and an alternative value of ρ2(E0) ≤ 8.8(18)× 10−3 relating to the disfavoured δ value.6

This is a particularly weak transition, the implications of which are discussed below.

6.6 Discussion

6.6.1 Measurement

A summary of results is presented in Table 6.2. Good agreement is observed between the

measured αK,exp and accepted values for the three nuclei across the energy range measured.

For comparison, the ρ2(E0) value of the 152Sm 2+
2 → 2+

1 transition was calculated using

the measured αK,exp to be 56(14) × 10−3. The result agrees with the accepted value of

69(6)× 10−3, as it should given the agreement of αK,exp.

Due to the lack of observation of an electron peak for the 154Sm 2+
2 → 2+

1 transition, the

result is highly sensitive to the fit constraints that were used, which were determined from

6The values of ρ2(E0) are presented in the format ×10−3 by convention.
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Nucleus
Transition

ML αK,exp
Accepted

Energy [keV] Value
152Sm 562.9 E2 0.0069(34) 0.0078(1)

152Sm 688.7 E0 +M1 + E2 0.0297(75) 0.0359(13)

166Yb 754.8 E0 +M1 + E2 0.0158(45) 0.017(3)

166Yb 814.5 M1 0.0069(28) 0.010(1)

154Sm 911.0 E2 0.0034(16) 0.00257(4)

154Sm 1095.9 E0 +M1 + E2 ≤0.00672(62) -

Nucleus Transition
ρ2(E0)exp Accepted

×10−3 Value
152Sm 2+

2 → 2+
1 56(14) 69(6)

154Sm 2+
2 → 2+

1 ≤ 9.4(15) -

Table 6.2: Summary table of results from Sections 6.4 and 6.5.

the 2+
2 → 4+

1 K electron peak. The dependence of the upper limit electron measurement

on the two fit constraints is shown in Figure 6.33. The maximum value in Figure 6.33 is

approaching 200 counts, for a centroid shift of -14 keV and peak width σ 6.5 keV, both

of which are significantly higher than would be expected. Using the calculation from

Section 6.5, with the favoured B(E2) and δ values and an upper limit of 200 electrons

taken from Figure 6.33, a value of ρ2(E0) ≤ 49.5× 10−3 is computed.
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Figure 6.33: Electron fit area parameter surface. Shown is the upper limit of the electron
peak area, for the fit of the 154Sm 2+

2 → 2+
1 K electron, plotted as a function of the two

constrained parameters, peak width σ and peak shift (centroid).

The justification given for selection of the fit constraints, and the consistent result

obtained for αK,exp of the 2+
2 → 4+

1 transition, are sufficient to give confidence in the

parameters selected and the upper limit presented in Table 6.2. From the behaviour of

the surface, shown in Figure 6.33, as a function of centroid shift, it is apparent that the

upper limit is heavily dependant on local fluctuations of the background. Effectively,
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the upper limit is the answer to the question “What is the largest peak that could be

obscured by background variation at the location specified?” Understanding this is crucial

in establishing confidence in the present measurement, which is significantly smaller than

Bohr-Mottelson and IBA predictions given in Section 5.1. To further illustrate this point

the following example is given: assuming the Bohr-Mottelson collective prediction for a

β-band of ρ2(E0) = 100 × 10−3, and using the peak efficiencies and clearly measured

γ-peak area given in Section 6.5, an electron peak area of 391 counts would be expected.

Randomly generated Gaussian peaks with an area of 391 and peak width σ = 3.5 keV and

σ = 5 keV are shown, in Figures 6.34 and 6.35 respectively, against the measured electron

spectra. In both cases the likelihood that a peak of the size shown could be obscured by

the background in the data is small, even with the large uncertainties in the background.
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Figure 6.34: 154Sm high energy electron spectrum gated on Γ1 transition, alongside Gaus-
sian peak with area as expected from ρ2(E0) = 100 × 10−3 prediction and observed γ
intensity. Overlain peak is of width σ = 3.5 keV and centroid shift -5 keV, as expected
from the 2+

2 → 4+
1 peak. Image is shown with and without error bars as the information

they provide is important but their presence hinders visual assessment.

6.6.2 Interpretation

Without a measurement of ρ2(E0; 0+
2 → 0+

1 ) it is difficult to make overarching claims re-

garding the nature of the 0+
2 band in 154Sm. However, the result obtained for ρ2(E0; 2+

2 →
2+

1 ) presents an interesting challenge for the interpretation of the 2+
2 state and comparison
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Figure 6.35: As Figure 6.34 but with peak width σ = 5 keV and centroid shift -9 keV to
demonstrate the more extreme case.

of the measured value to predictions made by various models can give useful evidence in

support or opposition of the models.

For a pure β-vibrational band of the Bohr-Mottelson picture, ρ2(E0; I+
β → I+

1 ) should

have a value of the order 100× 10−3 and there should be no I dependence [15]. This is far

larger than the measured upper limit ρ2(E0; 2+
2 → 2+

1 ) ≤ 9.39(1.47)× 10−3. Figures 6.34

and 6.35 serves to illustrate that such a large value is outside of reasonable possibility.

Hence, it must be concluded that the 2+
2 state in 154Sm cannot be described as the 2+

β

state of the Bohr-Mottelson macroscopic collective interpretation.

Calculations performed by P. Van Isacker [27, 121], in the more general collective pic-

ture of the IBA, predict ρ2(E0; 2+
2 → 2+

1 ) = 39. This value lies between the measured

upper limit and the Bohr-Mottelson prediction, but is still notably larger than the upper

limit presented in this work. This IBA prediction is within the experimental limit that

would be given in this work if less stringent constraints were placed on the electron fit

parameter, as illustrated in Figure 6.33. As explained in the previous section, the con-

sistency of the results obtained for the other αK measurements across 152Sm, 166Yb and
154Sm leads to the conclusion that such large values are not to be expected and the pre-

sented upper limit should be accepted. Consequently it must be concluded that the IBA

fails to reproduce the behaviour of the the 2+
2 state with regards to E0 transitions.

Having concluded that neither of the models considered here adequately describe the
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observed 2+
2 state of 154Sm state mixing should be considered: Could mixing between a 2+

β-like collective state, as described by either model, and another 2+ state could produce

the observed result? Band mixing of 154Sm was discussed in Section 5.1. In Reference [114]

it was suggested that little mixing between the 0+
1 and 0+

2 bands should be expected. The

measured ρ2(E0) value would appear to support this assertion as mixing between bands

should strengthen the E0 transitions between the mixed bands [15]. Mixing between

the 0+
2 state and 0+

3 state, believed to be a spherical coexisting configuration, was also

discussed in Reference [114]. It was shown that there is a maximum mixing amplitude

of 4% between the two excited 0+ states. It would be unlikely that there would be

significantly higher mixing between the 2+
2 and 2+

3 states [122] despite their proximity,

being located at 1177.8 keV and 1286.3 keV respectively. Mixing with the 2+
γ state at

1440 keV by a ∆K = 2 coupling of the two rotational bands might also be possible. This

would naturally only mix the states with I ≥ 2 of the 0+
2 band.

Here it is worth considering the mixing amplitude required in a simple two-state mixing

solution in order to justify the observed E0 strength. Assuming an initial unperturbed

β-like 2+
β , as considered in the two comparison models, mixing with an unspecified state

2+
x resulting in the observed states:

|2+
2 〉 = a|2+

β 〉 − b|2
+
x 〉 and (6.9)

|2+
X〉 = a|2+

x 〉+ b|2+
β 〉 , (6.10)

where a2 + b2 = 1. By definition the measured ρ2(E0) limit is given by

ρ2(E0; 2+
2 → 2+

1 )exp ≥

∣∣∣∣∣〈2+
1 |T̂ (E0)|2+

2 〉
eR2

0

∣∣∣∣∣
2

. (6.11)

Hence by manipulation of the relation:

〈2+
1 |T̂ (E0)|2+

2 〉 = a〈2+
1 |T̂ (E0)|2+

β 〉 − b〈2
+
1 |T̂ (E0)|2+

x 〉 , (6.12)

one may write:

ρ2(E0; 2+
2 → 2+

1 )exp ≥
∣∣∣∣±a√ρ2(E0; 2+

β → 2+
1 )∓ b

√
ρ2(E0; 2+

x → 2+
1 )

∣∣∣∣2 . (6.13)

In this final equation there are sign ambiguities, as the signs of the unperturbed T̂ (E0)

matrix elements are not known and the state mixing potential is not specified as attractive

or repulsive (sign of b). However, if one assumes ρ2(E0; 2+
x → 2+

1 )→ 0, as is the case for

the 2+
γ band or for a coexisting or quasi-particle state with no mixing with the ground state

band, then Equation (6.13) simplifies. For the maximum mixing amplitude, a = b = 1/
√

2,

the measured upper limit gives the relation

ρ2(E0; 2+
β → 2+

1 ) ≤ 17.8(2.9)× 10−3 , (6.14)

which is still significantly smaller than either of the two collective models presented here
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predict. This shows that simple mixing, with either of the near-energy candidate 2+
x states,

is insufficient to support either interpretation of a collective β-like 2+
2 state.

It must be concluded that a different interpretation of the 2+
2 state is required, po-

tentially a more complex sum of many 2+ states with negative interference of non-zero

T̂ (E0) matrix elements. In the IBA the total E0 strength depends on the sum of many

nd components, even small changes of admixtures from other states may decisively change

the nd distribution, reducing E0 strength [28]. Alternatively, it may be concluded that

the very small E0 strength, inconsistent with either collective model, indicates that the

2+
2 state is largely quasi-particle in nature with little collective contribution. Such an

interpretation is supported by the B(E2; 2+
2 → I+

1 ) values measured in Reference [120]

and discussed in Section 5.1, which are smaller than predicted by collective models. In

support of such an interpretation, experiments using the 152Sm(t, p)154Sm reaction to pop-

ulate states in 154Sm, could be performed to investigate the neutron-pairing component

of state wave-functions. Previous (t, p) work failed to populated the 2+
2 state [135].

Finally, it should be remarked that the ρ2(E0; 2+
2 → 2+

1 ) upper limit measured in

this work agrees with an unconfirmed measurement reported in References [123, 122].

Importantly, in the same work a value of ρ2(E0; 0+
2 → 0+

1 ) ≈ 100 × 10−3 was reported,

which is consistent with a collective interpretation of the 0+
2 state. The energy spacing of

the 0+
2 , 2+

2 , 4+
2 and 6+

(3) states is indicative of a rotational band. As such, any interpretation

of the nature of the 2+
2 state as having a majority component incompatible with the

interpretation of the 0+
2 state, should be approached with caution.
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7
Conclusions

In this thesis, an overview of techniques for performing electron spectroscopy experiments

with the SAGE spectrometer was presented. Unique contributions found in this work are

the peak-fitting methods introduced in Section 4.1 and implemented throughout the work,

and the background suppression techniques introduced in Section 4.4 and used to great

effect with main experimental dataset in Section 6.1. The motivation for this work was the

measurement of sparsely-known monopole transitions strengths in rare-earth nuclei. In

Section 2.2, the relation of E0 transitions strength to key behaviours inside the nucleus was

explained. Results were presented for the test case of 154Sm, in which the E0 measurement

acts as a probe of β-vibrational collective behaviour.

7.1 Experimental Summary

The primary experimental aims were to measure the monopole transitions strengths

ρ2(E0; 0+
2 → 0+

1 ) and ρ2(E0; 2+
2 → 2+

1 ) in 154Sm and to determine the feasibility of the

experimental method for further measurements in the region.

Large β-particle background, from fusion-evaporation reactions with the target frame,

rendered measurement of the electron peaks of interest in singles spectra impossible. As

a result, focus was placed on background suppression in γγ and γe− events. This meant

a loss of ability to measure the 0+
2 → 0+

1 transition, which would only be observed as a

one-step de-excitation. Following development of time-random and Compton-scattering

background subtraction of the data set, clean γ-gated electron spectra and γ-gated γ-ray

spectra were produced, from which conversion coefficients could be calculated.

Conversion coefficient calculations were normalised to 20 yrast transitions across 3

nuclei and 2 populations methods, shown in Figure 6.15. The resulting normalisation fac-

tor Λ = 0.522 ± 0.040 indicated a particularly large effective dead-time of JUROGAMII,

approaching 50%. High incident particle rates can increase effective dead time in JU-

ROGAMII due to genuine pile up in the detector elements and false coincidence in BGO

suppression shields, leading to overzealous event vetoing. Despite this, the number ap-

pears large, indicating some factor unaccounted for in the normalisation. This cements

the need for a comprehensive normalisation, such as the one performed. Subsequently,

using this normalisation coefficient, six conversion coefficients of known transitions were

correctly measured in the Ee > 500 keV low statistics region. Furthermore, in Section 6.3

consistent results are obtained using the same normalisation extended to γγγ and γγe−

triple coincidences.

For the 2+
2 → 2+

1 transition of 154Sm, a final result for the conversion coefficient was
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obtained of αK(E0; 2+
2 → 2+

1 ) ≤ 0.00672(62). This value equates to a monopole transi-

tion strength of ρ2(E0; 2+
2 → 2+

1 ) ≤ 9.39(1.47)× 10−3. The calculated transition strength

contradicts both of the collective models considered in this work, showing a clear need for

further investigation.

7.2 Improvements for Future Work

The main deficiency of this work was the inability to measure the 0+
2 → 0+

1 electron

transition. Before attempting to repeat the measurement for 154Sm, or extend the method

to investigate E0 transitions in other rare-earth nuclei, improvements must be made.

The energy of the collective states of interest, and subsequently of the E0 transitions

from them, are at energies where the efficiency of SAGE is low. In order to optimise SAGE

for detection of the high-energy electrons of interest (Ee > 500 keV), several alterations can

be made from the experimental setup used in this work. For electrons with energy greater

than ∼ 200 keV, the main limitation on transport efficiency results from their orbital radii

being greater than the target chamber aperture, as shown in Figure 3.10. Increasing the

current in the solenoid coils, in order to maximise the axial magnetic field, will increase

the transport efficiency for high-energy electrons by reducing their orbital radii. Full-

energy peak efficiency is then further affected by detector interactions. At high electron

energies, punch through of the detector becomes likely, as shown in Figure 3.11. Increasing

the thickness of the SAGE silicon detector will reduce this effect. Scattering within the

detector is also a major effect for high-energy electrons requiring further development

of addback techniques, as discussed in Section 3.2.2. Finally, if the detection of only

high-energy electrons are of interest, operating the potential barrier at its highest setting

will maximise suppression of low-energy electrons with little effect on detection efficiency

for high-energy electrons. Doing this will enable running at higher rates without being

paralysed by δ-electrons and low-energy conversion electrons, which have large conversion

coefficients.

Owing to the high energy of the transitions under consideration, the electron conversion

branch is always small and, even with improved efficiency, background suppression will still

be imperative. The background subtraction, which was shown to be particularly effective

in this work, can be further improved for future experiments. The γe− coincidence timing

gate used in this work was 170 ns wide compared to a total event width of 400 ns. Ideally

the event width should be made wider, at the cost of a reduction in experimental rate.

Doing so improves the sample size for the time-random background spectrum and allows

for greater separation between the genuine coincidence peak and the selection for the time-

random background. Together these changes produce a cleaner time-random background

subtraction. Careful beam tuning, to reduce the amount of random contaminant present

to begin with, is also advisable.

The inclusion of more coincident data handles would increase the degree of suppression

that can be achieved. One advantage of SAGE is the ability to perform high-fold γ-

coincidence measurements with JUROGAMII. The effectiveness of high-fold γ-gating is

demonstrated in Section 6.3 for 167Yb. However, for the target 0+
2 → 0+

1 transitions in
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the even-even rare-earth nuclei, coincidence with high-fold γ-ray cascades, or even a single

γ ray, may not be available. The 0+
2 state in 154Sm is fed by a 20% branch from the

2069 keV (2+) state, a 33% branch from the 2131 keV (2+) state and a 100% branch from

the 2196 keV (1, 2+) state; none of which can be discerned in the current data set.

Recoil detection is the fundamental element needed in such a situation and absent from

the present work. Detection of a recoiling nucleus provides an additional data handle

for all genuine beam-target interactions, even those which result in emission of only a

single quanta of radiation, such as the 0+
2 → 0+

1 electron conversion in 154Sm following

direct population of the 0+
2 state. The presented time-random background subtraction can

then be performed using the coincidence time between detection of the emitted quanta

and detection of the recoiling nucleus. By requiring recoil detection, coincidence decay

events in the target chamber, which may include genuine γγ and γe− events, are heavily

suppressed.

Furthermore, in this work kinematic shifts of electrons were found to be particularly

challenging as there were many unknowns. This was discussed in Section 6.2.1. Kinematic

shift of electron peaks are particularly problematic when dealing with low statistics data, in

which peak identification is difficult, or when performing spectroscopy of transitions with

previously unmeasured energy, not performed in this work. By detecting a recoiling target,

beam or product nucleus, the kinematic solutions are dramatically simplified, allowing for

a full correction to be performed.

In the calculations of conversion coefficients, the angular correlations were discussed

in Section 4.6.1 and taken to have have negligible effect. In the case of recoil detection,

the alignment of the initial ensemble becomes constrained and the approximations made

in this work are no longer correct. For future work involving recoil detection further

investigation of angular correlations should be performed.

SAGE is designed to work with the RITU separator, which can detect recoiling prod-

ucts from fusion-evaporation reactions. It is not optimised for detection of recoiling target

or beam nuclei in a CoulEx experiment, such as the one presented in this work. Some small

fraction of the recoiling beam nuclei will be backscattered and detected in SAGE silicon

detector. As nuclei are less easily constrained than electrons, this will occur in a negligible

fraction of events. If recoil detection is to be used for future work, one must consider if a

different reaction method is viable or if different apparatus is more appropriate.
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7.3 Future Work

Using the experimental and analysis techniques outlined in this work, further measure-

ments of monopole transition strength should be performed in the rare-earth region along-

side development of theoretical models, including both collective and quasi-particle be-

haviour.

Confirmation measurements of the 0+
2 → 0+

1 and 2+
2 → 2+

1 E0 strengths in 154Sm

should be performed. This investigation can be extended to measurement of the 4+
2 → 4+

1

E0 strength if the required sensitivity can be achieved. The 4+
2 → 4+

1 measurement has the

benefit of an additional coincident γ-ray transition in the yrast band, which can be used

either to increase γe− efficiency, or used for improved selectivity in a triple-coincidence

γγe− measurement.

Following on from this work, near-identical experiments can be performed with 148Nd

and 150Nd, both of which have candidate even-parity rotational-like bands built on 0+
2

states at 916.8 and 675.9 keV respectively. The lifetimes of the 0+
2 are measured in both

nuclei allowing for calculation of monopole strength ρ2(E0; 0+
2 → 0+

1 ) using the previously

defined method. The lifetimes of the 2+
2 states in both nuclei are also known. However,

the mixing ratio δ(E2/M1) for the 2+
2 → 2+

1 transition is not known for 150Nd. As

a result, a measurement of ρ2(E0; 2+
2 → 2+

1 ) is possible for both neodymium isotopes

but would have large uncertainty for 150Nd, an uncertainty which would be smaller for

larger values of ρ2(E0). For the three cases stated above, and the other stable rare-earth

isotopes, a CoulEx reaction of the type used in this work offers the best cross section for

population of the states of interest. However, this reaction method poses a problem for

the inclusion of recoil detection in the SAGE setup. SAGE is coupled with the RITU

separator, which can be used to detect the forward-scattered target nuclei, but does not

have the capability to identify scattered beam nuclei. The most forward-scattered target

nuclei, close to the beam axis, corresponding to a close distance of approach. Detecting

these target nuclei preferentially select multi-step CoulEx interactions rather than the

two-step and one-step interactions which are the dominant population processes for the

0+
2 and 2+

2 states. The widest acceptance of RITU is ±4.8° from the beam axis in the

horizontal direction. Figure 7.1 shows the CoulEx population cross section for the 0+
2

and 2+
2 states of 154Sm in the 65 MeV 16O(154Sm,154Sm*)16O reaction used in this work.

This figure serves to demonstrate that such an angular limitation on the recoiling target

nuclei seriously limits the population intensity that will be observed, and hence longer run

time will be needed to collect the required statistics. However, this is balanced by the

improvements to selectivity that recoil detection brings.

Inverse kinematics can be used to improve upon geometric limitation. Use of a heavy

beam and light target will forward focus the scattering nuclei. As a result, a greater

fraction of the reaction cross section corresponds to events accepted by the separator. At

very forward angles this has little effect with regards to target scattering direction; for

an samarium beam impinging on a oxygen target and a 4.8° scattered target acceptance,

this corresponds to 170.3° scattering in the centre-of-mass-frame, whereas for the reversed

setup the same scattered target acceptance corresponds to 170.2°, resulting in a minimal
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Figure 7.1: Coulex-population
cross section for the excited 0+

2

(black line) and 2+
2 (red line)

states in 154Sm, shown as a func-
tion of target recoil angle θ. A
secondary axis denoting values of
impact parameter b is shown.

gain in cross section. Furthermore, neither samarium nor neodymium beams are currently

available for use with SAGE setup, and 16O is too light to be focused through RITU.

Prolonged beam runs with a CoulEx excitation from an 16O beam (or similar Z nucleus)

remains the preferred experimental method to investigate E0 transitions in the stable rare-

earth nuclei with the SAGE and RITU setup.

For investigations beyond the stable isotopes of the region, fusion-evaporation or

transfer reactions will be required. The SAGE and RITU setup is optimised for fusion-

evaporation reactions. Such reactions will mainly produce neutron-rich nuclei and tend

to produce nuclei in high-spin states. As a result, the 0+
2 and 2+

2 states of interest are

unlikely to be populated directly and the intensity observed will be heavily dependent on

feeding of these states.

To continue the investigation of the evolution of the samarium isotopes, a measurement

should be made of E0 strength in radioactive 156Sm (t1/2 = 9.4 h). This proton-deficient

isotope could be produced by the 160Gd(12C,16O)156Sm α-transfer reaction. The reaction

has a +6.159 MeV Q-value due to large binding energy of doubly-magic 16O, which should

result in suitable reaction cross sections. Furthermore, by detecting beam-like products

at close to zero scattering angle, L = 0 transfer reactions will be preferentially selected,

maximising observation of direct population of 0+ states. However, caution is required as

cross section for population in such reactions can be dependent on structural properties

of the target states. There is a known excited 0+ state in 156Sm at 1068 keV, however the

lifetime and branching ratios of the state, needed to calculate ρ2(E0), are unmeasured.

As a result, continuing the investigation of the samarium isotopes to 156Sm would require

a two-part study.
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Appendix A
JUROGAMII Angles



JUROGAM II Detector Angles

Array Position(a) θo(b) φo(c)

T01 157.6 0
T02 157.6 72
T03 157.6 144
T04 157.6 216
T05 157.6 288
T06 133.57 18
T07 133.57 54
T08 133.57 90
T09 133.57 126
T10 133.57 162
T11 133.57 198
T12 133.57 234
T13 133.57 270
T14 133.57 306
T15 133.57 342
Q01 104.5 15
Q02 104.5 45
Q03 104.5 75
Q04 104.5 105
Q05 104.5 135
Q06 104.5 165
Q07 104.5 195
Q08 104.5 225
Q09 104.5 255
Q10 104.5 285
Q11 104.5 315
Q12 104.5 345
Q13 75.5 15
Q14 75.5 45
Q15 75.5 75
Q16 75.5 105
Q17 75.5 135
Q18 75.5 165
Q19 75.5 195
Q20 75.5 225
Q21 75.5 255
Q22 75.5 285
Q23 75.5 315
Q24 75.5 345

Table 1: The JUROGAM II array specifications. (a) T is tapered detector, Q is
Clover detector. (b) defined with respect to the beam direction. (c) φ=0o is defined as
vertically upwards, φ increases in a clockwise direction when the array is viewed from
a position upstream. All angles are midpoint angles. Each Clover detector has four
crystals - a,b,c,d (blue, black, green, and red respectively) arranged in a clockwise
fashion when viewed from the Dewar side of the detector. The detectors are mounted
such that c & d crystals are closest to θ=90o. Each of the four crystals’ midpoint
angles subtend 4.5o

.
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Appendix B
Radius Energy Relations in SAGE

In this section the formulation for the minimum energy electron expected in each element

of the SAGE detector shall be explained. Following this, the effectiveness of using this

information to identify scattering events shall be shown. Details from Sections 3.1.1 and

3.2.1 will be assumed.

An electron emitted at the target position follows a helical path, the radius of which

is given by:

r =
P⊥
eB

(B.1)

Where P⊥ is the component of the electron’s relativistic momentum perpendicular to the

magnetic field. The SAGE detector is perpendicular to the field axis and centred to it.

An unperturbed electron will remain tangential to the field axis. Hence the furthest radial

point on the detector an unperturbed electron can reach will be given by twice this orbital

radius. Therefore the minimum value p⊥ required to reach a given detector element can

be written in terms of the inner radius of the element rmin:

P⊥ =
Brminc

2 · 109
= 0.1499 ·Brmin (B.2)

Where B is measured in Tesla, rmin in mm and P⊥ has been converted to MeV/c. P⊥ and

P‖ can be related to the total Pe by:

P 2
e = P 2

⊥ + P 2
‖ (B.3)

and with the usual trigonometric identities. The momenta may be related to the relevant

kinetic energy by:

Te =
√
P 2
e + 0.5112 − 0.511 (B.4)

Pe =
√
T 2
e + 2 · Te · 0.511 (B.5)

where the rest mass of the electron me = 0.511MeV/c2 has been substituded.

In order to pass the potential barrier an electron must have kinetic energy with respect

to motion along the field T‖ axis greater than V ·q. As an electron has a charge of one this

gives T‖ ≥ V where the units are MeV and MV respectively, from which the minimum

value of P‖ can be given. For elements at larger radii P‖ may be greater than this as the

angle θ an electron makes with field axis must be below the value at which electrons are

reflected by the magnetic field.

Tan−1

(
P⊥
P‖

)
< θmax . (B.6)
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Hence the minimum energy an electron can have for in any given detector element is given

by whichever is the larger of the following two equations:

TBarriermin =
(

(0.1499 ·Brmin)2 + V 2 + V · 1.022 + 0.5112
)1/2
− 0.511 (B.7)

TAnglemax =

((
0.1499 ·Brmin
sin(θmax)

)2

+ 0.5112

)1/2

− 0.511 (B.8)

Any electron recorded with energy below the minimum for the detector element in which

it was measured can be concluded to be the result of a scattering event.

Figure B.1: This graph shows the minimum energy for unperturbed electron events across
the radius of the SAGE detector. Values shown correspond to B=0.1T, θmax=65°and
V=0.02MV. Steps mark the start of new ring of detector elements.

Some additional uncertainty comes from B, θmax and detector alignment. Following

this only electrons in the region below 100 keV will be notably effected. Additionally

because of the discreet nature of the element spacing an artificial step pattern is intro-

duced to electron spectra in this region. Although the removal of the excluded events is

legitimate, introducing an irregular shape to the background makes the fitting of genuine

features more challenging. For both of these reasons the benefit from the exclusion of

scattering events by this method is minimal.
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Appendix C
Calibration Data

C.1 Sources

207Bi γe− source.[JYFL-91]

Experiment intensity 350±10 kBq.

Run time 4019±2 sec.

EuBa 154Eu133Ba γ source.[JYFL-80-81]

Eu experiment intensity 25.6±0.3 kBq

Ba experiment intensity 23.8±0.3 kBq

Run time 58302±2 sec.

133Ba γe− source.[JYFL-90]

Experiment intensity 307±3 kBq

Run time 6155±2 sec
133Ba γe− source did not match the stated calibration intensity. Source intensity renor-

malised using calibration fit from other sources.

Eγ εoldcalib εfit Ratio

30.8 0.0048 (2) 0.0150 (4) 0.324(11)

35.1 0.0104 (2) 0.0294 (2) 0.350(8)

53.1 0.0412 (8) 0.0728 (6) 0.567(11)

80.89 0.0510 (6) 0.1020 (8) 0.450(8)

160.6 0.0522 (6) 0.1060 (6) 0.492(7)

223.2 0.0494 (6) 0.0970 (4) 0.508(7)

276.4 0.0460 (6) 0.0900 (4) 0.511(7)

302.9 0.0438 (6) 0.0868 (4) 0.505(7)

356 0.0396 (4) 0.0812 (4) 0.487(5)

383.8 0.0382 (4) 0.0786 (2) 0.485(6)

Table C.1: 133Ba source adjustment data points.

Weighted mean calculated using:

x̄ =

∑
xi/σ

2
i∑

1/σ2
i

V (x̄) =
1∑
1/σ2

i

(C.1)

Giving S̄ = 0.480± 0.003 and hence an intensity of 147± 2kBq.
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Figure C.1: 133Ba source scaling.

C.2 Gamma rays

Neighbouring transitions with energy seperation significantly less than peak σ were fitted

as a single peak with summed intensity.

Energy
Source

Branch Calculated

[KeV] Intensity [%] Efficiency [%]

30.8 133Ba 96.1(21) 1.008(26)

30.9 EuBa 133Ba 96.1(21) 1.458(34)

35.1 133Ba 20.8(4) 2.14(4)

35.1 EuBa 133Ba 20.8(4) 3.16(6)

39.9 EuBa 152Eu 58.9(8) 4.16(8)

45.6 EuBa 152Eu 13.5(2) 4.76(8)

53.2 EuBa 133Ba 2.14(3) 6.96 (12)

53.2 133Ba 2.14(3) 8.42 (16)

80.9 133Ba 35.5(7) 9.88 (14)

80.9 EuBa 133Ba 35.5(7) 10.18 (14)

121.8 EuBa 152Eu 28.7(2) 10.5 (1)

160.6 133Ba 0.638(5) 11.2 (2)

160.6 EuBa 133Ba 0.638(5) 10.52 (14)

223.2 133Ba 0.453(3) 10.3 (2)

223.2 EuBa 133Ba 0.453(3) 9.82 (12)

244.7 EuBa 152Eu 7.61(4) 8.94 (10)

276.4 133Ba 7.16(5) 9.40 (14)

276.4 EuBa 133Ba 7.16(5) 9.34 (12)

295.9 EuBa 152Eu 0.448(6) 8.46 (14)

302.9 133Ba 18.3(1) 8.90 (12)

302.9 EuBa 133Ba 18.3(1) 8.0 (1)

344.3 EuBa 152Eu 26.6(5) 7.74 (16)

356.0 133Ba 62.05(1) 8.18 (10)



C.2. Gamma rays 165

356.0 EuBa 133Ba 62.05(1) 7.9 (1)

367.8 EuBa 152Eu 0.862(1) 7.48 (12)

383.8 133Ba 8.94(6) 7.84 (10)

383.8 EuBa 133Ba 8.94(6) 7.58 (10)

411.1 EuBa 152Eu 2.24(3) 7.52 (12)

444.0 EuBa 152Eu 3.16(3) 6.58 (8)

534.2 EuBa 152Eu 0.0428(12) 6.1 (4)

569.7 207Bi 97.75(3) 5.7 (2)

656.5 EuBa 152Eu 0.145(2) 5.86 (18)

688.6 ∗ EuBa 152Eu 0.878(11) 5.46 (10)

778.9 EuBa 152Eu 13.0(1) 4.94 (8)

867.4 EuBa 152Eu 4.26(3) 4.8 (6)

897.8 207Bi 0.128(5) 4.58 (24)

922.8 ∗ EuBa 152Eu 0.779(13) 4.34 (8)

964.1 EuBa 152Eu 14.65(7) 4.46 (4)

990.2 EuBa 152Eu 0.0313(14) 4.14 (48)

1005.3 EuBa 152Eu 0.648(5) 4.76 (6)

1063.7 207Bi 74.5(3) 4.14 (12)

1086.3 ∗ EuBa 152Eu 12.0(1) 4.20 (4)

1111.9 ∗ EuBa 152Eu 13.9(1) 4.06 (04)

1213.0 EuBa 152Eu 1.43(1) 3.92 (04)

1249.9 EuBa 152Eu 0.189(4) 4.02 (12)

1261.3 EuBa 152Eu 0.0335(14) 3.94 (26)

1299.1 EuBa 152Eu 1.62(1) 3.40 (6)

1408.0 EuBa 152Eu 21.1(1) 3.46 (4)

1442.2 207Bi 0.131(2) 3.62 (12)

1528.1 EuBa 152Eu 0.282(5) 3.64 (8)

1771.2 207Bi 6.87(3) 2.84 (8)

Table C.2: γ Efficiency calibration points.

* Multiple peaks with significant overlap were intensity summed follow-

ing fitting.
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Figure C.2: γ efficiency data and line of fit for the complete array. Below the data are
shown curves from the individual detector rings, 75.5°clover ring (solid line), 104.5°clover
ring (dashed line) and 133.57°phase-one ring (dotted line). Differences between the two
symmetric clover rings are attributed to attenuation by the target mount.

C.3 Electrons

Neighbouring transitions with energy separation significantly less than peak σ were fitted

as a single peak with summed intensity.

Energy
Source

Branch Calculated
[KeV] Intensity [%] Efficiency [%]

41.9 133Ba 51(2) 4.07(18)

74.7 133Ba 9.66(15) 4.70(12)

124.6 133Ba 0.149(3) 5.75(17)

155.9 ∗ 133Ba 0.0378(11) 6.8(5)

187.3 133Ba 0.0379(6) 6.27(28)

240.4 133Ba 0.329(5) 5.43(14)

267.1 ∗ 133Ba 0.760(13) 5.10(13)

297.7 ∗ 133Ba 0.111(2) 4.11(11)

320.0 133Ba 1.31(1) 4.05(0.08)

349.9 ∗ 133Ba 0.421(3) 3.67(8)

378.9 ∗ 133Ba 0.0303(5) 3.19(18)

481.7 207Bi 1.54(2) 2.11(0.07)

556.7 ∗ 207Bi 0.553(1) 1.62(5)

975.7 207Bi 7.08(17) 0.194(7)

1050.5 ∗ 207Bi 2.28(8) 0.143(5)

Table C.3: e− Efficiency calibration points.
* Multiple peaks with significant overlap were intensity summed following fitting.
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Figure C.3: 133Ba e− calibration data, peak fits shown in red. Blue and green peaks
indicate decomposition of a multi-peak fit.
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Figure C.4: 207Bi e− calibration data, peak fits shown in red. Blue and green peaks
indicate decomposition of a multi-peak fit.
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Figure C.5: Efficiency data and line of fit for the SAGE electron detector array.
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Figure C.6: Calibrated γ-efficiency curve for all of JUROGAMII (solid black) shown along
side electron-efficiency curve of SAGE (dashed red).
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List of Abbreviations

JYFL University of Jyväskylä

SAGE Silicon And GErmanium array

GREAT Gamma Recoil Electron Alpha Tagging focal plane spectrometer

RITU Recoil Ion Transport Unit

HPGe High Purity Germanium

BGO Bismuth Germanium Oxide

DSSSD Double Sided Silicon Strip Detector

MWPC Multi Wire Proportional Counter

ToF Time of Flight

PMT Photo Miltiplier Tube

TDR Total Data Readout

TDREB TDR Event Builder

CoulEx Coulomb excitation

DAQ Data Acquisition system

CDF Cumulative Distribution Function

pps particles per second

pnA particles nano Amp

IBA Interacting Boson Approximation

GCM Geometrical Collective Model
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